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Abstract 

 Quantitative elastography is a non-invasive imaging technique that studies the 

elastic properties of the tissue when force is applied, and gives quantitative information 

about it. In this research the present work was performed using static deformation on a 

breast mimic ultrasound phantom. Strain images are constructed from the measured radio 

frequency (RF) ultrasound signals. The mean strain is recovered from stiffer segmented 

lesion and from nearby normal tissue, and then compute strain ratio. The stiffness 

measurement was used to know whether there are already abnormalities in the breast 

tissue or not. The strain ratio value is a highly significant quantitative method for 

evaluating the stiffness degree of the breast mass. The result of calculation shows that the 

strain ratio was 0.4; which indicates that the lesion has less strain than background strain, 

moreover indicate there is a potential abnormality exist in the lesion area. 
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 المستخلص

حةنُ  درشاةنت  اخخصاقينتٌُ عباشة عنه رصقةنت حينُقص  ينص  الأوسجتلخحليل الكمي لمصَوت ا  

. فني كمينت عىٍنا ثمعلُمناكمنا حةنُ  دطعطنا   منا عىر حطبيق قُة  للأوسجتمصَوت لخيائص ا

ثادنج علنف فناوخُ  المُ ناث فنُو الينُحيت  حشنُي داةنخدرا ٌسا البحث حم حىفيس العمل الحنالي 

 Strain الالخننُا صننُش  .(Breast mimic ultrasound phantom) الثننر لمحاكنناة 

images))  مننه المُ نناث الصاذقُقننت اةخدلاصننٍاحننم (Radio frequency)  المةاةننت مننه

مه  ز  مه  الالخُا اةخصذاذ  حم .(Ultrasound signals) اليُحيتإشاشاث المُ اث فُو 

 Strain) الالخنُا الكخلنت الينلبت َدنالةصن منه الأوسنجت الطبيعينت َمنه ثنم حنم  سنان وسنبت 

ratio).  قيمنت  لمعصفت ٌل ٌىالك حشٌُاث في أوسنجت الثنر  أ  لا. اةخدرامًاليلادت حم قياس

 الثنر . وخيجننتٌني رصقةننت كمينت زاث ححرقنر عننالي لخةينيم ذش نت اليننلادت لكخلنت  الالخنُا وسنبت 

لٍنا الخنُا  أقنل الينلبت َالخني حُضنح ان الكخلنت   4.0وسبت الالخُا  ٌني حُضح أن  الحساداث

لكخلننت ا يننص ربيعيننت فنني مسننا ت  َ ننُذ  الننتحُضننح ا خماليننت  َدالخننالي الدلفيننت  مننه الخننُا 

 اليلبت.
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Chapter One 

Introduction 

1.1 General View  

Breast cancer is associated with high morbidity; ~1.38 million new cases 

and 458 000 deaths occur annually worldwide. Breast cancer is by far the most 

common cancer in females of both developed and developing countries, and 

remains a major public health problem.  

Elastography is non-invasive imaging technique that studies elastic properties of 

soft tissue. It demonstrates abnormalities of both muscles and other tissue. In 

pathological conditions, tissue becomes stiffer than that of normal tissue. It is a 

newly developed dynamic technique that uses ultrasound (US) to provide an 

estimation of tissue stiffness by measuring the degree of distortion under the 

application of an external force. Hence, also known as „palpation by imaging‟. 

Tissue elasticity measurement is useful for the diagnosis and differentiation of 

tumors. Sonoelastography is useful for the quantitative measurement of tissue 

stiffness. Conventional ultrasonography (CUS) is less accurate. Various 

ultrasound elastographic techniques like transient elastography, vibro-

acoustography are used in clinical practice of which compression ultrasound 

elastography (USE) is most commonly used to evaluate difference in hardness 

between diseased tissue and normal tissue. [1] 

Real time ultrasound elastography is newly developed technique which is semi 

quantitative, because it measures ratio between nodule and normal parenchyma, 

that use a dedicated software to provide an accurate measurement of tissue 

distortion. In examination it is important to maintain the level of pressure 

constant. US elastogram is displayed over the B-mode image in a color scale 

that ranges from red, for components with greatest elastic strain (i.e. softest 

components), to blue for those with no strain (i.e. hardest components), so it is a 

technique for contrast improvement. 
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Detection and characterization of breast tumors can be enhanced by using 

elastography which is able to differentiate between normal tissue and malignant 

tumors. [1] In addition it is a reliable, noninvasive, cost effective method 

helping to differentiate benign from malignant breast lesions, thus reducing the 

number of unnecessary interventional diagnostic procedures, would be valuable. 

Although it is safe, simple and low cost image technique, there is limitations in 

penetration, especially on obese patients. Elastography conveys new information 

about internal tissue structure and behavior under load that is not otherwise 

obtainable. 

It is also more sensitive than mammography because the sensitivity of the 

mammography increases with age, mammography is particularly sensitive for 

older women with fatty replaced breast tissue, but has a lower sensitivity in 

young women with dense breasts. 

1.2 Problem Statement  

Detection and characterization of breast tumors can be done using 

elastographic techniques. This study is mainly focused on the differentiation 

between normal tissue and malignant tumors of breast lesions. The main 

objective of this research is to introduce a new technique that can lead to reduce 

the need to further biopsies and surgical interferences when encountering the 

problem of classification of breast tumors. Detection of tumors is easier done by 

qualitative elastography, however, when classification is needed the quantitative 

elastography should be done to give more information about the tumor stiffness. 

1.3 Objective  

The objectives of this research are: 

1.3.1 General Objective 

The main aim of this research is to develop a technique as a second 

opinion for radiologist, to explore the breast tissue type in order to detect and 

classify breast lesions.  
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Utilization of quantitative elastography which is a key tool in classification of 

tumor types and grades. 

1.3.2 Specific Objective 

 To calculate tissue displacement. 

 To calculate tissue strain.  

 To develop new denoising method. 

 To segment the object from the background. 

 To calculate strain ratio for the lesion. 

 

1.4 Thesis Layout  

This dissertation consists of five chapters, chapter one is an introduction. 

Chapter two gives theoretical background and literature reviews. While the 

research methodology is describing in chapter three. The result obtained and 

discussion of the results are given in chapter four. Finally, chapter five is 

devoted for conclusion and recommendation.  
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Chapter Two 

Theoretical Background and Reviews 

This chapter aims to gives description of the theories leading to the 

detection of breast abnormality. Is divided into parts, part one is the theoretical 

background which aims to represent the importance of Elastography study and 

gives essential information on it is types, and the methods for estimating of the 

strain. Part two is reviews of available literature. 

2.1 Theoretical Background 

2.1.1 Elastography 

B-mode ultrasound imaging, while an excellent all-round means of 

examining tissue, is poor at distinguishing stiff tissue from soft or compliant 

tissue. An important class of tissue, such as tumor tissue or cirrhotic tissue in the 

liver, grows out of the same tissue matrix material as the healthy tissue from 

which it is derived, and as a result, even though these types of tissue are stiffer 

or more fibrotic, they can be invisible under normal B-mode imaging. 

Elastography, a branch of tissue characterization, is the measurement and/or 

depiction of the elastic properties of tissues. It provides the missing image 

contrast needed to distinguish among the soft and stiff tissues. In pathological 

conditions, tissue becomes stiffer than that of normal tissue. 

Elastography is a non-invasive imaging technique that helps in evaluation of 

elasticity of soft tissue in response to an applied force. Tissue elasticity 

measurement is useful for the diagnosis and differentiation of tumors. 

Sonoelastography is useful for the quantitative measurement of tissue stiffness. 

Conventional ultrasonography (CUS) is less accurate. Various ultrasound 

elastographic techniques like transient elastography, vibro-acoustography are 

used in clinical practice of which compression ultrasound elastography (USE) is 

most commonly used to evaluate difference in hardness between diseased tissue 

and normal tissue.  
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 US waves travel with different velocities through tissues depending on their 

stiffness. Due to compression, tissue changes its mechanical properties and its 

reflection of US waves. Abnormal lesion deforms to lesser extent as compared 

to normal tissue as a result of tissue compression. In malignant tumors, tissues 

are stiffer than normal tissue. Elastography is used for the examination of organs 

like breast, thyroid and liver. [2-5] 

2.1.2 Principle of Elastography 

Principle underlying elastography is that when external or internal 

pressure is applied on tissue under investigation, it causes displacement within 

the tissue. [1,6] Malignant tissues are harder than normal surrounding tissues. 

[1] If the tissue is stiffer, displacement occurs to lesser extent and if tissue is 

softer, displacement is higher thus this displacement could be a measure of 

tissue hardness. Elastogram is an image that shows different shades of color 

corresponding to different degree of stiffness resulting from compression. [6] 

Images obtained by elastography are compared before and after compression. In 

same tissue, elasticity varies in different pathological conditions like 

inflammation and malignancy. [7] Figures 2.1.A and 2.1.B shows the principle 

of elastography. 

Elasticity score is indicated by diverse colors. Range of these colors varies from 

red to blue. Red color indicates soft tissue, green color indicates tissue with 

intermediate stiffness and blue color represents hard tissue. [1,8]  

2.1.3 Modalities of Elastography 

 Ultrasound Elastography. 

 Magnetic Resonance Elastography. 

There are three forms of ultrasound elastography: 

1. Shear waves ultrasound elastography. [8-9] 
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Fig 2.1.a Principle of Elastography. [15]. 

 

 

 

Fig 2.1.b Principle of Elastography. [15] 
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2. Quasi-static elastography. 

3. Vibro-acoustography elastography. 

2.1.3.1 Shear Wave Elastography (SWE)  

In SWE, focused high intensity, short-duration acoustic pulse from 

ultrasound transducer are used to generate shear wave that absorb acoustic 

energy. [8,17] SWE requires fast attainment of ultrasound images ranging from 

5000 to 20000 frames per seconds. [8] figure 2.2.A shows shear wave 

elastography. 

2.1.3.2 Qusi-static Elastography 

It is a very popular technique, in which external mechanical force or an 

endogenous force is applied to the tissue. [8,10-12] Number of images are taken 

before and after producing small deformation in the tissue. [13] Displacement 

and time delay that occur between region of interest (ROI) needs to be recorded 

at different compression. It is a qualitative technique. 

Quality of result obtained is depended mainly on the experience and techniques 

of investigator. Appropriate compression strength and right angle of 

compression is necessary; otherwise there are chances of misinterpretation.  

In order to obtain reproducible elastogram, compression has to be performed at 

least twice. [8-9,12,14] figure 2.2 B shows quasi-static ultrasound elastography. 

2.1.3.3 Vibro-Acoustography Elastography 

In this technique acoustic response of the tissue is used for imaging and 

material characterization. [12,14,16] For generating acoustic emission, two 

ultrasound beams of slightly different frequencies are used which are focused at 

same spatial point that vibrates the tissue because of ultrasound radiation force. 

For typical application of vibro-acoustography, two frequencies of order of 2-

5MHz must be used and difference between the frequencies should be 10-70 

kHz. With vibro-acoustography, it is possible to obtain the images that show 

some unique features that make it different from traditional ultrasound imaging. 
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vibro-acoustography provides quantitative estimation of viscoelastic parameter. 

Figure 2.2.C shows vibro-acoustography ultrasound elastography. 

 

 

 

Fig 2.2 Main types of elastography. (A) Dynamic; (B) quasi-static; (C) organic.  

[15] 

2.1.4 Methods for Measuring Strain 

2.1.4.1 Spatial Correlation Method 

Uses an ordinary two dimensional pattern-matching algorithms to search 

for the position that maximizes the cross correlation between regions of interest 

(ROIs) that are selected from two images (one obtained before and the other 

obtained after deformation). 

2.1.4.2 Phase-Shift Tracking Method  

Is based on an autocorrelation method that is well known as a principle 

of color Doppler ultrasonography determine longitudinal tissue motion because 

of phase domain processing. Because of errors related to aliasing, the phase-shift 

tracking method fails when used to measure large displacements. It poorly 

compensates for movement in the lateral direction. 

2.1.4.3 Confusion Assessment Method (CAM) 

Enables rapid and accurate detection of longitudinal displacement by 

using phase-domain processing without aliasing. A modification of CAM to 
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better demonstrate lateral and elevational tissue movements, inevitable during 

palpation-like freehand manipulation of the probe, is called extended CAM. The 

dynamic range of strain that is estimated by using the extended CAM is 0.05%–

5.00% (optimal dynamic range, 0.50%–2.00%); this method can compensate for 

up to about 4 mm of lateral slip. 

Traditionally, strain estimators aim to accurately derive tissue displacements 

between before and after compression and to compute strain from the 

displacements. However, the displacement can be as large as 1000 times the 

strain for typical compression levels used in US elasticity imaging. Error in 

displacement estimation leads to a large variance in strain, thereby resulting in 

poor signal-to-noise ratio for the estimated strain. 

Bae and Kim have developed a novel strain estimator that can be used to directly 

estimate strain from the phase of temporal and spatial correlation instead of 

estimating small strain from large displacements. Signal-to-noise ratio and 

contrast-to-noise ratio of the elastogram measured by using the direct strain 

estimator are at least three times and six times larger, respectively, than values 

obtained by using conventional displacement-based strain estimators. This 

indicates that the direct strain estimator can substantially improve accuracy and 

lesion detectability in US elasticity imaging. In addition, the direct strain 

estimator is computationally efficient compared with conventional estimators, 

thus enabling the real-time implementation and clinical use of this new US 

imaging mode. [18] 

2.2Literature Reviews  

Reviews are the basis for discovery of which is the end of the first effort 

and at the same time the beginning of recent discoveries. So literature reviews 

were done to know the recent theories leading to the detection of breast cancer 

with good results, in order to do new method in order to achieve best result.  

In this section, a few most important techniques for breast cancer detection are 

reviewed. 
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Jean Rossario Raj, Syed Mohammed Khalilur Rahman, Sneh Anand, proposed 

method using standard databases for breast cancer symptoms, mammography 

diagnosing features and breast cancer ultrasound elastography imaging 

screening standards, with ten dataset features as attributes. The adequate 

conditions of the features were considered for the classification as benign or 

malignant classes. The explanation criteria in elastography contain of the 

qualitative parameter elasticity score and the quantitative parameter strain ratio. 

Training of dataset was first done using 180 biopsy cases with 132 benign and 

48 malignant results. 95% confidence interval for symptomatic was 1.625 to 

4.955; mammographic was 1.506 to 5.494 and ultrasound elastography imaging 

was 2.213 to 6.087. The model created was further tested with 210 cases using 

three machine learning classifiers and results were compared with gold standard 

biopsy results. Performance characteristics were statistically analyzed. The three 

classifiers have yielded an accuracy of 95.7%, 84.3% and 91.4% respectively 

and the statistical models proved its efficiency in differentiating malignant from 

benign. [19] Xia Gong, Yi Wang, Weihua explored the values of ultrasound 

elastography as one of the more vital diagnostic tool in the diagnosing of breast 

lesions of US Breast lesions of Breast Imaging Reporting and Data System (BI-

RADS) 4B by conventional ultrasound. Ultrasound elastography was used in a 

total of 151 US BI-RADS 4B patients who were diagnosed through the 

ultrasound and were surgically treated. The diagnosis of 188 benign and 

malignant lesions by ultrasound elastography was analyzed based on 

postoperative pathological examinations. As a results of this study, it can be 

concluded that the sensitivity, specificity and accuracy of the elastography in the 

diagnosis of breast lesion were 91.67% (66 of 72), 88.79% (103 of 116), and 

89.89% (169 of 188) respectively. While using the ratio of 1.5 as a criterion to 

determine whether it is benign or malignant lesion, it resulted in slightly 

different result. The sensitivity, specificity and accuracy of ultrasound 

elastography were 90.28% (65 of 72), 87.93% (102 of 116) and 88.83% (167 of 

188), respectively. [20] The main limitation of this study was that the false 

negative is relatively high, and it contradicts with the purpose of elastography in 
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reducing the false negative. Dana Stoian, Bogdan Timar, et al proposed method 

using a total of 174 patients, in which all of the 174 patients were diagnosed 

with dominant breast nodules. The results of the ultrasonography and real time 

elastography, both qualitative and quantitative, were compared with pathology 

findings from the biopsy specimens. The results were, pathology examinations 

determined 102 nodules were benign and 72 malignant. Qualitative elastography 

had a better diagnostic performance (82.4% sensitivity and 81.9% specificity) 

than ultrasonography plus Doppler evaluation (70.3% sensitivity and 73.5% 

specificity). Quantitative elastography, assessed using the fat-to-lesion ratio, was 

a good discriminant for malignancy (AUROC = 0.93, p < 0.001). Our results 

pointed to an optimal threshold for malignancy of > 4.88; by using this 

threshold, the diagnostic reliability of the fat-to-lesion ratio was better than both 

ultrasonography and the qualitative elastography (86.5% sensitivity and 90.4% 

specificity). [21] The problems that were faced in this study was caused by the 

fact that the value of FLR threshold is debatable. Different thresholds will give 

different diagnostic qualities. Ideally a recommended FLR Ratio, for each RTE 

device should be used in order to make a comparison between different studies. 

Young Jun Choi, Jeong Hyun Lee, Jung Hwan Baek proposed method that 

explore the diagnosing of strain elastography by examining a total of 141 lymph 

nodes, of which 98 were confirmed as benign and 43 were confirmed as 

malignant by histopathology. It classified the nodes according to visualization, 

brightness compared to the neighboring muscles, and the regularity of the 

outline. Using a strain ratio cut-off value of >1.5, strain elastography showed 

sensitivity, specificity, and accuracy values of 85%, 98%, and 92%, 

respectively. According to a recent meta-analysis of nine strain elastography 

studies that included 50-155 cervical or axillary lymph nodes [22], the pooled 

sensitivity and specificity values for detecting malignancies were 74% (95% 

confidence interval [CI], 66% to 81%) and 90% (95% CI, 82% to 94%) for 

elastographic scale and 88% (95% CI, 79% to 93%) and 81% (95% CI, 49% to 

95%) using strain ratios, respectively. However, US elastography has many 

unresolved problems and limitations. The First problem is that the US 
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elastography can give unclear readings if there is a focal convex bulge on the 

skin overlying the ROI because, under those circumstances, it may be 

impossible to apply a linear transducer without producing focal stress 

concentrations within the tissue of interest, thereby resulting in spuriously stiff 

elastograms [22] Second, there are still issues regarding ROI selection in most 

studies on strain ratio or shear wave-based elastography. Third, the distance 

from the transducer, anisotropy, and stretch stress in overlying muscle all induce 

variations (Lee HY, unpublished observation). Fourth, cysts and calcified 

lesions lack elasticity.  Fifth, highquality elastograms are often hard to obtain 

due to pulsations from nearby great vessels (Video clip 1). Finally, 

manufacturer-associated variations in the implementation of US elastography 

remain uncertain. Ashraf Ali Wahba, Nagat Mansour Mohammed Khalifa, et al 

Seddik1 developed a study success in recognizing breast tumor phantom by an 

average correct recognition ratio CRR of about 94.25% on a simulation 

environment. The strain ratio SR for benign and malignant models is also 

computed. The result of the simulated breast tumor model is compared with real 

data of 10 lesion cases (6 benign and 4 malignant). The coefficient of variation 

CV between the simulated SR and the SR using real data reaches to about 5% 

for benign lesions and 4.78% for malignant lesions. The results of CRR and CV 

in this work makes sure that the proposed breast cancer model using finite 

element modeling is a robust technique for breast tumor simulation where the 

behavior of breast cancer can be predicted. [23] The metric for this agreement is 

that if the coefficient of variation factor is around about 5% that indicates a good 

agreement. Alessandro Ramalli, Luca Bassi, et al, proposed method using 

freehand elastography method, based on a Fourier domain displacement 

estimator, it has been recently re-researched and it proved to be capable of 

producing off-line robust estimates of phantoms elasticity. In order to permit in-

vivo examinations of breast lesions, a real-time version of the proposed method 

has been places in the research scanner ULA-OP, designed at the University of 

Florence. In a preliminary test on patients the method detected 36 lesions (11 

softer, 14 harder and 11 having the same elasticity than the surrounding tissue). 
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The same lesions were classified as malignant (5) and benign (31) by an 

experienced sonographer through B-mode analysis. [24]Xue-Jing Liu, Ying 

Zhu, et al, presented study aimed to analysing and comparing the diagnostic 

performance of B-mode ultrasound (US), elastography score (ES), and strain 

ratio (SR) for the differentiation of breast lesions. This retrospective study 

enrolled 431 lesions from 417 in-hospital patients. All patients were examined 

with both conventional ultrasound and elastography. Two experienced 

radiologists reviewed the ultrasound and elasticity images. The histopathologic 

result obtained from ultrasound-guided core biopsy or operation excisions were 

used as the standard. Pathologic examination revealed 276 malignant lesions 

(64%) and 155 benign lesions (36%). A cut-off point of 4.15 (area under the 

curve, 0.891) allowed significant differentiation of malignant and benign 

lesions. ROC (receiver-operating characteristic) curves showed a higher value 

for combination of B-mode ultrasound and elastography for the diagnosis of 

breast lesions. [25] The limitations of this study were that conventional 

ultrasound combined elastography showed high sensitivity, specificity, and 

accuracy for lesions with diameter (10mm<lesion diameter ≤20mm). Also when 

the tumor volume is small, the difference in hardness between the benign lesions 

and normal breast tissue is less, due to which the elastic strain is also small; 

hence, the elasticity image is green. Furthermore, there was misdiagnosed cases 

on elastogram, we found that calcification, fibrosis, and necrosis within the 

lesion were important factors that could alter the texture of lesions and cause 

misdiagnosis. When size of the breast lesions is large, these factors may be 

present within the area resulting in uneven hardness in the lesions. In such cases, 

the elasticity images are manifested in blue and green, but an elasticity score of 

2-5 points may lead to false negative results. Deniz Cebi Olgun, Bora 

Korkmazer, et al, presented study aimed to determine the correlations between 

the elasticity values of solid breast masses and histopathological findings to 

define cutoff elasticity values differentiating malignant from benign lesions. A 

total of 115 solid breast lesions of 109 consecutive patients were evaluated 

prospectively using shear wave elastography (SWE). Two orthogonal 
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elastographic images of each lesion were obtained. Minimum, mean, and 

maximum elasticity values were calculated in regions of interest placed over the 

stiffest areas on the two images; it is also calculated mass/fat elasticity ratios. 

Correlation of elastographic measurements with histopathological results were 

studied. Eighty-three benign and thirty-two malignant lesions were 

histopathologically diagnosed. The minimum, mean, and maximum elasticity 

values, and the mass/fat elasticity ratios of malignant lesions, were significantly 

higher than those of benign lesions. The cutoff value was 45.7 kPa for mean 

elasticity (sensitivity, 96%; specificity, 95%), 54.3 kPa for maximum elasticity 

(sensitivity, 95%; specificity, 94%), 37.1 kPa for minimum elasticity 

(sensitivity, 96%; specificity, 95%), and 4.6 for the mass/fat elasticity ratio 

(sensitivity, 97%; specificity, 95%). [26] This study had some limitations. First, 

not all histological types of malignant and benign lesions were represented. 

Multicenter   studies are needed to overcome this limitation. Second the 

interobserver was not assessed variability but the method has been shown 

previously to be highly reproducible. Brett Coelho, developed method using 

clinical ultrasound elastography based on strain imaging that determines tissue 

stiffness but not the true Young‟s modulus distribution. Furthermore, the stress 

uniformity assumption associated with strain imaging result of poor sensitivity 

and specificity of this clinical tool. To enhance this technique, the strain image 

can be processed for tissue elastic modulus reconstruction. The proposed 

technique is to calculate stress value using Finite Element Method (FEM) and 

reconstructed the Young‟s modulus distribution using Hooke's law until the 

desired values are achieved.  Since tissue geometry is difficult to obtain using 

strain imaging, the proposed methods is unconstructed and does not require 

tissue geometry. The strain images of the prostate phantom were processed 

using this computationally intensive method in order to validate the technique. 

The results were used to assess the effectiveness of it as a clinical tool for cancer 

diagnosis. [27] Limitations of this study was that the manual selection of tissue 

regions and tumor sites incorporate inter observer variability as a potential 

source of error, FEM boundary conditions could potential be improved and 
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implementing a finer FEM mesh would lead to greater resolution, Ultimately the 

method should be improved to better locate tumors and calculate the Young's 

modulus ratios in order to diagnose prostate cancer more effectively. Finally, a 

faster program should replace abacus to allow post processing to be performed 

in real time, considering it required several minutes to perform the iterative 

technique. E. Fiorini, V. Cipriano, et al, proposed method calculating liver 

stiffness with RTE in patients with chronic viral hepatitis and to assess the 

possible correlation between RTE data and the degree of fibrosis based on liver 

biopsy findings (Ishak score). 26 patients (18M, 8F, mean age 41±13 [standard 

deviation], range 22-62) with chronic viral hepatitis were prospectively 

evaluated with ultrasonography (US) that included RTE. All patients then 

underwent US-guided percutaneous liver biopsy (right lobe) for evaluation of 

fibrosis. Examinations were done with a iU22 scanner (Philips, Bothell, WA, 

USA); a convex transducer (C5-1) was used for the US examination, and a 

linear transducer (L12-5) for RTE. In the RTE images, relative tissue stiffness is 

conveyed according to a color scale with soft areas represented in green/red and 

hard areas in blue. Patients were examined in the supine position in suspended 

normal respiration; three loops of 20 RTE frames were recorded for each case. 

For each patient, we calculated the mean strain ratio (MSR) for the 3 loops. The 

Spearman correlation coefficient was used to assess correlation between the 

ASR and fibrosis stage (F) reflected by the Ishak score. The Spearman 

coefficient showed significant correlation between the MSR and F (Rho = 0.470, 

p = 0.015). RTE seems to be a valuable tool for noninvasive evaluation of 

fibrosis in patients with chronic viral hepatitis although these findings need to be 

confirmed in larger case series. [28] Hassan Rivaz, Emad M. Boctor, et al, 

produced two real-time elastography techniques that depend on analytic 

minimization (AM) of regularized cost functions. The former method (1D AM) 

gives axial strain and integer lateral displacement, while the later method (2D 

AM) gives both axial and lateral strains. The cost functions integrate similarity 

of RF data intensity and displacement continuity, generating both AM methods 

firm to small decorrelations occur throughout the image. Also it was used 
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Kalman filter to calculate the strain field from the displacement field given by 

the AM methods. Simulation and phantom experiments showing that the both 

methods give strain images with high SNR, CNR. [29] Angelica Chiorean, 

Maria Magdalena, Duma et al, developed method based on pre – and post 

compression data. According to the equipment type, various colors (256 hues) or 

gray shades are super imposed on 2D image. Stiff areas are coded in blue or 

dark gray tins, while softer, elastic tissue appear in red, green or bright shades of 

gray. The examination protocol was in accordance with Hitachi guidelines for 

elastography and final assessment was based on principles of Tsukuba elasticity 

score. [30] The limitation of this study was that the reported sensitivity and 

specificity of sonoelastography ranged between 77.9_96%, 87_91.5% 

respectively. The higher values were obtained with the assessment of smaller 

lesions, under 2 cm in diameter. It is also influenced by breast type; a higher 

sensitivity being observed for adipose breasts. Furthermore, has a limited 

application in very dense, fibrous parenchyma, in case of hematomas or breast 

implants. Hassan Rivaz, Emad Boctor, proposed study a 2-D strain imaging 

technique based on minimizing a cost function using dynamic programming 

(DP). The cost function integrates similarity of echo amplitudes and 

displacement continuity. Because tissue deformations are smooth, the 

integration of the smoothness into the cost function results in minimize 

decorrelation noise. The output of the method gives high-quality strain images 

of freehand palpation elastography with up to 10% compression, which shows 

that the method is more firm to signal decorrelation in comparison to the 

standard correlation techniques. The operation of the method is less than 1s and 

it is also appropriate for real time elastography. [31] Claire Pellot-Barakat, 

Mallika Sridhar, et al, explored method summarizes several approaches to breast 

elasticity imaging to explain some of the observed variability in breast imaging 

results. Preliminary clinical results from 13 patients with small and nonpalpable 

breast lesions obtained with a low noise elasticity imaging algorithm developed 

in the group and are then reported. All the benign lesions exhibited normal 

elasticity ranges. About half of the malignant lesions were undetected with 
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elasticity imaging most likely because of their small size (<7mm) or softening 

from the addition of fatty-replaced tissue. Other malignant lesions were clearly 

identified as areas with extreme elasticity values compared to their 

surroundings. We observed that some malignant lesions did not exhibit any 

desmoplasic stiffening while others showed an uncommon softening. It is clear 

that by broadening the study population to include small and nonpalpable 

lesions, we see much variability in elasticity image findings. [32] All the benign 

lesions in this study exhibited normal elasticity ranges, as expected for many 

benign masses. Among the 7 malignant lesions, 2 nonpalpable lesions were 

clearly detected as areas with extreme elasticity values compared to the 

surrounding tissue while 2 malignant lesions could not be identified with 

elasticity imaging. The 3 other malignant lesions did not exhibit striking 

elasticity patterns but had either high or low displacements, and this could be 

considered the limitation of this study. 
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Chapter Three 

Material and Methodology 

3.1 Methodology 

 The proposed method was developed using Matlab 2016 platform. The 

algorithm started with loading raw RF data to Matlab from breast elastography 

phantom, using B-mode ultrasound, manufactured by Siemens with central 

frequency of 6.67 MHz. Then axial and lateral displacements were obtained 

from the raw RF data using the 2D analytical minimization. Moreover, the least 

square regression approach was utilized to obtain the two strain images namely 

axial and lateral strain images as shown in figure.3.1. Then, the resultant images 

were filtered using the Kalman filter which enhanced the appearance of the 

strain images with minimal blurring. After that the region of interest (ROI) was 

segmented using the region growing segmentation to calculate the strain ratio, 

diameter and area. Strain ratio was calculated to determine tissue stiffness.   

3.1.1 Elastography 

Let   and    be two images obtained from the tissue before and after the 

deformation. Letting    and    be of size M N (Figure3.2). The goal is to find 

two matrices A and L where the        component of A        and L        are the 

axial and lateral motion of the pixel       of    .The axial and lateral strains are 

easily calculated by spatially differentiating A in the axial direction (resulting in 

  ) and L in the lateral direction (resulting in    ). 
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Fig.  3.1 Block diagram of the proposed method 

Load raw RF data image  

Segmentation using region growing 

Perform analytical minimization to extract Axial 

and lateral displacements  

 

Apply least square to calculate strain images 

Apply Kalman filter  

Quantitative metrics calculation:  

Diameter, Area and Strain ratio 
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3.1.1.1Dynamic Programming (DP) 

Towards present the general formation of DP , we reflect a single 

column j (an RF-line) in    (the image before deformation) in Figure 3.1 Let m 

and n be the length of the RF-lines and the number of RF-lines in the images 

(Figure3.1.1). Let     and     refer to the axial and lateral displacements of the      

sample of the RF-line in column j. In DP elastography [31], a regularized cost 

function is generated by adding the prior of displacement continuity (the 

regularization term) to an amplitude similarity term. The displacement 

continuity term for column j is  

                                
             

     (3.1) 

 

 

Fig.3.2 Axial, lateral and out-of-plane directions. The coordinate system is 

attached to the ultrasound probe. The sample       marked by x moved by 

           . where      and      are respectively axial and lateral displacements and 

initially are integer in dynamic programing. [29] 

which forces the displacements of the sample i (i.e.     and   ) be similar to the 

displacements of the previous sample i-1 (i.e.       and     ).    and    are axial 

and lateral regularization weights respectively. We write                     to 
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indicate the dependency of    and    on j. The regularized cost function for 

column j is then generated as following  

                                       
     

     
  

{
                              

 
                 }                               (3.2) 

 

where     and     are temporary displacements in the axial and lateral directions 

that are varied to minimize the term in the bracket. After calculating     for  i = 

2,…,m ,     is minimized at i = m giving    and   . The     and     values that 

have minimized the cost function at i = m are then traced back to i = 1, giving 

integer      and     for all samples of   line     . The process is performed for the 

next line j + 1 until the displacement of the whole image is calculated.  

3.1.1.2 Analytic Minimization (AN) 

Tissue deformations in ultrasound elastography are usually very small 

and therefore a subsample displacement estimation is required. We now develop 

a method that analytically minimizes a regularized cost function and gives the 

refined displacement field following the work presented in [33]. We first 

consider a specialization of Equation 3.2 in which we only consider refining 

axial displacements to subsample level. 

Having the integer displacements    and    from DP, it is desired to find        

values such that     +        gives the value of the displacement at the sample i 

for i = 1,…,m (   ,   and      correspond to line j. Hereafter, wherever the 

displacements correspond to the    line, j is omitted to prevent notation clutter). 

Such      values will minimize the following regularized cost function 

               ∑ {                              
                   

   

      
                            

 }            (3.3) 

 

where    > 0 and    > 0 are tunable axial and lateral regularization weights and 

subscript j-1 refers to the previous RF-line (adjacent RF-line in the lateral 

direction). Substituting    (i+  +     ) with its first order Taylor expansion 

approximation around     we have 
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               ∑ {                                              
   

   

                      
                            

 }       (3.4) 

 

where     is the derivative of the    in the axial direction. The optimal    values 

occur when the partial derivative of    with respect to     is zero. Setting 

    

     
    for i =1,..,m we have 

(   
 
           ̂)         (       ̂)            (3.5) 

D=

[
 
 
 
 

    
     
    

   
   

    
   
   

   
    ]

 
 
 
 

                                         (3.6) 

 

where                                       ),    [            ]
 
, e= 

         ,                          ,   [         ]
 
,  ̂ is the identity 

matrix and      is the total displacement of the previous line (i.e. when the 

displacement of the       line was being calculated,      was updated with 

                         ̂ are matrices of size    and   , e and   are 

vectors of size m.. 

Comparing 1D AM (as formulated in Equation 3.5) and 2D DP, they both 

optimize the same cost function. Therefore, they give the same displacement 

fields (up to the refinement level of the DP). In the next two subsections, we will 

further improve 1D AM. 

1) Biasing the Regularization: The regularization term           

           
  penalizes the difference between        and      

     , and therefore can result in underestimation of the displacement 

field. Such underestimation can be prevented by biasing the 

regularization by                                , where 

              ⁄ is the average displacement difference (i.e. 

average strain) between samples i and i-1. An accurate enough estimate 

of       is known from the previous line. With the bias term, the 
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R.H.S. of Equation 3.5 becomes   
   (       ̂)     (     

     )   where the bias term is                (only the first and 

the last terms are nonzero) and all other terms are as before. In the other 

words, except for the first and the last equations in this system, all other 

m-2 equations are same as Equation 3.5. 

Equation 3.5 can be solved for     in 4m operations since the coefficient matrix 

  
         ̂is tridiagonal. Utilizing its symmetry, the number of operations 

can be reduced to 2m. The number of operations required for solving a system 

with a full coefficient matrix is more than m3=3, significantly more than 2m. 

2) Making Elastography Resistant to Outliers: Even with pure axial 

compression, some regions of the image may move out of the imaging 

plane and decrease the decorrelation. In such parts the weight of the data 

term in the cost function should be reduced. The data from these parts 

can be regarded as outliers and therefore a robust estimation technique 

can limit their effect. Before deriving a robust estimator for Δa, we 

rewrite Equation 3.4 as 

      ∑             
           (3.7) 

Where    =      -           
          is the residual,       =   

  and R is the 

regularization term. The M-estimate of Δa is   ̂           ∑        
   

     } where       is a robust loss function [34]. The minimization is solved by 

setting 
  

    
    

      
  

    
 

      

    
                   

A common next step [35] is to introduce a weight function w, where w(  ). 

         . This leads to a process known as “iteratively reweighted least 

squares” (IRLS) [36], which alternates steps of calculating weights w (  ) for    

= 1…m using the current estimate of Δa and solving Equation 3.8 to estimate a 
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new Δa with the weights fixed. Among many proposed shapes for w(.), we 

compared the performance of Huber [34-35] 

      {
          |  |   

 

|  |
                 |  |               

    (3.9) 

And Cauchy [36] 

      
 

      ⁄   
                                   (3.10) 

functions and discovered that the stricter Cauchy function (which decreases with 

inverse of the square of the residual) is more suitable in our application. To 

better discriminate outliers, we calculate the residuals    at linear interpolation of 

the integer sample displacements provided by DP. With the addition of the 

weight function, Equation 3.8 becomes 

    
         ̂        

   (       ̂)                        (3.11) 

Where w=diag (w(  )…w(  )). This equation will converge to a unique local 

minimum after few iterations [36]. The convergence speed however depends on 

the choice of T, which in this work is defined manually. Since the Taylor 

approximation gives a local quadratic approximation of the original non-

quadratic cost function, the effect of higher orders terms increase if Δ  is large. 

Assuming that DP gives the correct displacements, ‖   ‖ 
   where ‖ ‖  is 

the infinity norm and      . In practice, however,       because the linear 

interpolation of the DP displacements (which is very close to the correct 

displacement) is used to calculate the residuals   . Therefore, a small value can 

be assigned to T in 1D AM provided that DP results are trusted. 

The coefficient matrix      
           ̂Equation 3.11 is the Hessian of the 

cost function C whose minimum is sought. This matrix is strictly diagonally 

dominant (i.e. |   |  ∑    |   |for all i where     is the i ,    element of Q), 

symmetric and all diagonal entries are positive. Therefore, it is positive definite, 
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which means that setting the gradient of C to zero results in the global minimum 

of C (not in a saddle point, a local maximum or a local minimum). All of the 1D 

AM results presented in this work are obtained with one iteration of the above 

equation. 

1D AM takes the integer axial and lateral displacement fields from DP and gives 

refined axial displacement. It inherits the robustness of DP and adds more 

robustness when calculating the fine axial displacements via IRLS. However, 

there are redundant calculations in this method which are eliminated in 2D AM 

as described next. 

In 2D AM, we modify Equation 3.2 to calculate subsample axial and lateral 

displacement fields simultaneously. The outline of our proposed algorithm is as 

follows 

1. Calculate the integer axial and lateral displacements of one or more seed 

RF-lines (preferably in the middle of the image) using DP (Equation 3.2). 

Calculate the linear interpolation of the integer displacements as an 

initial subsample estimate. 

2.  Calculate subsample axial and lateral displacements of the seed RF-line 

using 2D AM, as explained below. Add the subsample axial and lateral 

displacements to the initial estimate to get the displacement of the seed 

line. 

3.  Propagate the solution to the right and left of the seed RF-line using the 

2D AM method, taking the displacement of the previous line as the initial 

displacement estimate. 

Benefits of 2D AM are two-fold. First it computes subsample displacements in 

both axial and lateral directions. Lateral strain contains important information 

from tissue structure that is not available from axial strain [37-39]. Second, it is 

only required to calculate the displacement of a single line using DP (the seed), 

eliminating the need to have the integer displacement map for the entire image. 

This is significant as in the 1D AM method, the initial step to calculate the 2D 

integer displacements using DP takes about 10 times more than the 1D AM. 
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Assume that initial displacement estimates in the axial direction,   , and in the 

lateral direction,   , are known for all i = 1 … m samples of an RF-line. Note that 

   and    are not integer; for the seed line they are the linear interpolation of the 

integer DP displacements and for the rest of the lines are the displacement of the 

previous line. It is desired to find    and     values such that the duple     

            gives the axial and lateral displacements at the sample i. Such 

       values will minimize the following regularized cost function 

                       

 ∑                                
 

 

   

                       
                       

 

   
 
(             )

 
 }                                   

 

where I(i,j) is the     sample on the      RF-line. Since we perform the 

calculations for one RF-line at a time, we dropped the index j to simplify the 

notations:  ,    ,   and    are     ,     ,       and      .        is the lateral 

displacement of the previous RF-line (note that         is the total lateral 

displacement of the previous line, i.e. when the displacement of the      line 

was being calculated,         was updated with        +        ). Since in the first 

iteration    and    (the initial displacement estimates) are in fact the 

displacements of the previous RF-line, for the first iteration we have         =   . 

This simplifies the last term in the R.H.S. to   
 
     .The regularization terms are 

 ,   and   
 
.   determines how close the axial displacement of each sample 

should be to its neighbor on the top and    and   
 
determine how close lateral 

displacement of each sample should be to its neighbors on the top and left (or 

right if propagating to the left). If the displacement of the previous line is not 

accurate, it will affect the displacement of the next line through the last term in 

the R.H.S. of Equation 7. Although its effect will decrease exponentially with j, 

it will propagate`e for few RF lines. Therefore, we set 

 



27 

 

  
 
 

  

  |      |
                                 (3.13) 

to prevent such propagation where        is the residual associated with the 

displacement of the      sample of the previous line. A large residual indicates 

that the displacement is not accurate and therefore its influence on the next line 

should be small, which is realized via the small weight   
 
 . This is, in principle, 

similar to guiding the displacement estimation based on a data quality indicator 

[40]. The effect of the tunable parameters  ,   and   
 
 is studied in the Results 

section. Writing the 2D Taylor expansion of the data term in Equation 7 around 

              

                                        
 
        

 
          (3.14) 

where       and       are the derivatives of the    at point             in the 

axial and lateral directions respectively. Note that since the point              

is not on the grid    and    are not integer), interpolation is required to calculate 

      and      . We propose a method in Section II-C1 that eliminates the need for 

interpolation. The optimal (   ,    ) values occur when the partial derivatives of 

   with respect to both    and    are zero. Setting 
   

    
   and 

   

    
   for i = 

1…m and stacking the 2m unknowns in                           and 

the 2m initial estimates in                    we have 

 

                                  (3.15) 

 

where    = diag(0,   
 
,0,   

 
,…,0,   

 
  is a diagonal matrix of size       , 

    = diag(             ) is a symmetric tridiagonal matrix of size       

with 
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 ]             (3.16) 

blocks on its diagonal entries where     
   and     

   are the derivatives of the    at 

point (i +     +   ) in the axial and lateral directions, 

  
           

         
         

         
         

         
               (3.17) 

 

Where     
     and        

  are calculated at point (i +     +   ), and   

              ,                        . 

We make four modifications to Equation 3.15: First we take into account the 

attenuation of the ultrasound signal with depth. As the signal gets weaker with 

depth, the first term in the R.H.S. of Equation 3.15    
    gets smaller. This 

results in increasing the share of the regularization term in the cost   and 

therefore over-smoothing the bottom of the image. 

The attenuation of the ultrasound signal [41] reflected from the depth 

                           ⁄ where    is the frequency dependent attenuation 

coefficient of tissue and is equal to 0.63 dB/cm/MHz for fat [41],    is the center 

frequency of the wave (in MHz) and   is in cm. Having the exponential 

attenuation equation, the attenuation level at sample   will be 

      ,   
                   

          ,  i=1…m             (3.18) 

 

Where the          is the speed of sound in tissue (in cm/sec) and    is the 

sampling rate of the ultrasound system (in MHz). This is assuming that the TGC 

(time gain control) is turned off. Otherwise, the TGC values should be taken into 

account in this equation. Let the       diagonal matrix Z be Z = 

diag(             ). To compensate for the attenuation, we multiply the    

and    matrices in Equation 3.15 by Z, and therefore reduce the regularization 

weight with depth. The regularization weight can vary substantially with no 

performance degradation. Therefore, approximate values of the speed of sound 

and attenuation coefficient will suffice. Second, we add a bias term in the 

regularization similar to the 1D case. Here we only bias the axial displacement 
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since the difference between the lateral displacements of the points on a RF-line 

is very small, usually less than 4 RF-lines. Third, we exploit the fact that, 

because the tissue is in contact with the ultrasound probe, the axial displacement 

of the top of the image is zero relative to the probe (the lateral displacement of 

the top of the image is not zero as tissue might slip under the probe). Therefore, 

we enforce the axial displacement of the first sample to be zero by changing the 

first row of   ,   
    and     . Fourth, we make the displacement estimation 

robust via IRLS using the Cauchy function (Equation 3.10). Similar to 1D AM, 

T is selected manually. For the first (seed) RF line, a small value can be selected 

for T if DP results are trusted. For the next lines, the value of    determines the 

accuracy of the Taylor expansion 14: for a small   , the residuals of the inliers 

are small and therefore a small T can be chosen, while for a large    the inliers 

might give large residuals and therefore a large value for T is required. Since the 

tissue motion is mostly continuous,    mostly depends on the lateral sampling 

of the image (i.e. the number of A-line per cm). Therefore, if many A-lines are 

given per cm of the image width, a small value of T will give the optimum 

results. Since the amplitude of signal is decreasing due to attenuation, we 

decrease the IRLS parameter T with depth by multiplying it with    at each 

sample i. With these modifications, Equation 3.10 becomes  

                                    (3.19) 

 

Where W=diag(0,w(  ),w(  ),w(  )…w(  )w(  )) (i.e.                   

      for i=1…m except for        which guarantees the displacement of the 

first sample to be zero) is the weight function determined by the residuals 

              (         )         
         

  , w is as before 

(Equation3.10), the bias term s is a vector of length 2m whose all elements are 

zero except the 2m-   element:s2m-1 =   , and            ⁄   is as 

before. Similar to Equation 3.11, the coefficient matrix      
           

is strictly diagonally dominant, symmetric and all the diagonal entries are 

positive. Therefore,    is positive definite which means that solving Equation 

3.14 results in the global minimum of the cost function C. The updated 
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displacement field (axial and lateral) will be     . Equation 3.14 can be 

solved for    in 9m operations since the coefficient matrix    
           is 

pentadiagonal and symmetric. This number is again significantly less than 

        , the number of operations required to solve a full system.  

3.1.1.3 Strain Estimation and Kalman Filter  

Strain estimation requires spatial derivation of the displacement field. 

Since differentiation amplifies the signal noise, least squares regression (LSR) 

techniques are commonly used to obtain the strain field. Adjacent RF-lines are 

usually processed independently in strain calculation. However, the strain value 

of each pixel is not independent from the strain value of its neighboring pixels. 

The only exception is the boundary of two tissue types with different mechanical 

properties where the strain field is discontinuous. We use the prior of piecewise 

strain continuity via a Kalman filter to improve the quality of strain estimation. 

We first calculate the strain using least squares regression. Each RF-line is first 

differentiated independently, for each sample i, a line is fitted to the 

displacement estimates in a window of length 2k + 1 around i, i.e. to the samples 

i - k to i + k. The slope of the line,      , is calculated as the strain measurement at 

i. The center of the window is then moved to i + 1 and the strain value         is 

calculated. We reuse overlapping terms in calculation of      and       , and 

therefore the running time is independent of the window length 2k+1. Having      

for i = 1…m and j = 1…n, we propose the following algorithm based on Kalman 

filter to take into account the prior of strain continuity. 

     j are the noisy measurements of the underlying strain field     . Since the      

values are calculated using axial windows, we apply the Kalman filter in the 

lateral direction. Let     be the Gaussian process noise and     be the Gaussian 

measurement noise to be removed. We have [38-39] 

                        (3.20) 

                          (3.21) 
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Let  ̂  
   (note the super minus) be our a priori strain estimate from the process 

prior to step j (i.e. from the Equation 3.7) and  ̂    be our a posterior strain 

estimate at step j given measurement    . Let also the variances of  ̂  
   and 

 ̂    be respectively   and  . The time update (i.e. prior estimation) equations 

will be [39] 

 ̂ 
     ̂                        (3.22) 

  
   

          
       (3.23) 

 

where   
  is the variance of the process noise r.        is initialized to zero for 

the first sample j = 1. The measurement update equations will be [42] 

 ̂     ̂ 
    

  
   

  
      

 
       ̂ 

          (3.24) 

        
  

   

  
      

 
   

   
                  (3.25) 

 

Where   
   is the variance of the measurement noise s. Note that since both the 

state     and measurement     are scalars, all the update equations only require 

scalar operations. We estimate   
   and  

  as following. Let the mean 

(calculated using a Gaussian kernel of standard deviation of   = 0.6 sample) of 

the strain values in     blocks around samples (i,j-1) and (i,j) be     and 

  respectively. Then    
  is [43] 

  
           

                             (3.26) 

 

This is a reasonable estimate of   
   as it tries to capture the difference between 

pixel values at adjacent RF-lines. If the difference between the mean strain 

values is high, less weight is given to the a priori estimate. This space-variant 

estimation of the model noise provides a better match to local variations in the 

underlying tissue leading to a greater noise reduction.   
  is the variance of     

measurements in the entire image and is constant throughout the image. 
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3.1.2 Segmentation 

Segmentation is one of the most difficult tasks in image processing, 

segmentation using region growing was proposed on this work; As its name 

implies, region growing is a procedure that groups pixels or sub regions into 

larger regions based on predefined criteria for growth. The basic approach is to 

start with a set of "seed" points and from these grow regions by appending to 

each seed those neighboring pixels that have predefined properties similar to the 

seed (such as specific ranges of gray level or color). Selecting a set of one or 

more seed points often can be based on the nature of the problem, when a priori 

information is not available, one procedure is to compute at every pixel the same 

set of properties that ultimately will be used to assign pixels to regions during 

the growing process. If the result of these computations shows clusters of values, 

the pixels whose properties place them near the centroid of these clusters can be 

used as seeds. [44] 

Selection of the seed of the seed pixel may be manual selection as done here or 

provided by an external algorithm. Whereas, the measure of similarity may be 

the absolute difference between the selected pixel and the neighborhood. 

Region growing algorithm was found to be the best algorithm for the problem at 

hand; because of the phantom object is coherent and has similar intensity value, 

hence, it outputs better results than other algorithms as threshold and active 

contour. 

3.1.3 Strain Ratio  

Strain ratio is metric that determine the ratio of the lesion strain to the 

background strain, it‟s dimensionless metric that specifies the measurement to 

which strain was applied to the object. 

In the proposed work, the stain is calculated by taking a segment (a block) of the 

lesion where the strain was dominant namely the lower edge of the object, then 

it‟s compared with a block of the same size to the background, all obtained from 

the same strain image. The ratio then was calculated from the average value of 

each block. And a single metric result was obtain quantifying the ratio. [21] 
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         (3.28) 

3.1.4 Area and diameter calculations: 

 The area and diameter were calculated using Matlabs‟ built-in functions 

that infers them from the region properties. The area firstly calculated from the 

segmented object by counting the number of positively labeled pixels (pixels 

which have value of one) and then summing all those pixels. Diameter is then 

inferred from the area by calculating the range of pixel locations either in the X-

axis or the Y-axis.    

3.2 Material   

Field II [45] and ABAQUS (Providence, RI) software are used for 

ultrasound simulation and for finite element simulation. Many scatterers are 

distributed in a volume and an ultrasound image is created by convolving all 

scatterers with the point spread function of the ultrasound and adding the results 

using superposition. The phantom is then meshed and compressed using finite 

element simulation, giving the 3D displacement of each node of the mesh. The 

displacement of each scatterer is then calculated by interpolating the 

displacement of its neighboring nodes. Scatterers are then moved accordingly 

and the second ultrasound image is generated. The displacement and strain fields 

are then calculated using the AM methods and are compared with the ground 

truth. 

The parameters of the ultrasound probe are set to mimic commercial probes. The 

probe frequency is 7.27 MHz, the sampling rate is 40 MHz and the fractional 

andwidth is 60%. A Hanning window is used for apodization, the single transmit 

focus is at 22.5 mm, equi-distance receive foci are from 5 mm to 45 mm at each 

5 mm, the transmit is sequential, and the number of active elements is 64. Two 

simulated phantoms are generated. The first phantom is          mm and 

the second one is          mm. Respectively       And         

scatterers with Gaussian scattering strengths [46] are uniformly distributed in the 
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first and second phantom, ensuring more than 10 scatterers [47] exist in a 

resolution cell. 

The mechanical properties of both phantoms, required for finite element 

simulation, is assumed to be isotropic and homogeneous. The first phantom is 

uniform while the second phantom contains a circular hole filled with blood that 

can move out-of-plane, simulating a blood vessel in tissue (Figure 3.2 (a)). The 

scatterers are distributed in the vessel, also with the same intensity and 

distribution as the surrounding material. A uniform compression in the z 

direction is applied and the 3D displacement field of phantoms is calculated 

using ABAQUS. The Poisson‟s ratio is set to         in both phantoms to 

mimic real tissue [33,48], which causes the phantoms to deform in x & y 

directions as a result of the compression in the z direction. 

 

Fig 3.3 Second simulation experiment. Measurements in (a) are in mm. In (b), a 

scatterer is shown in the bottom left part as a red dot. Its displacement is 

calculated by interpolating the displacements of its 3 neighboring nodes on the 

mesh. (c) is the target (circular) and background (rectangular) windows. [29] 
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Chapter Four 

Result and Discussion 

4. Result and Discussion 

For experimental evaluation, RF data is acquired from an Antares 

Siemens system (Issaquah, WA) at the center frequency of 6.67 MHz with a 

VF10-5 linear array at a sampling rate of 40 MHz The 2D AM method is used in 

the experimental results. 

A breast elastography phantom (CIRS, Norfolk, VA) with a lesion of 10 mm 

diameter and three times stiffer than the background was palpated freehand. 

The tunable parameters of the 2D AM algorithm are set to ∝ = 5,   = 10,     = 

0:005 and T= 0.2, and the tunable parameters of the DP (run for the seed RF-line 

in the 2D AM algorithm) are   =   = 0.15 in all the phantom results (except if 

specified otherwise). 

4.1 Phantom Result  

An elastography phantom (CIRS elastography phantom, Norfolk, VA) 

was compressed 0.2 in axially using a linear stage, resulting in an average strain 

of 6%. And then two RF frames were obtained corresponding to before and after 

the compression. The Young‟s elasticity modulus of the background and the 

lesion under compression were respectively 33 kPa and 56 kPa. 

4.1.1 Analytical minimization 2D 

 The displacement map was calculated using the 2D AM method. Figure 

4.1 shows the axial and lateral displacement. 
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(a) Original    image 

 

 

(b) Axial displacement (mm) 
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(c) Lateral displacement (mm) 

Fig.4.1. Performance of the 2D analytical minimization (2D AM), (a) shows the 

original image, (b) is axial displacement in mm, and (c) is lateral displacement 

in mm. 

In the previous figure the axial and lateral displacement were calculated to show 

movement of the tissue, that was used in strain calculation. 

4.1.2 Least square regression and Kalman filter  

The linear least squares differentiation technique was applied to the axial 

and lateral displacements field calculated with 2D AM, to obtained strain image 

(elastogram). Figure 4.2 shows the axial and lateral strain. 
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   (a)Axial strain 

 

(b) lateral strain 
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Fig.4.2. Performance of the least squares regression in experimental data, (a) 

shows axial strain, while (b) is lateral strain. 

In figure 4.2 comparing the strain values at a horizontal line of (a) and (b), the 

noisy       measurements were smoothed in the lateral direction using the 

proposed least square regression, with minimal blurring of the edge.  

 The Kalman filter was then used to axial strain image. Figure 4.3 shows using 

of Kalman filter in denoising of axial image. 

The pixels of images in (a) and (b) were respectively the least squares 

measurements. The Kalman filter removes the noise while keeping the image 

sharp, due to the variable model noise. 

 

(a) Strain without KF 
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(b) strain with KF 

Fig.4.3. performance of Kalman filter in experimental data. (a) shows the axial 

strain field calculated by least squares regression of the noisy displacement field. 

(b) depicts the strain field calculated from the noisy measurements of (a) (KF in 

(a) and (b) refers to Kalman filter). 

 

4.1.3. Region growing segmentation 

Image segmentation was optimal way to extract object from the 

background. Three different types of image segmentation were used (active 

contour, threshold, and region growing), region growing gave beast result that 

properly segmentped the object from back ground comparing it with active 

contour and threshold. 
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(a) Image Before Segmentation 

(b) image After Segmentation 
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Fig 4.4 Performance of region growing segmentation, (a) represent the image 

*before segmentation, and in (b) the object is segmented from the background. 

Segmentation was used to segment the object from the back ground, to calculate 

the strain ratio and the diameter and area.  

 

4.1.4. Strain ratio 

 The strain ratio was calculated to determine the lesion stiffness that is 

use in classification between tissue types; the result of calculation shows that the 

strain ratio was 0.4; which indicates that the lesion has 0.4 strain ratio less than 

background strain, which may indicate there is a potential abnormality exist in 

the lesion area. 

The diameter and area were calculated to be compared with the given data for 

the phantom to assess the accuracy of the result obtained by the quantitative 

elastography. The diameter was 11.5644 mm and the phantom lesion diameter 

was  12 mm and the area was 195.9429    , compared to 196 mm
2
  with the 

phantoms‟ result; which means that the calculation result are accurate compared 

with the phantoms‟ results. 
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Chapter Five 

Conclusion and Recommendation 

5.1 Conclusion 

 Qualitative elastography alone did not give information about tissue 

stiffness, so in this thesis quantitative elastography was proposed to determine 

the lesion stiffness. In the quantitative elastography the suspicion lesion was 

automatically been segmented from the background. And then the strain ratio of 

the lesion was calculated to show the lesion stiffness, diameter and area were 

also measured to calculate dimensions of the lesion. The strain ratio gives 

information about lesion stiffness, so it can be used for further tumor 

classification. 

From all above it could be concluded that: 

 Segmentation using region growing algorithm performed with best result 

compared with k-means and active contours. 

 The strain ratio was 0.4; which means the lesion has 0.4 strain ratio less 

than background strain, which may indicate there is a potential 

abnormality exist in the lesion area. 

 Calculations of the diameter, area, and strain ratio shown very close 

results to the phantom result which means that the implementation is 

quite accurate and yields to reliable results. 

5.2 Recommendation  

 The following recommendations are suggested: 

Formerly quantitative elastography can be used for real data (patient) instead of 

phantom. 

Finally, the value of strain ratio can be used in classification between tumor 

types and grades.  
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