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Abstract 

 The 𝐿𝑝 norm estimates and an improvement of eigenfunctions 

restricted to submanifolds, for compact boundaryless Riemannian 

manifolds with nonpositive sectional curvature and constant negative 

curvature are studied. We show the refined, microlocal and bilinear 

Kakeya-Nikodym averages bounds for eigenfunctions in two 

dimensions, on compact Riemannian surfaces and lower bounded for 

nodal sets of eigenfunctions in higher dimensions with 𝐿𝑝 –norms. 

Simple criterion for the existence and properties of principal eigenvalue 

of the elliptic operators in Euclidean space and principal eigenfunctions 

and spectrum points of some nonlocal dispersal operators, and 

applications are considered. 
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 الخلاصة
 

والتحسينات للدوال الذاتية قصراً إلى متعددات  𝐿𝑝قمنا بدراسة تقديرات نظيم 

الطيات الجزئية ولأجل متعدد طيات ريمان غير المحدودة المتراصة مع الانحناء 

-المقطعي غير الموجب والانحناء السالب الثابت. أوضحنا حديات متوسطات كاكيا

عدين على بديم المشتقة والموضعية الصغيرة وثنائي الخطية للداليات الذاتية في وكين

سطوح ريمان المتراصة والمحدودة السفلى لأجل الفئات العقدية للدوال الذاتية في 

. تم أعتبار المعيار البسيط لأجل الوجود والخصائص 𝐿𝑝-الابعاد اللانهائية مع نظائم

للقيمة الذاتية الأساسية للمؤثرات الناقصية في الفضاء الاقليدي والدوال الذاتية 

 الطيف لبعض مؤثرات تشتيت الانتشار غير الموضعي والتطبيقات.  الأساسية ونقاط
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Introduction 

We study the relationship between the extrinsic geometry of the 

submanifolds and the canonical relations associated to the oscillatory integral 

operators. Let (𝑀, 𝑔) be an 𝑛-dimensional compact boundaryless Riemannian 

manifold with nonpositive sectional curvature. Then we can give improved 

estimates for the 𝐿𝑝 norms of the restrictions of eigenfunctions of the Laplace-

Beltrami operator to smooth submanifolds of dimension 𝑘, for 𝑝 >
2𝑛

𝑛−1
 when 𝑘 =

𝑛 − 1 and 𝑝 > 2 when 𝑘 ≤ 𝑛 − 2, compared to the general results of Burq, 

G´erard and Tzvetkov. Earlier, B´erard gave the same improvement for the case 

when 𝑝 = ∞, for compact Riemannian manifolds without conjugate points for 

𝑛 = 2, or with nonpositive sectional curvature for 𝑛 ≥ 3 and 𝑘 = 𝑛 − 1. We give 

the improved estimates for 𝑛 =  2, the 𝐿𝑝  norms of the restrictions of 

eigenfunctions to geodesics. The proof uses the fact that the exponential map 

from any point in 𝑥 ∈ 𝑀 is a universal covering map from ℝ2 ≃ 𝑇𝑥𝑀 to 𝑀, which 

allows us to lift the calculations up to the universal cover (ℝ2, 𝑔), where 𝑔 is the 

pullback of g via the exponential map.  

We provide a necessary and sufficient condition that 𝐿𝑝-norms, 2 < 𝑝 <

6, of eigenfunctions of the square root of minus the Laplacian on two-dimensional 

compact boundaryless Riemannian manifolds M are small compared to a natural 

power of the eigenvalue 𝜆. The condition that ensures this is that their 𝐿2-norms 

over 𝑂(𝜆−
1

2) neighborhoods of arbitrary unit geodesics are small when 𝜆 is large. 

The proof exploits Gauss’ lemma and the fact that the bilinear oscillatory 

integrals in Hörmander’s proof of the Carleson-Sjölin theorem become better and 

better behaved away from the diagonal. If (𝑀, 𝑔) be a two-dimensional compact 

boundaryless Riemannian manifold with nonpostive curvature, then we shall give 

improved estimates for the 𝐿2 -norms of the restrictions of eigenfunctions to unit-

length geodesics, compared to the general results of Burq, Gerard and Tzvetkov. 

By earlier results of Bourgain, they are equivalent to improvements of the general 

𝐿𝑝-estimates for 𝑛 = 2 and 2 <  𝑝 <  6. The proof uses the fact that the 

exponential map from any point in 𝑥0 ∈ 𝑀 is a universal covering map from 

ℝ2 ≃ 𝑇𝑥0𝑀 to 𝑀 (the Cartan-Hadamard- von Mangolt theorem), which allows us 

to lift the necessary calculations up to the universal cover (ℝ2, 𝑔) where 𝑔 is the 

pullback of 𝑔 via the exponential map. We extend a result to dimensions 𝑑 ≥  3 

which relates the size of 𝐿𝑝-norms of eigenfunctions for 2 <  𝑝 <
2(𝑑+1)

𝑑−1
 to the 

amount of 𝐿2 -mass in shrinking tubes about unit-length geodesics. The proof 

uses bilinear oscillatory integral estimates of Lee  and a variable coefficient 

variant of an “ε removal lemma” of Tao and Vargas. We also use Hörmander’s 
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𝐿2 oscillatory integral theorem and the Cartan-Hadamard theorem to show that, 

under the assumption of nonpositive curvature, the 𝐿2-norm of eigenfunctions 𝑒𝜆 

over unit length tubes of width 𝜆−
1

2 goes to zero.  

Two generalizations of the notion of principal eigenvalue for elliptic 

operators in ℝ𝑁. We show several results comparing these two eigenvalues in 

various settings: general operators in dimension one; self-adjoint operators; and 

“limit periodic” operators. We are interested in the existence of a principal 

eigenfunction of a nonlocal operator which appears in the description of various 

phenomena ranging from population dynamics to micro-magnetism. We study 

the following eigenvalue problem: 𝛺 ∫  𝐽 (
𝑥 − 𝑦

𝑔(𝑦)
)
𝜑(𝑦)

𝑔𝑛(𝑦)
𝑑𝑦 +  𝑎(𝑥)𝜑 =  𝜌𝜑, 

where 𝛺 ⊂ ℝ𝑛 is an open connected set, 𝐽 a non-negative kernel and 𝑔 a positive 

function.  

For (𝑀, 𝑔) be a compact, boundaryless manifold of dimension 𝑛 with the 

property that either (i) 𝑛 = 2 and (𝑀, 𝑔) has no conjugate points, or (ii) the 

sectional curvatures of (𝑀, 𝑔) are nonpositive. Let ∆ be the positive Laplacian on 

M determined by 𝑔. We study the 𝐿2 → 𝐿𝑝 mapping properties of a spectral 

cluster of √∆ of width 1/ log 𝜆. We show that one can obtain logarithmic 

improvements of 𝐿2 geodesic restriction estimates for eigenfunctions on 3-

dimensional compact Riemannian manifolds with constant negative curvature. 

We obtain a (log 𝜆)−
1

2 gain for the 𝐿2-restriction bounds, which improves the 

corresponding bounds of Burq, Gérard and Tzvetkov, Hu, Chen and Sogge. We 

achieve this by adapting the approaches developed by Chen and Sogge, Blair and 

Sogge. We derive an explicit formula for the wave kernel on 3D hyperbolic space, 

which improves the kernel estimates from the Hadamard parametrix in Chen and 

Sogge.  

We obtain some improved essentially sharp Kakeya–Nikodym estimates 

for eigenfunctions in two dimensions. We obtain an improvement of the bilinear 

estimates of Burq, Gérard and Tzvetkov in the spirit of the refined Kakeya– 

Nikodym estimates of Blair.  

We investigate the dependence of the principal spectrum points of nonlocal 

dispersal operators on underlying parameters and to consider its applications. We 

study the effects of the spatial inhomogeneity, the dispersal rate, and the dispersal 

distance on the existence of the principal eigenvalues, the magnitude of the 

principal spectrum points, and the asymptotic behavior of the principal spectrum 

points of nonlocal dispersal operators with Dirichlet type, Neumann type, and 

periodic boundary conditions in a unified way. We study some spectral properties 
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of the linear operator ℒ𝛺 + 𝑎 defined on the space 𝐶(�̅�) by : ℒ𝛺 [𝜙] +  𝑎𝜙 ∶=

∫  𝛺 𝐾(𝑥, 𝑦)𝜙(𝑦) 𝑑𝑦 +  𝑎(𝑥)𝜙(𝑥) where 𝛺 ⊂ ℝ𝑁 is a domain, possibly 

unbounded, a is a continuous bounded function and K is a continuous, non 

negative kernel satisfying an integrability condition. We focus our analysis on the 

properties of the generalized principal eigenvalue 𝜆𝑝(ℒ𝛺 + 𝑎) defined by 

𝜆𝑝(ℒ𝛺 + 𝑎) ∶=  𝑠𝑢𝑝{𝜆 ∈ ℝ | ∃𝜙 ∈  𝐶(�̅�) , 𝜙 >  0, such that ℒ𝛺[𝜙]  + 𝑎𝜙 +

 𝜆𝜙 ≤  0 in 𝛺}. We establish some new properties of this generalized principal 

eigenvalue 𝜆𝑝.   
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Chapter 1 

𝑳𝒑 Norm Estimates and Improvement on Eigenfunction Restriction Estimates 

 

We study the growth rate of 𝐿𝑝 norms of eigenfunctions of the Laplace-Beltrami 

operator restricted to submanifolds of compact 𝐶∞ Riemannian manifolds. The spectral 

projection operators can be expressed as oscillatory integral operators, so the question 

reduces to oscillatory integral operator norm estimates. We show the main estimates by 

using the Hadamard parametrix for the wave equation on (ℝ2, 𝑔), the stationary phase 

estimates, and the fact that the principal coefficient of the Hadamard parametrix is bounded, 

by observations of Sogge and Zelditch. The improved estimates also work for 𝑛 ≥ 3, with 

𝑝 >
4𝑘

𝑛−1
. We can then get the full result by interpolation. 

Section (1.1): Eigenfunctions Restricted to Submanifolds  

       Measurements of concentration of eigenfunctions of the Laplace-Beltrami operator on 

a manifold have been studied in several ways. One way is by describing their associated 

semi-classical (Wigner) measures (e.g., see Shnirelman [14], Zelditch [18], etc.). Another 

way is by studying the growth of the 𝐿𝑝 norms of the eigenfunctions on the manifold (see  

Sogge [15], [16], Sogge-Zelditch [17], Burq, Gerard, and Tzvetkov  ́[3], [4], [2]). A recently 

introduced third way is to consider the possible growth of the 𝐿𝑝  norm (2 ≤  𝑝 ≤  +∞) of 

the restrictions of the eigenfunctions to submanifolds. Burq, Gerard,  ́ and Tzvetkov [5] 

obtained 𝐿𝑝 norm estimates of the eigenfunctions restricted to a curve on a Riemannian 

surface and extended the estimates to some cases in higher dimension. Also see Reznikov 

[13] in two dimensions.  

       Here we consider this last question, i.e., the growth of the 𝐿𝑝 norm of restrictions of the 

eigenfunctions to submanifolds, with the help of the estimates of oscillatory integral 

operators whose canonical relations have fold type singularities. Suppose that (𝑀, 𝑔) is a 

compact smooth Riemannian manifold (without boundary) of dimension n and Δ is the 

Laplace-Beltrami operator on 𝑀 associated to the metric 𝑔. Let {𝜑 𝜆𝑗 , 𝜆𝑗 ≥ 0} be the 

eigenfunctions of Δ such that −𝛥𝜑𝜆𝑗  =  λj
2φλj and 0 =  𝜆0  <  𝜆1 ≤ 𝜆2 ≤ · · · . For the 

simplest case when dim𝑀 =  2 and γ is a closed smooth curve in 𝑀, [5] obtained estimates, 

stated in the following Theorem (1.1.3) and Theorem (1.1.7).  

       Turning to higher dimensions, we have the following:  

       The estimates in Theorem (1.1.16) can be improved in the hypersurface case, i.e., 𝑘 =
 𝑛 −  1, if the hypersurfaces have curvature.  

We will focus on the structure of the canonical relation of the phase function of the 

specified oscillatory integral operators and the geometric structure of the submanifold to get 

the desired estimates.  

We condensed version, supervised by Professor Allan Greenleaf at the University of 

Rochester.  

       Consider the first order pseudo-differential operator  √ −𝛥 defined by the spectral 

theorem: √−𝛥  =  ∑  ∞
𝑗 =0  𝜆𝑗 𝐸𝑗  , 𝐼 =  ∑  ∞

𝑗 =0  𝐸𝑗 , where 𝐸𝑗 are projection operators into the 

finitedimensional eigenspace ℰ𝑗 with eigenvalue 𝜆𝑗 . Denote: 𝑒𝑖𝑡√−𝛥  =  ∑  ∞
𝑗 =0  𝑒

𝑖𝑡𝜆𝑗  𝐸𝑗. Let 

𝜒 ∈  𝑆(ℝ) such that 𝜒(0)  =  1 and the support of its Fourier transformation supp�̂�(𝑡)  ⊂

 (
𝜀0

2
 , 𝜀0) for some 𝜀0  >  0. Then we can define approximate projection operators as:  
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𝜒𝜆  =  𝜒( √−𝛥  −  𝜆)  =  ∑  

𝑗

 𝜒(𝜆𝑗  −  𝜆)𝐸𝑗  . 

Clearly 𝜒( √−𝛥 −  𝜆)𝜑𝜆  =  𝜑𝜆 for all 𝜆 =  𝜆0, 𝜆1, . . .. On the other hand,  

𝜒( √ −𝛥  −  𝜆)  =  ∑  

𝑗

 𝜒(𝜆𝑗  −  𝜆)𝐸𝑗    

= ∑  

𝑗

1

2𝜋
  𝑒𝑖𝑡(𝜆𝑗  − 𝜆)�̂�(𝑡)𝑑𝑡𝐸𝑗   

    =
1

2𝜋
  ∫  𝑒−𝑖𝑡𝜆𝑒𝑖𝑡√−𝛥�̂�(𝑡) 𝑑𝑡. 

Choosing 𝜀0 small enough, in local coordinates we can represent 𝑒𝑖𝑡√−𝛥 as a Fourier integral 

operator (see, e.g., Hörmander [11]). Applying a stationary phase argument, we have the 

following theorem (see Sogge [16]):  

Theorem (1.1.1)[1]: In local coordinates,  

𝜒𝜆(𝑓 )  =  𝜒( √−𝛥  −  𝜆)𝑓 =  𝜆
𝑛−1
2   ∫  

𝑦∈𝐷0

 𝑒𝑖𝜆𝜓(𝑥,𝑦) 𝑎𝜆(𝑥, 𝑦)𝑓 (𝑦)𝑑𝑦 + 𝑅𝜆(𝑓 ),  

where 𝐷0  =  {𝑦 ∶
𝜀0

2𝐶0
 |𝑥 −  𝑦|2𝐶0𝜀0} . 𝜓(𝑥, 𝑦)  =  −𝑑𝑔(𝑥, 𝑦) is the geodesic distance with 

respect to metric g between x and 𝑦. Furthermore, 𝑎𝜆  ∈  𝐶0
∞ has uniform bounds 

|𝜕𝑥,𝑦
𝛼 𝑎𝜆(𝑥, 𝑦)|𝐶𝛼, and 𝑅𝜆 is an operator such that ‖𝑅𝜆‖𝐿2→𝐿𝑞 ≤ 𝐶𝜆

−𝑁 for 2 ≤  𝑞 ≤  +∞. 

Because of this property of 𝑅𝜆, we may henceforth ignore it and denote  

𝑇𝜆(𝑓 )  =   ∫  
𝑦∈𝐷0

 𝑒𝑖𝜆𝜓(𝑥,𝑦) 𝑎𝜆(𝑥, 𝑦)𝑓 (𝑦)𝑑𝑦.  

We only need to focus on the operator 

 𝜆
𝑛−1
2  𝑇𝜆(𝑓 )  =  𝜆

𝑛−1
2   ∫  

𝑦∈𝐷0

 𝑒𝑖𝜆𝜓(𝑥,𝑦) 𝑎𝜆(𝑥, 𝑦)𝑓 (𝑦)𝑑𝑦. 

For any 𝑥0  ∈  𝑀, we may choose the geodesic normal coordinate system about 𝑥0 such that 

for 𝑥 ∈  𝑈 =  {𝑥 ∶  |𝑥| ≤ 𝑐𝜀}, 

 𝑇𝜆(𝑓 )  =   ∫  
𝑦∈𝐷 

𝑒𝑖𝜆𝜓(𝑥,𝑦) 𝑎𝜆(𝑥, 𝑦)𝑓 (𝑦)𝑑𝑦, 

where 𝐷 =  {𝑦 ∶  𝑐1𝜀 |𝑦| ≤ 𝑐2𝜀} and 𝑎𝜆(𝑥, 𝑦) is supported on the set {(𝑥, 𝑦) ∈  𝑈 ×  𝐷 ∶
 |𝑥| ≤ 𝑐𝜀 <  𝑐1𝜀 |𝑦| ≤  𝑐2𝜀}.  

Since 𝜒𝜆(𝜑𝜆)  =  𝜒( √−𝛥  −  𝜆)𝜑𝜆  =  𝜑𝜆 and 𝜒𝜆  =  𝜆
1

2 𝑇𝜆  +  𝑅𝜆, it suffices to consider 

the operator norm estimates of 𝑇𝜆 to get the eigenfunction estimates, as 𝑅𝜆 satisfies much 

better bounds than we want to prove. We will focus on the structure of the canonical relation 

of the phase function of 𝑇𝜆 and the geometric structure of the submanifold to get the 

estimates with the help of oscillatory integral operator estimates.  

       Suppose that (𝑀, 𝑔) is a compact smooth Riemannian manifold (without boundary) of 

dimension 2. Let 𝛾 be a smooth closed curve in 𝑀 and {𝜑𝜆𝑗  , 𝜆𝑗 ≥  0} be the eigenfunctions 

of Laplace-Beltrami operator Δ on M, so that−𝛥𝜑𝜆𝑗  =  𝜆𝑗
2 𝜑𝜆𝑗  and 0 =  𝜆0  <  𝜆1 ≤ 𝜆2  ··

· . We will refer to a general eigenfunction as 𝜑𝜆.  

       Since 𝜒𝜆(𝜑𝜆)  =  𝜒( √−𝛥 −  𝜆 )𝜑𝜆  =  𝜑𝜆, it suffices to show the operator norm 

estimates:  
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‖𝜒𝜆(𝑓 )‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)
𝛿(𝑝) ‖𝑓 ‖𝐿2(𝑀).  

Taking into account that 𝜒𝜆  =  𝜆
1

2 𝑇𝜆  +  𝑅𝜆 and 𝑅𝜆 is an operator whose bounds are rapidly 

decreasing in 𝜆, it remains to show the norm estimates of 𝑇𝜆:  

‖𝑇𝜆(𝑓 )‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)
𝛿(𝑝)−

1
2 ‖𝑓 ‖𝐿2(𝑀). 

Assume that we are in the geodesic normal coordinate system about 𝑥0  ∈  𝑀, and 𝛾 is 

parameterized by arc length s and passes through 𝑥0. Partition of unity allows us to assume 

that γ is contained in the coordinate patch U, i.e., |𝑥(𝑠)| ≤ 𝑐𝜀 and 𝑥(0)  =  0. Therefore, it 

is enough to show that  

‖𝑇𝜆(𝑓 )‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)
𝛿(𝑝)−

1
2 ‖𝑓 ‖𝐿2(𝐷). 

Since 𝑦 stays in the annulus with inner radius 𝑐1𝜀 and outer radius 𝑐2𝜀, we can restrict 𝑦 to 

the circle with radius r. In fact, we can represent y in polar coordinates as 𝑦 =  𝑟𝜔0 (i.e., 

geodesic polar coordinates on 𝑀), 𝑐1𝜀 ≤ 𝑟 ≤  𝑐2𝜀,𝜔0  =  (𝜔1
0, 𝜔2

0  )  ∈  𝕊1 and denote: 

𝜓𝑟(𝑥,𝜔0) =  𝜓(𝑥, 𝑦), 𝑓𝑟(𝜔0)  =  𝑓 (𝑦), 𝑎𝑟(𝑥, 𝜔0)  =  𝑟𝑎(𝑥, 𝑦) and  

(𝑇𝜆
𝑟𝑓𝑟)(𝑥)  =   ∫  

𝕊1
 𝑒𝑖𝜆𝜓𝑟(𝑥,𝜔0) 𝑎𝑟(𝑥,𝜔0)𝑓𝑟(𝜔0)𝑑𝜔0.  

Then, (𝑇𝜆𝑓 )(𝑥)  =  ∫  
𝑐2𝜀

𝑐1𝜀
 (𝑇𝜆

𝑟𝑓𝑟)(𝑥)𝑑 𝑟. If we have the estimates on the unit circle:  

‖𝑇𝜆
𝑟(𝑓𝑟)‖𝐿𝑝 (𝛾) 𝐶(1 +  𝜆)

𝛿(𝑝)−
1
2 ‖𝑓𝑟‖𝐿2(𝕊1), 

then, by Minkowski’s integral inequality,  

‖𝑇𝜆𝑓‖𝐿𝑝(𝛾) ≤ ∫  
𝑐2𝜀

𝑐1𝜀

  ‖𝑇𝜆
𝑟𝑓𝑟‖𝐿𝑝(𝛾) 𝑑 𝑟  

≤ 𝐶𝜆𝛿
(𝑝)−

1
2  ∫  

𝑐2𝜀

𝑐1𝜀

 ‖𝑓𝑟‖𝐿2(𝕊1) 𝑑 𝑟  

  ≤ 𝐶𝜆𝛿
(𝑝)−

1
2 ‖𝑓‖𝐿2(𝐷).  

So it suffices to prove  

‖𝑇𝜆
𝑟(𝑓 )‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)

𝛿(𝑝)−
1
2 ‖𝑓‖𝐿2(𝕊1)  ,                       (1)  

where (𝑇𝜆
𝑟𝑓 )(𝑥) = ∫  

𝕊1 
 𝑒𝑖𝜆𝜓𝑟(𝑥,𝜔0) 𝑎𝑟(𝑥,𝜔0)𝑓 (𝜔0)𝑑𝜔0, and 𝑓 ∈  𝐿2(𝕊1).  

Because we are using geodesic normal coordinates, 𝑔(0)  = Id. Suppose that 

𝜔(𝑥, 𝑦)  ∈  𝑇𝑥𝑀 denotes the unit vector such that exp𝑥   (−𝜓(𝑥, 𝑦) 𝜔 (𝑥, 𝑦))  =  𝑦, and 

𝑢(𝑥, 𝑦)  ∈  𝑇𝑦𝑀 denotes the unit vector such that exp𝑦   (−𝜓(𝑥, 𝑦)𝑢(𝑥, 𝑦))  =  𝑥. Clearly 

𝜔(0, 𝑦) =  𝜔0  =  (𝜔1
0 , 𝜔2

0)  ∈  𝕊1. Then we have  

Lemma (1.1.2)[1]: 
𝜕𝜓

𝜕𝑠
 =  𝛻𝑥𝜓(𝑥(𝑠), 𝑦)  ·  �̇�  =  𝑔(𝜔(𝑥(𝑠), 𝑦), �̇�), where  

𝑥(𝑠)  =  (𝑥1(𝑠), 𝑥2(𝑠))  ∈  𝑈 ⊂  ℝ
2.  

Proof. Differentiating the identity exp𝑦  (−𝜓(𝑥, 𝑦)𝑢(𝑥, 𝑦))  =  𝑥 with respect to s, by the 

chain rule, we get  

𝐷−𝜓(𝑥,𝑦)𝑢(𝑥,𝑦)(exp𝑦) · [−𝛻𝑥𝜓(𝑥(𝑠), 𝑦) ·  �̇�𝑢(𝑥(𝑠)) − 𝜓(𝑥(𝑠), 𝑦)𝐷𝑥𝑢(𝑥(𝑠), 𝑦) · �̇�]

=  �̇�.                                                                                                                           (2) 

On the other hand, differentiating the identity exp𝑦  (𝑡𝑢 (𝑥, 𝑦))  =  exp𝑥  ((−𝜓(𝑥, 𝑦) −

𝑡)𝜔(𝑥, 𝑦)) with respect to 𝑡 and evaluating at 𝑡 =  −𝜓𝑟(𝑥, 𝑦), we have  

𝐷−𝜓(𝑥,𝑦)𝑢(𝑥,𝑦)(exp𝑦  )  ·  𝑢(𝑥, 𝑦)  =  𝐷0(exp𝑥   )  ·  (−𝜔(𝑥, 𝑦))  =  −𝜔(𝑥, 𝑦).  (3) 
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Taking the scalar product of (2) and (3), on the left hand side we have the following by 

Gauss’ lemma: 

−𝛻𝑥𝜓(𝑥(𝑠), 𝑦)  ·  �̇�𝑢(𝑥(𝑠), 𝑦)  −  𝜓(𝑥(𝑠), 𝑦)𝐷𝑥 𝑢(𝑥(𝑠), 𝑦)  · �̇�, 𝑢(𝑥, 𝑦). 
Noticing that  〈𝐷𝑥𝑢(𝑥(𝑠), 𝑦)  ·  �̇�, 𝑢(𝑥, 𝑦)〉  =  0 and 〈𝑢(𝑥, 𝑦), 𝑢(𝑥, 𝑦)〉   =  1, we only have 

−𝛻𝑥𝜓(𝑥(𝑠), 𝑦)  · �̇� left. On the other hand, the scalar product of the right hand sides of (2) 

and (3) gives us −𝑔(𝜔(𝑥, 𝑦), �̇�).Therefore, we have 

𝛻𝑥𝜓(𝑥(𝑠), 𝑦) ·  �̇�  =  𝑔(𝜔(𝑥(𝑠), 𝑦), �̇�). 
Theorem (1.1.3)[1]: Let 𝛾 ∶  [𝑎, 𝑏] →  𝑀 be a smooth curve parametrized by arc length. 

Then, for all 𝜑𝜆 

‖𝜑𝜆‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)
𝛿(𝑝) ‖𝜑𝜆‖𝐿2(𝑀), 

 where  

𝛿(𝑝)  =

{
 

 
1

4
      if  2 ≤ 𝑝 ≤ 4

1

2
−
1

𝑝
     𝑖𝑓  4 ≤ 𝑝 ≤ +∞

 

For 2 ≤  𝑝 ≤  4, the estimates in Theorem (1.1.3) can be improved for curves with non-

vanishing geodesic curvature.  

Proof. Clearly when 𝑠 =  0, Lemma (1.1.2) gives us 𝑑𝑠𝜓𝑟|𝑠 = 0 =  𝛻𝑥𝜓𝑟(0,𝜔0) ·  �̇�  =
 𝑔0(𝜔0, �̇�). Suppose 𝜔0  =  (𝜔1

0 , 𝜔2
0)  =  (cos 𝜃, sin 𝜃)  ∈  𝕊1. Consider the phase function 

𝜓𝑟(𝑥(𝑠), 𝜔0), the canonical relation associated with ψr is 

 

 
When 𝑠 =  0, 𝑑𝑠𝜓𝑟  =  �̇�1(0) cos 𝜃 +  �̇�2(0) sin 𝜃 and 𝑑𝑠𝜃𝜓𝑟  =  − �̇�1(0) sin 𝜃 +
 �̇�2(0) cos 𝜃. So the critical point set of 𝜋𝐿 denoted by Ω restricted to 𝑠 =  0 is  

𝛺0  =  𝛺|𝑠=0 =  {(𝑠, 𝜃): 𝑑𝑠𝜃𝜓𝑟  =  0}|𝑠=0  
=  {(0, 𝜃): −  �̇�1(0)sin 𝜃 +  �̇�2(0)cos 𝜃 =  0}.  

A nonvanishing kernel vector field of 𝜋𝐿 is 𝑉𝐿  =
𝜕

𝜕𝜃
 . So, at 𝑠 =  0,  

𝑉𝐿  (𝑑𝑠𝜃𝜓𝑟)  =  𝑑𝑠𝜃𝜃𝜓𝑟  =  − �̇�1(0) cos 𝜃 −  �̇�2(0) sin 𝜃. 
 It is easy to see that 𝑉𝐿  (𝑑𝑠𝜃𝜓𝑟)|Ω0  =  0. Hence 𝛺0 is the set of fold points for 𝜋𝐿. By the 

stability of fold singularities, 𝜋𝐿 has at most fold singularities near 𝑠 =  0 (and so we may 

assume in the whole coordinate chart U) as long as we choose 𝜀 small enough. Then, by 

Theorem (1.1.1) in [10],  

‖𝑇𝜆
𝑟‖𝐿2→𝐿𝑝 ≤ 𝐶(1 +  𝜆)

−
1
4 , if   2 ≤  𝑝 ≤  4,  

‖𝑇𝜆
𝑟‖𝐿2→𝐿𝑝 ≤ 𝐶(1 +  𝜆)

−
1
𝑝 , if   2 ≤  𝑝 ≤ ∞.  

This means that (1) holds which completes the proof of Theorem (1.1.3).  

       The estimates in Theorem (1.1.3) can be improved if the curve has nonzero geodesic 

curvature.  

        For Theorem (1.1.7), similarly to Theorem (1.1.3), it suffices to show  
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‖𝑇𝜆
𝑟(𝑓 )‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)

�̃�(𝑝)−
1
2 ‖𝑓‖𝐿2(𝕊1)  .                            (4)  

Lemma (1.1.4)[1]: We have 
𝜕𝜔(𝑥(𝑠),𝑦)

𝜕𝑠
 |𝑠=0  =  0 if  〈

𝑑𝜔0

𝑑𝜃
 , �̇�(0)〉   =  0.  

Proof. Since 〈𝜔0, 𝜔0〉  =  1, taking the derivative with respect to θ, we have 〈
𝑑𝜔0

𝑑𝜃
 , 𝜔0〉  =

 0. On the other hand, 〈
𝑑𝜔0

𝑑𝜃
 , �̇�(0)〉  =  0, so �̇�(0)  =  𝑐𝜔0 for some constant c. Consider 

𝑔(𝜔(𝑥, 𝑦), 𝜔(𝑥, 𝑦))  =  1, i.e.,  

(𝜔1, 𝜔2) (
𝑔11(𝑥) 𝑔12(𝑥)

𝑔21(𝑥) 𝑔22(𝑥)
)  (

𝜔1
𝜔2
)   =  1.                            (5) 

 Since we are working in geodesic normal coordinate system, all the first derivatives of the 

metric vanish at the origin and (𝑔𝑖𝑗  )|𝑥=0  = Id (see [9]). In (5), take the derivative with 

respect to 𝑥1 and 𝑥2 respectively; then, for 𝑥 =  0, 

 (
𝜔1𝑥1 𝜔2𝑥1
𝜔1𝑥2 𝜔2𝑥2

)    (
𝜔1
0

𝜔2
0)    =  0.                                          (6) 

It follows from Lemma (1.1.2) that for arbitrary (�̇�1, �̇�2),  

(
𝜕𝜓𝑟
𝜕𝑥1

 ,
𝜕𝜓𝑟
𝜕𝑥2

) (
�̇�1
�̇�2
)   =  (𝜔1, 𝜔2) (

𝑔11(𝑥) 𝑔12(𝑥)

𝑔21(𝑥) 𝑔22(𝑥)
) (
�̇�1
�̇�2
) . 

So  
𝜕𝜓𝑟
𝜕𝑥1

  =  𝜔1𝑔11(𝑥) + 𝜔2𝑔21(𝑥),                                             (7)  

and  
𝜕𝜓𝑟
𝜕𝑥2

  =  𝜔1𝑔12(𝑥) + 𝜔2𝑔22(𝑥).                                             (8)  

Taking the derivatives with respect to 𝑥2 in (7) and 𝑥1 in (8), for 𝑥 =  0, we see that 
𝜕2𝜓𝑟

𝜕𝑥1𝑥2
 =

 𝜔1𝑥2  𝑔11(0) + 𝜔2𝑥2  𝑔21(0)and 
𝜕2𝜓𝑟

𝜕𝑥1𝑥2
 =  𝜔1𝑥1  𝑔12(0) + 𝜔2𝑥1  𝑔22(0). Then 𝜔1𝑥2  =

 𝜔2𝑥1  since 𝑔𝑖𝑗  (0) =  𝛿𝑖𝑗  . That means the 2 × 2 matrix in (6) is symmetric. Therefore for 

𝑥 =  0,  

(
𝜔1𝑥1 𝜔2𝑥1
𝜔1𝑥2 𝜔2𝑥2

)    (
𝜔1
0

𝜔2
0)    =  0. 

So  
𝑑𝜔(𝑥(𝑠), 𝑦)

𝑑𝑠
 |𝑠=0 = (

�̇�1
�̇�2
)   

     =  (
𝜔1𝑥1 𝜔2𝑥1
𝜔1𝑥2 𝜔2𝑥2

)     (
�̇�1
�̇�2
)  

=  𝑐 (
𝜔1𝑥1 𝜔2𝑥1
𝜔1𝑥2 𝜔2𝑥2

)    (
𝜔1
0

𝜔2
0)    

   =  0. 
 as desired.  

Lemma (1.1.5)[1]: �̇�(0), �̈�(0)  =  0.  
Proof. Recall that all the first derivatives of the metric vanish at the origin in geodesic 

normal coordinates. The lemma follows immediately from differentiating 𝑔(�̇�, �̇�)  =  1 with 

respect to s and letting 𝑠 =  0.  
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Lemma (1.1.6)[1]: | �̈�(0)|2  =  𝑔 (
𝐷

𝑑𝑠
 𝛾′ (0),

𝐷

𝑑𝑠
 𝛾′(0)).  

Proof. In geodesic normal coordinates, 𝛾 (𝑠)  =  ∑  2
𝑗 =1  �̇�𝑗  (𝑠) (

𝜕

𝜕𝑥𝑗
). So the covariant 

derivative of 𝛾′ at 𝑠 =  0 is  

𝐷

𝑑𝑠
 𝛾′ |𝑠=0  =   ∑  

2

𝑖=1

 (�̈�𝑖(0) +  ∑  

2

𝑗 ,𝑘=1

 𝛤𝑗𝑘
𝑖  (0)�̇�𝑗  (0)�̇�𝑘  (0))  (

𝜕

𝜕𝑥𝑖
) ,  

where 𝛤𝑗𝑘
𝑖  are the Christoffel symbols of the metric 𝑔. In the geodesic normal coordinates, 

we have 𝛤𝑗𝑘
𝑖 (0)  =  0, therefore, | �̈�(0)|2  =  𝑔 (

𝐷

𝑑𝑠
 𝛾′ (0),

𝐷

𝑑𝑠
𝛾′ (0)) as desired.  

Theorem (1.1.7)[1]: Suppose 𝑔 (
𝐷

𝑑𝑠
𝛾′ ,

𝐷

𝑑𝑠
 𝛾′ )  ≠  0. Then, for all 𝜑𝜆  

‖𝜑𝜆‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)
�̃�(𝑝) ‖𝜑𝜆‖𝐿2(𝑀), 

where 𝛿(𝑝) =
1

3
 −

1

3𝑝
 , 2 ≤  𝑝 ≤ 4.  

Proof. From the proof of Theorem (1.1.3) we know that πL has at most fold singularities in 

𝑈. Now let us take a look at πR, which has the same critical point set 𝛺 as 𝜋𝐿 . At 𝑠 =  0,  

𝜕2𝜓𝑟
𝜕𝑠2

 |𝑠=0  =
𝜕𝑔(𝜔, �̇�)

𝜕𝑠
 |𝑠=0  =  

𝜕𝜔

𝜕𝑠
 |𝑠=0 , �̇�(0)  +  𝜔0, �̈�(0)  =  𝜔0, �̈�(0). 

 A nonvanishing kernel vector field of 𝜋𝑅  is 𝑉𝑅  =
𝜕

𝜕𝑠
. Note again that all the first derivatives 

of the metrics vanish at the origin in the geodesic normal coordinates. Thus, 

 𝑉𝑅(𝑑𝑠𝜃𝜓𝑟)  =  𝑑𝑠𝑠𝜃𝜓𝑟|𝑠=0  =  〈
𝑑𝜔0
𝑑𝜃

 , �̈�(0)〉  =  − �̈�1(0) sin 𝜃 +  �̈�2(0) cos 𝜃. 

 In 𝛺0,〈
𝑑𝜔0

𝑑𝜃
 , �̇�(0)〉  =  0 together with  〈�̇�(0), �̈�(0)〉  =  0 (Lemma (1.1.5)) yields  

 〈
𝑑𝜔0

𝑑𝜃
 , �̈�(0)〉  =  0 as long as �̈�(0) ≠  0. Therefore, if �̈�(0)  =  𝑔 (

𝐷

𝑑𝑠
 𝛾′ (0),

𝐷

𝑑𝑠
 𝛾′ (0))  =

 0 (Lemma (1.1.6)), 𝜋𝑅  has at most fold singularities at 𝑠 =  0 and furthermore in 𝑈. By 

Theorem (1.1.7) in [7] (also see [12]), ‖𝑇𝜆
𝑟(𝑓 )‖𝐿2(𝛾) 𝐶(1 +  𝜆)

−
1

2
 +
1

6 ‖𝑓 ‖𝐿2(𝕊1) . By 

interpolation, ‖𝑇𝜆
𝑟(𝑓 )‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)

−
1

3𝑝
 −
1

6‖𝑓‖𝐿2(𝕊1)  which is exactly (4).  

       If the metric 𝑔 is locally the standard Euclidian metric, e.g., in the case of the flat torus 

𝕋 =  ℝ2/(2𝜋ℤ)2, we can show the following:  

Theorem (1.1.8)[1]: Let 𝛴 be a smooth curve 𝛾 ∶  [𝑎, 𝑏]  →  𝑇 parametrized by arc length. 

Suppose that the curvature of 𝛾 vanishes to at most lth order, i.e., ∀𝑡 ∈  [𝑎, 𝑏], |𝛾(2)(𝑡)|  =

. . . =  |𝛾(𝑗 ) (𝑡)|  =  0, but |𝛾(𝑗 +1)(𝑡)|  =  0 where 𝑗 ≤ 𝑙. Here 𝑙 ≤ 1, and 𝑙 =  1 simply 

means |𝛾(2)(𝑡)|  =  0. Then  

‖𝑇𝜆
𝑟(𝑓 )‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)

𝛿(𝑝) ‖𝑓‖𝐿2(𝕊1),  

where  

(𝑇𝜆
𝑟𝑓 )(𝑥)  =   ∫  

𝕊1
 𝑒𝑖𝜆𝜓𝑟(𝑥,𝜔0) 𝑎𝑟(𝑥, 𝜔0)𝑓 (𝜔0)𝑑𝜔0, 

and  

𝛿(𝑝) =  −
1

(2𝑙 + 1)𝑝
  −

𝑙

4𝑙 + 2
 , 2 ≤  𝑝 ≤ 4.  
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Proof. Since the metric is Euclidian metric, the phase function of 𝑇𝜆
𝑟 is 𝜓𝑟(𝑥(𝑠), 𝜔0)  =

 −√ (𝑥1(𝑠) −  𝑟 cos 𝜃)
2  +  (𝑥2(𝑠) −  𝑟 sin 𝜃)

2. By calculation, 𝑑𝑠𝜃𝜓𝑟  =
𝑟(𝑥1 cos 𝜃+𝑥2 sin 𝜃−𝑟)(�̇�1𝑥2−𝑥1�̇�2− �̇�1𝑟 sin 𝜃+�̇�2 𝑟 cos 𝜃)

𝜓𝑟
3  . Since |𝑥| ≤ 𝑐𝜀 and 𝑐1𝜀 ≤ 𝑟 ≤ 𝑐2𝜀, we 

can choose small c such that 
𝑟(𝑥1 cos 𝜃+𝑥2 sin 𝜃−𝑟)

𝜓𝑟
3  ≠  0. So the critical point set of the 

projection 𝜋𝑅  is  

𝛺 =  {(𝑠, 𝜃): �̇�1𝑥2  −  𝑥1�̇�2  −  �̇�1𝑟 sin 𝜃 +  �̇�2𝑟 cos 𝜃 =  0}. 

 A kernel vector field of 𝜋𝑅  is 𝑉𝑅  =
𝜕

𝜕𝑠
. Denote the defining function of Ω by 𝐹 =  �̇�1𝑥2  −

 𝑥1�̇�2 − �̇�1𝑟 sin 𝜃 + �̇�2𝑟 cos 𝜃.We hope to apply Theorem (1.1.7) in [7] and it is equivalent 

to check 𝑉𝑅(𝐹) instead of 𝑉𝑅(det 𝐷(𝑑𝑠𝜃𝜓𝑟)). Noting that 𝑥(𝑠) is the parameterization of 

𝛾′, from the assumption, we know that the worst situation we have is that: |�̈�(0)|  = . . . =

 |𝑥(𝑙) (0)|  =  0, but |𝑥(𝑙+1)(0)|  =  0. This means that 𝑉𝑅(𝐹)|𝑠=0  = . . . =

 𝑉𝑅
𝑙−1 (𝐹)|𝑠=0  =  0, and  

𝑉𝑅
𝑙(𝐹)|𝑠=0  =  −𝑥1

(𝑙+1) (0)𝑟 sin 𝜃 +  𝑥2
(𝑙+1) (0)𝑟 cos 𝜃 =  𝑟〈𝑥(𝑙+1)(0), 𝜔0

⊥ 〉, 

where 𝜔0
⊥  =  (− sin 𝜃, cos 𝜃). From the assumption of these derivatives and 

〈�̇�(𝑠), �̇�(𝑠)〉  =  1, it is easy to see that 〈�̇�(0), 𝑥(𝑙+1)(0)〉  ≠  0.At 𝑠 =  0, the critical points 

satisfy  〈�̇�(0), 𝜔⊥〉  = 0. Thus 〈𝑥(𝑙+1)(0),𝜔⊥〉  =  0 which means 𝑉𝑅
𝑙(𝐹)|𝑠=0 =  0. 

Therefore, 𝜋𝑅  has at most type l singularities. From the proof of Theorem (1.1.3), we know 

that 𝜋𝐿 has at most fold singularities. The desired estimates follow from Theorem (1.1.7) in 

[7] and interpolation. From Theorem (1.1.8), we can immediately obtain the following 

eigenfunction estimates on the flat torus 𝕋 =  ℝ2/(2𝜋ℤ)2:  

‖𝜑𝜆‖𝐿𝑝(𝛾) 𝐶(1 +  𝜆)
𝛿(𝑝)+

1
2 ‖𝜑𝜆‖𝐿2(𝑀).  

Clearly, these estimates agree with Theorem (1.1.7) when 𝑙 =  1 and Theorem (1.1.3) when 

𝑙 =  +∞, respectively.  

Unfortunately, the estimates above or the estimates in Theorem (1.1.3) and (1.1.7) are 

far from being sharp for the flat torus. In fact, ‖𝜑𝜆‖𝐿2(𝜆) 𝐶𝜀(1 +  𝜆)
𝜀‖𝜑𝜆‖𝐿2(𝕋2) . In other 

words, we have a better bound, 𝐶𝜀(1 +  𝜆)
𝜀 (see [5]).  

       Suppose that (𝑀, 𝑔) is a compact smooth Riemannian manifold (without boundary) and 

dim 𝑀 =  𝑛. Let 𝛴 be a smooth submanifold in 𝑀 with dim 𝛴 =  𝑘. Suppose 

{𝜑𝜆𝑗  , 𝜆𝑗 ≥ 0} are the eigenfunctions of Laplace-Beltrami operator Δ on 𝑀 such that 

−𝛥𝜑𝜆𝑗  =  𝜆𝑗
2  𝜑𝜆𝑗  and 0 =  𝜆0  <  𝜆1 ≤  𝜆2  ··· .  

       As in §3, since 𝜒𝜆(𝜑𝜆)  =  𝜒( √−𝛥 −  𝜆)𝜑𝜆  =  𝜑𝜆 and 𝜒𝜆  =  𝜆
𝑛−1

2  𝑇𝜆  +  𝑅𝜆, where 

𝑅𝜆 is an operator which satisfies rapid decay in λ, it suffices to show the norm estimates of 

𝑇𝜆. Assume that in the geodesic normal coordinate system about 𝑥0  ∈  𝑀, 𝛴 is 

parameterized by 𝑥(𝑢1, 𝑢2, . . . , 𝑢𝑘), 𝑥(0)  =  0 and  

𝑥𝑢  =   

(

 
 
 
 
 

𝜕𝑥1
𝜕𝑢1

𝜕𝑥1
𝜕𝑢2

…
𝜕𝑥1
𝜕𝑢𝑘

𝜕𝑥2
𝜕𝑢1

𝜕𝑥2
𝜕𝑢2

…
𝜕𝑥2
𝜕𝑢𝑘

⋮
𝜕𝑥𝑛
𝜕𝑢1

⋮
𝜕𝑥𝑛
𝜕𝑢2

⋮
…

⋮
𝜕𝑥𝑛
𝜕𝑢𝑘)

 
 
 
 
 

𝑛×𝑘
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has maximal rank. By means of a partition of unity, we can assume that Σ is contained in 

the coordinate patch 𝑈, i.e., |𝑥(𝑢)| ≤  𝑐𝜀, 𝑥(0)  =  0 which forces 𝑐1𝜀 ≤  |𝑦| ≤  𝑐2𝜀. We 

may introduce the polar coordinates for y (i.e., geodesic polar coordinates on 𝑀), 𝑦 =
 𝑟𝜔0, 𝑐1𝜀 ≤  𝑟 ≤  𝑐2𝜀,𝜔0  =  (𝜔1

0 , 𝜔2
0, . . . , 𝜔𝑛

0)  ∈  𝕊𝑛−1. It is enough to consider one 

projection coordinate patch where 𝜔𝑛
0  =   √1 − (𝜔1

0)2 −··· − (𝜔1
0)2  =  0. Then it 

suffices to estimate the 𝐿2 to 𝐿𝑝  operator norm of  

(𝑇𝜆
𝑟𝑓 )(𝑥)  =   ∫  

𝕊𝑛−1
 𝑒𝑖𝜆𝜓𝑟(𝑥,𝜔0) 𝑎𝑟(𝑥, 𝜔0)𝑓 (𝜔0)𝑑𝜔0, 

where 𝑓 ∈  𝐿2(𝕊𝑛−1), 𝜓𝑟(𝑥, 𝜔0)  =  𝜓(𝑥, 𝑦) and 𝑎𝑟(𝑥,𝜔0)   =  𝑟
𝑛−1𝑎(𝑥, 𝑦). Similar to 

Lemma (1.1.2), we have the following:  

Lemma (1.1.9)[1]:  
𝛻𝑢𝜓 =  𝛻𝑥𝜓(𝑥(𝑢), 𝑦) ·  (𝑥𝑢)  

=  (𝑔(𝜔(𝑥(𝑢), 𝑦), 𝑥𝑢1  ), 𝑔(𝜔(𝑥(𝑢), 𝑦), 𝑥𝑢2  ), . . . , 𝑔(𝜔(𝑥(𝑢), 𝑦), 𝑥𝑢𝑘  )),  

where 𝑥(𝑢)  =  (𝑥1(𝑢), 𝑥2(𝑢), . . . , 𝑥𝑛 (𝑢))  ∈  𝑈 ⊂  ℝ
2. 

Lemma (1.1.10)[1]: Denote 
𝜕𝑥𝑖

𝜕𝑢𝑗
 by 𝑥𝑖𝑢𝑗  . If the 𝑘 ×  (𝑛 −  1) matrix 𝐴 is given by  

𝐴 =

(

 
 

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 −𝑥2𝑢1𝜔𝑛
0 + −𝑥𝑛𝑢1𝜔2

0 … −𝑥𝑛−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑛−1

0

−𝑥1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔1

0 −𝑥2𝑢1𝜔2
0 + 𝑥𝑛𝑢2𝜔2

0 … −𝑥𝑛−1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔𝑛−1

0

⋮
−𝑥1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔1
0

⋮
−𝑥2𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔2
0 

⋮
…

⋮
−𝑥𝑛−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑛−1
0
)

 
 
 , 

 then, rank (𝐴) ≥ 𝑘 −  1.  
Proof. We perform the following elementary column operations on the matrix 𝑥𝑢

Τ : 

 𝑥𝑢
⊺ =

(

 

𝑥1𝑢1 𝑥2𝑢1
… 𝑥𝑛𝑢1

𝑥1𝑢2 𝑥2𝑢1
… 𝑥𝑛𝑢2

⋮
𝑥1𝑢𝑘

⋮
𝑥2𝑢𝑘

⋮
…

⋮
𝑥𝑛𝑢𝑘)

  

→

(

 
 

−𝑥1𝑢1𝜔𝑛
0 −𝑥2𝑢1𝜔𝑛

0 … −𝑥𝑛−1𝑢1𝜔𝑛
0    𝑥𝑛𝑢1

−𝑥1𝑢2𝜔𝑛
0 −𝑥2𝑢1𝜔2

0 … −𝑥𝑛−1𝑢2𝜔𝑛
0    𝑥𝑛𝑢2

⋮
−𝑥1𝑢𝑘𝜔𝑛

0
⋮

−𝑥2𝑢𝑘𝜔𝑛
0 

⋮
…

⋮
−𝑥𝑛−1𝑢𝑘𝜔𝑛

0    𝑥𝑛𝑢𝑘)

 
 

 

→

(

 
 

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 −𝑥2𝑢1𝜔𝑛
0 +−𝑥𝑛𝑢1𝜔2

0 … −𝑥𝑛−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑛−1

0     𝑥𝑛𝑢1
−𝑥1𝑢2𝜔𝑛

0 + 𝑥𝑛𝑢2𝜔1
0 −𝑥2𝑢1𝜔2

0 + 𝑥𝑛𝑢2𝜔2
0 … −𝑥𝑛−1𝑢2𝜔𝑛

0 + 𝑥𝑛𝑢2𝜔𝑛−1
0     𝑥𝑛𝑢2

⋮
−𝑥1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔1
0

⋮
−𝑥2𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔2
0 

⋮
…

⋮
−𝑥𝑛−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑛−1
0     𝑥𝑛𝑢𝑘)

 
 

 

The last matrix has rank 𝑘 since 𝑥𝑢
⊺  does. Matrix A comes from the last matrix by deleting 

the last column, so rank(𝐴) ≥  𝑘 −  1. 

Lemma (1.1.11)[1]: Suppose that rank (𝐴)  =  𝑘 −  1 and the top left (𝑘 −  1)  ×
 (𝑘 −  1) block of A, denoted by 𝐵, is nondegenerate, i.e., rank (𝐵)  =  𝑘 −  1, where  

𝐵 = (

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 … −𝑥𝑘−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑘−1

0

⋮ ⋮ ⋮
−𝑥1𝑢𝑘−1𝜔𝑛

0 + 𝑥𝑛𝑢𝑘−1𝜔1
0 … −𝑥𝑘−1𝑢𝑘−1𝜔𝑛

0 + 𝑥𝑛𝑢𝑘−1𝜔𝑘−1
0
). 
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Replace the 𝑗 th column in 𝐵 by the (𝑖 +  𝑘 −  1)th column in 𝐴 (first 𝑘 −  1 components 

in that column) and denote it by 𝐵𝑖𝑗 where 𝑖 =  1, . . . , 𝑛 −  𝑘 and 𝑗 =  1, . . . , 𝑘 −  1. If we 

denote ∆ =  (𝜔𝑛
0 )−(𝑘−2) det 𝐵 and ∆𝑖𝑗 =  (𝜔𝑛

0)−(𝑘−2)  det 𝐵𝑖𝑗  , then the solution space of 

the linear system of equations 𝐴𝑧 =  0 is spanned by {𝑣𝑖} where  

𝑣𝑖  =  (∆𝑖1 , ∆𝑖2 , . . . , ∆𝑖𝑘−1 , 0, . . . , 0, 𝑖 + 𝑘 − 1
⏞      

−∆

 , 0, . . . , 0).   

Proof. Since rank(𝐴)  =  𝑘 −  1 and rank(𝐵)  =  𝑘 −  1, 𝐴𝑧 =  0 is equivalent to  

𝐵 (

𝑧1
⋮
𝑧2
) = −(

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 … −𝑥𝑘−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑘−1

0

⋮ ⋮ ⋮
−𝑥1𝑢𝑘−1𝜔𝑛

0 + 𝑥𝑛𝑢𝑘−1𝜔1
0 … −𝑥𝑘−1𝑢𝑘−1𝜔𝑛

0 + 𝑥𝑛𝑢𝑘−1𝜔𝑘−1
0
)(

𝑧𝑘
⋮

𝑧𝑛−1
). 

On the right hand side, fix 𝑧𝑖+𝑘−1  =  1 and all other components to be zeros in 
(𝑧𝑘 , . . . , 𝑧𝑛−1), by Cramer’ rule, 

𝑧 =  (
∆𝑖1
∆
,
∆𝑖2
∆
, . . . ,

∆𝑖𝑘−1
∆

, 0, . . . , 0, 𝑖 + 𝑘 − 1⏞      
1

 , 0, . . . , 0), 

which yields  

𝑣𝑖  =  (∆𝑖1 , ∆𝑖2 , . . . , ∆𝑖𝑘−1 , 0, . . . , 0, 𝑖 + 𝑘 − 1
⏞      

−∆

 , 0, . . . , 0) 

as desired.  

Lemma (1.1.12)[1]: Suppose that ∆ and ∆𝑖𝑗 are defined as in Lemma (1.1.11). Then,  

∆ =           ||

𝜔1
0 … 𝜔𝑘−1

0 𝜔𝑛
0

𝑥1𝑢1 … 𝑥𝑘−1𝑢1 𝑥𝑛𝑢1
⋮

𝑥1𝑢𝑘−1

⋮
…

⋮
𝑥𝑘−1𝑢𝑘−1

⋮
𝑥𝑛𝑢𝑘−1

||

𝑘×𝑘

  

and  

∆𝑖𝑗 = |
|

𝜔1
0 … 𝜔𝑗−1

0 𝜔𝑖+𝑘−1
0 𝜔𝑗+1

0 … 𝜔𝑘−1
0 𝜔𝑛

0

𝑥1𝑢1 … 𝑥𝑗−1𝑢1 𝑥𝑖+𝑘−1𝑢1 𝑥𝑗+1𝑢1
… 𝑥𝑘−1𝑢1 𝑥𝑛𝑢1

⋮
𝑥1𝑢𝑘−1

⋮
…

⋮
𝑥𝑗−1𝑢𝑘−1

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑖+𝑘−1𝑢𝑘−1 𝑥𝑗+1𝑢𝑘−1

… 𝑥𝑘−1𝑢𝑘−1 𝑥𝑛𝑢𝑘−1

|
|

𝑘×𝑘 

. 

Proof.  

(𝜔𝑛
0)𝑘−2∆ = |

|

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 … −𝑥𝑘−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑘−1

0

−𝑥1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔1

0 … −𝑥𝑘−1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔𝑘−1

0

⋮
−𝑥1𝑢𝑘−1𝜔𝑛

0 + 𝑥𝑛𝑢𝑘−1𝜔1
0

⋮
…

⋮
−𝑥𝑘−1𝑢𝑘−1𝜔𝑛

0 + 𝑥𝑛𝑢𝑘−1𝜔𝑘−1
0

|
|  

= ||

−𝑥1𝑢1𝜔𝑛
0 … −𝑥𝑘−1𝑢1𝜔𝑛

0

−𝑥1𝑢2𝜔𝑛
0 … −𝑥𝑘−1𝑢2𝜔𝑛

0

⋮
−𝑥1𝑢𝑘−1𝜔𝑛

0
⋮
…

⋮
−𝑥𝑘−1𝑢𝑘−1𝜔𝑛

0

|| 
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+ |
|

−𝑥𝑛𝑢1𝜔1
0 −𝑥2𝑢1𝜔𝑛

0 … −𝑥𝑘−1𝑢1𝜔𝑛
0

−𝑥𝑛𝑢2𝜔1
0 −𝑥2𝑢2𝜔𝑛

0 … −𝑥𝑘−1𝑢2𝜔𝑛
0

⋮
−𝑥𝑛𝑢𝑘−1𝜔1

0
⋮

−𝑥2𝑢𝑘−1 𝜔𝑛
0

⋮ ⋮
… −𝑥𝑘−1𝑢𝑘−1𝜔𝑛

0

|
| 

⋮ 

+ |
|

−𝑥1𝑢1𝜔𝑛
0 … −𝑥𝑘−2𝑢1𝜔𝑛

0 −𝑥𝑛𝑢1𝜔𝑘−1
0

−𝑥1𝑢2𝜔𝑛
0 … −𝑥𝑘−2𝑢2𝜔𝑛

0 −𝑥𝑛𝑢2𝜔𝑘−1
0

⋮
−𝑥1𝑢𝑘−1𝜔𝑛

0
⋮
…

⋮  ⋮
−𝑥𝑘−2𝑢𝑘−1 𝜔𝑛

0 −𝑥𝑛𝑢𝑘−1𝜔𝑘−1
0

|
| 

= (−1)𝑘−1(𝜔𝑛
0)𝑘−1 |

−𝑥1𝑢1 … −𝑥𝑘−1𝑢1
−𝑥1𝑢2 … −𝑥𝑘−1𝑢2
⋮

−𝑥1𝑢𝑘−1

⋮
…

⋮
−𝑥𝑘−1𝑢𝑘−1

| 

+𝜔1
0(−1)𝑘−2(𝜔𝑛

0)𝑘−2 |

−𝑥𝑛𝑢1 … −𝑥𝑘−1𝑢1
−𝑥𝑛𝑢2 … −𝑥𝑘−1𝑢2
⋮

−𝑥𝑛𝑢𝑘−1

⋮
…

⋮
−𝑥𝑘−1𝑢𝑘−1

| 

⋮ 

+𝜔𝑘−1
0 (−1)𝑘−2(𝜔𝑛

0)𝑘−2 ||

−𝑥1𝑢1 … −𝑥𝑘−2𝑢1 𝑥𝑛𝑢1
−𝑥1𝑢2 … −𝑥𝑘−2𝑢2 𝑥𝑛𝑢2
⋮

−𝑥1𝑢𝑘−1

⋮
…

⋮ ⋮
−𝑥𝑘−2𝑢𝑘−1 𝑥𝑛𝑢𝑘−1

|| 

= (𝜔𝑛
0)𝑘−2 ||

𝜔𝑛
0 … 𝜔𝑘−1

0 𝜔𝑛
0

𝑥1𝑢1 … 𝑥𝑘−1𝑢1 𝑥𝑛𝑢1
⋮

𝑥1𝑢𝑘−1

⋮
…

⋮ ⋮
𝑥𝑘−1𝑢𝑘−1 𝑥𝑛𝑢𝑘−1

||

𝑘×𝑘

 

as desired. 

Similarly we can show that 

(𝜔𝑛
0)𝑘−2∆𝑖𝑗 

= (𝜔𝑛
0)𝑘−2 |

|

𝜔1
0 … 𝜔𝑗−1

0 𝜔𝑖+𝑘−1
0 𝜔𝑗+1

0 … 𝜔𝑘−1
0 𝜔𝑛

0

𝑥1𝑢1 … 𝑥𝑗−1𝑢1 𝑥𝑖+𝑘−1𝑢1 𝑥𝑗+1𝑢1
… 𝑥𝑘−1𝑢1 𝑥𝑛𝑢1

⋮
𝑥1𝑢𝑘−1

⋮
…

⋮
𝑥𝑗−1𝑢𝑘−1

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑖+𝑘−1𝑢𝑘−1 𝑥𝑗+1𝑢𝑘−1

… 𝑥𝑘−1𝑢𝑘−1 𝑥𝑛𝑢𝑘−1

|
|

𝑘×𝑘 

 

Lemma (1.1.13)[1]: Suppose that 

𝑓𝑖

= (𝜔𝑛
0)−(𝑘−1) |

𝐵 −𝑥𝑖+𝑘−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑖+𝑘−1

0

 ⋮
−𝑥1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔1
0…− 𝑥𝑘−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑘−1
0 −𝑥𝑖+𝑘−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑖+𝑘−1
0

|

𝑘×𝑘

 

i.e., the determinant of the 𝑘 ×  𝑘 matrix which comes from the first 𝑘 −  1 columns and 

the (𝑖 +  𝑘 −  1)th column of 𝐴. Here 𝑖 =  1, . . . , 𝑛 −  𝑘. Then  
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𝑓𝑖 = ||

𝜔1
0 … 𝜔𝑘−1

0 𝜔𝑖+𝑘−1
0 𝜔𝑛

0

𝑥1𝑢1 … 𝑥𝑘−1𝑢1
𝑥𝑖+𝑘−1𝑢1 𝑥𝑛𝑢1

⋮
𝑥1𝑢𝑘

⋮
…

⋮ ⋮ ⋮
𝑥𝑘−1𝑢𝑘

𝑥𝑖+𝑘−1𝑢𝑘 𝑥𝑛𝑢𝑘

||

(𝑘+1)×(𝑘+1)

. 

Proof. Similarly to the proof of Lemma (1.1.12),  

(𝜔𝑛
0 )𝑘−1𝑓𝑖  

= |
|

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 … −𝑥𝑘−1𝑢1𝜔𝑛
0 +−𝑥𝑛𝑢1𝜔𝑘−1

0 −𝑥𝑖+𝑘−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑖+𝑘−1

0

−𝑥1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔1

0 … −𝑥𝑘−1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔𝑘−1

0 −𝑥𝑖+𝑘−1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔𝑖+𝑘−1

0

⋮
−𝑥1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔1
0

⋮
…

⋮
−𝑥𝑘−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑘−1
0  

⋮
−𝑥𝑖+𝑘−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑖+𝑘−1
0

|
| 

= |
|

−𝑥𝑛𝑢1𝜔1
0 … −𝑥𝑘−1𝑢1𝜔𝑛

0 −𝑥𝑖+𝑘−1𝑢1 
 𝜔𝑛

0  

−𝑥𝑛𝑢2𝜔1
0 … −𝑥𝑘−1𝑢2𝜔𝑛

0 −𝑥𝑖+𝑘−1𝑢2   𝜔𝑛
0  

⋮
−𝑥𝑛𝑢𝑘𝜔1

0
⋮
…

⋮ ⋮  
−𝑥𝑘−1𝑢𝑘𝜔𝑛

0 −𝑥𝑖+𝑘−1𝑢𝑘  𝜔𝑛
0  

|
| 

+ |
|

𝑥𝑛𝑢1𝜔1
0 … −𝑥𝑘−1𝑢1𝜔𝑛

0 −𝑥𝑖+𝑘−1𝑢1 
 𝜔𝑛

0  

𝑥𝑛𝑢2𝜔1
0 … −𝑥𝑘−1𝑢2𝜔𝑛

0 −𝑥𝑖+𝑘−1𝑢2   𝜔𝑛
0  

⋮
𝑥𝑛𝑢𝑘𝜔1

0
⋮
…

⋮ ⋮  
−𝑥𝑘−1𝑢𝑘𝜔𝑛

0 −𝑥𝑖+𝑘−1𝑢𝑘  𝜔𝑛
0  

|
| 

⋮ 

+ |
|

−𝑥𝑛𝑢1𝜔1
0 … −𝑥𝑘−1𝑢1𝜔𝑛

0 𝑥𝑛𝑢1 
 𝜔𝑖+𝑘−1

0  

−𝑥𝑛𝑢2𝜔1
0 … −𝑥𝑘−1𝑢2𝜔𝑛

0 𝑥𝑛𝑢2   𝜔𝑖+𝑘−1
0  

⋮
−𝑥𝑛𝑢𝑘𝜔1

0
⋮
…

⋮ ⋮  
−𝑥𝑘−1𝑢𝑘𝜔𝑛

0 𝑥𝑛𝑢𝑘   𝜔𝑖+𝑘−1
0  

|
| 

= (−1)𝑘(𝜔𝑛
0)𝑘 ||

𝑥1𝑢1 … 𝑥𝑘−1𝑢1
𝑥𝑖+𝑘−1𝑢1 
  

𝑥1𝑢2 … 𝑥𝑘−1𝑢2
𝑥𝑖+𝑘−1𝑢2    

⋮
𝑥1𝑢𝑘

⋮
…

⋮ ⋮  
𝑥𝑘−1𝑢𝑘

𝑥𝑖+𝑘−1𝑢𝑘  

|| 

+𝜔1
0(−1)𝑘−1(𝜔𝑛

0)𝑘−1 ||

𝑥𝑛𝑢1 … 𝑥𝑘−1𝑢1
𝑥𝑖+𝑘−1𝑢1 
  

𝑥𝑛𝑢2 … 𝑥𝑘−1𝑢2
𝑥𝑖+𝑘−1𝑢2    

⋮
𝑥𝑛𝑢𝑘

⋮
…

⋮ ⋮  
𝑥𝑘−1𝑢𝑘

𝑥𝑖+𝑘−1𝑢𝑘  

|| 

⋮ 

+𝜔𝑖+𝑘−1
0 (−1)𝑘−1(𝜔𝑛

0)𝑘−1 ||

𝑥1𝑢1 … 𝑥𝑘−1𝑢1
𝑥𝑛𝑢1 
  

𝑥1𝑢2 … 𝑥𝑘−1𝑢2
𝑥𝑛𝑢2    

⋮
𝑥1𝑢𝑘

⋮
…

⋮ ⋮  
𝑥𝑘−1𝑢𝑘

𝑥𝑛𝑢𝑘  

|| 

= (𝜔𝑛
0)𝑘−1 ||

𝜔1
0 … 𝜔𝑘−1

0 𝜔𝑖+𝑘−1
0   𝜔𝑛

0

𝑥1𝑢2 … 𝑥𝑘−1𝑢1
𝑥𝑖+𝑘−1𝑢1   𝑥𝑛𝑢1  

⋮
𝑥1𝑢𝑘

⋮
…

⋮ ⋮  
𝑥𝑘−1𝑢𝑘

𝑥𝑖+𝑘−1𝑢𝑘  𝑥𝑛𝑢𝑘  

||

(𝑘+1)×(𝑘+1)

 



12 

as desired.  

Lemma (1.1.14)[1]: If ∆ ≠  0 and 𝑓𝑖  =  0, 𝑖 =  1, . . . , 𝑛 −  𝑘, we have 𝜔0  =  ∑  𝑘
𝑙=1  𝑎𝑙𝑥𝑢𝑙 , 

where 𝑎𝑙  ∈ ℝ. Furthermore, 𝑖𝑗  =  (−1)
𝑗  𝑎𝑘𝑏𝑖𝑗  , 𝑗 =  1, . . . , 𝑘 −  1, where  

𝑏𝑖𝑗  = |

𝑥1𝑢1 … 𝑥𝑗+1𝑢1
𝑥𝑘−1𝑢1 𝑥𝑖+𝑘−1𝑢1 𝑥𝑛𝑢1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥1𝑢𝑘−1
𝑥1𝑢𝑘

…
…

𝑥𝑗+1𝑢𝑘−1
𝑥𝑗+1𝑢𝑘  

𝑥𝑘−1𝑢𝑘−1 𝑥𝑖+𝑘−1𝑢𝑘−1 𝑥𝑛𝑢𝑘−1
𝑥𝑘−1𝑢𝑘 𝑥𝑖+𝑘−1𝑢𝑘 𝑥𝑛𝑢𝑘

|

𝑘×𝑘

, 

and  =  (−1)𝑘−1𝑎𝑘𝑏 where  

𝑏 = ||

𝑥1𝑢1 … 𝑥𝑘−1𝑢1
𝑥𝑛𝑢1 
  

⋮ ⋮ ⋮ ⋮   
𝑥1𝑢𝑘−1
𝑥1𝑢𝑘

…
…

𝑥𝑘−1𝑢𝑘−1
𝑥𝑛𝑢𝑘−1  

𝑥𝑘−1𝑢𝑘
𝑥𝑛𝑢𝑘  

||

𝑘×𝑘

, 

𝑎𝑘  ≠  0 and 𝑏 ≠  0 since  ∆ ≠  0. 

Proof. ∆ ≠  0 and for all 𝑖, 𝑓𝑖  =  0 implies that the following matrix has rank 𝑘:  

(

 

𝜔1
0 … 𝜔𝑛

0

𝑥𝑢1 … 𝑥𝑛𝑢1
⋮

𝑥1𝑢𝑘

⋮
…

⋮
𝑥𝑛𝑢𝑘)

 

(𝑘+1)×𝑛

                                          (9) 

However, 

(

𝑥1𝑢1 … 𝑥𝑛𝑢1
⋮ ⋮ ⋮

𝑥1𝑢𝑘 … 𝑥𝑛𝑢𝑘

)

𝑘×𝑛

 

has maximal rank, therefore, in (9), the first row can be expressed as the linear combination 

of the other rows, i.e., 𝜔0  =  ∑  𝑘
𝑙=1  𝑎𝑙𝑥𝑢𝑙  . 𝑎𝑘  =  0 follows from  ∆ ≠ 0. Furthermore, 

∆𝑖𝑗= |
|

𝜔1
0 … 𝜔𝑗−1

0 𝜔𝑖+𝑘−1
0   𝜔𝑗+1

0 … 𝜔𝑘−1
0 𝜔𝑛

0

𝑥1𝑢1 … 𝑥𝑗−1𝑢1 𝑥𝑖+𝑘−1𝑢1   𝑥𝑗+1𝑢1 … 𝑥𝑘−1𝑢1 𝑥𝑛𝑢1  

⋮
𝑥1𝑢𝑘

⋮
…

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑗−1𝑢𝑘 𝑥𝑖+𝑘−1𝑢𝑘   𝑥𝑗+1𝑢𝑘−1 … 𝑥𝑘−1𝑢𝑘−1 𝑥𝑛𝑢𝑘−1  

|
| 

= 𝑎𝑘 |
|

𝜔1
0 … 𝜔𝑗−1

0 𝜔𝑖+𝑘−1
0   𝜔𝑗+1

0 … 𝜔𝑘−1
0 𝜔𝑛

0

𝑥1𝑢1 … 𝑥𝑗−1𝑢1 𝑥𝑖+𝑘−1𝑢1   𝑥𝑗+1𝑢1 … 𝑥𝑘−1𝑢1 𝑥𝑛𝑢1  

⋮
𝑥1𝑢𝑘

⋮
…

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑗−1𝑢𝑘 𝑥𝑖+𝑘−1𝑢𝑘  𝑥𝑗+1𝑢𝑘−1 … 𝑥𝑘−1𝑢𝑘−1 𝑥𝑛𝑢𝑘−1  

|
| 

= (−1)𝑘−1𝑎𝑘 |
|

𝜔1
0 … 𝜔𝑗−1

0 𝜔𝑖+𝑘−1
0   𝜔𝑗+1

0 … 𝜔𝑘−1
0 𝜔𝑛

0

⋮ ⋮ ⋮ ⋮   ⋮ ⋮ ⋮ ⋮  
𝑥1𝑢𝑘−1
𝑥1𝑢𝑘

…
…

𝑥𝑗−1𝑢𝑘−1 𝑥𝑖+𝑘−1𝑢𝑘−1   𝑥𝑗+1𝑢𝑘−1 … 𝑥𝑘−1𝑢𝑘−1 𝑥𝑛𝑢𝑘−1  

𝑥𝑗−1𝑢𝑘 𝑥𝑖+𝑘−1𝑢𝑘  𝑥𝑗+1𝑢𝑘 … 𝑥𝑘−1𝑢𝑘 𝑥𝑛𝑢𝑘  

|
|. 

Since (−1)(𝑘−1)+(𝑘−𝑗 −1) = (−1)−𝑗  =  (−1)𝑗  ,  the proof for ij is complete. A similar 

argument applies for ∆. 

Lemma (1.1.15)[1]: Suppose that 𝜔0  =  ∑  𝑘
𝑙=1  𝑎𝑙𝑥𝑢𝑙  , then  

−(𝜔𝑛
0)−1(∆𝑖1𝜔1

0  + ···  + ∆𝑖𝑘−1𝜔𝑘−1
0  − ∆𝜔𝑖+𝑘−1

0 )  =  (−1)𝑘+1𝑎𝑘𝑏𝑖𝑛 ,  
where  
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𝑏𝑖𝑛  = |

𝑥1𝑢1 … 𝑥𝑘−1𝑢1 𝑥𝑖+1𝑘−1𝑢1
⋮ ⋮ ⋮ ⋮

𝑥1𝑢𝑘 … 𝑥𝑘−1𝑢𝑘 𝑥𝑛𝑢1

|. 

Proof.  

−(𝜔𝑛
0)−1(∆𝑖1𝜔1

0  + ···  + ∆𝑖𝑘−1𝜔𝑘−1
0  − ∆𝜔𝑖+𝑘−1

0 )   

𝑎𝑘  (𝜔𝑛
0)−1((−1)1+1𝜔1

0𝑏𝑖1  + ···  + (−1)
𝑘𝜔𝑘−1

0 𝑏𝑖𝑘−1  +  (−1)
𝑘+1𝜔𝑖+𝑘−1

0 𝑏)  

= 𝑎𝑘  (𝜔𝑛
0)−1 ||

𝜔1
0 … 𝜔𝑘−1

0 𝜔𝑖+𝑘−1
0   𝜔𝑛

0

𝑥1𝑢2 … 𝑥𝑘−1𝑢1
𝑥𝑖+𝑘−1𝑢1   𝑥𝑛𝑢1  

⋮
𝑥1𝑢𝑘

⋮
…

⋮ ⋮  
𝑥𝑘−1𝑢𝑘

𝑥𝑖+𝑘−1𝑢𝑘  𝑥𝑛𝑢𝑘  

|| 

−𝑎𝑘 (𝜔𝑛
0)−1 ||

0 … 0 0  𝜔𝑛
0

𝑥1𝑢2 … 𝑥𝑘−1𝑢1
𝑥𝑖+𝑘−1𝑢1   𝑥𝑛𝑢1  

⋮
𝑥1𝑢𝑘

⋮
…

⋮ ⋮  
𝑥𝑘−1𝑢𝑘

𝑥𝑖+𝑘−1𝑢𝑘  𝑥𝑛𝑢𝑘  

|| 

=  (−1)𝑘+1𝑎𝑘  |

𝑥1𝑢1 … 𝑥𝑘−1𝑢1 𝑥𝑖+1𝑘−1𝑢1
⋮ ⋮ ⋮ ⋮

𝑥1𝑢𝑘 … 𝑥𝑘−1𝑢𝑘 𝑥𝑛𝑢1

|  

=  (−1)𝑘+1𝑎𝑘𝑏𝑖𝑛. 
Theorem (1.1.16)[1]: Let (𝑀, 𝑔) be a smooth compact Riemannian manifold of dimension 

𝑛 and Σ be a smooth submanifold of dimension 𝑘 (1 ≤  𝑘 <  𝑛).  
(i) If 𝑘 =  𝑛 −  1, we have, for all 𝜑𝜆,  

‖𝜑𝜆‖𝐿𝑝(𝛴) 𝐶(1 +  𝜆)
𝜌𝑛−1(𝑝,𝑛) ‖𝜑𝜆‖𝐿2(𝑀),  

where  

𝜌𝑛−1(𝑝, 𝑛) =

{
 

 
𝑛 −  1

4
 −
𝑛 −  2

2𝑝
   if 2 ≤ 𝑝 ≤

2𝑛

𝑛 − 1
𝑛 −  1

2
 −
𝑛 −  1

𝑝
   if

2𝑛

𝑛 − 1
≤  𝑝 ≤  +∞.

 

 (ii) If 𝑘 =  𝑛 −  2, we have, for all 𝜑𝜆,  

‖𝜑𝜆‖𝐿2(𝛴) 𝐶(1 +  𝜆)
1
2 (log(3 +  𝜆))

1
2‖𝜑𝜆‖𝐿2(𝑀),  

‖𝜑𝜆‖𝐿𝑝(𝛴) 𝐶(1 +  𝜆)
𝜌𝑛−2 (𝑝,𝑛)‖𝜑𝜆‖𝐿2(𝑀),  

where 𝜌𝑛−2(𝑝, 𝑛) =
𝑛−1

2
 −

𝑛−2

𝑝
 , 2 <  𝑝 ≤  +∞.  

(iii) If 1 ≤  𝑘 𝑛 −  3, we have, for all  

𝜑𝜆, ‖𝜑𝜆‖𝐿𝑝(𝛴) 𝐶(1 +  𝜆)
𝜌𝑘 (𝑝,𝑛) ‖𝜑𝜆‖𝐿2(𝑀), 

  where 𝜌𝑘 (𝑝, 𝑛) =
𝑛−1

2
 −

𝑘

𝑝
 , 2 ≤  𝑝 ≤ +∞. 

Proof. Consider the left projection of the canonical relation 𝒞 :  

𝜋𝐿 ∶  (𝑢, 𝜔1
0 , . . . , 𝜔𝑛−1

0 )  →  (𝑢, 𝑑𝑢1𝜓𝑟 , . . . , 𝑑𝑢𝑘𝜓𝑟). 

Since the projection in the 𝑢 variable is the identity,  
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𝐷𝜋𝐿  ∼  𝐷𝑢𝜔0𝜓𝑟  =

(

 
 

𝑑𝑢1𝜔10 𝜓𝑟 𝑑𝑢1𝜔20 𝜓𝑟
… 𝑑𝑢1𝜔𝑛−10  𝜓𝑟

𝑑𝑢2𝜔10 𝜓𝑟 𝑑𝑢2𝜔20 𝜓𝑟
… 𝑑𝑢2𝜔𝑛−10  𝜓𝑟

⋮
𝑑𝑢𝑘𝜔10 𝜓𝑟

⋮
𝑑𝑢𝑘𝜔20 𝜓𝑟

⋮
…

⋮
𝑑𝑢𝑘𝜔𝑛−10  𝜓𝑟)

 
 
. 

Lemma (1.1.9) yields  

𝛻𝑢𝜓𝑟|𝑢=0 =  𝛻𝑥𝜓𝑟(0, 𝜔0) ·  𝑥𝑢 

= (𝑔0(𝜔0, 𝑥𝑢1), 𝑔0(𝜔0, 𝑥𝑢2), … , 𝑔0(𝜔0, 𝑥𝑢𝑘)) 

=  (〈𝜔0, 𝑥𝑢1〉 , 〈𝜔0, 𝑥𝑢2  〉, … , 〈𝜔0, 𝑥𝑢𝑘〉 ) 

= (𝜔1
0, … , 𝜔𝑛

0)

(

 

𝑥1𝑢1 𝑥2𝑢1
… 𝑥1𝑢𝑘

𝑥1𝑢2 𝑥2𝑢1
… 𝑥2𝑢𝑘

⋮
𝑥𝑛𝑢1

⋮
𝑥𝑛𝑢2

⋮
…

⋮
𝑥𝑛𝑢𝑘)

 .                          (10) 

 So  

𝐷𝜋𝐿|𝑢=0 =

(

 
 
 
 
 
 

(

 
 
 
 
 
1 0 …   0 −

𝜔1
0

𝜔𝑛
0

0 1 …   0 −
𝜔2
0

𝜔𝑛
0

⋮
0

⋮
0

⋮    ⋮
…   1

⋮

−
𝜔𝑛−1
0

𝜔𝑛
0 )

 
 
 
 
 

(

 

𝑥1𝑢1 𝑥2𝑢1
… 𝑥1𝑢𝑘

𝑥1𝑢2 𝑥2𝑢1
… 𝑥2𝑢𝑘

⋮
𝑥𝑛𝑢1

⋮
𝑥𝑛𝑢2

⋮
…

⋮
𝑥𝑛𝑢𝑘)

 

)

 
 
 
 
 
 

⊺

 

= −
1

𝜔𝑛
0 

(

 
 

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 −𝑥2𝑢1𝜔𝑛
0 +−𝑥𝑛𝑢1𝜔2

0 … −𝑥𝑛−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑛−1

0     𝑥𝑛𝑢1
−𝑥1𝑢2𝜔𝑛

0 + 𝑥𝑛𝑢2𝜔1
0 −𝑥2𝑢1𝜔2

0 + 𝑥𝑛𝑢2𝜔2
0 … −𝑥𝑛−1𝑢2𝜔𝑛

0 + 𝑥𝑛𝑢2𝜔𝑛−1
0     𝑥𝑛𝑢2

⋮
−𝑥1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔1
0

⋮
−𝑥2𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔2
0 

⋮
…

⋮
−𝑥𝑛−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑛−1
0     𝑥𝑛𝑢𝑘)

 
 

 

= −
1

𝜔𝑛
0 
𝐴. 

From Lemma (1.1.10), rank(𝐴) ≥ 𝑘 − 1, which means dim ker (𝐷𝜋𝐿)
𝑛−𝑘.The critical 

points of πL are the points where rank(𝐴)  =  𝑘 − 1. Assume that the top left (𝑘 − 1) ×
(𝑘 − 1) block of 𝐴 is nondegenerate, i.e.,  ∆ ≠  0 (see Lemma (1.1.11)). Then the critical 

point set 𝛺 at 𝑢 =  0 is 𝛺0  =  {(0, . . . , 0, 𝜔1
0 , . . . , 𝜔𝑛−1

0 ) ∶  𝑓𝑖  =  0, 𝑖 =  1, . . . , 𝑛 −  𝑘}, 
where 𝑓𝑖 is defined in Lemma (1.1.12). Furthermore, by Lemma (1.1.11), the kernel vector 

field is spanned by 𝑉𝑖 , 𝑖 =  1, . . . , 𝑛 −  𝑘, 

where 𝑉𝑖  =  ∆𝑖1
𝜕

𝜕𝜔1
0  +  ∆𝑖2

𝜕

𝜕𝜔2
0  + ···  + ∆𝑖𝑘−1

𝜕

𝜕𝜔𝑘−1
0  − ∆

𝜕

𝜕𝜔𝑖+𝑘−1
0  . If 𝑖 ≠  𝑗 ,  

𝑉𝑖𝑓𝑗 = ||

∆𝑖1 … ∆𝑖𝑘−1  0 −(𝜔𝑛
0)−1(∆𝑖1𝜔1

0  + ···  + ∆𝑖𝑘−1𝜔𝑘−1
0  − ∆𝜔𝑖+𝑘−1

0 )

𝑥1𝑢1 … 𝑥𝑘−1𝑢1   
𝑥𝑗+𝑘−1𝑢1 𝑥𝑛𝑢1

⋮
𝑥1𝑢𝑘

⋮
…

⋮          ⋮
𝑥𝑘−1𝑢𝑘   𝑥𝑗+𝑘−1𝑢𝑘

⋮
𝑥𝑛𝑢𝑘

||  
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= −𝑎𝑘 ||

𝑏𝑖1 … (−1)𝑘−2𝑏𝑖𝑘−1 (−1)𝑘𝑏𝑖𝑛
𝑥1𝑢1 … 𝑥𝑘−1𝑢1   

𝑥𝑗+𝑘−1𝑢1 𝑥𝑛𝑢1
⋮

𝑥1𝑢𝑘

⋮
…

⋮           ⋮
𝑥𝑘−1𝑢1   𝑥𝑗+𝑘−1𝑢𝑘

⋮
𝑥𝑛𝑢𝑘

|| 

=  −𝑎𝑘  (𝑏𝑖1𝑏𝑗  1  + ···  + 𝑏𝑖𝑘−1𝑏𝑗 𝑘−1  +  𝑏𝑖𝑛𝑏𝑗 𝑛).  

If 𝑖 =  𝑗 ,  

𝑉𝑖𝑓𝑖  = ||

∆𝑖1 … ∆𝑖𝑘−1  − ∆ −(𝜔𝑛
0)−1(∆𝑖1𝜔1

0  + ···  + ∆𝑖𝑘−1𝜔𝑘−1
0  − ∆𝜔𝑖+𝑘−1

0 )

𝑥1𝑢1 … 𝑥𝑘−1𝑢1   
𝑥𝑗+𝑘−1𝑢1 𝑥𝑛𝑢1

⋮
𝑥1𝑢𝑘

⋮
…

⋮          ⋮
𝑥𝑘−1𝑢𝑘   𝑥𝑗+𝑘−1𝑢𝑘

⋮
𝑥𝑛𝑢𝑘

||  

= −𝑎𝑘 ||

𝑏𝑖1 … (−1)𝑘−2𝑏𝑖𝑘−1 (−1)𝑘𝑏𝑖𝑛
𝑥1𝑢1 … 𝑥𝑘−1𝑢1   

𝑥𝑗+𝑘−1𝑢1 𝑥𝑛𝑢1
⋮

𝑥1𝑢𝑘

⋮
…

⋮           ⋮
𝑥𝑘−1𝑢1   𝑥𝑗+𝑘−1𝑢𝑘

⋮
𝑥𝑛𝑢𝑘

|| 

= −𝑎𝑘 (𝑏𝑖1𝑏𝑗  1  + ···  + 𝑏𝑖𝑘−1𝑏𝑗 𝑘−1  +  𝑏𝑖𝑛𝑏𝑗 𝑛). 

Therefore, (𝑉𝑖𝑓𝑗  )  =  −𝑎𝑘 (𝒜𝒜
⊺  +  𝑏2𝐼), where 𝑎𝑘  ≠  0 and  

𝒜 = (
𝑏11 𝑏12 … 𝑏1𝑘−1 𝑏𝑖𝑛
⋮ ⋮ ⋮ ⋮ ⋮

𝑏𝑛−𝑘1 𝑏𝑛−𝑘2 … 𝑏𝑛−𝑘𝑘−1 𝑏𝑛−𝑘𝑛

)  

Clearly (𝑉𝑖𝑓𝑗) is positive definite or negative definite (up to the sign of −𝑎𝑘 ), so 

det(𝑉𝑖𝑓𝑗)  =  0. Thus, the singularities of 𝜋𝐿 are at most submersions with folds when 𝑢 =

 0 (or in the coordinate chart by continuity and stability). For 𝑘 ≤ 𝑛 −  2, the desired 

estimates in [10] (𝑟 ≤  1) and the relation 𝜒𝜆  =
𝑛−1

2
 𝑇𝜆  +  𝑅𝜆. For 𝑘 =  𝑛 −  1, we are 

trying to apply Theorem 2.2 in [10]. It suffices to check that 𝐿0  =  {(𝑑𝑢1𝜓𝑟, . . . , 𝑑𝑢𝑘𝜓𝑟) ∶

 𝑢 =  0 and 𝑓𝑖  =  0, 𝑖 =  1, . . . , 𝑛 −  𝑘} is a hypersurface with nonzero principal 

curvatures. In fact, (10) implies that at 𝑢 =  0, 𝑑𝑢𝑖 𝜓𝑟  =  〈𝜔0, 𝑥𝑢𝑖〉. By Lemma 

(1.1.14), 𝑑𝑢𝑖  𝜓𝑟  =  ∑  𝑘
𝑙=1  𝑎𝑙𝑥𝑢𝑙  , 𝑥𝑢𝑖 . So  

(

𝑑𝑢1𝜓𝑟
⋮

𝑑𝑢𝑘𝜓𝑟

) =  ℬ (

𝑎1
⋮
𝑎𝑘
), 

 Where 

 ℬ =   (

〈𝑥𝑢1  , 𝑥𝑢1〉 … 〈𝑥𝑢1  , 𝑥𝑢𝑘〉

⋮ ⋮ ⋮
〈𝑥𝑢𝑘  , 𝑥𝑢1〉 … 〈𝑥𝑢𝑘 , 𝑥𝑢𝑘〉

) . 

 

On the other hand, 〈𝜔0, 𝜔0〉  =  1 and 𝜔0  =  ∑  𝑘
𝑙=1  𝑎𝑙𝑥𝑢𝑙  yield  

(𝑎1, . . . , 𝑎𝑘 )ℬ (

𝑎1
⋮
𝑎𝑘
)  =  1.  

Therefore,  
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(𝑑𝑢1𝜓𝑟, . . . , 𝑑𝑢𝑘𝜓𝑟)ℬ
−1ℬℬ−1(

𝑑𝑢1𝜓𝑟
⋮

𝑑𝑢𝑘𝜓𝑟

) =  1.  

This implies that ℒ0 is a hyperellipsoid and hence all its 𝑛 −  2 principal curvatures are 

nonzero (by continuity, one get the same result nearby). 
𝑛−1

2
 𝑇𝜆  +  𝑅𝜆, we get the desired 

estimates for 𝑘 =  𝑛 −  1.  
       When 𝑘 =  𝑛 − 1, the estimates in Theorem (1.1.16) can be improved if Σ satisfies 

some curvature condition. For Theorem (1.1.21), similarly it suffices to show  

‖𝑇𝜆
𝑟(𝑓 )‖𝐿𝑝 (𝛾) 𝐶(1 +  𝜆)

𝜌(𝑝,𝑛)−
𝑛−1
2  ‖𝑓‖𝐿2(𝕊𝑛−1).                   (11) 

Lemma (1.1.17)[1]: Consider the linear equation system 𝐴⊺𝑧 =  0 where  

𝐴 

=  

(

 
 

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 −𝑥2𝑢1𝜔𝑛
0 +−𝑥𝑛𝑢1𝜔2

0 … −𝑥𝑛−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑛−1

0     𝑥𝑛𝑢1
−𝑥1𝑢2𝜔𝑛

0 + 𝑥𝑛𝑢2𝜔1
0 −𝑥2𝑢1𝜔2

0 + 𝑥𝑛𝑢2𝜔2
0 … −𝑥𝑛−1𝑢2𝜔𝑛

0 + 𝑥𝑛𝑢2𝜔𝑛−1
0     𝑥𝑛𝑢2

⋮
−𝑥1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔1
0

⋮
−𝑥2𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔2
0 

⋮
…

⋮
−𝑥𝑛−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑛−1
0     𝑥𝑛𝑢𝑘)

 
 

 

as in Lemma (1.1.10). Suppose det 𝐴 =  0 and the top left (𝑛 −  2)  ×  (𝑛 −  2) block of 

𝐴 is nondegenerate, i.e., rank (𝐵)  =  𝑛 −  2 where  

𝐵 = (

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0 … −𝑥1𝑢𝑛−2𝜔𝑛
0 + 𝑥𝑛𝑢𝑛−2𝜔1

0

⋮ ⋮ ⋮
−𝑥𝑚−2𝑢1𝜔𝑛

0 + 𝑥𝑛𝑢1𝜔𝑛−2
0 … −𝑥𝑛−2𝑢𝑛−2𝜔𝑛

0 + 𝑥𝑛𝑢𝑛−2𝜔𝑛−2
0
), 

Replace the j th column in 𝐵 by the 𝑛 −  1st column in A (first 𝑛 −  2 components in that 

column) and denote it by 𝐵𝑗 where 𝑗 =  1, . . . , 𝑛 − 2. If we denote  =  (𝜔𝑛
0 )−(𝑛−3) det 𝐵𝑗 , 

then the solution space to the linear equation system 𝐴⊺𝑧 =  0 is spanned by {𝑤} where 

𝑤 =  (∆1, ∆2, . . . , ∆𝑛−2, −∆). 

Proof. Since det 𝐴 =  0 and rank (𝐵)  =  𝑛 −  2, 𝐴⊺𝑧 =  0 is equivalent to 

𝐵 (

𝑧1
⋮
𝑧2
) = −(

−𝑥1𝑢𝑛−1𝜔𝑛
0 + 𝑥𝑛𝑢𝑛−1𝜔1

0

⋮
−𝑥𝑛−2𝑢𝑛−1𝜔𝑛

0 + 𝑥𝑛𝑢𝑛−1𝜔𝑛−2
0
) 𝑧𝑛−1. 

On the right hand side, fix 𝑧𝑛−1  =  1, by Cramer’ rule, 𝑧 = (−
∆1

∆
 , −

∆2

∆
, … ,

∆𝑛−2

∆
, 1) which 

yields 𝑤 =  (∆1, ∆2, . . . , ∆𝑛−2, −∆), as desired. 

Lemma (1.1.18)[1]: Suppose ∆ and ∆𝑗 as in Lemma (1.1.17) where 𝑗 =  1, . . . , 𝑛 −  2. If 

det 𝐴 =  0 when 𝑢 =  0, we have 𝜔0 =  ∑  𝑛−1
𝑙=1  𝑎𝑙𝑥𝑢𝑙  (0), where 𝑎𝑙  ∈ ℝ. 

Furthermore, ∆𝑗 =  (−1)
𝑛−2𝑎𝑗 𝑏 and ∆ =  (−1)𝑛−2𝑎𝑛−1𝑏 where 

𝑏 = |

𝑥1𝑢1 … 𝑥𝑛−2𝑢1 𝑥𝑛𝑢1
⋮ ⋮ ⋮ ⋮

𝑥1𝑢𝑛−2
𝑥1𝑢𝑛−1

…
…

𝑥𝑛−2𝑢𝑛−2
𝑥𝑛−2𝑢𝑛−1

𝑥𝑛𝑢𝑛−2
𝑥𝑛𝑢𝑛−1

| 

as in Lemma (1.1.14). 

Proof. If det 𝐴 =  0, we have 
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det 𝐴 =  (𝜔𝑛
0)𝑛−2 ||

𝜔1
0 … 𝜔𝑛−2

0 𝜔𝑛−1
0   𝜔𝑛

0

𝑥1𝑢2 … 𝑥𝑛−2𝑢1
𝑥𝑛−1𝑢1   𝑥𝑛𝑢1  

⋮
𝑥1𝑢𝑛−1

⋮
…

⋮ ⋮  
𝑥𝑛−2𝑢𝑛−1

𝑥𝑛−1𝑢𝑛−1   𝑥𝑛𝑢𝑛−1  

|| = 0.       (12) 

Since  

(

𝑥1𝑢1 … 𝑥𝑛𝑢1
⋮ ⋮ ⋮

𝑥1𝑢𝑛−1 … 𝑥𝑛𝑢𝑛−1

)

(𝑛−1)×𝑛

 

 has rank 𝑛 −  1, the first row in (12) can be expressed as the linear combination of the other 

rows, i.e., 𝜔0  =  ∑  𝑛−1
𝑙=1  𝑎𝑙𝑥𝑢𝑙  , where 𝑎𝑙  ∈ ℝ.  

Similarly to the proof of Lemma (1.1.12), we obtain   

∆= ||

𝜔1
0 … 𝜔𝑛−2

0   𝜔𝑛
0

𝑥1𝑢2 … 𝑥𝑛−2𝑢1
  𝑥𝑛𝑢1  

⋮
𝑥1𝑢𝑛−1

⋮
…

⋮ ⋮  
𝑥𝑛−2𝑢𝑛−1

 𝑥𝑛𝑢𝑛−1  

|| 

= 𝑎𝑛−1 |

𝑥1𝑢𝑛−1 … 𝑥𝑛−2𝑢𝑛−1 𝑥𝑛𝑢𝑛−1
⋮ ⋮ ⋮ ⋮ 

𝑥1𝑢𝑛−2

 
…

 
𝑥𝑛−2𝑢𝑛−2

 
𝑥𝑛𝑢𝑛−2

| 

= (−1)𝑛−2 𝑎𝑛−1 𝑏 

and  

∆𝑗=

|

|

|

𝜔1
0 … 𝜔𝑛−2

0 𝜔𝑛
0

𝑥1𝑢1 … 𝑥𝑛−2𝑢1 𝑥𝑛𝑢1
⋮

𝑥1𝑢𝑗−1
𝑥1𝑢𝑛−1
𝑥1𝑢𝑗+1
⋮

𝑥1𝑢𝑛−2

⋮
……
…
⋮
…

⋮
𝑥𝑛−2𝑢𝑗−1
𝑥𝑛−2𝑢𝑛−1
𝑥𝑛−2𝑢𝑗+1

⋮
𝑥𝑛−2𝑢𝑛−2

⋮
𝑥𝑛𝑢𝑗−1
𝑥𝑛𝑢𝑛−1
𝑥𝑛𝑢𝑗+1
⋮

𝑥𝑛𝑢𝑛−2

|

|

|

= (−1)𝑛−2𝑎𝑗  𝑏. 

Lemma (1.1.19)[1]: Let 𝑊 =  ∑  𝑛−1
𝑙=1  𝑎𝑙

𝜕

𝜕𝑢𝑙
 . If det 𝐴 =  0 when 𝑢 =  0, we have 

𝑊(𝜔(𝑥(𝑢), 𝑦))|𝑢−0 =  0.  

Proof. Consider 𝑔(𝜔(𝑥, 𝑦),𝜔(𝑥, 𝑦))  =  1, i.e.,  

(𝜔1, … , 𝜔𝑛) (
𝑔11(𝑥) … 𝑔1𝑛(𝑥)
⋮ ⋮ ⋮

𝑔𝑛1(𝑥) … 𝑔𝑛𝑛(𝑥)
)(

𝜔1
⋮
𝜔𝑛
) = 1.                  (13) 

Since we are working in geodesic normal coordinate system, all the first order derivatives 

of the metric vanish at the origin and (𝑔𝑖𝑗  )|𝑥=0 =  Id. In (13), taking the derivatives with 

respect to 𝑥1, . . . , 𝑥𝑛 respectively, then for 𝑥 =  0, 

(

𝜔1𝑥1 … 𝜔𝑛𝑥1
⋮ ⋮ ⋮

𝜔1𝑥𝑛 … 𝜔𝑛𝑥𝑛

)(
𝜔1
0

⋮
𝜔𝑛
0
) = 0.                              (14) 

It follows from Lemma (1.1.9) that  



18 

(
𝜕𝜓𝑟
𝜕𝑥1

 , . . . ,
𝜕𝜓𝑟
𝜕𝑥𝑛

)  =  (𝜔1, . . . , 𝜔𝑛) (
𝑔11(𝑥) … 𝑔1𝑛(𝑥)
⋮ ⋮ ⋮

𝑔𝑛1(𝑥) … 𝑔𝑛𝑛(𝑥)
).               (15) 

In (15), taking the derivatives with respect to 𝑥1, . . . , 𝑥𝑛 respectively and keeping in mind 

that all the first order derivatives of the metric vanish at the origin and (𝑔𝑖𝑗  )|𝑥=0  =  Id, we 

have for 𝑥 =  0,  

(

  
 

𝜕2𝜓𝑟
𝜕𝑥1𝜕𝑥1

…
𝜕2𝜓𝑟
𝜕𝑥1𝜕𝑥𝑛

⋮ ⋮ ⋮
𝜕2𝜓𝑟
𝜕𝑥𝑛𝜕𝑥1

…
𝜕2𝜓𝑟
𝜕𝑥𝑛𝜕𝑥𝑛)

  
 
= (

𝜔1𝑥1 … 𝜔𝑛𝑥1
⋮ ⋮ ⋮

𝜔1𝑥𝑛 … 𝜔𝑛𝑥𝑛

). 

So the matrix 

(

𝜔1𝑥1 … 𝜔𝑛𝑥1
⋮ ⋮ ⋮

𝜔1𝑥𝑛 … 𝜔𝑛𝑥𝑛

)                                           (16) 

is symmetric when u = 0. (14) and (16) yield 

(

𝜔1𝑥1 … 𝜔𝑛𝑥1
⋮ ⋮ ⋮

𝜔1𝑥𝑛 … 𝜔𝑛𝑥𝑛

)(
𝜔1
0

⋮
𝜔𝑛
0
) = 0. 

Therefore, at 𝑢 =  0,  

𝑊(𝜔(𝑥(𝑢), 𝑦))  =  ∑  

𝑛 −1

𝑙=1

 𝑎𝑙
𝜕𝜔

𝜕𝑢𝑙
 =  ∑  

𝑛 −1

𝑙=1

 𝑎𝑙 (

𝜔1𝑥1 … 𝜔𝑛𝑥1
⋮ ⋮ ⋮

𝜔1𝑥𝑛 … 𝜔𝑛𝑥𝑛

)𝑥𝑢𝑙

= (

𝜔1𝑥1 … 𝜔𝑛𝑥1
⋮ ⋮ ⋮

𝜔1𝑥𝑛 … 𝜔𝑛𝑥𝑛

)(
𝜔1
0

⋮
𝜔𝑛
0
) = 0 

as desired.  

Lemma (1.1.20)[1]: Suppose that the second fundamental form of 𝛴 is (positive or negative) 

definite. Then, at 𝑢 =  0, the matrix 𝐴1 is (positive or negative) definite where  

𝐴1  = (

〈𝑥𝑢1𝑢1 , 𝑁〉 … 〈𝑥𝑢1𝑢𝑛−1 , 𝑁〉

⋮ ⋮ ⋮
〈𝑥𝑢𝑛−1𝑢1 , 𝑁〉 … 〈𝑥𝑢𝑛−1𝑢𝑛−1 , 𝑁〉

), 

and 𝑁 is the unit normal vector of 𝛴.  
Proof. If the second fundamental form of 𝛴 is definite, we have that  

(

𝑔 (𝐷𝑥𝑢1𝑥𝑢1
, 𝑁) … 𝑔 (𝐷𝑥𝑢1𝑥𝑢𝑛−1

, 𝑁)

⋮ ⋮ ⋮

𝑔 (𝐷𝑥𝑢𝑛−1𝑥𝑢1 , 𝑁) … 𝑔 (𝐷𝑥𝑢𝑛−1𝑥𝑢𝑛−1 , 𝑁)

)  

is definite. It suffices to show that at 𝑢 =  0, 𝑔 (𝐷𝑥𝑢𝑖
 𝑥𝑢𝑗  , 𝑁)  =  

𝑥𝑢𝑖𝑢𝑗  , 𝑁, 𝑖 =  1, . . . , 𝑛 −  1 and 𝑗 =  1, . . . , 𝑛 −  1. Since 𝑔(0)  = Id, it is enough to show 

that 

 𝐷𝑥𝑢𝑖
 𝑥𝑢𝑗  =  ∑  

𝑛

𝑙=1

 𝑥𝑙𝑢𝑖𝑢𝑗

𝜕

𝜕𝑥𝑙
.                                          (17) 
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 In fact,  

𝐷𝑥𝑢𝑖
 𝑥𝑢𝑗  =  𝐷𝑥𝑢𝑖

 (∑  

𝑛

𝑙=1

 𝑥𝑙𝑢𝑗

𝜕

𝜕𝑥𝑙
) =∑ 

𝑛

𝑙=1

 ((𝐷𝑥𝑢𝑖
 𝑥𝑙𝑢𝑗

 )
𝜕

𝜕𝑥𝑙
  +  𝑥𝑙𝑢𝑗

 𝐷𝑥𝑢𝑖

𝜕

𝜕𝑥𝑙
)  

=  ∑  

𝑛

𝑙=1

 (𝑥𝑙𝑢𝑖𝑢𝑗
 
𝜕

𝜕𝑥𝑙
  +  𝑥𝑙𝑢𝑗

 𝐷𝑥𝑢𝑖

𝜕

𝜕𝑥𝑙
) .  

Since we are working in the geodesic normal coordinate system, all the Christoffel symbols 

vanish at 𝑢 =  0, so that 𝐷𝑥𝑢𝑖
𝜕

𝜕𝑥𝑙
 =  0. Therefore, (17) follows.  

Theorem (1.1.21)[1]: Let (𝑀, 𝑔) be a smooth compact Riemannian manifold of dimension 

𝑛 and 𝛴 be a smooth submanifold of dimension 𝑛 −  1. Suppose that the second 

fundamental form of 𝛴 is (positive or negative) definite. Then, we have, for all 𝜑𝜆  

‖𝜑𝜆‖𝐿𝑝(𝛴) 𝐶(1 +  𝜆)
�̃�(𝑝,𝑛) ‖𝜑𝜆‖𝐿2(𝑀),  

where �̃�(𝑝, 𝑛)  =
𝑛−1

3
 −

2𝑛−3

3𝑝
 if 2 ≤  𝑝 ≤

2𝑛

𝑛−1
 .  

Proof. From the proof of Theorem (1.1.16), we know that πL has at most fold singularities 

in 𝑈. Now consider 𝜋𝑅  which has the same critical point set 𝛺 as 𝜋𝐿 ∶  (𝑢, 𝜔0)  →
 (𝜔0, −𝑑𝜔1

0 𝜓𝑟, . . . , −𝑑𝜔𝑛−1
0  𝜓𝑟). Since the projection on 𝜔0 part is identity,  

𝐷𝜋𝑅  ∼  𝐷𝜔0𝑢𝜓𝑟   =  

(

 
 

 𝑑𝜔10𝑢1 𝜓𝑟 𝑑𝜔10𝑢2 𝜓𝑟
… 𝑑𝜔10𝑢𝑛−1  𝜓𝑟

𝑑𝜔20𝑢1  𝜓𝑟 𝑑𝜔20𝑢2 𝜓𝑟
… 𝑑𝜔20𝑢𝑛−1  𝜓𝑟

⋮
𝑑𝜔𝑛−10 𝑢1

 𝜓𝑟

⋮
𝑑𝜔𝑛−10 𝑢2

 𝜓𝑟
⋮
…

⋮
𝑑𝜔𝑛−10 𝑢𝑛−1

 𝜓𝑟)

 
 
. 

From (10), it is easy to see that at 𝑢 =  0,  

𝐷𝜋𝑅  =

(

 
 
 
 
 
1 0 …   0 −

𝜔1
0

𝜔𝑛
0

0 1 …   0 −
𝜔2
0

𝜔𝑛
0

⋮
0

⋮
0

⋮    ⋮
…   1

⋮

−
𝜔𝑛−1
0

𝜔𝑛
0 )

 
 
 
 
 

(

 

𝑥1𝑢1 𝑥2𝑢1
… 𝑥1𝑢𝑛−1

𝑥1𝑢2 𝑥2𝑢1
… 𝑥2𝑢𝑛−1

⋮
𝑥𝑛𝑢1

⋮
𝑥𝑛𝑢2

⋮
…

⋮
𝑥𝑛𝑢𝑛−1)

  

=  −
1

𝜔𝑛
0

(

 
 

−𝑥1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔1

0  … −𝑥𝑛−1𝑢1𝜔𝑛
0 + 𝑥𝑛𝑢1𝜔𝑛−1

0

−𝑥1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔1

0  … −𝑥𝑛−1𝑢2𝜔𝑛
0 + 𝑥𝑛𝑢2𝜔𝑛−1

0

⋮
−𝑥1𝑢𝑛−1𝜔𝑛

0 + 𝑥𝑛𝑢𝑛−1𝜔1
0

 
 
⋮
…

⋮
−𝑥𝑛−1𝑢𝑘𝜔𝑛

0 + 𝑥𝑛𝑢𝑘𝜔𝑛−1
0
)

 
 

 

−
1

𝜔𝑛
0 𝐴

⊺.                                         (18) 

 When 𝑢 =  0, the critical point set is 𝛺0  =  {(0, . . . , 0, 𝜔1
0, . . . , 𝜔𝑛−1

0 ) ∶  det𝐴 =  0}. 

WLOG, assume that  ∆ ≠  0. By Lemma (1.1.17) and (1.1.18), a nonvanishing kernel vector 

field of 𝜋𝑅  is  =  ∑  𝑛−1
𝑙=1  𝑤𝑙(𝑥, 𝑦)  

𝜕

𝜕𝑢𝑙
 , where 𝑤𝑙  =  𝑎𝑙 when 𝑢 =  0. Note again that all the 

first order derivatives of the metrics vanish at the origin in geodesic normal coordinates.  

Thus, in 𝛺0,  
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𝑊(det(𝐷𝜔0𝑢𝜓𝑟))  =  𝑊

(

  
 

|

|

(

  
 

𝜕𝜔

𝜕𝜔1
0

⋮
𝜕𝜔

𝜕𝜔𝑛−1
0 )

  
 
(
𝑔11(𝑥) … 𝑔1𝑛(𝑥)
⋮ ⋮ ⋮

𝑔𝑛1(𝑥) … 𝑔𝑛𝑛(𝑥)
) 𝑥𝑢

|

|

)

  
 

 

=

(

  
 

|

|

(

  
 

𝜕𝜔

𝜕𝜔1
0

⋮
𝜕𝜔

𝜕𝜔𝑛−1
0 )

  
 
𝑥𝑢
|

|

)

  
 
  

⋮ 

+

(

  
 

|

|

(

  
 

𝜕𝜔

𝜕𝜔1
0

⋮
𝜕𝜔

𝜕𝜔𝑛−1
0 )

  
 
(
𝑔11(𝑥) … 𝑔1𝑛(𝑥)
⋮ ⋮ ⋮

𝑔𝑛1(𝑥) … 𝑔𝑛𝑛(𝑥)
) 𝑥𝑢

|

|

)

  
 
+𝑊 (det (−

1

𝜔𝑛
0 𝐴

⊺)) 

= (−
1

𝜔𝑛
0)

𝑛−1

𝑊(det(𝐴⊺)) 

So we only need to focus on 𝑊(det𝐴) when we stay in 𝛺0. Recall that  

det 𝐴 =  (𝜔𝑛
0)𝑛−2 ||

𝜔1
0 … 𝜔𝑛−2

0 𝜔𝑛−1
0   𝜔𝑛

0

𝑥1𝑢2 … 𝑥𝑛−2𝑢1
𝑥𝑛−1𝑢1   𝑥𝑛𝑢1  

⋮
𝑥1𝑢𝑛−1

⋮
…

⋮ ⋮  
𝑥𝑛−2𝑢𝑛−1

𝑥𝑛−1𝑢𝑛−1   𝑥𝑛𝑢𝑛−1  

||. 

Denote 𝑁 =  (𝑁1, . . . , 𝑁𝑛 ) =
1

𝑀
 (𝑀11, . . . , 𝑀1𝑛), where 𝑀1𝑗 is the corresponding minor of 

det𝐴 and 𝑀 =  √𝑀11
2  + ···  + 𝑀1𝑛

2 . Clearly 𝑀 =  0 since 

(

𝑥1𝑢1 … 𝑥𝑛𝑢1
⋮ ⋮ ⋮

𝑥1𝑢𝑛−1 … 𝑥𝑛𝑢𝑛−1

)

(𝑛−1)×𝑛

 

has maximal rank. So det𝐴 =  (𝜔𝑛
0 )𝑛−2�̃�〈𝑁,𝜔0〉 and det 𝐴 =  0 ⇔  〈𝑁, 𝜔0〉  =  0. Since 

we have det𝐴 =  0 in 𝛺0,  

(𝜔𝑛
0 )𝑛−2𝑊(det𝐴 )  =  𝑊(�̃� )〈𝑁, 𝜔0〉  +  �̃� 〈𝑊(𝑁), 𝜔0〉  

= �̃�  〈∑  

𝑛 −1

𝑙=1

 𝑎𝑙𝑁𝑢𝑙  , 𝜔〉  =  

�̃� (𝑎1, . . . , 𝑎𝑛−1) (

〈𝑥𝑢1𝑢1 , 𝑁〉 … 〈𝑥𝑢1𝑢𝑛−1 , 𝑁〉

⋮ ⋮ ⋮
〈𝑥𝑢𝑛−1𝑢1 , 𝑁〉 … 〈𝑥𝑢𝑛−1𝑢𝑛−1 , 𝑁〉

)(

𝑎1
⋮

𝑎𝑛−1
) 

�̃� (𝑎1, . . . , 𝑎𝑛−1)𝐴1 (

𝑎1
⋮

𝑎𝑛−1
), 

where 𝐴1 is defined in Lemma (1.1.20) since it is easy to see that 〈𝑁𝑢𝑖  , 𝑥𝑢𝑗〉   =

 − 〈𝑁, 𝑥𝑢𝑖𝑢𝑗〉 . Clearly  ∆  ≠  0 implies that 𝑎𝑛−1  ≠  0. Lemma (1.1.20) guarantees that 𝐴1 
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is positive definite or negative definite in 𝛺0, then 𝑊(det𝐴) ≠  0 which means that 

𝑊(det(𝐷𝜔0𝑢𝜓𝑟))  =  0. So 𝑊(det(𝐷𝜔0𝑢𝜓𝑟))  =  0 in 𝛺 as long as we choose ε small 

enough. Therefore, 𝜋𝑅  has at most fold singularities in 𝑈. By Theorem (1.1.7) in [7] (also 

see [12]), ‖𝑇𝜆
𝑟(𝑓 )‖𝐿2(𝛴) 𝐶(1 +  𝜆)

−
𝑛−1 

2
 +
1

6 ‖𝑓 ‖𝐿2(𝕊𝑛−1). (11) follows by interpolation.  

       If dim 𝑀 =  3 and dim 𝛴 =  2, with a locally Euclidian metric g, we can show 

Theorem (1.1.23).  

Lemma (1.1.22)[1]: If a regular surface in ℝ3 is parameterized by 𝑥(𝑢)  =  𝑥(𝑢1, 𝑢2)  =
 (𝑢1, ℎ(𝑢1, 𝑢2), 𝑢2), then the differential matrix of the Gauss map 𝑁 is  

𝑑𝑁  =
1

∆̃
(
ℎ𝑢1𝑢1 ℎ𝑢1𝑢2
ℎ𝑢2𝑢2 ℎ𝑢2𝑢2

) (
𝑔11 𝑔12
𝑔12 𝑔22

)
−1

 

where ∆̃ =  √−  1 +  ℎ𝑢1
2  +  ℎ𝑢2

2  , 𝑔11  =  〈𝑥𝑢1  , 𝑥𝑢1〉, 𝑔12  =  𝑥𝑢1  , 𝑥𝑢2   and 𝑔22  =

 〈𝑥𝑢2  , 𝑥𝑢2〉 .  

Proof. This follows simply by calculations from differential geometry (e.g., see [6] §3.3). 

Theorem (1.1.23)[1]: Let 𝛴 be a smooth surface in 𝑀. Suppose that either the second 

fundamental form of 𝛴 is definite or 𝛴 has exactly one zero principal curvature. Let 𝐾 be 

the Gauss curvature of 𝛴 and 𝛾  =  {𝑃 ∈  𝛴 ∶  𝐾(𝑃)  =  0}. Suppose 𝛻𝐾 ≠  0 so that 𝛾 is a 

𝐶∞ curve. If the tangent vector corresponding to the zero principal curvature is not tangent 

to 𝛾, then for all 𝜑𝜆  

‖𝜑𝜆‖𝐿𝑝(𝛴) 𝐶(1 +  𝜆)
𝜌(𝑝) ‖𝜑𝜆‖𝐿2(𝑀), 

where 𝜌(𝑝) =
3

5
 −

4

5𝑝
 , 2 ≤ 𝑝 ≤ 3.  

Proof. The proof of Theorem (1.1.16) shows that 𝜋𝐿 has at most fold singularities. So we 

only need to consider 𝜋𝑅:  

𝜋𝑅 ∶  (𝑢1, 𝑢2, 𝜔0)  →  (𝜔0, −𝑑𝜔10  𝜓𝑟, −𝑑𝜔20  𝜓𝑟)  

∼  (𝑢1, 𝑢2)  →  (−𝑑𝜔10  𝜓𝑟, −𝑑𝜔20  𝜓𝑟). 

Since our metric is Euclidian, WLOG, we may choose coordinate system such that 𝑥(𝑢)  =
 𝑥(𝑢1, 𝑢2)  =  (𝑢1, ℎ(𝑢1, 𝑢2), 𝑢2) for some smooth function ℎ where ℎ(0, 0)  =  0 and 𝑦 =

 𝑟(𝜔1
0 , 𝜔2

0, 𝜔3
0) where 𝜔3

0  = √1 − (𝜔1
0 )2  −  (𝜔2

0)2  =  0 . The phase function of 𝑇𝜆
𝑟 is 

\𝜓𝑟(𝑥(𝑢1, 𝑢2), 𝜔0)  =  − √(𝑢1  −  𝑟𝜔1
0)2  +  (ℎ(𝑢1, 𝑢2) −  𝑟𝜔2

0)2  +  (𝑢2  −  𝑟𝜔3
0)2.  

So by Lemma (1.1.9),  

𝐷𝜋𝑅 = (
−𝑑𝜔10 𝑢1 𝜓𝑟 −𝑑𝜔10 𝑢2 𝜓𝑟
−𝑑𝜔20 𝑢1 𝜓𝑟 −𝑑𝜔120  𝑢2  𝜓𝑟

) =

(

 
 

𝜕𝜔

𝜕𝜔1
0

−
𝜕𝜔

𝜕𝜔2
0
)

 
 
(𝑥𝑢1  , 𝑥𝑢2)

=  

(

 
 
− 〈 

𝜕𝜔

𝜕𝜔1
0  , 𝑥𝑢1〉   − 〈 

𝜕𝜔

𝜕𝜔1
0  , 𝑥𝑢2〉

− 〈 
𝜕𝜔

𝜕𝜔2
0  , 𝑥𝑢1〉   − 〈 

𝜕𝜔

𝜕𝜔2
0  , 𝑥𝑢2〉

)

 
 
.  

In the critical point set 𝛺, rank(𝐷𝜋𝑅)  =  1. WLOG, assume that 

 − 〈 
𝜕𝜔

𝜕𝜔1
0  , 𝑥𝑢1〉   ≠ 0; then, a nonvanishing kernel vector field is  
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𝑊 =  −𝜔3
0𝑑𝜔10 𝑢2  𝜓𝑟  

𝜕

𝜕𝑢1
 +  𝜔3

0𝑑𝜔10 𝑢1  𝜓𝑟  
𝜕

𝜕𝑢2
  

=  −𝜔3
0 〈 

𝜕𝜔

𝜕𝜔1
0  , 𝑥𝑢1〉    

𝜕

𝜕𝑢1
 +  𝜔3

0 〈 
𝜕𝜔

𝜕𝜔1
0  , 𝑥𝑢1〉  

𝜕

𝜕𝑢2
 .  

Note that 𝑥𝑢1  =  (1, ℎ𝑢1  , 0), 𝑥𝑢2  =  (0, ℎ𝑢2  , 1), 𝑥𝑢1𝑢1  =  (0, ℎ𝑢1𝑢1  , 0), 𝑥𝑢1𝑢2  =

 (0, ℎ𝑢1𝑢2  , 0) and 𝑥𝑢2𝑢2  =  (0, ℎ𝑢2𝑢2  , 0). By calculation, at 𝑢 =  0,𝑊 =  (𝜔1
0) 

𝜕

𝜕𝑢1
 +

 (𝜔3
0) 

𝜕

𝜕𝑢2
 and 𝑊2  =  (𝜔1

0 )2  
𝜕2

𝜕𝑢1
2  +  2𝜔1

0𝜔3
0  

𝜕2

𝜕𝑢1𝜕𝑢2
 +  (𝜔3

0)2  
𝜕2

𝜕𝑢2
2 . Another calculation 

tells us that  

det(𝐷𝜋𝑅) =
1

𝜔3
0𝜓𝑟

2
 det𝐺 −

𝑢1  −  𝜔1
0  +  ℎ𝑢1  ℎ −  ℎ𝑢1𝜔20

𝜔3
0𝜓𝑟

4
 det𝐺1  

−𝑢2 − 𝜔3
0  +  ℎ𝑢2  ℎ −  ℎ𝑢2𝜔20

𝜔3
0𝜓𝑟

4
 det𝐺2,  

Where 

 𝐺 =  (

𝜔1
0 𝜔2

0 𝜔3
0

1 ℎ𝑢1 0

0 ℎ𝑢2 1

)  , 𝐺1 = (

𝜔1
0 𝜔2

0 𝜔3
0

𝑢1 ℎ𝑢1 𝑢2
0 ℎ𝑢2 1

) , 𝐺2 = (

𝜔1
0 𝜔2

0 𝜔3
0

1 ℎ𝑢1 0

𝑢1 ℎ𝑢2 𝑢2

) 

  If det(𝐷𝜋𝑅)  =  0 at 𝑢 =  0, we have det(𝐺)  =  0 which means 𝜔1
0  =  𝑎1 and 𝜔3

0  =  𝑎2 

where 𝑎2  ≠  0 by Lemma (1.1.18). So, at 𝑢 =  0, 𝑊 =  𝑎1  
𝜕

𝜕𝑢1
 +  𝑎2  

𝜕

𝜕𝑢2
 , and 𝑊2 =

𝑎1
2 𝜕2

𝜕𝑢1
2 + 2𝑎1𝑎2

𝜕2

𝜕𝑢1𝜕𝑢2
+ 𝑎2

2 𝜕2

𝜕𝑢2
2 . 

Then, 𝑊(det(𝐷𝜋𝑅))  =
1

𝜔3
0𝜓𝑟

2  𝑊(det(𝐺)) when 𝑢 =  0 and det(𝐺)  =  0 since 

𝑊(det(𝐺1))  =  𝑊(det(𝐺2))  =  det(𝐺1)  =  det(𝐺2)  =  0 at u = 0. If the second 

fundamental form of Σ is definite at 𝑢 =  0, then 𝑊(det(𝐺))  ≠  0 at 𝑢 =  0 (and hence 

nearby) as in Theorem (1.1.21), therefore, there are at most fold singularities for 𝜋𝑅  which 

means that we can obtain even better estimates than we want to prove. At 𝑢 =  0, when  

det(𝐺) =  𝑊(det(𝐺))  =  0,𝑊2 (det(𝐷𝜋𝑅))  =
1

𝜔3
0𝜓𝑟

2  𝑊2(det(𝐺)) since 𝑊(det(𝐺1))  =

 𝑊(det(𝐺2))  =  𝑊2(det(𝐺1))  =  𝑊2(det(𝐺2))  =  0 at 𝑢 =  0.  

We focus on 𝑊2(det(𝐺)) when det(𝐺)  =  𝑊(det(𝐺))  =  0 at u = 0. Calculation 

shows us that 𝑊(det(𝐺))  =  𝑎1
2ℎ𝑢1𝑢1  +  2𝑎1𝑎2ℎ𝑢1𝑢2  +  𝑎2

2ℎ𝑢2𝑢2  . If Σ has exactly one 

zero principal curvature, Lemma (1.1.22) implies that ℎ𝑢1𝑢2
2  −  ℎ𝑢1𝑢1  ℎ𝑢2𝑢2  =  0 and one 

of ℎ𝑢1𝑢1 and ℎ𝑢2𝑢2  must be nonzero, otherwise, det (𝑁)  =  0 would imply that 𝑁 =  0 

which yields two zero principal curvatures. Assume ℎ𝑢1𝑢1 ≠  0. Then  

𝑊(det(𝐺))  =  ℎ𝑢1𝑢1
−1  ((𝑎1ℎ𝑢1𝑢1  +  𝑎2ℎ𝑢1𝑢2)

2
 

−  𝑎2
2(ℎ𝑢1𝑢2

2  −  ℎ𝑢1𝑢1  ℎ𝑢2𝑢2)) .𝑊(det(𝐺))|𝑢=0  =  0 

forces 𝑎1ℎ𝑢1𝑢1   +  𝑎2ℎ𝑢1𝑢2  =  0 at 𝑢 =  0 which means that 𝑊 =  𝑎1  
𝜕

𝜕𝑢1
 +  𝑎2  

𝜕

𝜕𝑢2
 is an 

eigenvector corresponding to the zero eigenvalue at 𝑢 =  0. Since the eigenvector 

corresponding to the eigenvalue 0 is not tangent to 𝛾, i.e., 𝑊(ℎ𝑢1𝑢2
2  −  ℎ𝑢1𝑢1  ℎ𝑢2𝑢2  )  ≠  0, 
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keeping in mind that 𝑎1ℎ𝑢1𝑢1  +  𝑎2ℎ𝑢1𝑢2  =  0 at 𝑢 =  0 and 𝑎2  ≠  0, we have that at 𝑢 =

 0,  

𝑊2(det(𝐺))  =  𝑊 (ℎ𝑢1𝑢1
−1  ((𝑎1ℎ𝑢1𝑢1  +  𝑎2ℎ𝑢1𝑢2  )

2
 −  𝑎2

2(ℎ𝑢1𝑢2
2  −  ℎ𝑢1𝑢1  ℎ𝑢2𝑢2)))  

=  ℎ𝑢1𝑢1
−1  𝑎2

2𝑊(ℎ𝑢1𝑢2
2  −  ℎ𝑢1𝑢1  ℎ𝑢2𝑢2)  ≠  0.  

So 𝑊2(det𝜋𝑅) ≠  0, which implies that 𝜋𝑅  has at most type 2 singularities at u = 0 (and thus 

nearby). By Theorem (1.1.1) in [7],  

‖𝑇𝜆
𝑟(𝑓 )‖𝐿2(𝛴) 𝐶(1 +  𝜆)

−1+
1
5‖𝑓 ‖𝐿2(𝕊2), 

 and Theorem (1.1.23) follows from interpolation. From Theorem (1.1.23), we immediately 

get the following eigenfunction estimates:  

‖𝜑𝜆‖𝐿𝑝 (𝛴) 𝐶(1 +  𝜆)
𝜌(𝑝)+1‖𝜑𝜆‖𝐿2(𝑀). 

Section (1.2): Compact Boundaryless Riemannian Manifolds with Nonpositive 

Sectional Curvature 

For (𝑀, 𝑔) be a compact, smooth 𝑛-dimensional boundaryless Riemannian manifold 

with nonpositive sectional curvature. Denote 𝛥𝑔 the Laplace-Beltrami operator associated 

to the metric 𝑔, and 𝑑𝑔(𝑥, 𝑦) the geodesic distance between x and y associated with the 

metric 𝑔. We know that there exist 𝜆 ≥ 0 and 𝜙𝜆 ∈ 𝐿
2(𝑀) such that −𝛥𝑔𝜙𝜆 = 𝜆

2𝜙𝜆, and 

we call 𝜙𝜆 an eigenfunction corresponding to the eigenvalue λ. Let {𝑒𝑗(𝑥)}𝑗∈ℕ be an 𝐿2(𝑀)-

orthonormal basis of eigenfunctions of √−𝛥𝑔, with eigenvalues {𝜆𝑗}𝑗∈ℕ, and {𝐸𝑗(𝑥)}𝑗∈ℕ be 

the projections onto the j-th eigenspace, restricted to Σ, i.e. 𝐸𝑗𝑓(𝑥) =

𝑒𝑗(𝑥) ∫ 𝑒𝑗(𝑦)𝑓(𝑦)𝑑𝑦𝑀
, for any 𝑓 ∈ 𝐿2(𝑀), 𝑥 ∈ 𝛴. We may consider only the positive λ’s as 

we are interested in the asymptotic behavior of the eigenfunction projections. We have the 

following. 

Theorem (1.2.1)[19]: Let (𝑀, 𝑔) be a compact smooth n-dimensional boundaryless 

Riemannian manifold with nonpositive curvature, and Σ be a k-dimensional smooth 

submanifold on M. Let {𝐸𝑗(𝑥)}𝑗∈ℕ be the projections onto the j-th eigenspace, restricted to 

Σ. Given any 𝑓 ∈ 𝐿2(𝑀), we have the following estimates: When 𝑘 = 𝑛 − 1, 

‖ ∑ 𝐸𝑗𝑓

|𝜆𝑗−𝜆|≤(log𝜆)
−1

‖

𝐿𝑝(𝛴)

≲
𝜆𝛿(𝑝)

(log 𝜆)
1
2

‖𝑓‖𝐿2(𝑀), ∀𝑝 >
2𝑛

𝑛 − 1
.       (19) 

When 𝑘 ≤ 𝑛 − 2, 

‖ ∑ 𝐸𝑗𝑓

|𝜆𝑗−𝜆|≤(log 𝜆)
−1

‖

𝐿𝑝(𝛴)

≲
𝜆𝛿(𝑝)

(log 𝜆)
1
2

‖𝑓‖𝐿2(𝑀), ∀𝑝 > 2,               (20) 

where 𝛿(𝑝) =
𝑛−1

2
−
𝑘

𝑝
. 

Note that we may assume that (𝑀, 𝑔) is also simply connected in the proof.  

The following corollary is an immediate consequence of this theorem.  

Corollary (1.2.2)[19]: Let (𝑀, 𝑔) be a compact smooth n-dimensional boundaryless 

Riemannian manifold with nonpositive curvature, and Σ be a k-dimensional smooth sub 

manifold on M. For any eigenfunction 𝜙𝜆 of 𝛥𝑔 s.t. −𝛥𝑔𝜙𝜆 = 𝜆
2𝜙𝜆, we have the following 

estimate:  
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When 𝑘 = 𝑛 − 1,  

‖𝜙𝜆‖𝐿𝑝(𝛴) ≲
𝜆𝛿(𝑝)

(log 𝜆)
(
1
2
)
‖𝜙𝜆‖𝐿2(𝑀), ∀𝑝 >

2𝑛

𝑛 − 1
.       (21) 

When 𝑘 ≤ 𝑛 − 2, 

‖𝜙𝜆‖𝐿𝑝(𝛴) ≲
𝜆𝛿(𝑝)

(log 𝜆)
(
1
2
)
‖𝜙𝜆‖𝐿2(𝑀), ∀𝑝 > 2.               (22) 

where 𝛿(𝑝) =
𝑛−1

2
−
𝑘

𝑝
.  

     In [26], Reznikov achieved weaker estimates for hyperbolic surfaces, which inspired this 

current line of research. In [5], Theorem 3, Burq, G´erard and Tzvetkov showed that given 

any k-dimensional sub manifold Σ of an n-dimensional compact boundaryless manifold M, 

for any 𝑝 >
2𝑛

𝑛−1
 when 𝑘 = 𝑛 − 1 and for any 𝑝 > 2 when 𝑘 ≤ 𝑛 − 2, one has  

‖𝜙𝜆‖𝐿𝑝(𝛴) ≲ 𝜆
𝛿(𝑝)‖𝜙𝜆‖𝐿2(𝑀),                             (23) 

while for 𝑝 =
2𝑛

𝑛−1
 when 𝑘 = 𝑛 − 1 and for 𝑝 = 2 when 𝑘 = 𝑛 − 2 one has 

‖𝜙𝜆‖𝐿𝑝(𝛴) ≲ 𝜆
𝛿(𝑝)(log 𝜆)

1
2‖𝜙𝜆‖𝐿2(𝑀).             (24) 

Later on, Hu improved the result at one endpoint in [1], so that one has (23) for 𝑝 =
2𝑛

𝑛−1
 

when 𝑘 = 𝑛 − 1. It is very possible that one can also improve the result at the other endpoint, 

where 𝑝 = 2, 𝑘 = 𝑛 − 2, so that we also have (23) there. Our Theorem (1.2.8) gives an 

improvement for (23) of (log 𝜆)−
1

2 for 𝑝 ≥ 2 for certain small k’s (see the remark after 

Theorem (1.2.8)).  

     Note that their proof of Theorem 3 in [5] indicates that for any 𝑓 ∈ 𝐿2(𝑀),  

‖ ∑ 𝐸𝑗𝑓

|𝜆𝑗−𝜆|<1

‖

𝐿𝑝(Σ)

≲ 𝜆𝛿(𝑝)‖𝑓‖𝐿𝑝(𝑀),                        (25) 

for any 𝑝 ≥
2𝑛

𝑛−1
 when 𝑘 = 𝑛 − 1 and 𝑝 ≥ 2 when 𝑘 ≤ 𝑛 − 2 except that there is an extra 

(log 𝜆)
1

2 on the right hand side when 𝑝 = 2 and 𝑘 = 𝑛 − 2. In the proof, they constructed 

𝜒𝜆 = 𝜒(√−𝛥𝑔 − 𝜆) from 𝐿2(𝑀) to 𝐿𝑝(𝛴), where 𝜒 ∈ 𝑆(ℝ) such that 𝜒(0) = 1, and 

showed that 𝜒𝜆(𝜒𝜆)
∗ is an operator from 𝐿𝑝(𝛴) to 𝐿𝑝

′
(𝛴) with norm 𝑂(𝜆2𝛿(𝑝)). That means 

there exists at least an 𝜀 > 0 such that   

‖ ∑ 𝐸𝑗𝑓

|𝜆𝑗−𝜆|<𝜀

‖

𝐿𝑝(Σ)

≲ 𝜆𝛿(𝑝)‖𝑓‖𝐿𝑝(𝑀),                        (26) 

The reason why (26) is true can be seen in the following way. Consider the dual form of 

‖𝜒 (𝜆 − √−𝛥𝑔) 𝑓‖
𝐿𝑝(𝛴)

≲ 𝜆𝛿(𝑝)‖𝑓‖𝐿2(𝑀),                        (27) 

which says  

‖∑𝜒(𝜆 − 𝜆𝑗)𝐸𝑗
∗𝑔

𝑗

‖

𝐿2(𝑀)

≲ 𝜆𝛿(𝑝)‖𝑔‖𝐿𝑝(𝛴),                      (28) 
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where 𝐸𝑗
∗ is the conjugate operator of 𝐸𝑗 such that 𝐸𝑗

∗𝑔(𝑥) = 𝑒𝑗(𝑥) ∫ 𝑒𝑗(𝑦)𝑔(𝑦)𝑑𝑦𝛴
, for any 

𝑔 ∈ 𝐿2(𝛴) and 𝑥 ∈ 𝑀. There exists an 𝜀 > 0 such that 𝜒(𝑡) >
1

2
 when |𝑡| < 𝜀 because we 

assumed that 𝜒(0) = 1. Therefore, the square of the left hand side of (28) is  

∑ ‖𝜒(𝜆 − 𝜆𝑗)𝐸𝑗
∗𝑔‖

𝐿2(𝑀)

2

|𝜆−𝜆𝑗|<𝜀

+ ∑ ‖𝜒(𝜆 − 𝜆𝑗)𝐸𝑗
∗𝑔‖

𝐿2(𝑀)

2

|𝜆−𝜆𝑗|>𝜀

 

≥
1

4
∑ ‖𝐸𝑗

∗𝑔‖
𝐿2(𝑀)

2

|𝜆−𝜆𝑗|<𝜀

.                               (29) 

That means  

‖ ∑ 𝐸𝑗
∗𝑔

|𝜆−𝜆𝑗|<𝜀

‖

𝐿2(𝑀)

 

≲ 𝜆𝛿(𝑝)‖𝑔‖𝐿𝑝(𝛴), (30) 

which is the dual version of (26).  

     If we divide the interval (𝜆 − 1, 𝜆 + 1) into 
1

𝜀
 sub-intervals whose lengths are 2𝜀, and 

apply the last estimate 
1

𝜀
 times, we get (25). Thinking in this way, our estimates (19) and 

(20) are equivalent to the estimates for 

‖ ∑ 𝐸𝑗
|𝜆𝑗−𝜆|<𝜀 log

−1 𝜆

‖

𝐿2(𝑀)

→ 𝐿𝑝(𝛴),          (31) 

for some number 𝜀 > 0, which is equivalent to estimating  

‖𝜒 (𝑇(𝜆 − √−𝛥𝑔))‖
𝐿2(𝑀)

→ 𝐿𝑝(𝛴),         (32) 

for 𝑇 ≈ log−1 𝜆. 

     The estimates (23) and (24) are sharp (except for the (log 𝜆)
1

2 loss) when M is the standard 

sphere 𝕊𝑛 and Σ is any submanifold of dimension k, when it is saturated by the zonal 

spherical harmonics. It is natural to try to improve it on Riemannian manifolds with 

nonpositive sectional curvature. Recently, Sogge and Zelditch in [30] showed that for any 

2-dimensional compact boundaryless Riemannian manifold with nonpositive curvature one 

has  

sup
𝛾∈𝛱

‖𝜙𝜆‖𝐿𝑝(𝛾)/‖𝜙𝜆‖𝐿2(𝑀) = 𝑜 (𝜆
1
4) , 𝑓𝑜𝑟 2 ≤ 𝑝 < 4,    (33) 

where Π denotes the space of all unit-length geodesics in M. Our result implies that on 2-

dimensional manifolds, we have sup
𝛾∈𝛱

‖𝜙𝜆‖𝐿𝑝(𝛾)/‖𝜙𝜆‖𝐿2(𝑀) = 𝑂 (
𝜆
1
2
−
1
𝑝

(log𝜆)
1
2

)   for 𝑝 > 4. This 

together with (33) improves (23) for the whole range of p in dimension 2 except for 𝑝 = 4. 

Note that (25) is sharp for any compact manifold, in the sense that we fix the scale of the 

spectral projection (see [5]), but if we are allowed to consider a smaller scale of spectral 

projection, then our Theorem (1.2.1) is an improvement of (log 𝜆)
1

2 for (25), with the extra 

assumption that 𝑀 has nonpositive curvature, and the corollary is an improvement of (23).  

     Theorem (1.2.1) is related to certain 𝐿𝑝-estimates for eigenfunctions. For example, for 2-

dimensional Riemannian manifolds, Sogge showed in [28] that  
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‖𝜙𝜆‖𝐿𝑝(𝑀)
‖𝜙𝜆‖𝐿2(𝑀)

= 𝑜 (𝜆
1
2
(
1
2−
1
𝑝
)
)                                              (34) 

for some 2 < 𝑝 < 6 if and only if  

sup
𝛾∈𝛱

‖𝜙𝜆‖𝐿𝑝(𝛾)/‖𝜙𝜆‖𝐿2(𝑀) = 𝑜 (𝜆
1
4).                         (35) 

This indicates relations between the restriction theorem and the 𝐿𝑝-estimates for 

eigenfunctions in [15] by Sogge, which showed that for any compact Riemannian manifold 

of dimension n, one has  

‖𝜙𝜆‖𝐿𝑝(𝑀) ≲ 𝜆
𝑛−1
2
(
1
2
−
1
𝑝
)
‖𝜙𝜆‖𝐿2(𝑀), 𝑓𝑜𝑟 2 ≤ 𝑝 ≤

2(𝑛 + 1)

𝑛 − 1
,    (36) 

And 

‖𝜙𝜆‖𝐿𝑝(𝑀) ≲ 𝜆
𝑛(
1
2
−
1
𝑝
)−
1
2‖𝜙𝜆‖𝐿2(𝑀), 𝑓𝑜𝑟 

2(𝑛 + 1)

𝑛 − 1
≤ 𝑝 ≤ ∞.     (37) 

     There have been several results showing that (37) can be improved for 𝑝 >
2(𝑛+1)

𝑛−1
 (see 

[29] and [17]) to bounds of the form 

‖𝜙𝜆‖𝐿𝑝(𝑀)/‖𝜙𝜆‖𝐿2(𝑀) = 𝑜 (𝜆
𝑛(
1
2
−
1
𝑝
)−
1
2) 

for fixed 𝑝 > 6. Recently, Hassell and Tacey [23], following B´erard’s [20] estimate for 

𝑝 = ∞, showed that for fixed 𝑝 > 6, this ratio is 𝑂(𝜆
𝑛(

1

2
−
1

𝑝
)−

1

2/√log𝜆) on Riemannian 

manifolds with constant negative curvature. 

We first analyze the situation for any dimension 𝑛. 

Take a real-valued multiplier operator 𝜒 ∈ 𝑆(ℝ) such that 𝜒(0) = 1, and �̂�(𝑡) = 0 if 

|𝑡| ≥
1

2
. Let 𝜌 = 𝜒2; then �̂�(𝑡) = 0 if |𝑡| ≥ 1. Here, �̂� is the Fourier transform of χ. 

     For some number 𝑇, which will be determined later, and is approximately log 𝜆, we have 

𝜒 (𝑇(𝜆 − √−𝛥𝑔))𝜑𝜆 = 𝜑𝜆. The theorem is proved if we can show that for any 𝑓 ∈ 𝐿2(𝑀), 

‖𝜒𝑇
𝜆𝑓‖

𝐿𝑝(𝛴)
≲

𝜆𝛿(𝑝)

(log 𝜆)
1
2

‖𝑓‖𝐿2(𝑀),                                   (38) 

where 𝜒𝑇
𝜆 = 𝜒 (𝑇(𝜆 − √−𝛥𝑔)) is an operator from 𝐿2(𝑀) to 𝐿𝑝(𝛴). 

This is equivalent to saying that for any 𝑔 ∈ 𝐿𝑝
′
(𝛴),  

‖𝜒𝑇
𝜆(𝜒𝑇

𝜆)
∗
𝑔‖

𝐿𝑝(𝛴)
≲
𝜆2𝛿(𝑝)

log 𝜆
‖𝑔‖

𝐿𝑝
′
(𝛴)
,                         (39) 

where 𝑝′ is the conjugate number of p such that 
1

𝑝
+

1

𝑝′
= 1, and (𝜒𝑇

𝜆)
∗
 is the conjugate 

operator of 𝜒𝑇
𝜆, which maps 𝐿𝑝

′
(𝛴) into 𝐿2(𝑀). 

   If {𝑒𝑗(𝑥)}𝑗∈ℕ
 is an 𝐿2(𝑀) orthonormal basis of eigenfunctions of √−𝛥𝑔, with eigenvalues 

{𝜆𝑗}𝑗∈ℕ, and {𝐸𝑗(𝑥)}𝑗∈ℕ is the projection onto the j-th eigenspace restricted to Σ, then 𝐼|𝛴 =

∑ 𝐸𝑗𝑗∈ℕ  , and √−𝛥𝑔|𝛴 = ∑ 𝜆𝑗𝐸𝑗𝑗∈ℕ . If we set 𝜌𝑇
𝜆 = 𝜌 (𝑇(𝜆 − √−𝛥𝑔)): 𝐿

2(𝑀) → 𝐿𝑝(𝛴), 

then the kernel of 𝜒𝑇
𝜆(𝜒𝑇

𝜆)
∗
 is the kernel of 𝜌𝑇

𝜆, which is restricted to 𝛴 × 𝛴. This can be seen 

in the following way.  

Expand 𝜒𝑇
𝜆 and (𝜒𝑇

𝜆)
∗
,  
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𝜒𝑇
𝜆𝑓(𝑥) =  ∑𝜒 (𝑇(𝜆 − 𝜆𝑗)) 𝑒𝑗(𝑥)

𝑗∈ℕ

∫ 𝑒𝑗(𝑦)𝑓(𝑦)𝑑𝑦
𝑀

, ∀𝑓 ∈ 𝐿2(𝑀),    (40) 

and  

(𝜒𝑇
𝜆)
∗
𝑔(𝑥) =  ∑𝜒(𝑇(𝜆 − 𝜆𝑗)) 𝑒𝑗(𝑥)

𝑗∈ℕ

∫𝑒𝑗(𝑦)𝑓(𝑦)𝑑𝑦
𝛴

, ∀𝑓 ∈ 𝑝′(𝛴),     (41) 

Then  

𝜒𝑇
𝜆(𝜒𝑇

𝜆)
∗
𝑔(𝑥) = ∑ 𝜒(𝑇(𝜆 − 𝜆𝑖))𝜒 (𝑇(𝜆 − 𝜆𝑗)) 𝑒𝑗(𝑥)∫ 𝑒𝑗(𝑦)𝑒𝑖(𝑦)∫𝑒𝑖(𝑧)𝑔(𝑧)𝑑𝑧𝑑𝑦

𝛴𝑀𝑖,𝑗∈ℕ

 

=∑𝜒(𝑇(𝜆 − 𝜆𝑗))
2
𝑒𝑗(𝑥)∫𝑒𝑗(𝑧)𝑔(𝑧)𝑑𝑧

𝛴𝑗∈ℕ

 

=∑𝜌 (𝑇(𝜆 − 𝜆𝑗)) 𝑒𝑗(𝑥)∫𝑒𝑗(𝑧)𝑔(𝑧)𝑑𝑧
𝛴𝑗∈ℕ

.                                          (42) 

On the other hand,  

𝜌𝑇
𝜆 =∑𝜌(𝑇(𝜆 − 𝜆𝑗)) 𝐸𝑗

𝑗∈ℕ

=∑
1

2𝜋
∫ �̂�(𝑡)𝑒𝑖𝑡[𝑇(𝜆−𝜆𝑗)]𝐸𝑗𝑑𝑡
1

−1𝑗∈ℕ

 

=∑
1

2𝜋𝑇
∫ �̂� (

𝑡

𝑇
) 𝑒𝑖𝑡(𝜆−𝜆𝑗)𝐸𝑗𝑑𝑡

𝑇

−𝑇𝑗∈ℕ

=
1

2𝜋𝑇
∫ �̂� (

𝑡

𝑇
) 𝑒𝑖𝑡(𝜆−√−𝛥𝑔)𝑑𝑡

𝑇

−𝑇

 

=
1

𝜋𝑇
∫ �̂� (

𝑡

𝑇
) cos (𝑡√−𝛥𝑔) 𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

− 𝜌 (𝑇 (𝜆 + √−𝛥𝑔)).           (43) 

Here, 𝜌 (𝑇(𝜆 + √−𝛥𝑔)) is an operator whose kernel is 𝑂(𝜆−𝑁), for any 𝑁 ∈ ℕ, so that we 

only have to estimate the first term. We are not going to emphasize the restriction to Σ until 

we get to the point when we take the 𝐿𝑝  norm on Σ. 

     Denote the kernel of cos(𝑡 √−𝛥𝑔) as cos(𝑡 √−𝛥𝑔) (𝑥, 𝑦), for 𝑥, 𝑦 ∈ 𝑀. Then for any 

𝑔 ∈ 𝐿𝑝
′
(𝛴), 

𝜒𝑇
𝜆(𝜒𝑇

𝜆)
∗
𝑔(𝑥) =

1

𝜋𝑇
∫ ∫ �̂� (

𝑡

𝑇
) cos (𝑡√−𝛥𝑔) (𝑥, 𝑦)𝑒

𝑖𝑡𝜆𝑔(𝑦)𝑑𝑡𝑑𝑦 + 𝑂(1)
𝑇

−𝑇𝛴

.    (44) 

Take the 𝐿𝑝(𝛴) norm on both sides, 

‖𝜒𝑇
𝜆(𝜒𝑇

𝜆)
∗
𝑔‖_(𝐿𝑝(𝛴)

≤
1

𝜋𝑇
(∫|
𝛴

∫ ∫ �̂� (
𝑡

𝑇
) cos (𝑡 √−𝛥𝑔) (𝑥, 𝑦)𝑒

𝑖𝑡𝜆𝑔(𝑦)𝑑𝑡𝑑𝑦|𝑝𝑑𝑥
𝑇

−𝑇𝛴

)

1
𝑝

+ 𝑂(1).                                                                                                                     (45) 

We are going to use Young’s inequality (see [16]), with 
1

𝑟
= 1 − [(1 −

1

𝑝
) −

1

𝑝
] =

2

𝑝
 , and  

𝐾(𝑥, 𝑦) =
1

𝜋𝑇
∫ �̂� (

𝑡

𝑇
) (𝑐𝑜𝑠𝑡 √−𝛥𝑔) (𝑥, 𝑦)𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

.          (46) 

Denote K as the operator with the kernel 𝐾(𝑥, 𝑦) from now on.  

     Since 𝐾(𝑥, 𝑦) is symmetric in x and y, once we have  

sup
𝑥∈𝛴

‖𝐾(𝑥,·)‖𝐿𝑟(𝛴) ≲
𝜆2𝛿(𝑝)

log 𝜆
,                        (47) 
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where 𝑟 = 𝑝/2, then by Young’s inequality, the theorem is proved.  

     We can use the same argument as in [30] to lift the manifold to ℝ𝑛. As stated in Theorem 

IV.1.3 in [25], for (𝑀, 𝑔) with nonpositive curvature, considering x to be a fixed point on 

Σ, there exists a universal covering map 𝑝 = exp𝑥: ℝ
𝑛 →. In this way, (𝑀, 𝑔) is lifted to 

(ℝ𝑛 , �̃�), with the metric 𝑔 = (exp𝑥  )
∗𝑔 being the pullback of g via exp𝑥  . 𝑔 is a complete 

Riemannian metric on ℝ𝑛. Define an automorphism for (ℝ𝑛 , 𝑔), 𝛼: ℝ𝑛 → ℝ𝑛, to be a deck 

transformation if  

𝑝 ∘ 𝛼 = 𝑝, 
when we shall write 𝛼 ∈ 𝐴𝑢𝑡(𝑝). If �̃� ∈ ℝ𝑛 and 𝛼 ∈ 𝐴𝑢𝑡(𝑝) (let us call 𝛼(�̃�) the translate 

of �̃� by α), then we call a simply connected set 𝐷 ⊂ ℝ𝑛 a fundamental domain of our 

universal cover p if every point in ℝ𝑛 is the translate of exactly one point in D. We can then 

identify our submanifold Σ in (𝑀, 𝑔) uniquely with a submanifold in 𝐷 ⊂ ℝ𝑛 with one-to-

one correspondence. Likewise, a function 𝑓(𝑥) in M is uniquely identified by one 𝑓𝐷(�̃�) on 

𝐷 if we set 𝑓𝐷(�̃�) = 𝑓(𝑥), where �̃� is the unique point in 𝐷 ∩ 𝑝−1(𝑥). Using 𝑓𝐷 we can 

define a “periodic extension”, 𝑓, of f to ℝ𝑛 by defining 𝑓(�̃�) to be equal to 𝑓𝐷(�̃�) if �̃� = �̃� 

modulo 𝐴𝑢𝑡(𝑝), i.e. if (�̃�, 𝛼) ∈ 𝐷 × 𝐴𝑢𝑡(𝑝) are the unique pair so that �̃� = 𝛼(�̃�).  
We shall exploit the relationship between solutions of the wave equation on (𝑀, 𝑔) 

of the form  

{
(𝜕𝑡
2 − 𝛥𝑔)𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ ℝ+ ×𝑀,

𝑢(0,·) = 𝑓, 𝜕𝑡𝑢(0,·) = 0,                   
                 (48) 

and certain ones on (ℝ𝑛, 𝑔),  

{
(𝜕𝑡
2 − 𝛥𝑔)�̃�(𝑡, �̃�) = 0, (𝑡, �̃�) ∈ ℝ+ × ℝ

𝑛,

�̃�(0,·) = 𝑓, 𝜕𝑡�̃�(0,·) = 0.                            
                 (49) 

If (𝑓(𝑥), 0) is the Cauchy data in (48) and (𝑓(�̃�), 0) is the periodic extension to (ℝ𝑛 , 𝑔), 

then the solution �̃�(𝑡, �̃�) to (49) must be a periodic function of �̃� since 𝑔 is the pullback of 

g via p and 𝑝 ∘ 𝛼 = 𝑝. As a result, we have that the solution to (48) must satisfy 𝑢(𝑡, 𝑥) =
�̃�(𝑡, �̃�) if �̃� ∈ 𝐷 and 𝑝(�̃�) = 𝑥. Thus, periodic solutions to (49) correspond uniquely to 

solutions of (48). Note that 𝑢(𝑡, 𝑥) = cos(𝑡√−𝛥𝑔) 𝑓(𝑥) is the solution of (48), so that  

cos (𝑡√−𝛥𝑔) (𝑥, 𝑦) =  ∑ cos (𝑡√−𝛥�̃�) (�̃�, 𝛼(�̃�))

𝛼∈𝐴𝑢𝑡(𝑝)

,     (50) 

if �̃� and �̃� are the unique points in D for which 𝑝(�̃�) = 𝑥 and 𝑝(�̃�) = 𝑦. 

While we can prove Theorem (1.2.1) for any dimension n, we will prove the case 

when 𝑛 = 2 first separately, as it is the simplest case, and does not involve interpolation or 

various subdimensions. Here is what it says.  

Theorem (1.2.3)[19]: Let (𝑀, 𝑔) be a compact smooth boundaryless Riemannian surface 

with nonpositive curvature, and γ be a smooth curve with finite length. Then for any 𝑓 ∈
𝐿2(𝑀), we have the following estimate:  

‖ ∑ 𝐸𝑗𝑓

|𝜆𝑗−𝜆|<(log𝜆)
−1

‖

𝐿𝑝(𝛾)

≲
𝜆
1
2−
1
𝑝

(log 𝜆)
1
2

‖𝑓‖𝐿2(𝑀), ∀𝑝 > 4.            (51) 

We will prove Theorem (1.2.3). By a partition of unity, we can assume that we fix x to be 

the midpoint of γ, and parametrize γ by its arc length centered at x so that  

𝛾 = 𝛾[−1, 1]𝑎𝑛𝑑 𝛾(0) = 𝑥,                                  (52) 
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and we may assume that the geodesic distance between any x and 𝑦 ∈ 𝛾 is comparable to 

the arc length between them on γ. We need to estimate the 𝐿𝑟(𝛾) norm of   

∫ �̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥𝑔) (𝑥, 𝑦)𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

= ∑ ∫ �̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥�̃�) (�̃�, 𝛼(�̃�))𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇𝛼∈𝐴𝑢𝑡(𝑝)

.                                     (53) 

We should have the following estimates: 

Up to an error of 𝑂(𝜆−1) exp (𝑂(𝑑𝑔(�̃�, �̃�))) + 𝑂(𝑒𝑑𝑇) or 

𝑂(𝜆−1) exp (𝑂 (𝑑𝑔(�̃�, 𝛼(�̃�)))) + 𝑂(𝑒𝑑𝑇) respectively, 

∫ �̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥�̃�) (�̃�, �̃�)𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

= 𝑂(𝜆)𝑤ℎ𝑒𝑛 𝑑�̃�(�̃�, �̃�) <
1

𝜆
,        (54) 

∫ �̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥�̃�) (�̃�, �̃�)𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

= 𝑂((
𝜆

𝑑�̃�(�̃�, �̃�)
)

1
2

)  𝑤ℎ𝑒𝑛 𝑑�̃�(�̃�, �̃�) ≥
1

𝜆
, (55) 

𝛼 ≠ 𝐼𝑑, ∫ �̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥�̃�) (�̃�, 𝛼(�̃�))𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

= 𝑂((
𝜆

𝑑�̃�(�̃�, 𝛼(�̃�))
)

1
2

) . (56) 

To prove (55) and (56), we need the following lemma.  

Lemma (1.2.4)[19]: Assume that 𝑤(�̃�, �̃�′) is a smooth function from ℝ𝑛 ×ℝ𝑛 to ℝ𝑛,and 

𝛩 ∈ 𝕊𝑛−1. Then there exist constants 𝑎± such that  

∫ 𝑒𝑖𝑤(�̃�,�̃�)·𝛩𝑑𝛩
𝕊𝑛−1

= √2𝜋
𝑛−1

∑𝑎±  
𝑒±𝑖|𝑤(�̃�,�̃�)|

|𝑤(�̃�, �̃�′)|
𝑛−1
2± 

+ 𝑂 (|𝑤(�̃�, �̃�)|
−𝑛−1
2 −1),        (57) 

when |𝑤(�̃�, �̃�)| ≥ 1. The proof can be found in Chapter 1 of [16]. Let us return to estimating 

the kernel 𝐾(𝑥, 𝑦). Applying the Hadamard Parametrix,  

cos (𝑡√−𝛥�̃�) (�̃�, 𝛼(�̃�)) =
𝑤0(�̃�, 𝛼(�̃�))

(2𝜋)𝑛
∑∫ 𝑒𝑖𝛷(�̃�,𝛼(�̃�))·𝜉±𝑖𝑡|𝜉|𝑑𝜉

ℝ𝑛±

 

+∑𝑤𝜈(�̃�, 𝛼(�̃�))ℇ𝜈 (𝑡, 𝑑�̃�(�̃�, 𝛼(�̃�)))

𝑁

𝜈=1

+ 𝑅𝑁 (𝑡, 𝑥, �̃�(�̃�)),            (58) 

where |𝛷(�̃�, 𝛼(�̃�))| = 𝑑�̃�(�̃�, 𝛼(�̃�)), ℇ𝜈, 𝜈 = 1, 2, 3, . .. , are defined recursively by 

2ℇ𝜈(𝑡, 𝑟) = −𝑡 ∫ ℇ𝜈−1(𝑠, 𝑟)𝑑𝑠
𝑡

0
 , where ℇ0(𝑡, 𝑥) = (2𝜋)

−𝑛 ∫ 𝑒𝑖𝑥·𝜉𝑐𝑜𝑠(𝑡|𝜉|)𝑑𝜉
ℝ𝑛

 , 3 and 

𝑤𝜈(�̃�, 𝛼(�̃�)) equals some constant times 𝑢𝜈(�̃�, 𝛼(�̃�)) that satisfies  

{
𝑢0(�̃�, 𝛼(�̃�)) = 𝛩

−
1
2(𝛼(�̃�)),                                                                

𝑢𝜈+1(�̃�, 𝛼(�̃�)) = 𝛩(𝛼(�̃�))∫ 𝑠𝜈𝛩
1
2(�̃�𝑠)𝛥�̃�𝑢𝜈(�̃�, �̃�𝑠)𝑑𝑠

1

0

, 𝜈 ≥ 0,
     (59) 

where (𝛼(�̃�)) = (𝑑𝑒𝑡 𝑔𝑖𝑗(𝛼(�̃�)))

1

2
 , and (�̃�𝑠)𝑠∈[0,1] is the minimizing geodesic from �̃� to 

𝛼(�̃�) parametrized proportionally to arc length (see [20] and [30]).  
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     First note that for 𝑁 ≥ 𝑛 +
3

2
 , by using the energy estimates (see [27] Theorem (1.2.3).5), 

one can show that |𝑅𝑁(𝑡, �̃�, 𝛼(�̃�))| = 𝑂(𝑒^𝑑𝑡) , for some constant 𝑑 > 0, which is at most 

𝑂(𝑒𝑑𝑇) = 𝑂(𝜆𝑑𝛽) after we choose T to be approximately 𝛽 log 𝜆, so that it is small 

compared to the first 𝑁 terms, since we may choose 𝛽 as close to 0 as possible.  

Theorem (1.2.5)[19]: Given an 𝑛-dimensional compact Riemannian manifold (𝑀, 𝑔) with 

nonpositive curvature, and let (ℝ𝑛 , 𝑔) be the universal covering of (𝑀, 𝑔). Then if 𝑁 ≥ 𝑛 +
3

2
, in local coordinates,  

 (𝑐𝑜𝑠𝑡√−𝛥�̃�) 𝑓(�̃�) = ∫𝐾𝑁 (𝑡, �̃�; �̃�)𝑓(�̃�)𝑑𝑉�̃�(�̃�) + ∫𝑅𝑁 (𝑡, �̃�; �̃�)𝑓(�̃�)𝑑𝑉�̃�(�̃�) , (60) 

where  

𝐾𝑁(𝑡, �̃�; �̃�) = ∑𝑤𝜈(�̃�, �̃�)ℇ𝜈 (𝑡, 𝑑�̃�(�̃�, �̃�))

𝑁

𝜈=0

,                   (61) 

with the remainder kernel 𝑅𝑁 satisfying  

|𝑅𝑁 (𝑡, �̃�; �̃�))|  = 𝑂(𝑒
𝑑𝑡)                               (62) 

for some number 𝑑 > 0.  

     This comes from equation (42) in [20]. The proof can be found in [20].  

By this theorem,  

∫ |𝑅𝑁(𝑡, �̃�, 𝛼(�̃�))|𝑑𝑡
𝑇

−𝑇

≤ 𝐶∫ 𝑒𝑑𝑡𝑑𝑡
𝑇

0

= 𝑂(𝑒𝑑𝑇).           (63) 

Moreover, for 𝜈 = 1, 2, 3, . .. , we have the following estimate for ℇ𝜈(𝑡, 𝑟).  
Theorem (1.2.6)[19]: For 𝜈 = 0, 1, 2, . .. and ℇ𝜈(𝑡, 𝑟) defined above, we have  

|∫ �̂�(𝑡)𝑒𝑖𝑡𝜆ℇ𝜈(𝑡, 𝑟)𝑑𝑡| = 𝑂(𝜆
𝑛−1−2𝜈), 𝜆 ≥ 1.      (64) 

Proof. Recall that  

ℇ0(𝑡, 𝑟) =
𝐻(𝑡)

(2𝜋)𝑛
∫ 𝑒𝑖𝛷(�̃�,�̃�)·𝜉𝑐𝑜𝑠𝑡|𝜉|𝑑𝜉
ℝ𝑛

,                 (65) 

so that  

|∫ �̂�(𝑡)𝑒𝑖𝑡𝜆ℇ0(𝑡, 𝑟)𝑑𝑡| = |
1

2(2𝜋)𝑛
∫∫ �̂�(𝑡)𝑒𝑖𝑡(𝜆±|𝜉|)+𝑖𝛷(�̃�,�̃�)·𝜉𝑑𝜉𝑑𝑡

ℝ𝑛
|   

≈ |∫ [𝜌(𝜆 + |𝜉|) + 𝜌(𝜆 − |𝜉|)]𝑒𝑖𝛷(�̃�,�̃�)·𝜉𝑑𝜉
ℝ𝑛

| 

≤ ∫ |𝜌(𝜆 + |𝜉|)| + |𝜌(𝜆 − |𝜉|)|𝑑𝜉
ℝ𝑛

= 𝑂(𝜆𝑛−1).                      (66) 

By the definition of ℇ𝜈 such that 
𝜕ℇ𝜈

𝜕𝑡
=

𝑡

2
ℇ𝜈−1 and integrating by parts, we get that for any 

𝜈 = 1, 2, 3, . .., 

∫ �̂�(𝑡)𝑒𝑖𝑡𝜆ℇ𝜈(𝑡, 𝑟)𝑑𝑡 = 𝑂(𝜆
𝑛−1−2𝜈).                                     (67) 

 The following theorem has been shown by Berard in [20] about the size of the coefficients 

𝑢𝑘(�̃�, �̃�). 
Theorem (1.2.7)[19]: Let (𝑀, 𝑔) be a compact n-dimensional Riemannian manifold and let 

σ be its sectional curvature (hence, there is a number Γ such that −𝛤2 ≤ 𝜎). Assume that 

either  
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(i) 𝑛 = 2, and M does not have conjugate points;  

or  

(ii) −𝛤2 ≤ 𝜎 ≤ 0; i.e. M has nonpositive sectional curvature.  

Let (ℝ𝑛, 𝑔) be the universal covering of (𝑀, 𝑔), and let �̃�𝜈, 𝜈 = 0, 1, 2, . .. , be defined by 

the relations (59). Then for any integers l and ν  

𝛥�̃�
𝑙 �̃�𝜈(�̃�, �̃�) = 𝑂 (exp (𝑂 (𝑑�̃�(�̃�, �̃�)))).                          (68) 

The proof can be found in [20], Appendix: Growth of the Functions 𝑢𝑘(𝑥, 𝑦). 

     Since 𝑤𝜈(�̃�, 𝛼(�̃�)) is a constant times �̃�𝜈(�̃�, 𝛼(�̃�)), this theorem tells us that 

|𝑤𝜈(�̃�, 𝛼(�̃�))| = 𝑂 (exp (𝑐𝜈𝑑�̃�(�̃�, 𝛼(�̃�)))), for some constant 𝑐𝜈 depending on ν.  

     Moreover, denote that 𝜓(𝑡) = �̂� (
𝑡

𝑇
), and �̃� is the inverse Fourier transform of ψ. Thus 

we have �̃� ∈ 𝑆(ℝ) such that  

|�̃�(𝑡)| ≤ 𝑇(1 + 𝑇|𝑡|)−𝑁, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑁 ∈ ℕ.                      (69) 
Therefore,   

∑|𝑤𝜈(�̃�, 𝛼(𝑦))∫ �̂� (
𝑡

𝑇
) 𝑒𝑖𝑡𝜆ℇ𝜈 (𝑡, 𝑑�̃�(�̃�, 𝛼(�̃�))) 𝑑𝑡

𝑇

−𝑇

|

𝑁

𝜈=1

=∑𝑂 (𝑇(𝑇𝜆)𝑛−1−2𝜈𝑒𝑥𝑝 (𝑐𝜈𝑑�̃�(�̃�, 𝛼(�̃�))))

𝑁

𝜈=1

  

= 𝑂 (𝑇𝑛−2𝜆𝑛−3 exp (𝐶𝑁 𝑑�̃�(�̃�, 𝛼(�̃�)))),                         (70) 

for some 𝐶𝑁 depending on 𝑐1, 𝑐2, . . . , 𝑐𝑁−1. 

     All in all, taking 𝑛 = 2, and disregarding the integral of the remainder kernel,  

| ∫ �̂� (
𝑡

𝑇
) cos (𝑡√−𝛥�̃�) (�̃�, 𝛼(�̃�))𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

|

= |∫ �̂� (
𝑡

𝑇
)
𝑤0(�̃�, 𝛼(�̃�))

4𝜋2
∑∫ 𝑒𝑖𝛷(�̃�,𝛼(�̃�))·𝜉±𝑖𝑡|𝜉|𝑒𝑖𝑡𝜆𝑑𝜉𝑑𝑡

ℝ𝑛±

𝑇

−𝑇

| 

+𝑂 (𝜆−1 exp (𝐶𝑁 𝑑�̃�(�̃�, 𝛼(�̃�)))).                                                    (71) 

On the other hand, 𝑤0(�̃�, �̃�) has a better estimate. By applying Günther’s Comparison 

Theorem [21], with the assumption of nonpositive curvature, we can show that |𝑤0(�̃�, �̃�)| =
𝑂(1). The proof is given by Sogge and Zelditch in [30] for 𝑛 = 2. Let’s see the case for any 

dimension 𝑛. In the geodesic polar coordinates we are using, 𝑡𝛩, 𝑡 > 0, 𝛩 ∈ 𝕊𝑛−1, for 
(ℝ𝑛 , �̃�), the metric 𝑔 takes the form  

𝑑𝑠2 = 𝑑𝑡2 + A
2(𝑡, 𝛩)𝑑𝛩2 ,                                         (72) 

where we may assume that A(𝑡, 𝛩) > 0 for 𝑡 > 0. Consequently, the volume element in 

these coordinates is given by 

𝑑𝑉𝑔(𝑡, 𝜃) = A(𝑡, 𝛩)𝑑𝑡𝑑𝛩,                                            (73) 

and by Gunther’s Comparison Theorem [21] if the curvature of (𝑀, 𝑔), which is the same 

as that of (ℝ𝑛, 𝑔), is nonpositive, we have  

A(𝑡, 𝜃) ≥ 𝑡𝑛−1,                                                     (74) 
where 𝑡𝑛−1 is the volume element of the Euclidean space. In geodesic normal coordinates 

about x, we have  
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𝑤0(𝑥, 𝑦) =  𝑑𝑒𝑡 𝑔𝑖𝑗(𝑦)
−
1
4 

(see [20], [22] or §2.4 in [27]). If y has geodesic polar coordinates (𝑡, 𝛩) about x, then 𝑡 =

𝑑�̃�(𝑥, 𝑦), so that 𝑤0(𝑥, 𝑦) = √𝑡
𝑛−1/A(𝑡, 𝛩) ≤ 1.  

Therefore,  

|∑∫ ∫ 𝑒𝑖𝛷(�̃�,�̃�)·𝜉±𝑖𝑡|𝜉|+𝑖𝑡𝜆�̂� (
𝑡

𝑇
) 𝑑𝑡𝑑𝜉

𝑇

−𝑇ℝ𝑛±

|

= |∫ 𝑒𝑖𝛷(�̃�,�̃�)·𝜉 (�̃�(𝜆 + |𝜉|) + �̃�(𝜆 − |𝜉|)) 𝑑𝜉
ℝ𝑛

| 

≤ ∫ |�̃�(𝜆 + |𝜉|)|𝑑𝜉
ℝ𝑛

+ ∫ |�̃�(𝜆 − |𝜉|)|𝑑𝜉
ℝ𝑛

.                      (75) 

Note that �̃�(𝜆 + |𝜉|) = 𝑂(𝑇(1 + 𝜆 + |𝜉|) − 𝑁), for any 𝑁 ∈ ℕ, so ∫ |�̃�(𝜆 + |𝜉|)|𝑑𝜉
ℝ𝑛

  can 

be arbitrarily small, while �̃�(𝜆 − |𝜉|) = 𝑂(𝑇(1 + 𝑇|𝜆 − |𝜉||)
−𝑁
) , for any 𝑁 ∈ ℕ, 

so that ∫ |�̃�(𝜆 − |𝜉|)|𝑑𝜉
ℝ𝑛

≲ 𝑇∫ (1 + 𝑇|𝜆 − |𝜉||)
−𝑁
𝑑𝜉

𝜆−1≤|𝜉|≤𝜆+1
= 𝑂(𝜆), provided that 

𝜆 ≥ 1. So  

∫ �̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥�̃�) (�̃�, �̃�)𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

= 𝑂(𝜆) + 𝑂 (𝜆−1 exp (𝐶𝑁𝑑�̃�(�̃�, �̃�))) , (76) 

disregarding the integral of the remainder kernel.  

However, this estimate can be improved when 𝑑�̃�(�̃�, �̃�) ≥
1

𝜆
. As we can see, the main term 

of  

cos (𝑡√−𝛥�̃�) (�̃�, �̃�) =
𝑤0(�̃�, �̃�)

4𝜋2
±∫ 𝑒𝑖𝛷(�̃�,�̃�)·𝜉±𝑖𝑡|𝜉|𝑑𝜉

ℝ𝑛
 

+∑𝑤𝜈(�̃�, �̃�)ℇ𝜈 (𝑡, 𝑑�̃�(�̃�, �̃�))

𝑁

𝜈=1

+ 𝑅𝑁 (𝑡, �̃�, �̃�)  (77) 

is the first term, and the corresponding term in ∫ �̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥�̃�)(�̃�, �̃�)𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇
 is 

bounded by  

𝐶 |∑∫ ∫ �̂� (
𝑡

𝑇
) 𝑒𝑖𝛷(�̃�,�̃�)·𝜉±𝑖𝑡|𝜉|𝑒𝑖𝑡𝜆𝑑𝑡𝑑𝜉

ℝ𝑛

𝑇

−𝑇±

| 

= 𝐶 |∑∫ ∫ ∫ �̂� (
𝑡

𝑇
) 𝑒𝑖𝑟𝛷(�̃�,�̃�)·𝛩±𝑖𝑡𝑟+𝑖𝑡𝜆𝑟𝑑𝑡𝑑𝑟𝑑𝜃

2𝜋

0

∞

0

𝑇

−𝑇±

|.             (78) 

Integrate with respect to 𝑡 first; then the quantity above is bounded by a constant times 

∑∫ ∫ �̃�(𝜆 ± 𝑟)𝑒𝑖𝑟𝛷(�̃�,�̃�)·𝛩𝑟𝑑𝜃𝑑𝑟
2𝜋

0

∞

0± 

.                                   (79) 

Because �̃�(𝜆 ±  𝑟) ≲ 𝑇(1 + 𝑇|𝜆 ±  𝑟|)−𝑁 for any 𝑁 > 0, the term with �̃�(𝜆 + 𝑟) in the 

sum is 𝑂(1), while the other term with �̃�(𝜆 − 𝑟) is significant only when r is comparable 

to λ, say 𝑐1𝜆 < 𝑟 < 𝑐2𝜆 for some constants 𝑐1 and 𝑐2. In this case, as we assumed that 

𝑑�̃�(�̃�, �̃�) ≥
1

𝜆
; we can also assume that 𝑑�̃�(�̃�, �̃�) ≳

1

𝑟
 . 
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     By Lemma (1.2.4), ∫ 𝑒𝑖𝑤·𝛩𝑑𝜃
2𝜋

0
= √2𝜋|𝑤|

−
1

2∑ 𝑎±𝑒
±𝑖|𝑤|

± + 𝑂 (|𝑤|−
3

2) , |𝑤| ≥ 1, 

where 𝑤 = 𝑟𝛷(�̃�, �̃�). Integrating up θ, the above quantity is then controlled by a constant 

times  

|∑∫ �̃�(𝜆 − 𝑟)|𝑟𝑑�̃�(�̃�, �̃�)|
−
1
2𝑒±𝑖𝑟𝑑�̃�(�̃�,�̃�)𝑟𝑑𝑟

𝑐2𝜆

𝑐1𝜆± 

+ ∫ �̃�(𝜆 − 𝑟)|𝑟𝑑�̃�(�̃�, �̃�)|
−
3
2

𝑐2𝜆

𝑐1𝜆

|  

≤ 𝑑�̃�(�̃�, �̃�)
−
1
2∫ |�̃�(𝜆 − 𝑟)|𝑟

1
2𝑑𝑟 + 𝑑�̃�(�̃�, �̃�)

(−
3
2
)

𝑐2𝜆

𝑐1𝜆

∫ |�̃�(𝜆 − 𝑟)|𝑟−
1
2𝑑𝑟

𝑐2𝜆

𝑐1𝜆

 

= 𝑑�̃�(�̃�, �̃�)
−
1
2𝑂 (𝜆

1
2) + 𝑂(𝑑�̃�(�̃�, �̃�)

−1)  = 𝑂((
𝜆

𝑑�̃�(�̃�, �̃�)
)

1
2

).              (80) 

Note that these two equalities are still valid when 𝑐1 and 𝑐2 are changed to 0 and ∞.  

Therefore, when 𝑑�̃�(�̃�, �̃�) ≥
1

𝜆
, 

|
𝑤0(�̃�, �̃�)

4𝜋2
∑∫ �̂� (

𝑡

𝑇
) 𝑒𝑖𝛷(�̃�,�̃�)·𝜉±𝑖𝑡|𝜉|𝑒𝑖𝑡𝜆𝑑𝜉

ℝ𝑛± 

| = 𝑂((
𝜆

𝑑�̃�(�̃�, �̃�)
)

1
2

).   (81) 

We have finished the estimates for 𝛼 = 𝐼𝑑. For 𝛼 ≠ 𝐼𝑑, note that we can find a constant 𝐶𝑝 

that is different from 0, depending on the universal cover, 𝑝, of the manifold 𝑀, such that  

𝑑�̃�(�̃�, 𝛼(�̃�)) > 𝐶𝑝,                                                 (82) 

for all 𝛼 ∈ 𝐴𝑢𝑡(𝑝) different from Id. The constant 𝐶𝑝 comes from the fact that if we assume 

that the injectivity radius of M is greater than a number, say 1, and that 𝑥 is the center of 

some geodesic ball with radius one contained in M, then we can choose the fundamental 

domain D such that x is at least some distance, say 𝐶𝑝 > 1, away from any translation of D, 

which we denote as 𝛼(𝐷), for any 𝛼 ∈ 𝐴𝑢𝑡(𝑝) that is not identity. Therefore, we may use 

the estimates for 𝑑�̃�(�̃�, �̃�) ≥
1

𝜆
 before assuming λ is larger than 1/𝐶𝑝. Use the Hadamard 

parametrix (see [30]), similarly as before, estimating only the main term:  

|∫ �̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥�̃�) (�̃�, 𝛼(�̃�))𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

|

≲ |(2𝜋)−2∫ ∫ �̂� (
𝑡

𝑇
) 𝑒𝑖𝛷(�̃�,𝛼(�̃�))·𝜉 cos(𝑡|𝜉|) 𝑒𝑖𝑡𝜆𝑑𝑡

𝑇

−𝑇ℝ𝑛
|  

≲ ∑|∫ ∫ ∫ 𝑒𝑖𝑟𝛷(�̃�,𝛼(�̃�))·𝛩±𝑖𝑡𝑟+𝑖𝑡𝜆�̂� (
𝑡

𝑇
) 𝑟𝑑𝑡𝑑𝑟𝑑𝜃

𝑇

−𝑇

∞

0

2𝜋

0

 |

± 

 

=∑|∫ ∫ �̃�(𝜆 − 𝑟)𝑒𝑖𝑟𝛷(�̃�,𝛼(�̃�))·𝛩𝑟𝑑𝜃𝑑𝑟
2𝜋

0

∞

0

|

± 

 

≲∑|∫ �̃�(𝜆 − 𝑟)|𝑟𝑑�̃�(�̃�, 𝛼(�̃�))|
−
1
2𝑒𝑖𝑟𝑑�̃�(�̃�,𝛼(�̃�))𝑟𝑑𝑟

∞

0± 

+∫ �̃�(𝜆 − 𝑟)|𝑟𝑑�̃�(�̃�, 𝛼(�̃�))|
−
3
2𝑟𝑑𝑟

∞

0

|  
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= 𝑂((
𝜆

𝑑�̃�(�̃�, 𝛼(�̃�))
)

1
2

) .                                                               (83) 

     Now we have shown all the estimates (54), (55), and (56). Totally, 𝐾(𝑥, 𝑦) is  

𝑂(
1

𝑇

(

 
𝜆

(𝜆−1 + 𝑑�̃�(�̃�, �̃�))

1
2
)

 + ∑ [𝑂(
1

𝑇
(

𝜆

𝑑�̃�(�̃�, 𝛼(�̃�))
)

1
2

) + 𝑂 (
𝑒𝐸𝑇

𝑇
)]

𝐼𝑑=𝛼∈𝐴𝑢𝑡(𝑝)

 (84) 

 where 𝐸 = max{𝐶𝑁 , 𝑑} + 1. 

      Note that, by the finite propagation speed of the wave operator 𝜕𝑡
2 − 𝛥�̃�, 𝑑�̃�(�̃�, 𝛼(�̃�)) ≤

𝑇 in the support of cos(𝑡 √−𝛥𝑔) (�̃�, 𝛼(�̃�)). While M is a compact manifold with 

nonpositive curvature, the number of terms of α’s such that 𝑑�̃�(�̃�, 𝛼(�̃�)) ≤ 𝑇 is at most 𝑒𝑐𝑇, 

for some constant c depending on the curvature, by the Bishop Comparison Theorem (see 

[25], [30]). 

     We take the 𝐿𝑟(𝛾) norms of each individual term first; then by Minkowski’s inequality, 

‖𝐾(𝑥,·)‖𝐿𝑟(𝛾[−1,1]) is bounded by the sum. Also note that we may consider the geodesic 

distance to be comparable to the arc length of the geodesic. The first term is simple, and it 

is controlled by a constant times  

1

𝑇
(∫ (

𝜆

𝜆−1 + 𝜏
)

𝑟
2
𝑑𝜏

1

0

)

1
𝑟

= 𝑂(
𝜆
𝑝−2
𝑝

𝑇
).                                 (85) 

      Accounting for the number of terms of those α’s, the second term is bounded by a 

constant times  

𝑒𝑐𝑇 ·
𝜆
1
2

𝑇
(∫ (

1

𝐶𝑝
)

𝑟
2

𝑑𝜏
1

0

)

1
𝑟

= 𝑂(𝑒𝑐𝑇
𝜆
1
2

𝑇
).                   (86) 

Therefore,  

‖𝐾(𝑥,·)‖𝐿𝑟(𝛾[−1,1])  = 𝑂 (
𝜆
𝑝−2
𝑝

𝑇
) + 𝑂(𝑒𝑐𝑇

𝜆
1
2

𝑇
) + 𝑂 (

𝑒(𝑐+𝐸)𝑇

𝑇
)  

= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.                                                                 (87) 

Now take 𝑇 = 𝛽 log 𝜆, where 𝛽 ≤
𝑝−4

2(𝑐+𝐸)𝑝
. (Note that we can assume that 𝑐 ≠ 0; otherwise, 

there is only one α that we are considering, which is 𝛼 = 𝐼𝑑.) Then  

𝐼 = 𝐼𝐼 = 𝑂 (
𝜆
𝑝−2
𝑝

log𝜆
),                                                (88) 

and  

𝐼𝐼𝐼 = 𝑜 (
𝜆
𝑝−2
𝑝

log𝜆
)                                                 (89) 

Summing up, we get that  
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‖𝐾(𝑥,·)‖𝐿𝑟(𝛾[−1,1]) = 𝑂(
𝜆
𝑝−2
𝑝

log𝜆
).                         (90) 

Now applying Young’s inequality with 𝑟 =
𝑝

2
, we get that  

∀𝑓 ∈ 𝐿𝑝
′
(𝛾), ‖𝜒𝑇

𝜆(𝜒𝑇
𝜆)
∗
𝑓‖

𝐿𝑝(𝛾)
≲
(1 + 𝜆)

1−
2
𝑝

log 𝜆
‖𝑓‖

𝐿𝑝
′
(𝛾)
. 

Therefore, Theorem (1.2.3) is proved.  

We move on to the case for 𝑛 ≥ 3. While we want to show Theorem (1.2.1) for the 

full range of p directly, we can only show it under the condition that 𝑝 >
4𝑘

𝑛−1
 using the same 

method. Although we only need 𝑝 = ∞ later to interpolate and get to the full version of 

Theorem (1.2.1), we will show the most as we can for the moment.  

Theorem (1.2.8)[19]: Let (𝑀, 𝑔) be a compact smooth n-dimensional boundaryless 

Riemannian manifold with nonpositive curvature, and Σ be a k-dimensional compact; 

smooth sub manifold on M. Then for any 𝑓 ∈ 𝐿2(𝑀), we have the following estimate:  

‖ ∑ 𝐸𝑗𝑓

|𝜆𝑗−𝜆|≤(log𝜆)
−1

‖

𝐿𝑝(𝛴)

≲
𝜆𝛿(𝑝)

(log 𝜆)
1
2

‖𝑓‖𝐿2(𝑀), ∀𝑝 >
4𝑘

𝑛 − 1
,   (91) 

where  

𝛿(𝑝) =
𝑛 − 1

2
−
𝑘

𝑝
.                                           (92) 

    For 𝑛 ≥ 3, for the sake of using interpolation later, we need to insert a bump function. 

Take 𝜑 ∈ 𝐶0
∞(ℝ) such that 𝜑(𝑡) = 1 when |𝑡| ≤

1

2
 and 𝜑(𝑡) = 0 when |𝑡| > 1. Then we 

only have to consider the following kernel: 

𝐾(𝑥, 𝑦) =
1

𝜋𝑇
∫ (1 − 𝜑(𝑡))�̂� (

𝑡

𝑇
) (𝑐𝑜𝑠𝑡 √−𝛥𝑔) (𝑥, 𝑦)𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

,      (93) 

which is nonzero only when |𝑡| >
1

2
 . In the following discussion, we may sometimes only 

show estimates for 𝐾(𝑥, 𝑦) when 𝑡 >
1

2
, as the part for 𝑡 < −

1

2
 can be done similarly.  

The reason why we only consider the above kernel 𝐾(𝑥, 𝑦) is because of the following 

lemma.  

We show Theorem (1.2.8), which is essentially the same as the lower dimension case, 

and what we need to show is (47). By a partition of unity, we may choose some point 𝑥 ∈ 𝛴, 

and consider Σ to be within a ball with geodesic radius 1 centered at 𝑥, and under the 

geodesic normal coordinates centered at 𝑥, parametrize Σ as  

𝛴 = {(𝑡, 𝛩)|𝑦 = exp𝑥(𝑡𝛩) ∈ 𝛴, 𝑡 ∈ [−1, 1], 𝛩 ∈ 𝕊
𝑘−1}. 

Applying the Hadamard parametrix, for any 𝛼 ∈ 𝐴𝑢𝑡(𝑝), 

cos (𝑡 √−𝛥�̃�) (�̃�, 𝛼(�̃�)) =
𝑤0(�̃�, 𝛼(�̃�))

(2𝜋)𝑛
∑∫ 𝑒𝑖𝛷(�̃�,𝛼(�̃�))·𝜉±𝑖𝑡|𝜉|𝑑𝜉

ℝ𝑛±

 

+∑𝑤𝜈(�̃�, �̃�)ℇ𝜈 (𝑡, 𝑑�̃�(�̃�, 𝛼(�̃�)))

∞

𝜈=1

+ 𝑅𝑁(𝑡, �̃�, 𝛼(�̃�)),            (94) 

where |𝛷(�̃�, 𝛼(�̃�))| = 𝑑�̃�(�̃�, 𝛼(�̃�)), and ℇ𝜈 , 𝜈 = 1, 2, 3,⋯, are those described.  
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By Theorem (1.2.7),  

∫ |𝑅𝑁 (𝑡, �̃�, 𝛼(�̃�))|𝑑𝑡
𝑇

−𝑇

≲ ∫ 𝑒𝑑𝑡𝑑𝑡
𝑇

0

= 𝑂(𝑒𝑑𝑇).               (95) 

Moreover, by (64), for 𝜈 = 1, 2, 3,⋯,  

|∫ (1 − 𝜑(𝑡))�̂� (
𝑡

𝑇
) 𝑒𝑖𝑡𝜆ℇ𝜈 (𝑡, 𝑑�̃�(�̃�, 𝛼(�̃�))) 𝑑𝑡

𝑇

−𝑇

| = 𝑂(𝑇(𝑇𝜆)𝑛−1−2𝜈).   (96) 

Since |𝑤𝜈(�̃�, 𝛼(�̃�))| = 𝑂 (exp (𝑐𝜈𝑑�̃�(�̃�, 𝛼(�̃�)))) by [20], for some constant 𝑐𝜈 depending 

on ν,   

∑|𝑤𝜈(�̃�, 𝛼(�̃�))∫ (1 − 𝜙(𝑡))�̂� (
𝑡

𝑇
) 𝑒𝑖𝑡𝜆ℇ𝜈 (𝑡, 𝑑�̃�(�̃�, 𝛼(�̃�))) 𝑑𝑡

𝑇

−𝑇

|

𝑁

𝜈=1

 

= ∑𝑂 (𝑇(𝑇𝜆)𝑛−1−2𝜈 exp (𝑐𝜈𝑑�̃�(�̃�, 𝛼(�̃�))))

𝑁

𝜈=1

  

= 𝑂 (𝑇𝑛−2𝜆𝑛−3 exp (𝐶𝑁𝑑�̃�(�̃�, 𝛼(�̃�)))),                                     (97) 

for some 𝐶𝑁 depending on 𝑐1, 𝑐2, . . . , 𝑐𝑁−1.  

     All in all, disregarding the integral of the remainder kernel,  

|∫ (1 − 𝜑(𝑡))�̂� (
𝑡

𝑇
) cos (𝑡 − √𝛥�̃�) (�̃�, 𝛼(�̃�))𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

|

= |∫ (1 − 𝜑(𝑡))�̂� (
𝑡

𝑇
)
𝑤0(�̃�, �̃�)

(2𝜋)𝑛
∑∫ 𝑒𝑖𝛷(�̃�,𝛼(�̃�))·𝜉±𝑖𝑡|𝜉|𝑒𝑖𝑡𝜆𝑑𝜉𝑑𝑡 

ℝ𝑛±

𝑇

−𝑇

| 

+𝑂 (𝑇𝑛−2𝜆𝑛−3 exp (𝐶𝑁𝑑�̃�(�̃�, 𝛼(�̃�)))).                                                (98) 

On the other hand, |𝑤0(�̃�, �̃�)| = 𝑂(1) (see [30]) by applying Gunther’s Comparison 

Theorem in [21], and for  

|∑∫ ∫ (1 − 𝜑(𝑡))𝑒𝑖𝛷(�̃�,𝛼(�̃�))·𝜉±𝑖𝑡|𝜉|+𝑖𝑡𝜆�̂� (
𝑡

𝑇
) 𝑑𝑡𝑑𝜉

𝑇

−𝑇ℝ𝑛± 

| ,         (99) 

as we may assume as before that 𝑑�̃�(�̃�, 𝛼(�̃�)) >
1

2
 by the stationary phase estimates in [16].  

Denote that 𝜓(𝑡) = (1 − 𝜑(𝑡))�̂� (
𝑡

𝑇
), and �̃� is the inverse Fourier transform of 𝜓. 

Again we have  

�̃�(𝜆 + |𝜉|) = 𝑂(𝑇(1 + 𝜆 + |𝜉|)−𝑁), 
for any 𝑁 ∈ ℕ, so ∫ |�̃�(𝜆 + |𝜉|)|𝑑𝜉

ℝ𝑛
 can be arbitrarily small, while �̃�(𝜆 − |𝜉|) =

𝑂 (𝑇(1 + 𝑇|𝜆 − |𝜉||)
−𝑁
).  

Integrate (99) with respect to t first; then it is bounded by a constant times  

∑∫ ∫ �̃�(𝜆 ± 𝑟)𝑒𝑖𝑟𝛷(�̃�,𝛼(�̃�))·𝛩𝑟𝑛−1𝑑𝛩𝑑𝑟
𝕊𝑛−1

∞

0±

.            (100) 

     Because �̃�(𝜆 ±  𝑟) ≤ 𝑇(1 + 𝑇|𝜆 ±  𝑟|)−𝑁 for any 𝑁 > 0, the term with �̃�(𝜆 + 𝑟) in the 

sum is 𝑂(1), while the other term with �̃�(𝜆 − 𝑟) is significant only when r is comparable 

to λ, say 𝑐1𝜆 < 𝑟 < 𝑐2𝜆 for some constants 𝑐1 and 𝑐2. In this case, as we assumed that 

𝑑�̃�(�̃�, 𝛼(�̃�)) ≥ 𝐷; we can also assume that 𝑑�̃�(�̃�, 𝛼(�̃�)) ≳
1

𝑟
 for large λ.  
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     By Lemma (1.2.4), ∫ 𝑒𝑖𝑤·𝛩𝑑𝛩
𝕊𝑛−1

= √2𝜋
𝑛−1

|𝑤|−
𝑛−1

2 ∑ 𝑎±𝑒
±𝑖|𝑤|

± + 𝑂 (|𝑤|−
𝑛+1

2 ), |𝑤| ≥

1, where 𝑤 = 𝑟𝛷(�̃�, 𝛼(�̃�)). Integrating up to Θ, the above quantity is then controlled by a 

constant times  

|∑∫ �̃�(𝜆 − 𝑟)|𝑟𝑑�̃�(�̃�, 𝛼(�̃�))|
−
𝑛−1
2 𝑒±𝑖𝑟𝑑�̃�(�̃�,�̃�)𝑟𝑛−1𝑑𝑟

𝑐2𝜆

𝑐1𝜆± 

+ ∫ �̃�(𝜆 − 𝑟)|𝑟𝑑�̃�(�̃�, 𝛼(�̃�))|
−
𝑛+1
2 𝑟𝑛−1𝑑𝑟

𝑐2𝜆

𝑐1𝜆

| 

≤ 𝑑�̃�(𝑥, 𝑦)
−
𝑛−1
2 ∫ �̃�(𝜆 − 𝑟)|𝑟

𝑛−1
2 𝑑𝑟

𝑐2𝜆

𝑐1𝜆

 

+ 𝑑�̃�(�̃�, 𝛼(�̃�))
−
𝑛+1
2 ∫ |�̃�(𝜆 − 𝑟)|𝑟

𝑛−3
2 𝑑𝑟

𝑐2𝜆

𝑐1𝜆

  

= 𝑂((
𝜆

𝑑�̃�(�̃�, 𝛼(�̃�))
)

𝑛−1
2

).                                                      (101) 

Therefore, disregarding the integral of the remainder kernel, 

∫ (1 − 𝜑(𝑡))�̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡 √−𝛥�̃�) (�̃�, 𝛼(�̃�))𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

= 𝑂((
𝜆

𝑑�̃�(�̃�, 𝛼(�̃�))
)

𝑛−1
2

) 

+𝑂 (𝑇𝑛−2𝜆𝑛−3 exp (𝐶𝑁𝑑�̃�(�̃�, 𝛼(�̃�)))).                                          (102) 

Now 𝐾(𝑥, 𝑦) is  

∑ [𝑂(
1

𝑇
 (

𝜆

𝑑�̃�(�̃�, 𝛼(�̃�))
)

𝑛−1
2

) + 𝑂 (
𝑒𝐸𝑇

𝑇
)]

𝛼∈𝐴𝑢𝑡(𝑝)

,               (103) 

where 𝐸 = max {𝐶𝑁, 𝑑} + 1.  

We still have: the number of terms of α’s such that 𝑑�̃�(�̃�, 𝛼(�̃�)) ≤ 𝑇 is at most 𝑒𝑐𝑇, 

for some constant c depending on the curvature, and there exists a constant 𝐶𝑝 such that 

𝑑�̃�(�̃�, 𝛼(�̃�)) > 𝐶𝑝 for any 𝛼 ∈ 𝐴𝑢𝑡(𝑝) different from identity.  

We take the 𝐿𝑟(𝛴) norms of each individual term. By (82), and accounting for the 

number of terms of those α’s, the first one is bounded by a constant times  

𝑒𝑐𝑇𝜆
𝑛−1
2

𝑇
(∫ 𝐶𝑝

−
(𝑛−1)
2 ·𝑟

𝜏𝑘−1𝑑𝜏
1

0

)

1
𝑟

= 𝑂(
𝑒𝑐𝑇𝜆

𝑛−1
2

𝑇
).             (104) 

Therefore, 

‖𝐾(𝑥,·)‖𝐿𝑟(𝛴)  = 𝑂 (
𝑒𝑐𝑇𝜆

𝑛−1
2

𝑇
) + 𝑂 (

𝑒(𝑐+𝐸)𝑇

𝑇
) = 𝐼 + 𝐼𝐼.      (105) 

Now take 𝑇 = 𝛽 log 𝜆, where 𝛽 =

𝑛−1

2
−
2𝑘

𝑝
−𝛿

𝑐+𝐸
 , where δ satisfies 0 < 𝛿 <

𝑛−1

2
−
2𝑘

𝑝
. Note that 

𝑛−1

2
−
2𝑘

𝑝
> 0 when 𝑝 >

4𝑘

𝑛−1
. Then  
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𝐼 = 𝑂 (
𝜆𝛽𝑐+

𝑛−1
2

log 𝜆
) = 𝑂 (

𝜆
𝑛−1
2 −

2𝑘
𝑝 −𝛿+

𝑛−1
2

log 𝜆
) = 𝑜(

𝜆
𝑛−1−

2𝑘
𝑝

log 𝜆
) , (106) 

and  

𝐼𝐼 = 𝑂 (
𝜆𝛽(𝑐+𝐸)

log 𝜆
) = 𝑂(

𝜆
𝑛−1
2 −

2𝑘
𝑝 −𝛿

log 𝜆
) = 𝑜(

𝜆
𝑛−1−

2𝑘
𝑝

log 𝜆
).                    (107) 

Summing up, we get that  

‖𝐾(𝑥,·)‖𝐿𝑟(𝛴) = 𝑜(
𝜆
𝑛−1−

2𝑘
𝑝

log 𝜆
).                      (108) 

Now applying Young’s inequality, with 𝑟 =
𝑝

2
, together with the estimate in Lemma (1.2.9), 

we have  

∀𝑓 ∈ 𝐿𝑝
′
(𝛴), ‖𝜒𝑇

𝜆(𝜒𝑇
𝜆)
∗
𝑓‖

𝐿𝑝(𝛴)
≲
𝜆
𝑛−1−

2𝑘
𝑝

log 𝜆
‖𝑓‖𝐿𝑝(𝛴).             (109) 

Therefore, Theorem (1.2.8) is proved.  

Lemma (1.2.9)[19]: For 𝜙 ∈ 𝐶0
∞(ℝ) such that 𝜑(𝑡) = 1 when |𝑡| ≤

1

2
 and 𝜑(𝑡) = 0 when 

|𝑡| > 1, let 

𝐾(𝑥, 𝑦) =
1

𝜋𝑇
∫ 𝜑(𝑡)�̂� (

𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥𝑔) (𝑥, 𝑦)𝑒

𝑖𝑡𝜆𝑑𝑡
1

−1

.         (110) 

Then  

sup
𝑥
‖𝐾(𝑥,·)‖

𝐿𝑟(𝛴)
= 𝑂(

𝜆2𝛿(𝑝)

log 𝜆
).                        (111) 

Proof. With similar approaches as in the previous discussions, we can show that 𝐾(𝑥, 𝑦) is  

𝑂(
1

𝑇
(

𝜆

𝜆−1 + 𝑑�̃�(�̃�, �̃�)
)

𝑛−1
2

)

+ ∑ [𝑂(
1

𝑇
(

𝜆

𝑑�̃�(�̃�, 𝛼(�̃�))
)

𝑛−1
2

) + 𝑂(𝑒𝐸𝑇)]

𝐼 𝑑≠𝛼∈𝐴𝑢𝑡(𝑝)

,                             (112) 

where 𝐸 = max{𝐶𝑁 , 𝑑} + 1.  

     Note that |𝑡| ≤ 1 for 𝜑(𝑡) = 0, and the number of terms such that 𝑑�̃�(�̃�, 𝛼(�̃�)) ≤ 1 is at 

most 𝑒𝑐, so that  

‖𝐾(𝑥, 𝑦)‖
𝐿𝑟(𝛴)

= 𝑂 (
𝜆2𝛿(𝑝)

log 𝜆
),                                 (113) 

if we take 𝑇 = log 𝜆 and calculate as before.  

     To show Theorem (1.2.1), we need to use interpolation. Recall that  

𝐾(𝑥, 𝑦) =
1

𝜋𝑇
∫ (1 − 𝜑(𝑡))�̂� (

𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥𝑔) (𝑥, 𝑦)𝑒

𝑖𝑡𝜆𝑑𝑡
𝑇

−𝑇

 

=
1

2𝜋𝑇
∫ (1 − 𝜑(𝑡))�̂� (

𝑡

𝑇
) (𝑒𝑖𝑡√−𝛥𝑔 + 𝑒−𝑡√−𝛥𝑔) (𝑥, 𝑦)𝑒𝑖𝑡𝜆𝑑𝑡

𝑇

−𝑇

(114) 
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is the kernel of the operator  

1

2𝜋𝑇
[∑�̃�(𝜆 − 𝜆𝑗)𝐸𝑗
𝑗

 +∑�̃�(𝜆 − 𝜆𝑗)𝐸𝑗
𝑗

] =
1

2𝜋𝑇
[∑�̃�(𝜆 − 𝜆𝑗)𝐸𝑗
𝑗

] + 𝑂(1) 

=
1

2𝜋𝑇
�̃�(𝜆 − √−𝛥𝑔) + 𝑂(1),        (115) 

where �̃�(𝑡) is the inverse Fourier transform of (1 − 𝜑(𝑡))�̂� (
𝑡

𝑇
) so that |�̃�(𝑡)| ≤

𝑇(1 + |𝑡|)−𝑁 for any 𝑁 ∈ ℕ.  

     We have the following estimate for �̃�(𝜆 − √−𝛥𝑔).  

Theorem (1.2.10)[19]: For 𝑘 ≠ 𝑛 − 2,  

‖�̃�(𝜆 − 𝑃)𝑔‖
𝐿2(𝛴)

≲ 𝑇𝜆2𝛿(2)‖𝑔‖𝐿2(𝛴), 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑔 ∈ 𝐿2(𝛴),       (116) 

and for 𝑘 = 𝑛 − 2,  

‖�̃�(𝜆 − 𝑃)𝑔‖
𝐿2(𝛴)

≲ 𝑇𝜆2𝛿(2) log 𝜆‖𝑔‖𝐿2(𝛴) , 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑔 ∈ 𝐿2(𝛴),   (117) 

where 𝑃 = √−𝛥𝑔. 

Proof. Recall the proof of the corresponding restriction theorem in [5]. They showed that 

for 𝜒 ∈ 𝑆(ℝ), and defining  

𝜒𝜆 = 𝜒 (√−𝛥𝑔 − 𝜆) =  ∑𝜒(𝜆𝑗 − 𝜆)𝐸𝑗
𝑗

,                    (118) 

we have  

‖𝜒𝜆‖𝐿2(𝑀)→𝐿2(𝛴) = 𝑂(𝜆
𝛿(2)),                                          (119) 

for 𝑘 ≠ 𝑛 − 2, and  

‖𝜒𝜆‖𝐿2(𝑀)→𝐿2(𝛴) = 𝑂(𝜆
𝛿(2)(log𝜆)

1
2 ,                              (120) 

for 𝑘 = 𝑛 − 2.  

Now consider �̃�(𝜆 − 𝑃) as 𝑆𝑆∗, where  

𝑆 =∑(1 + |𝜆𝑗 − 𝜆|)
−𝑀
𝐸𝑗

𝑗

                                          (121) 

and  

𝑆 =∑(1 + |𝜆𝑗 − 𝜆|)
𝑀
�̃�(𝜆𝑗 − 𝜆)𝐸𝑗

𝑗

,                        (122) 

where M is some large number.  

Recall that |�̃�(𝜏)| ≤ 𝑇(1 + |𝜏|)−𝑁 for any 𝑁 ∈ ℕ. We then have  

|(1 + |𝜆𝑗 − 𝜆|)
𝑀
�̃�(𝜆𝑗 − 𝜆)| ≤ 𝑇(1 + |𝜆𝑗 − 𝜆|)

−𝑁
        (123) 

for any 𝑁.  
By (25), which we deduced from the proof of Theorem 3 in [5], for a given λ,  

‖ ∑ 𝐸𝑗
𝜆𝑗∈(𝜆−1,𝜆+1)

‖

𝐿2(𝑀)→𝐿2(𝛴)

= 𝑂(𝜆𝛿(2)), 𝑖𝑓 𝑘 ≠ 𝑛 − 2         (124) 

and  
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‖ ∑ 𝐸𝑗
𝜆𝑗∈(𝜆−1,𝜆+1)

‖

𝐿2(𝑀)→𝐿2(𝛴)

= 𝑂 (𝜆𝛿(2)(log λ)
1
2) , 𝑖𝑓 𝑘 ≠ 𝑛 − 2      (125) 

so that for any 𝑓 ∈ 𝐿2(𝑀), 

‖∑(1 + |𝜆𝑗 − 𝜆|
−𝑀
)𝐸𝑗𝑓

𝑗

‖

𝐿2(𝛴)

≤ ‖ ∑ 𝐸𝑗𝑓

𝜆𝑗∈(𝜆−1,𝜆+1)

‖

𝐿2(𝛴)

 

+‖ ∑ (1 + |𝜆𝑗 − 𝜆|
−𝑀
)𝐸𝑗𝑓

𝜆𝑗 ∉(𝜆−𝛿,𝜆+𝛿)

‖

𝐿2(𝛴)

  

{
 
 

 
 𝜆𝛿(2)‖𝑓‖𝐿2(𝑀) + ∑ (1 + |𝜆𝑗 − 𝜆|)

−𝑀
‖𝐸𝑗𝑓‖𝐿2(𝛴)

𝜆𝑗∉(𝜆−1,𝜆+1)

, 𝑖𝑓 𝑘 ≠ 𝑛 − 2,

𝜆𝛿(2)(log 𝜆)
1
2‖𝑓‖𝐿2(𝑀) + ∑ (1 + |𝜆𝑗 − 𝜆|)

−𝑀
‖𝐸𝑗𝑓‖𝐿2(𝛴)

𝜆𝑗∉(𝜆−1,𝜆+1)

, 𝑖𝑓 𝑘 = 𝑛 − 2.
(126) 

As   

∑ (1 + |𝜆𝑗 − 𝜆|)
−𝑀
‖𝐸𝑗𝑓‖𝐿2(𝛴)

𝜆𝑗∉(𝜆−1,𝜆+1)

≤

{
 
 

 
 ∑ 𝜆𝑗

𝛿(2)(1 + |𝜆𝑗 − 𝜆|)
−𝑀
‖𝐸𝑗𝑓‖𝐿2(𝑀)

𝜆𝑗∉(𝜆−1,𝜆+1)

, 𝑖𝑓 𝑘 ≠ 𝑛 − 2,                 

 ∑ 𝜆𝑗
𝛿(2)

(log 𝜆𝑗)
1
2(1 + |𝜆𝑗 − 𝜆|)

−𝑀
‖𝐸𝑗𝑓‖𝐿2(𝑀)

𝜆𝑗∉(𝜆−1,𝜆+1)

, 𝑖𝑓 𝑘 = 𝑛 − 2,

                 (127) 

which can be made arbitrarily small when M is sufficiently large,  

‖∑(1 + |𝜆𝑗  − 𝜆|
−𝑀
)𝐸𝑗𝑓

𝑗

‖

𝐿2(𝛴)

≤ {
𝜆𝛿(2)‖𝑓‖𝐿2(𝑀), 𝑖𝑓 𝑘 ≠ 𝑛 − 2,

𝜆𝛿(2)(log 𝜆)
1
2‖𝑓‖𝐿2(𝑀), 𝑖𝑓 𝑘 = 𝑛 − 2.

    (128) 

Similarly, we have  

‖∑(1 + |𝜆𝑗  − 𝜆|
𝑀
) �̃�(𝜆𝑗 − 𝜆)𝐸𝑗𝑓

𝑗

‖

𝐿2(𝛴)

 

≤ {
𝜆𝛿(2)‖𝑓‖𝐿2(𝑀), 𝑖𝑓 𝑘 ≠ 𝑛 − 2,

𝜆𝛿(2)(log 𝜆)
1
2‖𝑓‖𝐿2(𝑀), 𝑖𝑓 𝑘 = 𝑛 − 2.

        (129) 

Therefore, 

‖�̃�(𝜆 − 𝑃)𝑔‖
𝐿2(𝛴)

= ‖𝑆𝑆 ∗ 𝑔‖
𝐿2(𝛴)

≤ ‖𝑆‖𝐿2(𝑀)→𝐿2(𝛴)‖𝑆
∗‖
𝐿2(𝛴)→𝐿2(𝑀)

‖𝑔‖𝐿2(𝛴)

= ‖𝑆‖𝐿2(𝑀)→𝐿2(𝛴)‖𝑆‖𝐿2(𝑀)→𝐿2(𝛴)‖𝑔‖𝐿2(𝛴) 

≲ {
𝑇𝜆𝛿(2)‖𝑔‖𝐿2(𝑀), 𝑖𝑓 𝑘 ≠ 𝑛 − 2,

𝑇𝜆𝛿(2) log 𝜆 ‖𝑓‖𝐿2(𝑀), 𝑖𝑓 𝑘 = 𝑛 − 2.
                                             (130) 

Now we may finish the proof of Theorem (1.2.1).  
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     Recall that we denote K as the operator whose kernel is 𝐾(𝑥, 𝑦). The above theorem tells 

us that  

‖𝐾‖𝐿2(𝛴)→𝐿2(𝛴) ≤ {
𝑂(𝜆2𝛿(2)), 𝑓𝑜𝑟 𝑘 ≠ 𝑛 − 2;

𝑂(𝜆2𝛿(2) log 𝜆), 𝑓𝑜𝑟 𝑘 = 𝑛 − 2.
          (131) 

Interpolating this with  

‖𝐾‖𝐿1(𝛴)→𝐿∞(𝛴) = 𝑂(
𝑒𝑐𝑇𝜆

𝑛−1
2

𝑇
)                           (132)  

by Theorem (1.2.8) respectively, we get that for any p and 𝑘 ≠ 𝑛 − 2, 

‖𝐾‖
𝐿𝑝
′
(𝛴)→𝐿𝑝(𝛴)

= 𝑂(
𝜆
𝑛−1
2
(1−

2
𝑝
)
𝑒
𝑐𝑇(1−

2
𝑝
)
𝜆
2𝛿(2)·

2
𝑝

𝑇
1−
2
𝑝

) 

= 𝑂(
𝜆
𝑛−1
2 −

𝑛−1
𝑝 +

4𝛿(2)
𝑝 𝑒

𝑐𝑇(1−
2
𝑝
)

𝑇
1−
2
𝑝

),                (133) 

and for 𝑘 = 𝑛 − 2,  

‖𝐾‖
𝐿𝑝
′
(𝛴)→𝐿𝑝(𝛴)

= 𝑂(
𝜆
𝑛−1
2 −

𝑛−1
𝑝 +

4𝛿(2)
𝑝 𝑒

𝑐𝑇(1−
2
𝑝
)
(log 𝜆)

2
𝑝

𝑇
1−
2
𝑝

) 

= 𝑂(
𝜆
𝑛−1
2 −

𝑛−1
𝑝 +

4𝛿(2)
𝑝 𝑒

𝑐𝑇(1−
2
𝑝
)
(log 𝜆)

2
𝑝

𝑇
1−
2
𝑝

).                 (134) 

If 𝑘 = 𝑛 − 1, then 𝛿(2) =
1

4
. Thus  

‖𝐾‖
𝐿𝑝
′
(𝛴)→𝐿𝑝(𝛴)

= 𝑂(
𝜆
𝑛−1
2 −

𝑛−2
𝑝 𝑒

𝑐𝑇(1−
2
𝑝
)

𝑇
1−
2
𝑝

).                 (135) 

Since 
𝑛−1

2
−
𝑛−2

𝑝
< 2𝛿(𝑝) if >

2𝑛

𝑛−1
 , say 

𝑛−1

2
−
𝑛−2

𝑝
+ 𝛿 < 2𝛿(𝑝) for some small number 

𝛿 > 0, then taking 𝛽 =
𝛿

𝑐(1−
2

𝑝
)
 , and 𝑇 = 𝛽 𝑙𝑜𝑔 𝜆, we have  

‖𝐾‖𝐿𝑝(𝛴)→𝐿𝑝(𝛴) = 𝑂 (
𝜆2𝛿(𝑝)−𝛿

𝑇
1−
2
𝑝

) = 𝑂(
𝜆2𝛿(𝑝)−𝛿

log 𝜆

1−
2
𝑝

) = 𝑜 (
𝜆2𝛿(𝑝)

log 𝜆
),   (136) 

which indicates Theorem (1.2.1).  

If 𝑘 = 𝑛 − 2,  

‖𝐾‖
𝐿𝑝
′
(𝛴)→𝐿𝑝(𝛴)

= 𝑂(
𝜆
𝑛−1
2 −

𝑛−1
𝑝 +

4𝛿(2)
𝑝 𝑒

𝑐𝑇(1−
2
𝑝
)
(log 𝜆)

2
𝑝

𝑇
1−
2
𝑝

) 

= 𝑂(
𝜆
𝑛−1
2
−
𝑛−1
𝑝
+
2
𝑝𝑒
𝑐𝑇(1−

2
𝑝
)
(log 𝜆)

2
𝑝

𝑇
1−
2
𝑝

).                       (137) 
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Now since 
𝑛−1

2
−
𝑛−1

𝑝
+
2

𝑝
< (𝑛 − 1) −

2(𝑛−2)

𝑝
 when 𝑝 > 2, we can take 𝛿 > 0 such that 

𝑛−1

2
−
𝑛−1

𝑝
+
2

𝑝
+ 𝛿 < (𝑛 − 1) −

2(𝑛−2)

𝑝
, and take 𝛽 = 𝛿/𝑐 (1 −

2

𝑝
) , 𝑇 = 𝛽 log 𝜆. Then  

‖𝐾‖
𝐿𝑝
′
(𝛴)→𝐿𝑝(𝛴)

= 𝑂(
𝜆2𝛿(𝑝)−𝛿(log 𝜆)

2
𝑝

(log 𝜆)
1−
2
𝑝

) = 𝑜 (
𝜆2𝛿(𝑝)

log 𝜆
),            (138) 

which is the what we need.  

If 𝑘 ≤ 𝑛 − 3, 𝛿(2) =
𝑛−1

2
−
𝑘

2
, then 

‖𝐾‖𝐿𝑝(𝛴)→𝐿𝑝(𝛴) = 𝑂(
𝜆
𝑛−1
2 −

𝑛−1
𝑝 +

4𝛿(2)
𝑝 𝑒

𝑐𝑇(1−
2
𝑝
)

𝑇
1−
2
𝑝

) 

= 𝑂(
𝜆
𝑛−1
2
−
𝑛−1
𝑝
+
2(𝑛−1)−2𝑘

𝑝 𝑒
𝑐𝑇(1−

2
𝑝
)

𝑇
1−
2
𝑝

).                (139) 

Since 
𝑛−1

2
−
𝑛−1

𝑝
+
2(𝑛−1)−2𝑘

𝑝
< (𝑛 − 1) −

2𝑘

𝑝
= 2𝛿(𝑝) for 𝑝 > 2, we can take 𝛿 > 0 such 

that 
𝑛−1

2
−
𝑛−1

𝑝
+
2(𝑛−1)−2𝑘

𝑝
+ 𝛿 < (𝑛 − 1) −

2𝑘

𝑝
 , and take 𝛽 = 𝛿/𝑐 (1 −

2

𝑝
) , 𝑇 = 𝛽 log 𝜆. 

Then  

‖𝐾‖
𝐿𝑝
′
(𝛴)→𝐿𝑝(𝛴)

= 𝑂(
𝜆2𝛿(𝑝)−𝛿

(log 𝜆)
1−
2
𝑝

) = 𝑜 (𝜆2𝛿(𝑝)(log 𝜆)),     (140) 

which finishes Theorem (1.2.1). 

Corollary (1.2.11)[246] For 𝜈 = 0, 1, 2, . .. and ℇ𝜈 (𝑡,
1+𝜖

2
) defined above, we have  

|∫ �̂�(𝑡)𝑒𝑖𝑡𝜆ℇ𝜈 (𝑡,
1 + 𝜖

2
) 𝑑𝑡| = 𝑂(𝜆𝑛−1−2𝜈), 𝜆 ≥ 1.      (141) 

Proof. Recall that  

ℇ0 (𝑡,
1 + 𝜖

2
) =

𝐻(𝑡)

(2𝜋)𝑛
∫ ∑ 

𝑟

𝑒𝑖Φ𝑟(�̃�,�̃�+𝜖)·𝜉𝑐𝑜𝑠𝑡|𝜉|𝑑𝜉
ℝ𝑛

,                 (142) 

so that  

|∫ �̂�(𝑡)𝑒𝑖𝑡𝜆ℇ0 (𝑡,
1 + 𝜖

2
)𝑑𝑡| = |

1

2(2𝜋)𝑛
∫∫ ∑ 

𝑟

�̂�(𝑡)𝑒𝑖𝑡(𝜆±|𝜉|)+𝑖Φ𝑟(�̃�,�̃�+𝜖)·𝜉𝑑𝜉𝑑𝑡
ℝ𝑛

|   

≈ ∑  

𝑟

|∫ [𝜌(𝜆 + |𝜉|) + 𝜌(𝜆 − |𝜉|)]𝑒𝑖Φ𝑟(�̃�,�̃�+𝜖)·𝜉𝑑𝜉
ℝ𝑛

|

≤ ∫ (|𝜌(𝜆 + |𝜉|)| + |𝜌(𝜆 − |𝜉|)|)𝑑𝜉
ℝ𝑛

= 𝑂(𝜆𝑛−1).                             (143) 

By the definition of ℇ𝜈 such that 
𝜕ℇ𝜈

𝜕𝑡
=

𝑡

2
ℇ𝜈−1 and integrating by parts, we get that for any 

𝜈 = 1, 2, 3, . .., 
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∫ �̂�(𝑡)𝑒𝑖𝑡𝜆ℇ𝜈 (𝑡,
1 + 𝜖

2
)𝑑𝑡 = 𝑂(𝜆𝑛−1−2𝜈).                             (144) 

Corollary (1.2.12)[246]: For 𝜑𝑟 ∈ 𝐶0
∞(ℝ) such that ∑  𝑟 𝜑𝑟(𝑡) = 1 when |𝑡| ≤

1

2
 and 

∑  𝑟 𝜑𝑟(𝑡) = 0 when |𝑡| > 1, let 

𝐾(𝑥, 𝑥 + 𝜖) =
1

𝜋𝑇
∫ ∑ 

𝑟

𝜑𝑟(𝑡)�̂� (
𝑡

𝑇
) (𝑐𝑜𝑠𝑡√−𝛥𝑔𝑟) (𝑥, 𝑥 + 𝜖)𝑒

𝑖𝑡𝜆𝑑𝑡
1

−1

.         (145) 

Then  

sup
𝑥
‖𝐾(𝑥,·)‖

𝐿
4+𝜖
2 (𝛴)

= 𝑂 (
𝜆2𝛿(2+𝜖)

log 𝜆
).                        (146) 

Proof. [19] With similar approaches as in the previous discussions, we can show that 

𝐾(𝑥, 𝑥 + 𝜖) is  

∑ 

𝑟

𝑂 (
1

𝑇
(

𝜆

𝜆−1 + (1 + 𝜖)�̃�𝑟(�̃�, �̃� + 𝜖)
)

𝑛−1
2

)

+ ∑ [𝑂 (
1

𝑇
(

𝜆

(1 + 𝜖)�̃�𝑟(�̃�, 𝛼(�̃� + 𝜖))
)

𝑛−1
2

)

𝐼 𝑑≠𝛼∈𝐴𝑢𝑡(
𝜖(𝑛+3)+4
𝑛−1

)

+ 𝑂(𝑒𝐸𝑇)],                                                                                                             (147) 

where 𝐸 = max{𝐶1+𝜖 , 1 + 𝜖} + 1.  

     Note that |𝑡| ≤ 1 for ∑  𝑟 𝜑𝑟(𝑡) = 0, and the number of terms such that (1 +

𝜖)�̃�𝑟(�̃�, 𝛼(�̃� + 𝜖)) ≤ 1 is at most 𝑒𝑐, so that  

‖𝐾(𝑥, 𝑥 + 𝜖)‖
𝐿
4+𝜖(3+𝑛)
2(𝑛−1) (𝛴)

= 𝑂(
𝜆
2𝛿(

𝜖(𝑛+3)+4
𝑛−1

)

log 𝜆
),                                 (148) 

if we take 𝑇 = log 𝜆 and calculate as before.  

Corollary (1.2.13)[246]: For 𝜖 ≠ 0,  

∑ 

𝑟

‖�̃�𝑟(𝜆 − 𝑃)𝑔𝑟‖𝐿2(𝛴) ≲ 𝑇𝜆
2𝛿(2)∑ 

𝑟

‖𝑔𝑟‖𝐿2(𝛴), for any 𝑔𝑟 ∈ 𝐿
2(𝛴),     (149) 

and for 𝜖 = 0,  

∑ 

𝑟

‖�̃�𝑟(𝜆 − 𝑃)𝑔𝑟‖𝐿2(𝛴) ≲ 𝑇𝜆
2𝛿(2)∑ 

𝑟

log 𝜆‖𝑔𝑟‖𝐿2(𝛴) , for any 𝑔𝑟 ∈ 𝐿
2(𝛴),    (150) 

where 𝑃 = √−𝛥𝑔𝑟. 
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Proof. Recall the proof of the corresponding restriction theorem in [5]. They showed that 

for 𝜒 ∈ 𝑆(ℝ), and defining  

𝜒𝜆 = 𝜒 (√−𝛥𝑔𝑟 − 𝜆) =  ∑𝜒(𝜆𝑗 − 𝜆)𝐸𝑗
𝑗

,                                                           (151) 

we have  

‖𝜒𝜆‖𝐿2(𝑀)→𝐿2(𝛴) = 𝑂(𝜆
𝛿(2)),                                                                            (152) 

for 𝜖 ≠ 0, and  

‖𝜒𝜆‖𝐿2(𝑀)→𝐿2(𝛴) = 𝑂(𝜆
𝛿(2)(log𝜆)

1
2 ,                                                                     (153) 

for 𝜖 = 0.  

Now consider �̃�𝑟(𝜆 − 𝑃) as 𝑆𝑆∗, where  

𝑆 =∑(1 + |𝜆𝑗 − 𝜆|)
−𝑀
𝐸𝑗

𝑗

                                          (154) 

and  

𝑆 =∑∑ 

𝑟

(1 + |𝜆𝑗 − 𝜆|)
𝑀
�̃�𝑟(𝜆𝑗 − 𝜆)𝐸𝑗

𝑗

,                        (155) 

where M is some large number.  

Recall that ∑  𝑟 |�̃�𝑟(𝜏)| ≤ 𝑇(1 + |𝜏|)
−(1+𝜖) for any (1 + 𝜖) ∈ ℕ. We then have  

∑ 

𝑟

|(1 + |𝜆𝑗 − 𝜆|)
𝑀
�̃�𝑟(𝜆𝑗 − 𝜆)| ≤ 𝑇(1 + |𝜆𝑗 − 𝜆|)

−(1+𝜖)
        (156) 

for any 1 + 𝜖.  

By (25), which we deduced from the proof of Theorem 3 in [5], for a given λ,  

‖ ∑ 𝐸𝑗
𝜆𝑗∈(𝜆−1,𝜆+1)

‖

𝐿2(𝑀)→𝐿2(𝛴)

= 𝑂(𝜆𝛿(2)), if   𝜖 ≠ 0                                                (157) 

and  

‖ ∑ 𝐸𝑗
𝜆𝑗∈(𝜆−1,𝜆+1)

‖

𝐿2(𝑀)→𝐿2(𝛴)

= 𝑂 (𝜆𝛿(2)(log λ)
1
2) , if 𝜖 ≠ 0              (158) 

so that for any 𝑓𝑟 ∈ 𝐿
2(𝑀), 
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‖∑∑ 

𝑟

(1 + |𝜆𝑗 − 𝜆|
−𝑀
)𝐸𝑗𝑓𝑟

𝑗

‖

𝐿2(𝛴)

≤ ‖ ∑ ∑ 

𝑟

𝐸𝑗𝑓𝑟
𝜆𝑗∈(𝜆−1,𝜆+1)

‖

𝐿2(𝛴)

+ ‖ ∑ ∑ 

𝑟

(1 + |𝜆𝑗 − 𝜆|
−𝑀
)𝐸𝑗𝑓𝑟

𝜆𝑗 ∉(𝜆−𝛿,𝜆+𝛿)

‖

𝐿2(𝛴)

  

{
 
 

 
 ∑ 

𝑟

𝜆𝛿(2)‖𝑓𝑟‖𝐿2(𝑀) + ∑ ∑ 

𝑟

(1 + |𝜆𝑗 − 𝜆|)
−𝑀
‖𝐸𝑗𝑓𝑟‖𝐿2(𝛴)

𝜆𝑗∉(𝜆−1,𝜆+1)

, if 𝜖 ≠ 0,

∑ 

𝑟

𝜆𝛿(2)(log𝜆)
1
2‖𝑓𝑟‖𝐿2(𝑀) + ∑ ∑ 

𝑟

(1 + |𝜆𝑗 − 𝜆|)
−𝑀
‖𝐸𝑗𝑓𝑟‖𝐿2(𝛴)

𝜆𝑗∉(𝜆−1,𝜆+1)

, if 𝜖 = 0.
(159) 

as   

∑ ∑ 

𝑟

(1 + |𝜆𝑗 − 𝜆|)
−𝑀
‖𝐸𝑗𝑓𝑟‖𝐿2(𝛴)

𝜆𝑗∉(𝜆−1,𝜆+1)

≤

{
 
 

 
 ∑ ∑ 

𝑟

𝜆𝑗
𝛿(2)

(1 + |𝜆𝑗 − 𝜆|)
−𝑀
‖𝐸𝑗𝑓𝑟‖𝐿2(𝑀)

𝜆𝑗∉(𝜆−1,𝜆+1)

, if 𝜖 ≠ 0,

 ∑ ∑ 

𝑟

𝜆𝑗
𝛿(2)(log 𝜆𝑗)

1
2(1 + |𝜆𝑗 − 𝜆|)

−𝑀
‖𝐸𝑗𝑓𝑟‖𝐿2(𝑀)

𝜆𝑗∉(𝜆−1,𝜆+1)

, if 𝜖 = 0,

      (160) 

which can be made arbitrarily small when 𝑀 is sufficiently large,  

‖∑∑ 

𝑟

(1 + |𝜆𝑗  − 𝜆|
−𝑀
)𝐸𝑗𝑓𝑟

𝑗

‖

𝐿2(𝛴)

≤

{
 
 

 
 ∑ 

𝑟

𝜆𝛿(2)‖𝑓𝑟‖𝐿2(𝑀), if 𝜖 ≠ 0,

∑  

𝑟

𝜆𝛿(2)(log 𝜆)
1
2‖𝑓𝑟‖𝐿2(𝑀), if 𝜖 = 0.

                                   (161) 

Similarly, we have  

‖∑∑ 

𝑟

(1 + |𝜆𝑗  − 𝜆|
𝑀
) �̃�𝑟(𝜆𝑗 − 𝜆)𝐸𝑗𝑓𝑟

𝑗

‖

𝐿2(𝛴)

≤

{
 
 

 
 ∑ 

𝑟

𝜆𝛿(2)‖𝑓𝑟‖𝐿2(𝑀), if 𝜖 ≠ 0,

∑  

𝑟

𝜆𝛿(2)(log 𝜆)
1
2‖𝑓𝑟‖𝐿2(𝑀), if 𝜖 = 0.

                                           (162) 
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Therefore, 

∑ 

𝑟

‖�̃�𝑟(𝜆 − 𝑃)𝑔𝑟‖𝐿2(𝛴) =∑ 

𝑟

‖𝑆𝑆 ∗ 𝑔𝑟‖𝐿2(𝛴)

≤ ‖𝑆‖𝐿2(𝑀)→𝐿2(𝛴)‖𝑆
∗‖
𝐿2(𝛴)→𝐿2(𝑀)

∑ 

𝑟

‖𝑔𝑟‖𝐿2(𝛴)

= ‖𝑆‖𝐿2(𝑀)→𝐿2(𝛴)‖𝑆‖𝐿2(𝑀)→𝐿2(𝛴)∑ 

𝑟

‖𝑔𝑟‖𝐿2(𝛴)

≲

{
 
 

 
 ∑ 

𝑟

𝑇𝜆𝛿(2)‖𝑔𝑟‖𝐿2(𝑀), if 𝜖 ≠ 0,

∑  

𝑟

𝑇𝜆𝛿(2) log 𝜆 ‖𝑓𝑟‖𝐿2(𝑀), if 𝜖 = 0.
                                                (163) 
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Chapter 2 

Kakeya-Nikodym Averages and Eigenfunction Restriction Estimates 

 

We show that the results are related to a recent work of Bourgain who showed that 

𝐿2-averages over geodesics of eigenfunctions are small compared to a natural power of the 

eigenvalue 𝜆 provided that the 𝐿4(𝑀) norms are similarly small. Our results imply that QUE 

cannot hold on a compact boundaryless Riemannian manifold (𝑀, 𝑔) of dimension two if 

𝐿𝑝-norms are saturated for a given 2 < 𝑝 <  6. We also show that eigenfunctions cannot 

have a maximal rate of 𝐿2-mass concentrating along unit portions of geodesics that are not 

smoothly closed. We show the main estimates by using the Hadamard parametrix for the 

wave equation on (ℝ2, 𝑔) and the fact that the classical comparison theorem of Gunther for 

the volume element in spaces of nonpositive curvature gives us desirable bounds for the 

principal coefficient of the Hadamard parametrix, allowing us to prove the main result. 

Using by an estimate, we deduce that, the 𝐿𝑝-norms of eigenfunctions for the above range 

of exponents is relatively small. We can slightly improve the known lower bounds for nodal 

sets in dimensions 𝑑 ≥  3 of Colding and Minicozzi in the special case of (variable) 

nonpositive curvature. 

Section (2.1): 𝑳𝒑-Norms of Eigenfunctions 

 We slightly sharpen a recent result of Bourgain [36] concerning two-dimensional 

compact boundaryless Riemannian manifolds. We shall be able to provide a natural 

necessary and sufficient condition concerning the growth rate of 𝐿𝑝-norms of eigenfunctions 

for 2 < 𝑝 <  6 and their 𝐿2-concentration about geodesics. 

           There are different ways of measuring the concentration of eigenfunctions. One is by 

means of the size of their 𝐿𝑝-norms for various values of 𝑝 >  2. If 𝑀 is a compact 

boundaryless manifold with Riemannian metric 𝑔 =  𝑔𝑗𝑘(𝑥) and if △𝑔  is the associated 

LaplaceBeltrami operator, then the eigenfunctions solve the equation −△𝑔  𝑒𝜆𝑗 (𝑥)  =

 𝜆𝑗
2 𝑒𝜆𝑗 (𝑥) for a sequence of eigenvalues 0 =  𝜆0  ≤  𝜆1  ≤  𝜆2 . . .. Thus, we are 

normalizing things so that 𝜆𝑗  are the eigenvalues of the first-order operator √−△𝑔 . We 

shall also usually assume that the 𝑒𝜆𝑗  have 𝐿2-norm one, in which case {𝑒𝜆𝑗 } provides an 

orthonormal basis of 𝐿2(𝑀, 𝑑𝑥) where dx is the volume element coming from the metric. 

Earlier, in the two-dimensional case, we showed in [15] that if M is fixed then there is a 

uniform constant 𝐶 so that for 2 ≤  𝑝 ≤  ∞ and 𝑗 =  1, 2, 3, . .. 

‖𝑒𝜆𝑗  ‖𝐿
𝑝(𝑀) ≤  𝐶𝜆 𝑗

𝛿(𝑝)
 𝑒𝜆𝑗   𝐿

2(𝑀)                             (1) 

with  

𝛿(𝑝) =

{
 

 
1

2
 (
1

2
 −
1

𝑝
)  , 2 ≤  𝑝 ≤  6 ,

1

2
 −
2

𝑝
 , 6 ≤  𝑝 ≤  ∞ .

 

          These estimates are sharp for the round sphere 𝑆2, and in this case they detect two 

types of concentration of eigenfunctions that occur there. Recall that on 𝑆2 with the 

canonical metric the distinct eigenvalues are √𝑘2  +  𝑘, 𝑘 =  0, 1, 2, … , which repeat with 

multiplicity 𝑑𝑘  =  2𝑘 + 1. 𝐼𝑓 ℋ𝑘 , the space of spherical harmonics of degree 𝑘, is the space 

of all eigenfunctions with eigenvalue √𝑘2  +  𝑘, and if 𝐻𝑘(𝑥, 𝑦) is the kernel of the 

projection operator onto ℋ𝑘 , then the k-th zonal function at 𝑥0   ∈  𝑆
2  is 𝑍𝑘(𝑦)  =
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 (𝐻𝑘(𝑥0, 𝑥0))
−
1

2𝐻𝑘(𝑥0, 𝑦). Its 𝐿2- norm is one but its mass is highly concentrated at ±𝑥0 

where it takes on the value √
 𝑑𝑘

4𝜋
  . Explicit calculations show that ‖𝑍𝑘‖𝐿𝑝(𝑆2)  ≈  𝑘

𝛿(𝑝) for 

𝑝 ≥  6 (see e.g. [53]), which shows that in the case of 𝑀 =  𝑆2 with the round metric (1) 

cannot be improved for this range of exponents. Another extreme type of concentration is 

provided by the highest weight spherical harmonics which have mass concentrated on the 

equators of 𝑆2, which are its geodesics. The ones concentrated on the equator 𝛾0  =

 {(𝑥1, 𝑥2, 0);  𝑥
2

1
  + 𝑥

2

2
 =  1} are the functions 𝑄𝑘  , which are the restrictions of the 𝑹3 

harmonic polynomials 𝑘
1

4(𝑥1 + 𝑖𝑥2)
𝑘 𝑡𝑜 𝑆2  =  {𝑥 ;  |𝑥|  =  1}.  

One can check that the 𝑄𝑘 have 𝐿2-norms comparable to one and 𝐿𝑝-norms comparable to 

𝑘
1

2
 (
1

2
−
1

𝑝
 )
  when 2 ≤  𝑝 ≤  6 (see e.g. [53]). Notice also that the 𝑄𝑘 have Gaussian type 

concentration about the equator 𝛾0. Specifically, if 𝒯
𝑘 −

1

2

 (𝛾0) denotes all points on 𝑆2 of 

distance smaller than 𝑘−
1

2 from γ0 then one can check that 

𝑙𝑖𝑚 inf
𝑘→∞    

 ∫  
𝒯

𝑘
−

1
2(𝛾0)

   |𝑄𝑘(𝑥)|2𝑑𝑥 >  0 .                        (2) 

Obviously the 𝑄𝑘 also have the related property that 

∫  |𝑄𝑘|2𝑑𝑠 ≈  𝑘
1
2 ,

𝛾0

                                                        (3) 

 if 𝑑𝑠 is the measure on 𝛾0 induced by the volume element. 

          Thus, the sequence of highest weight spherical harmonics shows that the norms in (1) 

(for 2 < 𝑝 <  6), (2) and (3) are related. We show that this is true for general two-

dimensional compact manifolds without boundary. 

           We remark that, although the estimates (1) are sharp for the round sphere, one expects 

that it should be the case that, for generic manifolds, and 𝐿2-normalized eigenfunctions one 

has 

 𝑙𝑖𝑚 sup
𝑗→∞

  𝜆𝑗
−𝛿(𝑝)

 ‖𝑒𝜆𝑗‖ 𝐿
𝑝 = 0                               (4) 

  for every 2 <  𝑝 ≤  ∞. This was verified for exponents 𝑝 >  6 by Zelditch and [17] by 

showing that if there are no points 𝑥 through which a positive measure of geodesics starting 

at 𝑥 loop back through 𝑥 then ‖𝑒𝜆‖∞  =  𝑜 (𝜆
1

2). By interpolating with the estimate (1) 

for 𝑝 =  6, this yields (4) for all 𝑝 >  6. Corresponding results were also obtained in [17] 

for higher dimensions. Recently, these results were strengthened by Toth and Zelditch [29] 

to allow similar results for quasimodes under the weaker condition that at every point 𝑥 the 

set of recurrent directions for the first return map for geodesic flow has measure zero in the 

cosphere bundle 𝑆𝑥
∗𝑀 over 𝑥. 

           Other than the partial results in Bourgain [36], there do not seem to be any results 

addressing when (4) holds for a given 2 < 𝑝 <  6 (although Zygmund [37] showed that on 

the torus 𝐿2-normalized eigenfunctions have uniformly bounded 𝐿4-norms). Furthermore, 

there do not seem to be results addressing the interesting endpoint case of 𝑝 =  6, where 

one expects both types of concentration mentioned before to be relevant. Recently have 

studied the 𝐿2 norms of eigenfunctions over unit-length geodesics. Burq, Gérard and 

Tzvetkov [5] showed that if Π is the collection of all unit length geodesics then  
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sup
𝛾 ∈𝛱

   ∫ 
𝛾

 |𝑒𝜆𝑗  |
2
  𝑑𝑠 ≲  𝜆

𝑗

1
2  ‖𝑒𝜆𝑗‖

2
 𝐿2(𝑀),    j =  1, 2, 3, . . . ,        (5) 

which is sharp in view of (3). Related results for hyperbolic surfaces were obtained earlier 

by Reznikov [26], who opened up the present line of investigation. The proof of (5) boils 

down to bounds for certain Fourier integral operators with folding singularities (cf. 

Greenleaf and Seeger [42], Tataru [56]). We shall use ideas from [42], [56], and [40], [46], 

[29], [17] to show that if 𝛾 ∈  𝛱 and  

lim sup
j→∞ 

 λ
j

−
1
2   ∫ 

γ

 |eλj  |
2
 ds >  0 , 

 then the geodesic extension of 𝛾 must be a smoothly closed geodesic. Presumably it also 

has to be stable, but we cannot prove this. Further recent work on 𝐿2-concentration along 

curves can be found in Toth [57]. 

 In [36], Bourgain proved an estimate that partially links the norms in (1) and (5), namely 

that for all 𝑝 ≥  2  

sup
𝛾 ∈𝛱

   ∫ 
𝛾

 |eλj  |
2
𝑑𝑠  𝜆

𝑗

1
𝑝
  ‖𝑒𝜆𝑗‖𝐿𝑝(𝑀)

2
                               (6) 

For 𝑝 =  2, this is just (5); however, an interesting feature of (6) is that the estimate for a 

given 2 <  𝑝 ≤  6 combined with (1) yields (5). Thus, if 𝑒𝜆𝑗𝑘
 is a sequence of 

eigenfunctions with (relatively) small 𝐿𝑝(𝑀) norms for a given 2 <  𝑝 ≤  6, it follows that 

its 𝐿2-norms over unit geodesics must also be (relatively) small. Bourgain [36] also came 

close to establishing the equivalence of these two things by showing that given 𝜀 >  0 there 

is a constant 𝐶𝜀 so that for 𝑗 =  1, 2,… 

‖𝑒𝜆𝑗‖𝐿4 (𝑀)
≤ 𝐶𝜀 ( 𝜆𝑗

1
8+𝜀   ‖𝑒𝜆𝑗‖𝐿2(𝑀)

)

3
4

 [𝜆
𝑗

−
1
2 sup
𝛾 ∈𝛱

   ∫ 
𝛾

 |eλj  |
2
𝑑𝑠]

1
8

.                 (7) 

Since 𝛿(4)  =  1/8 in (1), if the preceding inequality held for 𝜀 =  0 one would obtain the 

linkage of the size of the norms in (5) for large energy with the size of the 𝐿4(𝑀) norms. 

          Our main estimate in Theorem (2.1.1) is that a variant of (7) holds, which is strong 

enough to complete the linkage. 

          Bourgain’s approach in proving (7) was to employ ideas going back to Córdoba [39] 

and Fefferman [41] that were used to give a proof of the Carleson-Sjölin Theorem [37]. The 

key object that arose in Córdoba’s work [39] was what he called the Kakeya maximal 

function in 𝑹2, namely, 

ℳ𝑓 (𝑥)  =  sup _(𝑥 ∈ 𝑇
𝜆
−
1
2
   |𝒯

𝜆
−
1
2 
|
−1
  ∫  
𝑇𝜆−

1
2

 |𝑓 (𝑦)|𝑑𝑦 , 𝑓 ∈  𝐿2𝑹2,   (8) 

 with the supremum taken over all 𝜆−
1

2-neighborhoods 𝒯
𝜆−

1

2

 of unit line segments containing 

𝑥, and |𝒯
𝜆−

1

2

 |  ≈  𝜆−
1

2 denoting its area. The above maximal operator is now more commonly 

called the Nikodym maximal operator as this is the terminology in Bourgain’s important 

[33]–[35] which established highly nontrivial progress towards establishing the higher 

dimensional version of the Carleson-Sjölin Theorem for Euclidean spaces 𝑹𝑛 , 𝑛 ≥  3. One 

could also consider variable coefficient versions of the maximal operators in (8). In the 
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present context if 𝛾 ∈  𝛱 is a unit geodesic, one could consider the 𝜆−
1

2-tube about it given 

by 

𝒯
𝜆
−
1
2
 (𝛾 ) = { 𝑦 ∈  𝑀 ; inf

𝑥∈𝛾
  𝑑𝑔 (𝑥, 𝑦) <  𝜆

−
1
2}. 

with 𝑑𝑔 (𝑥, 𝑦) being the geodesic distance between x and 𝑦. Then if Volg (𝒯
𝜆
−
1
2
 (𝛾 )) 

denotes the measure of this tube, the analog of (8) would be  

ℳ  𝑓 (𝑥) = sup
𝑥∈𝛾 ∈𝛱

 
1

𝑉𝑜𝑙𝑔  (𝒯
𝜆−

1
2
  (𝛾 ))

  ∫  
𝒯
𝜆−
1
2

 |𝑓 (𝑦)|𝑑𝑦 . 

 These operators have been studied before because of their applications in harmonic analysis 

on manifolds. See e.g. [48], [54]. As was shown in [47], following the earlier [35], they are 

much better behaved in 2-dimensions compared to higher dimensions. 

           As (7) suggests, it is not the size of the 𝐿2-norm of Mf for 𝑓 ∈  𝐿2(𝑀) that is relevant 

for estimating 𝐿4(𝑀) −norms of eigenfunctions but rather the sup-norm of this quantity with 

𝑓 =  |𝑒𝜆𝑗  |
2
 , which up to the normalizing factor in front of the integral is the quanitity 

Sup
𝛾 ∈𝛱

   ∫  
𝒯
𝜆−
1
2
(𝛾 )

 |𝑒𝜆𝑗  (𝑥)|
2
𝑑𝑥 . 

 If the 𝑒𝜆𝑗  are L2-normalized this is trivially bounded by one. In rough terms our results say 

that beating this trivial bound is equivalent to beating the bounds in (1) for a given 2 < 𝑝 <
 6. 

           Let us now state our variant of (7): 

Theorem (2.1.1)[28]: Fix a two-dimensional compact boundaryless Riemannian manifold 

(𝑀, 𝑔). Then given 𝜀 >  0 there is a constant 𝐶𝜀 so that for eigenfunctions 𝑒𝜆 𝑜𝑓 √−∆𝑔 with 

eigenvalues 𝜆 ≥  1 we have 

 ‖𝑒𝜆‖𝐿4(𝑀)
4  ≤  𝜀𝜆

1
2‖𝑒𝜆‖𝐿4(𝑀)

4 + 𝐶𝜀𝜆
1
2‖𝑒𝜆‖𝐿2(𝑀)

2 sup
𝛾 ∈𝛱

   ∫ |𝑒𝜆(𝑥)|
2𝑑𝑥  

𝒯
𝜆
−
1
2(𝛾 )

 

+ 𝐶‖𝑒𝜆‖𝐿2(𝑀)
4  ,                                                 (9) 

 with C being a fixed constant which is independent of 𝜆 and 𝜀. 
           We shall prove this not by adapting Córdoba’s [39] proof of the Carleson-Sjölin 

Theorem but rather that of Hörmander [45]. He obtained sharp oscillatory integral bounds 

in 𝑹2 that provided sharp Böchner-Riesz estimates for 𝐿4(𝑹2) (𝑖. 𝑒., the Carleson-Sjölin 

Theorem), which turns out to be the endpoint case for this problem in 2-dimensions. 

Hörmander’s approach was to turn this 𝐿4-problem into an 𝐿2-problem by squaring the 

oscillatory integrals and then estimating their 𝐿2-norms. As his proof shows, the resulting 

bilinear operators that arise are better and better behaved away from the diagonal, and this 

fact is what allows us to take the constant in front of the first term in the right side of (9) to 

be arbitrarily small (at the expense of the 2nd term). 

           Stein [55] provided a generalization of Hörmander’s oscillatory integral Theorem to 

higher dimensions in a way that proved to be sharp because of a later construction of 

Bourgain [35]. Bourgain’s example and related ones in [47] suggest that extending the 

results to higher dimensions (where the range of exponents would be 2 < 𝑝 <  2(𝑛 +
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1)/(𝑛 − 1)) could be subtle. On the other hand, since the constructions tend to involve 

concentration about hypersurfaces as opposed to geodesics, their relevance is not plain. 

          We shall prove Theorem (2.1.1) by estimating an oscillatory integral operator, which 

up to a remainder term, reproduces eigenfunctions. The remainder term in this reproducing 

formula accounts for the last term in (9), which we could actually take to 𝑏𝑒 ≤
 𝐶𝑁 𝜆

−𝑁 ‖𝑒𝜆‖2
4 for any 𝑁, but this is not important for our applications. Also, we remark that 

the proof of the Theorem will show that the constant 𝐶𝜀 in (9) can be taken to be 𝑂(𝜀−2) as 

𝜀 →  0. 

 We state an immediate consequence of Theorem (2.1.1) which states that the size of 

𝐿4-norms of eigenfunctions is equivalent to size of 𝐿2-mass near geodesics. 

Corollary (2.1.2)[28]: Let 𝑒𝜆𝑗𝑘
 be a sequence of eigenfunctions with eigenvalues 𝜆𝑗1  ≤

 𝜆𝑗2  ≤ . .. and unit 𝐿2(𝑀)-norms. Then 

lim sup
𝑘→∞

 sup
𝛾 ∈𝛱

   ∫  
𝒯

𝜆
𝑖𝑘

 −
1

2( 𝛾)

 |𝑒𝜆𝑗𝑘
 (𝑥)|

2
= 0                           (10) 

if and only if 

lim sup
𝑘→∞ 

 𝜆
 𝑗𝑘

−
1
8  ‖𝑒𝜆𝑗𝑘

‖
𝐿4(𝑀)

 =  0.                                     (11) 

      To prove this, we first notice that if we assume (10), then (11) must hold because of (9). 

Also, by Hölder’s inequality 

  (∫  
𝒯
𝜆
−
1
2
  (𝛾 )

 |𝑒𝜆(𝑥)|
2 𝑑𝑥)

1

2

 ≤  (𝑉𝑜𝑙𝑔  (𝒯
𝜆
−
1
2
(𝛾 )))

1

4

   ‖𝑒𝜆‖𝐿4(𝑀)  

≲  𝜆−
1
8 ‖𝑒𝜆‖𝐿4(𝑀) , 

 and so (11) trivially implies (10). 

           If we use Bourgain’s estimate (6) and (1) we can say a bit more. 

Corollary (2.1.3)[28]: Let {𝑒𝜆𝑗𝑘
 }
𝑘=1

∞
 be as above and suppose that 2 < 𝑝 <  6. Then the 

following are equivalent 

 𝑙𝑖𝑚 sup
𝑘→∞

  𝜆
 𝑗𝑘

−
1
2 sup
𝛾 ∈𝛱

   ∫|𝑒𝜆𝑗𝑘
 (𝑠)|

2
= 0

𝛾

                         (12) 

lim sup
𝑘→∞

 sup
𝛾 ∈𝛱

   ∫  
𝒯

𝜆
 𝑗𝑘

 −
1
2 (𝛾 )

 |𝑒𝜆𝑗𝑘
 (𝑥)|

2
 𝑑𝑥 = 0               (13) 

lim sup
𝑘→∞

  𝜆 𝑗𝑘
−𝛿(𝑝)

 ‖𝑒𝜆𝑗𝑘
‖
𝐿𝑝 (1.14)(𝑀)

=  0 .                     (14) 

To prove this result, we first note that, by the M. Riesz interpolation Theorem and (1) for 

𝑝 =  2 and 𝑝 =  6, (14) holds for a given 2 < 𝑝 <  6 if and only if it holds for 𝑝 =  4, 

which we just showed is equivalent to (13). Clearly (12) implies (13). Finally, since 

Bourgain’s estimate (6) shows that (14) implies (12), the proof of Corollary (2.1.3) is 

complete. 

By describing one more application. Recall that a sequence of 𝐿2-normalized eigenfunctions 

{𝑒𝜆𝑗𝑘
 }
𝑘=1

∞
 satisfies the quantum unique ergodicity property (QUE) if the associated Wigner 
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measures |𝑒𝜆𝑗𝑘
 |
2
  𝑑𝑥 tend to the Liouville measure on 𝑆∗𝑀. If this is the case, then one 

certainly cannot have 

𝑙𝑖𝑚 sup
𝑘→∞

 sup
 𝛾 ∈𝛱

   ∫  
𝒯

𝜆
𝑗𝑘

 −
1
2 (𝛾 )

 |𝑒𝜆𝑗𝑘
 (𝑥)|

2
𝑑𝑥 >  0 , 

 since the tubes are shrinking. 

           In the case where M has negative sectional curvature Schnirelman’s [14] Theorem 

says there is a density one subsequence {𝑒𝜆𝑗𝑘
 }
𝑘=1

∞
 of all the {𝑒𝜆𝑗  } satisfying QUE. Rudnick 

and Sarnak [50] conjectured that in the negatively curved case there should be no 

exceptional subsequences violating QUE, i.e., in this case QUE should hold for the full 

sequence {𝑒𝜆𝑗  } of 𝐿2-normalized eigenfunctions. On the other hand, by Corollary (2.1.3), 

we have the following. 

Corollary (2.1.4)[28]: Let 𝑀 be a two-dimensional compact boundaryless Riemannian 

manifold. Then QUE cannot hold for M if for a given 2 < 𝑝 <  6 there is saturation of 𝐿𝑝 

norms, i.e.,  

𝑙𝑖𝑚 sup
𝑗→∞

  𝜆𝑗
−𝛿(𝑝)

 ‖𝑒𝜆𝑗‖ 𝐿
𝑝(𝑀) >  0 , 

with 𝑒𝜆𝑗 being the 𝐿2 -n ormalized eigenfunctions. 

      See e.g. [59] for connections between QUE and the Lindelöf hypothesis, and see [38] 

for recent developments regarding the QUE conjecture. 

          As in [36] and [5] we shall prove our estimate by using certain convenient operators 

that reproduce eigenfunctions. Specifically, we shall use a slight variant of a result from 

[16], Chapter 5 that was presented in [5]. 

 Lemma (2.1.5)[28]: Let 𝛿 >  0 be smaller than half of the injectivity radius of (𝑀, 𝑔). 
Then there is a function 𝜒 ∈  𝑆(𝑹) with 𝜒 (0)  =  1 so that if dg (𝑥, 𝑦) is the geodesic 

distance between 𝑥, 𝑦 ∈  𝑀  

                     𝜒𝜆𝑓 (𝑥) =  𝜒(√−∆𝑔  −  𝜆 ) 𝑓 (𝑥) 

=  𝜆
1
2   ∫  

𝑀

 𝑒𝑖𝜆𝑑𝑔 (𝑥,𝑦) 𝛼(𝑥, 𝑦, 𝜆)𝑓 (𝑦)𝑑𝑦 + 𝑅𝜆𝑓 (𝑥), (15) 

 Where 

 ‖𝑅𝜆𝑓‖ 𝐿
∞(𝑀) ≤  𝐶

𝑁𝜆
−𝑁  ‖𝑓‖ 𝐿

1(𝑀)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑁 =  1, 2, … , 

 and 𝛼 ∈  𝐶∞ has the property that 

|𝜕𝑥,𝑦
𝛼 𝛼(𝑥, 𝑦, 𝜆)| ≤  𝐶𝛼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 , 

 and, moreover, 

𝛼(𝑥, 𝑦, 𝜆) =  0 𝑖𝑓 𝑑𝑔 (𝑥, 𝑦) ∉  (
𝛿

2
, 𝛿).                   (16) 

       Since 𝜒𝜆𝑒𝜆  =  𝑒𝜆 and since the 4th power of the 𝐿4-norm of 𝑅𝜆𝑒𝜆 is dominated by the 

last term in (9), we conclude that in order to prove Theorem (2.1.1) it is enough to show 

that, given 𝜀 >  0 there is a constant 𝐶𝜀 so that when 𝜆 ≥  1   

∫  
𝑀

|𝜆
1
2   ∫  

𝑀

 𝑒𝑖𝜆𝑑𝑔 (𝑥,𝑦)𝛼(𝑥, 𝑦, 𝜆)𝑓 (𝑦)𝑑𝑦|

2

 |𝑓 (𝑥)|2𝑑𝑥  

≤  𝜀𝜆
1
4‖𝑓 ‖𝐿2(𝑀)

2 ‖𝑓‖𝐿4(𝑀)
2                                                          (17) 
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+ 𝐶𝜀𝜆
1
2‖𝑓‖𝐿2(𝑀)

2 sup
𝛾 ∈𝛱

   ∫  
𝒯
𝜆
−
1
2 (𝛾 )

|𝑓 (𝑥)|2𝑑𝑥 , 

 for, if 𝑓 =  𝑒𝜆, the first term in the right is bounded by a fixed constant times 𝜀𝜆
1

2‖𝑒𝜆‖𝐿2(𝑀)
4 , 

because of (1). 

           After applying a partition of unity, we may assume that in addition to (16), 𝛼(𝑥, 𝑦, 𝜆) 
vanishes unless x is in a small neighborhood of some 𝑥0  ∈  𝑀 and 𝑦 is in a small 

neighborhood of some 𝑦0  ∈  𝑀 with 𝛿/2 <  𝑑𝑔 (𝑥0, 𝑦0) <  10𝛿}. As mentioned before, we 

are also at liberty to take 𝛿 >  0 to be small. To simplify the calculations to follow, it is 

convenient to choose a natural coordinate system. Specifically, we shall choose Fermi 

normal coordinates about the geodesic 𝛾0  which passes through 𝑥0 and is perpendicular to 

the geodesic connecting 𝑥0 and 𝑦0. These coordinates will be well defined on 𝐵(𝑥0, 10𝛿) if 
δ is small. Furthermore, we may assume that the  

 
Figure (1)[28]: Fermi normal coordinates about 𝛾0. 

image of 𝛾0  ∩ 𝐵(𝑥0, 10𝛿) in the resulting coordinates is a line segment which is parallel to 

the 2nd coordinate axis and that all horizontal line segments 𝑠 →  {(𝑠, 𝑡0)} are geodesic with 

the property that 𝑑𝑔 ((𝑠1, 𝑡0), (𝑠2, 𝑡0))  =  |𝑠1  −  𝑠2|. 

          If we use these coordinates and apply Schwarz’s inequality, we conclude that, in order 

to prove (17), it suffices to show that given 𝜀 >  0 we can find 𝐶𝜀  <  ∞ so that when 𝜆 ≥
 1 

∫ 
 

(∫ 
 

|𝜆
1
2   ∫  𝑒𝑖𝜆𝑑𝑔 (𝑥,(𝑠,𝑡 ))𝛼(𝑥, (𝑠, 𝑡), 𝜆)𝑓 (𝑠, 𝑡)𝑑𝑡|

2

 |𝑓 (𝑥)|2𝑑𝑥)  𝑑𝑠 

 ≤  𝜀𝜆
1
4 ‖𝑓 ‖𝐿2(𝑀)

2 ‖𝑓‖𝐿4(𝑀)
2  +  𝐶𝜀𝜆

1
2 ‖𝑓‖𝐿2(𝑀)

2 sup
𝛾 ∈𝛱

   ∫  
𝒯
𝜆
−
1
2  (𝛾 )

 |𝑓 (𝑥)|2 𝑑𝑥 . 

This, in turn would follow if we could show that given 𝜀 >  0 

∫    |𝜆
1
2  ∫   𝑒𝑖𝜆𝑑𝑔 (𝑥,(𝑠,𝑡 ))𝛼(𝑥, (𝑠, 𝑡), 𝜆)ℎ(𝑡)𝑑𝑡|

2

 |𝑓 (𝑥)|2𝑑𝑥 

 ≤  𝜀𝜆
1
4‖ℎ‖𝐿2(𝑑𝑡 )

2 ‖𝑓‖𝐿4(𝑀)
2   
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+ 𝐶𝜀𝜆
1
2‖ℎ‖𝐿2(𝑑𝑡 )

2 sup
 𝛾 ∈𝛱

   ∫  
𝒯
𝜆
−
1
2  (𝛾 )

 |𝑓 (𝑥)|2𝑑𝑥 ,   (18) 

 with 𝐶𝜀 depending on 𝜀 >  0 but not on 𝑠 or on 𝜆 ≥  1. 

 We shall establish this estimate for a particular value of 𝑠, which, after relabeling, we 

may assume to be 𝑠 =  0. Since the proof of (18) for this case relies only on Gauss’ lemma 

and the related Carleson-Sjölin condition, it also yields the uniformity in s, assuming, as we 

may, that α has small support. 

           To prove this inequality, let us choose a function 𝜂 ∈  𝐶0
∞ (𝑹) satisfying 𝜂(𝑡)  =

 0, |𝑡|  >  1, and ∑  ∞
𝑗=−∞  𝜂(𝑡 −  𝑗 )  ≡  1. Given 𝜆 ≥  1 fixed, we shall then set  

𝜂𝑗  (𝑡)  =  𝜂𝜆,𝑗 (𝑡)  =  𝜂(𝜆
1
2𝑡 −  𝑗). 

Then, given 𝑁 =  1, 2, . . ., we have that 

|𝜆
1
2   ∫  𝑒𝑖𝜆𝑑𝑔 (𝑥,(0,𝑡 ))𝛼(𝑥, (0, 𝑡), 𝜆)ℎ(𝑡)𝑑𝑡|

2

 

 ≤ 𝑁∑ 

𝑗

|𝜆
1
2   ∫  𝑒𝑖𝜆𝑑𝑔 (𝑥,(0,𝑡 ))𝜂𝑗  (𝑡)𝛼(𝑥, (0, 𝑡), 𝜆)ℎ(𝑡)𝑑𝑡|

2

(19)  

+    | 𝜆   ∫  ∫  𝑒𝑖𝜆(𝑑𝑔 
(𝑥,(0,𝑡 ))𝑑𝑔(𝑥,(0,𝑡

′))
 𝑎𝑁 (𝑥, 𝑡 , 𝑡′)ℎ(𝑡)ℎ(𝑡′)𝑑𝑡𝑑𝑡′| , 

 Here 

𝑎𝑁 (𝑥, 𝑡 , 𝑡′) =   ∑  
|𝑗−𝑘|>𝑁

 𝜂𝑗  (𝑡)𝛼(𝑥, (0, 𝑡), 𝜆)𝜂𝑘 (𝑡
′)𝛼(𝑥, (0, 𝑡′), 𝜆) 

 anishes when |𝑡 −  𝑡′  |  ≤  (𝑁 −  1)𝜆−
1

2. The first term in the right side of the preceding 

inequality comes from applying Young’s inequality to handle the double-sum over indices 

with |𝑗 −  𝑘|  ≤  𝑁. Because of (19), we onclude that (18) would follow if we could show 

that there is a constant independent of 𝜆 ≥  1 and 𝑁 =  2, 3, 4 . .. so that 

‖𝜆  ∫  ∫  𝑒𝑖𝜆[𝑑𝑔 (𝑥,(0,𝑡 ))𝑑𝑔(𝑥,(0,𝑡′ )] 𝑎𝑁 (𝑥, 𝑡 , 𝑡′)ℎ(𝑡)ℎ(𝑡′)𝑑𝑡𝑑𝑡′‖
𝐿2(𝑑𝑥)

 

 ≤  𝜆
1
4 𝑁−

1
2‖ℎ‖𝐿2(𝑑𝑡 )

2  ,                                          (20) 

 and also that there is a constant 𝐶 ndependent of 𝑗 ∈  𝑍 and 𝜆 ≥  1 so that       

∫  |𝜆
1
2  ∫   𝑒𝑖𝜆𝑑𝑔 (𝑥,(0,𝑡 ))𝜂𝑗  (𝑡)𝛼(𝑥, (0, 𝑡), 𝜆)ℎ(𝑡)𝑑𝑡|

2

 |𝑓 (𝑥)|2𝑑𝑥 

 ≤  𝐶𝜆
1
2‖ℎ‖𝐿2(𝑑𝑡 )

2 sup
 𝛾 ∈𝛱

   ∫  
𝒯
𝜆
 −
1
2  (𝛾 )

  |𝑓 (𝑥)|2 𝑑𝑥 .                    (21) 

 Indeed, by using the finite overlapping of the supports of the 𝜂𝑗  , if we set 𝜀 =  𝐶𝑁−
1

2, then 

we see that these two inequalities and (19) imply (18) with 𝐶𝜀  ≈  𝜀
−2. Since the proof of 

(21) only uses Gauss’ lemma and the fact that coordinates have been chosen so that 𝑠 →
 (𝑠, 𝑡0) are unit speed geodesics for fixed 𝑡0, we shall just verify (21) for 𝑗 =  0, as the 

argument for this case will yield the other cases as well. 

           The next step is to see that these two inequalities are consequences of the following 

two propositions. 

          We need to introduce one more coordinate system, which finally explains where the 

𝐿2 norms over small tubular neighborhoods of geodesics comes into play. Since we are 
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proving (21) with 𝑗 =  0 and since 𝜂0 is supported in the mall interval [−𝜆−
1

2, 𝜆−
1

2], it is 

natural to take geodesic normal coordinates bout (0, 0). If we recall that the 1st coordinate 

axis is a unit-speed eodesic in our original Fermi normal coordinates, we shall naturally 

choose the geodesic normal coordinates 𝑥 →  𝜅(𝑥) that preserve this axis (and its 

orientation). Such a system is unique up to reflection about this axis, and we shall just fix 

one of these two choices. 

            Proposition (2.1.6) would imply (20) if 𝜙(𝑥, 𝑡)  =  𝑑𝑔 (𝑥, (0, 𝑡)) satisfies the 

CarlesonSjölin condition. The fact that this is the case is well known. See [16]. It follows 

from our choice of coordinates and the fact that if 𝑥0  ∈  𝑀 is fixed then the set of points 

{𝛻𝑥 𝑑𝑔 (𝑥, 𝑦);  𝑥 =  𝑥0, 𝑑𝑔 (𝑥0, 𝑦)  ∈  (𝛿/2, 𝛿)} is the cosphere at 𝑥0, 𝑆𝑥0
∗  𝑀 =

 {𝜉 ; ∑𝑔𝑗
𝑘
  (𝑥0)𝜉𝑗 𝜉𝑘  =  1}, where 𝑔𝑗

𝑘
 (𝑥) is the cometric (inverse to 𝑔𝑗𝑘(𝑥)). If we choose 

geodesic normal coordinates 𝜅(𝑦) vanishing at 𝑥0 then the gradient becomes 𝜅(𝑦). This 

turns out to be equivalent to the usual formulation of Gauss’ lemma, saying that this 

exponential map 𝑦 →  𝜅(𝑦) is a local radial isometry. It says that small geodesic spheres 

centered at 𝑥0 get sent to spheres centered at the origin and small geodesic rays through 𝑥0 

intersect these geodesic spheres orthogonally and get sent to rays through the origin, which 

is what allows Proposition (2.1.7) to be true. 

 We see that Proposition (2.1.7) implies (21) for 𝑗 =  0. If we take 𝜌(𝑡;  𝑥)  =
 𝜂0(𝑡)𝛼(𝑥, (0, 𝑡), 𝜆), then 𝜌 satisfies (27). Also, if we let 

𝑆𝑗  =  {𝑦 ;  𝜃 (𝑦) ∈  (𝜆
−
1
2 𝑗, 𝜆−

1
2 (𝑗 +  1)]}, 

 where 𝜃 (𝑦)  ∈  [0, 2𝜋 ) is defined so that 𝑦 =  |𝑦|(𝑐𝑜𝑠 𝜃 (𝑦), 𝑠𝑖𝑛 𝜃 (𝑦)), then, if 𝑦 =
 𝜅(𝑥) are the geodesic normal coordinates about (0, 0) in the Proposition (2.1.7), then the 

left side of (21) is dominated by 

∑ 

𝑗

‖ 𝜆
1
2  ∫ 𝑒𝑖𝜆𝜓(𝑥,𝑡 )𝜌(𝑡;  𝑥)ℎ(𝑡)𝑑𝑡  ‖

𝐿∞(𝜅−1(𝑆𝑗 ))

2

 ‖𝑓‖𝐿2(𝜅−1(𝑆𝑗 )∩𝐾)
2  

 ≤ sup
𝑘
  ‖𝑓 ‖𝐿2(𝜅−1(𝑆𝑘)∩𝐾)

2  ∑  

𝑗

‖     𝜆
1
2   ∫  𝑒𝑖𝜆𝜓(𝑥,𝑡 )𝜌(𝑡;  𝑥)ℎ(𝑡)𝑑𝑡‖

𝐿∞(𝜅−1(𝑆𝑗 ))

2

 , 

 where 𝐾 is the 𝑥-support of 𝜌. Since the first factor on the right is dominated by the last 

factor in the right-hand side of (21) (the sup can just be taken over (0, 0) ∈  𝛾 ∈  𝛱 here), 

we conclude that we would obtain this inequality if we could show that there is a uniform 

constant so that for all choices of 𝑥𝑗 ∈ 𝜅
−1(𝑆𝑗 ) 

𝜆
1
2  ∑  

𝑗

|    ∫  𝑒𝑖𝜆𝜓(𝑥𝑗 ,𝑡 )𝜌(𝑡; 𝑥𝑗  )ℎ(𝑡)𝑑𝑡|
2

 ≤  𝐶‖ℎ‖𝐿2(𝑑𝑡 )
2 .   (22) 

 This inequality is an estimate for an operator from 𝐿2(𝑑𝑡)  → ℓ2. The dual operator is the 

one in Proposition (2.1.7). Therefore since, by duality, (22) follows from (29) we get (21). 

To verify this assertion, we use the fact that if ρ has small support then the terms in (22) 

with 𝜌(𝑡; 𝑥𝑗 ) ≠  0 will fulfill the hypotheses in Proposition (2.1.7). 

           To finish the proof of Theorem (2.1.1) we must prove the two propositions. Let us 

start with the first one since it is pretty standard. It is based on the well known fact that the 

bilinear oscillatory integrals arising in Hörmander’s [45] proof of the Carleson-Sjölin [37] 

Theorem become better and better behaved away from the diagonal. 
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Proposition (2.1.6)[28]: Let 𝑎(𝑥, 𝑡 , 𝑡′ ), 𝑥 ∈  𝑹2, 𝑡, 𝑡′ ∈  𝑹 satisfy |𝜕𝑥
𝛼  𝑎|  ≤  𝐶𝛼 for all 

multiindices 𝛼 and 𝑎(𝑥, 𝑡 , 𝑡′ )  =  0 𝑖𝑓 |𝑥|  >  𝛿 𝑜𝑟 |𝑡 −  𝑡′ |  >  𝛿 here 𝛿 >  0 is small. 

Suppose also that 𝜙 ∈  𝐶∞(𝑹2  ×  𝑹) is real and satisfies the Carleson-Sjölin condition on 

the support of 𝑎, 𝑖. 𝑒.,  

𝑑𝑒𝑡 (
 𝜙𝑥1𝑡

′′    𝜙𝑥2𝑡
 𝜙1𝑡𝑡   𝜙𝑥2𝑡𝑡

) ≠ 0.                                  (23) 

Then if the 𝛿 >  0 above is sufficiently small, there is 𝑎 uniform constant 𝐶 so that when 

𝜆, 𝑁 ≥  1 

‖∫  ∫  
|𝑡−𝑡 |≥𝑁𝜆

−
1
2

  𝑒𝑖𝜆[𝜙(𝑥,𝑡 )+𝜙(𝑥,𝑡
′)] 𝑎(𝑥, 𝑡 , 𝑡′)𝐹 (𝑡, 𝑡′)𝑑𝑡𝑑𝑡′‖

𝐿2(𝑹2)

2

  

≤  𝜆−
3
2𝑁−1‖𝐹‖𝐿2(𝑹2)

2 .                                      (24) 

Proof. Let 𝜙(𝑥; 𝑡, 𝑡′ )  = 𝜙(𝑥, 𝑡′)  + 𝜙(𝑥, 𝑡′ ) be the phase function in (24). Then 𝛷 is a 

symmetric function in the (𝑡, 𝑡′ ) variables. So if we make the change of variables 

𝑢 =  (𝑡 −  𝑡′ , 𝑡 +  𝑡′ ), 
 then since |𝑑𝑢/𝑑(𝑡 , 𝑡′ )|  =  2, we see that (23) implies that the Hessian determinant of 𝛷 

satisfies     

|𝑑𝑒𝑡 (
 𝜕2𝛷

 𝜕𝑥𝜕𝑢
)|    ≥  𝑐|𝑢1|, 

 for some 𝑐 >  0 on the support of 𝑎, if the latter is small. Since 𝛷(𝑥;  𝑢) is an even function 

of the diagonal variable 𝑢1, it must be a 𝐶∞ function of 𝑢1
2. So if we make the final change 

of Variables 

𝑣 = (
1

2
 𝑢1
2 , 𝑢2)  , 

 then since |𝑑𝑣/𝑑𝑢| = |𝑢1|, it follows that 

|𝑑𝑒𝑡
𝜕2𝛷

 𝜕𝑥𝜕𝑣
| ≥  𝑐 , 

 for some 𝑐 >  0. This in turn implies that if 𝑣 and 𝑣  are close then 

 |𝛻𝑥[𝛷(𝑥, 𝑣) −  𝛷(𝑥, 𝑣)]| ≥  𝑐
′|𝑣 −  𝑣|, 

 for some 𝑐′ >  0, and since 𝑥, 𝑣 →  𝛷 is smooth, we also have hat  

|𝜕𝑥
𝛼  [𝛷(𝑥, 𝑣) −  𝛷(𝑥, 𝑣)]| ≤  𝐶𝛼|𝑣 −  𝑣|, 

 for all multi-indices α. Therefore, if we let  

𝐾𝜆(𝑣, 𝑣) =   ∫  
𝑹2
 𝑎(𝑥, 𝑡 , 𝑡′)𝑎(𝑥, �̃�, �̃�′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑒𝑖𝜆[𝛷(𝑥,𝑣)−𝛷(𝑥,�̃�)] 𝑑𝑥 , 

 then by integrating by parts, we find that if the number 𝛿 >  0 in the statement of the 

Proposition is small then for 𝑗 =  1, 2, 3, . ..  
|𝐾𝜆(𝑣, 𝑣)| ≤  𝐶𝑗 (1 +  𝜆|𝑣 −  𝑣|)

−2𝑗   

                                                    ≤  𝐶𝑗 (1 +  𝜆|(𝑡 +  𝑡
′ ) −  (�̃�   +  �̃�′  )|)−𝑗 

 (1 +  𝜆|(𝑡 −  𝑡′ )2  −  (�̃�   −  �̃�   )2|)−𝑗 .  (25) 
 Note that the left side of (24) equals   

∫  ··· ∫  
|𝑡−𝑡′ |,|�̃� −�̃�′  |≥𝑁𝜆

−
1
2 

𝐾𝜆(𝑡, 𝑡
′; �̃� , �̃�′  )𝐹 (𝑡, 𝑡′)𝐹 (�̃� , �̃�′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑡𝑑𝑡′𝑑�̃�𝑑 �̃�   . 

 We next laim that there is a uniform constant 𝐶 so that for 𝜆, 𝑁 ≥  1  



57 

sup
�̃� ,�̃�′

    ∫  
|𝑡−𝑡′≥𝑁𝜆

−
1
2

   |𝐾𝜆|𝑑𝑡𝑑𝑡
′, sup
𝑡 ,𝑡′

   ∫  
|�̃� −�̃�′  |≥𝑁𝜆

−
1
2

 |𝐾𝜆|𝑑�̃�𝑑 �̃�    

≤  𝐶𝜆−2(
𝜆
1
2

𝑁
) .                                   (26)   

This follows from (25) and the fact that if 𝜏 =  𝑠2 then 2sds =  τ and so, given τ0  ∈  𝐑, 
we have 

∫  
𝑠≥𝑁𝜆

−
1
2

 (1 +  𝜆|𝑠2  −  𝜏0|)−2𝑑𝑠 =
1

2
  ∫  
√𝜏≥𝑁𝜆

−
1
2

   (1 +  𝜆|𝜏 −  𝜏0|)
−2
𝑑𝜏

√𝜏
 

≤ (
𝜆
1
2

𝑁
)∫  

+∞

 −∞

 (1 +  𝜆|𝜏 | )−2𝑑𝜏 ≤  𝜆−1(𝜆
1
2/𝑁) . 

 Since (26) and Young’s inequality yield (24), the proof s complete. 

 We need to prove the other Proposition, which is a straightforward application of 

Gauss’ lemma. 

Proposition (2.1.7)[28]: 𝐿𝑒𝑡 𝜓(𝑥, 𝑡)  =  𝑑𝑔 (𝑥, (0, 𝑡)), and suppose that 𝜌 ∈  𝐶0
∞ (𝑹 ×

 𝑹2) satisfies 

 |𝜕𝑡
𝑚 𝜌(𝑡;  𝑥)| ≤  𝐶𝑚 (𝜆

1

2 )
𝑚

 , 𝑎𝑛𝑑 𝜌(𝑡;  𝑥) =  0, |𝑡| ≥  𝜆−
1

2.     (27) 

 Suppose also that ρ vanishes when 𝑥 is outside of a small neighborhood 𝒩 of 𝑎 fixed point 

(−𝑠0, 0) (in the Fermi normal coordinates) with 𝑠0  >  0. If 𝑥 →  𝜅(𝑥)  =  (𝜅1(𝑥), 𝜅2(𝑥)) 
are the coordinates described above, assume that points 𝑥𝑗  ∈ 𝒩 are chosen so that  

|
𝜅2(𝑥𝑗  )

 |𝜅(𝑥𝑗  )|
 −

𝜅2(𝑥𝑘)

 |𝜅(𝑥𝑘)|
|  ≥  𝑐𝜆−

1
2  |𝑗 −  𝑘|, 𝑖𝑓 |𝑗 −  𝑘| ≥  10,     (28) 

 with 𝑐 >  0 fixed. It then follows that, if 𝒩 is sufficiently small, then there is a uniform 

constant 𝐶, which is independent of the {𝑥𝑗  } chosen as above, so that  

𝜆
1
2  ∫  |∑  

𝑗

 𝑒𝑖𝜆𝜓(𝑥𝑗 ,𝑡 )𝜌(𝑡;  𝑥𝑗 )𝑎𝑗 |

2

 𝑑𝑡 ≤  𝐶 ∑|𝑎𝑗 |2.        (29) 

Proof. The support assumptions on the amplitude will allow us to linearize the function 𝑡 →
 𝜓 in the proof, which is a tremendous help. Specifically, 

𝜓(𝑥, 𝑡) =  𝜓(𝑥, 0) +  𝑡 (𝜕𝑡𝜓(𝑥, 0)) +  𝑟(𝑥, 𝑡), 
 where  

|𝜕𝑡
𝑚 𝑟(𝑥, 𝑡)| ≤  𝐶𝑚|𝑡|

2−𝑚 , 0 ≤  𝑚 ≤  2 , 𝑎𝑛𝑑 |𝜕𝑡
𝑚 𝑟| ≤  𝐶𝑚 ,𝑚 ≥  2.   (30) 

 Our choice of coordinates implies that  

𝜕𝑡𝜓(𝑥, 0) =  〈𝜈,
𝜅(𝑥)

|𝜅(𝑥)|
〉, 

 where the inner-product is the euclidean one and 𝜈 ∈  𝑹2 is chosen so that 〈𝜈, 𝛻〉 is the 

pushforward of 𝜕/𝜕𝑥2 𝑎𝑡 (0, 0) under the 𝑚𝑎𝑝 𝑥 →  𝜅(𝑥)— 𝑖. 𝑒., tangent vector to the 

curve 𝑡 →  𝜅((0, 𝑡)). Since the pushforward of 𝜕/𝜕𝑥1 is itself under this map, it follows 

that the second coordinate of 𝜈 is nonzero. (See Figure 2 below.) Therefore, if 𝒩  (𝑠0, 0) is 

small enough, then our assumption (28) implies that  



58 

|𝜕𝑡𝜓(𝑥𝑗  , 0) − 𝜕𝑡𝜓(𝑥𝑘 , 0)| ≥  𝑐
′𝜆−

1

2 (2.17)|𝑗 −  𝑘|, 𝑖𝑓 |𝑗 −  𝑘| ≥  10 , and 𝑥𝑗, 𝑥𝑘  ∈ 𝒩, 

for some constant 𝑐 >  0. 
           It is easy now to finish the proof of (29). If we get  

𝜌(𝑥𝑗  , 𝑥𝑘; 𝑡) =  𝜌(𝑡; 𝑥𝑗  )𝜌(𝑡; 𝑥𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒(𝑖𝜆(𝜓(𝑥𝑗 ,0))+𝑟(𝑥𝑗 ,𝑡 )𝑒−𝑖𝜆(𝜓(𝑥𝑘,0)+𝑟(𝑥𝑘,𝑡 )), 

 it follows from (27) and (30) that  

|𝜕𝑡
𝑚 𝜌(𝑥𝑗  , 𝑥𝑘; 𝑡)| ≤  𝐶𝑚𝜆

𝑚
2  ,  

and (𝑥𝑗   𝑥𝑘; 𝑡) =  0 , 𝑖𝑓 |𝑡| ≥  𝜆
−
1

2 , 𝑥𝑗  ∉ 𝒩 , 𝑜𝑟 𝑥𝑘  ∉ 𝒩 . 

 We can use this since the left ide of (29) equals  

𝜆
1
2∑ 

 𝑗,𝑘

 |𝑎𝑗  𝑎𝑘|   (∫ 𝑒
𝑖𝑡𝜆(𝜕𝑡𝜓(𝑥𝑗 ,0)−𝜕𝑡𝜓(𝑥𝑘 ,0))𝜌(𝑥𝑗 , 𝑥𝑘; 𝑡)𝑑𝑡) , 

 which, after integrating by parts 𝑁 =  1, 2, 3 . .. times, we onclude is dominated by a fixed 

constant 𝐶𝑁 times  

 ∑  

𝑗,𝑘

 |𝑎𝑗𝑎𝑘|(1 +  |𝑗 −  𝑘|)
−𝑁 . 

 ince, by Young’s inequality, this is dominated by the right side of (29) hen 𝑁 =  2, the 

proof is complete. 

 

 
Figure (2)[28]: Image of {(0, 𝑡)} in geodesic normal coordinates about (0, 0). 

          We have shown above that if {𝑒𝜆𝑗𝑘
 }
𝑘=1

∞
 is a sequence of 𝐿2-normalized 

eigenfunctions satisfying  

𝑙𝑖𝑚 sup
𝑘→∞

 sup
𝛾 ∈𝛱

  𝜆
𝑗𝑘

−
1
2   ∫ 

𝛾

 |𝑒𝜆𝑗𝑘
|
2
   𝑑𝑠 =  0,                      (31) 

then 𝜆 𝑗𝑘
−𝛿(𝑝)

 ‖𝑒𝜆𝑗𝑘
‖
𝐿𝑝(𝑀)

 =  0, 2 < 𝑝 <  6. While it seems difficult to determine when this 

holds, one can show the following.  

Proposition (2.1.8)[28]: Suppose that 𝛾 ∈  𝛱 is not contained in a smoothly closed 

geodesic. Then if {𝑒𝜆𝑗  } is the full sequence of 𝐿2-normalized eigenfunctions, we have  

lim sup
𝑗→∞ 

 𝜆
𝑗

−
1
2   ∫ 

𝛾

 |𝑒𝜆𝑗  |
2
 𝑑𝑠 =  0.                      (32) 
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           In proving this proposition we may assume, after possible multiplying the metric by 

a constant, that the injectivity radius is more than 10. This will allow us to write down 

Fourier integral operators representing the solution of the wave equation up to times |𝑡|  ≤
 10. More important, though, is that we shall use an observation of Tataru [56] that the map 

from Cauchy data to the solution of the wave equation restricted to 𝛾 × 𝑹 is a Fourier 

integral operator with a one-sided fold. Using this fact and the standard method of long-time 

averages (see e.g. [40], [46], [17], [29]), we shall be able to prove Proposition (2.1.8).  

           To set up our proof, let us choose Fermi normal coordinates about 𝛾 so that, in these 

coordinates, 𝛾 becomes {(𝑠, 0);  0 ≤  𝑠 ≤  1}. Note that in these coordinates the metric 

takes the form 𝑔11(𝑥)𝑑𝑥1
2  +  𝑑𝑥2

2 . As a consequence if 𝑝(𝑥, 𝜉 )  = √∑𝑔𝑗
𝑘
 (𝑥)𝜉𝑗  𝜉𝑘 is the 

principal symbol of 𝑃 =  √− △𝑔 then 𝑝((𝑠, 0), 𝜉 )  =  √ 𝑔11((𝑠, 0))𝜉1
2  +  𝜉2

2 is an even 

function of 𝜉2.  
           To proceed, let us fix a real-valued function 𝜒 ∈  𝑆(ℛ) with 𝜒 (0) =  1 and �̂� (𝑡)  =

 0, |𝑡| >
1

2
. Then if 𝑒𝜆 is an eigenfunction with eigenvalue 𝜆 it follows that 

𝜒 (𝑁(𝑃 –  𝜆))𝑒𝜆  =  𝑒𝜆. Thus, in order to prove (32), it would suffice to prove that given 

𝜆, 𝑁 ≥  1  

‖𝜒 (𝑁(𝑃 −  𝜆))𝑓 ‖
𝐿2(𝛾 )

 ≤  𝐶𝑁−
1
2𝜆
1
4‖𝑓‖𝐿2(𝑀)  +  𝐶𝑁 ‖𝑓‖𝐿2(𝑀).      (33) 

Note that  

𝜒 (𝑁(𝑃 −  𝜆))𝑓 (𝑥) =  𝑁−1  ∫ �̂�  (
𝑡

𝑁
) 𝑒−𝑖𝑡𝜆( 𝑒𝑖𝑡𝑃 𝑓 ) (𝑥)𝑑𝑡.        (34) 

 and because of the support properties of the �̂� the integrand vanishes when |𝑡|  ≥  𝑁/2.  
           The operator  

𝑓 →   (𝑒𝑖𝑡𝑃 𝑓 ) (𝑥) 
is a Fourier operator with canonical relation  

{(𝑥, 𝑡 , 𝜉, 𝜏 ;  𝑦, 𝜂); 𝛷𝑡(𝑥, 𝜉 ) =  (𝑦, 𝜂), ±𝜏 =  𝑝(𝑥, 𝜉 )}, 
 with 𝛷𝑡 ∶  𝑇

∗𝑀 →  𝑇∗𝑀 being geodesic flow on the cotangent bundle and 𝑝(𝑥, 𝜉 ), as 

above, being the principal symbol of √−△𝑔 . Given that we want to restrict the operator in 

(34) to 𝛾 =  (𝑠, 0), 0 ≤  𝑠 ≤  1, we really need to also focus on the the Fourier integral 

operator  

𝑓 →  ( 𝑒𝑖𝑡𝑃 𝑓)  (𝑠, 0). 
Given the above, its canonical relation is  

𝐶 =  {𝛱𝛾 ×𝑅(𝑥, 𝑡 , 𝜉, 𝜏 ;  𝑦, 𝜂) ∈  𝑇
∗(𝛾 ×  𝑅) ×  𝑇∗𝑀 ; 𝛷𝑡( 𝑏𝑥, 𝜉 ) = (𝑦, 𝜂),±𝜏 

=  𝑝(𝑥1, 0, 𝜉)} , 

 with 𝛱𝛾 ×𝑹 being the projection map from 𝑇∗(𝑀 × 𝑹) 𝑡𝑜 𝑇∗(𝛾 × 𝑹). Note that the 

projection from the latter canonical relation to 𝑇∗(𝛾 ×  𝑹) is the map  

(𝑠, 𝑡 , 𝜉 ) →  (𝑠, 𝑡 , 𝜉1, 𝑝((𝑠, 0), 𝜉 )), 

 which has a fold singularity when 𝜉2  =  0 but has surjective differential away from this set 

(given the aforementioned properties of p).  

Because of this, given the xplicit formula in Fermi coordinates, if we choose 𝜓 ∈  𝐶0
∞ (𝑀) 

equal to ne on 𝛾 and 𝛼 ∈  𝐶0
∞ (𝑹) satisfying 𝛼 =  1 𝑜𝑛 [−1/2, 1/2] 𝑏𝑢𝑡 𝛼(𝜏 )  =  0, |𝜏 |  , 

then  
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𝑏𝜀(𝑥, 𝜉 ) =  𝜓(𝑥)𝛼 (
𝜉2
𝜀|𝜉|

) 

 equals one on a conic neighborhood of the set that projects onto the set where the left 

projection of C has a folding ingularity. This means that 

 𝐵𝜀(𝑥, 𝜉 ) =  𝜓(𝑥) (1 −  𝛼 (
𝜉2
𝜀|𝜉|

)) 

has symbol anishing in a conic neighborhood of this set and consequently the map  

𝑓 →   (𝐵𝜀  𝑒𝑖𝑡𝑃 𝑓)  ((𝑠, 0)), 0 ≤  𝑠 ≤  1 

 is a nondegenerate Fourier integral operator f order zero. Therefore, Hörmander’s Theorem 

[44] about the 𝐿2 oundedness of Fourier integral operators yields  

 ∫  
(𝑁 )

(−𝑁)

   ∫  
1

0

| (𝐵𝜀   𝑒
𝑖𝑡𝑃 𝑓)  (𝑠, 0)|

2
 𝑑𝑠𝑑𝑡 ≤  𝐶𝑁, 𝐵𝜀 ‖𝑓 ‖𝐿2(𝑀)

2 . 

 Therefore, an pplication of Schwarz’s inequality yields  

𝜒𝜆
𝑁,𝐵𝜀  𝑓 𝐿2(𝛾 ) ≤  𝐶𝑁,𝐵𝜀

′  ‖𝑓‖𝐿2(𝑀) , 

Therefore, an application of Schwarz’s inequality yields  

‖𝜒 𝜆
𝑁,𝐵𝜀  𝑓 ‖

𝐿2(𝛾 )
 ≤  𝐶𝑁,𝐵𝜀

′  ‖𝑓 ‖𝐿2(𝑀), 

if  

𝜒 𝜆
𝑁,𝐵𝜀  𝑓 =  𝐵𝜀  𝜊 𝜒 (𝑁(𝑃 −  𝜆))𝑓 =  𝑁

−1  ∫ �̂�  (
𝑡

𝑁
) 𝑒−𝑖𝑡𝜆 (𝐵𝜀  𝑒

𝑖𝑡𝑃 ) 𝑓𝑑𝑡 . 

            Therefore if we similarly define 𝜒𝜆
𝑁,𝑏𝜀  𝑓 =  𝑏𝜀  𝜊 𝜒 (𝑁(𝑃 – 𝜆))𝑓, then 𝜒𝜆

𝑁,𝐵𝜀  𝑓 +

𝜒𝜆
𝑁,𝑏𝜀  𝑓 =  𝜓𝜒 (𝑁(𝑃 –  𝜆))𝑓 and since 𝜓 =  1 on 𝛾 , the proof of (33) would be complete 

if we could show that if 𝜀 >  0 is small enough (depending on N) then for 𝜆 ≥  1 we have 

for a constant C independent of 𝜀,𝑁 and 𝜆 ≥  1  

‖𝜒𝜆
𝑁,𝑏𝜀  𝑓 ‖

𝐿2(𝛾 )
 ≤  𝐶𝑁−

1
2𝜆
1
4‖𝑓 ‖𝐿2(𝑀)  +  𝐶𝑁, 𝑏𝜀  ‖𝑓 ‖𝐿2(𝑀).        (35) 

In addition to taking 𝜀 >  0 to be small, we shall also take the support of 𝜓 about 𝛾 to be 

small.  

           It is in proving (35) of course where we shall use our assumption that 𝛾 is not part of 

a smoothly closed geodesic. 𝐴 consequence of this is that, given fixed 𝑁, if 𝜀 and the support 

of 𝜓 are small enough then  

𝑏𝜀(𝑦, 𝜂) =  0 whenever  
(𝑦, 𝜂) =  𝛷𝑡(𝑥, 𝜉 ), (𝑥, 𝜉 ) ∈ sup 𝑏𝜀 , 2 ≤  |𝑡| ≤  𝑁.  (36) 

In what follows, we shall assume that 𝜀 and 𝜓 have been chosen so that this is the case. The 

point here is that if 𝛾 (𝑠), 𝑠 ∈  𝑹, is the geodesic starting at (0, 0) and containing {𝛾 (𝑠)  =
 (𝑠, 0);  0 ≤  𝑠 ≤  1}, points on the curve 𝛾 (𝑠), |𝑠|  ≤  𝑁 +  1 might intersect 𝛾 , but the 

intersection must be transverse as 𝑠 →  𝛾 (𝑠) is not a smoothly closed geodesic. Then if 𝜀 
is chosen to be a small multiple of the smallest angle of intersection and if 𝜓 has small 

enough support about 𝛾 , then we get (36). Using the canonical relation for eitP , we can 

deduce from this that  

𝑏𝜀  𝜊 𝑒
𝑖𝑡𝑃 𝜊 𝑏𝜀

∗  is a smoothing operator when2 ≤  |𝑡| ≤  𝑁 +  1.    (37) 
i.e., for such times this operator’s kernel is smooth. 

            Let 𝑇 be the operator 𝜒𝜆
𝑁,𝑏𝜀  𝑓  |𝛾  , 𝑖. 𝑒., the truncated approximate spectral projection 

operator restricted to 𝛾 . Our goal is to show (35) which says that  
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‖𝑇‖𝐿2(𝑀)→𝐿2(𝛾 )  ≤  𝐶𝑁
−
1
2𝜆
1
4  +  𝐶𝑁 ,𝑏𝜀  . 

This is equivalent to saying that the dual operator 𝑇∗ ∶  𝐿2(𝛾 )  →  𝐿2(𝑀) with the same 

norm, and since  

‖𝑇∗𝑔‖𝐿2(𝑀)
2  =   ∫  

𝑀 

 𝑇∗𝑔𝑇∗𝑔 ̅̅ ̅̅ ̅̅ 𝑑𝑥 =   ∫ 
𝛾

 𝑇 𝑇∗𝑔 �̅�𝑑𝑠 ≤  ‖𝑇 𝑇∗𝑔‖𝐿2(𝛾 )‖𝑔‖𝐿2(𝛾 ) , 

we would be done if we could show that  

‖𝑇 𝑇∗𝑔‖𝐿2(𝛾 )  ≤   (𝐶𝑁
−1𝜆

1
2  +  𝐶𝑁,𝑏𝜀  ) ‖ 𝑔‖𝐿2(𝛾 ).         (38) 

But the kernel of 𝑇 𝑇∗ is 𝐾(𝛾 (𝑠), 𝛾 (𝑠′ )), where (𝑥, 𝑦), 𝑥, 𝑦 ∈  𝑀 is the kernel of the 

operator 𝑏𝜀  𝜊 𝜌(𝑁(𝑃 −  𝜆)) 𝜊 𝑏𝜀
∗ with (𝜏   𝜒 (𝜏 ))

2
 being the square of 𝜒. Its Fourier 

transform, �̂�, is the convolution of �̂� with itself, and thus �̂�(𝑡)   =  0, |𝑡|  ≥  1. Consequently, 

we can write  

𝑏𝜀  𝜊 𝜌(𝑁(𝑃 −  𝜆)) 𝜊 𝑏𝜀
∗  =  𝑁−1  ∫   �̂� (

𝑡

𝑁
) 𝑒   −𝑖𝑡𝜆 (𝑏𝜀  𝜊 𝑒

𝑖𝑡𝑃 𝜊 𝑏𝜀
∗ ) 𝑑𝑡      (39) 

 Thus, if 𝛼 ∈  𝐶0
∞ (𝑹) is as above, then by (36) and (37), the difference of the kernel of the 

operator in (39) and the kernel of the operator given by  

𝑁−1   ∫  𝛼 (
𝑡

10
) �̂� (

𝑡

𝑁
) 𝑒  −𝑖𝑡𝜆 (𝑏𝜀  𝜊 𝑒

𝑖𝑡𝑃 𝜊 𝑏𝜀
∗ )𝑑𝑡       (40) 

is 𝑂(𝜆−𝐽 )for any 𝐽 . Thus, if we restrict the kernel of the difference to 𝛾 ×  𝛾 , it contributes 

a portion of 𝑇 𝑇∗ that maps 𝐿2(𝛾 ) →  𝐿2(𝛾 ) with norm ≤ 𝐶𝑁,𝑏𝜀   .  

            To finish, we need to estimate the remaining piece, which has the kernel of the 

operator in (40) restricted to 𝛾 ×  𝛾 . Since we are assuming that the injectivity radius of 𝑀 

is 10 or more one can use the Hadamard parametrix for the wave equation and standard 

stationary phase arguments (similar to ones in [16], Chapter 5, or the proof of Lemma 4.1 

in [5]) to see that the kernel 𝐾(𝑥, 𝑦) of the operator in (40) satisfies  

|𝐾(𝑥, 𝑦)| ≤  𝐶𝑁−1𝜆
1
2 (𝑑𝑔 (𝑥, 𝑦))

−
1
2
 +  𝐶𝑏𝜀  . 

The first term comes from the main term in the stationary phase expansion for the kernel 

and the other one is the resulting remainder term in the one-term expansion. Since this kernel 

restricted to 𝛾 × 𝛾 gives rise to an integral operator satisfying the estimates in (38), the 

proof is complete.  

          While as we explained before the condition that for the 𝐿2- normalized eigenfunctions  

lim sup
𝑗→∞

 sup
𝛾 ∈𝛱 

 𝜆
𝑗

−
1
2   ∫ 

𝛾

 |𝑒𝜆𝑗  |
2
  𝑑𝑠 =  0 

 is a natural one to quantify non-concentration, it would be interesting to formulate a 

geometric condition involving the long-time dynamics of the geodesic flow that would 

imply it and its equivalent version that 𝜆𝑗
−𝛿(𝑝)

 ‖𝑒𝜆𝑗‖𝑝
→ 0, 2 < 𝑝 < 6. Presumably if 𝛾 ∈

 𝛱 and  

lim sup
𝑗→∞ 

 𝜆
𝑗

−
1
2   ∫ 

𝛾

 |𝑒𝜆𝑗  |
2
  𝑑𝑠 >  0                              (41) 

then 𝛾 would have to be part of a stable smoothly closed geodesic, and not just a closed 

geodesic as we showed above. Toth and Zeldtich made a similar conjecture to this in [58], 

saying that, in 𝑛-dimensions, if 𝛾 is a closed stable geodesic then one should be able to find 
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a sequence of eigenfunctions on which sup-norms are blowing up like 𝜆
𝑛−1

2 . In [32], [49], it 

was shown that there is a sequence of quasimodes blowing up at this rate.  

            It would also be interesting to formulate a condition that would ensure that 

‖𝑒𝜆‖𝐿6(𝑀)  =  𝑜(𝜆
𝛿(6))  =  𝑜 (𝜆

1

6) , 𝑓𝑜𝑟 𝐿2-normalized eigenfunctions. Presumably, such a 

condition would have to involve both ones like those and conditions of the type in [29], [17]. 

Since 𝐿6 is an endpoint for (1) one expects that one would need a condition that both 

guarantees that 𝐿𝑝 bounds for 2 < 𝑝 <  6 and 𝑝 >  6 be small. Formally, the proof of 

Theorem (2.1.1) suggests that 𝐿4-norms over geodesics might be relevant for the problem 

of determining when the 𝐿6(𝑀) norms of eigenfunctions are small. This is interesting 

because the 𝐿4-norm is the unique 𝐿𝑝-norm taken over geodesics that captures both the 

concentration of the highest weight spherical harmonics on geodesics and the concentration 

of zonal functions at points. Indeed, the highest weight spherical harmonics saturate these 

norms for 2 ≤  𝑝 ≤  4, while the zonal functions saturate them for 𝑝 ≥  4 (see [5]).  

          Also, it would be interesting to see whether the results here generalize to the case of 

two dimensional compact manifolds with boundary. Recently, Smith and [52] were able to 

obtain sharp eigenfunction estimates in this case. In this case, the critical estimate was an 𝐿8 

one. So the results here suggest that size estimates for the Kakeya-Nikodym maximal 

operator associated with broken unit geodesics and applied to squares of eigenfunctions 

could be relevant for improving the bounds in [52], which are known to be sharp in the case 

of the disk (see [43]). An observation of Grieser [43] involving the Rayleigh whispering 

gallery modes suggests that in order to obtain a variant of Corollary (2.1.2) for compact 

domains one would have to consider 𝐿2-norms over 𝜆
𝑗

−
2

3 -neighborhoods of broken 

geodesics. Smith and [51] also showed that for compact manifolds with geodesically 

concave boundary one has better estimates than one does for compact domains in 𝑹𝑛. For 

example, when 𝑛 = 2(1) holds. Based on this and the better behavior of the geodesic flow, 

it seems reasonable that the analog of Corollary (2.1.2) might hold (with the same scales) in 

this setting. 

           Finally, as mentioned before it would be interesting to see to what extent the results 

for the boundaryless case extend to higher dimensions. The arguments given here and in 

[36], though, rely very heavily on special features of the two-dimensional case. 

Section (2.2): 𝑳𝟒-Bounds for Compact Surfaces with Nonpositive Curvature 

For (𝑀, 𝑔) be a compact two-dimensional Riemannian manifold without boundary. 

We shall assume throughout that the curvature of (𝑀, 𝑔) is everywhere nonpositive. If ∆𝑔 

is the Laplace-Beltrami operator associated with the metric 𝑔, then we are concerned with 

certain size estimates for the eigenfunctions 

 −∆𝑔𝑒𝜆(𝑥) = 𝜆
2𝑒𝜆(𝑥), 𝑥 ∈ 𝑀. 

Thus we are normalizing things so that 𝑒𝜆 is an eigenfunction of the first order 

operator √−∆𝑔  with eigenvalue 𝜆. If 𝑒𝜆 is also normalized to have 𝐿2 -norm one, we are 

interested in various size estimates for the 𝑒𝜆 which are related to how concentrated they 

may be along geodesics. If 𝛱 denotes the space of all unit-length geodesics in 𝑀 then our 

main result is the following “restriction theorem” for this problem. 

Theorem (2.2.1)[30]: Assume that (𝑀, 𝑔) is as above. Then given 𝜀 > 0 there is a 𝜆(𝜀) <
∞ so that 
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sup
 𝛾∈𝛱

(∫ |𝑒𝜆|
2 𝑑𝑠

𝛾

)

1 2⁄

 ≤ 𝜀𝜆
1
4 ‖𝑒𝜆‖𝐿2(𝑀) , 𝜆 > 𝜆(𝜀),           (42) 

 with 𝑑𝑠 denoting arc-length measure on 𝛾, and 𝐿2(𝑀) being the Lebesgue space with 

respect to the volume element 𝑑𝑉𝑔 for (𝑀, 𝑔).  

Earlier, Burq, G´erard and Tzvetkov [5] showed that for any 2-dimensional compact 

boundaryless Riemannian manifold one has  

(∫ |𝑒𝜆|
2 𝑑𝑠

𝛾

)

1 2⁄

≤  𝐶𝜆
1
4 ‖𝑒𝜆‖𝐿2(𝑀),                         (43) 

ith 𝐶 independent of 𝛾 ∈  𝛱. The first such estimates were somewhat weaker ones of 

Reznikov [26] for hyperbolic surfaces, which inspired this current line of research. The 

estimate (43) is sharp for the round sphere 𝑆2 because of the highest weight spherical 

harmonics (see [5], [28]). Burq, G´erard and Tzvetkov [5] also showed that 

(∫ |𝑒𝜆|
4 𝑑𝑠

𝛾

)

1 4⁄

≤  𝐶𝜆
1
4 ‖𝑒𝜆‖𝐿2(𝑀), , 𝛾 ∈  𝛱, 

 and so by interpolating with this result and (42) one concludes that when 𝑀 has nonpositive 

curvature sup
𝛾∈𝛱

 ‖𝑒𝜆‖𝐿𝑝(𝛾)/‖𝑒𝜆‖𝐿2(𝑀) = 𝑜(𝜆
1

4) for 2 ≤  𝑝 <  4. An interesting but 

potentially difficult problem would be to show that this remains true under this hypothesis 

for the endpoint 𝑝 = 4.  
Theorem (2.2.1) is related to certain 𝐿𝑝 -estimates for eigenfunctions. [15] proved that for 

any compact Riemannian manifold of dimension 2 one has for 𝜆 ≥ 1,  

‖𝑒𝜆‖𝐿𝑝(𝑀) ≤  𝐶𝜆
1
2
(
1
2−
1
𝑝
)
 ‖𝑒𝜆‖𝐿2(𝑀), 2 ≤ 𝑝 ≤ 6,            (44) 

 and  

‖𝑒𝜆‖𝐿𝑝(𝑀) ≤  𝐶𝜆
2(
1

2
−
1

𝑝
)−

1

2 ‖𝑒𝜆‖𝐿2(𝑀), 6 ≤  𝑝 ≤  ∞.       (45)  

These estimates are also sharp for the round sphere 𝑆2 (see [53]). The first estimate, (44), is 

sharp because of the highest weight spherical harmonics, and thus, like (42) or (43), it 

measures concentration of eigenfunction mass along geodesics. The second estimate, (45), 

is sharp due to the zonal functions on 𝑆2, which concentrate at points. The sharp variants of 

(44) and (45) (with different exponents) for manifolds with boundary were obtained by 𝐻. 

Smith and [52], and it would be interesting to obtain analogues of the results for this setting, 

but this appears to be difficult. 

       In the last decade there have been several results showing that, for typical (𝑀, 𝑔), (45) 

can be improved for 𝑝 > 6 (see [29], [17]) to bounds of the form  ‖𝑒𝜆‖𝐿𝑝(𝑀)/ ‖𝑒𝜆‖𝐿2(𝑀) =

𝑜(𝜆
1

2
(
1

2
−
1

𝑝
)
) for fixed 𝑝 > 6. Recently, Hassell and Tacey [23], following B´erard’s [61] 

earlier estimate for 𝑝 = ∞, showed that for fixed 𝑝 > 6 this ratio is 𝑂(𝜆
2(
1

2
−
1

𝑝
)−

1

2/

 √𝑙𝑜𝑔 𝜆), which influenced the present work. Also, in [66] the authors showed that if the 

geodesic flow is ergodic, which is automatically the case if the curvature of 𝑀 is negative, 

then (42) holds for a density one sequence of eigenfunctions. 

        Except for some special cases of an arithmetic nature (e.g. Zygmund [60] or Spinu 

[67]) there have been few cases showing that (44) can be improved for Lebesgue exponents 

with 2 < 𝑝 < 6. In [28], using in part results from Bourgain [36], it was shown that  
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‖𝑒𝜆‖𝐿𝑝(𝑀)/ ‖𝑒𝜆‖𝐿2(𝑀) = 𝑜(𝜆
1
2
(
1
2
−
1
𝑝
)
) 

 for some 2 < 𝑝 < 6 if and only if 

sup
 𝛾∈𝛱

 ‖𝑒𝜆‖𝐿2( 𝛾)/ ‖𝑒𝜆‖𝐿2(𝑀) = 𝑜(𝜆
1
4). 

        Thus, we have the following corollary to Theorem (2.2.1). 

 Corollary (2.2.2)[30]: As above, let (𝑀, 𝑔) be a compact 2-dimensional manifold with 

nonpositive curvature. Then, if 𝜀 > 0 and 2 < 𝑝 < 6 are fixed there is 𝑎 𝜆(𝜀, 𝑝) < ∞ so that 

 ‖𝑒𝜆‖𝐿𝑝(𝑀) ≤ 𝜀𝜆
1
2
(
1
2−
1
𝑝
)
 ‖𝑒𝜆‖𝐿𝑝(𝑀), 𝜆 >  𝜆(𝜀, 𝑝). 

 We remark that an interesting open problem would be to obtain this type of result for the 

case of 𝑝 =  6. It is valid for the standard torus 𝕋2 = ℝ2/ℤ2 since Zygmund [60] showed 

that there one has ‖𝑒𝜆‖𝐿4(𝕋2)/‖𝑒𝜆‖𝐿2(𝕋2) = 𝑂(1) and the classical theorem of Gauss about 

lattice points in the plane yields  ‖𝑒𝜆‖𝐿∞(𝕋2)/‖𝑒𝜆‖𝐿2(𝕋2) = 𝑂(𝜆
1

4)  Since 𝑝 = 6 is the 

exponent for which concentration at points and concentration along geodesics are both 

relevant, proving a general result along the lines of Corollary (2.2.2) would presumably have 

to take into account both of these phenomena. One expects, though, such a result for  𝑝 = 6 

should be valid when M has negative curvature. This result seems to be intimately related 

to the problem of trying to determine when one has the endpoint improvement for the 

restriction problem, i.e., sup
𝛾∈𝛱

‖𝑒𝜆‖𝐿4(𝛾)/‖𝑒𝜆‖𝐿2(𝑀)  = 𝑂(𝜆
1

4). 

[28] showed that if 𝛾0 ∈ 𝛱 is not part of a periodic geodesic then  

‖𝑒𝜆‖𝐿2(𝛾0)/‖𝑒𝜆‖𝐿2(𝑀) = 𝑂(𝜆
1
4). 

The proof involved an estimate involving the wave equation associated with ∆𝑔 and a bit of 

microlocal (wavefront) analysis. The main step in proving Theorem (2.2.1) is to see that this 

remains valid as well if 𝛾0 is part of a periodic orbit under the above curvature assumptions. 

We shall be able to do this by lifting the wave equation for (𝑀, 𝑔) up to the corresponding 

one for its universal cover, which by a classical theorem of Hadamard [63] and von Mangolt 

[68], is (ℝ2 , �̃�), with the metric 𝑔 being the pullback of g via a covering map, which can 

be taken to be exp𝑥0 for  any 𝑥0 ∈ 𝑀. By identifying solutions of wave equations for (𝑀, 𝑔) 

with “periodic” ones for (ℝ2 , 𝑔)we are able to obtain the necessary bounds using a bit of 

wavefront analysis and the Hadamard parametrix for (ℝ2 , 𝑔). Fortunately for us, by a 

classical volume comparison theorem of Gunther [6], the leading coefficient of the 

Hadamard parametrix has favorable size estimates under our curvature assumptions. (It is 

easy to see that the contribution of the lower order terms in the Hadamard parametrix to (42) 

are straightforward to handle.)  

       Since the space of all unit-length geodesics is compact, in order to prove (42), it suffices 

to show that, given 𝛾0 ∈ 𝛱 and 𝜀 > 0, one can find a neighborhood 𝑁(𝛾0, 𝜀) of 𝛾0 in 𝛱 and 

a number 𝜆(𝛾0, 𝜀) so that 

∫|𝑒𝜆|
2𝑑𝑠

𝛾

 ≤ 𝜀𝜆
1
2 ‖𝑒𝜆‖𝐿2

2 (𝑀), 𝛾 ∈ 𝑁 (𝛾0, 𝜀), 𝜆 >  𝜆(𝛾0 , 𝜀).           (46) 

In proving this we may assume that the injectivity radius of (𝑀, 𝑔) is ten or more. We recall 

also that, given 𝑥0 ∈ 𝑀, the exponential map at 𝑥0, exp𝑥0 ∶  𝑇𝑥0𝑀 ≃ ℝ2 → 𝑀 is a universal 

covering map. We shall take 𝑥0 to be the midpoint of our unit-length geodesic 𝛾0. We also 

shall work in geodesic polar coordinates about 𝑥0. 
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       If 𝑔 is the pullback to ℝ2 of the metric 𝑔 via the covering map then (ℝ2, 𝑔) is a 

Riemannian universal cover of (𝑀, 𝑔). Like (𝑀, 𝑔) it also has nonpositive curvature. 

Additionally, rays 𝑡 →  𝑡(𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃), 𝑡 ≥  0, through the origin are geodesics for 𝑔. Such 

a ray is the lift of the unit speed geodesic starting at 𝑥0, which in our local coordinate system 

has the initial tangent vector (𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃). Note that in these coordinates vanishing at 

𝑥0, 𝑡 → 𝑡(𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃), |𝑡| ≤ 10 are also geodesics for 𝑔. We may assume further that we 

have 

𝛾0 = {(𝑡, 0): −
1

2
≤ 𝑡 ≤

1

2
 }.                       (47) 

 To prove (46) it will be convenient to fix a real-valued even function 𝜒 ∈ 𝑆(𝑅) having the 

property that 𝜒(0) =  1 and �̂�(𝑡) = 0, |𝑡| ≥
1

4
 , where �̂� denotes the Fourier transform of 𝜒. 

We then have that for 𝑇 > 0  

𝜒(𝑇 (√−∆𝑔 − 𝜆)) 𝑒𝜆 = 𝑒𝜆, 

 and, therefore, to prove (46), it suffices to show that if 𝑇 is large and fixed then there is a 

neighborhood  𝑁 = 𝑁(𝛾0, 𝑇 ) of 𝛾0 so that  

∫ |𝜒 (𝑇 (√ −∆𝑔  − 𝜆)) 𝑓|

2

𝛾

 𝑑 ≤ 𝐶𝑇−1𝜆
1
2‖𝑓‖𝐿2

2 (𝑀) + 𝐶𝑇,𝑁
′  ‖𝑓‖𝐿2

2 (𝑀), 𝛾 ∈ 𝑁, (48)  

where 𝐶 (but not 𝐶𝑇,𝑁
′ ) is a uniform constant depending on (𝑀, 𝑔) but independent of 𝑇 and 

𝑁 . To prove (48), we shall be able to use the wave equation as  

𝜒 (𝑇 (√−∆𝑔 − 𝜆)) 𝑓 =
1

2𝜋𝑇
∫ �̂� (

𝑡

𝑇
) 𝑒−𝑖𝑡𝜆

ℝ

𝑒𝑖𝑡√−∆𝑔𝑓𝑑𝑡  

=    
1

𝜋𝑇
∫ �̂�(𝑡 𝑇⁄ )𝑒−𝑖𝑡𝜆
𝑇 4⁄

−𝑇 4⁄
   𝑐𝑜𝑠𝑡√−∆𝑔𝑓 𝑑𝑡 + 𝜒(𝑇(√−∆𝑔 + 𝜆))𝑓, (49)  

using the fact that �̂�(𝑡) is even and supported in |𝑡| ≤
1

4
 . Since the kernel of the last term 

satisfies  

|𝜕𝑥,𝑦
𝛼 𝜒(𝑇 (√−∆𝑔 + 𝜆)) (𝑥, 𝑦)| ≤ 𝐶𝑇 ,𝑁𝜆

−𝑁             (50) 

for any 𝑁 in compact subsets of any local coordinate system, to prove (48) it suffices to 

show that 

∫ |
1

𝜋𝑇
∫  �̂�(𝑡 𝑇⁄ )𝑒−𝑖𝑡𝜆 cos 𝑡  √−∆𝑔𝑓 𝑑𝑡

𝑇 4⁄

−𝑇 4⁄

|
𝛾

2

 𝑑𝑠 

≤ 𝐶𝑇−1𝜆
1
2 + 𝐶𝑇,𝑁

′  ‖𝑓‖𝐿2(𝑀) , 𝛾 ∈ 𝑁 (𝛾0, 𝑇 ).                       (51) 

If 𝛾0 is not part of a periodic geodesic of period ≤ 𝑇 , then we can easily prove (51) just by 

using wavefront analysis and arguments that are similar to the proof of the Duistermaat-

Guillemin theorem [40]. This was done in [28], but we shall repeat the argument here for 

the sake of completeness and since it motivates what is needed to handle the argument when 

𝛾0 is a portion of a periodic geodesic of period  ≤ 𝑇 . 
        To handle the latter case we shall exploit the relationship between solutions of the wave 

equation on (𝑀, 𝑔) of the form  
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{
(𝜕𝑡
2 − ∆𝑔)𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ ℝ+ ×𝑀 

𝑢(0,·) = 𝑓, 𝜕𝑡𝑢(0,·) =  0,
                   (52)  

 and certain ones on (ℝ, 𝑔)  

{
(𝜕𝑡
2 − ∆�̃�)�̃�(𝑡, �̃�), (𝑡, �̃�) ∈ ℝ+ × ℝ

2 

�̃�(0,·) = 𝑓, 𝜕𝑡�̃�(0,·) =  0,
                          (53) 

 Note that 𝑢(𝑡, 𝑥) = (𝑐𝑜𝑠(𝑡√−∆𝑔)𝑓) (𝑥) is the solution of (52). 

        To describe the relationship between the two equations we shall use the deck 

transformations associated with our universal covering map  

𝑝 = exp𝑥0 ℝ
2 →  𝑀.                                (54) 

 Recall that an automorphism for (ℝ2 , 𝑔), 𝛼 ∶  ℝ2  →  ℝ2, is a deck transformation if  

𝑝 ∘  𝛼 = 𝑝.  
In this case we shall write 𝛼 ∈ 𝐴𝑢𝑡(𝑝). In the case where 𝕋2 is the standard two-torus, each 

α would just be translation in ℝ2 with respect to some ∈ ℤ2 . Motivated by this if �̃� ∈ ℝ2 

and 𝛼 ∈ 𝐴𝑢𝑡(𝑝), let us call 𝛼(�̃�) the translate of �̃� by 𝛼. then we recall a set 𝐷 ⊂ ℝ2 is called 

a fundamental domain of our universal covering p if every point in ℝ2 is the translate of 

exactly one point in 𝐷. Of course there are infinitely many fundamental domains, but we 

may assume that ours is relatively compact, connected and contains the ball of radius 2 

centered at the origin in view of our assumption about the injectivity radius of (𝑀, 𝑔). We 

can then think of our unit geodesic 𝛾0 = {(𝑡, 0) ∶ |𝑡| ≤
1

2
 } (written in geodesic polar 

coordinates as above) both as one in (𝑀, 𝑔) and one in the fundamental domain which is of 

the same form. Likewise, a function 𝑓(𝑥) on 𝑀 is uniquely identified by one 𝑓𝐷(�̃�) on 𝐷 if 

we set 𝑓𝐷(�̃�) = 𝑓(𝑥), where �̃� is the unique point in 𝐷 ∩ 𝑝−1(𝑥). Using 𝑓𝐷 we can define a 

“periodic extension”, 𝑓, of 𝑓 to ℝ2 by defining 𝑓(�̃�) to be equal to 𝑓𝐷(�̃�) if �̃� = �̃� modulo 

Aut(𝑝), i.e. if (�̃�, 𝛼) ∈ 𝐷 × 𝐴𝑢𝑡(𝑝) are the unique pair so that �̃� = 𝛼(�̃�). Note then that 𝑓 is 

periodic with respect to Aut(p) since we necessarily have that 𝑓(�̃�) = 𝑓(𝛼(�̃�)) for every 

𝛼 ∈ 𝐴𝑢𝑡(𝑝). We can now describe the relationship between the wave equations (52) and 

(53). First, if (𝑓(𝑥), 0) is the Cauchy data in (52) and (𝑓(�̃�), 0) is the periodic extension to 

(ℝ2 , 𝑔), then the solution �̃�(𝑡, �̃�) to (53) must also be a periodic function of �̃� since 𝑔 is the 

pullback of 𝑔 via 𝑝 and 𝑝 = 𝑝 ∘ 𝛼. As a result, we have that the solution to (52) must satisfy 

𝑢(𝑡, 𝑥) = �̃�(𝑡, �̃�) if �̃� ∈ 𝐷 and 𝑝(�̃�) = 𝑥. Another way of saying this is that if 𝑓 is the 

pullback of 𝑓 via 𝑝 and 𝑡 is fixed then �̃�(𝑡,·) solving (53) must be the pullback of 𝑢(𝑡,·) in 

(52). Thus, periodic solutions to (53) correspond uniquely to solutions of (52). In other 

words, we have the important formula for the wave kernels  

𝑐𝑜𝑠(𝑡 √−∆𝑔(𝑥, 𝑦) = ∑ cos (𝑡√−∆�̃� 

𝛼∈𝐴𝑢𝑡(𝑝)

 (�̃�, 𝛼(�̃�)),       (55) 

 if �̃� and �̃� are the unique points in 𝐷 for which 𝑝(�̃�) = 𝑥 and 𝑝(�̃�) = 𝑦. 
 Note that the sum in (55) only has finitely many nonzero terms for a given (𝑥, 𝑦, 𝑡) since, 

by the finite propagation speed for 𝑔 = 𝜕𝑡
2 − ∆�̃�, the summands in the in the right all vanish 

when 𝑑�̃�(�̃�, 𝛼(�̃�)) > 𝑡. For instance, if 𝑥 = 𝑦 = 𝑥0 the number of nontrivial terms would 

equal the cardinality of 𝑝 −1(𝑥0) ∩ {�̃� ∈  ℝ
2 ∶ |�̃�| ≤ 𝑡} where |�̃�| denotes the Euclidean 

length, due to the fact that 𝑑�̃�(0, �̃�) = |�̃�|. Despite this, the number of nontrivial terms will 

grow exponentially in 𝑡 if the curvature is bounded from above by a fixed negative constant. 
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We review one last thing before focusing more closely on the proof of our restriction 

estimate. As we shall see, even though there can be an exponentially growing number of 

nontrivial terms in the right hand side of (55), which could create havoc for our proofs if we 

are not careful, this turns out to be related to something that will actually be beneficial for 

our calculations. 

        These facts are related to the fact that in the geodesic polar coordinates we are using, 

(𝑡 𝑐𝑜𝑠 𝜃, 𝑡𝑠𝑖𝑛 𝜃), 𝑡 > 0, 𝜃 ∈ (−𝜋, 𝜋], for (ℝ2 , 𝑔), the metric 𝑔 takes the form  

𝑑𝑠2 = 𝑑𝑡2 + 𝐴2(𝑡, 𝜉)𝑑𝜃2,                                                            (56) 
 where we may assume that 𝐴(𝑡, 𝜃) > 0 for 𝑡 > 0. Consequently, the volume element in 

these coordinates is given by  

𝑑𝑉𝑔(𝑡, 𝜃) = 𝐴(𝑡, 𝜃)𝑑𝑡𝑑𝜃,                                                           (57) 

 and by Günther’s [6] comparison theorem if the curvature of (𝑀, 𝑔) and hence that of 

(ℝ2 , 𝑔) is nonpositive, we have  

𝐴(𝑡, 𝜃) ≥ 𝑡.                                                                     (58) 
 Furthermore, if one assumes that the curvature is ≤ −𝜅2 , with 𝜅 > 0 then one has 

𝐴(𝑡, 𝜃) ≥
1

𝜅
 𝑠𝑖𝑛ℎ(𝜅𝑡).                                                        (59) 

 Since the volume element for two-dimensional Euclidean space in polar coordinates is 

𝑡𝑑𝑡𝑑𝜃 and that of the hyperbolic plane with constant curvature – 𝜅2 is 
1

𝜅
 𝑠𝑖𝑛ℎ(𝜅𝑡) 𝑑𝑡𝑑𝜃, Günther’s volume comparison theorem says that in geodesic polar 

coordinates the volume element for spaces of nonpositive curvature is at least that of ℝ2 with 

the flat metric, while if the curvature is bounded above by – 𝜅2 the volume element is at 

least that of the hyperbolic plane of constant curvature – 𝜅2 . In the latter case, as we warned, 

the number of nontrivial terms in the sum in the right side of (55) will be at least bounded 

below by a multiple of 𝑒𝜅𝑡 as 𝑡 →  +∞. Let us now turn to the proof of (51) and hence 

Theorem (2.2.1). Given 𝛾 ∈ 𝛱 we let 𝑇∗𝛾 ⊂ 𝑇∗𝑀 and 𝑆∗𝛾 ⊂ 𝑆∗𝑀 be the cotangent and unit 

cotangent bundles over 𝛾, respectively. Thus, if (x, ξ) ∈ T∗γ then ξ♯ is a tangent vector to γ 

at x if T∗M ∋ ξ →  ξ♯ ∈ TM is the standard musical isomorphism, which, in local 

coordinates, sends ξ = (ξ1, ξ2) ∈ Tx
∗M to ξ♯ = (ξ♯

1 , ξ♯
2) with ξ♯

j
= ∑ gj

k
(x)k  ξk. Then if 

𝛷𝑡: 𝑆
∗𝑀 →  𝑆∗𝑀 denotes geodesic flow in the unit cotangent bundle over 𝑀, and (𝑥, 𝜉) ∈

𝑆∗𝛾 we let 𝐿(𝑥, 𝜉) be the minimal 𝑡 > 0 so that 𝛷𝑡(𝑥, 𝜉) = (𝑥, 𝜉) and define it to be +∞ if 
no such time 𝑡 exists. Then if 𝛾 is not part of a periodic geodesic this quantity is +∞ on 𝑆∗𝛾, 
and if it is then it is constant on 𝑆∗𝛾 and equal to the minimal period of the geodesic, ℓ(𝛾) 
(which must be larger than ten because of our assumptions). Note also that 𝐿(𝑥, 𝜉) can also 

be thought of as a function on 𝑆∗𝑀, and that, in this case, it is lower semicontinuous. Recall 

that we are working in geodesic polar coordinates vanishing at 𝑥0, the midpoint of 𝛾0, and 

that 𝛾0 is of the form (47) in these coordinates. Let us choose 𝛽 ∈ 𝐶0
∞(𝑅) equal to one on 

[−
3

4
 ,
3

4
 ] but 0 outside [−1, 1]. We then let 𝑏𝜀(𝑥, 𝐷) and 𝐵𝜀(𝑥, 𝐷) be zero-order 

pseudodifferential operators which in the above local coordinates have symbols 

 𝑏𝜀(𝑥, 𝜉) = 𝛽(|𝑥|)𝛽(𝜉2/𝜀|𝜉|), and 𝐵𝜀(𝑥, 𝜉) = 𝛽(|𝑥|)(1 − 𝛽(𝜉2/𝜀|𝜉|)), 
 respectively.  

       Our first claim is that if 𝜀 > 0 and 𝛾 ∈ 𝛱 are fixed, then we can find a neighborhood 

𝑁(𝛾0 , 𝜀) of 𝛾0 so that 
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∫ ∫ |𝐵𝜀 ∘ 𝑐𝑜𝑠(𝑡√−∆𝑔)𝑓|
2

𝛾

𝑇 4⁄

–𝑇 4⁄
 𝑑𝑠𝑑𝑡 ≤ 𝐶𝑇,𝜀‖𝑓‖𝐿2

2 (𝑀), 𝛾 ∈ 𝑁 (𝛾0, 𝜀),   (60) 

 which, by an application of the Schwartz inequality, would yield part of (51), namely,  

∫ |
1

𝜋𝑇
  ∫  �̂�(𝑡 𝑇⁄ )𝑒−𝑖𝜆𝑡 𝐵𝜀

 𝑇 4⁄

 −𝑇 4⁄
∘ cos (𝑡√−∆𝑔) 𝑓 𝑑𝑡|

𝛾

2

𝑑 ≤ 𝐶𝑇,𝜀
′ ‖𝑓‖𝐿2

2 (𝑀), 

 𝛾 ∈ 𝑁 (𝛾0, 𝜀).    (61)  
If 𝑅𝛾 denotes the restriction to 𝛾 ∈ 𝛱, then (60) follows from the fact that the operator 

 𝑓 →  𝑅𝛾(𝐴 ∘ 𝑐𝑜𝑠(𝑡√−∆𝑔)𝑓), 

 regarded as an operator from 𝐶∞(𝑀) → 𝐶∞(𝛾 × [−𝑇 /4, 𝑇 /4]), is a Fourier integral 

operator of order zero which is locally a canonical graph (i.e., nondegenerate) if supp 

𝐴(𝑥, 𝜉)  ∩  𝑆∗𝛾 = ∅, and hence a bounded operator from 𝐿2(𝑀) to 𝐿2(𝛾 × [−𝑇 /4, 𝑇 /4]). 
since 𝐵𝜀(𝑥, 𝜉) vanishes on a neighborhood of 𝑆∗𝛾0 , we conclude that this is the case 𝐴 =
𝐵𝜀  for 𝛾 ∈ 𝛱 close to 𝛾0, which gives us (60). The 𝐿2 -boundedness of nondegenerate 

Fourier integrals is a theorem of Hörmander [44], while the observation about 𝑅𝛾(𝐴 ∘

𝑐𝑜𝑠(𝑡√−∆𝑔)) is one of Tataru [56]. It is also easy to check the latter, because, for fixed 𝑡, 𝑒 

it√−∆𝑔: 𝐶
∞(𝑀)  → 𝐶∞(𝑀) is a nondegenerate Fourier integral operator, and, therefore, 

one needs only to verify the assertion when 𝑡 = 0, in which case it is an easy calculation 

using any parametrix for the half-wave operator.  

       The estimate (61) holds for any 𝛾0 ∈ 𝛱. Let us now argue that if ℓ(𝛾0), the period of 

𝛾0, is larger than 𝑇 or if 𝛾0 is not part of a periodic geodesic, then we have also have 

favorable bounds if 𝐵𝜀 is replaced by 𝑏𝜀, with 𝜀 > 0 sufficiently small. To do this, we recall 

that the wave front set of the kernel of 𝑏𝜀 ∘ 𝑐𝑜𝑠(𝑡√−∆𝑔) ∘ 𝑏𝜀
∗ is contained in  

{(𝑥, 𝑡, 𝜉, 𝜏;  𝑦, −𝜂): 𝛷±𝑡(𝑥, 𝜉) = (𝑦, 𝜂), 𝜏
2 = ∑𝑔𝑗𝑘(𝑥)𝜉𝑗𝜉𝑘 , (𝑥, 𝜉), (𝑦, 𝜂) ∈  𝑠𝑢𝑝𝑝 𝑏𝜀  }. (62) 

To exploit this, let 𝑊𝛾 be the operator 

𝑊𝛾𝑓 = 𝑅𝛾 (
1

𝜋𝑇
 ∫ �̂�(𝑡 𝑇⁄ )𝑒−𝑖𝜆𝑡𝑏𝜀
𝑇 4⁄

–𝑇 4⁄
cos(𝑡√−∆𝑔) 𝑓 𝑑𝑡).       (63)  

Our goal then is to show, that under the present assumption that ℓ(𝛾0) >  𝑇 

‖𝑊𝛾‖𝐿2(𝑀)→𝐿2(𝛾) ≤ 𝐶𝑇
−
1
2 𝜆

1
4 + 𝐶𝑇,𝑏𝜀 

for 𝛾 ∈ 𝛱 belonging to some neighborhood 𝑁 (𝛾0, 𝑇, 𝜀) of 𝛾0. This is equivalent to showing 

that the dual operator 𝑊𝛾
∗ ∶ 𝐿2(𝛾) → 𝐿2(𝑀) with the same norm, and since 

 ‖𝑊𝛾
∗𝑔‖

𝐿2(𝑀)

2
= ∫ 𝑊𝛾𝑊𝛾

∗ 𝑔�̅� 𝑑𝑠 ≤ ‖𝑊𝛾𝑊𝛾
∗ 𝑔‖

𝐿2(𝛾)
‖𝑔‖𝐿2(𝛾)

𝛾

  , 

 we would be done if we could show that 

‖𝑊𝛾
∗𝑔‖

𝐿2(𝑀)

2
≤ (𝐶𝑇−1𝜆

1

2 + 𝐶𝑇,𝑏𝜀) ‖𝑔‖𝐿2(𝛾).        (64)  

But, by Euler’s formula, the kernel of 4𝑊𝛾𝑊𝛾
∗ is 𝐾|𝛾×𝛾, where 𝐾(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑀 is the 

kernel of the operator 𝑏𝜀 ∘ 𝜌(𝑇 (√−∆𝑔 − 𝜆)) ∘ 𝑏𝜀
∗ + 𝑏𝜀 ∘ 𝜌(𝑇(√−∆𝑔 + 𝜆)) ∘ 𝑏𝜀

∗ + 2𝑏𝜀 ∘

𝜒(𝑇(√−∆𝑔 − 𝜆))𝜒(𝑇(√−∆𝑔 + 𝜆)) ∘ 𝑏𝜀
∗ , 𝑖𝑓 𝜌(𝜏) = (𝜒(𝜏))

2
 . The last two terms satisfy 

bounds like those in (50) (with constant depending on 𝑇 and 𝑏𝜀), and the first term is 

 
1

𝜋𝑇
 ∫ �̂�(𝑡 𝑇⁄ )𝑒−𝑖𝜆𝑡 (𝑏𝜀 ∘ 𝑐𝑜𝑠(𝑡√−∆𝑔) ∘ 𝑏𝜀

∗ )
𝑇∕2

−𝑇 ∕2
   (𝑥, 𝑦)𝑑𝑡.      (65) 



69 

 We are using the fact that �̂� = �̂� ∗ �̂� is supported in [−
1

2
 ,
1

2
 ]. In view of (62), if 𝜀 > 0 is 

sufficiently small, since we are assuming that ℓ(𝛾0) > 𝑇 , it follows that we can find a 

neighborhood 𝑁 of 𝛾0 in 𝑀 so that (𝑏𝜀 ∘ 𝑐𝑜𝑠(𝑡√−∆𝑔) ∘ 𝑏𝜀
∗ )(𝑥, 𝑦) is smooth on 𝑁 ×

 𝑁 when 𝑡 ≥  2. Thus, on 𝑁 ×  𝑁 the difference between (64) and  

𝐾(𝑥, 𝑦) =
1

𝜋𝑇
∫ 𝛽(𝑡 5⁄ )𝑝(𝑡 𝑇⁄ )𝑒−𝑖𝜆𝑡 (𝑏𝜀 ∘ 𝑐𝑜𝑠(𝑡√−∆𝑔) ∘ 𝑏𝜀

∗ )

𝑇∕2

−𝑇 ∕2

   (𝑥, 𝑦) 𝑑𝑡  

is 𝑂𝑇,𝑏𝜀  (1). But, by using the Hadamard parametrix (see below) one finds that 

|𝐾(𝑥, 𝑦)| ≤  𝐶𝑇  −1𝜆
1
2  (𝑑𝑔(𝑥, 𝑦))

−
1
2
  

+𝐶𝑏𝜀,𝑇 (1 + 𝜆 (1 + 𝜆𝑑𝑔(𝑥, 𝑦))
−
3
2
 ) , 𝑥, 𝑦 ∈  𝑁,      (66) 

 for some uniform constant 𝐶, which is independent of 𝜀, 𝑇 and 𝜆. Since, by Young’s 

inequality, the integral operator with kernel 𝐾|𝛾×𝛾 is bounded from 𝐿2(𝛾)  →  𝐿2(𝛾) with 

norm bounded by 𝐶𝑇  −1𝜆
1

2  + 𝐶𝑏𝜀,𝑇 if  ⊂  𝑁 , we get (64), which finishes the proof that (48) 

holds provided that ℓ(𝛾0) > 𝑇. 

       The above argument used the fact that if ℓ(𝛾0) > 𝑇 , with 𝑇 fixed, then if 𝜀 > 0 is small 

enough and (𝑥, 𝜉) ∈ 𝑠𝑢𝑝𝑝 𝑏𝜀  with 𝑥 ∈ 𝛾0 then 𝛷𝑡(𝑥, 𝜉) ∉  𝑠𝑢𝑝𝑝 𝑏𝜀 for 2 < |𝑡| ≤ 𝑇 /2. In 

effect, this allowed us to cut the effect of loops though 𝛾0 of its extension of length 𝑇 from 

our main calculuation, since they were all transverse. If  𝛾0 ∈ 𝛱 is part of a periodic geodesic 

of period ≤ 𝑇 , i.e., ℓ(𝛾0) ≤ 𝑇 , then this need not be true. On the other hand, if 𝑇 is fixed 

and (𝑥, 𝜉) is as above, then for sufficiently small 𝜀 we will have  

𝛷±𝑡(𝑥, 𝜉) ∉ 𝑠𝑢𝑝𝑝 𝑏𝜀 , 𝑖𝑓 𝑥 ∈ 𝛾0, 𝑎𝑛𝑑 𝑡 ∉  ⋃ [𝑗ℓ(𝛾0) − 2, 𝑗ℓ(𝛾0)𝑗∈ℤ + 2].  (67)  

Note that our assumption that the injectivity radius of (𝑀, 𝑔) is 10 or more implies that 

ℓ(𝛾0) ≥ 10. 
 To exploit this, we shall use (55) which relates the wave kernel for (𝑀, 𝑔) with the one for 

its universal cover using the covering map given by 𝑝 = exp𝑥0with 𝑥0 being the midpoint 

of 𝛾0. Note that the points 𝛼(0), 𝛼 ∈ 𝐴𝑢𝑡(𝑝) exactly correspond to geodesic loops through 

𝑥0, with looping time being equal to the distance from 𝛼(0) to the origin in ℝ2 . Just a few 

of these correspond to smooth loops through 𝑥0 along the periodic geodesic containing 𝛾0. 
Since we are assuming that we are working with local coordinates on (𝑀, 𝑔) and global 

geodesic polar ones on (ℝ2, 𝑔) so that 𝛾0 is of the form (47), the automorphisms with this 

property are exactly the 𝛼𝑗 ∈ 𝐴𝑢𝑡(𝑝), 𝑗 ∈ ℤ for which 

𝛼𝑗(0) = 𝑗ℓ(𝛾0, 𝑜).                               (68) 

Note that 𝐺𝛾0 = {𝛼𝑗}𝑗∈ℤ is a cyclic subgroup of Aut(𝑝)with generator 𝛼1, which is the 

stabilizer group for the lift of periodic geodesic containing 𝛾0. Consequently, we can choose 

𝜀 > 0 small enough and a neighborhood 𝑁 of 𝛾0 in 𝑀 so that 

(𝑏𝜀 ∘ cos (𝑡√−∆�̃� )) ∘ 𝑏𝜀
∗(�̃�, 𝛼(�̃�)) ∈ 𝐶∞𝑁 ×𝑁 

× [𝑗ℓ(𝛾0) − 2, 𝑗ℓ(𝛾0) + 2], (69)  
if Aut(𝑝) ∋ 𝛼 ∉ 𝐺𝛾0 . 

       Therefore, by (67)–(69), if we repeat the arguments that were used to prove (64), we 

conclude that we would have 
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∫ |
1

𝜋𝑇
∫ �̂�(𝑡 𝑇⁄ )𝑒  –𝑖𝜆𝑡
 ∞

−∞

  𝑏𝜀 ∘ cos (𝑡√−∆𝑔) 𝑓 𝑑𝑡|

2

𝛾

 𝑑𝑠 

≤ (𝐶𝑇  −
1
4 𝜆

1
4 + 𝐶𝑇,𝑏𝜀)

2

‖𝑓‖𝐿2(𝑀)
2 , 𝛾 ∈ 𝑁(𝛾0, 𝑇 ),          (70) 

for some neighborhood 𝑁(𝛾0 , 𝑇 ) in 𝛱, if we could show that if the 𝛼𝑗 are as in (68) and  

𝐾(𝑥, 𝑦) =  
1

𝜋𝑇
∑ ∫ 𝛽((𝑠 − 𝑗ℓ(𝛾0)) 5)⁄

∞

−∞ {𝑗∈ℤ+: 𝑗𝑡(𝛾0)≤𝑇 2⁄ }

�̂�(𝑠 𝑇⁄ )𝑒  –𝑖𝑠𝜆  

× (𝑏𝜀 ∘ 𝑐𝑜𝑠 𝑠√−∆�̃� ∘ 𝑏𝜀
∗) (�̃�, 𝛼𝑗(�̃�)) 𝑑𝑠,     (71)  

Then 

|𝐾(𝑥, 𝑦)| ≤ 𝐶𝑇  −1𝜆
1
2  (𝑑𝑔(𝑥, 𝑦))

−
1
2
+ 𝑇  −

1
2 𝜆

1
2 

+𝐶𝑇,𝑏𝜀(1 + 𝜆 (1 + 𝜆𝑑𝑔(𝑥, 𝑦))
−
3
2
 , 𝑥, 𝑦 ∈ 𝑁,                   (72) 

 with 𝑁 being some neighborhood in 𝑀 of 𝛾0 (depending on T ). The second term in the 

right side of this inequality did not occur in the previous steps. It comes from the terms in 

(71) with 𝑗 ≠ 0. Also, the fact that (72) yields (70) just follows from an application of 

Young’s inequality. To prove (72), it suffices to see that we can find 𝑁 as above so that 

∫ 𝛽 ((𝑠 − 𝑗ℓ(𝛾0)) 5⁄ )�̂�(𝑠 𝑇⁄ )𝑒  –𝑖𝑠𝜆 (𝑏𝜀 ∘ cos 𝑠√−∆�̃� ∘ 𝑏𝜀
∗) (�̃�, 𝛼𝑗(�̃�)) 𝑑𝑠  

≤  𝐶𝜆
1
2( max {𝑑𝑔 (�̃�, 𝛼𝑗(�̃�)) , 𝑒

𝜅𝑑𝑔(�̃�, 𝛼𝑗(�̃�)})
−
1
2 + 𝐶𝑇,𝑏𝜀  , 

𝑥, 𝑦 ∈ 𝑁 , 0 ≠ |𝑗| , ℓ(𝛾0) ≤ T.        (73) 
Cassuming that the curvature of (𝑀, 𝑔) is everywhere ≤ −𝜅2 , 𝜅 ≥ 0, while for 𝑗 = 0, we 

have  

∫(𝑠 5⁄ )�̂�(𝑠 𝑇⁄ )𝑒−𝑖𝑠𝜆

𝛽

(𝑏𝜀 ∘ 𝑐𝑜𝑠 𝑠 √−∆𝑔 ∘ 𝑏𝜀
∗) (𝑥, 𝑦)) 𝑑𝑠  

≤ 𝐶𝜆
1
2 (𝑑𝑔(𝑥, 𝑦))

−
1
2
+  𝐶_(𝑇, 𝑏_𝜀) (1 + 𝜆 (1 + 𝜆𝑑𝑔(𝑥, 𝑦))

−
3
2
 ,  

𝑥, 𝑦 ∈  𝑁.                  (74) 
Note that 𝑑�̃�(�̃�, 𝛼𝑗(�̃�)) ∈ [𝑗ℓ(𝛾0) − 1, 𝑗ℓ(𝛾0) + 1] when 𝑥, 𝑦 ∈ 𝛾0 and hence 

𝑑𝑔(�̃�, 𝛼𝑗(�̃�)) ≥ |𝑗| when 𝑥, 𝑦 ∈ 𝑁 with 𝑁 being a small neighborhood of 𝛾0 in 𝑀. We shall 

assume that this is the case in what follows. We then get (72) by summing over 𝑗. (Observe 

that if the curvature is assumed to be bounded below by a negative constant, we get 

something a bit stronger than (72) where in the second term we may replace 𝑇−
1

2 by 𝑇−1 . ) 
       Both (73) and (74) are routine consequences of stationary phase and the Hadamard 

parametrix for the wave equation.  

       To prove (74) let 𝜑(𝑥, 𝑦) denote geodesic normal coordinates of 𝑦 about 𝑥. Then if 

|𝑡| ≤ 5, by the Hadamard parametrix (see [64] or [27]) and the composition calculus for 

Fourier integral operators (see Chapter 6 in [16]) 

(𝑏𝜀 ∘ cos (𝑡 √−∆𝑔) ∘ 𝑏𝜀
∗) (𝑥, 𝑦) = ∑∫ 𝑒𝑖∅(𝑥,𝑦)·𝜉±𝑖𝑡|𝜉|

ℝ2±

𝑎𝜀(𝑥, 𝑦, 𝜉)𝑑𝜉 + 𝑂𝜀(1),    (75) 

where 𝑎𝜀 ∈ 𝑆1,0
0  depends on −∆𝑔 and 𝑏𝜀 but satisfies 
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|𝑎𝜀| ≤ 𝐶, and |𝜕𝑥 ,𝑦
𝛼 𝜕𝜉

𝜎 𝑎𝜀| ≤ 𝐶𝜀𝛼𝜎(1 + |𝜉|)
−|𝜎|.      (76) 

The first constant is independent of 𝐶 and only depends on the size of the symbol of 𝑏𝜀, 

which is ≤ ‖𝛽‖𝐿∞(ℝ)
4  . Recall (see [16]) the following fact about the Fourier transform of a 

density times Lebesgue measure on the circle 𝑆1 = {𝛩 = (cos 𝜃 , sin 𝜃)}, 

∫ 𝑒𝑖𝑤·𝛩𝑎𝜀

2𝜋

 0

 (𝑥, 𝑦, 𝛩)𝑑𝜃 = |2𝜋𝑤|−
1
2∑𝑒±𝑖|𝑤|

±

𝑎𝜀(𝑥, 𝑦, ±𝑤) 

+𝑂𝜀(|𝑤|
 −
3
2 ), |𝑤| ≥ 1,      (77) 

where the constants for the last term depend on the size of finitely many constants in (77). 

Since |𝜑(𝑥, 𝑦)| = 𝑑𝑔(𝑥, 𝑦), if we combine (75) and (76), we find that, modulo a 𝑂𝜀(1) term, 

if 𝜓(𝑠) = 𝛽(𝑠/5)�̂�(𝑠/𝑇), then when 𝑑𝑔(𝑥, 𝑦) ≥ 𝜆
−1 , the quantity in (74) is the sum over 

± of a fixed multiple of 

 (𝑑𝑔(𝑥, 𝑦))
−
1
2
∫ (�̂�(𝜆 − 𝑟) + �̂�(𝜆 + 𝑟)𝑒±𝑖𝑟𝑑𝑔(𝑥,𝑦) 𝑎𝜀(𝑥, 𝑦,±𝑟∅(𝑥, 𝑦))𝑟

1
2 𝑑𝑟

∞

0

+ 𝑂𝜀 ((𝑑𝑔(𝑥, 𝑦))
−
3
2
∫(|�̂�(𝜆 − 𝑟)| + |�̂�(𝜆 + 𝑟)|)

∞

0

 (1 + 𝑟) −
1
2 𝑑𝑟)   

By (76), the first term in is 𝑂(‖𝑎𝜀‖∞ (𝜆𝑑𝑔(𝑥, 𝑦))
−
1

2
), since |�̂�(𝜏)| ≤ 𝐶𝑁(1 + |𝜏|)

 –𝑁 for any 

𝑁. Since the last term is 𝑂𝜀(𝜆
 −1 2⁄  (𝑑𝑔(𝑥, 𝑦))

−
3

2
 ), we have established (74) when 

𝑑𝑔(𝑥, 𝑦) ≥ 𝜆
−1 . The fact that it is also 𝑂(𝜆)  +  𝑂𝜀(1) is a simple consequence of (75) and 

(76) which gives the bounds for 𝑑𝑔(𝑥, 𝑦) ≤ 𝜆
 −1 and concludes the proof of (74).  

       To prove (74) we can exploit the fact that, unlike the case of 𝑡 = 0, if 𝑡 ≠ 0 then cost 

√−∆𝑔∶ 𝐶
∞(𝑀)  →  𝐶∞(𝑀) is a conormal Fourier integral operator with singular support of 

codimension one. Based on this and (62) we deduce that if (𝑥, 𝑡, 𝜉, 𝜏;  𝑦, 𝜂) is in the wave 

front set of 

 (𝑐𝑜𝑠(𝑡√−∆�̃�))(�̃�, 𝛼𝑗(�̃�)), 𝑗 ≠ 0,  

and both 𝑥 and 𝑦 are on 𝛾0 then both 𝜉 and 𝜂 must be on the first coordinate axis. Therefore, 

since the symbol, 𝑏𝜀(𝑥, 𝜉), of bε equals one when 𝑥 ∈ 𝛾0 and 𝜉 is in a conic neighborhood 

of this axis (depending on 𝜀), we conclude that there must be a neighborhood 𝑁 of 𝛾0 in 𝑀 

so that  

(𝑏𝜀 ∘ cos(𝑡 𝑐) ∘ 𝑏𝜀
∗) (�̃�, 𝛼𝑗(�̃�)) − 𝑐𝑜𝑠𝑡√−∆�̃�  (�̃�, 𝛼𝑗(�̃�)) ∈ 𝐶

∞(𝑁 × 𝑁 ),  

0 ≠ |𝑗|ℓ(𝛾0) ≤ 𝑇. 
Because of this, we would have the remaining inequality, (73), if we could show that 

∫(𝑠 − 𝑗ℓ(𝛾0) 5⁄ )
𝛽

�̂�(𝑠 𝑇⁄ )𝑒  –𝑖𝑠𝜆 cos 𝑠 √−∆𝑔  (�̃�, 𝛼𝑗 (�̃�)) 𝑑𝑠  

≤   𝐶𝜆
1
2(max{𝑑𝑔(�̃�, 𝛼𝑗 (�̃�)), 𝑒

𝜅𝑑𝑔(�̃�,𝛼𝑗(�̃�)) })−
1
2 + 𝐶𝑇 

𝑥, 𝑦 ∈ 𝑁 , 0 ≠ |𝑗|ℓ(𝛾0) ≤ 𝑇.             (78) 
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 To prove this, we shall use the fact that on (ℝ2 , 𝑔) we can use the Hadamard parametrix 

even for large times. Recall that the Hadamard parametrix says that if we set  

𝜀0(𝑡, 𝑥) = (2𝜋)
−2∫  𝑒(𝑖𝑥·𝜉) 

ℝ2
𝑐𝑜𝑠(𝑡|𝜉|) 𝑑𝜉, 

and define 𝜀𝜈 , 𝜈 =  1, 2, 3, . .. recursively by 2𝜀𝜈(𝑡, 𝑥) = 𝑡 ∫ 𝜀𝜈−1(𝑠, 𝑥)𝑑𝑠,
𝑡

0
 𝜈 = 1, 2, 3, . . ., 

then there are functions 𝑤𝜈 ∈ 𝐶
∞(ℝ2 ×ℝ2) so that we have  

(𝑐𝑜𝑠(𝑡√−∆�̃�)(𝑥, 𝑦) = ∑𝑤𝜈(𝑥, 𝑦)𝜀𝜈

𝑁

𝜈=0

  (𝑡, 𝑑�̃�(𝑥, 𝑦)) + 𝑅𝑁(𝑡, 𝑥, 𝑦), 

where for 𝑛 = 2, 𝑅𝑁 ∈ 𝐿𝑙𝑜𝑐
∞ (ℝ × ℝ2 × ℝ2) if 𝑁 ≥ 10. We are abusing the notation a bit by 

putting 𝜀𝜈(𝑡, 𝑟) equal to the radial function 𝜀𝜈(𝑡, 𝑥) for some |𝑥| = 𝑟. The 𝜀𝜈 , 𝜈 = 1, 2, 3, . . ., 
are Fourier integrals of order −𝜈; for instance, 

𝜀1(𝑡, 𝑥) = (2𝜋)
 −2∫ 𝑒𝑖𝑥·𝜉  

𝑡𝑠𝑖𝑛 𝑡|𝜉|

2|𝜉|
 𝑑𝜉

ℝ2
 . 

 As a result of this, we would have (78) if we could show that 

|𝑤0 (�̃�, 𝛼𝑗(�̃�)) ∫ ∫ 𝛽(𝑠 − 𝑗ℓ(𝛾0) 5⁄ )�̂�(𝑠 𝑇⁄ )𝑒−𝑖𝜆𝑠𝑒
𝑖(�̃�−𝛼𝑗(�̃�))·𝜉 cos(𝑠|𝜉|) 𝑑𝜉 𝑑𝑠|     

≤ 𝐶𝜆
1
2(max{𝑑𝑔(�̃�, 𝛼𝑗 (�̃�)), 𝑒

𝜅𝑑𝑔(�̃�,𝛼𝑗(�̃�)) })−
1
2 , 𝑗 = 1, 2, . . . , (79) 

 as well as  

| ∫ 𝛽(𝑠 − 𝑗ℓ(𝛾0) 5⁄ )𝜌(𝑠 𝑇⁄ )𝑒  –𝑖𝑠𝜆𝜀𝜈(𝑠, 𝑑𝑔(�̃�, 𝛼𝑗(�̃�))𝑑𝑠| ≤  𝐶𝜈 , 0 ≠ 𝑗ℓ(𝛾0) 

≤  𝑇, 𝜈 =  1, 2, 3, . . . .                         (80)  
Here we are using the fact that |𝑤𝜈(𝑥, 𝑦)| ≤ 𝐶𝑇 for |𝑥|, |𝑦| ≤ 𝑇  
. If we repeat the stationary phase argument that was used to prove (74), we see that the left 

side of (79) is dominated by a fixed constant times 

 𝜆
1
2 𝑤0 (�̃�, 𝛼𝑗(�̃�)) (𝑑�̃� (�̃�, 𝛼𝑗(�̃�)))

−
1
2
 , 

 and, consequently, we would have (74) if  

𝑤0 (�̃�, 𝛼𝑗(�̃�)) (𝑑�̃� (�̃�, 𝛼𝑗(�̃�)))
−
1
2
 ≤  𝐶(max{𝑑𝑔(�̃�, 𝛼𝑗 (�̃�)), 𝑒

𝜅𝑑𝑔(�̃�,𝛼𝑗(�̃�)) })−
1
2  (81) 

assuming, as above, that the curvature of 𝑀 is ≤ −𝜅2 , 𝜅 ≥ 0. The last inequality comes 

from the fact that in geodesic normal coordinates about 𝑥, we have 

 𝑤0(𝑥, 𝑦) = (𝑑𝑒𝑡 𝑔𝑖𝑗(𝑦))
−
1
4
 ,  

(see [61], [22] or §2.4 in [27]). If 𝑦 has geodesic polar coordinates (𝑡, 𝜃) about 𝑥, then 𝑡 =

𝑑�̃�(𝑥, 𝑦), and if 𝐴(𝑡, 𝜃) is as in (57), we conclude that 𝑤0(𝑥, 𝑦) = √𝑡/𝐴(𝑡, 𝜃), and therefore 

(81) follows from Günther’s comparison estimate (59) if – 𝜅2 < 0 and (58) if 𝜅 = 0. 

The second estimate (80) is elementary and left for the reader, who can check that the 

terms are actually 𝑂(𝜆
1

2
 –𝜈). (This is also just a special case of Lemma 3.5.3 in [27].) This 

completes the proof of (78), and, hence, that of Theorem (2.2.1). 

We see that the proof of Theorem (2.2.1) shows that one can strengthen our main 

estimate (42) in a natural way. Specifically, if 𝛾0 is a periodic geodesic of length ℓ(𝛾0) and 

if we define the δ-tube about 𝛾 to be  

𝑇𝛿(𝛾0) = {𝑦 ∈ 𝑀: 𝑑𝑖𝑠𝑡𝑔(𝑦, 𝛾0) < 𝛿}, 
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 with 𝛿 > 0 fixed, then there is a uniform constant 𝐶𝛿 so that whenever 𝜀 > 0 we have for 

large 𝜆  
1

ℓ(𝛾0)
∫ |𝑒𝜆|

2𝑑𝑠
𝛾0

 ≤ 𝜀𝜆
1
2‖𝑒𝜆‖𝐿2(𝑇𝛿(𝛾0))

2 + 𝐶𝛾0,𝛿,𝜀‖𝑒𝜆‖𝐿2(𝑀)
2 .     (82) 

Thus, (42) essentially lifts to the cylinder ℝ2/𝐺𝛾0  , with, as above, 𝐺𝛾0  , being the stabilizer 

group for the lift of 𝛾0 to the universal cover (ℝ2 , 𝑔). To prove this, we as before write 𝐼 =
𝐵𝜀 + 𝑏𝜀 , with 𝑏𝜀(𝑥, 𝜉) equal to one near 𝑇∗𝛾0 but supported in a small conic neighborhood 

of this set. Since the analog of (61) is valid, i.e.,  

∫ |
1

𝜋𝑇
∫ �̂�(𝑡 𝑇⁄ )𝑒  –𝑖𝜆𝑡

𝑇 4⁄

−𝑇 4⁄

 𝐵𝜀 ∘ 𝑐𝑜𝑠(𝑡√−∆𝑔)𝑓 𝑑𝑡|

2

𝛾0

 𝑑𝑠 ≤ 𝐶𝑇,𝜀,𝛾0
′ ‖𝑓‖𝐿2(𝑀)

2 , (83) 

 it suffices to show that  

1

ℓ(𝛾0)
∫ |

1

𝑇
∫ �̂�(𝑡 𝑇⁄ )𝑒  –𝑖𝜆𝑡

𝑇 4⁄

−𝑇 4⁄

 𝑏𝜀 ∘ 𝑐𝑜𝑠 (𝑡√−∆𝑔) 𝑒𝜆𝑑𝑡|

2

𝛾0

𝑑𝑠  

is dominated by the right side of (82).  

       If 𝐾𝜀(𝑥, 𝑠), 𝑥 ∈ 𝑀, 𝑠 ∈ 𝛾0 denotes the kernel of this operator then, if 𝛿 > 0 and 𝑇 are 

fixed, it follows that  

|𝐾𝜀(𝑥, 𝑠)| ≤ 𝐶𝛾0,𝑇,𝛿 , 𝑥 ∉ 𝑇𝛿(𝛾0),                      (84) 

provided that 𝑏𝜀 is supported in a sufficiently small conic neighborhood of 𝑇∗𝛾0. This is a 

simple consequence of the fact that when 𝑏𝜀 is as above, by (62), 𝑏𝜀 ∘ 𝑐𝑜𝑠𝑡√−∆𝑔  (𝑥, 𝑠) is 

smooth when 𝑥 ∉ 𝑇𝛿(𝛾0), 𝑠 ∈ 𝛾0 and |𝑡| ≤ 𝑇 . Since (66) is valid, we conclude that there is 

a uniform constant 𝐶 so that for large 𝜆 we have  

1

ℓ(𝛾0)
∫ |

1

𝑇
∫ �̂�(𝑡 𝑇⁄ )𝑒  –𝑖𝜆𝑡

𝑇 4⁄

−𝑇 4⁄

 𝑏𝜀 ∘ 𝑐𝑜𝑠 (𝑡√−∆𝑔) 𝑒𝜆𝑑𝑡|

2

𝛾0

𝑑𝑠  

≤  𝐶𝑇  −1𝜆
1

2‖𝑒𝜆‖𝐿2(𝑇𝛿(𝛾0))
2 + 𝐶𝑇,𝛿,𝛾0‖𝑒𝜆‖𝐿2(𝑀)

2              (85)  

which along with (83) gives us (82). This is because we can dominate the quantity in (85) 

by the sum of the corresponding expression where 𝑒𝜆 is replaced by 1𝑇𝛿(𝛾0)
𝑒𝜆  and 

1𝑇𝛿
𝑐  (𝛾0)

𝑒𝜆  𝑎nd use (66) and our earlier arguments to show that the first of these terms is 

dominated by the first term in the right side of (85) if 𝜆 is large, while the second such term 

is dominated by last term in the right side of (85) on account of (84). We would also like to 

point out that it seems likely that one should be able to take the parameter 𝑇 in the proof of 

either (42) or (82) to be a function of 𝜆. This would also require that the parameter 𝜀 to also 

be a function of 𝜆, and thus the argument would be more involved. It would not be surprising 

if, as in B´erard [61] or Hassell and Tacey [23], one could take 𝑇 to be ≈  𝑙𝑜𝑔 𝜆, in which 

case the 𝐿2 -restriction bounds in Theorem (2.2.1) and the 𝐿4 -estimates in Corollary (2.2.2) 

could also be improved to be 𝑂(𝜆
1

4(𝑙𝑜𝑔 𝜆)−𝛿1 and 𝑂(𝜆
1

8 (𝑙𝑜𝑔 𝜆)−𝛿2 , respectively, for some 

𝛿𝑗 > 0. It is doubtful that these bounds would be optimal, though–indeed if a difficult 

conjecture of Rudnick and Sarnak [50] were valid, both would be 𝑂(𝜆𝜀) for any 𝜀 > 0. One 

of the main technical issues in carrying out the analysis when 𝑇 depends on 𝜆 would be to 

determine the analog of (60) in this case. One would also have to take into account more 
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carefully size estimates for the coefficients 𝑤𝜈 , 𝜈 > 0, in the Hadamard parametrix, but 

B´erard [61] carried out an analysis of these that would seem to be sufficient if 𝑇 ≈  𝑙𝑜𝑔 𝜆. 

On the other hand, we have argued here that the 𝑤0 coefficient is very well behaved, and so 

perhaps there could be further grounds for improvement. 

Section (2.3): 𝑳𝒑 -Norms and Lower Bounds for Nodal Sets of Eigenfunctions in Higher 

Dimensions 

For (𝑀, 𝑔) be a smooth, compact boundaryless Riemannian manifold of dimension 

𝑑 ≥  3. Let ∆𝑔 be the nonnegative Laplace-Beltrami operator and consider eigenfunctions 

𝑒𝜆 satisfying ∆𝑔𝑒𝜆  =  𝜆
2 𝑒𝜆 with 𝜆 ≥  0. If Π denotes the space of unit length geodesics and 

𝑑𝑧 the volume element associated with the metric 𝑔, then our main result is the following 

generalizations of [28]:  

Theorem (2.3.1)[69]: Let 𝑒𝜆, 𝜆 ≥  1, be an eigenfunction and 
2(𝑑+2)

𝑑
 <  𝑞 <

2(𝑑+1)

 𝑑−1
 . Then 

there is a uniform constant 𝐶 <  ∞ so that given 𝜀 >  0 we can find a constant 𝐶𝜀 so that  

‖𝑒𝜆‖𝐿𝑞(𝑀)
𝑞

 ≤  𝜀𝜆
𝑞(
𝑑−1
2  )(

1
2 −

1
𝑞 
)
 ‖𝑒𝜆‖𝐿2(𝑀)

𝑞
 +  𝐶‖𝑒𝜆‖𝐿2(𝑀)

𝑞
  

+ 𝐶𝜀𝜆
𝑞(
𝑑−1
2
 )(
1
2
 −
1
𝑞
 )
‖𝑒𝜆‖𝐿2(𝑀)

2  sup
 𝛾∈𝛱

 (∫  
𝒯
𝜆
−
1
2
(𝛾)

 |𝑒𝜆(𝑧)|
2 𝑑𝑧)

𝑞−2
2

,   (86) 

if 

  𝒯
𝜆
−
1
2
 (𝛾)
 =  {𝑥 ∈  𝑀 ∶  𝑑𝑔(𝑥, 𝛾) ≤  𝜆

−
1
2 }            (87) 

denotes the 𝜆−
1

2 -tube about 𝛾, with 𝑑𝑔(· ,·) being the Riemannian distance function. 

Corollary (2.3.2)[69]: The following are equivalent for any subsequence of 𝐿2 -normalized 

eigenfunctions {𝑒𝜆𝑗𝑘
}
 𝑘=1

∞
:  

lim sup
 𝑘→∞ 

 sup
 𝛾∈𝛱

  ∫  
𝒯

𝜆
𝑗𝑘

−
1
2
 (𝛾)
 

|𝑒𝜆𝑗𝑘
(𝑧)|

2
 𝑑𝑧 =  0                        (88) 

lim sup
 𝑘→∞ 

 𝜆
𝑗𝑘

 −
 𝑑−1

2
 (
1

2
 −
1

𝑝
)
  ‖𝑒𝜆𝑗‖𝐿𝑝(𝑀)

 =  0 for any 2 < 𝑝 <
2(𝑑+1)

𝑑−1
 .      (89)  

Proof. Given Theorem (2.3.1), it is routine to verify that (88) implies (89) for 
2(𝑑+2)

𝑑
 <

 𝑝 <
2(𝑑+1)

𝑑−1
 . The remaining values of p then follow from interpolation. For the converse, 

observe that Hölder’s inequality gives  

∫  
𝑇
𝜆
−
1
2
 (𝛾)

 |𝑒𝜆(𝑧)|
2 𝑑𝑧 ≲  𝜆

−(
𝑑−1
2
 )(1−

2
𝑝
 )
‖𝑒𝜆‖𝐿𝑝(𝑀)

2  ,  

and the implication follows.  

In the case when (𝑀, 𝑔) has nonpositive sectional curvatures, we shall be able to show 

that (89) holds for the full sequence of eigenvalues and hence extend the two-dimensional 

results of the second author and Zelditch [30] to higher dimensions:  

Theorem (2.3.3)[69]: Let (𝑀, 𝑔) be a compact boundaryless manifold of dimension 𝑑 ≥
 2. Assume further that (𝑀, 𝑔) has everywhere nonpositive sectional curvatures. Then if 

0 =  𝜆0  <  𝜆1  ≤  𝜆2  ≤  𝜆3 . . . are the eigenvalues of  √∆𝑔 we have  
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lim sup
𝜆𝑗→∞

  

(

 
 
sup
 𝛾∈𝛱 

 ∫  
𝒯

𝜆
𝑗

−
1
2
(𝛾)

 |𝑒𝜆𝑗|
2
 𝑑𝑥

)

 
 
=  0.                              (90) 

 Consequently, if 2 <  𝑝 <
2(𝑑+1)

𝑑−1
 , we have, in this case,  

lim sup
 𝜆𝑗→∞ 

 𝜆
𝑗

−
𝑑−1
2   (

1
2 −

1
𝑝
)
  ‖𝑒𝜆𝑗‖𝐿𝑞(𝑀)

 =  0.                                   (91) 

  In [15] the first author showed that ‖𝑒𝜆‖𝐿𝑞(𝑀)  =  𝑂 (𝜆
𝑑−1

2
 (
1

2
 −
1

𝑝
 )
) when 2 ≤  𝑝 ≤

2(𝑑+1)

𝑑−1
 , and that these estimates are sharp on the standard sphere 𝑆𝑑 because of the highest 

weight spherical harmonics. We should point out that for the complementary range 𝑝 >
2(𝑑+1)

𝑑−1
 improved 𝐿𝑝  -estimates under the above curvature assumptions follow, by 

interpolation from the aforementioned 𝑝 =
2(𝑑+1)

𝑑−1
 and an improved 𝐿∞-estimate which is 

implicit in Berard [61] (see also Zelditch [17] and [28]). Hassell and Tacy [82] have recently 

obtained further results for this range exponents. Improvements for 𝑝 >
2(𝑑+1)

𝑑−1
 are a bit 

more straightforward than (91) due to the fact that everything follows from pointwise 

estimates, while, to obtain (90) and consequently (91), we have to use oscillatory integrals 

and a finer analysis involving the deck transforms of the universal cover. We should point 

out that there are no general 𝐿𝑝-improvements for the endpoint 𝑝 =
2(𝑑+1)

𝑑−1
 of the results in 

[15], which on the sphere are saturated by eigenfunctions concentrating at points as well as 

ones concentrating along geodesics. 

The special case of 𝑑 =  2 of Theorem (2.3.3) is in [30]. When 𝑑 =  3, if one 

assumes constant nonpositive curvature, (90) follows from recent work of Chen and [73], 

who showed that if ds denotes arc length measure on 𝛾, then  

sup
 𝛾∈𝛱 

 ∫ 
𝛾

 |𝑒𝜆|
2 𝑑𝑠 =  𝑜(𝜆)as 𝜆 →  ∞.                           (92) 

In dimensions 𝑑 ≥  4, Burq, Gerard and Tzvetkov [5] showed that one has the 

following bounds for geodesic restrictions  

∫ 
𝛾

 |𝑒𝜆|
2 𝑑𝑠 =  𝑂(𝜆𝑑−2).                                        (93) 

Improving this to 𝑜(𝜆𝑑−2 ) bounds as in (92) for 𝑑 =  3 is not strong enough to obtain 

(90) when 𝑑 ≥  4. This comes as no surprise since, in these dimensions, (93) is saturated 

on the round sphere 𝑆𝑑 not by the highest weight spherical harmonics which concentrate 

along geodesics, but rather zonal spherical harmonics, which concentrate at points. By our 

main result, Theorem (2.3.1), we know that (90) is relevant for measuring the size of 𝐿𝑝  -

norms in the range 2 <  𝑝 <
2(𝑑+1)

𝑑−1
 , which are saturated on 𝑆𝑑 by highest weight spherical 

harmonics. These eigenfunctions saturate the Kakeya-Nikodym averages in (90), by which 

we mean that the left side of (90) is Ω(1), but they do not saturate the restriction estimates 

(93) for 𝑑 ≥  4. 

 Fortunately, we can adopt the proof of the aforementioned improvement (92) of Chen 

and the second author [73] to obtain (90) in all dimensions under the assumption of 
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nonpositive curvature. Additionally, even for 𝑑 =  3, unlike the stronger estimate (92), our 

techniques do not require that we assume constant sectional curvature.  

By recording some applications of Theorems (2.3.1) and (2.3.3). First, using (90) we 

can improve the lower bounds for 𝐿1 -norms of Zelditch [85] under the above assumptions:  

Corollary (2.3.4)[69]: Let (𝑀, 𝑔) be a 𝑑-dimensional compact boundaryless manifold with 

𝑑 ≥  2. Then  

lim inf
𝜆→∞

  𝜆
𝑑−1
4  ‖𝑒𝜆‖𝐿1(𝑀)  =  ∞.                              (94) 

As pointed out in [85], no such improvement is possible for the sphere. The proof of (94) is 

very simple. For, by Hölder’s inequality, if 𝑝 >  2,  

1 =  ‖𝑒𝜆‖𝐿2  ≤  ‖𝑒𝜆‖𝐿1

𝑝−2
2(𝑝−1)

 ‖𝑒𝜆‖𝐿𝑝

𝑝
2(𝑝−1)

 , 

 whence  

‖𝑒𝜆‖𝐿𝑝
−
𝑝
𝑝−2

 ≤  ‖𝑒𝜆‖𝐿1  , 𝑝 >  2. 

 As a result,  

(𝜆
−
𝑑−1
2
 (
1
2
−
1
𝑝
)
 ‖𝑒𝜆‖𝐿𝑝  )

−
𝑝
𝑝−2

≤  𝜆
𝑑−1
4  ‖𝑒𝜆‖𝐿1 , 

 meaning that (91) implies (94).  

Let us now see how (94), along with an estimate of Hezari and [83] improves the 

known lower bounds for the Hausdorff measure of eigenfunctions on manifolds of variable 

nonpositive curvature. 

To this end, for a given real eigenfunction, 𝑒𝜆, we let  

𝑍𝜆  =  {𝑥 ∈  𝑀 ∶  𝑒𝜆(𝑥) =  0}  
denote its nodal set and ℋ𝑑−1 (𝑍𝜆) its (𝑑 −  1)-dimensional Hausdorff measure. Yau [91] 

conjectured that ℋ𝑑−1 (𝑍𝜆)  ≈  𝜆. This was verified by Donnelly and Fefferman [78] in the 

real analytic case and so, in particular, if (𝑀, 𝑔) has constant sectional curvature. The lower 

bound ℋ𝑑−1 (𝑍𝜆)  ≥  𝑐𝜆 was verified in the 𝐶∞ case when 𝑑 =  2 by Bruning [72] and Yau, 

but much less is known in this case. An upper bound ℋ𝑑−1 (𝑍𝜆)  =  𝑂(𝜆
3

2 ) is also known 

by Dong [77] and Donnelly and Fefferman [79] when 𝑑 =  2, but the best known upper 

bounds for 𝑑 ≥  3 are ℋ𝑑−1 (𝑍𝜆)  =  𝑂((𝑐𝜆)
(𝑐𝜆)), which are due to Hardt and Simon [81].  

Until recently, in higher dimensions for the 𝐶∞ case, the best known lower bounds 

for ℋ𝑑−1 (𝑍𝜆) were also of an exponential nature (see [80]). Recently, Colding and 

Minicozzi [74] and the second author and Zelditch [85] proved lower bounds of a 

polynomial nature. Specifically, the best known lower bounds for 𝑑 ≥  3 in the 𝐶∞ case are 

those of Colding and Minicozzi [74] who showed that  

𝑐𝜆1−
𝑑−1
2  ≤  ℋ𝑑−1 (𝑍𝜆).                                  (95) 

Subsequent proofs of this using the original approach of the second author and Zeldtich [85] 

were obtained by Hezari and [83] and Zelditch [86]. The latter works and the earlier one 

[85] were based on a variation of an identity of Dong [77]. The proof of (95) in [83] was 

based on the following lower bound  

𝑐𝜆 (∫  
𝑀

 |𝑒𝜆|𝑑𝑥)

2

 ≤  ℋ𝑑−1 (𝑍𝜆).                                   (96) 

Indeed, simply combining (96) and the 𝐿1 -lower bound of Zelditch [85]  
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𝑐𝜆−
 𝑑−1
4  ≤  ‖𝑒𝜆‖𝐿1                                              (97)  

yields (95). Similarly, by using the improvement (94) of (97), we can improve1 the known 

lower bounds (95) under our assumptions:  

Corollary (2.3.5)[69]: Let (𝑀, 𝑔) be a compact boundaryless Riemannian manifold of 

dimension 𝑑 ≥  3 with nonpositive sectional curvatures. Then  

lim inf
 𝜆→∞

 𝜆−1+
𝑑−1
2  ℋ𝑑−1 (𝑍𝜆)  =  ∞.                                    (98) 

In particular, when 𝑑 =  3,ℋ2 (𝑍𝜆) becomes arbitrarily large as 𝜆 →  ∞.  

By a simple argument (see [28]) one always has (88) and consequently (89) as 𝜆 ranges over 

a subsequence of eigenvalues {𝜆𝑗𝑘} if the resulting eigenfunctions form a quantum ergodic 

system (i.e. |𝑒𝜆𝑗𝑙|
2
𝑑𝑥 converges in the weak∗ topology to the uniform probability measure 

𝑑𝑥/Vol𝑔(𝑀)). Consequently, by the above proof, we also have the following 

Corollary (2.3.6)[69]: Let {𝑒𝜆𝑗𝑘} be a quantum ergodic system on a compact Riemannian 

manifold of dimension 𝑑 ≥  3. We then have  

lim
𝑘→∞

  𝜆
𝑗𝑘

−1+
𝑑−1
2  ℋ𝑑−1  (𝑍𝜆𝑗𝑘)  =  ∞.                                         (99) 

In particular, if the geodesic flow is ergodic, we have (99) as {𝜆𝑗𝑘 } ranges over a 

subsequence of eigenvalues of density one. The last part of the corollary follows from the 

quantum ergodic theorem of Snirelman [14] / Zelditch [18] / Colin de Verdiere [75] (see 

also [28]).  

We shall present the proof of our main result, Theorem (2.3.1). We shall go through 

the essentially routine step of reducing matters to proving certain bilinear estimates, and this 

step is very similar to the argument for the two-dimensional case of one of us [28]. It gives 

partial control of the left side of (86) by the last term in the right. The needed bilinear 

estimates, which lead to the first term in the right side of (86). We show the bilinear estimate 

we require follows, up to an ε loss, from one of Lee [84]. We then are able to remove this 

loss using a variable coefficient version of the “ε- removal lemma” of Tao and Vargas [88] 

(see also Bourgain [70]). We prove Theorem (2.3.3) which says that we have o(1) bounds 

for 𝐿2 -norms over shrinking tubes under the assumption of nonpositive curvature, and 

consequently, by Theorem (2.3.1), improved 𝐿𝑝 (𝑀)-norms for 2 <  𝑝 <
2(𝑑+1)

𝑑−1
 of the 

estimates in [15].  

We begin the proof of Theorem (2.3.1), reducing matters to estimates on oscillatory 

integral operators. Let 𝜒𝜆 denote the operator 𝜒( √∆𝑔  −  𝜆), where 𝜒 is a smooth bump 

function with 𝜒(0)  =  1 and sufficiently small compact support. Hence 𝜒𝜆𝑒𝜆  =  𝑒𝜆. Recall 

(see Sogge, Chapter 5 [16]) that the kernel of this operator can be written as  

𝜒𝜆𝑓(𝑧) =  𝜒 (  √∆𝑔 −  𝜆) 𝑓(𝑧)  =  𝜆
𝑑−1
2  ∫  

𝑀

 𝑒𝑖𝜆𝑑𝑔(𝑧,𝑦)𝛼𝜆(𝑧, 𝑦)𝑓(𝑦) 𝑑𝑦 + 𝑅𝜆𝑓(𝑧) 

where 𝛼𝜆(𝑧, 𝑦) is supported in 𝛿 ≤  𝑑𝑔(𝑧, 𝑦)  ≤  2𝛿 for some 𝛿 >  0 sufficiently small and 

less than half the injectivity radius of (𝑀, 𝑔). Moreover, ‖𝑅𝜆𝑓‖𝐿𝑞(𝑀)≲‖𝑓‖𝐿2(𝑀) .  

Using a sufficiently fine partition of unity, we may assume that the support of 𝛼𝜆 is 

sufficiently small. In particular, we may assume that supp(𝛼𝜆)  ⊂  {|𝑧 − 𝑧0| + |𝑦 − 𝑦0| ≪
 𝜀0} for some points 𝑧0, 𝑦0  ∈  𝑀 with |𝑧0  −  𝑦0|  ≈  𝛿. Let 𝛾0 denote the geodesic 

connecting 𝑧0, 𝑦0 and suppose that 𝛴 is a suitable codimension 1 submanifold passing 
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through 𝑦0 such that 𝛾0 is orthogonal to 𝛴. Now let (𝑡, 𝑠)  ∈  ℝ𝑑−1 ×ℝ denote Fermi 

coordinates for 𝛴 with (0, 0)  =  𝑦0 , (0, 𝑠) parameterizing 𝛾0, and (𝑡, 0) parameterizing 𝛴. 

This means that for any fixed 𝑡0, (𝑡0, 𝑠) locally parameterizes the geodesic passing through 

(𝑡0, 𝑠) orthogonal to 𝛴. 

It suffices to prove that  

    ∫  (∫  |𝜆
𝑑−1
2  ∫  𝑒𝑖𝜆𝑑𝑔(𝑧,𝑦)𝛼𝜆(𝑧, (𝑡, 𝑠))𝑓(𝑡, 𝑠)𝑑𝑡|

2

 |𝑓(𝑧)|𝑞−2 𝑑𝑧) 𝑑𝑠 

≤  𝜀 (𝜆
𝑑−1
2
(
1
2
 −
1
𝑞
 )
‖𝑓‖𝐿2(𝑀) )

2

 ‖𝑓‖ 𝐿𝑞(𝑀)
𝑞−2

 

+  𝐶𝜀𝜆
𝑞(
𝑑−1
2  )(

1
2 −

1
𝑞 
)
‖𝑓‖𝐿2(𝑀)

2 sup
𝛾∈𝛱

 (∫  
𝒯
𝜆
−
1
2
(𝛾)

|𝑓(𝑧)|2 𝑑𝑧)

𝑞−2
2

  

Indeed, using Young’s inequality for products applied to the Hölder conjugates 
𝑞

2
 ,

𝑞

𝑞−2
 , we 

may absorb the contribution of 𝜀
(𝑞−2)

𝑞 ‖𝑓‖𝐿𝑞(𝑀)
𝑞−2

 from the first term into the left hand side, for 

ε sufficiently small, yielding (86) when 𝑓 =  𝑒𝜆. It suffices to prove that for each s the 

expression in parentheses on the left hand side is bounded by the right hand side. For 

convenience, we will show this for 𝑠 =  0 as the argument below works for any value of 𝑠 
and does not use the structure of 𝛴 once Fermi coordinates are given.  

Fix 𝜆 and let 𝑇ℎ(𝑧) = ∫  𝑒𝑖𝜆𝜓(𝑧,𝑡)𝛼𝜆(𝑧, (𝑡, 0))ℎ(𝑡) 𝑑𝑡 where 𝜓(𝑧, 𝑡)  =  𝑑𝑔(𝑧, (𝑡, 0)). 

We will show that  

∫  |𝜆
𝑑−1
2  𝑇ℎ(𝑧)|

2

 |𝑓(𝑧)|𝑞−2 𝑑𝑧 ≤  𝜀 (𝜆
𝑑−1
2  (

1
2 −

1
𝑞
) 
‖ℎ‖𝐿𝑡2  )

2

‖𝑓‖
𝐿𝑧
𝑞
𝑞−2
  

+ 𝐶𝜀𝜆
𝑑−1
2  ‖ℎ‖𝐿𝑡2

2 sup
 𝛾∈𝛱

  ∫ _(𝒯
𝜆
−
1
2
 (𝛾)
 |𝑓(𝑧)|𝑞−2 𝑑𝑧.            (100) 

Hölder’s inequality with conjugates 
2

𝑞−2
 ,

2

4−𝑞
 will then imply that  

𝜆
𝑑−1
2  ∫  

𝒯
𝜆
−
1
2
 (𝛾)

|𝑓(𝑧)|𝑞−2 𝑑𝑧 ≲  𝜆
𝑑−1
2  −(

𝑑−1
2  )(2−

𝑞
2
)
 (∫  

𝒯
𝜆
−
1
2
 (𝛾)

|𝑓(𝑧)|2 𝑑𝑧)

𝑞−2
2

 

and it is verified that the exponent of λ on the right is the same as the one in (86). Observe 

that  

(𝑇 ℎ(𝑧))
2
= ∫  𝑒𝑖𝜆

(𝜓(𝑧,𝑡)+𝜓(𝑧,𝑡′))𝛼𝜆(𝑧, 𝑡)𝛼𝜆(𝑧, 𝑡
′)ℎ(𝑡)ℎ(𝑡′) 𝑑𝑡 𝑑𝑡′ . 

 Suppose 𝜀0 is a small dyadic number such that supp(𝛼𝜆(𝑧,·))  ⊂  [−𝜀0, 𝜀0]
𝑑 for all 𝑧. Let 

𝑁 >  0 be a sufficiently large dyadic number (which will essentially play the same role as 

the integer 𝑁 in [28]) and let 𝑗0 be the largest integer such that 2−𝑗0  ≥  𝜆−
1

2 . Take a 

Whitney-type decomposition of [−𝜀0, 𝜀0]
𝑑  ×  [−𝜀0, 𝜀0]

𝑑 away from its diagonal 𝐷 into 

almost disjoint cubes  
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[−𝜀0, 𝜀0]
𝑑  ×  [−𝜀0, 𝜀0]

𝑑 \ 𝐷 

= ( ⋃  

 𝜀0≥2
𝑗>𝑁2−𝑗0

 ⋃  

𝑑(𝑄𝜈
𝑗
 ,𝑄
𝜈′
𝑗
)≈2−𝑗

 𝑄𝜈
𝑗
 × 𝑄

𝜈′
𝑗
) 

∪ ( ⋃  

𝑑(𝑄𝜈
𝑗0  ,𝑄

𝜈′
𝑗0 )≤𝑁2−𝑗0

 𝑄𝜈
𝑗0  ×  𝑄

𝜈′
𝑗0) 

where each 𝑄𝜈
𝑗
 has sidelength 2−𝑗 and is centered at a point 𝜈 ∈  2−𝑗ℤ𝑑−1 . Set ℎ𝜈

𝑗(𝑡) =

 1
𝑄𝜈
𝑗  (𝑡)ℎ(𝑡) where the first factor denotes the indicator of the cube 𝑄𝜈

𝑗
 . Hence  

(𝑇ℎ(𝑧))
2
 =  ∑  

𝜀0≥2
−𝑗>𝑁2−𝑗0

 ∑  

(𝜈,𝜈′)∈Ξ𝑗

 𝑇ℎ𝜈
𝑗(𝑧) 𝑇ℎ

𝜈′
𝑗 (𝑧)  

+ ∑  

(𝜈,𝜈′)∈Ξ𝑗0

 𝑇ℎ𝜈
𝑗
 (𝑧)𝑇ℎ

𝜈′
𝑗 (𝑧)                                               (101)  

where Ξ𝑗 denotes the collection of (𝜈, 𝜈′) indexing the cubes satisfying 𝑑(𝑄𝜈
𝑗
 , 𝑄

𝜈′
𝑗
)  ≈

 2−𝑗 (or ≤ 𝑁2−𝑗0 when 𝑗 =  𝑗0).  

Theorem (2.3.7)[69]: Suppose 𝑇 =  𝑇𝜆 is the oscillatory integral operator defined by  

𝑇ℎ(𝑧) ∶= ∫  𝑒𝑖𝜆𝜙(𝑧,𝑠,𝑡) 𝑎𝜆(𝑧, 𝑠, 𝑡)ℎ(𝑡) 𝑑𝑡 

 where 𝑎𝜆 is smooth and supp(𝑎𝜆) is contained in a sufficiently small uniform compact set 

and whose derivative bounds can be taken uniform in 𝜆. Assume further that 𝜙(𝑥, 𝑠, 𝑡) 
satisfies a Carleson-Sjölin type condition that 𝛻𝑥𝑡

2 𝜙 is invertible and that if 𝜃 is a unit vector 

for which 𝛻𝑡〈𝛻(𝑥, 𝑠)𝜙, 𝜃〉  =  0, then  

𝛻𝑡𝑡
2 〈𝛻(𝑥, 𝑠)𝜙, 𝜃〉 has eigenvalues of the same sign.              (102)  

Then  

‖ ∑  

(𝜈,𝜈′)∈Ξ𝑗

 𝑇ℎ𝜈
𝑗
 𝑇ℎ

𝜈′
𝑗
‖

𝐿𝑥

𝑞
2

≲ 2
𝑗(
2(𝑑+1)
𝑞  −(𝑑−1))

𝜆
−
2𝑑
𝑞  ‖ℎ‖ 𝐿𝑡2

2  .       (103) 

It can be verified that setting 𝑧 =  (𝑥, 𝑠)  ∈  ℝ𝑑−1  × ℝ, the phase function in question 

𝜙(𝑥, 𝑠, 𝑡) ≔ 𝑑𝑔((𝑥, 𝑠), (𝑡, 0)) = 𝜓((𝑥, 𝑠), 𝑡) satisfies the Carleson-Sjölin condition given 

here. Moreover, our assumption that 𝑞 <
2(𝑑+1)

𝑑−1
 ensures that the exponent of 2𝑗  in (103) is 

positive. Hence this estimate yields  

∑  

𝜀0
−1 ≤2𝑗<𝑁−12𝑗0

‖ ∑  

(𝜈,𝜈′)∈Ξ𝑗

 𝑇ℎ𝜈
𝑗
 𝑇ℎ

𝜈′
𝑗
 ‖

𝐿𝑧

𝑞
2

≲ 𝑁
−(
2(𝑑+1)
𝑞  −(𝑑−1))

𝜆
−
 𝑑−1
𝑞  −

𝑑−1
2  ‖ℎ‖𝐿𝑡2

2  . 

Since Hölder’s inequality with conjugates 
𝑞

2
 , 

𝑞

𝑞−2
 , and the triangle inequality yield 
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𝜆𝑑−1∫  |∑ 

𝑗

 ∑  

(𝜈,𝜈′)∈Ξ𝑗

 𝑇ℎ𝜈
𝑗
 𝑇ℎ

𝜈′
𝑗
|

2

 |𝑓|𝑞−2 𝑑𝑧 

≤  𝜆𝑑−1∑ 

𝑗

 ‖ ∑  

(𝜈,𝜈′)∈Ξ𝑗

 𝑇ℎ𝜈
𝑗
 𝑇ℎ

𝜈′
𝑗
‖

𝐿𝑧

𝑞
2  

‖𝑓‖
𝐿𝑧
𝑞
𝑞−2 

 

the contribution of this sum is bounded by the first term on the right hand side of (100) by 

taking 𝑁 suitably large. This estimate can be considered as analogous to [28].  

Our main tool in proving (103) will be a bilinear estimate due to Lee [84] along with 

a refinement of arguments of that same work. Indeed, the estimate (103) should be compared 

with [84]. [84], prove bilinear estimates which can be thought of as a variable coefficient 

versions of bilinear restriction estimates due to Tao [87] for elliptic surfaces (inspired by 

prior work of Wolff [90] and Tao-Vargas-Vega [89]). Lee then showed that these bilinear 

estimates in turn implied linear estimates on oscillatory integral operators whose phase 

function satisfies the Carleson-Sjölin type condition (102) (more generally called the 

“Hormander problem”). However, his estimates suffer losses when compared to the optimal 

estimate predicted by scaling. 

We cannot afford such losses. Hence one of the central tasks is to prove a variable 

coefficient version of the 𝜀-removal lemma for bilinear estimates in [88] (see also Bourgain 

[70]) and refine the almost orthogonality arguments in [84].  

We now turn to the second sum in (101); since 2−𝑗0  ≈  𝜆−
1

2 it will be treated 

essentially the same way as in [28]. Observe that 

| ∑  

(𝜈,𝜈′)∈Ξ𝑗0

 𝑇ℎ𝜈
𝑗(𝑧) 𝑇ℎ

𝜈′
𝑗 (𝑧)| ≲ 𝑁𝑑−1∑|𝑇ℎ𝜈

𝑗0  (𝑧)|
2

𝜈

 

The main estimate for this term is then  

∫  |𝜆
𝑑−1
2   𝑇ℎ𝜈

𝑗0  (𝑧)|
2

 |𝑓(𝑧)|𝑞−2 𝑑𝑧

≲ 𝜆
𝑑−1
2 ‖ℎ𝜈

𝑗0‖
𝐿𝑡
2

2
sup
 𝛾∈𝛱

 ∫ |𝑓(𝑧)|𝑞−2

𝒯
𝜆
−
1
2
(𝛾)

𝑑𝑧                                (104) 

Since ∑  𝜈  ‖ℎ𝜈
𝑗0‖

𝐿𝑡
2

2
 =  ‖ℎ‖𝐿𝑡2

2  , we may sum in 𝜈 to see that the contribution of these terms 

is bounded by the last term in (100).  

To see (104), we will use geodesic normal coordinates centered at the point on M 

corresponding to (𝜈, 0) in the Fermi coordinates (recall that 𝜈 ∈  2−𝑗0  ℤ𝑑−1 ) and let 𝑥 ⟼
 𝜅(𝑥) denote the diffeomorphism which makes this change of coordinates. We may assume 

that 𝜅(𝜈, 𝑠)  =  (0, 𝑠) (parameterizing the geodesic orthogonal to 𝛴 through (𝜈, 0)). We now 

let {𝜔𝑙}𝑙 denote a 𝜆−
1

2 -separated collection of points in a neighborhood of (0, . . . , 0, 1) on 

𝑆𝑑−1 indexed by a subset of ℤ 𝑑−1 so that  

|𝜔𝑙  −  𝜔𝑘|  ≳  𝜆
−
1
2 |𝑙 −  𝑘|. 

Now let  

𝑆𝑙 ∶= {𝑧 ∶ |
𝑧

|𝑧|
− 𝜔𝑙|     ≤  𝜆

−
1
2}  
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and observe that the left hand side of (104) can be dominated by  

∑ 

𝑙

 ‖𝜆
𝑑−1
2  𝑇(ℎ𝜈

𝑗0)‖
𝐿∞(𝜅−1(𝑆𝑙))

2

 ‖𝑓‖
𝐿𝑞−2(𝜅−1(𝑆𝑙)∩𝐾)
𝑞−2

 

≤ sup
𝑘
  ‖𝑓‖

𝐿𝑞−2(𝜅−1(𝑆𝑘)∩𝐾)
𝑞−2

 ∑  

𝑙

 |𝜆
𝑑−1
2  𝑇(ℎ𝜈

𝑗0)(𝑧𝑙)|
2

  

where the 𝑧𝑙 are chosen to maximize |𝑇(ℎ𝜈
𝑗0)(𝑧)| as 𝑧 ranges over 𝜅−1 (𝑆𝑙) and 𝐾 is a small 

set containing the 𝑥-support of 𝛼𝜆(𝑥, 𝑦). It thus suffices to see that for some suitable bump 

function 𝜓,  

∑ 

𝑙

|𝜆
𝑑−1
2  ∫   𝑒𝑖𝜆𝜓(𝑧𝑙 ,𝑡)𝛼𝜆(𝑧𝑙 , (0, 𝑡))𝜓 (𝜆

1
2 (𝑡 −  𝜈)) ℎ𝜈

𝑗0  (𝑡)𝑑𝑡 |

2

 ≲  𝜆
𝑑−1
2  ‖ℎ𝜈

𝑗0‖
𝐿𝑡
2

2
 . 

After a translation in 𝑡, it suffices to assume that 𝜈 =  0 and the desired 𝐿2  → ℓ2 estimate 

follows from the one dual to (106) below.  

Theorem (2.3.8)[69]: Suppose 𝜓(𝑧, 𝑡) is as defined above and 𝜌(𝑧, 𝑡) is a smooth bump 

function satisfying |𝜕𝑡
𝛼  𝜌(𝑧, 𝑡)| ≲𝛼  𝜆

|𝛼|

2  and supp(𝜌(·, 𝑧))  ⊂  {|𝑡|. 𝜆−
1

2} . Assume also that 𝜌 

vanishes when 𝑧 is outside of a small neighborhood 𝑁 of (𝑠0, 0) with 𝑠0 ≈  𝛿 with 𝛿 >  0 

(in the Fermi coordinates described above). Let 𝑧𝑙 be a collection of points in 𝑁 indexed by 

ℤ 𝑑−1 such that whenever |𝑙 −  𝑘| is sufficiently large,  

    
(𝜅1(𝑧𝑙), . . . , 𝜅𝑑−1(𝑧𝑙))

|𝜅(𝑧𝑙)|
 −
(𝜅1(𝑧𝑘), . . . , 𝜅𝑑−1(𝑧𝑘))

|𝜅(𝑧𝑘)|
≳ 𝜆−

1
2 |𝑙 −  𝑘|.    (105) 

 Then  

𝜆
𝑑−1
2  ∫  |∑  

𝑙

 𝑒𝑖𝜆𝜓(𝑧𝑙 ,𝑡) 𝜌(𝑧𝑙  , 𝑡)𝑎𝑙|

2

𝑑𝑡 ≲  ∑  

𝑙

 |𝑎𝑙|
2.                (106) 

The proof of (106) is the same as the one in [28], once it is observed that  

|𝛻𝑡𝜓 (𝑧𝑙 , 0)  −  𝛻𝑡𝜓(𝑧𝑘, 0)|  ≳ 𝜆
−
1
2 |𝑙 −  𝑘|. 

 But since the pushforward of 𝜕/𝜕𝑧𝑑 under 𝑧 ⟼ 𝜅(𝑧) is itself, this is a consequence of 

(105) and the identity  

𝜕𝑡𝑖𝜓(𝑧, 0)  =  〈𝜈𝑖 , 𝜅(𝑧)/|𝜅(𝑧)|〉,   𝑖 =  1, . . . , 𝑑 –  1 

 where 𝜈𝑖 is the pushforward of 𝜕/𝜕𝑧𝑖. 
We begin the proof of Theorem (2.3.7). We first appeal to [84] (which follows results 

of Bourgain [35] and Hörmander [45]) and the ensuing remark, which states that after a 

change of coordinates and multiplying 𝑇ℎ, ℎ by harmless functions of modulus one, we may 

assume  

𝜙(𝑥, 𝑠, 𝑡) =  𝑥 ·  𝑡 +
1

2
 𝑠|𝑡|2  + ℰ(𝑥, 𝑠, 𝑡)                                         (107) 

where  

ℰ(𝑥, 𝑠, 𝑡) =  𝑂 (|𝑥|  +  |𝑠|)2 |𝑡|2   +  𝑂( (|𝑥| + |𝑠|)|𝑡|3).               (108) 
Let 𝜓 be a smooth bump function supported in [−1, 1]𝑑−1 satisfying ∑  𝑘∈ℤ𝑑−1  𝜓

2 (𝑥 −

 𝑘)  =  1 and set 𝐴µ(𝑥)  =  𝜓
2 (2𝑗  (𝑥 −  µ)) with µ ∈  2−𝑗ℤ 𝑑−1 .  

Lemma (2.3.9)[69]: Suppose 1 ≤  𝑝 ≤  2 and that 𝑇 is as in Theorem (2.3.7). There exist 

amplitudes 𝑎𝜈,µ, 𝑎𝜈′,µ both with 𝑥-support contained in supp(𝐴µ) and satisfying derivative 

bounds of the form  
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|𝜕𝑥
𝛼  𝑎𝜈,µ(𝑥, 𝑠, 𝑡)| ≲𝛼  2

𝑗|𝛼|                                         (109) 

such that if 𝑇𝜈,µ is the oscillatory integral operator with phase 𝜙 and amplitude 𝑎𝜈,µ  

𝑇𝜈,µ(ℎ)(𝑥, 𝑠)  =  ∫  
ℝ𝑑−1 

𝑒𝑖𝜆𝜙(𝑥,𝑠,𝑡)𝑎𝜈,µ(𝑥, 𝑠, 𝑡)ℎ(𝑡) 𝑑𝑡  

then  

‖𝐴µ  ∑  

𝜈,𝜈′∈Ξ𝑗

 𝑇(ℎ𝜈
𝑗
)𝑇(𝑔

𝜈′
𝑗
)‖

𝐿𝑝(ℝ𝑑)

𝑝

≲  ∑  

𝜈,𝜈′∈Ξ𝑗

 ‖𝑇𝜈,µ(ℎ𝜈
𝑗
)𝑇𝜈′ ,µ(𝑔𝜈′

𝑗
)‖
𝐿𝑝(ℝ𝑑)

𝑝
 

Proof. For a given 𝑠, consider the slice of 𝑇(ℎ) at 𝑠 𝑇𝑠 (ℎ)(𝑥)  =  𝑇(ℎ)𝑥, 𝑟|𝑟=𝑠. It suffices 

to show that  

‖𝐴µ  ∑  

𝜈,𝜈′∈Ξ𝑗

 𝑇𝑠 (ℎ𝜈
𝑗
)𝑇𝑠 (𝑔

𝜈′
𝑗
)‖

𝐿𝑝(ℝ𝑑−1)

𝑝

 ≲ ∑  

𝜈,𝜈′∈Ξ𝑗

 ‖ 𝑇 𝜈,µ
𝑠 (ℎ𝜈

𝑗
)𝑇𝜈′,µ

𝑠  (𝑔
𝜈′
𝑗
)‖

𝐿𝑝(ℝ𝑑−1)

𝑝
, 

and hence we shall assume that 𝑠 is fixed throughout the proof. Now let Φ(𝑥, 𝑡, 𝑡′)  =

 𝜙(𝑥, 𝑠, 𝑡)  +  𝜙(𝑥, 𝑠, 𝑡′) and observe that 𝐴µ𝑇
𝑠 (ℎ𝜈

𝑗
)𝑇𝑠 (𝑔

𝜈′
𝑗
) can be written as  

𝐴µ(𝑥)∫  𝑒
𝑖𝜆Φ(𝑥,𝑡,𝑡′) 𝑎(𝑥, 𝑠, 𝑡)𝑎(𝑥, 𝑠, 𝑡′)ℎ𝜈

𝑗
 (𝑡)𝑔

𝜈′
𝑗
 (𝑡′) 𝑑𝑡𝑑𝑡′,  

Treating 𝐷𝑥  =  −𝑖𝛻𝑥 as a vector-valued differential operator we want to write  

(1 + (𝜆−12𝑗)
2
 |𝜆𝛻𝑥Φ(µ, 𝜈, 𝜈

′)  −  𝐷𝑥|
2 )

𝑁

 𝐴µ𝑇
𝑠 (ℎ𝜈

𝑗
)𝑇𝑠 (𝑔

𝜈′
𝑗
)  

= 𝑇𝜈,µ
𝑠 (ℎ𝜈

𝑗
)𝑇𝜈′

𝑠  , µ(𝑔
𝜈′
𝑗
)                                                    (110) 

for some 𝑁 large based on d and each operator on the right satisfies (109). It thus suffices 

to see that this can be done for any monomial of  

𝜆−1 2𝑗  (𝜆𝛻𝑥Φ(µ, 𝜈, 𝜈
′) − 𝐷𝑥), 

which in turn will follow by induction. To this end, observe that products of functions 

satisfying (109) satisfy the same condition as do weighted derivatives (𝑐𝜕𝑥)
𝛼 of such 

functions provided |𝑐|  ≤  2−𝑗 . On supp(𝐴µ)  ×  𝑄𝜈
𝑗
 ×  𝑄

𝜈′
𝑗

 we have that  

𝜆−1 2𝑗  (𝜆𝜕𝑘Φ(µ, 𝜈, 𝜈
′)  −  𝜆𝜕𝑘Φ(𝑥, 𝑡, 𝑡

′))  

satisfies (109). Moreover, since 𝜆−12𝑗  ≤  2−𝑗 , it is seen that for any 𝛼, (𝜆−1 2𝑗𝜕𝑥)
𝛼
𝐴µ

1

2  

satisfies (109). The claim then follows.  

It now suffices to see that if 𝑃𝜈,𝜈’ is the Fourier multiplier  

𝑃𝜈,𝑣’  (𝐷𝑥)  =  (1 + (𝜆
−1 2𝑗)

2
 |𝜆𝛻𝑥Φ(µ, 𝜈, 𝑣’)  −  𝐷𝑥|

2 )
−𝑁

  , 

 then for any sequence of {𝑓𝜈,𝑣’} of Schwartz class functions defined on ℝ𝑑−1 ,  

‖ ∑  

𝜈,𝑣’∈Ξ𝑗

 𝑃𝜈,𝑣’𝑓𝜈,𝑣’ ‖

𝐿2(ℝ𝑑−1)

2

 ≲  ∑  

𝜈,𝑣’∈Ξ𝑗

 ‖𝑓𝜈,𝑣’ ‖
𝐿
2(ℝ𝑑−1)

2
 ,  

‖ ∑  

 𝜈,𝑣’∈Ξ𝑗

 𝑃𝜈,𝑣’𝑓𝜈,𝑣’ ‖

𝐿1(ℝ𝑑−1)

 ≲ ∑  

𝜈,𝑣’∈Ξ𝑗

 ‖𝑓𝜈,𝑣’‖𝐿1(ℝ𝑑−1) .  
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The latter follows from the triangle inequality and Young’s inequality for convolutions, so 

it suffices to treat the former. But 𝛻𝑥Φ(µ, 𝜈, 𝑣’)  =  2𝛻𝑥𝜙(µ, 𝑠, 𝜈)  +  𝑂(2
−𝑗), so the 

invertibility of 𝛻2𝜙𝑥,𝑡 gives  

2𝑗  |𝛻𝑥Φ(µ, 𝜈, 𝑣’)  −  𝛻𝑥Φ(µ, 𝜈, 𝜈
′)|  ≈  2𝑗  |𝜈 −  𝜈|. 

 Recall that for each 𝜈, the number of 𝜈′ such that (𝜈, 𝑣’)  ∈  Ξ𝑗  is 𝑂(1). Therefore since the 

𝜈 range over a regularly spaced 2−𝑗 lattice, the desired bound follows from a routine 

computation using Plancherel’s identity. 

Returning to the proof of Theorem (2.3.7), fix a pair (𝜈, 𝑣’ )  ∈  𝛯𝑗 . Set ℎ1(𝑡) =

 ℎ𝜈
𝑗
 (2−𝑗 𝑡), 𝑎𝑗,𝜈,µ(𝑥, 𝑠, 𝑡)  =  𝑎𝜈,µ(𝑥, 𝑠, 2

−𝑗 𝑡), 𝜙𝑗 (𝑥, 𝑠, 𝑡)  =  2
𝑗𝜙(𝑥, 𝑠, 2−𝑗 𝑡) so that 

rescaling variables 𝑡 ⟼  2−𝑗 𝑡 in the integral defining 𝑇𝜈,µ(ℎ𝜈
𝑗
 )(𝑥, 𝑠) yields  

𝑇𝑗,𝜈,µ(ℎ1)(𝑥, 𝑠) ≔ ∫  𝑒𝑖𝜆2
−𝑗𝜙𝑗(𝑥,𝑠,𝑡) 𝑎𝜈,µ(𝑥, 𝑠, 𝑡)ℎ1(𝑡)𝑑𝑡  

=  2𝑗(𝑑−1)𝑇𝜈,µ(ℎ𝜈
𝑗
)(𝑥, 𝑠). 

Also set ℎ2(𝑡) =  ℎ𝑣′
𝑗
  (2−𝑗 𝑡) and define 𝑇𝑗,𝑣’ ,µ(ℎ2)(𝑥, 𝑠) analogously, noting that 𝜙𝑗 

remains independent of , 𝜈′ . Moreover, we may assume that 𝑎𝑗,𝜈,µ(𝑥, 𝑠,·) (resp. 𝑎𝑗,𝑣’ ,µ(𝑥, 𝑠,·)) 

is supported in a slightly larger cube containing supp(ℎ1) (resp. supp(ℎ2)). It is helpful to 

observe that given (107), (108)  

𝜙𝑗 (𝑥, 𝑠, 𝑡)  =  𝑥 ·  𝑡 +  2 − 𝑗 − 1 𝑠|𝑡| 2 +  2𝑗 𝐸(𝑥, 𝑠, 2 − 𝑗 𝑡). 
Lemma (2.3.10)[69]: There exists an amplitude �̃�𝑗,𝜈,µ(𝑥, 𝑠, 𝑡) satisfying bounds of the form 

(109) such that  

(1 + 22𝑗|𝜆−1 2𝑗𝐷𝑡  −  µ|
2
 )
𝑁

 𝑒𝑖𝜆2
−𝑗𝜙𝑗 (𝑥,𝑠,𝑡)𝑎𝑗,𝜈,µ(𝑥, 𝑠, 𝑡)  =  𝑒

𝑖𝜆2−𝑗𝜙𝑗(𝑥,𝑠,𝑡)�̃�𝑗,𝜈,µ(𝑥, 𝑠, 𝑡).  

Proof. Observe that  

𝑒−𝑖𝜆2
−𝑗𝜙𝑗  2𝑗  (𝜆−1 2𝑗𝐷𝑡𝑘  −  µ𝑘)𝑒

𝑖𝜆2−𝑗𝜙𝑗  𝑎𝑗,𝜈,µ 
= 2𝑗  (𝜕𝑡𝑘  𝜙𝑗  −  µ𝑘)𝑎𝑗,𝜈,µ  +  𝜆

−1 22𝑗𝐷𝑡𝑘  𝑎𝑗,𝜈,µ.  

Since 𝜆−122𝑗  ≤  1, second term satisfies (109). Moreover, by (107), (108)  

(𝜕𝑡𝑘 𝜙𝑗 (𝑥, 𝑠, 𝑡) − µ𝑘)  =  𝑥𝑘  −  µ𝑘  +  𝑂(2
−𝑗) 

 and thus by the support properties of 𝑎𝑗,𝜈,µ the first term satisfies (109) as well. The lemma 

then follows by an inductive argument 𝑎𝑘 in to that in Lemma (2.3.9).  

Given this lemma we let 𝑃µ  =  𝑃µ(𝐷𝑡) be the Fourier multiplier with symbol 𝑃µ(𝜁)  =

 (1 +  22𝑗|𝜆−12𝑗 𝜁 +  µ|
2
 )
−𝑁

 and observe that by self-adjointness of 𝑃µ(−𝐷𝑡), we have  

𝑇𝑗,𝜈,µ(ℎ1)(𝑥, 𝑠)  = ∫  𝑒
𝑖𝜆2 −𝑗𝜙𝑗 (𝑥,𝑠,𝑡) �̃�𝑗,𝜈,µ(𝑥, 𝑠, 𝑡)(𝑃µℎ1)(𝑡) 𝑑𝑡 

Thus if we can show that  

‖𝑇𝑗,𝜈,µ(ℎ1)𝑇𝑗,𝑣’ ,µ(ℎ2)‖
𝐿
𝑞
2  (ℝ𝑑)

≲  𝜆
−
2𝑑
𝑞  2

2𝑗(𝑑+1)
𝑞  ‖𝑃µℎ1‖𝐿2(ℝ𝑑−1)‖𝑃µℎ2‖𝐿2(ℝ𝑑−1)                            (111) 

taking a sum with respect to µ and applying Cauchy-Schwarz will give  

∑ 

𝜇

 ‖𝑇𝑗,𝜈,µ(ℎ1)𝑇𝑗,𝑣’ ,µ(ℎ2)‖
𝐿
𝑞
2  (ℝ𝑑)

𝑞
2 ≲  (𝜆

−
2𝑑
𝑞  2

2𝑗(𝑑+1)
𝑞  )

𝑞
2
 

 ∏  

2

 𝑖=1

 (∑  

𝜇

 ‖𝑃µ ℎ𝑖‖ 𝐿2(ℝ𝑑−1)
𝑞

)

1
2
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and by almost orthogonality of the 𝑃µℎ𝑖 , (∑  𝜇 ‖𝑃µℎ𝑖‖𝐿2
𝑞
 )

1

2
 ≲  ‖ℎ𝑖‖𝐿2

𝑞

2  . Rescaling therefore 

yields  

∑ 

𝜇

‖𝑇𝜈,µ(ℎ𝜈
𝑗
)𝑇𝑣’ ,µ(ℎ 𝑣’

𝑗
) ‖

𝐿
𝑞
2  (ℝ𝑑)

𝑞
2  

≲ (𝜆
−
2𝑑
𝑞  2

𝑗(
2(𝑑+1)
𝑞

)−(𝑑−1)
)

𝑞
2

 ‖ℎ𝜈
𝑗
‖
𝐿2(ℝ𝑑−1)

𝑞
2  ‖ℎ𝑣’

𝑗
‖
𝐿2(ℝ𝑑−1)

𝑞
2  .         (112)  

Hence Lemma (2.3.9) and Cauchy-Schwarz mean that the left hand side of (103) is 

dominated by  

𝜆
−
2𝑑
𝑞  2

𝑗(
2(𝑑+1)
𝑞

 −(𝑑−1))
 ( ∑  

𝜈

 ‖ℎ𝜈
𝑗
‖
𝐿2(ℝ𝑑−1)

𝑞
)

1
𝑞

 (∑  

𝜈

 ‖ℎ 𝑣’
𝑗
‖
𝐿2(ℝ𝑑−1)

𝑞
)

1
𝑞

 . 

The desired estimate (103) now follows from the embedding ℓ2 , →  ℓ𝑞 .  

We are left to show (111). At this stage, 𝑑(supp(ℎ1), supp(ℎ2))  ≈  1, but we want 

to exhibit the uniformity of the phases and amplitudes. To this end, observe that  

𝜙(𝑥, 𝑠, 𝑡 +  𝜈) =  (𝑥 +  𝑠𝜈) ·  𝑡 +
1

2
 𝑠|𝑡|2  

+ℰ(𝑥, 𝑠, 𝑡 +  𝜈)  +  𝑠2 |𝜈|2  +  𝑥 ·  𝜈. 
 The last two terms here can be neglected. A Taylor expansion gives  

ℰ(𝑥, 𝑠, 𝑡 +  𝜈) = ℰ(𝑥, 𝑠, 𝜈) + 𝛻𝑡ℰ(𝑥, 𝑠, 𝜈) ·  𝑡  

+
1

2
 ∑  
|𝛼|=2 

𝜕𝑡
𝛼  ℰ(𝑥, 𝑠, 𝜈)𝑡 𝛼 +  𝑅𝜈(𝑥, 𝑠, 𝜈). 

 As observed in [84], we may change variables 𝑦 =  𝑥 +  𝑠𝜈 +  𝛻𝑡ℰ(𝑥, 𝑠, 𝜈) and, 

neglecting terms which can be absorbed into either 𝑇(ℎ𝑖) or ℎ𝑖 , we can write 

𝜙(𝑦, 𝑠, 𝑡 +  𝜈)  =  𝑦 ·  𝑡 +  1 2 𝑠|𝑡| 2 +  𝐸𝜈(𝑦, 𝑠, 𝑡), 
where ℰ𝜈(𝑦, 𝑠, 𝑡) will also satisfy (108) (with 𝑦 replacing 𝑥). Hence  

𝜙𝑗 (𝑦, 𝑠, 𝑡 +  2
𝑗  𝜈) =  2𝑗𝜙(𝑦, 𝑠, 2−𝑗𝑡 +  𝜈) 

=  𝑦 ·  𝑡 +  2−𝑗 −1 𝑠|𝑡|2  +  2𝑗  ℰ𝜈(𝑦, 𝑠, 2
−𝑗𝑡).  

Also define 𝜎𝑠  =  µ +  𝑠𝜈 +  𝛻𝑡ℰ(µ, 𝑠, 𝜈) (recalling that µ is the center of the 𝑥-support of 

�̃�𝑗,𝜈,µ, �̃�𝑗,𝜈′,µ) and observe that linearizing the change of coordinates gives that if |𝑥 −  µ|  ≲

 2−𝑗 , then |𝑦 −  𝜎𝑠|  ≲ 2
−𝑗 . We next set 

 �̃�(𝑦, 𝑠, 𝑡) =  22𝑗𝜙𝑗 (2
−𝑗 𝑦 +  𝜎𝑠, 𝑠, 𝑡)

=  𝑦 ·  𝑡 +
1

2
 𝑠|𝑡|2  +  22𝑗 ℰ𝜈(2

−𝑗 𝑦 +  𝜎𝑠, 𝑠, 2
−𝑗 𝑡 +  𝜈) 

and define  

�̃�1(𝑔1)(𝑦, 𝑠) = ∫  𝑒
𝑖𝜆2−2𝑗�̃�(𝑦,𝑠,𝑡) �̃�𝑗,𝜈,µ(2

−𝑗 𝑦 +  𝜎𝑠 , 𝑠, 𝑡)𝑔1(𝑡) 𝑑𝑡  

and �̃�2(𝑔2) in the same way except with amplitude �̃�𝑗,𝜈′,µ(2
−𝑗𝑦 + 𝜎𝑠, 𝑠, 𝑡). The bound (111) 

will then follow from  

‖�̃�1(𝑔1)�̃�2(𝑔2)‖
𝐿
𝑞
2  (ℝ𝑑)

 ≲  (𝜆2−2𝑗)
−
2𝑑
𝑞  ‖𝑔1‖𝐿2(ℝ𝑑−1)‖𝑔2‖_(𝐿

2(ℝ𝑑−1) .   (113) 

 This estimate in turn follows from one of Lee [84] along with ε-removal lemmas. We state 

this using his hypotheses.  
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For 𝑖 = 1, 2, let 𝑇𝑖 be oscillatory integral operators  

𝑇𝑖𝑓(𝑧) = ∫  𝑒
𝑖𝜆𝜙𝑖(𝑧,𝜉)𝑎𝑖(𝑧, 𝜉)𝑓(𝜉)𝑑𝜉  

𝑧 =  (𝑥, 𝑠)  ∈  ℝ𝑑−1 ×ℝ, 𝜉 ∈  ℝ𝑑−1 

with 𝑎𝑖 smooth and of sufficiently small compact support. Assume that 𝛻𝑥𝜉
2 𝜙𝑖 has rank 𝑑 −

 1 and that 𝜉 ⟼  𝛻𝑥𝜙𝑖(𝑥, 𝑠, 𝜉) is a diffeomorphism on supp(𝑎𝑖). Take 𝑞𝑖(𝑥, 𝑠, 𝜉)  =
 𝜕𝑠𝜙𝑖(𝑥, 𝑠, [𝛻𝑥𝜙𝑖(𝑥, 𝑠,·)]

−1 (𝜉)) so that 𝜕𝑠𝜙𝑖(𝑥, 𝑠, 𝜉)  =  𝑞𝑖(𝑥, 𝑠, 𝛻𝑥𝜙𝑖(𝑥, 𝑠, 𝜉)). Suppose 

further that 𝛻𝜉𝜉
2 𝑞𝑖(𝑧, 𝛻𝑥𝜙𝑖(𝑧, 𝜉𝑖)) is nonsingular for (𝑧, 𝜉𝑖)  ∈  supp(𝑎𝑖).  

Theorem (2.3.11)[69]: For 𝑖 =  1, 2, 𝑎𝑖 , 𝜙𝑖 satisfy the hypotheses outlined in the preceding 

discussion. Set 𝑢𝑖  =  𝛻𝑥𝜙(𝑧, 𝜉𝑖) and 𝛿(𝑧, 𝜉1, 𝜉2)  =  𝛻𝜉𝑞1(𝑧, 𝑢1)  −  𝛻𝜉𝑞2(𝑧, 𝑢2). Then if  

 |〈𝛻𝑥
2𝜉𝜙(𝑧, 𝜉𝑖)𝛿(𝑧, 𝜉1, 𝜉2), |𝛻𝑥

2𝜉𝜙(𝑧, 𝜉𝑖)] − 1 [𝛻𝜉𝜉
2 𝑞𝑖(𝑧, 𝑢𝑖)]

−1
 𝛿(𝑧, 𝜉1, 𝜉2)〉| 

≥ 𝑐 > 0        (114) 

for 𝑖 = 1, 2, then for any 
𝑑+2

𝑑
 <  𝑝  

‖𝑇1𝑓1𝑇2𝑓2‖𝐿𝑝(ℝ𝑑) ≲  𝜆
−
𝑑
𝑝 ‖𝑓1‖𝐿2(ℝ𝑑−1)‖𝑓2‖𝐿2(ℝ𝑑−1) .                       (115) 

Moreover, if 𝑇1, 𝑇2 are members of a family of operators whose phase and amplitude 

functions satisfy these hypotheses uniformly and are uniformly bounded in 𝐶∞ with 

amplitudes supported in a set of uniform size, then the implicit constant in (115) can be 

taken independent of each operator in the family.  

We postpone the proof of this theorem until. It is then verified (see [84]) that if one 

takes 𝜉 =  𝑡, 𝑧 =  (𝑥, 𝑠), �̃�(𝑥, 𝑠, 𝑡)  =  𝜙1(𝑥, 𝑠, 𝑡)  =  𝜙2(𝑥, 𝑠, 𝑡) and 𝑎1, 𝑎2 as the 

amplitudes in �̃�1, �̃�2 respectively, then the left hand side of (114) satisfies  

|𝜉1  −  𝜉2|  +  𝑂(𝜀0)  +  𝑂(2
−𝑗). 

Therefore since |𝑡1  −  𝑡2|  ≈  1, the desired bound follows by taking (115) with 𝜆 replaced 

by 𝜆2−2𝑗 .  
Remark (2.3.12)[69]: As a consequence of Theorem (2.3.11) and the almost orthogonality 

arguments, we obtain the bound  

‖𝑇ℎ‖𝐿𝑞(ℝ𝑑) ≲  𝜆
−
𝑑
𝑞  ‖ℎ‖𝐿𝑝(ℝ𝑑−1) when 𝑞 >

2(𝑑 +  2)

𝑑
 and 

𝑑 +  1 

𝑞
 <
𝑑 −  1

𝑝′
                  (116) 

for operators 𝑇 satisfying the hypotheses of Theorem (2.3.7). In other words, we obtain 

Lee’s estimate [84] without the ε-loss. Indeed, the Whitney-type decomposition of (𝑇ℎ)2 in 

the previous is essentially the same as that in his work, and the estimate over the (𝜈, 𝜈’ )  ∈

 Ξ𝑗′ is treated on p. 85 there. Since Hölder’s inequality gives ‖ℎ𝜈
𝑗
‖
𝐿2(ℝ𝑑−1)

≲

 2
−
𝑗 (𝑑−1)

2
 (
1

2
 −
1

𝑝
 )
  ‖ℎ𝜈

𝑗
‖
𝐿𝑝(ℝ𝑑−1)

 , (112) and the almost orthogonality arguments above yield the 

following variation on (103)  

‖ ∑  

(𝜈,𝜈′)∈Ξ𝑗

 𝑇ℎ𝜈
𝑗
 𝑇ℎ

𝜈′
𝑗
 ‖

𝐿
𝑞
2(ℝ𝑑)

≲ 2
𝑗
2(𝑑+1)
𝑞   −2(𝑑−1)(1−

1
𝑝 
)
 𝜆
−
2𝑑
𝑞  ‖ℎ‖

𝐿𝑝(ℝ𝑑−1)
2   

(since it suffices to treat the cases where 𝑞 ≥  𝑝). Taking 𝑎 sum in 𝑗 then yields (116).  
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We also note that when 𝑝 =  ∞, the estimate in (116) is valid for a larger range of 𝑞 

by a recent work of Bourgain and Guth [71].  

          Turning to the proof of (115), the estimate  

‖𝑇1𝑓1𝑇2𝑓2‖𝐿𝑞(ℝ𝑑)  ≤  𝐶𝛼𝜆
−
𝑑
𝑞
 +𝛼 
‖𝑓1‖𝐿2(ℝ𝑑−1)‖𝑓2‖𝐿2(ℝ𝑑−1)                (117) 

for arbitrary 𝛼 >  0 and 
𝑑+2

𝑑
 ≤  𝑞 is due to Lee [84]. Moreover, as observed in [84], the 

constant 𝐶𝛼 is stable under small perturbations in ai and 𝜙𝑖 . In particular, if families of 

amplitudes and phase functions are considered and these functions are uniformly bounded 

in 𝐶∞  then 𝐶𝛼 can be taken uniform within the family of operators. The rest will be 

dedicated to the following lemma, a generalization of [88] which completes the proof of 

Theorem (2.3.11).  

Lemma (2.3.13)[69]: Suppose 𝑇1, 𝑇2 satisfy the hypotheses of the previous theorem and that 

they satisfy the estimate (117) for some 1 <  𝑞 <
𝑑+1

𝑑−1
 and some α > 0. Assume further that  

1

𝑝
 (1 +

8𝛼

𝑑 −  1
)  ≤

1

𝑞
 +

4𝛼

𝑑 +  1
.                  (118) 

Then the scale-invariant estimate  

‖𝑇1𝑓1𝑇2𝑓2‖𝐿𝑟(ℝ𝑑) ≲ 𝜆
−
𝑑
𝑟  ‖𝑓1‖𝐿2(ℝ𝑑−1)‖𝑓2‖𝐿2(ℝ𝑑−1) . 

 is also valid for any 𝑟 >  𝑝.  

The hypothesis (118) is stronger than the one appearing in [88] (corresponding to 

𝜎 =
𝑑−1

2
 there)  

1

𝑝
 (1 +

4𝛼

𝑑 −  1
)  <

1

𝑞
 +

2𝛼

𝑑 +  1
 ,                       (119) 

but is sufficient for our purposes. Let 𝑓1, 𝑓2 be unit normalized functions in 𝐿2 (ℝ𝑑−1). 
By a Marcinkiewicz interpolation argument, it suffices to see that  

|{𝑥 ∶ |𝑇1𝑓1(𝑥)𝑇2𝑓2(𝑥)|  >  𝛽}| ≲  𝜆
−𝑑𝛽−𝑝 .  

Denote the set on the left by 𝐸. Observe that since ‖𝑇1𝑓1𝑇2𝑓2‖∞ ≲  1, it suffices to assume 

that 𝛽 ≲1. Hence we may assume that |𝐸| ≳  𝜆−𝑑 throughout since the desired bounds are 

guaranteed otherwise. Moreover, we know from (117) and Tchebychev’s inequality 

 |𝐸| ≲  𝜆−𝑑+𝑞𝛼𝛽−𝑞 . 

 Consequently it suffices to assume that 𝛽 >  𝜆
−
𝑞𝛼

 𝑝−𝑞 . This gives the a priori bound  

|𝐸| ≲  𝜆
−𝑑+𝑞𝛼(1+

𝑞
𝑝−𝑞

 )
 .                                               (120)  

Since 𝛽|𝐸| ≲  ‖1𝐸𝑇1𝑓1𝑇2𝑓2‖𝐿1  , it suffices to show that  

‖1𝐸𝑇1𝑓1𝑇2𝑓2‖𝐿1 ≲ 𝜆
−
𝑑
𝑝 |𝐸|

1
𝑝′  . 

We deduce this by showing that for any unit vectors 𝑔1, 𝑔2 in 𝐿2 (ℝ𝑑−1)  

‖1𝐸𝑇1𝑔1𝑇2𝑔2‖𝐿1  ≲  𝜆
−
𝑑
𝑝 |𝐸|

1
𝑝′  , 

 where it should be stressed that 𝐸 is dependent on 𝑓1, 𝑓2 above, but that 𝑔1, 𝑔2 are 

completely independent of these functions. Fix 𝑔2 and let 𝑇 = 𝑇𝐸,𝑔2 be the linear operator 

𝑇𝑔1  =  1𝐸𝑇2𝑔2𝑇1𝑔1. It suffices to show that  

‖𝑇 ∗ 𝐹‖𝐿2(ℝ𝑑−1)  ≲  𝜆
−
𝑑
𝑝
 
|𝐸|

1
𝑝′  ‖𝐹‖𝐿∞(ℝ𝑑) , 
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since duality then implies that ‖𝑇𝑔1‖𝐿1 ≲  𝜆
−
𝑑

𝑝 |𝐸|
1

𝑝′  . We may assume ‖𝐹‖_(𝐿∞) ≲  1. Set 

�̃� ∶=  1𝐸𝑇2𝑔2𝐹. By a duality argument, we square the left hand side of the previous 

inequality to see that it suffices to show that  

|〈𝑇1𝑇1
∗ �̃�, �̃�〉| ≲  𝜆

−
2𝑑
𝑝  |𝐸|

2
𝑝′  =  𝜆−2𝑑 (𝜆𝑑 |𝐸|)

2
𝑝′ ,              (121) 

 where the inner product on the left is with respect to 𝐿2 (ℝ𝑑). The integral kernel of 𝑇1𝑇1
∗ is  

𝐾(𝑤, 𝑧)  = ∫  𝑒𝑖𝜆(𝜙1(𝑤,𝜉)−𝜙1(𝑧,𝜉))𝑎1(𝑤, 𝜉)𝑎1(𝑧, 𝜉) 𝑑𝜉. 

and satisfies estimates  

|𝐾(𝑤, 𝑧)| ≲ (1 +  𝜆|𝑤 −  𝑧|)−
𝑑−1
2  . 

This bound follows from the invertibility of 𝛻𝜉𝜉
2 𝜕𝑠𝜙1 when 𝑤 −  𝑧 is inside a small cone 

about (0, . . . , 0, 1). Otherwise, stronger estimates result from integration by parts and the 

invertibility of 𝛻𝑥𝜉𝜙1. We now let 𝑅 ≥  𝜆−1 be a parameter to be determined shortly and 

write 𝐾(𝑤, 𝑧)  =  𝐾𝑅(𝑤, 𝑧)  + 𝐾𝑅(𝑤, 𝑧) where 𝐾𝑅(𝑤, 𝑧) is smoothly truncated to |𝑤 −
 𝑧|  ≥  𝑅 and 𝐾𝑅(𝑤, 𝑧) is supported in |𝑤 −  𝑧|  ≤  2𝑅. Observe that by Stein’s 

generalization of Hormander’s variable coefficient oscillatory integral theorem (see [55] or 

[16])  

‖�̃�‖
𝐿1(ℝ𝑑)

 ≲  |𝐸|
𝑑+3
2(𝑑+1) ‖𝑇2𝑔2‖

𝐿
2(𝑑+1)
𝑑−1  (ℝ𝑑)

 ‖𝐹‖𝐿∞(ℝ𝑑)  ≲  |𝐸|
𝑑+3
2(𝑑+1)

 
 𝜆
−
𝑑(𝑑−1)
2(𝑑+1) . 

Thus the contribution of 𝐾𝑅 to 〈𝑇1𝑇1
∗ �̃�, �̃�〉 is bounded by  

(𝜆𝑅)−
𝑑−1
2  |𝐸|

𝑑+3
𝑑+1 𝜆^(−

𝑑(𝑑 − 1)

𝑑 + 1
 =  (𝜆𝑅)−

𝑑−1
2
 (𝜆𝑑  |𝐸|)

𝑑+3
𝑑+1 𝜆−2𝑑 . 

It is now verified that taking  

𝑅 = 𝜆−1 (𝜆𝑑|𝐸|)^(
2

𝑑 − 1
 (
𝑑 + 3

𝑑 + 1
 −

2

𝑝′
)  ≥  𝜆−1 , 

ensures that the contribution of 𝐾𝑅 is acceptable towards proving (121) (by scaling, this is 

consistent with the choice of 𝑅 in [88]). We also remark that another computation reveals 

that (120) along with the hypothesis (118) ensures that 𝑅 ≲  𝜆−
1

2 .  
          It remains to control the contribution of 𝐾𝑅 to (121). Let {𝜓𝑘}𝑘 be a partition of unity 

over [−𝜀0, 𝜀0]
𝑑  such that supp(𝜓𝑘) is contained in a cube of sidelength 2𝑅 centered at a 

point 𝑤𝑘  ∈  𝑅ℤ
𝑑 . Let 𝑃𝑅 be the operator determined by the integral kernel 𝐾𝑅 and observe 

that its contribution to the left hand side of (121) is dominated by  

∑ 

𝑘,𝑘′

 |〈𝑃𝑅(𝜓𝑘�̃�), 𝜓𝑘′�̃�〉|.                                             (122) 

 Given a fixed 𝑘, the number of 𝑘′ for which 〈𝑃𝑅(𝜓𝑘�̃�), 𝜓𝑘′�̃�〉 ≠  0 is 𝑂(1) and satisfies 

𝑑(supp(𝜓𝑘),supp(𝜓𝑘′))≲  𝑅. Hence we will restrict attention to the sum over the diagonal 

𝑘 =  𝑘′  , as a slight adjustment of the argument below will handle the off-diagonal terms.  

At this stage it will be convenient to use the semiclassical Fourier transform with ℎ =
1

𝜆
 (cf. [92])  

𝐹1
𝜆

(𝐺)(𝜂)  =  ∫  
ℝ𝑑
 𝑒−𝑖𝜆𝑤·𝜂𝐺(𝑤)𝑑𝑤,   

𝐹1
𝜆

−1(𝑔)(𝑤) =
𝜆𝑑

(2𝜋)𝑑
 ∫  
ℝ𝑑
  𝑒𝑖𝜆𝑤·𝜂𝐺(𝜂) 𝑑𝜂.                      (123) 
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Since 𝐹1
𝜆

 is related to the usual Fourier transform by 𝐹1
𝜆

(𝐺)(𝜂)  =  𝐹(𝐺)(𝜆𝜂), we have the 

Plancherel identity (2𝜋)𝑑‖𝐺‖𝐿2
2  =  𝜆𝑑 ‖𝐹1

𝜆

(𝐺)‖
𝐿2

2

 (cf. [92]). We now have  

(2𝜋)𝑑〈 𝑃𝑅(𝜓𝑘�̃�), 𝜓𝑘�̃�〉  =  𝜆
𝑑  〈ℱ1

𝜆
 𝑃𝑅(𝜓𝑘�̃�)  , ℱ1

𝜆
 (𝜓𝑘�̃�)〉  ,           (124) 

and the right hand side can be written as  
1

(2𝜋)𝑑
∫  ∫   𝐽𝑘(𝜂, 𝜁)ℱ1

𝜆
 (𝜓𝑘�̃�)(𝜁)ℱ1

𝜆
 (𝜓𝑘�̃�)(𝜂)𝑑𝜁𝑑𝜂, 

where  

𝐽𝑘(𝜂, 𝜁)  

=  𝜆2𝑑 ∫  ∫  ∫   𝑒−𝑖𝜆(𝜂·𝑤−𝜙1(𝑤,𝜉)+𝜙1(𝑧,𝜉)−𝑧·𝜂)�̃�𝑘(𝑧, 𝑤)𝑎1(𝑤, 𝜉)𝑎1(𝑧, 𝜉) 𝑑𝑧 𝑑𝑤 𝑑𝜉,  

for some �̃�𝑘 supported in |𝑧 −  𝑤𝑘|, |𝑤 −  𝑤𝑘| ≲  𝑅 satisfying |𝜕𝑤 ,𝑧
𝛼 �̃�𝑘| ≲𝛼  𝑅

−|𝛼| . 
Strictly speaking, one needs to justify the use of Fubini’s theorem here, but this can be done 

by passing to Schwartz class approximations to �̃� and employing crude 𝐿2 continuity bounds 

for 𝑃𝑅. Therefore over supp(�̃�𝑘),  

|𝛻𝑤𝜙1(𝑤𝑘 , 𝜉) − 𝛻𝑤𝜙1(𝑤, 𝜉)| +  |𝛻𝑧𝜙1(𝑤𝑘 , 𝜉) −  𝛻𝑧𝜙1(𝑧, 𝜉)| 
≲  𝑅 ≲  (𝜆𝑅)−1 ,  

where we use that 𝑅 ≲  𝜆−
1

2 in the second inequality. Hence integration by parts gives for 

any 𝑁 and some uniform cube 𝑄 ⊂  ℝ 𝑑−1  

|𝐽𝑘(𝜂, 𝜁)|  ≲ 𝑁 (𝜆𝑅)
2𝑑  ∫  

𝑄

 (1 +  𝜆𝑅|𝜂 − 𝛻𝑤𝜙1(𝑤𝑘 , 𝜉)| +  𝜆𝑅|𝜁 −  𝛻𝑤𝜙1(𝑤𝑘 , 𝜉)|)  

− 𝑁 𝑑𝜉, 
 as the domain of integration in (𝑤, 𝑧) is of volume 𝑅2𝑑  . Let 𝑆𝑘

1 denote the hypersurface 

{𝛻𝜙1(𝑤𝑘 , 𝜉) ∶  𝜉 ∈  𝑄}. This in turn allows us to deduce that  

|𝐽𝑘(𝜂, 𝜁)| ≲𝑁  (𝜆𝑅)
𝑑+1(1 +  𝜆𝑅 𝑑(𝜂, 𝑆𝑘

1 )  +  𝜆𝑅𝑑(𝜁, 𝑆𝑘
1)  +  𝜆𝑅|𝜁 −  𝜂|)−𝑁 . 

Consequently, by using Cauchy-Schwarz in (124) we have that    

|〈𝑃𝑅(𝜓𝑘�̃�), 𝜓𝑘�̃�〉 |  ≲𝑁 𝜆𝑅 ∫   (1 +  𝜆𝑅|𝑑(𝜂, 𝑆𝑘
1)|)

−𝑁
 |ℱ1

𝜆
 𝜓𝑘�̃�(𝜂)|

2

𝑑𝜂. 

Now let 𝑆𝑘,𝑙
1  denote the (𝜆𝑅)−12𝑙 neighborhood of 𝑆𝑘

1 . We have that  

∑ 

𝑘

 |〈𝑃𝑅(𝜓𝑘�̃�), 𝜓𝑘�̃�〉 |  ≲𝑁  ∑  

𝑘

∑ 

∞

𝑙=0

 𝜆𝑅2−𝑙𝑁 ‖ ℱ1
𝜆
 (𝜓𝑘�̃�)‖

𝐿2(𝑆𝑘,𝑙
1 )

2

 . 

 We examine the case 𝑙 =  0, the other cases are similar and aided by the factor of 

2−𝑙𝑁 . Let {𝑔1,𝑘}𝑘  be a sequence of functions with supp(𝑔1 ,𝑘)  ⊂  𝑆𝑘 ,0
1  for each 𝑘 and 

∑  𝑘 ‖𝑔1,𝑘‖𝐿2(𝑆𝑘,02 )

2
 =  1. To finish the proof and show that (124) is dominated by the right 

side of (121), it suffices to see that  

∑ 

𝑘

〈 𝜓𝑘�̃� , 𝜆
−𝑑ℱ1

𝜆

−1(𝑔1,𝑘)〉 ≲  𝜆
−
𝑑
𝑝 (𝜆𝑅)−

1
2 |𝐸|

1
𝑝′  ‖𝐹‖𝐿∞(ℝ𝑑) , 

which in turn follows from  

∑ 

𝑘

 ∫   𝜓𝑘1𝐸𝜆
−𝑑𝐹1

𝜆

−1(𝑔1,𝑘)𝑇2𝑔2  ≲  𝜆
−
𝑑
𝑝 (𝜆𝑅)−

1
2 |𝐸|

1
𝑝′  . 
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 Now reverse the roles of 𝑔1 and 𝑔2 from the previous step, treating {𝑔1,𝑘}𝑘 as a fixed 

sequence and redefine 𝑇 =  𝑇𝐸 , {𝑔1,𝑘} by 𝑇𝑔2  =  {𝜓𝑘1𝐸ℱ1
𝜆

−1(𝑔1,𝑘)𝑇2𝑔2}
𝑘

 so that it 

suffices to show  

‖𝑇‖𝐿2(ℝ𝑑−1)→𝑙𝑘
1𝐿1(ℝ𝑑) ≲  𝜆

𝑑−
𝑑
𝑝 (𝜆𝑅)−

1
2 |𝐸|

1
𝑝′  . 

 Let {𝐹𝑘}𝑘 be any sequence of functions satisfying sup𝑘 ‖𝐹𝑘‖𝐿∞(ℝ𝑑)  ≤  1 and set �̃�𝑘  =

 𝜓𝑘1𝐸𝜆
−𝑑ℱ1

𝜆

−1(�̃�1,𝑘)𝐹𝑘 . By duality, the desired bound on 𝑇 will follow from  

‖𝑇∗ (∑ 

𝑘

 𝐹𝑘)‖

𝐿2(ℝ𝑑−1)

≲  𝜆
−
𝑑
𝑝(𝜆𝑅)−

1
2 |𝐸|

1
𝑝′ 

or equivalently 

 ∑  

𝑘,𝑘′

 〈𝑇2𝑇2
∗ (�̃�𝑘), �̃�𝑘′〉 ≲ (𝜆

−
𝑑
𝑝 (𝜆𝑅)−

1
2 |𝐸|

1
𝑝′)

2

 .  

Observe that  

∑ 

𝑘

 ‖�̃�𝑘‖𝐿1(ℝ𝑑)   ≤  ∑  

𝑘

 ‖𝐹𝑘‖𝐿∞(ℝ𝑑)  ∫   |𝜓𝑘1𝐸𝜆
−𝑑ℱ1

𝜆

−1(𝑔1,𝑘)| 𝑑𝑤  

≤ (∫ 
𝐸

 ∑  

𝑘

 𝜓𝑘

2(𝑑+1)
𝑑+3 )

𝑑+3
2(𝑑+1)

 ‖𝜆−𝑑ℱ1
𝜆

−1(�̃�1,𝑘)‖
ℓ
𝑘

2(𝑑+1)
𝑑−1 

 
𝐿
2(𝑑+1)
𝑑−1 (ℝ𝑑) 

.    (125)  

By finite overlap of the supp(𝜓𝑘), the first factor on the right is seen to be bounded by 

|𝐸|
𝑑+3

2(𝑑+1) . Similar to before, an application of the Stein-Tomas theorem for 𝑆𝑘
1 gives  

‖𝜆−𝑑ℱ1
𝜆

−1(𝑔1,𝑘)‖
ℓ
𝑘

2(𝑑+1)
𝑑−1 

 
𝐿
2(𝑑+1)
𝑑−1 (ℝ𝑑)

≲ 𝜆
−
𝑑(𝑑−1)
2(𝑑+1) (𝜆𝑅)−

1
2 ‖𝑔1,𝑘‖ℓ𝑘2𝐿2(𝑆𝑘 ,01 )

, 

(cf. the formula for ℱ1
𝜆

−1 in (123)) where we use that ℓ𝑘
2  ↪ ℓ

𝑘

2(𝑑+1)

𝑑−1  . Decomposing the integral 

kernel of 𝑇2𝑇2
∗ as a sum 𝐾𝑅  +  𝐾𝑅 as before, we may handle the contribution of 𝐾𝑅 by 

using (125) to reason analogously to the argument above. We are thus reduced to handling 

the contribution of 𝐾𝑅  and denote the corresponding operator as 𝑃𝑅. As before, we restrict 

attention to the diagonal terms, and are thus reduced to seeing that  

∑ 

k

 〈λd ℱ1
λ
(𝑃𝑅(F̃k)), ℱ1

λ
(F̃k)〉 ≲ (λ

−
d
p (λ𝑅)

−
1
2 |E|

1
p′)

2

 . 

 Since supp(�̃�𝑘) ⊂ supp(𝜓𝑘), this analogously reduces to showing that  

∑ 

𝑘

 ∑  

∞

𝑙=0

 2−𝑙𝑁  ‖ℱ1
𝜆
(�̃�𝑘)‖

𝐿2(𝑆𝑘,𝑙
2 )

2

 ≲   (𝜆
−
𝑑
𝑝 (𝜆𝑅)−1|𝐸|

1
𝑝′)

2

 , 

where this time 𝑆𝑘,𝑙
2  denotes the (𝜆𝑅)−12𝑙 neighborhood of the hypersurface 𝑆𝑘

2 =

 {𝛻_𝜙2(𝑤𝑘,𝜉) ∶  𝜉 ∈  𝑄}. We again restrict attention to the 𝑙 =  0 case, and let {𝑔2,𝑘}𝑘 be a 

sequence such that supp(�̃�2,𝑘) ⊂ 𝑆𝑘,0
2  and ∑  𝑘  ‖𝑔2,𝑘‖𝐿2(𝑆𝑘,02  ) 

2
=  1. Observe that  
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∑ 

𝑘

|〈�̃�𝑘, 𝜆
−𝑑ℱ1

𝜆

−1(𝑔2,𝑘 )〉| ≲  ∑  

𝑘

 ‖𝐹𝑘‖𝐿∞(ℝ𝑑)  ∫   |𝜆
−2𝑑𝜓𝑘1𝐸ℱ1

𝜆

−1(𝑔1,𝑘)ℱ1
𝜆

−1(𝑔2,𝑘)|  𝑑𝑤, 

 and it suffices to show that the right hand side is bounded by 𝜆
−
𝑑

𝑝  (𝜆𝑅)−1 |𝐸|
1

𝑝′  . But each 

term on the right is bounded by  

|𝐸|
1
𝑞′  (∫   |𝜆−2𝑑𝜓𝑘ℱ1

𝜆

−1 (𝑔1,𝑘)ℱ1
𝜆

−1(�̃�2,𝑘)|

𝑞

 𝑑𝑤)

1
𝑞

 . 

 Rescaling 𝑤 ↦  𝑅𝑤 and applying the bilinear estimates (117) (or even those in [87]) shows 

the preceding term is bounded by  

|𝐸|
1
𝑞′  𝑅

𝑑
𝑞  (𝜆𝑅)

−
𝑑
𝑞 +𝛼  (𝜆𝑅)−1 ‖𝑔1,𝑘‖𝐿2(𝑆𝑘,0

1  )
‖�̃�2,𝑘‖𝐿2(𝑆𝑘,0

2 )
 . 

 Taking the sum in k and applying Cauchy-Schwarz completes the proof once we observe 

that  

|𝐸|
1
𝑞′  𝜆

−
𝑑
𝑞 +𝛼𝑅𝛼  ≲  |𝐸|

1
𝑝′𝜆

−
𝑑
𝑝 . 

Recalling that 𝑅 ≈  𝜆−1 (𝜆𝑑  |𝐸|)
2

 𝑑−1
 (
𝑑+3

𝑑+1
 −

2

𝑝′
)
  =  𝜆−1(𝜆𝑑  |𝐸|)

2

𝑑−1
 (
2

𝑝
 −
𝑑−1 

𝑑+1 
)
 this inequality is 

equivalent to  

|𝐸|
−
1
𝑞 𝜆

−
𝑑
𝑞  (𝜆𝑑 |𝐸|)

2𝛼
 𝑑−1 

(
2
𝑝 −

𝑑−1
 𝑑+1 

) 
≲  |𝐸|

−
1
𝑝 𝜆

−
𝑑
𝑝 , 

which in turn can be rearranged as  

(𝜆𝑑 |𝐸|)
2𝛼
𝑑−1 

(
2
𝑝 −

𝑑−1
𝑑+1 

)
≲ (𝜆𝑑  |𝐸|)

1
𝑞 −

1
𝑝 . 

But since 𝜆𝑑  |𝐸| ≳  1, this follows once it is observed that (119) is equivalent to  
2𝛼

𝑑 −  1
 (
2

𝑝
 −
𝑑 −  1

𝑑 +  1
)  <

1

𝑞
 −
1

𝑝
 .  

Even though we only need the weaker condition (119) to conclude the argument, the 

stronger hypothesis (118) is used above in a significant way to ensure that 𝜆𝑅2  ≤  1.  

By Corollary (2.3.2), (91) follows from (90). Therefore, if , as before, 𝛱 denotes the 

space of unit length geodesics, we must show that if (𝑀, 𝑔) has nonpositive sectional 

curvature, then if 𝜀 >  0 is fixed there is a 𝛬𝜀  <  ∞ so that  

∫  
𝒯
𝜆
−
1
2
 
 (𝛾)

  |𝑒𝜆|
2 𝑑𝑥 ≤  𝜀, 𝜆 ≥  𝛬𝜀 , 𝛾 ∈  𝛱.                      (126) 

Here, as before, we are denoting the volume element associated to the metric simply by 𝑑𝑥.  

We shall first fix 𝛾 ∈  𝛱 and prove the special case  

∫  
𝒯
𝜆
−
1
2
 
 (𝛾)

|𝑒𝜆|
2 𝑑𝑥 ≤  𝜀, 𝜆 ≥  𝛬𝜀 .                           (127) 

After doing this we shall see that we can adapt its proof using the compactness of 𝛱 to obtain 

the estimates (126) which are uniform as 𝛾 ranges over this space.  

To prove these estimates, we shall want to use a reproducing operator which is similar 

to the local one, 𝜒𝜆, that was used to prove Theorem (2.3.1). This operator was a local one, 

but to able to take advantage of our curvature assumptions and make use of the method of 

time-averaging, it will be convenient to use a variant that is in effect scaled in the spectral 

parameter.  

To this end, let us fix a real-valued function 𝜌 ∈ 𝒮(ℝ) satisfying  
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𝜌(0)  =  1, �̂�(𝑡) =  0 if |𝑡| ≥
1

4
 and �̂�(𝑡) =  �̂� (−𝑡).       (128) 

Then for a given fixed 𝑇 ≫  1 we have  

𝜌 (𝑇 (𝜆 − √∆𝑔))𝑒𝜆  =  𝑒𝜆. 

 As a result, we would have (127) if we could show that there is a uniform constant 𝐴 =
 𝐴(𝑀, 𝑔) so that whenever 𝑇 ≫  1 is fixed there is a constant 𝐴𝑇  <  ∞ so that for 𝜆 ≥  1 

we have  

‖𝜌 (𝑇 (𝜆 − √∆𝑔))𝑓‖

𝐿2(𝑇
𝜆
−
1
2
 (𝛾))

≤ (𝐴𝑇−
1
4  +  𝐴𝑇𝜆

−
1
8) ‖𝑓‖𝐿2(𝑀).     (129) 

Since 𝜌 (𝑇(𝜆 −  √∆𝑔)) ∶  𝐿
2 (𝑀)  →  𝐿2 (𝑀) is self-adjoint, by duality, (129) is equivalent 

to the following  

‖𝜌 (𝑇 (𝜆 − √ ∆𝑔)) ℎ ‖

𝐿2(𝑀)

 ≤ (𝐴𝑇−
1
4  +  𝐴𝑇𝜆

−
1
8) ‖ℎ‖𝐿2(𝑀) , 

if supp ℎ ⊂  𝑇
𝜆
−
1
2
 (𝛾).     (130)   

If we now let  

 𝑚(𝜏 ) = (𝜌(𝜏 ))
2
 ,                                                       (131) 

 we can square the right side of (130) to see that whenever ℎ is supported in the tube 

𝑇
𝜆
−
1
2
  (𝛾) we have  

‖𝜌 (𝑇 (𝜆 −  √∆𝑔)) ℎ ‖

𝐿2(𝑀)

2

 =  〈𝑚(𝑇(𝜆 − √∆𝑔))ℎ, 〉  

≤  ‖𝑚 (𝑇 (𝜆 − √∆𝑔)) ℎ‖

𝐿2(𝑇
𝜆
−
1
2
 (𝛾))

‖ℎ‖
𝐿2(𝑇

𝜆
−
1
2
 (𝛾))

.  

Whence we deduce that our desired inequalities (127), (129) and (130) would all follow 

from  

‖𝑚(𝑇 (𝜆 − √∆𝑔)) ℎ ‖

𝐿2(𝑇
𝜆
−
1
2 

(𝛾))

 ≤   (𝐶𝑇−
1
2  +  𝐶𝑇 𝜆

−
1
4 ‖ℎ‖𝐿2(𝑀) ,   

if supp ℎ ⊂  𝑇
𝜆
1
2
 (𝛾),                  (132) 

 with 𝐶 and 𝐶𝑇 being equal to 𝐴2 and 𝐴𝑇
2  , respectively.  

Since, by (128),  

�̂�(𝜏 )  =  (2𝜋)−1 (�̂�  ∗  �̂�)(𝜏 )  
is supported in |𝜏 |  <  1, we can write  

𝑚(𝑇 (𝜆 − √∆𝑔))  =
1

2𝜋𝑇
 ∫  

𝑇

−𝑇

 �̂�  (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏  𝑒−𝑖𝜏√∆𝑔  𝑑𝜏.  

After perhaps multiplying the metric, we may assume that the injectivity radius of the 

manifold is larger than 10. Let us then fix an even bump function 𝛽 ∈  𝐶0
∞ (ℝ) satisfying  
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𝛽(𝜏 ) =  1, |𝜏 | ≤
3

2
  and 𝛽(𝜏 ) =  0, |𝜏 | ≥  2.  

We then can split  

𝑚(𝑇 (𝜆 − √∆𝑔))  =  𝑅𝜆  +  𝑊𝜆 

where (suppressing the 𝑇-dependence)  

𝑊𝜆  =
1

2𝜋𝑇
 ∫  

𝑇

−𝑇

(1 −  𝛽(𝜏 ))�̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏 𝑒−𝑖𝜏√∆𝑔  𝑑𝜏,  

and, if 𝑟𝑇 (𝜏 )denotes the inverse Fourier transform of 𝜏 →  𝛽(𝜏 )�̂� (
𝜏

𝑇
),  

𝑅𝜆ℎ =  𝑇
−1 𝑟𝑇  (𝜆 −  √∆𝑔) ℎ. 

 Clearly, |𝑟𝑇 (𝜏 )|  ≤  𝐵 for some 𝐵 independent of 𝑇 ≥  1, and therefore, 

 ‖𝑅𝜆𝑓‖𝐿2(𝑀)  ≤  𝐵𝑇
−1‖𝑓‖𝐿2(𝑀) , 𝑇 ≥  1. 

As a result, we would obtain (132) if we could show that (133)  

‖𝑊𝜆ℎ‖
𝐿2(𝑇

𝜆
−
1
2
 (𝛾))

 ≤ (𝐶𝑇−
1
2  +  𝐶𝑇𝜆

−
1
4) ‖ℎ‖𝐿2  , if supp ℎ ⊂  𝑇

𝜆
−
1
2
 (𝛾).  (133) 

By Euler’s formula, if �̃�𝑇 denotes the inverse Fourier transform of 𝑇−1 (1 − 𝛽(𝜏 )) �̂� (
𝜏

𝑇
), 

we have  

𝑊𝜆  =
1

2𝜋𝑇
 ∫  

𝑇

−𝑇

 (1 −  𝛽(𝜏 ))�̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏 cos  (𝜏 √∆𝑔)  𝑑𝜏 +  �̃�𝑇  (𝜆 +  √∆𝑔). 

Since �̃�𝑇 (𝜆 + √∆𝑔) has a kernel which, for 𝑇 ≥  1, is 𝑂𝑇  ((1 + 𝜆)
−𝑁) for every 𝑁 =

 1, 2, . .. as �̃�𝑇  ∈ 𝒮(ℝ), we conclude that we would obtain (133) if we could prove that  

‖𝑆𝜆ℎ‖
𝐿2(𝑇

𝜆
−
1
2
 (𝛾))

 ≤   (𝐶𝑇−
1
2  +  𝐶𝑇 𝜆

−
1
4)  ‖ℎ‖𝐿2 , if supp ℎ ⊂  𝑇

𝜆
−
1
2 
(𝛾), (134) 

With 

𝑆𝜆  =
1

2𝜋𝑇
 ∫  

𝑇

−𝑇

 (1 −  𝛽(𝜏 ))�̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏 cos  (𝜏√∆𝑔)  𝑑𝜏.            (135) 

It is at this point that we shall finally use our hypothesis that (𝑀, 𝑔) has nonpositive sectional 

curvature. By the Cartan-Hadamard theorem (see [25], [76]), for each point 𝑃 ∈  𝑀, the 

exponential map at 𝑃, exp𝑃   , sending 𝑇𝑃𝑀, the tangent space at 𝑃, to 𝑀 is a universal 

covering map. It is natural to take 𝑃 to be the center of our unit-length geodesic segment γ. 

Thus, with this choice, if we identify ℝ𝑑 with 𝑇𝑃𝑀, we have that 

𝜅 = exp𝑃  ∶  ℝ
𝑑 ⋍ 𝑇𝑃𝑀 →  𝑀                                  (136) 

is a covering map. 

          If 𝑔  =  𝜅∗ 𝑔 denotes the pullback via 𝜅 of the metric 𝑔 to ℝ𝑑 , it follows that 𝜅 is a 

local isometry. We let 𝑑𝑔(𝑦, 𝑧) denote the Riemannian distance with respect to 𝑔 of , 𝑧 ∈
 ℝ𝑑 . By the Cartan-Hadamard theorem there are no conjugate points for either (𝑀, 𝑔) or 

(ℝ𝑑  ,  �̃�). Also, the image under 𝜅 of any geodesic in (ℝ𝑑  , 𝑔) is one in (𝑀, 𝑔). If {𝛾(𝑡) ∶
 𝑡 ∈ ℝ} denotes the parameterization by arc length of the extension of our geodesic segment 
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𝛾 ∈  𝛱, let 𝛾 =  {𝛾(𝑡): 𝑡 ∈ ℝ} denote the lift of this extension, which is the unique geodesic 

in (ℝ𝑑  , �̃�) that passes through the origin and satisfies 𝜅(𝛾(𝑡))  =  𝛾(𝑡), 𝑡 ∈ ℝ. 

          Next we recall that the deck transforms are the set of diffeomorphisms 𝛼 ∶  ℝ𝑑  →  ℝ𝑑 

for which 

𝜅 ∘  𝛼 =  𝜅. 
The collection of these maps form a group 𝛤. Since 𝛼∗ 𝑔 =  𝑔, 𝛼 ∈  𝛤, any deck transform 

preserves angles and distances. Consequently, the image of any geodesic in (ℝ𝑑  , 𝑔) under 

a deck transform is also a geodesic in this space. As a result, the collection of all 𝛼 ∈  𝛤 for 

which 𝛼(𝛾)  =  𝛾 is a subgroup of 𝛤, which is called the stabilizer subgroup of 𝛾 that we 

denote by Stab (𝛾). If {𝛾(𝑡) ∶  𝑡 ∈ ℝ} is not a periodic geodesic, i.e., if there is no 𝑡0  >  0 

so that 𝛾(𝑡 +  𝑡0)  =  𝛾(𝑡), 𝑡 ∈ ℝ, then Stab(𝛾) is just the identity element in 𝛤. If the 

extension of 𝛾 ∈  𝛱 is periodic with minimal period 𝑡0  >  0 then Stab(𝛾) is a cyclic 

subgroup which we can write as {𝛼ℓ ∶ ℓ ∈ ℤ}, where 𝛼ℓ is determined by 𝛼ℓ(𝛾(𝑡))  =
 𝛾(𝑡 + ℓ𝑡0), ℓ =  0, ±1,±2, . .. . Thus, restricted to 𝛾, 𝛼ℓ just involves shifting the geodesic 

𝛾(𝑡) by ℓ times its period, and Stab(𝛾) is generated by 𝛼1. Next, let 

𝐷𝐷𝑖𝑟  =  {�̃� ∈ ℝ
𝑑 ∶  𝑑�̃�(0, �̃�)  <  𝑑𝑔(0, 𝛼(�̃�)), ∀𝛼 ∈  𝛤, 𝛼 ≠   𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦} 

be the Dirichlet domain for (ℝ𝑑  , 𝑔). We can then add to 𝐷𝐷𝑖𝑟 a subset of 𝜕𝐷𝐷𝑖𝑟  =

 𝐷𝐷𝑖𝑟\Int  (𝐷𝐷𝑖𝑟) to obtain a natural fundamental domain 𝐷, which has the property that ℝ𝑑 

is the disjoint union of the 𝛼(𝐷) as α ranges over 𝛤 and {�̃� ∈  ℝ𝑑 ∶  𝑑𝑔 ̃(0, �̃�) <  10}  ⊂

 𝐷 since we are assuming that the injectivity radius of (𝑀, 𝑔) is more than ten. Given 𝑥 ∈
 𝑀, let �̃�  ∈  𝐷 be the unique point in our fundamental domain for which 𝜅(�̃�)  =  𝑥. We 

then have (see e.g. [28]) that the kernel of cos  (𝜏 √∆𝑔) can be written as  

cos  (𝜏  √∆𝑔)   (𝑥, 𝑦) =  ∑  

𝛼∈𝛤

(cos  𝜏 √∆�̃�)  (�̃�, 𝛼(�̃�)),                     (137)  

where 𝑐𝑜𝑠(𝜏 √∆�̃�): 𝐿
2 (ℝ𝑑  , 𝑔) →  𝐿2 (ℝ𝑑  , 𝑔) is the cosine transform associated with 𝑔. 

Thus, if 𝑑𝑉�̃� is the associated volume element, we have that when 𝑓 ∈  𝐶0
∞ (ℝ𝑑 )  

𝑢(𝜏, �̃�) = ∫  
ℝ𝑑
(cos   𝜏 √∆�̃�) (�̃�, �̃�) 𝑓(�̃�)𝑑𝑉�̃� (�̃�) 

 is the solution of the Cauchy problem (with 𝐷𝜏  =  −𝑖𝜕𝑡) 

 (𝐷𝜏
2  −  ∆�̃�)𝑢 =  0, 𝑢|𝜏=0   =  𝑓, 𝜕𝜏𝑢|𝜏=0 =  0. 

 Therefore, by Huygens principle,  

 (cos   𝜏 √∆�̃�  ) (�̃�, �̃�)  =  0 if 𝑑�̃�(�̃�, �̃�)  >  |𝜏 |.              (138) 

 Also, this kernel is smooth when 𝑑�̃�(�̃�, �̃�)  ≠  |𝜏 |, 𝑖. 𝑒.,  

sing  

supp(cos   𝜏 √∆�̃�   (· ,·)  ⊂  {(�̃�, �̃�) ∈  ℝ
𝑑  ×  ℝ𝑑 ∶  𝑑�̃�(�̃�, �̃�) =  |𝜏 |}. (139)  

To proceed, we need a result which follows from the Hadamard parametrix and stationary 

phase:  

This lemma is standard and can essentially be found in [73], [30] or [28]. So let us 

postpone its proof and focus now on using it to help us to prove (134). 

If we combine (135) and (137), we can write the kernel of our operator as 

𝑆𝜆(𝑥, 𝑦) 
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=
1

2𝜋𝑇
 ∑  

𝛼∈𝛤

 ∫  
𝑇

−𝑇

 (1 − 𝛽(𝜏)) �̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏 (cos  𝜏√∆�̃� ) (�̃�, 𝛼(�̃�))  𝑑𝜏, (140) 

with, as in (137), �̃� and �̃� being the unique points in our fundamental domain having the 

property that 𝑥 =  𝜅(�̃�) and 𝑦 =  𝜅(�̃�), respectively. In view of (138) the number of 

nonzero summands in (140) is finite, but, if the sectional curvatures of (𝑀, 𝑔) are strictly 

negative, the number of such terms grows exponentially with 𝑇. Therefore, as in [30] and 

[73], it is convenient and natural to split the sum into the terms in the stabilizer group for 𝛾 

and everything else. So let us write  

𝑆𝜆(𝑥, 𝑦)  =  𝑆𝜆
𝑆𝑡𝑎𝑏 (𝑥, 𝑦)  +  𝑆𝜆

𝑂𝑠𝑐 (𝑥, 𝑦),                                (141) 
where  

𝑆𝜆
𝑆𝑡𝑎𝑏 (𝑥, 𝑦) =

1

2𝜋𝑇
 ∑  

𝛼∈𝑆𝑡𝑎𝑏(�̃�)

 ∫  
𝑇

−𝑇

 (1 

−  𝛽(𝜏 )) �̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏 (cos   𝜏  √∆�̃�) (�̃�, 𝛼(�̃�)) 𝑑𝜏,               (142) 

 and  

𝑆𝜆
𝑂𝑠𝑐 (𝑥, 𝑦) =

1

2𝜋𝑇
 ∑  

𝛼∈𝛤\𝑆𝑡𝑎𝑏

(𝛾)∫  
𝑇

−𝑇

 (1 

−  𝛽(𝜏 )) �̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏 (cos   𝜏 √∆�̂�)  (�̃�, 𝛼(�̃�))𝑑𝜏,                          (143) 

We shall also call the operator associated with the second term in the right side of (141) 

𝑆𝜆
𝑂𝑠𝑐 since we shall be able to use oscillatory integral operator bounds to control it. The other 

piece is very easy to estimate. We claim that  

‖𝑆𝜆
𝑆𝑡𝑎𝑏 ℎ‖

𝐿2(𝑇
𝜆
−
1
2
 (𝛾))

 ≤ ( 𝐶𝑇−
1
2  +  𝐶𝑇 𝜆

−2) ‖ℎ‖𝐿2  ,   

if supp ℎ ⊂  𝑇
𝜆
−
1
2
 (𝛾).            (144)  

By Young’s inequality, this would be a consequence of the following estimate for the kernel  

|𝑆𝜆
𝑆𝑡𝑎𝑏 (𝑥, 𝑦)|  ≤  𝐶𝑇−

1
2 𝜆

𝑑−1
2  +  𝐶𝑇 𝜆

−2+
𝑑−1
2  ,                      (145) 

 since we may restrict to (𝑥, 𝑦)  ∈  𝑇
𝜆
−
1
2 
(𝛾)  ×  𝑇_(𝜆−

1

2 (𝛾). If our 𝛾 ∈  𝛱 is not a segment 

of a periodic geodesic in (𝑀, 𝑔) then 𝑆𝑡𝑎𝑏(𝛾) is just the identity element, in which case 

(145) follows trivially from Lemma (2.3.16). Otherwise, if the geodesic has period 𝑡0  >  0 

then as noted before 𝑆𝑡𝑎𝑏(𝛾)  =  {𝛼ℓ}ℓ∈ℤ where 𝛼ℓ(𝛾(𝑡))  =  𝛾(𝑡 + ℓ𝑡0). Since 

𝑑�̃�(𝛼( �̃�), 𝛼(�̃�)) is uniformly bounded as �̃� and �̃� range over 𝐷 and α over Γ, Lemma 

(2.3.16) also yields, in this case,  

|𝑆𝜆
𝑆𝑡𝑎𝑏 (𝑥, 𝑦)|  ≤  𝐶𝑇−1  ∑  

1≤ℓ𝑡0≤2𝑇

 𝜆
𝑑−1
2  (1 + ℓ)−

𝑑−1
2 + 𝐶𝑇 𝜆

𝑑−1
2  −2 ,   (146) 

using (156) (with 𝑗 =  0) to obtain the first term in the right and (157) to obtain the other 

term. Since 𝑑 ≥  2, (146) implies (145). For later use, note that, since the period 𝑡0 must be 

larger than 10, in view of our assumption on the injectivity radius of (𝑀, 𝑔), the constants 

in (144) can be chosen to be independent of 𝛾 ∈  𝛱. In view of (144), the proof of (134) 

would be complete if we could show that  
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‖𝑆𝜆
𝑂𝑠𝑐ℎ‖

𝐿2(𝑇
𝜆
−
1
2 

(𝛾))

 ≤  𝐶𝑇 𝜆
−
1
4 ‖ℎ‖𝐿2  , if supp ℎ ⊂  𝑇

𝜆
−
1
2
 (𝛾).           (147) 

By Lemma (2.3.16),  

𝑆𝜆
𝑂𝑠𝑐  (𝑥, 𝑦) =  𝜌(𝑥, 𝑦)

𝜆
𝑑−1
2

𝑇
 ∑  

𝛼∈𝛤\𝑆𝑡𝑎𝑏(�̃�)

 𝑎 ± (𝜆, 𝑇; 𝑑�̃�(�̃�, 𝛼(�̃�))) 

𝑒±𝑖𝜆𝑑�̃�(�̃�,𝛼(�̃�))   +  𝑅𝜆(𝑥, 𝑦),                                   (148) 
where, with bounds independent of 𝛾 ∈  𝛱,  

|𝑅𝜆(𝑥, 𝑦)| ≤  𝐶𝑇 𝜆
−2+

𝑑−1
2  .                                     (149)  

By invoking Young’s inequality one more time, we find that by (148) and (149) we would 

have (147) if we could show that  

(∫  
𝒯
𝜆
−
1
2
 (𝛾)

    |∫  
 𝒯
𝜆
−
1
2
 (𝛾)

 𝜌(𝑥, 𝑦)𝑎 ± (𝜆, 𝑇; 𝑑�̃�(𝑥, 𝛼(𝑦))) 𝑒
 ±𝑖𝜆𝑑�̃�(𝑥,𝛼(𝑦)) ℎ(𝑦)𝑑𝑦|

2

 𝑑𝑥)

1
2

    

≤  𝐶𝛼𝜆
−
 𝑑−1
2  −

1
4 ‖ℎ‖𝐿2 , 𝛼 ∈  𝛤\𝑆𝑡𝑎𝑏(𝛾).                         (150) 

Here, to simplify the notation to follow, as we may, we are identifying 𝒯
𝜆
−(
1
2
)
   (𝛾) with its 

preimage in 𝐷 via 𝜅. So we have lifted our calculation to ℝ𝑑 , and dy denotes the volume 

element coming from the metric 𝑔.  

To prove this we shall use the following result which is an immediate consequence 

of Hormander’s 𝐿2 -oscillatory integral theorem in [45] (see also [16]). 

 Lemma (2.3.14)[69]: Let  

𝜙(𝑧;  𝑥, 𝑦)  ∈  𝐶∞(ℝ𝑚  ×  ℝ 𝑑−1 × ℝ𝑑) 
 be real and  

𝑎(𝑧;  𝑥, 𝑦)  ∈  𝐶0
∞ (ℝ𝑚  ×  ℝ 𝑑−1  ×  ℝ𝑑 ). 

 Assume that the mixed Hessian in the (𝑥, 𝑦) variables of 𝜙 satisfies  

𝑅𝑎𝑛𝑘 (
𝜕2

𝜕𝑥𝑗𝜕𝑦𝑘
 𝜙(𝑧;  𝑥, 𝑦))  ≡  𝑑 −  1 𝑜𝑛 𝑠𝑢𝑝𝑝 𝑎.  

Then there is a uniform constant 𝐶 so that for 𝜆 ≥  1  

(∫  
ℝ𝑑−1 

 |∫  
ℝ𝑑
 𝑒 𝑖𝜆𝜙(𝑧; 𝑥, 𝑦)𝑎(𝑧;  𝑥, 𝑦)𝑓(𝑦)𝑑𝑦|

2

 𝑑𝑥)

1
2

 ≤  𝐶𝜆−
 𝑑−1
2  ‖𝑓‖𝐿2(ℝ𝑑) ,  

where all the integrals are taken with respect to Lebesgue measure.  

We also require the following simple geometric lemma so that we can use Lemma 

(2.3.14) to exploit the fact that our tubes are only have width 𝜆−
1

2 to obtain (150).  

Lemma (2.3.15)[69]: Suppose that 𝛼 ∈  𝛤\𝑆𝑡𝑎𝑏(𝛾) and that 𝑥0, 𝑦0  ∈  𝛾 ∩ 𝐷. Then either 

𝛼(𝑦0) ∉  𝛾 or 𝛼−1 (𝑥0)  ∉  𝛾 or both.  

Proof. Since 𝛼 ∈  𝛤\𝑆𝑡𝑎𝑏(𝛾), it follows that 𝛾 and 𝛼(𝛾) are distinct or intersect at a unique 

point 𝑃 =  𝑃(𝛾, 𝛼) (by the Cartan-Hadamard theorem). In the first case both 𝛼(𝑦0) ∉  𝛾 

and 𝛼−1 (𝑥0)  ∉  𝛾. We also have the desired conclusion if 𝑃 ≠   𝛼(𝑦0), for then we must 

have 𝛼(𝑦0) ∉  𝛾 as 𝛼(𝑦0)  ∈  𝛼(𝛾).  
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Suppose that we are in the remaining case where 𝛾  ∩ 𝛼(𝛾)  =  {𝛼(𝑦0)}. Since 

𝑥0, 𝑦0  ∈  𝐷 and 𝐷 ∩  𝛼(𝐷)  =  ∅, it follows that 𝑥0  ≠  𝛼(𝑦0). Therefore, as 𝑥0  ∈  𝛾, we 

must have that 

Figure (1)[69]: Transversal intersections 

𝑥0  ∉  𝛼(𝛾). Thus, in this case, we must have 𝛼−1 (𝑥0)  ∉  𝛾, meaning that we have the 

desired conclusion for this case as well.  

To use these two lemmas we require some simple facts about the Riemannian distance 

function 𝑑�̃�(𝑥, 𝑧). We recall that (ℝ𝑑  ,  �̃�) has no conjugate points. Thus, the 𝑑 × 𝑑 Hessian 
𝜕2

𝜕𝑥𝑗𝜕𝑧𝑘
 𝑑�̃�(𝑥, 𝑧) has rank identically equal to 𝑑 −  1 away from the diagonal.  

With this in mind, let us fix points 𝑥0 and 𝑦0 on our unit geodesic segment 𝛾 ⊂  𝐷. 

We shall now prove a local version of our remaining estimate (150). By Lemma (2.3.15), 

for our given 𝛼 ∈  𝛤\𝑆𝑡𝑎𝑏(𝛾), we know that either 𝛼(𝑦0) ∉  𝛾 or 𝛼−1 (𝑥0)  ∉  𝛾. For the 

moment, let us assume the former, i.e.,  

𝛼(𝑦0) ∉  𝛾.                                                       (151) 
 We then have that the geodesic passing through 𝑧0  =  𝛼(𝑦0) and 𝑥0  ∈  𝛾 ⊂  𝛾 

intersects γ transversally. We may therefore choose geodesic normal coordinates in ℝ𝑑 

vanishing at 𝑥0 so that 𝛾 is the first coordinate axis, i.e.  

𝛾  =  {(𝑡, 0, . . . , 0) ∶  𝑡 ∈ ℝ}, 
 and, moreover, if 𝑥0  =  (𝑥1, . . . , 𝑥𝑑−1) are the first 𝑑 − 1 coordinates of 𝑥 in this coordinate 

system then  

𝑅𝑎𝑛𝑘 (
𝜕2

𝜕𝑥𝑗
′𝜕𝑧𝑘

 𝑑�̃� ((𝑥
′ , 0), 𝑧) )    =  𝑑 −  1 at 𝑥′  =  0 and 

𝑧 =  𝑧0  =  𝛼(𝑦0).                     (152) 
By Gauss’ lemma this will be the case if the geodesic through the origin and 𝑧0 intersects 

the hyperplane {𝑥 ∶  𝑥𝑛  =  0} transversally as shown in Figure (1) below, which can be 

achieved after performing a rotation fixing the first coordinate axis if needed. Since 𝛼 ∶
 ℝ𝑑  →  ℝ𝑑 is a diffeomorphism it follows that in given our fixed points 𝑥0, 𝑦0  ∈  𝛾 ⊂  𝛾 ∩
 𝐷, we can find δ > 0 so that, in the above coordinates, 

 𝑅𝑎𝑛𝑘 (
𝜕2

𝜕𝑥𝑗
′𝜕𝑦𝑘

𝑑�̃� ((𝑥
′ , 𝑥𝑛), 𝛼(𝑦)) )   =  𝑑 −  1,  

if 𝑥 ∈  𝐵𝛿(𝑥0) and 𝑦0  ∈  𝐵𝛿(𝑦0), 
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 with 𝐵𝛿(𝑤) denoting the geodesic ball of radius 𝛿 about 𝑥 ∈  ℝ𝑑. 

Next, it follows from (148) and Lemma (2.3.14) that, in our coordinates, for each 

fixed value of 𝑥𝑛, we have  

(∫  
{𝑥′∶(𝑥′ ,𝑥𝑛)∈𝒯

𝜆
−
1
2 

(𝛾)∩𝐵𝛿(𝑥0)}

|∫  
𝒯
𝜆
−
1
2
 (𝛾)∩𝐵𝛿(𝑦0)

𝜌(𝑥, 𝛼(𝑦)) 𝑎± (𝜆, 𝑇; 𝑑�̃�(𝑥, 𝛼(𝑦)))  

×  𝑒±𝑖𝜆𝑑�̃�  (𝑥, 𝛼(𝑦)) ℎ(𝑦)𝑑𝑦| 𝑑𝑥′ )

1
2

 ≤  𝐶𝛼𝜆
−
𝑑−1
2 (∫   |ℎ(𝑦)|2 𝑑𝑦)

1
2
 .  

Since |𝑥𝑛|  ≲  𝜆
−
1

2 in 𝒯
𝜆
−
1
2
 (𝛾), from this, we deduce that, under our assumption (151), we 

have that  

(∫  
𝒯
𝜆
−
1
2 

(𝛾)

∩ 𝐵𝛿(𝑥0)  |∫  
𝒯
𝜆
−
1
2
 (𝛾)∩𝐵𝛿(𝑦0)

 𝜌(𝑥, 𝛼(𝑦))𝑎± (𝜆, 𝑇; 𝑑�̃�(𝑥, 𝛼(𝑦)))  

×  𝑒±𝑖𝜆𝑑�̃�(𝑥,𝛼(𝑦)) ℎ(𝑦)𝑑𝑦| 𝑑𝑥)

1
2

  

≤  𝐶𝛼𝜆
−
𝑑−1
2  𝜆−

1
4  (∫  |ℎ(𝑦)|2 𝑑𝑦)

1
2
 .                                      (153) 

Lemma (2.3.15) tells us that if we do not have (151) then  

𝛼−1 (𝑥0) ∉ 𝛾.                                                       (154)  
 We claim that for our fixed points 𝑥0, 𝑦0  ∈  𝛾 we can find 𝛿 > 0 so that (153) remains valid 

for this case as well. To do this, we just use the fact that our 𝛼 ∈  𝛤\𝑆𝑡𝑎𝑏(𝛾) is an isometry 

and therefore  

𝑑�̃�(𝑥, 𝛼(𝑦))  =  𝑑�̃�(𝛼
−1(𝑥), 𝑦). 

 Consequently, since 𝛼−1  ∈  𝛤\𝑆𝑡𝑎𝑏(𝛾), we obtain (153) under the assumption (154) since 

it is essentially just the dual version of the case we just handled, and so follows from the 

above argument after taking adjoints.  

Since we have shown that (153) holds either under assumption (151) or (154), Lemma 

(2.3.14) tells us that given any two fixed points 𝑥0, 𝑦0  ∈  𝛾 we can find a 𝛿 >  0 so that 

(153) is valid. By the compactness of our unit geodesic segment γ, this implies (150), which 

completes the proof of the estimate (127) for our fixed 𝛾 ∈  𝛱.  

It is straightforward to see how to obtain the stronger estimate (126), which involves 

uniform bounds over 𝛱, by using the proof of (127). We use the fact that if 𝑇 ≫  1 is fixed 

and if 𝛾 ∈  𝛱 is fixed then there is a neighborhood 𝒩 (𝛾) of 𝛾 in 𝛱 so that if 𝛼 ∈
 𝛤\𝑆𝑡𝑎𝑏(𝛾) and the geodesic distance between our fundamental domain 𝐷 and its image 

𝛼(𝐷) is ≤  2𝑇, then we also have that 𝛼 /∈  𝛤\𝑆𝑡𝑎𝑏 (𝛾0) for any 𝛾0  ∈ 𝒩(𝛾). This follows 

from the fact that there are only finitely many 𝛼 ∈  𝛤 for which the distance between 𝐷 and 

𝛼(𝐷) is ≤  2𝑇, and if 𝛼 is not a stabilizer for ˜γ then it is also not a stabilizer for nearby 

geodesics.  
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Because of this and the uniform dependence on the smooth parameter 𝑧 in Lemma 

(2.3.14), if we define 𝑆𝜆
𝑂𝑠𝑐,𝛾

 to be the operator whose kernel is given by (143), we have the 

uniform bounds  

‖𝑆𝜆
𝑂𝑠𝑐,𝛾

 ℎ‖
𝐿2(𝑇

𝜆
−
1
2
 (𝛾))

 ≤  𝐶𝑇 𝜆
−
1
4 ‖ℎ‖𝐿2  ,  

if 𝛾0  ∈ 𝒩 (𝛾) and supp ℎ ⊂  𝑇_(𝜆
−
1
2 (𝛾0). 

 If then 𝑆𝜆
𝑆𝑡𝑎𝑏,𝛾

 =  𝑆𝜆  − 𝑆𝜆
𝑂𝑠𝑐,𝛾

 is then defined using γ, then the proof of (144) clearly also 

yields the following variant  

‖𝑆𝜆
𝑆𝑡𝑎𝑏,𝛾

 ℎ‖
𝐿2(𝒯

𝜆
−
1
2
 (𝛾))

 ≤  𝐶𝑇−
1
2  + 𝐶𝑇𝜆

−2 ‖ℎ‖𝐿2 ,  

if 𝛾0  ∈ 𝒩 (𝛾) and supp ℎ ⊂ 𝒯
𝜆
−
1
2 
(𝛾0). 

Together these two estimates imply the analog of (126) where, instead of having the 

geodesic segments range over 𝛱, we have them range over 𝒩 (𝛾) and 𝛬𝜀  =  𝛬𝜀(𝒩 (𝛾)) 
depends on 𝒩 (𝛾). By the compactness of 𝛱, this in turn yields (126).  

We need to prove Lemma (2.3.16).  

Lemma (2.3.16)[69]: Let 𝑚 be as in (128) and (131), and, as above, assume that 𝛽 ∈

 𝐶0
∞ (ℝ) satisfies 𝛽(𝜏 ) =  1, |𝜏 | <

3

2
 and 𝛽(𝜏 )  =  0, |𝜏 |  ≥  2. Then if 𝜆, 𝑇 ≥  1 and 

�̃�, �̃�  ∈  ℝ𝑑 , we have  

1

2𝜋𝑇
  ∫  

𝑇

−𝑇

 (1 −  𝛽(𝜏 ))�̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏   (𝑐𝑜𝑠 𝜏 √∆𝑔 ̃  ) (�̃�, �̃�)𝑑𝜏  

=  𝜌(𝑥, 𝑦)
𝜆
𝑑−1
2

𝑇
 ∑  

± 

 𝑎 ± (𝜆, 𝑇;  𝑑�̃�(�̃�, �̃�)) 𝑒
±𝑖𝜆𝑑�̃�(�̃�, �̃�)  

+ 𝑅 (𝜆, 𝑇, �̃�, �̃�),                                                                                  (155)  
where 𝜌 ∈  𝐿∞(ℝ𝑑  ×  ℝ𝑑)  ∩  𝐶∞(ℝ𝑑  ×  ℝ𝑑  ),  

𝑎±(𝜆, 𝑇;  𝑟) =  0, 𝑟 ∉  [1, 𝑇], 𝜕𝑟
𝑗
 𝑎±(𝜆, 𝑇;  𝑟)   ≤  𝐶𝑗 𝑟

−
𝑑−1
2  −𝑗 , (156)  

with constants 𝐶𝑗 independent of 𝑇, 𝜆 ≥  1, and  

𝑅(𝜆, 𝑇; �̃�, �̃�) =  0 if 𝑑�̃�(�̃�, �̃�) >  𝑇, and  

|𝑅(𝜆, 𝑇;  �̃�, �̃�)|  ≤  𝐶𝑇 ,𝐾𝜆
−2−

 𝑑−1
2  , if �̃�, �̃�  ∈  𝐾 ⋐ ℝ𝑑 .    (157)  

Proof. Since �̂�(𝜏 )  =  0 when |𝜏 |  >  1/2 it follows that the left side of (155),  

1

2𝜋𝑇
 ∫  

𝑇

−𝑇

 (1 −  𝛽(𝜏 ))�̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏  (cos   𝜏 √∆�̂�)  (�̃�, �̃�) 𝑑𝜏,      (158) 

vanishes when 𝑑�̃�(�̃�, �̃�)  >  𝑇. Since 𝛽(𝜏 )  =  1 for |𝜏 |  ≤  3/2, by (139), it is 

𝑂𝑁,𝑇 ((1 + 𝜆)
−𝑁 ) for any 𝑁 =  1, 2, 3, . .. if 𝑑�̃�(�̃�, �̃�)  ≤  1. Therefore, we need only to 

prove the assertions in Lemma (2.3.16) when 1 ≤  𝑑_�̃�(�̃�, �̃�)  ≤  𝑇.  

To prove this, we shall use the Hadamard parametrix (see e.g. [64] and [28]). Since 

(ℝ𝑑  , 𝑔) has nonpositive curvature, for 0 ≤  𝜏 ≤  𝑇 we can write  

(cos 𝜏√∆�̃� ) (�̃�, �̃�) =  𝜌(�̃�, �̃�)(2𝜋)
−𝑑  ∫  

𝑑

ℝ

 𝑒𝑖𝑑�̃�(�̃�,�̃�)𝜉1 cos   𝜏|𝜉|𝑑𝜉  
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= ∑  

± 

 ∫  
ℝ𝑑
  𝑒𝑖𝑑�̃�(�̃�,�̃�)𝜉1𝛼±(𝜏, �̃�, �̃�, |𝜉|)𝑒

±𝑖𝜏|𝜉| 𝑑𝜉 +  𝑅(𝜏, �̃�, �̃�),   (159) 

where the leading Hadamard coefficient, 𝜌, is smooth and uniformly bounded (by the 

curvature hypothesis), and if 𝑚 ∈  𝑁 is fixed we can have 𝜕𝜏
𝑗
𝑅(𝜏, �̃�, �̃�)∈ 𝐿∞  𝑙𝑜𝑐, 0 ≤  𝑗 ≤

 𝑚, and also  

|𝜕𝜏,�̃�,�̃�
𝛽

 𝜕𝑟
𝑗
𝛼±(𝜏, �̃�, �̃�, 𝑟)| ≤  𝐶𝑇 ,𝐾,𝛽,𝑗 𝑟

−2 −𝑗 ,  

if 𝑟 ≥  1, 0 ≤  𝜏 ≤  𝑇, 𝑗 =  0, 1, 2, . . . , and �̃�, �̃� ∈ 𝐾 ⋐  ℝ𝑑  .      (160) 
We also recall (see e.g. [16]) that we can write the Fourier transform of Lebesgue measure 

on the sphere in ℝ𝑑 as  

∫  
𝑆𝑑−1

 𝑒𝑖𝑥·𝜔 𝑑𝜎(𝜔) =  |𝑥|−
𝑑−1
2  (𝑐+(|𝑥|)𝑒

𝑖|𝑥|  +  𝑐−(|𝑥|)𝑒
−𝑖|𝑥| ) , (161) 

where for each 𝑗 =  0, 1, 2, . . ., we have  

|𝜕𝑟
𝑗
 𝑐+(𝑟)| + |𝜕𝑟

𝑗
 𝑐−(𝑟)|  ≤  𝐶𝑗 𝑟

−𝑗 , 𝑟 ≥  1.                         (162) 

 If in (158) we replace (cos   𝜏 √∆�̃�)(�̃�, �̃�) by the first term in (159), the resulting expression 

equals 𝜌(�̃�, �̃�) times a fixed multiple of  

1

2𝜋𝑇
 ∫  

𝑇

−𝑇

 ∫  
ℝ𝑑
  �̂�  (

𝜏

𝑇
) 𝑒𝑖𝜆𝜏  cos  (𝜏 |𝜉|)𝑒𝑖𝑑�̂�(�̃�,�̃�)𝜉1  𝑑𝜉𝑑𝜏  

=  ∑  

± 

1

2𝜋𝑇
 ∫  

𝑇

−𝑇

 ∫  
∞

0

 �̂�  (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏 cos  (𝜏 𝑟) 

𝑒±𝑖𝑟𝑑�̃�(�̃�, �̃�) 𝑐± (𝑑�̃�(�̃�, �̃�)𝑟 )
𝑟
𝑑−1
2

(𝑑�̃�(�̃�,�̃�))
𝑑−1
2

 𝑑𝑟𝑑𝜏               (163) 

minus  

∑ 

± 

1

2𝜋𝑇
∫  
2

−2

 ∫  
∞

0

 𝛽(𝜏 )�̂� (
𝜏

𝑇
) 𝑒𝑖𝜆𝜏 cos  (𝜏 𝑟)𝑒^(±𝑖𝑟𝑑𝑔˜(˜𝑥, 𝑦˜)  

𝑐±(𝑑𝑔˜(˜𝑥, 𝑦˜)𝑟)
𝑟
𝑑−1
2

(𝑑𝑔˜(˜𝑥, 𝑦˜))
𝑑−1
2

𝑑𝑟𝑑𝜏.    (164) 

If we replace cos  (𝜏 𝑟) by 𝑒−𝑖𝜏𝑟 in the right side of (163), the resulting expression equals 

the sum over ± of 

∫  
∞

0

 𝑚 (𝑇(𝜆 −  𝑟)) 𝑐± (𝑑�̃�(�̃�, �̃�)𝑟 )𝑒
±𝑖𝑟𝑑�̃�(�̃�,�̃�)

𝑟
𝑑−1
2

(𝑑�̃�(�̃�, �̃�))

𝑑−1
2

 𝑑𝑟  

=
𝜆
𝑑−1
2

𝑇
 𝑒±𝑖𝜆𝑑�̃�(�̃�,�̃�) 𝑎± (𝜆, 𝑇; 𝑑�̃�(�̃�, �̃�)), 

where, using the fact that 𝑚 ∈ 𝒮(ℝ) and (162), 𝑎± satisfies (156). If in (163) we replace 

cos  (𝜏𝑟) by 𝑒𝑖𝜏𝑟, then this argument also implies that the resulting expression is 

𝑂𝑁,𝑇 ((1 +  𝜆)
−𝑁 ) for any  =  1, 2, 3, . .. . Thus, modulo such an error 𝜌 times the terms in 

(163) can be written as the first term in the right side of (155) with (156) being valid. Since 

this argument shows that the same is the case for (164), we conclude that the first term in 
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the right side of (159), up to 𝑂𝑁,𝑇 ((1 +  𝜆)
−𝑁 ) errors, gives us the first term in the right 

side of (155).  

This argument and (160) also shows that if in (155) we replace (cos   𝜏√∆𝑔)(�̃�, �̃�) by 

the second term in the right side of (159), then we get a term obeying the bounds in (157). 

Since, as noted we can take the remainder term in (159) to satisfy for a given 𝑚 ∈

ℕ, 𝜕𝜏
𝑗
𝑅(𝜏, �̃�, �̃�)  ∈  𝐿𝑙𝑜𝑐

∞ , 𝑗 =  0, 1, . . . , 𝑚, we also see that if we choose 𝑚 large enough, the 

same is true for it. 

Corollary (2.3.17)[246]: (See [69]) The following are equivalent for any subsequence of 𝐿2 

-normalized eigenfunctions {𝑒(1+𝜖)𝑗𝑘
𝑛 }

 𝑘=1

∞
:  

lim sup
 𝑘→∞ 

 sup
 𝛾∈𝛱

  ∫ ∑  

𝑛𝒯

(1+𝜖)
𝑗𝑘

−
1
2
 (𝛾)
 

|𝑒(1+𝜖)𝑗𝑘
𝑛 (𝑧)|

2
 𝑑𝑧 =  0                        (165) 

lim sup
 𝑘→∞ 

 (1 + 𝜖)
𝑗𝑘

 −(
𝜖
4
)
∑ 

𝑛

‖𝑒(1+𝜖)𝑗
𝑛 ‖

𝐿2+𝜖(𝑀)
 =  0 for any 0 < 𝜖 <

4

2 + 𝜖
 .   (166) 

Proof. Given Theorem (2.3.1), it is routine to verify that (165) implies (166) for 𝑒 > 0 . The 

remaining values of 2 + 𝜖 then follow from interpolation. For the converse, observe that 

Hölder’s inequality gives  

∫ ∑ 

𝑛𝑇
(1+𝜖)

−
1
2
 (𝛾)

|𝑒1+𝜖
𝑛 (𝑧)|2 𝑑𝑧 ≲  (1 + 𝜖)

−(
2+𝜖
2  )(

4+3𝜖+𝜖2

10+5𝜖+𝜖2
 )
∑ 

𝑛

‖𝑒1+𝜖
𝑛 ‖

𝐿
10+5𝜖+𝜖2

3+𝜖 (𝑀)

2  ,  

and the implication follows.  

Corollary (2.3.18)[246]: Suppose 0 ≤ 𝜖 ≤ 1 and that 𝑇 is as in Theorem (2.3.7). There 

exist amplitudes 𝑎𝜈,µ, 𝑎𝜈′,µ both with 𝑥-support contained in supp(𝐴µ) and satisfying 

derivative bounds of the form  

|𝜕𝑥
1+𝜖 𝑎𝜈,µ(𝑥, 𝑠, 𝑡)| ≲1+𝜖  2

𝑗|1+𝜖|                                         (167) 

such that if 𝑇𝜈,µ is the oscillatory integral operator with phase 𝜙 and amplitude 𝑎𝜈,µ  

∑ 

𝑛

𝑇𝜈,µ(ℎ
𝑛)(𝑥, 𝑠)  = ∫ ∑ 

𝑛ℝ2+𝜖 

𝑒𝑖(1+𝜖)𝜙(𝑥,𝑠,𝑡)𝑛𝑎𝜈,µ(𝑥, 𝑠, 𝑡)ℎ
𝑛(𝑡) 𝑑𝑡  

then  

‖𝐴µ  ∑ ∑ 

𝑛𝜈,𝜈′∈Ξ𝑗

𝑇(ℎ𝜈
𝑗𝑛
)𝑇(𝑔

𝜈′
𝑗𝑛
)‖

𝐿1+𝜖(ℝ3+𝜖)

1+𝜖

≲ ∑ ∑ 

𝑛𝜈,𝜈′∈Ξ𝑗

 ‖𝑇𝜈,µ(ℎ𝜈
𝑗𝑛
)𝑇𝜈′ ,µ(𝑔𝜈′

𝑗𝑛
)‖
𝐿1+𝜖(ℝ3+𝜖)

1+𝜖
 

Proof. For a given 𝑠, consider the slice of 𝑇(ℎ𝑛) at ∑  𝑛 𝑠 𝑇
𝑠 (ℎ𝑛)(𝑥) = ∑  𝑛 𝑇(ℎ

𝑛)𝑥, 𝑟|𝑟=𝑠. 
It suffices to show that  

‖𝐴µ  ∑ ∑ 

𝑛𝜈,𝜈′∈Ξ𝑗

 𝑇𝑠 (ℎ𝜈
𝑗𝑛
)𝑇𝑠 (𝑔

𝜈′
𝑗𝑛
)‖

𝐿1+𝜖(ℝ2+𝜖)

1+𝜖

 

≲ ∑  

𝜈,𝜈′∈Ξ𝑗

 ‖ 𝑇 𝜈,µ
𝑠 (ℎ𝜈

𝑗𝑛
)𝑇𝜈′,µ

𝑠  (𝑔
𝜈′
𝑗𝑛
)‖

𝐿1+𝜖(ℝ2+𝜖)

1+𝜖
 ,  

and hence we shall assume that 𝑠 is fixed throughout the proof. Now let Φ(𝑥, 𝑡, 𝑡′)  =

 𝜙(𝑥, 𝑠, 𝑡)  +  𝜙(𝑥, 𝑠, 𝑡′) and observe that 𝐴µ𝑇
𝑠 (ℎ𝜈

𝑗𝑛
)𝑇𝑠 (𝑔

𝜈′
𝑗𝑛
) can be written as  
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𝐴µ(𝑥)∫∑ 

𝑛

𝑒𝑖(1+𝜖)Φ(𝑥,𝑡,𝑡
′)𝑛 𝑎(𝑥, 𝑠, 𝑡)𝑎(𝑥, 𝑠, 𝑡′)ℎ𝜈

𝑗𝑛
 (𝑡)𝑔

𝜈′
𝑗𝑛
 (𝑡′) 𝑑𝑡𝑑𝑡′,  

Treating 𝐷𝑥  =  −𝑖𝛻𝑥 as a vector-valued differential operator we want to write  

(1 + ((1 + 𝜖)−12𝑗)
2
 |(1 + 𝜖)𝛻𝑥Φ(µ, 𝜈, 𝜈

′)  −  𝐷𝑥|
2 )

𝑁

∑ 

𝑛

𝐴µ𝑇
𝑠 (ℎ𝜈

𝑗𝑛
)𝑇𝑠 (𝑔

𝜈′
𝑗𝑛
)  

=∑ 

𝑛

𝑇𝜈,µ
𝑠 (ℎ𝜈

𝑗𝑛
)𝑇𝜈′

𝑠  , µ(𝑔
𝜈′
𝑗𝑛
)                                                    (168) 

for some 𝑁 large based on (3 + 𝜖) and each operator on the right satisfies (167). It thus 

suffices to see that this can be done for any monomial of  

(1 + 𝜖)−1 2𝑗 ((1 + 𝜖)𝛻𝑥Φ(µ, 𝜈, 𝜈
′) − 𝐷𝑥), 

which in turn will follow by induction. To this end, observe that products of functions 

satsifying (167) satisfy the same condition as do weighted derivatives (𝑐𝜕𝑥)
1+𝜖 of such 

functions provided |𝑐|  ≤  2−𝑗 . On supp(𝐴µ)  ×  𝑄𝜈
𝑗
 ×  𝑄

𝜈′
𝑗

 we have that  

(1 + 𝜖)−1 2𝑗  ((1 + 𝜖)𝜕𝑘Φ(µ, 𝜈, 𝜈
′)  −  (1 + 𝜖)𝜕𝑘Φ(𝑥, 𝑡, 𝑡

′))  

satisfies (167). Moreover, since (1 + 𝜖)−12𝑗  ≤  2−𝑗 , it is seen that for any 1 +

𝜖, ((1 + 𝜖)−1 2𝑗𝜕𝑥)
1+𝜖
𝐴µ

1

2  satisfies (167). The claim then follows.  

It now suffices to see that if 𝑃𝜈,𝜈’ is the Fourier multiplier  

𝑃𝜈,𝑣’  (𝐷𝑥)  =  (1 +  ((1 + 𝜖)
−1 2𝑗)

2
 |(1 + 𝜖)𝛻𝑥Φ(µ, 𝜈, 𝑣’)  −  𝐷𝑥|

2 )
−𝑁

  , 

 then for any sequence of {𝑓𝜈,𝑣’
𝑛 } of Schwartz class functions defined on ℝ2+𝜖 ,  

‖ ∑ ∑ 

𝑛𝜈,𝑣’∈Ξ𝑗

𝑃𝜈,𝑣’𝑓𝜈,𝑣’
𝑛  ‖

𝐿2(ℝ2+𝜖)

2

 ≲  ∑ ∑ 

𝑛𝜈,𝑣’∈Ξ𝑗

 ‖𝑓𝜈,𝑣’ 
𝑛 ‖

𝐿2(ℝ
2+𝜖)

2
 ,  

‖ ∑ ∑ 

𝑛 𝜈,𝑣’∈Ξ𝑗

 𝑃𝜈,𝑣’𝑓𝜈,𝑣’
𝑛  ‖

𝐿1(ℝ2+𝜖)

 ≲ ∑ ∑ 

𝑛𝜈,𝑣’∈Ξ𝑗

 ‖𝑓𝜈,𝑣’
𝑛 ‖

𝐿1(ℝ2+𝜖)
 .  

The latter follows from the triangle inequality and Young’s inequality for convolutions, so 

it suffices to treat the former. But 𝛻𝑥Φ(µ, 𝜈, 𝑣’)  =  2𝛻𝑥𝜙(µ, 𝑠, 𝜈)  +  𝑂(2
−𝑗), so the 

invertibility of 𝛻2𝜙𝑥,𝑡 gives  

2𝑗  |𝛻𝑥Φ(µ, 𝜈, 𝑣’)  −  𝛻𝑥Φ(µ, 𝜈, 𝜈
′)|  ≈  2𝑗  |𝜈 −  𝜈|. 

 Recall that for each 𝜈, the number of 𝜈′ such that (𝜈, 𝑣’)  ∈  Ξ𝑗  is 𝑂(1). Therefore since the 

𝜈 range over a regularly spaced 2−𝑗 lattice, the desired bound follows from a routine 

computation using Plancherel’s identity. 

Corollary (2.3.19)[246]: (See [69]) There exists an amplitude �̃�𝑗,𝜈,µ(𝑥, 𝑠, 𝑡) satisfying 

bounds of the form (167) such that  

(1 + 22𝑗|(1 + 𝜖)−1 2𝑗𝐷𝑡  −  µ|
2
 )
𝑁

∑ 

𝑛

𝑒𝑖(1+𝜖)2
−𝑗𝜙𝑗 (𝑥,𝑠,𝑡)𝑛𝑎𝑗,𝜈,µ(𝑥, 𝑠, 𝑡)  

= ∑  

𝑛

𝑒𝑖(1+𝜖)2
−𝑗𝜙𝑗(𝑥,𝑠,𝑡)𝑛�̃�𝑗,𝜈,µ(𝑥, 𝑠, 𝑡).  

Proof. Observe that  



112 

∑ 

𝑛

𝑒−𝑖(1+𝜖)𝑛2
−𝑗𝜙𝑗  2𝑗  ((1 + 𝜖)−1 2𝑗𝐷𝑡𝑘  −  µ𝑘)𝑒

𝑖(1+𝜖)𝑛2−𝑗𝜙𝑗  𝑎𝑗,𝜈,µ 

= 2𝑗  (𝜕𝑡𝑘 𝜙𝑗  −  µ𝑘)𝑎𝑗,𝜈,µ  +  (1 + 𝜖)
−1 22𝑗𝐷𝑡𝑘 𝑎𝑗,𝜈,µ.  

Since (1 + 𝜖)−122𝑗  ≤  1, second term satisfies (167). Moreover, by (3.1), (3.2)  

(𝜕𝑡𝑘 𝜙𝑗 (𝑥, 𝑠, 𝑡) − µ𝑘)  =  𝑥𝑘  −  µ𝑘  +  𝑂(2
−𝑗) 

 and thus by the support properties of 𝑎𝑗,𝜈,µ the first term satisfies (167) as well. The lemma 

then follows by an inductive argument akin to that in Corollary (2.3.18).  

Corollary (2.3.20)[246]: Suppose that 𝛼 ∈  𝛤\𝑆𝑡𝑎𝑏(𝛾) and that 𝑥0, 𝑦0  ∈  𝛾 ∩ 𝐷. Then 

either 𝛼(𝑦0) ∉  𝛾 or 𝛼−1 (𝑥0)  ∉  𝛾 or both.  

Proof. (See [69]) Since 𝛼 ∈  𝛤\𝑆𝑡𝑎𝑏(𝛾), it follows that 𝛾 and 𝛼(𝛾) are distinct or intersect 

at a unique point 𝑃 =  𝑃(𝛾, 𝛼) (by the Cartan-Hadamard theorem). In the first case both 

𝛼(𝑦0) ∉  𝛾 and 𝛼−1 (𝑥0)  ∉  𝛾. We also have the desired conclusion if 𝑃 ≠   𝛼(𝑦0), for then 

we must have 𝛼(𝑦0) ∉  𝛾 as 𝛼(𝑦0)  ∈  𝛼(𝛾).  
Suppose that we are in the remaining case where 𝛾  ∩ 𝛼(𝛾)  =  {𝛼(𝑦0)}. Since 𝑥0, 𝑦0  ∈  𝐷 

and 𝐷 ∩  𝛼(𝐷)  =  ∅, it follows that 𝑥0  ≠  𝛼(𝑦0). Therefore, as 𝑥0  ∈  𝛾, we must have that 

 

Figure (2)[246]: Transversal intersections 

𝑥0  ∉  𝛼(𝛾). Thus, in this case, we must have 𝛼−1 (𝑥0)  ∉  𝛾, meaning that we have the 

desired conclusion for this case as well.  

Corollary (2.3.21)[246]: Let m be as in (128) and (131), and, as above, assume that 𝛽 ∈

 𝐶0
∞ (ℝ) satisfies 𝛽(𝜏 ) =  1, |𝜏 | <

3

2
 and 𝛽(𝜏 )  =  0, |𝜏 |  ≥  2. Then if 1 + 𝜖, 𝑇 ≥  1 and 

�̃�, �̃�  ∈  ℝ3+𝜖 , we have  

1

2𝜋𝑇
  ∫ ∑ 

𝑛

𝑇

−𝑇

 (1 −  𝛽(𝜏 ))�̂� (
𝜏

𝑇
) 𝑒𝑖(1+𝜖)𝜏𝑛   (𝑐𝑜𝑠 𝜏 √∆�̃�𝑛  ) (�̃�, �̃�)𝑑𝜏 

=  𝜌(𝑥, 𝑦)
(1 + 𝜖)

2+𝜖
2

𝑇
 ∑∑ 

𝑛± 

 𝑎

± (1 + 𝜖, 𝑇;  𝑑�̃�𝑛(�̃�, �̃�))  𝑒
±𝑖(1+𝜖)𝑛𝑑�̃�𝑛(�̃�, �̃�)  +  𝑅 (1 + 𝜖, 𝑇, �̃�, �̃�),       (169)  

where 𝜌 ∈  𝐿∞(ℝ3+𝜖  ×  ℝ3+𝜖)  ∩  𝐶∞(ℝ3+𝜖  ×  ℝ3+𝜖 ),  

𝑎±(1 + 𝜖, 𝑇;  𝑟) =  0, 𝑟 ∉  [1, 𝑇], 𝜕𝑟
𝑗
 𝑎±(1 + 𝜖, 𝑇;  𝑟)   ≤  𝐶𝑗 𝑟

−
2+𝜖
2  −𝑗 , (170)  
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with constants 𝐶𝑗 independent of 𝑇, (1 + 𝜖)  ≥  1, and  

𝑅(1 + 𝜖, 𝑇; �̃�, �̃�) =  0 if 𝑑�̃�𝑛(�̃�, �̃�) >  𝑇, and |𝑅(1 + 𝜖, 𝑇; �̃�, �̃�)|  

≤  𝐶𝑇 ,𝐾(1 + 𝜖)
−
6+𝜖
2 , if �̃�, �̃�  ∈  𝐾 ⋐ ℝ3+𝜖 .                           (171)  

Proof. Since �̂�(𝜏 )  =  0 when |𝜏 |  >  1/2 it follows that the left side of (169),  

1

2𝜋𝑇
 ∫ ∑ 

𝑛

𝑇

−𝑇

 (1 −  𝛽(𝜏 ))�̂� (
𝜏

𝑇
) 𝑒𝑖(1+𝜖)𝜏𝑛  (cos   𝜏 √∆�̃�𝑛)  (�̃�, �̃�) 𝑑𝜏,  

vanishes when 𝑑�̃�𝑛(�̃�, �̃�)  >  𝑇. Since 𝛽(𝜏 )  =  1 for |𝜏 |  ≤  3/2, by (5.14), it is 

𝑂𝑁,𝑇 ((2 + 𝜖)
−𝑁 ) for any 𝑁 =  1, 2, 3, . .. if 𝑑�̃�𝑛(�̃�, �̃�)  ≤  1. Therefore, we need only to 

prove the assertions in Corollary (2.3.21) when 1 ≤  𝑑�̃�𝑛(�̃�, �̃�)  ≤  𝑇.  

To prove this, we shall use the Hadamard parametrix (see e.g. [64] and [28]). Since 

(ℝ2+𝜖 , 𝑔𝑛) has nonpositive curvature, for 0 ≤  𝜏 ≤  𝑇 we can write  

∑ 

𝑛

(cos 𝜏 √∆�̃�𝑛 ) (�̃�, �̃�) =  𝜌(�̃�, �̃�)(2𝜋)
−(2+𝜖)  ∫ ∑  

𝑛

2+𝜖

ℝ

 𝑒𝑖𝑑�̃�𝑛
(�̃�,�̃�)𝜉1𝑛 cos   𝜏|𝜉|𝑑𝜉 

=  ∑  

± 

 ∫ ∑  

𝑛ℝ2+𝜖
𝑒𝑖𝑑�̃�𝑛

(�̃�,�̃�)𝜉1𝑛𝛼±(𝜏, �̃�, �̃�, |𝜉|)𝑒
±𝑖𝜏𝑛|𝜉| 𝑑𝜉 +  𝑅(𝜏, �̃�, �̃�), (172) 

where the leading Hadamard coefficient, 𝜌, is smooth and uniformly bounded (by the 

curvature hypothesis), and if 𝑚 ∈  𝑁 is fixed we can have 𝜕𝜏
𝑗
𝑅(𝜏, �̃�, �̃�) ∈  𝐿loc

∞ , 0 ≤  𝑗 ≤
 𝑚, and also  

|𝜕𝜏,�̃�,�̃�
1−𝜖  𝜕1+𝜖

𝑗
𝛼±(𝜏, �̃�, �̃�, 1 + 𝜖)| ≤  𝐶𝑇 ,𝐾,1−𝜖,𝑗 (1 + 𝜖)

−2 −𝑗 , if 𝜖 ≥ 0, 0 ≤  𝜏 ≤  𝑇, 𝑗 

=  0, 1, 2, . . ., and �̃�, �̃� ∈ 𝐾 ⋐  ℝ2+𝜖 .                                                     (173) 
We also recall (see e.g. [16]) that we can write the Fourier transform of Lebesgue measure 

on the sphere in ℝ2+𝜖 as  

∫ ∑ 

𝑛𝑆1+𝜖
 𝑒𝑖𝑥·𝜔𝑛 𝑑𝜎(𝜔) =  |𝑥|−

1+𝜖
2 ∑ 

𝑛

 (𝑐+(|𝑥|)𝑒
𝑖|𝑥|𝑛  +  𝑐−(|𝑥|)𝑒

−𝑖|𝑥|𝑛 ) , (174) 

where for each 𝑗 =  0, 1, 2, . . ., we have  

|𝜕1+𝜖
𝑗
 𝑐+(1 + 𝜖)| + |𝜕1+𝜖

𝑗
 𝑐−(1 + 𝜖)|  ≤  𝐶𝑗 (1 + 𝜖)

−𝑗 , 𝜖 ≥ 0.                         (175) 

 If in (158) we replace (cos   𝜏 √∆�̃�𝑛)(�̃�, �̃�) by the first term in (172), the resulting 

expression equals 𝜌(�̃�, �̃�) times a fixed multiple of  

1

2𝜋𝑇
 ∫  

𝑇

−𝑇

 ∫ ∑  

𝑛ℝ2+𝜖
�̂�  (

𝜏

𝑇
) 𝑒𝑖(1+𝜖)𝜏𝑛  cos  (𝜏 |𝜉|)𝑒𝑖𝑑�̃�𝑛

(�̃�,�̃�)𝜉1𝑛 𝑑𝜉𝑑𝜏 

=  ∑  

± 

1

2𝜋𝑇
 ∫  

𝑇

−𝑇

 ∫ ∑  

𝑛

∞

0

�̂�  (
𝜏

𝑇
) 𝑒𝑖(1+𝜖)𝜏𝑛 cos  (𝜏(1

+ 𝜖))𝑒±𝑖(1+𝜖)𝑑�̃�𝑛𝑛(�̃�, �̃�) 𝑐± (𝑑�̃�𝑛(�̃�, �̃�)(1 + 𝜖) ) 
(1 + 𝜖)

1+𝜖
2

(𝑑�̃�𝑛(�̃�,�̃�))
1+𝜖
2

 𝑑(1 + 𝜖)𝑑𝜏 

minus  
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∑ 

± 

1

2𝜋𝑇
∫  
2

−2

 ∫ ∑  

𝑛

∞

0

 𝛽(𝜏 )�̂� (
𝜏

𝑇
) 𝑒𝑖(1+𝜖)𝜏𝑛 cos  (𝜏 (1

+ 𝜖))𝑒±𝑖(1+𝜖)𝑑�̃�𝑛
(�̃�,�̃�)𝑛 𝑐± (𝑑�̃�𝑛(�̃�, �̃�)(1 + 𝜖))

(1 + 𝜖)
1+𝜖
2

𝑑�̃�𝑛(�̃�, �̃�)
1+𝜖
2

𝑑(1 + 𝜖)𝑑𝜏.  

If we replace cos  (𝜏 (1 + 𝜖)) by 𝑒−𝑖𝜏𝑛(1+𝜖) in the right side of (163), the resulting 

expression equals the sum over ± of  

∫ ∑ 

𝑛

∞

0

 𝑚 (𝑇(0)) 𝑐± (𝑑�̃�𝑛(�̃�, �̃�)(1 + 𝜖) )𝑒
±𝑖(1+𝜖)𝑑�̃�𝑛(�̃�,�̃�)𝑛

(1 + 𝜖)
1+𝜖
2

(𝑑�̃�𝑛(�̃�, �̃�))

1+𝜖
2

 𝑑(1 + 𝜖)  

=
(1 + 𝜖)

1+𝜖
2

𝑇
∑ 

𝑛

𝑒±𝑖(1+𝜖)𝑑�̃�𝑛
(�̃�,�̃�)𝑛 𝑎± (1 + 𝜖, 𝑇; 𝑑�̃�𝑛(�̃�, �̃�)), 

where, using the fact that 𝑚 ∈ 𝒮(ℝ) and (175), 𝑎± satisfies (170). If in (163) we replace 

cos  (𝜏(1 + 𝜖)) by 𝑒𝑖𝜏𝑛(1+𝜖), then this argument also implies that the resulting expression 

is 𝑂𝑁,𝑇 ((2 + 𝜖)
−𝑁 ) for any 𝑁 =  1, 2, 3, . .. . Thus, modulo such an error 𝜌 times the terms 

in (5.38) can be written as the first term in the right side of (169) with (170) being valid. 

Since this argument shows that the same is the case for (134), we conclude that the first term 

in the right side of (172), up to 𝑂𝑁,𝑇 ((2 + 𝜖)
−𝑁 ) errors, gives us the first term in the right 

side of (169).  

This argument and (173) also shows that if in (169) we replace (cos   𝜏√∆𝑔𝑛)(�̃�, �̃�) 

by the second term in the right side of (172), then we get a term obeying the bounds in (171). 

Since, as noted we can take the remainder term in (172) to satisfy for a given 𝑚 ∈

ℕ, 𝜕𝜏
𝑗
𝑅(𝜏, �̃�, �̃�)  ∈  𝐿𝑙𝑜𝑐

∞ , 𝑗 =  0, 1, . . . , 𝑚, we also see that if we choose m large enough, the 

same is true for it.  
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Chapter 3 

Principal Eigenvalue and Simple Criterion 

 

We indicate several outstanding open problems and formulate some conjectures. We 

establish a criterion for the existence of a principal eigenpair (𝜆𝑝, 𝜑𝑝). We also explore the 

relation between the sign of the largest element of the spectrum with a strong maximum 

property satisfied by the operator. As an application of these results we construct and 

characterise the solutions of some nonlinear nonlocal reaction diffusion equations. 

Section (3.1): Elliptic Operators in ℝ𝑁 and Applications 

       The principal eigenvalue is a basic notion associated with an elliptic operator. For 

instance, the study of semilinear elliptic problems in bounded domains often involves the 

principal eigenvalue of the associated linear operator. To motivate the results of the present, 

we recall some classical properties of a class of semilinear elliptic problems in bounded 

domains. 
Let 𝐿 be a linear elliptic operator acting on functions defined on a bounded and 

smooth domain ⊂ ℝN: 
𝐿𝑢 = 𝑎𝑖𝑗  (𝑥)𝜕𝑖𝑗 𝑢 + 𝑏𝑖  (𝑥)𝜕𝑖  𝑢 + 𝑐(𝑥)𝑢 

(the summation convention on repeated indices is used). 

Consider the Dirichlet problem 

 

{
−𝐿𝑢 = 𝑔(𝑥, 𝑢),   𝑥 ∈ 𝛺,
𝑢 = 0          𝑜𝑛 𝛺.

                                         (1) 

We are interested in positive solutions of (1.1). Assume that g is a C1 function such that 
𝑔(𝑥, 𝑠) < 𝑔𝑠

′(𝑥, 0)𝑠, ∀𝑥 ∈ 𝛺 
and 

∃𝑀 > 0 such that 𝑔(𝑥, 𝑠) + 𝑐(𝑥)𝑠 ≤ 0 , ∀𝑠≥ 𝑀 

Then existence of positive solutions of (1) is determined by the principal eigenvalue μ1 of 

the problem linearized about u = 0: 

{
−Lφ − gs(x, 0)φ = μ1φ  in Ω,

φ = 0 on ∂Ω.
                           (2) 

Recall that μ1 is characterized by the existence of an associated eigenfunction φ > 0 of (2). 

It is known indeed that (1) has a positive solution if and only if μ1 < 0 (see e.g. [96]). Under 

the additional assumption that s ↦ g(x, s)/s is decreasing, one further obtains a uniqueness 

result [96]. Problems of the type (1) arise in several contexts, in particular in population 

dynamics. 

The problem is set in an unbounded domain, often in ℝN. 

Clearly, extensions to unbounded domains of the previous result, as well as others of 

the same type, require one to understand the generalizations and properties of the notion of 

principal eigenvalue of elliptic operators in unbounded domains. We indicate some new 

results about such a semilinear problem, extending the result for (1). 

Another example of use of principal eigenvalue is the characterization of the existence 

of the Green function for periodic linear operators (see Agmon [94]). See [114] and to its 

bibliography for details on the subject. In [111], Kuchment and Pinchover derived an 

integral representation formula for the solutions of linear elliptic equations with periodic 

coefficients in the whole space, provided that an associated generalized principal eigenvalue 

is positive. It can be seen that the generalized eigenvalue in [111] coincides with (6) here. 
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This result yields in particular a Liouville type theorem extending those of [95], [112] for 

periodic self-adjoint operators. Moreover, the principal eigenvalue of an elliptic operator 

has been shown to play an important role in some questions in branching processes (see 

Englander and Pinsky [103], Pinsky [115]). Very recently, the principal eigenvalue of an 

elliptic operator in RN is being introduced in the context of economic models [105]. 

Some definitions of the notion of principal eigenvalue in unbounded domains have emerged 

in the works of Agmon [94], Berestycki, Nirenberg and Varadhan [100], Pinsky [114] and 

others. With a view to applications to semilinear equations, in particular two definitions 

have been used in [97], [98], [99]. We will recall these definitions. We examine these 

definitions and further investigate their properties. 

We are interested in understanding when the two definitions coincide or for which 

classes of operators one or the other inequality holds. We also further explain the choice of 

definition. We review the relevant results from [99]. 

We define the class of elliptic operators (in nondivergence form) as the elliptic 

operators −L with 

Lu = aij (x) ∂ij u + bi (x) ∂i u + c(x)u   in ℝ
N 

Self-adjoint elliptic operators −L are defined by 

Lu = ∂i(aij(x) ∂ju) + c(x)u  in ℝ
N. 

Throughout, (∂ij)ij  will denote an N × N symmetric matrix field such that 

∀x, ξ ∈ ℝ
N , a|ξ|2 ≤ aij(x)ξiξj ≤ a̅|ξ|

2                                      (3) 

where a and a are two positive constants, (bi)i  will denote an N-dimensional vector field 

and c a real-valued function. We always assume that there exists 0< α ≤ 1 such that 

aij, bi, c ∈ Cb
0,α(ℝN)                                                 (4) 

 

in the case of general operators, and  

aij ∈ Cb
1,∝(ℝN) , c ∈ Cb

0,α(ℝN)                                               (5) 

 

in the self-adjoint case. Cb
k,α

 By (ℝN), we mean the class of functions Ck(ℝN) such that ϕ 

and the derivatives of ϕ up to order k are bounded and uniformly Hölder continuous with 

exponent α  Notice that every self-adjoint operator satisfying (5) can be viewed as a 

particular case of a general elliptic operator satisfying (4). 

It is well known that any elliptic operator −L as defined above admits a unique principal 
eigenvalue, both in bounded smooth domains associated with Dirichlet boundary conditions, 

and in ℝN provided that its coefficients are periodic in each variable. This principal 

eigenvalue is the bottom of the spectrum of −L in the appropriate function space, and it 

admits an associated positive principal eigenfunction. This result follows from the Krein–

Rutman theory and from compactness arguments (see [108] and [107]). 

We examine some properties of two different generalizations of the principal 

eigenvalue in unbounded domains. The first one, originally introduced in [100], reads: 

Definition (3.1.1)[93]: Let −L be a general elliptic operator defined in a domain Ω ⊆ ℝN. 

We set 

λ1(−L,Ω) ≔ sup {λ|∃∅∈ C
2(Ω)Cloc

1   (Ω̅), |ϕ > 0 and (L + λ)ϕ ≤ 0 inΩ}.   (6) 

Here, Cloc
1 (Ω̅) denotes the set of functions ϕ ∈ C1(Ω) for which ϕ and ∇∅can be extended 

by continuity on ∂Ω, but which are not necessarily bounded. The generalized principal 
eigenvalue λ1given by (6) is the same as the one used in [111]. Indeed, in [111], the 
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eigenvalue is defined with equality in formula (6). Using the existence of a generalized 
principal eigenfunction (which follows from the same arguments as in [99]) one sees that 

the two notions actually coincide. Berestycki, Nirenberg and Varadhan showed that this is 

a natural generalization of the principal eigenvalue. Indeed, if Ω is bounded and smooth, 

then λ1(−L,Ω) coincides with the principal eigenvalue of −𝐿 in Ω with Dirichlet boundary 

conditions. As we will see later, the eigenvalue λ1 does not suffice to completely describe 

the properties of semilinear equations in the whole space, in contrast to the Dirichlet 

principal eigenvalue in bounded domains for problem (1). 

We also require another generalization, whose definition is similar to that of 𝜆1. 

This generalization has been introduced in [97], [99] and reads: 

Definition (3.1.2)[93]: Let −L be a general elliptic operator defined in a domain Ω ⊆ ℝN. 

We set 

λ1
′ (−L,Ω) ≔ inf{λ |∃∅ ∈ C

2(Ω) ∩ Cloc
1 (Ω̅)∩W2,∞(Ω) 

𝜙 > 0 and − (L + λ)ϕ ≤ 0in Ω, 𝜙 = 0 on 𝞉𝛀 ≠ ∅}                 (7) 
Several other generalizations are possible, starting from Definition (3.1.1) and playing on 

the space of functions or the inf and sup inequalities. We will explain why Definition (3.1.2) 

is relevant. 

If 𝐿 is periodic (in the sense that its coefficients are periodic in each variable, with 

the same period) then λ1(−L, ℝ
N) ≥ λ1

′ (−L, ℝN), as is shown by taking 𝜙 equal to a positive 

periodic principal eigenfunction in (6) and (7). If there exists a bounded positive 

eigenfunction φ, then λ1 ≥ λ1
′  . But in general, if the operator L is not self-adjoint, equality 

need not hold between λ1 and λ1
′  even if L is periodic. It is then natural to ask about the 

relations between λ1 and λ1
′  in the general case. We review a list of statements, most of them 

given in [99], which answer this question in some particular cases. We state our new main 

results as well as some problems which are still open. We motivate our choice of taking (6) 

and (7) as generalizations of the principal eigenvalue.  

We describe how the eigenvalues λ1 and λ1
′   are involved in the study of the following 

class of nonlinear problems: 

−aij(x) ∂iju(x) ∂u(x) = f(x, u(x))   in  ℝ
N.                                        (8) 

This type of problem arises in particular in biology and in population dynamics. Here and 

in what follows, the function f(x, s): ℝN × ℝ → ℝ is assumed to be in Cb
0,∝(ℝN) with respect 

to the variable x, locally uniformly in x ∈ ℝN, and to be locally Lipschitz continuous in the 

variable s, uniformly in x ∈ ℝN. Furthermore, we always assume that 

∀x ∈ ℝN     f(x, 0) = 0, 
∃δ > 0 such that s ⟼ f(s, x) belongs to C1([0, δ]), uniformly in x ∈ ℝN, 

fs(x, 0) ∈ Cb
0,α(ℝN) 

We will always denote by L0 the linearized operator around the solution u ≡ 0 associated 
to the equation (8), that is, 

𝐿0𝑢 = 𝑎𝑖𝑗(𝑥)𝜕𝑖𝑗𝑢 + 𝑏𝑖(𝑥)𝜕𝑖𝑢 + 𝑓𝑠(𝑥, 0)𝑢   𝑖𝑛 ℝ
𝑁 

In [97] it is proved that, under suitable assumptions on f, if 𝐿0 is self-adjoint and the 

functions 

aij and x ⟼ f(s, x) are periodic (in each variable) with the same period, then (8) admits a 

unique positive bounded solution if and only if the periodic principal eigenvalueof –L0 is 

negative (see Theorems (3.1.3) and (3.1.6) in [97]). This result has been extended in [99] to 
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nonperiodic, non-self-adjoint operators, by using λ1(−L0, ℝ
N) andλ1

′ (−L0, ℝ
N) instead of 

the periodic principal eigenvalue of – L0 . The assumptions required are: 

∃M > 0 , ∀x ∈ ℝN   , ∀s≥ M , f(x, s) ≤ 0                                       (9) 
∀x ∈ ℝN , ∀s ≥ 0 , f(x, s) ≤ fs(x, 0)s                                       (10) 

The existence result of [99] is: 

Theorem (3.1.3)[93]: Let 𝐿0 be the linearized operator around zero associated to equation 

(8). 

   (i) If (9) holds and either λ1(−L0, ℝ
N)  < 0 or λ1

′ (−L0, ℝ
N)  < 0, then there exists at least 

one positive bounded solution of (8).  

   (ii) If (10) holds and λ1
′ (−L0, ℝ

N)  > 0, then there is no nonnegative bounded solution of 

(8) other than the trivial one u ≡ 0. Theorem (3.1.3) follows essentially from Definitions 

(3.1.1), (3.1.2) and a characterization of  λ1 (see [99]). In [103], Engl¨ander and Pinsk  
proved a similar existence result for a class of solutions of minimal growth (which they 
define there) for nonlinearities of the type f(x, u) = b(x)u – a(x)u2 with inf a > 0 (see also 

[102], [115]). Since the theorem involves both λ1 and λ1
′ , one does not have a simple 

necessary and sufficient condition. This is one of the motivations to investigate the 

properties of these two generalized eigenvalues. In particular, it is useful to determine 

conditions which yield equality between them or at least an ordering. 

From the results we can deal in particular with the case that the operator is self-adjoint and 

limit periodic. The notion of limit periodic operator is defined precisely below. Essentially, 

it means that the operator is the uniform limit of a sequence of periodic operators. In this 

case, we still have a condition, extending that in Theorem (3.1.3), which is nearly necessary 

and sufficient. 

Theorem (3.1.4)[93]: Let – L0 be a self-adjoint limit periodic operator. 

   (i) If (9) holds and λ1(−L0, ℝ
N) < 0  , then there exists at least one positive bounded 

solution of (8). If, in addition, (11) below holds, then such a solution is unique. 

   (ii) If (10) holds and λ1
′ (−L0, ℝ

N)  > 0, then there is no nonnegative bounded solution 

of (8) other than the trivial one u ≡ 0 The same result holds in dimension N = 1 if L0 is an 

arbitrary self-adjoint operator. The case of equality: λ1(−L0, ℝ
N) = 0 is open. 

For uniqueness, in unbounded domains, one needs to replace the classical assumption that s 

s ↦ f(x, s)/s is decreasing by the following one: 

∀0 < s1 < s2, infx∈ℝN (
f(x, s1)

s1
−
f(x, s2)

s2
) > 0                          (11) 

The uniqueness result of [99] is more delicate and involves the principal eigenvalue of 

some limit operators defined there. It becomes simpler to state in case the coefficients in 

(8) are almost periodic, in the sense of the following definition: 

Definition (3.1.5)[93]: A function g:ℝN → ℝ is said to be almost periodic (a.p.) if from 

any sequence (xn)n∈ℕ in ℝN one can extract a subsequence (xnk )k∈ℕ such that g(xnk + x) 

converges uniformly in x ∈ ℝN. 

Theorem (3.1.6)[93]: (Theorem 1.5 in [99]). Assume that the functions aij , bi and fs (·, 0) 

are a.p. If (11) holds and λ1(−L0, ℝ
N) < 0, then (8) admits at most one nonnegative bounded 

solution besides the trivial one u ≡ 0. Theorems (3.1.3) and (3.1.6) essentially contain the 

results in the periodic self-adjoint framework (which hold under the same assumptions (9), 

(10) and (11)). In that case, in fact, 

λ1(−L0, ℝ
N) 
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λ1
′ (−L0, ℝ

N) coincide with the periodic principal eigenvalue of −L0 (see Proposition (3.1.9) 

below) and then the only case which is not covered is when the periodic principal eigenvalue 

is equal to zero. 

Unless otherwise specified, −L denotes a general elliptic operator. When we say that 

L is periodic, we mean that there exist N positive constants l1, . . . , lN such that 

∀x ∈ ℝN , ∀k ∈ {1, … , N}, aij(x + lkek) = aij(x) 

bi(x + lkek) = bi(x),    c(x + lkek) = c(x) 
where (e1, … , eN) is the canonical basis of ℝN. The following are some of the known results 

concerning λ1 and λ1
′  Actually, in some statements of [99], the coefficients of L were in 

C0,α(ℝN) ∩ L∞(ℝN), and the “test functions” ∅ in the definition of λ1
′  were taken in  

C2(ℝN) ∩ W1,∞(ℝN)instead of C2(ℝN) ∩W2,∞(ℝN). However, one can check that the 

following results—as well as Theorem (3.1.3)—can be proved arguing exactly as in the 
proofs of the corresponding results in [99]. 

Proposition (3.1.7)[93]: ([100] and Proposition (3.1.12) in [99]). Let Ω be a general domain 

in ℝN and 

(Ωn)n be a sequence of nonempty open sets such that 

Ωn ⊂ Ωn+1 ,   ⋃Ωn = Ω

n∈ℕ

 

Then λ1(−L, Ωn) ↘ λ1(−L,Ω)  asn → ∞. 
Proposition (3.1.7) yields λ1(−L , ℝ

N) <∞. Furthermore, taking ∅ ≡ 1 as a test function in 

(6), we see that  λ1(−L , ℝ
N) ≥ −||c||

∞
. Thus, λ1 is always a well defined real number.  

In the case of L periodic, the periodic principal eigenvalue of −L is defined as the unique 

real number λp such that there exists a positive periodic φ ∈ C2(ℝN) satisfying (L + λp)φ 

in ℝN. Its existence follows from the Krein–Rutman theory. 

Proposition (3.1.8)[93]: (Proposition 6.3 in [99]). If L is periodic, then its periodic principal 

eigenvalue λp coincides with λ1
′ (−L , ℝ

N) It is known that, in the general non-self-adjoint 

case, λ1 = λ1
′ . Indeed, as an example, consider the one-dimensional operator −Lu =

−u′′     + u′, which is periodic with arbitrary positive period. Then it is easily seen that 

λ1
′ (−L,ℝ) = 0 <

1

4
= λ1

 (−L , ℝ
N) 

In fact, since ∅ ≡ 1 satisfies – Lφ = 0, it follows that the periodic principal eigenvalue of 

−L is 0 and then, by Proposition (3.1.8), λ1
′ (−L, ℝ)= 0. On the other hand, for any R > 0, 

the function 

φR(x) ≔ cos (
π

2R
x) ex/2 

satisfies –LφR=(1/4+π2/4R2)φR, which shows that φR is a principal eigenfunction of −L 

in (−R,R), under Dirichlet boundary conditions. Therefore, by Proposition (3.1.7), 

λ1(−L,ℝ) = lim
R→∞

(
1

4
+
π2

4R2
) =

1

4
> λ1

′ (−L, ℝ) 

Proposition (3.1.9)[93]: (Proposition 6.6 in [99]). If the elliptic operator −L is self-adjoint 

and periodic, then λ1
 (−L, ℝN) = λ1

′ (−L, ℝN), where λpis the periodic principal eigenvalue 

of −L. For the rest it is useful to recall the proof of the last statement. 

Proof. First, from Proposition (3.1.8) one knows that λp = λ1
′ (−L,ℝ). 
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Now, let 'p be a positive periodic principal eigenfunction of −L in ℝN. Taking ∅ = φp in 

(6), it is straightforward to see that λ1
 (−L,ℝ) ≥ λp To show the reverse inequality, consider 

a family (χR)R ≥ 1 of cutoff functions in C2(ℝN), uniformly bounded in W2,∞(ℝN) such 

that 0 < χR < 1 supp χR ⊂ B̅R and χR = 1 in BR − 1. Fix R > 1 and let λRbe the principal 

eigenvalue of −Lin BR. It is obtained by the following variational formula: 

λR = min {
∫ (aij(x) ∂iv ∂jv − c(x)v

2)
 

BR

∫ v2
 

BR

v ∈ H0
1(BR), v ≠ 0}.                  (12) 

 Taking  v = φPχR  as a test function in (12), and writing CR = BR \ BR−1, we find 

λR ≤ −
∫ (L(φPχR))φPχR
 

BR

∫ φP
2χR
2 

BR

=
λP ∫ φP

2 − ∫ (L(φPχR))φPχR
 

CR

 

BR−1

∫ φP
2χR
2 

BR

 

= λP −
λP ∫ φP

2χR
2 + ∫ (L(φPχR))

 

CR
 φPχR

 

CR

∫ φP
2χR
2 

BR

 

Since min φP > 0, it follows that there exists K > 0, independent of R,  such that 

∫ φP
2χR
2 ≥ ∫ φP

2 ≥ K(R − 1)N
 

BR_−1

 

BR

 

Consequently, 

λR ≤ λP + K
′
RN−1

(R − 1)N
 

where K′ is a positive constant independent of R. Letting R go to infinity and using 

Proposition (3.1.7), we get λ1(−L,ℝN) ≤ λP, and therefore λ1(−L,ℝN)= λP.  

       The next result is an extension of the previous proposition. It is still about periodic 

operators, but which are not necessarily self-adjoint. A gradient type assumption on the first 
order coefficients is required. 

Theorem (3.1.10)[93]: (Theorem 6.8 in [99]). Consider the operator 

Lu ≔ ∂i(aij(x) ∂ju) + bi(x) ∂iu + c(x)u , x ∈ ℝN 

where aij , bi , c are periodic in x with the same period (L1, … LN), the matrix field A(x) =

(aij(x))1≤i,j≤N is in C1,∝(ℝN), elliptic and symmetric, the vector field b = (b1, … bN) is in 

C1,∝(ℝN), and c ∈ C0,∝(ℝN), . Assume that there is a function B ∈ C2,∝(ℝN),  such that aij 

∂jB = bi  for all i = 1,… ,N and the vector field A−1b has zero average on the periodicity 

cell C = (0, l1) × …× (0, lN). Then λ1(−L,ℝ
N) = λP = λ1

′ (−L, ℝN), where λP is the 

periodic principal eigenvalue of −L in ℝN. 

       Next, the natural question is to ask what happens when we drop the periodicity 

assumption. Up to now, the only available result has been obtained in [99] in the case of 

dimension one. It states: 

Proposition (3.1.11)[93]: ([99]). Let −L be a self-adjoint operator in dimension one. Then 

λ1(−L,ℝ
 ) ≤ λ1

′ (−L,ℝ ), This type of result will be extended below. 

We will examine three main classes: self-adjoint operators in low dimension, limit 

periodic operators and general operators in dimension one.We seek to identify classes of 

operators for which either equality or an inequality between λ1
 and λ1

′  holds. 

Our first result is an extension of the comparison result of Proposition (3.1.11) to 

dimensions N = 2,3 in the self-adjoint framework. 
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       Next, we examine the class of limit periodic operators which extends that of periodic 
operators. In a sense, this class is intermediate between periodic and a.p. here is the 

definition: 

Definition (3.1.12)[93]: (i) We say that a general elliptic operator −L is general limit 

periodic if there exists a sequence of general elliptic periodic operators 

−Lnu ≔ −aij
n ∂iju − bi

n ∂iu − c
nu 

such that aij
n → aij , bi

n → bi and cn → c in Cb
0,∝(ℝN) as n goes to infinity. 

(ii) We say that a self-adjoint elliptic operator −L is self-adjoint limit periodic if there exists 

a sequence of self-adjoint elliptic periodic operators 

−Lnu ≔ −∂i(aij
n ∂ju) − c

nu 

such that aij
n → aij in Cb

1,α(ℝN) as n goes to infinity. 

Clearly, if all the coefficients of the operators Ln in Definition (3.1.12) have the same period 

(l1, … , LN) then L is periodic too. It is immediate to show that the coefficients of a limit 

periodic operator are in particular a.p. in the sense of Definition (3.1.5). One of the results 

we obtain is: 

We make use of the Schauder interior estimates and the Harnack inequality. One can 

find a treatment of these results in [104], or consult [109], [110] and [117] for the original 

proofs of the Harnack inequality. 

Going back to the nonlinear problem, owing to Theorem (3.1.19), the existence and 

uniqueness results in the limit periodic case can be expressed in terms of λ1(or, equivalently, 

λ1
′  only, which is the statement of Theorem (3.1.4). 

We establishe a comparison between λ1 and λ1
′   for general elliptic operators in 

dimension one: 

       The notions of generalized principal eigenvalue raise several questions which still need 

an answer. Some of them are: 

Conjecture (3.1.13)[93]: If −L is a self-adjoint elliptic operator, then λ1
 (−L, ℝN) ≤

λ1
′ (−L,ℝN).. in any dimension N. Note that should the answers, then we would have λ1

 =
λ1
 ′ in the self-adjoint case, in arbitrary dimension. 

       We present various definitions which one could consider as generalizations of the 

principal eigenvalue in the whole space. Then we explain the choice of (6) and (7) as the 

most relevant extensions. Here, −L will always denote a general elliptic operator (satisfying 

(3) and (4)). The quantity λ1
  given by (6) is often called the “generalized” principal 

eigenvalue. It is considered the “natural” generalization of the principal eigenvalue because, 

as already mentioned, it coincides with the Dirichlet principal eigenvalue in bounded 

smooth domains. Also, the sign of λ1
  determines the existence or nonexistence of a Green 

function for the operator (see [113]). The constant λ1
′   has been introduced, more recently, 

in [97]. If Ω is bounded and smooth, then. λ1
′ (−L, Ω) ≤ λ1(−L,Ω) Moreover, as we have 

seen in Proposition (3.1.8), in the periodic case λ1
′  coincides with the periodic principal 

eigenvalue. The quantity λ1
′  is the largest constant for which – (L + λ) admits a positive 

subsolution. The definition of λ1
′  is based on that of λ1

 , with two changes: first, we take 
subsolutions instead of supersolutions (and we replace the sup with inf); second, we take 
test functions in W2,α. If we introduce only one of these changes, we obtain the following 
definitions: 

μ1(−L, Ω) ≔ sup {λ|∃∅∈ C
2(Ω) ∩ C1(Ω)W2,α(Ω) 

ϕ > 0 and (L + λ)ϕ ≤ 0in Ω , ϕ = 0 and ∂Ω ≠ 0                           (13) 
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or 

μ1
′ (−L, Ω) ≔ inf{λ|∃∅ ∈ C

2(Ω)Cloc
1 (Ω̅), ϕ > 0 and − (L + λ)ϕ ≤ 0 in Ω     (14) 

The quantity μ1 is not interesting for us because, as is shown by Remark 6.2 in [99], if we 

replace λ1
′  with μ1 , then the necessary condition given by Theorem (3.1.3)(ii) fails to hold. 

The proof of Theorem (3.1.15) consists in a not so immediate adaptation of the proof 

of Proposition (3.1.9). It makes use of the following observation, which holds in any 

dimension N. 

Lemma (3.1.14)[93]: Let ϕ ∈ C2(ℝN) be a nonnegative function. Let A(x) be the largest 

eigenvalue of the matrix (∂ijϕ(x)ij and assume that A ≔ sup
x∈ℝN

 Λ(x) < ∞. Then 

∀x ∈ ℝN   , |∇ϕ(x)|
2
≤ 2Λϕ(x)                                     (15) 

Proof. First, if  Λ ≤ 0 then ∂ijϕ ≤ 0 for every i = 1, … ,N. This shows that   is concave in 

every direction xi and hence, being nonnegative, it is constant. In particular, 

(15) holds. Consider the case Λ > 0. The Taylor expansion of ϕ at the point x ∈ ℝN gives 

∀y ∈ ℝN,    ϕ(y) = ϕ(x) + ∇ϕ(x)(y − x) +
1

2
𝞉𝐢𝐣𝛟(𝐳)(𝐲 − 𝐱)𝐢(𝐲 − 𝐱)𝐣 

where z is a point on the segment connecting x and y. Hence, 

0 ≤ ϕ(y) ≤ ϕ(x) + ∇ϕ(x)(y − x) +
1

2
Λ|y − x|2 

If we take in particular y = x − ∇ϕ(x)/Λ we obtain 

0 ≤ ϕ(x) −
|∇ϕ(x)|

2

2Λ
 

and the statement is proved. Note that if ϕ is a positive function in W2,∞(ℝN), then Lemma 

(3.1.14) shows that its gradient is controlled by the square root of ϕ. Actually, this is the 

reason why in (7) we take test functions in W2,∞(ℝN). 

Theorem (3.1.15)[93]: Let −L be a self-adjoint elliptic operator in ℝN, with  N ≤ 3. Then 

λ1(−L, ℝ
N ) ≤ λ1

′ (−L, ℝN 
 
). 

 

The assumption N ≤ 3 in Theorem (3.1.15) seems to be only technical, as was the 

assumption N = 1 in Proposition (3.1.11). That is why we believe that the above result holds 

in any dimension N. But the problem is open at the moment.  

Proof. Let λ ∈ ℝ be such that there exists a positive function ϕ ∈ C2(ℝN) ∩ W2,∞(ℝN) 
satisfying – (L + λ)ϕ ≤ 0. We would like to proceed as in the proof of Proposition (3.1.9), 

with φPreplaced by ϕ, and obtain (−L, ℝN) ≤ λ This is not possible because, in general, φ  
is not bounded from below away from zero. Lemma (3.1.14) allows us to overcome this 

difficulty. Consider in fact the same type of cutoff functions (χR)R≥1 as in Proposition 

(3.1.9) and let λR be the principal eigenvalue of −L in BR with Dirichlet boundary 

conditions. The representation formula (12) yields, for  

λR ≤
∫ [aij(x) ∂i(ϕχR ) ∂j(ϕχR) − c(x)ϕ

2χR
2 ]

 

BR

∫ ϕ2χR
2 

BR

 

Hence, since λR = 1 on BR−1, we get 

λR ≤ λ −
∫ [2aij(x)(∂iϕ (∂jχR)ϕχR + ∂i(aij(x) ∂jχR)ϕ

2χR]
 

cR

∫ ϕ2χR
2 

BR

 

Our aim is to prove that by appropriately choosing the cutoff functions (χR)R≥1 we get 
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lim supR→∞
∫ [2aij(x)(∂iϕ)(∂jχR)ϕχR + ∂i(aij)(x) ∂jχR)ϕ

2χR]
 

CR

∫ ϕ2χR
2 

BR

≥ 0        (16) 

Choose χR so that 

∀x ∈ BR/BR−1/2,   χR(x) = exp (
1

|x| − R
) 

∀ x ∈ BR−1/2 , χR(x) ≥ e
−1/2 

By direct computation, we see that, for x ∈ BR/BR−1/2 

∇χR(x) = −
x

|x|
(R − |x|)−2exp (

1

|x| − R
) 

and 

∂ijχR(x) = [(
xixj
|x|3

−
δij
|x|
) (|x| − R)2 + 2

xixj
|x|2

(|x| − R) +
xixj
|x|2

] (|x| − R)−4exp (
1

|x| − R
) 

Consequently, using the usual summation convention, we have 

∀x ∈ BR/BR−12
, ∂i(aij(x) ∂jχR) ≥ [a − C(|x| − R)](|x| − R)

−4exp(
1

|x| − R
) 

where C is a positive constant depending only on N and the W1,∞ norm of the aij (and not 

on R) and a is given by (3). Therefore, there exists h independent of R with 0 < h ≤ 1/2 

and such that ∂i(aij(x) ∂jχR ≥ 0 inBR\BR−h. Since χR > exp (−h
−1) in BR−h, it is possible 

to choose C′ large enough, independent of R, such that ∂i(aij(x)𝞉𝐣𝛘𝐑 ≥ −𝐂
′𝛘𝐑 in BR. On 

the other hand, owing to Lemma (3.1.14), we can find another constant C" > 0, depending 

only on N,||aij||
L∞(ℝN)

, ||ϕ||
W2,∞(ℝN)

and ||χR||W2,∞(ℝN)
) (which does not depend on R, 

such that 

aij(x)(∂iϕ)(∂jχR) ≥ −C
′′ϕ1/2χR

1
2  

Assume, by way of contradiction, that (16) does not hold. Then there exist ε > 0 andR0 ≥
1 such that, for R ≥ R0, 

−ε∫ ϕ2χR
2 ≥ ∫ [2aij(x)(∂iϕ)(∂jχR)ϕχR + ∂i(aij(x) ∂jχR)ϕ

2χR]
 

CR

 

BR

 

≥ −∫ (C′χR
2

 

CR

ϕ2 + 2C′′ϕ
3
2χ
R

3
2)  

 Since 𝜙 and χR are bounded, the above inequalities yield the existence of a positive constant 

k such that, for R ≥ R0, 

k∫ ϕ2χR
2

 

BR 

≤ ∫ ϕ3/2χ
R

3
2

 

CR

 

Notice that, since ϕ > 0, we can choose k > 0 in such a way that the above inequality holds 

for any R ≥ 1. Using the Hölder inequality with p = 4/3 and p′ = 4, we then obtain 

∀R ≥ 1    ∫ ϕ2χR
2 ≤ k−1

 

BR

(∫ ϕ2χR
2 )
3
4|CR|

1
4 ≤ k−1

 

CR

R
N−1
4 (∫ ϕ2χR

2
 

CR

)3/4 

where k is another positive constant. For n ∈ ℕ  set αn ≔ (∫ ϕ2χn
2)

3

4
 

Cn
. Since for n ∈ ℕ, we 

have 
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∫ ϕ2χn
2 =∑∫ ϕ2 + ∫ ϕ2χn

2
 

Cn

≥∑∫ ϕ2χn
2

 

Cj

n 

j=1

 

Cj

n−1

j=1

 

Bn

 

it follows that 

αn ≥ Kn
1−N
4 ∑α

j

4
3

n 

j=1

.                                     (17) 

We claim that the sequence (αn)n∈ℕ grows faster than any power of n. This contradicts the 

definition of αn, because 

αn = (∫ ϕ2χn
2)3/4 ≤ ||ϕ||

L∞(ℝN)

3
2 |Cn|

3/4 ≤ Hn3(N−1)/4 
 

Cn

 

for some positive constant H. To prove our claim, we use (17) recursively. At the first step 

we have αn ≥ K0n
β0 , where K0 = Kα1

4

3  and β0 = (1 − N)/4. At the second step we get 

 αn ≥ KK0

4

3n(1−N )/4∑ j4β0/3n
j=1    If  β0 > −3/4 (i.e. if N < 4) then ∑ j4β0/3 ∼ n4β0/3+1n

j=1 . 

Hence, in this case there exists K1 > 0 such that αn ≥ Kmn
βm , where. β1 = 4β0/3 +(5 −

N)/4 Proceeding in the same way we find, after m steps, thatαn ≥ Kmm
βm, where Km is a 

positive constant and βm = 4βm−1/3 +(5 − N)/4, provided that β0, … , βm−1 > −3/4 if 
βm−1 > −3/4, we have 

βm > βm−1⟺ βm−1 > 3/4(N − 5) 
 Since 

β0 >
3

4(N − 5)
⟺ N < 4 

it follows that for Nr ≤ 3 the sequence (βm)m∈ℕ is strictly increasing. Thus, 

lim
m→∞

βm = +∞ if N, because if the sequence had a finite limit, it would have to be 3(N −

5)/4 which is less than β0. Therefore, as n → ∞,αn goes to infinity faster than any 

polynomial in n.  
We consider limit periodic elliptic operators −L. According to Definition (3.1.12), we let 

either 

Lnu = aij
n(x) ∂iju + bi

n(x) ∂iu + c
n(x)u 

if −L is a general operator, or 

Lnu = ∂i(aij
n(x) ∂ju) + c

n(x)u 

if −L is self-adjoint. We denote by λn and φn respectively the periodic principal eigenvalue 

and a positive periodic principal eigenfunction of – Ln in ℝ
N. Our results make use of the 

following lemma. 

Lemma (3.1.16)[93]: The sequence (λn)n∈ℕ is bounded and 

lim
n→∞

||
(L − Ln)φn

φn
||L∞(ℝN) = 0. 

Proof. We can assume, without loss of generality, that the operators – L, −Ln are general 
elliptic. Since the operators Ln are periodic, from Proposition (3.1.8) it follows that 

−||cn||∞ ≤ λ1
′ (−L, ℝN) = λn ≤ ||cn||∞. 

Hence, the sequence (λn)n∈ℕ is bounded because cn → c in Cb
0,α

. For all n ∈ ℕ the functions 

λn satisfy – (Ln + λn)φn . Then, using interior Schauder estimates, we can find a constant 

Cn > 0 such that 
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∀x ∈ ℝN , ||φn||Cb
2,α(B1(x))

≤ Cn||φn||L∞(B2(x))
 

where the Cn are controlled by λn and ||aij
n||

Cb
0,α (ℝN)

. ||bi
n||

Cb
0,α(ℝN)

, ||cn||
Cb
0,α(ℝN)

. We know 

that the are λn bounded in n ∈ ℕ, and the same is true for the Cb
0,α

 norms of aij
n  and cn 

because they converge in the Cb
0,α

 norm to aij , bi  and c respectively. Thus, there exists a 

positive constant C such that C ≥ Cn for every n ∈ ℕ. Moreover, applying the Harnack 

inequality for the operators – (Ln + λn), we can find another positive constant C′ which is 

again independent of n (and x), such that 

∀x ∈ ℝN,    ||φn||L∞(B2(x))
≤ C′φn (x) 

Therefore, 

sup
x∈ℝN

|
(L − Ln)φn(x)

φn(x)
| sup
x∈ℝN

(||aij − aij
n||

∞
+ ||bi − bi

n||
∞
+ ||c − cn||

∞
) ||φn||Cb

2,α(B1(x))

φn(x)
_ 

≤ CC′(||aij − aij
n||

∞
+ ||bi − bi

n||
∞
+ ||c − cn||

∞
 

which goes to zero as n goes to infinity. 

Theorem (3.1.17)[93]: Let −L be a general limit periodic operator. Then λ1
′ (−L,ℝN) ≤

λ1(−L,ℝ
N). 

Another result obtained concerns self-adjoint limit periodic operators. It extends Proposition 

(3.1.9). 

Proof. For n ∈ ℝN define 

Hn ≔ ||
(L − Ln)φn

φn
||

L∞(ℝN)

.                                   (18) 

By Lemma (3.1.16), we know that lim
n→∞

Hn = 0. Since |(L + λn)φn| ≤ Hnφn, it follows 

that (L + λn − Hn)φn ≤ 0 and – (L + λn + Hn)φn ≤ 0. Hence, using φn as a test function 

in (6) and (7), we infer that λ1(−L, ℝ
N) ≥ λn − H and λ1

′ (−L, ℝN) ≤ λn + Hn for every 

n ∈ ℕ. The proof is complete because, passing to the lim inf and lim sup as n goes to infinity 

in the above inequalities, we get 

λ1
′ (−L, ℝN) ≤ lim

n→∞
infλn ≤ lim

n→∞
lim supλn ≤ λ1(−L,ℝ

N).               (19) 

The proof of Theorem (3.1.19) is divided into two parts, the first one being the next lemma. 

Lemma (3.1.18)[93]: The sequence (λn)n∈ℕ converges to λ1
′ (−L,ℝN) as n  goes to infinity. 

Proof. Proceeding as in the proof of Theorem (3.1.17), we derive (19). So, we only need to 

show that lim sup
n→∞

λn ≤ λ1
′ (−L, ℝN) To this end, consider a constant λ ≥ λ1

′ (−L,ℝN) such 

that there exists a positive function ϕ ∈ C2(ℝN) ∩ W2,∞(ℝN) satisfyin −(L + λ)ϕ ≤ 0. Fix 

n ∈ ℕ and define  ψn = 0 := knφn − ϕ  where Kn is the positive constant (depending on n) 

such that inf ψn = 0 (such a constant always exists and it is unique because 'n is bounded 

from below away from zero and _ is bounded from above). From the inequalities 

−(L + λ)ψn ≥ −kn(L + λ)φn = kn(Ln − L)φn + kn(λn − λ)φn 

and defining Hn as in (18), we find that 

−(L + λ)ψn ≥ kn(λn − λ − Hn)φn .                                  (20) 
Since inf ψn = 0, there exists a sequence (xm)m∈N in ℝN such that lim

m→1
𝑛(𝑥𝑚) =  0. 

For m ∈  N, define the functions 
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θm(x) ≔ ψn(x) + ψn(xm)|x − x|
2  , x ∈ ℝN 

Since θm(x) ≔ ψn(x) + ψn(xm) and θm(x) ≥ ψn(xm) for x ∈ ∂B1(xm), for any m ∈ ℕ 

there exists a point ym ∈ B1(xm) of local minimum of θm . Hence, 

0 = ∇θm(ym) = ∇ψn(ym) + 2ψn(xm)(ym − xm) 
and 

0 ≤ (∂ijθ(ym))
ij
= (∂ijψn(ym))

ij
+ 2ψn(xm)I 

where I denotes the N × N identity matrix. Thanks to the ellipticity of  −L, we then get 

−(L + λ)ψn(ym) ≤ 2ψn(xm)aii(ym) + 2ψn(xm)bi(ym)(ym − xm)i 
−(c(ym) + λ)ψn(ym)                                                               (21) 

Furthermore, since θm(ym) = ψn(ym) + ψn(xm)|ym − xm|
2 ≤ θm(xm) = ψn(xm), we 

see that ψn(ym) ≤ ψn(xm). Consequently, taking the limit as m goes to infinity in (21), we 

derive lim supm→∞−(L + λ)ψn(ym) ≤ 0 Therefore, by (20), lim sup
m→∞

ψn(λn − λ −

Hn)φn(ym) ≤ 0 which implies that λn − λ − Hn ≤ 0 because infℝNφn > 0. Since by 

Lemma (3.1.16) we know that Hn goes to zero as n goes to infinity, it follows that 

λ ≥ lim
m→∞

sup(λn − Hn) = lim
n→∞

supλn 

Taking the infimum over λ we finally get λ1
′ (−L, ℝN) ≥ lim supn→∞ λn 

Theorem (3.1.19)[93]: Let −L be a self-adjoint limit periodic operator. Then 

λ1(−L,ℝ
N  ) = λ1

′ (−L, ℝN). 
Proof. Owing to Theorem (3.1.17), it only remains to show that λ1(−L,ℝ

N) ≤ λ1
′ (−L, ℝN). 

To do this, we fix R > 1 and n ∈ ℕ and proceed as in the proof of Proposition (3.1.9), 

replacing the test function 'p by 'n. We thus get 

λ1(−L, BR) ≤ −
∫ (L(φnχR))φnχR
 

BR

∫ φn
2χR
2 

BR

 

   =
∫ ((λn + Ln − L) φn) φn − ∫ (L(φnχR))φn

 

CR

 

BR−1
χR

∫ φn
2χR
2 

BR

 

= λn −
∫ ((L − Ln)φn)φn
 

BR−1
+ ∫ ((L + λn)φnχR)φnχR

 

CR

∫ φn
2χR
2 

BR

 

Setting Hn as in (18), we get 

λ1(−L, BR) ≤ λn +
Hn ∫ φn

2 + Kn|CR|
 

BR−1

∫ φn
2χR
2 

BR

 

where |CR| denotes the measure of the set CR and Kn is a positive constant (independent of 

R because the λR are uniformly bounded in W2,∞(ℝN)). Therefore, since min
ℝnφn

> 0 there 

exists another constant K̃n > 0 such that 

λ1(−L, BR) ≤ λn + Hn +
K̃n
R

 

Letting R go to infinity in the above inequality and using Proposition (3.1.7) shows 

thatλ1(−L, ℝ
N) ≤ λn + Hn. By Lemmas (3.1.16) and (3.1.18), we know that Hn → 0 and 

λn → λ1
′ (−L, ℝN) as n → ∞. Thus, we conclude that λ1(−L, ℝ

N) ≤ λ1
′ (−L, ℝN). 

We are concerned with general elliptic operators in dimension one, that is, operators 

of the type 
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−Lu = −a(x)u′′ − b(x)u′ − c(x)u  ,      x ∈ ℝ 

with the usual regularity assumptions on a, b, c. The ellipticity condition becomes a ≤

a(x) ≤ a for some constants 0 ≤ a ≤ a. 
Theorem (3.1.20)[93]: Let −L be a general elliptic operator in dimension one. Then 

λ1
′ (−L,ℝN) ≤ λ1(−L, ℝ

N).Notice that, by Theorems (3.1.17) and (3.1.20), if – L0 is limit 

periodic or N = 1, then we can state Theorem (3.1.3) without mentioning λ1. Hence, only 

the sign of λ1
′ 1 is involved in the existence result. 

Proof. Fix R > 0 and denote by λR and φR the principal eigenvalue and eigenfunction 

respectively of −L in (−R, R), with the Dirichlet boundary condition. 

Then define 

ψR(x) ≔
h

k
e−k(x−R), x ∈ ℝ 

where h, k are two positive constants that will be chosen later. The function  ψR satisfies 

−(L + λR)ψR = (−a(x)k + b(x) − (c(x) + λR)
1

k
) he−k(x−R)  

There exists k0 > 0 (independent of h) such that – (L + λR)ψR < 0 in ℝ for any choice of 

k ≥ k0. Our aim is to connect smoothly the functions φR and  ψR in order to obtain a 
function ϕR ∈ C

2([0,∞)) ∩ W2,∞([0,∞)) satisfying – (L + λR)ϕR ≤ 0. To this end, we set 

gR(x) ≔ η(x − R + δ)3 , with η, δ > 0 to be chosen. Since 

−(L + λR)gR = [−6a(x) − 3b(x)(x − R + δ) − (c(x) + λR)(x − R + δ)
2]η(x − R + δ) 

we can find a constant δ0 > 0 such that – (L + λR)gR ≤ 0 in (R − δ, R), for any choice of 

0 < δ ≤ δ0. Then we define  

ϕR(x) ≔ {

φR(x)                 for   0 ≤ x ≤ R − δ,

φR(x) + gR(x)    for R − δ < x ≤ R,

ψR(x)                   for x > R.                 

                 (22) 

It follows that if k ≥ k0 and δ ≤ δ0, then – (L + λR)ϕR ≤ 0 in (0, R − δ) ∪ (R − δ, R) ∪
(R, +∞). In order to ensure the C2 regularity of ϕR, we need to solve the following system 

in the variables h, η, δ: 

{

ηδ3 = h/k

φR
′ (R) + 3ηδ2 = −h

φR
′′(R) + 6ηδ = hk

 

One can see that if h < −φR
′ (R) (notice that φR

′ (R) < 0 by the Hopf lemma), the previous 

system becomes, after some simple algebra, 

{
 
 

 
 
γ(h) = φR

′′(R)δ

δk =
3h

−φR
′ (R) − h

η =
hk − φR

′′(R)

6δ

                                                       (23) 

Where 

γ(h) ≔
3h2

−φR
′ (R) − h

+ 2(h + φR
′ (R)) 

We want to show that there exists δ small enough such that the system (23) admits positive 

solutions δ, hδ, kδ, ηδ satisfying  

δ ≤ δ0 , hδ < −φR
′ (R) , kδ ≥ k0                                    (24) 
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Let 0 < δ1 ≤ δ0 be such |φR
′′(R)|δ1 < −φR

′ (R). Thus, if δ ≤ δ1, the first equation of  (23 ) 

yields |γ(h)| < −φR
′ . Since  γ(0) = 2φR

′ (R) and lim
h→φR

′ (R)
−γ(h) = +∞ there exists a 

constant 0 < −φR
′ (R) such that, for any choice of δ ∈ (0, δ1), the first equation of (23) 

admits a solution hδ ∈ [h1 − φR
′ (R). For δ ∈ (0, δ1)  and h = hδ, the second equation of 

(23) gives 

kδ =
3hδ

−φR
′ (R) − hδ

δ−1 ≥
3h1

−φR
′ (R) − h1

δ−1.                           (25) 

Hence, for δ small enough, we have kδ ≥ k0. Finally, by the last equation of (23), for δ ∈
(0, δ1), we have 

ηδ =
hδks − φR

′′(R)

6δ
≥
h1kδ − φR

′′(R)

6δ
, 

and so, since kδ satisfies (25) ηδ > 0 for δ small enough. Therefore, there exist four positive 
constants h, k, η, δ solving (23) and satisfying (24).With this choice of h, k, η, δ the function 

ϕR is in C2([0,∞)) ∩ W2,∞([0,∞)). 
Proceeding as above, we can extend φR(x) for x negative, and get a function C2(ℝ) ∩
W2,∞(ℝ). such that – (L + λR) ϕR ≤ 0 in ℝ. U sing ϕRas a test function in (7), we find that 

λ1
′ (−L,ℝ) ≤ λR Thus, passing to the limit as R → ∞, by Proposition (3.1.7), we derive 

λ1
′ (−L,ℝ) ≤ λ1(−L, ℝ ). The proof is thereby complete.  

       Hence, by uniqueness of the principal eigenfunction up to a constant factor, it follows 

that φR(x) ≡ φR(Mx)  that is, φR is a radial function. Since for any radial function u =
u(|x|) the expression of Lu reads 

Lu = a(|x|)u′′ + (b(|x|) +
N − 1

|x|
a(|x|)) u′ + c(|x|)u, 

we can proceed as in the one-dimensional case and build a radial function ϕR ∈ C
2(ℝN) ∩

W2,∞(ℝN) such that – (L + λR)ϕR ≤ 0. Therefore, λ1
′ (−L, ℝN) ≤ λR and then, passing to 

the limit as R → ∞, we obtain the stated inequality between λ1and λ1
′ . 

Section (3.2): Existence of a Principal Eigenfunction of Some Nonlocal Operators 

Much attention has been drawn to the study of nonlocal reaction diffusion equations, 

where the usual elliptic diffusion operator is replaced by a nonlocal operator of the form 

ℳ[𝑢] ∶= ∫  
Ω

 𝑘(𝑥, 𝑦)𝑢(𝑦)𝑑𝑦 −  𝑏(𝑥)𝑢,                                     (26) 

 where 𝛺 ⊂ ℝ𝑛, 𝑘 ≥ 0 satisfies ∫  
ℝ𝑛

𝑘(𝑦, 𝑥)𝑑𝑦 <  ∞ for all 𝑥 ∈  ℝ𝑛 and 𝑏(𝑥)  ∈  𝐶(𝛺); 

see [119]–[121], [125]–[127], [129]–[131], [134], [137]–[139], [148], [149], [153]. Such 

type of diffusion process has been widely used to describe the dispersal of a population 

through its environment in the following sense. As stated in [144], [145], [147] if 𝑢(𝑦, 𝑡) is 

thought of as a density at a location 𝑦 at a time 𝑡 and 𝑘(𝑥, 𝑦) as the probability distribution 

of jumping from a location 𝑦 to a location 𝑥, then the rate at which the individuals from all 

other places are arriving to the location 𝑥 is  

∫  
𝛺

 𝑘(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦. 

On the other hand, the rate at which the individuals are leaving the location 𝑥 is 

−𝑏(𝑥)𝑢(𝑥, 𝑡). This formulation of the dispersal of individuals finds its justification in many 

ecological problems of seed dispersion; see = [124], [128], [140], [148], [149], [153].  

We study the properties of the principal eigenvalue of the operator ℳ, when the 

kernel 𝑘(𝑥, 𝑦) takes the form  
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𝑘(𝑥, 𝑦) =  𝐽 (
(𝑥 −  𝑦)

𝑔(𝑦)
) 

1

𝑔𝑛(𝑦)
 ,                                          (27) 

where 𝐽 is a continuous probability density and the function 𝑔 is bounded and positive. That 

is to say, we investigate the following eigenvalue problem:  

∫  
𝛺

 𝐽 (
𝑥 −  𝑦

𝑔(𝑦)
) 
𝑢(𝑦)

𝑔𝑛(𝑦)
 𝑑𝑦 −  𝑏(𝑥)𝑢 =  −𝜆𝑢   in 𝛺.             (28) 

Such type of diffusion kernel was recently introduced by Cortázar et al. [129] in order to 

model a nonhomogeneous dispersal process. Along, with no further specifications, we will 

always make the following assumptions on 𝛺, 𝐽, 𝑔 and 𝑏:  

𝛺 ⊂  ℝ𝑛 is an open connected set, (𝐻1)  
𝐽 ∈  𝐶𝑐(ℝ

𝑛), 𝐽 ≥ 0, 𝐽(0)  >  0,                (𝐻2) 
 𝑔 ∈  𝐿∞(𝛺), 0 ≤  𝛼 ≤ 𝑔 ≤ 𝛽,                       (𝐻3) 
 𝑏 ∈  𝐶(𝛺)  ∩  𝐿∞(𝛺),                                (𝐻4)  

where 𝐶𝑐 (ℝ
𝑛) denotes the set of continuous functions with compact support.  

The existence and a variational characterisation of the principal eigenvalue 𝜆𝑝 of ℳ 

is known from a long time, see for example Donsker and Varadhan [141]. However, as 

Donsker and Varadhan [141] have already noticed, 𝜆𝑝 is in general not an eigenvalue, that 

is to say, there exists no positive function 𝜙𝑝 such that (𝜆𝑝 , 𝜙𝑝) is a solution of (28). We are 

interested in finding some conditions on ℳ ensuring the existence of a principal eigenpair 

(𝜆𝑝 , 𝜙𝑝) of (28) such that 𝜙𝑝  ∈  𝐶(𝛺) and 𝜙𝑝  >  0. Such type of solution is commonly 

used to analyse the long-time behaviour of some nonlocal evolution problems [125], [129] 

and had proven to be a very efficient tool in the analysis of nonlinear integrodifferential 

problems; see [136], [146].  

Besides some particular situations the existence of an eigenpair (𝜆𝑝, 𝜙𝑝) for Eq. (28) 

is still an open question and many of the known results concern these two cases: 

   (i) 𝑏(𝑥)  ≡ Constant.  

   (ii) The operator ℳ satisfies a mass preserving property, i.e. ∀𝑢 ∈  𝐶(𝛺),  

∫  
𝛺

∫  
𝛺

 𝐽 (
𝑥 −  𝑦

𝑔(𝑦)
)
𝑢(𝑦)

𝑔𝑛(𝑦)
 𝑑𝑦 𝑑𝑥 − ∫  

𝛺

 𝑏(𝑥)𝑢(𝑥)𝑑𝑥 =  0.  

In both cases, the principal eigenvalue problem (28) is either reduced to the analysis of the 

spectrum of the positive operator ℒ𝛺  defined below:  

ℒ𝛺[𝑢] ∶=  ∫  
𝛺

 𝐽 (
(𝑥 −  𝑦)

𝑔(𝑦)
) 
𝑢(𝑦)

𝑔𝑛(𝑦)
 𝑑𝑦 

 or the principal eigenvalue is explicitly known, i.e. 𝜆𝑝  =  0 and the principal eigenfunction 

𝜙𝑝 is also the positive solution of the following eigenvalue problem  

∫  
𝛺

 𝐽 (
𝑥 −  𝑦

𝑔(𝑦)
) 
𝜓(𝑦)

𝑔𝑛(𝑦)
 𝑑𝑦 =  𝜌𝑏(𝑥)𝜓. 

 Note that even in these two simplified cases, showing the existence of an eigenfunction is 

still a difficult task when the domain 𝛺 is unbounded. As observed in [134], Eq. (26) shares 

many properties with the usual elliptic operators  

ℰ ∶=  𝜎𝑖𝑗(𝑥)𝜕𝑖𝑗  +  𝛽𝑖(𝑥)𝜕𝑖  +  𝑐(𝑥). 

In particular, acting on smooth functions, we can rewrite ℳ 

 ℳ[𝑢]  = ℰ[𝑢] + ℛ[𝑢]  
with ℛ an operator involving derivatives of higher order that in ℰ.  
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Indeed, we have  

ℳ[𝑢]  =  ∫  
𝛺

 𝑘(𝑥, 𝑦)  𝑢(𝑦)  −  𝑢(𝑥) 𝑑𝑦 −  𝑐(𝑥)𝑢,  

with 𝑐(𝑥) ∶=  𝑏(𝑥)  −  ∫  
𝛺
 𝑘(𝑥, 𝑦)𝑑𝑦. Using the change of variables  𝑧 =  𝑥 – 𝑦  and 

performing a formal Taylor expansion of 𝑢 in the integral, we can rewrite the nonlocal 

operator as follows  

∫  
𝑥−𝛺 

𝑘(𝑥, 𝑥 −  𝑧)[𝑢(𝑥 −  𝑧) −  𝑢(𝑥)] 𝑑𝑦 =  𝜎𝑖𝑗(𝑥)𝜕𝑖𝑗𝑢 + 𝛽𝑖(𝑥)𝜕𝑖𝑢 + ℛ[𝑢] 

where we use the Einstein summation convention and 𝜎𝑖𝑗(𝑥), 𝛽𝑖(𝑥), and ℛ are defined by 

the following expressions 

𝜎𝑖𝑗(𝑥) =
1

2
 ∫  
𝑥−𝛺

 𝑘(𝑥, 𝑥 −  𝑧)𝑧𝑖 𝑧𝑗 𝑑𝑧, 

𝛽𝑖(𝑥)  =  ∫  
𝑥−𝛺

 𝑘(𝑥, 𝑥 −  𝑧)𝑧𝑖 𝑑𝑧, 

 𝑅[𝑢]: = ∫  
1

0

∫  
1

0

 ∫  
1

0

 ∫  
𝑥−𝛺

 𝑘(𝑥, 𝑥 −  𝑧)𝑧𝑖  𝑧𝑗𝑡
2𝑠𝜕𝑖𝑗𝑘𝑢(𝑥 +  𝑡𝑠𝜏𝑧)𝑑𝑡 𝑑𝑠 𝑑𝜏 𝑑𝑧.  

For the second order elliptic operator ℰ, the existence of a principal eigenpair (𝜆𝑝, 𝜙𝑝) is 

well known and various variational formulas characterising the principal eigenvalue exist, 

see for example [100], [141], [143], [151]–[152]. In particular, Berestycki, Nirenberg and 

Varadhan [100] give a very simple and general definition of the principal eigenvalue of ℰ 

that we recall below. Namely, they define the principal eigenvalue of the elliptic operator ℰ 

by the following quantity:  

𝜆1 ∶= sup  { 𝜆 ∈ ℝ |∃𝜙 ∈ 𝐶(𝛺), 𝜙 > 0, such that 𝐸[𝜙] +  𝜆𝜙 ≤ 0}.    (29) 
We adopt the definition of Berestycki, Nirenberg and Varadhan for the definition of 

the principal eigenvalue of the operator ℳ. The principal eigenvalue of the operator ℳ is 

then given by the following quantity:  

𝜆𝑝(ℳ) ≔ sup  { 𝜆 ∈ ℝ |∃𝜙 ∈  𝐶(𝛺), 𝜙 >  0, such that 𝑀[𝜙] +  𝜆𝜙 ≤ 0} . 

To make more explicit the dependence of the different parameters and to simplify the 

presentation of the results, we shall adopt the following notations: 

• Let 𝐴 and 𝐵 be two sets, we denote 𝐴 ⋐  𝐵 the compact inclusion 𝐴 ⊂⊂  𝐵.  

• 𝑎(𝑥) ∶=  −𝑏(𝑥).  
• 𝜎 ∶= sup

𝛺
 𝑎(𝑥).  

• 𝑑𝜇 is the measure defined by ∶=
𝑑𝑥

𝑔𝑛(𝑥)
 .  

• ℒ𝛺 [𝑢]: =  ∫  
𝛺
 𝐽 (

 𝑥−𝑦

𝑔(𝑦)
)
𝑢(𝑦)

𝑔𝑛(𝑦)
 𝑑𝑦 = ∫  𝛺  𝐽 (

𝑥−𝑦

𝑔(𝑦)
) 𝑢(𝑦)𝑑𝜇. 

• ℳ ∶=ℳ𝛺 ∶=  ℒ𝛺  +  𝑎(𝑥)𝐼𝑑. 

With this new notation the principal eigenvalue of ℳ𝛺 can be rewritten as follows  

𝜆𝑝(ℳ𝛺) ∶= sup  {𝜆 ∈ ℝ |∃𝜙 ∈ 𝐶(𝛺), 𝜙 > 0, such that ℒ𝛺 [𝜙] + (𝑎(𝑥) + 𝜆)𝜙

≤ 0}.                                                                                                                          (30) 
Under the assumptions (𝐻1)– (𝐻4), the principal eigenvalue 𝜆𝑝(ℳ𝛺) is well defined. 

       Obviously, 𝜆𝑝 is monotone with respect to the domain, the zero order term 𝑎(𝑥) and J. 

Moreover, 𝜆𝑝 is a concave function of its argument and is Lipschitz continuous with respect 

to 𝑎(𝑥). We have  
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Theorem (3.2.1)[118]: (Sufficient condition). Assume that 𝛺, 𝐽 , 𝑔 and a satisfy 

(𝐻1)– (𝐻4). Let us denote 𝜎 ∶= sup
�̅�
 𝑎(𝑥) and assume further that the function 𝑎(𝑥) 

satisfies 
1

𝜎−𝑎(𝑥)
∉ 𝐿𝑑𝜇

1 (𝛺0) for some bounded domain 𝛺0 ⊂ �̅�. Then there exists a 

principal eigenpair (𝜆𝑝, 𝜙𝑝) solution of (28). Moreover, 𝜙𝑝  ∈  𝐶(𝛺), 𝜙𝑝  >  0 and we 

have the following estimate  

−𝜎′  <  𝜆𝑝  <  −𝜎, 

 where 𝜎 ∶= sup
𝑥∈𝛺 

 [𝑎(𝑥) + ∫  
𝛺
 𝐽 (

𝑦−𝑥

𝑔(𝑥)
)  𝑑𝑦 𝑔𝑛(𝑥)].  

Note that the theorem holds true whenever 𝛺 is bounded or not.  

The condition 
1

𝜎−𝑎(𝑥)
∉ 𝐿𝑑𝜇

1 (𝛺0) is sharp in the sense that if 
1

𝜎−𝑎(𝑥)
 ∈  𝐿𝑑𝜇 ,𝑙𝑜𝑐

1 (𝛺) 

then we can construct an operator ℳ𝛺 such that Eq. (28) does not have a principal 

eigenpair. This is discussed, where such an operator is constructed. We want also to stress 

that the boundedness of the open set 𝛺 does not ensure the existence of an eigenfunction. 

In contrast with the elliptic case, the sufficient condition has nothing to do with the 

regularity of the functions 𝑎(𝑥), 𝐽 or g. This means that in general improving the 

regularity of the coefficients does not ensure at all the existence of an eigenpair. 

However, in low dimension of space 𝑛 =  1, 2 the condition 
1

𝜎−𝑎(𝑥)
∉  𝐿𝑑𝜇

1 (𝛺0) can be 

related to a regularity condition on the coefficient 𝑎(𝑥). Indeed, in one dimension if a is 

Lipschitz continuous and achieves a maximum in 𝛺 then the condition 
1

𝜎−𝑎(𝑥)
∉

 𝐿𝑑𝜇
1 (𝛺0) is automatically satisfied. Similarly, when 𝑛 =  2 the non-integrability 

condition is always satisfied when 𝑎(𝑥)  ∈  𝐶1,1(𝛺) and achieves a maximum in 𝛺. We 

have the following:  

Theorem (3.2.2)[118]: Assume that 𝛺, 𝐽 , 𝑔 and a satisfy (𝐻1)– (𝐻4), that a achieves a 

global maximum at some point 𝑥0  ∈  𝛺. Then there exists a principal eigenpair (𝜆𝑝, 𝜙𝑝) 

solution of (28) in the following situations  

(a) 𝑛 =  1, 𝑎(𝑥)  ∈  𝐶0,1(𝛺),  
(b) 𝑛 =  2, 𝑎(𝑥)  ∈  𝐶1,1(𝛺),  
(c) 𝑛 ≥ 3, 𝑎(𝑥)  ∈  𝐶𝑛−1,1(𝛺), ∀𝑘 <  𝑛, 𝜕𝑘𝑎(𝑥0) = 0. 

One of the most interesting properties of the principal eigenvalue for an elliptic 

operator ℰ is its relation with the existence of a maximum principle for E. Indeed, 

Berestycki et al. [100] have shown that there exists a strong relation between the sign of 

this principal eigenvalue and the existence of a maximum principle for the elliptic 

operator ℰ. They have proved the following theorem 

Theorem (3.2.3)[118]: (BNV). Let 𝛺 be a bounded open set, then ℰ satisfies a refined 

maximum principle if and only if 𝜆1  >  0.  

It turns out that when the principal eigenpair exists for ℳ, we can also obtain a similar 

relation between the sign of the principal eigenvalue of ℳ and some maximum principle 

property. We define the maximum principle property satisfied by M:  

Definition (3.2.4)[118]: (Maximum principle). When 𝛺 is bounded, we say that the 

maximum principle is satis-fied by an operator ℳ𝛺 if for all function 𝑢 ∈  𝐶(�̅�) 
satisfying  

ℳ𝛺 [𝑢] ≤ 0 in 𝛺, 
 𝑢 ≥ 0 in 𝜕𝛺,  
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then 𝑢 ≥  0 in 𝛺.  

With this definition of maximum principle, we show  

Theorem (3.2.5)[118]: Assume that 𝛺 is a bounded set and let 𝐽 , 𝑔 and a be as in 

Theorem (3.2.1). Then the maximum principle is satisfied by ℳ𝛺 if and only if 

𝜆𝑝(ℳ𝛺) ≥ 0.  

Note that there is a slight difference between the criteria for elliptic operators and for 

nonlocal ones. To have a maximum principle for nonlocal operator it is sufficient to have 

a non-negative principal eigenvalue, which is untrue for an elliptic operator where a strict 

sign of 𝜆𝑝 is required.  

The last result is an application of the sufficient condition for the existence of a 

principal eigenpair to obtain a simple criterion for the existence/non-existence of a 

positive solution of the following semilinear problem:  

ℳ𝛺 [𝑢]  +  𝑓 (𝑥, 𝑢)  =  0 in 𝛺,                                        (31) 
where 𝑓 is a KPP type nonlinearity. Such type of equation naturally appears in some 

ecological problems when in addition to the dispersion of the individuals in the 

environment, the birth and death of these individuals are also modelled, see [146]–[149]. 

On 𝑓 we assume that:  

{

𝑓 ∈  𝐶( ℝ ×  [0,∞)  and is differentiable with respect to 𝑢,

𝑓𝑢(·, 0) is Lipschitz,

𝑓 (·, 0)  ≡  0 and 𝑓 (𝑥, 𝑢)/𝑢 is decreasing with respect to 𝑢,

there exists 𝑀 >  0 such that 𝑓 (𝑥, 𝑢) ≤ 0 for all 𝑢 ≥ 𝑀 and all 𝑥.

     (32)  

The simplest example of such a nonlinearity is  

𝑓 (𝑥, 𝑢) =  𝑢(𝜇(𝑥) −  𝑢), 
where 𝜇(𝑥) is a Lipschitz function.  

Such type of problem has received recently a lot of attention, see [122], [147]–[149]. 

In particular, for 𝛺 bounded and for a symmetric kernel 𝐽 Hutson et al. [147] have shown 

that there exists a unique non-trivial stationary solution (31) provided that some principal 

eigenvalue of the linearised operator around the solution 0 is positive. This result can be 

extended to more general kernel J using the definition of principal eigenvalue (30). We 

show that:  

Theorem (3.2.6)[118]: Assume 𝛺, 𝐽 , 𝑔 and a satisfy (𝐻1)– (𝐻4), 𝛺 is bounded, 𝑎(𝑥) ≤
 0 and 𝑓 satisfies (32). Then there exists a unique non-trivial solution of (31) when  

𝜆𝑝 ( ℳ𝛺  +  𝑓𝑢(𝑥, 0))   <  0,  

where 𝜆𝑝 is the principal eigenvalue of the linear operator ℳ𝛺  +  𝑓𝑢(𝑥, 0). Moreover, if 

𝜆𝑝 ≥  0 then any non-negative uniformly bounded solution of (31) is identically zero.  

As a consequence, we can derive the asymptotic behaviour of the solution of the 

evolution problem associated to (31): 
𝜕𝑢

𝜕𝑡
 =  ℳ𝛺 [𝑢] +  𝑓 (𝑥, 𝑢)in ℝ

+  ×  𝛺,                                 (33) 

 𝑢(0, 𝑥) =  𝑢0(𝑥)in 𝛺.                                               (34) 
Namely, the asymptotic behaviour of u(t, x) as t → +∞ is described in the following 

theorem:  

Note that this criterion involves only the sign of 𝜆𝑝  and does not require any 

conditions on the function 𝑓𝑢(𝑥, 0) ensuring the existence of a principal eigenfunction. 

Therefore, even in a situation where no principal eigenfunction exists for the operator 

ℳ𝛺  +  𝑓𝑢(𝑥, 0) we still have information on the survival or the extinction of the 
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considered species. Observe also that the condition obtained on the principal eigenvalue 

of the linearised operator is sufficient and necessary for the existence of a non-trivial 

solution.  

The above results can be easily extended to the case of a dispersal kernel 𝑘(𝑥, 𝑦) 
which satisfies the following conditions:  

𝑘(𝑥, 𝑦) ∈  𝐶𝑐 (𝛺 ×  𝛺), 𝑘 ≥ 0,∫  
𝛺

 𝑘(𝑥, 𝑦)𝑑𝑦 <  +∞, ∀𝑥 ∈  𝛺, (𝐻1) 

 ∃𝑐0  > 𝜖0, 0 >  0 such thatmin
 𝑥∈𝛺

 ( min
 𝑦∈𝐵(𝑥,𝜖0)

  𝑘(𝑥, 𝑦))  >  𝑐0. (𝐻2) 

An example of such kernel is given by  

𝑘(𝑥, 𝑦) =  𝐽 (
𝑥1  −  𝑦1
𝑔1(𝑦)

 ;
𝑥2  −  𝑦2
𝑔2(𝑦)

 ; … ;
𝑥𝑛  −  𝑦𝑛
𝑔𝑛(𝑦)

)
1

∏  𝑛
 𝑖=1 𝑔𝑖(𝑦)

 ,  

with 0 <  𝛼𝑖 ≤  𝑔𝑖 ≤  𝛽𝑖  . 
We want also to emphasize that the condition that 𝐽 or 𝑘 has a compact support is 

only needed to construct an eigenpair when 𝛺 is unbounded. For a bounded domain, all the 

results will also hold true if 𝐽 is not assume compactly supported in 𝛺.  

Note that the assumption 𝐽(0)  >  0 implies that the operator ℒ𝛺 is not trivial on any 

open subset 𝜔 ⊂  𝛺, i.e. ∀𝜔 ⊂  𝛺, ∀𝑢 ∈  𝐶(𝛺), ℒ𝛺 [𝑢]  =  0 for 𝑥 ∈  𝜔. This condition 

makes sure that the principal eigenfunction 𝜙𝑝 is positive in 𝛺, which is a necessary 

condition for the existence of such principal eigenfunction. Indeed, when there exists an 

open subset 𝜔 ⊂  𝛺 such that ℒ𝛺 is trivial, there is no guarantee that a principal eigenpair 

exists. For example, this is the case for the operator ℳ𝛺 where 𝛺 ∶=  (−1, 1), 𝐽 is such that 

supp( 𝐽)  ⊂  (
1

2
 , 1) and 3 ≤ 𝑔 ≤ 4. In this situation, we easily see that for any 𝑥 ∈

 (−
1

4
 ,
1

4
) and for any function 𝑢 ∈  𝐶(𝛺), we have ℒ𝛺 [𝑢](𝑥)  =  0. Therefore, the 

existence of an eigenfunction will strongly depend on the behaviour of the function 𝑎(𝑥) on 

this subset, i.e. (𝜆𝑝  +  𝑎(𝑥))𝜙 ≡  0 for 𝑥 ∈  (−
1

4
 ,
1

4
). If (𝜆𝑝  +  𝑎(𝑥)) ≠ 0 then 𝜙 ≡  0 

in (−
1

4
 ,
1

4
). In this situation there is clearly no existence of a positive principal 

eigenfunction. However, the condition 𝐽(0)  >  0 can still be relaxed and the above 

theorems hold also true if we only assume that the kernel 𝐽 is such that there exists a positive 

integer 𝑝 ∈  ℕ0 such that the following kernel 𝐽𝑝(𝑥, 𝑦) satisfies (𝐻 2) where 𝐽𝑝(𝑥, 𝑦) is 

defined by the recursion  

𝐽1(𝑥, 𝑦) ≔  𝐽 (
𝑥 −  𝑦

𝑔(𝑦)
)

1

𝑔𝑛(𝑦)
 , 

 𝐽 𝑝+1(𝑥, 𝑦): =  ∫  
𝛺

 𝐽1(𝑥, 𝑧)𝐽𝑝(𝑧, 𝑦)𝑑𝑧 for 𝑝 ≥ 1.  

The above condition is slightly more general that 𝐽(0)  >  0 and we see that 𝐽(0)  >
 0 implies that 𝐽1 satisfies (𝐻2). In particular, as showed for example in [132], for a 

convolution operator 𝐾(𝑥, 𝑦) ∶=  𝐽(𝑥 −  𝑦), this new condition is optimal and can be 

related to a geometric condition on the convex hull of {𝑦 ∈  ℝ𝑛 | 𝐽(𝑦)  >  0}:  

There exists 𝑝 ∈  ℕ∗, such that 𝐽𝑝 satisfies (𝐻2) if and only if the convex hull of {𝑦 ∈

ℝ𝑛 | 𝐽(𝑦)  >  0} contains 0.  
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We also want to stress that we can easily extend the results of Theorems (3.2.5) and 

(3.2.6) to a periodic setting using the above generalisation on general non-negative kernel. 

If we consider the following problem  
𝜕𝑢

𝜕𝑡
 = ℳ ℝ𝑛 [𝑢] +  𝑓 (𝑥, 𝑢)in ℝ𝑛  ×  ℝ+,                                  (35) 

where 𝑔 and 𝑓 (. , 𝑢) are assumed to be periodic functions then the existence of a unique 

non-trivial periodic solution of (35) is uniquely conditioned by the sign of the periodic 

principal eigenvalue 𝜆𝑝,𝑝𝑒𝑟(ℳℝ𝑛  +  𝑓𝑢(𝑥, 0)), where 𝜆𝑝,𝑝𝑒𝑟 is defined as follows:  

𝜆𝑝,𝑝𝑒𝑟(𝑀):= sup  {( 𝜆 ∈  ℝ)|∃𝜓 >  0, 𝜓 ∈ 𝐶𝑝𝑒𝑟(ℝ
𝑛) such that ℳℝ𝑛 [𝜓] +  𝜆𝜓 ≤ 0}. 

Using the periodicity, we have  

𝜆𝑝,𝑝𝑒𝑟( ℳℝ𝑛  +  𝑓𝑢(𝑥, 0)   =  𝜆𝑝 (ℒ𝑄  +  𝑓𝑢(𝑥, 0), 𝑄), 

where 𝑄 is the unit periodic cell and ℒ𝑄 [𝜓] ∶= ∫  𝑄  𝑘(𝑥, 𝑦)𝑢(𝑦)𝑑𝑦 with 𝑘 a positive kernel 

satisfying (𝐻1) and (𝐻 2). Hence the analysis of the existence/non-existence of stationary 

solutions of (35) will be handled through the analysis of the existence/non-existence of 

stationary solutions of a semilinear KPP problem defined on a bounded domain.   

Finally, along the analysis, provided a more restrictive assumption on the coefficient 

𝑎(𝑥) is made, we also observe that Theorem (3.2.1) holds as well when we relax the 

assumption on the function 𝑔 and allow 𝑔 to touch 0. Assuming that g satisfies  

𝑔 ∈  𝐿∞(𝛺), 0 ≤ 𝑔 ≤ 𝛽,
1

𝑔𝑛
 ∈  𝐿𝑙𝑜𝑐

𝑝
(�̅�) with 𝑝 >  1 (𝐻 3) 

then for a bounded domain 𝛺, we have the following result:  

As a consequence the criterion on the survival/extinction of a species obtained in 

Theorems (3.2.5) and (3.2.6) can be extended to such type of dispersal kernel. We have  

Theorem (3.2.7)[118]: Assume Ω, J and g satisfy (H1), (H̃2), (H̃3) , Ω is bounded and 𝑓 

satisfies (32). Then there exists a unique non-trivial solution of (31) if  

𝜆𝑝  (ℳ𝛺  +  𝑓𝑢(𝑥, 0))  <  0, 

 where 𝜆𝑝 is the principal eigenvalue of the linear operator ℳ𝛺  +  𝑓𝑢(𝑥, 0). Moreover, if 

𝜆𝑝 ≥  0 then any non-negative uniformly bounded solution is identically zero.  

Theorem (3.2.8)[118]: Let 𝛺, 𝐽 , 𝑔, 𝑏 and f be as in Theorem (3.2.7). Let 𝑢0 be an arbitrary 

bounded and continuous function in 𝛺 such that 𝑢0 ≥ 0, 𝑢0 ≢  0. Let 𝑢(𝑡, 𝑥) be the solution 

of (33) with initial datum 𝑢(0, 𝑥)  =  𝑢0(𝑥). Then, we have:  

(i) If 0 is an unstable solution of (31) (that is 𝜆𝑝 < 0), then 𝑢(𝑡, 𝑥)  →  𝑝(𝑥) pointwise as 

𝑡 →  ∞, where 𝑝 is the unique positive solution of (31) given by Theorem (3.2.7).  

(ii) If 0 is a stable solution of (31) (that is 𝜆𝑝 ≥ 0), then 𝑢(𝑡, 𝑥)  →  0 pointwise in 𝛺 as 𝑡 →

 +∞.  

The existence of a simple sufficient condition for the existence of a principal eigenpair 

when 𝛺 is an unbounded domain is more involved and we have to make a technical 

assumption on the set 𝛴 ∶=  {𝑥 ∈  𝛺 | 𝑔(𝑥)  =  0}. We show  

Theorem (3.2.9)[118]: Assume that 𝛺, 𝐽 and a satisfy (𝐻1), (𝐻2), (𝐻4) and 𝑔 satisfies 

(𝐻3). Let us denote 𝜎 ∶= sup
�̅�
  𝑎(𝑥) and let 𝛤 , 𝛴 be the following sets 

𝛤 ∶= {𝑥 ∈  �̅�| 𝑎(𝑥) =  𝜎 } , 
 𝛴 ∶= ( 𝑥 ∈  �̅�| 𝑔(𝑥) =  0 } . 

Assume further that 𝛺 ∩  𝛴 ⋐  𝛺 and �̇� =  ∅. Then there exists a principal eigenpair 

(𝜆𝑝 , 𝜙𝑝) solution of (28). Moreover, 𝜙𝑝  >  0 and we have the following estimate  
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−𝜎′  <  𝜆𝑝  <  −𝜎, 

 where 𝜎 ∶= sup
𝑥∈𝛺 

 [𝑎(𝑥) + ∫  
𝛺
 𝐽 (

𝑦−𝑥

𝑔(𝑥)
)

𝑑𝑦

𝑔𝑛(𝑥)
].  

We review some spectral theory of positive operators and we recall some Harnack’s 

inequalities satisfied by a positive solution of integral equation. Then, we prove Theorems 

(3.2.25) and (3.2.24). The relation between the maximum principle and the sign of the 

principal eigenvalue Theorem (3.2.5) and a counterexample to the existence of a principal 

eigenpair are obtained respectively. We devoted to the derivation of the survival/extinction 

criteria (Theorems (3.2.5), (3.2.6), (3.2.20)).  

We first recall some results on the spectral theory of positive operators and some 

Harnack’s inequalities satisfied by a positive solution of 

ℒ𝛺 [𝑢]  −  𝑏(𝑥)𝑢 =  0,                                                      (36) 
where ℒ𝛺 is defined as above and 𝑏(𝑥) is a positive continuous function in 𝛺. Let us start 

with the spectral theory.  

Let us recall some basic spectral results for positive operators due to Edmunds, Potter 

and Stuart [142] which are extensions of the Krein–Rutman theorem for positive non-

compact operators. A cone in a real Banach space 𝑋 is a non-empty closed set 𝐾 such that 

for all 𝑥, 𝑦 ∈  𝐾 and all 𝛼 ≥ 0 one has 𝑥 +  𝛼𝑦 ∈  𝐾, and if 𝑥 ∈  𝐾, −𝑥 ∈  𝐾 then 𝑥 =  0. 

A cone 𝐾 is called reproducing if 𝑋 =  𝐾 −  𝐾. A cone 𝐾 induces a partial ordering in 𝑋 

by the relation 𝑥 ≤ 𝑦 if and only if 𝑥 −  𝑦 ∈  𝐾. A linear map or operator 𝑇 ∶  𝑋 →  𝑋 is 

called positive if 𝑇 (𝐾)  ⊆  𝐾. The dual cone 𝐾∗ is the set of functional 𝑥∗  ∈  𝑋∗ which are 

positive, that is, such that 𝑥∗(𝐾)  ⊂  [0,∞).  
If 𝑇 ∶  𝑋 →  𝑋 is a bounded linear map on a complex Banach space 𝑋, its essential 

spectrum (according to Browder [123]) consists of those 𝜆 in the spectrum of 𝑇 such that at 

least one of the following conditions holds: (1) the range of 𝜆𝐼 −  𝑇 is not closed, (2) λ is a 

limit point of the spectrum of A, (3) ⋃  ∞
 𝑛=1  𝑘𝑒𝑟((𝜆𝐼 −  𝑇 )

𝑛) is infinite dimensional. The 

radius of the essential spectrum of  , denoted by 𝑟𝑒(𝑇 ), is the largest value of |λ| with λ in 

the essential spectrum of 𝑇 . For more properties of 𝑟𝑒(𝑇) see [150].  

Theorem (3.2.10)[118]: (Edmunds, Potter, Stuart). Let 𝐾 be a reproducing cone in a real 

Banach space 𝑋, and let 𝑇 ∈ ℒ(𝑋) be a positive operator such that 𝑇𝑝(𝑢) ≥ 𝑐𝑢 for some 

𝑢 ∈  𝐾 with ‖𝑢‖  =  1, some positive integer 𝑝 and some positive number 𝑐. Then if 𝑐
1

𝑝  >

 𝑟𝑒(𝑇𝑐), 𝑇 has an eigenvector 𝑣 ∈  𝐾 with associated eigenvalue 𝜌 ≥ 𝑐
1

𝑝 and 𝑇∗  has 

eigenvector 𝑣∗  ∈  𝐾∗ corresponding to the eigenvalue 𝜌. Moreover, 𝜌 is unique.  

A proof of this theorem can be found in [142]. 

We present some Harnack’s inequality satisfied by any positive continuous solution 

of the nonlocal equation (36).  

Theorem (3.2.11)[118]: (Harnack inequality). Assume that 𝛺, 𝐽 , 𝑔 and 𝑏 >  0 satisfy 

(𝐻1), (𝐻2), (𝐻3), (𝐻4). Let 𝜔 ⋐  𝛺 be a compact set. Then there exists 𝐶( 𝐽, 𝜔, 𝑏, 𝑔) such 

that for all positive continuous bounded solutions 𝑢 of (36) we have  

𝑢(𝑥) ≤  𝐶𝑢(𝑦) for all 𝑥, 𝑦 ∈  𝜔. 
When the assumption on 𝑔 is relaxed the above Harnack’s estimate does not hold any more 

but a uniform estimate still holds. 

Theorem (3.2.12)[118]: (Local uniform estimate). Assume that 𝛺, 𝐽 , 𝑔 and 𝑏 >  0 satisfy 

(𝐻1), (𝐻2), (𝐻3), (𝐻4). Assume that 𝛺 ∩  𝛴 ⋐  𝛺 and let 𝜔 ⊂  𝛺 be a compact set. Let 

𝛺(𝜔) denote the following set  
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𝛺(𝜔) ∶=  ⋃  

𝑥∈𝜔 

𝐵(𝑥, 𝛽). 

 Then there exists a positive constant 𝜂∗ such that, for any 0 <  𝜂 ≤ 𝜂∗, there exist a 

compact set 𝜔′ ⋐  𝛺(𝜔) ∩ 𝛺 and a constant 𝐶( 𝐽, 𝜔, 𝛺,𝜔′ , 𝑏, 𝑔, 𝜂) such that the following 

assertions are verified:  

(i) {𝑥 ∈  𝛺(𝜔) ∩ 𝑊𝜂 | 𝑑 (𝑥, 𝜕(𝛺(𝜔) ∩ 𝑊𝜂))  >  𝜂}  ⊂  𝜔
′ , where 𝑊𝜂 ∶=  {𝑥 ∈

 𝛺| 𝑔(𝑥) >  𝜂},  
(ii) for all positive continuous solution 𝑢 of (36), the following inequality holds:  

𝑢(𝑥) ≤  𝐶𝑢(𝑦) for all  𝑥 ∈  𝜔, 𝑦 ∈  𝜔′  ∩  𝜔.  
We present a contraction lemma which guarantees that when 𝛺 is bounded then any 

continuous positive solution 𝑢 of Eq. (36) is bounded in 𝛺.  

Lemma (3.2.13)[118]: (Contraction lemma). Let 𝛺 ⊂  ℝ𝑛 and 𝑢 ∈  𝐶(𝛺) be respectively 

an open set and a positive solution of (36). Then there exists 𝜖∗  >  0 such that for all 𝜖∗ , 
there exists 𝛺 and 𝐶(𝛼, 𝛽, 𝐽, 𝜖, 𝑏) such that  

∫  
𝛺𝜖

 𝑢(𝑦)𝑑𝑦 ≥  𝐶 ∫  
𝛺

 𝑢(𝑦)𝑑𝑦. 

 Moreover, 𝛺 satisfies the following chain of inclusion  

{𝑥 ∈  𝛺| 𝑑(𝑥, 𝜕𝛺) >  𝛼𝜖}   ⊂  𝛺𝜖  ⊂ { 𝑥 ∈  𝛺| 𝑑(𝑥, 𝜕𝛺) >
𝛼𝜖

2
} . 

A proof of these results can be found in [134].  

We prove the criterion of existence of a principal eigenpair (Theorems (3.2.25), 

(3.2.24) and (3.2.8)). That is, we prove the existence of a solution (𝜆𝑝, 𝜙𝑝) of the equation 

 ℒ𝛺 [𝜙𝑝]  +  𝑎(𝑥)𝜙𝑝  =  −𝜆𝑝𝜙𝑝 in 𝛺                            (37) 

with 𝜙𝑝  >  0, 𝜙𝑝  ∈  𝐶(𝛺) and 𝜆𝑝 is the principal eigenvalue of ℒ𝛺  +  𝑎(𝑥) defined by 

(30). We first restrict our analysis to the case of a bounded domain 𝛺 and then prove the 

criterion for unbounded domains. Each of them dedicated to one situation.  

We will first concentrate our attention on the construction of a principal eigenpair 

when 𝐽, 𝑔, 𝑏 satisfy the assumptions (H2)–(H4) (Theorem (3.2.1)). Then we provide an 

argumentation for the construction of a principal eigenpair when the assumptions on g are 

relaxed (Theorem (3.2.20)).  

In a first step, let us show that the eigenvalue problem (37) admits a positive solution, 

i.e. there exists (𝜇1, 0, 𝜙1) with 𝜙1  >  0, 𝜙1  ∈  𝐿
∞(𝛺)  ∩  𝐶(𝛺) solution of (37). We show  

Theorem (3.2.14)[118]: Let 𝛺 ⊂  ℝ𝑛 be a bounded open set and assume that 𝐽 , 𝑔, and 

𝑎(𝑥) satisfy (H1)–(H4). Let us denote 𝜎 ∶= sup
𝛺 ̅̅̅
  𝑎(𝑥) and 𝛺𝜃 ∶=  {𝑥 ∈  𝛺 | 𝑑(𝑥, 𝜕𝛺)  >

 𝜃}. Assume further that the function 𝑎(𝑥) satisfies 
1

𝜎−𝑎(𝑥)
∉ 𝐿𝑑𝜇

1 (�̅�). Then there exists 𝜃0  >

 0 such that for all 𝜃 ≤ 𝜃0 the operator ℒ𝛺𝜃  +  𝑎(𝑥) has a unique eigenvalue 𝜇1,𝜃 in 𝐶(𝛺𝜃), 

that is to say, there is a unique 𝜇1,𝜃  ∈ ℝ such that  

ℒ𝛺𝜃  [𝜙1]  +  𝑎(𝑥)𝜙1  =  −𝜇1,𝜃𝜙1 in 𝛺𝜃                         (38) 

admits a positive solution 𝜙1  ∈  𝐶(�̅�𝜃). Moreover, 𝜇1,𝜃 is simple (i.e. the space of 𝐶(�̅�𝜃) 
solutions to (37) is one-dimensional) and satisfies  

𝜇1,𝜃  <  −max
�̅�𝜃

  𝑎(𝑥).  

To conclude the proof of Theorem (3.2.1) which establishes the criterion of existence 

of an eigenpair, we are left to show that the principal eigenvalue defined by (30) is the same 
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as the one obtained in Theorem (3.2.14) for 𝜃 = 0. Namely, we are reduced to prove of the 

following results.  

Lemma (3.2.15)[118]: Let 𝑎(𝑥) be as in Theorem (3.2.14) then we have 𝜆𝑝  =  𝜇1,0 where 

𝜆𝑝 and 𝜇1,0 are respectively the principal eigenvalue of ℒ𝛺  +  𝑎(𝑥) defined by (30) and the 

eigenvalue of ℒ𝛺  +  𝑎(𝑥) obtained in Theorem (3.2.14).  

Before proving Theorem (3.2.14), let us prove the above lemma.  

Proof. First, let us define the following quantity  

𝜆𝑝
′ ∶= sup  {𝜆 ∈ ℝ| ∃𝜙 >  0, 𝜙 ∈  𝐶(𝛺)so that ℒ𝛺 [𝜙] +  𝑎(𝑥)𝜙 +  𝜆𝜙 ≤ 0 𝑖𝑛 �̅�} . 

 Obviously 𝜆𝑝
′  is well defined and is sharing the same properties than 𝜆𝑝 . Moreover, we 

have 𝜆𝑝
′ ≤ 𝜆𝑝 . Let us now show that 𝜆𝑝

′  =  𝜇1,0. First by definition of 𝜆𝑝
′  we easily have 

𝜆𝑝
′ ≥ 𝜇1,0. Now to obtain the equality 𝜆𝑝

′  =  𝜇1,0 we argue by contradiction. Assume that 

𝜆𝑝
′  >  𝜇1,0. By definition of 𝜆𝑝

′  there exists 𝜓 >  0, 𝜓 ∈  𝐶(�̅�) such that  

ℒ𝛺 [𝜓] + (𝑎(𝑥) +  𝜆)  𝜓 ≤  0 in �̅�.                                  (39) 
Observe that we can rewrite ℒ𝛺 [𝜙1]  +  𝑎(𝑥)𝜙1 as follows  

ℒ𝛺 [𝜙1] +  𝑎(𝑥)𝜙1  =  ∫  
𝛺

 𝐽 [
𝑥 −  𝑦

𝑔(𝑦)
] 
𝜙1(𝑦)

𝑔(𝑦)
 𝑑𝑦 +  𝑎(𝑥)𝜙1 

 =  ∫  
𝛺

 𝐽 [
𝑥 −  𝑦

𝑔(𝑦)
] 
𝜓(𝑦)𝜙1(𝑦)

𝜓(𝑦)𝑔(𝑦)
 𝑑𝑦 +  𝑎(𝑥)

𝜙1(𝑥)

𝜓(𝑥)
 𝜓(𝑥). 

 From (39), we find that  

𝑎(𝑥)𝜓 − ℒ𝛺 [𝜓]  −  𝜆𝜓  
and it follows that  

ℒ𝛺 [𝜙1]  +  𝑎(𝑥)𝜙1 ≤ ∫  
𝛺

 𝐽 [
𝑥 −  𝑦

𝑔(𝑦)
 ]
𝜓(𝑦)

𝑔(𝑦)
 [
𝜙1(𝑦)

𝜓(𝑦)
 −
𝜙1(𝑥)

𝜓(𝑥)
]  𝑑𝑦 −  𝜆

𝜙1(𝑥)

𝜓(𝑥)
 𝜓(𝑥). 

 By using the definition of 𝜇1,0, we end up with the following inequality  

∫  
𝛺

 𝐽 [
𝑥 −  𝑦

𝑔(𝑦)
]
𝜓(𝑦)

𝑔(𝑦)
 [
𝜙1(𝑦)

𝜓(𝑦)
 −
𝜙1(𝑥)

𝜓(𝑥)
]  𝑑𝑦 ≥  (𝜆 − 𝜇1,0)𝜙1  >  0.         (40) 

 Let us denote 𝑤 ∶=
𝜙1

𝜓
 . Observe that by (39) 𝑤 ∈  𝐿∞  ∩  𝐶(�̅�), therefore 𝑤 achieves a 

global maximum somewhere in 𝛺, say at 𝑥. By using the inequality (40) at the point 𝑥, we 

find the following contradiction  

0 <  ∫  
𝛺

 𝐽 [
𝑥 −  𝑦

𝑔(𝑦)
] 
𝜓(𝑦)

𝑔(𝑦)
  [𝑤(𝑦) −  𝑤(�̅�)]𝑑𝑦 ≤ 0.  

Thus 𝜇1,0  =  𝜆𝑝
′  .  

Observe now that if there exists a positive eigenfunction 𝜓 ∈  𝐶(𝛺)  ∩

 𝐿∞(𝛺) associated to the principal eigenvalue 𝜆𝑝 , i.e. ℒ𝛺 [𝜓]  +  (𝑎(𝑥) + 𝜆𝑝)𝜓 =  0, then 

we have 𝜓 ∈  𝐶(�̅�). Therefore, using the definition of 𝜆𝑝
′  it follows that 𝜆𝑝 ≤ 𝜆𝑝

′  =  𝜇1,0 ≤

 𝜆𝑝 . To conclude the proof, we are left to show that such bounded function 𝜓 exists.  

So let (𝜃𝑛)𝑛∈ℕ be a positive sequence which converges to 0 and consider the sequence 

of set (𝛺𝜃𝑛)𝑛∈ℕ
 defined in Theorem (3.2.14). By construction, using the monotonicity 

property of the principal eigenvalue with respect to the domain ((i) of Proposition (3.2.25)) 

we deduce that (𝜆𝑝
′ (ℒ𝛺𝜃𝑛  +  𝑎

(𝑥)))
𝑛∈ℕ

 is a non-increasing bounded sequence. Namely, 

we have for all 𝑛 ∈ ℕ  
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𝜆𝑝(ℒ𝛺  +  𝑎(𝑥) ) ≤ 𝜆𝑝
′  (ℒ𝛺𝜃𝑛+1  +  𝑎

(𝑥)) ≤  𝜆𝑝
′  (ℒ𝛺𝜃𝑛  +  𝑎

(𝑥)). 

Thus, as 𝑛 goes to infinity 𝜆𝑝
′ (ℒ𝛺𝜃𝑛  +  𝑎(𝑥)) converges to some �̅� ≥  𝜆𝑝 .  

On another hand since 𝜃𝑛 tends to 0, by Theorem (3.2.14), there exists 𝑛0 so that for 

all 𝑛 ≥ 𝑛0, a principal eigenpair (𝜇1,𝜃𝑛 , 𝜙𝑛) exists for the operator ℒ𝛺𝜃𝑛  +  𝑎(𝑥). Arguing 

as above, we conclude that 𝜇1,𝜃𝑛  =  𝜆𝑝
′ (ℒ𝛺𝜃𝑛  +  𝑎(𝑥)). We claim that:  

Assume for the moment that the claim holds. Then the final argumentation goes as 

follows. Next, let us normalised 𝜙𝑛 so that sup
𝛺𝜃𝑛

  𝜙𝑛  =  1. With this normalisation (𝜙𝑛)𝑛∈ℕ 

is a uniformly bounded sequence of continuous functions. So by a standard diagonal 

extraction argument, there exists a subsequence still denoted (𝜙𝑛)𝑛∈ℕ such that (𝜙𝑛)𝑛∈ℕ 

converges locally uniformly to a non-negative bounded continuous function 𝜓. 

Furthermore, 𝜓 satisfies  

ℒ𝛺 [𝜓]  + ( 𝑎(𝑥) + �̅�) 𝜓 =  0. 

 Now recall that (𝜇1,𝜃𝑛 , 𝜙𝑛) satisfies  

ℒ𝛺𝜃𝑛  
[𝜙𝑛]  +  𝑎(𝑥)𝜙𝑛  +  𝜇1,𝜃𝑛 𝜙𝑛  =  0. 

Using the above claim, we have 𝜇1,𝜃𝑛  <  −𝜎 =  − sup
𝛺
  𝑎(𝑥)– sup

𝛺𝜃𝑛

  𝑎(𝑥) for 𝑛 big 

enough, so sup
𝛺𝜃𝑛

  (𝑎(𝑥) + 𝜇1,𝜃𝑛 ) <  0 and the uniform estimates i.e. Theorem (3.2.12) 

applies to 𝜙𝑛. Thus we have for 𝜂 >  0 small fixed independently of 𝑛  

1 ≤ 𝐶(𝜂)𝜙𝑛(𝑥)for all 𝑥 ∈ {𝑥 ∈  𝛺𝜃𝑛|  𝑑(𝑥, 𝜕𝛺𝜃𝑛)  >  𝜂}  . 

 Therefore 𝜓 is non-trivial and (𝜆, 𝜓) solves the eigenvalue problem (37). Using once again 

the equation satisfied by 𝜓 and the definition of 𝜆𝑝 , we easily obtain that �̅� ≤  𝜆𝑝 ≤  �̅� 

which proves that 𝜓 is our desired eigenfunction associated to 𝜆𝑝 .   

Let us turn our attention to the proof of Claim (3.2.17). But before proving the claim 

let us establish the following useful estimate.  

Lemma (3.2.16)[118]: There exist positive constants 𝑟 and 𝑐0 so that 

 ∀𝑥 ∈  �̅�,∫  
𝐵𝑟(𝑥)∩�̅�

 𝐽
𝑥 −  𝑦

𝑔(𝑦)
  𝑢(𝑦)𝑑𝜇(𝑦) ≥ 𝑐0  ∫  

𝐵𝑟(𝑥)∩�̅�

 𝑢(𝑦)𝑑𝜇(𝑦).  

Proof. Since 𝐽 is continuous and 𝐽(0)  >  0, there exist 𝛿 >  0 and 𝑐0  >  0 so that for all 

𝑧 ∈  𝐵(0, 𝛿) we have 𝐽(𝑧)𝑐0.  

Observe that for all (𝑥, 𝑦)  ∈  �̅�  ×  𝐵𝑟(𝑥) with  <
𝛿𝛼

2
 , using that 𝑔 ≥  𝛼 >  0, we 

have  

‖
𝑥 −  𝑦

𝑔(𝑦)
‖ ≤

2𝑟

𝛼
≤  𝛿.  

Thus, for 𝑟 <
𝛿𝛼

2
 and 𝑦 ∈  𝐵𝑟(𝑥) we have 𝐽 (

𝑥−𝑦

𝑔(𝑦)
)  >  𝑐0, and the estimate follows.  

Claim (3.2.17)[118]: There exists 𝑛1  ∈ ℕ such that for all 𝑛 ≥ 𝑛1 we have 𝜇1,𝜃𝑛  <  −𝜎 =

 − sup
𝛺
  𝑎(𝑥). 

Proof. Let us denote by 𝜎 the maximum of 𝑎(𝑥) in �̅�. By assumption, we have 
1

𝜎−𝑎(𝑥)
∉

 𝐿𝑑𝜇,𝑙𝑜𝑐
1 (�̅�). So there exists 𝑥0  ∈  �̅� such that 

1

𝜎−𝑎(𝑥)
∉  𝐿𝑑𝜇

1 (𝐵𝑟(𝑥0)  ∩  �̅�) and for small 

enough, say 0, we have  
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𝑐0  ∫  
𝛺∩𝐵(𝑥0,𝑟)

𝑑𝜇

 −(𝑎(𝑥) −  𝜎 + 𝜖)  
≥ 4. 

Choose 𝑛1 big enough, so that for all 𝑛 ≥ 𝑛1, 𝐵𝑟(𝑥0)  ∩  𝛺𝜃𝑛  = ∅. For 0, since 𝛺𝜃𝑛  →  𝛺, 

we can increase 𝑛1 if necessary to achieve for all 𝑛 ≥ 𝑛1  

𝑐0  ∫  
�̅�𝜃𝑛∩𝐵(𝑥0,𝑟)

𝑑𝜇

−(𝑎(𝑥) −  𝜎 − 𝜖)
≥  2.                                   (41) 

 Recall now that for n big enough, say 𝑛 ≥ 𝑛2, there exists (𝜇1,𝜃𝑛 , 𝜙𝑛) that satisfies the 

equation  

ℒ𝛺𝜃𝑛  
[𝜙𝑛]  +  𝑎(𝑥)𝜙𝑛  +  𝜇1,𝜃𝑛 𝜙𝑛  =  0. 

 Since 𝜙𝑛 is positive we have  

ℒ�̅�𝜃𝑛∩𝐵(𝑥0,𝑟)[𝜙𝑛]  −   𝑎(𝑥)  +  𝜇1,𝜃𝑛  𝜙𝑛. 

 Using Lemma (3.2.16), we see that  
𝑐0

 −(𝑎(𝑥) + 𝜇1,𝜃𝑛 )
 ∫  
�̅�𝜃𝑛∩𝐵(𝑥0,𝑟)

 𝜙𝑛(𝑦)𝑑𝜇 ≤ 𝜙𝑛(𝑥).  

Integrating the above inequality on 𝛺𝜃𝑛  ∩  𝐵(𝑥0, 𝑟) it follows that  

∫  
�̅�𝜃𝑛∩𝐵(𝑥0,𝑟)

(
𝑐0

−(𝑎(𝑥) + 𝜇1,𝜃𝑛 )
 ∫  
�̅�𝜃𝑛∩𝐵(𝑥0,𝑟)

𝜙𝑛(𝑦) 𝑑𝜇)𝑑𝜇 ≤ ∫  
𝛺𝜃𝑛∩𝐵(𝑥0,𝑟)

 𝜙𝑛(𝑥)𝑑𝜇,  

∫  
�̅�𝜃𝑛∩𝐵(𝑥0,𝑟)

(
𝑐0

−(𝑎(𝑥) + 𝜇1,𝜃𝑛 )
 )𝑑𝜇∫  

�̅�𝜃𝑛∩𝐵(𝑥0,𝑟)

𝜙𝑛(𝑦) 𝑑𝜇 ≤ ∫  
𝛺𝜃𝑛∩𝐵(𝑥0,𝑟)

 𝜙𝑛(𝑥)𝑑𝜇. 

Thus,  

∫  
�̅�𝜃𝑛∩𝐵(𝑥0,𝑟)

(
𝑐0

−(𝑎(𝑥) + 𝜇1,𝜃𝑛 )
 )𝑑𝜇 ≤  1. 

From (41), it follows that for all 𝑛 ≥ sup  (𝑛1, 𝑛2) we have  

𝜇1,𝜃𝑛 ≤  −𝜎 − 𝜖 .  

Let us now turn our attention to the proof of Theorem (3.2.14).  

       For convenience, in this proof we write the eigenvalue problem  

ℒ𝛺𝜃  [𝑢]  +  𝑎(𝑥)𝑢 =  −𝜇𝑢  

in the form  

ℒ𝛺𝜃  [𝑢]  +  �̅�(𝑥)𝑢 =  𝜌𝑢                                       (42) 

 where  

�̅�(𝑥)  =  𝑎(𝑥)  +  𝑘, 𝜌 =  −𝜇 +  𝑘  
and 𝑘 >  0 is a constant such that inf

𝛺𝜃
  𝑎 >  0.  

Let us now prove the following useful result:  

Observe that the proof of Theorem (3.2.14) easily follows from the above lemma. 

Indeed, if the lemma holds true, since under the assumptions (H1)–(H4) the operator ℒ𝛺 ∶

 𝐶(�̅�𝜃)  →  𝐶(�̅�𝜃) is compact, we have 𝑟𝑒 (ℒ𝛺𝜃  + �̅�(𝑥)) =  𝑟𝑒(�̅�(𝑥)) = 𝜎(𝜃). Thus 

(𝜎(𝜃)  +  𝛿)  >  𝑟𝑒(ℒ𝛺𝜃  + 𝑎(𝑥)) and the existence theorem of Edmunds et al. (Theorem 

(3.2.10)) applies.  

Finally we observe that the principal eigenvalue is simple since for a bounded domain 

𝛺 the cone of positive continuous functions has a non-empty interior and, for a sufficiently 
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large 𝑝, the operator (ℒ𝛺𝜃𝑛  +  �̅�)
𝑝

 is strongly positive, that is, it maps 𝑢 ≥  0, 𝑢 ≢  0 to a 

strictly positive function, see [154].  

Lemma (3.2.18)[118]: Let 𝛺, 𝐽 , 𝑔 and a be as in Theorem (3.2.14). Then there exists 𝜃0  >
 0 so that for all 𝜃 ≤ 𝜃0 there exist 𝛿 >  0 and 𝑢 ∈  𝐶(�̅�𝜃), 𝑢 ≥ 0, 𝑢 ≡ 0, such that in �̅�𝜃   

ℒ𝛺𝜃  [𝑢] + �̅�(𝑥)𝑢 ≥ (𝜎  +  𝛿)𝑢, 

where 𝜎(𝜃):= max
�̅�𝜃

  𝑎(𝑥).  

Proof. Let us denote by 𝛤 the closed set where the continuous function a takes its maximum 

𝜎 in �̅�:  

𝛤 ∶= {𝑧 ∈  �̅�| �̅�(𝑧) =  𝜎}  . 
Since �̅� is a continuous function and 𝛺 is bounded, 𝛤 is a compact set. Therefore 𝛤 can be 

covered by a finite number of balls of radius r, i.e. 𝛤 ⊂ ⋃  ℕ
 𝑖=1 𝐵𝑟(𝑥𝑖) with 𝑥𝑖  ∈  𝛤 . By 

construction, we have 
1

𝜎−𝑎(𝑥)
 =  1/(𝜎 − 𝑎(𝑥)) ∉  𝐿𝑑𝜇,𝑙𝑜𝑐

1 (𝛺). Therefore 
1

𝜎−𝑎(𝑥)
∉

 𝐿𝑑𝜇
1 (⋃  ℕ

𝑖=1  𝐵𝑟(𝑥𝑖)  ∩  �̅�) and there exists −𝜆0  >  𝜎 so that for some 𝑥𝑖 we have  

∫  
𝐵𝑟(𝑥𝑖)∩�̅�

 
𝑐0

 −𝜆0  −  �̅�(𝑥)
 𝑑𝜇 ≥ 4.                                  (43) 

Since 𝛺𝜃  →  𝛺 as 𝜃 tends to 0 there exists 𝜃0 so that for all 𝜃 ≤ 𝜃0 we have  

𝑒 

 

 

∫  
𝐵𝑟(𝑥𝑖)∩�̅�𝜃

𝑐0
 −𝜆0  −  �̅�(𝑥)

 𝑑𝜇 ≥ 2.                                    (44) 

 Let us fix 𝑥𝑖 such that (44) holds true and let us denote 𝜔𝜃 ∶=  𝐵𝑟(𝑥𝑖)  ∩  �̅�𝜃 . We consider 

now the following eigenvalue problem  

𝑐0  ∫  
𝜔𝜃

 𝑢(𝑦)𝑑𝜇(𝑦) + �̅�(𝑥)𝑢(𝑥) +  𝜆𝑢(𝑥) =  0,               (45)  

where 𝑐0 is the constant obtained in Lemma (3.2.16). We claim that:  

Observe that by proving this claim we end the proof of the lemma. Indeed, fix 𝜃 < 𝜃0 and 

assume for the moment that this claim holds true. Then there exists (𝜆1, 𝜙1) such that 

𝑐0 ∫  

 

𝜔𝜃

𝜑1(𝑦)𝑑𝜇(𝑦) + �̅�(𝑥)𝜙1(𝑥) + 𝜆1𝜙1(𝑥) =  0.           (46) 

Obviously, for any positive constant 𝜌, (𝜆1, 𝜌𝜙1) is also a solution of Eq. (46). Therefore 

without any loss of generality we can assume that 𝜙1 is such that 𝜙1  ≼  1. Set �̃�0 ∶=
𝑐0 ∫  

 

𝜔𝜃
𝜑1(𝑦)𝑑𝜇(𝑦). From Eq. (46), since𝜃 < 𝜙1 ≤  1 we see easily that  

−  (𝜆1  +  �̅�(𝑥))   >  �̃�0. 

 Therefore there exists a positive constant 𝑑0 such that 

 𝜙1 ≥ 𝑑0 in 𝜔                                                 (47) 
 and  

−  (𝜆1  +  𝜎(𝜃)) ≥  �̃�0  >  0.                                  (48) 

 Let us now consider a set 𝜔𝜖 ⋐ 𝜔𝜃 which verifies  

∫  
𝜔𝜃\𝜔𝜖

 𝑑𝜇
𝑑0|𝜆1  +  𝜎(𝜃)|

2𝑐0
 .                                     (49) 
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 Since by construction �̅�𝜃 \𝜔𝜃 and 𝜔 are two disjoint closed subsets of �̅�𝜃 , the Urysohn’s 

lemma applies and there exists a positive continuous function 𝜂 such that 0 ≤  𝜂 ≤
 1, 𝜂(𝑥)  =  1 in 𝜔 , 𝜂(𝑥)  =  0 in �̅�𝜃  \ 𝜔𝜃 .  

Next, we define 𝑤 ∶=  𝜙1𝜂 and we compute ℒ𝛺𝜃  [𝑤]  +  𝑏(𝑥)𝑤. 

Since 𝑤 ≡  0 in �̅�𝜃 \ 𝜔𝜃 , we have  

ℒ𝛺𝜃  [𝑤] + �̅�(𝑥)𝑤 =  ∫  
𝜔𝜃

 𝐽 (
𝑥 −  𝑦

𝑔(𝑦)
)  𝑤(𝑦)𝑑𝜇(𝑦) ≥ (𝜎(𝜃) +  𝛿) 𝑤 =  0  

for any 𝛿 >  0.  

On another hand, in 𝜔𝜃 , by using Lemma (3.2.16) we see that  

ℒ𝛺𝜃  [𝑤] + �̅�(𝑥)𝑤 =  ∫  
𝜔𝜃

 𝐽 (
𝑥 −  𝑦

𝑔(𝑦)
)   𝑤(𝑦)𝑑𝜇(𝑦) + �̅�(𝑥)𝑤    (50)  

≥ 𝑐0  ∫  
𝜔𝜃

 𝑤(𝑦)𝑑𝜇(𝑦) + �̅�(𝑥)𝑤                        (51) 

≥ 𝑐0  ∫  
𝜔𝜖

 𝜙1(𝑦)𝑑𝜇(𝑦) + �̅�(𝑥)𝑤.                      (52) 

 Since 𝜙1 satisfies Eq. (46), using the estimates (47), (48) and (49) we deduce from the 

inequality (52) that  

ℒ𝛺𝜃[𝑤] + �̅�(𝑥)𝑤 ≥ −  (𝜆1  +  �̅�(𝑥))  𝜙1  +  �̅�(𝑥)𝑤  

− 𝑐0  ∫  
𝜔𝜃 \𝜔𝜖

 𝜙1(𝑦)𝑑𝜇(𝑦)                               (53) 

≥
|𝜆1  +  𝜎(𝜃)|

2
 𝜙1  + (𝜎(𝜃) − �̅�(𝑥)) 𝜙1  +  �̅�(𝑥)𝑤  

+
𝑑0|𝜆1  +  𝜎(𝜃)|

2
 −  𝑐0  ∫  

𝜔𝜃 \𝜔𝜖

 𝜙1(𝑦)𝑑𝜇(𝑦)               (54) 

≥ (
|𝜆1  +  𝜎(𝜃)|

2
)𝜙1  + (𝜎(𝜃) −  �̅�(𝑥))𝜙1  +  �̅�(𝑥)𝑤,              (55) 

where we use in the last inequality, that 𝜙1 ≤ 1 and the estimate (49).  

Since (𝜎(𝜃) −  𝑎(𝑥)) and
|𝜆1+�̅�(𝜃)|

2
 are two positive quantities and 𝜙1 ≥  𝑤, we 

conclude that  

ℒ𝛺𝜃  [𝑤] + �̅�(𝑥)𝑤 (
|𝜆1  +  𝜎(𝜃)|

2
 +  𝜎(𝜃))  𝑤.                          (56) 

 Hence, in �̅�𝜃 , 𝑤 satisfies  

ℒ𝛺𝜃  [𝑤] + �̅�(𝑥)𝑤 ≥ (𝜎(𝜃) +  𝛿) 𝑤, 

with  =
|𝜆1+�̅�(𝜃)|

2
 , which proves the lemma.  

Let us now prove Claim (3.2.19). 

Claim (3.2.19)[118]: There exists (𝜆1, 𝜙1) solution of (45) so that 𝜙1  ∈  𝐿
∞(𝜔𝜃)  ∩

 𝐶(𝜔𝜃) and 𝜙1  >  0.  

Proof. Fix 𝜃 ≤ 𝜃0. For 𝜆 <  −𝜎(𝜃), consider the positive function  

𝜙𝜆 ∶=
𝑐0

−𝜆−𝑎(𝑥)
 . Let us substitute 𝜙𝜆 into Eq. (45), then we have  

𝑐0  ∫  
𝜔𝜃

 𝜙𝜆 𝑑𝜇 −  𝑐0  =  0. 
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 Therefore, we end the proof of Claim (3.2.19) by finding λ such that  ∫  
𝜔𝜃
 𝜙𝜆 𝑑𝜇 =  1. 

Observe that the functional 𝐹 (𝜆) ∶=  ∫  
𝜔𝜃
 𝜙𝜆 dμ is continuous and monotone increasing 

with respect to 𝜆 in (−∞,−𝜎). Moreover, by construction, we have:  

lim
 𝜆→−∞ 

 𝐹 (𝜆) =  0 and 𝐹 (𝜆0) ≥  2. 

Hence by continuity there exists a 𝜆1 such that 𝐹 (𝜆1)  =  1.   

Now we expose the argumentation for the construction of a principal eigenpair when 

the assumptions on g are relaxed and prove Theorem (3.2.20). To show Theorem (3.2.20) 

we follow the scheme of the argument developed above.  

Theorem (3.2.20)[118]: Assume that 𝛺, 𝐽 and a satisfy (𝐻1), (𝐻2), (𝐻3), (𝐻4), Ω is 

bounded and 𝑔 satisfies (𝐻3). Let us denote 𝜎 ∶= sup
�̅�
  𝑎(𝑥) and let 𝛤 be the following set  

𝛤 ∶= {𝑥 ∈  �̅�|  𝑎(𝑥)  =  𝜎}  . 

 Assume further that �̇� =  ∅. Then there exists a principal eigenpair (𝜆𝑝, 𝜙𝑝) solution of 

(28). Moreover, 𝜙𝑝  ∈  𝐶(𝛺), 𝜙𝑝  >  0 and we have the following estimate  

−𝜎′  <  𝜆𝑝  <  −𝜎,  

where 𝜎′ ∶= sup
𝑥∈𝛺 

 [𝑎(𝑥) + ∫  
𝛺
 𝐽 (

𝑦−𝑥

𝑔(𝑥)
 )

𝑑𝑦

𝑔𝑛(𝑥)
].  

Proof. As above, we can rewrite the eigenvalue problem (37) as follows  

ℒ𝛺𝜃  [𝑢] + �̅�(𝑥)𝑢 =  𝜌𝑢                                                (57) 

 with  

�̅�(𝑥) =  𝑎(𝑥) +  𝑘, 𝜌 =  −𝜇 +  𝑘  
and 𝑘 >  0 is a constant such that inf

𝛺𝜃
  �̅�  >  0.  

Observe that under the assumptions (H1), (H2), (H̃3), (H4) the following family  

ℒ𝛺𝜃  (𝐵1): = {𝐿𝛺𝜃  [ 𝑓 ]/ 𝑓 ∶  𝛺 → ℝ , ‖𝑓‖∞ ≤  1}   

is equicontinuous. Indeed, let 𝜖 >  0 be fixed. Since 
1

𝑔𝑛
 ∈  𝐿𝑙𝑜𝑐

𝑝
 (�̅�𝜃), there exists 𝜂 >

 0 such that  

∫  
𝛺𝜃∩{𝑔<𝜂}

𝑑𝑦

𝑔𝑛(𝑦)
  <

𝜖

4‖𝐽‖∞
.                                       (58) 

 From the uniform continuity of J in the unit ball 𝐵(0, 1), we deduce that there exists 𝛾 >
 0 such that for |𝑤 − �̅�|  <  𝛾 /𝜂,  

|𝐽(𝑤) −  𝐽(�̅�)|  < 𝜖𝜂𝑛/2|𝛺𝜃|.                                         (59) 
 A short computation using (58) and (59) shows that for |𝑥 −  𝑧|  <  𝛾 

|ℒ𝛺𝜃  [ 𝑓 ](𝑥) − ℒ𝛺𝜃  [ 𝑓 ](𝑧)| ≤ ∫  
𝛺𝜃

| 𝐽 [
𝑥 −  𝑦

𝑔(𝑦)
]   −  𝐽 [

𝑧 −  𝑦

𝑔(𝑦)
] |  |

𝑓(𝑦)

𝑔𝑛(𝑦)
|  𝑑𝑦 

≤ 2‖𝐽‖∞   ∫  
𝛺𝜃∩{𝑔<𝜂}

1

𝑔𝑛(𝑦)
 𝑑𝑦  

+
1

𝛿𝑛
 ∫  
𝛺𝜃∩{𝑔≥𝜂}

 |𝐽 [
𝑥 −  𝑦

𝑔(𝑦)
] −  𝐽 [

𝑧 −  𝑦

𝑔(𝑦)
] 𝑑𝑦 ≤ 𝜖  

Hence, ℒ𝛺𝜃  (𝐵1) is equicontinuous and ℒ𝛺𝜃 ∶  𝐶(�̅�𝜃)  →  𝐶(�̅�𝜃) is a compact operator.  

We show the following 

Lemma (3.2.21)[118]: Let 𝛺, 𝐽 , 𝑔 and a be as in Theorem (3.2.20). Then there exists 𝜃0 so 

that for all 𝜃 ≤  𝜃0 there exists 𝛿 >  0 and 𝑢 ∈  𝐶(�̅�𝜃), 𝑢 ≥ 0, 𝑢 ≢  0, such that in �̅�𝜃  

ℒ𝛺𝜃  [𝑢] + �̅�(𝑥)𝑢 ≥ (𝜎  +  𝛿)𝑢. 
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 As above the existence of a positive eigenpair (𝜌, 𝜑) easily follows from Lemma (3.2.21). 

Arguing as above, we see that 𝜇1,0  =  𝜆𝑝(ℒ𝛺  +  𝑎(𝑥)), which concludes the proof of 

Theorem (3.2.20).   

Proof. First let us recall that by assumption  �̇� ≠ ∅ where 𝛤 ∶=  {𝑥 ∈  �̅� | 𝑎(𝑥)  =  𝜎} and 

let us define the following set 𝛴𝜂 ∶=  {𝑥 ∈  𝛺 |𝑔(𝑥) ≥ 𝜂}.  

By construction, we easily see that �̇�′ ≠  ∅ where 𝛤′ ∶=  {𝑥 ∈  �̅� | �̅�(𝑥)  =  𝜎}. 
Therefore, there exist 𝑥0  ∈  𝛺 and 𝜖 >  0 such that 𝐵𝜖 (𝑥0)  ⊂  ( �̇�

′ ∩  𝛺). Moreover, for 𝜃 

small, say 𝜃 ≤ 𝜃0 we have 𝐵𝜖 (𝑥0)  ⊂  ( �̇�  ∩  𝛺𝜃 ).  
Let us define 𝜔𝜂 ∶=  𝐵𝜖 (𝑥0)  ∩  𝛴𝜂. By assumption we have 1/𝑔𝑛 ∈  𝐿𝑝(𝛺), so for 𝜂 

small enough 𝜔𝜂 is a non-void open subset of 𝛺𝜃  for 𝜃 ≤ 𝜃0.  

Let us now consider the eigenvalue problem (57) with 𝛺 =  𝜔𝜂, i.e.  

ℒ𝜔𝜂  [𝑢]  +  𝑎(𝑥)𝑢 =  𝜌𝑢 in 𝜔𝜂 .  

By construction, in 𝐵 (𝑥0) we have �̅�(𝑥)  ≡  𝜎 . So the above equation reduces to:  

ℒ𝜔𝜂  [𝑢]  =  𝜌𝑢 in 𝜔𝜂,                                                     (60) 

where �̅�  =  (𝜌 −  𝜎).  
Since ℒ𝜔𝜂  is a compact strictly positive operator in 𝐶(�̅�𝜂), using Krein–Rutman 

theorem there exists a positive eigenvalue �̅�1  >  0 and a positive eigenfunction 𝜙1  ∈

 𝐶(�̅�𝜂) such that (𝜌1, 𝜙1) satisfies (60), i.e.  

ℒ𝜔𝜂  [𝜙1]  =  �̅�𝜙1. 

 Arguing as in Lemma (3.2.18), for all 𝜃 ≤ 𝜃0 we can construct a non-negative test 

function u such that in �̅�𝜃   
ℒ𝛺𝜃  [𝑢] + �̅�(𝑥)𝑢 ≥ (𝛿 + 𝜎)𝑢,  

for a 𝛿 >  0 small enough.  

       In particular, we can extend the criterion of existence of a principal eigenpair for an 

operator 𝒯 + 𝑎(𝑥) where 𝒯 is an integral operator with a kernel 𝑘(𝑥, 𝑦) that only satisfies 

that there exists a positive integer 𝑁, so that the kernel 𝑘𝑁 (𝑥, 𝑦) satisfies (𝐻2) where 𝑘𝑁 is 

defined by the recursion:  

𝑘1(𝑥, 𝑦): =  𝑘(𝑥, 𝑦),  

𝑘𝑁+1(𝑥, 𝑦): =  ∫  
𝛺

 𝑘1(𝑥, 𝑧)𝑘𝑁(𝑧, 𝑦)𝑑𝑧 for 𝑁 ≥ 1.  

Indeed, in this situation the construction of a test function 𝑢 (Lemma (3.2.18) or Lemma 

(3.2.21)) holds also for the operator 𝒯𝑁  +  �̅�𝑁 (𝑥). Using that �̅� ≥ 0, we deduce   

(𝒯 +  �̅�(𝑥))
𝑁
 [𝑢] ≥ 𝒯𝑁𝑢 + �̅�𝑁(𝑥)𝑢 ≥ (𝜎𝑁  +  𝛿) 𝑢.  

Since in this situation 𝒯 is a compact operator, we also have 𝑟𝑒 ((𝒯 + �̅�(𝑥))
𝑁
)  =

 𝑟𝑒(𝑎(𝑥)
𝑁). Thus (𝜎𝑁  + 𝛿)  >  𝑟𝑒 ((𝒯 + �̅�(𝑥))

𝑁
) and Theorem (3.2.10) applies. Hence, 

there exists a unique principal eigenpair (𝜆𝑝 , 𝜙𝑝) of the following problem   

(𝒯 + �̅�(𝑥))
𝑁
 𝜙𝑝  =  −𝜆𝑝𝜙𝑝. 

 To obtain a principal eigenpair for 𝒯 +  𝑎 we argue as follows. Applying 𝒯 +  𝑎(𝑥) to the 

above equation it follows that   

(𝒯 + �̅�(𝑥))
𝑁+1

 𝜙𝑝  =  −𝜆𝑝(𝒯 +  𝑎(𝑥)) 𝜙𝑝, 

 (𝒯 +  �̅�(𝑥))
𝑁
𝜓 =  −𝜆𝑝𝜓  
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with 𝜓 ∶=  (𝒯 + 𝑎(𝑥))𝜙𝑝 . Since (𝒯 + �̅�)𝑁 is positive operator in 𝐶(�̅�), 𝜆𝑝 is simple, we 

have 𝜓 =  𝜌𝜙𝑝 . Hence, ((−𝜆𝑝)
1

𝑁 , 𝜙𝑝) is the principal eigenpair of 𝒯 + �̅�(𝑥).  

For simplicity in the presentation of the arguments and since the proof of the existence 

of a principal eigenpair under the relaxed assumptions does not significantly differ, we will 

only present the case where 𝛺, 𝐽, 𝑔 and a satisfy the assumptions (𝐻1)– (𝐻4).  

To construct an eigenpair (𝜆𝑝 , 𝜙𝑝) in this situation, we proceed using a standard 

approximation scheme.  

First let us recall that, by assumption, there exists 𝛺0  ⊂  �̅� a bounded subset such 

that 
1

𝜎−𝑎(𝑥)
∉  𝐿𝑑𝜇

1 (�̅�0). Let (𝜔𝑛)𝑛∈ℕ be a sequence of bounded increasing connected set 

which covers 𝛺, i.e.  

𝜔𝑛  ⊂  𝜔𝑛+1, ⋃  

𝑛∈ℕ

 𝜔𝑛  =  𝛺. 

Without loss of generality, we can also assume that 𝛺0  ⊂  𝜔0 and therefore 
1

𝜎−𝑎(𝑥)
∉

 𝐿𝑑𝜇
1 (𝜔𝑛) for all 𝑛 ∈ ℕ. Observe that for each 𝜔𝑛 Theorem (3.2.14) and Lemma (3.2.15) 

apply. Therefore for each 𝑛 there exists a principal eigenpair (𝜆𝑝,𝑛, 𝜙𝑝,𝑛) to the eigenvalue 

problem (37) with ωn instead of 𝛺.  

By construction, using the monotonicity of the sequence of (𝜔𝑛)𝑛∈ℕ and the assertion 

(i) of Proposition (3.2.25) we deduce that (𝜆𝑝,𝑛)𝑛∈ℕ
 is a monotone non-increasing sequence 

which is bounded from below. Thus 𝜆𝑝,𝑛 converges to some �̅� ≥  𝜆𝑝(ℒ𝛺  +  𝑎(𝑥)). 

Moreover, we also have that for all 𝑛 ∈ ℕ  

𝜆𝑝 (ℒ𝛺  +  𝑎(𝑥)) ≤   �̅� ≤  𝜆𝑝,𝑛  <  𝜆𝑝,0  <  − sup
�̅�
  𝑎(𝑥)  =  𝜎. 

Let us now fix 𝑥1  ∈  𝜔0  ∩  𝛺. Observe that since for each integer 𝑛 the eigenvalue 

𝜆𝑝,𝑛 is simple we can normalise 𝜙𝑝,𝑛 by 𝜙𝑝,𝑛(𝑥1)  =  1.  

Let us now define 𝑏𝑛(𝑥) ∶=  −𝜆𝑝,𝑛  −  𝑎(𝑥). Then 𝜙𝑝,𝑛 satisfies  

ℒ𝜔𝑛 [𝜙𝑝,𝑛]  =  𝑏𝑛(𝑥)𝜙𝑝,𝑛 in 𝜔𝑛.                               (61)  

By construction for all 𝑛 ∈ ℕ we have 𝑏𝑛(𝑥)  − 𝜆𝑝,0  −  𝜎 >  0, therefore the Harnack 

inequality (Theorem (3.2.11)) applies to 𝜙𝑝,𝑛. Thus for n fixed and for all compact set 𝜔′ ⋐

 𝜔𝑛 there exists a constant 𝐶𝑛(𝜔
′) such that  

𝜙𝑝,𝑛(𝑥) ≤ 𝐶𝑛 (𝜔
′)𝜙𝑝,𝑛(𝑦)       ∀𝑥, 𝑦 ∈  𝜔

′. 

 Moreover, the constant 𝐶𝑛(𝜔
′) only depends on  ⋃  𝑥∈𝜔 𝐵(𝑥, 𝛽) and is monotone 

decreasing with respect to inf
𝑥∈𝜔𝑛

  𝑏𝑛(𝑥). For all 𝑛, the function 𝑏𝑛(𝑥) being uniformly 

bounded from below by a constant independent of n, the constant 𝐶𝑛 is bounded from above 

independently of n by a constant 𝐶(𝜔′). Thus we have  

𝜙𝑝,𝑛(𝑥) ≤ 𝐶(𝜔
′)𝜙𝑝,𝑛(𝑦)    ∀𝑥, 𝑦 ∈  𝜔

′. 

 From a standard argumentation, using the normalisation 𝜙𝑝,𝑛(𝑥1)  =  1, we deduce that the 

sequence (𝜙𝑝,𝑛)𝑛∈ℕ is bounded in 𝐶𝑙𝑜𝑐(𝛺) topology. Moreover, from a standard diagonal 

extraction argument, there exists a subsequence still denoted (𝜙𝑝,𝑛)𝑛∈ℕ such that (𝜙𝑝,𝑛)𝑛∈ℕ 

converges locally uniformly to a continuous function 𝜙. Furthermore, 𝜙 is a non-negative 

non-trivial function and 𝜙(𝑥1)  =  1.  
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Since 𝐽 has a compact support we can pass to the limit in Eq. (61) using the Lebesgue 

monotone convergence theorem and get  

∫  𝛺  𝐽 (
𝑥 − 𝑦

𝑔(𝑦)
)  𝜙(𝑦)𝑑𝜇(𝑦) +   (�̅�  +  𝑎(𝑥))  𝜙(𝑥)  =  0 in 𝛺.  

As above using the equation, we deduce that 𝜙 >  0 in 𝛺. Lastly, from the definition 

of 𝜆𝑝 using (𝜆, 𝜙) as a test function, we see that �̅� ≤  𝜆𝑝 ≤  �̅�. Hence, (𝜆, 𝜙) is our desired 

eigenpair.  

We explore the relation between a maximum principle property satisfied by an 

operator ℳ and the sign of its principal eigenvalue. Namely, we prove Theorem (3.2.5) that 

we recall below.  

Theorem (3.2.22)[118]: Assume that 𝛺 is a bounded set and let 𝐽 , 𝑔 and a be as in Theorem 

(3.2.1). Then the maximum principle is satisfied by ℳ𝛺 if and only if 𝜆𝑝(ℳ𝛺) ≥ 0. 

Proof. Assume first that the operator satisfies the maximum principle. From Theorem 

(3.2.1), there exists (𝜆𝑝, 𝜙𝑝) such that 𝜙𝑝  ∈  𝐶(�̅�), 𝜙𝑝  >  0 and  

ℒ𝛺 [𝜙𝑝]  +  𝑎(𝑥)𝜙𝑝  +  𝜆𝑝𝜙𝑝  =  0. 

We can normalise 𝜙𝑝 so that we have 1 ≥  𝜙𝑝 ≥ 𝑐0. Furthermore, there exists 𝛿 >  0 so 

that −𝜆𝑝  −  𝜎 ≥ 𝛿 >  0 where 𝜎 denotes the maximum of a in 𝛺.  

Assuming by contradiction that 𝜆𝑝  <  0 we have  

ℒ𝛺 [𝜙𝑝]  +  𝑎(𝑥)𝜙𝑝  =  −𝜆𝑝𝜙𝑝  >  0. 

 Let us choose 𝜔 ⋐   𝛺 such that 

 ∫  
𝛺\𝜔

 𝑑𝜇(𝑦) ≤
𝑐0 inf  {𝛿, |𝜆𝑝|}

2‖𝐽‖∞
 .  

We can construct a continuous function 𝜂 such that 0 ≤ 𝜂 ≤  1, 𝜂(𝑥)  =  1 in 𝜔, 𝜂(𝑥)  =
 0 in 𝜕𝛺. Consider now 𝜙𝑝𝜂 and let us compute ℒ𝛺 [𝜙𝑝𝜂]  +  𝑎(𝑥)𝜙𝑝𝜂. Then we have  

ℒ𝛺 [𝜙𝑝𝜂] +  𝑎(𝑥)𝜙𝑝𝜂 ≥  −𝜆𝑝𝜙𝑝  −  ‖𝐽‖ ∫  
𝛺\𝜔

 𝑑𝜇(𝑦) −  𝑎(𝑥)𝜙𝑝(1 −  𝜂) 

≥ −𝜆𝑝𝜙𝑝  −  
𝑐0 inf  {𝛿, |𝜆𝑝|}

2
 −  𝑎(𝑥)𝜙𝑝(1 −  𝜂) 

≥  −𝜆𝑝𝜙𝑝  −  
𝑐0 inf  {𝛿, |𝜆𝑝|}

2
 − max  {𝜎, 0}𝜙𝑝 

≥ −  (𝜆𝑝  +  𝑚𝑎𝑥{𝜎, 0})𝜙𝑝  −  
𝑐0 inf  {𝛿, |𝜆𝑝|}

2
 . 

Since by assumption −𝜆𝑝  >  0 and −𝜆𝑝  −  𝜎 ≥  0 it follows from the above inequality that  

ℒ𝛺 [𝜙𝑝𝜂]  +  𝑎(𝑥)𝜙𝑝𝜂 −  (𝜆𝑝  + max  {𝜎, 0}  𝑐0  

− 
𝑐0 inf  {𝛿, |𝜆𝑝|}

2
≥
𝑐0 inf  {𝛿, |𝜆𝑝|}

2
≥ 0. 

By construction we have 𝜙𝑝𝜂 ∈  𝐶(𝛺) that satisfies  

ℒ𝛺 [𝜙𝑝𝜂] +  𝑎(𝑥)𝜙𝑝𝜂 ≥ 0 in 𝛺, 

𝜙𝑝𝜂 =  0 on 𝜕𝛺. 

Therefore, by the maximum principle 1.4, 𝜙𝑝𝜂 ≤  0 in 𝛺 which is a contradiction. Hence, 

𝜆𝑝 ≥  0.  
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Let us now show the converse implication. Assume that 𝜆𝑝(ℒ𝛺  +  𝑎(𝑥)) ≥  0, then 

we will show that the operator satisfies the maximum principle. Let 𝑢 ≢  0, 𝑢 ∈  𝐶(�̅�) such 

that 𝑢 ≥  0 on 𝜕𝛺 and  

ℒ𝛺 [𝑢] +  𝑎(𝑥)𝑢 ≤  0.  
Let us show that 𝑢 >  0 in 𝛺. By Theorem (3.2.1), there exists 𝜙𝑝  >  0 such that  

ℒ𝛺 [𝜙𝑝]  +  𝑎(𝑥)𝜙𝑝  =  −𝜆𝑝𝜙𝑝 ≤  0.  

Let us rewrite ℒ𝛺 [𝑢]  +  𝑎(𝑥)𝑢 as follows  

ℒ𝛺 [𝑢]  +  𝑎(𝑥)𝑢 =  ∫  
𝛺

 𝐽  [
𝑥 −  𝑦

𝑔(𝑦)
]
𝜙𝑝(𝑦)

𝑔(𝑦)

𝑢(𝑦)

𝜙𝑝(𝑦)
 𝑑𝑦 +  𝑎(𝑥)𝜙𝑝(𝑥)

𝑢(𝑥)

𝜙𝑝(𝑥)
   

=  ∫  
𝛺

  𝐽  [
𝑥 −  𝑦

𝑔(𝑦)
]
𝜙𝑝(𝑦)

𝑔𝑛(𝑦)

𝑢(𝑦)

𝜙𝑝(𝑦)
 −

𝑢(𝑥)

𝜙𝑝(𝑥)
𝑑𝑦 − 𝜆𝑝𝜙𝑝

𝑢(𝑥)

𝜙𝑝(𝑥)
 .  

Let us set ∶=
𝑢

𝜙𝑝 
 , then we have the following inequality in 𝛺  

∫  
𝛺

 𝐽  [
𝑥 −  𝑦

𝑔(𝑦)
]
𝜙𝑝(𝑦)

𝑔𝑛(𝑦)
  (𝑤(𝑦) −  𝑤(𝑥))  𝑑𝑦 −  𝜆𝑝𝜙𝑝 𝑤(𝑥) ≤  0.  

From the above inequality we deduce that 𝑤 cannot achieve a non-positive minimum in 𝛺 

without being constant. Therefore it follows that either 𝑤 >  0 in 𝛺 or 𝑤 ≡  0. Since 𝑢 ≢

 0, we have 𝑤 >  0. Hence, 
𝑢

𝜙𝑝
>  0 which implies that 𝑢 >  0.  

We provide an example of nonlocal equation where no positive bounded 

eigenfunction exists. Let 𝛺 be a bounded domain and let us consider the following principal 

eigenvalue problem:  

𝜌 ∫  
𝛺

 𝑢 𝑑𝑥 +  𝑎(𝑥)𝑢 =  𝜆𝑢,                                (62)  

where 𝜎 =  𝑎(𝑥0) = max
�̅�
  𝑎(𝑥), 𝜌 is a positive constant and 𝑎(𝑥)  ∈  𝐶0(𝛺) satisfies the 

condition 
1

𝜎−𝑎(𝑥)
 ∈  𝐿𝑙𝑜𝑐

1 (𝛺). For this eigenvalue problem, we show the following result: 

Theorem (3.2.23)[118]: If ρ is so that 𝜌 ∫  𝛺
𝑑𝑥

𝜎−𝑎(𝑥)
 <  1, then there exists no bounded 

continuous positive principal eigenfunction 𝜙 to (62).  

Proof. We argue by contradiction. Let us assume that there exists a bounded positive 

continuous eigenfunction 𝜙 associated with 𝜆𝑝 that we normalise by ∫  
𝛺
 𝜙(𝑥)𝑑𝑥 =  1. By 

substituting 𝜙 into Eq. (62) it follows that  

𝜌 =   (𝜆𝑝  −  𝑎(𝑥))𝜙. 

Since 𝜌 >  0, from the above equation we conclude that 𝜆𝑝  −  𝜎 ≥ 𝜏 >  0. Therefore  

𝜙 =
𝜌

 𝜆𝑝  −  𝑎(𝑥)
 . 

Next, using the normalisation we obtain  

1 =  𝜌 ∫  
𝛺

𝑑𝑥

𝜆𝑝 − 𝑎(𝑥)
 . 

By construction 𝜆𝑝 ≥  𝜎 , therefore we have  

1 =  𝜌 ∫  
𝛺

𝑑𝑥

𝜆𝑝  −  𝑎(𝑥)
≤  𝜌 ∫  

𝛺

𝑑𝑥

𝜎 −  𝑎(𝑥)
 . 

 Since 𝜌 ∫  𝛺
𝑑𝑥

𝜎−𝑎(𝑥)
 <  1 we end up with the following contradiction  
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1 =  𝜌 ∫  
𝛺

𝑑𝑥

𝜆𝑝  −  𝑎(𝑥)
 𝜌 ∫  

𝛺

𝑑𝑥

𝜎 −  𝑎(𝑥)
 <  1. 

Hence there exists no positive bounded eigenfunction 𝜙 associated to 𝜆𝑝 .  

We prove Theorem (3.2.6). That is to say, we investigate the existence/non-existence 

of solution of the following problem:  

ℳ𝛺 [𝑢]  +  𝑓(𝑥, 𝑢)  =  0 in 𝛺                                    (63) 
where 𝑓 is of KPP type. We show that the existence of a non-trivial solution of (31) is 

governed by the sign of the principal eigenvalue of the following operator ℳ𝛺  +  𝑓𝑢(𝑥, 0). 
Moreover, when a non-trivial solution exists, then it is unique. To show the existence/non-

existence of solutions of (31) and their properties, we follow and adapt the arguments 

developed in [97], [99], [135]. 

Let us assume that  

𝜆𝑝(ℳ𝛺  +  𝑓𝑢(𝑥, 0))   <  0. 

Then we will show that there exists a non-trivial solution to (31).  

Before going to the construction of a non-trivial solution, let us first define some 

quantities. First let us denote 𝑎(𝑥) ∶=  𝑓𝑢(𝑥, 0)  −  𝑏(𝑥) and 𝜎 ∶= sup
𝛺
 𝑎(𝑥). Observe that 

with this notation, we have 𝜆𝑝(ℳ𝛺  +  𝑓𝑢(𝑥, 0))  =  𝜆𝑝(ℒ𝛺  +  𝑎(𝑥)).  

From the definition of 𝜎 there exists a sequence of points (𝑥𝑛)𝑛∈ℕ such that 𝑥𝑛  ∈  𝛺 

and |𝜎 −  𝑎(𝑥𝑛)| ≤
1

𝑛
.  

Then by continuity of 𝑎(𝑥), for each n there exists 𝜂𝑛 such that for all 𝑥 ∈  𝐵𝜂𝑛  (𝑥𝑛) 

we have |𝜎 −  𝑎(𝑥)| ≤
2

𝑛
.  

Now let us consider a sequence of real numbers (𝜖𝑛)𝑛∈ℕ which converges to zero 

such that 𝜖𝑛 ≤
𝜂𝑛

2
 .  

Next, let (𝜒𝑛)𝑛∈ℕ be the following sequence of cut-off functions: 𝜒𝑛(𝑥) ∶=

 𝜒 (
‖𝑥−𝑥𝑛‖

𝑛
 ) where 𝜒 is a smooth function such that 0 ≤  𝜒 ≤  1, 𝜒(𝑥)  =  0 for |𝑥| ≥ 2 and 

𝜒(𝑥)  =  1 for |𝑥| ≤  1.  

Finally, let us consider the following sequence of continuous functions (𝑎𝑛)𝑛∈ℕ, 

defined by 𝑎𝑛(𝑥): = sup  {𝑎(𝑥), 𝜎𝜒𝑛}. Observe that by construction the sequence 

(𝑎𝑛)𝑛∈ℕ is such that ‖𝑎(𝑥) − 𝑎𝑛(𝑥)‖∞  →  0.  

Let us now proceed to the construction of a non-trivial solution.  

By construction, for each 𝑛, the function 𝑎𝑛 satisfies sup
𝛺
  𝑎𝑛  =  𝜎 and 𝑎𝑛  ≡  𝜎 in 

𝐵𝜖𝑛
2
 (𝑥𝑛). Therefore, the sequence an satisfies 

1

𝜎−𝑎𝑛
 ∉  𝐿𝑙𝑜𝑐

1 (𝛺) and by Theorem (3.2.1) 

there exists a principal eigenpair (𝜆𝑛 𝑝, 𝜙𝑛) solution of the eigenvalue problem:  

ℒ𝛺 [𝜙] + 𝑎𝑛(𝑥)𝜙 +  𝜆𝜙 =  0, 
such that 𝜙𝑛  ∈  𝐿

∞(𝛺) ∩  𝐶(𝛺).  
Next, using that ‖𝑎𝑛(𝑥) −  𝑎(𝑥)‖∞  →  0 as 𝑛 →  ∞, from (iii) of Proposition 

(3.2.25) it follows that for 𝑛 big enough, say 𝑛 ≥ 𝑛0, we have  

𝜆𝑝
𝑛  <

𝜆𝑝(ℒ𝛺  +  𝑎(𝑥))

2
 <  0. 

Moreover, by choosing 𝑛0 bigger if necessary, we achieve for 𝑛 ≥ 𝑛0  

𝜆𝑝
𝑛  +  ‖𝑎𝑛(𝑥) −  𝑎(𝑥)‖∞ ≤

𝜆𝑝(ℒ𝛺  +  𝑎(𝑥))

4
 .  
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Let us now compute ℳ𝛺 [ 𝜙𝑛]  +  𝑓 (𝑥, 𝜙𝑛). For 𝑛 ≥ 𝑛0, we have  

ℳ𝛺 [ 𝜖𝜙𝑛]  +  𝑓 (𝑥, 𝜖𝜙𝑛)  =  𝑓(𝑥, 𝜖𝜙𝑛)  −   (𝑏(𝑥) + 𝑎𝑛(𝑥))𝜖𝜙𝑛  −  𝜆𝑝
𝑛𝜙𝑛  

= (𝑓𝑢(𝑥, 0) − ( 𝑎𝑛(𝑥) +  𝑏(𝑥))) 𝜖𝜙𝑛  − 𝜖𝜆𝑝
𝑛𝜙𝑛  +  𝑜(𝜖𝜙𝑛)

≥ (− ‖𝑎(𝑥) − 𝑎𝑛(𝑥)‖∞  −  𝜆𝑝
𝑛  )𝜙𝑛  +  𝑜(𝜖𝜙𝑛)

≥ (−
𝜆𝑝(ℳ𝛺  +  𝑓𝑢(𝑥, 0))

4
𝜖𝜙𝑛  +  𝑜(𝜖𝜙𝑛)  >  0.  

Therefore, for 𝜖 >  0 sufficiently small and 𝑛 big enough, 𝜖𝜙𝑛 is a sub-solution of (31). By 

definition of  , any large enough constant 𝑀 is a super-solution of (31). By choosing 𝑀 so 

large that 𝜖𝜙𝑛 ≤ 𝑀 and using a basic iterative scheme we obtain the existence of a positive 

non-trivial solution u of (31). 

Let now turn our attention to the non-existence result. Let us prove that when 

𝜆𝑝(ℳ𝛺   +  𝑓𝑢(𝑥, 0)) ≥ 0 then there exists no non-trivial solution to (31). 

 Assume by contradiction that 𝜆𝑝(ℳ𝛺  +  𝑓𝑢(𝑥, 0)) ≥  0 and there exists a positive 

bounded solution u to Eq. (31).  

Obviously, since 𝑢 is non-negative and bounded, using (31) we have for all 𝑥 ∈  �̅�  

0 ≤ ℒ𝛺 [𝑢]  = (𝑏(𝑥)  −
𝑓(𝑥, 𝑢)

𝑢
)  𝑢.                                          (64) 

 Let us denote ℎ(𝑥) ∶= ℒ𝛺[𝑢]. By construction, ℎ is a non-negative continuous 

function in 𝛺. Therefore, since 𝛺 is compact, ℎ achieves at some point 𝑥0  ∈  �̅� a non-

negative minimum. A short argument shows that ℎ(𝑥0)  >  0. Indeed, otherwise we have  

∫  
𝛺

 𝐽 (
𝑥0  −  𝑦

𝑔(𝑦)
)
𝑢(𝑦)

𝑔𝑛(𝑦)
 𝑑𝑦 =  0. 

Thus, since 𝐽, 𝑔 and 𝑢 are non-negative quantities, from the above equality we deduce that 

𝑢(𝑦)  =  0 for almost every 𝑦 ∈  {𝑧 ∈  �̅� |
𝑥0−𝑧

𝑔(𝑧)
 ∈  supp ( 𝐽)} . By iterating this argument 

and using the assumption 𝐽(0)  >  0, we can show that 𝑢(𝑦)  =  0 for almost every 𝑦 ∈  �̅�, 

which implies that 𝑢 ≡  0 since 𝑢 is continuous.  

As a consequence inf
𝑥∈𝛺 

 (𝑏(𝑥) −
𝑓(𝑥,𝑢)

𝑢
 ) ≥ 𝛿 for some 𝛿 >  0 and there exists a 

positive constant 𝑐0 so that 𝑢 >  𝑐0 in 𝛺. From the monotone properties of 𝑓 (𝑥, . ), we 

deduce that 
𝑓(𝑥,𝑢)

𝑢
≤
𝑓(𝑥,𝑐0)

𝑐0
 < 𝑓𝑢(𝑥, 0).  

Let us now denote 𝛾 (𝑥) =
𝑓(𝑥,𝑐0)

𝑐0
 −  𝑏(𝑥). By construction, we have 𝛾 (𝑥)  <  𝑎(𝑥) and 

therefore by (ii) of Proposition (3.2.25),  

𝜆𝑝(ℒ𝛺  +  𝛾 (𝑥))   >  𝜆𝑝 (ℒ𝛺  +  𝑎(𝑥)) ≥ 0.  

Moreover, since 𝑢 is a solution of (31), we have  

ℒ𝛺 [𝑢] +  𝛾 (𝑥)𝑢 ≥ ℳ𝛺 [𝑢]  +  𝑓(𝑥, 𝑢)  =  0. 
 By definition of 𝜆𝑝(ℒ𝛺  +  𝛾 (𝑥)), for all positive 𝜆𝑝(ℒ𝛺  +  𝑎(𝑥))  <  𝜆 <  𝜆𝑝(ℒ𝛺  +

 𝛾 (𝑥)) there exists a positive continuous function 𝜙𝜆 such that  

ℒ𝛺 [𝜙𝜆]  +  𝛾 (𝑥)𝜙𝜆 ≤ −𝜆𝜙𝜆 ≤  0. 
 Arguing as above, we can see that 𝜙𝜆 ≥ 𝛿 for some positive 𝛿. Let us define the following 

quantity  

𝜏∗ ∶= inf  {𝜏 >  0 |𝑢 ≤ 𝜏𝜙𝜆} . 
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 Obviously, we end the proof of the theorem by proving that 𝜏∗  =  0. Assume that 𝜏∗  >  0. 

Then by definition of 𝜏∗, there exists 𝑥0  ∈  �̅� such that 𝜏∗𝜙𝑝(𝑥0)  =  𝑢(𝑥0)   >  0. At this 

point 𝑥0, we have  

0 ≤ ℒ𝛺 [𝑤](𝑥0)  =  ℒ𝛺[(𝜏
∗𝜙𝜆  −  𝑢)](𝑥0) ≤  0. 

Therefore, since 𝑤 ≥ 0, using a similar argumentation as above, we have 𝑤(𝑦)  =  0 for 

almost every 𝑦 ∈  �̅�. Thus, we end up with 𝜏∗𝜙1  ≡  𝑢 and we get the following 

contradiction,  

0 ≤ ℒ𝛺 [𝑢] +  𝛾 (𝑥)𝑢 = ℒ𝛺  [𝜏
∗𝜙𝜆] +  𝛾 (𝑥)𝜏

∗𝜙𝜆 <  0. 
 Hence 𝜏∗  =  0.  

Lastly, we show that when a solution of (31) exists then it is unique. The proof of the 

uniqueness of the solution is obtained as follows.  

Let 𝑢 and 𝑣 be two non-negative bounded solutions of (31). We see that there exist 

two positive constants 𝑐0 and 𝑐1 such that  

𝑢 ≥ 𝑐0 in �̅�, 
 𝑣 ≥ 𝑐1 in �̅�. 

Since 𝑢 and 𝑣 are bounded and strictly positive, the following quantity is well defined  

𝛾∗ ∶= inf  {𝛾 >  0 |𝛾𝑢 ≥  𝑣} . 
 We claim that 𝛾∗ ≤  1. Indeed, assume by contradiction that 𝛾∗  >  1. From (31) we see 

that  

ℳ𝛺 [ 𝛾
∗𝑢]  +  𝑓 (𝑥, 𝛾∗𝑢)   =  𝑓( 𝑥, 𝛾∗𝑢)   −  𝛾∗ 𝑓 (𝑥, 𝑢)                                    (65) 

=  𝛾∗𝑢 (
𝑓(𝑥, 𝛾∗𝑢)

𝛾∗𝑢
  −

𝑓(𝑥, 𝑢)

𝑢
) ≤  0.                   (66)  

Now, by definition of 𝛾∗, there exists 𝑥0  ∈  �̅� so that 𝛾𝑢(𝑥0)  =  𝑣(𝑥0) and from (31) we 

can easily see that  

ℳ𝛺  [ 𝛾
∗𝑢] (𝑥0)  +  𝑓 (𝑥, 𝛾

∗𝑢(𝑥0)   =  ℒ𝛺 (𝛾
∗𝑢 −  𝑣] ≥  0.       (67) 

 From (66) and (67) we deduce that  

ℒ𝛺[𝛾
∗𝑢 −  𝑣](𝑥0)  =  0.  

Therefore, arguing it follows that 𝛾∗𝑢 =  𝑣. Using now (66), we deduce that  

0 =  ℳ𝛺 [𝑣] +  𝑓 (𝑥, 𝑣) =  ℳ𝛺 [𝛾
∗𝑢]  +  𝑓( 𝑥, 𝛾∗𝑢)   

=  𝛾∗𝑢 (
𝑓(𝑥, 𝛾∗𝑢)

𝛾∗𝑢
  −

𝑓(𝑥, 𝑢)

𝑢
≤  0,  

which implies that for all 𝑥 ∈  𝛺 𝑓 (𝑥, 𝛾∗𝑢)  ≡  𝑓 (𝑥, 𝑢). This later is impossible since 𝛾∗  >
 1. Hence, 𝛾∗ ≤ 1 and as a consequence 𝑢 ≥ 𝑣. Observe that the role of 𝑢 and 𝑣 can be 

interchanged in the above argumentation. So we also have 𝑣 ≥  𝑢, which shows the 

uniqueness of the solution. 

We prove Theorem (3.2.24) which establishes the asymptotic behaviour of the 

solution of  
𝜕𝑢

𝜕𝑡
 =  ℳ𝛺 [𝑢]  +  𝑓(𝑥, 𝑢) in ℝ

+  ×  𝛺,  

𝑢(0, 𝑥)  =  𝑢0(𝑥)  in 𝛺.  
Theorem (3.2.24)[118]: Let 𝛺, 𝐽 , 𝑔, 𝑏 and 𝑓 be as in Theorem (3.2.6). Let 𝑢0 be an arbitrary 

bounded and continuous function in 𝛺 such that 𝑢0 ≥  0, 𝑢0  ≢  0. Let 𝑢(𝑡, 𝑥) be the 

solution of (33) with initial datum 𝑢(0, 𝑥)  =  𝑢0(𝑥). Then, we have:  

(i) If 0 is an unstable solution of (31) (that is 𝜆𝑝 < 0), then 𝑢(𝑡, 𝑥)  →  𝑝(𝑥) pointwise as 

𝑡 →  ∞, where 𝑝 is the unique positive solution of (31) given by Theorem (3.2.6).  



141 

(ii) If 0 is a stable solution of (31) (that is 𝜆𝑝 ≥  0), then 𝑢(𝑡, 𝑥)  →  0 pointwise in 𝛺 as 

𝑡 →  +∞.  

Proof. The existence of a solution defined for all time 𝑡 follows from a standard argument 

and will not be exposed. Moreover, since 𝑢0 ≥  0 and 𝑢0 ≢  0, using the parabolic 

maximum principle, there exists a positive constant 𝛿 such that 𝑢(1, 𝑥) > 𝛿 in 𝛺. Let us 

first assume that 𝜆𝑝  <  0. By following the argument developed, we can construct a 

bounded continuous function 𝜓 so that 𝜓 is a sub-solution of (33) for small enough. Since, 

𝑢(1, 𝑥) 𝛿 and 𝜓 is bounded, by choosing smaller if necessary we achieve also that 𝜓 𝑢(1, 𝑥). 
Now, let us denote by 𝛹(𝑥, 𝑡) the solution of evolution problem (33) with initial datum 𝜖𝜓. 

By construction, using a standard argument, 𝛹(𝑡, 𝑥) is a non-decreasing function of the time 

and 𝛹 (𝑡, 𝑥) ≤  𝑢(𝑡 +  1, 𝑥). On the other hand, since for 𝑀 big enough 𝑀 is a super-

solution of (33) and 𝑢0 is bounded, we have also 𝑢(𝑡, 𝑥) ≤  𝛹 (𝑡, 𝑥), where 𝛹 (𝑥, 𝑡) denotes 

the solution of evolution problem (33) with initial datum 𝛹 (0, 𝑥) =  𝑀 ≥ 𝑢0. A standard 

argument using the parabolic comparison principle shows that 𝛹 is a non-increasing 

function of 𝑡. Thus we have for all time 𝑡  

𝜖𝜓 ≤ 𝛹(𝑡, 𝑥) ≤ 𝑢(𝑡 +  1, 𝑥) ≤ 𝛹 (𝑡 +  1, 𝑥).  

Since 𝛹(𝑡, 𝑥) (resp. 𝛹 (𝑡, 𝑥)) is a uniformly bounded monotonic function of 𝑡,𝛹 (resp. 𝛹 ) 

converges pointwise to 𝑝 (resp. 𝑝) which is a solution of (31). From 𝛹(𝑡, 𝑥) ≢  0, using the 

uniqueness of a nontrivial solution (Theorem (3.2.6)), we deduce that 𝑝  ≡  𝑝 ≢  0 and 

therefore, 𝑢(𝑥, 𝑡)  →  𝑝 pointwise in 𝛺, where 𝑝 denotes the unique non-trivial solution of 

(31).  

In the other case, when 𝜆𝑝 ≥ 0 we argue as follows. As above, we have 0 ≤ 𝑢(𝑡, 𝑥) ≤

 𝛹 (𝑡, 𝑥) and 𝛹 converges pointwise to 𝑝 a solution of (31). By Theorem (3.2.6) in this 

situation we have 𝑝 ≡ 0, hence 𝑢(𝑥, 𝑡)  →  0 pointwise in 𝛺.  

We first prove Proposition (3.2.25). Then we recall the method of sub- and 

supersolution to obtain solution of the semilinear problem:  

ℳ𝛺 [𝑢]  =  𝑓 (𝑥, 𝑢) in 𝛺.                                         (68)  

Before going to the proof of Proposition (3.2.25), let us show that 𝜆𝑝(ℒ𝛺  +  𝑎(𝑥)) is 

well defined. Let us first show that the set 𝛬 ∶=  {𝜆 | ∃𝜙 ∈  𝐶(𝛺), 𝜙 >  0 such 

that ℒ𝛺 [𝜙] + 𝜆𝜙 ≤ 0} is non-empty. Indeed, as observed in [133] (Theorem (3.2.20)), 

for 𝛺, 𝐽, 𝑔 and a satisfying the assumptions (H1)–(H4) there exists a continuous positive 

function 𝜓 satisfying  

∫  
𝛺

 𝐽 (
𝑥 −  𝑦

𝑔(𝑦)
)
𝜓(𝑦)

𝑔𝑛(𝑦)
 𝑑𝑦 =  𝑐(𝑥)𝜓(𝑥), 

where 𝑐(𝑥) is defined by  

𝑐(𝑥): = {

1  if 𝑥 ∈  {𝑥 ∈  �̅� | 𝑔(𝑥)  =  0},

 ∫  
𝛺

 𝐽 (
𝑦 − 𝑥

𝑔(𝑥)
)
𝑑𝑦

𝑔𝑛(𝑥)
 otherwise.

  

Obviously 𝑐(𝑥)  ∈  𝐿∞ and for any 𝜆 ≤ (|𝑎‖∞  +  ‖𝑐‖∞)  we have  

ℒ𝛺 [𝜓] + (𝑎(𝑥) +  𝜆) 𝜓 = (𝑎(𝑥) +  𝑐(𝑥) +  𝜆 )𝜓 

≤ (𝑎(𝑥) +  𝑐(𝑥) − ‖𝑎‖∞  −  ‖𝑐‖∞) ≤ 𝜓 0.  
Therefore, the set 𝛬 is non-empty.  
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       Observe now that since 𝐽, 𝑔 are non-negative functions and 𝑎(𝑥)  ∈  𝐿∞, for any 

continuous positive function 𝜙 we have  

ℒ𝛺 [𝜙] + (𝑎(𝑥) + ‖𝑎(𝑥)‖∞) 𝜙 ≥  0. 
Therefore, the set Λ has an upper bound and 𝜆𝑝 is well defined.  

Let us now prove Proposition (3.2.25).  

Proposition (3.2.25)[118]:  

(i) Assume 𝛺1  ⊂  𝛺2, then  

𝜆𝑝  ( ℒ𝛺1  +  𝑎(𝑥)) ≥ 𝜆𝑝 ( 𝐿𝛺2  +  𝑎(𝑥)) . 

(ii) Fix 𝛺 and assume that 𝑎1(𝑥) ≥ 𝑎2(𝑥), then  

𝜆𝑝(ℒ𝛺  +  𝑎2(𝑥)) ≥ 𝜆𝑝 (ℒ𝛺 + 𝑎1(𝑥))  .  

Moreover, if 𝑎1(𝑥) ≥ 𝑎2(𝑥)  +  𝛿 for some 𝛿 >  0 then  

𝜆𝑝 (ℒ𝛺  +  𝑎2(𝑥))   >  𝜆𝑝 (ℒ𝛺  +  𝑎1(𝑥))  . 

(iii) 𝜆𝑝(ℒ𝛺  +  𝑎(𝑥)) is Lipschitz continuous in 𝑎(𝑥). More precisely,  

|𝜆𝑝 (ℒ𝛺  +  𝑎(𝑥))   −  𝜆𝑝  (ℒ𝛺  +  𝑏(𝑥))| ≤ ‖ 𝑎(𝑥) −  𝑏(𝑥)‖∞.  

(vi) Let 𝐽1 ≤  𝐽2 be two positive continuous integrable functions and let us denote 

respectively by ℒ1,𝛺 and ℒ2,𝛺 the corresponding operators. Then we have 

𝜆𝑝  ( ℒ1,𝛺 +  𝑎(𝑥))   >  𝜆𝑝  (𝐿2,𝛺 + 𝑎(𝑥)) .  

 Let us state our first result concerning a sufficient condition for the existence of a 

principal eigenpair (𝜆𝑝, 𝜙𝑝) for the operator ℳ.  

Proof. (i) easily follows from the definition of 𝜆𝑝 . First, let us observe that to obtain  

𝜆𝑝 ( ℒ𝛺2  +  𝑎(𝑥)) ≤ 𝜆𝑝 ( ℒ𝛺1 +  𝑎(𝑥)) 

 it is sufficient to prove the inequality  

𝜆 ≤  𝜆𝑝 (ℒ𝛺1  +  𝑎(𝑥)) 

  for any 𝜆 < 𝜆𝑝 (ℒ𝛺2  +  𝑎(𝑥)). 

Let us fix 𝜆 < 𝜆𝑝 (ℒ𝛺2  +  𝑎(𝑥)). Then by definition of 𝜆𝑝 (𝐿𝛺2  + 𝑎(𝑥))  there exists 

a positive function 𝜙 ∈  𝐶(𝛺2) such that  

ℒ𝛺2  [𝜙] + ( 𝑎(𝑥) +  𝜆)𝜙 ≤ 0. 

Since 𝛺1  ⊂  𝛺2, an easy computation shows that  

ℒ𝛺1  [𝜙] + (𝑎(𝑥) +  𝜆 )𝜙 ≤ ℒ𝛺2  [𝜙] + (𝑎(𝑥) +  𝜆 )𝜙 ≤ 0.  

Therefore, by definition of 𝜆𝑝 (ℒ𝛺1  +  𝑎(𝑥)) we have 𝜆 < 𝜆𝑝 (ℒ𝛺1  +  𝑎(𝑥)). Hence, 

𝜆𝑝 (ℒ𝛺2  +  𝑎(𝑥)) ≤  𝜆𝑝 (ℒ𝛺1  +  𝑎(𝑥)). 

To show (ii), we argue as above. By definition of 𝜆𝑝(ℒ𝛺   +  𝑎1(𝑥)) for any 𝜆 <

𝜆𝑝 (ℒ𝛺  +  𝑎1(𝑥))there exists a positive 𝜙 ∈  𝐶(𝛺) such that 

 ℒ𝛺 [𝜙] + (𝑎1(𝑥) +  𝜆)𝜙 ≤ 0  
and we have  

ℒ𝛺 [𝜙] + (𝑎2(𝑥) +  𝜆)𝜙 ≤  ℒ𝛺 [𝜙] + (𝑎1(𝑥) +  𝜆)𝜙 ≤  0.  
Therefore 𝜆 ≤ 𝜆𝑝(ℒ𝛺  +  𝑎2(𝑥)). Hence (ii) holds true. 
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Let us now prove (iii). Again we fix 𝜆 < 𝜆𝑝 (ℒ𝛺1  +  𝑎(𝑥)) For this 𝜆, there exists 

𝜙 ∈  𝐶(𝛺), 𝜙 >  0 such that  

ℒ𝛺 [𝜙] + (𝑎(𝑥) +  𝜆 )𝜙 ≤  0.                                      (69) 
 An easy computation shows that we rewrite the above equation as follows  

ℒ𝛺 [𝜙] + (𝑎(𝑥) +  𝜆)𝜙 =  ℒ𝛺 [𝜙] + (𝑏(𝑥) +  𝜆)𝜙 + (𝑎(𝑥) −  𝑏(𝑥))𝜙 

≥  ℒ𝛺 [𝜙]  + (𝑏(𝑥) +  𝜆 −  ‖𝑎(𝑥) −  𝑏(𝑥)‖∞)𝜙. 
 Using that (𝜆, 𝜙) satisfies (69), it follows that  

ℒ𝛺 [𝜙] + (𝑏(𝑥) +  𝜆 −  ‖𝑎(𝑥) −  𝑏(𝑥)‖∞ )𝜙 ≤ 0. 
Therefore, 𝜆 − ‖𝑎(𝑥) −  𝑏(𝑥)‖∞ ≤  𝜆𝑝(ℒ𝛺  +  𝑏(𝑥)) and we have  

𝜆 ≤ 𝜆𝑝(ℒ𝛺  +  𝑏(𝑥)) + ‖𝑎(𝑥) −  𝑏(𝑥)‖∞. 

 The above computation being valid for any 𝜆 < 𝜆𝑝 (ℒ𝛺1  +  𝑎(𝑥)) we end up with 

 𝜆𝑝(ℒ𝛺  +  𝑎(𝑥)   −  𝜆𝑝( ℒ𝛺  +  𝑏(𝑥) ≤ ‖𝑎(𝑥) −  𝑏(𝑥)‖∞. 

Note that the role of 𝑎(𝑥) and 𝑏(𝑥) can be interchanged in the above argumentation. So, we 

also have  

𝜆𝑝(ℒ𝛺  +  𝑏(𝑥))   −  𝜆𝑝 ( ℒ𝛺  +  𝑎(𝑥) ≤  ‖𝑎(𝑥) −  𝑏(𝑥)‖∞.  

Hence  

|𝜆𝑝(ℒ𝛺  +  𝑎(𝑥))   −  𝜆𝑝( ℒ𝛺  +  𝑏(𝑥)}| ≤  ‖𝑎(𝑥) −  𝑏(𝑥)‖∞, 

 which proves (iii).  

The proof of (iv) being similar to the proof of (ii), it will be omitted.  

Before recalling the sub/super-solution method, let us introduce some definitions and 

notations. We call a bounded continuous function 𝑢 (resp. 𝑢) a super-solution (resp. a sub-

solution) if 𝑢 (resp. 𝑢) satisfies the following inequalities:  

ℳ𝛺 [𝑢] ≤ (≥) 𝑓(𝑥, 𝑢) in 𝛺.                                        (70)  
Let us now state the theorem.  

Theorem (3.2.26)[118]: Assume 𝑓(𝑥, . ) is a Lipschitz function uniformly in 𝑥 and let 𝑢 and 

𝑢 be respectively a supersolution and a sub-solution of (68) continuous up to the boundary. 

Assume further that 𝑢 ≤  𝑢. Then there exists a solution 𝑢 ∈  𝐶(𝛺) solution of (68) 

satisfying 𝑢 ≤  𝑢 ≤  𝑢. 

Proof. Let us first choose 𝑘 >  |𝜆𝑝(ℳ𝛺)| big enough such that the function −𝑘𝑠 +  𝑓 (𝑥, 𝑠) 

is a decreasing function of 𝑠 uniformly in 𝑥. We can increase further 𝑘 if necessary to ensure 

that 𝑘 ∈  𝜌(ℳ𝛺), where 𝜌(ℳ𝛺) denotes the resolvent of the operator ℳ𝛺 .  

Note that by this choice of 𝑘, by Theorem (3.2.5) the operator ℳ𝛺  − 𝑘 satisfies a 

comparison principle.  

Now, let 𝑢1 be the solution of the following linear problem  

ℳ𝛺 [𝑢1]  −  𝑘𝑢1  =  −𝑘𝑢  +  𝑓 (𝑥, 𝑢) in 𝛺.                        (71) 
𝑢1 always exists, since by construction the continuous operator ℳ𝛺  −  𝑘 is invertible. We 

claim that 𝑢 ≤  𝑢1 ≤  𝑢. Indeed, since 𝑢 and 𝑢 are respectively a sub- and super-solution of 

(68), we have  

ℳ𝛺 [𝑢1  −  𝑢] −  𝑘(𝑢1  −  𝑢)0 in 𝛺, 

 ℳ𝛺 [𝑢1  −  𝑢] −  𝑘(𝑢1  −  𝑢) ≥  −𝑘(𝑢  − 𝑢) +  𝑓(𝑥, 𝑢) −  𝑓 (𝑥, 𝑢) ≥  0 in 𝛺.  

So, the inequality 𝑢 ≤ 𝑢1 ≤  𝑢 follows from the comparison principle satisfied by the 

operator ℳ𝛺  − 𝑘. Now let 𝑢2 be the solution of (71) with 𝑢1 instead of 𝑢. From the 

monotonicity of −𝑘𝑠 +  𝑓 (𝑥, 𝑠) and using the comparison principle, we have 𝑢 ≤ 𝑢1 ≤
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 𝑢2 ≤  𝑢. By induction, we can construct an increasing sequence of function 

(𝑢𝑛)𝑛∈ℕ satisfying 𝑢 ≤ 𝑢𝑛 ≤  𝑢 and  

ℳ𝛺 [𝑢𝑛 +1] −  𝑘𝑢𝑛+1  =  −𝑘𝑢𝑛  +  𝑓(𝑥, 𝑢𝑛)   in 𝛺.                            (72) 
 Since the sequence is increasing and bounded, 𝑢−(𝑥): = sup

𝑛∈ℕ
   𝑢𝑛(𝑥) is well defined. 

Moreover, passing to the limit in Eq. (72) using Lebesgue’s theorem it follows that 𝑢− is a 

solution of (68).  
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Chapter 4 

Improvement of Critical Eigenfunctions Restriction Estimates 

 

We extend Bérard logarithmic improvement for the remainder term of the eigenvalue 

counting function which directly leads to a (log 𝜆)
1

2 improvement for Hörmander’s estimate 

on the 𝐿1 norms of eigenfunctions. To the 𝐿𝑝  estimates for all 𝑝 >
2(𝑛+1)

𝑛−1
. We show detailed 

oscillatory integral estimates with fold singularities by Phong and Stein and use the Poincaré 

half-space model to establish bounds for various derivatives of the distance function 

restricted to geodesic segments on the universal cover ℍ3. 

Section (4.1): Nonpositive Curvature 

        We say the norm of a Banach space (𝑋, ||  ·  ||) is 𝐶𝑘 smooth if its kth Fréchet 

derivative exists and is continuous at every point of 𝑋  {0}. The norm is 𝐶∞ smooth if this 

holds for all 𝑘 ∈ ℕ. We concerned with the problem of establishing sufficient conditions 

for when a Banach space has a 𝐶𝑘 smooth renorming, for 𝑘 ∈ ℕ ∪ {∞}. 
 Definition (4.1.1)[82]: A subset 𝐵 ⊆  𝐵𝑋∗    is a called a boundary if for each 𝓍in the unit 

sphere 𝑆𝑋 , there exists 𝑓 ∈  𝐵 such that 𝑓(𝓍) =  1. 
 Example (4.1.2)[82]: The following will be boundaries for any Banach space 𝑋. 

 (i) The dual unit sphere 𝑆𝑋∗   . This is a consequence of the HahnBanach Theorem.  

 (ii) The set of extreme points of the dual unit ball, Ext(𝐵𝑋∗  ). This follows from the 

proof of the Krein-Milman Theorem ([155]).  

    Given 𝜀 >  0 and norms ||  ·  || and |||  ·  ||| on a Banach space 𝑋, say |||  ·  ||| ε-

approximates ||  ·  || if, for all 𝑥 ∈  𝑋,  

(1 −  𝜀)||𝓍|| ≤  |||𝓍||| ≤  (1 +  𝜀)||𝓍||. 

 The notion of a boundary plays an important role in this area of study. Frequently, the 

existence of a boundary with certain properties gives rise to the desired renormings, as seen 

in the following result of H´ajek, which is part of a more general theorem.  

     H´ajek and Haydon provided another sufficient condition for when this property holds, 

namely when 𝑋 =  𝐶(𝐾) and 𝐾 is a compact Hausdorff σ-discrete space. We call a 

topological space 𝐾 𝜎-discrete if 𝐾 =  ⋃ 𝐷𝑛
∞
𝑛=0   , where each 𝐷𝑛 is relatively discrete: 

given 𝓍 ∈  𝐷𝑛, there exists Ux open in K such that 𝑈𝓍  ∩  𝐷𝑛  =  {𝓍}. 
In [36], it is shown that if 𝑋 has a countable boundary then X has an equivalent 

analytic norm which ε-approximates the original norm. Moreover, if 𝐶(𝐾) admits an 

analytic renorming, then 𝐾 is countable [11]. For a norm ||  ·  || to be analytic we mean it is 

a real valued analytic function on 𝑋 \ {0}. Analytic functions on Banach spaces are defined 

and explored [17]. 

     The Orlicz functions M for which the corresponding Orlicz sequence spaces 𝑙𝑀 and 

Orlicz function spaces 𝑙𝑀(0, 1), 𝑙𝑀(0,∞) have an equivalent 𝐶∞ smooth norm were 

characterised in [28]. Futhermore, the Orlicz sequence spaces ℎ𝑀 with equivalent analytic 

norm were characterised in [15].  

The main result, Theorem (4.1.7), generalises these results as corollaries. It also takes into 

account smoothness of injective tensor products, in a manner similar to that of [16]. As in 

the proof of [158], the proof of Theorem (4.1.7) makes use of two lemmas ([158]) 
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concerning the so-called generalised Orlicz norm, denoted by ‖ · ‖𝜙 . The first lemma 

provides a condition where ‖ · ‖𝜙   is equivalent to ||  ·  ||. 

Definition (4.1.3)[82]: Let B be a set. Suppose for every element 𝑡 ∈  𝐵 there exists a 

convex function 𝜙𝑡 on [0, ∞) with 𝜙𝑡(0) =  0 and lim𝛼→∞  𝜙𝑡(𝛼)  =  ∞ (such functions 

are called Orlicz functions). Define ‖ · ‖𝜙  𝑜𝑛 𝑙∞(𝐵)𝑏𝑦 

||𝑓||
𝜙
 = inf { 𝜌 >  0 ∶   ∑𝜙𝑡

𝑡∈𝐵

  (
|𝑓(𝑡)|

 𝜌
)   ≤  1 }. 

and define ℓ𝜙(B) as the set of f ∈  ℓ∞(𝐵) satisfying ||𝑓||
𝜑
 <  ∞.  

Lemma (4.1.4)[82]: [158]. Let ‖ · ‖𝜙    be as in Definition (4.1.3). Suppose there exist 𝛽 >

 𝛼 >  0 with the property 𝜙𝑡(𝛼)  =  0 and 𝜙𝑡(𝛽)  ≥  1 for all 𝑡 ∈  𝐵. Then ℓ𝜑(𝐵)\≅

 ℓ∞(𝐵) and 

 𝛼‖ · ‖𝜙 ≤  ‖  ·   ‖∞    ≤  𝛽‖ · ‖𝜙. 

    We use ‖ · ‖𝜙 to define another norm on a more general space 𝑋, which we also denote 

by ‖ · ‖𝜙. The second lemma gives a sufficient condition for when ‖ · ‖𝜙on X is 𝐶𝑘 smooth. 

It uses the ‖ · ‖𝜙notion of local dependence on finitely many coordinates and generalises 

[158]. 

 Lemma (4.1.5)[82]: Let ‖ · ‖𝜙 be as in Lemma (4.1.4) and let 𝛱 ∶  𝑋 →  ℓ𝜙(𝐵) be an 

embedding (non-linear in general), where the map 𝑥 →  𝛱(𝓍)(𝑡) is a seminorm which is 

𝐶𝑘 smooth on the set where it is non-zero, for all 𝑡 ∈  𝐵. Assume the assignment ||𝓍||
𝜙
 =

 ||𝛱(𝓍)||
𝜙 

 defines an equivalent norm on 𝑋. Suppose for each 𝑥 ∈  𝑋, with ||𝓍||
ϕ
 =  1, 

there exists an open U ⊆ X containing 𝓍, and finite 𝐹 ⊆  𝐵, such that 𝜙𝑡(|𝒴(𝑡)|)  =  0 

when 𝒴 ∈  𝑈 and t ∈  B\F. Finally, assume that each 𝜙𝑡  is C∞ smooth. Then ‖ · ‖𝜙is 𝐶𝑘 

smooth on 𝑋. 

      As Lemma (4.1.5) appears in [158], 𝑋 is taken to be a closed subspace of ℓ∞(𝐵) and 𝛱 

is the identity. The proof uses the fact that 

each coordinate map 𝓍 →  |𝓍(𝑡)| is 𝐶∞ smooth on the set where it is non-zero and uses the 

implicit function theorem to show that ‖ · ‖𝜙 is also C∞ smooth. In our case, each coordinate 

map is 𝐶𝑘 smooth on the set where it is non-zero and the same argument guarantees that 

‖ · ‖𝜙is C k smooth. The first part of the proof of Theorem (4.1.7) is concerned with setting 

up the necessary framework to apply these lemmas. The remainder uses a series of claims 

to prove they do in fact hold. Theorems (4.1.14) and (4.1.15) are obtained as corollaries of 

Theorem (4.1.7), along with some other results and applications. Before proceeding to the 

statement of Theorem (4.1.7), a key notion of 𝑤∗ -locally relatively compact sets (𝑤∗  -LRC 

for short) needs to be introduced. This property is first studied in [156], in the context of 

polyhedral norms. 

Definition (4.1.6)[82]: ([156]). Let 𝑋 be a Banach space. We call 𝐸 ⊆  𝑋∗ 𝑤∗ -LRC if given 

y ∈ E, there exists a 𝑤∗ -open set 𝑈 such that 𝑦 ∈  𝑈 and 𝐸 ∩  𝑈 || · || is norm compact. 

Example 1.9 ([156]). The following sets are 𝑤∗-LRC. 

   (i) Any norm compact or 𝑤∗-relatively discrete subset of a dual space. 

   (ii) Given 𝑋 with an unconditional basis (𝑒𝑖)𝑖∈𝐼 and 𝑓 ∈ 𝑋∗ , define  

𝑠𝑢𝑝𝑝(𝑓) =  {𝑖 ∈  𝐼 ∶  𝑓(𝑒𝑖)6 =  0}. 
Let 𝐸 ⊂  𝑋∗ have the property that if f, g ∈  𝐸, then |𝑠𝑢𝑝𝑝(𝑓)|  =  |𝑠𝑢𝑝𝑝(g)|  <  ∞. 

𝐸 is 𝑤∗  -LRC. Indeed, take 𝑓 ∈  𝐸 and define the 𝑤∗-open set 𝑈 =  {g ∈  𝑋∗ ∶  0 <
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 |g(𝑒𝑖)|  <  |𝑓(𝑒𝑖)|  +  1 ∶  𝑖 ∈  𝑠𝑢𝑝𝑝(𝑓)}. Clearly, if g ∈ U ∩ E, then 𝑠𝑢𝑝𝑝(g)  =
 𝑠𝑢𝑝𝑝(𝑓). Thus 𝑈 ∩  𝐸 is a norm bounded subset of a finite dimensional space. 

   The main result is concerned with renorming injective tensor products. Given Banach 

spaces 𝑋 and  , the injective tensor product 𝑋 ⊗𝜀  𝑌 is the completion of the algebraic tensor 

product 𝑋 ⊗  𝑌 with respect to the norm 

 ||∑𝓍𝑖  ⊗ 𝒴𝑖

∞

 𝑖=1

  ||  =  sup {∑  𝑓(𝓍𝑖)g(𝒴𝑖) ∶  𝑓 ∈  𝐵𝑋∗  , 𝑔 ∈  𝐵𝑌∗   

∞

𝑖=1

}. 

     Also note the following facts. If 𝐼𝑌 is the identity operator on  , then given 𝑓 ∈  𝑋∗ we 

define 𝑓𝑌  =  𝑓 ⊗ 𝐼𝑌 on 𝑋 ⊗  𝑌 by 𝑓𝑌 ( ∑  𝓍𝑖  ⊗ 𝒴𝑖) 
∞
𝑖=1  = ∑ 𝑓(𝓍𝑖)𝒴𝑖  

∞
𝑖=1  . We have 

||𝑓𝑌 ||  =  ||𝑓|| and extend to the completion. Similarly define g𝑋 for g ∈  𝑌∗ . A useful fact 

is 𝑓 ⊗ 𝑔 =  𝑔 𝜊𝑓𝑌  =  𝑓 𝜊𝑔𝑋. Given two boundaries 𝑁 ⊆  𝑋∗ and  ⊆  𝑌∗ , the set {𝑓 ⊗
 𝑔 ∶  𝑓 ∈  𝑁, 𝑔 ∈  𝑀} is a boundary for 𝑋 ⊗𝜀  𝑌 . To see this, take 𝑢 ∈  𝑋 ⊗𝜀  𝑌 . There 

exists f ∈ 𝐵𝑋∗ and 𝑔 ∈  𝐵𝑌∗ such that ||𝑢||  =  (𝑓 ⊗  𝑔)(𝑢)  =  ||𝑔𝑋(𝑢)||. Then there 

exists  𝑓   ∈  𝑁 such that 𝑓(𝑔𝑋(𝑢))  =  ||𝑢||  = || 𝑓 𝑌 (𝑢)||. Finally, there exists 𝑔  ∈  𝑀 

such that 𝑔( 𝑓 𝑌 (𝑢))  =  ( 𝑓 ⊗ 𝑔)(𝑢)  =  ||𝑢||. 
     Given a Banach space 𝑌 with a 𝐶𝑘 smooth renorming, Haydon gave a sufficient condition 

on 𝑋 for 𝑋 ⊗𝜀  𝑌 to have a 𝐶𝑘 smooth renorming ([16]). This condition involves a type of 

operator that are now known as Talagrand operators. Another sufficient condition is given 

in the main result below. It is worth noting that these conditions are incomparable. For 

example, the space 𝐶[0, 𝜔1] satisfies Haydon’s condition but not that of Theorem (4.1.7). 

On the other hand, if we take 𝐾 to be the Ciesielski-Pol space as seen in [20], then 𝐶(𝐾) 
satisfies the hypothesis of Theorem (4.1.7) but not Haydon’s condition.  

Theorem (4.1.7)[82]: Let 𝑋 and 𝑌 be Banach spaces and let (𝐸𝑛) be a sequence of 𝑤∗ -𝐿𝑅𝐶 

subsets of 𝑋∗ , such that 𝐸 =  ⋃ 𝐸𝑛
∞
𝑛=0   𝑖𝑠 𝜎 − 𝑤∗ - compact and contains a boundary of 𝑋. 

Suppose further that 𝑌 has a 𝐶𝑘 smooth norm ||  ·  ||Y for some 𝑘 ∈ ℕ ∪ {∞}. Then 

𝑋 ⊗𝜀  𝑌 admits a 𝐶𝑘 smooth renorming that ε − α pproximates the canonical injective 

tensor norm. 

     The proof of this theorem is based to some degree on that of [156]. Given its technical 

nature, some of that proof is repeated here for clarity. 

 Proof. To begin, we can assume 𝐸 is a boundary and �̅�𝑛
𝑤∗  ⊆  𝐸 for all 𝑛 ∈ ℕ. Indeed, if 

neccessary, taking 𝐸 =  ⋃ 𝑘𝑚∞
𝑚=0   , where Km is 𝑤∗ -compact, we can consider for all 

𝑛,𝑚 ∈ ℕ, 
 𝐸𝑛  ∩  𝐾𝑚  ∩  𝐵𝑋∗  . 

 By [156] there exist 𝑤∗ -open sets 𝑉𝑛 such that if we set 𝐴𝑛  =  𝐸𝑛
𝑤∗

 ∩  𝑉𝑛 , then 

𝐸𝑛  ⊆  𝐴𝑛  ⊆  𝐸𝑛
‖·‖
   and 𝐴𝑛 is 𝑤

∗  − 𝐿𝑅𝐶. 
Each 𝐴𝑛 is both norm 𝐹𝜎  and norm 𝐺𝛿. So for each 𝑛 ∈ ℕ, 𝐴𝑛\ ⋃   

𝑘<𝑛 𝐴𝑘 will in particular 

be norm 𝐹𝜎. Now we write 

𝐴𝑛\⋃𝐴𝑘

 

𝑘<𝑛

 = ⋃ 𝐻𝑛,𝑚

∞

𝑚=0

, 

where each 𝐻𝑛,𝑚 is norm closed. By arrangement, we assume 𝐻𝑛,𝑚 ⊆  𝐻𝑛,𝑚+1 for all 𝑚 ∈

ℕ and, for convenience, we set 𝐻𝑛,−1  =  ∅. Let 𝜋 ∶  ℕ2 −→  ℕ be a bijection and for all 

𝑖, 𝑗 ∈  ℕ, define 

𝐿𝜋(𝑖,𝑗)  =  𝐻𝑖,𝑗\𝐻𝑖,𝑗−1. 
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     Clearly 𝐸 is the disjoint union of the 𝐿𝑛 and 𝐿𝑛
𝑤∗

 ⊆  𝐸𝑝
𝑤∗

 ⊆  𝐸, where 𝑛 =  𝜋(𝑝, 𝑞). 

Given 𝑓 ∈  𝐸, let 

 𝐼(𝑓) =  {𝑛 ∈ ℕ ∶  𝑓 ∈  𝐿𝑛
𝑤∗

 } 𝑎𝑛𝑑 𝑛(𝑓) = min 𝐼(𝑓). 

 Now fix 𝜀 >  0. We define 𝜓 ∶  𝐸 −→  (1, 1 +  𝜀) by 

𝜓(𝑓) =  1 +
1

2
 𝜀 ·  2−𝑛 (𝑓)  (1 +

1

4
 ∑ 2−𝑖

 𝑖∈𝐼(𝑓)

   ) . 

Set 𝜀𝑛  =
1

96
𝜀 ·  4−𝑛 . Fix 𝑛. As 𝜓(𝐿𝑛) ⊆  (1, 1 +  𝜀), there is a finite partition of 𝐿𝑛 into 

sets J, such that diam(𝜓(𝐽)) ≤  𝜀𝑛 . 

     Let 𝑃 =  {𝐼 ⊆  𝐽 ∶ 𝐼 is 𝜀𝑛-separated}. This set is non-empty because any singleton is in 

𝑃. For a chain 𝑇 ⊆  𝑃 we have  ⋃ 𝑁 ∈  𝑃 
𝑁∈𝑇 , so we can apply Zorn’s Lemma to get 𝛤 ⊆

 𝐽, a maximal 𝜀𝑛-separated subset of 𝐽. By maximality, 𝛤 is also an 𝜀𝑛-net. And by the 𝜀𝑛-

separation, for a totally bounded set 𝑀 ⊆  𝐽, the intersection 𝑀 ∩  𝛤 is finite. By 

considering the finite union of these 𝛤, there exists 𝛤𝑛  ⊆  𝐿𝑛, with the property that given 

𝑓 ∈  𝐿𝑛 there exists ℎ ∈  𝛤𝑛   so that 

|𝜓(𝑓) −  𝜓(ℎ)| ≤  𝜀𝑛 and ||𝑓 −  ℎ|| ≤  𝜀𝑛. 

 Moreover, if 𝑀 ⊆  𝐿𝑛 is totally bounded, 𝑀 ∩ 𝛤𝑛 is finite. Now define 𝐵 =  ⋃ 𝛤𝑛
∞
𝑛=0  . 

We are now ready to define ⟦ · ⟧𝜙  𝑜𝑛 ℓ∞(𝐵). 

     For each 𝑓 ∈  𝐵 we pick a 𝐶∞ Orlicz function 𝜙𝑓 so that 

 𝜙𝑓 (𝛼) =  0 𝑖𝑓 𝛼 ≤
1

 𝜓(𝑓)
 , 

                                          𝜙𝑓 (𝛼) >  1 𝑖𝑓 𝛼 ≥
1

𝜃(𝑓)
 , where 𝜃(𝑓)  =  𝜓(𝑓)  −  𝜀𝑛. 

We define ‖  ·  ‖𝜙 with respect to these functions, as per Definition (4.1.3). By taking 

(1 +  𝜀)−1 and 1 as the constants in the hypothesis of Lemma (4.1.4) we have 𝑙𝜙(𝐵) ≅

 𝑙∞(𝐵) and ‖  ·  ‖∞ ≤ ‖  ·  ‖𝜙 ≤  (1 +  𝜀)‖  ·  ‖𝜙.              We embed 𝑋 ⊗𝜀  𝑌 into ℓ∞(𝐵) 

by setting 𝛱(𝑢)(𝑓)  =  ||𝑓𝑌 (𝑢)||𝑌 , 𝑓 ∈  𝐵. The coordinate map 𝑢 →  ||𝑓𝑌 (𝑢)|| is a 

seminorm which is 𝐶𝑘 smooth on the set where it is non-zero for each 𝑓 ∈  𝐵. Since 

||𝛱(𝑢)||
∞
 =  ||𝑢||, it follows that ||  ·  ||  ≤  ‖  ·  ‖𝜙   ≤  (1 +  𝜀)||  ·  || on X. 

     Suppose for the sake of contradiction that the remaining hypothesis of Lemma (4.1.5) 

does not hold. Then we can find 𝑢 ∈  𝑋 ⊗𝜀  𝑌 with ‖  𝑢  ‖𝜙  =  1, (𝑢𝑛) ⊆  𝑋 ⊗𝜀  𝑌 

with 𝑢𝑛  →  𝑢 and distinct (𝑓𝑛) ⊆ 𝐵 such that 𝜙𝑓𝑛 (||𝑓𝑛
𝑌 (𝑢𝑛)||) >  0, for all 𝑛. Then 

𝜓(𝑓𝑛)||𝑓𝑛
𝑌 (𝑢𝑛)|| >  1 for all 𝑛. Take a subsequence of (𝑓𝑛), again called (𝑓𝑛), such that 

𝜓(𝑓𝑛) → α for some 𝛼 ∈ ℝ. Now take (𝑔𝑛) ⊆  𝑆𝑌∗ such that ||𝑓𝑛
𝑌 (𝑢𝑛)||  =  𝑔𝑛(𝑓𝑛

𝑌 (𝑢𝑛)). 
Let (𝑓, 𝑔)  ∈  𝐵𝑋∗ × 𝐵𝑌∗  be an accumulation point of (𝑓𝑛 , 𝑔𝑛) in the product of the 𝑤∗ -
topologies. Then 𝑓 ⊗  𝑔 is a 𝑤∗ -accumulation point of (𝑓𝑛  ⊗ 𝑔𝑛) and 𝛼(𝑓 ⊗  𝑔)(𝑢)  ≥
 1. 
     The remainder of the proof is concerned with obtaining the contradiction 𝛼(𝑓 ⊗
 𝑔)(𝑢) <  1. 

 Case 1: 𝛼 =  1. With 𝛼 =  1, it is evident that 𝛼(𝑓 ⊗  𝑔)(𝑢) =  (𝑓 ⊗  𝑔)(𝑢) ≤  ||𝑢||. 

The following claim ensures ||𝑢|| <  1. 

 Claim (4.1.8)[82]: If 𝑣 ≠  0, then ||𝑣|| < ‖  𝑣  ‖𝜙. 
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 Let ||𝑣||  =  1 and pick 𝑝 ∈  𝐸, 𝑞 ∈  𝑆𝑌∗ such that 1 =  (𝑝 ⊗  𝑞)(𝑣). As noted above, this 

is possible because 𝐸 and 𝑆𝑌∗  are boundaries of 𝑋 and 𝑌 , respectively. By (1) above, let 

𝑟 ∈  𝐵 such that ||𝑝 − 𝑟||  ≤  𝜀𝑛 for an appropriate n. Observe that 𝜃(𝑟)((𝑟 ⊗  𝑞)(𝑣)) ≤

 ‖  𝑣  ‖𝜙 holds. Indeed,  

 ∑𝜙𝑙 (
||𝑙𝑌 (𝑣)||

 𝜃(𝑟)(𝑟 ⊗  𝑞)(𝑣)
 )  ≥  𝜙𝑟  (

||𝑟𝑌 (𝑣)||

 𝜃(𝑟)𝑞(𝑟𝑌 (𝑣))
)  ≥  𝜙𝑟  (

1

𝜃(𝑟)
)   >  1.

𝑙∈𝐵

 

Now to prove the claim, 

1 = (𝑝 ⊗  𝑞)(𝑣) 

=  (𝑟 ⊗  𝑞)(𝑣) + ((𝑝 −  𝑟) ⊗  𝑞)(𝑣) 

 =  𝜃(𝑟)(𝑟 ⊗  𝑞)(𝑣) +  (1 −  𝜃(𝑟))(𝑟 ⊗  𝑞)(𝑣) + ((𝑝 −  𝑟) ⊗  𝑞)(𝑣) 

≤  ‖  𝑣  ‖𝜙  +  (1 −  𝜃(𝑟))(𝑟 ⊗  𝑞)(𝑣) + ((𝑝 −  𝑟) ⊗  𝑞)(𝑣). 

 So we are done if (𝜃(𝑟)  −  1)(𝑟 ⊗  𝑞)(𝑣)  +  ((𝑟 −  𝑝)  ⊗  𝑞)(𝑣)  >  0. Indeed, 

 𝜃(𝑟) −  1 =  𝜓(𝑟) − 𝜀𝑛  −  1 

   ≥
1

2
 𝜀 ·  2−𝑛(𝑟) − 𝜀𝑛  

≥
1

2
 𝜀 ·  2−𝑛  −  𝜀𝑛 . 

Also, (𝑟 ⊗  𝑞)(𝑣) =  𝑟(𝑞𝑋(𝑣)) ≥  1 − ||𝑝 −  𝑟|| ·  ||𝑞𝑋(𝑣)|| ≥
1

2
 . Thus, 

(𝜃(𝑟) −  1)(𝑟 ⊗  𝑞)(𝑣) + ((𝑟 −  𝑝) ⊗  𝑞)(𝑣) ≥
1

4
 𝜀 ·  2−𝑛  −

1

2
 𝜀𝑛  −  𝜀𝑛 

=
1

4
 𝜀 ·  2−𝑛  −

3

2
 𝜀𝑛 

=
1

4
 𝜀 ·  2−𝑛  −

1

64
 𝜀 ·  4−𝑛  >  0. 

 And the claim is proven. 

    Case 2: α > 1.  

We’ll first prove 𝑓 ∈  𝐸. 

      Fix 𝑁 large enough so that 1 + 𝜀 · 2−𝑁  <
1

2
 (1 + 𝛼). Because 𝜓(𝑓𝑛) →  𝛼 we have 

𝜓(𝑓𝑚) >
1

2
 (1 +  𝛼)for all m large enough. Hence, 𝑛(𝑓𝑚) <  𝑁. Therefore, 𝑓𝑚  ∈   ⋃   

𝑘> 𝛼 . 

𝐿𝑘
𝑤∗

 for all such m. By 𝑤∗closure, 𝑓 ∈   ⋃   
𝑘 <𝑛 . 𝐿𝑘

𝑤∗

 ⊆  𝐸. 
        Now the aim is to prove 𝜓(𝑓)  >  𝛼. 
We can assume 𝑓𝑛  ≠  𝑓 for all 𝑛 ∈ ℕ, because the fn are distinct. Now fix the unique m 

such that 𝑓 ∈  𝐿𝑚 and let 

 𝐽 =  𝐼(𝑓) ∪ {𝑘 ∈ ℕ ∶  𝑘 ≥  𝑚 +  2}. 
 Clearly 𝑚 ∈  𝐼(𝑓). Let (𝑝, 𝑞)  ∈ ℕ2  such that 𝑚 =  𝜋(𝑝, 𝑞). We have 𝐿𝑚  ⊆  𝐴𝑝. Since 

𝐴𝑝 is 𝑤∗ -𝐿𝑅𝐶, there exists a 𝑤∗ -open set 𝑈 ∋  𝑓, such that 𝐴𝑝  ∩ 𝑈 is relatively norm 

compact. 

From before, 𝛤𝜋(𝑝,𝑘)  ∩  𝑈 is finite for all 𝑘 ∈ ℕ, since 𝛤𝜋(𝑝,𝑘)  ⊆  𝐴𝑝. So the set 

 𝑉 =  𝑈 ( ⋃ 𝐿𝑖
𝑤∗

  ∪

 

𝑖∈ℕ\𝐽

   ( ⋃  𝛤𝜋(𝑝,𝑘){𝑓}

𝑞

𝑘=0

) ) 
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  is 𝑤∗ -open. Moreover, because 𝑓
∈
⋃ 𝐿𝑖

𝑤∗ 
𝑖∈ℕ\𝐽    , we have 𝑓 ∈  𝑉. We assume from now 

on that 𝑓𝑛  ∈  𝑉. 
Claim (4.1.9)[82]: 𝑚 ∉  𝐼(𝑓𝑛). 
 If 𝑚 ∈  𝐼(𝑓𝑛), then 

 𝑓𝑛  ∈  𝐿𝑚
𝑤∗

 ∩  𝑉 ⊆  𝐿𝑚   ∩  𝑉 
𝑤∗

 =  𝐿𝑚  ∩  𝑉 
‖  ·   ‖

 ⊆  𝐿𝑚 
‖  ·   ‖

 ⊆  𝐻𝑝,𝑞. 

 It follows that 𝑓𝑛  ∈  𝐻𝑝,𝑘\𝐻𝑝,𝑘−1 = 𝐿𝜋(𝑝,𝑘) for some 𝑘 ≤  𝑞. On the other hand, 𝑓𝑛  ∈  𝐵, 

so 𝑓𝑛  ∈  𝐿𝜋(𝑝,𝑘)  ∩  𝐵 =  𝛤𝜋(𝑝,𝑘) . However, this cannot be the case, since 𝑓𝑛  ∈  𝑉 \{𝑓}. 

Claim (4.1.10)[82]: 𝐼(𝑓𝑛) ⊆  𝐽. 

 Let 𝑖 ∈  𝐼(𝑓𝑛). If 𝑖 ∉  𝐽, then 𝑓𝑛  ∈  ⋃  𝐿𝑗  ∩  𝑉 
𝑤∗ 

𝑗∈ℕ\𝐽    , but this contradicts 𝑓𝑛  ∈  𝑉. 

Claim (4.1.11)[82]: 𝜓(𝑓) −  𝜓(𝑓𝑛) ≥
1

16
 𝜀 ·  4−𝑚  =  6𝜀𝑚 . 

       First note 𝑛(𝑓𝑛)  ≥  𝑛(𝑓), using Claim (4.1.10) and 𝑛(𝑓)  =  𝑚𝑖𝑛 𝐼(𝑓)  =  𝑚𝑖𝑛 𝐽. There 

are two cases to consider. If 𝑛(𝑓𝑛)  >  𝑛(𝑓), then 

 𝜓(𝑓) − 𝜓(𝑓𝑛) ≥  1 +
1

2
 𝜀 · 2−𝑛(𝑓) − (1 +

3

4
 𝜀 · 2−𝑛(𝑓𝑛)  ≥

1

8
 𝜀 · 2−𝑛(𝑓)  ≥

1

8
 𝜀 · 2−𝑚. And 

if 𝑛(𝑓𝑛)  =  𝑛(𝑓), then 

𝜓(𝑓) −  𝜓(𝑓𝑛) ≥
1

8
 𝜀 ·  2 −𝑛(𝑓)  ( ∑ 2−𝑖

 𝑖∈𝐼(𝑓)

  −   ∑ 2−𝑖

𝑖∈𝐼(𝑓𝑛)

 ) 

  =
1

8
 𝜀 ·  2 −𝑛(𝑓)  ( ∑  2−𝑖

𝑖∈𝐼(𝑓)\𝐼(𝑓𝑛)

 −   ∑  2−𝑖

𝑖∈𝐼(𝑓𝑛)\𝐼(𝑓)

 ) 

≥
1

8
 𝜀 ·  2−𝑛 (𝑓) ( 2−𝑚  − ∑ 2−𝑖

𝑖∈𝐽\𝐼(𝑓)

  ) 

≥
1

8
 𝜀 ·  2 −𝑛(𝑓)  ·  2 −𝑚−1  ≥

1

16
 𝜀 ·  4−𝑚 

Claim (4.1.12)[82]: For ℎ ∈  𝐵, ||ℎ ⊗  𝑔||
𝜙
 ≤

1

𝜃(ℎ)
 . 

 If |(ℎ ⊗  𝑔)(𝑣)|  >
1

𝜃(ℎ)
 , then 

∑ 

 𝑙∈𝐵

𝜙𝑙(||𝑙
𝑌 (𝑣)||) ≥ 𝜙ℎ(||ℎ

𝑌 (𝑣)||) 

≥ 𝜙ℎ((ℎ ⊗ 𝑔)(𝑣)) > 1 =⇒ ||𝑣||
𝜙
> 1. 

 So, ||ℎ ⊗  𝑔||
𝜙
 =  𝑠𝑢𝑝 {|(ℎ ⊗  𝑔)(𝑣)|: ||𝑣||

𝜙
 ≤  1} ≤

1

𝜃(ℎ)
 . 

 We can now prove 𝛼(𝑓 ⊗  𝑔)(𝓍)  <  1. 𝐵𝑦 (1), take ℎ ∈  𝐵 such that ||𝑓 −  ℎ||  ≤
 𝜀𝑛 𝑎𝑛𝑑 |𝜓(𝑓)  −  𝜓(ℎ)|  ≤  𝜀𝑛. We then have 

𝛼||𝑓 ⊗  𝑔||
𝜙
 ≤  𝛼 (||ℎ ⊗  𝑔||

𝜙
 +  ||(𝑓 −  ℎ) ⊗  𝑔||

𝜙
) 

  ≤  𝛼 (||ℎ ⊗  𝑔||
𝜙
 +  ||(𝑓 −  ℎ) ⊗  𝑔||) 

≤  (𝛼
1

𝜃(ℎ)
 +  𝜀𝑛 ) . 

 So we are done if 𝛼(
1

𝜃(ℎ)
 +  𝜀𝑛)  <  1. Well, 
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 1 –
𝛼

𝜃(ℎ)
 −  𝛼𝜀𝑛  >  0 

⇐⇒ 𝜃(ℎ) −  𝛼 − 𝜀𝑛𝜃(ℎ)𝛼 >  0 

  ⇐⇒  𝜓(ℎ) − 𝜀𝑛  −  𝛼 − 𝜀𝑛𝜃(ℎ)𝛼 >  0. 
By claim 2𝑐, we have 𝜓(ℎ)  − 𝜀𝑛  −  𝛼 ≥  4𝜀𝑛 and since 𝜃(ℎ), 𝛼 <  2, it follows that 

𝜀𝑛𝜃(ℎ)𝛼 <  4𝜀𝑛 . 
 And so, 𝛼||𝑓 ⊗  𝑔||

𝜙
 <  1 =⇒  𝛼(𝑓 ⊗  𝑔)(𝑢) <  1. 

Corollary (4.1.13)[82]: Suppose 𝑋 has 𝑎 𝜎 − 𝑤∗ -𝐿𝑅𝐶 and 𝜎-𝑤∗ -compact boundary. Then 

𝑋 has a 𝐶∞ renorming.  

Proof. Apply Theorem (4.1.7) to 𝑋 ⊗𝜀  ℝ =  𝑋. 
 We can now prove Theorems (4.1.14) and (4.1.15) as corollaries of Corollary (4.1.13). 

Theorem (4.1.14)[82]: ([157]). 𝐼𝑓 (𝑋, ||  ·  ||) admits a boundary contained in 𝑎 ||  ·  || − 𝜎-

compact subset of 𝐵𝑋∗  , then 𝑋 admits an equivalent 𝐶∞  smooth norm that ε − approximates 

||  ·  ||. 
Proof. Any norm compact subset of 𝑋∗ is trivially 𝑤∗ - 𝐿𝑅𝐶. The result follows from 

Corollary (4.1.13). 

Theorem (4.1.15)[82]: ([158]). Let K be 𝑎 𝜎-discrete compact space. Then, given 𝜀 >

 0, 𝐶(𝐾) admits an equivalent 𝐶∞ smooth norm that 𝜀 −approximates || · ||
∞
 . 

Proof. Let 𝐾 =  ⋃ 𝐷𝑛
∞
𝑛=0  , where each 𝐷𝑛 is relatively discrete. Let 𝛿𝑡  be the usual 

evaluation functionals, 𝛿𝑡(𝑓)  =  𝑓(𝑡). Then 𝐸𝑛  =  {±𝛿𝑡 ∶  𝑡 ∈  𝐷𝑛} is 𝑤∗ -relatively 

discrete and so 𝑤∗ -𝐿𝑅𝐶. Moreover, 𝐸 =  ⋃ 𝐸𝑛
∞
𝑛=0   is a 𝑤∗ -compact boundary of 𝐶(𝐾) 

because given any 𝑓 ∈  𝐶(𝐾), there exists 𝑡 ∈  𝐾 such that ||𝑓||
∞
 =  |𝑓(𝑡)|, by 

compactness. 

     The corollaries below are new results. Before presenting them, a definition and a theorem 

appearing in [156] are needed.  

Definition (4.1.16)[82]: ([156]). Let 𝑋 be a Banach space. We say a set 𝐹 ⊆  𝑋∗ is a relative 

boundary if, whenever 𝓍 ∈  𝑋 satisfies    𝑠𝑢𝑝{𝑓(𝓍) ∶  𝑓 ∈  𝐹}  =  1, there exists 𝑓 ∈  𝐹 

such that 𝑓(𝑥)  =  1.  

Example (4.1.17)[82]: Any boundary and any 𝑤∗ -compact set will be a relative boundary. 

Theorem (4.1.18)[82]: ([156]). Let 𝑋 be a Banach space and suppose we have sets 𝑆𝑛  ⊆
 𝑆𝑋 and an increasing sequence 𝐻𝑛  ⊆  𝐵𝑋∗  of relative boundaries, such that 𝑆𝑋  =  ⋃ 𝑆𝑛

∞
𝑛=0    

and the numbers 

 𝑏𝑛  = inf{sup{ℎ(𝓍): ℎ ∈  𝐻𝑛} : 𝓍 ∈  𝑆𝑛} 
 are strictly positive and converge to 1. Then for a suitable sequence (𝑎𝑛)𝑛=0

∞  of numbers 

the set 𝐹 =  ⋃  ∞
𝑛=0  𝑎𝑛(𝐻𝑛\𝐻𝑛 −1) is 𝑎 boundary of an equivalent norm. 

Given a Banach space with an unconditional basis (𝑒𝑖)𝑖∈𝐼 and 𝓍 =
  ∑ 𝓍𝑖𝑒𝑖𝑖∈𝐼   , 𝑙𝑒𝑡 𝑒𝑖

∗ (𝓍) =  𝑥𝑖  . For 𝜎 ⊆  𝐼, let 𝑃𝜎 denote the projection given by 𝑃𝜎(𝓍) =
  ∑ 𝑒𝑖

∗ (𝓍)𝑒𝑖𝑖∈𝜎   . 
 Corollary (4.1.19)[82]: Let 𝑋 have a monotone unconditional basis (𝑒𝑖)𝑖∈𝐼 , with 

associated projections 𝑃𝜎 , 𝜎 ⊆  𝐼, and suppose we can write 𝑆𝑋  =  ⋃ 𝑆𝑛
∞
𝑛=1    in such a way 

that the numbers  

𝑐𝑛  = inf{sup{||𝑃𝜎(𝓍)||: 𝜎 ⊆  𝐼, |𝜎| =  𝑛} : 𝑥 ∈  𝑆𝑛} 

 are strictly positive and converge to 1. Then 𝑋 admits an equivalent 𝐶∞ smooth norm. 

 Proof. Let 𝐻𝑛  =  {ℎ ∈  𝐵𝑋∗ ∶  |𝑠𝑢𝑝𝑝(ℎ)| ≤  𝑛}. Each 𝐻𝑛 is a relative boundary because it 

is 𝑤∗ -compact. Note that given 𝓍 ∈  𝑆𝑛 and 𝜎 ⊆  𝐼, 
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with |𝜎| =  𝑛, 

 ||𝑃𝜎(𝓍)|| = sup{𝑓(𝑃𝜎(𝓍)): 𝑓 ∈  𝐵𝑋∗  } 

 = sup{𝑃𝜎
∗ 𝑓(𝓍): 𝑓 ∈  𝐵𝑋∗  }. 

 Of course, |𝑠𝑢𝑝𝑝(𝑃𝜎
∗ 𝑓)| ≤  𝑛, for all 𝑓 ∈  𝐵𝑋∗  . And by monotonicity, ||𝑃𝜎

∗ |𝑓|   =
 1. 𝑆𝑜 𝑃𝜎

∗ (𝑓)  ∈  𝐻𝑛. Therefore, 

 0 <  𝑐𝑛   =  inf {sup{||𝑃𝜎(𝓍)||: 𝜎 ⊆  𝐼, |𝜎| =  𝑛} : 𝑥 ∈  𝑆𝑛} 

= inf{sup{𝑃𝜎
∗ 𝑓(𝓍): 𝑓 ∈  𝐵𝑋∗  , 𝜎 ⊆  𝐼, |𝜎| =  𝑛} : 𝑥 ∈  𝑆𝑛} 

= inf{sup{ℎ(𝓍): ℎ ∈  𝐻𝑛} : 𝑥 ∈  𝑆𝑛} =  𝑏𝑛 . 
 Thus, (𝑏𝑛) is a strictly positive sequence converging to 1. The set 𝐻𝑛\𝐻𝑛−1 𝑖𝑠 𝑤

∗ -𝐿𝑅𝐶. 

    By Theorem (4.1.18), there exists a sequence (𝑎𝑛)𝑛=0
∞ , where the set 𝐹 =

 ⋃  ∞
𝑛=0  𝑎𝑛(𝐻𝑛\𝐻𝑛 −1) is a 𝜎 − 𝑤∗ -LRC and 𝜎-𝑤∗ -compact boundary for an equivalent 

norm |||  ·  |||. By Corollary (4.1.13), 𝑋 will admit an equivalent 𝐶∞ −smooth that ε-

approximates |||  ·  |||. 
Corollary (4.1.20)[82]: Let 𝑋 be a Banach space with a monotone unconditional basis 
(𝑒𝑖)𝑖∈𝐼 and suppose for each 𝑥 ∈  𝑆𝑋 there exists 𝜎 ⊂  𝐼, |𝜎|  <  ∞, so that ||𝑃𝜎( 𝓍)||  =  1. 

Then 𝑋 admits an equivalent 𝐶∞ − smooth norm that ε-approximates the original norm.  

Proof. Let 𝐻𝑛  =  {ℎ ∈  𝐵𝑋∗ ∶  |𝑠𝑢𝑝𝑝(ℎ)|  ≤  𝑛}. As mentioned in the proof of Corollary 

(4.1.19), each 𝐻𝑛 is 𝑤∗ -compact and the finite union of 𝑤∗ -LRC sets. Now take 𝑥 ∈  𝑆𝑋 

and σ such that ||𝑃𝜎(𝓍)||  =  1. Then there is 𝑓 ∈  𝐵𝑋∗ such that 

1 =  ||𝑃𝜎(𝓍)|| =  𝑓(𝑃𝜎(𝓍)) =  𝑃𝜎
∗ 𝑓(𝓍). 

 Because (𝑒𝑖)𝑖∈𝐼 is monotone, ||𝑃𝜎
∗ ||  =  1 and so 𝑃𝜎

∗ 𝑓 ∈  𝐻|𝜎| . Therefore, the set 𝐻 =

 ⋃ 𝐻𝑛
∞ 
𝑛=0  is a boundary satisfying the hypothesis of Corollary (4.1.13). 

     Using Corollary (4.1.19) we can obtain new examples of spaces with equivalent 𝐶∞ 

smooth renormings.  

Example (4.1.21)[82]: Let ℕ =  ⋃ 𝐴𝑛
∞
𝑛=0  , where each 𝐴𝑛 is finite, and let 𝑝 =  (𝑝𝑛) be 

an unbounded increasing sequence of real numbers with 𝑝𝑛  ≥  1. For each sequence of real 

numbers 𝓍 =  (𝓍𝑛) define 

𝛷(𝓍) = sup{∑  

∞

𝑛=0

  ∑  |𝓍(𝑘)|𝑝𝑛 ∶  𝐵𝑛  ⊂  𝐴𝑛 𝑎𝑛𝑑 𝐵𝑛 𝑎𝑟𝑒 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡.

𝑘∈𝐵𝑛

 } 

 Proof. We define ℓ𝐴,𝑝 as the space of sequences x where 𝛷(𝓍/𝜆)  <  ∞ for some 𝜆 >  0, 

with norm ||𝓍||  =  𝑖𝑛𝑓{𝜆 >  0 ∶  𝛷(𝓍/𝜆)  ≤  1}. Define the subspace ℎ𝐴,𝑝 as the norm 

closure of the linear space generated by the basis 𝑒𝑛(𝑘)  =  𝛿𝑛,𝑘. [156] provides an 

appropriate sequence of subsets (𝑆𝑛) of 𝑆𝑋 so that Corollary (4.1.19) holds.  

Example (4.1.22)[82]: Let M be an Orlicz function with 

𝑀(𝑡) >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 >  0, and lim
𝑡→0

  (
𝑀(𝐾(𝑡))

 𝑀(𝑡)
 =  +∞, 

 for some constant 𝐾 >  0. Let hM (𝛤) be the space of all real functions 𝓍 defined on 𝛤 

with  ∑  𝛾∈𝛤  𝑀(𝓍𝛾 /𝜌)  <  ∞ for all 𝜌 >  0, with the norm  

||𝓍|| =  𝑖𝑛𝑓 { 𝜌 >  0 ∶   ∑  

𝛾∈𝛤

 𝑀 (
 𝓍𝛾

 𝜌
)   ≤  1}  . 

Proof. The canonical unit vector basis (𝑒𝛾)𝛾∈𝛤  of functions 𝑒𝛾(𝛽)  =  𝛿𝛾,𝛽  is 

unconditionally monotone. [156] provides suitable subsets of 𝑆𝑋 to ensure the hypothesis of 
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Corollary (4.1.19) holds. The final example concerns the predual of a Lorentz sequence 

space 𝑑(𝑤, 1, 𝐴), for an arbitrary set 𝐴. 

    Let 𝑤 =  (𝑤𝑛)  ∈  𝑐0\ℓ1 with each 𝑤𝑛 strictly positive and 𝑤0  =  1. We define 

𝑑(𝑤, 1, 𝐴) as the space of 𝓍: 𝐴 −→ ℝ for which 

||𝓍||  =  sup ∑𝑤𝑗  |𝓍(𝑎𝑗  )| ∶  (𝑎𝑗)  ⊆  𝐴 𝑖𝑠 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 )  <  ∞ 

∞

𝑗=0

 . 

The canonical predual 𝑑∗(𝑤, 1, 𝐴) of 𝑑(𝑤, 1, 𝐴) is given by the space of 𝑦 ∶  𝐴 −→ ℝ for 

which 𝒴  =  (𝒴
𝑘
 )  ∈  𝑐0, where 

 𝒴
𝑘
 =  𝑠𝑢𝑝 {

∑ |𝒴(𝑎𝑖)|
𝑘−1
 𝑖=0  

 ∑ 𝑤𝑖
𝑘−1
𝑖=0

   ∶  𝑎0, 𝑎1, . . . , 𝑎𝑘 −1 𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝐴 }, 

 with norm ||𝒴||  =  ||𝒴||
∞
. We can see that (𝑒𝑎)𝑎∈𝐴 is a monotone unconditional basis for 

both 𝑑(𝑤, 1, 𝐴) and 𝑑∗(𝑤, 1, 𝐴). The separable version of 𝑑∗(𝑤, 1, 𝐴) was first introduced 

in [29]. 

Example (4.1.23)[82]: 𝑋 =  𝑑∗(𝑤, 1, 𝐴) has a 𝐶∞ smooth equivalent renorming that ε-

approximates the original norm. 

 Proof. Let 𝑦 ∈  𝑆𝑋 . Since 𝒴  ∈  𝑐0, there exists 𝑘 ∈ ℕ such that 𝒴
𝑘
 =  1. It can also be 

shown 𝒴 ∈  𝑐0(𝐴) and thus the supremum in the definition of 𝒴
𝑘
 is attained. Following 

this, there exists 𝑎0, 𝑎1, . . . , 𝑎𝑘−1  ∈  𝐴 such that  

1 =  𝒴
𝑘
 =
∑ |𝒴(𝑎𝑖)|
𝑘−1
 𝑖=0

  ∑ 𝑤𝑖
𝑘−1
 𝑖=0  

 . 

 Setting 𝜎 =  {𝑎0, 𝑎1, . . . , 𝑎𝑘 −1}, we have ||𝑃𝜎(𝒴)||  =  1. By Corollary (4.1.20), 𝑋 has a 

𝐶∞ smooth equivalent renorming that ε-approximates the original norm. 

Section (4.2): Riemannian Manifolds with Constant Negative Curvature 

       For (𝑀, 𝑔) be a compact 𝑛-dimensional Riemannian manifold and let Δ𝑔 be the 

associated Laplace–Beltrami operator. Let 𝑒𝜆 denote the 𝐿2-normalized eigenfunction  

−Δ𝑔𝑒𝜆  =  𝜆
2𝑒𝜆, 

 so that 𝜆 ≥  0 is the eigenvalue of the operator −Δ𝑔. A classical result on the 𝐿𝑝-estimates 

of the eigenfunctions is due to Sogge [15]:  

‖𝑒𝜆‖𝐿𝑝(𝑀)  ≤  𝐶𝜆
𝛿(𝑝),                                                    (1) 

where 2 ≤  𝑝 ≤ ∞ and  

𝛿(𝑝) =  

{
 

 
𝑛 − 1

2
  (
1

2
 −
1

𝑝
 ), 2 ≤  𝑝 ≤  𝑝𝑐 ,

 𝑛 (
1

2
 −
1

𝑝
 ) −

1

2
 , 𝑝𝑐  ≤  𝑝 ≤  ∞,

 

if we set 𝑝𝑐  =
2𝑛+2

𝑛−1
 . These estimates (1) are saturated on the round sphere Sn by zonal 

functions for 𝑝 ≥  𝑝𝑐 and for 2 <  𝑝 ≤  𝑝𝑐 by the highest weight spherical harmonics. 

However, it is expected that (1) can be improved for generic Riemannian manifolds. It was 

known that one can get log improvements for ‖𝑒𝜆‖𝐿𝑝(𝑀), 𝑝𝑐 <  𝑝 ≤  ∞, when 𝑀 has 

nonpositive sectional curvature. Indeed, Bérard’s results [20] on improved remainder term 

bounds for the pointwise Weyl law imply that  

‖𝑒𝜆‖𝐿∞(𝑀)  ≤  𝐶𝜆
𝑛−1
2  (log 𝜆)−

1
2‖𝑒𝜆‖𝐿2(𝑀). 
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 Recently, Hassell and Tacy [82] obtained a similar (log 𝜆)−
1

2 gain for all 𝑝 >  𝑝𝑐 .  
       Similar 𝐿𝑝-estimates have been established for the restriction of eigenfunctions to 

geodesic segments. Let Π denotes the space of all unit-length geodesics. The works [163], 

[1], [156] (see also [26] for earlier results on hyperbolic surfaces) showed that  

sup
𝛾∈𝛱

 (∫ 
𝛾

 |𝑒𝜆|
𝑝 𝑑𝑠)

1
𝑝

≤  𝐶𝜆𝜎(𝑛,𝑝) ‖𝑒𝜆‖𝐿2(𝑀),                (2) 

where  

𝜎(2, 𝑝) =  

{
 

 
1

4
 , 2 ≤  𝑝 ≤  4,

1

2
 −
1

𝑝
 , 4 ≤  𝑝 ≤  ∞,

                             (3) 

𝜎(𝑛, 𝑝) =
𝑛 −  1

2
 −
1

𝑝
 , if 𝑝 ≥  2 and 𝑛 ≥  3.         (4) 

It was known that these estimates are saturated by the highest weight spherical harmonics 

when 𝑛 ≥  3 on round sphere Sn, as well as in the case of 2 ≤  𝑝 ≤  4 when 𝑛 =  2, while 

in this case the zonal functions saturate the bounds for 𝑝 ≥  4. 
       There are considerable works towards improving (2) for the 2-dimensional manifolds 

with nonpositive curvature. Chen [19] proved a (log 𝜆)−
1

2 gain for all 𝑝 >  4. Sogge and 

Zelditch [30] and Chen and Sogge [156] showed that one can improve (2) for 2 ≤  𝑝 ≤  4, 

in the sense that  

sup
𝛾∈𝛱 

  (∫ 
𝛾

 |𝑒𝜆|
𝑝 𝑑𝑠)

1
𝑝

 =  𝑜 (𝜆
1
4).                                 (5) 

Recently, using the Toponogov’s comparison theorem, Blair and Sogge [162] obtained log 

improvements for 𝑝 =  2:  

sup
𝛾∈𝛱

  (∫ 
𝛾

 |𝑒𝜆|
2 𝑑𝑠)

1
2

≤  𝐶𝜆
1
4 (log 𝜆)−

1
4 ‖𝑒𝜆‖𝐿2(𝑀).           (6) 

Inspired by the works [162], [156], [168], 𝑋𝑖  and [160] was able to deal with the other 

endpoint 𝑝 =  4 and proved a (log log 𝜆)−
1

8 gain for surfaces with nonpositive curvature 

and a (log 𝜆)−
1

4 gain for hyperbolic surfaces  

sup
𝛾∈𝛱

  (∫ 
𝛾

 |𝑒𝜆|
4 𝑑𝑠)

1
4

 ≤  𝐶𝜆
1
4 (log 𝜆)−

1
4 ‖𝑒𝜆‖𝐿2(𝑀).         (7) 

In the 3-dimensional case, under the assumption of nonpositive curvature, Chen [19] also 

proved a (log 𝜆)−
1

2 gain for all 𝑝 >  2. With the assumption of constant negative curvature, 

Chen and Sogge [156] showed that  

sup
𝛾∈𝛱

  (∫ 
𝛾

 |𝑒𝜆|
2 𝑑𝑠)

1
2

=  𝑜 (𝜆
1
2).                        (8) 

Hezari and Rivière [165] and Hezari [164] used quantum ergodic methods to get logarithmic 

improvements at critical exponents in the cases above on negatively curved manifolds for a 

density one subsequence.  
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We prove a (log 𝜆)−
1

2 gain for the 𝐿2 geodesic restriction bounds on 3-dimensional 

compact Riemannian manifolds with constant negative curvature. We mainly follow the 

approaches developed in [162], [156], [160]. We derive an explicit formula for the wave 

kernel on ℍ3, which is one of the key steps to get the (log 𝜆)−
1

2 gain. We shall lift all the 

calculations to the universal cover ℍ3 and then use the Poincaré half-space model to derive 

the explicit formulas of the mixed derivatives of the distance function restricted to the unit 

geodesic segments. Then we decompose the domain of the distance function and compute 

the bounds of various mixed derivatives explicitly, since it was observed in [156] and [160] 

that the desired kernel estimates follow from the oscillatory integral estimates and the 

estimates on the mixed derivatives. Moreover, whether one can get similar logarithmic 

improvements on 3-dimensional manifolds with nonpositive curvature is still an interesting 

open problem. One of the technical difficulties is that these manifolds may not have 

sufficiently many totally geodesic submanifolds (see [156]). We shall assume that the 

injectivity radius of M is sufficiently large, and fix γ to be a unit length geodesic segment 

parameterized by arclength.  

Theorem (4.2.1)[160]: Let (𝑀, 𝑔) be a 3-dimensional compact Riemannian manifold of 

constant negative curvature, let 𝛾 ⊂  𝑀 be a fixed unit-length geodesic segment. Then for 

𝜆 ≫  1, there is a constant 𝐶 such that  

‖𝑒𝜆‖𝐿2(𝛾)  ≤  𝐶𝜆
1
2 (log 𝜆)−

1
2 ‖𝑒𝜆‖𝐿2(𝑀).                 (9) 

Moreover, if Π denotes the set of unit-length geodesics, there exists a uniform constant 𝐶 =
 𝐶(𝑀, 𝑔) such that  

sup
𝛾∈𝛱

  (∫ 
𝛾

 |𝑒𝜆|
2 𝑑𝑠)

1
2

 ≤  𝐶𝜆
1
2 (log 𝜆)−

1
2 ‖𝑒𝜆‖𝐿2(𝑀).           (10)  

       We start with some standard reductions. Since the uniform bound (10) follows from a 

standard compactness argument in [156], we only need to prove (9). Let 𝑇 ≫  1. Let 𝜌 ∈
 𝑆(ℝ) such that 𝜌(0)  =  1 and supp �̂�  ⊂  [−1/2, 1/2], then it is clear that the operator 

𝜌 (𝑇(𝜆 − √−Δ𝑔)) reproduces eigenfunctions, namely 𝜌 (𝑇(𝜆 − √−Δ𝑔)) 𝑒𝜆  =  𝑒𝜆. 

Let 𝜒 =  |𝜌|2. After a standard 𝑇𝑇∗ argument, we only need to estimate the norm  

‖𝜒(𝑇 (𝜆 − √−Δ𝑔))‖

𝐿2(𝛾)→𝐿2(𝛾)

.                         (11) 

Choose a bump function 𝛽 ∈  𝐶0
∞ (ℝ) satisfying  

𝛽(𝜏 )  =  1 for |𝜏 |  ≤  3/2, and 𝛽(𝜏 ) = 0, |𝜏 |  ≥  2. 
By the Fourier inversion formula, we may represent the kernel of the operator 

𝜒 (𝑇(𝜆 − √−𝛥𝑔)) as an operator valued integral 

 𝜒 (𝑇 (𝜆 − √−𝛥𝑔)) (𝑥, 𝑦)

=
1

2𝜋𝑇
 ∫ 𝛽(𝜏 )�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏  (𝑒−𝑖𝜏√−𝛥𝑔 ) (𝑥, 𝑦)𝑑𝜏 

+
1

2𝜋𝑇
 ∫  (1 −  𝛽(𝜏 ))�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏  (𝑒−𝑖𝜏√−𝛥𝑔 ) (𝑥, 𝑦)𝑑𝜏 

=  𝐾0(𝑥, 𝑦)  +  𝐾1(𝑥, 𝑦). 
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 Then one may use a parametrix to estimate the norm of the integral operator associated with 

the kernel 𝐾0(𝛾(𝑡), 𝛾(𝑠)) (see [156])  

‖𝐾0‖𝐿2[0,1]→𝐿2[0,1]  ≤  𝐶𝜆𝑇
−1.                 (12) 

Since the kernel of 𝜒(𝑇(𝜆 + √−𝛥𝑔)) is 𝑂(𝜆−𝑁) with constants independent of 𝑇, by 

Euler’s formula we are left to consider the integral operator 𝑆𝜆:  

𝑆𝜆ℎ(𝑡) =
1

𝜋𝑇
  ∫  

∞

−∞

 ∫  
1

0

 (1 

−  𝛽(𝜏 ))�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏  (cos 𝜏 √−𝛥𝑔) (𝛾(𝑡), 𝛾(𝑠))ℎ(𝑠)𝑑𝑠𝑑𝜏.                       (13) 

As in [162], [156], [160], we use the Hadamard parametrix and the Cartan–Hadamard 

theorem to lift the calculations up to the universal cover (ℝ3, 𝑔) of (𝑀, 𝑔). Let Γ denote the 

group of deck transformations preserving the associated covering map 𝜅 ∶  ℝ3  →  𝑀 

coming from the exponential map from 𝛾(0) associated with the metric 𝑔 on 𝑀. The metric 

𝑔 is its pullback via 𝜅. Choose also a Dirichlet fundamental domain, 𝐷 ≃ 𝑀, for 𝑀 centered 

at the lift 𝛾(0) of 𝛾(0). Let 𝛾(𝑡), 𝑡 ∈ ℝ, satisfy 𝜅(𝛾(𝑡))  =  𝛾(𝑡), where 𝛾 is the unit speed 

geodesic containing the geodesic segment {𝛾(𝑡): 𝑡 ∈  [0, 1]}. Then 𝛾(𝑡) is also a geodesic 

parameterized by arclength. We measure the distances in (ℝ3, �̃�) using its Riemannian 

distance function 𝑑𝑔( · ,· ). Moreover, we recall that if �̃� denotes the lift of 𝑥 ∈  𝑀 to 𝐷, 

then ( 

(cost √−𝛥𝑔) (𝑥, 𝑦)  =  ∑  

𝛼∈𝛤

 (cost − √𝛥�̃�) (�̃�, 𝛼(�̃�)). 

Hence for 𝑡 ∈  [0, 1],  

𝑆𝜆ℎ(𝑡) =
1

𝜋𝑇
  ∑   

𝛼∈𝛤

∫  
ℝ

∫  
1

0

 (1 

−  𝛽(𝜏))�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏  (cos 𝜏 √−𝛥�̃�) (𝛾(𝑡), 𝛼(𝛾(𝑠))) ℎ(𝑠) 𝑑𝑠𝑑𝜏. 

 As in [162] and [160], we denote the R-tube about the infinite geodesic 𝛾 by  

𝑇𝑅(𝛾) =  {(𝑥, 𝑦, 𝑧) ∈  ℝ
3 ∶  𝑑�̃�((𝑥, 𝑦, 𝑧), 𝛾)  ≤ ℝ}               (14) 

and  

𝛤T𝑅(𝛾)  =  {𝛼 ∈  𝛤 ∶  𝛼(𝐷) ∩  𝑇𝑅(𝛾)  =  ∅}. 

From now on we fix 𝑅 ≈  Inj𝑀. We will see that T𝑅(𝛾) plays a key role in the proof of 

Lemma (4.2.5). Then we decompose the sum  

𝑆𝜆ℎ(𝑡) =  𝑆𝜆
𝑡𝑢𝑏𝑒 ℎ(𝑡) + 𝑆𝜆

𝑜𝑠𝑐 ℎ(𝑡) =  ∑  

𝛼∈𝛤T𝑅(�̃�)

 𝑆𝜆,𝛼
𝑡𝑢𝑏𝑒 ℎ(𝑡) 

+ ∑  

𝛼∉𝛤T𝑅(�̃�)

𝑆𝜆,𝛼
𝑜𝑠𝑐ℎ(𝑡), 𝑡 ∈  [0, 1]. 

Then by the finite propagation speed property and �̂�(𝜏 )  =  0 if |𝜏 |  ≥  1, we have  

𝑑�̃� (𝛾(𝑡), 𝛼(𝛾(𝑠)))  ≤  𝑇, 𝑠, 𝑡 ∈  [0, 1].  

As observed in [162],  

#{𝛼 ∈  𝛤T𝑅(𝛾) ∶  𝑑�̃�(0, 𝛼(0))  ∈  [2𝑘, 2𝑘 + 1]}  ≤  𝐶2
𝑘 .            (15) 

Thus the number of nonzero summands in 𝑆𝜆
𝑡𝑢𝑏𝑒 ℎ(𝑡) is 𝑂(𝑇) and in 𝑆𝜆

𝑜𝑠𝑐 ℎ(𝑡) is 𝑂(𝑒𝐶𝑇). 
Given 𝛼 ∈  𝛤 set with 𝑠, 𝑡 ∈  [0, 1] 
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𝐾𝛼(𝑡, 𝑠) =
1

𝜋𝑇
 ∫  

𝑇

−𝑇

 (1 −  𝛽(𝜏 ))�̂�(𝜏𝑇)𝑒𝑖𝜆𝜏  (cos 𝜏 √−𝛥�̃�) (𝛾(𝑡), 𝛼(𝛾(𝑠))) 𝑑𝜏. 

When 𝛼 =  𝐼 dentity, one can use the Hadamard parametrix to prove the same bound as 

(12) (see e.g. [19], p. 9)  

‖𝐾Id‖𝐿2[0,1]→𝐿2[0,1]   ≤  𝐶𝜆𝑇
−1.                      (16) 

If 𝛼 ≠  𝐼dentity, we set 𝜙(𝑡, 𝑠) =  𝑑�̃� (𝛾(𝑡), 𝛼(𝛾(𝑠))) , 𝑠, 𝑡 ∈  [0, 1]. Then by finite 

propagation speed and 𝛼 ≠  𝐼dentity, we have  

2 ≤ 𝜙(𝑡, 𝑠) ≤  𝑇, if 𝑠, 𝑡 ∈  [0, 1].                    (17) 
As in [156], one may use the Hadamard parametrix and stationary phase to show that 

|𝐾𝛼(𝑡, 𝑠)|  ≤  𝐶𝜆𝑇
−1𝑟−1  +  𝑒𝐶𝑇  , where 𝑟 =  𝑑�̃� (𝛾(𝑡), 𝛼(𝛾(𝑠))). However, we may get a 

much better estimate for 𝐾𝛼. To see this, we need to derive the explicit formula of the wave 

kernel on hyperbolic space. We may assume that (𝑀, 𝑔) has constant negative curvature −1, 

which implies that the covering manifold (ℝ3, 𝑔) is the hyperbolic space ℍ3. If we denote 

the shifted Laplacian operator by  

𝐿 =  𝛥�̃�  +
(𝑛 −  1)2

4
 =  𝛥�̃�  +  1 (for 𝑛 =  3), 

which has the property Spec(−𝐿)  =  [0,∞), then there are exact formulas for various 

functions of 𝐿 (see e.g. [169]). Indeed,  

ℎ(√−𝐿)𝛿𝑦(𝑥) =  −
1

(2𝜋)3/2
1

sinh 𝑟

𝜕

𝜕𝑟
 ℎ̂(𝑟), 

 where ℎ̂ is the Fourier transform defined by  

ℎ̂(𝑟) =
1

√2𝜋
  ∫  

∞

−∞

  ℎ(𝑘)𝑒−𝑖𝑟𝑘𝑑𝑘. 

If ℎ(𝑘) =
sin(𝑡𝑘)

𝑘
 , then ℎ̂(𝑟) =

√2𝜋

2
 1{𝑟≤|𝑡|}. Hence, for 𝑡 >  0,  

sin 𝑡√−𝐿

√−𝐿
 𝛿𝑦(𝑥) =

𝛿(𝑡 −  𝑟)

4𝜋 sinh 𝑟
 ,                               (18) 

where 𝑥, 𝑦 ∈ ℍ3 and 𝑟 =  𝑑�̃�(𝑥, 𝑦). Differentiating it yields  

cost √−𝐿 𝛿𝑦(𝑥) =
𝛿′(𝑡 −  𝑟)

4𝜋 sinh 𝑟
 .                               (19) 

Recall the following relation between 𝐿 and 𝛥�̃� (see e.g. [166])  

cost √−𝛥�̃�  =  cost √−𝐿  −  𝑡 ∫  
𝑡

0

 
𝐽1( √𝑡

2 − 𝑠2)

√𝑡2 − 𝑠2
  cos 𝑠 √−𝐿𝑑𝑠,      (20) 

where 𝐽1(𝑣) is the Bessel function  

𝐽1(𝑣) =  ∑  

∞

𝑘=0

(−1)𝑘

𝑘! (𝑘 +  1)!
 (
𝑣

2
)
2𝑘+1

 . 

We plug (19) into the relation (20) to see that for 𝑡 >  0,  

cost √−𝛥�̃� 𝛿𝑦(𝑥) =
𝛿′(𝑡 −  𝑟)

4𝜋 sinh 𝑟
−  𝑡 ∫  

𝑡

0

 
𝐽1(√𝑡

2  −  𝑠2)

√𝑡2  −  𝑠2
 
𝜕𝑠𝛿(𝑠 −  𝑟)

4𝜋 sinh 𝑟
 𝑑𝑠. 

 Thus, integrating by parts and noting that cost √−𝛥�̃� is even in t, we get the following 

explicit formula for the wave kernel “cost √−𝛥�̃�(𝑥, 𝑦)” on ℍ3  
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cost √−𝛥�̃� 𝛿𝑦(𝑥) 

=
1

4𝜋 sinh 𝑟
  [𝛿′(|𝑡| −  𝑟) − 𝐽1

′(0)|𝑡|𝛿(|𝑡| −  𝑟)  −
𝑟|𝑡|𝐺′(√𝑡2  −  𝑟2)

√𝑡2  −  𝑟2
 1{𝑟≤|𝑡|}] , (21) 

where 𝑡 ∈ ℝ \ {0}, and 𝐺(𝑣)  =  𝐽1(𝑣)/𝑣 is an entire function of 𝑣2, satisfying  

𝐺(𝑣)  ∼  𝐶𝑣−3/2 cos ( 𝑣 −
3𝜋

4
)   + ···, as 𝑣 →  +∞.       (22) 

Lemma (4.2.2)[160]: If 𝛼  ≠  𝐼dentity, we have 

 |𝐾𝛼(𝑡, 𝑠)|  ≤  𝐶𝜆𝑇
−1𝑒−𝑟/2, for 𝑡, 𝑠 ∈  [0, 1], 

where 𝑟 =  𝑑�̃� (𝛾(𝑡), 𝛼(𝛾(𝑠)))  ≥  1 and 𝐶 is a constant independent of 𝑇 and 𝑟.  

       Using this lemma and (15), we get   

∑  

𝛼∈𝛤T𝑅(�̃�)\{Id}

 𝐾𝛼(𝑡, 𝑠)  ≤  𝐶𝜆𝑇
−1  ∑  

1≤2𝑘≤𝑇

2𝑘𝑒 − 2
𝑘
2  ≤  𝐶𝜆𝑇−1.        (23) 

Consequently, by Young’s inequality and the estimate on 𝐾Id (16) we have  

‖𝑆𝜆
𝑡𝑢𝑏𝑒‖

𝐿2[0,1]→𝐿2[0,1]
 ≤  𝐶𝜆𝑇−1.                   (24) 

Proof. Since the formula of the wave kernel (21) consists of 3 terms, we should estimate 

their contributions separately. Integrating by parts yields   

|∫  
𝑇

−𝑇

 (1 −  𝛽(𝜏))�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏 𝛿(|𝜏 | −  𝑟)𝑑𝜏|  ≤  ∑  

𝜏=±𝑟

|
𝑑

𝑑𝜏
  (1 −  𝛽(𝜏))�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏|  

≤  𝐶𝜆,                                                    (25) 
since 𝛽, �̂�  ∈  𝑆(ℝ). Similarly,   

|∫  
𝑇

−𝑇

 (1 −  𝛽(𝜏))�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏 |𝜏|𝛿(|𝜏 | −  𝑟)𝑑𝜏|  =  | ∑  

𝜏=±𝑟

 (1 −  𝛽(𝜏))�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏 |𝜏|| 

≤  𝐶𝑟.                                                 (26) 
 Noting that 𝐽1(𝑣), 𝐽1

′(𝑣) are uniformly bounded for 𝑣 ∈ ℝ and 𝐺(𝑣) is an entire function of 

𝑣2, we see that 𝐺 (𝑣)/𝑣 is also uniformly bounded for 𝑣 ∈ ℝ. Moreover, by (22), there is 

some 𝑁 ≫ 1 such that  

|𝐺′(𝑣)/𝑣|  ≤  𝐶𝑣−5/2, for 𝑣 >  𝑁. 
This gives  

|∫  
𝑇

−𝑇

 (1 −  𝛽(𝜏))�̂�(𝜏/𝑇)𝑒𝑖𝜆𝜏   
𝑟|𝜏|𝐺′(√𝜏2  −  𝑟2)

√𝜏2  −  𝑟2
 1{𝑟≤|𝜏|}𝑑𝜏|  

≤  𝐶𝑟 ∫  
|𝜏|≥𝑟

 |𝜏| |
𝐺′(√𝜏2  −  𝑟2)

√𝜏2  −  𝑟2
|  𝑑𝜏  

   ≤  𝐶𝑟 (∫  
𝑁

0

 |𝜌 +  𝑟|𝑑𝜌 + ∫  
∞

𝑁

 |𝜌 +  𝑟||𝜌|−5/2𝑑𝜌) 

≤  𝐶𝑟(𝐶 +  𝐶𝑟),                                                                          (27) 
 where 𝜌 =  |𝜏 |  −  𝑟. Hence  

|𝐾𝛼(𝑡, 𝑠)|  ≤
𝐶𝜆 +  𝐶𝑟 +  𝐶𝑟2

𝑇 sinh 𝑟
  ≤  𝐶𝜆𝑇−1𝑒−𝑟/2. 
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       We estimate the kernels 𝐾𝛼(𝑡, 𝑠) with 𝛼 ∉  𝛤T𝑅(𝛾). From now on, we assume that 𝛼 ∉

 𝛤T𝑅(𝛾). We need a slight variation of the oscillatory integral theorem in [160]. Indeed, it is 

a detailed version of the estimates by Phong and Stein [167] on the oscillatory integrals with 

fold singularities.  

Proposition (4.2.3)[160]: Let 𝑎 ∈  𝐶0
∞ (ℝ2), let 𝜙 ∈  𝐶∞(ℝ2) be real valued and 𝜆 >  0, 

set  

𝑇𝜆𝑓(𝑡)  =  ∫  
∞

−∞

 𝑒𝑖𝜆𝜙(𝑡,𝑠) 𝑎(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, 𝑓 ∈  𝐶0
∞ (ℝ).  

If 𝜙𝑠𝑡
′′   =  0 on supp a, then  

‖𝑇𝜆𝑓‖𝐿2(ℝ)  ≤  𝐶𝑎,𝜙𝜆
−
1
2 ‖𝑓‖𝐿2(ℝ),  

where  

𝐶𝑎,𝜙  =  Cdiam(supp 𝑎)
1
2 {‖𝑎‖∞  +

∑  0≤𝑖,𝑗≤2 ‖𝜕𝑡
𝑖𝑎‖

∞
‖𝜕𝑡

𝑗
 𝜙𝑠𝑡
′′ ‖

∞

inf |𝜙𝑠𝑡
′′ |2

 }.      (28) 

Assume supp a is contained in some compact set 𝐹 ⊆ ℝ2. Denote the ranges of t and 𝑠 in 𝐹 

by 𝐹𝑡  ⊆  ℝ and 𝐹𝑠  ⊆  ℝ respectively. If for any s ∈ Fs, there is a unique 𝑡𝑐  =  𝑡𝑐(𝑠)  ∈  𝐹𝑡  
such that 𝜙𝑠𝑡

′′′(𝑡𝑐 , 𝑠)  =  0, and if 𝜙𝑠𝑡𝑡
′′′ (𝑡𝑐 , 𝑠) ≠  0 on 𝐹𝑠 , then  

‖𝑇𝜆𝑓‖𝐿2(ℝ)  ≤  𝐶𝑎,𝜙
′ 𝜆−

1
4 ‖𝑓‖𝐿2(ℝ), 

where  

𝐶𝑎,𝜙
′′  =  Cdiam(supp 𝑎)

1
4 {‖𝑎‖∞  +

∑  0≤𝑖,𝑗≤2  ‖𝜕𝑡
𝑖𝑎‖

∞
‖𝜕𝑡

𝑗
 𝜙𝑠𝑡
′′ ‖

∞

inf |𝜙𝑠𝑡
′′/(𝑡 −  𝑡𝑐(𝑠))|

2  } .  (29) 

 Dually, if for any 𝑡 ∈  𝐹𝑡, there is a unique 𝑠𝑐  =  𝑠𝑐(𝑡)  ∈  𝐹𝑠  such that 𝜙𝑠𝑡
′′ (𝑡, 𝑠𝑐)  =  0, and 

if 𝜙𝑡𝑠𝑠
′′ (𝑡, 𝑠𝑐)   =  0 on 𝐹𝑡, then  

‖𝑇𝜆𝑓‖𝐿2(ℝ)  ≤  𝐶𝑎,𝜙
′′  𝜆−

1
4‖𝑓‖𝐿2(ℝ), 

where  

𝐶𝑎,𝜙
′′  =  Cdiam(supp 𝑎)

1
4 {‖𝑎‖∞  +

∑  0≤𝑖,𝑗≤2  ‖𝜕𝑠
𝑖𝑎‖

∞
‖𝜕𝑡

𝑗
 𝜙𝑠𝑡
′′ ‖

∞

inf |𝜙𝑠𝑡
′′/(𝑠 −  𝑠𝑐(𝑠))|

2  } .  (30) 

The 𝐿∞-norm and the infimum are taken on supp a. The constant C > 0 is independent of 

𝜆, 𝑎, 𝜙 and 𝐹.  

Proof. Noting that the first part is due to non-stationary phase (see [160]) and the third part 

simply follows from duality, we only need to prove the second part. As in [160], by a 𝑇𝑇∗ 
argument, it suffices to estimate the kernel of 𝑇𝜆

∗ 𝑇𝜆 

𝐾(𝑠, 𝑠 )  = ∫   𝑒𝑖𝜆(𝜙(𝑡, 𝑠) − 𝜙(𝑡, 𝑠 ))𝑎(𝑡, 𝑠)𝑎(𝑡, 𝑠)𝑑𝑡. 

Let  

𝜑(𝑡, 𝑠, 𝑠) =
𝜙(𝑡, 𝑠) − 𝜙(𝑡, 𝑠)

𝑠 −  𝑠′
, for 𝑠 ≠  𝑠′, and 𝜑(𝑡, 𝑠, 𝑠)  =  𝜙𝑠

′(𝑡, 𝑠),  

�̃�(𝑡, 𝑠, 𝑠′)  =  𝑎(𝑡, 𝑠)𝑎(𝑡, 𝑠′). 
Then the kernel has the form  

𝐾(𝑠, 𝑠 ) =   ∫ 𝑒𝑖𝜆(𝑠−𝑠 )𝜑(𝑡,𝑠,𝑠
′) �̃�(𝑡, 𝑠, 𝑠′)𝑑𝑡.                  (31) 
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Using the mean value theorem, we have 𝜑𝑡
′(𝑡, 𝑠, 𝑠′)  =  𝜙𝑠𝑡

′′ (𝑡, 𝑠′′), where sis a number 

between s and s . By our assumptions, we see that there is a unique point 𝑡𝑐(𝑠
′′)  ∈  𝐹𝑡   such 

that 𝜙𝑠𝑡
′′ (𝑡𝑐(𝑠

′′), 𝑠′′)  =  0, and 𝜙𝑠𝑡𝑡
′′′ (𝑡𝑐(𝑠

′′), 𝑠′′)   =  0. Let 𝜃 >  0. Select 𝜂 ∈  𝐶0
∞ (ℝ) 

satisfying 𝜂(𝑡)  =  1, |𝑡|  ≤  1, and 𝜂(𝑡)  =  0, |𝑡|  ≥  2. Then we decompose the oscillatory 

integral into two parts. First,  

|∫ 𝑒𝑖𝜆(𝑠−𝑠
′)𝜑�̃�𝜂 ((𝑡 −  𝑡𝑐(𝑠))/𝜃) 𝑑𝑡| ≤  4𝜃‖𝑎‖∞

2 . 

Then integrating by parts yields if 𝑠 ≠  𝑠′ ,   

|∫ 𝑒𝑖𝜆(𝑠−𝑠
′)𝜑�̃�𝜂 ((𝑡 −  𝑡𝑐(𝑠

′′))/𝜃) 𝑑𝑡| 

 ≤  (𝜆|𝑠 −  𝑠′|)−2  ∫  
|𝑡−𝑡𝑐(𝑠

′′)|>𝜃
|
| 𝜕

𝜕𝑡

(

 
 1

𝜑𝑡
′

𝜕

𝜕𝑡
(
�̃� (1 −  𝜂 ((𝑡 −  𝑡𝑐(𝑠

′′))/𝜃))

𝜑𝑡
′ )

)

 
 
|
|   𝑑𝑡  

≤
𝐶 (∑  0≤𝑖,𝑗≤2  ‖𝜕𝑠

𝑖𝑎‖
∞
‖𝜕𝑡

𝑗
 𝜙𝑠𝑡
′′ ‖

∞
)
2

(𝜆|𝑠 − 𝑠′|)2 ∙ inf (|𝜙𝑠𝑡
′′ (𝑠 −  𝑠𝑐(𝑠))|

 
)
4  

 ∫  
|𝑡−𝑡𝑐(𝑠

′′)|>𝜃

 (|𝑡 −  𝑡𝑐(𝑠)|−4  +  𝜃−2|𝑡 −  𝑡𝑐(𝑠
′′)|−2)𝑑𝑡 

≤ 𝐶𝜃−3(𝜆|𝑠 − 𝑠′|)2
(∑  0≤𝑖,𝑗≤2  ‖𝜕𝑠

𝑖𝑎‖
∞
‖𝜕𝑡

𝑗
 𝜙𝑠𝑡
′′ ‖

∞
)
2

∙ inf (|𝜙𝑠𝑡
′′/(𝑠 −  𝑠𝑐(𝑠))|

 
)
4 , 

where 𝐶 is a constant independent of 𝜆, 𝑎, 𝜙 and 𝐹. If we set 𝜃 =  (𝜆|𝑠 −  𝑠′|)−
1

2 , then 

 |𝐾(𝑠, 𝑠′)|   ≤  𝐶 {‖𝑎‖∞
2  +

(∑  0≤𝑖,𝑗≤2  ‖𝜕𝑠
𝑖𝑎‖

∞
‖𝜕𝑡

𝑗
 𝜙𝑠𝑡
′′ ‖

∞
)
2

∙ inf (|𝜙𝑠𝑡
′′/(𝑠 −  𝑠𝑐(𝑠))|

 
)
4 }  (𝜆|𝑠 −  𝑠′|)−

1
2, if 𝑠 ≠  𝑠′.  

Hence,  

 |𝐾(𝑠, 𝑠′)|𝑑𝑠 ≤  𝐶𝑎,𝜙
′2 𝜆−

1
2 , 

which completes the proof by Young’s inequality. 

We will use 𝐶 to denote various positive constants independent of 𝑇. Using the 

Hadamard parametrix and stationary phase [156], we can write  

𝐾𝛼(𝑡, 𝑠)  =  𝑤 (𝛾(𝑡), 𝛼(𝛾(𝑠)))∑  

±

  𝑎±(𝑇, 𝜆; 𝜙(𝑡, 𝑠))𝑒
±𝑖𝜆𝜙(𝑡,𝑠)  +  𝑅𝛼(𝑡, 𝑠),  

where |𝑤(𝑥, 𝑦)|  ≤  𝐶, and for each 𝑗 =  0, 1, 2, . . ., there is a constant 𝐶𝑗 independent 

of 𝑇, 𝜆 ≥  1 so that 

|𝜕𝑟
𝑗
 𝑎±(𝑇, 𝜆;  𝑟)|  ≤  𝐶𝑗𝑇𝜆

−1𝑟−1−𝑗 , 𝑟 ≥  1.                (32) 

From the Hadamard parametrix with an estimate on the remainder term (see [27]), we see 

that with a uniform constant 𝐶  

|𝑅𝛼(𝑡, 𝑠)|  ≤  𝑒
𝐶𝑇  . 

 Noting that diam(supp 𝑎±) ≤ 2 and we have good control on the size of a± and its derivatives 

by (32), it remains to estimate the size of 𝜙𝑠𝑡
′′  and its derivatives. We may assume that (𝑀, 𝑔) 

is a compact 3-dimensional Riemannian manifold with constant curvature equal to −1. As 
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in [160], we will compute the various mixed derivatives of the distance function explicitly 

on its universal cover ℍ3. We consider the Poincaré half-space model  

ℍ3  =  {(𝑥, 𝑦, 𝑧) ∈  ℝ3 ∶  𝑧 >  0}, 
 with the metric 𝑑𝑠2  =  𝑧−2(𝑑𝑥2 +  𝑑𝑦2 +  𝑑𝑧2). Recall that the distance function for the 

Poincaré half-space model is given by  

dist((𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2))  

=  arcosh (1 +
(𝑥2 − 𝑥1)

2  +  (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2

2𝑧1𝑧2
) , 

where arcosh is the inverse hyperbolic cosine function  

arcosh(𝑥)  =  ln (𝑥 + √𝑥2  −  1) , 𝑥 ≥  1. 

Moreover, the geodesics are the straight vertical rays normal to the 𝑧 =  0-plane and the 

half-circles normal to the 𝑧 =  0-plane with origins on the 𝑧 =  0-plane. Without loss of 

generality, we may assume that 𝛾 is the z-axis. Let 𝛾(𝑡)  =  (0, 0, 𝑒𝑡), 𝑡 ∈ ℝ, be the infinite 

geodesic parameterized by arclength. Our unit geodesic segment is given by 𝛾(𝑡), 𝑡 ∈

 [0, 1]. Then its image 𝛼(𝛾(𝑠)), 𝑠 ∈  [0, 1], is a unit geodesic segment of 𝛼(𝛾). As before, 

we denote the distance function 𝑑�̃� (𝛾(𝑡), 𝛼(𝛾(𝑠))) by 𝜙(𝑡, 𝑠). Since we are assuming 𝛼 ∉

 𝛤T𝑅(𝛾), we have  

2 ≤ 𝜙(𝑡, 𝑠) ≤  𝑇, if 𝑠, 𝑡 ∈  [0, 1].                           (33) 
If 𝛾 and 𝛼(𝛾) are contained in a common plane, it is reduced to the 2-dimensional case. We 

recall the following lemma from [160], where 𝛾(𝑡)  =  (0, 𝑒𝑡) in the Poincarè half-plane 

model.  

Lemma (4.2.4)[160]: Let 𝛼 ∉  𝛤T𝑅(𝛾). If 𝛼(𝛾) ∩ 𝛾  =  ∅, we have  

inf |𝜙𝑠𝑡
′′ |  ≥  𝑒−𝐶𝑇 . 

 
Fig. (1)[160] Pioncarè half-space model. 

Assume that 𝛼(𝛾) is a half-circle intersecting 𝛾 at the point (0, 𝑒𝑡0 ), 𝑡0  ∈ ℝ. If 𝑡0  ∉
 [−1, 2], which means the intersection point (0, 𝑒𝑡0) is outside some neighborhood of the 

geodesic segment {𝛾(𝑡) ∶  𝑡 ∈  [0, 1]}, then we also have  

inf |𝜙𝑠𝑡
′′ |  ≥  𝑒−𝐶𝑇 .  

If 𝑡0  ∈  [−1, 2], then  

inf |𝜙𝑠𝑡
′′ /(𝑡 −  𝑡0)|  ≥  𝑒

−𝐶𝑇 . 
 Moreover,  

‖𝜙𝑠𝑡
′′ ‖∞  + ‖𝜙𝑠𝑡𝑡

′′′ ‖∞  + ‖𝜙𝑠𝑡𝑡𝑡
′′′′ ‖∞  ≤  𝑒

𝐶𝑇 ,  
where 𝐶 >  0 is independent of 𝑇. The infimum and the norm are taken on the unit square 

{(𝑡, 𝑠) ∈  ℝ2 ∶  𝑡, 𝑠 ∈  [0, 1]}.  
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We assume that 𝛼 ∉  𝛤T𝑅(𝛾), and 𝛾 and 𝛼(𝛾) are not contained in a common plane. 

Without loss of generality, we set 𝑎 ≥  0, 𝑟 >  0, and 𝛽 ∈  (0,
𝜋

2
 ]. Indeed, one can properly 

choose a coordinate system to achieve this. Let 𝛾1(𝑡)  =  (0, 0, 𝑒
𝑡), and 𝛾2(𝑠)  =

 (𝑎 +
1−𝑒2𝑠

1+𝑒2𝑠
 rcos𝛽,

1−𝑒2𝑠

1+𝑒2𝑠
 𝑟sin𝛽,

2𝑟𝑒𝑠

1+𝑒2𝑠
). It is not difficult to verify that both of them are 

parameterized by arclength. Assume that  

{𝛾(𝑡) ∶  𝑡 ∈  [0, 1]}  =  {𝛾1(𝑡) ∶  𝑡 ∈  [0, 1]}, {𝛼(𝛾(𝑠)) ∶  𝑠 ∈  [0, 1]}   =  {𝛾2(𝑠): 𝑠 ∈  𝐼}, 
where 𝐼 is some unit closed interval of ℝ. Here 𝛾2(𝑠), 𝑠 ∈ ℝ, is a half circle centered at 

(𝑎, 0, 0) with radius 𝑟. 𝛽 is the angle between the y-axis and the normal vector of the plane 

containing the half circle. Moreover, these two geodesics are contained in a common plane 

when 𝛽 =  0. See Fig. (1).  

We are ready to compute φst explicitly and analyze its zero set. For simplification, 

we denote  

𝑑1  =  √𝑎
2  +  𝑟2  −  2arcos𝛽 and 𝑑2  =  √𝑎2  +  𝑟2  +  2arcos𝛽. 

Direct computation gives 

 𝜙(𝑡, 𝑠)  =  𝑑�̃�(𝛾1(𝑡), 𝛾2(𝑠))  =  arccosh (
𝐴

4𝑟𝑒𝑠+𝑡
)  , 𝑡 ∈  [0, 1], 𝑠 ∈  𝐼,  

where 𝐴 =  𝑒2𝑠+2𝑡  +  𝑒2𝑡  +  𝑑1
2𝑒2𝑠  +  𝑑2

2. Taking derivatives yields  

𝜙𝑠𝑡
′′  =

16𝑟𝑒2𝑠+2𝑡[(acos𝛽 −  𝑟)(𝑒2𝑠+2𝑡 + 𝑑2
2) + (acos𝛽 +  𝑟)(𝑒2𝑡  +  𝑑1

2𝑒2𝑠)]

(𝐴2  −  16𝑟2𝑒2𝑠+2𝑡)3/2
 . (34) 

The computation is technical. To see (34), we write  

𝑒𝑠+𝑡 cosh𝜙 =
𝐴

4𝑟
 . 

Taking derivatives on both sides, we obtain  

(𝜙𝑡
′  +  𝜙𝑠

′  +  𝜙𝑡𝑠
′′ )sinh𝜙 + (1 + 𝜙𝑡

′𝜙𝑠
′)cosh𝜙 =  𝑒𝑠+𝑡 /𝑟.          (35) 

Denote 𝑃 =  𝑒𝑠+𝑡 , 𝑄 =  𝑑1
2𝑒𝑠−𝑡 , 𝑅 =  𝑒𝑡−𝑠, and 𝑆 =  𝑑2

2𝑒−𝑠−𝑡. Since  

4rcosh𝜙 =  𝑃 +  𝑄 +  𝑅 +  𝑆, 
taking derivatives yields  

4𝑟𝜙𝑡
′sinh𝜙 =  𝑃 −  𝑄 +  𝑅 −  𝑆, 4𝑟𝜙𝑠

′sinh𝜙 =  𝑃 +  𝑄 −  𝑅 −  𝑆. 
Then we multiply both sides of (35) by 4𝑟2(sinh𝜙)2 and use the hyperbolic trigonometric 

identity (sinh𝜙)2  =  (cosh𝜙)2  −  1 to obtain  

4𝑟2(sinh𝜙)3𝜙𝑠𝑡
′′  =  (𝑎 cos 𝛽 −  𝑟)(𝑃 +  𝑆) + (𝑎 cos 𝛽 +  𝑟)(𝑄 +  𝑅). 

This gives our desired expression (34).  

       We denote the zero set of 𝜙𝑠𝑡
′′  by 𝑍. Clearly, if 𝑟 ≤  acos𝛽, then 𝑍 =  ∅. Assume that 

𝑟 > acos𝛽. In the interesting special case 𝛽 =
𝜋

2
 ,  

𝑍 =  {(𝑡, 𝑠) ∈ ℝ2 ∶  𝑡 =  𝑡0 or 𝑠 =  𝑠0}, 
where 𝑒2𝑡0  =  𝑎2 + 𝑟2 and 𝑒2𝑠0  =  1. See Fig. (2). In this case, we can easily see that 𝜙𝑠𝑡𝑡

′′′  

and 𝜙𝑡𝑠𝑠
′′′  vanish at the point (𝑡0, 𝑠0), as observed in [156]. In general, if 0 <  𝛽 ≤

𝜋

2
 , 
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Fig. (2)[160]: Zero set of 𝜙𝑠𝑡

′′ , 𝛽 =
𝜋

2
 . 

we have  

𝑍 =  {(𝑡, 𝑠) ∈  ℝ2 ∶  (𝑒2𝑡  −  𝑋0)(𝑒
2𝑠  −  𝑌0) =  𝐵},        (36) 

where  

𝑌0  =
𝑟 +  acos𝛽

𝑟 −  acos𝛽
, 𝑋0  =  𝑑1

2𝑌0, 𝐵 =
4𝑎3𝑟cos𝛽sin2𝛽

(𝑟 −  acos𝛽)2
 ,     (37) 

 and  

𝑋0𝑌0  −  𝐵 =  𝑑2
2.                              (38) 

When 𝛽 ∈  (0,
𝜋

2
 ), the set 𝑍 consists of two disconnected curves. See Fig. (3). It has four 

different asymptotes:  

𝑙1 ∶  𝑡 = ln √𝑋0 , 𝑙2 ∶  𝑡 = ln√𝑋0  −  𝐵/𝑌0, 

 𝑙3 ∶  𝑠 =  ln √𝑌0, 𝑙4 ∶  𝑠 =  ln √𝑌0  −  𝐵/𝑋0 .  

They intersect at four points, which constitute the “central square” in Fig. (3). Clearly, the 

“central square” converges to the point (𝑡0, 𝑠0) as 𝛽 →
𝜋

2
 . We set  

𝑒2𝑡±  =  𝑋0  ±
√𝐵𝑋0
𝑌0

  and 𝑒2𝑠±  =  𝑌0  ±
√𝐵𝑌0
𝑋0

 .                   (39) 

 

 

Fig. (3)[160]: Zero set of 𝜙𝑠𝑡
′′ , 𝛽 ∈  (0,

𝜋

2
 ). 

 The points (𝑡+, 𝑠+) and (𝑡−, 𝑠−) are a pair of vertices of 𝑍 in Fig. (3). They both converge 

to (𝑡0, 𝑠0) as 𝛽 →
𝜋

2
 . A simple computation shows that the straight line passing through 
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these two vertices, namely the “major axis”, is parallel to the straight line 𝑡 − 𝑠 =  0. This 

fact makes the “restriction trick” work in the proof of Lemma (4.2.5). Moreover, if 𝑠 >  𝑠+ 

or 𝑠 <  𝑠−, there is a unique 𝑡𝑐  =  𝑡𝑐(𝑠) such that (𝑡𝑐 , 𝑠)  ∈  𝑍. If 𝑡 >  𝑡+  or 𝑡 <  𝑡−, there 

is a unique 𝑠𝑐  =  𝑠𝑐(𝑡) such that (𝑡, 𝑠𝑐)  ∈  𝑍. These two facts are related to the oscillatory 

integral estimates in Proposition (4.2.3). Indeed, one can see from (36) that  

𝑒2𝑡𝑐(𝑠)  =  𝑋0  +
𝐵

𝑒2𝑠  −  𝑌0
 , 𝑒2𝑠𝑐(𝑡)  =  𝑌0  +

𝐵

𝑒2𝑡  −  𝑋0
 .               (40) 

Given 0 <    1, we denote the -neighborhood of 𝑍 by  

𝑍 =  {(𝑡, 𝑠) ∈  ℝ2 ∶  dist((𝑡, 𝑠), 𝑍)  ≤ 𝜖}. 

In particular, we set 𝑍 =  ∅ if 𝑍 =  ∅. See Figs. (4) and (5). We decompose the domain [0, 

1] of the phase function into 4 parts:  

     (i) Non-stationary phase part: [0, 1]2 \ 𝑍;  
     (ii) Left folds part: [0, 1]2  ∩  {(𝑡, 𝑠) ∈  𝑍 ∶  𝑠 >  𝑠+  + 𝜖 or 𝑠 <  𝑠−  − 𝜖 };   
     (iii) Right folds part: [0, 1]2  ∩  {(𝑡, 𝑠) ∈  𝑍 ∶  𝑡 >  𝑡+  + 𝜖  or 𝑡 <  𝑡−  − 𝜖 }; 
     (iv) Young’s inequality part: [0, 1]2  ∩  𝑍 ∩  ([𝑡−  − 𝜖 , 𝑡+  + 𝜖 ]  ×  [𝑠−  − 𝜖 , 𝑠+  + 𝜖 ]). 
 

 
Fig. (4)[160]: 𝑍 and its decomposition, 𝛽 =

𝜋

2
 . 

 

Fig. (5)[160]: 𝑍 and its decomposition, 𝛽 ∈  (0,
𝜋

2
 ). 
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We postpone the proof of the lemmas and finish proving Theorem (4.2.1). We always 

use C to denote various positive constants independent of and T. Recall that there are at 

most 𝑂(𝑒𝐶𝑇) summands with 𝛼 ∉  𝛤T𝑅(𝛾). We claim that the kernel 𝐾𝜆
𝑜𝑠𝑐 (𝑡, 𝑠) of the 

operator 𝑆𝜆
𝑜𝑠𝑐 is bounded by 𝑒𝐶𝑇  (𝜖𝜆 +  𝜖−2𝜆

3

4  +  −4𝜆
1

2 ). Indeed, one can properly choose 

some smooth cutoff functions to decompose the domain [0, 1]2 and then apply Proposition 

(4.2.3), Lemma (4.2.4) and Young’s inequality to the corresponding parts (1)–(4). Recall 

that Proposition (4.2.3) consists of “non-stationary phase”, “left folds” and “right folds”. 

Since the estimate (32) on the amplitude holds, it is not difficult to see that λ comes from 

Young’s inequality, −2𝜆
3

4 comes from one-side folds (or stationary phase), and −4𝜆
1

2 comes 

from non-stationary phase. Then Young’s inequality gives  

‖𝑆𝜆
𝑜𝑠𝑐‖𝐿2[0,1]→𝐿2[0,1]  ≤  𝑒

𝐶𝑇  (𝜖𝜆 +   𝜖−2𝜆
3
4  +   −4𝜆

1
2).             (41) 

Taking 𝑇 =  𝑐log𝜆 and 𝜖 =  𝑒−𝐶𝑇 𝑇−1, where 𝑐 >  0 is a small constant (𝑐 <  (12𝐶)−1), 

and combining (41) with the estimates on 𝑆𝜆
𝑡𝑢𝑏𝑒 (24) and 𝐾0 (12), we finish the proof.  

       Before proving the lemmas, we remark that in the Poincaré half-space model  

𝑇𝑅(𝛾)  =  {(𝑥, 𝑦, 𝑧) ∈  ℝ
3 ∶  𝑧 >  0 and 𝑧 ≥  √𝑥2  +  𝑦2/√(cosh𝑅)2  −  1}.  

See Fig. (1). Indeed, the distance between (0, 0, 𝑒𝑡) and (𝑥, 𝑦, 𝑧), 𝑧 >  0, is  

𝑓(𝑡) = arcosh (1 +
𝑥2  +  𝑦2  +  (𝑧 −  𝑒𝑡)2

2𝑧𝑒𝑡
)   =  arcosh (

𝑥2  +  𝑦2  +  𝑧2  +  𝑒2𝑡

2𝑧𝑒𝑡
)  .  

Setting 𝑓′(𝑡)  =  0 gives 𝑡 =  ln√𝑥2  +  𝑦2  +  𝑧2, which must be the only minimum point. 

Thus the distance between (𝑥, 𝑦, 𝑧) and the infinite geodesic �̃� is  

dist((𝑥, 𝑦, 𝑧), 𝛾)  =  arcosh (√1 + (𝑥/𝑧)2  +  (𝑦/𝑧)2). 

Since dist((𝑥, 𝑦, 𝑧), 𝛾)  ≤  𝑅 in 𝑇𝑅(𝛾), it follows that 𝑧 ≥  √𝑥2  +  𝑦2/√(cosh𝑅)2  −  1.  

Lemma (4.2.5)[160]: Let 𝛼 ∉  𝛤T𝑅(𝛾). Assume that 𝛾 and 𝛼(𝛾) are not contained in a 

common plane. Then we have  

inf |𝜙𝑠𝑡
′′ |  ≥ 𝜖2𝑒−𝐶𝑇 , 

 where the infimum is taken on [0, 1]2 \ 𝑍. If 𝑍 =  ∅, then we have  

inf |𝜙𝑠𝑡
′′ |/|𝑡 −  𝑡𝑐(𝑠)|  ≥  𝑒

−𝐶𝑇 , 
where the infimum is taken on [0, 1]2  ∩  {(𝑡, 𝑠) ∈  𝑍 ∶  𝑠 >  𝑠+  + 𝜖 or 𝑠 <  𝑠−  − 𝜖 }, and  

inf |𝜙𝑠𝑡
′′ |/|𝑠 −  𝑠𝑐(𝑡)|  ≥  𝑒

−𝐶𝑇 , 
where the infimum is taken on [0, 1]2  ∩  {(𝑡, 𝑠) ∈  𝑍 ∶  𝑡 >  𝑡+  +  𝜖 or 𝑡 <  𝑡−  − 𝜖 }. The 

constant 𝐶 >  0 is independent of  and 𝑇.  

Proof. First of all, we need to derive some useful results from the condition that 𝜙(𝑡, 𝑠)  ≤
 𝑇. Namely,  

(𝑒2𝑡  +  𝑑1
2)𝑒2𝑠  −  4𝑟(cosh𝑇)𝑒𝑡 𝑒𝑠  +  𝑒2𝑡  +  𝑑2

2  ≤  0, 𝑡 ∈  [0, 1], 𝑠 ∈  𝐼.  (42)  
olving the quadratic inequality (42) about 𝑒𝑠, we have  

𝑟

4cosh𝑇
 ≤  𝑒𝑠  ≤  4𝑟cosh𝑇.                         (43) 

The discriminant of (42) has to be nonnegative:  

16𝑟2(cosh𝑇)2𝑒2𝑡  −  4(𝑒2𝑡  +  𝑑1
2)(𝑒2𝑡  +  𝑑2

2)  ≥  0, 
from which we see that  

𝑎

𝑟
 ≤  2𝑒cosh𝑇,                                               (44) 
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𝑑1  ≤  2𝑒cosh𝑇,                                              (45) 

𝑟 ≥
1

2
cosh𝑇 ,                                                (46) 

which are similar to the observations in [160]. Moreover, to get the lower bounds of the 

derivatives, we need the condition that 𝛼 ∉  𝛤T𝑅(𝛾). We claim that there exists some 

constant 𝐶 independent of 𝑇 such that  

𝛼 ∉  𝛤T𝑅(𝛾) ⇒  𝑟 ≤  𝐶cosh𝑇 or 𝑑1  ≥
1

𝐶cosh𝑇
 .                 (47) 

Indeed, we are going to prove the contrapositive:  

𝑟 ≥  𝐶cosh𝑇 and 𝑑1  ≤  1 𝐶cosh𝑇 ⇒  𝛼 ∈  𝛤T𝑅(𝛾).               (48) 

We obtain this by showing that under the above assumptions on 𝑟 and 𝑑1, the segment 

𝛾2(𝑠), 𝑠 ∈  [−ln(4r
−1coshT), ln(4𝑟 cosh 𝑇)] is completely included in 𝑇𝑅(γ̃), which 

implies 𝛼 ∈  𝛤T𝑅(�̃�) by (43). The argument is generalized from [160]. Solving the polynomial 

system  

𝑧 =  {

√𝑥2  +  𝑦2/ √(cosh𝑅)2  −  1

(𝑥, 𝑦, 𝑧) = (𝑎 +
1 − 𝑒2𝑠

1 + 𝑒2𝑠
 𝑟cos𝛽,

1 − 𝑒2𝑠

1 + 𝑒2𝑠
 𝑟sin𝛽,

2𝑟𝑒𝑠

1 + 𝑒2𝑠
)
  

we can see that  

{𝛾2(𝑠) ∶  𝑠 ∈ ℝ}  ∩  𝑇𝑅(𝛾) 
=  {𝛾2(𝑠): 𝑑1

2𝑒4𝑠  +  2(𝑎2 + 𝑟2 −  2(cosh𝑅)2𝑟2)𝑒2𝑠  +  𝑑2
2  ≤  0}. (49) 

Note that 

 {
𝑟 ≥  𝐶cosh𝑇

𝑑1  ≤  (𝐶cosh𝑇)
−1   ⇒  𝑎/𝑟 ≤  1 + (𝐶cosh𝑇)−2  ≤  (cosh𝑅)2  −  1. 

This implies  

𝑎

𝑟
 ≤   √

(cosh𝑅)2  −  1

(cosh𝑅)2  −  cos2𝛽
 cosh𝑅, 

which is equivalent to  

(𝑎2  +  𝑟2  −  2(cosh𝑅)2𝑟2)2  −  𝑑1
2𝑑2

2  ≥  0. 
This means that the discriminant of the quadratic polynomial in terms of 𝑒2𝑠 in (49) is 

nonnegative. Thus when 𝑑1  >  0, the RHS of (49) becomes  

{𝛾2(𝑠): 𝑢− ≤  𝑒
2𝑠  ≤  𝑢+},                                 (50) 

where  

𝑢±  =
2(cosh𝑅)2𝑟2  −  𝑟2  −  𝑎2  ±  √(𝑎2  +  𝑟2  −  2(cosh𝑅)2𝑟2)2  −  𝑑1

2𝑑2
2

𝑑1
2 .   (51) 

It is easy to see that 

𝑢−  ≤
𝑑2
2

2(cosh𝑅)2𝑟2  −  𝑟2  −  𝑎2
 ≤

𝑑2
2

(cosh𝑅)2𝑟2
 ≤
(cosh𝑅)2  +  2cosh𝑅

(cosh𝑅)2
,       (52)  

𝑢+  ≥
(2(cosh𝑅)2  −  1)𝑟2  −  𝑎2

𝑑1
2  ≥

(cosh𝑅)2𝑟2

𝑑1
2  .                       (53) 

So if we choose 𝐶 =  4√cosh𝑅 +  2/√cosh𝑅, we see that  

𝑑1  >  0 and  {
𝑟 ≥  𝐶cosh𝑇

𝑑1  ≤  (𝐶cosh𝑇)
−1  {

𝑢− ≤ 𝑟
2(4cosh𝑇)−2

𝑢+ ≥ (4cosh𝑇)
2  ⇒  𝛼 ∈  𝛤T𝑅(�̃�) .       (54) 
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 In the easier case 𝑑1  =  0, we have 𝑢+  =  +∞. Consequently, we obtain (48), which is 

equivalent to our claim (47).  

Moreover, we notice that by 𝜙 ≤  𝑇, 

|𝜙𝑠𝑡
′′ | ≥ |𝜙𝑠𝑡

′′ |   (
𝐴

4𝑟𝑒𝑠 + 𝑡cosh𝑇
)
2

 

≥
|(acos𝛽 −  𝑟)(𝑒2𝑠+2𝑡  +  𝑑2

2) + (acos𝛽 +  𝑟)(𝑒2𝑡  +  𝑑1
2𝑒2𝑠)|

(cosh𝑇)2𝑟𝐴
. (55) 

Now we need to consider two cases: (𝐼) 𝑟 ≤  acos𝛽; (𝐼𝐼) 𝑟 > acos𝛽.  
Case (I): 𝜙𝑠𝑡

′′  has no zeros and it is not difficult to obtain the lower bound of |𝜙𝑠𝑡
′′ |. Indeed, 

if 𝑑1  ≥  1, by (55) and (43)–(44), we get  

|𝜙𝑠𝑡
′′ | ≥

𝐶(acos𝛽 +  𝑟)𝑑1
2𝑟2(cosh𝑇)−2

(cosh𝑇)2𝑟(𝑑1
2𝑟2(cosh𝑇)2)

 ≥  𝐶𝑒−6𝑇 .  

If 𝑑1  ≤  1, the claim (47) is needed. We assume that 𝑟 ≤  𝐶cosh𝑇. Then by (55) and (43)–

(46), we obtain  

|𝜙𝑠𝑡
′′ | ≥

𝐶(acos𝛽 +  𝑟)𝑒2𝑡

(cosh𝑇)2𝑟(𝑟2(cosh𝑇)2)
 ≥  𝐶𝑒−6𝑇 . 

Otherwise, we assume that 𝑑1  ≥  (𝐶cosh𝑇)
−1. Then similarly we have  

|𝜙𝑠𝑡
′′ | ≥

𝐶(acos𝛽 +  𝑟)𝑑1
2𝑟2(cosh𝑇)−2

(cosh𝑇)2𝑟(𝑟2(𝑐𝑜𝑠ℎ𝑇)2)
 ≥  𝐶𝑒−8𝑇 . 

Case (II): Since 𝜙𝑠𝑡
′′  has zeros, we prove the lower bound of |𝜙𝑠𝑡

′′ | on ([0, 1]  ×  𝐼) \ 𝑍 first. 

The claim (47) is essential here. However, for technical reasons we only need a slightly 

weaker but useful version of the claim:  

𝛼 ∉  𝛤T𝑅(�̃�)  ⇒  𝑟 ≤  𝐶(cosh𝑇)7 or 𝑑1  ≥  (𝐶cosh𝑇)
−1, 𝑟 ≥  𝐶(cosh𝑇)7.     (56) 

 (i) Assume that 𝑟 ≤  𝐶(cosh𝑇)7.  
       In this case, we use a “restriction trick” to reduce it to a one-variable problem. Let 𝛿 ∈
ℝ. We restrict 𝜙𝑠𝑡

′′ (𝑡, 𝑠) on the straight line 𝑠 −  𝑡 =  𝛿 and obtain a uniform lower bound 

independent of 𝛿. Indeed,  

|(acos𝛽 −  𝑟)(𝑒2𝑠+2𝑡 + 𝑑2
2) + (acos𝛽 +  𝑟)(𝑒2𝑡  +  𝑑1

2𝑒2𝑠)|  
=  (𝑟 −  acos𝛽)|𝑒2𝑠+2𝑡  −  𝑌0𝑒

2𝑡  −  𝑋0𝑒
2𝑠  +  𝑑2

2| 

    =  (𝑟 −  acos𝛽)|𝑒4𝑡  −  (𝑋0  +  𝑌0𝑒
−2𝛿)𝑒2𝑡  +  𝑑2

2𝑒−2𝛿|𝑒2𝛿   

=   (𝑟 −  acos𝛽)|(𝑒2𝑡  −  𝑒2𝜏−  )(𝑒2𝑡  −  𝑒2𝜏+)|𝑒2𝛿 , 
 

 
Fig. (6)[160]: Restriction on 𝑠 −  𝑡 =  𝛿. 
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where  

2𝑒2𝜏±  =  𝑋0  +  𝑌0𝑒
−2𝛿  ±   √(𝑋0  −  𝑌0𝑒

−2𝛿)2  +  4𝐵𝑒−2𝛿 . 

If 𝑟 −  acos𝛽 ≤
𝑟+acos𝛽

100
 𝑒−2𝛿 , then  

2𝑒2𝜏+  ≥  𝑌0𝑒
−2𝛿  ≥  100. 

 But 𝑡 ∈  [0, 1] implies that  

|𝑒2𝑡  −  𝑒2𝜏+|  ≥
1

2
 𝑒2𝜏+  ≥

1

4
 𝑌0𝑒

−2𝛿 .  

Let 𝑍, 𝛿 =  {𝑡 ∈ ℝ ∶  (𝑡, 𝑡 +  𝛿) ∈  𝑍𝜖}. Since the straight line 𝑠 −  𝑡 =  𝛿 is parallel to the 

“major axis” of 𝑍, we have  

dist(𝜏±, [0, 1] \ 𝑍, 𝛿)  ≥ 𝜖/√2.                           (57) 
See Fig. (6). This implies  

|𝑒2𝑡  −  𝑒2𝜏−|  ≥  1 −  𝑒−𝜖√2  ≥ 𝜖/10, fo𝑟 𝑡 ∈  [0, 1] \ 𝑍𝜖 , 𝛿.  
Thus  

(𝑟 −  acos𝛽)|(𝑒2𝑡  −  𝑒2𝜏−)(𝑒2𝑡  −  𝑒2𝜏+)|𝑒2𝛿  ≥  40(𝑟 +  acos𝛽). 

If 𝑟 −  acos𝛽 ≥
𝑟+acos𝛽

100
 𝑒−2𝛿 , then we use (57) again to see that  

|𝑒2𝑡  −  𝑒2𝜏±|  ≥  1 −  𝑒−𝜖√2  ≥  𝜖/10, for 𝑡 ∈  [0, 1] \ 𝑍𝜖 , 𝛿, 
which gives  

(𝑟 −  acos𝛽)|(𝑒2𝑡  −  𝑒2𝜏−)(𝑒2𝑡  −  𝑒2𝜏+)|𝑒2𝛿  ≥
𝜖2

10000
(𝑟 +  acos𝛽). 

So we can use (55), (43)–(46) and our assumption 𝑟 ≤  𝐶(cosh𝑇)7 to obtain the lower 

bound of |𝜙𝑠𝑡
′′ |, namely  

|𝜙𝑠𝑡
′′ | ≥

𝐶𝜖2(𝑟 +  acos𝛽)

(cosh𝑇)2𝑟(𝑟2(cosh𝑇)4)
 ≥  𝐶𝜖2𝑒−20𝑇 .             (58) 

(ii) Assume that 𝑑1  ≥  (𝐶cosh𝑇)
−1 and 𝑟 ≥  𝐶(cosh𝑇)7.  

      If |𝑟 −  acos𝛽|  ≤  1, we can use (43)–(46) and our assumption to get  

|(acos𝛽 −  𝑟)(𝑒2𝑠+2𝑡  +  𝑑2
2) + (acos𝛽 +  𝑟)(𝑒2𝑡  +  𝑑1

2𝑒2𝑠)|  ≥  𝐶𝑟3(cosh𝑇)−4, 
since (𝑟 + acos𝛽)(𝑑1

2𝑒2𝑠  +  𝑒2𝑡 )  ≥  𝐶𝑟3(cosh𝑇)−4 and (𝑟 −  acos𝛽)(𝑒2𝑠+2𝑡  +  𝑑2
2)  ≤

 𝐶𝑟2(cosh𝑇)2. 
       If |𝑟 −  aco𝑠𝛽|  ≥  1, then 𝑑1  ≥  |𝑟 −  acos𝛽| ≥ 1. Thus, (𝑟 +  acos𝛽)(𝑑1

2𝑒2𝑠  +
 𝑒2𝑡 )  ≥  𝐶𝑟3(cosh𝑇)−2 and (𝑟 −  acos𝛽)(𝑒2𝑠+2𝑡  +  𝑑2

2)  ≤  𝐶𝑟2(cosh𝑇)3, which imply  

|(acosβ −  𝑟)(𝑒2𝑠+2𝑡  +  𝑑2
2) + (acos𝛽 +  𝑟)(𝑒2𝑡  +  𝑑1

2𝑒2𝑠)|  ≥  𝐶𝑟3(cosh𝑇)−2. 
 Therefore, we use (55) and (43)–(46) to get  

|𝜙𝑠𝑡
′′ | ≥

𝐶𝑟3(cosh𝑇)−4

(cosh𝑇)2𝑟(𝑟2(cosh𝑇)4)
 ≥  𝐶𝑒−10𝑇 ,                (59)  

which is better than the bound 𝜖2𝑒−𝐶𝑇 . Since the lower bounds in (58) and (59) are 

independent of 𝛿, we finish the proof of the lower bound of |𝜙𝑠𝑡
′′ | on ([0, 1]  ×  𝐼) \ 𝑍𝜖 . Now 

we are ready to give the proof of the lower bounds of |𝜙𝑠𝑡
′′ /(𝑡 −  𝑡𝑐)| and |𝜙𝑠𝑡

′′ / (𝑠 −  𝑠𝑐)|. 
Denote  

𝜖0  =
1

2
ln( 1 +  √

𝐵

𝑋0𝑌0
 ) + 𝜖 .  

Part 1: Assume that  

([0, 1] ×  𝐼)  ∩  {(𝑡, 𝑠) ∈  𝑍𝜖 ∶  𝑠 >  𝑠+  +  𝜖 or 𝑠 <  𝑠−  − 𝜖} ≠  ∅.   (60) 
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Fig.(7)[160]: dist(𝑡𝑐, [0,1]) ≤ 𝜖/√2. 

We need to obtain the lower bound of |𝜙𝑠𝑡
′′ /(𝑡 −  𝑡𝑐)| on this set. A simple computation 

using (37)–(39) shows that  

𝑠 > 𝑠+  +  𝜖 ⇔  𝑒2𝑠  >  𝑌0𝑒
2𝜖0  , 

𝑠 < 𝑠− − 𝜖 ⇔ 𝑠 <  (𝑌0  −
𝐵

𝑋0
) 𝑒−2𝜖0  .                  (61) 

Hence  

|𝑒2𝑠  −  𝑌0|  ≥  (1 −  𝑒
−2𝜖0  )𝑌0. 

Since the “major axis” of 𝑍 is parallel to the straight line 𝑠 −  𝑡 =  0, by our assumption 

(60) we have 𝑡𝑐  ∈  [−𝜖√2, 1 +  𝜖√2]. See Fig. (7). Thus,  

|(acos𝛽 −  𝑟)(𝑒2𝑠+2𝑡  +  𝑑2
2) + (acos𝛽 +  𝑟)(𝑒2𝑡  +  𝑑1

2𝑒2𝑠)|/|𝑡 −  𝑡𝑐|  

=  (𝑟 −  acos𝛽) |
(𝑒2𝑡  −  𝑋0)(𝑒

2𝑠  −  𝑌0)  −  𝐵

𝑡 −  𝑡𝑐
|  

= (𝑟 −  acos𝛽) |
(𝑒2𝑡  −  𝑒2𝑡𝑐)(𝑒2𝑠  −  𝑌0)

𝑡 −  𝑡𝑐
|  

      =  (𝑟 −  acos𝛽)  ·  2𝑒2𝑡
′
 ·  |𝑒2𝑠  −  𝑌0|  

 ≥  (𝑟 −  acos𝛽)  ·  2𝑒−2𝜖√2  ·  (1 −  𝑒−2𝜖0  )𝑌0 

     ≥
𝜖

100
 (𝑟 +  acos𝛽), 

where we use the mean value theorem and 𝜖0  ≥  𝜖.  
First, we assume that 𝑟 ≤  𝐶(cosh𝑇)7. Then using (55) and (44)–(46), we obtain  

|
𝜙𝑠𝑡
′′

𝑡 −  𝑡𝑐
| ≥

𝐶𝜖(𝑟 +  acos𝛽)

(cosh𝑇)2𝑟(𝑟2(cosh𝑇)4)
 ≥  𝐶𝜖𝑒−20𝑇 . 

Under the other assumption that “𝑑1  ≥  (𝐶cosh𝑇)
−1 and 𝑟 ≥  𝐶(cosh𝑇)7”, since |𝑡 −

𝑡𝑐|  ≤  1 +  𝜖√2 and the lower bound (59) of |𝜙𝑠𝑡
′′ | is still applicable here, we get  

|
𝜙𝑠𝑡
′′

𝑡 −  𝑡𝑐
|  ≥  𝐶𝑒−10𝑇 . 

Part 2: Assume that  

([0, 1] ×  𝐼) ∩ {(𝑡, 𝑠) ∈  𝑍𝜖 ∶  𝑡 > 𝑡+  +  𝜖 𝑜𝑟 𝑡 < 𝑡− − 𝜖} ≠ ∅      (62) 
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We need to get the lower bound of |𝜙𝑠𝑡
′′ /(𝑠 − 𝑠𝑐)| on this set. It is also difficult to see from 

(37)-(39) that 

𝑡 > 𝑡+  +  𝜖 ⇔  𝑒2𝑡  >  𝑋0𝑒
2𝜖0  , 

𝑡 <  (𝑋0  −  𝐵/𝑌0)𝑒
−2𝜖0  .                                            (63) 

 Hence  

|𝑒2𝑡  −  𝑋0|  ≥  (1 −  𝑒
−2𝜖0  )max{𝑋0 , 1}. 

 If 𝑡 >  𝑡+  + 𝜖, clearly we have 𝑒2𝑠𝑐  ≥  𝑌0. See Fig. (3). If 𝐵 =  0, we have 𝑒2𝑠𝑐  =  𝑌0. If 
𝑡 <  𝑡−  −  𝜖 and 𝐵 >  0, then from (40) we get  

𝑒2𝑠𝑐 =  𝑌0  −
𝐵

𝑋0  −  𝑒
2𝑡 ≥  𝑌0  −

𝐵

𝑒2𝑡+2𝜖0  +  𝐵/𝑌0  −  𝑒
2𝑡  

=  𝑌0  −
𝐵

𝑒2𝑡(𝑒2𝜖  −  1) + 𝑒2𝑡+2𝜖 √
𝐵

(𝑋0𝑌0)
+
𝐵
𝑌0

  

≥  𝑌0  −
𝐵

√𝐵(𝑋0𝑌0)  +  𝐵𝑌0 
 

=  𝑌0  −
𝑋0𝑌0

√𝑋0𝑌0/𝐵  + 𝑋0
 ≥  𝑌0  −

𝑋0𝑌0
1 + 𝑋0

  

=
𝑌0

𝑋0  +  1
, 

where we use 𝑋0𝑌0/𝐵 >  1 from (38). Since the “major axis” of 𝑍 is parallel to the straight 

line 𝑠 −  𝑡 =  0, by the assumption (62) we get dist(𝑠𝑐 , 𝐼)  ≤  𝜖√2. See Fig. (8). 

 

 
Fig. (8)[160]: dist(𝑠𝑐 , 𝐼)  ≤ 𝜖√2. 

Therefore,  

|(acos𝛽 −  𝑟)(𝑒2𝑠+2𝑡  +  𝑑2
2) + (acos𝛽 +  𝑟)(𝑒2𝑡  +  𝑑1

2𝑒2𝑠)|/|𝑠 −  𝑠𝑐| 

 =  (𝑟 −  acos𝛽) |
(𝑒2𝑡  −  𝑋0)(𝑒

2𝑠  −  𝑌0) −  𝐵

𝑠 − 𝑠𝑐
|  
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=  (𝑟 −  acos𝛽) |
(𝑒2𝑡  −  𝑋0)(𝑒

2𝑠  −  𝑒2𝑠𝑐)

𝑠 −  𝑠𝑐
|  

=  (𝑟 −  acos𝛽)|𝑒2𝑡  −  𝑋0| ·  2𝑒
2𝑠′   

≥  (𝑟 −  acos𝛽)|𝑒2𝑡  −  𝑋0| ·  2𝑒
2(𝑠𝑐−1−𝜖√2)  

≥  (𝑟 −  acos𝛽)(1 −  𝑒−2𝜖0 )max{𝑋0 , 1} ·
2𝑌0

𝑋0  +  1
 𝑒−2−2𝜖√2  

≥
𝜖

100
(𝑟 +  acos𝛽),  

where we use the mean value theorem and 𝜖0  ≥  𝜖. Then we can obtain the lower bound of 

|𝜙𝑠𝑡
′′ /(𝑠 − 𝑠𝑐)| in the same way as Part 1. First, under the assumption that 𝑟 ≤  𝐶(cosh𝑇)7, 

we have  

|
𝜙𝑠𝑡
′′

𝑠 −  𝑠𝑐
|  ≥

𝐶𝜖(𝑟 +  acos𝛽)

(cosh𝑇)2𝑟(𝑟2(cosh𝑇)4)
 ≥  𝐶𝜖𝑒−20𝑇 . 

Under the other assumption that “𝑑1  ≥  (𝐶cosh𝑇)
−1 and 𝑟 ≥  𝐶(cosh𝑇)7”, noting that 

|𝑠 −  𝑠𝑐|  ≤  1 +  𝜖√2 and the bound (59) is still valid here, we get  

|
𝜙𝑠𝑡
′′

𝑠 −  𝑠𝑐
|  ≥  𝐶𝑒−10𝑇 .  

So far we have finished the proof of all the lower bounds.  

Lemma (4.2.6)[160]: For every multi-index 𝛼 =  (𝛼1, 𝛼2), 
 ‖𝐷𝛼𝜙‖∞  ≤  𝑒

𝐶𝛼𝑇 , 
where the norm is taken on the unit square [0, 1]2. The constant 𝐶𝛼 is independent of 𝑇. 
Proof. We only need to prove the upper bounds of mixed derivatives when 𝛼 ≠  𝐼dentity, 

since the bounds for pure derivatives are well known in [20], [162] and we do not use them. 

For convenience, we denote  

𝐺(𝑡, 𝑠) = (acos𝛽 −  𝑟)(𝑒2𝑠+2𝑡  +  𝑑2
2) + (acos𝛽 +  𝑟)(𝑒2𝑡  +  𝑑1

2𝑒2𝑠), 
 𝐸(𝑡, 𝑠)  =  𝐴2  −  16𝑟2𝑒2𝑠+2𝑡 . 

Recalling the formula (34), we have 𝜙𝑠𝑡
′′  =  16𝑟𝑒2𝑠+2𝑡 𝐺𝐸−3/2. By induction it is not 

difficult to see that for any multi-index 𝛼 =  (𝛼1, 𝛼2)  

𝐷𝛼  (
𝐺

𝐸𝛾
)   =  𝐸−𝛾−|𝛼| ∑  

 0≤|𝛽0|+···+|𝛽|𝛼||≤|𝛼|

 𝐶𝛾,𝛼,𝛽0,...,𝛽|𝛼|𝐷
𝛽0𝐺 ·  𝐷𝛽1𝐸 ···  𝐷𝛽|𝛼|𝐸, 

where |𝛼| =  𝛼1 + 𝛼2, and 𝐶𝛾,𝛼,𝛽0,...,𝛽|𝛼| are constants independent of 𝐺 and 𝐸. Thus,  

𝐷𝛼𝜙𝑠𝑡
′′  =

𝑟𝑒2𝑠+2𝑡

𝐸3/2+|𝛼|
  ∑  

0≤|𝛽0|+···+|𝛽|𝛼||≤|𝛼|

 𝐶𝛼,𝛽0,...,𝛽|𝛼|𝐷
𝛽0𝐺 ·  𝐷𝛽1𝐸 ···  𝐷𝛽|𝛼|𝐸. 

From the condition that 𝜙(𝑡, 𝑠)  ≥  2, we have 𝐴 ≥  4(cosh2)𝑟𝑒𝑠+𝑡 . Thus,  

𝐴 −  4𝑟𝑒𝑠+𝑡  ≥  (4cosh2 −  4)𝑟𝑒𝑠+𝑡 .  
If 𝑟 ≥  𝐶cosh𝑇, then by (43)–(46),  

𝐸 ≥  (𝐴 −  4𝑟𝑒𝑠+𝑡)2  ≥  𝐶𝑟2𝑒2𝑠+2𝑡  ≥  𝐶𝑟4(cosh𝑇)−2,  
|𝐷𝛼𝐸|  ≤  𝐶𝛼𝑟

4(cosh𝑇)8, |𝐷𝛼𝐺|  ≤  𝐶𝛼𝑟
3(cosh𝑇)5. 

Hence,  

|𝐷𝛼𝜙𝑠𝑡
′′ | ≤

𝐶𝛼𝑟(𝑟cosh𝑇)
2

(𝑟4(cosh𝑇)−2)3/2+|𝛼|
𝑟3(cosh𝑇)5(𝑟4(cosh𝑇)8)|𝛼|  ≤  𝐶𝛼𝑒

(10|𝛼|+10)𝑇  . 

 If 𝑟 ≤  𝐶cosh𝑇, then by (43)–(46), 

𝐸 ≥  (𝐴 −  4𝑟𝑒𝑠+𝑡)2  ≥  𝐶𝑟2𝑒2𝑠+2𝑡 ≥  𝐶(cosh𝑇)−6,  
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 |𝐷𝛼𝐸|  ≤  𝐶𝛼(cosh𝑇)
12, |𝐷𝛼𝐺|  ≤  𝐶𝛼(cosh𝑇)

8. 
Therefore,  

|𝐷𝛼𝜙𝑠𝑡
′′ | ≤

𝐶𝛼𝑟(𝑟cosh𝑇)
5

((cosh𝑇)−6)3/2+|𝛼|
(cosh𝑇)8((cosh𝑇)12)|𝛼|  ≤  𝐶𝛼𝑒

(18|𝛼|+22)𝑇. 
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Chapter 5 

Refined and Microlocal with Bilinear Kakeya–Nikodym Bounds and Averages 

 

We show that stronger related microlocal estimates involving a natural decomposition 

of phase space are adapted to the geodesic flow. We do this by using microlocal techniques 

and a bilinear version of Hörmander’s oscillatory integral theorem. 

Section (5.1): Eigenfunctions in Two Dimensions 

       Suppose that (𝑀, 𝑔) is a two-dimensional compact Riemannian manifold and {𝑒𝜆} are 

the associated eigenfunctions. That is, if Δ𝑔 is the Laplace–Beltrami operator, we have 

−Δ𝑔𝑒𝜆(𝑥)  =  𝜆
2𝑒𝜆(𝑥), 

and we assume throughout that the eigenfunctions are normalized to have 𝐿2 -norm one, i.e., 

∫  
𝑀

|𝑒𝜆|
2 𝑑𝑉𝑔  =  1, 

where 𝑑𝑉𝑔 is the volume element. 

We obtain essentially sharp estimates that link, in two dimensions, the size of 𝐿𝑝  -

norms of eigenfunctions with 2 <  𝑝 <  6 to their 𝐿2 -concentration near geodesics. 

Specifically, we have the following: 

Theorem (5.1.1)[170]: For every 0 <  𝜀0  ≤
1

2
 , we have 

‖𝑒𝜆‖𝐿4(𝑀) ≲𝜀0  𝜆
𝜀0/4 ‖𝑒𝜆‖𝐿2(𝑀)

1/2
 ×  ‖|𝑒𝜆|‖𝐾𝑁(𝜆,𝜀0)

1/2
                                 (1) 

If 

‖|𝑒𝜆|‖𝐾𝑁(𝜆,𝜀0) = (sup
𝛾 ∈𝛱

  𝜆1/2−𝜀0  ∫  
𝒯
𝜆−1/2+𝜀0

(𝛾)

  |𝑒𝜆|
2 𝑑𝑉)

1/2

 .                  (2) 

Equivalently, if 𝜀0  >  0, then there is a 𝐶 =  𝐶(𝜀0,𝑀) such that 

‖𝑒𝜆‖𝐿4 ≤ 𝐶𝜆
1
8 ‖𝑒𝜆‖𝐿2(𝑀)

1
2  × (sup

𝛾 ∈𝛱
 ∫  
𝒯
𝜆
 −
1
2
+𝜀0

(𝛾)

  |𝑒𝜆|
2 𝑑𝑉)

1
4

 ,              (3) 

and therefore if ∫  
 

𝑀
  |𝑒𝜆|

2 𝑑𝑉 =  1, for any 𝜀 >  0 there is a 𝐶 =  𝐶(𝜀,𝑀) such that  

‖𝑒𝜆‖
𝐿4 (𝑀)≤ 𝐶𝜆

1
8
+𝜀
sup
𝛾 ∈𝛱

 ‖𝑒𝜆‖𝐿2(𝒯𝜆−1/2(𝛾 ))

1
2  

≤ 𝐶𝜆1/16+𝜀 sup 𝛾  ∈ 𝛱 ‖𝑒𝜆‖𝐿4(𝒯
𝜆
𝑗𝑘
−1/2 (𝛾 ))  

1/2
 .                                (4)  

Here 𝛱 denotes the space of unit-length geodesics in 𝑀 and the last factor in (2) involves 

averages of |𝑒𝜆|
2 over 𝜆−1/2+𝜀0  tubes about 𝛾 ∈  𝛱. Also, for simplicity, we are only stating 

things here and throughout for eigenfunctions, but the results easily extend to quasimodes 

using results from [173].  

Note that if 𝜀0  =  1 2 , then (1) is equivalent to the eigenfunction estimates from [15]  

‖𝑒𝜆‖𝐿4 (𝑀)  ≲ 𝜆
1/8 ‖𝑒𝜆‖𝐿2 (𝑀) ,  

which are saturated by highest weight spherical harmonics on the standard two-sphere. We 

also remark that, up to the factor 𝜆𝜀0/4  , the estimate (1) is saturated by both the highest 

weight spherical harmonics and zonal functions on 𝑆2 . This is because the highest weight 

spherical harmonics are given by the restriction of the harmonic polynomials 

𝜆1/4(𝑥1 +𝑖 𝑥2)
𝑘
 , 𝜆 =  √𝑘(𝑘 +  1) 𝑡𝑜 the unit sphere, while the 𝐿2-normalized zonal 
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functions centered about the north pole on 𝑆2 behave like (𝜆−1  +  𝑑𝑖𝑠𝑡(𝑥, ±(0, 0, 1)))
−1/2

. 

See [33]. 

In [36] (with a slight loss) and in [28], inequalities of the form (1) and (3) were proved, 

where the first norm on the right is raised. The inequalities in [28] were not formulated in 

this way but easily lead to this result. The approach in [28] made inefficient use of the 

Cauchy–Schwarz inequality to handle the “easy” term (not the bilinear one), which led to 

the loss. The strategy for proving (1) will be to make an angular dyadic decomposition of a 

bilinear expression and pay close attention to the dependence of the bilinear estimates in 

terms of the angles, which we shall exploit using a multilayered microlocal decomposition 

of phase space.  

       Before turning to the details of the proof, let us record a few simple corollaries of our 

main estimate. If {𝑎𝜆𝑗𝑘  }𝑘=0

∞
 is a sequence depending on a subsequence {𝜆𝑗𝑘 } of the 

eigenvalues of ∆𝑔  , then we say that  

𝑎𝜆  =  𝑜 − (𝜆
𝜎 )  

if there are some 𝜀 >  0 and 𝐶 <  ∞ such that  

|𝑎𝜆|  ≤  𝐶(1 +  𝜆)
𝜎−𝜀 .  

Then using Theorem (5.1.1), we get:  

Corollary (5.1.2)[170]: The following are equivalent:  

‖𝑒𝜆𝑗𝑘‖𝐿4 (𝑀)
 =  𝑜 − (𝜆𝑗𝑘

1/8
  ),                                          (5) 

𝑠𝑢𝑝𝛾 ∈𝛱 ‖𝑒𝜆𝑗𝑘‖𝐿4(𝒯
𝜆
𝑗𝑘
−1/2(𝛾 ))   

  =  𝑜 − (𝜆𝑗𝑘
1/8
 ),                              (6)  

sup
𝛾 ∈𝛱

 ‖𝑒𝜆𝑗𝑘‖𝐿2(𝒯
𝜆
𝑗𝑘
−1/2(𝛾 ))) 

     =  𝑜 − (1).                                  (7) 

Also, if either  

sup
𝛾 ∈𝛱

  ∫  
 

𝛾 

  |𝑒𝜆|
2 𝑑𝑠 =  𝑂(𝜆𝑗𝑘

𝜀  ), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀 >  0               (8)  

or  

sup
𝛾 ∈𝛱

 ‖𝑒𝜆𝑗𝑘‖𝐿2(𝒯_(𝜆𝑗𝑘
−1/2(𝛾 ))

 
=  𝑂(𝜆𝑗𝑘

−1/4+𝜀
 ), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀 >  0,        (9) 

then  

‖𝑒𝜆𝑗𝑘  ‖𝐿4(𝑀) 
 =  𝑂(𝜆𝑗𝑘

𝜀  ), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀 >  0.               (10)  

Here, ds denotes the arc length measure on 𝛾.  
       Clearly (5) implies (6). Also, (7) follows from (6) and Hölder’s inequality. Since (1) 

shows that (7) implies (5), the last part of the corollary is also an easy consequence of 

Theorem (5.1.1). Note also that (4) says that if 𝑒𝜆𝑗𝑘  is a sequence of eigenfunctions with  

‖𝑒𝜆𝑗𝑘‖𝐿4  (𝑀) 
 =  Ω(𝜆𝑗𝑘

1/8
 ),  

then for any ε, there must be a sequence of shrinking geodesic tubes {𝒯
𝜆𝑗𝑘
−1/2    (𝛾𝑘 )} for 

which, for some 𝑐 =  𝑐𝜀 >  0, we have  

‖𝑒𝜆𝑗𝑘  ‖𝐿4 (𝒯
𝜆
𝑗𝑘
−1/2   (𝛾𝑘 )) 

≥  𝑐 𝜆𝑗𝑘
1/8−𝜀

 .  
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In other words, up to a factor of 𝜆 − 𝜀 for any 𝜀 >  0, they fit the profile of the highest 

weight spherical harmonics by having maximal 𝐿4 -mass on a sequence of shrinking 

𝜆−1/2 tubes.  

       Like in Bourgain’s estimate, (1) involves a slight loss, but this is not so important in 

view of the above application. In a later work we hope to show that (1) holds without this 

loss (in other words with 𝜀0  =  0), which should mainly involve refining the 

𝑆1/2,1/2 microlocal arguments that are to follow. Note that, because of the zonal functions 

on 𝑆2 , this result would be sharp.  

We shall introduce a microlocal Kakeya–Nikodym norm and an inequality involving 

it, (24), which implies (1). This norm is associated to a decomposition of phase space which 

is naturally associated to the geodesic flow on the cosphere bundle. In particular, each term 

in the decomposition will involve bump functions which are supported in tubular 

neighborhoods of unit geodesics in 𝑆∗𝑀. This decomposition and the resulting square 

function arguments are similar to the earlier ones of Mockenhaupt, Seeger and [48], but 

there are some differences and new technical issues that must be overcome. We do this and 

prove our microlocal Kakeya–Nikodym estimate. There, after some pseudodifferential 

arguments, we reduce matters to an oscillatory integral estimate which is a technical 

variation on the classical one in Hörmander [45], which was the main step in his proof of 

the Carleson–Sjölin theorem [37]. The result which we need does not directly follow from 

the results in [45]; however, we can prove it by adapting Hörmander’s argument and using 

Gauss’s lemma. We shall see how our results are in some sense related to Zygmund’s 

theorem [60] saying that in two dimensions, eigenfunctions on the standard torus have 

bounded 𝐿4  −norms. Specifically, we shall see there that if we could obtain the endpoint 

version of (1), we would be able to recover Zygmund’s theorem with no loss if we also knew 

a conjectured result that arcs on 𝜆𝑆1 of length 𝜆1/2 contain a uniformly bounded number of 

lattice points [66].  

       As in [28]; [16], we use the fact that we can use a reproducing operator to write 𝑒𝜆  =

 𝜒𝜆 𝑓 =  𝜌(𝜆 − √∆𝑔)𝑒𝜆, for 𝜌 ∈ 𝒮 satisfying 𝜌(0)  =  1, where, if supp �̂�  ⊂  (1, 2), we 

also have modulo 𝑂(𝜆−𝑁 ) errors (see [16])  

𝜒𝜆𝑓(𝑥) =
1

2𝜋
∫  
 

�̂�

( 𝑡)𝑒𝑖𝜆𝑡 (𝑒−𝑖𝑡√∆𝑔𝑓 ) (𝑥)𝑑𝑡 

= 𝜆
1
2∫  

  

 

𝑒𝑖𝜆𝜓(𝑥,𝑦)𝑎𝜆(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑉(𝑦),                         (11)  

where  

𝜓(𝑥, 𝑦)  =  𝑑𝑔(𝑥, 𝑦)                                                       (12)  

is the Riemannian distance function, and if, as we may, we assume that the injectivity radius 

is 10 or more, 𝑎𝜆 belongs to a bounded subset of 𝐶∞ and satisfies 

𝑎𝜆(𝑥, 𝑦)  =  0, 𝑖𝑓 𝑑𝑔(𝑥, 𝑦)  ∉  (1, 2).                           (13)  

Thus, in order to prove (1), it suffices to work in a local coordinate patch and show that if a 

is smooth and satisfies the support assumptions in (13), if 0 <  𝛿 <  1 10 is small but fixed, 

and if  

𝑥0  =  (0, 𝑦0),
1

2
 <  𝑦0  <  4  

is also fixed, then  
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‖𝜆
1
2  ∫  

 

 

𝑒𝑖𝜆𝜓(𝑥, 𝑦)𝑎(𝑥, 𝑦)𝑓 (𝑦)𝑑𝑦 ‖
𝐿4(𝐵(0,𝛿))

2

   

≲𝜀0 𝜆
𝜀0 /2 ‖ 𝑓 ‖𝐿2  ×  ||| 𝑓 || |𝐾𝑁(𝜆,𝜀0),  𝑖𝑓 𝑠𝑢𝑝𝑝 𝑓 ⊂  𝐵(𝑥0, 𝛿).             (14)  

Here 𝐵(𝑥, 𝛿) denotes the 𝛿-ball about x in our coordinates. We may assume that in our local 

coordinate system the line segment (0, 𝑦), |𝑦|  <  4 is a geodesic.  

       In order to prove (14) we also need to define a microlocal version of the above Kakeya–

Nikodym norm. We first choose 0 ≤  𝛽 ∈  𝐶0
∞ (ℝ2 ) satisfying  

∑  

𝜈∈ℤ2

 𝛽(𝓏 +  𝜈)  =  1 𝑎𝑛𝑑 𝑠𝑢𝑝𝑝 𝛽 ⊂  {𝑥 ∈ ℝ2 ∶  |𝑥|  ≤  2}.         (15)  

To use this bump function, let ϕ𝑡(𝑥, 𝜉 )  =  (𝑥(𝑡), 𝜉(𝑡)) denote the geodesic flow on the 

cotangent bundle.  

       Then if (𝑥, 𝜉 ) is a unit cotangent vector with 𝑥 ∈  𝐵(𝑥0, 𝛿) 𝑎𝑛𝑑 |𝜉1|  <  𝛿, with 𝛿 small 

enough, it follows that there is a unique 0 <  𝑡 <  10 such that 𝑥(𝑡)  =  (𝑠, 0) for some 

𝑠(𝑥, 𝜉 ). 𝐼𝑓 𝜉(𝑡)  =  (𝜉1(𝑡), 𝜉2(𝑡)) for this t, it follows that 𝜉2(𝑡) is bounded from below. Let 

us then set ℓ(𝑥, 𝜉 )  =  (𝑠(𝑥, 𝜉 ), 𝜉1(𝑡)/|𝜉(𝑡)|). Note that 𝜑 then is a smooth map from such 

unit cotangent vectors to ℝ2 . Also, 𝜑 is constant on the orbit of 𝜙. Therefore, |𝜑(𝑥, 𝜉 )  −
 𝜑(𝑦, 𝜂)| can be thought of as measuring the distance from the geodesic in our coordinate 

patch through (𝑥, 𝜉 ) to that of the one through (𝑦, 𝜂). Let 𝛼(𝑥) be a nonnegative 𝐶0
∞  

function which is one in 𝐵 (𝑥0,
3

2
 𝛿)  and zero outside of 𝐵(𝑥0, 2𝛿). Given 𝜃 =  2−𝑘 with 

𝜆− 1/2 ≤  𝜃 ≤  1 and 𝜈 ∈ ℤ2 , 𝑙𝑒𝑡 ϒ ∈  𝐶∞(ℝ) satisfy  

ϒ(𝑠) =  1, 𝑠 ∈  [𝑐, 𝑐−1 ], ϒ(𝑠) =  0, 𝑠 ∉ [
𝑐

2
 , 2𝑐−1] ,              (16)  

for some 𝑐 >  0 to be specified later. We then put  

𝒬𝜃
𝜈  (𝑥, 𝜉 ) =  𝛼(𝑥)𝛽 (𝜃−1𝜑(𝑥, 𝜉 ) +  𝜈)ϒ(|𝜉 |/𝜆).                           (17)  

This is a function of unit cotangent vectors, and we also denote its homogeneous of degree 

zero extension to the cotangent bundle with removed by 𝒬𝜃
𝜈  (𝑥, 𝜉 ), 𝜉 ≠ 0, and the resulting 

pseudodifferential operator by 𝒬𝜃
𝜈  (𝑥, 𝐷). Then if f is as in (2-4), we define its microlocal 

Kakeya–Nikodym norm corresponding to frequency 𝜆 and angle 𝜃0  =  𝜆
−1/2+𝜀0  to be 

|||𝑓|||
  𝑀𝐾𝑁(𝜆,𝜀0)

 = sup
𝜃0≤𝜃≤1

 ( sup
 𝜈∈ℤ2

 𝜃  −
1
2‖𝒬‖𝜃

𝜈  (𝑥, 𝐷)‖𝑓‖𝐿2 (ℝ2 ))   +  ‖ 𝑓‖𝐿2 (ℝ2 ),  

𝜃0  =  𝜆
−1/2+𝜀0 .                                                   (18) 

Note that  

sup
  𝜈∈ℤ2

 𝜃  −1/2  ‖𝒬𝜃
𝜈  (𝑥, 𝐷)𝑓 ‖𝐿2 (ℝ2 )  

measures the maximal microlocal concentration of f about all unit geodesics in the scale of 

𝜃. This is because if we consider the restriction of 𝒬𝜃
𝜈  to unit cotangent vectors and if 

𝒬𝜃
𝜈  (𝑥, 𝜉 ) ≠  0, then supp 𝒬𝜃

𝜈 is contained in an 𝑂(𝜃 ) tube in the space of unit cotangent 

vectors about the orbit 𝑡 → 𝜙𝑡(𝑥, 𝜉 ). Let us collect a few facts about these 

pseudodifferential operators. First, the 𝒬𝜃
𝜈   belong to a bounded subset of 

𝑆1/2+𝜀0,1/2−𝜀0
0  (pseudodifferential operators of order zero and type (

1

2
 + 𝜀0,

1

2
 −

𝜀0)), if 𝜆
 −1/2+𝜀0  ≤  𝜃 ≤  1, with 𝜀0  >  0 fixed. Therefore, there is a uniform constant 𝐶𝜀0 

such that  

‖𝒬𝜃
𝜈  (𝑥, 𝐷)𝑔‖𝐿2  ≤  𝐶𝜀0  ‖𝑔‖𝐿2  , 𝜆

−
1
2+𝜀0  ≤  𝜃 ≤  1.           (19)  
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Similarly, if 𝑃𝜃
𝜈  =  (𝒬𝜃

𝜈  )∗  ∘ 𝒬𝜃
𝜈  for such 𝜃, then by (15), ∑  𝜈  𝑃𝜃

𝜈  belongs to a bounded 

subset of 𝑆1/2+𝜀0,1/2−𝜀0 ,
0  and so we also have the uniform bounds  

‖ ∑  

 

  𝜈∈ℤ2

 𝑃𝜃
𝜈   (𝑥, 𝐷)𝑔 ‖

𝐿2

 ≤  𝐶𝜀0  ‖𝑔‖𝐿2  , 𝜆
−
1
2+𝜀0  ≤  𝜃  ≤  1.       (20)  

We can relate the microlocal Kakeya–Nikodym norm to the Kakeya–Nikodym norm if we 

realize that if the 𝛿 >  0 above is small enough, then there is a unit length geodesic 𝛾𝜈  such 

that 𝒬𝜃
𝜈  (𝑥, 𝜉 )  =  0 𝑓𝑜𝑟 𝑥 ∉ 𝒯𝐶𝜃𝜈  (𝛾 ), with 𝐶 a uniform constant. As a result, since 

𝒬𝜃
𝜈   (𝑥, 𝜉 )  =  0 if |ξ | is not comparable to 𝜆, we can improve (19) and deduce that for every 

𝑁 =  1, 2, . . ., there is a uniform constant 𝐶 ́ such that  

‖𝒬𝜃
𝜈  (𝑥, 𝐷)𝑔‖𝐿2  ≤  𝐶𝜀0   (∫  

 

𝒯𝐶 ́𝜃(𝛾𝜈)

|𝑔|2 𝑑𝑦)

1/2

 

+ 𝐶𝑁 𝜆
−𝑁 ‖𝑔‖𝐿2  , 𝜆

−1/2+𝜀0  ≤  𝜃 ≤  1,           (21) 

 
Figure (1)[170]: 𝒯𝐶′𝜃(𝛾𝜈). 

since the kernel 𝐾𝜃
𝜈  (𝑥, 𝑦)of 𝒬𝜃

𝜈  (𝑥, 𝐷) is 𝑂(𝜆−𝑁 )for any 𝑁 if y is not in 

𝒯𝐶 ́𝜃 (𝛾𝜈  ), with 𝐶 ́ sufficiently large but fixed. (See Figure 1.) Since  

𝜃−
1
2   (∫  

 

𝒯𝐶 ́𝜃 (𝛾𝜈 )

 |𝑔|2 𝑑𝑦)

1
2

≲ sup
𝛾 ∈𝛱

  𝜃0
−1  (∫  

 

𝒯𝜃0(𝛾 )

 |𝑔|2 𝑑𝑦)

1
2

 ,  

𝜆−1/2+𝜀0  =  𝜃0  ≤  𝜃 ≤  1,  
we have  

sup
𝜈∈ℤ2

 𝜃−1/2 ‖𝒬𝜃
𝜈  (𝑥, 𝐷)𝑓‖𝐿2(ℝ2 ) ≤ 𝐶𝜀0 |||𝑔|||𝐾𝑁(𝜆,𝜀0),

𝜆−1/2+𝜀0 ≤ 𝜃 ≤ 1,    (22)  

meaning that we can dominate the microlocal Kakeya–Nikodym norm by the Kakeya–

Nikodym norm. From this, we conclude that we would have (14) if we could show  

‖∫  
 

 

𝜆
1
2𝑒𝑖𝜆𝜓(𝑥, 𝑦)𝑎(𝑥, 𝑦)𝑓 (𝑦)𝑑𝑦 ‖

𝐿4(𝐵(0,𝛿))

2

 ≲𝜀0  𝜆
𝜀0
2  ‖𝑓‖𝐿2  ×  ||| 𝑓 || |𝑀𝐾𝑁(𝜆,𝜀0), 

  𝑖𝑓 𝑠𝑢𝑝𝑝 𝑓 ⊂  𝐵(𝑥0, 𝛿).                                   (23)  
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We note also that since 𝜒𝜆𝑒𝜆  =  𝑒𝜆, this inequality of course yields the following microlocal 

strengthening of Theorem (5.1.1): 

Theorem (5.1.3)[170]: For every 0 <  𝜀0  ≤  1 2 , we have  

‖𝑒𝜆‖𝐿4  (𝑀) ≲𝜀0  𝜆
𝜀0/4 ‖𝑒𝜆‖𝐿2 (𝑀) 

1/2
× |||𝑒𝜆|||

 𝑀𝐾𝑁(𝜆,𝜀0) ,

1/2
        (24)  

if |||𝑒𝜆|||
𝑀𝐾𝑁(𝜆,𝜀0) 

is as in (18). 

We prove the estimates in (23). We shall follow arguments from §6 of [48]. 

We first note that if supp 𝑓 ⊂  𝐵(𝑥0, 𝛿) as in (24), and if  

𝜃0  =  𝜆
 −1/2+𝜀0                                                                              (25)  

with 𝜀0  >  0 fixed,  

𝜒𝜆 𝑓 = ∑  

𝜈∈ℤ2

 𝜒𝜆 𝒬𝜃0
𝜈  (𝑥, 𝐷) 𝑓  +  𝑅𝜆 𝑓,  

where, if 𝑐 >  0 in (16) is small enough, and 𝑁 =  1, 2, 3, . . .,  
‖𝑅𝜆 𝑓 ‖𝐿∞ . 𝜆

−𝑁 ‖ 𝑓 ‖𝐿2   .  
Therefore, in order to prove (14), it suffices to show that  

 ‖ ∑  

𝜈,𝜈 ́∈ℤ2

 𝜒𝜆𝒬𝜃0
𝜈  𝑓 𝜒𝜆𝒬𝜃0

𝜈 ́  𝑓‖

𝐿2

≲𝜀0  𝜆
𝜀0/2 ‖𝑓 ‖𝐿2  ×  ||| 𝑓 || |    𝑀𝐾𝑁(𝜆,𝜀0).   (26) 

We split the sum on the left based on the size of |𝜈 − 𝜈 ́  |. Indeed, the left side of (26) is 

dominated by  

‖∑ 

𝜈

(𝜒𝜆𝒬𝜃0
𝜈  𝑓 )

2
‖

𝐿2

+∑ 

∞

ℓ=1

‖ ∑  

 

|𝜈−𝜈 0 |∈[2ℓ   ,2ℓ+1  )

𝜒𝜆𝒬𝜃0
𝜈 𝑓𝜒𝜆𝒬0

𝜈 ́𝜃𝑓‖

𝐿2

 .   (27)  

The square of the first term in (27) is  

∑ 

𝜈,𝜈 ́

 ∫  (𝜒𝜆𝒬𝜃0
𝜈  𝑓 )

2
 (𝜒𝜆𝒬𝜃0

𝜈 ́  𝑓 )
2
 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑑𝑥. 

Next we need an orthogonality result, similar to Lemma 6.7 in [48], which says that if A is 

large enough we have  

∑  

 

(|𝜈−𝜈 ́ |≥𝐴)     

|∫  (𝜒𝜆𝒬𝜃0
𝜈  𝑓 )

2
 (𝜒𝜆𝒬𝜃0

𝜈 ́ 𝑓 )
2
 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑𝑥     | ≲𝜀0,𝑁 𝜆 −𝑁  ‖𝑓 ‖𝐿2

4  .            (28)  

We shall postpone the proof of this result until, when we will have recorded the information 

about the kernels of 𝜒𝜆𝒬𝜃
𝜈  that will be needed for the proof. Since by [15],  

‖𝜒𝜆‖𝐿2→𝐿4 =  𝑂(𝜆
1/8),  

if we use (28) we conclude that the first term in (27) is majorized by (20) and (22):  

𝜆
1
2∑ 

𝜈

 ‖𝒬𝜃0
𝜈  𝑓 ‖

𝐿2

2
 ‖𝒬𝜃0

𝜈  𝑓 ‖
𝐿2

2
 +  𝜆−𝑁 𝑘‖𝑓 ‖𝐿2

4    . 𝜆
1
2 ‖𝑓 ‖𝐿2

2   

× sup
𝜈∈ℤ2

  ‖𝒬𝜃0
𝜈  𝑓 ‖

𝐿2

2
 +  𝜆−𝑁 ‖𝑓 ‖𝐿2

4   

=  𝜆𝜀0  ‖𝑓 ‖𝐿2
2   ×  𝜆1/2−𝜀0 sup

𝜈∈ℤ2
 ‖𝒬𝜃0

𝜈  𝑓 ‖
𝐿2

2
 +  𝜆−𝑁 ‖𝑓 ‖𝐿2

4  .                (29)  

Therefore, the first term in (27) satisfies the desired bounds 

       Using (22) again, the proof of (23) and hence (14) would be complete if we could 

estimate the other terms in (27) and show that  
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∑  

 

|𝜈−𝜈 ́  |∈[2ℓ  ,2ℓ+1 )

   𝜒𝜆 𝒬𝜃0
𝜈 𝑓 𝜒𝜆 𝑄𝜃0

𝜈 𝑓‖
𝐿 
 2

 2
   ≲𝜀0  ‖𝑓‖𝐿2

2  ×  (2ℓ 𝜃0)
−1

 

sup
𝜈∈ℤ2

   𝑘𝒬𝜈 2ℓ𝜃0 ‖𝑓‖𝐿2
2  +  𝜆−𝑁  ‖𝑓 ‖𝐿2

4  .             (30)  

Note that if 2ℓ𝜃0 ≫ 1, the left side of (30) vanishes and thus, as in (22), we are just 

considering ℓ ∈ ℕ satisfying 1 ≤  2ℓ ≤ 𝜆1/2−𝜀0  . In proving this, we may assume that ℓ is 

larger than a fixed constant, since the bound for small ℓ (with an extra factor of 𝜆𝜀0  on the 

right) follows from what we just did. We can handle the sum over ℓ in (27) due to the fact 

that the right side of (30) does not include a factor 𝜆𝜀0  . We now turn to estimating the 

nondiagonal terms in (27). We first note that by (15),  

𝜒𝜆𝒬𝜃0
𝜈  𝑓 = ∑  

µ∈ℤ2

 𝜒𝜆𝒬𝜃
µ
 𝒬𝜃0
𝜈  𝑓 +  𝑂𝑁 (𝜆

−𝑁 ‖ 𝑓 ‖2), 𝑖𝑓 𝑠𝑢𝑝𝑝 𝑓 ⊂  𝐵(𝑥0, 𝛿). 

Furthermore, if, as we may, we assume that ℓ ∈  𝑁 is sufficiently large, then given 𝑁0  ∈ ℕ, 
there are fixed constants 𝑐0  >  0 and 𝑁1  <  ∞ (with 𝑐0 depending only on 𝑁0 and the 

cutoff 𝛽 in the definition of these pseudodifferential operators) such that if  

𝜃ℓ  =  𝜃02
ℓ ,  

then  

∑  

 

(|𝜈−𝜈 ́ |∈[2ℓ ,2ℓ+1 )

𝜒𝜆𝒬𝜃0
𝜈  𝑓 𝜒𝜆𝒬𝜃0

𝜈 ́ 𝑓  

= ∑  

 

{µ,µℓ∈ℤ2∶𝑁0≤|µ−µ
ℓ |≤𝑁1} 𝑋 |𝜈−𝜈 ́ |∈[2ℓ ,2

ℓ+1 )

 𝜒𝜆𝒬𝑐0𝜃ℓ
µ

 𝒬𝜃0
𝜈  𝑓 𝜒𝜆𝒬𝑐0𝜃ℓ

µ ́
 𝒬𝜃0
𝜈 ́  𝑓  

+ 𝑂𝑁  (𝜆
−𝑁 ‖ 𝑓 ‖𝐿2

2  ),       (31)  

for each 𝑁 ∈ ℕ. Also, given µ ∈ ℤ2 , there is a 𝜈0(µ)  ∈ ℤ
2 such that  

𝑘𝒬𝑐0𝜃ℓ
µ

 𝒬𝜃0
𝜈  ‖𝑓 ‖𝐿

2
 ≤  𝐶𝑁 𝜆

−𝑁 ‖ 𝑓 ‖𝐿2  , 𝑖𝑓 |𝜈 −  𝜈0(µ)|  ≥  𝐶2
ℓ ,  

for some uniform constant C. If |µ − µ ́ |  ≤  𝑁1, then |𝜈0(µ) − 𝜈0(µ ́)|  ≤  𝐶2
ℓ for some 

uniform constant 𝐶.  

Since ‖(𝒬𝜃
𝜈 ́ )

∗
 ∘  𝒬𝜃

𝜈  ‖
𝐿2→𝐿2 

=  𝑂(𝜆−𝑁 ) for every 𝑁 if |𝜈 −  𝜈 ́ | is larger than a fixed 

constant, it follows that  

∫   ∫  
 

 

| ∑  

 

𝜈0(µ)−𝜈|,|𝜈0(µ ́)−𝜈  ́ |≤𝐶2
ℓ

 ∑  

 

|𝜈−𝜈 ́ |∈[2ℓ ,2ℓ+1 )

 𝒬𝜃0
𝜈  𝑓 (𝑥)𝒬𝜃0

𝜈 ́  𝑓 (𝑦)|

2

 𝑑𝑥 𝑑𝑦  

≲  ∑  

 

 |𝜈−𝜈 ́(µ)|,|𝜈 ́−𝜈0(µ)|≤𝐶 ́2
ℓ 

‖𝒬𝜃0
𝜈  𝑓 ‖

𝐿2

2
 ‖𝒬𝜃0

𝜈 ́  𝑓  ‖
𝐿2

2
+ 𝑂𝑁  (𝜆

−𝑁 ‖ 𝑓 ‖𝐿2
2  ),   

𝑖𝑓 |µ −  µ ́ |  ≤  𝐶0,         (32)  
for every 𝑁 if 𝐶 ́ is a sufficiently large but fixed constant. Also, using (20), we deduce that  

∑  

 

( µ ∈ℤ2 

∑  

 

  |𝜈0(µ)−𝜈|≤𝐶 ́2
ℓ

‖𝒬𝜃0
𝜈  𝑓‖

𝐿2

2
 . ‖𝑓‖𝐿2

2  . 

We clearly also have 

∑  

|𝜈(µ)−𝜈′|≤𝐶′2ℓ

‖𝒬𝜃0
𝜈′𝑓‖

𝐿2

2
≲ sup
µ∈ℤ2

 ‖𝒬
2ℓ𝜃

µ
𝑓‖

𝐿2

2
. 
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Using these two inequalities and (32), we deduce that 

∑  

|µ−µ′|≤𝑁1

‖ ∑  

|𝜈0(µ)−𝜈|,|𝜈0(µ
′)−𝜈′|<𝐶2ℓ

∑  

|𝜈−𝜈′|∈[2ℓ,2ℓ+1)

𝒬𝜃0
𝜈 𝑓(𝑥)𝒬𝜃0

𝜈′𝑓(𝑦)‖

𝐿2(𝑑𝑥 𝑑𝑦)

 

≲ ‖𝑓‖𝐿2  × sup
µ∈ℤ2

 ‖𝒬
2ℓ𝜃

µ
𝑓‖

𝐿2
+ 𝑂𝑁(𝜆

−𝑁‖𝑓‖𝐿2
2 ).                                              (33) 

In addition to (28), we shall need another orthogonality result whose proof we postpone 

until, which says that whenever θ is larger than a fixed positive multiple of 𝜃0 in (25) and 

𝑁1 is fixed,  

∫  |(𝜒𝜆𝒬𝜃
µ
 𝑔1𝜒𝜆𝒬𝜃

µ′
 𝑔2) (𝜒𝜆𝒬𝜃

µ̃
 𝑔3𝜒𝜆𝒬𝜃

µ̃′
𝑔4)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑑𝑥| ≲𝑁 𝜆

−𝑁  ∏  

4

𝑗=1

‖𝑔𝑗‖𝐿2
 , 

if   |µ −  µ̃|  +  |µ′ −  µ̃′|  ≥  𝐶 and |µ −  µ′|, |µ̃  −  µ̃′|  ≤  𝑁1,     (34) 
for every 𝑁 =  1, 2, . . ., with 𝐶 being a sufficiently large uniform constant (depending on 𝑁1 

of course).  

       Using (33) and (34), we conclude that we would have (30) (and consequently (14)) if 

we prove the following: 

Proposition (5.1.4)[170]: Let 

(𝑇𝜆,𝜃
µ,µ′
𝐹)(𝑥)  =  ∬  (𝜒𝜆𝒬𝜃

µ
)(𝑥, 𝑦)(𝜒𝜆𝒬𝜃

µ′
)(𝑥, 𝑦′)𝐹(𝑦, 𝑦′) 𝑑𝑦 𝑑𝑦′,       (35) 

Where 

(𝜒𝜆𝒬𝜃
µ
)(𝑥, 𝑦) 

denotes the kernel of 𝜒𝜆𝒬𝜃
µ
 . Then if 𝛿 >  0 is sufficiently small and if 𝜃 is larger than a 

fixed positive constant times 𝜃0 in (3-1) and if 𝑁0  ∈ ℕ is sufficiently large and if 𝑁1  >  𝑁0 

is fixed, we have 

‖𝑇𝜆,𝜃
µ,µ′
𝐹‖

𝐿2(𝐵(0,𝛿))
≲𝜀0 𝜃

−1/2 ‖𝐹‖𝐿2  ,    𝑖𝑓  𝑁0  ≤  |µ − µ
′|  ≤  𝑁1, 

𝐹(𝑦, 𝑦′) = 0,                  𝑖𝑓 (𝑦, 𝑦′) ∉ 𝐵(𝑥0, 2𝛿) ×  𝐵(𝑥0, 2𝛿).          (36) 
To prove this we shall need some information about the kernel of 𝜒𝜆𝒬𝜃

µ
 . By (17), the kernel 

is highly concentrated near the geodesic in 𝑀 

𝛾µ = {𝑥µ(𝑡) ∶  −2 ≤  𝑡 ≤  2, Φ𝑡(𝑥µ, 𝜉µ)  =  (𝑥µ(𝑡), 𝜉µ(𝑡)), 

𝜃−1𝜑(𝑥µ, 𝜉µ)  +  µ =  0},                                     (37) 

which corresponds to 𝒬𝜃
µ
 . We also will exploit the oscillatory behavior of the kernel near 

𝛾µ. 

Specifically, we require the following: 

Lemma (5.1.5)[170]: Let 𝜃 ∈ [𝐶0𝜆
−1/2+𝜀0  ,

1

2
] , where 𝐶0 is a sufficiently large fixed 

constant, and, as above, 𝜀0  >  0. Then there is a uniform constant 𝐶 such that for each 𝑁 =
 1, 2, 3, . . ., we have 

|(𝜒𝜆𝒬𝜃
µ
)(𝑥, 𝑦)|  ≤  𝐶𝑁 𝜆

−𝑁 ,   𝑖𝑓 𝑥 ∉ 𝒯𝐶𝜃(𝛾µ) or 𝑦 ∉ 𝒯𝐶𝜃(𝛾µ).      (38) 

Furthermore, 

(𝜒𝜆𝒬𝜃
µ
)(𝑥, 𝑦)  =  𝜆1/2𝑒𝑖𝜆𝑑𝑔(𝑥,𝑦) 𝑎µ,𝜃(𝑥, 𝑦)  +  𝑂𝑁(𝜆

−𝑁),        (39) 

where one has the uniform bounds 

|∇𝑦
𝛼𝑎µ,𝜃(𝑥, 𝑦)| ≤  𝐶𝛼𝜃

−|𝛼|,                                 (40) 

|𝜕𝑡
𝑗
 𝑎µ,𝜃 (𝑥, 𝑥µ(𝑡))| ≤  𝐶𝑗,         𝑥 ∈  𝛾µ ,                     (41) 
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if , as in (37), {𝑥µ(𝑡)}  =  𝛾µ. 

Proof. To prove the lemma it is convenient to choose Fermi normal coordinates so that the 

geodesic becomes the segment {(0, 𝑠) ∶  |𝑠|  ≤  2}. Let us also write 𝜃 as 

𝜃 = 𝜆−1/2+𝛿 , 

where, because of our assumptions, 𝑐1 ≤ 𝛿 ≤
1

2
 for an appropriate 𝑐1 > 0. Then in these 

coordinates, 𝒬𝜃
µ
(𝑥, 𝐷) has symbol satisfying 

𝑞𝜃
µ
(𝑥, 𝜉) = 0,   if  |𝜉1/|𝜉|| ≥ 𝐶𝜆

−1/2+𝛿 , |𝑥1| ≥ 𝐶𝜆
−1/2+𝛿, or |𝜉|/𝜆 ∉ [𝐶−1 , 𝐶],   (42) 

for some uniform constant 𝐶, and, additionally, 

|𝜕𝑥1
𝑗
𝜕𝑥2
𝑘 𝜕𝜉1

𝑙 𝜕𝜉2
𝑚 𝑞𝜃

µ
(𝑥, 𝜉) ≤ 𝐶𝑗,𝑘,𝑙,𝑚(1 + |𝜉|)

𝑗(1/2−𝛿)−𝑙(1/2+𝛿)−𝑚.   (43) 

Next we recall that 𝜒𝜆 = 𝜌(𝜆 − 𝑝√−Δ𝑔), where 𝜌 ∈ 𝒮(𝑅) satisfies �̂� ⊂ (1, 2), and that the 

injectivity radius of (𝑀, 𝑔) is ten or more. Therefore, we can use Fourier integral 

parametrices for the wave equation to see that the kernel of 𝜒𝜆 is of the form  

𝜒𝜆(𝑥, 𝑦) = ∬  𝑒𝑖 𝑆(𝑡,𝑥,𝜉 )−𝑖𝑦·𝜉+𝑖𝑡𝜆�̂�(𝑡)𝛼(𝑡, 𝑥, 𝑦, 𝜉 ) 𝑑𝜉 𝑑𝑡, 

where 𝛼 ∈ 𝑆1,0
1 , and 𝑆 is homogeneous of degree one in 𝜉 and is a generating function for 

the canonical relation for the half wave group 𝑒−𝑖𝑡√−Δ𝑔 . Thus, 

𝜕𝑡𝑆(𝑡, 𝑥, 𝜉 ) =  −𝑝(𝑥, ∇𝑥 𝑆(𝑡, 𝑥, 𝜉 )),   𝑆(0, 𝑥, 𝜉 )  =  𝑥 ·  𝜉.       (44) 

Let Φ̃𝑡(𝑥, 𝜉) denote the Hamiltonian flow generated by 𝑝(𝑥, 𝜉), which is homogeneous of 

degree one in 𝜉 and agrees with the geodesic flow Φ𝑡(𝑥, 𝜉) when restricted to unit cotangent 

vectors. The phase 𝑆(𝑡, 𝑥, 𝜉) also satisfies 

Φ̃𝑡(𝑥, ∇𝑥 𝑆)  =  (∇𝜉  𝑆, 𝜉).                                             (45) 

Furthermore, 

det 
𝜕𝑆

𝜕𝑥𝜕𝜉
≠ 0.                                                   (46) 

By (42), (43), and the proof of the Kohn–Nirenberg theorem, we have that 

(𝜒𝜆𝒬𝜃
µ
 )(𝑥, 𝑦) =   ∫  ∫   𝑒𝑖𝑆(𝑡,𝑥,𝜉 )−𝑖𝑦·𝜉+𝑖𝜆𝑡�̂�(𝑡)𝑞(𝑡, 𝑥, 𝑦, 𝜉 )𝑑𝜉 𝑑𝑡 +  𝑂(𝜆−𝑁 ),  

= 𝜆2∫  ∫   𝑒𝑖𝜆(𝑆(𝑡,𝑥,𝜉 )−𝑦·𝜉+𝑡)�̂�(𝑡)𝑞(𝑡, 𝑥, 𝑦, 𝜆𝜉 ) 𝑑𝜉 𝑑𝑡 +  𝑂(𝜆−𝑁 ), (47) 

where for all t in the support of 

 �̂� , 𝑞(𝑡, 𝑥, 𝑦, 𝜉 )  =  0 𝑖𝑓  |𝜉1/|𝜉 |    ≥  𝐶𝜆
−
1
2
+𝛿 , |𝑥1|  ≥  𝐶𝜆

 −
1
2
+𝛿 , 

𝑜𝑟 |𝜉 |/𝜆 /∈  [𝐶−1 , 𝐶],                                      (48) 
with 𝐶 as in (43), and also   

|𝜕𝑥1
𝑗
 𝜕𝑥2
𝑘  𝜕𝜉1

𝑙  𝜕𝜉2
𝑚 𝑞(𝑡, 𝑥, 𝑦, 𝜉 ) |  ≤  𝐶𝑗,𝑘,𝑙,𝑚(1 + |𝜉 | )𝑗

(1/2−𝛿)−𝑙(1/2+𝛿)−𝑚 .     (49) 

Let us now prove (38). We have the assertion if 𝑦 ∉ 𝒯𝐶𝜆−1/2+𝛿 (𝛾µ) by (48). To prove that 

remaining part of (48) which says that this is also the case when 𝑥 is not in such a tube, we 

note that by (45), if 𝑑𝑔(𝑥0, 𝑦0)  =  𝑡0 and 𝑥0, 𝑦0  ∈  𝛾µ, then  

𝛻𝜉  (𝑆(𝑡0, 𝑥0, 𝜉 )  −  𝑦0  ·  𝜉 )  =  0, 𝑖𝑓 𝜉1  =  0.  

By (46), we then have   

|𝛻𝜉 (𝑆(𝑡0, 𝑥, 𝜉 ) −  𝑦0  ·  𝜉 )  | ≈  𝑑𝑔(𝑥, 𝑥0), 𝑖𝑓 𝜉1  =  0.  

We deduce from this that if |𝜉1|/|𝜉 |  ≤  𝐶
𝜆 −

1

2
+𝛿 , |𝑦1|  ≤  𝐶

𝜆 −1/2+𝛿 ,and |𝜉 |  ∈
 [𝐶−1 , 𝐶], then there are a 𝑐0  >  0 and a 𝐶0  <  ∞ such that    
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|𝛻𝜉  (𝑆(𝑡0, 𝑥, 𝜉 )  −  𝑦 ·  𝜉 )| ≥  𝑐0𝜆
 −1/2+𝛿 , 𝑖𝑓 𝑥 ∉  𝒯𝐶0 𝜆−1/2+𝛿 (𝛾µ).  

From this we obtain the remaining part of (38) via a simple integration by parts argument if 

we use the support properties (48) and size estimates (49) of 𝑞(𝑡, 𝑥, 𝑦, 𝜉 ). We note that every 

time we integrate by parts in ξ we gain by 𝜆−2𝛿, which implies (38) since 𝑞 vanishes unless 

|𝜉 |  ≈  𝜆 and 𝛿 is bounded below by a fixed positive constant. 

To finish the proof of the lemma and obtain (39)–(41), we note that if we let 

Ψ(𝑡, 𝑥, 𝑦, 𝜉 ) =  𝑆(𝑡, 𝑥, 𝜉 ) −  𝑦 ·  𝜉 +  𝑡 
denote the phase function of the second oscillatory integral in (47), then at a stationary point 

where 

∇𝜉 ,𝑡Ψ =  0, 

we must have Ψ =  𝑑𝑔(𝑥, 𝑦), due to the fact that 𝑆(𝑡, 𝑥, 𝜉 ) −  𝑦 ·  𝜉 =  0 and 𝑡 =  𝑑𝑔(𝑥, 𝑦) 

at points where the 𝜉 -gradient vanishes. Additionally, it is not difficult to check that the 

mixed Hessian of the phase satisfies 

det (
𝜕2𝛹

𝜕(𝜉 , 𝑡)𝜕(𝜉 , 𝑡)
) ≠ 0 

on the support of the integrand. This follows from the proof of Lemma 5.1.3 of [16]. 

Moreover, since modulo 𝑂(𝜆−𝑁 ) error terms (𝜒𝜆𝒬𝜃
µ
 )(𝑥, 𝑦) equals 

𝜆2∬ 𝑒𝑖𝜆Ψ�̂�(𝑡)𝑞(𝑡, 𝑥, 𝑦, 𝜆𝜉 ) 𝑑𝜉 𝑑𝑡,                     (50) 

we obtain (3-15)–(3-16) by the proof of this result if we use the stationary phase and (48)–

(49). Indeed, by (45), (50) has a stationary phase expansion (see [24]), where the leading 

term is a fixed constant times  

𝜆1/2 𝑒𝑖𝜆𝑡 𝑞(𝑡, 𝑥, 𝑦, 𝜆𝜉 ), if 𝑡 = 𝑑𝑔(𝑥, 𝑦)and Φ̃−𝑡(𝑦, 𝜉 ) 

= (𝑥, ∇𝑥 𝑆(𝑡, 𝑥, 𝜉 )).                                (51) 
From this, we see that the leading term in the asymptotic expansion must satisfy (40), and 

subsequent terms in the expansion will satisfy better estimates, where the right-hand side 

involves increasing negative powers of 𝜆2𝛿  (by [24] and (49)), from which we deduce that 

(40) must be valid. Since 𝜉1  =  0 and 𝑝(𝑦, 𝜉 )  =  1 (by (45)) in (51) when 𝑥, 𝑦 ∈  𝛾µ, we 

similarly deduce from (49) that the leading term in the stationary phase expansion must 

satisfy (41), and since the other terms satisfy better bounds involving increasing powers of 

𝜆−2𝛿  , we similarly obtain (41), which completes the proof of the lemma. Let us now collect 

some simple consequences of Lemma (5.1.5). First, in addition to (38), the kernel 

(𝜒𝜆𝒬𝜃
µ
 )(𝑥, 𝑦) is also 𝑂(𝜆−𝑁 ) unless the distance between x and y is comparable to one by 

(2-3). From this we deduce that if 𝑁0  ∈ ℕ 𝑖s sufficiently large,  

 (𝜒𝜆𝒬𝜃
µ
)(𝑥, 𝑦)(𝜒𝜆𝒬𝜃

µ′
)(𝑥, 𝑦′)  =  𝑂(𝜆−𝑁), 

unless Angle(𝑥;  𝑦, 𝑦′) ∈ [𝜃 , 𝐶2𝜃] and 𝑥, 𝑦, 𝑦
′ ∈ 𝒯𝐶2𝜃(𝛾µ), if |µ − µ′| ∈ [𝑁0, 𝑁1], (52) 

if Angle(𝑥, 𝑦, 𝑦′) denotes the angle at 𝑥 of the geodesic connecting 𝑥 and 𝑦 and the one 

connecting 𝑥 and 𝑦 ́ , and where 𝐶2  =  𝐶2(𝑁1).  
       This is because in this case, if 𝑥 ∈ 𝒯𝐶𝜃 (𝛾µ) ∩ 𝒯𝐶𝜃 (𝛾µ ́), then the tubes must be disjoint 

at a distance bounded below by a fixed positive multiple of 𝜃 if 𝑁0 is large enough, and in 

this region their separation is bounded by a fixed constant times 𝜃 if 𝑁1 is fixed; see Figure 

2.  

To exploit this key fact, as above, let us choose Fermi normal coordinates (see [172]) about 

𝛾µ so that the geodesic becomes the segment {(0, 𝑠) ∶  |𝑠|  ≤  2}. Then, as in (12), let 
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𝜓(𝑥;  𝑦)  =  𝑑𝑔 (𝑥1, 𝑥2), (𝑦1, 𝑦2)  

be the Riemannian distance function written in these coordinates. Then if 𝑥, 𝑦, 𝑦 ́ are close 

to this segment and if the distances between 𝑥 and 𝑦 and 𝑥 and 𝑦 ́  are both comparable to 1 

and if, as well, 𝑦 is close to 𝑦 ́ , it follows from Gauss’s lemma that  

𝐴𝑛𝑔𝑙𝑒 (𝑥; (𝑦1, 𝑦2), (𝑦1
′  , 𝑦2

′)) ≈ |
𝜕

𝜕𝑦1

𝜕

𝜕𝑥2
 𝜓(𝑥, 𝑦) −

𝜕

𝜕𝑦1

𝜕

𝜕𝑥2
 𝜓(𝑥, 𝑦′)|  .       (53) 

 
Figure (2)[170]: 𝜃-tubes intersecting at angle ≥  𝑁0𝜃. 

As a result, by (52), there must be a constant 𝑐0  >  0 such that  

(𝜒𝜆𝒬𝜃
µ
 )(𝑥, 𝑦) (𝜒𝜆𝒬𝜃

µ′
) (𝑥, 𝑦′) =  𝑂(𝜆−𝑁 ),  

if | 
𝜕

𝜕𝑦1

𝜕

𝜕𝑥2
 𝜓(𝑥, 𝑦) −

𝜕

𝜕𝑦1

𝜕

𝜕𝑥2
 𝜓(𝑥, 𝑦′)| ≤ 𝑐0𝜃 and |µ − µ

′| ∈ [𝑁0 , 𝑁1],    (54)  

with, as above, 𝑁0  ∈ ℕ sufficiently large and 𝑁1 fixed. Another consequence of Gauss’s 

lemma is that if 𝑥 and 𝑦 as in (53) are close to this segment and at a distance from each other 

which is comparable to one, then  
𝜕

𝜕𝑥1
 
𝜕

𝜕𝑦1
 𝜓(𝑥, 𝑦) ≠ 0.                                   (55)  

We shall also need to make use of the fact that, in these Fermi normal coordinates, we have  
𝜕

𝜕𝑥2

𝜕

𝜕𝑦1
 𝜓 (0, 𝑥2), (0, 𝑦2)  =

𝜕

𝜕𝑥1
 𝜓 (0, 𝑥2), (0, 𝑦2)  

=  0, 𝑖𝑓 𝑑𝑔 (0, 𝑥2), (0, 𝑦2)   ≈  1.        (56)  

Next, by (41)–(39), modulo terms which are 𝑂(𝜆−𝑁 ) we can write  

(𝜒𝜆𝒬𝜃
µ
 )(𝑥, 𝑦)(𝜒𝜆𝒬𝜃

µ′
)(𝑥, 𝑦′)  =  𝜆𝑒𝑖𝜆

(𝜓(𝑥,𝑦)+𝜓(𝑥,𝑦′))𝑏µ(𝑥;  𝑦, 𝑦
′), 

where, by (52) and (54),  

𝑏µ(𝑥;  𝑦, 𝑦 ́ ) =  0, 𝑖𝑓 𝑑𝑔(𝑥, 𝑦)𝑜𝑟 𝑑𝑔(𝑥, 𝑦 ́ ) ∉  [1, 2], 

or |𝑥1| + |𝑦1| + |𝑦1
′ | ≥  𝑐0

−1 𝜃 ,  

or |  
𝜕

𝜕𝑦1

𝜕

𝜕𝑥2
 𝜓(𝑥, 𝑦) −

𝜕

𝜕𝑦1
 
𝜕

𝜕𝑥2
𝜓(𝑥, 𝑦′)| ≤ 𝑐0𝜃 ,       (57)  

and, since we are working in Fermi normal coordinates,      

|
𝜕𝑗

𝜕𝑥1
𝑗  
𝜕𝑘

𝜕𝑥2
𝑘  𝑏µ(𝑥, 𝑦, 𝑦

′)| ≤  𝐶0𝜃
−𝑗 , 0 ≤  𝑗, 𝑘 ≤  3.                  (58) 
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The constants 𝐶0 and 𝑐0 can be chosen to be independent of µ ∈ ℤ2 and 𝜃 ≥  𝜆 −1/2+𝜀0  if 
𝜀0  >  0. But then, by (57) and (58) if 𝑦2 and 𝑦2

′  are fixed and close to one another, and if 

we set  

𝜓(𝑥; 𝑠, 𝑡) =  𝜓(𝑥, (𝑠 +  𝑡, 𝑦2)) +  𝜓(𝑥, (𝑠 −  𝑡, 𝑦2
′)) and  

𝑏(𝑥; 𝑠, 𝑡)  =  𝑏µ(𝑥; 𝑠 +  𝑡, 𝑦2, 𝑠 −  𝑡, 𝑦2
′ ), 

there is a fixed constant 𝐶 such that 

𝑏(𝑥; 𝑠, 𝑡)  =  0 𝑖𝑓 |𝑥1| + |𝑠| + |𝑡| ≥ 𝐶𝜃 , 

and |
𝜕𝑗

𝜕𝑥1
𝑗

𝜕𝑘

𝜕𝑥2
𝑘  𝑏(𝑥; 𝑠, 𝑡)| ≤ 𝐶𝜃

−𝑗 , 0 ≤  𝑗, 𝑘 ≤  3,                       (59) 

while, by (55) and (56), 
𝜕

𝜕𝑥2

𝜕

𝜕𝑠
Ψ(0, 𝑥2;  0, 0) =

𝜕

𝜕𝑥2

𝜕

𝜕𝑡
 Ψ(0, 𝑥2;  0, 0) =

𝜕

𝜕𝑥1
Ψ(0, 𝑥2;  0, 0)  =  0, 

but
𝜕

𝜕𝑥1

𝜕

𝜕𝑠
 Ψ(0, 𝑥2;  0, 0) ≠ 0 if 𝑏(0, 𝑥2;  0, 0) ≠ 0,       (60) 

and, moreover, by (57), 

|
𝜕

𝜕𝑥2

𝜕

𝜕𝑡
 Ψ(𝑥; 𝑠, 𝑡)| ≥ 𝑐𝜃,   if 𝑏(𝑥; 𝑠, 𝑡) ≠ 0.                        (61) 

Also, if we assume that |𝑦2  −  𝑦2
′ |  ≤  𝛿, as we may because of the support assumption in 

(36), then 

|
𝜕

𝜕𝑥1

𝜕

𝜕𝑡
 Ψ(𝑥; 𝑠, 0)| ≤ 𝐶𝛿,    if 𝑏(𝑥; 𝑠, 𝑡) ≠ 0,                       (62) 

since the quantity on the left vanishes identically when 𝑦2 = 𝑦2
′ . 

       Another consequence of Gauss’s lemma is that if 𝑦, 𝑦′, 𝑥 are close to the second 

coordinate axis and if the distances between 𝑥 and each of 𝑦 and 𝑦′ are comparable to 1, 

then if 𝜃 above is bounded below, the 2 × 2 mixed Hessian of the function (𝑥;  𝑦1, 𝑦1
′)  →

 𝜓(𝑥, 𝑦)  +  𝜓(𝑥, 𝑦′) has nonvanishing determinant. Thus, in this case (36) just follows from 

Hörmander’s nondegenerate 𝐿2 -oscillatory integral lemma [45] (see [16]). Therefore, it 

suffices to prove (36) when θ is bounded above by a fixed positive constant, and so 

Proposition (5.1.4), and hence Theorem (5.1.1), is a consequence of the following:  

Lemma (5.1.6)[170]: Suppose that 𝑏 ∈  𝐶0
∞(ℝ2  ×  ℝ2) vanishes when |(𝑠, 𝑡)|  ≥  𝛿. Then 

if Ψ ∈  𝐶∞(ℝ2  ×  ℝ2) is real and (59)–(62) are valid, there is a uniform constant 𝐶 such 

that if 𝛿 >  0 and 𝜃 >  0 are smaller than a fixed positive constant and 

𝑇𝜆𝐹(𝑥)  = ∬  𝑒𝑖𝜆Ψ(𝑥;𝑠,𝑡)𝑏(𝑥; 𝑠, 𝑡)𝐹(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡, 

then we have 

‖𝑇𝜆𝐹‖𝐿2(ℝ2)  ≤  𝐶𝜆
−1 𝜃−1/2 ‖𝐹‖𝐿2(ℝ2) .                           (63) 

We shall include the proof of this result for the sake of completeness even though it is a 

standard result. It is a slight variant of the main lemma in Hörmander’s proof [45] of the 

Carleson–Sjölin theorem (see [16]). Hörmander’s proof gives this result in the special case 

where 𝑦2 = 𝑦2
′  , and, as above, Ψ is defined by two copies of the Riemannian distance 

function. The case where 𝑦2 and 𝑦2
′  are not equal to each other introduces some technicalities 

that, as we shall see, are straightforward to overcome. 

Proof. Inequality (63) is equivalent to the statement that ‖𝑇𝜆
∗ 𝑇𝜆‖𝐿2→𝐿2 ≤  𝐶𝜆

−2𝜃−1 . The 

kernel of 𝑇𝜆
∗𝑇𝜆 is 
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𝐾(𝑠, 𝑡; 𝑠′, 𝑡′) = ∬  𝑒𝑖𝜆
(Ψ(𝑥;𝑠,𝑡)−Ψ(𝑥;𝑠′,𝑡′))𝑎(𝑥; 𝑠, 𝑡, 𝑠′, 𝑡′)𝑑𝑥1 𝑑𝑥2, 

if 𝑎(𝑥; 𝑠, 𝑡, 𝑠′, 𝑡′) = 𝑏(𝑥, 𝑠, 𝑡)𝑏(𝑥; 𝑠′, 𝑡′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 
Therefore, we would have this estimate if we could show that 

|𝐾(𝑠, 𝑡; 𝑠′, 𝑡′)| ≤ 𝐶𝜃1−𝑁(1 + 𝜆|𝑠 − 𝑠′, 𝑡 − 𝑡′|)−𝑁 + 𝐶𝜃(1 + 𝜆𝜃|𝑠 − 𝑠′, 𝑡 − 𝑡′|)−𝑁, 
𝑁 =  0, 1, 2, 3,                                               (64) 

for then by using the 𝑁 =  0 bounds for the regions where |(𝑠 − 𝑠′, 𝑡 − 𝑡′)|  ≤  (𝜆𝜃)−1 

and the 𝑁 =  3 bounds in the complement, we see that 

sup
𝑠,𝑡
 ∬   |𝐾|𝑑𝑠′ 𝑑𝑡′ , sup

𝑠′,𝑡′
  ∬  |𝐾| 𝑑𝑠 𝑑𝑡 ≤  𝐶𝜆−2 𝜃−1 , 

which means that by Young’s inequality, ‖𝑇𝜆
∗𝑇𝜆‖𝐿2→𝐿2  ≤  𝐶𝜆

−2 𝜃−1 , as desired.  

       The bound for 𝑁 =  0 follows from the first part of (59). To prove the bounds for 𝑁 =
 1, 2, 3, we need to integrate by parts. 

       Let us first handle the case where 

|𝑠 − 𝑠′| ≥ 𝐴−1|𝑡 − 𝑡′|,                                (65) 
where 𝐴 ≥  1 is a possibly fairly large constant which we shall specify in the next step. By 

the second part of (60) and by (62), we conclude that if 𝛿 >  0 is sufficiently small 

(depending on A), we have 

|
𝜕

𝜕𝑥1
(Ψ(𝑥; 𝑠, 𝑡) − Ψ(𝑥; 𝑠′, 𝑡′))| ≥ 𝑐|𝑠 − 𝑠′|, |𝑠 − 𝑠′| ≥ 𝐴−1|𝑡 − 𝑡′|, (66) 

for some uniform constant 𝑐 >  0. 

Since |𝐾| is trivially bounded by the second term on the right side of (3-40) when |𝑠 − 𝑠′| ≤
 (𝜆𝜃)−1 and (65) is valid, we shall assume that |𝑠 − 𝑠′| ≥ (𝜆𝜃)−1 . 

       If we then write 

𝑒𝑖𝜆(Ψ(𝑥;𝑠,𝑡)−Ψ(𝑥;𝑠 0 ,𝑡 0)) =  𝐿𝑒𝑖𝜆(Ψ(𝑥;𝑠,𝑡)−Ψ(𝑥;𝑠 0 ,𝑡 0)), 

where 𝐿(𝑥, 𝐷) =
1

𝑖𝜆 (Ψ𝑥1
′ (𝑥; 𝑠, 𝑡) − Ψ𝑥1

′ (𝑥; 𝑠′, 𝑡′))

𝜕

𝜕𝑥1
 , (67) 

then we obtain 

|𝐾|  ≤  ∫  ∫   |(𝐿∗(𝑥, 𝐷))
𝑁
𝑎(𝑥; 𝑠, 𝑡, 𝑠 ́, 𝑡 ́)| 𝑑𝑥. 

Note that   

|𝜆 𝜓 ́ 𝑥1  (𝑥; 𝑠, 𝑡) −  𝜓 ́ 𝑥1(𝑥; 𝑠 ́ , 𝑡 ́ )|
𝑁
 |(𝐿∗ )𝑁 𝑎| ≤  𝐶𝑁  ∑  

 

0≤ 𝑗+𝑘≤𝑁     

|
𝜕𝑗

𝜕𝑥1
𝑗 𝑎|      

× ∑  

 

𝛼1+···+𝛼𝑘≤𝑁

∏  𝑘
𝑚=1 |

𝜕𝛼𝑚

𝜕𝑥1
𝛼𝑚 (𝜓 ́𝑥1  (𝑥; 𝑠

′, 𝑡′))|

 𝜓′𝑥1  (𝑥; 𝑠 , 𝑡 )  −  𝜓′𝑥1  (𝑥; 𝑠′, 𝑡
′)𝑘
.  (68)  

Clearly,  

∏ 

𝑘

𝑚=1

|
𝜕𝛼𝑚

𝜕𝑥1
𝛼𝑚 (𝜓 ́𝑥1  (𝑥; 𝑠 , 𝑡 )  − 𝜓 ́𝑥1  (𝑥; 𝑠 ́ , 𝑡 ́ )) | ≤  𝐶𝑘 |𝑠 −  𝑠 ́ , 𝑡 −  𝑡 ́ |𝑘 ,    (69) 

and consequently, by (65) and (66),  
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∏  𝑘
𝑚=1 |

𝜕𝛼𝑚

𝜕𝑥1
𝛼𝑚 (𝜓 ́𝑥1  (𝑥; 𝑠 , 𝑡 )  − 𝜓 ́𝑥1  (𝑥; 𝑠 ́ , 𝑡 ́ ))|

|(𝜓 ́𝑥1  (𝑥; 𝑠 , 𝑡 )  − 𝜓 ́𝑥1  (𝑥; 𝑠 ́ , 𝑡 ́ ))|
𝑘  ≤  𝐶𝐴,𝑘.         (70)  

Since by (59), we have that |𝜕𝑥1
𝑗
 𝑎|  ≤  𝐶𝜃− 𝑗, 𝑗 =  0, 1, 2, 3, and (59) also says that a 

vanishes when |𝑥1| is larger than a fixed multiple of 𝜃, we conclude from (66)–(70) that if 

(65) holds, then |𝐾| is dominated by the first term on the right side of (64).  

We now turn to the remaining case, which is  

|𝑡 −  𝑡 ́ |  ≥  𝐴|𝑠 −  𝑠 ́ |,                   (71) 
and where the parameter 𝐴 ≥  1 will be specified. By the first part of (60) and by (61) and 

the fact that |𝑠|, |𝑠 ́ |, |𝑡|, |𝑡 ́ | are bounded by a fixed multiple of 𝜃 in the support of a, it 

follows that we can fix A (independent of 𝜃 small) so that if (71) is valid, then      

|
𝜕

𝜕𝑥2
 (𝜓(𝑥; 𝑠, 𝑡) −  𝜓(𝑥; 𝑠 ́ , 𝑡 ́ ))| ≥  𝑐𝜃|𝑡 −  𝑡 ́ |, 𝑜𝑛 𝑠𝑢𝑝𝑝 𝑎,  

for some uniform constant 𝑐 >  0. Then since (56) implies that  

∏ 

𝑘

𝑚=1

|
𝜕𝛼𝑚

𝜕𝑥2
𝛼𝑚 (Ψ𝑥2

′ (𝑥; 𝑠, 𝑡)  −  Ψ𝑥2
′ (𝑥; 𝑠′, 𝑡′)| ≤ 𝐶𝑘𝜃

𝑘|𝑠 − 𝑠′, 𝑡 − 𝑡′|𝑘 , on supp 𝑎, 

and since, by (59),  

|𝜕𝑥2
𝑗
 𝑎|  ≤  𝐶𝑁 , 1 ≤  𝑗 ≤  𝑁, 

we conclude that if we repeat the argument just given but now integrate by parts with respect 

to 𝑥2 instead of 𝑥1, then |𝐾| is bounded by the second term on the right side of (64), which 

completes the proof of Lemma (5.1.6). 

To see this, we note that by Lemma (5.1.5), if (𝜒𝜆𝒬𝜃
µ
 )(𝑥, 𝑦) denotes the kernel of 

𝜒𝜆𝒬𝜃
µ
 , then  

(𝜒𝜆𝒬𝜃
µ
 )(𝑥, 𝑦) (𝜒𝜆𝒬𝜃

µ′
) (𝑥, 𝑦′)(𝜒𝜆𝒬𝜃

µ̃
 )(𝑥, �̃�) (𝜒𝜆𝒬𝜃

µ̃′
) (𝑥, �̃�′)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=  𝑂𝑁(𝜆

−𝑁), 

if 𝑥 ∉ 𝒯𝐶𝜃 (𝛾µ) ∩ 𝒯𝐶𝜃 (𝛾µ′) ∩ 𝒯𝐶𝜃 (𝛾µ̃) ∩ 𝒯𝐶𝜃  (𝛾µ̃ ́), 

with 𝐶 sufficiently large and the geodesics defined by (37). On the other hand, if 𝑥 is in the 

above intersection of tubes, then the condition on (µ, µ ́ , µ̃, µ̃ ́ ) in (34) ensures that if the 

constant 𝐶 there is large enough, we have   

|𝛻𝑥 𝑑𝑔(𝑥, 𝑦) + 𝑑𝑔(𝑥, 𝑦 ́ ) −  𝑑𝑔(𝑥, �̃�) − 𝑑𝑔(𝑥, �̃� ́ )|  ≥  𝑐0𝜃 , 

𝑖𝑓 𝑦 ∈ 𝒯𝐶𝜃 (𝛾µ), 𝑦 ́  ∈ 𝒯𝐶𝜃 (𝛾µ ́), �̃�  ∈ 𝒯𝐶𝜃 (𝛾µ̃), 𝑎𝑛𝑑 �̃� ́  ∈ 𝒯𝐶𝜃 (𝛾 µ̃ ́),  

for some uniform 𝑐0  >  0. Thus, (34) follows from Lemma (5.1.5) and a simple integration 

by parts argument since we are assuming that 𝜃 ≥  𝜃0  =  𝜆
 −1/2+𝜀0 with 𝜀0  >  0.  

       Recall that for 𝕋2 , Zygmund [60] showed that if 𝑒𝜆 is an eigenfunction on 𝕋2, i.e., 

𝑒𝜆(𝑥) = ∑  

 

{𝜀∈ℤ2∶ |ℓ|=𝜆}

 𝑎ℓ𝑒
𝑖𝑥·ℓ ,                                 (72)  

then  

‖𝑒𝜆‖𝐿4(𝕋2)   ≤  𝐶,  

for some uniform constant 𝐶. 
As observed in [5], using well-known pointwise estimates in two dimensions, one has  

sup
𝛾 ∈𝛱

  ∫  
 

 𝛾

|𝑒𝜆|
2 𝑑𝑠 =  𝑂𝜀(𝜆

𝜀)  
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for all 𝜀 >  0. This of course implies that one also has  

sup
𝛾 ∈𝛱

   ∫  
 

 𝒯
𝜆−1/2 (𝛾 ) 

|𝑒𝜆|
2 𝑑𝑥 =  𝑂𝜀(𝜆

−1/2+𝜀)  

for any 𝜀 >  0.  
       Sarnak (unpublished) made an interesting observation that having 𝑂(1) geodesic 

restriction bounds for 𝕋2 is equivalent to the statement that there is a uniformly bounded 

number of lattice points on arcs of 𝜆𝑆1 of aperture 𝜆 −1/2 . (Cilleruelo and Córdoba [171] 

showed that this is the case for arcs of aperture 𝜆−1/2−𝛿 for any 𝛿 >  0. )  
       Using (1) we can essentially recover Zygmund’s bound and obtain ‖𝑒𝜆‖𝐿4 (𝕋2 ) =

 𝑂𝜀(𝜆
𝜀   ) for every 𝜀 >  0. (Of course this just follows from the pointwise estimate, but it 

shows how the method is natural too.) 

       If we could push the earlier results to include 𝜀0  =  0 and if we knew that there were 

uniformly bounded restriction bounds, then we would recover Zygmund’s estimate. 

Section (5.2): Eigenfunctions on Compact Riemannian Surfaces 

For (𝑀, 𝑔) be a two-dimensional compact boundaryless Riemannian manifold with 

Laplacian Δ𝑔. If 𝑒𝜆 are the associated eigenfunctions of √−Δ𝑔 such that −Δ𝑔𝑒𝜆  =  𝜆
2𝑒𝜆, 

then it is well known that  

‖𝑒𝜆‖𝐿4(𝑀)  ≤  𝐶 𝜆
1
8‖𝑒𝜆‖𝐿2(𝑀),                                (73) 

which was proved in [15] using approximate spectral projectors 𝜒𝜆  =  𝜒(𝜆 − √−Δ𝑔) and 

showing  

‖𝜒𝜆 𝑓‖𝐿4(𝑀)  ≤  𝐶 𝜆
1
8‖𝑓‖𝐿2(𝑀).                                 (74) 

        If 0 <  𝜆 ≤  𝜇 and 𝑒𝜆, 𝑒𝜇 are two associated eigenfunctions of √−Δ𝑔 as above, Burq 

et al. [3] proved the following bilinear 𝐿2-refinement of (73) 

‖𝑒𝜆𝑒𝜇‖𝐿2(𝑀)  ≤  𝐶 𝜆
1
4‖𝑒𝜆‖𝐿2(𝑀)‖𝑒𝜇‖𝐿2(𝑀),           (75) 

as a consequence of a more general bilinear estimate on the reproducing operators  

‖𝜒𝜆𝑓𝜒𝜇𝑔‖𝐿2(𝑀)
 ≤  𝐶 𝜆

1
4 ‖𝑓‖𝐿2(𝑀)‖𝑔‖𝐿2(𝑀).             (76) 

The bilinear estimate (75) plays an important role in the theory of nonlinear Schrödinger 

equations on compact Riemannian surfaces and it is sharp in the case when 𝑀 =  𝕊2 

endowed with the canonical metric and 𝑒𝜆(𝑥) = ℎ𝑝(𝑥), 𝑒𝜇(𝑥)  =  ℎ𝑞(𝑥) are highest weight 

spherical harmonic functions of degree p and q, concentrating along the equator   

{𝑥 =  (𝑥1, 𝑥2, 𝑥3) ∶  𝑥1
2  +  𝑥2

2  =  1, 𝑥3  =  0}  
with 𝜆2  =  𝑝(𝑝 +  1), 𝜇2  =  𝑞(𝑞 +  1). Indeed, one may take ℎ𝑘(𝑥)  =  (𝑥1  +  𝑖𝑥2)

𝑘  to 

see ‖ℎ𝑘‖2  ≈  𝑘
−1/4 by direct computation.  

We will construct a generic example to show the optimality of (76) and exhibit that 

the mechanism responsible for the optimality seems to be the existence of eigenfunctions 

concentrating along a tubular neighborhood of a segment of a geodesic. As observed in [16], 

(74) is saturated by constructing an oscillatory integral which highly concentrates along a 

geodesic. The dynamical behavior of geodesic flows on 𝑀 accounts for the analytical 

properties of eigenfunctions exhibits the transference of mathematical theory from classical 

mechanics to quantum mechanics (see [27]).  
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       That the eigenfunctions concentrating along geodesics yield sharp spectral projector 

inequalities leads naturally to the refinement of (73) in [36] and [28], where it is proved for 

an 𝐿2 normalized eigenfunction 𝑒𝜆 , its 𝐿4-norm is essentially bounded by a power of  

sup
𝛾∈𝛱

 
1

 |𝑇𝜆−1/2(𝛾)|
   ∫  

𝑇𝜆−12  (𝛾)

 | 𝑒𝜆(𝑥)|
2 𝑑𝑥,               (77) 

where 𝛱 denotes the collection of all unit geodesics and 𝑇𝛿(𝛾) is a tubular 𝛿-neighborhood 

about the geodesic 𝛾. This fact motivates the Kakeya–Nikodym maximal average 

phenomena measuring the size and concentration of eigenfunctions. 

      This result was refined by Blair and Sogge [170], proved for every 0 <  𝜀 ≤  1/2, there 

is a 𝐶 =  𝐶(𝜀,𝑀) so that  

‖𝑒𝜆‖𝐿4(𝑀)  ≤  𝐶 𝜆
1
8‖𝑒𝜆‖𝐿2(𝑀)

1
2  × (sup

𝛾∈𝛱
   ∫  

𝑇
𝜆
−
1
2
+𝜀
  (𝛾)

 |𝑒𝜆(𝑥)|
2𝑑𝑥)

1
4

 .       (78) 

We shall assume throughout that our eigenfunctions are 𝐿2-normalized, but we shall 

formulate our main estimates as in (78) to emphasize the difference between the norms over 

all of 𝑀 and over shrinking tubes.  

      As mentioned in [170] it would be interesting to see whether the 𝜀-loss in (78) can be 

eliminated. Further results for higher dimensions are in [69] and [175]. These results played 

a crucial role in obtaining improved 𝐿𝑝 eigenfunction estimates under certain curvature 

assumptions, see [162] and [30].  

Inspired by [28], we are interested in the bilinear version of the main result in [28], 

searching for the essentially appropriate control of ‖𝑒𝜆𝑒𝜇‖2 by means of Kakeya– Nikodym 

maximal averages. In fact, we will obtain a better result by establishing the microlocal 

version of Kakeya–Nikodym average in the spirit of [170], and our main result reads  

Theorem (5.2.1)[174]: Assume 0 <  𝜆 ≤  𝜇 and 𝑒𝜆, 𝑒𝜇 are two eigenfunctions of √−Δ𝑔 

associated to the frequencies 𝜆 and 𝜇 respectively. Then for every 0 <  𝜀 ≤
1

2
 , we have a 

𝐶𝜀  >  0 such that  

‖𝑒𝜆𝑒𝜇‖𝐿2(𝑀)  ≤  𝐶𝜀𝜆
𝜀
2 ‖𝑒𝜇‖𝐿2(𝑀)

‖|𝑒𝜆|‖𝐾𝑁(𝜆,𝜀),               (79) 

and  

‖𝑒𝜆𝑒𝜇‖𝐿2(𝑀)  ≤  𝐶𝜀𝜆
𝜀
2 ‖𝑒𝜆‖𝐿2(𝑀)‖|𝑒𝜇|‖𝐾𝑁(𝜆,𝜀),             (80) 

where the Kakeya–Nikodym norm is defined by  

‖|𝑓|‖𝐾𝑁(𝜆,𝜀)  = (sup
𝛾∈𝛱

 𝜆
1
2 −𝜀  ∫  

 𝑇
𝜆
−
1
2
 +𝜀 (𝛾)

 |𝑓(𝑥)|2 𝑑𝑥)

1
2

 .        (81) 

Note also that we can reformulate our main estimates as follows  

‖𝑒𝜆𝑒𝜇‖𝐿2(𝑀)   ≤  𝐶𝜀𝜆
1
4 ‖𝑒𝜇‖𝐿2(𝑀)  ×  (sup𝛾∈𝛱

 𝜆
1
2
 −𝜀  ∫  

 𝑇
𝜆
−
1
2
 +𝜀 (𝛾)

 |𝑒𝜆|
2 𝑑𝑥)

1
2

,            (82) 

and  
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‖𝑒𝜆𝑒𝜇‖𝐿2(𝑀)
  ≤  𝐶𝜀𝜆

1
4‖𝑒𝜆‖𝐿2(𝑀)  ×  (sup

𝛾∈𝛱
 𝜆
1
2 −𝜀  ∫  

 𝑇
𝜆
−
1
2
 +𝜀 (𝛾)

 |𝑒𝜇|
2
 𝑑𝑥)

1
2

 ,          (83) 

both of which are bilinear variants of (78). Also, by taking the geometric means of (79) and 

(80) one of course has that  

‖𝑒𝜆𝑒𝜇‖𝐿2(𝑀)
 ≤  𝐶𝜀𝜆

𝜀
2 ‖𝑒𝜆‖𝐿2(𝑀)

1
2 ‖𝑒𝜇‖𝐿2(𝑀)

1
2 ‖|𝑒𝜆|‖𝐾𝑁(𝜆,𝜀)

1
2 ‖|𝑒𝜇|‖𝐾𝑁(𝜆,𝜀)

1
2 .              (84) 

        Note that it is the geodesic tubes corresponding to the lower frequency that accounts 

for the optimal upper bound of ‖𝑒𝜆𝑒𝜇‖2
. We point out that in (80) one cannot take the 

𝐾𝑁(𝜇, 𝜀)-norm of 𝑒𝜇. For on 𝕋𝑛  ≈  (−𝜋, 𝜋]𝑛 if 𝑒𝜆  =  𝑒
𝑖𝑗·𝑥, |𝑗|  =  𝜆, and 𝑒𝜇  =

 𝑒𝑖𝑘·𝑥, |𝑘|  =  𝜇, the analog of (80) involving ‖|𝑒𝜇|‖𝐾𝑁(𝜇,𝜀) is obviously false for small 𝜀 >

 0 if 𝜇 ≫  𝜆. Note also that if eμ is replaced by a subsequence, 𝑒𝜇𝑗𝑘
 of quantum ergodic 

eigenfunctions (see [27]) then (80) implies that ‖𝑒𝜆𝑒𝜇𝑗𝑘
‖
𝐿2(𝑀)

 →  1 as 𝜇𝑗𝑘  →  ∞. This is 

another reason why it would be interesting to know whether the analog of (80) is valid with 

𝜀 =  0 there.  

We construct an example to show the sharpness of (76). We introduce some basic 

preliminaries and reduce the proof of Theorem (5.2.1) to the situation, where the strategy in 

[170] can be applied. We employ the orthogonality argument to conclude the theorem by 

assuming a specific bilinear oscillatory integral inequality. Finally, we prove this inequality 

based on the instrument in [3], which provides a bilinear version of Hörmander’s oscillatory 

integral theorem [45]. We shall assume 0 <  𝜆 ≤  𝜇.  

We construct an example showing the optimality of the universal bounds (76). We 

use approximate spectral projectors 𝜒𝜆 and 𝜒𝜇 which reproduce eigenfunctions and can be 

written as proper Fourier integral operators up to a smooth error.  

We may assume the injectivity radius of 𝑀 is sufficiently large.   Take a Schwartz 

function 𝜒 ∈  𝑆(ℝ) with 𝜒(0) =  1 and 𝜒 supported, so that the spectral projectors are 

represented by  

𝜒𝜆𝑓(𝑥)  =  𝜆
1/2𝑇𝜆𝑓(𝑥)  +  𝑅𝜆𝑓(𝑥), 𝜒𝜇𝑔(𝑥)  =  𝜇

1/2𝑇𝜇𝑔(𝑥)  +  𝑅𝜇𝑔(𝑥),  

where  

‖𝑅𝜆𝑓‖𝐿∞(𝑀)  ≤  𝐶𝑁 𝜆
−𝑁 ‖𝑓‖𝐿1(𝑀), ‖𝑅𝜇𝑔‖𝐿∞(𝑀)  ≤  𝐶𝑁 𝜇

−𝑁 ‖𝑔‖𝐿1(𝑀), 

for all 𝑁 =  1, 2, . . ., and the main terms read 

𝑇𝜆𝑓(𝑥)  =  ∫  
𝑀

 𝑒𝑖𝜆𝑑𝑔(𝑥,𝑦) 𝑎(𝑥, 𝑦, 𝜆) 𝑓(𝑦) 𝑑𝑦,                       (85) 

𝑇𝜇𝑔(𝑥) =  ∫  
𝑀

 𝑒𝑖𝜇𝑑𝑔(𝑥,𝑧) 𝑎(𝑥, 𝑧, 𝜇)𝑔(𝑧)𝑑𝑧.                         (86) 

Here 𝑑𝑔(𝑥, 𝑦) is the geodesic distance between 𝑥, 𝑦 ∈  𝑀, and the amplitudes 

𝑎(𝑥, 𝑦, 𝜆), 𝑎(𝑥, 𝑧, 𝜇)  ∈  𝐶∞ have the following property  

|𝜕𝑥,𝑦
𝛼 𝑎(𝑥, 𝑦, 𝜆)|  +  |𝜕𝑥,𝑧

𝛼 𝑎(𝑥, 𝑧, 𝜇)|  ≤  𝐶𝛼, for all 𝛼. 

Moreover 𝑎(𝑥, 𝑦, 𝜆)  =  0 if 𝑑𝑔(𝑥, 𝑦) ∉  (1, 2) and likewise for 𝑎(𝑥, 𝑧, 𝜇). (See [16].)  

       After applying a partition of unity, for small 𝛿 fixed, we may fix three points 

𝑥0, 𝑦0, 𝑧0  ∈  𝑀 with 1 ≤  𝑑𝑔(𝑥0, 𝑦0)  ≤  2, 1 ≤  𝑑𝑔(𝑥0, 𝑧0)  ≤  2, and assume that 

𝑎(𝑥, 𝑦, 𝜆) vanishes outside the region {(𝑥, 𝑦)|𝑥 ∈  𝐵(𝑥0, 𝛿), 𝑦 ∈  𝐵(𝑦0 , 𝛿)} , 𝑎(𝑥, 𝑧, 𝜇) 
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vanishes outside the region {(𝑥, 𝑧)|𝑥 ∈  𝐵(𝑥0, 𝛿), 𝑧 ∈  𝐵(𝑧0, 𝛿)}. To see the sharpness of 

(76), we will prove the following result.  

We will choose suitable 𝑓 and 𝑔 concentrating along a segment of the geodesic 𝛾0 

connecting 𝑥0 and 𝑦0 with appropriate oscillations. The explicit expression of 𝑓 and 𝑔 will 

yield automatically upper bounds on ‖𝑓‖2 ‖𝑔‖2. On the other hand, we will see there is a 

strip region 𝛺𝜇 containing 𝑥0 such that ‖𝑇𝜆𝑓𝑇𝜇𝑔‖𝐿2(𝛺𝜇)
 is bounded below by (𝜆𝜇)

−1/2
 times 

the upper bound of 𝜆
1

4 ‖𝑓‖2‖𝑔‖2.  
        Recall first the geodesic normal coordinate centered at 𝑦0. Let {𝑒1, 𝑒2} be the 

orthonormal basis in 𝑇𝑦0𝑀 such that 𝑒1 is the tangent vector of 𝛾0, pointing to 𝑥0. The 

exponential map exp𝑦0 is a smooth diffeomorphism between the ball {𝑌 ∈  𝑇𝑦0𝑀 ∶  𝑌 =

 𝑌1𝑒1  +  𝑌2𝑒2, |𝑌 | <  10} and 𝐵(𝑦0, 10). Let {𝜔1, 𝜔2} be the dual basis of {𝑒1, 𝑒2} and set 

𝑦𝑗  =  𝜔𝑗  ∘ exp𝑦0
−1 for 𝑗 =  1, 2. Then {𝑦1 , 𝑦2} is the Riemannian geodesic normal 

coordinates such that 𝑦0  =  0 and  

{
 𝑔𝑖𝑗  (0)  =  𝛿𝑖𝑗 ,

𝑑𝑔𝑖𝑗  (0)  =  0,
 for all 𝑖, 𝑗 =  1, 2. 

 In particular, 𝛤𝑖𝑗
𝑘 (0)  =  0, ∀ 𝑖, 𝑗, 𝑘 =  1, 2, and 𝑑𝐺(0)  =  0 with 𝐺 =  𝑑𝑒𝑡(𝑔𝑖𝑗  ). In this 

coordinate system, 𝛾0 is parameterized by 𝑡 →  {(𝑡, 0)}.  
Lemma (5.2.2)[174]: If we denote by 𝜙(𝑥, 𝑦)  =  𝑑𝑔(𝑥, 𝑦), then in these coordinates 

𝜙(𝑥, 0)  =  |𝑥|. Moreover, if we set 𝑥 =  (𝑥1, 𝑥2), 𝑦 =  (𝑦1, 𝑦2) and assume 0 <  𝑦1  <
 𝑥1, then 𝜙(𝑥, 𝑦)  =  𝑥1  −  𝑦1  +  𝑂((𝑥

2  −  𝑦2)2). 
Proof. See p. 144 in [16].  

        With Lemma (5.2.2) at hand, we are ready to prove Proposition (5.2.3).  

Proposition (5.2.3)[174]: There exist 𝑓 and 𝑔 such that for some 𝐶 >  0,  

‖𝑇𝜆𝑓 𝑇𝜇𝑔‖𝐿2  ≥  𝐶 𝜆
−1/4𝜇−1/2‖𝑓‖𝐿2  ‖𝑔‖𝐿2  .                  (87) 

Proof. We work in the above coordinates and let  

𝛺𝜇  = {𝑥 ∶  𝛿/2𝐶0  ≤  𝑥1  ≤  2𝐶0𝛿, |𝑥2| ≤  𝜀1𝜇
−1/2} , 0 <  𝜀1 𝛿,  

where 𝐶0  >  0 is chosen as on p. 144 in [16]. The region 𝛺𝜆 is defined similarly. Take 𝛼 ∈
 𝐶0
∞ (−1, 1) and set 

𝑓(𝑦)  =  𝛼(𝑦1/𝜀1)𝛼 (𝜆
1
2 𝑦2/𝜀1) 𝑒

𝑖𝜆𝑦1  ,                                   (88) 

𝑔(𝑧) =  𝛼(𝑧1/𝜀1)𝛼 (𝜇
1
2 𝑧2/𝜀1) 𝑒

𝑖𝜇𝑧1  .                                  (89) 

Denote by 𝜖 =  𝜆/𝜇. Then similar to Chapter 5 in [16], we estimate 

𝛺𝜇 |𝑇𝜆𝑓(𝑥)𝑇𝜇𝑔(𝑥)|
2
𝑑𝑥. 

Indeed, for 𝑥 ∈  𝛺𝜇, we have  

|𝑇𝜆𝑓(𝑥)|
2  =  ∬  

 

Ω𝜆
2
  𝑒𝑖𝜆(𝑑𝑔(𝑥,𝑦)−𝑑𝑔(𝑥,𝑦

′)−[(𝑥1−𝑦1)−(𝑥1−𝑦1
′)]) 𝑎(𝑥, 𝑦, 𝜆)𝛼(𝑦1/𝜀1)𝛼 (𝜆

1
2 𝑦2/𝜀1) 

× 𝑎(𝑥, 𝑦′, 𝜆) 𝛼(𝑦1/𝜀1) 𝛼(𝜆
1
2 𝑦2

′/𝜀1) 𝑑𝑦𝑑𝑦 . 
Notice that by Lemma (5.2.2), the phase function equals 𝑂(|𝑥2   − 𝑦2|

2) + 𝑂(|𝑥2  − 𝑦2
′ |2). 

Since |𝑥2|  ≤  𝜀1𝜇
−
1

2 and |𝑦2|, |𝑦2
′ |  ≤  𝜀1𝜆

−
1

2, we see that the phase in the exponent is of 
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order 𝜀1
2 on 𝛺𝜇, and the oscillation is eliminated in the integrand by choosing 𝜀1 small. Thus 

on 𝛺𝜇  

|𝑇𝜆𝑓(𝑥)|
2 |𝛺𝜆|

2  =  𝜆−1.  
Similarly,  

|𝑇𝜆𝑔(𝑥)|
2 |𝛺𝜇|

2
 =  𝜇−1, 

Thus, ‖𝑇𝜆𝑓𝑇𝜇𝑔‖𝐿2(𝛺𝜇)
 is bounded below by 𝜇−

3

4𝜆−
1

2. On the other hand, ‖𝑓‖2‖𝑔‖2  ≤

 𝑐 (𝜆𝜇)
−
1

4 for 𝑓 and 𝑔 given by (88) and (89), we have  

(𝜆𝜇)
1
2 ‖𝑇𝜆𝑓 𝑇𝜇𝑔‖2

/( ‖𝑓‖2 ‖𝑔‖2 )  ≥  𝐶𝜀1 𝜆
1/4. 

       This example exhibits the concentration of eigenfunctions along a tubular neighborhood 

of a geodesic leading to the sharpness of the bilinear spectral projector estimate (76), where 

our bilinear generalization of the main result in [28] is motivated.  

Remark (5.2.4)[174]: Comparing this example with (84), one may suspect that (84) can be 

further refined. Indeed, one may observe that the example suggests the possibility of refining 

(84) by strengthening the 𝐿2-norm of the eigenfunction corresponding to the higher 

frequency on the right side to a 𝜆−
1

2 -neighborhood of the same geodesic segment for the 

lower frequency eigenfunction. An interesting problem would be to see if the following 

refinement of (84) is valid:  

‖𝑒𝜆𝑒𝜇‖𝐿2(𝑀)  

≤  𝐶𝜀0 𝜆
1
4 sup
𝛾∈𝛱

  [(∫  
𝑇
𝜆
−
1
2
 +𝜀0 (𝛾)

 |𝑒𝜇(𝑥)|
2
 𝑑𝑥)(∫  

𝑇
𝜆
−
1
2
 +𝜀0 (𝛾)

|𝑒𝜆(𝑥)|
2 𝑑𝑥)]

1
4

 .                    (90) 

       In view of 𝜒𝜆𝑒𝜆  =  𝑒𝜆 and 𝜒𝜇𝑒𝜇  =  𝑒𝜇, we are reduced to estimating ‖𝑇𝜆𝑓𝑇𝜇𝑔‖𝐿2
 . By 

scaling, we may assume the injectivity radius of 𝑀 is large enough, say inj 𝑀 >  10. We 

use partitions of unity on 𝑀 to reduce the 𝐿2 integration of 𝑇𝜆𝑓𝑇𝜇𝑔 on the geodesic 

ball 𝐵(𝑥0, 𝛿) with 𝛿 >  0 small. In view of the property of supp a, we may apply partition 

of unity once more and assume supp 𝑓 ⊂  𝐵(𝑦0 , 𝛿) and supp 𝑔 ⊂  𝐵(𝑧0, 𝛿) for some 𝑦0 

and 𝑧0 satisfying  

1 ≤  𝑑𝑔(𝑥0, 𝑦0), 𝑑𝑔(𝑥0, 𝑧0)  ≤  2. 

        Next, we need to choose a suitable coordinate system to simplify the calculations on a 

larger ball 𝐵(𝑥0, 10). As in [28] and [175], we shall use Fermi coordinate system about the 

geodesic 𝛾 connecting 𝑥0 and 𝑦0. Let 𝛾⊥ be the geodesic through 𝑥0 perpendicular to 𝛾. The 

Fermi coordinates about γ is defined on the ball 𝐵(𝑥0, 10), where the image of 𝛾⊥  ∩
 𝐵(𝑥0, 10) in the resulting coordinate system is parameterized by 𝑠 →  {(𝑠, 0)}. All the 

horizontal segments are parameterized by 𝑠 →  (𝑠, 𝑡0) and we have  

𝑑𝑔((𝑠1, 𝑡0), (𝑠2, 𝑡0))  =  |𝑠1  −  𝑠2|. 

Clearly, in our coordinate system, 𝑦0 is on the 2nd coordinate axis, and 𝑧0 is a point 

satisfying 1 ≤  𝑑𝑔(𝑧0, (0, 0))  ≤  2.  

        Therefore, if we set 𝑦 =  (𝑠, 𝑡), 𝑧 =  (𝑠′, 𝑡′) in this coordinate system, we may write 

𝑇𝜆𝑓 and 𝑇𝜇𝑔 locally as  
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𝑇𝜆𝑓(𝑥) =  ∫  
ℝ2
 𝑒𝑖𝜆𝑑𝑔(𝑥,(𝑠,𝑡))𝑎(𝑥, (𝑠, 𝑡), 𝜆) 𝑓(𝑠, 𝑡) 𝑑𝑠𝑑𝑡,               (91) 

𝑇𝜇𝑔(𝑥) =  ∫  
ℝ2
𝑒𝑖𝜇𝑑𝑔(𝑥,(𝑠 ,𝑡 ))𝑎(𝑥, (𝑠′, 𝑡′), 𝜇) 𝑔(𝑠′, 𝑡′)𝑑𝑠 𝑑𝑡 .      (92) 

Moreover, by noting that 1 ≤  𝑑𝑔(𝑥0, 𝑦0), 𝑑𝑔(𝑥0, 𝑧0)  ≤  2 and 𝑦 ∈  𝐵(𝑦0 , 𝛿), 𝑧 ∈

 𝐵(𝑧0, 𝛿), we shall assume  

max{|𝑠|, |𝑡 −  𝑑𝑔(𝑦0, 𝑥0)|, |𝑑𝑔((𝑠
′, 𝑡′), 𝑧0)|}  ≤  𝛿.  

We remark that we are at liberty to take δ to be small when necessary.  

We deal with the case when the angle between 𝛾 and the geodesic 𝛾′ connecting 𝑥0 

and 𝑧0 is bounded below by some 𝜀2  >  0. To do this, we shall use the geodesic normal 

coordinates around 𝑥0. Set {𝑒1, 𝑒2} to be the orthonormal basis in 𝑇𝑥0𝑀, where the metric 𝑔 

at 𝑥0 is normalized, such that e1 is the tangent vector of 𝛾⊥ at 𝑥0 and −𝑒2 is the tangent 

vector of 𝛾 at 𝑥0 if 𝛾 is oriented from 𝑥0 to 𝑦0. Let {𝜔1, 𝜔2} be the dual basis of {𝑒1, 𝑒2} and 

set {𝑥𝑗  =  𝜔𝑗  ∘  exp0
−1 }𝑗 = 1,2 to be the Riemannian geodesic normal coordinate system 

on 𝐵(𝑥0, 10), where 𝑥0  =  0 and 𝛾 is parameterized by 𝑥2 → {(0, 𝑥2)}, whereas 𝛾⊥ is 

parameterized by 𝑥1 → {(𝑥1, 0)} with |𝑥1|  ≤  5. Let 𝜃0  =  𝜃(𝑧0) be such that 𝑧0  =
 𝑑𝑔(𝑥0, 𝑧0)(cos 𝜃0, sin 𝜃0), where the angular variable is oriented in clockwise direction. It 

follows that 𝛾′⊥ is given by 𝑟 →  exp0 ((𝑟 cos 𝜑0, 𝑟 sin 𝜑0)) with 𝜑0  =  𝜃0  +
𝜋

2
 and |𝑟| <

 5.  
Writing  

𝑦 =  (𝑟1 cos 𝜃1, 𝑟1 sin 𝜃1), 𝑧 =  (𝑟2 cos 𝜃2, 𝑟2 sin 𝜃2)            (93) 
in geodesic normal coordinates, we have  

𝑇𝜆𝑓(𝑥)  =  ∬  𝑒𝑖𝜆𝑑𝑔(𝑥,(𝑟1,𝜃1))𝑎(𝑥, (𝑟1, 𝜃1), 𝜆) 𝑓(𝑟1, 𝜃1) 𝑑𝑟1𝑑𝜃1,     (94) 

 𝑇𝜇𝑔(𝑥) =  ∬   𝑒𝑖𝜇𝑑𝑔(𝑥,(𝑟2,𝜃2))𝑎(𝑥, (𝑟2, 𝜃2), 𝜇) 𝑔(𝑟2, 𝜃2) 𝑑𝑟2𝑑𝜃2.   (95) 

We recall the following fact.  

Proposition (5.2.5)[174]: Let 𝜀2  >  0 be a small parameter. Assume | 𝜃(𝑧0) +
𝜋

2
|  ≥  𝜀2 

and | 𝜃(𝑧0) −
𝜋

2
|  ≥  𝜀2. If we choose δ small enough depending on 𝜀2, there exists 𝐶 such 

that  

‖𝑇𝜆𝑓 𝑇𝜇𝑔‖2
 ≤  𝐶(𝜆𝜇)

−12
‖𝑓‖2‖𝑔‖2.                              (96) 

       Thus in order to prove Theorem (5.2.1), it suffices to consider either   |𝜃(𝑧0) +
𝜋

2
|    ≤

 𝜀2 or   |𝜃(𝑧0) −
𝜋

2
|   ≤  𝜀2. This confines 𝑧0 in a small neighborhood of the geodesic 𝛾 by 

compressing 𝛾 and 𝛾′ to be almost parallel with each other.  

       Essentially, this proposition is proved in [3] based on the following lemma.  

Lemma (5.2.6)[174]: Let 𝑦 =  exp0(𝑟(cos 𝜃, sin 𝜃)) and 𝜙𝑟(𝑥, 𝜃)  =  𝑑𝑔(𝑥, 𝑦). For every 

0 <  𝜀2  <  1, there exists 𝑐 >  0, 𝛿1  >  0 such that for every |𝑥|  <  𝛿1,   
|det (∇𝑥𝜕𝜃𝜙𝑟(𝑥, 𝜃), ∇𝑥𝜕𝜃𝜙𝑟 (𝑥, 𝜃 )|   ≥  𝑐,                    (97) 

 if |𝜃 −  𝜃′|  ≥  𝜀2 and |𝜃 +  𝜋 −  𝜃 |  ≥  𝜀2. In addition, for every 𝜃 ∈  [0, 2𝜋],   

|det ∇𝑥𝜕𝜃𝜙𝑟(𝑥, 𝜃), ∇𝑥𝜕𝜃
2𝜙𝑟(𝑥, 𝜃)|    ≥  𝑐.                   (98) 

       This is an immediate consequence of the following fact.  
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Lemma (5.2.7)[174]: Let 𝑦 →  𝜅(𝑦)  =  exp0
−1 (𝑦) be the geodesic normal coordinates 

vanishing at 𝑥0, as described above. Then we have  

∇𝑥𝑑𝑔(𝑥, 𝑦)   |𝑥=𝑥0 =  𝜅(𝑦)/|𝜅(𝑦)|.                            (99) 

Proof. Relation (99) is equivalent to Gauss’ lemma. See [28] and [3]. 

The map 𝑦 →  𝜅(𝑦) is a local radial isometry. See [28].  

       We sketch the proof of Proposition (5.2.5) briefly for completeness. In our situation, we 

have (𝑦0)  =  −
𝜋

2
 . Fixing a parameter 𝜀2  >  0, we assume  |𝜃(𝑧0) +

𝜋

2
|    ≥  𝜀2 and 

 |𝜃(𝑧0) −
𝜋

2
|    ≥  𝜀2. Since 𝑦 ∈  𝐵(𝑦0, 𝛿), 𝑧 ∈  𝐵(𝑧0, 𝛿) given by (93), we may choose δ 0. 

By Schur’s test, it suffices to show   

𝐾(𝜃1, 𝜃2, 𝜃1
′ , 𝜃2

′)    ≤  𝐶(𝜇|𝜃2  −  𝜃2
′ |  +  𝜆|𝜃1  −  𝜃1

′|)  − 10,       (100) 
where  

𝐾(𝜃1, 𝜃2, 𝜃1
′ , 𝜃2

′)  =   ∫   𝑒𝑖Ψ𝜆,𝜇(𝑥; 𝜃1,𝜃2,𝜃1
′ ,𝜃2

′)  𝐴(𝑥; 𝜃1, 𝜃1
′ , 𝜃2, 𝜃2

′) 𝑑𝑥, 

𝐴(𝑥; 𝜃1, 𝜃1
′ , 𝜃2, 𝜃2

′) = 𝑎(𝑥, (𝑟1, 𝜃1), 𝜆)𝑎(𝑥, (𝑟1, 𝜃1
′), 𝜆)𝑎(𝑥, (𝑟2, 𝜃2), 𝜇)𝑎(𝑥, (𝑟2, 𝜃2

′), 𝜇), 

 Ψ𝜆,𝜇(𝑥; 𝜃1, 𝜃2, 𝜃1
′ , 𝜃2

′)  =  𝜆  (𝜙𝑟1  (𝑥, 𝜃1) − 𝜙𝑟1  (𝑥, 𝜃1
′)) + 𝜇 (𝜙𝑟2  (𝑥, 𝜃2) − 𝜙𝑟2  (𝑥, 𝜃2

′)). 

For all multi-index 𝛼, |𝛼|  ≤  10, Lemma (5.2.6) and the above formula give 

 |∇𝑥𝛹𝜆,𝜇| ≥  𝐶(𝜆|𝜃1  −  𝜃1
′|  +  𝜇|𝜃2  −  𝜃2

′ |), |𝜕𝑥
𝛼  𝛹𝜆,𝜇|  ≤  𝐶(𝜆|𝜃1  −  𝜃1

′| +  𝜇|𝜃2  −  𝜃2
′ |). 

Now (100) follows from integration by parts.  

       We will employ the strategy introduced by [170] (see also [48]), where a microlocal 

refinement of Kakeya–Nikodym averages are exploited. From now on, we shall always 

assume     

|𝜃(𝑧0) +
𝜋

2
|     ≤  𝜀2 ≪ 1 

where 
𝜋

2
 =  −𝜃(𝑦0). Recall that we may write, modulo trivial errors,  

𝜒𝜆𝑓(𝑥) ≈  𝜆
1
2   ∫  

ℝ2
 𝑒𝑖𝜆𝑑𝑔(𝑥,𝑦) 𝑎𝜆(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦,         (101) 

𝜒𝜇𝑔(𝑥)  ≈  𝜇
1
2   ∫  

ℝ2
 𝑒𝑖𝜇𝑑𝑔(𝑥,𝑧) 𝑎𝜇(𝑥, 𝑧) 𝑔(𝑧) 𝑑𝑧,       (102) 

with supp 𝑓 ⊂  𝐵(𝑦0, 𝛿), supp 𝑔 ⊂  𝐵(𝑧0, 𝛿) and 𝑥 ∈  𝐵(0, 𝛿).  
We may choose 𝜀2  >  0 sufficiently small to make 𝑧0 to be within an fixed small 

neighborhood of 𝛾.  

To decompose the phase space, we shall use the geodesic flow Φ𝜏 (𝑦, 𝜉) on the 

cosphere bundle 𝑆∗𝑀, which starts from 𝑦 in direction of 𝜉 ∈  𝑆𝑦
∗𝑀. We use the Fermi 

coordinates around 𝛾 to write  

 𝑦(𝜏 ), 𝜉(𝜏 )  =  Φ𝜏 (𝑦, 𝜉), (𝑦(0), 𝜉(0)) =  (𝑦, 𝜉), 

where 𝜉(𝜏 ) is the unit cotangent vector in 𝑇𝑦
∗(𝜏)𝑀. Define 𝛩 ∶  (𝑦, 𝜉)  ∈  𝑆∗𝑀 → ℝ × ℝ 

by  

Θ(𝑦, 𝜉)  =   (𝛱𝑦1Φ𝜏0  (𝑦, 𝜉),
𝛱𝜉1Φ𝜏0(𝑦, 𝜉)

|𝛱𝜉Φ𝜏0  (𝑦, 𝜉)|
  ), 

where 𝜏0 is chosen so that 𝑦2(𝜏0) =  𝛱𝑦2Φ𝜏0  (𝑦, 𝜉)  =  0. By Π♦, we mean the projection to 

the component of ♦-variable.  

Remark (5.2.8)[174]: As in [170], we require |𝜉1|  <  𝛿 with δ small enough with 𝑦 ∈
 𝐵(𝑦0, 𝐶0𝛿). Moreover, Θ is constant on the orbit of Φ and |Θ(𝑦, 𝜉) − Θ(𝑧, 𝜂)| can be used 
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as a natural distance function between geodesics passing respectively through (𝑦, 𝜉) and 

(𝑧, 𝜂). Next, we microlocalize 𝜒𝜆𝑓 and 𝜒𝜇𝑔 by introducing smooth functions 𝛼1(𝑦) and 

𝛼2(𝑧) adapted respectively to the ball 𝐵(𝑦0, 2𝛿) and 𝐵(𝑧0, 2𝛿) and setting 

𝑄𝜃
𝜈 (𝑦, 𝜉)  =  𝛼1(𝑦) 𝛽(𝜃

−1Θ(𝑦, 𝜉)  +  𝜈) Υ(|𝜉|/𝜆)                  (103) 
𝑃𝜃
𝜐  (𝑧, 𝜂)  =  𝛼2(𝑧)𝛽(𝜃

−1Θ(𝑧, 𝜂) +  𝜐) Υ(|𝜂|/𝜇)                    (104) 

where 𝜆−1/2  ≤  𝜃 ≤  1, 𝜈, 𝜐 ∈ ℤ2, with 𝛽 smooth such that   

∑  

𝜈∈ℤ2

 𝛽( ·  + 𝜈) = 1, supp 𝛽 ⊂  {𝑥 ∈  ℝ2 ∶  |𝑥| ≤  2},             (105) 

and 𝛶 ∈  𝐶0
∞ (ℝ) is supported in [𝑐, 𝑐 − 1] for some 𝑐 >  0. Let us take a look at the 

symbols 𝑄𝜃
𝜈  (𝑦, 𝜉) and 𝑃𝜃

𝜐 (𝑧, 𝜂). First, we define 𝛽(𝜃−1Θ(𝑦, 𝜉) +  𝜈) and 𝛽(𝜃−1Θ(𝑧, 𝜂) +
 𝜐) on the cosphere bundle. Since these two functions are of degree zero in the cotangent 

variables, we then extend them homogeneously to the cotangent bundle. The above 

𝑄𝜃
𝜈  (𝑦, 𝜉) and 𝑃𝜃

𝜐  (𝑧, 𝜂) are well-defined for 𝜉 ≠  0, 𝜂 ≠  0. Given 𝜉, 𝛽(𝜃−1Θ(𝑦, 𝜉) +  𝜈)  =
 0 unless y belongs to a tubular neighborhood of 𝛾𝜈 , where  

𝛾𝜈  =   {𝑦(𝜏 ) : − 2 ≤  𝜏 ≤  2, (𝑦(𝜏 ), 𝜉(𝜏 ))  =  Φ𝜏 (𝑦, 𝜉), Θ(𝑦, 𝜉) + 𝜃𝜈  =  0}. 

Moreover, if we set 𝜈 =  (𝜈1, 𝜈2), the direction of 𝛾𝜈 at 𝑦(𝜏0) is determined by 𝜃𝜈2 and is 

independent of 𝜆. Since (𝑦, 𝜉)  =  Φ𝜏0
−1 (𝑦(𝜏0), 𝜉(𝜏0)) and 𝑦(𝜏0)  =  (𝑦1(𝜏0), 0) with 

𝑦1(𝜏0)  =  𝜃𝜈1  +  𝑂(𝜃), one easily finds that 𝑦 ∈  𝑇𝐶1𝜃(𝛾𝜈), for some 𝐶1  ≥  1. Similar 

statements hold for 𝑃𝜃
𝜐 (𝑧, 𝜂).  

        Let 𝑄𝜃
𝜈  (𝑥, 𝐷), 𝑃𝜃

𝜐 (𝑥, 𝐷) be the pseudo-differential operators associated to the symbols 

defined in (103) and (104) respectively. We next record some properties of 𝑄𝜃
𝜈  (𝑦, 𝐷) and 

𝑃𝜃
𝜐 (𝑧, 𝐷). The first lemma indicates that these two kinds of operators provide a natural 

microlocal wave-packet decomposition in the phase space for 2-dimensional manifolds.  

Lemma (5.2.9)[174]: If 𝜆−1/2+𝜀  ≤  𝜃 ≤  1 with 𝜀 >  0 fixed, the symbols 𝑄𝜃
𝜈 and 

𝑃𝜃
𝜐 belong to a bounded subset of 𝑆1/2+𝜀,1/2−𝜀

0 . Then there is 𝐶𝜀 and 𝐶2 ≥  𝐶1 such that for 

𝜆−1/2+𝜀  ≤  𝜃 ≤  1, we have  

‖𝑄𝜃
𝜈  (𝑥, 𝐷)𝑓‖𝐿2  ≤  𝐶𝜀‖𝑓‖𝐿2(𝑇𝐶2𝜃(𝛾𝜈 ))

 +  𝐶𝑁 𝜆
−𝑁 ‖𝑓‖2         (106) 

‖𝑃𝜃
𝜐 (𝑥, 𝐷)𝑔‖𝐿2  ≤  ‖𝐶𝜀𝑔‖𝐿2(𝑇𝐶2𝜃(𝛾𝜈 ))

 +  𝐶𝑁 𝜇
−𝑁 ‖𝑔‖2.        (107) 

Moreover, for any integer 𝑁 ≥  0, one may write  

𝜒𝜆 𝑓 =  ∑  

𝜈∈ℤ2

 𝜒𝜆  ∘  𝑄𝜃
𝜈  (𝑥, 𝐷) 𝑓 +  𝑅𝜆 𝑓, if supp 𝑓 ⊂  𝐵(𝑦0, 𝛿),      (108) 

𝜒𝜇 𝑔 =   ∑  

𝜈∈ℤ2

 𝜒𝜇  ∘  𝑃𝜃
𝜐 (𝑥, 𝐷) 𝑔 + 𝑅𝜇  𝑔, if supp 𝑔 ⊂  𝐵(𝑧0, 𝛿),     (109) 

with ‖𝑅𝜆‖𝐿2 →𝐿∞  ≲ 𝜆
−𝑁 , ‖𝑅𝜇‖𝐿2→𝐿∞ 𝜇

−𝑁 . 

Proof. That 𝑄𝜃
𝜈  (𝑦, 𝜉)  ∈  𝑆1/2+𝜀,1/2−𝜀

0  has already been proved in [170]. If we use 𝜇 ≥  𝜆, 

we get 𝜇−1𝜆1/2−𝜀  ≤  𝜇−1/2−𝜀, and the same calculation as for 𝑄𝜃
𝜈 yields that the 

𝑃𝜃
𝜐 (𝑧, 𝐷) belong to a bounded subset of pseudodifferential operators of order zero and type 

(1/2 + 𝜀, 1/2 −  𝜀). To see (106), one observes that the kernel 𝐾𝜃
𝜈 (𝑥, 𝑦) of the operator 

𝑄𝜃
𝜈 is bounded by 𝑂(𝜆−𝑁 ) if y does not belong to 𝑇𝐶2𝜃 (𝛾𝜈) for some large 𝐶2  >  𝐶1 by 

using integration by parts. We can deduce (108) from (105). In fact, if we recall the process 

of constructing parametrix for the half wave operator 𝑒𝑖𝑡√−Δ𝑔  in [16], we may use 

integration by parts to see that in (108), one may assume 𝑓  
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(𝜉)  =  0 if |𝜉|  ∉  [𝑐𝜆, 𝐶𝜆] up to some terms of the form 𝑅𝜆𝑓. It suffices to see the difference 

of 𝑓(𝑥) and ∑  𝜈  𝑄𝜃
𝜈  (𝑥, 𝐷)𝑓(𝑥) is of the form 𝑅𝜆𝑓(𝑥). This is easy due to the fact that 

𝛶(|𝜉|/𝜆)  =  1 on the support of 𝑓 by choosing suitable 𝑐, 𝐶 and (1 − 𝛼1(𝑥))𝑓(𝑥)  =  0. 
Now (105) yields  

𝛼1(𝑥)𝑓(𝑥)  =  ∑  

𝜈

 𝑄𝜃
𝜈 (𝑥, 𝐷)𝑓(𝑥). 

Similar argument yields (107) and (109). 

         Now, we recall the microlocal Kakeya–Nikodym norm in [170], corresponding to 

frequency 𝜆 and 𝜃0  =  𝜆
−1/2+𝜀0  

‖|𝑓|‖𝑀𝐾𝑁(𝜆,𝜀0)  = sup
𝜃0≤𝜃≤1

 (sup
𝜈∈ℤ2

 𝜃−1/2‖𝑄𝜃
𝜈 (𝑥, 𝐷)𝑓‖𝐿2(ℝ2))  + ‖𝑓‖𝐿2(ℝ2). (110) 

As pointed out in [170], the maximal microlocal concentration of f about all unit geodesics 

in the scale of θ amounts to the quantity  

sup
𝜈∈ℤ2

 𝜃−1/2‖𝑄𝜃
𝜈  (𝑥, 𝐷)𝑓‖𝐿2(ℝ2). 

From Lemma (5.2.9), one can prove ‖|𝑓|‖𝑀𝐾𝑁(𝜆,𝜀0)  ≤  𝐶𝜀0 ‖|𝑓|‖𝐾𝑁(𝜆,𝜀0). We refer to [170] 

for more details. Similarly, for the same 𝜃0, we can define  

‖|𝑔|‖𝑀𝐾𝑁(𝜆,𝜀0)  = sup
𝜃0≤𝜃≤1

(sup
𝜈∈ℤ2

 𝜃−1/2‖𝑃𝜃
𝜈 (𝑥, 𝐷)𝑔‖𝐿2(ℝ2))  +  ‖𝑔‖𝐿2(ℝ2), (111) 

 again by Lemma (5.2.9), we see that ‖|𝑔|‖𝑀𝐾𝑁(𝜆,𝜀0)  ≤  𝐶𝜀0  ‖|𝑔|‖𝐾𝑁(𝜆,𝜀0).  

Lemma (5.2.10)[174]: For any 𝜀 >  0, there exists some 𝐶𝜀  >  0 such that for all 

𝜆−1/2+𝜀  ≤  𝜃 ≤  1,  

‖∑ 

𝜈

 (𝑄𝜃
𝜈 )∗  ∘  𝑄𝜃

𝜈 𝑓‖

𝐿2

 ≤  𝐶𝜀‖𝑓‖𝐿2  , ‖∑  

𝜐

 (𝑃𝜃
𝜐 )∗  ∘  𝑃𝜃

𝜐 𝑔‖

𝐿2

 ≤  𝐶𝜀‖𝑔‖𝐿2 .  (112) 

Proof. The 𝐿2-estimates (112) are valid thanks to (105) and the classical calculus of pseudo-

differential operators of type (1/2 +  𝜀, 1/2 −  𝜀) with 𝜀 >  0.  
We describe next the kernels of the operators 𝜒𝜆𝑄𝜃

𝜈 ∶=  (𝜒𝜆  ∘  𝑄𝜃
𝜈  )(𝑥, 𝐷) and 𝜒𝜇𝑃𝜃

𝜐 ∶=

 (𝜒𝜇  ∘  𝑃𝜃
𝜐 )(𝑥, 𝐷) following [170].  

Lemma (5.2.11)[174]: Denote by (𝜒𝜆𝑄𝜃
𝜈  )(𝑥, 𝑦) and (𝜒𝜇𝑃𝜃

𝜐 )(𝑥, 𝑧) the kernels of the 

pseudodifferential operators 𝜒𝜆𝑄𝜃
𝜈 (𝑥, 𝐷) and 𝜒𝜇𝑃𝜃

𝜐 (𝑥, 𝐷) respectively. Assume 𝜃 ∈

 [𝐶0𝜃0, 1] with 𝜃0  =  𝜆
−1/2+𝜀 and 𝐶0 ≫ 1. We can find a uniform constant 𝐶 so that for 

each  =  1, 2, 3, . .. , we have 

 |(𝜒𝜆𝑄𝜃
𝜈)(𝑥, 𝑦)|  ≤  𝐶𝑁 𝜆

−𝑁 , if 𝑥 ∉  𝑇𝐶𝜃(𝛾𝜈)or 𝑦 ∉  𝑇𝐶𝜃(𝛾𝜈), (113) 

and  

|(𝜒𝜇𝑃𝜃
𝜐)(𝑥, 𝑧)|  ≤  𝐶𝑁 𝜇

−𝑁 , if 𝑥 ∉  𝑇𝐶𝜃(𝛾𝜐) or 𝑧 ∉  𝑇𝐶𝜃(𝛾𝜐).      (114)  

Furthermore,  

(𝜒𝜆𝑄𝜃
𝜈)(𝑥, 𝑦)  =  𝜆

1
2 𝑒𝑖𝜆𝑑𝑔(𝑥,𝑦) 𝑎𝜈,𝜃(𝑥, 𝑦)  +  𝑂𝑁  (𝜆

−𝑁 ),        (115) 

(𝜒𝜇𝑃𝜃
𝜐)(𝑥, 𝑧)  =  𝜇

1
2 𝑒𝑖𝜇𝑑𝑔(𝑥,𝑧) 𝑏𝜐,𝜃(𝑥, 𝑧)  +  𝑂𝑁  (𝜇

−𝑁 ),          (116) 

where we have the uniform bounds  

|(∇𝑥
⊥ )𝛼𝑎𝜈,𝜃(𝑥, 𝑦)|  ≤  𝐶𝛼𝜃

−|𝛼| , |(∇𝑥
⊥ )𝛼𝑏𝜐,𝜃(𝑥, 𝑧)|  ≤  𝐶𝛼𝜃

−|𝛼| , (117) 

and  

|𝜕𝑡
𝑗
 𝑎𝜈,𝜃(𝑥, 𝑥𝜈(𝑡))| ≤  𝐶𝑗 , 𝑥 ∈  𝛾𝜈  =  {𝑥𝜈(𝑡)},               (118) 
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|𝜕𝑡
ℓ𝑏𝜐,𝜃(𝑥, 𝑥𝜐(𝑡))|  ≤  𝐶, 𝑥 ∈  𝛾𝜐  =  {𝑥𝜐(𝑡)},                 (119) 

 where ∇𝑥
⊥ denotes the directional derivative along the direction perpendicular to the 

geodesics {𝑥𝜈(𝑡)} with 𝜈 =  𝜈 or 𝜐 and  

𝛾𝜈  =   {𝑧𝜈(𝜏 ) : − 2 ≤  𝜏 ≤  2, (𝑧𝜈(𝜏 ), 𝜂𝜈(𝜏 ))  =  Φ𝜏 (𝑧𝜈 , 𝜂𝜈), 𝜃
−1Θ(𝑧𝜈, 𝜂𝜈) +  𝜈 =  0}.  

Proof. The properties for (𝜒𝜆𝑄𝜃
𝜈)(𝑥, 𝑦) are exactly the same as in [170], and the proof is 

identical to that of Lemma (5.2.6) in [170]. Since 𝜃 ≥  𝜇−
1

2
 +𝜀, the properties for 

(𝜒𝜆𝑃𝜃
𝜐)(𝑥, 𝑧) follows from the same proof. 

We have the following.  

Lemma (5.2.12)[174]: Assume 𝜃 ≥  𝜃0 and 𝑁1 is fixed. Then there exists 𝐶0 ≫  1, when 

|𝜈 −  𝜈|  +  |𝜐 −  𝜐|  ≥  𝐶0 and |𝜈 −  𝜐|, |𝜈  −  𝜐|  ≤  𝑁1, we have 

|∫  𝜒𝜆𝑄𝜃
𝜈ℎ1(𝑥)𝜒𝜇𝑃𝜃

𝜐 ℎ2(𝑥)𝜒𝜆𝑄𝜃
�̃�ℎ3(𝑥) 𝜒𝜇𝑃𝜃

�̃�  ℎ4(𝑥) 𝑑𝑥|      ≤  𝐶𝑁 𝜇
−𝑁  ∏  

4

𝑗=1

 ‖ℎ𝑗‖2
.  

Proof. To get 𝑂𝑁 (𝜇
−𝑁) decay as claimed, we need to split into two cases depending on the 

size of 𝜇. Assume first 𝜇 ≥  𝜆2.  

       It suffices to consider the kernel  

𝐾(𝑦, 𝑧, �̃�, �̃�)  =   ∫  𝜒𝜆𝑄𝜃
𝜈  (𝑥, 𝑦)𝜒𝜇𝑃𝜃

𝜐 (𝑥, 𝑧)𝜒𝜆𝑄𝜃
�̃�  (𝑥, �̃�) 𝜒𝜇𝑃𝜃

�̃� (𝑥, �̃�)𝑑𝑥. 

        Indeed, by Lemma (5.2.11), up to a 𝑂𝑁  (𝜇
−𝑁) error, we can restrict the domain of 

integration here to 𝛺 =  𝑇𝐶𝜃(𝛾𝜐)  ∩  𝑇𝐶𝜃(𝛾�̃�).  

        Plugging (116) into the expression of 𝐾(𝑦, 𝑧, �̃�, �̃�), we get  

𝐾(𝑦, 𝑧, �̃�, �̃�)  =  𝜇  ∫   
𝛺

 𝑏(𝑥, 𝑦, 𝑧, �̃�, �̃�)𝑒𝑖𝜇
(𝑑𝑔(𝑥,𝑧)−𝑑𝑔(𝑥,𝑧))𝑑𝑥 + 𝑂𝑁  (𝜇

−𝑁), 

where  

𝑏(𝑥, 𝑦, 𝑧, �̃�, �̃�)  =  𝜒𝜆𝑄𝜃
𝜈 (𝑥, 𝑦)𝜒𝜆𝑄𝜃

�̃�  (𝑥, �̃�) 𝑏𝜐,𝜃(𝑥, 𝑧)𝑏�̃�,𝜃(𝑥, �̃�). 

It is easy to see that 𝑏(𝑥, 𝑦, 𝑧, �̃�, �̃�) satisfies  

|∇𝑥
𝛼 𝑏(𝑥, 𝑦, 𝑧, �̃�, �̃�)|  ≤  𝐶𝜆|𝛼|+1. 

Now we consider the phase function  

𝜇 (𝑑𝑔(𝑥, 𝑧) − 𝑑𝑔(𝑥, �̃�)).  

The gradient reads  

𝜇∇𝑥 (𝑑𝑔(𝑥, 𝑧) − 𝑑𝑔(𝑥, �̃�)). 

We claim that for 𝐶0 big enough, there exists some 𝑐0  >  0, such that  

|∇𝑥 (𝑑𝑔(𝑥, 𝑧) − 𝑑𝑔(𝑥, �̃�))|  ≥  𝑐0𝜃, 

 then our lemma follows from simple integration by parts argument.  

        Indeed, since 𝑥 ∈  𝑇𝐶𝜃  (𝛾𝜐)   ∩  𝑇𝐶𝜃(𝛾�̃�), 𝑧 ∈  𝑇𝐶𝜃(𝛾𝜐) and �̃�  ∈  𝑇𝐶𝜃(𝛾�̃�), we see that  

|∇𝑥 (𝑑𝑔(𝑥, 𝑧) − 𝑑𝑔(𝑥, �̃�))| |𝜐 −  𝜐|𝜃, 

noticing that  

|𝜐 −  𝜐| ≥ |𝜈 −  𝜈| − |𝜈 −  𝜐| − |𝜈  −  𝜐| ≥ |𝜈 − 𝜈|  −  2𝑁1,  
thus for 𝐶0 big enough,  

|𝜐 −  𝜐| ≥
1

2
 (|𝜐 −  𝜐| +  |𝜈 −  𝜈|) − 𝑁1  ≥

1

2
 𝐶0  −  𝑁1  ≥  𝑐0, 

 finishes the proof for the case 𝜇 ≥  𝜆 
2.  
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        Now we assume 𝜇 ≤  𝜆 
2, then again by Lemma (5.2.11), up to a 𝑂𝑁  (𝜇

−𝑁)  =
 𝑂2𝑁  (𝜆

−2𝑁) error, we can further restrict the domain of integration in this case to 𝛺′ =
 𝑇𝐶𝜃(𝛾𝜐)  ∩  𝑇𝐶𝜃(𝛾�̃�)  ∩  𝑇𝐶𝜃(𝛾𝜈)  ∩  𝑇𝐶𝜃(𝛾�̃�).  

       Similarly as above, by plugging (115) and (116) into the expression of 𝐾(𝑦, 𝑧, �̃�, �̃�), we 

see that the resulting phase function is given by  

𝜆 (𝑑𝑔(𝑥, 𝑦) − 𝑑𝑔(𝑥, �̃� ))  +  𝜇 (𝑑𝑔(𝑥, 𝑧) −  𝑑𝑔(𝑥, �̃� )). 

The gradient reads  

𝜆∇𝑥 (𝑑𝑔(𝑥, 𝑦) − 𝑑𝑔(𝑥, �̃�))  +  𝜇∇𝑥 (𝑑𝑔(𝑥, 𝑧) − 𝑑𝑔(𝑥, �̃�)). 

Let us denote ∇𝑥 (𝑑𝑔(𝑥, 𝑦))  =  𝑌 , here Y is a unit vector in 𝑇𝑥𝑀, similarly denote 

∇𝑥 (𝑑𝑔(𝑥, �̃�))  =  𝑌, ∇𝑥(𝑑𝑔(𝑥, 𝑧))  =  𝑍 and ∇𝑥 (𝑑𝑔(𝑥, �̃�))  =  𝑍. By the separation 

conditions we have, it is easy to see that ∠(𝑌, 𝑍), ∠(�̃� , 𝑍)  ≤  𝑁1𝜃 and ∠(𝑌, �̃�)  +
 ∠(𝑍, 𝑍)  ≥  𝐶0𝜃. We claim that  

| 𝑌 −  �̃�  +
𝜇

𝜆
 (𝑍 − 𝑍)|    = |(𝑌 +

𝜇

𝜆
𝑍)   − (�̃�  +

𝜇

𝜆
𝑍)|  ≥  𝑐

𝜇

𝜆
𝜃,   (120) 

which implies the desired result using integration by parts. Indeed, it suffices to show that 

∠(𝑌 +
𝜇

𝜆
𝑍, �̃�  +

𝜇

𝜆
𝑍) is bounded below by some uniform constant times 𝜃. Note that 

∠(𝑌 +
𝜇

𝜆
𝑍, 𝑌 ) , ∠ (�̃� , �̃�  +

𝜇

𝜆
𝑍) , ∠ (𝑌 +

𝜇

𝜆
𝑍, 𝑍) , ∠ (𝑍, �̃�  +

𝜇

𝜆
𝑍)  ≤  𝑁1𝜃, we have  

∠(𝑌 +
𝜇

𝜆
𝑍, �̃�  +

𝜇

𝜆
𝑍)  ≥  ∠(𝑌,  �̃�)  −  2𝑁1𝜃, 

similarly,  

∠(𝑌 +
𝜇

𝜆
𝑍, �̃�  +

𝜇

𝜆
𝑍)  ≥  ∠(𝑍, 𝑍)  −  2𝑁1𝜃. 

Thus for 𝐶0 large enough,  

∠ (𝑌 +
𝜇

𝜆
𝑍, �̃�  +

𝜇

𝜆
𝑍)  ≥

1

2
 (∠(𝑌, �̃�) +  ∠(𝑍, 𝑍))  −  2𝑁1𝜃 ≥

1

2
 𝐶0𝜃 −  2𝑁1𝜃 ≥  𝑐0𝜃, 

 finishes the proof. 

We use orthogonality argument to reduce the proof of Theorem (5.2.1) to a specific 

bilinear estimate. We use Lemma (5.2.9) and Minkowski’s inequality to estimate 

‖𝜒𝜆𝑓𝜒𝜇𝑔‖2 by   

‖ ∑  
|𝜈−𝜐|≤𝑀

 𝜒𝜆𝑄𝜃0
𝜈    𝑓 𝜒𝜇𝑃𝜃0

𝜐  𝑔‖

2

                      (121) 

+ ∑  

𝑂(log 𝜆)

ℓ=log 𝑀/ log 2

‖ ∑  

2ℓ≤|𝜈−𝜐|<2ℓ+1

 𝜒𝜆𝑄𝜃0
𝜈 𝑓 𝜒𝜇𝑃𝜃0

𝜐 𝑔‖

2

 ,                  (122) 

 for certain dyadic 𝑀 large enough. The square of (121) is estimated by  

[ ∑  

|𝑣−𝑣′|+|𝑣′−𝑣|≤𝐶0

∑  

|𝑣−𝑣′|+|𝑣′−𝑣|≥𝐶0

]∫  𝜒𝜆𝑄𝜃0
𝜈 (𝑥)𝜒𝜇𝑃𝜃0

𝜐  (𝑥)𝜒𝜆𝑄𝜃0
𝑣′(𝑥) 𝜒𝜇𝑃𝜃0

𝑣′(𝑥) 𝑑𝑥, (123) 

where |𝜈 − 𝜐|, |𝜈_ − 𝜐_|  ≤ 𝑀. 
        By Lemma (5.2.9), the second term of (123) is negligible by choosing 𝐶0 sufficiently 

large.  

       We can estimate the contribution of the first term as  
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∑  

𝜐∈ℤ2

 ∑  

𝜈:|𝜈−𝜐|≤𝑀

 ‖𝜒𝜆𝑄𝜃0
𝜈 𝑓 𝜒𝜇𝑃𝜃0

𝜐 𝑔‖
2

2
. 

If we use the bilinear estimate (76), we can estimate this sum by  

 𝜆
1
2  ∑  

𝜐∈ℤ2

 ‖𝑃𝜃0
𝜐 𝑔‖

2

2
 ∑  

𝜈:|𝜈−𝜐|≤𝑀

 ‖𝑄𝜃0
𝜈 𝑓‖

2

2
. 

By the 𝐿2-orthogonality, we see the contribution of (121)is  

𝜆
𝜀0
2  ‖𝑔‖2  ×   (𝜆

1
2 −𝜀0sup

𝜈
 ‖𝑄𝜃0

𝜈 𝑓‖
2

2
)

1
2
 , 

which corresponds to (79). Similarly, since the sum is symmetric, we can also bound (121) 

by  

𝜆
𝜀0
2  ‖𝑓‖2  ×   (𝜆

1
2 −𝜀0sup

𝜈
 ‖𝑃𝜃0

𝜈 𝑔‖
2

2
)

1
2
 , 

 

which corresponds to (80). 

        The second microlocalization. For the off diagonal part (122), we will reduce the 

matters to a bilinear oscillatory integrals as in [170]. Fixing ℓ ≥ log𝑀/ log2, we see that if 

2ℓ ≤ |𝑣 − 𝑣| < 2ℓ+1 then the distance between 𝛾𝜈  and 𝛾𝜐 in the sense of Remark (5.2.8) is 

approximately 2ℓ𝜃0. To explore this and use orthogonality argument, one naturally employs 

wider tubes to collect thinner tubes by making use of the second microlocalization. 

Precisely, up to some negligible terms, we may write for 𝜃ℓ  =  2
ℓ𝜃0 with 𝑐0 to be specified 

later  

𝜒𝜆𝑄𝜃0
𝜈  𝑓(𝑥) ≈  ∑  

𝜎1∈ℤ
2

  (𝜒𝜆𝑄𝑐0𝜃ℓ
𝜎1  )  ∘ 𝑄𝜃0

𝜈  𝑓(𝑥), 𝜒𝜇𝑃𝜃0
𝜐 𝑔(𝑥)

≈   ∑  

𝜎2∈ℤ
2

  (𝜒𝜇𝑃𝑐0𝜃ℓ
𝜎2 ) ∘  𝑃𝜃0

𝜐  𝑔(𝑥).  

Noting that the kernels of the operators (𝜒𝜆𝑄𝑐0𝜃ℓ
𝜎1  ) ∘  𝑄𝜃0

𝜈  and (𝜒𝜇𝑃𝑐0𝜃ℓ
𝜎2 )  ∘  𝑃𝜃0

𝜐  decrease 

rapidly unless 𝑇𝐶1𝑐0𝜃ℓ(𝛾𝜎1)  ∩  𝑇𝐶1𝜃0 (𝛾𝜈)  ≠  ∅ and 𝑇𝐶1𝑐0𝜃ℓ(𝛾𝜎2)  ∩  𝑇𝐶1𝜃0  (𝛾𝜐)  ≠  ∅, we 

have by choosing 𝑀 large enough, there are 𝑁0  =  𝑁0(𝑐0, 𝑀) and 𝑁1 such that up to some 

negligible terms  

∑  

2ℓ≤|𝑣−𝑣|<2ℓ+1

𝜒𝜆𝑄𝜃0
𝑣 𝑓(𝑥)𝜒𝜇𝑃𝜃0

𝑣 𝑔(𝑥)                                     (124) 

∑  

𝜎1,𝜎2∈ℤ
2,𝑁0≤|𝜎1−𝜎2|≤𝑁1

∑  

2ℓ≤|𝑣−𝑣|<2ℓ+1

(𝜒𝜆𝑄𝑐0𝜃ℓ
𝜎1 ) ∘  𝑄𝜃0

𝜈 𝑓(𝑥) (𝜒𝜇𝑃𝑐0𝜃ℓ
𝜎2 )  ∘  𝑃𝜃0

𝜐 𝑔(𝑥). 

Moreover, we may find a 𝐶3 > 0 having the property that for every 𝜎1 and 𝜎2, there are 

𝜈(𝜎1) and 𝜐(𝜎2) such that |𝜈 −  𝜈(𝜎1)|, |𝜐 −  𝜐(𝜎2)|  ≥  𝐶32
ℓ  implies 

‖(𝜒𝜆𝑄𝑐0𝜃ℓ
𝜎1  ) ∘  𝑄𝜃0

𝜈 𝑓‖
𝐿∞
≲𝑁 𝜆

−𝑁, ‖(𝜒𝜇𝑃𝑐0𝜃ℓ
𝜎2 )  ∘  𝑃𝜃0

𝜐 𝑔‖
𝐿∞
≲𝑁 𝜇

−𝑁, 

for all 𝑁 =  1, 2, . .. . Therefore, we may estimate (124) as follows 

‖ ∑ 𝜒𝜆𝑄𝜃0
𝜈 𝑓𝜒𝜇𝑃𝜃0

𝑣 𝑔

2ℓ≤|𝑣−𝑣|<2ℓ+1

‖

2

2

≲ ∑ ∫𝑇𝜆,𝜇,𝜃ℓ
𝜎1,𝜎2𝐹(𝑥)𝑇

𝜆,𝜇,𝜃ℓ

𝜎1,𝜎2𝐹(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

𝑁0≤|𝜎1−𝜎2|≤𝑁1
|𝜎1−𝜎1|+|𝜎2−𝜎2|≥𝐶
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+ ∑ ∫𝑇𝜆,𝜇,𝜃ℓ
𝜎1,𝜎2𝐹(𝑥)𝑇

𝜆,𝜇,𝜃ℓ

𝜎1,𝜎2𝐹(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

𝑁0≤|𝜎1−𝜎2|≤𝑁1
|𝜎1−𝜎1|+|𝜎2−𝜎2|≥𝐶

 

where 𝑁0 can be sufficiently large by choosing 𝑐0 small and 

𝑇𝜆,𝜇,𝜃ℓ
𝜎1,𝜎2𝐹(𝑥) =∬(𝜒𝜆 ∘ 𝑄𝑐0𝜃ℓ

𝜎1 ) (𝑥, 𝑦) (𝜒𝜇 ∘ 𝑃𝑐0𝜃ℓ
𝜎2 ) (𝑥, 𝑧)𝐹(𝑦, 𝑧)𝑑𝑦𝑑𝑧,            (125) 

𝐹(𝑦, 𝑧) = ∑ 𝑄𝜃0
𝜈 𝑓(𝑦)𝑃𝜃0

𝜐 𝑔(𝑧)

2ℓ≤|𝑣−𝑣|<2ℓ+1

|𝑣(𝜎1)−𝑣|+|𝑣(𝜎2)−𝑣|≤𝐶32
ℓ

,            (126) 

with 𝐹(𝑦, 𝑧) = 0 if (𝑦, 𝑧) ∉ 𝐵(𝑦0 , 𝐶0𝛿)  × 𝐵(𝑧0, 𝐶0𝛿). It follows again from Lemma 

(5.2.12) that if we choose 𝐶 large enough, the second term in the expression preceding (125) 

is negligible. 

        To evaluate the first term there, we are reduced to estimating  

∑  

𝑁0≤|𝜎1−𝜎2|≤𝑁1

 ‖𝑇𝜆,𝜇,𝜃ℓ
𝜎1,𝜎2𝐹 ‖

2𝐿2(𝐵(0,𝛿))
.                            (127) 

We shall need the following proposition whose proof is postponed. 

Proposition (5.2.13)[174]: Let  

𝑇𝜆,𝜇,𝜃ℓ
𝜎1,𝜎2𝐹(𝑥)  =  ∬  (𝜒𝜆  ∘ 𝑄𝑐0𝜃ℓ

𝜎1 ) (𝑥, 𝑦) (𝜒𝜇  ∘∘ 𝑃𝑐0𝜃ℓ
𝜎2 ) (𝑥, 𝑧) 𝐹(𝑦, 𝑧) 𝑑𝑦𝑑𝑧. (128) 

Assume as before that 𝛿 > 0 is sufficiently small and 𝜃 is larger than a fixed positive 

constant times 𝜃0. Then if 𝑁0 is sufficiently large and 𝑁1 > 𝑁0 is fixed, there exists a 

positive constant 𝐶 = 𝐶𝜀0 such that  

‖𝑇𝜆,𝜇,𝜃ℓ
𝜎1,𝜎2𝐹 ‖

2𝐿2(𝐵(0,𝛿))
 ≤  𝐶 𝜃−12‖𝐹‖2, if 𝑁0  ≤  |𝜎1  −  𝜎2| ≤  𝑁1 .    (129) 

Assuming (129), we can now complete the proof of Theorem (5.2.1). In fact, we have  

‖ ∑  

2ℓ≤|𝜈−𝜐|<2ℓ+1

 𝜒𝜆𝑄𝜃0
𝜈 𝑓 𝜒𝜇𝑃𝜃0

𝜐 𝑔‖

2

2

 

≤  𝐶 (2ℓ𝜃0)
−1

∑  

𝑁0≤|𝜎1−𝜎2|≤𝑁1

∬  |
| ∑  

2ℓ≤|𝜈−𝜐|<2ℓ+1

 |𝜈(𝜎1)−𝜈|+|𝜐(𝜎2)−𝜐|≤𝐶32
ℓ

𝑄𝜃0
𝜈  𝑓(𝑦)𝑃𝜃0

𝜐  𝑔(𝑧)|
|

2

𝑑𝑦𝑑𝑧. 

Notice that  

∬  |
| ∑  

2ℓ≤|𝜈−𝜐|<2ℓ+1

 |𝜈(𝜎1)−𝜈|+|𝜐(𝜎2)−𝜐|≤𝐶32
ℓ

𝑄𝜃0
𝜈  𝑓(𝑦)𝑃𝜃0

𝜐  𝑔(𝑧)|
|

2

𝑑𝑦𝑑𝑧 

= ∑  

2ℓ≤|𝜈−𝜐|<2ℓ+1

 |𝜈(𝜎1)−𝜈|+|𝜐(𝜎2)−𝜐|≤𝐶32
ℓ

∑  

2ℓ≤|𝜈′−𝜐′|<2ℓ+1

 |𝜈(𝜎1)−𝜈
′|+|𝜐(𝜎2)−𝜐

′|≤𝐶32
ℓ

〈(𝑄𝜃0
𝑣′)

∗
∘ 𝑄𝜃0

𝑣 𝑓, 𝑓〉 〈(𝑃𝜃0
𝑣′)

∗
∘ 𝑃𝜃0

𝑣 𝑔, 𝑔〉, 

where ‖(𝑄𝜃0
𝜈′)

∗
∘ 𝑄𝜃0

𝜈 ‖
𝐿2→𝐿2

= 𝑂(𝜆−𝑁) and ‖(𝑃𝜃0
𝜐′)

∗
∘ 𝑃𝜃0

𝜐 ‖
𝐿2→𝐿2

= 𝑂(𝜇−𝑁) if |𝜈 − 𝜈′| +

|𝜐 − 𝜐′| ≥ 𝐶 for Clarge. Consequently, we have up to some negligible terms  
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‖(124)‖2
2 ≤ 𝐶(2ℓ𝜃0)

−1
 ∑  

𝑁0≤|𝜎1−𝜎2|≤𝑁1

 ∑  

|𝜈−𝜈(𝜎1)|+|𝜐−𝜐(𝜎2)|≤𝐶3 2
ℓ

‖𝑄𝜃0
𝜈  𝑓‖

2

2
‖𝑃𝜃0

𝜐 𝑔‖
2

2
 

≤  𝐶(2ℓ𝜃0)
−1
  (sup

𝜎1

 ∑  

|𝜈−𝜈(𝜎1)|≤𝐶3 2
ℓ

‖𝑄𝜃0
𝜈 𝑓‖

2

2
 )  ·  (∑  

𝜎2

 ∑  

|𝜐−𝜐(𝜎2)|≤𝐶3 2
ℓ

‖𝑃𝜃0
𝜐 𝑔‖

2

2
 )  

≤  𝐶(2ℓ𝜃0)
−1
 ‖𝑔‖2

2sup
𝜈∈ℤ2

  ‖𝑄
2ℓ𝜃0

𝜈 𝑓‖
2

2
.  

Thanks to the fact that we are allowed to have an extra small power of λ, we may sum over 

1 ≲ ℓ ≲ log𝜆𝑡 o finish the proof of (79). To get (80), one notes that the above sum is again 

symmetric, thus we may interchange the role of 𝑄𝜃0
𝜈 𝑓 and 𝑃𝜃0

𝜐 𝑔 to get 

‖ ∑  

2ℓ≤|𝜈−𝜐|<2ℓ+1

 𝜒𝜆𝑄𝜃0
𝜈 𝑓(𝑥) 𝜒𝜇𝑃𝜃0

𝜐 𝑔(𝑥)‖

2

2

≤  𝐶(2ℓ𝜃0)
−1
 ‖𝑓‖2

2sup
𝜈∈ℤ2

  ‖𝑃
2ℓ𝜃0

𝜈 𝑔‖
2

2
. 

summing over ℓ finishes the proof of (80). 

We take 𝜃 = 𝑐0𝜃ℓ and prove Proposition (5.2.13). We work in the geodesic normal 

coordinates about a fixed point �̃� ∈ 𝑇𝐶𝜃(𝛾𝜎1)  ∩ 𝑇𝐶𝜃(𝛾𝜎2). Without loss of generality, we 

may assume �̃� ∈ 𝛾𝜎1  and the geodesic 𝛾𝜎1  is parameterized by {(0, 𝑠): |𝑠| ≤ 2}. In the 

following, we denote by 𝜙(𝑥, 𝑦)  = 𝑑𝑔((𝑥1, 𝑥2), (𝑦1, 𝑦2)) the geodesic distance between  𝑥 

and 𝑦. 

        In order to estimate the 𝐿2(𝐵(0, 𝛿)) norm of 

𝑇𝜆,𝜇,𝜃 
𝜎1,𝜎2𝐹(𝑥)  =  ∬  (𝜒𝜆 ∘ 𝑄𝜃 

𝜎1) (𝑥, 𝑦) (𝜒𝜇 ∘ 𝑃 𝜃 
𝜎2) (𝑥, 𝑧)𝐹(𝑦, 𝑧) 𝑑𝑦𝑑𝑧. (130) 

we shall need the following lemma to further restrict the domain of x, y, z. 

Lemma (5.2.14)[174]: There exists a constant 𝐶, such that if we set 𝛺1 = 𝑇𝐶𝜃(𝛾𝜎1) and 

𝛺2 = 𝑇𝐶𝜃(𝛾𝜎2) we have  

‖∬  
 

𝑦∉Ω1 

(𝜒𝜆 ∘ 𝑄𝜃 
𝜎1) (𝑥, 𝑦) (𝜒𝜇 ∘ 𝑃 𝜃 

𝜎2) (𝑥, 𝑧)𝐹(𝑦, 𝑧) 𝑑𝑦𝑑𝑧‖

𝐿2(𝐵(0,𝛿))

≤ 𝐶𝑁𝜆
−𝑁‖𝑓‖2‖𝑔‖2, 

and  

‖𝑇𝜆,𝜇,𝜃 
𝜎1,𝜎2𝐹‖

𝐿2(𝐵(0,𝛿))
≤ 𝐶𝑁𝜆

−𝑁‖𝑓‖2‖𝑔‖2, 

Similarly, we have 

‖∬  
 

𝑧∉Ω1 

(𝜒𝜆 ∘ 𝑄𝜃 
𝜎1) (𝑥, 𝑦) (𝜒𝜇  ∘  𝑃 𝜃 

𝜎2) (𝑥, 𝑧)𝐹(𝑦, 𝑧) 𝑑𝑦𝑑𝑧‖

𝐿2(𝐵(0,𝛿))

≤ 𝐶𝑁𝜆
−𝑁‖𝑓‖2‖𝑔‖2, 

and 

‖𝑇𝜆,𝜇,𝜃 
𝜎1,𝜎2𝐹‖

𝐿2(𝐵(0,𝛿)\Ω2)
≤ 𝐶𝑁𝜆

−𝑁‖𝑓‖2‖𝑔‖2. 

Proof. Since we know there are at most 𝑂(𝜆2) many terms in the sum  

𝐹(𝑦, 𝑧) = ∑ 

𝑣

∑  

𝑣:|𝑣−𝑣|∈[2ℓ,2ℓ+1)

𝑄𝜃0
𝑣 𝑓(𝑦) 𝑃𝜃0

𝑣 𝑔(𝑧), 

it suffices to show the 𝐿2(𝐵(0, 𝛿))  norm of  

∬ (𝜒𝜆  ∘  𝑄𝜃 
𝜎1) (𝑥, 𝑦) (𝜒𝜇  ∘ 𝑃 𝜃 

𝜎2) (𝑥, 𝑧)𝑓(𝑦)𝑔(𝑧) 𝑑𝑦𝑑𝑧 
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satisfies our claim. 

       Indeed, by Lemma (5.2.7), we can find 𝐶 such that if 𝑥 ∉ 𝑇𝐶𝜃(𝛾𝜎1) or 𝑦 ∉ 𝑇𝐶𝜃(𝛾𝜎1),  

|𝜒𝜆𝑄𝜃
𝑣(𝑥, 𝑦)| ≤ 𝐶𝑁𝜆

−𝑁. 
Thus  

‖∫  (𝜒𝜆 ∘ 𝑄𝜃 
𝜎1) (𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦‖

𝐿∞(𝑑𝑥)

≤ 𝐶𝑁𝜆
−𝑁‖𝑓‖𝐿2 , 

while we know 𝜒𝜇 has 𝐿2 → 𝐿2 norm 1, so  

‖∫  (𝜒𝜇 ∘ 𝑃𝜃 
𝜎2) (𝑥, 𝑦)𝑔(𝑧) 𝑑𝑧‖

𝐿2(𝑑𝑥)

≤ 𝐶𝑁𝜆
−𝑁‖𝑔‖𝐿2 . 

Therefore  

‖∬  (𝜒𝜆 ∘  𝑄𝜃 
𝜎1) (𝑥, 𝑦) (𝜒𝜇 ∘  𝑃 𝜃 

𝜎2) (𝑥, 𝑧)𝑓(𝑦)𝑔(𝑧)𝑑𝑦𝑑𝑧‖
𝐿2
 ≤ 𝐶𝑁𝜆

−𝑁‖𝑓‖𝐿2‖𝑔‖𝐿2  

as claimed. 

       The second part of our lemma follows from the exact same proof.  

Remark (5.2.15)[174]: By the above lemma, we see that we can assume in (130), 𝑦 ∈

𝑇𝐶𝜃(𝛾𝜎1), 𝑧 ∈ 𝑇𝐶𝜃(𝛾𝜎2), and 𝑥 ∈ 𝑇𝐶𝜃(𝛾𝜎1)  ∩ 𝑇𝐶𝜃(𝛾𝜎2). Moreover, if 𝑁0 ≤ |𝜎1 − 𝜎2| ≤ 𝑁1, 

then we may assume the angle Ang(𝑥;  𝑦, 𝑧) between the geodesic connecting 𝑥 and 𝑦 and 

the one connecting 𝑥 and 𝑧 belongs to [𝜃, 𝐶4𝜃]. This geometric assumption yields 𝑥, 𝑦, 𝑧 ∈

𝑇𝐶4𝜃(𝛾𝜎1) for some large constant 𝐶4. Moreover, we also have ∠(𝛾𝜎1 , 𝛾𝜎2)  ≥ 𝑁0𝜃. 

Noticing that 𝑑𝑔(𝑥, 𝑦) and 𝑑𝑔(𝑥, 𝑧) are comparable to 1, we claim that for 𝑁0 sufficiently 

large, we can find 𝑐 > 0 such that 

|𝑦1 − 𝑧1| > 𝑐𝜃.                                                       (131) 
 

 
Fig.(3)[174]: The geodesic tubes 𝑇𝐶𝜃(𝛾𝜎1) and 𝑇𝐶𝜃(𝛾𝜎2). 



211 

Indeed, it is easy to see that |𝑦1| ≤ 𝐶𝜃  and 𝑑𝑔(𝑧, 𝛾𝜎2)  ≤ 𝐶𝜃. Since the constant Chere is a 

uniform constant, we can choose 𝑁0 ≫ 𝐶. Then we have |𝑧1|  ≥ 𝑁0𝜃 − 𝐶𝜃, see Fig. (3). 

Therefore |𝑦1 − 𝑧1|  ≥ 𝑁0𝜃 − 2𝐶𝜃 ≥ 𝑐𝜃 as claimed. 

       Returning to 𝑇𝜆,𝜇,𝜃 
𝜎1,𝜎2𝐹 (𝑥), we have from Cauchy–Schwarz  

‖𝑇𝜆,𝜇,𝜃 
𝜎1,𝜎2𝐹‖

2

2
≲ 𝜆𝜇∬  

 

 

|∫  𝑒𝑖𝜇Φ𝜖(𝑥; (𝑦1,𝑦2),(𝑧1,𝑧2))𝑎𝜆,𝜇,𝜃
𝜎1,𝜎2(𝑥, 𝑦, 𝑧)𝐹(𝑦, 𝑧)𝑑𝑦1𝑑𝑧1|

2

𝑑𝑥𝑑𝑦2𝑑𝑧2, 

where 𝜖 = 𝜆/𝜇 and  

Φ𝜖(𝑥;  𝑦, 𝑧)  = 𝜖𝜙(𝑥, 𝑦)  + 𝜙(𝑥, 𝑧), 
𝑎𝜆,𝜇,𝜃
𝜎1,𝜎2(𝑥, 𝑦, 𝑧) =  𝑎𝜎1,𝜃(𝑥, 𝑦)𝑏𝜎2,𝜃(𝑥, 𝑧). 

Fix 𝑦2 and 𝑧2 , it suffices to prove  

∫  
ℝ2
|∫  
ℝ2
𝑒𝑖𝜇Φ𝜖(𝑥; (𝑦1,𝑦2),(𝑧1,𝑧2))𝑎𝜆,𝜇,𝜃

𝜎1,𝜎2(𝑥, 𝑦, 𝑧)𝐺(𝑦1, 𝑧1)𝑑𝑦1𝑑𝑧1|

2

𝑑𝑥 

≤ 𝐶(𝜆𝜇𝜃)−1‖𝐺‖𝐿2
2 ,                                                    (132) 

uniformly with respect to 𝑦2, 𝑧2 where we set 𝐺(𝑦1 , 𝑧1)  = 𝐹(𝑦, 𝑧) for brevity.  

Squaring the left side of (132) shows that we need to estimate  

∬ 𝑒𝑖𝜇Ψ(𝑥; 𝑦1,𝑦1
′ ,𝑧1,𝑧1

′)𝐴𝜆,𝜇,𝜃
𝜎1,𝜎2(𝑥;  𝑦1, 𝑦1

′ , 𝑧1, 𝑧1
′)𝐺(𝑦1

′, 𝑧1
′)𝑑𝑥𝑑𝑦1𝑑𝑧1𝑑𝑦1

′𝑑𝑧1
′ ,   (133) 

where  

𝐴𝜆,𝜇,𝜃
𝜎1,𝜎2(𝑥; 𝑦1, 𝑦1

′ , 𝑧1, 𝑧1
′) = 𝑎𝜆,𝜇,𝜃

𝜎1,𝜎2(𝑥, (𝑦1, 𝑦2), (𝑧1, 𝑧2))𝑎𝜆,𝜇,𝜃
𝜎1,𝜎2(𝑥, (𝑦1

′, 𝑦2), (𝑧1
′ , 𝑧2)) 

Ψ = Ψ𝜖,𝑦2,𝑧2(𝑥; 𝑦1, 𝑦1
′ , 𝑧1, 𝑧1

′) = Φ𝜖(𝑥, (𝑦1 , 𝑦2), (𝑧1, 𝑧2))Φ𝜖(𝑥, (𝑦1
′ , 𝑦2), (𝑧1

′ , 𝑧2)) 

Set  

𝐾𝜆,𝜇,𝜃
𝜎1,𝜎2(𝑥; 𝑦1, 𝑦1

′ , 𝑧1, 𝑧1
′) = ∫  

ℝ2
𝑒𝑖𝜇Ψ(𝑥; 𝑦1,𝑦1

′ ,𝑧1,𝑧1
′)𝐴𝜆,𝜇,𝜃

𝜎1,𝜎2(𝑥; 𝑦1, 𝑦1
′ , 𝑧1, 𝑧1

′)𝑑𝑥.       (134) 

Then by Schur test, we are reduced to proving  

sup
𝑦1
′ ,𝑧1

′
∫  
ℝ2
|𝐾𝜆,𝜇,𝜃

𝜎1,𝜎2(𝑥;  𝑦1, 𝑦1
′ , 𝑧1, 𝑧1

′)| 𝑑𝑦1, 𝑑𝑧1sup
𝑦1,𝑧1

∫  
ℝ2
|𝐾𝜆,𝜇,𝜃

𝜎1,𝜎2(𝑥; 𝑦1, 𝑦1
′ , 𝑧1, 𝑧1

′)| 𝑑𝑦1
′ , 𝑑𝑧1

′  

≤ 𝐶/𝜆𝜇𝜃. 
By symmetry, we shall only deal with the first one. 

       By Remark (5.2.15), we have  

|𝑦1 − 𝑧1| ≥ 𝑐𝜃, |𝑦1
′ − 𝑧1

′ | ≥ 𝑐𝜃.                           (135) 
This would allow us to study the oscillatory integral (134) using the strategy of [28] and a 

change of variables argument similar to the one in pp.217–218of [3]. In fact, if we let 

𝜓(𝑥, 𝑦1)  = 𝜙(𝑥, (𝑦1, 𝑦2)), then 𝜓 is a Carleson–Sjölinphase for fixed 𝑦2, i.e.  

det (
𝜓𝑥1,𝑦1
′′ 𝜓𝑥2,𝑦1

′′

𝜓𝑥1,𝑦1,𝑦1
′′′ 𝜓𝑥2,𝑦1,𝑦1

′′′ ) ≠ 0,                             (136) 

see [16], [28]. Changing variables (𝑦1, 𝑧1)  ↦ (𝜏, 𝜏′), (𝑦1
′ , 𝑧1

′)  ↦ (�̃�, �̃�′)  by  

{
 

 𝜏 =
𝜆

2𝜇
(𝑦1 − 𝑧1)

2,

𝜏′ = 𝑧1 +
𝜆

𝜇
𝑦1

,

{
 

 �̃� =
𝜆

2𝜇
(𝑦1
′ − 𝑧1

′)2,

�̃�′ = 𝑧1
′ +

𝜆

𝜇
𝑦1
′

, 

 

where we may assume 𝑦1 > 𝑧1 by symmetry. It is clear that the above bijective mapping 

sends variables from {𝑦1 − 𝑧1 ≥ 𝑐𝜃} to {(𝜏, 𝜏′) ∶ 𝜏 ≥ 𝑐𝜆𝜃2/2𝜇} , whose Jacobian reads 
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𝐷(𝜏 , 𝜏′)

𝐷(𝑦1, 𝑧1)
= (1 + 𝜖)(2𝜖𝜏)1/2 

The phase function in (134) goes to  

Ψ̃(𝑥; 𝜏, �̃�, 𝜏′, �̃�′)  = Ψ(𝑥; 𝑦1, 𝑦1
′ , 𝑧1, 𝑧1

′), 
under the change of variables. The Carleson–Sjölincondition allows us to obtain as in [3]  

|∇𝑥Ψ̃(𝑥; 𝜏, �̃�, 𝜏
′, �̃�′)| ≈ |𝜏 − �̃�| + |𝜏′ − �̃�′| 

|∂𝑥
𝛼Ψ̃(𝑥; 𝜏, �̃�, 𝜏′, �̃�′)| ≤ 𝐶𝛼(|𝜏 − �̃�| + |𝜏

′ − �̃�′|), |𝛼| ≤ 5 

In view of integration by parts and relation (135), we have for fixed (𝑦1
′ , 𝑧1

′) hence fixed 

(�̃�, �̃�′), thus  

∬  
 

𝑦1−𝑧1≥𝑐𝜃

|𝐾𝜆,𝜇,𝜃
𝜎1,𝜎2(𝑥;  𝑦1, 𝑦1

′ , 𝑧1, 𝑧1
′)| 𝑑𝑦1, 𝑑𝑧1 

≤ 𝐶∬  
 

𝑟≥𝑐𝜆𝜃2/2𝜇

(1 + 𝜇|𝜏 − �̃�| + 𝜇|𝜏′ − �̃�′|)−5 (
𝜆

𝜇
𝜏)

−1/2

𝑑𝜏𝑑𝜏′   

≤ 𝐶/𝜆𝜇𝜃,   
finishes the proof.  
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Chapter 6 

Principal Spectrum and Properties of the Principal Eigenvalue 

 

We discuss the applications of the principal spectral theory of nonlocal dispersal 

operators to the asymptotic dynamics of two species competition systems with nonlocal 

dispersal. We show the equivalence of different definitions of the principal eigenvalue. We 

also study the behaviour of 𝜆𝑝(ℒ𝛺 +  𝑎) with respect to some scaling of 𝐾. For kernels 𝐾 of 

the type, 𝐾(𝑥, 𝑦)  =  𝐽(𝑥 −  𝑦) with J a compactly supported probability density, we also 

establish some asymptotic properties of 𝜆𝑝 (ℒ𝜎,𝑚,𝛺 −
1

𝜎𝑚
 + 𝑎)  where ℒ𝜎,𝑚,𝛺 is defined by 

ℒ𝜎,2,𝛺[𝜙]: =
1

𝜎2+𝑁
∫  𝛺 𝐽 (

𝑥 − 𝑦

𝜎
)  𝜙(𝑦) 𝑑𝑦. We show that lim

𝜎→0
 𝜆𝑝 (ℒ𝜎,2,𝛺 −  1/𝜎

2 + 𝑎 =

𝜆1 (
𝐷2(𝐽)

2𝑁
𝛥 + 𝑎)  , where 𝐷2(𝐽) ∶= ∫  

ℝ𝑁
𝐽(𝑧)|𝑧|2𝑑𝑧 and 𝜆1 denotes the Dirichlet principal 

eigenvalue of the elliptic operator. We obtain some convergence results for the 

corresponding eigenfunction 𝜙𝑝,𝜎. 

Section (6.1): Principal Eigenvalues of Nonlocal Dispersal Operators and Applications 

We devoted to the study of principal spectrum of the following three eigenvalue problems 

associated to nonlocal dispersal operators,  

𝜈1  [∫  
 

𝐷

 𝑘(𝑦 − 𝑥)𝑢(𝑦)𝑑𝑦 − 𝑢(𝑥)] + 𝑎1(𝑥)𝑢 =  𝜆𝑢(𝑥),             𝑥 ∈  �̅�,     (1) 

where 𝐷 ⊂ ℝ𝑁 is a smooth bounded domain,  

𝜈2  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)[𝑢(𝑦)  −  𝑢(𝑥)]𝑑𝑦 + 𝑎2(𝑥)𝑢(𝑥)  =  𝜆𝑢(𝑥),     𝑥 ∈  �̅�, (2)  

where 𝐷 ⊂ ℝ𝑁 is as in (1), and  

{
𝜈3[  ∫  

 

ℝ𝑁
 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦 −  𝑢(𝑥)]  +  𝑎3(𝑥)𝑢(𝑥)  =  𝜆𝑢(𝑥),       𝑥 ∈ ℝ

𝑁 ,

 𝑢(𝑥 +  𝑝𝑗𝑒𝑗)  =  𝑢(𝑥),                     𝑥 ∈ ℝ
𝑁 ,

(3) 

where 𝑝𝑗 > 0, 𝑒𝑗  =  (𝛿𝑗1, 𝛿𝑗2,· · · , 𝛿𝑗𝑁 ) with 𝛿𝑗𝑘  =  1 if 𝑗 =  𝑘 and 𝛿𝑗𝑘  =  0 if 𝑗 ≠  𝑘, and 

𝑎3(𝑥 + 𝑝𝑗𝑒𝑗)  =  𝑎3(𝑥), 𝑗 =  1, 2,· · · , 𝑁. In (1), (2), and (3), 𝑘(·) is a nonnegative 𝐶1 

function with compact support, 𝑘(0)  >  0, and ℝ ℝ𝑁 𝑘(𝑧)𝑑𝑧 =  1.  
       Observe that the nonlocal dispersal operators in (1), (2), and (3), that is, 𝑢(𝑥)  ⟼
  𝐷 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦 −  𝑢(𝑥), 𝑢(𝑥)  ⟼  𝐷 𝑘(𝑦 −  𝑥)[𝑢(𝑦)  −  𝑢(𝑥)]𝑑𝑦, 𝑎𝑛𝑑 𝑢(𝑥)  ⟼
ℝ𝑁 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦 −  𝑢(𝑥), can be viewed as 𝑢(𝑥)  ⟼ ℝ𝑁  𝑘(𝑦 −  𝑥)[𝑢(𝑦)  −
 𝑢(𝑥)]𝑑𝑦 with Dirichlet type boundary condition  ℝ𝑁 \𝐷 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦 =  0 𝑓𝑜𝑟 𝑥 ∈
 �̅� , 𝑢(𝑥)  ⟼ ℝ𝑁 𝑘(𝑦 −  𝑥)[𝑢(𝑦)  −  𝑢(𝑥)]𝑑𝑦 with Neumann type boundary condition 

 ℝ𝑁 \𝐷 𝑘(𝑦 −  𝑥)[𝑢(𝑦)  −  𝑢(𝑥)]𝑑𝑦 =  0 𝑓𝑜𝑟 𝑥 ∈  �̅� , 𝑎𝑛𝑑 𝑢(𝑥)  ⟼ ℝ𝑁 𝑘(𝑦 −
 𝑥)[𝑢(𝑦)  −  𝑢(𝑥)]𝑑𝑦 with periodic boundary condition 𝑢(𝑥 + 𝑝𝑗𝑒𝑗)  =  𝑢(𝑥) 𝑓𝑜𝑟 𝑥 ∈

ℝ𝑁 , respectively.  

       Observe also that the eigenvalue problems (1), (2), and (3) can be viewed as the nonlocal 

counterparts of the following eigenvalue problems associated to random dispersal operators,  

{
( 𝜈1∆𝑢(𝑥)  +  𝑎1(𝑥)𝑢(𝑥)  =  𝜆𝑢(𝑥),                𝑥 ∈  𝐷,

𝑢(𝑥)  =  0,                                                           𝑥 ∈  𝜕𝐷,
                   (4)  

{

( 𝜈2∆𝑢(𝑥) + 𝑎2(𝑥)𝑢(𝑥) =  𝜆𝑢(𝑥),                    𝑥 ∈  𝐷,
𝜕𝑢

𝜕𝑛
 (𝑥)  =  0,                                                         𝑥 ∈  𝜕𝐷,

                 (5)  
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and  

{
 𝜈3∆𝑢(𝑥) +  𝑎3(𝑥)𝑢(𝑥)  =  𝜆𝑢(𝑥),                             𝑥 ∈ ℝ

𝑁 ,

𝑢(𝑥 +  𝑝𝑗𝑒𝑗)  =  𝑢(𝑥),                                                     𝑥 ∈ ℝ
𝑁 ,
     (6)  

respectively. [199], explore the relations between (1) and (4) (resp. (2) and (5), (3) and (6)) 

and prove that the principal eigenvalues of (4), (5), and (6) can be approximated by the 

principal spectrum points of (1), (2), and (3) with properly rescaled kernels, respectively 

(see Definition (6.1.1) for the definition of principal spectrum points of (1), (2), and (3)).  

       The nonlocal dispersal operator 𝑢(𝑥)  ⟼ ∫  
 

ℝ𝑁
 𝑘(𝑦 −  𝑥)[𝑢(𝑦)  −  𝑢(𝑥)]𝑑𝑦 with 

Dirichlet type or Neumann type or periodic boundary condition and the random dispersal 

operator 𝑢(𝑥)  ⟼  ∆𝑢(𝑥) with Dirichlet or Neumann or periodic boundary condition are 

widely used to model diffusive systems in applied sciences. In particular, the random 

dispersal operator 𝑢(𝑥)  ⟼  ∆𝑢(𝑥) with proper boundary condition is usually adopted when 

the organisms in a diffusive system move randomly between the adjacent spatial locations. 

       Nonlocal dispersal operator such as 𝑢(𝑥)  ⟼ ℝ𝑁  𝑘(𝑦 − 𝑥)[𝑢(𝑦) − 𝑢(𝑥)]𝑑𝑦 is applied 

when diffusive systems exhibit long range internal interactions (see [183], [184], [147]). 

Here if there is 𝛿 >  0 such that supp(𝑘(·))  ⊂  𝐵(0, 𝛿) ∶=  {𝑧 ∈ ℝ𝑁 | ‖𝑧‖  <  𝛿} and for 

any 0 <  δ̃  <  δ, supp(k(·)) ∩ ( B(0, δ)\ B(0, δ̃)) ≠  ∅, δ is called the dispersal distance 

of the nonlocal dispersal operator 𝑢(𝑥)  ⟼ ℝ𝑁 𝑘(𝑦 −  𝑥)[𝑢(𝑦)  −  𝑢(𝑥)]𝑑𝑦. As a basic 

technical tool for the study of nonlinear evolution equations with random and nonlocal 

dispersals, it is of great importance to investigate aspects of spectral theory for random and 

nonlocal dispersal operators.  

       The eigenvalue problems (4), (5), and (6), and in particular, their associated principal 

eigenvalue problems, are well understood. For example, it is known that the largest real part, 

denoted by 𝜆𝑅 ,1 (𝜈1, 𝑎1), of the spectrum set of (4) is an isolated algebraically simple 

eigenvalue of (4) with a positive eigenfunction, and for any other 𝜆 in the spectrum set of 

(4), 𝑅𝑒𝜆 <  𝜆𝑅,1(𝜈1, 𝑎1) (𝜆𝑅, 1(𝜈1, 𝑎1) is called the principal eigenvalue of (4)). Similar 

properties hold for the largest real parts, denoted by 𝜆𝑅,2(𝜈2, 𝑎2) and λR,ν3  (ν3, a3), of the 

spectrum sets of (5) and (6).  

       The principal eigenvalue problems (1), (2), and (3) have also been studied recently by 

many people (see [118], [146], [187], [189], [200], [199]). Let �̃�1(𝜈1, 𝑎1) 

(𝑟𝑒𝑠𝑝. �̃�2(𝜈2, 𝑎2), �̃�3(𝜈3, 𝑎3)) be the largest real part of the spectrum set of (1) (resp. (2), 

(3)). �̃�1(𝜈1, 𝑎1) (𝑟𝑒𝑠𝑝. �̃�2(𝜈2, 𝑎2), �̃�3(𝜈3, 𝑎3)) is called the principal spectrum point of (1) 

(resp. (2), (3)). �̃�1(𝜈1, 𝑎1) (𝑟𝑒𝑠𝑝. �̃�2(𝜈2, 𝑎2), �̃�3(𝜈3, 𝑎3)) is also called the principal 

eigenvalue of (1) (resp. (2),(3)) if it is an isolated algebraically simple eigenvalue of (1) 

(resp. (2), (3)) with a positive eigenfunction. It is known that a nonlocal dispersal operator 

may not have a principal eigenvalue (see [118], [200]), which reveals some essential 

difference between nonlocal and random dispersal operators. Some sufficient conditions are 

provided in [118], [189], and [200] for the existence of principal eigenvalues of (1), (2), and 

(3) (the conditions in [118] apply to (1) and (2), the conditions in [189] apply to (1), and the 

conditions in [200] apply to (3)). Such sufficient conditions have been found important in 

the study of nonlinear evolution equations with nonlocal dispersals (see [118], [185], [187], 

[189], [190], [191], [200], [201], [202]). However, the understanding is still little to many 

interesting questions regarding the principal spectrum points/principal eigenvalues of 

nonlocal dispersal operators, including the dependence of principal spectrum points or 

principal eigenvalues (if exist) of nonlocal dispersal operators on the underlying parameters. 
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       The objective of the current is to investigate the dependence of the principal spectrum 

points of nonlocal dispersal operators on the underlying parameters. We study the effects of 

the spatial inhomogeneity, the dispersal rate, and the dispersal distance on the existence of 

principal eigenvalues, on the magnitude of the principal spectrum points, and on the 

asymptotic behavior of the principal spectrum points of nonlocal dispersal operators with 

different types of boundary conditions in a unified way. Among others, we obtain the 

following:  

(a) criteria for �̃�1(𝜈1, 𝑎1) (𝑟𝑒𝑠𝑝. �̃�2(𝜈2, 𝑎2), �̃�3(𝜈3, 𝑎3)) to be the principal eigenvalue of 

(1) (resp. (2), (3)) (see Theorem (6.1.14) (i), (ii), Theorem (6.1.15) (iii), and Theorem 

(6.1.16) (iii) for detail);  

(b) lower bounds of �̃�𝑖(𝜈𝑖 , 𝑎𝑖) in terms of �̂�𝑖, where �̂�𝑖 is the spacial average of 

𝑎𝑖(𝑥) (𝑖 =  2, 3) (see Theorem (6.1.14) (iv) for detail);  

(c) monotonicity of �̃�𝑖(𝜈𝑖 , 𝑎𝑖) with respect to 𝑎𝑖(𝑥) and 𝜈𝑖 (𝑖 =  1, 2, 3) (see Theorem 

(6.1.14) (v) and Theorem (6.1.15) (i) for detail);  

(d) limits of �̃�𝑖(𝜈𝑖 , 𝑎𝑖) 𝑎𝑠 𝜈𝑖  →  0 𝑎𝑛𝑑 𝜈𝑖  →  ∞ (𝑖 =  1, 2, 3) (see Theorem (6.1.15) 

(iv), (v) for detail);  

(e) limits of �̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝛿) 𝑎𝑠 𝛿 →  0 𝑎𝑛𝑑 𝛿 →  ∞ in the case 𝑘(𝓏) =
1

𝛿𝑁
 �̃�( 𝓏 𝛿 ) and 

�̃�(𝓏)  ≥  0, supp(�̃�)  =  𝐵(0, 1), ℝ𝑁  �̃�(𝓏)𝑑𝓏 =  1, where λ̃i(νi , ai , δ)  =

 λ̃(νi , ai) (i =  1, 2, 3) (see Theorem (6.1.16) (i), (ii) for detail). 

We also investigate the applications of principal spectrum point properties of nonlocal 

dispersal operators to the asymptotic dynamics of the following two species competition 

system, 

{
 

  𝑢𝑡   =  𝜈[∫  
𝐷

 𝑘(𝑦 −  𝑥)𝑢(𝑡, 𝑦)𝑑𝑦 −  𝑢(𝑡, 𝑥)]  +  𝑢𝑓(𝑥, 𝑢 +  𝑣), 𝑥 ∈  �̅� 

𝑣𝑡  =  𝜈  ∫  
𝐷

𝑘(𝑦 − 𝑥)[𝑢(𝑡, 𝑦)  −  𝑢(𝑡, 𝑥)]𝑑𝑦 +  𝑣𝑓(𝑥, 𝑢 +  𝑣), 𝑥 ∈  �̅� ,
  (7) 

where D and k(·) are as in (1) with k(−𝓏)  =  k(𝓏) and 𝑓(·,·) 𝑖𝑠 𝑎 𝐶1 function satisfying 

that �̃�1(𝜈, 𝑓(·, 0))  >  0, 𝑓(𝑥, 𝑤)  <  0 𝑓𝑜𝑟 𝑤 ≫  1, and 𝜕2𝑓(𝑥, 𝑤)  <  0 𝑓𝑜𝑟 𝑤 >  0. (7) 
models the population dynamics of two competing species with the same local population 

dynamics (i.e. the same growth rate function f(·, ·)), the same dispersal rate (𝑖. 𝑒. 𝜈), but one 

species adopts nonlocal dispersal with Dirichlet type boundary condition and the other 

adopts nonlocal dispersal with Neumann type boundary condition, where 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥) 
are the population densities of two species at time 𝑡 and space location 𝑥. We show  

(f) the species diffusing nonlocally with Neumann type boundary condition drives the 

species diffusing nonlocally with Dirichlet type boundary condition extinct (see 

Theorem (6.1.19) for detail).  

Nonlocal evolution equations have been attracting more and more attentions due to the 

presence of nonlocal interactions in many diffusive systems in applied sciences. See [177], 

[122], [125], [179], [180], [181], [131], [137], [135], [146], [188], [189], [190], [192], [194], 

[196], [198], etc. for the study of various aspects of nonlocal dispersal equations.  

We investigate the effects of spatial variation on the principal spectrum points of 

nonlocal dispersal operators and prove Theorem (6.1.14). We consider the effects of 

dispersal rate on the principal spectrum points of nonlocal dispersal operators and prove 

Theorem (6.1.15). We explore the effects of dispersal distance on the principal spectrum 

points of nonlocal dispersal operators and prove Theorem (6.1.16). We consider the 
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asymptotic dynamics of (7) by applying some of the principal spectrum point properties of 

nonlocal dispersal operators and prove Theorem (6.1.19).  

       Let  

𝑋𝑖  =  𝐶(�̅�)                                                                                 (8) 
with norm ‖𝑢‖𝑋𝑖  = max𝑥∈�̅�

 |𝑢(𝑥)| 𝑓𝑜𝑟 𝑖 =  1, 2,  

𝑋𝑖
+  =  {𝑢 ∈  𝑋𝑖  | 𝑢(𝑥)  ≥  0, 𝑥 ∈  �̅� }, 𝑖 =  1, 2,                                            (9)  

and  

𝑋𝑖
++   =  𝐼𝑛𝑡(𝑋𝑖

+ )  =  {𝑢 ∈  𝑋 +  𝑖 | 𝑢(𝑥)  >  0, 𝑥 ∈  �̅�}, 𝑖 =  1, 2.            (10) 
Let 

 𝑋3 = {𝑢 ∈ 𝐶(ℝ
𝑁 , ℝ)| 𝑢(𝑥 + 𝑝𝑗𝑒𝑗)  =  𝑢(𝑥), 𝑥 ∈ ℝ

𝑁  , 𝑗 =  1, 2,· · · , 𝑁} (11) 

with norm ‖𝑢‖𝑋3  = max𝑥∈ℝ𝑁
 |𝑢(𝑥)|,  

𝑋3
+  =  {𝑢 ∈  𝑋3 | 𝑢(𝑥)  ≥  0, 𝑥 ∈ ℝ

𝑁  },                                                  (12) 
and  

𝑋3
++ = 𝐼𝑛𝑡(𝑋3

+  )  =  {𝑢 ∈  𝑋3
+ | 𝑢(𝑥)  >  0, 𝑥 ∈ ℝ𝑁 }.               (13) 

Let  

𝒦𝑖 ∶  𝑋𝑖  →  𝑋𝑖  , (𝒦𝑖𝑢)(𝑥)  =   𝐷 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦 ∀𝑢 ∈  𝑋𝑖  , 𝑖 =  1, 2, (14) 
 and  

𝒦3 ∶  𝑋3  →  𝑋3 , (𝒦3𝑢)(𝑥)  =   ℝ
𝑁 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦 ∀𝑢 ∈  𝑋3 .         (15)  

Observe that 𝑋2  =  𝑋1 and 𝐾2  =  𝐾1. The introduction of 𝑋2 and 𝒦2 is for convenience. 

We denote the identity map in the space under consideration.  

Let 

  

{
 

 
ℎ1(𝑥) =  −𝜈1  +  𝑎1(𝑥),                                     

ℎ2(𝑥)  =  −𝜈2   ∫  
𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦 + 𝑎2(𝑥),

ℎ3(𝑥) =  −𝜈3  +  𝑎3(𝑥).                                    

                                    (16)  

So, we have  

ℎ𝑖(·)𝐼 ∶  𝑋𝑖  →  𝑋𝑖  , (ℎ𝑖(·)𝒯𝑢)(𝑥)  =  ℎ𝑖(𝑥)𝑢(𝑥) ∀𝑢 ∈  𝑋𝑖  , 𝑖 =  1, 2, 3,       (17) 
where 𝑎𝑖  ∈  𝑋𝑖  , 𝑖 =  1, 2, 3 and 𝑎𝑖(·)𝐼 has the same meaning as in (17) with ℎ𝑖(·) being 

replaced by 𝑎𝑖(·).  
       In the following, for (iii), we put  

𝐷 =  [0, 𝑝1]  ×  [0, 𝑝2]  × · · · ×  [0, 𝑝𝑁  ].                              (18)  
For given 𝑎𝑖  ∈  𝑋𝑖  , let  

�̂�𝑖  =
1

|𝐷|
  ∫  

𝐷

𝑎𝑖(𝑥)𝑑𝑥, 𝑖 =  1, 2, 3,                                            (19)  

where |𝐷| is the Lebesgue measure of 𝐷. Let  

𝑎𝑖 ,max   = max
𝑥∈�̅�

  𝑎𝑖(𝑥), 𝑎𝑖,𝑚𝑖𝑛  = min
𝑥∈�̅�

 𝑎𝑖(𝑥),  

and  

ℎ𝑖,𝑚𝑎𝑥  = max
x∈D̅

 hi(x), ℎ𝑖,min = min
x∈D̅

 ℎ𝑖(𝑥).  

Let 𝜎(𝜈𝑖𝒦𝐼  +  ℎ𝑖(·)𝐼)be the spectrum of 𝜈𝑖𝒦𝐼  +  ℎ𝑖(·)𝒯 for I =  1, 2, 3 and  

λ̃i(𝜈𝑖 , 𝑎𝑖)  =  sup{𝑅𝑒µ | µ ∈  𝜎(𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝒯)},           i =  1, 2, 3.   (20) 
Definition (6.1.1)[176]: Let 1 ≤  𝑖 ≤  3 be given.  

   (i) �̃�𝑖(𝜈𝑖 , 𝑎𝑖) defined in (20) is called the principal spectrum point of νi𝒦i  +  hi(·)𝒯.  
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   (ii) A real number λi(νi , ai) ∈ ℝ is called the principal eigenvalue of 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝒯 if it 
is an isolated algebraically simple eigenvalue of 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝒯 with a positive 

eigenfunction and for any µ ∈  𝜎(𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝒯) \ {𝜆𝑖(𝜈𝑖 , 𝑎𝑖)}, 𝑅𝑒µ <  𝜆𝑖(𝜈𝑖 , 𝑎𝑖).  

Observe that λ̃i(νi , ai)  ∈  σ(νi𝒦i  +  hi(·)𝒯) (see Proposition (6.1.6)). Observe also that if 

λi(νi , ai) exists (1 ≤  i ≤  3), then  

λi(νi , ai) =  λ̃i(νi , ai). 
Consider (7). By general semigroup theory, for any (𝑢0, 𝑣0)  ∈  𝑋1  ×  𝑋2, (7) has a unique 

(local) solution (𝑢(𝑡, 𝑥; 𝑢0, 𝑣0), 𝑣(𝑡, 𝑥;  𝑢0, 𝑣0)) with (𝑢(0, 𝑥;  𝑢0, 𝑣0), 𝑣(0, 𝑥; 𝑢0, 𝑣0))  =
 (𝑢0(𝑥), 𝑣0(𝑥)). The main results are stated in the following four theorems. 

Corollary (6.1.2)[176]: (Criteria for the existence of principal eigenvalues). 𝐿𝑒𝑡 1 ≤  𝑖 ≤
 3 be given.  

(i) 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists provided that max
𝑥∈�̅�

  𝑎𝑖(𝑥) − min
𝑥∈�̅�

  𝑎𝑖(𝑥) <  𝜈𝑖 inf
𝑥∈�̅�

   ∫  
 

𝐷
 𝑘(𝑦 −

 𝑥)𝑑𝑦 in the case 𝑖 =  1, 2 and max
𝑥∈�̅�

  𝑎𝑖(𝑥) − min
𝑥∈�̅�

  𝑎𝑖(𝑥)  <  𝜈𝑖 in the case 𝑖 =  3.  

(ii) 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists provided that ℎ𝑖(·) is in 𝐶𝑁 (�̅� ), there is some 𝑥0  ∈  𝐼𝑛𝑡(𝐷) satisfying 

that ℎ𝑖(𝑥0)  =  ℎ𝑖,max  , and the partial derivatives of ℎ𝑖(𝑥) up to order 𝑁 −  1 at 𝑥0 are zero.  

(iii) There is 𝜈𝑖
0  >  0 such that the principal eigenvalue 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) 𝑜𝑓 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼 exists 

for 𝜈𝑖  >  𝜈𝑖
0 .  

(iv) Suppose that 𝑘(𝓏)  =  𝒦𝛿(𝓏), where 𝑘𝛿(𝓏) is defined as in (44) and �̃�(·) is symmetric 

with respect to 0. Then there is 𝛿0  >  0 such that the principal eigenvalue 

𝜆𝑖(𝜈𝑖 , 𝑎𝑖) 𝑜𝑓 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼 exists for 0 <  𝛿 <  𝛿0.  
Proof. (i) and (ii) are Theorem (6.1.14) (i) and (ii), respectively.  

(iii) is Theorem (6.1.15)(iii).  

(iv) is Theorem (6.1.16)(iii).  

We first present some basic properties of the solutions to the following evolution 

equations associated to the eigenvalue problems (i), (ii), and (iii),  

𝜕𝑡𝑢(𝑡, 𝑥) = 𝜈1 [∫  
 

𝐷

  𝑘(𝑦 −  𝑥)𝑢(𝑡, 𝑦)𝑑𝑦 −  𝑢(𝑡, 𝑥)]   +  𝑎1(𝑥)𝑢(𝑡, 𝑥), 𝑥 ∈ �̅�, (21) 

𝜕𝑡𝑢(𝑡, 𝑥) =  𝜈2   ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)[𝑢(𝑡, 𝑦) −  𝑢(𝑡, 𝑥)]𝑑𝑦 + 𝑎2(𝑥)𝑢(𝑡, 𝑥),  

𝑥 ∈  �̅�,         (22) 
and  

{
( 𝜕𝑡𝑢(𝑡, 𝑥)  =  𝜈3[ ∫  

 

ℝ𝑁
  𝑘(𝑦 −  𝑥)𝑢(𝑡, 𝑦)𝑑𝑦 −  𝑢(𝑡, 𝑥)]  +  𝑎3(𝑥)𝑢(𝑡, 𝑥),    𝑥 ∈ ℝ

𝑁 ,

𝑢(𝑡, 𝑥 +  𝑝𝑗𝑒𝑗)  =  𝑢(𝑡, 𝑥),                                                                                           𝑥 ∈ ℝ
𝑁 ,

(23) 

respectively.  

By general semigroup theory, for any given 𝑢0  ∈  𝑋1 (resp. 𝑢0  ∈  𝑋2 , 𝑢0  ∈  𝑋3), (21) 
(resp. (22), (23)) has a unique solution u1(t,·;  u0, ν1, a1)  ∈  X1 (resp. u2(t,·;  u0, ν2, a2)  ∈
 X2, u3(t,·;  u0, ν3, a3)  ∈  X3) with ui(0, x; u0, νi , ai)  =  u0(x) (i =  1, 2, 3). As 

mentioned before, by general semigroup theory, for any given (u0, v0)  ∈  X1  ×
 X2, (7) also has a unique (local) solution (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0)) with 

(𝑢(0, 𝑥; 𝑢0, 𝑣0), 𝑣(0, 𝑥; 𝑢0, 𝑣0))  =  (𝑢0(𝑥), 𝑣0(𝑥)). For given 𝑢1 , 𝑢2  ∈  𝑋𝑖 , we define  

𝑢1  ≤  𝑢2 , 𝑖𝑓 𝑢2  −  𝑢1  ∈  𝑋𝑖
+ ,  

and  

𝑢1  ≪  𝑢2 , 𝑖𝑓 𝑢2  −  𝑢1  ∈  𝑋𝑖
++.  



218 

Definition (6.1.3)[176]: A continuous function 𝑢(𝑡, 𝑥) on [0, 𝜏)  ×  �̅� is called a super-

solution (or sub-solution) of (21) if for any 𝑥 ∈  �̅� , 𝑢(𝑡, 𝑥) is differentiable on [0, 𝜏) and 

satisfies that  

𝜕𝑡𝑢(𝑡, 𝑥) ≥  (𝑜𝑟 ≤)𝜈1 ℎ [∫  
 

𝐷

  𝑘(𝑦 −  𝑥)𝑢(𝑡, 𝑦)𝑑𝑦 −  𝑢(𝑡, 𝑥)𝑖]  +  𝑎1(𝑥)𝑢(𝑡, 𝑥)  

for 𝑡 ∈  [0, 𝜏).  
Super-solutions and sub-solutions of (22) and (23) are defined in an analogous way.  

Proposition (6.1.4)[176]: (Comparison principle).  

(i) If 𝑢1 (𝑡, 𝑥) 𝑎𝑛𝑑 𝑢2 (𝑡, 𝑥) are bounded sub- and super-solution of (21) (resp. (22), (23)) 

on [0, τ), respectively, and 𝑢1 (0,·)  ≤  𝑢2 (0,·), 𝑡ℎ𝑒𝑛 𝑢1 (𝑡,·)  ≤  𝑢2 (𝑡,·) for 𝑡 ∈  [0, 𝜏).  
(ii) For given 1 ≤  𝑖 ≤  3, 𝑖𝑓 𝑢1 , 𝑢2  ∈  𝑋𝑖 , 𝑢

1  ≤  𝑢2 and 𝑢1   ≢  𝑢2 , then 𝑢𝑖(𝑡,·
;  𝑢1 , 𝜈𝑖 , 𝑎𝑖)  ≪  𝑢𝑖(𝑡,·;  𝑢

2 , 𝜈𝑖 , 𝑎𝑖) for all 𝑡 >  0.  
(iii) For given 1 ≤  𝑖 ≤  3, 𝑢0  ∈  𝑋𝑖

+ , and 𝑎𝑖
1 , 𝑎𝑖

2  ∈  𝑋𝑖 , if 𝑎𝑖
1  ≤  𝑎𝑖

2 , then 𝑢𝑖(𝑡,·

;  𝑢0, 𝜈𝑖 , 𝑎𝑖
1 )  ≤  𝑢𝑖(𝑡,·;  𝑢0, 𝜈𝑖 , 𝑎𝑖

2 ) for 𝑡 ≥  0. 
Proof. (i) It follows from the arguments in [200].  

(ii) It follows from the arguments in [200].  

(iii) We consider the case 𝑖 =  1. Other cases can be proved similarly.  

Note that u1(t,𝒳;  ν1, a1
2 ) is a supersolution of (21) with 𝑎1(·) being replaced by 𝑎1

1 (·). 
Then by (i), 

𝑢1(𝑡,·;  𝑢0, 𝜈1, 𝑎1
1 )  ≤  𝑢1(𝑡,·;  𝑢0, 𝜈1, 𝑎1

2  ) ∀ 𝑡 ≥  0. 
Next, we consider (7) and present some basic properties for solutions of the two species 

competition system.  

For given (u1  , v1 ), (u2 , v2 )  ∈  X1  ×  X2, we define  

(𝑢1 , 𝑣1 )  ≤ 1 (𝑢2 , 𝑣2 ), 𝑖𝑓 𝑢1 (𝑥)  ≤  𝑢2 (𝑥), 𝑣1 (𝑥)  ≤  𝑣2 (𝑥),  
and  

(𝑢1 , 𝑣1 )  ≤ 2 (𝑢2 , 𝑣2 ), 𝑖𝑓 𝑢1 (𝑥)  ≤  𝑢2 (𝑥), 𝑣1 (𝑥)  ≥  𝑣2 (𝑥).  
Let 𝑇  >  0 and (u(t, x), v(t, 𝑥))  ∈  C([0, 𝑇 ) × D̅, ℝ2 ) with (u(t,·), v(t,·))  ∈  X1

+  ×
X2
+ . Then (u(t, 𝑥), v(t, 𝑥)) is called a super-solution (sub-solution) of (7) on [0, 𝑇 ) if  

{
 
 

 
 ( ∂tu(t, 𝑥)  ≥  (≤)ν[ ∫  

 

D

  k(y −  𝑥)u(t, y)dy −  u(t, 𝑥)]  +  u(t, 𝑥)f(𝑥, u(t, 𝑥)  +  v(t, 𝑥)), 𝑥 ∈  D̅,

∂tv(t, 𝑥) ≤  (≥)ν  ∫  

 

D

 k(y −  𝑥)[v(t, y) −  v(t, 𝑥)]dy +  v(t, 𝑥)f(𝑥, u(t, 𝑥) +  v(t, 𝑥)), x ∈  D̅,

   

for 𝑡 ∈  [0, 𝑇 ).  
Proposition (6.1.5)[176]: (i) If (0, 0) ≤1  (u0, v0), then (0, 0) ≤ 1 (u(t,·;  u0, v0), v(t,·
;  u0, v0)) for all t >  0 at which (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0)) exists.  

(ii) If (0, 0) ≤1  (ui , vi), for i =  1, 2, (u1(0,·), v1(0,·)) ≤2  (u2(0,·), v2 (0,·)), and 

(u1(t, 𝑥), v1(t, 𝑥)) and (𝑢2(𝑡, 𝑥), 𝑣2(𝑡, 𝑥)) are a sub-solution and a super-solution of (7) on 

[0, 𝑇 ) respectively, then (𝑢1(𝑡,·), 𝑣1(𝑡,·)) ≤2  (𝑢2(𝑡,·), 𝑣2(𝑡,·)) for 𝑡 ∈  (0, 𝑇 ).  

(iii) If (0, 0) ≤ 1 (𝑢𝑖  , 𝑣𝑖), for i =  1, 2 and (𝑢1, 𝑣1) ≤2  (𝑢2, 𝑣2), then (𝑢(𝑡,·;  𝑢1, 𝑣1), 𝑣(𝑡,·
;  𝑢1, 𝑣1))  ≤ 2 (𝑢(𝑡,·;  𝑢2, 𝑣2), 𝑣(𝑡,·;  𝑢2, 𝑣2)) for all 𝑡 > 0 at which both (𝑢(𝑡,·
;  𝑢1, 𝑣1), 𝑣(𝑡,·;  𝑢1, 𝑣1)) 𝑎𝑛𝑑 (𝑢(𝑡,·;  𝑢2, 𝑣2), 𝑣(𝑡,·;  𝑢2, 𝑣2)) exist.  

(iv) Let (𝑢0, 𝑣0)  ∈  𝑋1
+  ×  𝑋2

+ , then (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0)) exists for all 𝑡 >  0. 
Proof. It follows from the arguments in Proposition (6.1.4) in [185].  

We prove some basic properties of principal spectrum points/principal eigenvalues of 

nonlocal dispersal operators. First of all, we derive some properties of the principal spectrum 
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points of nonlocal dispersal operators by using the spectral radius of the solution operators 

of the associated evolution equations. To this end, define 𝛷𝑖(𝑡;  𝜈𝑖 , 𝑎𝑖) ∶  𝑋𝑖  →  𝑋𝑖  by  

𝛷𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖)𝑢0  =  𝑢𝑖(𝑡,·;  𝑢0, 𝜈𝑖 , 𝑎𝑖), 𝑢0  ∈  𝑋𝑖  , 𝑖 =  1, 2, 3.         (24)  
Let 𝑟(𝛷𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖)) be the spectral radius of 𝛷𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖). We have the following 

propositions. 

Proposition (6.1.6)[176]: Let 1 ≤  𝑖 ≤  3 be given. 

(i) For given 𝑡 >  0, 𝑒 �̃�𝑖(𝜈𝑖,𝑎𝑖)𝑡 = 𝑟(𝛷𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖)). 

(ii) �̃�𝑖(𝜈𝑖 , 𝑎𝑖) ∈ 𝜎(𝜈𝑖𝒦𝑖 + ℎ𝑖(·)𝒯). 
Proof. Observe that 𝜈𝑖𝒦𝑖 + ℎ𝑖(·)𝒯 ∶  𝑋𝑖 → 𝑋𝑖 is a bounded linear operator. Then by spectral 

mapping theorem, 

𝑒𝜎(𝜈𝑖𝒦𝑖+ℎ𝑖(·)𝒯)𝑡 = 𝜎(Φ𝑖(𝑡;  𝜈𝑖 , 𝑎𝑖)) \ {0} ∀ 𝑡 >  0.                 (25) 
By Proposition (6.1.4), 

Φ𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖)𝑋𝑖
+  ⊂  𝑋𝑖

+      ∀ 𝑡 >  0.                        (26) 
Hence Φ𝑖(𝑡;  𝜈𝑖 , 𝑎𝑖) is a positive operator on 𝑋𝑖  . Then by [195], 𝑟(Φ𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖)  ∈
 𝜎(Φ𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖)) for any 𝑡 >  0. By (25), 

𝑒 �̃�𝑖(𝜈𝑖,𝑎𝑖)𝑡 =  𝑟(Φ𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖))    ∀ 𝑡 >  0, 
and hence �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  ∈  𝜎(𝜈𝑖𝒦𝑖 + ℎ𝑖(·)𝒯). 

Proposition (6.1.7)[176]: (i) �̃�1(𝜈1, 0)  <  0. 

(ii) �̃�2(𝜈2, 0)  =  0. 

(iii) �̃�3(𝜈3, 0)  =  0. 
Proof. (i) Let 𝑢0(𝑥)  ≡  1. Observe that 

∫  
𝐷

𝑘(𝑦 − 𝑥)𝑢0(𝑦)𝑑𝑦 − 𝑢0(𝑥)  ≤  0, 

and there is 𝑥0  ∈  𝐷 such that 

∫  
𝐷

𝑘(𝑦 − 𝑥0)𝑢0(𝑦)𝑑𝑦 − 𝑢0(𝑥)  <  0. 

By Proposition (6.1.4) (ii), 

0 ≪ Φ1(𝑡; 𝜈1, 0)𝑢0  ≪  𝑢0      ∀ 𝑡 >  0, 
and then 

‖Φ1(𝑡; 𝜈1, 0)𝑢0‖𝑘 <  1   ∀ 𝑡 >  0. 
Note that for any 𝑢0 ∈ 𝑋1 with ‖�̃�0‖ ≤ 1, by Proposition (6.1.4) (ii) again, 

‖Φ1(𝑡; 𝜈1, 0)�̃�0‖ ≤ ‖Φ1(𝑡; 𝜈1, 0)𝑢0‖ < 1 ∀ 𝑡 >  0. 
This implies that 

𝑟(Φ1(𝑡; 𝜈1, 0))  <  1 ∀ 𝑡 >  0, 
and then �̃�1(𝜈1, 0)  <  0. 
(ii) Let 𝑢0(·)  ≡  1. Observe that 

Φ2(𝑡; 𝜈2, 0)𝑢0 = 𝑢0   ∀ 𝑡 ≥  0, 
And 

‖Φ2(𝑡; 𝜈2, 0)�̃�0‖ ≤ ‖Φ2(𝑡; 𝜈2, 0)𝑢0‖𝑘 =  1 

for all 𝑡 ≥  0 and �̃�0  ∈  𝑋2 with ‖�̃�0‖  ≤  1. It then follows that 

𝑟(Φ2(𝑡; 𝜈2, 0)) =  1     ∀ 𝑡 ≥  0, 

and then �̃�2(𝜈2, 0)  =  0. 
(iii) It can be proved by the similar arguments as in (ii). 
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Next, we prove some properties of principal spectrum points of nonlocal dispersal operators 

by using the spectral radius of the induced nonlocal operators 𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖  and 𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖

𝑖 (𝑖 =

 1, 2, 3), where 𝛼𝑖 > max
𝑥∈𝐷

 ℎ𝑖(𝑥) (𝑖 =  1, 2, 3), 

(𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 𝑢)(𝑥) = ∫  

𝐷

 
𝜈𝑖𝑘(𝑦 − 𝑥)𝑢(𝑦)

𝛼𝑖  −  ℎ𝑖(𝑦)
 𝑑𝑦,       𝑖 =  1, 2,              (27) 

(𝑈𝑎3,𝜈3,𝛼3
3 𝑢)(𝑥)  = ∫  

ℝ𝑁
 
𝜈3𝑘(𝑦 −  𝑥)𝑢(𝑦)

𝛼3  −  ℎ3(𝑦)
𝑑𝑦,                                  (28) 

And 

(𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 𝑢)(𝑥) =

𝜈𝑖 ∫  𝐷 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦

𝛼𝑖 − ℎ𝑖(𝑥)
=
𝜈𝑖(𝒦𝑖𝑢)(𝑥)

𝛼𝑖 − ℎ𝑖(𝑥)
,   𝑖 =  1, 2, (29) 

(𝑉𝑎3,𝜈3,𝛼3
3 𝑢)(𝑥) =

𝜈3 ∫  
ℝ𝑁

𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦

𝛼3  −  ℎ3(𝑥)
 =
𝜈3(𝒦3𝑢)(𝑥)

𝛼3 − ℎ3(𝑥)
. (30) 

Observe that 𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖  and 𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖

𝑖  are positive and compact operators on 𝑋𝑖  (𝑖 =  1, 2, 3). 

Moreover, there is 𝑛 ≥  1 such that 

(𝑈𝑎𝑖 ,𝜈𝑖,𝛼𝑖
𝑖 )

𝑛
 (𝑋𝑖

+ \ {0})  ⊂  𝑋𝑖
++ ,           𝑖 =  1, 2, 3, 

And 

(𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 )

𝑛
 (𝑋𝑖

+ \ {0})  ⊂  𝑋𝑖
++ ,        𝑖 =  1, 2, 3. 

Then by Krein-Rutman Theorem, 

𝑟(𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 ) ∈ 𝜎(𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖

𝑖 ), 𝑟(𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 ) ∈ 𝜎(𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖

𝑖 ),           (31) 

and 𝑟(𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 ) and 𝑟(𝑉𝑎𝑖 ,𝜈𝑖,𝛼𝑖

𝑖 ) are isolated algebraically simple eigenvalues of 𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖  and 

𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖  with positive eigenfunctions, respectively. 

Proposition (6.1.8)[176]: (i) 𝛼𝑖  >  ℎ𝑖,max is an eigenvalue of 𝜈𝑖𝒦𝑖 + ℎ𝑖(·)𝒯 with 𝜙(𝑥) 

being an eigenfunction iff 1 is an eigenvalue of 𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖  with 𝜓(𝑥) = (𝛼𝑖  −  ℎ𝑖(𝑥))𝜙(𝑥) 

being an eigenfunction. 

(ii) 𝛼𝑖  >  ℎ𝑖,max   is an eigenvalue of 𝜈𝑖𝒦𝑖 + ℎ𝑖(·)𝒯 with 𝜙(𝑥) being an eigenfunction iff 1 

is an eigenvalue of 𝑉𝑎𝑖 ,𝜈𝑖,𝛼𝑖
𝑖  with 𝜙(𝑥) being an eigenfunction.  

Proof. It follows directly from the definitions of 𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖  and 𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖

𝑖 . 

Proposition (6.1.9)[176]: Let 1 ≤  𝑖 ≤  3 be given. 

(a) 𝑟(𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 ) is continuous in 𝛼𝑖(>  ℎ𝑖,max  ), strictly decreases as 𝛼𝑖 increases, and 

𝑟(𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 )  →  0 as 𝛼𝑖  →  ∞. 

(b) 𝑟(𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 ) is continuous in 𝛼𝑖(>  ℎ𝑖,max  ), strictly decreases as 𝛼𝑖 increases, and 

𝑟(𝑉𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖 )  →  0 as 𝛼𝑖  → ∞. 

Proof. We prove (a) in the case 𝑖 =  1. The other cases can be proved similarly. First, note 

that 𝑟(𝑈𝑎1,𝜈1,𝛼1
1  ) is an isolated algebraically simple eigenvalue of 𝑈𝑎1,𝜈1,𝛼1

1  . It then follows 

from the perturbation theory of the spectrum of bounded operators that 𝑟(𝑈𝑎1,𝜈1,𝛼1
1   ) is 

continuous in 𝛼1(>  ℎ1,max   ).  

Next, we prove that 𝑟(𝑈𝑎1,𝜈1,𝛼1
1  ) is strictly decreasing as 𝛼1 increases. To this end, fix any 

𝛼1  >  ℎ1,𝑚𝑎𝑥. Let 𝜙1(·) be a positive eigenfunction of 𝑈𝑎1,𝜈1,𝛼1
1  corresponding to the 

eigenvalue 𝑟(𝑈𝑎1,𝜈1,𝛼1
1  ). Note that for any given �̃�1  >  𝛼1, there is 𝛿1  >  0 such that  

�̃�1  −  𝛼1
𝛼1  −  ℎ1(𝑥)

 >  𝛿1 ∀ 𝑥 ∈  �̅�. 
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This implies that  

𝑈𝑎1,𝜈1,�̃�1
1  𝜙1  (𝑥) =   ∫  

 

𝐷

𝜈1𝑘(𝑦 −  𝑥)𝜙1(𝑦)

�̃�1  −  ℎ1(𝑦)𝑑𝑦
  

=  ∫  
 

𝐷

 
𝜈1𝑘(𝑦 −  𝑥)𝜙1(𝑦)

𝛼1 − ℎ1(𝑦)
 ·  

1

1 +
 �̃�1 − 𝛼1
𝛼1 − ℎ1(𝑦)

 𝑑𝑦  

≤  
1

1 + 𝛿1
 ∫  

 

𝐷

𝜈1𝑘(𝑦 −  𝑥)𝜙1(𝑦)

𝛼1  −  ℎ1(𝑦)
 𝑑𝑦  

=
𝑟(𝑈 𝑎1,𝜈1,𝛼1

1  )

1 +  𝛿1
 𝜙1(𝑥) ∀ 𝑥 ∈  �̅�. 

It then follows that  

𝑟(𝑈𝑎1,𝜈1,�̃�1
1  ) ≤

𝑟(𝑈𝑎1,𝜈1,𝛼1
1  )

1 +  𝛿1
 <  𝑟(𝑈𝑎1,𝜈1,𝛼1

1  ), 

and hence 𝑟(𝑈𝑎1,𝜈1,𝛼1
1  ) is strictly decreasing as 𝛼1 increases.  

Finally, we prove that 𝑟(𝑈𝑎1,𝜈1,𝛼1
1  ) →  0 𝑎𝑠 𝛼1  →  ∞. Note that for any ∈ >  0, there is 

𝛼1
∗  >  0 such that for 𝛼1  >  𝛼1

∗ ,   

∫  
 

𝐷

𝜈1𝑘(𝑦 −  𝑥)

𝛼1  −  ℎ1(𝑦)
 𝑑𝑦 <  𝜖 ∀ 𝑥 ∈  �̅�.  

This implies that  

‖𝑈𝑎1,𝜈1,𝛼1
1  ‖  < 𝜖  ∀ 𝛼1  >  𝛼1

∗ .  

Hence 𝑟(𝑈𝑎1,𝜈1,𝛼1
1  )  →  0 as 𝛼1  →  ∞.  

Proposition (6.1.10)[176]: Let 1 ≤  𝑖 ≤  3 be given.  

(a) If there is 𝛼𝑖  >  ℎ𝑖 ,max    such that 𝑟(𝑈𝑎𝑖,𝜈𝑖,𝛼𝑖
𝑖   )  >  1, then �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  >  ℎ𝑖 ,max   .  

(b) If there is 𝛼𝑖  >  ℎ𝑖,max   such that 𝑟(𝑉𝑎𝑖 ,𝜈𝑖,𝛼𝑖
𝑖  )  >  1, then �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  >  ℎ𝑖,max  .  

Proof. We prove (b). (a) can be proved similarly.  

Fix 1 ≤  𝑖 ≤  3. Suppose that there is 𝛼𝑖  >  ℎ𝑖,max   such that 𝑟(𝑉𝑖  𝑎𝑖  , 𝜈𝑖, 𝛼𝑖  )  >  1. Then 

By Proposition (6.1.9), there is 𝛼0  >  ℎ𝑖,max   such that  

𝑟(𝑉𝑎𝑖 ,𝜈𝑖,𝛼0
𝑖  )  =  1.                                         (32) 

By Proposition (6.1.8), 𝛼0  ∈  𝜎(𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼). This implies that �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  ≥  𝛼0  >
 ℎ𝑖,max  .  

Proposition (6.1.11)[176]: (Necessary and sufficient condition). For given 1 ≤  𝑖 ≤

 3, 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists if and only if �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  >  ℎ𝑖,max   

Proof. For 1 ≤  𝑖 ≤  3, 𝜈𝑖𝒦𝑖 is a compact operator. Hence 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼 can be viewed 

as compact perturbation of the operator ℎ𝑖(·)𝐼. Clearly, the essential spectrum 𝜎𝑒𝑠𝑠(ℎ𝑖𝐼) of 

ℎ𝑖(·)𝐼 is given by  

𝜎𝑒𝑠𝑠(ℎ𝑖𝐼)  =  [ℎ𝑖,min  , ℎ𝑖,max  ]. 
Since the essential spectrum is invariant under compact perturbations (see [182]), we have  

𝜎𝑒𝑠𝑠(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼)  =  [ℎ𝑖,min  , ℎ𝑖,max  ], 

where 𝜎𝑒𝑠𝑠(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼) is the essential spectrum of 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼. 𝐿𝑒𝑡  
𝜎𝑑𝑖𝑠𝑐(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼)  =  𝜎(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼)\𝜎𝑒𝑠𝑠(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼). 

Note that if 𝜆 ∈  𝜎𝑑𝑖𝑠𝑐(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼), then it is an isolated eigenvalue of finite multiplicity.  

On the one hand, if �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  >  ℎ𝑖,max  (𝑥), 𝑡ℎ𝑒𝑛 �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  ∈  𝜎𝑑𝑖𝑠𝑐(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼). By 

Proposition (6.1.8), 1 ∈  𝜎 𝑈𝑎𝑖,𝜈𝑖,�̃�𝑖
𝑖 (𝜈𝑖, 𝑎𝑖)  . Hence  
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𝑟 (𝑈𝑎𝑖,𝜈𝑖,�̃�𝑖(𝜈𝑖,𝑎𝑖)
𝑖 )   ≥  1. 

By Proposition (6.1.9), there is �̃̃�   ≥  �̃�𝑖(𝜈𝑖 , 𝑎𝑖) such that  

𝑟  (𝑈
𝑎𝑖,𝜈𝑖,�̃̃�

𝑖 )     =  1. 

This together with Proposition (6.1.8) implies that �̃̃�  is an isolated algebraically simple 

eigenvalue of 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼 with a positive eigenfunction. By Definition (6.1.1) (ii), 

𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists.  

On the other hand, if 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists, then �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  =  𝜆𝑖(𝜈𝑖 , 𝑎𝑖)  ∈  𝜎𝑑𝑖𝑠𝑐(𝜈𝑖𝒦𝑖  +

 ℎ𝑖𝐼). This implies that �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  >  ℎ𝑖 ,max  (𝑥).  
       Finally, we present some variational characterization of the principal spectrum points 

of nonlocal dispersal operators when the kernel function is symmetric. We assume that 𝑘(·) 
is symmetric with respect to 0. Recall  

𝐾3 ∶  𝑋3  →  𝑋3, (𝒦3𝑢)(𝑥)  =   ∫  
 

ℝ𝑁
 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦 ∀ 𝑢 ∈  𝑋3 . 

For given 𝑎 ∈  𝑋3 , let  

�̂�(𝓏)  = ∑  

𝑗1,𝑗2,··· ,𝑗𝑁 ∈𝒵

 𝑘(𝓏 + (𝑗1𝑝1, 𝑗2𝑝2,· · · , 𝑗𝑁 𝑝𝑁  )),                (33)  

where 𝑝1, 𝑝2,· · ·  𝑝𝑁 are periods of a(x). Then �̂�(·) is also symmetric with respect to 0 and  

(𝒦3𝑢)(𝑥) =  ∫  
 

𝐷

  �̂�(𝑦 −  𝑥)𝑢(𝑦)𝑑𝑦 ∀ 𝑢 ∈  𝑋3,                 (34)  

where 𝐷 =  [0, 𝑝1]  ×  [0, 𝑝2]  × · · · ×  [0, 𝑝𝑁  ] (see (18)).  

Proposition (6.1.12)[176]: Assume that 𝑘(·) is symmetric with respect to 0. Then 

�̃�𝑖(𝜈𝑖 , 𝑎𝑖) = sup
𝑢∈𝐿2(𝐷),‖𝑢‖𝐿2(𝐷)=1

 ∫  
 

𝐷

[𝜈𝑖(𝐾𝑖𝑢)(𝑥)𝑢(𝑥) + ℎ𝑖(𝑥)𝑢
2 (𝑥)]𝑑𝑥 (𝑖 =  1, 2, 3) 

Proof. First of all, note that 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼 is also a bounded operator on 𝐿2 (𝐷) and 𝜈𝑖𝒦𝑖  is 

a compact operator on 𝐿2 (𝐷), where 𝒦𝑖 is defined as in (34) when 𝑖 =  3. Let 𝜎(𝜈𝑖𝒦𝑖 +
ℎ𝑖𝐼, 𝐿

2 (𝐷)) be the spectrum of 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼 considered on 𝐿2 (𝐷) and  

�̃�(𝜈𝑖 , 𝑎𝑖  , 𝐿
2 (𝐷))  =  sup {𝑅𝑒𝜆 | 𝜆 ∈  𝜎(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼, 𝐿

2 (𝐷))}.  
Then we also have  

�̃�(𝜈𝑖 , 𝑎𝑖  , 𝐿
2 (𝐷))  ∈  𝜎(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼, 𝐿

2 (𝐷)), [ℎ𝑖,min   , ℎ𝑖,max  ]  ⊂  𝜎(𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼, 𝐿
2 (𝐷)),  

and  

�̃�(𝜈𝑖 , 𝑎𝑖  , 𝐿
2 (𝐷))  ≥  ℎ𝑖,max  .  

Moreover, if �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  >  ℎ𝑖,max   (𝑟𝑒𝑠𝑝. �̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝐿
2 (𝐷))  >  ℎ𝑖,max  ), then 

�̃�𝑖(𝜈𝑖 , 𝑎𝑖) (𝑟𝑒𝑠𝑝. �̃�𝑖(𝜈𝑖 , 𝑎𝑖 , 𝐿
2 (𝐷))) is an eigenvalue of 𝜈𝑖𝒦𝑖  +  ℎ𝑖𝐼 considered on 

𝐿2 (𝐷) (𝑟𝑒𝑠𝑝. 𝐶(�̅� )) and hence �̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝐿
2 (𝐷))  ≥  �̃�𝑖(𝜈𝑖 , 𝑎𝑖) (𝑟𝑒𝑠𝑝. �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  ≥

 �̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝐿
2 (𝐷))). We then must have 

�̃�𝑖(𝜈𝑖 , 𝑎𝑖)  =  �̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝐿
2 (𝐷)). 

Assume now that 𝑘(·) is symmetric with respect to 0, that is, 𝑘(−𝓏)  =  𝑘(𝓏) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝓏 ∈
ℝ𝑁 . Then for any 𝑢, 𝑣 ∈  𝐿2 (𝐷), in the case 𝑖 =  1, 2,  

∫  
 

𝐷

 (𝒦𝑖𝑢)(𝑥)𝑣(𝑥)𝑑𝑥     =  ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑣(𝑥)𝑑𝑦𝑑𝑥  

= ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑥 −  𝑦)𝑢(𝑥)𝑣(𝑦)𝑑𝑥𝑑𝑦  
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=  ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑣(𝑦)𝑢(𝑥)𝑑𝑦𝑑𝑥  

=  ∫  
 

𝐷

 (𝒦𝑖𝑣)(𝑥)𝑢(𝑥)𝑑𝑥  

and in the case 𝑖 =  3,  

 ∫  
 

𝐷

 (𝒦3𝑢)(𝑥)𝑣(𝑥)𝑑𝑥    =  ∫  
 

𝐷

 ∫  
 

𝐷

 �̂�(𝑦 −  𝑥)𝑢(𝑦)𝑣(𝑥)𝑑𝑦𝑑𝑥  

= ∫  
 

𝐷

 ∫  
 

𝐷

 �̂�(𝑥 −  𝑦)𝑢(𝑥)𝑣(𝑦)𝑑𝑥𝑑𝑦  

=  ∫  
 

𝐷

 ∫  
 

𝐷

 �̂�(𝑦 −  𝑥)𝑣(𝑦)𝑢(𝑥)𝑑𝑦𝑑𝑥  

=  ∫  
 

𝐷

 (𝒦3𝑣)(𝑥)𝑢(𝑥)𝑑𝑥. 

Therefore 𝒦𝑖 ∶  𝐿
2 (𝐷)  →  𝐿2 (𝐷) is self-adjoint. By classical variational formula (see 

[141]), we have  

�̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝐿
2 (𝐷)) = sup

𝑢∈𝐿2(𝐷),‖𝑢‖𝐿2(𝐷)=1
 ∫  

 

𝐷

[𝜈𝑖(𝒦𝑖𝑢)(𝑥)𝑢(𝑥)  +  ℎ𝑖(𝑥)𝑢
2 (𝑥)]𝑑𝑥.  

The proposition then follows. 

We provide a useful technical lemma.  

Lemma (6.1.13)[176]: Let 1 ≤  𝑖 ≤  3 and 𝑎𝑖  ∈  𝑋𝑖  be given. For any 𝜖 >  0, there is 

𝑎𝑖
𝜖  ∈  𝑋𝑖 such that  

‖𝑎𝑖  −  𝑎𝑖
𝜖   ‖ <  𝜖,  

ℎ𝑖
𝜖  (𝑥)  =  −𝜈𝑖  + 𝑎𝑖

𝜖  (𝑥) for 𝑖 =  1 or 3 and ℎ𝑖
𝜖  (𝑥)  =  −𝜈𝑖  ∫  

 

𝐷
  𝑘(𝑦 − 𝑥)𝑑𝑦 +

𝑎𝑖
𝜖  (𝑥) 𝑓𝑜𝑟 𝑖 =  2 is in 𝐶𝑁 , and satisfies the following vanishing condition: there is 𝑥0  ∈
 𝐼𝑛𝑡(𝐷) such that ℎ𝑖

𝜖 (𝑥0) = max
𝑥∈�̅�

  ℎ𝑖
𝜖  (𝑥) and the partial derivatives of ℎ𝑖

𝜖 (𝑥) up to order 

𝑁 −  1 at 𝑥0 are zero.  

Proof. We prove the case 𝑖 =  2. Other cases can be proved similarly.  

First, let �̃�0  ∈  �̅� be such that  

ℎ2(�̃�0) = max
𝑥∈�̅�

  ℎ2(𝑥).  

For any 𝜖 >  0, there is �̃�𝜖  ∈  𝐼𝑛𝑡(𝐷) such that  

ℎ2(�̃�0) − ℎ2(�̃�𝜖) <
𝜖

3
 .                               (35)  

Let �̃�  >  0 be such that 

𝐵(�̃�𝜖, �̃�)  ⋐  𝐷, 
where 𝐵(�̃�𝜖 , �̃�) denotes the open ball with center �̃�𝜖 and radius �̃�. 

Note that there is 𝜉(·)  ∈  𝐶(�̅�) such that 0 ≤  𝜉(𝑥)  ≤  1, 𝜉(�̃�𝜖)  =  1, and supp(𝜉)  ⊂
 𝐵(�̃�𝜖 , �̃�). 

ℎ2,𝜖(𝑥)  =  ℎ2(𝑥)  +
𝜖

3
 𝜉(𝑥).                                    (36) 

Then ℎ2,𝜖(·) is continuous on 𝐷 and ℎ2,𝜖(·) attains its maximum in Int(D). 

       Let �̃� ⊂  ℝ𝑁 be such that  ⋐  �̃� . Note that ℎ2,𝜖(·) can be continuously extended to �̃� . 

Without loss of generality, we may then assume that ℎ2,𝜖(·) is a continuous function on �̃� 

and there is 𝑥0 ∈ Int(𝐷) such that ℎ2,𝜖(𝑥0) = sup
𝑥∈�̃�

 ℎ2,𝜖(𝑥). Observe that there is 𝜎 >  0 

and ℎ̅2,𝜖(·)  ∈  𝐶(�̃�) such that 𝐵(𝑥0, 𝜎)  ⋐  𝐷, 
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0 ≤  ℎ̅2,𝜖(𝑥) −  ℎ2,𝜖(𝑥) ≤
𝜖

3
   ∀ 𝑥 ∈  �̃�,                                     (37) 

And 

ℎ̅2,𝜖(𝑥)  =  ℎ2,𝜖(𝑥0)          ∀ 𝑥 ∈  𝐵(𝑥0, 𝜎). 
Let 

𝜂(𝑥)  = {
𝐶 exp(

1

‖𝑥‖2 − 1
 )    if ‖𝑥‖ <  1,

 0                     if ‖𝑥‖ ≥  1,

 

where 𝐶 >  0 is such that ∫  
ℝ𝑁

 𝜂(𝑥)𝑑𝑥 =  1. For given 𝛿 >  0, set 

𝜂𝛿(𝑥) =
1

𝛿𝑁
 𝜂(
𝑥

𝛿
). 

Let 

ℎ2,𝜖,𝛿(𝑥)  =  ∫  
�̃�

𝜂𝛿(𝑦 −  𝑥)ℎ̅2,𝜖(𝑦)𝑑𝑦. 

By [143], ℎ2,𝜖,𝛿(·) is in 𝐶∞(�̃�) and when 0 <  𝛿 ≪  1,  

|ℎ2,𝜖,𝛿(𝑥) − ℎ̅2,𝜖(𝑥)| <
𝜖

3
   ∀ 𝑥 ∈  �̅�.                                   (38) 

It is not difficulty to see that for 0 <  𝛿 ≪  1, 

ℎ2,𝜖,𝛿(𝑥) ≤  ℎ̅2,𝜖(𝑥0)     ∀𝑥 ∈  𝐵(𝑥0, 𝜎), 
And 

ℎ2,𝜖,𝛿(𝑥) =  ℎ̅2,𝜖(𝑥0)      ∀𝑥 ∈  𝐵(𝑥0, 𝜎/2). 
Fix 0 <  𝛿 ≪  1. Let 

ℎ2
𝜖 (𝑥)  =  ℎ2,𝜖,𝛿(𝑥). 

Then ℎ2
𝜖  (·) attains its maximum at some 𝑥0  ∈  Int(𝐷), and the partial derivatives of ℎ2

𝜖(·) 
up to order 𝑁 −  1 at 𝑥0 are zero. Let 

𝑎2
𝜖(𝑥)  =  ℎ2

𝜖(𝑥)  +  𝜈2  ∫  
𝐷

𝑘(𝑦 −  𝑥)𝑑𝑦     ∀ 𝑥 ∈  �̅�. 

Then 𝑎2
𝜖 ∈ 𝑋2, −𝜈2 ∫  𝐷 𝑘(𝑦 −  𝑥)𝑑𝑦 + 𝑎2

𝜖(𝑥)  =  ℎ2
𝜖(𝑥), and 

‖𝑎2  −  𝑎2
𝜖‖ = ‖ℎ2

𝜖 − ℎ2‖ ≤ ‖ℎ2
𝜖 − ℎ̅2,𝜖‖ + ‖ℎ̅2,𝜖 − ℎ2,𝜖‖ + ‖ℎ2,𝜖 − ℎ2‖  < 𝜖.  

The lemma is thus proved. 

We investigate the effects of spatial variations on the principal spectrum 

points/principal eigenvalues of nonlocal dispersal operators and prove Theorem (6.1.14). 

First of all, for given 1 ≤  𝑖 ≤  3 and 𝑐𝑖  ∈ ℝ, let 

𝑋𝑖(𝑐𝑖) = {𝑎𝑖 ∈ 𝑋𝑖  |�̂�𝑖 = 𝑐𝑖} 
(see (19) for the definition of �̂�𝑖). For given 𝑥0 ∈ ℝ

𝑁 and 𝜎 >  0, let 

𝐵(𝑥0 , 𝜎)  =  {𝑦 ∈  ℝ
𝑁  | ‖𝑦 − 𝑥0‖ < 𝜎}. 

Theorem (6.1.14)[176]: (Effects of spatial variation). (i) (Existence of principal 

eigenvalues) For given 1 ≤  𝑖 ≤  2, 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists if ai,max  −  ai,min   <

 νi inf
x∈D̅

   ∫  
 

 D
 k(y −  x)dy.  

(ii) (Existence of principal eigenvalues) For given 1 ≤  𝑖 ≤  2, 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists if hi(·) is 

in 𝐶𝑁 (�̅� ), there is some 𝑥0  ∈  𝐼𝑛𝑡(𝐷) satisfying that hi(x0)  =  hi,max, and the partial 

derivatives of hi(x) up to order N −  1 at 𝑥0 are zero.  

(iii) (Upper bounds) For given 1 ≤  i ≤  3 and ci  ∈ ℝ , sup{λ̃i(νi , ai)|ai  ∈  Xi , âi  =

 ci}  =  ∞.  
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(iv) (Lower bounds) Assume that 𝑘(·) is symmetric with respect to 0 (i. e. k(−𝓏)  =  k(𝓏)) 

and i =  2. For given ci  ∈ ℝ , inf{λ̃i(νi , ai)|ai  ∈  Xi , âi  =  ci}  =  λ_i (νi , ci)(=

 ci) (hence λ̃i(νi , ai)  ≥  λ̃i(νi , âi)). If the principal eigenvalue of 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝒯 exists, 

then ” = ” holds if and only if 𝑎𝑖(·) is a constant function, that is ai(·)  ≡  âi.  

(v) (Monotonicity) For given 𝑎𝑖
1 , 𝑎𝑖

2  ∈  𝑋𝑖 , 𝑖𝑓 𝑎𝑖
1 (𝑥)  ≤  𝑎𝑖

2 (𝑥), 𝑡ℎ𝑒𝑛 �̃�𝑖(𝑎𝑖
1 , 𝜈𝑖)  ≤

 �̃�𝑖(𝑎𝑖
2 , 𝜈𝑖) (𝑖 =  1, 2, 3).  

Proof. (i) We first prove the case 𝑖 =  1. Let 𝑥0 ∈ �̅� be such that 

ℎ1(𝑥0) = ℎ1,max  . 

Note that there is 𝜖0 > 0 such that 

0 ≤  𝑎1(𝑥0) − 𝑎1(𝑥) < 𝜈1 inf
𝑥∈�̅�

 ∫  
𝐷

𝑘(𝑦 −  𝑥)𝑑𝑦 − 𝜖0  

≤  𝜈1∫  
𝐷

𝑘(𝑦 − 𝑥)𝑑𝑦 − 𝜖0   ∀ 𝑥 ∈ �̅�. 

For any 0 < 𝜖 < 𝜖0, put 

𝜆𝜖 = ℎ1(𝑥0) + 𝜖(=  −𝜈1 + 𝑎1(𝑥0) + 𝜖). 
Then 

𝜈1 ∫  𝐷 𝑘(𝑦 −  𝑥)𝑑𝑦

𝜆𝜖 − ℎ1(𝑥)
=
𝜈1 ∫  𝐷 𝑘(𝑦 −  𝑥)𝑑𝑦

𝑎1(𝑥0) − 𝑎1(𝑥) +  𝜖
 

≥
𝜈1 ∫  𝐷 𝑘(𝑦 −  𝑥)𝑑𝑦

𝜈1 ∫  𝐷 𝑘(𝑦 −  𝑥)𝑑𝑦 + 𝜖 − 𝜖0
 

>  1 ∀𝑥 ∈  �̅�. 
This implies  

𝑟(𝑉𝑎1,𝜈1,𝜆𝜖
1  )  >  1 ∀ 0 <  𝜖 ≪  1.  

Then by Proposition (6.1.10) (b), �̃�1 (𝜈1, 𝑎1)  >  ℎ1 ,max  . By Proposition (6.1.11), 

𝜆1(𝜈1, 𝑎1) exists. We now prove the case 𝑖 =  2. Similarly, let 𝑥0  ∈  �̅� be such that  

ℎ2(𝑥0)  =  ℎ2,max  .  

Note that there is 𝜖0  >  0 such that  

0 ≤  𝑎2(𝑥0) − 𝑎2(𝑥) <  𝜈2 inf
𝑥∈�̅�

  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦 − 𝜖0  

≤  𝜈2  ∫  
 

𝐷

 𝑘(𝑦 − 𝑥0)𝑑𝑦 − 𝜖0.  

For any 0 <  𝜖 <  𝜖0, put  

𝜆𝜖  =  ℎ2(𝑥0)  +  𝜖(=  −𝜈2   ∫  
 

𝐷

 𝑘(𝑦 − 𝑥0)𝑑𝑦 + 𝑎2(𝑥0)  +  𝜖).  

Then  

𝜈2  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦 𝜆𝜖 

 − ℎ2(𝑥) =  𝜈2  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦 𝑎2(𝑥0) − 𝜈2  ∫  
 

𝐷

𝑘(𝑦 − 𝑥0)𝑑𝑦  

+ 𝜈2  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦 −  𝑎2(𝑥) +  𝜖 ≥  𝜈2  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦 𝜈2  

∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦 +  𝜖 −  𝜖0  >  1 ∀𝑥 ∈  �̅�.   

This again implies that  
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𝑟(𝑉𝑎2,𝜈2,𝜆𝜖 
2 )  >  1 ∀ 0 <  𝜖 ≪  1.  

Then by Proposition (6.1.10) (b), �̃�2(𝜈2, 𝑎2) >  ℎ2,max  . By Proposition (6.1.11), 

𝜆2(𝜈2, 𝑎2)exists. (ii) It can be proved by the similar arguments as in [200]. For the 

completeness, we provide a proof in the following. Let 𝑥0  ∈  𝐼𝑛𝑡(𝐷) be such that ℎ𝑖(𝑥0) =
 ℎ𝑖,max    and the partial derivatives of ℎ𝑖(𝑥) up to order 𝑁 −  1 at 𝑥0 are zero. Then there is 

𝑀 >  0 such that  

ℎ𝑖(𝑥0) − ℎ𝑖(𝑦) ≤  𝑀||𝑥0 –  𝑦||
𝑁
 ∀ 𝑦 ∈  𝐷.  

Fix 𝜎 >  0 such that 𝐵(𝑥0, 2𝜎)  ⊂  𝐷 𝑎𝑛𝑑 𝐵(0, 2𝜎)  ⋐  𝑠𝑢𝑝𝑝(𝑘(·)). 𝐿𝑒𝑡 𝑣
∗   ∈  𝑋 +  𝑖 be 

such that 𝑣∗ (𝑥)  =  ( 1 ∀ 𝑥 ∈  𝐵(𝑥0, 𝜎), 0 ∀ 𝑥 ∈  𝐷\𝐵(𝑥0, 2𝜎). 
Clearly, for every 𝑥 ∈  𝐷\𝐵(𝑥0, 2𝜎) and 𝛾 >  1, we have 

(𝑈𝑎𝑖,𝜈𝑖,ℎ𝑖
𝑖 (𝑥0) + 𝜖 𝑣

∗ )(𝑥)  ≥  𝛾𝑣∗ (𝑥)  =  0 ∀ 𝜖 >  0.                              (39) 

Note that there is �̃�  >   0 such that for any 𝑥 ∈  𝐵(𝑥0, 2𝜎), 𝑘(𝑦 −  𝑥)  ≥  �̃�∀ 𝑦 ∈
 𝐵(𝑥0, 𝜎). 
       It then follows that for 𝑥 ∈  𝐵(𝑥0, 2𝜎)  

(𝑈𝑎𝑖 ,𝜈𝑖,ℎ𝑖(𝑥0)
𝑖 + 𝜖 𝑣∗ )(𝑥) =  ∫  

 

𝐷

  
𝜈𝑖𝑘(𝑦 −  𝑥)𝑣

∗(𝑦)

ℎ𝑖(𝑥0) +  𝜖 −  ℎ𝑖(𝑦)
 𝑑𝑦  

≥   ∫  
 

𝐵(𝑥0,σ)

 
𝜈𝑖𝑘(𝑦 −  𝑥)

𝑀||𝑥0  −  𝑦||𝑁 +  𝜖
 𝑑𝑦  

≥  ∫  
 

𝐵(𝑥0,σ)

𝜈𝑖�̃�

𝑀||𝑥0  −  𝑦||𝑁 +  𝜖
 𝑑𝑦. 

Notice that ∫  
 

𝐵(𝑥0,𝜎)
 

�̃�

𝑀 ||𝑥0−𝑦||
𝑁  𝑑𝑦 =  ∞. This implies that for 0 <  𝜖 ≪  1, there is 𝛾 >

 1 such that  

(𝑈𝑎𝑖
𝑖 , 𝜈𝑖, ℎ𝑖(𝑥0)) + 𝜖

𝑣∗   )(𝑥)  >  𝛾𝑣∗ (𝑥) ∀ 𝑥 ∈  𝐵(𝑥0, 2𝜎).        (40)  

By (39) and (40),  

(𝑈𝑎𝑖
𝑖 , 𝜈𝑖, ℎ𝑖(𝑥0)) + 𝜖

𝑣∗    (𝑥)  ≥  𝛾𝑣∗ (𝑥) ∀ 𝑥 ∈  𝐷. 

Hence, 𝑟(𝑈𝑎𝑖,𝜈𝑖,ℎ𝑖(𝑥0)+𝜖 
𝑖 )   >  1. By Proposition (6.1.10)(a), �̃� 𝑖(𝜈𝑖 , 𝑎𝑖)  >  ℎ𝑖(𝑥0)  =

 ℎ𝑖 ,max  . By Proposition (6.1.11), the principle eigenvalue 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists.  

(iii) Recall that �̃�𝑖(𝜈𝑖 , �̃�)  =  𝑠𝑢𝑝{𝑅𝑒µ|µ ∈  𝜎(𝜈𝑖𝒦𝑖  +  ℎ̃𝑖(·)𝐼)} with ℎ̃𝑖(𝑥)  =  −𝜈𝑖  +

 �̃�(𝑥) for 𝑖 =  1, 3 and ℎ̃𝑖(𝑥)  =  −𝜈2   ∫  
 

𝐷
 𝑘(𝑦 −  𝑥)𝑑𝑦 + �̃�(𝑥) for 𝑖 =  2. By the 

arguments of Proposition (6.1.11),  

𝜎𝑒𝑠𝑠(𝜈𝑖𝒦𝑖  +  ℎ̃𝑖𝐼)  =  [min
𝑥∈�̅�

 ℎ̃𝑖(𝑥),max
𝑥∈�̅�

  
 ℎ̃𝑖(𝑥)]. 

Note that  

sup
�̃�∈𝑋𝑖(𝑐𝑖)

  (max
𝑥∈�̅�

  �̃�(𝑥))  =  ∞.  

Then  

sup
�̃�∈𝑋𝑖(𝑐𝑖)

 �̃�𝑖(𝜈𝑖 , �̃�) ≥ sup
�̃�∈𝑋𝑖(𝑐𝑖)

  (max
𝑥∈𝐷

  ℎ̃𝑖(𝑥)) ≥  −𝜈𝑖  + sup
�̃�∈𝑋𝑖(𝑐𝑖)

  (max
𝑥∈𝐷

  �̃�(𝑥))  =  ∞.  

(iv) We first assume that the principal eigenvalue 𝜆2(𝜈2, 𝑎2) exists. Suppose that 𝑢2(𝑥) is a 

strictly positive principal eigenfunction with respect to the eigenvalue 𝜆2(𝜈2, 𝑎2). We divide 

both sides of (ii) by 𝑢2(𝑥) and integrate with respect to 𝑥 over 𝐷 to obtain  
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∫  
 

𝐷

[
𝜈2[ ∫  

 

𝐷
 𝑘(𝑦 −  𝑥)(𝑢2(𝑦) − 𝑢2(𝑥))𝑑𝑦] + 𝑎2(𝑥)𝑢2(𝑥)

𝑢2(𝑥)
]   𝑑𝑥 =  ∫  

 

𝐷

 𝜆2(𝜈2, 𝑎2)𝑑𝑥, 

Or 

 𝜆2(𝜈2, 𝑎2) =
𝜈2
|𝐷|
 ∫  

 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑢2(𝑦) − 𝑢2(𝑥)𝑢2(𝑥)𝑑𝑦𝑑𝑥 +
1

|𝐷|
 ∫  

 

𝐷

 𝑎2(𝑥)𝑑𝑥  

=
𝜈2
|𝐷|
 ∫  

 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑢2(𝑦)  −  𝑢2(𝑥)𝑢2(𝑥) 𝑑𝑦𝑑𝑥 + �̂�2. 

By the symmetry of 𝑘(·),  

∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑢2(𝑦) − 𝑢2(𝑥)𝑢2(𝑥)𝑑𝑦𝑑𝑥  

=
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)𝑢2(𝑦) − 𝑢2(𝑥)𝑢2( 𝑥)𝑑𝑦𝑑𝑥  

+
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)𝑢2(𝑦) − 𝑢2(𝑥)𝑢2(𝑥)𝑑𝑦𝑑𝑥  

=
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)𝑢2(𝑦) − 𝑢2(𝑥)𝑢2(𝑥)𝑑𝑦𝑑𝑥  

+
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)𝑢2(𝑥) − 𝑢2(𝑦)𝑢2(𝑦)𝑑𝑦𝑑𝑥  

=
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)
(𝑢2(𝑦) − 𝑢2(𝑥))

2

𝑢2(𝑥)𝑢2(𝑦)
  𝑑𝑦𝑑𝑥 ≥  0.               (41) 

So,  

𝑖𝑛𝑓{𝜆2(𝜈2, 𝑎2)|𝑎2  ∈  𝑋2, �̂�2  =  𝑐2}  ≥  �̂�2  =  𝑐2.  
And clearly, 𝜆2(𝜈2, �̂�2)  =  �̂�2. Together, we get  

𝑖𝑛𝑓{𝜆2(𝜈2, 𝑎2)|𝑎2  ∈  𝑋2 , �̂�2  =  𝑐2}  =  𝜆2(𝜈2, �̂�2)  =  𝑐2.  
Second, by Lemma (6.1.13), for any 𝜖 >  0, there is 𝑎2

𝜖  ∈  𝑋2  ∩  𝐶
𝑁 , such that  

‖𝑎2  −  𝑎2
𝜖‖  <  𝜖,  

and ℎ2
𝜖  (·)  ∈  𝐶𝑁 (=  −𝜈2   ∫  

 

𝐷
 𝑘(𝑦 −  𝑥)𝑑𝑦 + 𝑎2

𝜖  ) satisfies the vanishing condition in 

Theorem (6.1.14) (ii). So, the principal eigenvalue 𝜆2(𝜈2, 𝑎2
𝜖  ) exists and �̃�2(𝜈2, 𝑎2

𝜖  )  =
 𝜆2(𝜈2, 𝑎2

𝜖  ). By the above arguments,  

�̃�2(𝜈2, 𝑎2
𝜖  )   =  𝜆2(𝜈2, 𝑎2

𝜖  )  ≥  𝜆2(𝜈2, �̂�2
𝜖 )  =  �̂�2

𝜖.                        (42) 
We claim that  

lim
𝜖→0

    �̃�2(𝜈2, 𝑎2
𝜖  )  =  �̃�2(𝜈2, 𝑎2). 

In fact, ‖𝑎2
𝜖  −  𝑎2‖  ≤  𝜖, that is  

𝑎2(𝑥)  −  𝜖 ≤  𝑎2
𝜖  (𝑥)  ≤  𝑎2(𝑥)  +  𝜖 ∀ 𝑥 ∈  �̅�.  

Note that 𝛷2(𝑡;  𝜈2, 𝑎2  +  𝜖)𝑢0  =  𝑒
𝜖𝑡𝛷2(𝑡;  𝜈2, 𝑎2)𝑢0, where 𝛷2(𝑡; 𝜈2, 𝑎2)𝑢0 is the 

solution of (22) with the initial value 𝑢0(·). Similarly, we have 𝛷2(𝑡; 𝜈2, 𝑎2 –  𝜖)𝑢0  =
 𝑒–𝜖𝑡𝛷2(𝑡; 𝜈2, 𝑎2)𝑢0. So  

𝑟(𝛷2(𝑡;  𝜈2, 𝑎2  ±  𝜖))  =  𝑒
±𝜖𝑡𝑟(𝛷2(𝑡; 𝜈2, 𝑎2)).  

Hence  

�̃�2(𝜈2, 𝑎2  ±  𝜖)  =  �̃�2(𝜈2, 𝑎2)  ±  𝜖.                                      (43)  
By Proposition (6.1.4), we have  

𝛷2(𝑡;  𝜈2, 𝑎2  −  𝜖)𝑢0  ≤  𝛷2(𝑡; 𝜈2, 𝑎2
𝜖  )𝑢0  ≤  𝛷2(𝑡; 𝜈2, 𝑎2  +  𝜖)𝑢0. 

Hence  
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𝑟(𝛷2(𝑡; 𝜈2 , 𝑎2 −  𝜖))  ≤  𝑟(𝛷2(𝑡;  𝜈2, 𝑎2
𝜖  ))  ≤  𝑟(𝛷2(𝑡; 𝜈2, 𝑎2  +  𝜖)). 

By(43),  

�̃�2(𝜈2, 𝑎2 –  𝜖) ≤  �̃�2(𝜈2, 𝑎2
𝜖  ) ≤  �̃�2(𝜈2, 𝑎2  +  𝜖). 

Taking the limit of (42) as 𝜖 →  0, we have  

�̃�2(𝜈2, 𝑎2) ≥  �̂�2  

So, inf{�̃�2(𝜈2, 𝑎2)|𝑎2  ∈  𝑋2 , �̂�2  =  𝑐2} =  𝜆2(𝜈2, 𝑐2)(=  𝑐2). 

       When the principal eigenvalue exists, it is not difficult to prove that the ” =  ” holds if 

and only if 𝑎2(·) ≡  𝑐2. In fact, suppose that 𝜆2(𝜈2, 𝑎2) exists and 𝑢2(·) is a corresponding 

positive eigenfunction. By (41), 𝜆2(𝜈2, 𝑎2) = �̂�2(=  𝑐2)𝑖𝑓𝑓 𝑢2(𝑥) =  𝑢2(𝑦)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈
 �̅� . Hence 𝜆2(𝜈2, 𝑎2) =  �̂�2(=  𝑐2)𝑖𝑓𝑓 𝑢2(·) ≡constant, which implies that 𝑎2(𝑥) =
 𝜆2(𝜈2, 𝑎2) = �̂�2.  
(v) Suppose that 𝑎𝑖

1 , 𝑎𝑖
2  ∈  𝑋𝑖 and 𝑎𝑖

1  ≤  𝑎𝑖
2 . By Proposition (6.1.4), for any 𝑢0  ∈  𝑋𝑖

+ and 

𝑡 ≥  0,  

𝛷𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖
1 )𝑢0  ≤  𝛷𝑖(𝑡; 𝜈𝑖 , 𝑎𝑖

2 )𝑢0. 
This implies that  

𝑟(𝛷𝑖(𝑡;  𝜈𝑖 , 𝑎1 𝑖 ))  ≤  𝑟(𝛷𝑖(𝑡;  𝜈𝑖 , 𝑎𝑖
2 )).  

By Proposition (6.1.6), we have  

�̃�𝑖(𝜈𝑖 , 𝑎𝑖
1  )  ≤  �̃�𝑖( 𝜈𝑖 , 𝑎𝑖

2 ).  
We give a proof for the Neumann boundary case. Let 𝜓(𝑥) be the eigenvalue function of 

the operator ∆ + 𝑎2(·)𝐼 defined on 𝐶2 ([0, 𝐿]) with Neumann boundary condition. So 

𝜓(𝑥)  >  0 and we have  

{

( 𝜓 ′′(𝑥)  +  𝑎2(𝑥)𝜓(𝑥)  =  𝜆𝑅,2𝜓(𝑥),                  𝑥 ∈  (0, 𝐿),

𝜕𝜓

𝜕𝑛
 (𝑥)  =  0,                                                            𝑥 =  0 𝑜𝑟 𝐿.

     

Multiplying this by 𝜓(𝑥) and integrating it from 0 to 𝐿, we have 

−  ∫  
𝐿

0

  𝜓′2  (𝑥)𝑑𝑥 + ∫  
𝐿

0

 𝑎2(𝑥)𝜓
2  (𝑥)𝑑𝑥 =  𝜆𝑅,2  ∫  

𝐿

0

 𝜓2 (𝑥)𝑑𝑥.  

Hence  

𝜆𝑅,2  =  
− ∫  

𝐿

0
 𝜓′2 (𝑥)𝑑𝑥 + ∫  

𝐿

0
 𝑎2(𝑥)𝜓

2(𝑥)𝑑𝑥

∫  
𝐿

0
 𝜓2(𝑥)𝑑𝑥 

.  

Take 𝑥1, 𝑥2  ∈  [0, 𝐿), we have  

𝜓2 (𝑥2) −  𝜓
2 (𝑥1) = ∫  

𝑥2

𝑥1

 2𝜓(𝑥)𝜓′ (𝑥)𝑑𝑥.  

Hence, for any positive number 𝑘 >  0,  

𝜓2  (𝑥2) − 𝜓
2 (𝑥1) ≤

1

𝑘
 ∫  

𝐿

0

 𝜓′2 (𝑥)𝑑𝑥 +  𝑘 ∫  
𝐿

0

 𝜓2 (𝑥)𝑑𝑥.  

Multiplying the above inequality by 𝑎2(𝑥2) and integrating it with respect to 𝑥1  ∈
 [0, 𝐿) 𝑎𝑛𝑑 𝑥2  ∈  [0, 𝐿), we get  

𝐿 ∫  
𝐿

0

 𝑎2(𝑥2)𝜓
2 (𝑥2)𝑑𝑥2  −  𝑐2𝐿 ∫  

𝐿

0

 𝜓2 (𝑥1)𝑑𝑥1  

≤  𝑐2𝐿
2 (
1

𝑘
 ∫  

𝐿

0

 𝜓′2 (𝑥)𝑑𝑥 +  𝑘 ∫  
𝐿

0

 𝜓2 (𝑥)𝑑𝑥) .  

This is equivalent to 
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 𝐿 ∫  
𝐿

0

 𝑎2(𝑥)𝜓
2 (𝑥)𝑑𝑥 −  𝑐2𝐿 ∫  

𝐿

0

 𝜓2 (𝑥)𝑑𝑥  

≤  𝑐2𝐿
2 (
1

𝑘
 ∫  

𝐿

0

 𝜓′2 (𝑥)𝑑𝑥 +  𝑘 ∫  
𝐿

0

 𝜓2 (𝑥)𝑑𝑥!) .  

Letting 𝑘 =  𝑐2𝐿, we obtain  

− ∫  
𝐿

0

 𝜓′2 (𝑥)𝑑𝑥 +  ∫  
𝐿

0

𝑎2(𝑥)𝜓
2 (𝑥)𝑑𝑥 ≤  (𝑐2  +  𝑐2

2𝐿2 )  ∫  
𝐿

0

 𝜓2 (𝑥)𝑑𝑥. 

So, we have  

𝜆𝑅,2  ≤  𝑐2  +  𝑐2
2𝐿2 .  

(ii) Theorem (6.1.14) (iv) may not be true for the Dirichlet type boundary condition. That 

is, �̃�1( 𝜈1, 𝑎1)  ≥  𝜆1(𝜈1, �̂�1) may not be true, where 𝑎1  ∈  𝑋1.  
       In the random dispersal case, There is an example in [199] which shows that the 

principal eigenvalue 𝜆𝑅,1(𝜈1, 𝑎1) of (iv) is smaller than the principal eigenvalue 𝜆𝑅,1(𝜈1, 𝑐1) 

of (iv) with 𝑎1(𝑥) being replaced by 𝑐1(=  �̂�1). It is prove in [186] that  

�̃�1(𝜈1, 𝑎1, 𝛿)  →  𝜆𝑅,1(𝜈1, 𝑎1)  

as 𝛿 →  0. So, for any 0 <  𝛿 ≪  1, �̃�1(𝜈1, 𝑎1, 𝛿) is close to 𝜆𝑅,1(𝜈1, 𝑎1), and �̃�1(𝜈1, 𝑐1, 𝛿) 

is close to 𝜆𝑅,1(𝜈1, 𝑐1). Hence �̃�1(𝜈1, 𝑎1, 𝛿) can be smaller than �̃�1(𝜈1, 𝑐1, 𝛿)  =

 𝜆1(𝜈1, 𝑐1, 𝛿) 𝑓𝑜𝑟 𝛿 ≪  1.  
(iii) Theorem (6.1.14) (iv) holds for periodic case (see [202]). When 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) does not 

exist (𝑖 =  2, 3), we may have �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  =  �̂�𝑖, but 𝑎𝑖(·) is not a constant function. For 

example, let 𝑋3  = {𝑢(𝑥) ∈ 𝐶(ℝ
𝑁 , ℝ)|𝑢(𝑥 + 𝑒𝑗)  =  𝑢(𝑥)), 𝑥 ∈ ℝ

𝑁  , 𝑗 =  1, 2,· · ·

 , 𝑁}, and 𝑞 ∈  𝑋3 with  

𝑞(𝑥) =

{
 

 𝑒
‖𝑥‖2

‖𝑥‖2 − 𝜎2
     𝑖𝑓 ‖𝑥‖  <  𝜎,

0                          𝑖𝑓 𝜎 ≤  ‖𝑥‖  ≤
1

2
 .

   

Then 𝒦3 + ℎ3(·)𝐼 with 𝑘(𝓏)  =  𝑘𝛿(𝓏) has no principal eigenvalue for 𝑀 >  1, 0 <  𝜎 ≪
 1, 𝛿 ≫  1 and ℎ3(𝑥)  =  −1 +  𝑀 𝑞(𝑥) where 𝑥 ∈ ℝ𝑁 and 𝑁 ≥  3 (see [200]). Hence 

�̃�3  = max
𝑥∈�̅�

  ℎ3(𝑥) =  −1 +  𝑀max
𝑥∈�̅�

  𝑞(𝑥)  =  −1 +  𝑀. Choosing 𝑀 =
1

1−�̂�
 , we have 

𝑀�̂�  =  −1 +  𝑀, that is �̂�3  =  �̃�3, but 𝑎3(𝑥)  =  𝑀 𝑞(𝑥) is not a constant function.  

We investigate the effects of the dispersal rates on the principal spectrum points and 

the existence of principal eigenvalues of nonlocal dispersal operators and prove Theorem 

(6.1.15).  

Theorem (6.1.15)[176]: (Effects of dispersal rate). Assume that 1 ≤  i ≤  3 and 𝑘(·) is 

symmetric with respect to 0.  

(i) (Monotonicity) Assume ai(·)  ≢ constant. If 𝜈𝑖
1  <  𝜈𝑖

2 , then �̃�𝑖(𝜈𝑖
1 , 𝑎𝑖)  >  �̃�𝑖(𝜈𝑖

2 , 𝑎𝑖).     
(ii) (Existence of principal eigenvalue) If 𝑖 =  1 or 3 and λi(νi , ai) exists for some νi  >  0, 

then λ̃i(νi , ai) exists for all 𝜈𝑖  >  𝜈𝑖.  
(iii) (Existence of principal eigenvalue) There is 𝜈𝑖

0 >  0 such that the principal eigenvalue 

λi(νi , ai) of νiKi  +  hi(·)I exists for νi  >  νi
0 .  

(iv) (Limits as the dispersal rate goes to 0) lim
𝜈𝑖→0+

  �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  =  𝑎𝑖,𝑚𝑎𝑥.  
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(v) (Limits as the dispersal rate goes to ∞) lim
νi→∞

  λ̃i(νi , ai)  =  −∞ for i =  1 and 

lim
νi→∞

  λ̃i(νi , ai)  =  âi for 𝑖 =  2 and 3.  

       For given 𝛿 >  0 and �̃�(·): ℝ𝑁  → ℝ+ satisfying that sup(�̃�)  =  𝐵(0, 1) ∶=  {𝑧 ∈

ℝ𝑁 | ‖𝓏‖  <  1} and  ∫  
 

ℝ𝑁
 �̃�(𝓏)𝑑𝓏 =  1, let  

𝑘𝛿(𝓏) =
1

𝛿𝑁
�̃�  (

𝓏

𝛿
 ) .                                                           (44) 

When 𝑘(𝓏)  =  𝑘𝛿(𝓏), to indicate the dependence of �̃� 𝑖(𝜈𝑖 , 𝑎𝑖) on 𝛿, put  

�̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝛿)  =  �̃�𝑖(𝜈𝑖 , 𝑎𝑖).  
Proof. (i) Assume that 𝑘(·) is symmetric. Observe that for any 𝑢(·)  ∈  𝐿2 (𝐷),  

∫  
 

 

 ∫  
 

𝐷×𝐷

  𝑘(𝑦 −  𝑥)𝑢(𝑥)𝑢(𝑦)𝑑𝑦𝑑𝑥 −  ∫  
 

𝐷

 𝑢2 (𝑥)𝑑𝑥  

≤  ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑢(𝑥)𝑑𝑦𝑑𝑥 − ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦𝑢2 (𝑥)𝑑𝑥  

=  ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)(𝑢(𝑦) −  𝑢(𝑥))𝑢(𝑥)𝑑𝑦𝑑𝑥  

=
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)(𝑢(𝑦) −  𝑢(𝑥))𝑢(𝑥)𝑑𝑦𝑑𝑥  

+
1

2
 ∫  

 

 

 𝑍 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)(𝑢(𝑦) −  𝑢(𝑥))𝑢(𝑥)𝑑𝑦𝑑𝑥  

=
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)(𝑢(𝑦) −  𝑢(𝑥))𝑢(𝑥)𝑑𝑦𝑑𝑥  

+ 
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)(𝑢(𝑥) −  𝑢(𝑦))𝑢(𝑦)𝑑𝑦𝑑𝑥  

=  − 
1

2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

𝑘(𝑦 −  𝑥)(𝑢(𝑦) −  𝑢(𝑥))
2
 𝑑𝑦𝑑𝑥 ≤  0.  

Then (i) follows from the following facts: ∀ 𝜈𝑖  >  0,  

�̃�𝑖(𝜈𝑖 , 𝑎𝑖) = sup
𝑢∈𝐿2(𝐷),||𝑢||

𝐿2(𝐷)=1

  

[𝜈𝑖  (∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑢(𝑦)𝑢(𝑥)𝑑𝑦𝑑𝑥 − ∫  
 

𝐷

 𝑢2 (𝑥)𝑑𝑥 +) ∫  
 

𝐷

 𝑎𝑖(𝑥)𝑢
2 (𝑥)𝑑𝑥] 

in the case 𝑖 =  1,  

�̃�𝑖(𝜈𝑖 , 𝑎𝑖) = sup
𝑢∈𝐿2(𝐷),||𝑢||

𝐿2(𝐷)
=1

  

[−
𝜈𝑖
2
 ∫  

 

 

 ∫  
 

𝐷×𝐷

 𝑘(𝑦 −  𝑥)(𝑢(𝑦) −  𝑢(𝑥))
2
 𝑑𝑦𝑑𝑥 + ∫  

 

𝐷

 𝑎𝑖(𝑥)𝑢
2 (𝑥)𝑑𝑥] 

in the case 𝑖 =  2, and 

�̃�𝑖(𝜈𝑖 , 𝑎𝑖) = sup
𝑢∈𝐿2(𝐷),||𝑢||

𝐿2(𝐷)
=1

  

[𝜈𝑖 (∫  
𝐷

∫  
𝐷

 �̂�(𝑦 − 𝑥)𝑢(𝑦)𝑢(𝑥)𝑑𝑦𝑑𝑥 − ∫  
𝐷

𝑢2(𝑥)𝑑𝑥) + ∫  
𝐷

𝑎𝑖(𝑥)𝑢
2 (𝑥)𝑑𝑥] 

in the case 𝑖 =  3 (see (34)). 

(ii) We prove the case 𝑖 =  1. The case 𝑖 =  3 can be proved similarly. 
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Without loss of generality, assume 𝑎1(𝑥)  >  0 for ∈ �̅� . Assume that 𝜈1  >  0 is such that 

𝜆1(𝜈1, 𝑎1) exists and 𝜈1 > 𝜈1. By Proposition (6.1.11), 𝜆1(𝜈1, 𝑎1) > max
𝑥∈�̅�

 ℎ1(𝑥), that is, 

𝜆1(𝜈1, 𝑎1) > max
𝑥∈�̅�

  (−𝜈1 + 𝑎1(𝑥)). 

Let 𝜙1(·) be a positive principal eigenfunction with ||𝜙1||𝐿2(𝐷) = 1. Then 

�̃�1(𝜈1, 𝑎1) = 𝜈1∫  ∫  
𝐷×𝐷

 𝑘(𝑦 −  𝑥)𝜙1(𝑦)𝜙1(𝑥)𝑑𝑦𝑑𝑥 − 𝜈1 

+∫  
𝐷

𝑎1(𝑥)𝜙1
2(𝑥)𝑑𝑥 > max

𝑥∈�̅�
 (−𝜈1 + 𝑎1(𝑥)). 

By Proposition (6.1.12), 

�̃�1(𝜈1, 𝑎1) ≥ 𝜈1∫  ∫  
𝐷×𝐷

 𝑘(𝑦 −  𝑥)𝜙1(𝑦)𝜙1(𝑥)𝑑𝑦𝑑𝑥 − 𝜈1 

+∫  
𝐷

𝑎1(𝑥)𝜙1
2(𝑥)𝑑𝑥 

= 𝜆1(𝜈1, 𝑎1) + (𝜈1 − 𝜈1)∫  ∫  
𝐷×𝐷

𝑘(𝑦 −  𝑥)𝜙1(𝑦)𝜙1(𝑥)𝑑𝑦𝑑𝑥 + 𝜈1 − 𝜈1 

> max
𝑥∈�̅�

 (−𝜈1 + 𝑎1(𝑥)) + 𝜈1 − 𝜈1 + (𝜈1 − 𝜈1) 

∫  ∫  
𝐷×𝐷

𝑘(𝑦 − 𝑥)𝜙1(𝑦)𝜙1(𝑥)𝑑𝑦𝑑𝑥 

> max
𝑥∈�̅�

 (−𝜈1 + 𝑎1(𝑥)). 

By Proposition (6.1.11) again, 𝜆1(𝜈1, 𝑎1) exists. 

(iii) It follows from Theorem (6.1.14)(i) and can also be proved as follows. 

       To show 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists, we only need to show �̃�𝑖(𝜈𝑖 , 𝑎𝑖) > max
𝑥∈�̅�

 ℎ𝑖(𝑥), where 

ℎ𝑖(𝑥)  =  −𝜈𝑖 + 𝑎𝑖(𝑥) for 𝑖 =  1 and 3 and ℎ𝑖(𝑥) = −𝜈𝑖 ∫  𝐷  𝑘(𝑦 −  𝑥)𝑑𝑦 + 𝑎𝑖(𝑥) for 

𝑖 =  2. In the case 𝑖 =  2 or 3, �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  ≥  �̂�𝑖 by Theorem (6.1.14)(iv). This implies that 

�̃�𝑖(𝜈𝑖 , 𝑎𝑖)  >  ℎ𝑖,𝑚𝑎𝑥     ∀ 𝜈𝑖  ≫  1. 

In the case 𝑖 =  1, note that 𝜆1(1, 0) exists and 

−1 <  𝜆1(1, 0)  <  0. 

This implies that 𝜆1(1,
𝑎1

𝜈1
) exists for 𝜈1 ≫ 1 and then 𝜆1(𝜈1, 𝑎1) exists for 𝜈1 ≫ 1. 

(iv) On the one hand, we have 

�̃�𝑖(𝜈𝑖 , 𝑎𝑖)  ≥  ℎ𝑖,max   ≥  −𝜈𝑖 + 𝑎𝑖,max  . 
On the other hand, for any 𝜆 > 𝑎𝑖,𝑚𝑎𝑥, 𝜆𝒯 − 𝑎𝑖(·)𝒯 has bounded inverse. This implies that 

𝑎𝑖,max   + 𝜖 >  �̃�𝑖(𝜈𝑖 , 𝑎𝑖)     ∀ 0 <  𝜈𝑖  ≪  1. 
Therefore, 

lim
𝜈𝑖→0

  �̃�𝑖(𝜈𝑖 , 𝑎𝑖)  =  𝑎𝑖,𝑚𝑎𝑥. 

(v) We prove the cases 𝑖 =  1 and 𝑖 =  2. The case 𝑖 =  3 can be proved by the similar 

arguments as in the case 𝑖 =  2.  
First of all, we prove the case 𝑖 =  1. By Proposition (6.1.7),  

�̃�1(1, 0)  <  0. 
Observe that  

�̃�1(𝜈1, 𝑎1) =  𝜈1�̃�1   (1,
𝑎1
𝜈1
 )  𝑎𝑛𝑑 �̃�1   (1,

𝑎1
𝜈1
)   →  �̃�1(1, 0) 
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as 𝜈1  →  ∞. It then follows that  

�̃�1(𝜈1, 𝑎1) ≤
𝜈1
2
 �̃�1(1, 0) ∀ 𝜈1  ≫  1.  

This implies that  

lim
𝜈1→∞

 �̃�1(𝜈1, 𝑎1)  =  −∞. 

Second of all, we prove the case 𝑖 =  2. By (iii), 𝜆2(𝜈2, 𝑎2) exists for 𝜈2  ≫  1. In the 

following, we assume 𝜈2  ≫  1 such that 𝜆2(𝜈2, 𝑎2) exists. Let 𝜙2, 𝜈2 (𝑥) be a positive 

principal eigenfunction with ∫  
 

𝐷
 𝜙2
2, 𝜈2 (𝑥)𝑑𝑥 =  1.  

Note that  

�̃�2  ≤  𝜆2(𝜈2, 𝑎2)  ≤  𝑎2,𝑚𝑎𝑥,  
and  

𝜈2   ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥) (    𝜙2,𝜈2  (𝑦) − 𝜙2,𝜈2  (𝑥))𝜙2,𝜈2  (𝑥)𝑑𝑦𝑑𝑥  

+ ∫  
 

𝐷

  𝑎2(𝑥)𝜙2,𝜈2  (𝑥)𝑑𝑥 =  𝜆2(𝜈2, 𝑎2).  

This implies that  
𝜈2
2
 ∫  

 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥) (𝜙2,𝜈2  (𝑦) − 𝜙2,𝜈2  (𝑥))
2
 𝑑𝑦𝑑𝑥  

= ∫  
 

𝐷

 𝑎2(𝑥)𝜙2,𝜈2  (𝑥)𝑑𝑥 − 𝜆2(𝜈2, 𝑎2)  ≤  𝑎2,max   −  �̂�2,  

and then  

∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥) (𝜙2,𝜈2  (𝑦) − 𝜙2,𝜈2  (𝑥))
2
 𝑑𝑦𝑑𝑥 ≤

2(𝑎2,max   −  �̂�2)

𝜈2
 .    (45) 

Let 𝜓2, 𝜈2 (𝑥) =  𝜙2,𝜈2  (𝑥) − 𝜙2,𝜈2  . Then  

𝜈2  ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥) (𝜙2,𝜈2  (𝑦) − ∅2,𝜈2  (𝑥)) 𝑑𝑦𝑑𝑥  

+ ∫  
 

𝐷

 𝑎2(𝑥)𝜙2,𝜈2  (𝑥)𝑑𝑥 =  ∫  
 

𝐷

 𝑎2(𝑥)(𝜓2,𝜈2  (𝑥)  +  ∅̂2,𝜈2 )𝑑𝑥,  

and hence  

𝜆2(𝜈2, 𝑎2) ∫  
 

𝐷

 𝜙2,𝜈2  (𝑥)𝑑𝑥 =  �̂�2,𝜈2  ∫  
 

𝐷

 𝑎2(𝑥)𝑑𝑥 + ∫  
 

𝐷

 𝑎2(𝑥)𝜓2,𝜈2  (𝑥)𝑑𝑥. 

This implies that  

𝜆2(𝜈2, 𝑎2)∅̂2,𝜈2  =  �̂�2∅̂2, 𝜈2  +
1

|𝐷|
 ∫  

 

𝐷

 𝑎2(𝑥)𝜓2,𝜈2  (𝑥)𝑑𝑥.                      (46) 

To show 𝜆2(𝜈2, 𝑎2)  →  �̂�2 𝑎𝑠 𝜈2  →  ∞, we first show that ∫  
 

𝐷
 𝑎2(𝑥)𝜓2,𝜈2 (𝑥)𝑑𝑥 →

 0 𝑎𝑠 𝜈2  →  ∞. Note that �̃�2(1, 0)  =  0 𝑎𝑛𝑑 �̃�2(1, 0) is the principal eigenvalue of 𝒦2  +
 𝑏0(·)𝐼 with ∅(·)  ≡  1 being a principal eigenfunction, where  

𝑏0(𝑥)  =  −  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦. 

Moreover, �̃�2(1, 0) is also an isolated algebraically simple eigenvalue of 𝒦2  +  𝑏0(·)𝐼 on 

𝐿2 (𝐷). Note also that  

∫  
 

𝐷

 ( (−𝒦2  −  𝑏0𝐼)𝑢)  (𝑥)𝑢(𝑥)𝑑𝑥  
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=
1

2
 ∫  

 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)(𝑢(𝑦) −  𝑢(𝑥))
2
 𝑑𝑦𝑑𝑥 ≥  0                    (47) 

for any 𝑢(·)  ∈  𝐿2 (𝐷) and −𝒦2  −  𝑏0(·)𝐼 is a self-adjoint operator on 𝐿2 (𝐷). Then there 

is a bounded linear operator 𝐴 ∶  𝐿2 (𝐷)  →  𝐿2 (𝐷) such that  

∫  
 

𝐷

  (−𝒦2  − 𝑏0𝐼)𝑢 (𝑥)𝑢(𝑥)𝑑𝑥 = ∫  
 

𝐷

(𝐴𝑢)(𝑥)(𝐴𝑢)(𝑥)𝑑𝑥 ∀ 𝑢 ∈  𝐿2 (𝐷). (48)  

Let  

𝐸1  =  𝑠𝑝𝑎𝑛{𝜑(·)},  
and  

𝐸2  =  {𝑢(·)  ∈  𝐿
2 (𝐷)| ∫  

 

𝐷

 𝑢(𝑥)𝑑𝑥 =  0}.  

Then  

𝐿2 (𝐷)  =  𝐸1  ⊕ 𝐸2  
and  

 𝒦2  +  𝑏0(·)𝐼  (𝐸2)  ⊂  𝐸2.  
Moreover, (𝒦2 + 𝑏0(·)𝐼)|𝐸2     is invertible. We claim that there is 𝐶 >  0 such that  

∫  
 

𝐷

 (𝐴𝑢)(𝑥)(𝐴𝑢)(𝑥)𝑑𝑥 ≥  𝐶 ∫  
 

𝐷

 𝑢2 (𝑥)𝑑𝑥 ∀ 𝑢 ∈  𝐸2.              (49) 

For otherwise, there is 𝑢𝑛  ∈  𝐸2 with ∫  
 

𝐷
 𝑢𝑛
2  (𝑥)𝑑𝑥 =  1 such that  

∫  
 

𝐷

 (𝐴𝑢𝑛)(𝑥)(𝐴𝑢𝑛)(𝑥)𝑑𝑥 →  0  

as 𝑛 →  ∞. It then follows that 0 ∈  𝜎((𝒦2  +  𝑏0(·)𝐼)|𝐸2 ), a contradiction. Hence (49) 

holds.  

By (47), (48) and (49), for any 𝜈2  ≫  1,  

∫  
 

𝐷

 𝜓2
2, 𝜈2 (𝑥)𝑑𝑥 ≤

1

2𝐶
∫  
 

𝐷

∫  
 

𝐷

𝑘(𝑦 −  𝑥) (𝜓2,𝜈2  (𝑦) − 𝜓2,𝜈2  (𝑥))
2
𝑑𝑦𝑑𝑥.   (50)  

Observe that  

∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥) (𝜙2,𝜈2  (𝑦) −  𝜙2,𝜈2  (𝑥))
2
 𝑑𝑦𝑑𝑥  

= ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥) (𝜓2,𝜈2  (𝑦) − 𝜓2,𝜈2  (𝑥))
2
 𝑑𝑦𝑑𝑥.  

This together with (45) and (50) implies that  

∫  
 

𝐷

 𝜓2
2, 𝜈2 (𝑥)𝑑𝑥 →  0 𝑎𝑠 𝜈2  →  ∞,  

and then  

∫  
 

𝐷

 𝑎2(𝑥)𝜓2,𝜈2  (𝑥)𝑑𝑥 →  0 𝑎𝑠 𝜈2  →  ∞ 

Second, assume 𝜆2(𝜈2, 𝑎2)  ↛  �̂�2 𝑎𝑠 𝜈2  →  ∞. 𝐵𝑦 (46), we must have �̂�2, 𝜈2, 𝑛 →  0 for 

some sequence 𝜈2, 𝑛 →  ∞. This and (45) implies that  

∫  
 

𝐷

 𝜙2,𝜈2,𝑛
2  (𝑥)𝑑𝑥 ≤  𝐶0  ∫  

 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝜙2,𝜈2,𝑛
2  (𝑥)𝑑𝑦𝑑𝑥 

=  𝐶0  ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥) (𝜙2,𝜈2,𝑛
2 (𝑥) − 𝜙2,𝜈2,𝑛

2  (𝑥)𝜙2,𝜈2,𝑛
2  (𝑦)) 𝑑𝑦𝑑𝑥  
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+ 𝐶0  ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝜙2,𝜈2,𝑛
2 (𝑦)𝜙2,𝜈2,𝑛

2  (𝑥)𝑑𝑦𝑑𝑥  

≤
𝐶0
2
 ∫  

 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥) (𝜙2,𝜈2,𝑛
2 (𝑦) − 𝜙2,𝜈2,𝑛

2 (𝑥))
2
 𝑑𝑦𝑑𝑥  

+ |𝐷|2𝐶0𝑀�̂�2 ,𝜈2,𝑛 �̂�2 ,𝜈2,𝑛  

≤
𝐶0(𝑎2,max   −  �̂�2)

𝜈2
 +  |𝐷|2𝐶0𝑀𝜑ˆ 2, 𝜈2,𝑛 𝜑ˆ 2, 𝜈2,𝑛  

where 𝐶0  =  (min
𝑥∈�̅�

  ∫  
 

𝐷
 𝑘(𝑦 −  𝑥)𝑑𝑦)  − 1 and 𝑀 = sup

𝑥,𝑦∈�̅�
  𝑘(𝑦 −  𝑥). That is 

∫  
 

𝐷

 𝜙2,𝜈2,𝑛
2  (𝑥)𝑑𝑥 →  0 𝑎𝑠 𝜈2,𝑛  →  ∞. 

This is a contradiction. Therefore  

𝜆2(𝜈2, 𝑎2)  →  �̂�2 𝑎𝑠 𝜈2  →  ∞.  
We investigate the effects of the dispersal distance on the principal spectrum points 

and the existence of principal eigenvalues and prove Theorem (6.1.16).  

Theorem (6.1.16)[176]: (Effects of dispersal distance). Suppose that 𝑘(𝓏)  =  𝑘𝛿(𝓏), where 

𝑘𝛿(𝓏) is defined as in (44) and �̃�(𝓏)  =  �̃�(−𝓏). Let 1 ≤  𝑖 ≤  3.  

(i) (Limits as dispersal distance goes to 0) lim
𝛿→0

  �̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝛿) =  𝑎𝑖,max   .  

(ii) (Limits as dispersal distance goes to ∞) lim
𝛿→∞

  �̃�1(𝜈1, 𝑎1, 𝛿) =  −𝜈1 +

𝑎1 ,max   , lim
𝛿→∞

  �̃�2 (𝜈2, 𝑎2, 𝛿) =  𝑎2,max  , 𝑎𝑛𝑑 lim
𝛿→∞

  �̃�3(𝜈3, 𝑎3, 𝛿)  =  �̃�3(𝜈3, 𝑎3), where  

�̃�3(𝜈3, 𝑎3)  =  𝑚𝑎𝑥{𝑅𝑒𝜆 | 𝜆 ∈  𝜎(𝜈3𝐼 ̅  +  ℎ3(·)𝐼)},  
and  

𝐼�̅� =
1

|𝐷|
 ∫  

 

𝐷

  𝑢(𝑥)𝑑𝑥.  

(iii) (Existence of principal eigenvalue) There is 𝛿0  >  0 such that the principal eigenvalue 

𝜆𝑖(𝜈𝑖 , 𝑎𝑖) of 𝜈𝑖𝒦𝑖  +  ℎ𝑖(·)𝐼 exists for 0 <  𝛿 <  𝛿0.  
Proof. (i) As mentioned, the cases 𝑖 =  1 and 3 are proved in [189]. The case 𝑖 =  2 can be 

proved by the similar arguments as in [189]. For completeness, we provide a proof for the 

case 𝑖 =  2 in the following. By Proposition (6.1.12),  

�̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝛿) = sup
𝑢∈𝐿2(𝐷),‖𝑢‖𝐿2(𝐷)=1 

 ∫  
 

 𝐷

  𝜈𝑖  ∫  
 

 𝐷

 𝑘𝛿(𝑦 −  𝑥)(𝑢(𝑦) −  𝑢(𝑥))𝑑𝑦  

+ 𝑎𝑖(𝑥)𝑢(𝑥)  𝑢(𝑥)𝑑𝑥.  
On the one hand,  

�̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝛿) =  sup
𝑢∈𝐿2(𝐷),‖𝑢‖𝐿2(𝐷)=1 

  

[−
𝜈𝑖
2
  ∫  

 

 𝐷

 ∫  
 

 𝐷

 𝑘𝛿(𝑦 − 𝑥)(𝑢(𝑦) −  𝑢(𝑥))
2
 𝑑𝑦𝑑𝑥 +  ∫  

 

 𝐷

 ∫  
 

 𝐷

 𝑎𝑖(𝑥)𝑢
2 (𝑥)𝑑𝑥 ] ≤  𝑎𝑖,max  . 

On the other hand, assume that 𝑥0  ∈  �̅� is such that 𝑎𝑖(𝑥0)  =  𝑎𝑖,𝑚𝑎𝑥. Then for any 0 <

 𝜖 <  1, there are 𝜎0
∗   >  0 and 𝑥0

∗  ∈  𝐼𝑛𝑡𝐷 such that 𝐵(𝑥0
∗ , 𝜎0

∗ )  ⊂  �̅� and  

𝑎𝑖(𝑥0)  −  𝑎𝑖(𝑥)  <  𝜖/2 𝑓𝑜𝑟 𝑥 ∈  𝐵(𝑥0
∗ , 𝜎0

∗ ).  
Let 𝑢0(·) be a smooth function with supp(𝑢0(·))  ∩  𝐷 ⊂  𝐵(𝑥0

∗ , 𝜎0
∗  ) and ‖𝑢0‖𝐿

2(𝐷)  =
 1. Then  
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�̃�𝑖  (𝜈𝑖 , 𝑎𝑖  , 𝛿) ≥  ∫  
 

𝐷

  ( 𝜈𝑖  ∫  
 

𝐷

 𝑘 𝛿(𝑦 −  𝑥)(𝑢0(𝑦) − 𝑢0(𝑥))𝑑𝑦 + 𝑎𝑖(𝑥)𝑢0(𝑥))  

𝑢0(𝑥)𝑑𝑥 ≥  𝜈𝑖  ∫  
 

𝐷

( ∫  
 

𝐷

 𝑘𝛿(𝑦 −  𝑥)(𝑢0(𝑦) − 𝑢0(𝑥))𝑑𝑦) 𝑢0(𝑥)𝑑𝑥  

+  (𝑎𝑖,max    −
𝜖

2
). 

Note that  

∫  
 

𝐷

 𝑘𝛿(𝑦 −  𝑥)(𝑢0(𝑦)  −  𝑢0(𝑥))𝑑𝑦 →  0 ∀ 𝑥 ∈  𝐼𝑛𝑡(𝐷)  

𝑎𝑠 𝛿 →  0. And      

|∫  
 

𝐷

𝑘𝛿(𝑦 −  𝑥)(𝑢0(𝑦) − 𝑢0(𝑥))𝑑𝑦  |    ≤  2 𝑚𝑎𝑥𝑦∈�̅�    |𝑢0(𝑦)| ∀ 𝑥 ∈  𝐷.  

Hence, there exists 𝛿0  >  0, such that for any 𝛿 <  𝛿0, we have      

𝜈𝑖  ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘𝛿(𝑦 −  𝑥)(𝑢0(𝑦) − 𝑢0(𝑥))𝑑𝑦 𝑢0(𝑥)𝑑𝑥     ≤
𝜖

2
  

It then follows that  

𝑎𝑖,max   ≥  �̃�𝑖 (𝜈𝑖 , 𝑎𝑖  , 𝛿)  ≥  𝑎𝑖,max   −  𝜖 

This implies that �̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝛿)  →  𝑎𝑖,max   as 𝛿 →  0.  

(ii) First, for 𝑖 =  1, 

|∫  
 

𝐷

 𝑘𝛿(𝑦 –  𝑥)𝑢(𝑦)𝑑𝑦 |     ≤  ‖𝑢‖ ∫  
 

𝐷

 𝑘𝛿(𝑦 –  𝑥)𝑑𝑦 →  0 

as 𝛿 →  ∞ uniformly in 𝑢 ∈  𝑋1 with ‖𝑢‖  ≤  1. Therefore,  

�̃�1(𝜈1, 𝑎1, 𝛿) → sup {𝑅𝑒𝜆|𝜆 ∈  𝜎 ((−𝜈1  +  𝑎1(·))𝐼)} =  −𝜈1  +  𝑎1, 

As 𝛿 →  ∞. For 𝑖 =  2, 

∫  
 

𝐷

  𝑘𝛿(𝑦 –  𝑥)(𝑢(𝑦)–  𝑢(𝑥))𝑑𝑦     ≤  2‖𝑢‖∫  
 

𝐷

 𝑘𝛿(𝑦 –  𝑥)𝑑𝑦 →  0  

as 𝛿 →  ∞ uniformly in 𝑢 ∈  𝑋2 with ‖𝑢‖  ≤  1. Hence  

�̃�2(𝜈2, 𝑎2, 𝛿)  →  𝑠𝑢𝑝{𝑅𝑒𝜆|𝜆 ∈  𝜎(𝑎2(·)𝐼)}  =  𝑎2,max   𝑎𝑠 𝛿 →  ∞.  
For 𝑖 =  3, recall that  

�̅�3(𝜈3, 𝑎3)  =  𝑠𝑢𝑝{𝑅𝑒𝜆 | 𝜆 ∈  𝜎(𝜈2𝐼¯ +  ℎ3(·)𝐼)},  
where  

𝐼�̅� =
1

𝑝1𝑝2  · · ·  𝑝𝑁
 ∫  

𝑝1

0

    ∫  
𝑝2

0

  · · ·  ∫  
𝑝𝑁

0

   𝑢(𝑥)𝑑𝑥.  

We first assume that 𝑎3(·) satisfies the conditions. Then by similar arguments as in Theorem 

(6.1.14) (ii), �̅�3(𝜈3, 𝑎3) is the principal eigenvalue of 𝜈3𝐼 ̅  +  ℎ3(·)𝐼. 𝐿𝑒𝑡 𝜙3(·) be the 

positive principal eigenfunction of 𝜈3𝐼 ̅  +  ℎ3(·)𝐼 with �̂�3  =
1

|𝐷|
 ∫  
 

𝐷
  𝜙3(𝑥)𝑑𝑥 =  1. We 

then have �̅�3(𝜈3, 𝑎3)  >  ℎ3,max   and 
1

|𝐷|
∫  
 

𝐷

 𝜈3𝜓3(𝑥)�̅�3(𝜈3, 𝑎3)  +  𝜈3  −  𝑎3(𝑥) 𝑑𝑥 =  1,                        (51)  

where  

𝜓3(𝑥) =  (�̅�3(𝜈3, 𝑎3) + 𝜈3  −  𝑎3(𝑥))𝜙3(𝑥).  

𝐹𝑖𝑥 0 <  𝜖 <  �̅�3(𝜈3, 𝑎3) −  ℎ𝑖,𝑚𝑎𝑥. Then  
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1

|𝐷|
    ∫  

 

𝐷

𝜈3𝜓3(𝑥)

�̅�3(𝜈3, 𝑎3)  −  𝜖 +  𝜈3  −  𝑎3(𝑥) 
𝑑𝑥 >  1.                          (52) 

Observe that for any 𝑘 =  (𝑘1, 𝑘2,· · · , 𝑘𝑁 ) ∈ ℤ
𝑁  {0},  

∫  
 

ℝ𝑁
  �̃�(𝓏) 𝑐𝑜𝑠 (∑  

𝑁

𝑖=1

 𝑘𝑖𝑝𝑖𝑥𝑖  +  𝛿 ∑  

𝑁

𝑖=1

 𝑘𝑖𝑝𝑖𝓏𝑖  )  𝑑𝓏 →  0,  

and  

 ∫  
 

ℝ𝑁
  �̃�(𝓏) 𝑠𝑖𝑛 ( ∑  

𝑁

𝑖=1

 𝑘𝑖𝑝𝑖𝑥𝑖  +  𝛿 ∑  

𝑁

𝑖=1

 𝑘𝑖𝑝𝑖𝓏𝑖)    𝑑𝓏 →  0  

as 𝛿 →  ∞. This implies that for any 𝑎 ∈  𝑋3 ,   

∫  
 

ℝ𝑁
 �̃�(𝓏)𝑎(𝑥 + 𝛿𝓏)𝑑𝓏 →  �̂�  

𝑎𝑠 𝛿 →  ∞ and then  

 ∫  
 

ℝ𝑁

𝜈3𝑘𝛿(𝑦 −  𝑥)𝜓3(𝑦)

�̅�3(𝜈3, 𝑎3) −  𝜖 +  𝜈3  −  𝑎3(𝑦)
𝑑𝑦 

=   ∫  
 

ℝ𝑁
 𝜈3

�̃�(𝓏)𝜓3(𝑥 +  𝛿𝓏)

�̅�3(𝜈3, 𝑎3) −  𝜖 +  𝜈3 – 𝑎3(𝑥 +  𝛿𝓏)
𝑑𝓏  

→
1

|𝐷|
  ∫  

 

𝐷

𝜈3𝜓3(𝑥)

�̅�3(𝜈3, 𝑎3) −  𝜖 +  𝜈3  −  𝑎3(𝑥)
 𝑑𝑥 

As 𝛿 →  ∞uniformly in 𝑥 ∈ ℝ𝑁 . This together with (52) implies that 

 ∫  
 

ℝ𝑁

𝜈3𝑘𝛿(𝑦 –  𝑥)𝜓3(𝑦)

�̅�3(𝜈3, 𝑎3)–  𝜖 +  𝜈3 – 𝑎3(𝑦)
𝑑𝑦 >  1 ∀ 𝑥 ∈ ℝ𝑁  , 𝛿 ≫  1. 

It then follows that  

�̃�3(𝜈3, 𝑎3, 𝛿)  >  �̅�3(𝜈3, 𝑎3)  −  𝜖 >  ℎ𝑖,max   ∀ 𝛿 ≫  1                           (53)  

and 𝜆3(𝜈3, 𝑎3 , 𝛿) exists for 𝛿 ≫  1.  
Now for any 𝜖 >  0, by (51),  

1

|𝐷|
  ∫  

 

𝐷

 𝜈3𝜓3(𝑥)�̅�3(𝜈3, 𝑎3)  +  𝜖 +  𝜈3  −  𝑎3(𝑥) 𝑑𝑥 <  1.                        (54)  

Then by the similar arguments in the above,  

�̃�3(𝜈3, 𝑎3, 𝛿)  <  �̅�3(𝜈3, 𝑎3)  +  𝜖 ∀ 𝛿 ≫  1.                         (55)  
By (53) and (55),  

�̃�3(𝜈3, 𝑎3, 𝛿)  →  �̅�3(𝜈3, 𝑎3) 𝑎𝑠 𝛿 →  ∞.  
Now for general 𝑎3  ∈  𝑋3 , and for any 𝜖 >  0, there is 𝑎3, 𝜖 ∈  𝑋3 such that 

‖𝑎3 – 𝑎3,𝜖‖  <  𝜖 ∀ 𝑥 ∈ ℝ
𝑁 ,  

and 𝑎3, 𝜖(·) satisfies the conditions. By Theorem (6.1.14) (v), 

�̃�3(𝜈3, 𝑎3, 𝜖, 𝛿)  −  𝜖 ≤  �̃�3 (𝜈3, 𝑎3, 𝛿)  ≤  �̃�3(𝜈3, 𝑎3, 𝜖, 𝛿)  +  𝜖. 
By the above arguments,  

�̅�3(𝜈3, 𝑎3) −  3𝜖 ≤  �̃�3(𝜈3, 𝑎3,𝜖) −  2𝜖  

≤  �̃�3(𝜈3, 𝑎3, 𝛿) ≤  �̅�3(𝜈3, 𝑎3,𝜖) +  2𝜖  

≤  �̅�3(𝜈3, 𝑎3)  +  3𝜖 ∀ 𝛿 ≫  1. 
We hence also have  

�̃�3(𝜈3, 𝑎3, 𝛿) →  �̅�3(𝜈3, 𝑎3)𝑎𝑠 𝛿 →  ∞.  
(iii) By (i), for any 𝜖 >  0,  
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�̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝛿)  >  𝑎𝑖,max   −  𝜖 ∀ 0 <  𝛿 ≪  1.  

This implies that there is 𝛿0  >  0 such that  

�̃�𝑖(𝜈𝑖 , 𝑎𝑖  , 𝛿)  >  ℎ𝑖 ,max   ∀ 0 <  𝛿 <  𝛿0.  
Then by Proposition (6.1.12), 𝜆𝑖(𝜈𝑖 , 𝑎𝑖) exists for 0 <  𝛿 <  𝛿0.  

We consider the asymptotic dynamics of the two species competition system (7) and 

prove Theorem (6.1.19) by applying some of the principal spectrum properties developed. 

We assume that 𝑘(−𝓏)  =  𝑘(𝓏), �̃�1(𝜈, 𝑓(·, 0))  >  0, 𝑓(𝑥, 𝑤)  <  0 𝑓𝑜𝑟 𝑤 ≫  1, and 

𝜕2𝑓(𝑥,𝑤)  <  0 for 𝑤 ≥  0.  
       We first present two lemmas.  

Lemma (6.1.17)[176]: For any given 𝜈 >  0 and 𝑎 ∈  𝑋1(=  𝑋2),  

�̃�1(𝜈, 𝑎)  ≤  �̃�2(𝜈, 𝑎)  
and if 𝜆1(𝜈, 𝑎) exists, then  

�̃�1(𝜈, 𝑎)(=  𝜆1(𝜈, 𝑎))  <  �̃�2(𝜈, 𝑎)  
Proof. First, assume that 𝜆1(𝜈, 𝑎) exists. Let 𝜙(·) be the positive principal eigenfunction of 

𝜈𝒦1  −  𝜈𝐼 +  𝑎(·)I with ‖𝜙‖  =  1. Then  

𝛷1(𝑡;  𝜈, 𝑎)𝜙 =  𝑒
𝜆1(𝜈,𝑎)

𝑡
𝜙, and 𝛷2(𝑡;  𝜈, 𝑎)𝜙 =  𝑒

�̃�2(𝜈,𝑎)
𝑡
𝜙 ∀ 𝑡 >  0. 

By Proposition (6.1.4),  

𝛷2(𝑡;  𝜈, 𝑎)𝜙 ≫  𝛷1(𝑡;  𝜈, 𝑎)𝜙 ∀ 𝑡 >  0.  
This implies that  

�̃�2(𝜈, 𝑎)  >  𝜆1(𝜈, 𝑎).  
In general, by Lemma (6.1.13) and Theorem (6.1.14) (ii), for any 𝜖 >  0, there is 𝑎𝜖  ∈
 𝑋1 𝑠uch that 𝜆1(𝜈, 𝑎𝜖) exists and  

𝑎𝜖(𝑥)  −  𝜖 ≤  𝑎(𝑥)  ≤  𝑎𝜖(𝑥)  +  𝜖.  
By the above arguments,  

�̃�2(𝜈, 𝑎𝜖)  >  𝜆1(𝜈, 𝑎𝜖).  
Observe that  

�̃�2(𝜈, 𝑎)  ≥  �̃�2 (𝜈, 𝑎𝜖)  −  𝜖 𝑎𝑛𝑑 𝜆1(𝜈, 𝑎𝜖)  ≥  �̃�1(𝜈, 𝑎)  −  𝜖. 
Hence  

�̃�2(𝜈, 𝑎)  ≥  �̃�1(𝜈, 𝑎)  −  2𝜖.  
Letting 𝜖 →  0, we have  

�̃�2(𝜈, 𝑎)  ≥  �̃�1(𝜈, 𝑎). 
Consider  

𝑢𝑡  =  𝜈 [∫  
 

𝐷

𝑘(𝑦 −  𝑥)𝑢(𝑡, 𝑦)𝑑𝑦 − 𝑢(𝑡, 𝑥)] + 𝑢(𝑡, 𝑥)𝑔(𝑥, 𝑢(𝑡, 𝑥)), 𝑥 ∈  �̅�  (56) 

and  

𝑣𝑡 = 𝜈∫  
 

𝐷

 𝑘(𝑦 −  𝑥)[𝑣(𝑡, 𝑦) − 𝑣(𝑡, 𝑥)]𝑑𝑦 + 𝑣(𝑡, 𝑥)𝑔(𝑥, 𝑣(𝑡, 𝑥)), 𝑥 ∈ �̅�,    (57) 

where 𝑔 is a 𝐶1   function, 𝑔(𝑥, 𝑤)  <  0 𝑓𝑜𝑟 𝑤 ≫  1, 𝑎𝑛𝑑 𝜕2𝑔(𝑥,𝑤)  <  0 for 𝑤 ≥  0.  

Lemma (6.1.18)[176]: (i) If 𝜆1(𝜈, 𝑔(·, 0)) >  0, then there is 𝑢∗  ∈  𝑋1
++ such that 𝑢 =

 𝑢∗  is a stationary solution of (56) and for any solution 𝑢(𝑡, 𝑥)of (56) with 𝑢(0,·) ∈
 𝑋1
+    {0}, 𝑢(𝑡,·) →  𝑢∗ (·)𝑖𝑛 𝑋1.  

(ii) If 𝜆2(𝜈, 𝑔(·, 0)) >  0, then there is 𝑣∗  ∈  𝑋2
++  such that 𝑣 =  𝑣∗ is a stationary solution 

of (57) and for any solution 𝑣(𝑡, 𝑥)of (57) with 𝑣(0,·) ∈  𝑋2
+  {0}, 𝑣(𝑡,·) →  𝑣∗   (·)𝑖𝑛 𝑋2.  

Proof. It follows from [197].  
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Theorem (6.1.19)[176]: (i) There are 𝑢∗ (·) ∈ 𝑋1
++  𝑎𝑛𝑑 𝑣∗ (·) ∈  𝑋2

++ such that 

(𝑢∗ (·), 0)and (0, 𝑣∗ (·)) are stationary solutions of (7). Moreover, for any (𝑢0, 𝑣0) ∈  𝑋1
+  ×

 𝑋2
+ with 𝑢0 ≠   0 and 𝑣0  =  0 (𝑟𝑒𝑠𝑝. 𝑢0  =  0 and 𝑣0 ≠  0), (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·

;  𝑢0, 𝑣0))  →  (𝑢
∗ (·), 0) (𝑟𝑒𝑠𝑝. (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0))  →  (0, 𝑣

∗ (·))) 𝑎𝑠 𝑡 →  ∞.  
(ii) For any (𝑢0, 𝑣0) ∈  (𝑋1

+ \ {0}) × (𝑋2
+  \ {0}), lim

𝑡→∞
 (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0))  =

 (0, 𝑣∗ (·)). 

Proof. (i) By �̃�1(𝜈, 𝑓(·, 0)) >  0 and Lemma (6.1.17), we have �̃�2(𝜈, 𝑓(·, 0)) >  0. Then by 

Lemma (6.1.18), there are 𝑢∗  ∈  𝑋1
++ and 𝑣∗ ∈  𝑋2

++ such that (𝑢∗ , 0)and (0, 𝑣∗ )are 

stationary solutions of (7). Moreover, for any (𝑢0, 𝑣0) ∈  𝑋1
+  ×  𝑋2

+ with 𝑢0 ≠  0 and 𝑣0  =
 0 (resp. 𝑢0  =  0 and 𝑣0 ≠  0), (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0))  →  (𝑢

∗ (·), 0) (𝑟𝑒𝑠𝑝. (𝑢(𝑡,·
;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0))  →  (0, 𝑣

∗ (·))) as 𝑡 →  ∞.  
(ii) Observe that  

𝜈 [∫  
 

𝐷

  𝑘(𝑦 –  𝑥)𝑢∗ (𝑦)𝑑𝑦 – 𝑢∗ (𝑥)]  +  𝑓(𝑥, 𝑢∗ (𝑥))𝑢∗ (𝑥) =  0, 𝑥 ∈  �̅�.    (58) 

This implies that 𝜆1 (𝜈, 𝑓(·, 𝑢
∗ (·))) exists and 𝜆1 (𝜈, 𝑓(·, 𝑢

∗ (·))) =  0. By Lemma 

(6.1.17), we have  

�̃�2 (𝜈, 𝑓(·, 𝑢
∗ (·))) >  0.  

By Lemma (6.1.13), there are 𝜖 >  0 and 𝑎 ∈  𝑋1 such that 𝜆2(𝜈, 𝑎) exists,  

𝑎(𝑥) ≤  𝑓(𝑥, 𝑢∗ (𝑥))–  𝜖, 𝜆2(𝜈, 𝑎) >  0,  
and  

�̃�2(𝜈, 𝑓(·, 𝑢
∗ (·) +  𝜖)) >  0.  

Let 𝜙(·) be the positive eigenfunction of 𝜈𝒦2 − 𝜈𝑏(·)𝐼 + 𝑎(·)𝐼 with ‖𝜙‖  =  1, where 

𝑏(𝑥) =  ∫  
 

𝐷
  𝑘(𝑦 − 𝑥)𝑑𝑦. Let  

𝑢𝛿(𝑥) =  𝑢
∗ (𝑥) + 𝛿2 𝑎𝑛𝑑 𝑣𝛿(𝑥) =  𝛿𝜙(𝑥). 

Then  

0 =  𝜈 [∫  
 

𝐷

  𝑘(𝑦 −  𝑥)𝑢∗ (𝑦)𝑑𝑦 − 𝑢∗ (𝑥)]   +  𝑢∗ (𝑥)𝑓(𝑥, 𝑢∗ (𝑥)) 

=  𝜈 [∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑢𝛿(𝑦)𝑑𝑦 − 𝑢𝛿(𝑥)]   +  𝑢𝛿(𝑥)𝑓(𝑥, 𝑢𝛿(𝑥) + 𝑣𝛿(𝑥)) 

+ 𝜈𝛿2  (1 − ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦) − 𝛿2 𝑓(𝑥, 𝑢∗ (𝑥)) 

+ 𝑢𝛿  [𝑓(𝑥, 𝑢
∗ (𝑥)) −  𝑓(𝑥, 𝑢𝛿(𝑥) + 𝑣𝛿(𝑥))] 

≥  𝜈 [∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑢𝛿(𝑦)𝑑𝑦]  −  𝑢𝛿(𝑥)   +  𝑢𝛿(𝑥)𝑓(𝑥, 𝑢𝛿(𝑥)  +  𝑣𝛿(𝑥)) 

for 0 <  𝛿 ≪  1, and  

0 ≤  𝜆2(𝜈, 𝑎)𝑣𝛿(𝑥) = 𝜈∫  
 

𝐷

𝑘(𝑦 − 𝑥)[𝑣𝛿  (𝑦) − 𝑣𝛿(𝑥)]𝑑𝑦 +  𝑎(𝑥)𝑣𝛿(𝑥) 

≤  𝜈 ∫  
 

𝐷

𝑘(𝑦 −  𝑥)[𝑣𝛿  (𝑦) − 𝑣𝛿(𝑥)]𝑑𝑦 + [𝑓(𝑥, 𝑢
∗ (𝑥)) −  𝜖]𝑣𝛿(𝑥) 

=  𝜈 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)[𝑣𝛿  (𝑦) − 𝑣𝛿(𝑥)]𝑑𝑦 + 𝑣𝛿(𝑥)𝑓(𝑥, 𝑢𝛿  (𝑥) +  𝑣𝛿(𝑥)) 

+ 𝑣𝛿(𝑥)[𝑓(𝑥, 𝑢
∗ (𝑥)) −  𝑓(𝑥, 𝑢𝛿(𝑥) + 𝑣𝛿(𝑥)) −  𝜖] 
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≤  𝜈 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)[𝑣𝛿  (𝑦)  −  𝑣𝛿(𝑥)]𝑑𝑦 + 𝑣𝛿(𝑥)𝑓(𝑥, 𝑢𝛿  (𝑥)  +  𝑣𝛿(𝑥))  

for 0 <  𝛿 ≪  1. It then follows that for 0 <  𝛿 ≪  1, (𝑢𝛿(𝑥), 𝑣𝛿  (𝑥)) is a super-solution 

of (7). By Proposition (6.1.5),  

(𝑢(𝑡2,·;  𝑢𝛿 , 𝑣𝛿), 𝑣(𝑡2,·;  𝑢𝛿 , 𝑣𝛿))  ≤ 2 (𝑢(𝑡1,·;  𝑢𝛿 , 𝑣𝛿),  
𝑣(𝑡1,·;  𝑢𝛿 , 𝑣𝛿)) ∀ 0 <  𝑡1  <  𝑡2.                                       (59)  

Let  

(𝑢𝛿
∗∗  (𝑥), 𝑣𝛿

∗∗ (𝑥)) = lim
𝑡→∞

  (𝑢(𝑡, 𝑥; 𝑢𝛿 , 𝑣𝛿), 𝑣(𝑡, 𝑥; 𝑢𝛿 , 𝑣𝛿)) ∀ 𝑥 ∈  �̅� 

(this pointwise limit exists because of (59)).  

       We claim that (𝑢𝛿
∗∗ (·), 𝑣𝛿

∗∗ (·))  =  (0, 𝑣∗ (·)). Observe that 𝑢𝛿
∗∗ (·) and 𝑣𝛿

∗∗ (·) are semi-

continuous and (𝑢𝛿
∗∗ (·), 𝑣𝛿

∗∗ (·)) satisfies that 

{
 

 ( 𝜈[ ∫  
 

𝐷

  𝑘(𝑦 −  𝑥)𝑢𝛿
∗∗ (𝑦)𝑑𝑦 − 𝑢𝛿

∗∗ (𝑥)]  +  𝑢𝛿
∗∗ (𝑥)𝑓(𝑥, 𝑢𝛿

∗∗ (𝑥)  + 𝑣𝛿
∗∗ (𝑥))  =  0, 𝑥 ∈  �̅�,

 𝜈  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)[𝑣𝛿
∗∗  (𝑦)  − 𝑣𝛿

∗∗  (𝑥)]𝑑𝑦 + 𝑣𝛿
∗∗  (𝑥)𝑓(𝑥, 𝑢𝛿

∗∗  (𝑥)  + 𝑣𝛿
∗∗ (𝑥))  =  0, 𝑥 ∈  �̅�

    (60) 

(see the arguments in [185]). Multiplying the first equation in (60) by 𝑣𝛿
∗∗ (𝑥), second 

equation by 𝑢𝛿
∗∗ (𝑥), and integrating over 𝐷, we have  

∫  
 

𝐷

 𝑢𝛿
∗∗  (𝑥)𝑣𝛿

∗∗ (𝑥)𝑑𝑥 = ∫  
 

𝐷

 ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦 𝑢𝛿
∗∗  (𝑥)𝑣𝛿

∗∗ (𝑥)𝑑𝑥. 

This together with 𝑣𝛿
∗∗ (𝑥)  ≥  𝛿𝜙(𝑥)  >  0 implies that  

[ 1 −  ∫  
 

𝐷

 𝑘(𝑦 −  𝑥)𝑑𝑦] 𝑢𝛿
∗∗ (𝑥)  =  0 ∀ 𝑥 ∈  �̅�.   

Note that ∫  
 

𝐷
 𝑘(𝑦 −  𝑥)𝑑𝑦 <  1 for 𝑥 near 𝜕𝐷. This together with the first equation in (60) 

implies that 𝑢𝛿
∗∗ (𝑥)  =  0 for all 𝑥 ∈  �̅� . We then must have 𝑣𝛿

∗∗ (𝑥)  =  𝑣∗ (𝑥) for all 𝑥 ∈
 �̅� . Moreover, by (59) and Dini’s theorem, 

lim
𝑡→∞

  (𝑢(𝑡,·;  𝑢𝛿 , 𝑣𝛿), 𝑣(𝑡,·;  𝑢𝛿 , 𝑣𝛿))  =  (0, 𝑣
∗ (·)) 𝑖𝑛 𝑋1  ×  𝑋2 .                     (61)  

Now, for any (𝑢0, 𝑣0)  ∈  (𝑋1
+ \ {0})  ×  (𝑋2

+ \ {0}), there is 𝑀0  >  0 such that  

(𝑢0, 𝑣0)  ≤ 2 (𝑀, 0).  
Then by Proposition (6.1.5),  

(𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0))  ≤ 2 (𝑢(𝑡,·;  𝑀, 0), 𝑣(𝑡,·;  𝑀, 0)) ∀ 𝑡 >  0. 
Since  (𝑢(𝑡,·;  𝑀, 0), 𝑣(𝑡,·;  𝑀, 0))  →  (𝑢∗ (·), 0) 𝑖𝑛 𝑋1  ×  𝑋2 for 0 <  𝛿 ≪  1, there is 

𝑇 >  0 such that (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0))  ≤ 2 (𝑢𝛿(·), 0) ∀ 𝑡 ≥  𝑇. Then 𝑣(𝑡,·
;  𝑢0, 𝑣0) satisfies  

𝑣𝑡(𝑡, 𝑥) ≥ 𝜈∫  
 

𝐷

𝑘(𝑦 − 𝑥)[𝑣(𝑡, 𝑦) − 𝑣(𝑡, 𝑥)]𝑑𝑦 

+𝑣(𝑡, 𝑥)𝑓(𝑥, 𝑢∗ (𝑥) + 𝜖 + 𝑣(𝑡, 𝑥))𝑓𝑜𝑟 𝑡 ≥ 𝑇 . 
Note that �̃�2(𝜈, 𝑓(·, 𝑢

∗ (·)  +  𝜖))  >  0. By Lemma (6.1.18), for 0 <  𝛿 ≪  1, there is �̃�  ≥
 𝑇 such that 𝑣(𝑡,·;  𝑢0, 𝑣0)  ≥  𝑣𝛿(·) ∀ 𝑡 ≥  0. We then have  

(𝑢(𝑡 + �̃�,·;  𝑢0, 𝑣0), 𝑣(𝑡 + �̃�,·; 𝑢0, 𝑣0)) ≤ 2(𝑢(𝑡,·; 𝑢𝛿 , 𝑣𝛿), 𝑣(𝑡,·; 𝑢𝛿 , 𝑣𝛿)) ∀ 𝑡 ≥ 0.  
By (61),  

lim
𝑡→∞

  (𝑢(𝑡,·;  𝑢0, 𝑣0), 𝑣(𝑡,·;  𝑢0, 𝑣0))  =  (0, 𝑣
∗ (·)). 

The theorem is thus proved. 
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Section (6.2): Some Nonlocal Operators 

       The principal eigenvalue of an operator is a fundamental notion in modern analysis. In 

particular, this notion is widely used in PDE’s literature and is at the source of many 

profound results especially in the study of elliptic semi linear problems. For example, the 

principal eigenvalue is used to characterise the stability of equilibrium of a reaction-

diffusion equation enabling the definition of persistence criteria [215], [216], [217], [97], 

[102], [232], [115]. It is also an important tool in the characterisation of maximum principle 

properties satisfies by elliptic operators [209], [100] and to describe continuous semi-groups 

that preserve an order [204], [141], [234]. It is further used in obtaining Liouville type results 

for elliptic semi-linear equations [93], [99]. 

We are interested in such notion for linear operators  ℒΩ + 𝑎 defined on the space of 

continuous functions 𝐶 (�̅�) by: 

 ℒΩ[𝜑] + 𝑎𝜑 ∶= ∫𝐾

 

Ω 

(𝑥, 𝑦)𝜑(𝑦)𝑑𝑦 +  𝑎(𝑥)𝜑(𝑥) 

Where 𝛺 ⊂ ℝ𝑁 is a domain, possibly unbounded, 𝑎 is a continuous bounded function and 

𝐾 is a non negative kernel satisfying an integrability condition. The precise assumptions on 

𝛺, 𝐾 and a will be given later on. 

For most of positive operators, the principal eigenvalue is a notion related to the 

existence of an eigen-pair, namely an eigenvalue associated with a positive eigen-element. 

For 2  the operator  ℒΩ + 𝑎, when the function 𝑎 is not constant, for any real 𝜆, neither 

 ℒΩ + 𝑎 + 𝜆 nor its inverse are compact operators. Moreover, as noticed in [118], [224], 

[229], [200], the operator  ℒΩ + 𝑎 may not have any eigenvalues in the space 

𝐿𝑝(𝛺) 𝑜𝑟 𝐶 (�̅�) . for such operator, the existence of an eigenvalue associated with a positive 

eigenvector is then not guaranteed. Studying quantities that can be used as surrogates of a 

principal eigenvalue and establishing their most important properties are therefore of great 

interest for such operators. 

       In this perspective, we are interested in the properties of the following quantity: 

𝜆𝑝( ℒΩ + 𝑎): 

= sup{𝜆 ∈ ℝ|∃𝜑∈ 𝐶 (�̅�), 𝜑 > 0, such that  ℒΩ[𝜑] + 𝑎(𝑥)𝜑 + 𝜆𝜑 ≤ 0 𝑖𝑛 𝛺}, (62) 

Which can be expressed equivalently by the sup inf formula: 

𝜆𝑝( ℒΩ + 𝑎) = sup
𝜑∈𝐶 (�̅�)
𝜑>0

inf
𝑥∈Ω 

(−
 ℒΩ |𝜑|(𝑥) + 𝑎(𝑥)𝜑(𝑥)

𝜑(𝑥)
).               (63) 

     This number was originally introduced in the Perron-Frobenius Theory to characterise 

the eigenvalues of an irreducible positive matrix [218], [245]. Namely, for a positive 

irreducible matrix 𝐴, the eigenvalue 𝜆1(𝐴) associated with a positive eigenvector can be 

characterised as follows: 

𝜆𝑝(𝐴): = sup
𝑥∈ℝ𝑁

𝑥>0

inf
𝑖∈{1,…,𝑁} 

(−
 𝐴x 
𝑥𝑖
) = 𝜆𝑝(𝐴):= inf

𝑥∈ℝ𝑁

x≥0,x≠0 

sup
𝑖∈{1,…,𝑁}

 

(−
( 𝐴x )𝑖
𝑥𝑖

) =: 𝜆𝑃
′ (𝐴), (64)  

also known as the Collatz-Wieldandt characterisation. 

    Numerous generalisation of these types of characterisation exist. Generalisations of the 

characterisation of the principal eigenvalue by variants of the Collatz-Wielandt 

characterization (i.e. (64)) were first obtained for positive compact operators in 𝐿𝑝(𝛺) [230], 

[231], [242] and later for general positive operators that posses an eigen-pair [226]. 
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       In parallel with the generalisation of the Perron-Frobenius Theory, several inf sup 

formulas have been developed to characterise the spectral properties of elliptic operators 

satisfying a maximum principle, see the fundamental works of Donsker and Varadhan [141], 

Nussbaum, Pinchover [151], Berestycki, Nirenberg, Varadhan [100] and Pinsky [238], 

[113]. In particular, for an elliptic operator defined in a bounded domain 𝛺 ⊂ ℝ𝑁and with 

bounded continuous coefficients, ℰ:= 𝑎𝑖𝑗(𝑥)𝜕𝑖𝑗 + 𝑏𝑖(𝑥)𝜕𝑖 + 𝑐(𝑥), several notions of 

principal eigenvalue have been introduced. On one hand, Donsker and Varadhan [141] have 

introduced a quantity 𝜆𝑉(ℰ), called principal eigenvalue of ℰ, that satisfies 

𝜆𝑉(ℰ) ≔ 𝜆𝑝(𝐴): = inf
𝜑∈𝑑𝑜𝑚(ℰ)
𝜑>0 

sup
𝑥∈Ω  

(−
ℰ|𝜑|(𝑥)

𝜑(𝑥)
)    

 =inf{𝜆 ∈ ℰ|∃𝜑 ∈ 𝑑𝑜𝑚(ℰ), 𝜑 > 0 such that ℰ[𝜑](𝑥) + 𝜆𝜑(𝑥) ≥ 0 in 𝛺}, where 𝑑𝑜𝑚(ℰ) ⊂

𝐶 (�̅�) denotes the domain of definition of ℰ. On the other hand Berestycki, Nirenberg and 

Varadhan [100] have introduced 𝜆1(ℰ) defined by: 

𝜆1(ℰ): = sup{𝜆 ∈ ℝ|∃ 𝜑 ∈  𝑊
2,𝑁(𝛺), 𝜑 > 0such thatℰ[𝜑](𝑥) + 𝜆𝜑(𝑥) ≤ 0 in𝛺} 

= sup
𝜑∈𝑊2,𝑁

𝜑>0 
  

inf
𝑥∈Ω

(−
ℰ|𝜑|(𝑥)

𝜑(𝑥)
) 

as another possible definition for the principal eigenvalue of ℰ. When 𝛺 is a smooth bounded 

domain and ℰ has smooth coefficients, both notions coincide (i.e. 𝜆𝑉(ℰ) = 𝜆1(ℰ)). The 

equivalence of this two notions has been recently extended for more general elliptic 

operators, in particular the equivalence holds true in any bounded domains 𝛺 and in any 

domains when ℰ is an elliptic self-adjoint operator with bounded coefficients [209]. It is 

worth mentioning that the quantity 𝜆𝑉(ℰ) was originally introduced by Donsker and 

Varadhan [141] to obtain the following variational characterisation of 𝜆1(ℰ) in a bounded 

domain: 

𝜆1(𝐸) = sup
𝑑𝜇∈ℙ(Ω)

 

inf
𝜑∈𝑑𝑜𝑚(ℰ)
𝜑>0 

∫(−
ℰ|𝜑|(𝑥)

𝜑(𝑥)
)

 

Ω 

𝑑𝜇(𝑥), 

where ℙ(Ω) is the set of all probability measure on Ω. Such characterisation is still valid 

when Ω is unbounded, see Nussbaum and Pinchover [151]. 

       Lately, the search of Liouville type results for semilinear elliptic equations in 

unbounded domains [93], [241] and the characterisation of spreading speed [206], [236] 

have stimulated the studies of the properties of 𝜆1(𝐸) and several other notions of principal 

eigenvalue have emerged. For instance, several new notions of principal eigenvalue have 

been introduced for general elliptic operators defined on (limit or almost) periodic media 

[99], [93], [237], [241]. See [209], for a review and a comparison of the different notions of 

principal eigenvalue for an elliptic operator defined in a unbounded domain. 

       For the operator  ℒΩ + 𝑎, much less is known and only partial results have been 

obtained when Ω is bounded [118], [223], [141], [146], [228], [229] or in a periodic media 

[135], [224], [200], [202]. 𝜆𝑝( ℒΩ + 𝑎) has been compared to one of the following 

definitions: 

𝜆𝑝
′ ( ℒΩ + 𝑎) 

=∶ inf {𝜆 ∈ ℝ|∃ 𝜑 ∈ 𝐶(𝛺) ∩ 𝐿∞(𝛺), 𝜑 ≥≠ 0, 𝑎. 𝑡. ℒΩ[𝜑](𝑥) + (𝑎(𝑥) + 𝜆)𝜑(𝑥)  ≥ 0 𝑖𝑛𝛺} 
or when  ℒΩ + 𝑎 is a self-adjoint operator: 
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𝜆𝑉( ℒΩ + 𝑎) ≔ inf
𝜑∈𝐿2(Ω),𝜑≠0

 

−
〈 ℒΩ [φ] + 𝑎𝜑, 𝜑〉

‖φ‖L2(Ω)
2   

= inf
𝜑∈𝐿2(Ω)
,𝜑≠0
 

1
2∫ ∫

K(x, y)
 

Ω×Ω
[φ(x) − φ(y)]2dxdy − ∫ [a(x) + ∫ K(x, y)

 

Ω
dy]φ2(x)

 

Ω
dx.

‖φ‖L2(Ω)
2   

 where 〈, 〉denotes the scalar product of 𝐿2(𝛺). For 𝛺 ⊂ ℝ𝑁a bounded domain and for 

particular kernels 𝐾, an equality similar to 𝜆𝑉(ℰ) = 𝜆1(ℰ), has been obtained in [118], 

provided that 𝐾 ∈ 𝐶(Ω̅ × Ω̅) satisfies some non-degeneracy conditions. The author shows 

that 

𝜆𝑝( ℒΩ + 𝑎) = 𝜆𝑝
′ ( ℒΩ + 𝑎).                                        (65) 

In a periodic media, an extension of this equality was obtained in [135], [224] for kernels 𝐾 

of the form 𝐾(𝑥, 𝑦) ∶= 𝐽(𝑥 − 𝑦) with 𝐽 a symmetric positive continuous density of 

probability. In such case, they prove that 

𝜆𝑝( ℒℝ𝑁 + 𝑎) = 𝜆𝑝
′ ( ℒℝ𝑁 + 𝑎) = 𝜆𝑉 ( ℒℝ𝑁 + 𝑎).                (66) 

We pursue the works begun in [118], [224], [223] we investigate more closely the properties 

of𝜆𝑝( ℒΩ + 𝑎). Namely, we first look whether 𝜆𝑝( ℒΩ + 𝑎) can be characterised by other 

notions of principal eigenvalue and under which conditions on 𝛺,𝐾and a the equality (65) 

or (66) holds true. We introduce a new notion of principal eigenvalue, 𝜆𝑝
′′( ℒΩ + 𝑎) defined 

by: 𝜆𝑝
′′( ℒΩ + 𝑎) ≔ sup{𝜆 ∈ ℝ| ∃ 𝜑 ∈ 𝐶𝑐(𝛺), 𝜑 ≥≠ 0 such that  ℒΩ [𝜑](𝑥) + (𝑎(𝑥) +

𝜆)𝜑(𝑥) ≥ 0 in𝛺}and we compare this new quantity with 𝜆𝑝, 𝜆𝑝
′  and 𝜆𝑉. 

       Another natural question is to obtain a clear picture on the dependence of 𝜆𝑝 with 

respect to all the parameters involved. If the behaviour of 𝜆𝑝( ℒΩ + 𝑎) with respect to a or 

Ω can be exhibited directly from the definition, the impact of scalings of the kernel is usually 

unknown and has been largely ignored in the literature except in some specific situations 

involving particular nonlocal dispersal operators defined in a bounded domain [180], [180], 

[229], [176]. 

       For a particular type of K and a, we establish the asymptotic properties of 𝜆𝑝 with 

respect to some scaling parameter. Let 𝐾(𝑥, 𝑦)  = 𝐽(𝑥 −  𝑦) and let us denote 𝐽𝜎(𝑧) ∶=
1

𝜎𝑁
𝐽 (

𝑍

𝜎
)when 𝐽 is a non negative function of unit mass, we study the properties of the 

principal eigenvalue of the perator ℒσ,m,Ω −
1

𝜎𝑚
+ 𝑎, where the operator  ℒσ,m,Ω is defined 

by: 

 ℒσ,m,Ω ≔ ∫𝐽𝜎

 

Ω

(𝑥 − 𝑦)𝜑(𝑦)𝑑𝑦. 

In this situation, the operator  ℒσ,m,Ω −
1

𝜎𝑚
 refers to a nonlocal version of the standard 

diffusion operator with a homogeneous Dirichlet boundary condition. Such type of operators 

has appeared recently in the literature to model a population that have a constrained dispersal 

[205], [145], [147], [229], [176]. 

The pre-factor 
1

𝜎𝑚
 is interpreted as a frequency at which the events of dispersal occur. 

For 𝑚 ∈ [0, 2] and a large class of J, we obtain the asymptotic limits of 

𝜆𝑝 ( ℒσ,m,Ω −
1

𝜎𝑚
+ 𝑎 ) and as 𝜎 → 0 and as 𝜎 → +∞. 
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       Our interest in studying the properties of 𝜆𝑝( ℒΩ + 𝑎) stems from the recent studies of 

populations having a long range dispersal strategy [118], [223], [205], [229], [200]. For such 

a population, a commonly used model that integrates such long range dispersal is the 

following nonlocal reaction diffusion equation ([145], [184], [147], [235], [244]): 

𝜕𝑡𝑢(𝑡, 𝑥) = ∫𝐽

 

Ω

(𝑥 − 𝑦)𝑢(𝑡, 𝑦)𝑑𝑦 − 𝑢(𝑡, 𝑥) 

∫𝐽

 

Ω

(𝑥 − 𝑦)𝑢(𝑡, 𝑦)𝑑𝑦 + 𝑓(𝑥, 𝑢(𝑡, 𝑥))𝑖𝑛 ℝ+ × Ω.    (67) 

𝑢(𝑡, 𝑥)is the density of the considered population, 𝐽 is a dispersal kernel and 𝑓(𝑥, 𝑠) is a 

KPP type non-linearity describing the growth rate of the population. When Ω is a bounded 

domain [122], [118], [223], [227], [229], [202], an optimal persistence criteria has been 

obtained using the sign of 𝜆𝑝( ℳΩ + 𝜕𝑢𝑓(𝑥, 0)), where  ℳΩ stands for the operator: 

 ℳΩ [𝜑]: = ∫ 𝐽
 

Ω
(𝑥 − 𝑦)𝜑(𝑦)𝑑𝑦 − 𝑗(𝑥)𝜑(𝑥), 

where 𝑗(𝑥) ∶= ∫ 𝐽
 

Ω
(𝑦 − 𝑥) 𝑑𝑦. 

In such model, a population will persists if and only if 𝜆𝑝( ℳΩ + 𝜕𝑢𝑓(𝑥, 0)) < 0. We can 

easily checkthat 𝜆𝑝( ℳΩ + 𝜕𝑢𝑓(𝑥, 0)) =  𝜆𝑝( ℒΩ − 𝑗(𝑥)  + 𝜕𝑢𝑓(𝑥, 0)). 

  When 𝛺 = ℝ𝑁 and in periodic media, adapted versions of 𝜆𝑝 have been recently used to 

define an optimal persitence criteria [135], [224], [200], [176]. The extension of such type 

of persistence criteria for more general environments is currently investigated by ourself 

[205] by means of our findings on the properties of 𝜆𝑝. 

       The understanding of the effect of a dispersal process conditioned by a dispersal budget 

is another important question. The idea introduced by Hutson, Martinez, Mischaikow and 

Vickers [147], is simple and consists in introducing a cost function related to the amount of 

energy an individual has to use to produce offspring, that jumps on a long range. When a 

long range of dispersal is privileged, the energy consumed to disperse an individual is large 

and so very few offsprings are dispersed. On the contrary, when the population chooses to 

disperse on a short range, few energy is used and a large amount of the offsprings is 

dispersed. In ℝ𝑁, to understand the impact of a dispersal budget on the range of dispersal, 

we are led to consider the family of dispersal operator: 

ℳσ,m [𝜑](𝑥): =
1

𝜎𝑚
 (𝐽𝜎 ∗ 𝜑(𝑥) −  𝜑(𝑥)), 

Where 𝐽𝜎(𝑧) ∶=  
1

𝜎𝑁
 𝐽 (

𝑧

𝜎
)is the standard scaling of the probability density𝐽. For such 

family, the study of the dependence of 𝜆𝑝(ℳσ,m + 𝑎)with respect to σ and m is a first step 

to analyze the impact of the range of the dispersal σ on the persistence of the population. In 

particular the asymptotic limits σ → +∞ and σ → 0 are of primary interest. 

       Let us now state the precise assumptions we are making on the domain Ω, the kernel K 

and the function a. Here, throughout, 𝛺 ⊂ ℝ𝑁is a domain (open connected set of ℝ𝑁) and 

for a and K we assume the following: 

𝑎 ∈ 𝐶(�̅�) ∩ 𝐿∞(𝛺),                                             (68) 
and 𝐾 is a non-negative Caratheodory function, that is 𝐾 ≥ 0 and, 

∀𝑥 ∈ 𝛺𝐾(𝑥,・) is measurable, 𝐾(・, 𝑦) is uniformly continuous  

for almost every 𝑦 ∈ 𝛺.                                      (69) 
For our analysis, we also require that K satisfies the following non-degeneracy condition: 



234 

There exist positive constants 𝑟0 ≥ 𝑟1 > 0, 𝐶0 ≥ 𝑐0 > 0 such that K satisfies: 

𝐶01𝛺∩𝐵𝑟0  (𝑥)(𝑦) ≥ 𝐾(𝑥, 𝑦)  ≥  𝑐01𝛺∩𝐵𝑟1(𝑥)(𝑦)for all𝑥, 𝑦 ∈ 𝛺, (70) 

where 1𝐴 denotes the characteristic function of the set 𝐴 ⊂ ℝ𝑁 and Br(x) is the ball centred 

at x of radius 𝑟. These conditions are satisfied for example for kernels like 𝐾(𝑥, 𝑦)  =

𝐽 (
𝑥−𝑦

𝑔(𝑦)ℎ(𝑥)
)with ℎand 𝑔 positive and bounded in Ω and 𝐽 ∈ 𝐶(ℝ𝑁), 𝐽 ≥ 0, a compactly 

supported function such that 𝐽(0) > 0. Note that when Ω is bounded, any kernel 𝐾 ∈
 𝐶(�̅� × �̅�) which is positive on the diagonal,6 satisfies all theses assumptions. Under this 

assumptions, we can check that the operator  ℒΩ + 𝑎 is continuous in 𝐶(�̅�), [233]. 

We start by investigating the case of a bounded domain Ω. 

In this situation, we prove that 𝜆𝑝 , 𝜆𝑝
′ , and 𝜆𝑝

′′ represent the same quantity. Namely, we show 

the following 

Theorem (6.2.1)[203]: Let 𝛺 ⊂ ℝ𝑁 be a bounded domain and assume that 𝐾 and a satisfy 

(68) – (70).Then, the following equality holds: 

𝜆𝑝( ℒΩ + 𝑎) = 𝜆𝑝
′ ( ℒΩ + 𝑎) = 𝜆𝑝

′′( ℒΩ + 𝑎). 

In addition, if 𝐾 is symmetric, then 

𝜆𝑝( ℒΩ + 𝑎) = 𝜆𝑣( ℒΩ + 𝑎). 

   When Ω is an unbounded domain, the equivalence of 𝜆𝑝, 𝜆𝑝
′ and 𝜆𝑝

′′ is not clear for general 

kernels. Namely, let consider 𝛺 = ℝ,𝐾(𝑥, 𝑦) =  𝐽(𝑥 −  𝑦) with J a density of probability 

with acompact support and such that∫ 𝐽(𝑧)𝑧
 

ℝ
𝑑𝑧 > 0. For the operator ℒℝ, which 

corresponds to the standard convolution by 𝐽, by using 𝑒𝜆𝑥 and constants as test functions, 

we can easily check that 𝜆𝑝
′ (ℒℝ) ≤ −1 < min

𝜆>0
∫ 𝐽(𝑧)𝑒𝜆𝑧 𝑑𝑧 ≤  𝜆𝑝(ℒℝ).
 

ℝ
 < However some 

inequalities remain true in general and the equivalence of the three notions holds for self-

adjoint operators. We prove here the following  

Another striking property of 𝜆𝑝 refers to the invariance of 𝜆𝑝 under a particular scaling 

of the kernel 𝐾. We show  

Proposition (6.2.2)[203]: Let 𝛺 ⊂ ℝ𝑁 be a domain and assume that a and 𝐾 satisfy (68) – 

(70). For all𝜎 > 0, let 𝛺𝜎 : = 𝜎𝛺, 𝑎𝜎(𝑥) : = 𝑎 ( 
𝑥

𝜎
) and 

𝐿𝜎,𝛺𝜎 [𝜑](𝑥) ∶=
1

𝜎𝑁
∫𝐾

 

𝛺𝜎

(
𝑥

𝜎
,
𝑦

𝜎
)𝜑(𝑦) 𝑑𝑦. 

Then for all 𝜎 > 0, one has 

𝜆𝑝( ℒΩ + 𝑎) = 𝜆𝑝(ℒσ,Ω𝜎  + 𝑎). 

    Observe that no condition on the domain is imposed. Therefore, the invariance of 𝜆𝑝 is 

still valid for 𝛺 = ℝ𝑁. In this case, since ℝ𝑁 is invariant under the scaling, we get 

𝜆𝑝( ℒℝ𝑁 + 𝑎) = 𝜆𝑝(ℒσ,ℝ𝑁 + 𝑎𝜎). 

    Next, for particular type of kernel 𝐾, we investigate the behaviour of 𝜆𝑝 with respect of 

some scaling parameter. Let 𝐾(𝑥, 𝑦) = 𝐽(𝑥 −  𝑦) and let 𝐽𝜎(𝑧) ∶=  
1

𝜎𝑁
 𝐽 (

𝑧

𝜎
).  

We consider the following operator  

ℒσ,m,Ω [𝜑] ≔
1

𝜎𝑚
∫𝐽𝜎

 

𝛺

(𝑥 − 𝑦)𝜑(𝑦) 𝑑𝑦. 

For 𝐽 is a non negative function of unit mass, we study the asymptotic properties of the 

principal eigenvalue of the operator ℒσ,m,Ω −
1

𝜎𝑁
+ 𝑎 when 𝜎 → 0 and σ → +∞. 
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   To simplify the presentation of our results, let us introduce the following notation. We 

denote by ℳσ,m,Ω , the following operator: 

ℳσ,m,Ω ,[𝜑] ≔
1

𝜎𝑚
(
1

𝜎𝑁
∫𝐽

 

𝛺

(
𝑥 − 𝑦

𝜎
)𝜑(𝑦)𝑑𝑦 − 𝜑(𝑥))  .                   (71) 

For any domains Ω, we obtain the limits of 𝜆𝑝(ℳσ,m,Ω + 𝑎) when σ tends either to zero or 

to +∞. 

Let us denote the second moment of 𝐽 by  

𝐷2(𝐽): = ∫𝐽

 

ℝ𝑁

(𝑧)|𝑧|2 𝑑𝑧, 

the following statement describes the limiting behaviour of 𝜆𝑝(ℳσ,m,𝛺  + 𝑎): 

Theorem (6.2.3)[203]: Let Ω be a domain and assume that 𝐽 and a satisfy (68) – (70). 

Assume further that 𝐽 is even and of unit mass. Then, we have the following asymptotic 

behaviour: 

(i) When 0 < 𝑚 ≤  2, lim
𝜎→+∞

𝜆𝑝(ℳσ,m,Ω + 𝑎) = − sup
Ω
𝑎  

(ii) When 𝑚 = 0 lim
𝜎→+∞

𝜆𝑝(ℳσ,m,Ω + 𝑎) = 1 − sup
Ω
𝑎. 

In addition, when 𝛺 = ℝ𝑁 and if a is symmetric (𝑎(𝑥) =  𝑎(−𝑥) for all x) and the map t → 

𝑎(𝑡𝑥) is non increasing for all x, t > 0 then 𝜆𝑝(ℳσ,0,ℝ𝑁 + 𝑎) is monotone non decreasing 

with respect to σ. 

(iii) When 0 ≤ 𝑚 < 2, lim
𝜎→0

𝜆𝑝(ℳσ,m,Ω + 𝑎) = − sup
Ω
𝑎   

(iv) When 𝑚 = 2 and 𝑎 ∈ 𝐶0,𝛼(𝛺) for some 𝛼 > 0, then 

lim
𝜎→0

𝜆𝑝(ℳσ,2,Ω + 𝑎) = 𝜆1 (
𝐷2(𝐽)

2𝑁
Δ + 𝑎) 

And 

𝜆1 (
𝐷2(𝐽)

2𝑁
Δ + 𝑎) ≔ inf

𝜑∈𝐻0
1(Ω),𝜑≠0

𝐷2(𝐽)

2𝑁

∫ |∇𝜑|2
 

𝛺
(𝑥) 𝑑𝑥

‖𝜑‖2
2 −

∫ 𝑎
 

𝛺
(𝑥)𝜑2(𝑥) 𝑑𝑥

‖𝜑‖2
2 . 

  Note that the results hold for any domains Ω, so the results holds true in particular for 𝛺 =
ℝ𝑁. 

Having established the asymptotic limits of the principal eigenvalue 𝜆𝑝(ℳσ,2,Ω + 𝑎), it is 

natural to ask whether similar results hold for the corresponding eigenfunction 𝜑𝜎,𝑝 when it 

exists. In this direction, we prove that for 𝑚 = 2, such convergence does occur: 

Theorem (6.2.4)[203]: Let Ω be any domain and assume that 𝐽 and a satisfy (68) – (70). 

Assume further that 𝐽 is even and of unit mass. Then there exists 𝜎0 such that for all 𝜎 ≤ 𝜎0, 

there exists a positive principal eigenfunction 𝜑𝜎,𝑝 associated to 𝜆𝑝(ℳσ,2,Ω + 𝑎). In 

addition, when 𝜑𝜎,𝑝 ∈ 𝐿
2(Ω) for all 𝜎 ≤ 𝜎0, we have 

𝜑𝑝,𝜎  → 𝜑1 in 𝐿loc
2 (𝛺), 

where 𝜑1 ∈ 𝐻0
1(𝛺) is a positive principle eigenfunction associated to 𝜆1 (

𝐷2(𝐽)

2𝑁
Δ + 𝑎). 

       First, we can notice that the quantity 𝜆𝑣 defined by Donsker and Varadhan [141] for 

elliptic operators can also be defined for the operator  ℒΩ + 𝑎 and is equivalent to the 

quantity 𝜆𝑝. The equality (65) can then be seen as the nonlocal version of the equality 𝜆1 =

𝜆𝑉 where 𝜆1 is the notion introduced by Berestycki-Nirenberg-Varadhan [100]. 
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   Next, we would like to emphasize, that unlike the classical elliptic operators, due to the 

lack of a regularising effect of the operator  ℒΩ + 𝑎, the quantity 𝜆𝑝( ℒΩ + 𝑎) may not be 

an eigenvalue, i.e.the spectral problem 

ℒ𝛺[𝜑](𝑥) + 𝑎(𝑥) 𝜑(𝑥) + 𝜆𝜑(𝑥) = 0 𝑖𝑛 𝛺, 

 may not have a solution in spaces of functions like Lp(Ω), C(Ω)[135], [222], [141], [229]. 

As a consequence, even in bounded domains, the relations between 𝜆𝑝 , 𝜆𝑝
′ , 𝜆𝑝

′′, and 𝜆𝑣 are 

quite delicate to obtain. 

Another difficulty inherent to the study of nonlocal operators in unbounded domains 

concerns the lack of natural a priori estimates for the positive eigenfunction thus making 

standard approximation schemes difficult to use in most case. 

Lastly, we make some additional comments on the assumptions we have used on the 

dispersal kernel K. The non-degeneracy assumption (70) we are using, is related to the 

existence of Local Uniform Estimates [219], [220] (Harnack type estimates) for a positive 

solution of a nonlocal equation: 

ℒ𝛺[𝜑] + 𝑏(𝑥) 𝜑 = 0  𝑖𝑛    𝛺.                                              (72) 
Such type of estimates is a key tool in our analysis, in particular in unbounded domains, 

where we use it to obtain fundamental properties of the principal eigenvalue 𝜆𝑝( ℒΩ + 𝑎), 

such as the limit: 

𝜆𝑝( ℒΩ + 𝑎) = lim
𝑛→∞

𝜆𝑝( ℒΩn + 𝑎), 

where 𝛺𝑛 is a sequence of set converging to Ω. As observed in [221], some local uniform 

estimates can also be obtained for some particular kernels K which does not satisfies the 

non-degeneracy condition (70). For example, for kernels of the form 𝐾(𝑥, 𝑦) =
1

𝑔𝑁(𝑦)
𝐽 (

𝑥−𝑦

𝑔(𝑦)
)with 𝐽 satisfying (69) and (70) and 𝑔 ≥ 0 a bounded function such that 

{𝑥|𝑔(𝑥) = 0} is a bounded set and with Lebesgue measure zero, some local uniform 

estimates can be derived for positive solutions of (72). As a consequence, the Theorems 

(6.2.1) and (6.2.14) hold true for such kernels. We have also observed that the condition 

(70) can be slightly be relaxed and the Theorems (6.2.1) and (6.2.14) hold true for kernels 

K such that, for some positive integer p, the kernel 𝐾𝑝 defined recursively by:  

𝐾1(𝑥, 𝑦): = 𝐾(𝑥, 𝑦),  

𝐾𝑛+1(𝑥, 𝑦) ∶= ∫𝐾𝑛

 

𝛺

(𝑥, 𝑧)𝐾1(𝑧, 𝑦)𝑑𝑧.  𝑓𝑜𝑟 𝑛 ≥ 1, 

satisfies the non-degeneracy condition (70). 

       For a convolution operator, i.e. 𝐾(𝑥, 𝑦): = 𝐽(𝑥 − 𝑦), this last condition is optimal. It is 

related to a geometric property of the convex hull of {𝑦 ∈  ℝ𝑁|𝐽(𝑦) > 0}: 
𝐾𝑝 satisfies (70) for some 𝑝 ∈ ℕ if and only if the convex hull of{𝑦 ∈  ℝ𝑁|𝐽(𝑦) > 0} 

contains 0. 

      Note that if a relaxed assumption on the lower bound of the non-degeneracy condition 

satisfied by 𝐾 appears simple to find, the condition on the support of 𝐾 seems quite tricky 

to relax. To tackle this problem, it is tempting to investigate the spectrum of linear operators 

involving the Fractional Laplacian, 𝛥𝛼: 

𝛥𝛼𝜑 ∶=  𝐶𝑁,𝛼𝑃. 𝑉. (∫  
𝜑(𝑦) − 𝜑(𝑥)

|𝑥 − 𝑦|𝑁+2𝛼

 

𝛺

 𝑑𝑦. )𝜑 ≡ 0inℝ𝑁 \ 𝛺 

That is, to look for the properties of the principal eigenvalue of the spectral problem: 
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𝛥𝛼𝜑 + (𝑎 +  𝜆)𝜑 = 0         𝑖𝑛           𝛺.                         (73) 
As for elliptic operators and  ℒΩ + 𝑎 , analogues of 𝜆1, 𝜆1

′ , and 𝜆0λ0 can be defined for 

𝛥𝛼  +  𝑎 and the relations between all possible definitions can be investigated. When Ω is 

bounded or a is periodic, the different definitions are equivalent [207]. However, in the 

situations considered in [207] the operator 𝛥𝛼 + 𝑎 has a compact resolvent enabling the use 

of the Krein Rutmann Theory. Thus, the corresponding 𝜆𝑝 is associated with a positive 

eigenfunction, rendering the relations much more simpler to obtain. 

Moreover, in this analysis, the regularity of the principal eigenfunction and a Harnack type 

inequality [213], [214], [243] for some non negative solution of (73) are again the key 

ingredients in the proofs yielding to the inequality 

𝜆𝑝
′ (𝛥𝛼  +  𝑎, 𝛺)  ≤ 𝜆𝑝(𝛥𝛼  +  𝑎, 𝛺) 

for any smooth domain Ω. 

       Such Harnack type inequalities are not known for operators  ℒΩ + 𝑎 involving a 

continuous kernel K with unbounded support. Furthermore, it seems that most of the tools 

used to establish these Harnack estimates in the case of the Fractional Laplacian [213], [243] 

do not apply when we consider an operator  ℒΩ + 𝑎. Thus, obtaining the inequality 

𝜆𝑝
′ ( ℒΩ + 𝑎) ≤ 𝜆𝑝( ℒΩ + 𝑎) 

With a more general kernel requires a deeper understanding of Harnack type estimates 

and/or the development of new analytical tools for such type of nonlocal operators. 

In this direction and in dimension one, for some kernels with unbounded support, we 

could obtain some inequalities between the different notions of principal eigenvalue. 

 Proposition (6.2.5)[203]: Assume 𝑁 = 1 and let 𝛺 ⊂ ℝ be a unbounded domain. Assume 

that 𝐾 and asatisfy (68)–(69). Assume further that 𝐾 is symmetric and there exists 𝐶 > 0 

and 𝛼 >
3

2
 such that 𝐾(𝑥, 𝑦) ≤ 𝐶(1 + |𝑥 − 𝑦|)−𝛼. Then we have 

𝜆𝑝(ℒ𝛺 + 𝑎)  ≤ 𝜆𝑣(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝
′ (ℒ𝛺 + 𝑎) ≤ 𝜆𝑝

′′(ℒ𝛺 + 𝑎) 

We recall some known results and properties of the principal eigenvalue 𝜆𝑝(ℒ𝛺 + 𝑎). The 

relations between the different definitions of the principal eigenvalue, 𝜆𝑝, 𝜆𝑝
′ , 𝜆𝑝

′′ and 𝜆𝑣 

(Theorems (6.2.1), (6.2.14) and Proposition (6.2.5)). We derive the asymptotic behaviour of 

𝜆𝑝 with respect to the different scalings of 𝐾 (Proposition (6.2.2) and Theorems (6.2.3) and 

(6.2.4)). 

       To simplify the presentation of the proofs, we introduce some notations and various 

linear operator: 

(i) 𝐵𝑅(𝑥0) denotes the standard ball of radius 𝑅 centred at the point 𝑥0  

(ii) 1𝑅 will always refer to the characteristic function of the ball 𝐵𝑅(0). 
(iii) 𝑆(ℝ𝑁) denotes the Schwartz space,[212] 

(iv) C(Ω) denotes the space of continuous function in Ω, 

(v) 𝐶𝑐(𝛺) denotes the space of continuous function with compact support in Ω. 

(vi) For a positive integrable function 𝐽 ∈ 𝑆(ℝ𝑁), the constant ∫ 𝐽(𝑧)|𝑧|2dz
 

ℝ𝑁
  will refer 

to 

∫𝐽(𝑧)|𝑧|2dz

 

ℝ𝑁

≔ ∫𝐽(𝑧)(∑𝑧1
2

𝑁

𝑡=1

)dz

 

ℝ𝑁

 

(vii) For a bounded set 𝜔 ⊂ ℝ𝑁, |𝜔| will denotes its Lebesgue measure 

(viii) For two 𝐿2 functions 𝜑, 𝜓, 𝜑, 𝜓 denotes the 𝐿2 scalar product of 𝜓 and 𝜑 
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(ix) For 𝐽 ∈ 𝐿1(ℝ𝑁), 𝐽𝜎(𝑧): =
1

𝜎𝑁
 𝐽 (

𝑧

𝜎
) 

(x) We denote by ℒ𝜎,𝑚,𝛺 the continuous linear operator 

ℒ𝜎,𝑚,𝛺: C(Ω̅) → C(Ω̅) 

𝜑 →
1

𝜎𝑚
∫ 𝐽𝜎

 

𝛺 

(𝑥 −  𝑦)𝑢(𝑦)𝑑𝑦,                                          (74) 

where 𝛺 ⊂ ℝ𝑁. 

(xi) We denote by ℳ𝜎,𝑚,𝛺 the operator ℳ𝜎,𝑚,𝛺 ≔ ℒ𝜎,𝑚,𝛺 −
1

𝜎m
  

We recall some standard results on the principal eigenvalue of the operator ℒ𝛺 + 𝑎. 

Since the early work [141] on the variational formulation of the principal eigenvalue, an 

intrinsic difficulty related to the study of these quantities comes from the possible non-

existence of a positive continuous eigenfunction associated to the definition of 𝜆𝑝, 𝜆𝑝
′ , 𝜆𝑝

′′, 

or to 𝜆𝑣. This means that there is not always a positive continuous eigenfunction associated 

to 𝜆𝑝, 𝜆𝑝
′ , 𝜆𝑝

′′, or 𝜆𝑣. A simple illustration of this fact can be found in [118], [222]. Recently, 

some progress have been made in the understanding of 𝜆𝑝. In particular, some flexible 

criteria have been found to guarantee the existence of a positive continuous eigenfunction 

[118], [229], [202]. 

Theorem (6.2.6)[203]: (Sufficient condition [118]). Let 𝛺 ⊂ ℝ𝑁 be a domain, 𝑎 ∈ 𝐶(𝛺) ∩
𝐿∞(𝛺) and 𝐾 ∈ 𝐶(C(Ω̅ × Ω̅) non negative, satisfying the condition (70). Let us denote 𝜈 ∶

= 𝑠𝑢𝑝Ω̅ a and assume furtherthat the function a satisfies 
1

𝜈−𝑎
∈  𝐿1(𝛺0) for some bounded 

domain 𝛺0 ⊂ Ω̅. Then there exists aprincipal eigen-pair (𝜆𝑝, 𝜑𝑝) solution of 

ℒ𝛺[𝜙](𝑥) + (𝑎(𝑥) +  𝜆)𝜙(𝑥)  =  0 𝑖𝑛 𝛺. 
Moreover, 𝜑𝑝 ∈ C(Ω̅), 𝜑𝑝 > 0 and we have the following estimate 

−𝜈′ < 𝜆𝑝 < −𝜈, 

where 𝜈′: = sup
𝑥∈𝛺

[𝑎(𝑥) + ∫ 𝐾(𝑥, 𝑦)dy
 

𝛺
]. 

      This criteria is almost optimal, in the sense that we can construct example of operator 

ℒ𝛺 + 𝑎 with Ω bounded and a such that 
1

𝜈−𝑎
∈ 𝐿1(𝛺) and where 𝜆𝑝(ℒ𝛺 + 𝑎) is not an 

eigenvalue in C(Ω̅), see [118], [229], [202]. 

When Ω is bounded, sharper results have been recently derived in [222] where it is proved 

that𝜆𝑝(ℒ𝛺 + 𝑎)is always an eigenvalue in the Banach space of positive measure, that is, we 

can always find a positive measure 𝑑𝜇𝑝 that is solution in the sense of measure of 

 ℒ𝛺[𝑑𝜇𝑝](𝑥) +  𝑎(𝑥)𝑑𝜇𝑝(𝑥) + 𝜆𝑝𝑑𝜇𝑝(𝑥) =  0.                          (75) 

We have the following characterisation of 𝜆𝑝: 

Theorem (6.2.7)[203]: ([224], [222]). 𝜆𝑝(ℒ𝛺 + 𝑎) is an eigenvalue in C(Ω̅) if and only if 

𝜆𝑝(ℒ𝛺 + 𝑎) < −sup
𝑥∈𝛺

(𝑥). 

See [222] for a more complete description of the positive solution associated to 𝜆𝑝 

when the domain Ω is bounded. 

We recall some properties of 𝜆𝑝. 

Proposition (6.2.8)[203]: (i) Assume 𝛺1 ⊂ 𝛺2, then for the two operators ℒ𝛺1 + 𝑎and 

ℒ𝛺2 + 𝑎 arespectively defined on 𝐶(𝛺1) and 𝐶(𝛺2), we have : 

𝜆𝑝(ℒ𝛺1 + 𝑎)  ≥ 𝜆𝑝(ℒ𝛺2 + 𝑎). 
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(ii) For a fixed Ω and assume that 𝑎1(𝑥)  ≥ 𝑎2(𝑥), for all 𝑥 ∈ 𝛺. Then 

𝜆𝑝(ℒ𝛺 + 𝑎2) ≥ 𝜆𝑝(ℒ𝛺 + 𝑎1). 

 (iii) 𝜆𝑝(ℒ𝛺 + 𝑎) is Lipschitz continuous with respect to a. More precisely, 

|𝜆𝑝(ℒ𝛺 + 𝑎) − 𝜆𝑝(ℒ𝛺 + 𝑏)| ≤ ‖𝑎 − 𝑏‖∞ 

(iv) The following estimate always holds 

−sup
𝑥∈𝛺

(𝑎(𝑥) + ∫𝐾(𝑥, 𝑦)dy

 

𝛺

) ≤ 𝜆𝑝(ℒ𝛺 + 𝑎) ≤ −sup
𝛺
𝑎. 

See [118], [223] for the proofs of (i) − (iv). 

We prove some limit behaviour of 𝜆𝑝(ℒ𝛺 + 𝑎) with respect to the domain Ω. We 

show 

Lemma (6.2.9)[203]: Let Ω be a domain and assume that 𝑎 and 𝐾 satisfy (68)–(70). Let 

(𝛺𝑛)𝑛∈𝑁 be a sequence of subset of Ω so that lim
𝑛→∞

𝛺𝑛  = 𝛺, 𝛺𝑛 ⊂ 𝛺𝑛+1. Then we have 

lim
𝑛→∞

𝜆𝑝(ℒ𝛺𝑛 + 𝑎) = 𝜆𝑝(ℒ𝛺 + 𝑎) 

Proof. By a straightforward application of the monotone properties of λp with respect to the 

domain 

((i) of Proposition (6.2.8)) we get the inequality 

𝜆𝑝(ℒ𝛺 + 𝑎) ≤ lim
𝑛→∞

𝜆𝑝(ℒ𝛺𝑛 + 𝑎).                                                (76) 

To prove the equality, we argue by contradiction. So, let us assume 

𝜆𝑝(ℒ𝛺 + 𝑎) < lim
𝑛→∞

𝜆𝑝(ℒ𝛺𝑛 + 𝑎).                                               (77) 

and choose 𝜆 ∈ ℝ such that 

𝜆𝑝(ℒ𝛺 + 𝑎) < 𝜆 < lim
𝑛→∞

𝜆𝑝(ℒ𝛺𝑛 + 𝑎).                                              (78) 

We claim 

Claim (6.2.10)[203]: There exists 𝜑 > 0, 𝜑 ∈ 𝐶(𝛺)so that (𝜆, 𝜙) is an adequate test 

function. That is, ϕ satisfies 

ℒ𝛺[𝜑](𝑥) + (𝑎(𝑥) + 𝜆)𝜑(𝑥) ≤ 0 𝑖𝑛 𝛺. 
Assume for the moment that the above claim holds. By definition of 𝜆𝑝(ℒ𝛺 + 𝑎), we get a 

straightforward contradiction 

𝜆𝑝(ℒ𝛺 + 𝑎) < 𝜆 ≤ 𝜆𝑝(ℒ𝛺 + 𝑎). 

Hence, 

lim
𝑛→∞

𝜆𝑝(ℒ𝛺𝑛 + 𝑎) = 𝜆𝑝(ℒ𝛺 + 𝑎) 

Let us now prove Claim (6.2.10). 

Proof. By definition of 𝜈 ∶= sup
𝛺
𝑎, there exists a sequence of points (𝑥𝑘)𝑘∈ℕ such that 𝑥𝑘 ∈

𝛺 𝑎𝑛𝑑 |𝑎(𝑥𝑘) − 𝜈| <
1

𝑘
. By continuity of a, for each k, there exists 𝜂𝑘 > 0 such that  

𝐵𝜂𝑘  (𝑥𝑘)  ⊂  𝛺,   and sup
𝐵𝜂𝑘

𝐵𝜂𝑘|𝑎 −  𝜈| ≤
2

𝑘
. 

  Now, let 𝜒𝑘 be the following cut-off” functions: 𝜒𝑘(𝑥) ∶=  𝜒 (
‖𝑥𝑘−𝑥‖

𝜀𝑘
) where 𝜀𝑘 > 0 is to 

be chosen later on and χ is a smooth function such that 0 ≤  𝜒 ≤  1, 𝜒(𝑧)  =  0 for |𝑧| ≥
2 and χ(z) =  1 for |𝑧| ≤ 1. Finally, let us consider the continuous functions 𝑎𝑘(·), defined 

by 𝑎𝑘(𝑥) : = 𝑠𝑢𝑝{𝑎, (𝜈 − 𝑖𝑛𝑓𝛺 𝑎)𝜒𝑘(𝑥) + inf
𝛺
𝑎}. By taking a sequence (𝜀𝑘)𝑘∈ℕ so that 

𝜀𝑘 ≤ 
𝜂𝑘

2
 , 𝜀𝑘 → 0, we have 
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𝑎𝑘(𝑥)  = {
𝑎       𝑓𝑜𝑟 𝑥 ∈  𝛺 \ 𝐵2𝜀𝑘 (𝜒𝑘) 

𝜈      𝑓𝑜𝑟 𝑥 ∈ 𝛺 ∩ 𝐵𝜀𝑘  (𝜒𝑘)
 

and therefore 

‖𝑎 − 𝑎𝑘‖∞  ≤ 𝜈 ∶= sup
𝐵𝜂𝑘(𝜒𝑘)

|𝜈 − 𝑎| → 0 𝑎𝑠 𝑘 → ∞. 

By construction, for k large enough, say ≥ 𝑘0 , we get for all 𝑘 ≥ 𝑘0 

‖𝑎 − 𝑎𝑘‖∞ ≤  inf| {
|𝜆𝑝(ℒ𝛺 + 𝑎) –  𝜆|

2
 
| lim
n→∞ 

𝜆𝑝(ℒ𝛺𝑛 + 𝑎) − 𝜆|

2
}. 

Since 𝛺𝑛 → 𝛺 when n→∞, there exists 𝑛0 ∶=  𝑛(𝑘0) so that 

𝐵𝜂𝑘0(𝑥𝑘0)  ⊂ 𝛺𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0. 

On the othre hand, from the Lipschitz continuity of 𝜆𝑝(ℒ𝛺 + 𝑎) with respect to a ((iii) 

Proposition (6.2.8)), inequality (78) yields 

𝜆𝑝(ℒ𝛺 + 𝑎𝑘0) <  𝜆 < lim
𝑛→∞

𝜆𝑝 (ℒ𝛺𝑛 + 𝑎𝑘0)                                    (79) 

Now, by construction we see that for 𝑛 ≥ 𝑛0, sup
𝛺𝑛

𝑎𝑘0 = sup
𝛺𝑛

𝑎𝑘0 = 𝑣 and since 𝑎𝑘0 ≡ 𝑣 ν 

in
𝐵𝜀𝑘0

2
(𝑥𝑘0), for all 𝑛 ≥ 𝑛0 the function 

1

𝜈−𝑎𝑘0
∉ 𝐿𝑙𝑜𝑐

1  (�̅�𝑛). Therefore, by Theorem (6.2.6), 

for all 𝑛 ≥ 𝑛0there exists 𝜑𝑛 ∈  𝐶 (�̅�𝑛), 𝜑𝑛 >  0 associated with 𝜆𝑝(ℒ𝛺𝑛 + 𝑎𝑘0). 

Moreover, since 𝑥𝑘0 ∈ ⋂𝑛 ≥𝑛0𝛺𝑛, for all 𝑛 ≥ 𝑛0, we can normalize 𝜑𝑛by 𝜑𝑛𝑥𝑘0 = 1. 

Recall that for all 𝑛 ≥ 𝑛0, 𝜑𝑛satisfies 

ℒ𝛺𝑛[𝜑𝑛](𝑥)  +  (𝑎𝑘0(𝑥)  +  𝜆𝑝(ℒ𝛺𝑛 + 𝑎𝑘0(𝑥)))𝜑𝑛(𝑥)  =  0 𝑖𝑛 𝛺𝑛 , 

so from (79), it follows that (𝜑𝑛, 𝜆) satisfies 

ℒ𝛺𝑛[𝜑𝑛](𝑥) + (𝑎𝑘0(𝑥)  + 𝜆) < ℒ𝛺𝑛[𝜑𝑛](𝑥) + (𝑎𝑘0(𝑥) 

+𝜆𝑝(ℒ𝛺𝑛 + 𝑎𝑘0)𝜑𝑛(𝑥)  = 0 𝑖𝑛 𝛺𝑛                (80) 

Let us now define 𝑏𝑛(𝑥): = −𝜆𝑝(ℒ𝛺𝑛 + 𝑎𝑘0(𝑥)) − 𝑎𝑘0(𝑥), then for all 𝑛 ≥ 𝑛0, 𝜑𝑛n 

satisfies 

ℒ𝛺𝑛[𝜑𝑛](𝑥) =  𝑏𝑛(𝑥)𝜑𝑛(𝑥) =  0 𝑖𝑛 𝛺𝑛.                                       (81) 

 Construction, for 𝑛 ≥ 𝑛0, we have 𝑏𝑛(𝑥)  ≥ −𝜆𝑝(ℒ𝛺𝑛 + 𝑎𝑘0) −  𝜈 > 0. Therefore, since 

𝐾satisfies the condition (70), the Harnack inequality (Theorem (6.2.3) in [221]) applies to 

𝜑𝑛. Thus, for 𝑛 ≥ 𝑛0 fixed and for any compact set 𝜔 ⊂⊂ 𝛺𝑛 there exists a constant 𝐶𝑛(𝜔) 
such that 

𝜑𝑛(𝑥) ≤  𝐶𝑛(𝜔)𝜑𝑛(𝑦)     ∀ 𝑥, 𝑦 ∈ 𝜔. 

Moreover, the constant 𝐶𝑛(𝜔) only depends on 𝛿0 <
𝑑(𝜔,𝜕𝛺)

4
 , 𝑐0⋃ 𝐵𝛿0(𝑥)𝑥∈𝜔 ,  and inf

Ωn
𝑏𝑛. 

Furthermore, this constant is decreasing with respect to inf
Ωn
𝑏𝑛 bn. Notice that for all 𝑛 ≥

𝑛0, the function 𝑏𝑛(𝑥) being uniformly bounded from below by a constant independent of 

𝑛, the constant 𝐶𝑛 is bounded from above independently of n by a constant 𝐶(𝜔). Thus, we 

have 

𝜑𝑛(𝑥) ≤ 𝐶(𝜔)𝜑𝑛(𝑦) ∀ 𝑥, 𝑦 ∈  𝜔. 
From a standard argumentation, using the normalization 𝜑𝑛(𝑥𝑘0)  =  1, we deduce that the 

sequence (𝜑𝑛)𝑛 ≥𝑛0is uniformly bounded in 𝐶𝑙𝑜𝑐(𝛺) topology and is locally uniformly 

equicontinuous. 
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       Therefore, from a standard diagonal extraction argument, there exists a subsequence, 

still denoted(𝜑𝑛)𝑛 ≥𝑛0 , such that converges locally uniformly to a continuous function 𝜙 

which is nonnegative, non trivial function and satisfies 𝜑𝑛(𝑥𝑘0)  =  1. 

Since 𝐾 satisfies the condition (70), we can pass to the limit in the Equation (80) using the 

Lebesgue monotone convergence theorem and we get 

ℒ𝛺[𝜑] + (𝑎𝑘0(𝑥) + 𝜆)𝜑(𝑥) ≤ 0 𝑖𝑛 𝛺 . 

Hence, we have 

ℒ𝛺[𝜑](𝑥) + (𝑎(𝑥) + 𝜆)𝜑(𝑥) ≤ 0 𝑖𝑛 𝛺, 
since 𝑎 ≤ 𝑎𝑘0  . 

We investigate the relations between the quantities 𝜆𝑝 , 𝜆𝑝
′ , 𝜆𝑝

′′ and 𝜆𝑣 and prove 

Theorems (6.2.1) and (6.2.14). 

First, remark that, as consequences of the definitions, the monotone and Lipschitz continuity 

properties satisfied by 𝜆𝑝 ((i)−(iii) of Proposition (77)) are still true for 𝜆𝑝 and 𝜆𝑣. We 

investigate now the relation between 𝜆𝑝
′  and 𝜆𝑝: 

Lemma (6.2.11)[203]: Let 𝛺 ⊂ ℝ𝑁 be a domain and assume that 𝐾 and a satisfy (68)–(70). 

Then, 

𝜆𝑝
′ (ℒ𝛺 + 𝑎)  ≤ 𝜆𝑝(ℒ𝛺 + 𝑎). 

Proof. Observe that to get inequality 𝜆𝑝
′ (ℒ𝛺 + 𝑎)  ≤ 𝜆𝑝(ℒ𝛺 + 𝑎), it is sufficient to show that 

for any 𝛿 > 0: 

𝜆𝑝
′ (ℒ𝛺 + 𝑎)  ≤ 𝜆𝑝(ℒ𝛺 + 𝑎) + 𝛿. 

For 𝛿 > 0, let us consider the operator ℒ𝛺 + 𝛿𝑝 where 𝛿𝑝 ∶= 𝑎 + 𝜆𝑝(ℒ𝛺 + 𝑎) + 𝛿. We 

claim that 

Claim (6.2.12)[203]: For all 𝛿 > 0, there exists 𝜑𝛿 ∈ 𝐶𝑐(𝛺) such that 𝜑𝛿 ≥ 0 and 𝜑𝛿 

satisfies 

ℒ𝛺[𝜑𝛿](𝑥) + 𝑏𝛿(𝑥)𝜑𝛿(𝑥) ≥ 0 𝑖𝑛 𝛺 . 
By proving the claim, we prove the Lemma. Indeed, assume for the moment that the claim 

holds. 

Then, by construction, (𝜑𝛿 , 𝜆𝑝(ℒ𝛺 + 𝑎) + 𝛿) satisfies 

ℒ𝛺[𝜑𝛿](𝑥)  +  [𝑎(𝑥)  + 𝜆𝑝(ℒ𝛺 + 𝑎) + 𝛿]𝜑𝛿(𝑥)  ≥ 0 𝑖𝑛 𝛺. 

Thus, by definition of 𝜆𝑝
′ (ℒ𝛺 + 𝑎), we have 𝜆𝑝

′ (ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝛺 + 𝑎) + 𝛿. The constant 

δ being arbitrary, we get for all 𝛿 > 0: 

𝜆𝑝
′ (ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝛺 + 𝑎) + 𝛿. 

Proof. Let 𝛿 > 0 be fixed. By construction 𝜆𝑝(ℒ𝛺 + 𝑏𝛿) <  0, so by Lemma (6.2.9), there 

exists a bounded open set ω such that 𝜆𝑝(ℒω + 𝑏𝛿) <  0. For any 𝜀 > 0 small enough, by 

taking 𝜔 larger if necessary, arguing as in the proof of Claim (6.2.10), we can find 𝑏𝜀 such 

that 

‖𝑏𝛿 − 𝑏𝜀‖∞,𝜔 = ‖𝑏𝛿 − 𝑏𝜀‖∞,𝛺 ≤  𝜀  

𝜆𝑝(ℒ𝜔 + 𝑏𝜀(𝑥))  + 𝜀 <  0, 

and there is 𝜑𝑝 ∈ 𝐶(�̅�), 𝜑𝑝 > 0 associated to 𝜆𝑝(ℒ𝜔 + 𝑏𝜀(𝑥)). That is ϕp satisfies 

𝐿𝜔 [𝜑𝑝](𝑥) + 𝑏𝜀(𝑥)𝜑𝑝(𝑥) = −𝜆𝑝(ℒ𝜔 + 𝑏𝜀(𝑥))𝜑𝑝(𝑥)   𝑖𝑛    𝜔.           (82) 

Without loss of generality, assume that 𝜑𝑝 ≤ 1. 

Let ν denotes the maximum of𝑏𝜀ε in �̅�, then by Proposition (6.2.8), there exists 𝜏 > 0 such 

that 

−𝜆𝑝(ℒ𝜔 + 𝑏𝜀(𝑥)) − 𝜀 − 𝜈 ≥ 𝜏 > 0. 
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Moreover, since 𝜑𝑝 satisfies (82), there exists 𝑑0  >  0 so that inf
𝜔𝜑𝑝

≥𝑑0  . 

Let us choose 𝜔′ ⊂⊂ 𝜔 such that 

|𝜔 \ 𝜔′| ≤ 𝑑0𝑖𝑛𝑓{𝜏, −𝜆𝑝(ℒ𝜔 + 𝑏𝜀) − 𝜀}

2‖𝐾‖∞
, 

where for a set 𝐴, |𝐴| denotes the Lebesgue measure of 𝐴. 

       Since 𝜔′ ⊂⊂ 𝜔 and 𝜕𝜔 are two disjoint closed sets, by the Urysohn’s Lemma there 

exists a continuous function η such that 0 ≤ 𝜂 ≤ 1, 𝜂 = 1 in 𝜔, 𝜂 = 0 in 𝜕𝜔. Consider now 

𝜑𝑝𝜂 and let us compute ℒ𝜔[𝜑𝑝𝜂]  + 𝑏𝛿𝜑𝑝𝜂. Then, we have 

ℒ𝜔[𝜑𝑝𝜂] + 𝑏𝛿𝜑𝑝𝜂 ≥  −𝜆𝑝(ℒ𝜔 + 𝑏𝜀)𝜑𝑝 − ‖𝐾‖|𝜔  𝜔| 

−𝑏𝜀𝜑𝑝(1 − 𝜂) − (𝑏𝜀 − 𝑏𝛿)𝜑𝑝𝜂, 

≥  −(𝜆𝑝(ℒ𝜔 + 𝑏𝜀) + ‖𝑏𝛿 − 𝑏𝜀‖∞,𝜔) 𝜑𝑝 

− 
𝑑0 inf{𝜏,−𝜆𝑝(ℒ𝜔 + 𝑏𝜀) − 𝜀}

2
 − 𝑏𝜀(𝑥)𝜑𝑝(1 − 𝜂), 

≥ −(𝜆𝑝(ℒ𝜔 + 𝑏𝜀) +  𝜀)𝜑𝑝 

−
𝑑0 inf{𝜏, −𝜆𝑝(ℒ𝜔 + 𝑏𝜀) − 𝜀}

2
− max{𝜈, 0}𝜑𝑝, 

≥  −𝜆𝑝(ℒ𝜔 + 𝑏𝜀) + 𝜀 +max{𝜈, 0}𝜑𝑝 

−
𝑑0 inf{𝜏,−𝜆𝑝(ℒ𝜔 + 𝑏𝜀) − 𝜀}

2
. 

Since −𝜆𝑝(ℒ𝜔 + 𝑏𝜀) − 𝜀 > 0 and −𝜆𝑝(ℒ𝜔 + 𝑏𝜀) − 𝜀 −  𝜈  ≥  𝜏 >  0, from the above 

inequality, we infer that 

ℒ𝜔[𝜑𝑝𝜂] + 𝑏𝛿𝜑𝑝𝜂 ≥ −(𝜆𝑝(ℒ𝜔 + 𝑏𝜀) + 𝜀 + max{𝜈, 0} )𝑑0 

−
𝑑0 inf{𝜏,−𝜆𝑝(ℒ𝜔 + 𝑏𝜀) − 𝜀}

2
, 

≥
𝑑0 inf{𝜏, −𝜆𝑝(ℒ𝜔 + 𝑏𝜀) − 𝜀}

2
≥  0. 

By construction, we have 𝜑𝑝𝜂 ∈ 𝐶(𝜔) satisfying 

ℒ𝜔  [𝜑𝑝𝜂] + 𝑏𝛿𝜑𝑝𝜂 ≥ 0 𝑖𝑛 𝜔, 

𝜑𝑝𝜂 =  0 𝑜𝑛 𝜕𝜔. 

By extending 𝜑𝑝𝜂 by 0 outside 𝜔 and denoting 𝜑𝛿 this extension, we get 

ℒ𝛺[𝜑𝛿](𝑥) + 𝑏𝛿(𝑥)𝜑𝛿(𝑥)  = ℒ𝜔[𝜑𝛿](𝑥) + 𝑏𝛿(𝑥)𝜑(𝑥) ≥ 0 𝑖𝑛 𝜔, 
ℒ𝛺[𝜑𝛿](𝑥) + 𝑏𝛿(𝑥)𝜑𝛿(𝑥) = ℒ𝜔[𝜑𝛿](𝑥) ≥ 0 𝑖𝑛  𝛺\𝜔. 

Hence, 𝜑𝛿 ≥ 0, 𝜑 ∈ 𝐶𝑐(𝛺) is the desired test function. 

       Assume for the moment that 𝛺 is a bounded domain and let us show that the three 

definitions 𝜆𝑝, 𝜆𝑝
′ , 𝜆𝑝

′′ and𝜆𝑝 are equivalent and if in addition 𝐾 is symmetric, 𝜆𝑣 is equivalent 

to 𝜆𝑝. We start by the case 𝜆𝑝
′ = 𝜆𝑝. We show. 

Lemma (6.2.13)[203]: Let Ω be a bounded domain of ℝ𝑁 and assume that a and K satisfy 

(68)–(70). Then, 

𝜆𝑝(ℒ𝛺 + 𝑎) = 𝜆𝑝
′ (ℒ𝛺 + 𝑎). 

In addition, when ℒ𝛺 + 𝑎 is self adjoined, we have 

𝜆𝑝(ℒ𝛺 + 𝑎) = 𝜆𝑣(ℒ𝛺 + 𝑎). 

The proof of Theorem (6.2.1) is a straightforward consequence of the above Lemma. Indeed, 

the definition of 𝜆𝑝
′′ we have 
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𝜆𝑝
′ (ℒ𝛺 + 𝑎)  ≤ 𝜆𝑝

′′(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝛺 + 𝑎) 

Thus, from the above Lemma we get 

𝜆𝑝(ℒ𝛺 + 𝑎) = 𝜆𝑝
′ (ℒ𝛺 + 𝑎)  ≤ 𝜆𝑝

′′(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝛺 + 𝑎) = 𝜆𝑝
′ (ℒ𝛺 + 𝑎). 

Let us now turn to the proof of Lemma (6.2.13) 

Proof. By Lemma (6.2.11), we already have 

𝜆𝑝
′ (ℒ𝛺 + 𝑎)  ≤ 𝜆𝑝(ℒ𝛺 + 𝑎). 

So, it remains to prove the converse inequality. Let us assume by contradiction that 

𝜆𝑝
′ (ℒ𝛺 + 𝑎)  ≤ 𝜆𝑝(ℒ𝛺 + 𝑎). 

Pick now 𝜆 ∈ (𝜆𝑝(ℒ𝛺 + 𝑎), 𝜆𝑝(ℒ𝛺 + 𝑎), then, by definition of 𝜆𝑝 and 𝜆𝑝
′′, there exists 𝜑 and 

𝜓 non negative continuous functions such that 

ℒ𝛺[𝜑](𝑥) + (𝑎(𝑥) + 𝜆)𝜑(𝑥) ≤ 0 𝑖𝑛 𝛺, 
ℒ𝛺[𝜓](𝑥) + (𝑎(𝑥) + 𝜆)𝜓(𝑥) ≥ 0 𝑖𝑛 𝛺. 

       Moreover,  

𝜑 > 0 𝑖𝑛 �̅�. By taking 𝜆 smaller if necessary, we can assume that ϕ satisfies 

ℒ𝛺[𝜑](𝑥) + (𝑎(𝑥) + 𝜆)𝜑(𝑥) < 0 𝑖𝑛 𝛺. 
A direct computation yields 

∫𝐾(𝑥, 𝑦)

 

𝛺

𝜑(𝑦) (
𝜓(𝑦)

𝜑(𝑦)
− 
𝜓(𝑥)

𝜑(𝑥)
) 𝑑𝑦 > 0. 

Since 
𝜓

𝜑
∈ 𝐶(�̅�), the function 

𝜓

𝜑
 achieves a maximum at some point 𝑥0 ∈ �̅�, evidencing thus 

the contradiction: 

0 < ∫𝐾(𝑥, 𝑦)

 

𝛺

𝜑(𝑦) (
𝜓(𝑦)

𝜑(𝑦)
− 
𝜓(𝑥0)

𝜑(𝑥0)
) 𝑑𝑦 ≤ 0. 

Thus, 

𝜆𝑝
′ (ℒ𝛺 + 𝑎) = 𝜆𝑝(ℒ𝛺 + 𝑎). 

In the self-adjoined case, it is enough to prove that 

𝜆𝑝
′ (ℒ𝛺 + 𝑎) = 𝜆𝑣(ℒ𝛺 + 𝑎). 

From the definitions of 𝜆𝑝
′  and 𝜆𝑣, we easily obtain that 𝜆𝑣 ≤ 𝜆𝑝

′ .  Indeed, let 𝜆 >

𝜆𝑝
′ (ℒ𝛺 + 𝑎), then by definition of 𝜆𝑝

′  there exists ψ ≥ 0 such that 𝜓 ∈ 𝐶(𝛺) ∩ 𝐿∞(𝛺) and 

ℒ𝛺[𝜓](𝑥) + (𝑎(𝑥) +  𝜆)𝜓(𝑥) ≥ 0 𝑖𝑛 𝛺.                                   (83) 
Since Ω is bounded and 𝜓 ∈ 𝐿∞(𝛺), 𝜓 ∈  𝐿2(𝛺). So, multiplying (83) by −𝜓 and 

integrating over Ω we get 

− ∫  

 

𝛺

∫𝐾(𝑥, 𝑦)

 

𝛺

𝜓(𝑥)𝜓(𝑦)𝑑𝑥𝑑𝑦 − ∫𝑎(𝑥)

 

𝛺

𝜓(𝑥)2𝑑𝑥 ≤ 𝜆 ∫𝜓2
 

𝛺

(𝑥)𝑑𝑥, 

1

2
∫  

 

𝛺

∫𝐾(𝑥, 𝑦)

 

𝛺

(𝜓(𝑥) − 𝜓(𝑦))
2
𝑑𝑥𝑑𝑦 

− ∫(𝑎(𝑥) + 𝑘(𝑥))

 

𝛺

𝜓(𝑥)2𝑑𝑥 ≤ 𝜆 ∫𝜓2
 

𝛺

(𝑥)𝑑𝑥, 

𝜆𝑣(ℒ𝛺 + 𝑎) ≤ 𝜆 ∫𝜓
2

 

𝛺

(𝑥)𝑑𝑥 ≤ 𝜆 ∫𝜓2
 

𝛺

(𝑥)𝑑𝑥. 

Therefore, 𝜆𝑣(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝
′ (ℒ𝛺 + 𝑎). 
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       Let us prove now the converse inequality. Again, we argue by contradiction and let us 

assume that 

𝜆𝑣(ℒ𝛺 + 𝑎) < 𝜆𝑝
′ (ℒ𝛺 + 𝑎).                                                         (84) 

Observe first that by density of 𝐶(�̅�) in 𝐿2(𝛺), we easily check that 

−𝜆𝑣(ℒ𝛺 + 𝑎)

= − inf
𝜑∈𝐿2(𝛺),𝜑≠0

 

1
2 ∫

 
 

𝛺 ∫ 𝐾(𝑥, 𝑦)
 

𝛺
(𝜓(𝑥) − 𝜓(𝑦))

2
𝑑𝑦𝑑𝑥 − ∫ (𝑎(𝑥) + 𝑘(𝑥))

 

𝛺
𝜓(𝑥)2𝑑𝑥

‖𝜑‖𝐿2(𝛺)
2 , 

− inf
𝜑∈𝐿2(𝛺),𝜑≠0

  
− ∫  

 

𝛺
∫ 𝐾(𝑥, 𝑦)
 

𝛺
(𝜓(𝑥)𝜓(𝑦))

2
𝑑𝑦𝑑𝑥 − ∫ (𝑎(𝑥) + 𝑘(𝑥))

 

𝛺
𝜓(𝑥)2𝑑𝑥

‖𝜑‖𝐿2(𝛺)
2 , 

= sup
𝜑∈𝐿2(𝛺),𝜑≠0

  −
〈ℒ𝛺[𝜑] + 𝑎𝜑, 𝜑〉

‖𝜑‖𝐿2(𝛺)
2 , 

= sup
𝜑∈𝐶(𝛺),𝜑≠0

  −
〈ℒ𝛺[𝜑] + 𝑎𝜑,𝜑〉

‖𝜑‖𝐿2(𝛺)
2 . 

By (iv) of Proposition (6.2.8), since 𝜆𝑝
′ (ℒ𝛺 + 𝑎) = 𝜆𝑝(ℒ𝛺 + 𝑎), from (84) we infer that 

𝜆+ defined by 

𝜆+ = sup
𝜑∈𝐶(�̅�)

− 
〈ℒ𝛺[𝜑] + 𝑎𝜑, 𝜑〉

∫ 𝜑2
 

𝛺

                                                   (85) 

ct computation yields 

∫𝐾(𝑥, 𝑦)

 

𝛺

𝜑(𝑦) (
𝜓(𝑦)

𝜑(𝑦)
− 
𝜓(𝑥)

𝜑(𝑥)
) 𝑑𝑦 > 0. 

Since 
𝜓

𝜑
∈ 𝐶(�̅�), the function 

𝜓

𝜑
 achieves a maximum at some point 𝑥0 ∈ �̅�, evidencing thus 

the contradiction: 

0 < ∫𝐾(𝑥, 𝑦)

 

𝛺

𝜑(𝑦) (
𝜓(𝑦)

𝜑(𝑦)
− 
𝜓(𝑥0)

𝜑(𝑥0)
) 𝑑𝑦 ≤ 0. 

 satisfies 

𝜆+ > −𝜆𝑝(ℒ𝛺 + 𝑎) ≥  max
�̅�
𝑎 .                                         (86) 

Using the same arguments as in [135], [147], we infer that the supremum in (85) is achieved. 

Indeed, it is a standard fact [212] that the spectrum of ℒ𝛺 + 𝑎a is at the left of 𝜆+ and that 

there exists a sequence 𝜑𝑛 ∈ 𝐶(�̅�) such that ‖𝜑𝑛‖𝐿2(𝛺) = 1 and ‖(ℒ𝛺 + 𝑎 −

𝜆+)𝜑𝑛‖𝐿2(𝛺) → 0 as 𝑛 → +∞. 

By compactness of ℒ𝛺 ∶ 𝐿
2(𝛺) → 𝐶(𝛺), for a subsequence, lim

𝑛→+∞
ℒ𝛺 [𝜑𝑛] exists in 𝐶(�̅�). 

Then, using (86), we see that 𝜑𝑛 → 𝜑 in 𝐿2(𝛺) for some 𝜑and (ℒ𝛺 + 𝑎)𝜑 = 𝜆+𝜑. This 

equation implies 𝜑 ∈ 𝐶(�̅�), and 𝜆+ is an eigenvalue for the operator ℒ𝛺 + 𝑎. Moreover, 

𝜑 ≥ 0, since 𝜑+ is also aminimizer. Indeed, we have 

𝜆+ =  
∫ [ℒ𝛺[𝜑](𝑥) + 𝑎(𝑥)𝜑(𝑥)]
 

𝛺
𝜑(𝑥)+𝑑𝑥

‖𝜑+‖𝐿2(𝛺)
2 , 

=
∫ [ℒ𝛺[𝜑

+](𝑥) + 𝑎(𝑥)(𝜑+)(𝑥)]
 

𝛺
𝜑(𝑥)+𝑑𝑥

‖𝜑+‖𝐿2(𝛺)
2  
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+ 

1
2 ∫

 
 

𝛺 ∫ 𝐾(𝑥, 𝑦)
 

𝛺
𝜑−(𝑥)𝜑+(𝑦)𝑑𝑦𝑑𝑥

‖𝜑+‖𝐿2(𝛺)
2 , 

≤
∫ [ℒ𝛺[𝜑

+]𝑎𝜑+(𝑥)]
 

𝛺
𝜑(𝑥)+𝑑𝑥

‖𝜑+‖𝐿2(𝛺)
2 ≤ 𝜆+. 

Thus, there exists a non-negative continuous 𝜑 so that  

ℒ𝛺[𝜑](𝑥) + (𝑎(𝑥) + 𝜆𝑣)𝜑(𝑥) = 0 𝑖𝑛 𝛺. 
Since 𝜆𝑣 < 𝜆𝑝, we can argue as above and get the desired contradiction. Hence, 𝜆𝑣 = 𝜆+ =

𝜆𝑝 = 𝜆𝑝
′ . 

       Now let Ω be an unbounded domain. From Lemma (6.2.11), we already know that 

𝜆𝑝
′ (ℒ𝛺 + 𝑎) ≤ 𝜆𝑝

′′(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝛺 + 𝑎). 

To complete the proof of Theorem (6.2.14), we are then left to prove that 

𝜆𝑝
′ (ℒ𝛺 + 𝑎) = 𝜆𝑝

′′(ℒ𝛺 + 𝑎) = 𝜆𝑣(ℒ𝛺 + 𝑎), 

when ℒ𝛺 + 𝑎 is self-adjoined and the kernel 𝐾 is such that 𝑝(𝑥) ∶= ∫ 𝐾(𝑥, 𝑦)
 

𝛺
𝑑𝑦 is a 

bounded function in Ω. To do so, we prove the following inequality: 

       Assume that Lemma (6.2.16) holds and let us end the proof of Theorem (6.2.14). 

Theorem (6.2.14)[203]: Let 𝛺 ⊂ ℝ𝑁 be an unbounded domain and assume that 𝐾 and a 

satisfy (68) – (70). 

Then the following inequalities hold: 

𝜆𝑝
′ ( ℒΩ + 𝑎) ≤ 𝜆𝑝

′′( ℒΩ + 𝑎) ≤ 𝜆𝑝( ℒΩ + 𝑎). 

When 𝐾 is symmetric and such that 𝑝(𝑥) ∶= ∫ 𝐾(𝑥, 𝑦)
 

Ω
𝑑𝑦 ∈ 𝐿∞(𝛺) then the following 

equality holds: 

𝜆𝑣(ℒΩ + 𝑎) = 𝜆𝑝
′′( ℒΩ + 𝑎) = 𝜆𝑝( ℒΩ + 𝑎). 

Proof. From Lemma (6.2.11) and (6.2.16), we get the inequalities: 

lim
𝑛→+∞

𝜆𝑣(ℒ𝛺𝑛 + 𝑎) ≤ 𝜆𝑝
′ (ℒ𝛺 + 𝑎) ≤ 𝜆𝑝

′′(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝛺 + 𝑎), 

 𝜆𝑝(ℒ𝛺 + 𝑎) ≤ lim
𝑛→+∞

𝜆𝑣(ℒ𝛺𝑛 + 𝑎) ≤ 𝜆𝑝
′ (ℒ𝛺 + 𝑎) ≤ 𝜆𝑝

′′(ℒ𝛺 + 𝑎). 

 with𝛺𝑛 ∶= 𝛺 ∩ 𝐵𝑛(0). Therefore, 

lim
𝑛→∞

𝜆𝑣(ℒ𝛺𝑛 + 𝑎) = 𝜆𝑝
′ (ℒ𝛺 + 𝑎) = 𝜆𝑝

′′(ℒ𝛺 + 𝑎) = 𝜆𝑝(ℒ𝛺 + 𝑎), 

It remains to prove that 𝜆𝑣(ℒ𝛺 + 𝑎) = 𝜆𝑝(ℒ𝛺 + 𝑎). 

       By definition of𝜆𝑝
′′(ℒ𝛺 + 𝑎),  we check that 

𝜆𝑣(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝛺 + 𝑎) = 𝜆𝑝(ℒ𝛺 + 𝑎). 

On the other hand, by definition of 𝜆𝑣(ℒ𝛺 + 𝑎), for any 𝛿 > 0 there exists 𝜙𝛿 ∈  𝐿
2(𝛺) such 

that 

 

1
2 ∫

 
 

 ∫ 𝐾(𝑥, 𝑦)
 

𝛺×Ω 
(𝜑𝛿(𝑥) − 𝜑𝛿(𝑦))

2
𝑑𝑦𝑑𝑥 − ∫ (𝑎(𝑥) + 𝑝(𝑥))𝜑𝛿

2(𝑥)𝑑𝑥
 

𝛺

‖𝜑𝛿‖𝐿2(𝛺)
2  

≤ 𝜆𝑣(ℒ𝛺 + 𝑎) + 𝛿. 
Define 

𝒯𝑅(𝜑𝛿) ≔ 

1
2 ∫

 
 

 ∫ 𝐾(𝑥, 𝑦)
 

𝛺𝑅×𝛺𝑅 
(𝜑𝛿(𝑥) − 𝜑𝛿(𝑦))

2
𝑑𝑦𝑑𝑥 − ∫ (𝑎(𝑥) + 𝑝𝑅(𝑥))𝜑𝛿

2(𝑥)𝑑𝑥
 

𝛺𝑅

‖𝜑𝛿‖𝐿2(𝛺𝑅)
2 , 
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with 𝑝𝑅(𝑥) ∶= ∫ 𝐾(𝑥, 𝑦)
 

𝛺𝑅
𝑑𝑦. Since𝜆𝑝(ℒ𝛺 + 𝑎) ≤ lim

𝑅→∞
𝑝𝑅 (𝑥) = 𝑝(𝑥) for all 𝑥 ∈  𝛺, 𝑎 ∈

𝐿∞ and 𝜑𝛿 ∈ 𝐿
2(𝛺), by Lebesgue’s monotone convergence Theorem we get for 𝑅 large 

enough 

− ∫(𝑎(𝑥) + 𝑝𝑅(𝑥))𝜑𝛿
2(𝑥)𝑑𝑥

 

𝛺𝑅

≤ ‖𝜑𝛿‖𝐿2(𝛺𝑅)
2 − ∫(𝑎(𝑥) + 𝑝𝑅(𝑥))𝜑𝛿

2(𝑥)𝑑𝑥

 

𝛺

. 

Thus, we have for R large enough 

𝒯𝑅(𝜑𝛿) ≤  

1
2 ∫

 
 

 
∫ 𝐾(𝑥, 𝑦)
 

𝛺×Ω 
(𝜑𝛿(𝑥) − 𝜑𝛿(𝑦))

2
𝑑𝑦𝑑𝑥 − ∫ (𝑎(𝑥) + 𝑝(𝑥))𝜑𝛿

2(𝑥)𝑑𝑥
 

𝛺

‖𝜑𝛿‖𝐿2(𝛺)
2 , 

≤ 𝒯𝑅(𝜑𝛿) ≔ 
‖𝜑+‖𝐿2(𝛺)

2

‖𝜑𝛿‖𝐿2(𝛺𝑅)
2 (𝜆𝑣(ℒ𝛺 + 𝑎) + 𝛿) + 𝛿, 

   ≤ 𝜆𝑣(ℒ𝛺 + 𝑎) + 𝐶𝛿, 
for some universal constant 𝐶 > 0. 

       By definition of 𝜆𝑣(ℒ𝛺 + 𝑎), we then get 

𝜆𝑣(ℒ𝛺𝑅 + 𝑎)𝒯𝑅(𝜑𝛿) ≤ 𝜆𝑣(ℒ𝛺 + 𝑎)  ≤ 𝐶𝛿 for 𝑅 large enough. 

Therefore, 

lim
𝑅→∞

 𝜆𝑣 (ℒ𝛺𝑅 + 𝑎) ≤ 𝜆𝑣(ℒ𝛺 + 𝑎) +  𝐶𝛿.                              (87) 

Since (87) holds true for any δ, we get 

lim
𝑅→∞

 𝜆𝑣 (ℒ𝛺𝑅 + 𝑎) ≤ 𝜆𝑣(ℒ𝛺 + 𝑎). 

As a consequence, we obtain 

𝜆𝑝(ℒ𝛺 + 𝑎) ≤ lim
𝑅→∞

 𝜆𝑣 (ℒ𝛺𝑅 + 𝑎) ≤ 𝜆𝑣(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝
′′(ℒ𝛺 + 𝑎) = 𝜆𝑣(ℒ𝛺 + 𝑎), 

which enforces 

𝜆𝑣(ℒ𝛺 + 𝑎) = 𝜆𝑝(ℒ𝛺 + 𝑎). 

We can now turn to the proof of Lemma (6.2.16). But before proving this Lemma, we start 

by showing some technical Lemma in the spirit of Lemma 2.6 in [207]. Namely, we prove 

Lemma (6.2.15)[203]: Assume Ω is unbounded and let 𝑔 ∈ 𝐿∞(𝛺) be a non negative 

function, then for any 𝑅0 > 0, we have 

lim
𝑅→∞

∫ 𝑔
 

Ω∩(𝐵𝑅0+𝑅 𝐵𝑅⁄ )

∫ 𝑔
 

Ω∩𝐵𝑅

= 0. 

Proof. Without loss of generality, by extending g by 0 outside Ω we can assume that 𝛺 =
ℝ𝑁. For any 𝑅0, 𝑅 > 0 fixed, let us denote the annulus 𝐶𝑅0,𝑅 ∶=  𝐵𝑅0+𝑅 \ 𝐵𝑅 . Assume by 

contradiction that 

lim
𝑅→∞

∫ 𝑔
 

𝐶𝑅0,𝑅

∫ 𝑔
 

𝐵𝑅

= 0. 

Then there exists 𝜀 > 0 and 𝑅𝜀 > 1 so that 

∀𝑅 ≥ 𝑅𝜀 ,
∫ 𝑔
 

𝐶𝑅0,𝑅

∫ 𝑔
 

𝐵𝑅

≥  𝜀. 

Consider the sequence (𝑅𝑛)𝑛∈𝑁 defined by 𝑅𝑛 ∶= 𝑅𝜀 + 𝑛𝑅0 and set 𝑎𝑛 ∶= ∫ 𝑔
 

𝐶𝑅0,𝑅𝑛
. 

For all 𝑛, wehave𝐶𝑅0,𝑅𝑛 = 𝐵𝑅𝑛+1 𝐵𝑅𝑛⁄  and 
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𝐵𝑅𝑛+1 = 𝐵𝑅ε, ∪ (⋃𝐶𝑅0,𝑅𝑘

n

k=1

). 

From the last inequality, for 𝑛 ≥ 1 we deduce that 𝑎𝑛 ≥ 𝜀 ∫ 𝑔
 

𝐵𝑅𝑛
≥ 𝜀 ∑ 𝑎𝑘

𝑛
𝑘=0 . 

       Arguing now as in [207], by a recursive argument, the last inequality yields 

∀ 𝑛 ≥ 1, 𝑎𝑛 ≥ 𝜀𝑎0(1 + 𝜀)
𝑛−1.                                             (88) 

On the other hand, we have 

𝑎𝑛 = ∫ 𝑔

 

𝐶𝑅0,𝑅𝑛

≤ ‖𝑔‖∞|𝐶𝑅0,𝑅𝑛| ≤ 𝑑0𝑛
𝑁, 

with 𝑑0 a positive constant, contradicting thus (88). 

       We are now in a position to prove Lemma (6.2.16). 

Lemma (6.2.16)[203]: Let Ω be an unbounded domain and assume that a and 𝐾 satisfies 

(68)–(70). Assume further that K is symmetric and 𝑝(𝑥): = ∫ 𝐾(𝑥, 𝑦)
 

𝛺
𝑑𝑦 ∈ 𝐿∞(𝛺).  Then, 

we have 

𝜆𝑝(ℒ𝛺 + 𝑎) ≤ lim
𝑛→+∞

in
 
f 𝜆𝑣 (ℒ𝛺𝑛 + 𝑎). 

where 𝛺𝑛 ∶= (𝛺 ∩ 𝐵𝑛)𝑛∈ℕ and 𝐵𝑛 is the ball of radius n centred at 0. 

Proof. The proof follows some ideas developed in [208], [207], [135], [225]. To simplify 

the presentation, let us call 𝜆𝑝 = 𝜆𝑝(ℒ𝛺 + 𝑎) and𝜆𝑝
′ = 𝜆𝑝

′ (ℒ𝛺 + 𝑎).  

First recall that for a bounded domain Ω, we have 

𝜆𝑝 = 𝜆𝑝
′ = 𝜆𝑣. 

Let (𝐵𝑛)𝑛∈𝑁 be the increasing sequence of balls of radius 𝑛 centred at 0 and let 𝛺𝑛 ∶= 𝛺 ∩
𝐵𝑛. By monotonicity of 𝜆𝑝 with respect to the domain, we have 

𝜆𝑝(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝛺𝑛 + 𝑎) = 𝜆𝑣(ℒ𝛺𝑛 + 𝑎) 

Therefore 

𝜆𝑝(ℒ𝛺 + 𝑎) ≤ lim
𝑛→∞

inf
 
𝜆𝑣(ℒ𝛺𝑛 + 𝑎). 

Thanks to the last inequality, we obtain the inequality 𝜆𝑝(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝
′ (ℒ𝛺 + 𝑎) by 

proving that 

lim
𝑛→∞

inf
 
𝜆𝑣(ℒ𝛺𝑛 + 𝑎) ≤ 𝜆𝑝

′ (ℒ𝛺 + 𝑎).                                                       (89) 

To prove (89), it is enough to show that for any 𝛿 > 0 

lim
𝑛→∞

inf
 
𝜆𝑣(ℒ𝛺𝑛 + 𝑎) ≤ 𝜆𝑝

′ (ℒ𝛺 + 𝑎) +  𝛿.                                                (90) 

Let us fix 𝛿 > 0 and let us denote 𝜇 ∶= 𝜆𝑝
′ (ℒ𝛺 + 𝑎) + 𝛿. By definition of𝜆𝑝

′ (ℒ𝛺 + 𝑎) there 

exists a function 𝜑 ∈ 𝐶(𝛺 ∩ 𝐿∞(𝛺), 𝜑 ≥ 0 satisfying 

ℒ𝛺[𝜑](𝑥) + 𝑎(𝑥)𝜑(𝑥) + 𝜇𝜑(𝑥)  ≥ 0 𝑖𝑛 𝛺.                                  (91) 
Without loss of generality, we can also assume that ‖𝜑‖𝐿∞(𝛺) = 1. 

Let 1𝛺𝑛  be the characteristic function of 𝛺𝑛 = Ω ∩ 𝐵𝑛 and let wn = 𝜑1𝛺𝑛. By definition 

of𝜆𝑣(ℒ𝛺𝑛 + 𝑎) and since wn ∈ L
2(𝛺𝑛), we have 

𝜆𝑣(ℒ𝛺𝑛 + 𝑎)‖ωn‖L2(𝛺𝑛)
2 ≤ ∫ (−ℒ𝛺𝑛[𝑤n](x) − a(x)wn(x))

 

𝛺𝑛

𝑤n(x)dx.   (92) 

Since 𝐿𝛺[𝜑]𝑤𝑛  ∈ L
1(𝛺𝑛), from (92) and by using (91) we get 

𝜆𝑣(ℒ𝛺𝑛 + 𝑎)‖ωn‖L2(𝛺𝑛)
2 ≤ ∫ (−ℒ𝛺𝑛[𝑤n](x) − a(x)wn(x) − 𝜇𝑤n + 𝜇𝑤𝑛)

 

𝛺𝑛

𝑤n(x)dx.   
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≤ 𝜇‖ωn‖L2(𝛺𝑛)
2 +∫ (−ℒ𝛺𝑛[𝑤n](x) + ℒ𝛺[𝜑](x))

 

𝛺𝑛

𝑤n(x)dx, 

≤ 𝜇‖ωn‖L2(𝛺𝑛)
2 +∫ (∫ K(x, y)𝜑(𝑦)𝑑𝑦

 

𝛺\𝛺𝑛

)
 

𝛺𝑛

𝑤n(x)dx, 

≤ 𝜇‖ωn‖L2(𝛺𝑛)
2 + In, 

where In denotes 

In ∶= ∫ ( ∫ K(x, y)𝜑(𝑦)𝑑𝑦

 

𝛺\𝛺𝑛

)
 

𝛺𝑛

𝜑(x)dx. 

Observe that we achieve (90) by proving 

lim
𝑛→∞

inf
 

In

‖𝜑‖L2(𝛺𝑛)
2 = 0,                                               (93) 

Recall that K satisfies (70), therefore there exists 𝐶 > 0 and 𝑅0 > 0 such that 

𝐾(𝑥, 𝑦) ≤ 𝐶1𝑅0(|𝑥 − 𝑦|)). So, we get 

In  ≤ ∫ (∫ K(x, y)𝜑(𝑦)𝑑𝑦
 

𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛)

)
 

𝛺𝑛

𝜑(x)dx.                       (94) 

By Fubini’s Theorem, Jensen’s inequality and Cauchy-Schwarz’s inequality, it follows that 

In  ≤ ∫ (∫ 𝜑2(𝑦)𝑑𝑦
 

𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛)

)

1 2⁄
 

𝛺𝑛

(∫ (∫ K(x, y)𝜑(𝑦)𝑑𝑥
 

𝛺𝑛

)

2 

𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛)

dy)

1 2⁄

, 

≤ ‖𝜑‖
L2(𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛))

 (∫ (∫ K2(x, y)𝜑2(𝑦)𝑑𝑥
 

𝛺∩𝐵𝑛

)

  

𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛)

dy)

1
2⁄

, 

≤ ‖𝜑‖
L2(𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛))

 (∫ (∫ K2(x, y)𝑑𝑦
 

𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛)

)

 

𝜑2(𝑥)
 

𝛺∩𝐵𝑛

dx)

1 2⁄

. 

Since 𝐾 and 𝑝 are bounded functions, we obtain 

In ≤ ‖𝐾‖∞‖𝑝‖∞ ≤ ‖𝜑‖L2(𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛))
 ‖𝜑‖L2(𝛺∩𝐵𝑛)

 .            (95) 

Dividing (95) by ≤ ‖𝜑‖L2(𝛺𝑛)
2 , we then get 

In

‖𝜑‖L2(𝛺𝑛)
2 ≤ 𝐶

‖𝜑‖
L2(𝛺∩(𝐵𝑅0+𝑛 \𝐵𝑛))

 

‖𝜑‖L2(𝛺∩𝐵𝑛)
2 . 

Thanks to Lemma (6.2.15), the right hand side of the above inequality tends to 0 as 𝑛 → ∞. 
Hence, we get 

lim
𝑛→∞

inf
 
𝜆𝑣(ℒ𝛺𝑛 + 𝑎) ≤ 𝜇 + lim

𝑛→∞
inf
 

In

‖𝜑‖L2(𝛺𝑛)
2 = 𝜆𝑝

′ (ℒ𝛺 + 𝑎) + 𝛿.                    (96) 

Since the above arguments holds true for any arbitrary 𝛿 > 0, the Lemma is proved. 

       When 𝑁 = 1, the decay restriction imposed on the kernel can be weakened, see [225]. 

In particular, we have 

Lemma (6.2.17)[203]: Let Ω be an unbounded domain and assume that a and 𝐾 satisfy 

(68)–(69). Assume further that K is symmetric and K satisfies 0 ≤ 𝐾(𝑥, 𝑦) ≤

𝐶(1 + |𝑥 − 𝑦|)−𝛼 for some 𝛼 >
3

2
 . Then one has  
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𝜆𝑝(ℒ𝛺 + 𝑎) ≤ lim
𝑛→+∞

inf
 
𝜆𝑣(ℒ𝛺𝑛 + 𝑎) ≤ 𝜆𝑝

′ (ℒ𝛺 + 𝑎), 

where 𝛺𝑛 ∶= 𝛺 ∩ (−𝑛, 𝑛). 
Proof. By arguing as in the above proof, for any 𝛿 > 0 there exists 𝜑 ∈ 𝐶(𝛺)  ∩ 𝐿∞(𝛺) 
such that 

ℒ𝛺[𝜑] + (𝑎 + 𝜆𝑝(ℒ𝛺 + 𝑎) +  𝛿)𝜑(𝑥)  ≥ 0 𝑖𝑛 𝛺. 

and 

𝜆𝑣(ℒ𝛺𝑛 + 𝑎) ≤ ‖ωn‖L2(𝛺𝑛)
2 ≤ 𝜇‖ωn‖L2(𝛺𝑛)

2 + 𝐼𝑛, 

where 𝜇 ∶= 𝜆𝑝(ℒ𝛺 + 𝑎) + 𝛿). 

 𝜆𝑝(ℒ𝛺 + 𝑎), 𝑤𝑛 ∶= 𝜑1(−𝑛,𝑛) and 𝐼𝑛 denotes 

𝐼𝑛 ∶= ∫ (∫ K(x, y)𝜑(𝑦)𝑑𝑦
 

𝛺
𝛺𝑛
⁄

)
 

𝛺𝑛

𝜑(x)dx.                     (97) 

As above, we end our proof by showing 

lim
𝑛→∞

inf
 

In

‖𝜑‖L2(𝛺𝑛)
2 = 0.                                                          (98) 

Let us now treat two cases independently: 

Case 1: 𝜑 ∈ L2(𝛺) 
       In this situation, again by using Cauchy-Schwarz’s inequality, Jensen’s inequality and 

Fubini’s Theorem, the inequality (97) yields 

𝐼𝑛 ≤ ‖𝜑‖L2(𝛺𝑛)
 [∫ ( ∫K2(x, y)𝜑(𝑦)𝑑𝑦

 

𝛺𝑛

)
 

𝛺\𝛺𝑛

𝜑2(x)dx]

1
2

. 

Recall that K satisfies 𝐾(𝑥, 𝑦) ≤ 𝐶(1 + |𝑥 −  𝑦|)−𝛼 for some 𝐶 > 0 and α>3/2, therefore 

𝑝(𝑦) ∶= ∫ 𝐾(𝑥, 𝑦) 𝑑𝑥
 

𝛺
  is bounded and from the latter inequality we enforce 

𝐼𝑛 ≤ 𝐶‖𝜑‖L2(𝛺\𝛺𝑛)
 ‖𝜑‖L2(𝛺𝑛)

 . 

Thus, 

lim
𝑛→∞

inf
 

In

‖𝜑‖L2(𝛺𝑛)
2 ≤ lim

𝑛→∞
inf
 

‖𝜑‖L2(𝛺\𝛺𝑛)
 

‖𝜑‖L2(𝛺𝑛)
2 = 0. 

Case 2: 𝜑 ∉ L2(𝛺). 
       Assume now that 𝜑 ∉ L2(𝛺), then we argue as follows. Again, applying Fubini’s 

Theorem and Cauchy-Schwarz’s inequality in the inequality (97) yields 

𝐼𝑛 ≤ ‖𝜑‖L2(𝛺𝑛)
 

[
 
 
 
 

∫

(

 
 
( ∫K(x, y)2𝑑𝑥

 

𝛺𝑛

)

1
2

)

 
 
𝜑(𝑦)

 

(𝛺∩𝑅−)\𝛺𝑛

dy

+ ∫

(

 
 
( ∫K(x, y)2𝑑𝑥

 

𝛺𝑛

)

1
2

)

 
 
𝜑(𝑦)

 

(𝛺∩𝑅+)\𝛺𝑛

dy

]
 
 
 
 

 

≤ ‖𝜑‖L2(𝛺𝑛)
 [𝐼𝑛

− + 𝐼𝑛
+]                  (99) 
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Recall that by assumption there exists C>0 such that 𝐾(𝑥, 𝑦) ≤ 𝐶(1 + |𝑥 − 𝑦|)−𝛼 with α 

>32 .So, we have 

𝐼�̅�
− ≤ 𝐶 ∫

(

 
 
( ∫(1 + |𝑥 − 𝑦|)−2𝛼 

 

𝛺𝑛

dx)

1
2

)

 
 
𝜑(𝑦)

 

(𝛺∩𝑅−)\𝛺𝑛

dy 

𝐼𝑛
+ ≤ 𝐶∫ (( ∫(1 + |𝑥 − 𝑦|)−2𝛼 𝑑𝑥

 n

−n

)

1
2

)𝜑(𝑦)
 

(𝛺∩𝑅−)\𝛺𝑛

dy. 

To complete our proof, we have to show that
𝐼𝑛
+

‖𝜑‖
L2(𝛺𝑛)
2 →  0. The proof being similar in both 

cases,so we only prove that
𝐼𝑛
+

‖𝜑‖
L2(𝛺𝑛)
2 →  0.  We claim that 

Claim (6.2.18)[203]: There exists 𝐶 > 0 so that for all 𝑛 ∈ 𝑁, 

∫

(

 
 
( ∫(1 + |𝑥 − 𝑦|)−2𝛼 𝑑𝑥

 

𝛺𝑛

)

1
2

)

 
 
𝜑(𝑦)

 

(𝛺∩𝑅+)\𝛺𝑛

dy. 

Assume for the moment that the claim holds true, then from (99), we deduce that 
In

‖𝜑‖L2(𝛺𝑛)
2 ≤ 𝐶

𝐶

‖𝜑‖L2(𝛺𝑛)
2 →  0 when 𝑛 → ∞. 

Hence, in both situation, we get 

lim
𝑛→+∞

inf
 
𝜆𝑣(ℒ𝛺𝑛 + 𝑎) ≤ 𝜇 lim𝑛→∞

inf
 

In

‖𝜑‖L2(𝛺𝑛)
2 = 𝜆𝑝

′ (ℒ𝛺 + 𝑎) + 𝛿, 

Since δ > 0 can be chosen arbitrary, the above inequality is true for any δ > 0 and the Lemma 

is proved. 

Proof. Since 𝜑 ∈  𝐿∞(𝛺) and y ≥ n then x ≤ y and we have 

𝐼�̅�
+ ≤ ‖𝜑‖∞∫

(

 
 
( ∫(1 + 𝑦 − 𝑥)−2𝛼 

 

𝛺𝑛

dx)

1
2

)

 
  

(𝛺∩𝑅+)\𝛺𝑛

dy, 

≤ ‖𝜑‖∞∫ (( ∫(1 + 𝑦 − 𝑥)−2𝛼 
n 

−n

dx)

1
2

)
+∞ 

n

dy, 

≤
‖𝜑‖∞

√2𝛼 − 1
∫ (1 + 𝑦 − 𝑛)−𝛼+

1
2 

−∞

n

dy, 

≤ 𝐶∫ (1 + 𝑧)−𝛼+
1
2

+∞

0

 𝑑𝑧. 
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We investigate further the properties of the principal eigenvalue  

𝜆𝑝(ℒ𝛺 + 𝑎) and in particular its behaviour with respect to some scaling of the kernel 𝐾 

((Proposition (6.2.2)) and Theorem (6.2.3)). For simplicity, one dedicated to the proof of 

Proposition (6.2.2) and the other one dealing with the proof of Theorem (6.2.3). Let us start 

with the scaling invariance of ℒ𝛺 + 𝑎, (Proposition (6.2.2)). 

       This invariance is a consequence of the following observation. By definition of  

𝜆𝑝(ℒ𝛺 + 𝑎), we have for all 𝜆 < 𝜆𝑝(ℒ𝛺 + 𝑎), 

ℒ𝛺[𝜑](𝑥) + (𝑎(𝑥) + 𝜆)𝜑(𝑥) ≤ 0 𝑖𝑛   𝛺, 

for some positive 𝜑 ∈ 𝐶(𝛺). Let 𝑋 = 𝜎𝑥,𝛺𝜎 ∶=  
1

𝜎
𝛺 and 𝜓(𝑋) ∶= 𝜑(𝜎𝑋) then we can 

rewrite the above inequality as follows 

∫𝐾

 

𝛺

(
𝑋

𝜎
, 𝑦) 𝜑(𝑦)𝑑𝑦 + (𝑎 (

𝑋

𝜎
) + 𝜆)𝜑 (

𝑋

𝜎
) ≤ 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑋 ∈ 𝛺𝜎 , 

∫𝐾

 

𝛺

(
𝑋

𝜎
, 𝑦) 𝜑(𝑦)𝑑𝑦 + (𝑎𝜎(𝑋) + 𝜆)𝜑(𝑋) ≤ 0 for any 𝑋 ∈ 𝛺𝜎 , 

∫𝐾𝜎

 

𝛺𝜎

(𝑋, 𝑌)𝜓(𝑌)𝑑𝑌 + (𝑎𝜎(𝑋) + 𝜆)𝜓(𝑋) ≤  0 for any 𝑋 ∈  𝛺𝜎 , 

with𝐾𝜎(𝑥, 𝑦) ∶=  
1

𝜎𝑁
 𝐾( 

𝑥

𝜎
 ,
𝑦

𝜎
) and 𝑎𝜎(𝑥) ∶=  𝑎 (

𝑥

𝜎
). Thus 𝜓 is a positive continuous 

function that satisfies 

ℒ𝜎,𝛺𝜎[𝜓](𝑥) + (𝑎𝜎(𝑥) + 𝜆)𝜓(𝑥) ≤ 0 𝑖𝑛 𝛺𝜎 . 

Therefore, 𝜆 ≤ 𝜆𝑝(ℒ𝜎,𝛺𝜎 + 𝑎𝜎) and as a consequence 

𝜆𝑝(ℒ𝛺 + 𝑎) ≤ 𝜆𝑝(ℒ𝜎,𝛺𝜎 + 𝑎𝜎). 

Interchanging the role of 𝜆𝑝(ℒ𝛺 + 𝑎) and𝜆𝑝(ℒ𝜎,𝛺𝜎 + 𝑎𝜎) in the above argument yields 

𝜆𝑝(ℒ𝛺 + 𝑎) ≥ 𝜆𝑝(ℒ𝜎,𝛺𝜎 + 𝑎𝜎). 

Hence, we get 

𝜆𝑝(ℒ𝛺 + 𝑎) = 𝜆𝑝(ℒ𝜎,𝛺𝜎 + 𝑎𝜎). 

       Let us focus on the behaviour of the principal eigenvalue of the spectral problem 

ℳ𝜎,𝑚,𝛺[𝜑] + (𝑎 + 𝜆)𝜑 =  0 𝑖𝑛 𝛺, 
Where 

ℳ𝜎,𝑚,𝛺[𝜑] ≔
1

𝜎𝑚
∫𝐽𝜎

 

𝛺

(𝑥 −  𝑦)𝜑(𝑦)𝑑𝑦 − 𝜑(𝑥), 

with 𝐽𝜎(𝑧) ∶=
1

𝜎𝑁
 𝐽 (

𝑧

𝜎
). Assuming that 0 ≤ 𝑚 ≤ 2, we obtain here the limits of 

𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎), when 𝜎 → 0 and 𝜎 → ∞. But before going to the study of these limits, we 

recall a known inequality. 

Lemma (6.2.19)[203]: Let 𝐽 ∈ 𝐶(ℝ𝑁), 𝐽 ≥ 0, 𝐽 symmetric with unit mass, such 

that|𝑧|2𝐽(𝑧) ∈ 𝐿1(ℝ𝑁). 
Then for all 𝜑 ∈ 𝐻0

1(𝛺) we have 

−∫(∫ 𝐽(𝑥 − 𝑦)𝜑(𝑦) 𝑑𝑦 − 𝜑(𝑥)

 

𝛺

)𝜑(𝑥

 

𝛺

) 𝑑𝑥 ≤
1

2
∫ 𝐽(𝑧)|𝑧|2
 

ℝ𝑁

 𝑑𝑧‖𝛻𝜑‖𝐿2(𝛺)
2 . 

Proof. Let ∈ 𝐶𝑐
∞ , then by applying the standard Taylor expansion we have 
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𝜑(𝑥 + 𝑧) − 𝜑(𝑥) = ∫ 𝑧𝑖𝜕𝑖𝜑
1

0

(𝑥 + 𝑡𝑧)𝑑𝑡                                         (100) 

= 𝑧𝑖𝜕𝑖𝜑(𝑥) + ∫ 𝑡
1

0

(∫ 𝑧𝑖𝑧𝑗𝜕𝑖𝑗𝜑
1

0

(𝑥 + 𝑡𝑠𝑧)𝑑𝑠 )  𝑑𝑡                          (101) 

where use the Einstein summation convention 𝑎𝑖𝑏𝑖 = ∑ 𝑎𝑖𝑏𝑖
𝑁
𝑖=1  . 

       Let us denote 

𝒯(𝜑) ∶= −∫(∫𝐽(𝑥 − 𝑦)𝜑(𝑦)𝑑𝑦 − 𝜑(𝑥)

 

𝛺

)𝜑(𝑥

 

𝛺

) 𝑑𝑥. 

Then, for any 𝜑 ∈ 𝐶𝑐(𝛺), 𝜑 ∈ 𝐶𝑐(ℝ
𝑁) and we can easily see that 

𝒯(𝜑) =
1

2
∫ ∫ 𝐽(𝑥 − 𝑦)(𝜑(𝑥) − 𝜑(𝑦))

2
 

 

ℝ2𝑁

 

 

 𝑑𝑥𝑑𝑦. 

By plugging the Taylor expansion of 𝜑 (100) in the above equality we see that 

1

2
∫ ∫ 𝐽(𝑧)(𝜑(𝑥 + 𝑧) − 𝜑(𝑥))

2
 

 

ℝ2𝑁

 

 

 𝑑𝑧𝑑𝑥 =
1

2
∫ 𝐽(𝑧) ( ∫𝑧𝑖𝜕𝑖𝜑(𝑥 + 𝑡𝑧) 

 

ℝ𝑁

𝑑𝑡)

2 

ℝ𝑁 

 𝑑𝑧𝑑𝑥, 

≤
1

2
∫ 𝐽(𝑧)

(

 
 
|𝑧𝑖| [∫|𝜕𝑖𝜑(𝑥 + 𝑡𝑧)|

2 

1 

0

]

1
2

𝑑𝑡

)

 
 

2

 

ℝ2𝑁 

 𝑑𝑧𝑑𝑥 

≤
1

2
∫ 𝐽(𝑧) (∑𝑧𝑖

2

𝑁

𝑖=1

) [∑∫|𝜕𝑖𝜑(𝑥 + 𝑡𝑧)|
2 

 1

0

𝑁

𝑖=1

𝑑𝑡]

 

ℝ2𝑁 

 𝑑𝑧𝑑𝑥 

where we use in the last inequality the standard inequality (∑ 𝑎𝑖𝑏𝑖
𝑁
𝑖=1 )

2
≤

(∑ 𝑎1
2𝑁

𝑖=1 )(∑ 𝑏1
2𝑁

𝑖=1 ) 
So, by Fubini’s Theorem and by rearranging the terms in the above inequality, it follows 

that 

𝒯(𝜑) ≤
1

2
( ∫𝐽(𝑧)|𝑧|2𝑑𝑧

 

ℝ𝑁

)‖𝛻𝜑‖𝐿2(𝛺)
2 . 

By density of 𝐶𝑐
∞(𝛺) in 𝐻0

1(𝛺), the above inequality holds true for 𝜑 ∈ 𝐻0
1(𝛺), since 

obviously the functional I(ϕ) is continuous in 𝐿2(𝛺). 
Let us also introduce the following notation 

𝐽𝜎(𝑧): =
1

𝜎𝑁
 𝐽 (

𝑧

𝜎
) , 𝑝𝜎(𝑥): = − ∫ 𝐽𝜎(𝑥 − 𝑦)𝑑𝑦,

 

𝛺

 

𝐷2(𝐽) ≔ ∫𝐽(𝑧)|𝑧|2
 

ℝ𝑁

𝑑𝑧, 

𝒜(𝜑) ≔
−∫ 𝑎𝜑2(𝑥)

 

𝛺
𝑑𝑥 

‖𝜑‖𝐿2(𝛺)
2 , ℛ𝜎,𝑚(𝜑) ≔

1

𝜎𝑚
∫ (𝑝𝜎(𝑥) − 1)𝜑

2(𝑥)
 

𝛺
𝑑𝑥 

‖𝜑‖𝐿2(𝛺)
2 , 
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 𝒯𝜎,𝑚(𝜑):=

1
𝜎𝑚

(− ∫ (∫ 𝐽(𝑥 − 𝑦)𝜑(𝑦)𝑑𝑦 − 𝜑(𝑥)
 

𝛺
)𝜑(𝑥

 

𝛺
) 𝑑𝑥)

‖𝜑‖𝐿2(𝛺)
2 −𝒜(𝜑) 

𝒥(𝜑) ≔
𝐷2(𝐽)

2
 
−∫ |𝛻𝜑|2(𝑥)

 

𝛺
𝑑𝑥 

‖𝜑‖𝐿2(𝛺)
2 . 

With this notation, we see that 

𝜆𝑣(ℳ𝜎,𝑚,𝛺 + 𝑎) = inf
𝜑∈𝐿2(𝛺)

𝒯𝜎,𝑚(𝜑) , 

 and by Lemma (6.2.19), for any 𝜑 ∈ 𝐻0
1(𝛺) we get 

𝒯𝜎,𝑚(𝜑) ≤ 𝜎
2−𝑚 𝒥(𝜑) −𝒜(𝜑).                                      (102) 

We are now in position to obtain the different limits of 𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) as σ → 0 and σ → 

∞. 

For simplicity, we analyse three distinct situations: 𝑚 = 0, 0 < 𝑚 < 2 and m = 2. We will 

see that 𝑚 = 0 and 𝑚 = 2 are ,indeed, two critical situations. 

       Let us first deal with the easiest case, that is, when 0 < m < 2. 

       In this situation, we claim that 

Claim (6.2.20)[203]: Let Ω be any domain and let 𝐽 ∈ 𝐶(ℝ𝑁) be positive, symmetric and 

such that |𝑧|2𝐽(𝑧) ∈ 𝐿1(ℝ𝑁). Assume further that 𝐽 satisfies (68)–(70) and 0 < 𝑚 < 2 then 

lim
𝜎→0

𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) =  − sup
𝛺
𝑎 

lim
𝜎→+∞

𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) =  − sup
𝛺
𝑎 

Proof. First, let us look at the limit of 𝜆𝑝 when σ → 0. Up to adding a large positive constant 

to the function a, without any loss of generality, we can assume that the function a is positive 

somewhere in Ω. 

Since ℳ𝜎,𝑚,𝛺 + 𝑎 is a self-adjoined operator, by Theorem (6.2.14) and (102), for any 𝜑 ∈

𝐻0
1(𝛺) we have 

𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎)𝑎)  =  𝜆𝑣(ℳ𝜎,𝑚,𝛺 + 𝑎) ≤ 𝒯𝜎,𝑚(𝜑)  ≤ 𝜎
2−𝑚𝐽 (𝜑) −𝒜(𝜑). 

Define 𝜈 ∶=  sup
𝛺
𝑎 , and let (𝑥𝑛)𝑛∈ℕ be a sequence of point such that |𝜈 − 𝑎(𝑥𝑛)| <

1

𝑛
 

. Since a is positive somewhere, we can also assume that for all 𝑛, 𝑥𝑛 ∈ 𝛤:= {𝑥 ∈  𝛺|𝑎(𝑥) >
0}. 
By construction, for any 𝑛 > 0, there exists 𝜌𝑛 such that 𝐵𝜌(𝑥𝑛) ⊂ 𝛤 for any positive 𝜌 ≤

𝜌𝑛. Fix now n, for any 0 < 𝜌 ≤ 𝜌𝑛 there exists 𝜑𝜌 ∈ 𝐻0
1(𝛺) such that supp(𝜑𝜌) ⊂ 𝐵𝜌(𝑥𝑛) 

and therefore, 

lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,𝑚,𝛺  + 𝑎) ≤ −𝒜(𝜑𝜌)  =  ∫
𝑎 − 𝜑𝜌

2(𝑥)𝑑𝑥

‖𝜑𝜌‖𝐿2(Ω)
2

 

𝐵𝜌(𝑥𝑛)

 ≤  − min
𝐵𝜌(𝑥𝑛)

𝑎+ (𝑥). 

By taking the limit 𝜌 → 0 in the above inequality, we then get 

lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,𝑚,𝛺  + 𝑎) ≤  −𝑎(𝑥𝑛). 

Thus, 

lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,𝑚,𝛺  + 𝑎) ≤ −𝜈 +
1

𝑛
. 

By sending now 𝑛 → ∞ in the above inequality, we obtain 

lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,𝑚,𝛺  + 𝑎) ≤ −𝜈. 
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On the other hand, by using the test function (𝜑, 𝜆)  =  (1, −𝜈) we can easily check that for 

any 𝜎 >  0 

𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) ≥ −𝜈. 

Hence, 

−𝜈 ≤ lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) ≤ lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) ≤ −𝜈. 

Now, let us look at the limit of 𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) when 𝜎 → +∞. This limit is a 

straightforward consequence of (iv) of the Proposition (6.2.8). Indeed, as remarked above, 

for any σ by using the test function (𝜑, 𝜆) = (1, −𝜈), we have 

−𝜈 ≤ 𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) 

whereas from (iv) of the Proposition (6.2.8) we have 

𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) ≤  − sup
𝛺
(−

1

𝜎𝑚
+ 𝑎) . 

Therefore, since 𝑚 > 0 we have 

−𝜈| ≤ lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,𝑚,𝛺  + 𝑎) ≤ −𝜈. 

Indeed, the analysis of the limit of 𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) when 𝜎 → 0 holds true as soon as  < 2. 

Thus, 

𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) → −sup
𝛺
 𝑎 𝑎𝑠 𝜎 → 0. 

On the other hand, the analysis of the limit of 𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) when 𝜎 → +∞ holds true 

as soon as 𝑚 > 0. Therefore, 

𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) → −sup
𝛺
 𝑎 𝑎𝑠 𝜎 → +∞. 

In this situation, one of the above argument fails and one of the expected limits is not −ν 
any more. Indeed, we have 

Lemma (6.2.21)[203]: Let Ω be any domain and let J ∈ C(ℝN) be positive, symmetric and 

such that |z|2J(z) ∈ L1(ℝN). Assume further that J satisfies (68)–(70) and m = 0 then 

lim
𝜎→0

𝜆𝑝  (ℳ𝜎,0,𝛺  + 𝑎) = −sup
𝛺
 a 

lim
𝜎→+∞

𝜆𝑝  (ℳ𝜎,0,𝛺  + 𝑎) = 1 − sup
𝛺
 a 

Proof. As already noticed, the limit of𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) when σ → 0 can be obtained by 

following the arguments developed in the case 0 < 𝑚 < 2. 

       Therefore, it remains only to establish the limit of 𝜆𝑝(ℳ𝜎,𝑚,𝛺 + 𝑎) when σ → ∞. 

       As above, up to adding a large positive constant to a, without any loss of generality, we 

can assume that a is positive somewhere in Ω and we denote ν ∶= sup
𝛺
 a > 0. By using 

constant test functions and (iv) of the Proposition (6.2.8), we observe that 

−𝜈 ≤ 𝜆𝑝(ℳ𝜎,0,𝛺 + 𝑎) ≤ 1 −  𝜈, for all 𝜎 > 0. 

So, we have 

lim
𝜎→∞

sup 𝜆𝑝(ℳ𝜎,0,𝛺 + 𝑎) ≤ 1 − 𝜈. 

On the other hand, for any 𝜑 ∈ 𝐶𝑐(𝛺) we have for all 𝜎, 

ℐ𝜎,0(𝜑) ∫𝜑
2(𝑥)

 

𝛺

= −∫(∫𝐽𝜎(𝑥 − 𝑦)𝜑(𝑦)𝑑𝑦 − 𝜑(𝑥)

 

𝛺

)

 

𝛺

𝜑(𝑥)𝑑𝑥 − ∫𝑎𝜑2(𝑥)

 

𝛺

𝑑𝑥, 

= −∫ ∫ 𝐽𝜎(𝑥 − 𝑦)𝜑(𝑥)𝜑(𝑦)𝑑𝑥𝑑𝑦 −

 

𝛺×𝛺

 

 

∫𝜑2(𝑥)

 

𝛺

𝑑𝑥 − ∫𝑎𝜑2(𝑥)

 

𝛺

𝑑𝑥, 
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≥ −‖𝜑‖𝐿2(Ω)(∫(∫ 𝐽𝜎(𝑥 − 𝑦)𝜑(𝑥)𝜑(𝑦)𝑑𝑥

 

𝛺

)

2

𝑑𝑦

 

𝛺

)

1 2⁄

 

+∫𝜑2(𝑥)

 

𝛺

𝑑𝑥 − sup
𝛺
𝑎 ∫𝜑2(𝑥)

 

𝛺

𝑑𝑥, 

≥ √‖𝐽𝜎‖∞ − ‖𝜑‖𝐿2(Ω) + ∫𝜑
2(𝑥)

 

𝛺

𝑑𝑥 − 𝑣 ∫𝜑2(𝑥)

 

𝛺

𝑑𝑥, 

≥ (−
√‖𝐽‖∞
𝜎𝑁/2

+ 1 − 𝑣) ∫𝜑2(𝑥)

 

𝛺

𝑑𝑥. 

Thus, for all σ we have 

ℐ𝜎,0(𝜑) ≥ (−
√‖𝐽‖∞

𝜎
𝑁
2

+ 1 − 𝑣). 

By density of 𝐶𝑐(𝛺) in 𝐿2(𝛺), the above inequality holds for any 𝜑 ∈ 𝐿2(𝛺). 
Therefore, by Theorem (6.2.14) for all 𝜎 

𝜆𝑝(ℳ𝜎,0,𝛺 + 𝑎) = 𝜆𝑣(ℳ𝜎,0,𝛺 + 𝑎) ≥ −
√‖𝐽‖∞

𝜎
𝑁
2

+ 1 − 𝑣, 

and 

lim
𝜎→+∞

inf  𝜆𝑝(ℳ𝜎 + 𝑎) ≤ 1 − 𝜈. 

Hence, 

1 − 𝜈 ≤ lim
𝜎→+∞

inf  𝜆𝑝(ℳ𝜎,0,𝛺 + 𝑎) ≤ lim
𝜎→+∞

sup 𝜆𝑝(ℳ𝜎,0,𝛺 + 𝑎) ≤ 1 − 𝜈. 

We analyse the monotonic behaviour of 𝜆𝑝(ℳ𝜎,0,𝛺 + 𝑎) with respect to 𝜎 in the particular 

case 𝛺 = ℝN. 

Proposition (6.2.22)[203]: Let 𝛺 = ℝN, 𝑎 ∈ 𝐶(ℝN)and𝐽 ∈ 𝐶(ℝN) be positive, symmetric 

and such that |𝑧|2𝐽(𝑧) ∈ 𝐿1(ℝN). Assume further that 𝐽 satisfies (68)–(70), m = 0 and a is 

symmetric (𝑎(𝑥) = 𝑎(−𝑥) for all x) and the map 𝑡 →  𝑎(𝑡𝑥) is non increasing for all𝑥, 𝑡 >
0. Then the map 𝜎 →  𝜆𝑝(𝜎) is monotone non decreasing. 

Proof. When 𝛺 = ℝN, thanks to Proposition (6.2.2), we have 

𝜆𝑝(ℳ𝜎,0,ℝN + 𝑎) = 𝜆𝑝(ℳ1,0,ℝN + 𝑎𝜎(𝑥)). 

Since the function aσ(x) is monotone non increasing with respect to 𝜎, by (i) of Proposition 

(6.2.8), for all 𝜎 ≥ 𝜎∗ we have 

𝜆𝑝(ℳ𝜎∗,0,ℝN + 𝑎) = 𝜆𝑝 (ℳ1,0,ℝN + 𝑎𝜎
∗(𝑥)) 

≤ 𝜆𝑝(ℳ1,0,ℝN + 𝑎𝜎(𝑥))  = 𝜆𝑝(ℳ𝜎,0,ℝN + 𝑎). 

Finally, let us study the case 𝑚 = 2 and end the proof of Theorem (6.2.3). In this situation, 

we claim that 

Lemma (6.2.23)[203]: Let Ω be a domain, 𝑎 ∈ 𝐶(𝛺) and let 𝐽 ∈ 𝐶(ℝN) be positive, 

symmetric and such that |𝑧|2𝐽(𝑧) ∈ 𝐿1(ℝN). Assume further that J satisfies (68)–(70), 𝑎 ∈
𝐶0,𝛼(𝛺) with 𝛼 > 0 and 𝑚 = 2 then 

lim
𝜎→+∞

𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) ≤ −sup
𝛺
𝑎, 
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lim
𝜎→0

𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) = 𝜆1 (
𝐷2(𝐽)𝐾2,𝑁

2
𝛥 + 𝑎, 𝛺),                         (103) 

where 

𝐾2,𝑁 ∶=
1

|𝑆𝑁 − 1|
∫ (𝑠. 𝑒1)

2

 

𝑆𝑁−1

 𝑑𝑠 =
1

𝑁
 

and 

𝜆1 (𝐾2,𝑁𝐷2(𝐽)𝛥 +  𝑎, 𝛺):=  inf
𝜑∈𝐻0

1(𝛺),𝜑≠0
𝐾2,𝑁𝒥(𝜑) −𝒜(𝜑) . 

Proof. In this situation, as already noticed, by following the arguments used in the case 2 >
𝑚 > 0, we can obtain the limit of 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) as 𝜎 → ∞.So, it remains to prove (103). 

Let us rewrite ℐ𝜎,2(𝜑) in a more convenient way. Let 𝜌𝜎(𝑧) ∶=
1

𝜎2𝐷2(𝐽)
𝐽𝜎(𝑧)|𝑧|

2, then for 

𝜑 ∈ 𝐻0
1(𝛺), we have 

ℐ𝜎,2(𝜑) =
1

‖𝜑‖𝐿2(Ω)
2 (

1

2𝜎2
∫ ∫ 𝐽𝜎(𝑥 − 𝑦)(𝜑(𝑥) − 𝜑(𝑦))

2
𝑑𝑥𝑑𝑦

 

𝛺×𝛺

 

 

) 

−ℛ𝜎(𝜑) − 𝒜(𝜑),         (104) 

=
1

‖𝜑‖𝐿2(Ω)
2 (

𝐷2(𝐽)

2
∫ ∫ 𝜌𝜎(𝑥 − 𝑦)

(𝜑(𝑥) − 𝜑(𝑦))
2

|𝑥 − 𝑦|2
𝑑𝑥𝑑𝑦

 

𝛺×𝛺

 

 

) − ℛ𝜎(𝜑) − 𝒜(𝜑). (105) 

We are now is position to prove (103). Let us first show that 

lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,1,𝛺 + 𝑎) ≤ 𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
𝛥 + 𝑎,𝛺).                               (106) 

This inequality follows from the two following observations. 

First, for any 𝜔 ⊂ 𝛺 compact subset of 𝛺, we have for σ small enough 

𝑝𝜎(𝑥) = ∫𝐽𝜎(𝑥 − 𝑦)𝑑𝑦

 

𝛺

= 1    for all  𝑥 ∈ 𝜔. 

Therefore, for𝜑 ∈ C𝑐
∞(𝛺) and σ small enough, 

ℛ𝜎,2 =
1

𝜎2‖𝜑‖𝐿2(Ω)
2 ∫𝑝𝜎(𝑥 − 1)

 

𝛺

𝜑2(𝑥) 𝑑𝑥 = 0.                          (107) 

Secondly, by definition, 𝑝𝜎 is a continuous mollifier such that 

{
  
 

  
 

𝑝𝜎 ≥ 0  𝑖𝑛ℝ
N

∫𝑝𝜎(𝑧)𝑑𝑧 = 1, ∀𝜎 > 0,

 

ℝN

lim
𝜎→0

∫ 𝑝𝜎(𝑧)𝑑𝑧 = 1, ∀𝜎 > 0,

 

|𝑧|≥𝛿

  

which, from the characterisation of Sobolev spaces in [210], [211], [240], enforces that 

lim
𝜎→0

∫ 𝜌𝜎(𝑥 − 𝑦)
(𝜑(𝑥) − 𝜑(𝑦))

2

|𝑥 − 𝑦|2
𝑑𝑥𝑑𝑦 =

 

𝛺×𝛺

 𝐾2,𝑁‖𝜑‖𝐿2(Ω)
2 , for any 𝜙 ∈ 𝐻0

1(𝛺).   (108) 

Thus, for any 𝜑 ∈ C𝑐
∞(𝛺) 

lim
𝜎→0

𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) ≤ lim
𝜎→0

𝒯𝜎,2 (𝜑) = 𝐾2,𝑁𝒥(𝜑) −𝒜(𝜑). 
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From the above inequality, by definition of 𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
 𝛥 + 𝑎,𝛺), it is then standard to 

obtain 

lim
𝜎→0

sup 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) ≤ 𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
 𝛥 + 𝑎, 𝛺) . 

To complete our proof, it remains to establish the following inequality 

𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
 𝛥 + 𝑎, 𝛺) ≤ lim

𝜎→0
inf  𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎). 

Observe that to obtain the above inequality, it is sufficient to prove that 

𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
 𝛥 + 𝑎, 𝛺) ≤ lim

𝜎→0
inf  𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) +  2𝛿 for all 𝛿 > 0.     (109) 

Let us fix 𝛿 > 0. Now, to obtain (109), we construct adequate smooth test functions 𝜑𝜎 and 

estimate 𝐾2,𝑁𝒥(𝜑𝜎) − 𝒜(𝜑𝜎) in terms of𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎), 𝛿 and some reminder 𝑅(𝜎) that 

converges to 0 as 𝜎 →  0. Since our argument is rather long, we decompose it into three 

steps. 

       We first claim that, for all 𝜎 > 0, there exists 𝜑𝜎 ∈ 𝐶𝑐
∞ (𝛺) such that 

ℳ𝜎,2,𝛺[𝜑𝜎](𝑥) + (𝑎(𝑥)  + 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 2𝛿)𝜑𝜎(𝑥) ≥ 0 for all 𝑥 ∈  𝛺. 

Indeed, by Theorem (6.2.14), we have 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) = 𝜆𝑝
′′(ℳ𝜎,2,𝛺 + 𝑎),  therefore for all 

σ, there exists 𝜓𝜎 ∈ 𝐶𝑐(𝛺) such that 

ℳ𝜎,2,𝛺[𝜓𝜎](𝑥)  +  (𝑎(𝑥)  + 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 𝛿)𝜓𝜎(𝑥)  ≥ 0 for all 𝑥 ∈ 𝛺. 

Since 𝜓𝜎 ∈ 𝐶𝑐(𝛺), we can easily check that 

ℳ𝜎,2,ℝ𝑁  [𝜓𝜎](𝑥)  + (𝑎(𝑥)  + 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 𝛿)𝜓𝜎(𝑥)  ≥  0 for all 𝑥 ∈ ℝ
𝑁. 

Now, let 𝜂 be a smooth mollifier of unit mass and with support in the unit ball and consider 

𝜂𝜏 ∶=
1

𝜏𝑁
 𝜂 (

𝑧

𝜏
)or 𝜏 > 0. 

By taking �̅�𝜎 ∶=  𝜂𝜏 ∗ 𝜓𝜎 and observing that ℳ𝜎,2,ℝ𝑁  [ �̅�𝜎](𝑥) = 𝜂𝜏 (ℳ𝜎,2,ℝ𝑁[𝜓𝜎])(𝑥) for 

any 𝑥 ∈ ℝ𝑁we deduce that 

𝜂𝜏 ∗ (ℳ𝜎,2,ℝ𝑁[𝜓𝜎] + (𝑎(𝑥) + 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 𝛿)𝜓𝜎) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ
𝑁, 

ℳ𝜎,2,ℝ𝑁[�̅�𝜎](𝑥) + (𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 𝛿)�̅�𝜎(𝑥)  + 𝜂𝜏 ∗ (𝑎𝜓𝜎)(𝑥) ≥ 0for all𝑥 ∈ ℝ𝑁. 

By adding and subtracting a, we then have, for all 𝑥 ∈ ℝ𝑁, 

ℳ𝜎,2,ℝ𝑁[�̅�𝜎](𝑥) + (𝑎(𝑥) + 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 𝛿)�̅�𝜎(𝑥) 

+ ∫𝜂𝜏

 

ℝ𝑁

(𝑥 −  𝑦)𝜓𝜎(𝑦)(𝑎(𝑦) −  𝑎(𝑥))𝑑𝑦 ≥  0. 

For 𝜏 small enough, say 𝜏 ≤ 𝜏0, the function �̅�𝜎 ∈ 𝐶𝑐
∞(𝛺) and for all 𝑥 ∈ 𝛺 we have 

ℳ𝜎,2,ℝ𝑁[ �̅�𝜎](𝑥) =
1

𝜎2
( ∫𝐽𝜎

 

ℝ𝑁

(𝑥 − 𝑦)�̅�𝜎(𝑦)𝑑𝑦 − �̅�𝜎(𝑥)) , 

=
1

𝜎2
(∫ 𝐽𝜎

 

Ω

(𝑥 − 𝑦)�̅�𝜎(𝑦)𝑑𝑦 − �̅�𝜎(𝑥))ℳ𝜎,2,𝛺[�̅�𝜎](𝑥). 

Thus, from the above inequalities, for 𝜏 ≤ 𝜏0, we get for all 𝑥 ∈  𝛺, 

ℳ𝜎,2,𝛺[�̅�𝜎](𝑥) + (𝑎(𝑥) + 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 𝛿)�̅�𝜎(𝑥) 
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+ ∫𝜂𝜏

 

ℝ𝑁

(𝑥 −  𝑦)𝜓𝜎(𝑦)(𝑎(𝑦) −  𝑎(𝑥))𝑑𝑦 ≥  0. 

Since a is Hölder continuous, we can estimate the integral by 

| ∫𝜂𝜏

 

ℝ𝑁

(𝑥 −  𝑦)𝜓𝜎(𝑦)(𝑎(𝑦) −  𝑎(𝑥))𝑑𝑦|   ≤ ∫𝜂𝜏

 

ℝ𝑁

(𝑥 −  𝑦)𝜓𝜎(𝑦) |
(𝑎(𝑦) −  𝑎(𝑥))

|𝑦 −  𝑥|𝛼
| 𝑑𝑦,  

≤ 𝜅𝜏𝛼 �̅�𝜎(𝑥), 

where 𝜅 is the Hölder semi-norm of a. Thus, for τ small, says 𝜏 ≤ inf{ (
𝛿

2𝜅
)
1/𝛼

, 𝜏0}, we have 

ℳ𝜎,2,𝛺[�̅�𝜎](𝑥) + (𝑎(𝑥) + 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 2𝛿) �̅�𝜎(𝑥) ≥ 0 for all 𝑥 ∈ 𝛺.    (110) 

Let us consider now 𝜑𝜎 ∶= 𝛾 �̅�𝜎, where γ is a positive constant to be chosen. From (110), 

we obviously have 

ℳ𝜎,2,𝛺[𝜑𝜎](𝑥) + (𝑎(𝑥) + 𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 2𝛿)𝜑𝜎(𝑥)  ≥ 0 for all 𝑥 ∈  𝛺.   (111) 

By taking 𝛾 ∶=
∫  𝜓𝜎

2(𝑥) 𝑑𝑥
 

ℝ𝑁

 ∫ 𝜑𝜎
2 

ℝ𝑁
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
(𝑥) 𝑑𝑥

, we get 

∫  𝜓𝜎
2(𝑥) 𝑑𝑥

 

ℝ𝑁

 ∫ 𝜑𝜎
2 

ℝ𝑁
̅̅ ̅̅ ̅̅ ̅̅

 
(𝑥) 𝑑𝑥

= 1.                                                     (112) 

Step Two: A first estimate of 𝜆1. 

       Now, by multiplying ℳ𝜎,2,𝛺[𝜑𝜎] by �̅�𝜎and integrating over 𝛺, we then get 

−∫ℳ𝜎,2,𝛺

 

𝛺

[𝜑𝜎]𝜑𝜎(𝑥)𝑑𝑥 

= − ∫ ∫
1

𝜎2
𝐽𝜎

 

ℝ𝑁×ℝ𝑁

(𝑥 − 𝑦)(𝜑𝜎(𝑦)𝑑𝑦 − 𝜑𝜎(𝑥)) 𝜑𝜎(𝑥) 𝑑𝑦𝑑𝑥,              (113) 

=
1

2𝜎2
 ∫ ∫ 𝐽𝜎

 

ℝ𝑁×ℝ𝑁
(𝑥 − 𝑦)(𝜑𝜎(𝑦)𝑑𝑦 − 𝜑𝜎(𝑥))

2
 

 

 𝑑𝑥𝑑𝑦,                       (114) 

=
𝐷2(𝐽)

2
∫ ∫ 𝜌𝜎(𝑧)

 

ℝ𝑁×ℝ𝑁

(𝜑𝜎(𝑥 + 𝑧) − 𝜑𝜎(𝑥))
2

|𝑧|2

 

 

 𝑑𝑧𝑑𝑥.                          (115) 

By combining (110) and (115) we therefore obtain 

=
𝐷2(𝐽)

2
∫ ∫ 𝜌𝜎(𝑧)

 

ℝ𝑁×ℝ𝑁

(𝜑𝜎(𝑥 + 𝑧) − 𝜑𝜎(𝑥))
2

|𝑧|2

 

 

 𝑑𝑧𝑑𝑥

− ∫  𝑎(𝑥)𝜓𝜎
2(𝑥)𝑑𝑥 ≤

 

ℝ𝑁

(𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 2𝛿) ∫  𝜓𝜎
2(𝑥)𝑑𝑥

 

ℝ𝑁

.                 (116) 

On the other hand, inspired by the proof of Theorem 2 in [211], since 𝜑𝜎 ∈ 𝐶𝑐
∞ (ℝ𝑁) 

, by Taylor’s expansion, for all 𝑥, 𝑧 ∈ ℝ𝑁, we have 

|𝜑𝜎(𝑥 +  𝑧) − 𝜑𝜎(𝑥) − 𝑧 · 𝛻𝜑𝜎(𝑥)| ≤ ∑|𝑧𝑖𝑧𝑗|

𝑖,𝑗

∫𝑡

1

0

(∫ |𝜕𝑖𝑗𝜑𝜎(𝑥 +  𝑡𝑠𝑧)|

1

0

𝑑𝑠)  𝑑𝑡. 

Therefore, 
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|𝑧 · 𝛻𝜑𝜎(𝑥)| ≤ ∑|𝑧𝑖𝑧𝑗|

𝑖,𝑗

∫𝑡

1

0

(∫|𝜕𝑖𝑗𝜑𝜎(𝑥 +  𝑡𝑠𝑧)|

1

0

𝑑𝑠)  𝑑𝑡.+|𝜑𝜎(𝑥 + 𝑧) − 𝜑𝜎(𝑥)|, 

and for every 𝜃 > 0 we have 

|𝑧 · 𝛻𝜑𝜎(𝑥)|
2
 ≤ 𝐶𝜃 [∑|𝑧𝑖𝑧𝑗|

𝑖,𝑗

∫𝑡

1

0

(∫|𝜕𝑖𝑗𝜑𝜎(𝑥 +  𝑡𝑠𝑧)|

1

0

𝑑𝑠)  𝑑𝑡]

2

  

+(1 + 𝜃)|𝜑𝜎(𝑥 + 𝑧) − 𝜑𝜎(𝑥)|
2, 

≤ 𝐶𝜃∑|𝑧𝑖𝑧𝑗|
2

𝑖,𝑗

∫ ∫ 𝑡2|𝜕𝑖𝑗𝜑𝜎(𝑥 + 𝑡𝑠𝑧)|
2

 

[0,1]2

𝑑𝑠

 

 

𝑑𝑡 + (1 + 𝜃)|𝜑𝜎(𝑥 + 𝑧 − 𝜑𝜎(𝑥)|
2. 

Thus, by integrating in 𝑥 and 𝑧 over ℝ𝑁 × ℝ𝑁, we get 

∫∫
𝜌𝜎(|𝑧|)

|𝑧|2
|𝑧 · 𝛻𝜑𝜎(𝑥)|

2𝑑𝑧𝑑𝑥

≤ 𝐶𝜃∫ ∫ 𝜌𝜎(|𝑧|)∑
|𝑧𝑖𝑧𝑗|

2

|𝑧|2
𝑖,𝑗

2

(∫∫ 𝑡2|𝜕𝑖𝑗𝜑𝜎(𝑥 +  𝑡𝑠𝑧)|
2

 

[0,1]2
𝑑𝑧𝑑𝑥)

 

[0,1]2

 

 

 

+(1 + 𝜃)∫∫𝜌𝜎(|𝑧|)
|𝜑𝜎(𝑥 + 𝑧) − 𝜑𝜎(𝑥)|

2

|𝑧|2

 

 

𝑑𝑧𝑑𝑥. 

For σ small, supp(𝜌𝜎) ⊂ 𝐵1(0), and we have for all 𝑥 ∈ ℝ𝑁, 

∫
𝜌𝜎(|𝑧|)

|𝑧|2
|𝑧 · 𝛻𝜑𝜎(𝑥)|

2𝑑𝑧

 

ℝ𝑁

= 𝐾2,𝑁|𝛻𝜑𝜎(𝑥)|
2, 

Whence, 

𝐾2,𝑁 ∫|𝛻𝜑𝜎(𝑥)|
2𝑑𝑧

 

ℝ𝑁

≤ 𝐶𝜃∫∫𝜌𝜎(|𝑧|)∑
|𝑧𝑖𝑧𝑗|

2

|𝑧|2
𝑖,𝑗

(∫ ∫ 𝑡2|𝜕𝑖𝑗𝜑𝜎(𝑥 +  𝑡𝑠𝑧)|
2

 

[0,1]2

𝑑𝑠𝑑𝑡

 

 

)𝑑𝑧𝑑𝑥 

+(1 + 𝜃)∫∫𝜌𝜎(|𝑧|)
|𝜑𝜎(𝑥 + 𝑧) − 𝜑𝜎(𝑥)|

2

|𝑧|2

 

 

𝑑𝑧𝑑𝑥.                              (117) 

Dividing (117) by ‖𝜑𝜎‖𝐿2(𝛺)
2  and then subtracting 𝒜(𝜑𝜎) on both side, we get 

𝐾2,𝑁𝒥(𝜑𝜎) −𝒜(𝜑𝜎) ≤ 𝑅(𝜎) + (1 + 𝜃)ℐ𝜎,2(𝜑𝜎),                                   (118) 

where 𝑅(𝜎) is defined by 

𝑅(𝜎) ∶=
𝐶𝜃

‖𝜑𝜎‖𝐿2(𝛺)
2 ∫∫𝜌𝜎(|𝑧|)∑

|𝑧𝑖𝑧𝑗|
2

|𝑧|2
𝑖,𝑗

(∫ ∫ 𝑡2|𝜕𝑖𝑗𝜑𝜎(𝑥 +  𝑡𝑠𝑧)|
2

 

[0,1]2

𝑑𝑠𝑑𝑡

 

 

)  𝑑𝑧𝑑𝑥. 

By combining now (118) with (116), by definition of 𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
 𝛥 + 𝑎, 𝛺), we obtain 

𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
 𝛥 + 𝑎, 𝛺) ≤ 𝑅(𝜎) + (1 + 𝜃)[𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 2𝛿].         (119) 

Let us now estimate 𝑅(𝜎) and finish our argument. 
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       By construction, we have 𝜕𝑖𝑗𝜑𝜎 = 𝜕𝑖𝑗𝜂𝜏 ∗ 𝜓𝜎. So, by Fubini’s Theorem and standard 

convolution estimates, we get for σ small 

𝑅(𝜎) ≤∑ ∫  

 

|𝑧|≤1𝑖,𝑗

∫ ∫ 𝜌𝜎(|𝑧|)∑
|𝑧𝑖𝑧𝑗|

2

|𝑧|2
𝑖,𝑗

 

[0,1]2

𝑡2 

( ∫|𝜕𝑖𝑗𝜂𝜏 ∗  𝜓𝜎(𝑥 +  𝑡𝑠𝑧)|
2
𝑑𝑥

 

ℝ𝑁

)𝑑𝑡𝑑𝑠𝑑𝑧, 

 ≤ (∫  
 

|𝑧|≤1

∫ 𝜌𝜎(|𝑧|)∑
|𝑧𝑖𝑧𝑗|

2

|𝑧|2
𝑖,𝑗

 

[0,1]2
𝑡2𝑑𝑡𝑑𝑧)‖𝛻2𝜂𝜏‖𝐿1(ℝ𝑁)

‖𝜓𝜎‖𝐿2(ℝ𝑁)
2 , 

≤
2

3
‖𝛻2𝜂𝜏‖𝐿1(ℝ𝑁)

‖𝜓𝜎‖𝐿2(ℝ𝑁)
2 ∫ 𝜌𝜎

 

|𝑧|≤1

(|𝑧|)|𝑧|2𝑑𝑧. 

Combining this inequality with (119), we get 

𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
 𝛥 + 𝑎, 𝛺) ≤ (1 + 𝜃)[𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 2𝛿] 

+
2𝐶𝜃
3
‖𝛻2𝜂𝜏‖𝐿1(ℝ𝑁)

‖𝜓𝜎‖𝐿2(ℝ𝑁)
2

‖𝜑𝜎‖𝐿2(𝛺)
2 ∫ 𝜌𝜎

 

|𝑧|≤1

(|𝑧|)|𝑧|2𝑑𝑧. 

Since 𝜑𝜎 ∈ 𝐶𝑐
∞ (Ω), ‖𝜑𝜎‖𝐿2(𝛺)

2 = ‖𝜑𝜎‖𝐿2(ℝ𝑁)
2   and thanks to (112), the above inequality 

reduces to 

𝜆1 (
𝐾2,𝑁𝐷2(𝐽)

2
 𝛥 + 𝑎, 𝛺) ≤ (1 + 𝜃)[𝜆𝑝(ℳ𝜎,2,𝛺 + 𝑎) + 2𝛿] 

+
2𝐶𝜃
3
‖𝛻2𝜂𝜏‖𝐿1(ℝ𝑁)

 ∫ 𝜌𝜎

 

|𝑧|≤1

(|𝑧|)|𝑧|2𝑑𝑧.   (120) 

Now, since ∫ ρσ(|z|)|z|
2 

|z|≤1 
dz ≤ σ2, letting σ → 0 in (120) yields 

λ1 (
K2,ND2(J)

2
Δ + a,Ω) ≤ (1 + θ) [2δ + lim

σ→0
inf  λp(ℳσ,2,Ω  + a)].         (121) 

Since (121) holds for every θ, we obtain 

λ1 (
K2,ND2(J)

2
Δ + a,Ω) ≤ lim

σ→0
inf  λp(ℳσ,2,Ω  + a) + 2δ. 

We investigate the existence of a positive continuous eigenfunction 𝜑𝑝,𝜎 associated to the 

principal eigenvalue λp(ℳσ,2,Ω  + a). 

       The existence of such a 𝜑𝑝,𝜎 is a straightforward consequence of the existence criteria 

in bounded domain (Theorem (6.2.7)) and the asymptotic behaviour of the principal 

eigenvalue (Theorem (6.2.3)). 

       Indeed, assume first that Ω is bounded, then since 𝑎 ∈ 𝐿∞(�̅�), there exists 𝜎0 such that 

for all 𝜎 ≤ 𝜎0, 
1

𝜎2
− sup

𝛺
𝑎 > 1 + |λ1 (

K2,ND2(J)

2
Δ + a, Ω)| . 

Now, thanks to λp(ℳσ,2,Ω  + a)  → λ1 (
K2,ND2(J)

2
Δ + a, Ω), for σ small enough, says 𝜎 ≤ 𝜎1, 

we get 
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λp(ℳσ,2,Ω  + a) ≤  1 + |λ1 (
K2,ND2(J)

2
Δ + a, Ω)|. 

Thus, for 𝜎 ≤ inf{𝜎1, 𝜎0}, 

λp(ℳσ,2,Ω  + a) <
1

𝜎2
− sup

𝛺
𝑎, 

which, thanks to Theorem (6.2.7), enforces the existence of a principal positive continuous 

eigenfunction 𝜑𝑝,𝜎σ associated with λp(ℳσ,2,Ω  + a). 

       From the above argument, we can easily obtain the existence of eigenfunction when Ω 

is unbounded. 

Indeed, let 𝛺0 be a bounded sub-domain of Ω and let 𝛾 ∶=  𝑠𝑢𝑝{|𝜆1(𝛺0)| ;  |𝜆1(𝛺)|}. Since 

a is bounded in Ω, there exists 𝜎0 such that for all 𝜎 ≤ 𝜎0, 
1

𝜎2
− sup

𝛺
𝑎 > 2 + 𝛾. 

As above, since λp(ℳσ,2,𝛺0
+ a) → 𝜆1(𝛺0), there exists 𝜎1 such that for all 𝜎 ≤ 𝜎1 we have 

λp(ℳσ,2,𝛺0
+ a) ≤ 1 + 𝛾. 

For any bounded domain 𝛺′ such that 𝛺0 ⊂ 𝛺
′ ⊂ 𝛺, by monotonicity of λp(ℳσ,2,Ω  + a) 

with respect to 𝛺′, for all 𝜎 ≤ 𝜎1 we have 

λp(ℳσ,2,𝛺0 + a) ≤ 1 + 𝛾. 

Therefore, for all 𝜎 ≤ 𝜎2 ∶=  inf{𝜎0, 𝜎1}, we have 

λp(ℳσ,2,𝛺′  + a) +  1 ≤
1

𝜎2
− sup

𝛺′
𝑎 , 

and thus, thanks to Theorem (6.2.7), for all 𝜎 ≤ 𝜎2 there exists 𝜑𝑝,𝜎 associated to 

λp(ℳσ,2,𝛺′  + a). 

To construct a positive eigenfunction 𝜑𝑝,𝜎 associated to λp(ℳσ,2,Ω  + a), we then argue as 

follows. 

        Let (𝛺𝑛)𝑛∈ℕ be an increasing sequence of bounded sub-domain of Ω that converges to 

Ω. Then, for all 𝜎 ≤ 𝜎2, for each 𝑛 there exists a continuous positive function 𝜑𝑛,𝜎 

associated to λp(ℳσ,2,𝛺𝑛
+ a). 

Without any loss of generality, we can assume that 𝜑𝑛 is normalised by 𝜑𝑛(𝑥0) = 1 for 

some fixed 𝑥0  ∈ 𝛺0. Since for all 𝑛, λp(ℳσ,2,𝛺𝑛 + a) + 1 ≤
1

𝜎2
− sup

𝛺𝑛

𝑎, the Harnack 

inequality applies to 𝜑𝑛 and thus the sequence (𝛺𝑛)𝑛∈ℕ  is locally uniformly bounded in 𝐶0 

topology. By a standard diagonal argument, there exists a subsequence, still denoted 

(𝛺𝑛)𝑛∈ℕ , that converges point-wise to some nonnegative function 𝜑. Thanks to the Harnack 

inequality, 𝜑 is positive. Passing to the limit in the equation satisfied by 𝜑𝑛, thanks to the 

Lebesgue dominated convergence Theorem, 𝜑 satisfies 

 𝑀 𝜎, 2, 𝛺[𝜑](𝑥) + (𝑎(𝑥)  + λp,𝜎(ℳσ,2,𝛺 + a) 𝜑(𝑥) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝛺. 

Since a is continuous and ((𝑎(𝑥) + λp,𝜎(ℳσ,2,𝛺 + a) −
1

𝜎2
) < 0, we deduce that ϕ is also 

continuous. 

Hence, 𝜑 is a positive continuous eigenfunction associated with λp,𝜎(ℳσ,2,𝛺 + a). 

       Finally, let us complete the proof of Theorem (6.2.4) by obtaining the asymptotic 

behaviour of 𝜑𝑝,𝜎when 𝜎 → 0 assuming that 𝜑𝑝,𝜎 ∈ 𝐿
2(𝛺). We first recall the following 

useful identity: 
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Proposition (6.2.24)[203]: Let 𝜌 ∈ 𝐶𝑐(ℝ
𝑁) be a radial function, then for all 𝑢 ∈

𝐿2(ℝ𝑁), 𝜑 ∈ 𝐶0
∞(ℝ𝑁) we have 

 ∫ ∫ 𝜌(𝑧)[𝑢(𝑥 + 𝑧) − 𝑢(𝑥)]𝜑(𝑥) 𝑑𝑧𝑑𝑥

 

ℝ𝑁×ℝ𝑁

  =
1

2
∫ ∫ 𝜌(𝑧)𝑢(𝑥)𝛥𝑧[𝜑](𝑥) 𝑑𝑧𝑑𝑥

 

ℝ𝑁×ℝ𝑁

  

Where 

𝛥𝑧[𝜑](𝑥) ∶= 𝜑(𝑥 + 𝑧) − 2𝜑(𝑥) + 𝜑(𝑥 − 𝑧). 
Proof. Set 

𝐼 ∶= ∫ ∫ 𝜌(𝑧)[𝑢(𝑥 + 𝑧) − 𝑢(𝑥)]𝜑(𝑥)𝑑𝑧𝑑𝑥

 

ℝ𝑁×ℝ𝑁

 . 

By standard change of variable, thanks to the symmetry of ρ, we get 

𝐼 =
1

2
∫ ∫ 𝜌(𝑧)[𝑢(𝑥 + 𝑧) − 𝑢(𝑥)]𝜑(𝑥)

 

ℝ𝑁×ℝ𝑁

  

+
1

2
∫ ∫ 𝜌(−𝑧)[𝑢(𝑥 + 𝑧) − 𝑢(𝑥)]𝜑(𝑥)

 

ℝ𝑁×ℝ𝑁

, 

=
1

2
∫ ∫ 𝜌(𝑧)[𝑢(𝑥 + 𝑧) − 𝑢(𝑥)]𝜑(𝑥)

 

ℝ𝑁×ℝ𝑁

  

+
1

2
∫ ∫ 𝜌(𝑧)[𝑢(𝑥) − 𝑢(𝑥 + 𝑧)]𝜑(𝑥 + 𝑧)

 

ℝ𝑁×ℝ𝑁

 , 

= −
1

2
∫ ∫ 𝜌(𝑧)[𝑢(𝑥 + 𝑧) − 𝑢(𝑥)][𝜑(𝑥 + 𝑧) − 𝜑(𝑥)] 

 

ℝ𝑁×ℝ𝑁

, 

= −
1

2
∫ ∫ 𝜌(𝑧)𝑢(𝑥)[𝜑(𝑥) − 𝜑(𝑥 − 𝑧)]

 

ℝ𝑁×ℝ𝑁

+
1

2
∫ ∫ 𝜌(𝑧)𝑢(𝑥)[𝑢(𝑥 + 𝑧) − 𝜑(𝑥)]

 

ℝ𝑁×ℝ𝑁

  , 

=
1

2
∫ ∫ 𝜌(𝑧)[𝑢(𝑥 + 𝑧) − 𝑢(𝑥)]𝜑(𝑥)𝑑𝑧𝑑𝑥

 

ℝ𝑁×ℝ𝑁

  

Consider now 𝜎 ≤ 𝜎2(𝛺) and let 𝜑𝑝,𝜎 be a positive eigenfunction associated with λp,𝜎. That 

is 𝜑𝑝,𝜎satisfies 

ℳσ,2,Ω [𝜑𝑛,𝜎](𝑥)  +  (𝑎(𝑥)  + λp,𝜎)𝜑𝑝,𝜎(𝑥) = 0 for all 𝑥 ∈ 𝛺.          (122) 

Let us normalize 𝜑𝑝,𝜎 by ‖𝜑𝑝,𝜎‖𝐿2(𝛺) = 1. 

       Multiplying (122) by 𝜑𝑝,𝜎 and integrating over 𝛺, we get 

𝐷2(𝐽)

2
∫ ∫ 𝜌𝜎

 

𝛺×𝛺

(𝑥 − 𝑦)
|𝜑𝑝,𝜎(𝑦) − 𝜑𝑝,𝜎(𝑥)|

2

|𝑥 − 𝑦|2 
𝑑𝑥𝑑𝑦  

≤ ∫(𝑎(𝑥) + λp,𝜎)

 

𝛺

𝜑𝑝,𝜎
2 (𝑥) 𝑑𝑥 ≤  𝐶. 

Since a and λp,𝜎 are bounded independently of 𝜎 ≤ 𝜎2(𝛺), the constant 𝐶 stands for all 𝜎 ≤

𝜎2(𝛺).  
       Therefore for any bounded sub-domain �̅� ⊂ 𝛺, 
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∫ ∫ 𝜌𝜎

 

𝛺′×𝛺′

(𝑥 − 𝑦) 
(𝜑𝑝,𝜎(𝑦) − 𝜑𝑝,𝜎(𝑥))

2

|𝑥 − 𝑦|2 
𝑑𝑥𝑑𝑦 < 𝐶. 

Therefore by the characterisation of Sobolev space in [240], [239], for any bounded sub-

domain �̅� ⊂ 𝛺, along a sequence, 𝜑𝑝,𝜎 → 𝜑𝑖𝑛 𝐿2(�̅�). Moreover, by extending  

𝜑𝑝,𝜎 by 0 outside 𝛺, we have 𝜑𝑝,𝜎∈ 𝐿
2(ℝ𝑁) and for any 𝜓 ∈ 𝐶𝑐

2 (𝛺) by Proposition (6.2.24) 

it follows that 

𝐷2(𝐽)

2
∫ ∫

𝜌𝜎(𝑧)

|𝑧|2

 

𝛺×ℝ𝑁

 𝜑𝑝,𝜎(𝑥)𝛥𝑧[𝜓] 𝑑𝑥𝑑𝑧 

= ∫(𝑎(𝑥) + λp,𝜎 − 1 + 𝑝𝜎(𝑥))

 

𝛺

𝜓𝜑𝑝,𝜎
 (𝑥)𝑑𝑥.           (123) 

Recall that 𝜓 ∈ 𝐶𝑐
∞(ℝ𝑁), so there exists 𝐶(𝜓) and 𝑅(𝜓) such that for all 𝑥 ∈ ℝ𝑁 

|𝛥𝑧[𝜓](𝑥) − 𝑡𝑧(𝛻
2𝜓(𝑥))𝑧 < 𝐶(𝜓)|𝑧|3𝕝𝐵𝑅(𝜓)(𝑥). 

       Therefore, since ϕp,σ is bounded uniformly in 𝐿2(𝛺), 
𝐷2(𝐽)

2
∫ ∫

𝜌𝜎(𝑧)

|𝑧|2

 

𝛺×ℝ𝑁

 𝜑𝑝,𝜎(𝑥)[𝛥𝑧][𝜓 − 𝑡𝑧(𝛻
2𝜓(𝑥))𝑧]  𝑑𝑥𝑑𝑧 

≤ 𝐶𝐶(𝜓) ∫𝑝𝑛(𝑧)|𝑧| → 0.

 

ℝ𝑁

                                                          (124) 

On the other hand, 𝜓 ∈ 𝐶𝑐
2(𝛺) enforces that for 𝜎 small enough supp(1 −  𝑝𝜎(𝑥))  ∩ 

supp(𝜓) = ∅. 
       Thus passing to the limit along a sequence in (123), thanks to (124), we get 

𝐷2(𝐽)𝐾2,𝑁
2

∫𝜑(𝑥)𝛥𝜓(𝑥)𝑑𝑥 + ∫𝜑(𝑥)𝜓(𝑥)(𝑎(𝑥) + 𝜆1) 𝑑𝑥

 

𝛺

 

𝛺

= 0.               (125) 

being true for any 𝜓, it follows that 𝜑 is the smooth positive eigenfunction associated to 

λ1normalised by ‖𝜑‖𝐿2(𝛺)1 = lim
𝜎→0

‖𝜑𝑝,𝜎‖𝐿2(𝛺)
 .The normalised first eigenfunction being 

uniquely defined, we get 𝜑 = 𝜑1 and 𝜑𝑝,𝜎→ 𝜑1 in 𝐿𝑙𝑜𝑐
2 (𝛺) when 𝜎 →  0.  
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List of Symbols 

 

Symbol  Page 

𝐿𝑝 Lebesgue space 1 

dim: dimension 1 

det: determinant 7 

𝐿2: Hilbert space 8 

∆𝑔: Laplace-Beltrami operator 23 

sup: supremum 26 

det: determinant 28 

max: maximum 38 

QUE: Quantum unique  ergodicity 47 

inf: infimum 48 

supp: support 69 

𝐿∞: Essential Lebesgue space 75 

𝐿1: Lebesgue space on the line 77 

ℓ2: Hilbert space of sequences 81 

ℓ𝑞: Dual of Banach space of sequence 84 

stab: stabilizer 93 

Dir: Dirichlet 93 

int: interior 93 

Osc: oscillatory 94 

loc: local 107 

a. p: almost periodic 108 

𝑊2,∞: Sobolev space 109 

min: minimum 123 

per: periodic 124 

ker: kernel 125 

LRC: locally Relative compact  145 

ℓ∞: Essential Banach space 145 

⨂: tensor product 146 

diam: diameter 147 

dist: distance 167 

inj: injectivity 190 

Re: Real  204 

int: interior 206 

ess: essential 211 

dom: domain 231 
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