قسال الله تعالسي:

(وَقُلِ اعْمَلُواْ فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَيُنَبِّئُكُم بِمَا كُنتُمْ تَعْمَلُون) (103)

سورة التوبة

صدق الله العظيم

Dedication

I dedicate this research to, my mother, my father, my Family, my brothers and sisters and all my friends.

Acknowledgment

I would like to express my gratitude to Sudan University and Technology, Graduated College, Faculty of Science and Department of physics for research facilities and encouragement. I indebted to many people for their ideas and assistance. Primary thanks to the many academic who have advanced our knowledge of physics .I would like to thanks all the reviewers and colleagues who have worked closely with me. Extend my special thanks for my Special thank for my supervisor: Associate Prof. Rawia Abdelgani Elobaid Mohammed and my Co.-Supervisor Professor: Mubarak Dirar Abdulla for invaluable help and truthful suggestion. My thanks for my father for his supporting and help me greatly by supplements. My husband who took charges of this project and directed it across the finish line.

Abstract

In this research the carbon Nanotubes were doped by TiO_2 , MgO, CuO and ZnO, such that four samples from each metal oxide were prepared at different annealing temperatures (450,500,550 and 600)C⁰. The optical properties like absorption coefficient and refractive index were studied using ultra violet spectrometer. The electrical properties like conductivity and dielectric constant were also investigated by using software program. The temperature increase decrease the absorption coefficient TiO₂ and CuO and for ZnO and MgO while it increase with temperature decrease the conductivity and the dielectric constant for TiO₂, CuO and ZnO, while it increase them for MgO to briefed. These results were explained theoretically.

المستخلص

في هذا البحث شُوبت الانابيب الكاربونانوية المطعمة بـ Tio₂,Mgo,Cuo,Zno بحيث حضرت اربعة عينات من كل اوكسيد معدن عند درجات حرارة مختلفة هي .^oC(450,500,550,and600)

دُرست الخواص الضوئية مثل معامل الامتصاص والانكسار باستخدام مطياف الاشعة فوق البنفسجية ودُرست الخواص الكهربية ايضا" مثل الموصلية وثابت العزل باستخدام برمجيات حاسوبية حيث اتضح ان زيادة درجة الحرارة تقلل معامل الامتصاص لTio2,Cuoوتزيده لـ Zno, Mgo.

اما معامل الانكسار فينقص بزيادة درجة الحرارة لـ Tio2, Cuo, Zno في حين تزيد مع درجة الحرارة مع Mgo وتؤدي زيادة درجة الحرارة الي نقصان الموصلية وثابت العزل لـ Tio2, Cuo, Zno في حين تزيد لـ Tio2, Cuo, Zno في حين تزيد لـ Mgo . وقد تم تفسير هذه النتائج نظريا".

List of Contents

No	Subject	Page NO	
1	الآيـــة	I	
2	Dedication	II	
3	Acknowledgment	- 111	
4	Abstract	IV	
5	المستخلص بالعربي	V	
Chapter One Introduction			
6	1.1 Nano Science	1	
7	1.2 Research Problem	3	
8	1.3 Literature Review	3	
9	1.4 Aim of the Work	5	
10	1.5 Thesis layout	5	
Chapter Two Optical and electrical Properties of Matter			
11	2.1 Introduction	6	
12	2.2 Interaction of Light with Matter:	6	
13	2.2.1 Refraction	6	
14	2.2.2 Reflection	7	
15	2.2.3Absorption	7	
16	2.2.4 Transmission	8	
17	2.2.5 Scattering	8	
18	2.3 Refractive Index	11	
19	2.4 Optical Properties	12	
20	2.4.1 Absorption and Emission:	13	
21	2.5 Basic Concepts of Electrical Conduction	15	

22	2.6 Electro-Conductive Materials	16	
23	2.6.1 Resistivity of various materials	16	
24	2.6.2 Resistivity Density Products	18	
25	2.7 Electrical Properties of carbon nano tubes	18	
26	2.8 Electrical Conductivity of carbon nano tubes	20	
	Chapter Three Literature Review		
27	3.1 Introduction	21	
28	3.2 Carbon nanotubes properties and application	22	
2	3.3 Growth mechanisms	24	
30	3.3.1 Multi-walled nanotubes	24	
31	3.3.2 Single-walled nanotubes:	26	
32	3.4 Optical properties:	30	
33	3.4.1 Optical absorption:	30	
34	3.4.2 Low-energy-loss measurements:	33	
35	3.5 Electrical transport in perfect nanotubes	35	
36	3.5.1 Electrical transport in bundles of SWNTs:	36	
37	3.5.2 Electrical transport in individual SWNTs	39	
38	3.6 Electrical Properties and Applications of Carbon Nanotube	43	
	Structures		
39	3.6.1 Doping Characteristics of Nanotubes	44	
40	3.6.2 Characteristics of Electrical Transport	47	
41	3.7 Structural, electrical, and optical properties of carbon	53	
	nanotubes incorporated Al-doped zinc oxide thin films		
	prepared by sol-gel method		
Chapter Four			
Experimental Work			
42	4.1 Introduction	63	
43	4.2 Experimental Devices	63	

43	4.2.1 Ultraviolet Spectrometer	63
44	4.3 Samples Preparation	63
45	4.4 Theoretical model	64
Chapter Five Results, Discussion and Conclusion		
46	5.1 Introduction	67
47	5.2 Results	67
48	5.3 Discussion	90
49	5.4 Conclusion	94
50	5.5 Recommendation for Future work	94
51	References	115

List of Table

No	Subject	Page NO
1	Table (3.6.1) The parameters of the AZO: MWCNT files calculated from the XRD patterns	60
2	Table (3.6.2) Weight percentages of different elements in different ratios of AZO: MWCNT films.	61

List of Figure

No	Subject	P. NO
1	Fig 3.1 Schematic representation of the construction of a nanotube by	23
	rolling-up an infinite strip of graphite sheet (so-called graphene).	
2	Fig3.2 Lip-lip growth mechanism scheme representing a top view of a	25
	double-walled nanotube with an open zigzag Edge.	
3	Fig3.3 Spontaneous closure of a (5, 5) armchair tube.	27
4	Fig3.4 Base growth mechanism scheme.	29
5	Fig.3.5 Mechanism of hexagon addition at the nanotube-base by bond	29
	formation between a pair of handles atoms at the opposite sides of a	
	heptagon.	
6	Fig.3.6 Optical absorption of purified SWNT thin film samples synthesized	30
	by the arc-discharge method using a NiY Catalyst.	
7	Fig.3.7 the polarized optical absorption spectra of the SWNIs in the	32
	channels of AIPO ₄ -5 crystal for different angle y of the light polarization	
-	With respect to the tube axis $\mathbf{E} = 2.9 \text{ M}$ and $\mathbf{E} = 1.1 \text{ m}$ and $\mathbf{E} = 1.2 \text{ m}$ COMPUTED 1	
8	Fig. 3.8 Measured optical absorbance between 0 and 3 eV of SWN1 samples	33
0	with 1.5 nm mean diameter.	24
9	Fig. 5.9 Low-energy EELS spectra exhibiting peaks due to interband	34
10	Fig 2.10 Energy dispersion of the peaks in the low loss spectre of SWNTs	25
10	Fig 3.11 The L V characteristics of a 12 nm diameter bundle of about 60	25 26
11	SWNTs is measured using a four probe method	50
12	Fig. 3.12 Conductance G vs. gate voltage Vg at $T = 1.3$ K. The neak spacing	27
12	is typically ~ 1.5 V	57
13	Fig 3.13 (A–D) Schematic energy-level diagrams for the nanotube with the	38
10	two leads with the Coulomb blockade model	
14	Fig 3.14 curves of the SWNT at different gate voltages Vg.	39
15	Fig 3.15 Two-probe linear conductance vs. gate voltage at several different	41
	temperatures T.	
16	Fig.3.16 Scaled conductance vs. eV/kT.	42
17	Fig 3.17 The I–V characteristics at different temperatures measured using	42
	low-resistance contacts.	
18	Fig 3.18 Schematic side view of a nanotube-base FET (TUBEFET) device.	42
19	Fig 3.19 Effect of ambient conditions on the electronic band structure of a	45
	CNT-metal contact.	
20	Fig 3.20 Current–Voltage (I–V _{bias}) curves as a function of gate voltage	50
	(V _{gate}) reveal p-type characteristics for an SWNT arranged in a FET	
	configuration (see top-left inset) The applied bias is across the source and	
	drain electrodes (V_{bias}) and V_{gate} is applied on the backside of the FET.	

21	Fig 3.21 Sharp spikes in the conductance (G), characteristic of Coulomb	51
	blockade and single electron tunneling, is seen in electrical transport through	
	a SWNT as the gate voltage (Vg) is varied.	
22	Fig 3.22 XRD spectra of the AZO: MWCNT thin films with various	55
	MWCNT ratios.	
23	Fig 3.23 FWHM and crystallite size of the AZO: MWCNT thin films as a	56
	function of MWCNT ratio.	
24	Fig 3.24 Cross-section (a) and surface morphology (b) - (d) of the AZO:	56
	MWCNT thin films with the MWCNT ratio of 0, 0.01, and 0.1wt. %.	
25	Fig 3.25 Sheet resistance of AZO: MWCNT thin films as function of	57
	MWCNT ratio.	
26	Fig 3.26 Optical transmittances of AZO: MWCNT thin films different	57
	MWCNT ratio.	
27	Fig 3.27 Plot of $(\alpha hv)^2$ against (hv) for the AZO: MWCNT thin films with	58
	different MWCNT ratio.	
28	Fig 3.28 Figures of merit for the AZO: MWCNT thin films with various	61
	MWCNT ratios.	
29	Fig 5.1 the optical absorbance spectra of CNTs doping by TiO ₂ thermal	67
	annealing by rate (450,500,550 and 600°C)	
30	Fig 5.2 the optical absorbance spectra of CNTs doping by MgO thermal	68
	annealing by rate (450,500,550 and 600°C)	
31	Fig 5.3 the optical absorbance spectra of CNTs doping by CuO thermal	68
	annealing by rate (450,500,550 and 600°C)	
32	Fig 5.4 the optical absorbance spectra of CNTs doping by ZnO thermal	69
	annealing by rate (450,500,550 and 600°C)	
33	Fig 5.5 the optical absorbance coefficient spectra of CNTs doping by TiO_2	69
	thermal annealing by rate (450,500,550 and 600°C)	
34	Fig 5.6 the optical absorbance coefficient spectra of CNTs doping by MgO	70
	thermal annealing by rate (450,500,550 and 600°C	
35	Fig 5.7 the optical absorbance coefficient spectra of CNTs doping by CuO	70
	thermal annealing by rate (450,500,550 and 600°C)	<u> </u>
36	Fig 5.8 the optical absorbance coefficient spectra of CNTs doping by ZnO	71
	thermal annealing by rate (450,500,550 and 600°C	
37	Fig 5.9 the optical transmission spectra of CNTs doping by TiO ₂ thermal	71
	annealing by rate (450,500,550 and 600°C)	
38	Fig 5.10 the optical transmission spectra of CNTs doping by MgO thermal	72
	annealing by rate (450,500,550 and 600°C)	
39	Fig 5.11 the optical transmission spectra of CNTs doping by CuO thermal	72
	annealing by rate (450,500,550 and 600°C)	
40	Fig 5.12 the optical transmission spectra of CNTs doping by ZnO thermal	73
	annealing by rate (450,500,550 and 600°C)	
41	Fig 5.13 the optical reflection spectra of CNTs doping by TiO ₂ thermal	73

	annealing by rate $(450,500,550 \text{ and } 600^{\circ}\text{C})$	
42	Fig 5.14 the optical reflection spectra of CNTs doping by MgO thermal	74
	annealing by rate $(450,500,550 \text{ and } 600^{\circ}\text{C})$	
43	Fig 5.15 the optical reflection spectra of CNTs doping by CuO thermal	74
	annealing by rate (450,500,550 and 600°C)	
44	Fig 5.16 the optical reflection spectra of CNTs doping by ZnO thermal	75
	annealing by rate (450,500,550 and 600°C)	
45	Fig 5.17 the optical extinction coefficient spectra of CNTs doping by TiO ₂	75
	thermal annealing by rate (450,500,550 and 600°C)	
46	Fig 5.18 the optical extinction coefficient spectra of CNTs doping by MgO	76
	thermal annealing by rate (450,500,550 and 600°C)	
47	Fig 5.19 the optical extinction coefficient spectra of CNTs doping by CuO	76
	thermal annealing by rate (450,500,550 and 600°C)	
48	Fig 5.20 the optical extinction coefficient spectra of CNTs doping by ZnO	77
	thermal annealing by rate (450,500,550 and 600°C)	
49	Fig (5.21 the refractive Index spectra of CNTs doping by TiO ₂ thermal	77
	annealing by rate (450,500,550 and 600°C)	
50	Fig 5.22 the refractive Index spectra of CNTs doping by MgO thermal	78
	annealing by rate (450,500,550 and 600°C)	
51	Fig 5.23 the refractive Index spectra of CNTs doping by CuO thermal	78
	annealing by rate (450,500,550 and 600°C)	
52	Fig 5.24 the refractive Index spectra of CNTs doping by ZnO thermal	79
	annealing by rate (450,500,550 and 600°C)	
53	Fig 5.25 the Imaginary dielectric constant spectra of CNTs doping by TiO_2	79
	thermal annealing by rate (450,500,550 and 600°C)	
54	Fig 5.26 the Imaginary dielectric constant spectra of CNTs doping by MgO	80
	thermal annealing by rate (450,500,550 and 600°C)	
55	Fig 5.27 the Imaginary dielectric constant spectra of CNTs doping by CuO	80
	thermal annealing by rate (450,500,550 and 600°C)	
56	Fig 5.28 the Imaginary dielectric constant spectra of CNTs doping by ZnO	81
	thermal annealing by rate (450,500,550 and 600°C)10	
57	Fig 5.29 the real dielectric constant spectra of CNTs doping by TiO ₂ thermal	81
	annealing by rate (450,500,550 and 600°C)	
58	Fig 5.30 the real dielectric constant spectra of CNTs doping by MgO thermal	82
	annealing by rate (450,500,550 and 600°C)	
59	Fig 5.31 the real dielectric constant spectra of CNTs doping by CuO thermal	82
	annealing by rate (450,500,550 and 600°C)	
60	Fig 5.32 the real dielectric constant spectra of CNTs doping by ZnO thermal	83
	annealing by rate (450,500,550 and 600°C)	
61	Fig 5.33 the optical conductivity spectra of CNTs doping by TiO_2 thermal	83
	annealing by rate $(450,500,550 \text{ and } 600^{\circ}\text{C})$	

62	Fig 5.34 the optical conductivity spectra of CNTs doping by MgO thermal	84
	annealing by rate (450,500,550 and 600°C)	
63	Fig 5.35 the optical conductivity spectra of CNTs doping by CuO thermal	84
	annealing by rate (450,500,550 and 600°C	
64	Fig 5.36 the optical conductivity spectra of CNTs doping by ZnO thermal	85
	annealing by rate (450,500,550 and 600°C	
65	Fig 5.37 the electrical conductivity spectra of CNTs doping by TiO ₂ thermal	85
	annealing by rate (450,500,550 and 600°C)	
66	Fig 5.38 the electrical conductivity spectra of CNTs doping by MgO thermal	86
	annealing by rate $(450,500,550 \text{ and } 600^{\circ}\text{C})$	
67	Fig 5.39 the electrical conductivity spectra of CNTs doping by CuO thermal	86
	annealing by rate (450,500,550 and 600°C)	
68	Fig 5.40 the electrical conductivity spectra of CNTs doping by ZnO thermal	87
	annealing by rate (450,500,550 and 600°C)	
69	Fig 5.41 the optical energy band gap of CNTs doping by TiO ₂ thermal	87
	annealing by rate $(450,500,550 \text{ and } 600^{\circ}\text{C})$	
70	Fig 5.42 the optical energy band gap of CNTs doping by MgO thermal	88
	annealing by rate $(450,500,550 \text{ and } 600^{\circ}\text{C})$	
71	Fig 5.42 the optical operate hand gap of CNTs doping by CuO thermal	00
/1	rig 5.45 the optical energy band gap of CNTS doping by CuO thermal	õõ
	annealing by rate (450,500,550 and 600°C)	
72	Fig 5.44 the optical energy band gap of CNTs doping by ZnO thermal	89
	annealing by rate (450,500,550 and 600 ^o C)	