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 الإهداء 
 اهدي هذا البحث إلي أمي فاطمة مصطفي قسم الباري

والي روح )  أبي قسم الله خوجلي وأخي عوض ( عليهم  

لسم رحمة الله والي زوجتي عنايات بشير وبناتي براءة وب

 وبيان

وخوجلي وسوسن وشجن وبسمه (والي إخواني ) صلاح     

والي خالي الفاضل  محمد الحسن ةوالي خالتي  مدين 

مصطفي والي جميع اخوالي و خالاتي و  ابنا اخواني و 

محمد صالح   و والي أخواني  طلحه محمد احمد   اخواتي

وغسان ومحمد  وخالد البدوي و محمد عبدالواحد بشير

 محمد عثمان  و يس احمد عجيل  ومجتبي ومصعب وغسي

 ومحمد وربيع بشير وعوض بشير  عبدالله  والشفيع

   والي كل  الزملاءود المناقل(   )عبدالله

 

 



III 
 

 الشكر
ر مبارك والله سبحانه وتعالي ثم الي البروفسالشكر أولاً وأخيرً إلي 

الذي أشرف علي هذا البحث عبدالله درار  

والي الوالدة العزيزة  فاطمة مصطفي قسم الباري     

 والي زوجتي عنايات بشير

والي  أخواني صلاح و خوجلي وأخواتي سوسن وشجن وبسمه   

طلحه محمد احمد حداد و خالي  والي جدة بناتي مدينة  و 

جاز هذا لان بجانبيالي كل من وقف الفاضل مصطفي قسم الباري 

 البحث
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 Abstract 

 
     This study is concerned with derivation of quantum relation in a curved 

space –time . The importance of this study emerges from the use of energy and 

momentum in many applications. This study use mathematical derivation trend.  

The research problem is related to the lack of suitable consistent relations for 

quantum eigen equations in a curved space , beside lack of relations for the 

special quantum evolution in the interaction model. Therefore this research 

aims to use the expression of time and distance in a curved space time to find  a 

useful expression of energy and momentum Eigen equations in a curved space 

.These relation are used to derive the corresponding relation in the Euclidean 

space . The corresponding  Energy –momentum relation for both curved and 

Euclidian space gives a relation between energy and momentum typical to that 

obtained from the energy and momentum Eigen equation . The expression of 

mass in a curved space  similar to that of the generalized relativity is also 

found. 

        Using generalized special relativity a useful expression of the perturbed 

momentum is found . This expression is used to describe the behavior of the 

quantum system in the interaction model . It is found that the spatial evolution 

of the Schrodinger equation in the interaction model is similar to that of time 

evolution , where the time differential is replaced by the space one, and the 

Hamiltonian by the momentum operator . The same holds for the unitary 

operator , where the time integral is replaced by the space one and the 

Hamiltonian with the momentum operator .   

         The unitary operator in the Heisenberg picture and the spatial evolution of 

the quantum system was found by using simple mathematics and the ordinary 

laws of differentiation and integration .This expression describes successfully 

the spatial evolution of the quantum operator . The metrics in the curved space 

is found to be related to the Lorentz transformation coefficient .      
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 المستخلص
               

همية الدراسة من أمية في الزمكان المنحني . وتنبع تناولت هذه الدراسة اشتقاق علاقات ك            

 الدراسة المنهج الاستنباطي الرياضي. ستخدمتواالمتعددة للطاقة وكمية التحرك .  ستخداماتالا

 في الفراغ المنحني تتمثل مشكلة الدراسة في عدم وجود صيغ مقبولة للمعادلات الذاتية الكمية         

علاقات  ستخداملاالدراسة هذه وعدم وجود صيغ للتغير الإحداثي الكمي في النموذج التفاعلي . لذا هدفت 

لمنحني في الفراغ ا ندفاعالاقات مفيدة لمعادلات الطاقة و الزمن و المسافة في الفراغ المنحني لإيجاد علا

عطت علاقات الطاقة و أناظرة في الفراغ الإقليدي . وقد العلاقات الم ستنباطلا. هذه العلاقات استخدمت 

ول عليها من يدي علاقات مطابقة لتلك التي تم الحصقلاظرة لكل من الفراغ المنحني و الإالمن ندفاعالا

وقد تطابقت صيغة الكتلة في الفراغ المنحني مع صيغتها في النسبية  الذاتية  ندفاعالامعادلات الطاقة و 

 .الخاصة المعممة

ضطراب باستخدام نظرية النسبية في حالة الا للاندفاعلحصول ايضاً علي علاقات مفيدة تم ا          

صة المعممة . هذه الصيغة استخدمت لوصف سلوك المنظومة الكمية في النموذج التفاعلي . ووجد الخا

أن التغير الإحداثي لمعادلة شوردينجر في النموذج التفاعلي مشابه لذلك الذي للتغير الزمني , حيث 

طبق علي مؤثر استبدلنا التفاضل الزمني بالإحداثي و الهاملتونيان بمؤثر الاندفاع . ونفس الوضع ين

 الوحدة حيث استبدل التكامل الزمني بالإحداثي و الهاملتوني بمؤثر الاندفاع .

تم الحصول ايضاً علي مؤثر الوحدة في نموذج هيزنبرج و التغير الإحداثي للمنظومة الكمية          

نجاح التغير بتصف باستخدام رياضيات مبسطة مع العلاقات العادية التفاضلية و التكاملية . هذه الصيغة 

 الإحداثي للمؤثر الكمي . ووجد أن المقياس في الفراغ المحدب له علاقة بمعامل تحويل لورينس .       
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Chapter one 

Introduction 

(1.1) History Of Quantum Mechanics (Q.M ) 

               Quantum  theory is the theory that is concerned with atomic world 

based on the radical   theoretical  proposals  that  were  not   based  on   

accepted  classical  physics . The  Quantum mechanics  was created  between 

1900  and 1925 .  At the  end  of  1900 ,   Max  .  Planck  presented  a  new   

form   of   the   black   body   radiation spectral   distribution   Law  ,   based   

on  a   revolutionary    hypothesis  .  He  postulated  that  the  energy   of  an  

oscillator   of   given  frequency   cannot  take   arbitrary  values   between  zero  

and  infinity , but  can   only   take  on  the   discrete   values  .  However  ,  it   

was   not   long   before    the   quantum concept   was   used  to  explain   other  

phenomena  .  Indeed ,  in  1905  , A . Einstein was able  to  interpret   the   

photoelectric  effect  by  introducing  the  idea  of    photons ,  or  ligh t  quanta  

.  And   in 1907  he  used  plank  formula for the  average   energy  of  an  

oscillator  to  derive   the   law  of   Dulongand   Patitconcerning   the   specific   

heat   of solids . subsequently  N. Bohr  in  1913  was  able  to  invoke  the   

idea   of  quantisation    of   atomic   energy   levels  to  explin  the  existence  of  

line spectra . [1,2,3] 

              In 1924 ,  L . debrolie  mode  a  great   unifying   , but  speculative ,  

hypothesis ,that just  as  radiation  has  particle –like  properties ,   electrons   

and   other material  particles  possess  wave-like  properties . The  particle  

properties   of   electromagnetic   waves  are   also    demonstrated   in    the  

Compton  Effect  and  using  the  momentum  and  energy  . 

    In  1924  de Broglie  suggests  particles  can behave as  waves in 1925. Thus  

the  atomic world    particles   have  dual   particle - wave   nature    Werner  

Heisenberg introduces  Matrix Mechanics  to  consider observable  quantities . 

He  used matrices  ,  which  were not  that  familiar at the  time  to  describe  the  

dual nature of atomic particles .[4,5] 

 Erwin  Schrödinger  proposes  wave   mechanics , he used  waves , which  is  

more  familiar to  scientists  at  the  time . Heisenberg’s  and   Schrödinger’s 

formulations  were  competing  Eventually, Schrödinger  showed  they were 

equivalent; different descriptions which produced the  same  predictions .  Later 

on the so called interaction picture is introduced to simplify solving problems of 

quantum systems . 

  Applied quantum mechanics is widely in spectrum , For  example  spectral   

techniques  are  used  in   mineral    exploration   as  well  as   identifying   

Chemical   compounds  .   laser   is  widely   used   in telecommunication  , 
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computer , and  medicine .These techniques were based on quantum physics . 

Atoms are building block of matter . Atoms themselves consist of elementary 

particles like electrons, protons and neutrons . The behavior of atoms described 

by quantum lows . The one which is biased the classical Newtonian energy –

momentum relationship is known as Schrodinger equation [6]. That who riles 

on relativistic energy –momentum relation is Known as Klien – Gordan and 

Dirac relativistic quantum equations [7]. Fortunately a quantum law 

successfully describes a wade veriety of phenomena , like atomic spectra of 

isolated atoms beside the spectra of some solids like semi-conductor (SC). 

However quantum mechanics (qm) suffer from noticeable setbacks .For instant 

there is no quantum gravity low that moreover the unification of force under the 

umbrella of quantum low is so difficult within the framework of conventional 

quantum lows [8]. Also the superconductivity behavior for high temperature 

superconductors (HTSC) can hot be described easily and fully by the existing 

models [9]. This forces many researchers to construct new models that modify 

quantum lows to cure some of these defects [10,11]. These attempts encourages 

to purpose quantum model that can help in finding quantum gravity equation . 

This model was an expression of the wave function in a curved space to find 

energy and momentum Eigen equation in a curved space . 

Quantum laws are used to describe the behavior of atoms and elementary 

particles . According to the time evolution there are three versions . The first 

one is the Schrodinger picture in which the time evolution is described by the 

wave function . The second one is the Heisenberg picture in which the time 

evolution is described by the operator . The third representation is the so called 

interaction representation in which the time evolution of the system is described 

by the wave vector and the operator which is the interaction Hamiltonian 

instead of the total Hamiltonian [3,12.13] 

These versions succeeded in describing the time evolution but says nothing 

about the spatial evaluation of the quantum system . This motivated some 

authors to propose some models to cure this defect [14,15,16] .In one of them 

the ordinary Schrodinger equation is developed to describe the behavior of the 

system using the momentum operator [17]. In another approach the system by 

using a perturbed momentum [18,19] . Different attempts were also be made to 

make quantum laws more flexible in describing the quantum system [20,21]. 

This encourages to construct a new model to help in describing the spatial 

evolution of the quantum system . 

      Quantum systems are described by operator and wave function . In the 

Schrodinger representation the evolution of the quantum system is described by 

the wave function . In the Heisenberg picture the evolution is described by 

operator [22.2]. The change from the Schrodinger to the Heisenberg picture 

time evolution is done by using mathematical transformation . Schrödinger 

picture is needed for the probability distribution ,while the Heisenberg picture 
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time evolution is needed for the quantum average of the physical quantity 

[3,14]. This transformation is different from the Lorentz transformation which 

aims to find the effect of motion and fields on the physical quantities[13,16]. 

The quantum system is described by these transformation services successfully . 

However the spatial evolution of the quantum system is not fully supported 

.Some attempts have been made to derive Heisenberg spatial evolution of the 

quantum system [23, 24,25] but it needs to be done by another simple approach.                   

  (1.2) Research problem  

            The research problem stems from the lack of useful expression for 

quantum eigen equations in a curved  space . Also the spatial evolution of the 

quantum system in the interaction model dos not recognized . 

(1.3) Literature review  

       A seminal  paper  published  and  one  by  M . Dirar  recognises the effect  

of  friction  by using  Maxwell's  equation [26] .  Another  attempts'    were   

made  by  M . Mamoun based on   harmonic   oscillator  expression   for   

energy   is   also   mode   to    derive   new     Schrödinger equation[27] .  

Different attempts were made to modify Schrodinger equation [28, 29, 30]. 

Some of them work in a curved  space –time [31, 32, 33] . Some of these 

attempts tries to describe quantum gravity [34, 35, 36] . While some are 

concerned with bulk matter [37.38,39].   

   The paper published by Nilesh P.BARDE,(2015) derive Schrodinger equation 

from wave –mechanics , Schrodinger time independent equation , classical 

Hamilton –Jacobi equation [29] 

       The concept of time dependent Schrodinger equation (TDSE) is mostly 

complex for advanced learners . It is shown that TDSE may be derived using 

wave  mechanics ,time independent equation , classical &Hamilton –Jacobi's 

equation . similar attempts have bee done earlier by some researches . However 

, this work provides a comprehensive , lucid and well derived derivation , 

derived using various approaches , which would make this article unique . 

       Another work was done to derive Schrodinger equation .In the work of 

PRANAB RUDRA SARMA ,(2010), he derive Schrodinger equation from 

Hamilton –Jacobi  equation using uncertainty principle [30] .In deriving 

Schrodinger's wave equation the momentum and energy of a particle are taken 

to be operators acting on a wave function .Here one shows that the wave 

equation can be directly derived from the classical Hamilton –Jacobi equation , 

if a basic uncertainty is assumed to be present in the momentum .In this 

derivation one dose not have to assume the momentum and energy to be 

operators . 
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    The unitary operator in a curved space time was also tackled by some works. 

The work  done by C.FRONSDAL , determine unitary operator in a curved 

space .He discuss only the case of constant curvature . Then operators of 

angular and linear momentum exist , and we show that the interesting 

irreducible unitary representations of the group of motions reduce very simply 

to those of the inhomogeneous Lorentz group in limit of zero curvature[40].  

     In the paper of  L.C.W. Jeronimus , (2012).Elementary particles can be 

indentified with the unitary irreducible representations(UIR,S) of the isometry 

group of a given space time . These  (UIR,S)are labeled by the eigenvalues of 

asimir  operators of the isometry group and hence they represent invariant 

physical properties of the elementary particles . These properties therefore 

depend entirely on the space time background of the particle . To compare these 

labels for different space time background , one can use the method of 

contraction[41] . D.Aresnovic ,(2014) derived Lagrangian formulation of 

quantum mechanical from Schrodinger equation . It is developed and illustrated 

on eigenbasis of the Hamiltonian and in the coordinate representation . The 

Lagrangian  formulation of physically plausible quantum system results in a 

wall defined second order equation on a real vector space . The Klein –Gordon 

equation for areal field in shown to be the Lagrangian form of the corresponding 

Schrodinger equation[42] . 

   Schrodinger and Dirac equation are also derived using new approach .In the 

work done by Spyros Efthimiades ,he derived the Schrodinger and Dirac 

equation from basic principles[43]. First we determine that each eigenfunction 

of a bound particle is a specific superposition of plane wave states that fulfills 

the averaged energy relation . The Schrodinger equation is derived to be the 

condition the particle eigen function must  satisfy , at each space -time point in 

order to fulfill the averaged energy relation . The same approach is applied to 

derive Dirac equation involving electromagnetic potentials .Effectively , the 

Schrodinger and Dirac equation are space –time versions of the respective 

averaged energy relations .  

     In the work of Steven Carlip , (2019) , gravity is asymptotically safe , 

operators will exhibit anomalous Scaling at the ultraviolet fixed point in a way 

that makes the theory effectively two –dimensional .A number of independent 

lines of evidence , based on different approaches to quantization , indicate a 

similar short –distance dimensional reduction . The physical question of what 

one means by "dimension" in quantum space time , and the possible 

mechanisms that could explain the universality is shown in terms of curved 

space quantization[44] . 

      Quantum gravity models are discussed by Giampiero Esposito , (2011). The 

various commenting theories , e.g. string theory and loop quantum gravity , 

have still to be checked against observations .Classical and quantum 
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foundations are necessary to study field –theory approaches to quantum gravity 

.The passage from old to new unification in quantum field –theory ,needs 

canonical quantum gravity , the use of functional integrals , the properties of 

gravitational intentions , the use of spectral zeta-functions in the quantum theory 

of the universe , Hawking radiation ,some theoretical achievements and some 

key experimental issues [45 ]. 

     A work was done by some anthers to derive Schrodinger equation using the 

concept of amplitudes .K .Young and  S. S. Tong , (2014) ,uses principle of 

least action , is used to drive Schrodinger equation . The advantages of using the 

action  S over Newton's laws are explained , through examples using 

generalized coordinates and bringing in the concepts of the lagrangian and the 

Hamiltonian . Quantum amplitudes along a path are simply summed over all 

possible paths leads to Schrodinger equation . The geodesic equation in general 

relativity is also quickly sketched as a simple extension of the least action 

principle [46].  

      Maxwell F. Parsons , (2017), uses Hubbard model to study exotic phases of 

matter using strong correlations in quantum many –body systems. Quantum gas 

microscopy affords the opportunity to study these correlations .Here one report 

site–resolved observations of antiferromagnetic correlations in a two-

dimensional , Hubbard –region optical lattice and demonstrate the ability to 

measure the spin –correlation function over any distance .One measure the in –

situ distributions of the particle density and magnetic correlations , extract 

thermodynamic quantities from comparisons to theory ,and observe statistically 

significant correlations over three lattice sites . The temperatures that reached 

approach the limits of available numerical simulations . The direct access to 

many–body physics at the single –particle level demonstrated by the results will 

improve understanding of how the interplay of motion and magnetism gives rise 

to new states of matter[37].              

(1.4) Aim Of The Work 

               The aim of this work is to use momentum perturbation to find the 

spatial evolution in the interaction model and Schrodinger equation  in a curved 

space-time . This is achieved by finding the momentum eigen equation in the 

interaction picture and obtaining unitary operator. The Schrodinger equation in 

a curved space is found from the form of the wave function and the coordinate 

in a curved space.     

(1.5) Thesis Lay Out : 

                 The thesis consists of  4 chapters . Chapter one and two are devoted 

for introduction and theoretical background . While chapter three and four are 

concerned  with contribution and results beside discussion and conclusion . 
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Chapter 2 
Theoretical Background 

(2.1) Introduction: 
           According to the Laws of quantum mechanics  the  state  of motion  of  a 

particle  is specified  by the wave function . The fundamental  question  is to 

predict  how  the state of motion will  evolve in time  . 

              In quantum mechanics the equation  of motion  is the time-dependent 

Schrödinger equation .  the time-dependent Schrödinger equation determines  

the wave function at  any other time .  

 

(2.2) Planck Discovery : 

       In 1900 Planck discovered a formula for  black body radiation that is in 

complete agreement with experiment at all wave lengths. [47] 

Planck 's analysis led to the curve shown is figure blow [48]. 

 

 

 

Classical theory   Intensity            

 

                                                                                    Experiment 

 

                                                          Figure (2.2.1) 

            Figure (2.2.1) comparison of  the experimental  results with the curve 

predicted by the Rayleigh  Jeans classical model for  the distribution of the 

blackbody radiation [49, 50]. 

As Known the concept of quantization developed by Planck in 1900 the 

quantization model assumes that the energy of light wave is present  in bundles 

of energy called photons , hence, the energy is said to be quantized . Any 

quantity that appears in discrete bundles in side to be quantized , just as charge 

and other properties are quantized. 

     According to Planck's theory , the energy of photon is proportional to 

frequency of electromagnetic wave . 
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𝐸 =  ℎ𝑓                                                                                                   (2.2.1) 

   Where 𝐸 is the energy , 𝑓  is frequency and  ℎ is plank constant . 

    It important  to not that this theory retains some features of the particle  

theory of the light . 

       Planck mode two bold and controversial assumption concerning the nature 

of the oscillating molecules at the surface of the blackbody. 

     The molecules can have only discrete units of energy  𝐸𝑛      

𝐸𝑛 = 𝑛ℎ𝑓                                                                                                 (2.2.2) 

There  𝑛 = 1 , 2 ,3 … .. 

          Where 𝑛  is a positive integer called a quantum number and  𝑓  is 

frequency of the vibration of the molecules .  Because the energy of molecules 

can have only discrete values given by equation (2.2.1) the energy is quantized , 

each discrete energy value represents a different quantum state  . 

          The molecules emit or absorb energy in discrete plackets called photons. 

      The key points in Planck  theory is radical a assumption of quantized 

energy state . This development  the birth of quantum theory when Planck  

presented his theory , most scientists (include Planck) did not consider the 

quantum concept to be realistic . Hence , Planck and other continued  to  search 

for a more rationale explanation of blackbody radiation . However , subsequent 

development showed that a theory based on the quantum concept ( rather than 

on classical concept ) had to be used to explain many other phenomena at 

atomic  [51,52]. 

(2.3) The Schrodinger equation : 

                The Schrodinger  equation is  the  key equation  of  quantum 

mechanics. 

       This second  partial  differential  equation  determines  the  spatial shape 

and the temporal evolvement of wave function in a given potential and for a 

given boundary conditions . 

    The one dimensional Schrodinger equation is used when the particle of 

interest  is confined to one spatial dimension nature of many semiconductor 
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hetero structures, the Schrodinger equation is sufficient for most applications  

[53]. 

          To derive the one – dimensional Schrodinger equation , one starts with 

the total energy equation (i,e) the sum of kinetic and potential energy 𝑉(𝑥)    .  

𝑃2

2𝑚
+ 𝑉(𝑥) = 𝐸                                                                                            (2.3.1) 

Multiply both side by the wave function 𝜓  gives  

𝐸𝜓 =
𝑃2

2𝑚
𝜓 + 𝑉𝜓                                                                                       (2.3.2) 

    Substitution of the dynamical variables by their quantum mechanical 

operators which act on the wave function 𝜓(𝑥, 𝑡)  , this yields the one- 

dimensional  time – dependent Schrodinger equation . 

The operators were found by using the wave function of a free particle which is 

given by  

𝜓 = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝐴𝑒
𝑖

ћ
(𝑃𝑥−𝐸𝑡)

  

Where  

𝑃 =
ℎ

𝜆
= ћ𝑘                                                                                                (2.3.3) 

    𝐸 = ℎ𝑓 = ћ𝜔                                                                                        (2.3.4) 

       𝑘  and 𝜔  are the wave number and angular frequency respectively. 

Differentiating  𝜓 w.r.t to 𝑡 and 𝑥  gives 

𝑖ћ
𝜕𝜓

𝜕𝑡
= 𝐸𝜓  

−
ћ2

2𝑚

𝜕2

𝜕𝑥2 𝜓 =
𝑃2

2𝑚
𝜓                                                                                 (2.3.5)  

Thus substituting (2.3.5) in (2.3.2) gives Schrodinger equation.       

−
ћ2

2𝑚

𝑑2

𝑑𝑥2 𝜓(𝑥, 𝑡) + 𝑉(𝑥)𝜓(𝑥, 𝑡) = −
ћ

𝑖

𝑑

𝑑𝑡
𝜓(𝑥, 𝑡) = 𝐸𝜓(𝑥, 𝑡)       (2.3.6) 

      The left side of this equation can be written by using the Hamiltonian or 

total energy operator . 
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 Ĥ = −
ћ2

2𝑚

𝑑2

𝑑𝑥2 + 𝑉(𝑥)                                                                            (2.3.7) 

      By using the notation of the Hamiltonian operator the time-dependent 

Schrodinger equation can be written as  

Ĥ𝜓(𝑥, 𝑡) = −
ћ

𝑖

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡)                                                                       (2.3.8) 

        Since the Schrodinger equation is partial differential equation , the product 

method can be used to separate the equation in to spatial  and temporal parts .  

𝜓(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)                                                                                  (2.3.9) 

    Where 𝑋(𝑥) depends only on (𝑥)  and 𝑇(𝑡) depend only on (𝑡) .  

    Insertion of equation (2.3.9) into the Schrodinger equation one gets . 

1

𝑋(𝑥)
Ĥ𝑋(𝑥) = −

ћ

𝑖𝑇(𝑡)

𝜕

𝜕𝑡
𝑇(𝑡)    

1

𝑋(𝑥)
Ĥ𝑋(𝑥) =  

𝑖ћ

𝑇(𝑡)

𝜕

𝜕𝑡
𝑇(𝑡)                                                                       (2.3.10) 

      The right side of this equation depends on (𝑡) only , while the left side 

depends on (𝑥) because (𝑥) and (𝑡) are completely intendment variables. 

    The equation can be true if the both sides are constant . 

𝑖ћ

𝑇(𝑡)

𝜕𝑇(𝑡)

𝜕𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

𝑇(𝑡) = 𝑒−
𝑖

ћ
𝐸𝑡

                                                                                            (2.3.11) 

Substitution this result  into equation (2.3.9) yields to the time- dependent wave 

function . 

𝜓(𝑥, 𝑡) = 𝑋(𝑥)𝑒
−

𝑖

ћ
𝐸𝑡

                                                                              (2.3.12) 

           If E is real , then the wave function has amplitude 𝑋(𝑥) and has a phase      

𝑒−
𝑖

ћ
𝐸𝑡  . 

    One now consider the case where the potential  V , is not a function of time 

and where , according to classical mechanics , energy is conserved. 
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       If  V  is time independent  one can apply the standard separation of 

variables ,technique to the Schrödinger equation an in(2.3.9) , for the time 

independent . 

      One get 

−
ћ2

2𝑚

𝜕2

𝜕𝑥2 𝑋(𝑥) + 𝑉(𝑥)𝑋(𝑥) = 𝐸𝑋(𝑥)                                                 (2.3.13) 

        The solution of equation (2.3.13 ) depends on the particular form of 𝑉(𝑥) 

. The above equation is Known as the one – dimensional time –independent 

Schrödinger equation .In the special  case of free particle , the origin of 

potential energy can be chosen so that  𝑉(𝑥) = 0 and asolution to (2.3.13) is 

then  

𝑋(𝑥) = 𝐴𝑒𝑖𝑘𝑥                                                                                           (2.3.14) 

     Where 𝐾 = (2𝑚𝐸 ћ
2

)⁄
1

2⁄

 and  A is a constant . Thus the wave function has 

the form ; (𝜔 = 𝐸
ћ⁄ )  : 

𝜓 = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)                                                                                         (2.3.15) 

    In the case of any closed system , therefore , we can obtain solutions to the 

time- dependent Schrödinger equation corresponding to a given value of the 

energy of the system by solving the appropriate time-independent phase factor 

(2.3.11). 

      Provided the energy of the system is Known and remains constant (and it is 

only this case which one shall be considering for the moment ) the phase factor 

,  𝑇  ,has no physical significance . In particular , one that the probability 

distribution , |𝜓|2 , is now indentical to |𝑋(𝑥)|2  , so that the normalization 

condition becomes [54]  

∫ |𝑋(𝑥)|2∞

−∞
= 1                                                                                    (2.3.16) 

Dirac Notation : 

    The physical state of the system represented in quantum mechanic by 

elements of liner space ,Hilbert space , these elements are called state vector . 

one can represent the stat vectors in different basics by mean of function 
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expansion. This is analogous to specifying a Euclidean vector by components in 

various coordinate system . 

    The manning of  a vector is , independent of the coordinate system chooses 

represents  its components . 

    To free state vector from coordinate meaning Dirac introduced what was to 

become an invaluable notation in quantum mechanics has denoted  the state 

vector 𝜓 by what he called the Ket vector ׀𝜓〉 , its complex conjugate 𝜓∗  by a 

bra 〈𝜓| and the scalar (inner) product (∅, 𝜓) by the a bra – Ket  ⟨∅|𝜓⟩ : 

𝜓          →  𝜓〉      ,                                                                              (2.3.17)׀    

𝜓∗           →      〈𝜓|        ,                                                                            (2.3.18) 

(∅, 𝜓)    →       ⟨∅|𝜓⟩               .                                                               (2.3.19) 

   When a Ket (or bra) is multiplied by a complex number , one get also a Ket 

(or bra ). 

     In the wave mechanics one deal with wave functions 𝜓(𝑥, 𝑡) , but in the 

more general formalism of quantum mechanics one deal with Ket vector ׀𝜓〉  . 

for every Ket there exists a unique bra and vice versa . So that Ket represents 

the system completely ,and hence ׀𝜓〉 means knowing all than on classical 

concepts had to be used to explain phenomena ate atomic level .[38] 

(2.4)  Klein – Gordon  equation : 

     Schrodinger equation can not describes very fast particles which moves with 

speed near to that of light [1] . This is since Schrodinger equation is derived 

from classical Newtonian energy . To describe fast particles one must use 

Einstein energy – momentum  relation [55 ,56]. 

𝐸2 = 𝑃2𝐶2 + 𝑚0
2𝐶4                                                                                  (2.4.1) 

Multiply both side by  𝜓 yields  

𝐸2𝜓 = 𝑃2𝐶2𝜓 + 𝑚0
2𝐶4𝜓                                                                         (2.4.2) 

Using equation (2.3.3)  yields  

−ћ2 𝜕2𝜓

𝜕𝑡2 = 𝐸2𝜓             − ћ2∇2𝜓 = 𝑃2𝜓                                              (2.4.3) 
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A direct  insertion  of (2.4.3) in (2.4.2) gives  

−ћ2 𝜕2𝜓

𝜕𝑡2 = −𝐶2ћ2∇2𝜓 + 𝑚0
2𝐶4𝜓                                                        (2.4.4) 

Which is the Klein –Gordon equation . 

(2.5) Dirac equation : 

        Klein – Gordon equation describes successfully spin less particles , but it 

can not describe particles having spins [57,58]. This motivates to construct 

linear energy –momentum  relation in form 

𝐸 = 𝑐𝛼. 𝑃 + 𝛽𝑚0𝐶2                                                                                  (2.5.1)  

Multiply both sides by  𝜓 to get  

𝐸𝜓 = 𝑐𝛼. 𝑃𝜓 + 𝛽𝑚0𝐶2𝜓                                                                        (2.5.2) 

Using equation (2.3.3) , yields 

𝑖ћ
𝜕𝜓

𝜕𝑡
= 𝐸𝜓             

ћ

𝑖
∇𝜓 = 𝑃𝜓                                                                (2.5.3) 

Inserting   (2.5.3) in  (2.5.2) to get 

𝑖ћ
𝜕𝜓

𝜕𝑡
=

ћ

𝑖
α. ∇𝜓 + 𝛽𝑚0𝐶2𝜓                                                                     (2.5.4) 

Which is the Dirac equation . 

(2.6 ) Harmonic Oscillator : 

The potential energy of the harmonic oscillator  is given by [59] 

  𝑉 =
1

2
𝑘𝑥2                                                                                                  (2.6.1) 

Thus time independent  Schrödinger  equation  takes the form  

−
ћ2

2𝑚
�́́� +

1

2
𝑘𝑥2𝑢 = 𝐸𝑢                                                                              (2.6.2) 

To simplify this equation , define 𝑦 and 𝛼 to satisfy  

𝑦 = 𝛼 𝑥       ,       ( 
𝑚𝑘

ћ
 )

1

4 = 𝛼                                                                     (2.6.3) 

Thus inserting (2.6.3) in (2.6.2) yields 
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�́́� + ( 𝜆 − 𝑦2)𝑢 = 0                                                                                   (2.6.4) 

Where  

𝜆 =
2𝑚𝐸

ћ
2

𝛼2
=  

2𝐸

ћ𝜔
                                                                                             (2.6.5) 

And  

𝑘 = 𝑚𝜔2                                                                                                   (2.6.6) 

For  classical  oscillator . Now try a solution   

𝑢 = 𝐻𝑒−
1

2
𝑦2

  

�́� = [�́� − 𝑦𝐻]𝑒−
1

2
𝑦2

  

�́́� = [�́́� − 𝐻 − 𝑦. �́�]𝑒−
1

2
𝑦2

− 𝑦[�́� − 𝑦𝐻]𝑒−
1

2
𝑦2

  

   = [�́́� − 2�́� − 𝑦2. 𝐻 − 𝐻] 𝑒−
1
2

𝑦2
                                                               (2.6.7) 

A direct  substitution of (2.6.7) in (2.6.4) gives 

�́́� = 2𝑦�́� + (𝜆 − 1)𝐻 = 0                                                                         (2.6.8) 

Consider now 𝐻 to be in the form  

𝐻 = ∑ 𝑎𝑠 𝑦𝑠,       �́� = ∑ 𝑠𝑎𝑠 𝑦𝑠−1           , �́́� = ∑ 𝑠(𝑠 − 1)𝑎𝑠 𝑦𝑠−2              (2.6.9) 

Inserting (2.6.9) in (2.6.8) gives 

  ∑ 𝑠(𝑠 − 1)𝑎𝑠 𝑦𝑠−2 + ∑[𝜆 − 1 − 2𝑠]𝑎𝑠 𝑦𝑠 = 0                                       (2.6.10) 

Thus   

∑(𝑠 + 2)(𝑠 + 1)𝑎𝑠 +2𝑦𝑠 + ∑[𝜆 − 1 − 2𝑠]𝑎𝑠 𝑦𝑠 = 0                             (2.6.11) 

Equating the coefficients of  𝑦𝑠 gives  

(𝑠 + 2)(𝑠 + 1)𝑎𝑠+2 + [𝜆 − 1 − 2𝑠]𝑎𝑠 = 0                                      

hence 

𝑎𝑠+2 =
[2𝑠+1−𝜆]

(𝑠+1)(𝑠+2)
𝑎𝑠                                                                                  (2.6.12) 
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For the wave function to be finite , the thus polynomial  must have finite terms . 

the lest term is   𝑛 . 

Thus  

𝐻 = ∑ 𝑎𝑠𝑦𝑠        , 𝑠 = 𝑛                                                                            (2.6.13) 

It follows that  

𝑎𝑛 ≠ 0                        𝑎𝑛+1 = 0       ,       𝑎𝑛+2 = 0                                      (2.6.14) 

Substitute (𝑠 = 𝑛) in (2.6.12) to get  

𝑎𝑛+2 =
[2𝑛+1−𝜆]

(𝑛+1)(𝑛+2)
𝑎𝑛                                                                                 (2.6.15) 

In view of equation  (2.6.14) , one gets 

0 =
[2𝑛+1−𝜆]

(𝑛+1)(𝑛+2)
𝑎𝑛                                                                                       (2.6.16) 

This requires  

2𝑛 + 1 − 𝜆 = 0  

There fore  

𝜆 = 2𝑛 + 1                                                                                                (2.6.17) 

Bearing in mind equation (2.6.5) 

2𝐸 = (2𝑛 + 1)ћ𝜔                                                                                    (2.6.18)   

Thus the energy of the harmonic oscillator is given by 

       𝐸 = (𝑛 +
1

2
)ћ𝜔                                                                                  (2.6.19) 

(2.7) Hamiltonian formalizm 0f quantum laws : 

(2.7.1) Lagrange's and Hamilton's equation :  

            In this sec on one , considers tow reformulation of Newtonian 

mechanics , the Lagrangian  and the Hamiltonian formalism . 

          The first is naturally associated with configuration space , extended by 

time . while the latter is the natural description for  working in phase space . 
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   Lagrange  developed his approach in 1764 in study of the libration of the 

moon but  it is best thought of as general method of treating dynamics in terms 

of generalized coordinates for configuration space . It so transcends its origin 

that the Lagranian is considered the fundamental object which describes a 

quantum field theory [60] . 

(2.7.2) Lagrangian for unconstrained systems : 

          For a collection of particles with conservative forces described by 

potential we have in inertial Cartesian coordinates [61] 

𝑚�̈�𝑖 = 𝐹𝑖                                                                                                     (2.7.1) 

    The left hand side of this equation is determined by Kinetic energy function 

as the time derivative of the momentum  𝑃𝑖 =
𝜕𝑇

𝜕𝑥𝑖
  ,while the right hand side  is 

derivative of the potential energy ,− 
𝜕𝑈

𝜕𝑥𝑖
  .As T is independent  of 𝑥𝑖and U is 

independent of 𝑥𝑖 in these coordinates .we can write both sides in terms of the 

Lagrangian .  𝐿 = 𝑇 − 𝑈 which is then a function of  both the coordinates and 

there velocities . Thus we have established . 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥𝑖
−

𝜕𝐿

𝜕𝑥𝑖
= 0                                                                                         (2.7.2) 

         Which once we generalize it to arbitrary coordinates , will be known as 

Lagrange's equation . 

       We assume we have a set of generalized coordinates  {𝑞𝑗}  which 

parameterize all  of coordinate space , so that each point  may be  described by 

the {𝑞𝑖} or by the {𝑥𝑖}, 𝑖 , 𝑗 ∈ [1, 𝑁] and thus each set may be thought of as a 

function of the other and time . 

𝑞𝑗=𝑞𝑗(𝑥1, 𝑥2, … 𝑥𝑁 ,𝑡 )       𝑥𝑖 = 𝑥𝑖(𝑞1 , 𝑞2, …  𝑞𝑁 , 𝑡) .                       (2.7.3) 

We my consider L as a function of the generalized coordinates 𝑞𝑗and �̇�𝑗 , and 

ask whether the same expression in these coordinates . 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0                                                                                         (2.7.4) 

Also vanishes . The chain rule tells us 
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𝜕𝐿

𝜕�̇�𝑗
= ∑

𝜕𝐿

𝜕𝑞𝑘

𝜕𝑞𝑘

𝜕�̇�𝑗
+ ∑

𝜕𝐿

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕�̇�𝑗
                                                                   (2.7.5) 

The first term vanishes because  𝑞𝑘  depends only on the coordinates  𝑥𝑘 and   t 

, but  not on the �̇�𝑘  

�̇�𝑗 = ∑
𝜕𝑞𝑗

𝜕𝑥𝑖
𝑖 +

𝜕𝑞𝑗

𝜕𝑡
 ,                                                                                    (2.7.6) 

        
𝜕�̇�𝑗

𝜕�̇�𝑖
=

𝜕𝑞𝑗

𝜕𝑥𝑖
                                

Using this in (2.7.5)  

𝜕𝐿

𝜕�̇�𝑖
= ∑

𝜕𝐿

𝜕�̇�𝑗
𝑗 +

𝜕𝑞𝑗

𝜕𝑥𝑖
                                                                                     (2.7.7) 

Lagrange's equation involves the time derivative of this .For any function 

𝑓(𝑥, 𝑡) of extended contended configuration space , this  total time derivative is  

𝑑𝑓

𝑑𝑡
= ∑

𝜕𝑓

𝜕𝑥𝑗
�̇�𝑗 +

𝜕𝑓

𝜕𝑡
                                                                                    (2.7.8) 

Using Leibnitz ,rule  on  (2.7.7) and using (2.7.8) in the second term we find 𝜆 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑖
= ∑ (

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
)𝑗

𝜕𝑞𝑗

𝜕𝑥𝑖
+ ∑

𝜕𝐿

𝜕�̇�𝑗
(∑

𝜕2𝑞𝑗

𝜕𝑥𝑖𝜕𝑥𝑘
�̇�𝑘 +  

𝜕2𝑞𝑗

𝜕𝑥𝑖𝜕𝑡
 )                      (2.7.9) 

On the other hand the chain rule also tells us 

𝜕𝐿

𝜕𝑥𝑖
= ∑

𝜕𝐿

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝑥𝑖
 + ∑

𝜕𝐿

𝜕�̇�𝑗

𝜕�̇�𝑗

𝜕𝑥𝑖
  

Where the last  term does not  necessarily vanish , as �̇�𝑗  in general depends on 

both the coordinates and velocities . In fact from (2.7.6)  

𝜕�̇�𝑗

𝜕𝑥𝑖
= ∑

𝜕2𝑞𝑗

𝜕𝑥𝑖𝜕𝑥𝑘
�̇�𝑘 +

𝜕2𝑞𝑗

𝜕𝑥𝑖𝜕𝑡
  

𝜕𝐿

𝜕𝑥𝑖
= ∑

𝜕𝐿

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝑥𝑖
𝑗 + ∑

𝜕𝐿

𝜕𝑞𝑗
(∑

𝜕2𝑞𝑗

𝜕𝑥𝑖𝜕𝑥𝑘
�̇�𝑘𝑘 +𝑗

𝜕2𝑞𝑗

𝜕𝑥𝑖𝜕𝑡
                               (2.7.10) 

    Lagrange's equation in Cartesian coordinates says (2.7.9)and (2.7.10) are 

equal and in subtracting them the second terms cancels so  [61] 
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0 = ∑  (
𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
𝑗 −

𝜕𝐿

𝜕𝑞𝑗
)  

𝜕𝑞𝑗

𝜕𝑥𝑖
                                                                         (2.7.11) 

The matrix  
𝜕𝑞𝑗

𝜕𝑥𝑖
  is nonsingular as its inverse ,so have derived Lagrange's 

equation in generalized coordinates  

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0                                                                                     (2.7.12) 

  Thus we see that Lagrange's equation are form invariant  under changes of the 

generalized coordinates used to describe the configuration of the system . 

(2.7.3) Lagrangian for constrained  system :  

              We now to generalize our discussion to include constraint  . At the 

same time we will also consider possibly neoconservative forces .As we 

mentioned in section , we often have a system with internal forces whose effect 

is better understood than the forces them  selves , with which we may not be 

concerned  . 

We will assume the constraints are holonomic , expressible as   k  real function 

𝜙𝛼(𝑟1 , … . 𝑟𝑛 , 𝑡) = 0 , which are somehow enforced by constraint forces  �⃗�𝑖
𝑐   

on the particles { i } . there may also be other forces , which we will call  �⃗�𝑖
𝐷 

and will treat as having a dynamical effect . These are given by known function 

of the configuration and time , possibly but not necessarily in terms of a 

potential .  

We will assume that the constraint  forces in general satisfy this restriction that 

no net virtual work is done by the forces of constraint for any possible virtual  

displacement  . Newton's law tells us that  

  �⃗⃗�𝑖 = 𝐹𝑖 = �⃗�𝑖
𝑐 + �⃗�𝑖

𝐷 .                                                                                (2.7.13) 

We can multiply by an arbitrary virtual displacement  

 ∑ (𝐹𝑖
𝐷  𝑃⃗⃗⃗⃗ 𝑖).𝑖 𝛿𝑟𝑖 = − ∑ 𝐹𝑖

𝑐 . 𝛿𝑟𝑖𝑖 = 0                                                          (2.7.14) 

Where the first equality would be true even if 𝛿𝑟𝑖  did not satisfy the constraints 

but the second requires  𝛿𝑟𝑖 to be an allowed virtual displacement  

∑ (𝐹𝑖
𝐷 −   𝑃⃗⃗⃗⃗ 𝑖).𝑖 𝛿𝑟𝑖 = 0                                                                             (2.7.15 ) 



18 
 

Which is known as D,Alembert's  principle . 

Then  
𝜕�⃗�𝑖

𝜕𝑞𝑗
  is no longer an invertable or even square , matrix , but we still have  

∆𝑟𝑖 = ∑  
𝜕𝑟𝑖

𝜕𝑞𝑗
�̇�𝑗 +

𝜕𝑟𝑖

𝜕𝑡
  .𝑗                                                                           (2.7.16) 

But  fore  a virtual displacement  ∆𝑡 = 0 we have  

𝛿𝑟𝑖 = ∑  
𝜕𝑟𝑖

𝜕𝑞𝑗
𝛿𝑞𝑗  .𝑗                                                                                   (2.7.17) 

Differentiating  ( 2.7.16  ) we not that  

𝜕�⃗⃗�𝑖

𝜕�̇�𝑗
=

𝜕�⃗�𝑖

𝜕𝑞𝑗
 ,                                                                                             (2.7.18) 

  
𝜕�⃗⃗�𝑖

𝜕�̇�𝑗
= ∑

𝜕2�⃗�𝑖

𝜕𝑞𝑗𝜕𝑞𝑘
𝑘 �̇�𝑘 +

𝜕2�⃗�𝑖

𝜕𝑞𝑖𝜕𝑡
=

𝑑

𝑑𝑡

𝜕�⃗�𝑖

𝜕𝑞𝑗
  ,                                             (2.7.19) 

Where the lest equality  comes form applying (2.7.18 ) with coordinates 𝑞𝑗  

rather  than  𝑥𝑗  to  𝑓 =
𝜕𝑟𝑖

𝜕𝑞𝑗
  

The first term in the equation ( 2.7.16) stating D,Alembert's  principle is  

∑ �⃗⃗�𝑖𝛿�⃗�𝑖𝑖 = ∑ ∑ �⃗⃗�𝑖
𝜕𝑟

𝜕𝑞𝑗
𝑖𝑗 𝛿𝑞

𝑖
= ∑ 𝑄

𝑗
𝛿𝑞

𝑖𝑗                                             (2.7.20) 

The generalized force 𝑄𝑗 has the same form as in the unconstrained case . 

The second term of (2.7.19) involves 

∑ �⃗⃗�𝑖𝛿�⃗�𝑖𝑖 = ∑
𝑑𝑃𝑖

𝑑𝑡

𝜕�⃗�𝑖

𝜕𝑞𝑗
𝑖  𝛿𝑞

𝑗
   

= ∑
𝑑

𝑑𝑡
(∑ �⃗⃗�𝑖 .

𝜕𝑟𝑖

𝜕𝑞𝑗
𝑖𝑗 ) 𝛿𝑞𝑗 − ∑ 𝑃𝑖 . (

𝑑

𝑑𝑡

𝜕𝑟𝑖

𝜕𝑞𝑗
𝑖 𝑗 ) 𝛿𝑞𝑗  

= ∑
𝑑

𝑑𝑡
(∑ �⃗⃗�𝑖 .

𝜕�⃗⃗�𝑖

𝜕�̇�𝑗
𝑖𝑗 ) 𝛿𝑞𝑗 − ∑ 𝑃𝑖 .

𝜕�⃗⃗�𝑖

𝜕𝑞𝑗
𝑖 𝑗  𝛿𝑞𝑗  

= ∑
𝑑

𝑑𝑡
(∑ 𝑚𝑖�⃗�𝑖 .

𝜕�⃗⃗�𝑖

𝜕�̇�𝑗
𝑖𝑗 ) 𝛿𝑞𝑗 − ∑ 𝑚𝑖𝑣𝑖 .

𝜕�⃗⃗�𝑖

𝜕𝑞𝑗
 𝑖  𝛿𝑞𝑗  
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= ∑[
𝑑

𝑑𝑡

𝜕𝑇

𝜕�̇�𝑗
−

𝜕𝑇

𝜕𝑞𝑗
]𝛿𝑞𝑗                                                                                 (2.7.21) 

      Where we used (2.7.18) and (2.7.19) to get the third line . Plugging in the 

expressions we have found  for the two terms in D,Alembert's  principle . 

∑ [ 
𝑑

𝑑𝑡

𝜕𝑇

𝜕�̇�𝑗
−

𝜕𝑇

𝜕𝑞𝑗
− 𝑄𝑗] 𝛿𝑞𝑗 = 0𝑗                                                                  (2.7.22) 

      We assumed we  had a holonomic system and the  g' s  were all independent 

, so this equation holds for  arbitrary virtual displacements 𝛿𝑞𝑗  , and therefore 

𝑑

𝑑𝑡

𝜕𝑇

𝜕�̇�𝑗
−

𝜕𝑇

𝜕𝑞𝑗
− 𝑄𝑗 = 0                                                                               (2.7.23) 

Now let us restrict ourselves to forces given by a potential , with 

�⃗�𝑖 − ∇i𝑈({𝑟}, 𝑡) , or 

𝑄𝑗 = − ∑
𝜕𝑟𝑖

𝜕𝑞𝑗
𝑗 . ∇⃗⃗⃗i𝑈 = −

𝜕𝑈({𝑞},𝑡)

𝜕𝑞𝑗
|
𝑡

                                                           (2.7.24) 

      Notice that  𝑄𝑗 depends only on the value of U on the constrained surface 

also , U is independent of the 𝑞𝑖  ' s , so 

𝑑

𝑑𝑡

𝜕𝑇

𝜕�̇�𝑗
−

𝜕𝑇

𝜕𝑞𝑗
+

𝜕𝑈

𝜕𝑞𝑗
= 0 =

𝑑

𝑑𝑡

𝜕(𝑇−𝑈)

𝜕�̇�𝑗
−

𝜕(𝑇−𝑈)

𝜕𝑞𝑗
 ,                                         (2.7.25) 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0                                                                                         (2.7.26) 

  This is LaGrange's equation , which we have now derived in the more general 

context of constrained system .  

(2.7.4) Hamilton's Equation : 

     We have written the Lagrangian as function of  𝑞𝑖  ,  �̇�𝑖  and t , so it is a 

function of  𝑁 + 𝑁 + 1 variables . For a free particle we can write the Kinetic 

energy either as  
1

2
𝑚�̇�

2
  or as  𝑃

2

2𝑚⁄  .  more generally , we can reexpress the 

dynamics in terms of the  2𝑁 + 1 variables  𝑞𝑘  , 𝑝𝑘  𝑎𝑛𝑑 𝑡.  

    The motion of the system sweeps out a path  in the space (𝑞 , �̇� , 𝑡) or path in 

( 𝑞 , 𝑝 , 𝑡) . Along this line , the variation of L is[62] 
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𝑑𝐿 = ∑ ( 
𝜕𝐿

𝜕�̇�𝑘
𝑑�̇�𝑘 +

𝜕𝐿

𝜕𝑞𝑘
𝑑𝑞𝑘 ) +

𝜕𝐿

𝜕𝑡
𝑑𝑡 𝑘   

      = ∑ 𝑃𝑘𝑑�̇�𝑘 + �̇�𝑘𝑑𝑞𝑘 +𝑘
𝜕𝐿

𝜕𝑡
𝑑𝑡                                                          (2.7.27) 

Where for first term we used the definition of the generalized momentum and 

in the second we have used the equation of motion  �̇�𝑘 =
𝜕𝐿

𝜕𝑞𝑘
 .Then examining  

the change in the Hamiltonian  𝐻 = ∑ 𝑃𝑘�̇�𝑘 − 𝐿𝑘   along this actual motion . 

𝑑𝐻 = ∑ (𝑃𝑘𝑑�̇�𝑘 + �̇�𝑘𝑑𝑃𝑘) − 𝑑𝐿𝑘   

        = ∑ �̇�𝑘𝑑 − �̇�𝑘𝑑𝑃𝑘) −
𝜕𝐿

𝜕𝑡
𝑑𝑡𝑘  .                                                       (2.7.28) 

If we think of  �̇�𝑘  and 𝐻 as functions of 𝑞 𝑎𝑛𝑑 𝑃 , and think of 𝐻 as function 

of  𝑞 , 𝑃, 𝑎𝑛𝑑 𝑡 we see that the physical motion obeys . 

�̇�𝑘 =
𝜕𝐻

𝜕𝑝𝑘
|

𝑞,𝑡
  , �̇�𝑘 = −

𝜕𝐻

𝜕𝑞𝑘
|

𝑝,𝑡
,                  

𝜕𝐻

𝜕𝑡
|

𝑞,𝑝
=  − 

𝜕𝐿

𝜕𝑡
|

𝑞,�̇�
        (2.7.29) 

    The  first two constitute Hamilton , equations of motion , which are first 

order equations for the motion of the point representing the system in phase 

space . 

       Let's work out a simple example , the one dimension harmonic oscillator . 

Here the kinetic energy is   𝑇 =
1

2
𝑚�̇�

2
 , the potential energy 𝑈 =

1

2
𝑘𝑥2 , so  

𝐿 =
1

2
𝑚�̇�2 −

1

2
𝑘𝑥2  ,the only generalized momentum is 𝑃 =

𝜕𝐿

𝜕�̇�
= 𝑚�̇� , and the 

Hamiltonian is  

𝐻 = 𝑃�̇� − 𝐿 = 𝑃2

𝑚⁄ − (𝑃2

2𝑚⁄ −
1

2
𝑘𝑥2) = 𝑃2

2𝑚⁄ +
1

2
𝑘𝑥2      (2.7.30) 

Not  this is just the sum of the kinetic and potential energies , or the total energy  

Hamilton's equation give  

�̇� =
𝜕𝐻

𝜕𝑝
|

𝑥
=

𝑃

𝑚
     ,       �̇� = −

𝜕𝐻

𝜕𝑥
|

𝑝
= −𝐾𝑥 = 𝐹      .                            (2.7.31) 

      These two equations verify the usual connection of the momentum velocity 

and give Newton's second law . 
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The identification of H with the total energy is more general than our particular 

example . If T is purely quadratic in velocities , we can write 𝑇 =
1

2
∑ 𝑚𝑖𝑗�̇�𝑖�̇�𝑗𝑖𝑗   in  terms of symmetric mass independent of velocities 

𝐿 =
1

2
∑ 𝑚𝑖𝑗�̇�𝑖�̇�𝑗𝑖𝑗 − 𝑈(𝑞)                                                                     (2.7.32) 

𝑃𝑘 =
𝜕𝐿

𝜕�̇�𝑘
= ∑ 𝑚𝑘𝑖�̇�𝑖𝑖                                                                              (2.7.33) 

Which as matrix equation in a n- dimensional space is 𝑃 = 𝑀. �̇� Assuming M is 

invertible , we also have �̇� = 𝑀−1. 𝑃  , so 

𝐻 = 𝑃𝑇�̇� − 𝐿  

= 𝑃𝑇𝑀−1. 𝑃 − (
1

2
�̇�𝑇𝑀�̇� − 𝑈(𝑞) ) 

= 𝑃𝑇𝑀−1. 𝑃 −
1

2
𝑃𝑇 𝑀−1. 𝑀. 𝑀−1. 𝑃 + 𝑈(𝑞)  

=
1

2
𝑃𝑇𝑀−1. 𝑃 + 𝑈(𝑞) = 𝑇 + 𝑈                                                                (2.7.34) 

             So we see that the Hamiltonian is indeed the total energy under these 

circumstances . 

New let's   assume L is regular , so  

𝜆 ∶ 𝑇𝑄 →̃   𝑥𝑐  �̇�𝑄  

(𝑞, �̇�) → (𝑞, 𝑃)                                                                                         (2.7.35) 

     This lets us have the best of both worlds : we can identify treat 𝑞𝑖 , 𝑃𝑖  , 𝐿 , 𝐻  

etc , all as function on x(or TQ) . Thus writing 

�̇�𝑖(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑇𝑄)  

For the function  

�̇�𝑖  𝑜 𝜆−1(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛  𝑥) 

In particular 

𝑃𝑖 =
𝜕𝐿

𝜕𝑞𝑖
  (Euler – LaGrange equation) 
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Which is really a function on TQ , will be treated as a function on x . Now let's 

calculate  

  𝑑𝐿 =
𝜕𝐿

𝜕�̇�𝑖
𝑑𝑞𝑖 +

𝜕𝐿

𝜕𝑞𝑖
𝑑�̇�𝑖 

  = �̇�𝑖 𝑑𝑞𝑖 +  𝑃𝑖𝑑�̇�𝑖                                                                                 (2.7.36) 

While  

𝑑𝐻 = 𝑑(𝑃𝑖�̇�𝑖 − 𝐿)  

= �̇�𝑖𝑑𝑃𝑖 + 𝑃𝑖𝑑�̇�𝑖 − 𝐿  

= �̇�𝑖𝑑𝑃𝑖 + 𝑃𝑖𝑑�̇�𝑖 − (�̇�𝑖𝑑𝑞𝑖 + 𝑃𝑖𝑑�̇�𝑖)                                                    (2.7.37)  

So  

𝑑𝐻 = �̇�𝑖𝑑𝑃𝑖 − �̇�𝑖𝑑𝑞𝑖)                                                                              (2.7.38) 

Assume the Lagrangian  𝐿 = 𝑇𝑄 → ℛ is regular, so 

 𝜆 ∶ 𝑇𝑄 →̃   𝑥𝑐  𝑇∗𝑄 

𝑞, �̇�) → (𝑞, 𝑃)  

Is a diffeomorphism . This lets us regard both L and the Hamiltonian 𝐻 =

𝑃𝑖�̇�𝑖 − 𝐿  as function on the phase space x . 

And use (𝑞𝑖, �̇�𝑖)als local coordinates on x . As we've seen this gives us 

𝑑𝐿 = �̇�𝑖 𝑑𝑞𝑖 +  𝑃𝑖𝑑�̇�𝑖  

𝑑𝐻 = �̇�𝑖𝑑𝑃𝑖 − �̇�𝑖𝑑𝑞𝑖)  

    But we can also work out  𝑑𝐻 directly , this time using local coordinates  

(𝑞𝑖, 𝑃𝑖)  to get 

𝑑𝐻 =
𝜕𝐻

𝜕𝑃𝑖
𝑑𝑃𝑖 −

𝜕𝐻

𝜕𝑞𝑖
𝑑𝑞𝑖)                                                                           (2.7.39) 

Since 𝑑𝑃𝑖, 𝑑𝑞𝑖 form a basic  of 1 – forms , we conclude . 

�̇�𝑖 =
𝜕𝐻

𝜕𝑃𝑖
     𝑃𝑖 =  

𝜕𝐻

𝜕𝑞𝑖
                                                                               (2.7.40) 
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These are Hamilton's Equation . 

(2.7.5) Lagrangian formalism  of Schrödinger equation : 

The Lagrangian  equation for a quantum system described by the wave function 

𝜓  is given by  

𝜕𝐿

𝜕𝜓∗ −
𝜕

𝜕𝑡
(

𝜕

𝜕𝑡𝜕𝜓∗) −
𝜕

𝜕𝑥
(

𝜕

𝜕𝑥𝜕𝜓∗) = 0                                                     (2.7.41) 

           Where 𝜓∗ acts as a field variable . For Schrödinger equation consider 

the Lagrangian  

𝐿 = −𝑖ħ�̇�∗ −
ћ2

2𝑚
𝜕𝑥𝜓∗𝜕𝑥𝜓 − 𝑉𝜓∗𝜓  

𝐿 = −𝑖ħ�̇�∗𝜓 −
ћ2

2𝑚
𝜕𝑥𝜓∗𝜕𝑥𝜓 − 𝑉𝜓𝜓∗                                              (2.7.42) 

Differentiating   𝐿  w.r.t to 𝜓∗ , �̇�∗ gives  

𝜕𝐿

𝜕𝜓∗ = −𝑉𝜓  

𝜕

𝜕𝜕𝑡𝜓∗ =
𝜕𝐿

𝜕�̇�∗ = −𝑖ħ𝜓                                                                            (2.7.43) 

Thus  

𝜕𝐿

𝜕𝑡
(

𝜕𝐿

𝜕𝜕𝑥𝜓∗) = −𝑖ħ
𝜕𝜓

𝜕𝑡
  

Also  

𝜕𝐿

𝜕𝜕𝑥𝜓∗ = −
ћ2

2𝑚
𝜕𝑥𝜓  

Hence   

𝜕𝑥(
𝜕𝐿

𝜕𝜕𝑥𝜓∗) = −
ћ2

2𝑚
𝜕2

𝑥𝜓                                                                       (2.7.44) 

A direct insertion of (2.7.43)  and  (2.7.44) in(2.7.41)   gives 

−𝑉𝜓 + 𝑖ħ
𝜕𝜓

𝜕𝑡
+

ћ2

2𝑚
𝜕𝑥

2𝜓 = 0  



24 
 

Thus 

𝑖ħ
𝜕𝜓

𝜕𝑡
= −

ћ
2

2𝑚
𝜕𝑥

2
𝜓 + 𝑉𝜓                                                                         (2.7.45) 

In 3-dimension         

𝑖ħ
𝜕𝜓

𝜕𝑡
= −

ћ2

2𝑚
∇2𝜓 + 𝑉𝜓                                                                         (2.7.46)     

Which is the ordinary 

(2.8) Principle of least action : 

  The principle of least action is based on the action integral [62] 

𝐼 = ∫ 𝐿
𝑏

𝑎
𝑑𝑥𝑖 = 0  

𝛿𝐼 = ∫ 𝛿𝐿
𝑏

𝑎
𝛿𝑥𝑖 = 0                                                                                    (2.8.1) 

But the Lagrangian depends on  𝑞, 𝜕𝑖𝑞 and  𝑥𝑖 hence : 

𝐿 = 𝐿( 𝑞, 𝜕𝑖𝑞 , 𝑥𝑖)                                                                                       (2.8.2)              

Thus using calculus of variation  

𝛿𝐿 =
𝜕𝐿

𝜕𝑞
𝛿𝑞 +

𝜕𝐿

𝜕𝜕𝑖𝑞
𝜕𝑖𝑞  

     =
𝜕𝐿

𝜕𝑞
𝛿𝑞 + 𝜕𝑖 [

𝜕𝐿

𝜕𝜕𝑖𝑞
𝜕𝑖𝑞] − 𝜕𝑖 [

𝜕𝐿

𝜕𝜕𝑖𝑞
] 𝛿𝑞  

=  [
𝜕𝐿

𝜕𝑞
− 𝜕𝑖 [

𝜕𝐿

𝜕𝜕𝑖𝑞
]]  𝛿𝑞 − 𝜕𝑖 [

𝜕𝐿

𝜕𝜕𝑖𝑞
𝜕𝑖𝑞]                                                        (2.8.3) 

Inserting  (2.8.3)  in (2.8.1) gives  

= ∫ [
𝜕𝐿

𝜕𝑞
− 𝜕𝑖 [

𝜕𝐿

𝜕𝜕𝑖𝑞
]]  𝛿𝑞 −

𝜕𝐿

𝜕𝜕𝑖𝑞
𝛿𝑞(𝑏) +

𝜕𝐿

𝜕𝜕𝑖𝑞
𝛿𝑞(𝑏)  

= ∫ [
𝜕𝐿

𝜕𝑞
− 𝜕𝑖 [

𝜕𝐿

𝜕𝜕𝑖𝑞
]]  𝛿𝑞𝑑𝑥𝑖 = 0                                                                 (2.8.4) 

Thus  

𝜕𝐿

𝜕𝑞
− 𝜕𝑖 [

𝜕𝐿

𝜕𝜕𝑖𝑞
] = 0                                                                                      (2.8.5) 
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Choosing the field variables to be 

𝑞 = 𝜓∗                                                                                                       (2.8.6) 

One gets 

𝜕𝐿

𝜕𝜓∗
− 𝜕𝑡 (

𝜕𝐿

𝜕𝜕𝑡𝜓∗) −
𝜕

𝑥
(

𝜕𝐿

𝜕𝜕𝑥𝜓∗) = 0                                                             (2.8.6) 

Using the same Lagrangian in section (2.8.5) and the same steps , one gets 

again Schrödinger equation in the form   

𝑖ħ
𝜕𝜓

𝜕𝑡
= −

ћ2

2𝑚
∇2𝜓 + 𝑉𝜓                                                                             (2.8.7) 

(2.9) Gravity ,Curved Space ,and Newtonian Limit : 

       The space – time interval in a curved space –time is given by [63,64,65] 

𝑐2𝑑𝜏2 = −𝑔𝜇𝛾𝑑𝑋𝜇𝑑𝑋𝛾                                                                              (2.9.1) 

Where 𝑐 , 𝜏 , 𝑔𝜇𝛾 𝑋𝜇 stands for speed of light , proper time , metric and 

coordinates . 

However in .Eucleadian  space it takes the form   

𝑐2𝑑𝜏2 = −𝜁𝜇𝛾𝑑𝑦𝛼𝑑𝑦𝛽                                                                               (2.9.2) 

Where 𝑦  depends on x, i.e 

𝑦𝛼 = 𝑦𝛼(𝑋𝜇)                                                                                              (2.9.3) 

Thus according to the laws of partial differential equations  

𝑑𝑦𝛼 =
𝜕𝑦𝛼

𝜕𝑋𝜇
 𝑑𝑋𝜇                                                                                         (2.9.4) 

Equation  (2.9.3) can be rewritten explicitly in the form  

𝑦𝛼(𝑋𝜇) = 𝑦𝛼(𝑋1, 𝑋2, .  .  . , 𝑋𝜇 , )                                                                 (2.9.5) 

Where  

𝑑𝑦𝛽 =
𝜕𝑦𝛽

𝜕𝑋𝛾
 𝑑𝑋𝛾                                                                                          (2.9.6) 

Inserting (2.9.4)  and  (2.9.6)in(2.9.2) gives  
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𝑐2𝑑𝜏2 = −𝜁𝛼𝛽
𝜕𝑦𝛼

𝜕𝑋𝜇
𝑑𝑋𝜇 𝜕𝑦𝛽

𝜕𝑋𝛾
 𝑑𝑋𝛾                                                               (2.9.7) 

Using equation (2.9.1) and(2.9.7)  , yields 

 −𝑔𝜇𝛾𝑑𝑋𝜇𝑑𝑋𝛾 = −𝜁𝛼𝛽
𝜕𝑦𝛼

𝜕𝑋𝜇

𝜕𝑦𝛽

𝜕𝑋𝛾
 𝑑𝑋𝜇𝑑𝑋𝛾                                                  (2.9.8) 

Thus  

𝑔𝜇𝛾 = 𝜁𝛼𝛽
𝜕𝑦𝛼

𝜕𝑋𝜇

𝜕𝑦𝛽

𝜕𝑋𝛾
                                                                                      (2.9.9) 

Consider now a freely   falling particle and elevator under the action of a 

gravitational field . 

Thus for elevator no acceleration exists . Hence 

𝑎 =
𝑑2𝑦𝛼

𝑑𝜏2
= 0                                                                                            (2.9.10) 

Therefore  

𝑎 =
𝑑2𝑦𝛼

𝑑𝜏2
=

𝑑

𝑑𝜏
[

𝑑𝑦𝛼

𝑑𝜏
] = 0                                                                          (2.9.11) 

Inserting 𝑥 in equation (2.9.11) gives 

𝑑

𝑑𝜏
[

𝜕𝑦𝛼

𝜕𝑋𝜇

𝑑𝑋𝜇

𝑑𝜏
] = 0                                                                                       (2.9.12) 

𝑑

𝑑𝜏
[

𝜕𝑦𝛼

𝜕𝑋𝜇
]

𝑑𝑋𝜇

𝑑𝜏
+

𝜕𝑦𝛼

𝜕𝑋𝜇

𝑑2
𝑋𝜇

𝑑𝜏2
= 0                                                                     (2.9.13) 

Now let  𝑓 be defined  

𝑓 =   
𝜕𝑦𝛼

𝜕𝑋𝜇
                                                                                                   (2.9.14) 

Where 𝑓 also depends on 𝑥 , i.e 

𝑓 = 𝑓(𝑋1, 𝑋2, .  .  . , 𝑋𝜇 , … )                                                                       (2.9.15) 

Thus its total differentiation becomes  

𝑑𝑓 =
𝜕𝑓

𝜕𝑋𝛾
𝑑𝑋𝛾                                                                                          (2.9.16) 

Hence 
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𝑑𝑓

𝑑𝜏
=

𝜕𝑓

𝜕𝑋𝛾

𝑑𝑋𝛾

𝑑𝜏
                                                                                            (2.9.17) 

Thus equation (2.9.13) becomes 

[
𝑑𝑓

𝑑𝜏
]

𝑑𝑋𝜇

𝑑𝜏
+ 𝑓

𝑑2𝑋𝜇

𝑑𝜏2
= 0                                                          

In view of (2.9.17) one gets 

 [
𝜕𝑓

𝜕𝑋𝛾

𝑑𝑋𝛾

𝑑𝜏
]

𝑑𝑋𝜇

𝑑𝜏
+

𝜕𝑦𝛼

𝜕𝑋𝜇

𝑑2𝑋𝜇

𝑑𝜏2
= 0                                                                (2.9.18)       

Hence  

𝜕

𝜕𝑋𝛾
[

𝜕𝑦𝛼

𝜕𝑋𝜇
]

𝑑𝑋𝛾

𝑑𝜏

𝑑𝑋𝜇

𝑑𝜏
+

𝜕𝑦𝛼

𝜕𝑋𝜇

𝑑2𝑋𝜇

𝑑𝜏2
= 0                                                              (2.9.19) 

Therefore 

[
𝜕2

𝑦𝛼

𝜕𝑋𝛾𝜕𝑋𝜇]
𝑑𝑋𝛾

𝑑𝜏

𝑑𝑋𝜇

𝑑𝜏
+

𝜕𝑦𝛼

𝜕𝑋𝜇

𝑑2𝑋𝜇

𝑑𝜏2
= 0                                                              (2.9.20) 

Multiply both sides of (2.9.20) by  

𝜕𝑋𝜆

𝜕𝑦𝛼
                                                                                                             (2.9.21) 

 Then using the fact that  

𝜕𝑦𝛼

𝜕𝑋𝜇

𝜕𝑋𝜆

𝜕𝑦𝛼
= 𝛿𝜇

𝜆  = {
1, 𝜆 = 𝜇

0, 𝜆 ≠ 𝜇
                                                                      (2.9.22) 

Equation (2.9.19) becomes  

𝑑𝑋𝛾

𝑑𝜏

𝑑𝑋𝜇

𝑑𝜏
[

𝜕𝑋𝜆

𝜕𝑦𝛼

𝜕2
𝑦𝛼

𝜕𝑋𝛾𝜕𝑋𝜇] + [
𝜕𝑦𝛼

𝜕𝑋𝜇

𝜕𝑋𝜆

𝜕𝑦𝛼
]

𝑑2𝑋𝜇

𝑑𝜏2
= 0                                              (2.9.23) 

𝑑𝑋𝛾

𝑑𝜏

𝑑𝑋𝜇

𝑑𝜏

𝜕𝑋𝜆

𝜕𝑦𝛼

𝜕2
𝑦𝛼

𝜕𝑋𝛾𝜕𝑋𝜇
+ 𝛿𝜇

𝜆 𝑑2𝑋𝜇

𝑑𝜏2
= 0                                                            (2.9.24) 

But  

𝛿𝜇
𝜆 𝑑2𝑋𝜇

𝑑𝜏2
=

𝑑2𝑋𝜆

𝑑𝜏2
                                                                                          (2.9.25) 

There fore equation (2.9.24) reduces to 

𝛤𝜇𝛾
𝜆 𝑑𝑋𝛾

𝑑𝜏

𝑑𝑋𝜇

𝑑𝜏
+

𝑑2𝑋𝜆

𝑑𝜏2
= 0                                                                             (2.9.26) 
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Where  

𝛤𝜇𝛾
𝜆 =

𝜕𝑋𝜆

𝜕𝑦𝛼

𝜕
2

𝑦𝛼

𝜕𝑋𝛾𝜕𝑋𝜇
                                                                                       (2.9.27) 

𝛤𝜇𝛾
𝜆 =

𝑔𝜐𝜆

2
[−𝑔𝜇𝛾,𝜐 + 𝑔𝜇𝜐;𝛾 + 𝑔𝜐𝛾,𝜇]                  

𝑔𝜇𝛾,𝜐 =
𝜕𝑔𝜇𝛾

𝜕𝑋𝜐
                                                                                              (2.9.28) 

The Riemann  Crystofal  symbol satisfies    

 𝛤𝜇𝛾
𝜆 = 𝛤𝛾𝜇

𝜆                                                                                                   (2.9.29) 

𝛤𝜇𝛾
𝜆 = 0                  𝑔𝜆𝜇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                         (2.9.30) 

(2.9.1)Newtonian Limit : 

In the Newtonian Limit the velocities 

𝑑𝑥

𝑑𝑡
     ,   

𝑑𝑦

𝑑𝑡
       ,   

𝑑𝑧

𝑑𝑡
                                                                                      (2.9.31) 

Are very small compared to light speed , where  

𝑥0 = 𝑐𝑡              𝑥1 = 𝑥                          

𝑥2 = 𝑦             𝑥3 = 𝑧                                                           (2.9.32) 

Therefore 

𝛤𝜇𝛾
𝜆 𝑑𝑥𝜇

𝑑𝑡

𝑑𝑥𝛾

𝑑𝑡
= 𝑐2𝛤00

𝜆 (
𝑑𝑡

𝑑𝑡
)2 + 𝛤11

𝜆 (
𝑑𝑥

𝑑𝑡
)2 + 𝛤22

𝜆 (
𝑑𝑦

𝑑𝑡
)2 + 𝛤33

𝜆 (
𝑑𝑧

𝑑𝑡
)2              (2.9.33) 

But since the velocities are small thus one can assume that  

𝑑𝑥

𝑐2𝑑𝑡
= 0     ,   

𝑑𝑦

𝑐2𝑑𝑡
= 0       ,   

𝑑𝑧

𝑐2𝑑𝑡
= 0                                        (2.9.34) 

Fore (𝜆 = 𝜇)equation (2.9.26) becomes 

[
𝑑𝑡

𝑑𝜏
]

2
[

𝑑2𝑋𝜇

𝑑𝑡2
+ 𝑐2𝛤00

𝜆 (
𝑑𝑡

𝑑𝑡
)2] = 0                                                                  (2.9.35) 

For a particle moving a long the 𝑥  axis 

𝜇 = 1        ,    𝑋𝜇 = 𝑋1 = 𝑥                                                                      (2.9.36) 

Where 
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𝑑2𝑋𝜇

𝑑𝜏2
=

𝑑2𝑋1

𝑑𝜏2
=

𝑑2𝑥

𝑑𝜏2
= 

𝑑

𝑑𝑡
[

𝑑𝑥

𝑑𝑡
] [

𝑑𝑡

𝑑𝜏
] 

        =
𝑑

𝑑𝑡
[

𝑑𝑥

𝑑𝜏
] [

𝑑𝑡

𝑑𝜏
] =

𝑑

𝑑𝑡
[

𝑑𝑥

𝑑𝑡

𝑑𝑡

𝑑𝜏
]

𝑑𝑡

𝑑𝜏
                                                              (2.9.37) 

𝑑2𝑋𝜇

𝑑𝜏2
=

𝑑2𝑥

𝑑𝜏2
=

𝑑2𝑥

𝑑𝑡2 (
𝑑𝑡

𝑑𝜏
)

2
                                                      (2.9.38) 

thus 

𝑑2𝑥

𝑑𝑡2 (
𝑑𝑡

𝑑𝜏
)

2
+ 𝑐2𝛤00

𝜆 (
𝑑𝑡

𝑑𝜏
)2 = 0                                                                       (2.9.39) 

Therefore 

𝑑2𝑥

𝑑𝑡2
= −𝑐2𝛤00

𝜆                                                                                             (2.9.40) 

When one considers only time and   𝑥 components 

𝛤𝛼𝛽
𝜆 = −

1

2
𝑔𝜆𝛾 𝜕𝑔𝛼𝛽

𝜕𝑋𝛾
                                                                                    (2.9.41) 

𝛼 = 0    ,   𝛽 = 0                                                                                        (2.9.42) 

Thus 

𝛤00
𝜆 = −

1

2
𝑔𝜆𝛾 𝜕𝑔00

𝜕𝑋𝛾
                                                                                     (2.9.43) 

For very week field , the metric becomes 

𝑔𝜆𝛾 = 𝑦𝜆𝛾 + ℎ𝜆𝛾      →   𝑔𝜆𝛾 = 𝜁𝜆𝛾 +  ℎ𝜆𝛾                                                 (2.9.44) 

Where ℎ  is very small and much Less than one , and  

𝜁𝜆𝛾 = ∓1                                                                                                  (2.9.45) 

And  

ℎ𝜇𝛾 ≪ 1                                                                                                   (2.9.46) 

𝑥1 = 𝑥   , 𝜇 = 1        𝛾 = 1                                                                     (2.9.47) 

Thus equation (2.9.43)  reads  

𝛤00
𝜆 = 𝛤00

1 = −
1

2
𝑔11 𝜕𝑔00

𝜕𝑋1
= −

1

2
𝑔11 𝜕𝑔00

𝜕𝑥
                                                 (2.9.48) 

For  
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𝜇 = 0     ,   𝛾 = 0                                                                                       (2.9.49) 

Equation(2.9.44)  becomes  

𝑔00 = 𝜁00 + ℎ00 = 𝜁00 + ℎ00                                                                 (2.9.50) 

𝛤00
𝜆 = 𝛤00

1 = −
1

2
𝑔11 𝜕(𝜁00+ ℎ00)

𝜕𝑥
= −

1

2
𝑔11 𝜕ℎ00

𝜕𝑥
                                         (2.9.51) 

Similarly the spatial component can be wirillen as    

𝑔𝜆𝛾 = 𝑦𝜆𝛾 + ℎ𝜆𝛾                                                                                      (2.9.52) 

Where  

𝜆 = 1    , 𝛾 = 1                                                                                          (2.9.53) 

Again , one can write  

𝑔11 = 𝜁11 + ℎ11                                                                                      (2.9.54) 

Where  

ℎ11 ≪ 1                                                                                                   (2.9.55) 

Thus equation (2.9.51)reads 

𝛤00
𝜆 = −

1

2
(𝜁11 + ℎ11)

𝜕ℎ00

𝜕𝑥
= −

1

2
𝜁11 𝜕ℎ00

𝜕𝑥
−

1

2
ℎ11 𝜕ℎ00

𝜕𝑥
)                         (2.9.56) 

Since  

ℎ11 ≪ 1            ℎ00 ≪ 1                                                                            (2.9.57) 

It f0llows that  

𝛤00
𝜆 = −

1

2
𝜁11 𝜕ℎ00

𝜕𝑥
                                                                                     (2.9.58) 

But    

𝜁11 = 1                                                                                                      (2.9.59) 

Hence  

𝛤00
𝜆 = −

1

2

𝜕ℎ00

𝜕𝑥
                                                                                            (2.9.60) 

Thus equation  (2.9.40)  reads 
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𝑑2𝑥

𝑑𝑡2
= 𝑐2 𝜕ℎ00

𝜕𝑥
                                                                                             (2.9.61) 

In 3-dimension  

𝑑2𝑥

𝑑𝑡2
=

𝑐2

2
𝛻ℎ00                                                                                            (2.9.62) 

On the other hand Poisson equation takes the form  

𝑑2𝑥

𝑑𝑡2
= −𝛻∅                                                                                                (2.9.63) 

This equation comes from the Newton second law 

𝑚
𝑑2𝑥

𝑑𝑡2
= 𝐹 = −𝛻𝑉 = −𝛻𝑚∅ = −𝑚𝛻∅                                                   (2.9.64) 

Thus comparing equations   and  

ℎ00 = −
2∅

𝑐2
                                                                                                 (2.9.65) 

𝜁00 = −1                                                                                                   (2.9.66) 

Thus from (2.9.50)  one gets  

𝑔00 = 𝜁00 + ℎ00 = −(1 +
2∅

𝑐2
)                                                                  (2.9.67) 

 (2.10) Einstein Gravitational Field Equation : 

                According to Poisson equation [66,67] 

𝛻2∅ = 4𝜋𝐺𝜌                                                                                             (2.10.1) 

Where 𝜌   is the matter density . Thus from equation (2.9.67)  , one get   

𝛻2𝑔00 = −
𝑐2

2
∇∅                                                                                       (2.10.2) 

Rearranging  

𝛻2𝑔00 = −
8𝜋𝐺𝜌

𝑐2
                                                                                         (2.10.3) 

This equation can be written in  a tonsorial  form for time –time component to 

be in the form  

𝐺00 = −
8𝜋𝐺

𝑐2
𝑇00                                                                                         (2.10.4) 
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More generally , for all components , one gets  

𝐺𝜇𝛾 = −
8𝜋𝐺

𝑐2
𝑇𝜇𝛾                                                                                         (2.10.5) 

Where G , represents the geometrical tensor and 𝑇, the matter tensor . 

Differentiating    w .r .t  𝑥𝜇 gives  

𝐺𝜇𝛾;𝜇 = −
8𝜋𝐺

𝑐2
𝑇𝜇𝛾;𝜇                                                                                   (2.10.6) 

Since the energy momentum tensor is conserved thus 

𝑇𝜇𝛾;𝜇 = 0                                                                                                   (2.10.7) 

thus   

𝐺𝜇𝛾;𝜇 = 0                                                                                                   (2.10.8) 

This can be satisfied when  

𝐺𝜇𝛾 = 𝑅𝜇𝛾 −
1

2
 𝑔𝜇𝛾𝑅                                                                                 (2.10.9) 

Thus according to equation (2.10.5) Einstein equation 

 takes the form  

𝑅𝜇𝛾 −
1

2
 𝑔𝜇𝛾𝑅 = −

8𝜋𝐺

𝑐2
𝑇𝜇𝛾                                                                      (2.10.10) 

(2.11)Potential Dependent Frictional Schrödinger Equation: 

           This work is done  by   treating particles as harmonic oscillator one  

obtains  the friction energy related to the momentum . The energy and the 

corresponding Newtonian operator is found . This results in a new Schrodinger 

equation accounting for the effect of friction . This new equation shows that the 

energy and mass are quantized , if one treat particles as strings the radioactive 

decay law and collision probability is also derived.[68,69,70] 

(2.11.1)Schrodinger equation for frictional medium : 

According to Plank and de Broglie  hypothesis the quantum quanta are treated 

as wave packets . 

According to string theory matter building  blocks are treated as vibrating string 

. Motivated by this hypothesis , the energy dissipated by friction can be derived 
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consider now a frictional force  Ff  in terms of mass m , relaxation time τ and 

velocity  𝑣 to be [71,72]  

𝐸𝐹 =
𝑚𝑣

τ
                                                                                                                  (2.11.1) 

Considering matter building blocks as strings the speed is given by  

𝑣 = 𝑣0𝑒𝑖𝜔𝑡                                                                                               (2.11.2) 

Thus , the displacement is given by : 

𝑥 = ∫ 𝑣 𝑑𝑡 = 𝑣0 ∫ 𝑒𝑖𝜔𝑡 dt =
𝑣0

𝑖𝜔
𝑒𝑖𝜔𝑡 =

𝑣

𝑖𝜔
                                                 (2.11.3) 

The total dissipative energy 𝐸𝑓 is given by : 

𝐸𝐹 = ∫ 𝐸𝑓 . 𝑑𝑥 =
𝑚

iωτ
∫ 𝑣 𝑑𝑣 =

𝑚𝑣2

2𝑖ωτ
=

𝑖𝑚𝑣2

2𝑖2ωτ
=

−𝑖𝑚𝑣2

2ωτ
 = −

𝑖

ωτ
(

1

2
𝑚𝑣2) =

−𝑖

ωτ
(

𝑃2

2𝑚
)                                                                                                      (2.11.4) 

   But the total energy can be expressed in terms of the kinetic and potential 

energy V in the form  

𝐸 = 𝐾 + 𝑉 =
𝑃2

2𝑚
+ V                                                                                (2.11.5) 

Thus according to equation (2.11.5)and equation (2.11.4) 𝐸𝑓  is given by 

𝐸𝑓 =
−𝑖

ωτ
(𝐸 − 𝑉)                                                                                         (2.11.6) 

 But using plank hypothesis the energy E is given by : 

𝐸 = ħ𝜔                                                                                                       (2.11.7) 

In view of equations(2.11.6)and (2.11.7) the frictional energy is given by 

𝐸𝐹 =
−𝑖ħ

ħ𝜔τ
(𝐸 − 𝑉) =

𝑖ħ

τE
(𝐸 − 𝑉)    

𝐸𝐹 =
𝑖ħ

τ
(

𝑉

𝐸
− 1)                                                                                          (2.11.8) 

Thus the Hamiltonian classical relation for a particle in frictional medium is 

given by 
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𝐸 = 𝐻 =
𝑃2

2𝑚
+ V +

𝑖ħ

τ
(

𝑉

𝐸
− 1) =

𝑃2

2𝑚
+ V +

𝑖ħ

τ
(

𝑉−𝐸

𝐸
)                                (2.11.9) 

Therefore 

𝐸2 = (
𝑃2

2𝑚
+ V) E +

𝑖ħ

τ
(𝑉 − 𝐸)                                                                (2.11.10) 

To find the Schrodinger equation corresponding to this relation , one multiplies 

both sides of equation (2.11.10) by 𝜓 to get : 

𝐸2𝜓 = (
𝑃2

2𝑚
+ V) E𝜓 +

𝑖c

τ
(𝑉 − 𝐸)𝜓                                                    (2.11.11) 

Considering the wave function 

𝜓 = 𝐴𝑒
𝑖

ħ
(𝑃𝑥−𝐸𝑡)

                                                                                      (2.11.12) 

Hence  

  𝐸𝜓 = 𝑖ħ
𝜕𝜓

𝜕𝑡
                                                                                (2.11.13)                                                                    

−ħ2 𝜕2𝜓

𝜕𝑡2 = 𝐸2𝜓                                                                          (2.11.14) 

Similarly differentiating the wave function respect to x yields  

𝜕𝜓

𝜕𝑥
=

𝑖

ħ
𝑃𝜓  

ħ

𝑖 

𝜕𝜓

𝜕𝑥
= 𝑃𝜓  

−ħ2 𝜕2𝜓

𝜕𝑥2 = −ħ2∇2𝜓 = 𝑃2𝜓                                                        (2.11.15) 

Thus inserting equations (2.11.13), (2.11.14)and  (2.11.15)into equation 

(2.11.11)  yields 

−ħ2
𝜕2𝜓

𝜕𝑥2
= (−

ħ2

2𝑚
∇2 + 𝑉) 𝑖ħ

𝜕𝜓

𝜕𝑡
+

𝑖ħ

τ
(−𝑖ħ

𝜕𝜓

𝜕𝑡
+ 𝑉𝜓) 

−ħ2 𝜕2𝜓

𝜕𝑥2 = 𝑖ħ (−
ħ2

2𝑚
∇2 + 𝑉)

𝜕𝜓

𝜕𝑡
+

ħ2

τ

𝜕𝜓

𝜕𝑡
+

𝑖ħ

τ
𝑉𝜓                      (2.11.16) 
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(2.11.2)Harmonic oscillator solution : 

                To see how friction force consider the solution of equation(2.11.12)in 

the form  

 𝜓 = 𝑒−𝑖
𝐸

ħ
𝑡𝑢(𝑣) = 𝑓(𝑡)𝑢(𝑣) = 𝑓𝑢 

𝜕𝜓

𝜕𝑡
= −𝑖

𝐸

ħ
𝑓𝑢     

𝜕2𝜓

𝜕𝑡2 =
𝑖2𝐸2

ħ2 𝑓𝑢 = −
𝐸2

ħ2 𝑓𝑢                                                                       (2.11.17) 

A direct substitution in equation(2.11.16) gives  

𝐸2𝑓𝑢 = 𝑖ħ (−
ħ2

2𝑚
∇2𝑢 + 𝑉𝑢) 𝑓 (

−𝑖𝐸

ħ
) − 𝑖

Eħ2

ħτ
𝑓𝑢 + 𝑖

ħ

τ
𝑉𝑓𝑢                     (2.11.18) 

Dividing both sides of equation  (2.11.18)by f yields  

𝐸2𝑢 = +𝐸 (−
ħ2

2𝑚
∇2𝑢 + 𝑉𝑢) − 𝑖

Eħ2

ħτ
𝑢 + 𝑖

ħ

τ
𝑉𝑢                                      (2.11.19) 

Dividing both sides of equation  (2.11.19)by +E yields  

(𝐸 +
𝑖ħ

τ
) 𝑢 = −

ħ2

2𝑚
∇2𝑢 + 𝑉 (1 +

𝑖ħ

τE
) 𝑢  

−
ħ2

2𝑚
∇2𝑢 + 𝑐1𝑉𝑢 = 𝐸1𝑢                                                                       (2.11.20) 

Where 

𝑐1 = 1 +
𝑖ħ

τE
  

𝐸1 = E +
𝑖ħ

τ
                                                                                              (2.11.21) 

For harmonic oscillator on finds  

𝑉 =
1

2
𝑘𝑥2                                                                                               (2.11.22) 

Thus substituting  this expression in  equation(2.11.20) gives  

−
ħ2

2𝑚
∇2𝑢 + 𝑐1

1

2
𝑘𝑥2 = 𝐸1𝑢                                                                  (2.11.23) 
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Let now  

𝑘0 = 𝑐1𝑘                                                                                                  (2.11.24) 

Therefore equation  (3.2.23) become 

−
ħ2

2𝑚
∇2𝑢 +

1

2
𝑘0𝑥2 = 𝐸1𝑢                                                                     (2.11.25) 

Thus substituting  equation(2.11.21)into equation(2.11.25) gives 

 𝐸1 = E +
𝑖ħ

τ
= (n +

1

2
) ħ𝜔                                                                     (2.11.26) 

E = (n +
1

2
) ħ𝜔 −

𝑖ħ

τ
                                                                               (2.11.27) 

The frequency is given according to equation (3.2.24)and equation (2.11.21)to 

be  

𝑘0 = 𝑚𝜔2  

𝑐1𝑘 = (1 +
𝑖ħ

τE
) 𝑘 = 𝑚𝜔2   

(E +
𝑖ħ

τ
) 𝑘 = 𝑚𝜔2𝐸                                                                                 (2.11.28) 

Thus 

E = (
𝑚𝜔2

𝑘
− 1)

−1 𝑖ħ

τ
                                                                                 (2.11.29)  

 From (2.11.27) and(2.11.29) 

    0 =
𝑚𝜔2

𝑘
+ (n +

1

2
) ħ𝜔 

𝑚 = (1 +
𝑖

τ(n+
1

2
)
)

𝑘

𝜔2
                                                                               (2.11.30) 

Thus from equation (2.11.30) one find the mass is quantized         

(2.11.3) radioactive decay low and collision probability : 

     Consider equation (2.11.16) for constant potential V0 

Using the separation of variables let the wave function 𝜓 be in the form  
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𝜓(𝑟, 𝑡) = 𝑓(𝑡)𝑢(𝑟) = 𝑓𝑢                                                                         (2.11.31) 

A direct substitution of equation (2.11.31)in equation (2.11.16)gives  

−ħ2𝑢
𝜕2𝑓

𝜕𝑡2
= (−

ħ2

2𝑚
∇2 + 𝑉0) 𝑢 (𝑖ħ

𝜕𝑓

𝜕𝑡
) +

𝑖ħ

τ

𝜕𝑓

𝜕𝑡
𝑉0𝑢𝑓 +

ħ2

τ
𝑢

𝜕𝑓

𝜕𝑡
  

Thus 

(−ħ2 𝜕2𝑓

𝜕𝑡2
−

𝑖ħ

τ
𝑉0𝑓 −

ħ2

τ

𝜕𝑓

𝜕𝑡
) 𝑢 = (−

ħ2

2𝑚
∇2 + 𝑉0) 𝑢 (𝑖ħ

𝜕𝑓

𝜕𝑡
)                      (2.11.32) 

Divide both  sides of equation (2.11.32)by fu to get 

(𝑖ħ
𝜕𝑓

𝜕𝑡
)

−1

(−ħ2 𝜕2𝑓

𝜕𝑡2
−

𝑖𝑉0ħ

τ
𝑓 −

ħ2

τ

𝜕𝑓

𝜕𝑡
) =

1

𝑢
(−

ħ2

2𝑚
∇2 + 𝑉0) 𝑢 = 𝐸0          (2.11.33) 

Taking the time part of equation(2.11.33)only gives  

−ħ2 𝜕2𝑓

𝜕𝑡2
−

𝑖𝑉0ħ

τ
𝑓 −

ħ2

τ

𝜕𝑓

𝜕𝑡
= 𝑖ħ𝐸0

𝜕𝑓

𝜕𝑡
                                                          (2.11.34) 

Consider the case when the potential vanishes  

𝑉0 = 0                                                                                                      (2.11.35) 

Hence 

−ħ2 𝜕2𝑓

𝜕𝑡2
−

ħ2

τ

𝜕𝑓

𝜕𝑡
= 𝑖ħ𝐸0

𝜕f

𝜕𝑡
                                                                        (2.11.36) 

Consider now a solution 

f = 𝐴𝑒−
𝑖

ħ
𝐸𝑡

  

𝜕f

𝜕𝑡
= −

𝑖

ħ
𝐸𝑡  

𝜕2𝑓

𝜕𝑡2
= +

𝑖2

ħ2
𝐸2𝑓 = −

𝐸2

ħ2
𝑓                                                                          (2.11.37) 

Inserting equation (2.11.37) in equation (2.11.36) yields  

𝐸2𝑓 +
𝑖ħ

τ
𝐸𝑓 = 𝑖ħ𝐸0  (−

𝑖

ħ
𝐸𝑓)                                                                 (2.11.38) 

Dividing both sides of equation (2.11.38)by gives  

𝐸2 +
𝑖ħ

τ
𝐸 = 𝐸0𝐸                                                                                       (2.11.39) 
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Rearranging both sides of equation (2.11.39) gives 

𝐸2 = (𝐸0 −
𝑖ħ

τ
) 𝐸                                                                                      (2.11.40) 

   Dividing both sides of equation (2.11.40)by E gives  

𝐸 = (𝐸0 −
𝑖ħ

τ
)                                                                                           (2.11.41) 

Inserting equation (2.11.41) in equation (2.11.37)gives  

 f = 𝐴𝑒
−𝑖

ħ
(𝐸0−

𝑖ħ

τ
)𝑡

= 𝐴𝑒−
𝑡

τ𝑒−
𝑖

ħ
𝐸0𝑡

     

Hence 

𝑓 = 𝐴𝑒−
𝑡

τ𝑒−
𝑖

ħ
𝐸0𝑡

                                                                                        (2.11.42) 

Since the probability and number of particles are given by 

𝑛 = |𝑓|2 = 𝑓 𝑓 =  𝐴2𝑒
−2𝑡

τ                                                                         (2.11.43) 

Equation (3.2.43) is the ordinary radioactive decay low with 

𝜆 =
2

τ
        ,         𝑛0 = 𝐴2                                                                         (2.11.44) 

i.e. 

𝑛 = 𝑛0𝑒−𝜆𝑡                                                                                              (2.11.45) 

This expression also gives collision probability  P  with 

𝑝 = 𝑛   ,    𝑝0 = 𝐴2  

𝜏0 = 𝜏
2⁄                                                                                                    (2.11.46) 

To get  

𝑝 =  𝑝0𝑒
−𝑡

𝜏0                                                                                                 (2.11.47) 

Equation (2.11.47) is the ordinary collision probability relation    
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(2.12)Time Dependent Schrödinger Equation for Two Level 

Systems to Find Traverse Relaxation Time :  

           This model was made by in this work Schrodinger equation in energy 

space for two level system was used to find transverse relaxation time . By 

suggesting sine and cosine beside complex solutions a useful expression for 

transverse relaxation time was found . When electric interaction dominate , i.e. 

for dielectric materials the transverse relaxation time depends on the electric 

dipole moment . However the magnetic materials having magnetic spin and 

magnetic dipole moment , it depends on the internal filed as well as spin 

quantum number .[71,73] 

𝑠𝑖𝑛𝜔𝜏 = 1                                                                                                  (2.12.1) 

𝜔𝜏 =
𝜋

2
  

∴ 𝜏 =
𝜋

2𝜔
=

𝜋

4𝜋𝑓
=

𝜋

4𝑓
                                                                                  (2.12.2) 

(2.13) Quantum and Generalized Special Relativistic Model for 

Electron Charge Quantization : 

        This research was done by the  explanation of electron self-energy and 

charge quantization. In this work one quantizes electron and elementary 

particles charges on the basis of electromagnetic Hamiltonian in a curved space 

–time at vacuum stage of the universe , using quantum spin angular momentum 

an Klein –Gordon equation beside generalized special relatively . Electron 

charge is found to be quantized and the electron self-energy is finite . the radius 

of the electron is also found .[74] 

In this case according to generalized special relativity model the electron mass 

is given by  

𝑚 = (1 −
2∅𝑔

𝑐2 )  m0                                                                                    (2.13.1) 

Assume for simplicity  

     𝑚 = 1013 m0 = 1013 × 9 × 10−31 = 9 × 10−18𝑘𝑔                          (2.13.2) 

Thus  

 r0 =
ħ

2mc
=

h

4πmc
=

6.63×10−34

2π9×10−18×3×108
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 r0 = 1.954 × 10−26𝑚                                                                              (2.13.3) 

Which is quite reasonable as far as nucleus or proton radius for very light atoms 

are 

 rb = 10−14𝑚                   rp = 10−16𝑚                                                   (2.13.4) 

(2.14)Classical Newtonian Model For Destruction of 

Superconductors by Magnetic Field :    

             Newton second law is used to describe the destruction of super 

conductivity for type 1& type 2.The electron is assumed to be affected by 

external electric and magnetic field as well as the internal magnetic field. The 

conductivity and resistance depends on the internal as well as external magnetic 

field . For  type 1 the superconducting state is destroyed when the external 

magnetic field exceeds the maximum internal field . For type 2 the 

superconductivity is destroyed partially in the region where the local maximum 

field is the lowest , and enters completely when the external field exceeds the 

maximum local internal field .[75] 

Thus the maximum produced atomic fields is 

 bam =
μ𝑖𝑚

2r
                                                                                                  (2.14.1) 

Where the maximum current produced is  

 𝑖 =
−𝑒𝑧0𝜔𝑚

2𝜋
                                                                                                 (2.14.2) 

Where 

𝜔𝑟 = √
2𝐸𝑏

𝑚

1
𝑟

                                                                                                 (2.14.3) 

Thus the internal field attains maximum value 

 bim = ∑  bam                                                                                             (2.14.4) 

When B exceeds this maximum value in the region of lowest Bi , i.e  

 B > Bim                                                                                                     (2.14.5) 

The resistivity will no longer vanishes , where 
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ρ =
 B−BimL

ne
> 0                                                                                          (2.14.6) 

(2.15)Energy Quantization of Electrons for Spherically 

Symmetric Atoms and Nano Particles According to Schrodinger 

Equation : 

        Schrodinger equation for spherical atoms and nano particles was used to 

describe the behavior of electrons and phonons by treating them as strings 

oscillating thermally and under the action of external force .The solution shows 

that for thermally excited phonons and electrons the energy and frequency are 

quantized . For electrons excited by external force the energy and frequency are 

also quantized . The energy in both cases resembles the zero point energy for 

harmonic oscillator of the quantum system .The solution also describes free as 

well as bounded electrons . The results obtained agree with previous models and 

observation [76]. 

𝐸𝑛 = ±
2𝑛𝜋ħ2

𝑚2𝑑2
                                                                                              (2.15.1) 

When  

𝜔0 = 0 

  𝐸 =
1

2
ħ𝜔                                                                                                  (2.15.2) 

But when  𝜔 = 0 

𝐸 =
1

2
ħ𝜔0                                                                                                   (2.15.3) 

This represents thermal photons with minimum energy which represents rest 

mass energy . In view of equation (2.15.1) and (2.15.3) the phonon energy is 

quantized .   

 (2.16) Time Independent Generalized Special Relativity 

Quantum Equation and Travelling Wave Solution: 

            The effects of fields on physical systems is recognized using the   

generalized special relativity (GSR) . A new quantum equation Dirac equation  

consisting of a potential term is derived  .[77] 

(2.16.1)Potential dependent Dirac quantum equation : 
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According to GSR model the linear energy is given by  

𝐸 = 𝑔00

1
2⁄

𝛽𝑚0𝑐2 + 𝑔00

−1
2⁄

𝑐𝛼. 𝑝 = 𝛽𝑚0𝑐2 (1 +
𝑉

𝑚0𝑐2) + 𝑐 (1 −

𝑉

𝑚0𝑐2) α . 𝑝                                                                                                  (2.16.1) 

Where 

      𝑔00

1
2⁄

= 1 +
𝑉

𝑚0𝑐2      ,       𝑔00

−1
2⁄

= 1 −
𝑉

𝑚0𝑐2 

Multiplying both side of equation (3.7.1) by𝜓  gives  

𝐸𝜓 = 𝑐 (1 −
𝑉

𝐸
) α . 𝑝𝜓 + (1 +

𝑉

𝐸
) 𝛽𝑚0𝑐2𝜓  

𝐸2𝜓 = 𝑐𝐸 (1 −
𝑉

𝐸
) α . 𝑝𝜓 + 𝐸 (1 +

𝑉

𝐸
) 𝛽𝑚0𝑐2𝜓 

∴ 𝐸2𝜓 = 𝑐(𝐸 − 𝑉)α . 𝑝𝜓 + (𝐸 + V)𝛽𝑚0𝑐2𝜓 

𝐸2𝜓 = 𝑐α . 𝑝𝐸𝜓 − 𝑐𝑉α . 𝑝𝜓 + 𝛽𝑚0𝑐2𝐸𝜓 + 𝛽𝑚0𝑐2V𝜓                  (2.16.2)                               

Where  

𝐸 → Ĥ = 𝑖ħ
𝜕

𝜕𝑡
 𝑎𝑛𝑑    𝑝 = �̂� =

ħ

𝑖
∇⃗⃗                                                         (2.16.3) 

From equation (2.16.2) and (2.16.3) 

−ħ2 𝜕2𝜓

𝜕𝑡2
= 𝑐ħ2𝛼 . ∇⃗⃗⃗ (

𝜕𝜓

𝜕𝑡
) − 𝑐𝑉𝛼

ħ

𝑖
∇⃗⃗⃗𝜓 + 𝑖ħ𝛽𝑚0𝑐2 (

𝜕𝜓

𝜕𝑡
) +

𝛽𝑚0𝑐2𝑉𝜓                                                                                                                (2.16.4)                                                                                                

From (2.16.4) , by suggesting a solution 

𝜓 = 𝑢( 𝑟 )𝑒−𝑖𝜔0𝑡 = 𝑢𝑒−𝑖𝜔0𝑡 = 𝑢𝑒
𝑖𝐸

ħ
𝑡
  

𝜕𝜓

𝜕𝑡
= −𝑖𝜔0𝜓         ,       

𝜕2𝜓

𝜕𝑡2
= −𝜔0

2𝜓                                                        (2.16.5) 

A direct substitution of (2.16.5) in (2.16.4) gives 

ħ2𝜔0
2𝜓 = 𝑐ħ2𝜔0𝛼. ∇𝜓 + 𝑖𝑐ħV𝛼∇𝜓 − 𝛽𝑚0𝑐2ħ𝜔0𝜓 + 𝛽𝑚0𝑐2𝑉𝜓                                                                                     

,                                                                                                                   (2.16.6) 
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Where  

E = ħ𝜔0         , 𝐸0 = 𝑚0𝑐2      

𝐸2𝜓 = 𝑐ħ𝐸α ∇𝜓 + 𝑖𝑐ħ𝑉α ∇𝜓 − 𝛽𝐸0𝐸𝜓 + 𝛽𝐸0V𝜓                                     (2.16.7) 

𝑒−𝑖𝜔0𝑡(𝐸2𝑢) = 𝑒−𝑖𝜔0𝑡(𝑐ħ𝐸α ∇u + 𝑖𝑐ħ𝑉α ∇u) + 𝑒−𝑖𝜔0𝑡(βE + βV)𝐸0𝑢                                                                               

,                                                                                                                   (2.16.8) 

The time decaying exponential term can be cancelled on both sides to get  

(𝐸2 − β(E + V)𝐸0)𝑢 = 𝑐ħ(𝐸 + 𝑖𝑉) α∇u                                                  (2.16.9) 

This can be written as 

𝑐1𝑢 − 𝑐2𝑉𝑢 = 𝑐3 α∇u + 𝑖𝑐4𝑉 α∇u                                                      (2.16.10) 

Where  

𝑐1 = 𝐸2 − βE𝐸0 ,  𝑐2 = +β𝐸0 , 𝑐3 = 𝑐ħ𝐸   , 𝑐4 = cħ                (2.16.11) 

(2.16.2) Travelling wave solution  

𝜓 = 𝐴𝑒𝑖(𝑘𝑟−𝜔𝑡)                                                                                        (2.16.12) 

But  

𝜓 = 𝑒−𝑖𝜔𝑡          u = 𝑒−𝑖𝜔𝑡u( 𝑟 )                                                           (2.16.13)  

𝑢 = 𝐴𝑒𝑖𝑘𝑟         , ∇𝑢 = 𝑖𝑘𝑢                                                                   (2.16.14) 

𝑐1𝑢 − 𝑐2𝑉𝑢 = 𝑖𝑘[α](𝑐3 + 𝑖𝑐4𝑉 ) u                                                    (2.16.15) 

Equating  coefficients of  u  and   vu  yields 

𝑐1 = 𝑖𝑘. 𝛼𝑐3            , 𝑘 =
−𝑖𝑐1

𝑐3𝛼 𝑐𝑜𝑠𝜃
− 𝑖𝑘0  

From equation (2.16.11) 

𝑘 =
−𝑖(E−β𝐸0)

𝑐3ℎ𝛼 𝑐𝑜𝑠𝜃
− 𝑖𝑘0                                                                             (2.16.16) 

𝑐2 = −𝑖2𝑘. α𝑐4 = 𝑘. α𝑐4                                                                        (2.16.17) 

𝑘. α = 𝑘α 𝑐𝑜𝑠𝜃 =
𝑐2

𝑐4
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𝑘 =
𝑐2

𝑐4α 𝑐𝑜𝑠𝜃
  

𝑘 =
β𝐸0

cħα 𝑐𝑜𝑠𝜃
= 𝑘1  

The first expression for k in equation (2.16.12) where 𝑘 = −𝑖𝑘0 gives  

𝜓 = 𝐴𝑒𝑘0𝑟𝑒−𝑖𝜔𝑡                                                                                       (2.16.19) 

The second expression for k in equation (2.16.12)where 𝑘 → 𝑘1 gives  

𝜓 = 𝐴𝑒𝑖(𝑘1𝑟−𝜔𝑡) = 𝑢( 𝑟 )𝑒−𝑖𝜔𝑡  

𝑢( 𝑟 ) = 𝑢 = 𝐴𝑒𝑖𝑘1𝑟                                                                                (2.16.20) 

Consider the outer most shell where electrons occupy this shell when the radius 

of the atom is a. in this case 

|𝑢(𝑎)|2 = 1  

|𝑢(𝑎)| = 1  

𝑐𝑜𝑠𝑘1𝑎 + 𝑖𝑠𝑖𝑛𝑘1𝑎 = 1                                                                             (2.16.21) 

Thus 

𝑐𝑜𝑠𝑘1𝑎 = 1   ,   𝑠𝑖𝑛𝑘1𝑎 = 0     𝑘1𝑎 = 2𝜋𝑛 

There fore 

𝑘1 =
2𝜋𝑛

𝑎
                                                                                                   (2.16.22) 

 Thus the momentum is given by 

p = ħ𝑘1 =
ℎ𝑛

𝑎
                                                                                           (2.16.23) 

hence the energy takes the form 

𝐸2 = 𝑐2𝑝2 + 𝑚0
2𝑐4                                                                                 (2.16.24) 

𝐸2 =
𝑐2𝑛2ℎ2

𝑎2
+ 𝑚0

2𝑐4                                                                               (2.16.25) 

The liner energy is given by 

𝐸 = 𝑐𝛼. 𝑝 + 𝛽𝑚0𝑐2          
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  𝐸 =
𝑐𝛼ℎ𝑛

𝑎
+ 𝛽𝑚0𝑐2                                                                             (2.16.26) 

It is very interesting to not that the velocity is given by 

𝑉0 = 𝜆0𝑓 =
𝜔

𝑘0
=

𝜔𝑐3𝛼 𝑐𝑜𝑠𝜃

𝑐1
                                                                    (2.16.27) 

Becomes infinite when  

𝑐1 = 𝐸(𝐸 − 𝛽𝐸0) = 0                 

  𝐸 = 𝛽𝐸0                                                                                              (2.16.28) 

Where equation (2.16.27) gives 

𝑉0 = 0                                                                                                    (2.16.29) 

In this case equation (2.16.16)gives  

𝑘0 = 0                                                                                                     (2.16.30) 

Thus equation (2.16.19)become in the form 

𝜓 = 𝐴𝑒𝑖𝜔𝑡                                                                                               (2.16.31) 

             This represents a stationary oscillating wave .Fortunately equations 

(2.16.29) and (2.16.31) describe the behavior of biophotons  which are 

stationary waves that spread themselves simultaneously through the surrounding 

media. 

(2.17) Describing a Bell and Breathe Solitons by Using Harmonic 

Oscillator soliton :    

              Schrodinger harmonic oscillator equation in the momentum space in 

friction medium (Harmonic Oscillator Soliton model )was used to describe 

properties of two types of solitons , permanent and time dependent . First one a 

bell soliton has a permanent profile , while other one is breathers have an 

internal dynamic , even so ,their shape oscillates in time .[78] 

𝛼 =
𝐸0

2𝑐0
=

𝐸0ħ𝜔+𝑉0+𝛾0𝑘𝑇−
𝑖ħ

𝜏

2𝑐0
= 𝛽0 −

𝑖ħ

𝜏𝑚ħ2𝜔0
2  

𝛼 = 𝛽0 −
𝑖ħ

𝜏𝑚c2ħ2𝜔0
= 𝛽0 −

𝑖λ0

𝜏𝑚c2ħ2(2π𝑓0λ0)
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 𝛼 = 𝛽0 −
𝑖k0

π𝜏c2m2𝑣0
= 𝛽0 − 𝑖𝛾𝑥0                                                                (2.17.1) 

Where one assumes mc2 = ħ𝜔0 

 γ = (π𝜏c2m2𝑣0)−1                                                                                   (2.17.2) 

The solioton in the momentum space is given by  

𝜓(𝑝, 𝑡) = 𝜓(𝑝)𝑓(𝑡) = 𝐴𝑒−𝑖𝜔𝑡𝑒𝑖𝛾𝑝2𝑥0𝑒−𝛽𝑝2
  

𝜓(𝑝, 𝑡) = 𝐴𝑒−𝛽𝑝2
𝑒𝑖(𝛾𝑝2𝑥0−𝜔𝑡)𝑒𝑖𝛾𝑝2𝑥0                                                       (2.17.3) 

(2.18)Relativistic Hamiltonian Formalism in Quantum Field 

Theory and Micro- Noncausality : 

                 An attempt is made to extend Heisenberg –Pauli 'stheory of quantized 

fields in a relativistically invariant way . the transformation theory of Dirac is 

used as a basis for that purpose . It is assumed that a mass variable is 

canonically conjugate to an invariant –time variable , being a common time to 

all fields. Considering that the field function in the usual quantum field theory 

are those expressed in terms of a mass representation , we transform the field 

functions into those in an invariant –time representation . It is shown that in the 

new representation a relativistic Hamiltonian formalism of quantum field theory 

can be obtained and the configuration space method in nonrelativistic case can 

be generalized .The new formalism is applied to the bound states problem . It 

shown that ,fore the interaction between two particles in bound states , the 

condition of micro-noncausality plays an important role . As simple examples , 

the bound states of deuteron –like and hydrogen –like systems are discussed . 

For simplicity the new formalism is developedfor charged spin zero fields , but 

the extensions to other cases is obvious [79]. 

𝑆1(𝑅, 𝜔)~ (
𝑅

|𝑣|
)

1

2
𝑠𝑖𝑛(|𝑣| log 𝑅 + �̀�),                                                         (2.18.1)     

𝑆2(𝑅, 𝜔)~ (
𝑅

|𝑣|
)

1

2
𝑠𝑜𝑠(|𝑣| log 𝑅 + �̀�),                                                         (2.18.2) 

The boundary conditions 

 [𝑆1(𝑅, 0)𝐺](0) = 0                                                                                   (2.18.3) 

𝐺(𝑅, ℜ) = 𝐴(ℜ)𝑆2(𝑅, 𝜔) − 𝐵(ℜ)𝑆1(𝑅, 𝜔),                                             (2.18.4) 



47 
 

One fields  

𝐴(ℜ) = (
2ℜ

𝑖𝑠𝑖𝑛ℎ𝜋|𝑣|
)

1

2
𝑠𝑖𝑛 [𝛽(𝑣) + �̀� − |𝑣| log

ℜ

2𝑖
],                                     (2.18.5) 

𝐵(ℜ) = (
2ℜ

𝑖𝑠𝑖𝑛ℎ𝜋|𝑣|
)

1

2
𝑠𝑜𝑠 [𝛽(𝑣) + �̀� − |𝑣| log

ℜ

2𝑖
],                                     (2.18.6) 

𝒫 = 2
|ℜ𝑄|2

|𝑣|
                                                                                                (2.18.7) 

 (2.19) Solitary wave solutions for nonlinear fractional 

Schrödinger equation in Gaussian nonlocal media: 

                This article is devoted to the study of nonlinear fractional Schrodinger 

equation with a Gaussian nonlocal response . We firstly prove the existence of 

solitary wave solution by using the variational method and Mountain Pass  

theorem . Numerical simulations are presented to verify the findings  of the 

existence theorem .And we also investigate the impacts of Gaussian nonlocal 

response and fractional –order derivatives on the solitary waves , which enable 

us to perform control experiments for the development of rogue waves in 

quantum mechanics and optics [80]. 

𝛤𝑛 = ∬ 𝐾0(|𝑥 − 𝑦|)|𝑢𝑛(𝑦)|𝑃|𝑢𝑛(𝑥)|𝑃−2𝑢𝑛(𝑥)𝜑(𝑥)𝑑𝑥𝑑𝑦 − ∬ 𝐾0(|𝑥 −
𝑅2𝑑𝑅2𝑑

𝑦|)|𝑢0(𝑦)|𝑃|𝑢0(𝑥)|𝑃−2𝑢0(𝑥)𝜑(𝑥)𝑑𝑥𝑑𝑦 − ∬ 𝐾0(|𝑥 − 𝑦|)|𝑢𝑛(𝑦) −
𝑅2𝑑

𝑢0(𝑦)|𝑃|𝑢𝑛(𝑥) − 𝑢0(𝑥)|𝑃−2(𝑢𝑛(𝑥) − 𝑢0(𝑥))𝜑(𝑥)𝑑𝑥𝑑𝑦 (2.19.1) 

By a variant of Brezis – Lib's Lemma , we know that  𝛤𝑛 → 0 as 𝑛 → ∞ . Thus 

we have 〈𝐽 ̀ (𝑢𝑛 − 𝑢0), 𝜑〉 → 0 as 𝑛 → ∞ . for a fixed 𝜆 ≥ 1 , setting 𝜑 = 𝑢𝑛 −

𝑢0 

‖𝜑𝑛 − 𝑢0‖2 ≤ ∫ (|(−∆)
𝛼

2⁄ (𝑢𝑛 − 𝑢0)|
2

+ 𝜆|𝑢𝑛 − 𝑢0|2)
𝑅𝑑

𝑑𝑥 

 〈𝐽 ̀ (𝑢𝑛 − 𝑢0), 𝑢𝑛 − 𝑢0〉 + 𝛽 ∬ 𝐾0(|𝑥 − 𝑦|)|𝑢𝑛(𝑦) − 𝑢0(𝑦)|𝑃|𝑢𝑛(𝑥) −
𝑅2𝑑

𝑢0(𝑥)|𝑃𝑑𝑥𝑑𝑦 ≤ 〈𝐽 ̀ (𝑢𝑛 − 𝑢0), 𝑢𝑛 − 𝑢0〉 + 𝐶‖(−∆)
𝛼

2⁄ (𝑢𝑛 − 𝑢0)‖
𝐿2

2𝑣
 ‖𝑢𝑛 −

𝑢0)‖
𝐿2
2(1−𝑣)

→ 0 , (2.19.2) 

As  𝑛 → 0 thanks to 〈𝐽 ̀ (𝑢𝑛 − 𝑢0), 𝑢𝑛 − 𝑢0〉 →and ‖𝑢𝑛 − 𝑢0)‖𝐿2 → 0 
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(2.20) Summary and Critique : 

              Different attempts were made to modify Schrodinger equation to use it 

to describe bulk mater[81, 82,83]. 

Some of them are used describe super conductivity or super fluidity [84,85]. 

Some modifications are used to describe the early universe to solve some 

cosmological problems [86,87].      
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Chapter 3 

Methods Theoretical Derivation of Interaction , 

Schrodinger and Heisenberg Picture Spatial Evolution In 

a Curved Space- Time   

(3.1) Introduction : 

                 The spatial evolution of the system in the interaction picture is deduced , 

beside the derivation of Schrodinger equation in a curved space time . The physical 

meaning of the metric is also exhibited here.    

  (3.2)Interaction picture: 

                 The conventional  wave function 𝜓 is related to that of interaction 

picture 𝜓𝐼 according to the relation   

𝜓 = 𝑒−𝑖𝐻0𝑡𝜓𝐼 

〈𝜓׀ = 𝑒−𝑖𝐻0𝑡׀𝜓〉𝐼                                                                                         (3.2.1) 

𝜓𝐼 is the wave function in the interaction picture . The Schrodinger equation is 

given by  

𝑖𝑑𝜓

𝑑𝑡
=  Ĥ𝜓                                                                                                   (3.2.2) 

By redefining  the wave function , one needs the Schrodinger equation to be in 

terms of  HI  only , where HI represent the interaction Hamiltonian . Inserting 

(3.2.1) in (3.2.2) the L.H.s gives  

ide−iH0tψI

dt
=  e−iH0t(H0 ψI +

idψI

dt
 )                                                             (3.2.3) 

   but the action of the Hamiltonian on 𝜓 gives  

 Ĥ𝜓 = (
−ħ2∇2

2𝑚
+ 𝑉)𝜓 

= (
−ħ2∇2

2𝑚
+ 𝑉)e−iH0t𝜓𝐼                                                                              (3.2.4)  

Since the expectation value is the same in all representations , it follows that  

     〈𝜓׀
𝐼
HI׀𝜓〉I = ⟨ψ|H|ψ⟩                                                                           (3.2.5) 
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In view of equation (3.2.1) the r.h.s of (3.2.5) is given by  

⟨𝜓|𝐻|𝜓⟩ = 〈𝜓׀
𝐼
e−iH0t𝐻e−iH0t׀𝜓〉I                                                             (3.2.6) 

Comparing (3.2.5) and (3.2.6) yields  

HI = e−iH0tĤe−iH0t = eiH0t(H0 + Hi)e−iH0t  

= eiH0tH0e−iH0t + eiH0tHie
−iH0t = eiH0te−iH0tH0 + eiH0tHie

−iH0t 

= H0 + eiH0tHie
−iH0t                                                                                 (3.2.7) 

Where  

Ĥ = 𝑔00𝐻0                                                                                                   (3.2.8) 

Thus form (3.2.6) and  (3.2.7) 

⟨𝜓|Ĥ|𝜓⟩ = 〈𝜓׀
𝐼
H0׀𝜓〉I + 〈𝜓׀

𝐼
eiH0tHie

−iH0t׀𝜓〉I                                      (3.2.9) 

In interaction picture , Ĥ0 should give no contribution . thus 

〈𝜓׀
𝐼
H0׀𝜓〉I = ⟨𝜓𝐼|Ĥ0|𝜓𝐼⟩ = 0                                                                 (3.2.10) 

⟨𝜓|Ĥ|𝜓⟩ = ⟨𝜓𝐼|eiH0tHie
−iH0t|𝜓𝐼⟩                                                            (3.2.11) 

Comparing (3.2.11)  and (3.2.5) one gets 

⟨𝜓𝐼|HI|𝜓𝐼⟩ = ⟨𝜓𝐼|eiH0tHie
−iH0t|𝜓𝐼⟩ 

𝐻𝐼 = eiH0tHie
−iH0t 

(3.2.1)The Interaction picture for spatial Evolution : 

In Schrödinger picture  

𝑖ħ
𝑑׀𝜓〉

𝑑𝑥
=  �̂�׀𝜓〉                                                                                        (3.2.12) 

Define the interaction state to be 

𝜓〉𝐼׀ = 𝑈(𝑥)׀𝜓〉 = ei�̂�0x׀𝜓〉    

〈𝜓׀ = 𝑒−i�̂�0x׀𝜓〉𝐼                                                                                    (3.2.13) 

Since the expectation values in Schrodinger and interaction pictures are equal it 

follows that    
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〈𝜓׀
𝐼 

𝑃𝐼 ׀𝜓〉I = ⟨𝜓| 𝑃 |𝜓⟩                                                                            (3.2.14) 

〈𝜓׀
𝐼 

𝑃𝐼 ׀𝜓〉I = 〈𝜓׀
𝐼 

ei𝑝0x 𝑃 e−i𝑝0x׀𝜓〉I                                                       (3.2.15) 

If one assumes that  

          𝑃 = 𝑃0 + P𝑖                                                                                                                                    (3.2.16) 

Thus  

〈𝜓׀
𝐼
𝑃𝐼׀𝜓〉𝐼 = 〈𝜓׀

𝐼 
𝑒𝑖𝑃0𝑥 𝑃0 𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼 + 〈𝜓׀

𝐼 
𝑒𝑖𝑃0𝑥 𝑃𝑖  𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼 

= 〈𝜓׀
𝐼 

𝑃0 ׀𝜓〉𝐼 + 〈𝜓׀
𝐼 

𝑒𝑖𝑃0𝑥 𝑃𝑖  𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼                                                  (3.2.17) 

Assuming that  

〈𝜓׀
𝐼 

𝑃0 ׀𝜓〉I = 0                                                                                         (3.2.18) 

〈𝜓׀
𝐼
𝑃𝐼׀𝜓〉𝐼 = 〈𝜓׀

𝐼 
𝑒𝑖𝑃0𝑥 𝑃𝑖  𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼                                                       (3.2.19) 

Thus 

𝑃I = 𝑒𝑖𝑃0𝑥 𝑃𝑖𝑒−𝑖𝑃0𝑥                                                                                    (3.2.20) 

This relation can also be fond by using equation (3.2.12),(3.2.13) and (3.2.16) 

to get 

𝑖ħ
𝑑𝑒−𝑖P𝑥׀𝜓〉𝐼

𝑑𝑡
= (  𝑃0 +  𝑃i)𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼                                                       (3.2.21) 

For     ħ = 1 

𝑖( −𝑖  𝑃0𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼) + 𝑖e−𝑖𝑃0x
𝑑׀𝜓〉𝐼

𝑑𝑡
=  𝑃0𝑒−𝑖P𝑥׀𝜓〉𝐼 +  𝑃𝑖𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼 

 𝑃0𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼 + 𝑖 𝑒−𝑖𝑃0𝑥
𝑑׀𝜓〉𝐼

𝑑𝑡
=  𝑃0𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼 +  𝑃𝑖𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼 

𝑖 𝑒−𝑖𝑃0𝑥 𝑑׀𝜓〉𝐼

𝑑𝑡
=  𝑃𝑖𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼                                                                    (3.2.22) 

Multiplying both sides by  𝑒𝑖𝑃0𝑥  gives  

𝑖
𝑑׀𝜓〉𝐼

𝑑𝑡
=   𝑒𝑖𝑃0𝑥𝑃𝑖𝑒−𝑖𝑃0𝑥׀𝜓〉𝐼                                                                      (3.2.23) 
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But the formal expression for wave function evolution in the interaction picture 

is  

𝑖
𝑑׀𝜓〉𝐼

𝑑𝑥
= 𝑃𝐼׀𝜓〉𝐼                                                                                            (3.2.24) 

Thus comparing equations (3.2.23) and (3.2.24) gives 

𝑃I = ei𝑃0x 𝑃𝑖e−i𝑃0x                                                                                      (3.2.25) 

𝑖ħ
𝑑

𝑑𝑥
𝜓〉𝐼׀ = 𝑃𝐼׀𝜓〉𝐼                                                                                     (3.2.26) 

Let now the eigen vector be in the form  

𝜓〉𝐼׀ = U׀𝜓〉0                                                                                               (3.2.27) 

Where at  𝑡 = 𝑡0 

𝑃𝐼 = 𝜓〉𝐼׀                               0 =  𝜓〉0                                                           (3.2.28)׀

Thus form (3.2.24) 

U = U(𝑡0) = I 

Hence equations (3.2.26) and (3.2.28) gives 

𝑖ħ
𝑑׀𝜓〉0

𝑑𝑡
= 0                                                                                                  (3.2.29) 

Thus  

𝜓〉0׀ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

i.e it is independent of 𝑥 . A direct substitution of (3.2.27) in (3.2.26) gives  

𝑖ħ
𝑑 𝑈׀𝜓〉0

𝑑𝑥
= 𝑃𝐼𝑈׀𝜓0〉                                                                                   (3.2.30) 

Thus  

𝑖ħ
𝑑 𝑈

𝑑𝑥
= 𝑃𝐼𝑈 

∫ 𝑑 𝑈 
𝑥1

𝑥0

=
1

𝑖ħ
∫ 𝑃𝐼𝑈𝑑𝑡

𝑥1

𝑥0

 

𝑈(𝑥1) − 𝑈(𝑥0) =
1

𝑖ħ
∫ 𝑃𝐼𝑈𝑑𝑡

𝑥1

𝑥0
                                                                 (3.2.31) 
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For 𝑡 ≈ 𝑡0 ,  one can write the U of the integrand to be  

𝑈(𝑥1) = 𝑈(𝑥0) −
𝑖

ħ
∫ 𝑃𝐼U(𝑡0)dх´

𝑡1

𝑡0
  

              𝑈(𝑥1) = 𝐼 −
𝑖

ħ
∫ 𝑃𝐼dх´

𝑥1

𝑥0
                                                             (3.2.32) 

Consider now the next point where  

𝑥2  > 𝑥1                                                𝑥2  ≈ 𝑥1   

∫ dU
𝑥2

𝑥1

= −
𝑖

ħ
∫ 𝑃𝐼Udх´´

𝑥2

𝑥1

 

𝑈(𝑥2) − 𝑈(𝑥1) = −
𝑖

ħ
∫ 𝑃𝐼Udх´´

𝑥2

𝑥1

 

𝑈(𝑥2) = 𝑈(𝑥1) −
𝑖

ħ
∫ 𝑃𝐼(х´´) [𝐼 −

𝑖

ħ
∫ 𝑃𝐼(х´)dх´

𝑥1

𝑥0

] dх´´
𝑥2

𝑥1

 

= 𝑈(𝑥1) + (−𝑖) ∫ 𝑃𝐼(х´´)dх´´ +
(−𝑖)2

ħ2

𝑥2

𝑥1
∫ ∫ 𝑃𝐼(х´´)

𝑥1

𝑥0
𝑃𝐼(х´)dх´dх´´

𝑥1

𝑥2
                                 

(3.2.33) 

(3.3)Energy –momentum relation  and Eiegen equations in a 

curved space time : 

                    The energy within the framework of the GSR and SR are given by  

𝑔00𝐸2 = 𝑔𝑥𝑥𝑃2𝐶2 + 𝑔00𝑚0
2𝐶4 , 𝐸0

2 = 𝑃0
2𝐶2 + 𝑚0

2𝐶4                          (3.3.1)  

Where  is the ordinary SR energy .  

Thus the GSR energy 𝐸 is given by  

𝐸 = 𝑔00

−1
2⁄

𝐸0                                                                                                (3.3.2) 

The wave function in the curved space is thus  

𝜓 = 𝐴𝑒
(

𝑖

ħ
)(𝑃𝑥𝑐−𝐸𝑡𝑐)

                                                                                     (3.3.3) 

Energy Eigen equation and time independent Schrodinger equation in the 

Euclidean space takes the form  

𝑖ħ
𝜕𝜓

𝜕𝑡
= 𝐸0𝜓                                                                                                 (3.3.4) 
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Also the momentum Eigen equation in the Euclidian space is given by  

ħ

𝑖
∇ 𝜓 =

ħ

𝑖

𝜕𝜓

𝜕𝑥
= P0𝜓                                                                                      (3.3.5) 

In a curved space GSR Wave function for free particle is given by  

𝜓 = 𝐴𝑒
(

𝑖

ħ
)(√𝑔𝑥𝑥𝑃𝑥−√𝑔00𝐸𝑡)

                                                                           (3.3.6) 

Where  𝑑𝑡𝑐 = √𝑔00𝑑𝑡     𝑑𝑥𝑐 = √𝑔𝑥𝑥𝑑𝑥 

Schrodinger equation in the curved space , where the time is denoted by   𝑡𝑐 , 

can read  

𝑖ħ
𝜕𝜓

𝜕𝑡𝑐
= 𝑖ħ

𝜕𝜓

𝜕√𝑔00𝑑𝑡
=

𝑖ħ

√𝑔00
[

𝑖ħ

√𝑔00

𝜕𝜓

𝜕𝑡
=

−𝑖

ħ
√𝑔00𝐸𝜓] =

√𝑔00

√𝑔00
𝐸𝜓 = 𝐸𝜓        (3.3.7)                                                                                

Thus 

𝑖ħ
𝜕𝜓

𝜕𝑡𝑐
= 𝐸𝜓                                                                                                  (3.3.8) 

But form (3.3.3) 

 𝑖ħ
𝜕𝜓

𝜕𝑡𝑐
= 𝐸𝜓                                                                                                 (3.3.9) 

This is completely consistent with equation(3.3.8) . conversely from (3.3.6), 

(3.3.9) and (3.3.2) 

𝑖ħ
𝜕𝜓

𝜕𝑡𝑐
= 𝑖ħ

𝜕𝜓

√𝑔00𝜕𝑡
= E𝜓 

𝑖ħ
𝜕𝜓

𝜕𝑡
= √𝑔00E𝜓 = 𝐸0𝜓  

Thus  

√𝑔00E = 𝐸0                                                                                           (3.3.10) 

which agrees with equation (3.3.4)and (3.3.2) 

The momentum Eigen equation for the momentum in Euclidean space takes the 

form   

ħ

𝑖

𝜕𝜓

𝜕𝑥
= 𝑃0𝜓                                                                                                 (3.3.11) 
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In curved space , the momentum Eigen equation becomes  

ħ

𝑖

𝜕𝜓

𝜕𝑥𝑐
= 𝑃𝜓 

With  

𝑑𝑥𝑐 = √𝑔𝑥𝑥𝑑𝑥                                                                                          (3.3.12) 

Thus  

ħ

𝑖

𝜕𝜓

√𝑔𝑥𝑥𝜕𝑥
= 𝑃𝜓                                                                                            (3.3.13) 

Thus , one can write  

ħ

𝑖

𝜕

𝜕𝑥
𝜓 = √𝑔𝑥𝑥𝑃𝜓                                                                                      (3.3.14) 

Comparing this relation with (3.3.11) 

 𝑃0 = √𝑔𝑥𝑥𝑃                                                                                            (3.3.15a) 

Where  

𝑃0𝜓 = √𝑔𝑥𝑥𝑃𝜓                                                                                       (3.3.15b) 

Thus equation (3.3.14) and (3.3.15a)  gives  

ħ

𝑖

𝜕

𝜕𝑥
𝜓 = 𝑃0𝜓                                                                                           (3.3.15c) 

This is the ordinary  momentum Eigen equation in the Euclidian space. 

The velocity in a curved space is define to be 

v =
d𝑥𝑐

d𝑡𝑐
  

v =
√𝑔𝑥𝑥

√𝑔00

d𝑥

d𝑡
=

√𝑔𝑥𝑥

√𝑔00
v0                                                                                (3.3.16) 

But the momentum in curved space an Euclidean 

𝑃 = 𝑚𝑣  

𝑃0 = 𝑚0𝑣0                                                                                                (3.3.17) 

Using equation (3.3.15) 



56 
 

P = (𝑔𝑥𝑥)
−1

2⁄ P0  

Thus  

𝑚𝑣 = (𝑔𝑥𝑥)−1𝑚0𝑣0  

𝑚 =
√𝑔00

(√𝑔𝑥𝑥)
2 𝑚0 =

√𝑔00

𝑔𝑥𝑥
𝑚0                                                                       (3.3.18)  

Since in driving GSR , one assumes that  

𝑔𝑥𝑥 = 1                                                                                                     (3.3.19) 

It follows that  

𝑚 = √𝑔00𝑚0                                                                                            (3.3.20) 

But the mass in GSR is given by 

𝑚 =
𝑔00𝑚0

√𝑔00  −𝑣2

𝑐2⁄  

                                                                                      (3.3.21) 

For mass at rest  

𝑣 = 0  

m =
g00m0

√g00 
= √g00 m0                                                                            (3.3.22) 

This relation is consistent with equation (3.3.20)  

         To find the expression , which relates E to P in a curved space ---time on 

uses the relation  

𝑐2𝑑𝑡2 = 𝑐2𝑔00𝑑𝑡0
2 − 𝑔𝑥𝑥𝑑𝑥2  

𝛾−1 = (
𝑑𝜏

𝑑𝑡
) = [𝑔00 − 𝑔𝑥𝑥

𝑣0
2

𝑐2
]

1

2
                                                                  (3.3.23) 

Thus  

𝐸 = 𝑚𝑐2 = 𝑔00𝛾m0 =
𝑔00m0𝑐2

√𝑔00−𝑔𝑥𝑥
𝑣0

2

𝑐2 

                                                         (3.3.24) 

But from(3.3.16) 

𝑔𝑥𝑥𝑣0
2 = 𝑔00𝑣2 
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𝐸 =
𝑔00m0𝑐2𝐸

√𝑔00𝐸2−𝑔𝑥𝑥𝑃2𝑐2 
  

𝑔00𝐸2 − 𝑔00𝑃2𝑐2 = 𝑔00
2 𝑚0

2𝑐4  

𝑔00𝐸2 = 𝑔00𝑃2𝑐2 + 𝑔00
2 𝑚0

2𝑐4                                                                  (3.3.25)   

Setting   

𝐸0
2 = 𝑔00𝐸2       , 𝑃0

2 = 𝑔00𝑃2               ,    m̃0 = 𝑔00m0                            (3.3.26) 

One gets  

𝐸0
2 = 𝑃0

2𝑐2 + m̃0
2𝑐4                                                                                   (3.3.27) 

However , when  one replaces 𝑣0 by 𝑣 in equation (3.3.23), one gets 

𝛾−1 = [𝑔00 − 𝑔𝑥𝑥
𝑣0

2

𝑐2
]

1

2
                                                                               (3.3.28) 

As a result , energy becomes  

𝐸 =
𝑔00m0𝑐2

√𝑔00𝐸2−𝑔𝑥𝑥𝑣2 𝑐2⁄  
=

𝑔00m0𝑐2

√𝑔00𝑚2𝐶4−𝑔𝑥𝑥𝑚2 𝑣2𝐶2

𝑚2𝐶4

  

= 
𝑔00m0𝑐2

√𝑔00𝐸2−𝑔𝑥𝑥𝑃2 𝐶2

𝐸2

 

𝐸 =
𝑔00m0𝑐2𝐸

√𝑔00𝐸2−𝑔𝑥𝑥𝑃2𝑐2 
  

𝑔00𝐸2 − 𝑔𝑥𝑥𝑃2𝑐2 = 𝑔00
2 𝑚0

2𝑐4  

𝑔00𝐸2 = 𝑔𝑥𝑥𝑃2𝑐2 + 𝑔00
2 𝑚0

2𝑐4                                                                 (3.3.29) 

By setting  

𝐸0
2 = 𝑔00𝐸2         , 𝑃0

2 = 𝑔𝑥𝑥𝑃2  

E0 = 𝑔00

1

2 𝐸       ,     P0 = √𝑔𝑥𝑥 𝑃                                                             (3.3.30) 

This relation agrees with (3.3.10) and (3.3.15a)  one gets  

𝐸0
2 = 𝑃0

2𝑐2 + �̃�0
2𝑐4                                                                                (3.3.31) 

Where 
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m̃0 = 𝑔00m0                                                                                          (3.3.32) 

The energy of harmonic oscillator in a curved space can be found from the 

Schrodinger equation in a curved space which is given by    

𝑖ħ
𝜕𝜓

𝜕𝑡𝑐
= 𝐸𝜓                 𝑖ħ

𝜕𝜓

𝜕√𝑔00 𝑡
= 𝐸𝜓 

𝑖ħ
𝜕𝜓

𝜕𝑡
= √𝑔00 𝐸𝜓 = 𝐸0𝜓                                                                        (3.3.33)  

For harmonic oscillator in Euclidean space  

𝐸0 = (𝑛 +
1

2
) ħ𝜔                                                                                     (3.3.34) 

(1 + 𝑥)𝑛 ≈ 1 + 𝑛𝑥  

For 𝑥 < 1 

2∅

𝑐2
= 𝑥                                                                                                     (3.3.35) 

(𝑔00)−
1

2 = (1 − (−
1

2
)

2∅

𝑐2)  

(𝑔00)−
1

2 = (1 +
∅

𝑐2)                                                                                  (3.3.36) 

This approximation is justifiable since 
2∅

𝑚𝑐2
< 1    2∅ < 𝑚𝑐2 

Which means that the total energy is the greater than potential energy . Thus 

equation (3.3.30) gives 

𝐸 = 𝐸0(𝑔00)−
1

2 = 𝐸0 (1 +
∅

𝑐2)                                                                  (3.3.37)  

𝐸 = (𝑛 +
1

2
) (1 +

∅

𝑐2) ħ𝜔  

𝐸 = (𝑛 +
1

2
) ħ𝜔 +

∅

𝑐2 (𝑛 +
1

2
) ħ𝜔                                                              (3.3.38) 

𝐸 = 𝐸0 (1 +
∅

𝑐2) = 𝐸0 (1 +
m0∅

m0𝑐2) = 𝐸0 (1 +
v0

E0
) = E0 + V0                  (3.3.39) 

(3.4) Time evolution of quantum system within the frame work of 

generalized special relativity : 

            The energy in generalized special relativity is given by 
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𝐸 = 𝑚𝑐2 =
𝑔00m0𝑐2

√𝑔00−𝑣2 𝑐2⁄  
=

𝑔00E0

√𝑔00−𝑣2 𝑐2⁄  
                                                         (3.4.1) 

For very small velocity compared to the speed of light 

  𝑣 ≪ 𝑐 

Thus  

𝐸 = 𝑔00

1

2 E0 = 𝑔00

1

2 E0                                                                                    (3.4.2) 

Using the fact that (𝑣 < 𝐸, 𝑚𝜑 < 𝑐2𝑚, 𝜑 < 𝑐2) 

𝑔00

1

2 = (1 + 2
𝜑

𝑐2⁄ )
1

2  

𝐸 = (1 +
∅

𝑐2) 𝐸0 = (1 +
𝑚0∅

𝑚0𝑐2) 𝐸0  

E = E0 +
vE0

E0
= E0 + v                                                                             (3.4.3) 

Thus the corresponding Hamiltonian is given by  

�̂� = �̂�0 + �̂�𝑖                                                                                             (3.4.4) 

Where  �̂�0 standing for the unperturbed Hamiltonian , while  �̂�𝑖 represents the 

interaction Hamiltonian which causes perturbation . 

   To explain equation (3.2.10)and to simplify treatment ,it is convenient to 

modify Schrodinger equation . This modification requires the time evolution of 

the wave equation to be in terms of the interaction Hamiltonian instead of the 

total Hamiltonian . This requires  

|𝜓〉 = e
−𝑖

ħ
Ĥ0t|𝜓〉𝐼  

|𝜓〉𝐼 = e
𝑖

ħ
Ĥ0t|𝜓〉  

|𝜓〉 = |𝜓〉𝐼e
𝑖Ĥ0t

ħ                                                                                          (3.4.5) 

𝑖ħ
𝑑|𝜓〉

𝑑𝑡
= Ĥ|𝜓〉                                                                                          (3.4.6) 

Ĥ = Ĥ
0

+ Ĥ
𝑖
                                                                                             (3.4.7) 
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𝑖ħ
𝑑|𝜓〉

𝑑𝑡
= Ĥ|𝜓〉  

𝑖ħ
𝑑

𝑑𝑡
[e

−𝑖Ĥ0t

ħ |𝜓〉𝐼] = Ĥ|𝜓〉                                                                           (3.4.8) 

𝑖ħ [e
−𝑖Ĥ0t

ħ (
−𝑖Ĥ0

ħ
) |𝜓〉𝐼 +

𝑑|𝜓〉𝐼

𝑑𝑡
] = Ĥ|𝜓〉  

=Ĥ
0

e
−𝑖Ĥ0t

ħ |𝜓〉𝐼 + Ĥ
0

e
−𝑖Ĥ0t

ħ |𝜓〉𝐼 + 𝑖ħe
−𝑖Ĥ0t

ħ
𝑑|𝜓〉𝐼

𝑑𝑡
 

= (Ĥ
0

+ Ĥ
𝑖
)e

−𝑖Ĥ0t

ħ |𝜓〉𝐼  

= Ĥ
0

e
−𝑖Ĥ0t

ħ |𝜓〉𝐼 + 𝑖ħe
−𝑖Ĥ0t

ħ
𝑑|𝜓〉𝐼

𝑑𝑡
= Ĥ

0
e

−𝑖Ĥ0t

ħ |𝜓〉𝐼 + Ĥ
𝑖
e

−𝑖Ĥ0t

ħ |𝜓〉𝐼               (3.4.9) 

Cancelling terms and multiplying both side by e
𝑖Ĥ0t

ħ  gives  

𝑖ħ
𝑑|𝜓〉𝐼

𝑑𝑡
= e

𝑖Ĥ0t

ħ Ĥ
𝑖
e

−𝑖Ĥ0t

ħ |𝜓〉𝐼                                                                       (3.4.10) 

To simplify this equation it is convenient to define operator  

Ĥ
𝐼

= e
𝑖Ĥ0t

ħ Ĥ
𝑖
e

−𝑖Ĥ0t

ħ                                                                                     (3.4.11) 

Inserting equation(3.4.10) in equation (3.4.11) yields  

𝑖ħ
𝑑|𝜓〉𝐼

𝑑𝑡
= Ĥ

𝐼
|𝜓〉𝐼                                                                                     (3.4.12) 

Which is ordinary Schrodinger equation in the interaction representation .  

      This equation can also be derived by bearing in mind that the expect value 

is the same in Schrödinger and interaction picture . i.e  

 ⟨𝜓𝐼|𝐻|𝜓𝐼⟩ = 〈𝜓|
𝐼
𝐻𝐼|𝜓〉𝐼                                                                          (3.4.13) 

In view of equation (3.4.5) , (3.4.7) and (3.4.11) one gets  

⟨𝜓𝐼|Ĥ|𝜓𝐼⟩ = |𝜓〉𝐼e
−𝑖Ĥ0t

ħ (Ĥ
0

+ Ĥ
𝑖
)e

−𝑖Ĥ0t

ħ 〈𝜓|
𝐼
  

|𝜓〉𝐼e
−𝑖Ĥ0t

ħ Ĥ
0

e
−𝑖Ĥ0t

ħ 〈𝜓|
𝐼

+ |𝜓〉𝐼e
−𝑖Ĥ0t

ħ Ĥ
𝑖
e

−𝑖Ĥ0t

ħ 〈𝜓|
𝐼
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⟨𝜓𝐼|Ĥ
0

|𝜓𝐼⟩ + 〈𝜓|
𝐼
Ĥ

𝐼
|𝜓〉𝐼                                                                          (3.4.14) 

This means that for equation  (3.4.14) and  (3.4.13) to be typical to each other , 

the expectation value in Schrodinger picture . This can be satisfied only when   

Ĥ
0

|𝜓〉𝐼 = 0  

Thus  

⟨𝜓𝐼|Ĥ
0

|𝜓𝐼⟩ = 0                                                                                         (3.4.15) 

 Which conforms with equation (3.2.10) 

   This consistent with the fact that in the interaction picture the original 

Hamiltonian is absorbed in the wave vector and disappear as an energy operator 

according to this transformation . 

|𝜓〉 → |𝜓〉𝐼 = e
𝑖Ĥ0t

ħ |𝜓〉  

Ĥ = Ĥ
0

+ Ĥ
𝑖

→ 𝐻𝐼 = e
𝑖Ĥ0t

ħ Ĥ
𝑖
e

−𝑖Ĥ0t

ħ                                                           (3.4.16) 

This is equivalent to make 

Ĥ
0

→ 0                                                                                                      (3.4.17) 

 Thus it is quite natural to have  

Ĥ
0

→ 0 ⟹ Ĥ
0

|𝜓〉𝐼 = 0                                                                            (3.4.18) 

This explains equation (3.2.10) 

(3.5) Momentum perturbation equation in the interaction 

picture:  

The momentum operator is related to the spatial differential change according 

to the relation  

 �̂� =
ħ

𝑖
�⃗⃗�                                                                                                        (3.5.1) 

In one dimension  

�̂� =
ħ

𝑖
 

𝜕

𝜕𝑥
                                                                                                       (3.5.2) 
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To see how the momentum operator look like in a curved space time , one uses 

the expression for 𝑥  and  𝑡 in a curved space time for velocity , i . e .  

𝑣 =
𝑑𝑥𝑐

𝑑𝑡𝑐
=

√𝑔𝑥𝑥𝑑𝑥

√𝑔00𝑑𝑡
                                                                                         (3.5.3) 

Where  

𝑑𝑥𝑐 = √𝑔𝑥𝑥𝑑𝑥       ,    𝑑𝑡𝑐 = √𝑔00𝑑𝑡                                                           (3.5.4) 

But in schwardzcheid  solution and special relativity  

𝑔𝑥𝑥 = 𝑔00
−1                                                                                                   (3.5.5) 

Where  

𝑑𝑡 = √𝑔00𝑑𝑡0            ,        𝑑𝑥 = √𝑔𝑥𝑥𝑑𝑥0   

𝑔𝑥𝑥 = 𝛾2 = (1 − 𝑣2

𝑐2⁄ )                                                                           (3.5.6) 

Thus equation  (3.5.3) and  (3.5.5) gives 

𝑣 =
1

𝑔00

𝑑𝑥

𝑑𝑡
=

1

𝑔00
𝑣0                                                                                      (3.5.7) 

Which is the expression for the  velocity in a curved space –time . 

         The momentum in curved space –time takes the form  

𝑃 = 𝑚𝑣                                                                                                        (3.5.8) 

Where the mass is given by  

𝑚 =
𝑔00m0

√𝑔00−𝑣𝑖
2 𝑐2⁄  

                                                                                           (3.5.9) 

Inserting equation (3.5.7)  in  (3.5.9) yields  

𝑃 = 𝑚𝑣 =
𝑔00m0𝑣0

𝑔00 √𝑔00−𝑣𝑖
2 𝑐2⁄  

= 𝑃0(𝑔00 − 𝑣𝑖
2 𝑐2⁄ )

−
1

2                                     (3.5.10) 

Where the momentum in Euclidean free space is given by  

  𝑃0 = 𝑚0v0                                                                                               (3.5.11) 

Bearing in mind that for weak fined 
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𝑔00 = (1 +
2∅

𝑐2
− 𝑣𝑖

2 𝑐2⁄ )  

The momentum is given by  

𝑃 = 𝑃0 (1 +
2∅

𝑐2
− 𝑣𝑖

2 𝑐2⁄ )
−

1

2
  

This expression relates momentum in  a curved space –time to that in Euclidean 

space . 

 Since the potential is less than the total energy  

v0 < 𝐸0  

𝑚0∅ < 𝑚0𝑐2   

Therefore  

∅

𝑐2
< 1                                                                                                        (3.5.12) 

Similarly the kinetic energy is also less than the total energy . Hence  

1

2
𝑚0𝑣𝑖

2 < 𝑚0𝑐2  

𝑣𝑖
2 < 𝑐2                                                                                                      (3.5.13) 

As a result  

(1 −
2∅

𝑐2
− 𝑣𝑖

2 𝑐2⁄ )
−

1

2
= (1 − (−

1

2
)

2∅

𝑐2
−

1

2

𝑣𝑖
2

𝑐2)  

= (1 +
(𝑚0∅−

1

2
𝑚0𝑣𝑖

2)

𝑚0𝑐2 )  

= (1 +
(𝑇0−v0)

𝐸0
) = (1 +

𝐿0

𝐸0
)                                                                     (3.5.14) 

Where the free space Lagrangian is defined to be  

𝐿0 = 𝑇0 − v0                                                                                            (3.5.15) 

Hence , the curved space operator can be written as sum of perturbed and non –

perturbed momentum in form  

�̂� = �̂�0 (1 +
𝐿0

𝐸0
) = �̂�0 + �̂�𝑖                                                                     (3.5.16) 
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Where the perturbed momentum is given by  

𝑃𝑖 =
𝑃0𝐿0

𝐸0
                                                                                                  (3.5.17) 

 To explain equation (3.2.18), the Schrodinger Hamiltonian is related to the 

interaction one according to the relation  

|𝜓〉 = e
𝑖𝑃0𝑥

ħ |𝜓〉𝐼 

 〈𝜓| = 〈𝜓|
𝐼
 e

−𝑖𝑃0𝑥

ħ                                                                                      (3.5.18) 

The spatial evaluation of the system is related to momentum operator according 

to the relation  

 
ħ

𝑖
 

𝑑

𝑑𝑥
|𝜓〉 = �̂�|𝜓〉                                                                                        (3.5.19) 

In view of equation  (3.5.18) and equation  (3.5.19)  

ħ

𝑖
 

𝑑

𝑑𝑥
e

𝑖�̂�0𝑥

ħ |𝜓〉𝐼 =
ħ

𝑖
 [

𝑖

ħ
�̂�0e

𝑖�̂�0𝑥

ħ |𝜓〉𝐼 + e
𝑖�̂�0𝑥

ħ
𝑑

𝑑𝑥
|𝜓〉𝐼]  

= (�̂�0 + �̂�i)e
𝑖�̂�0𝑥

ħ |𝜓〉𝐼�̂�0e
𝑖�̂�0𝑥

ħ |𝜓〉𝐼 +
ħ

𝑖
e

𝑖�̂�0𝑥

ħ
𝑑

𝑑𝑥
|𝜓〉𝐼  

= 𝑃0e
𝑖�̂�0𝑥

ħ |𝜓〉𝐼 + 𝑃ie
𝑖�̂�0𝑥

ħ |𝜓〉𝐼  

Multiply both sides by e
−𝑖�̂�0𝑥

ħ  one gets  

ħ

𝑖
 

𝜕

𝜕𝑥
|𝜓〉𝐼 = e

−𝑖�̂�0𝑥

ħ 𝑃ie
𝑖�̂�0𝑥

ħ |𝜓〉𝐼   

ħ

𝑖
 

𝜕

𝜕𝑥
|𝜓〉𝐼 = �̂�I|𝜓〉𝐼                                                                                     (3.5.20) 

Where  

𝑃I = e
−𝑖�̂�0𝑥

ħ 𝑃ie
𝑖�̂�0𝑥

ħ                                                                                       (3.5.21) 

The mathematical form of equation (3.5.21) can also be found using the fact 

that the expectation values are the same in all representations . 

Thus  

     ⟨𝜓|�̂�|𝜓⟩ = ⟨𝜓|�̂�I|𝜓⟩
𝐼
                                                                           (3.5.22) 
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With the aid of equation (3.5.16) (3.5.21) and (3.5.22) one gets 

〈𝜓|
𝐼
 e

−𝑖𝑃0𝑥

ħ (�̂�0 + �̂�i)e
𝑖�̂�0𝑥

ħ  |𝜓〉𝐼    

= 〈𝜓|
𝐼
 e

−𝑖𝑃0𝑥

ħ �̂�0e
𝑖�̂�0𝑥

ħ  |𝜓〉𝐼 + 〈𝜓|
𝐼
 e

−𝑖𝑃0𝑥

ħ �̂�ie
𝑖�̂�0𝑥

ħ  |𝜓〉𝐼    

 = 〈𝜓|
𝐼
 �̂�0 |𝜓〉𝐼 + 〈𝜓|

𝐼
 �̂�I |𝜓〉𝐼                                                                   (3.5.23) 

Equation  (3.5.23) should be typical to  (3.5.22) this requires  

〈𝜓|
𝐼
 �̂�0 |𝜓〉𝐼 = 0                                                                                        (3.5.24) 

One can prove this by bearing that in the interaction picture  

|𝜓〉 → |𝜓〉𝐼 = e
−𝑖�̂�0𝑥

ħ |𝜓〉  

�̂� = �̂�0 + �̂�i → �̂�I =  e
−𝑖𝑃0𝑥

ħ 𝑃ie
𝑖�̂�0𝑥

ħ                                                             (3.5.25) 

In view of equation (3.5.20) and (3.5.16) it is clear that �̂�0 gives no contribution 

to the equation of motion . Thus as if  

�̂�i → 0                                                                                                       (3.5.26) 

Thus  

𝑃0|𝜓〉𝐼 = 0|𝜓〉𝐼 = 0                                                                                  (3.5.27) 

Hence is equations(3.5.23) becomes  

⟨𝜓|�̂�|𝜓⟩ = 〈𝜓|
𝐼
 �̂�I |𝜓〉𝐼                                                                             (3.5.28) 

Which is typical to equation (3.5.22). 

(3.6) Spatial evolution of unitary operator : 

               The spatial evolution of the wave function in the wave vector space 

takes the form   

ħ

𝑖
 

𝑑

𝑑𝑥
|𝜓〉𝐼 = �̂�I |𝜓〉𝐼    (3.6.1) 

 The unitary operator 𝖀 can be defined to be 

|𝜓〉𝐼 = �̂� |𝜓〉0                                                                                             (3.6.2) 
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Where the stationary wave vector is defined to satisfy  

 𝑥 = 𝑥0 = 0  

𝑃I = 0                                                                                                         (3.6.3) 

|𝜓(𝑥)〉𝐼 = |𝜓〉𝐼 = |𝜓(𝑥 = 0)〉𝐼 =  |𝜓〉0                                                    (3.6.4) 

|𝜓(𝑡 = 0)〉𝐼 = |𝜓〉0 = �̂� (0) |𝜓0〉                                                             (3.6.5) 

Hence 

𝔘0 = 𝔘(0) = I                                                                                          (3.6.6) 

But since at  

𝑥 = 𝑥0 = 0  

𝑃I = 0                                                                                                       (3.6.7) 

    It is follow that  

ħ

𝑖
 
𝑑|𝜓0〉

𝑑𝑥
=

ħ

𝑖
 
𝑑|𝜓〉0

𝑑𝑥
= 0 |𝜓〉0                                                                       (3.6.8) 

Thus  

|𝜓〉0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                                      (3.6.9) 

Inserting (3.6.2) and(3.6.9) in (3.6.1) gives 

ħ

𝑖
 

𝑑

𝑑𝑥
𝔘(𝑥)|𝜓0〉 = 𝑃𝐼𝔘(𝑥)|𝜓0〉                                                                  (3.6.10)   

Therefore  

ħ

𝑖
 

𝑑

𝑑𝑥
𝔘 = 𝑃𝐼𝔘                                                                                             (3.6.11) 

Thus using iterated integral method and approximation , the zeroth , first 

,second orders of 𝔘 are given by  

∫ 𝑑𝔘
𝑥1

𝑥0
=

𝑖

ħ
∫ 𝑃𝐼𝔘𝑑𝑥

𝑥1

𝑥0
     

Where  

𝔘(𝑥1) − 𝔘(𝑥0) =
𝑖

ħ
∫ 𝑃𝐼(𝑥) 𝔘(𝑥) 𝑑𝑥 

𝑥1

𝑥0
                                                    (3.6.12) 
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When  

𝑥1 > 𝑥0       ,    𝑥1 ≈ 𝑥0                                                                               (3.6.13) 

𝔘(𝑥1) = 𝔘(𝑥0) +
𝑖

ħ
∫ 𝑃𝐼(𝑥0) 𝔘(𝑥0) 𝑑𝑥0 = 𝔘(𝑥0) + 𝐼0

𝑥1

𝑥0
                         (3.6.14) 

Similarly  

∫ 𝑑𝔘
𝑥2

𝑥1
=

𝑖

ħ
∫ 𝑃𝐼𝔘𝑑𝑥

𝑥2

𝑥1
                                                                               (3.6.15) 

𝔘(𝑥2) − 𝔘(𝑥1) =
𝑖

ħ
∫ 𝑃𝐼(𝑥) 𝔘(𝑥) 𝑑𝑥

𝑥2

𝑥1
                                                     (4.6.16) 

When  

𝑥2 > 𝑥1       ,    𝑥2 ≈ 𝑥1                                                                              (3.6.17) 

𝔘(𝑥2) = 𝔘(𝑥1) +
𝑖

ħ
∫ 𝑃𝐼(𝑥1) 𝔘(𝑥1) 𝑑𝑥1

𝑥2

𝑥1
   

𝔘(𝑥2) = 𝔘(𝑥1) +
𝑖

ħ
∫ 𝑃𝐼(𝑥1) [𝔘(𝑥0) + 𝐼0] 𝑑𝑥1

𝑥2

𝑥1

 

𝔘(𝑥2) = 𝔘(𝑥0) + 𝐼0 +
𝑖

ħ
∫ 𝑃𝐼(𝑥1)[𝔘(𝑥0) + 𝐼0] 𝑑𝑥1

𝑥2

𝑥1
                           (3.6.18) 

 

 (3.7) Heisenberg  Picture : 

       In Heisenberg picture the time evolution of the system is described by 

operators instead of the wave function (wf) . Thus one needs changing 

Schrödinger equation 

 𝑖ħ
𝑑𝜓(𝑡)

𝑑𝑥
=  𝐻 𝜓(𝑡)    

Or 

𝑖ħ
𝑑׀𝜓〉

𝑑𝑡
=  𝐻׀𝜓〉                                                                                            (3.7.1) 

Where  

Ĥ = Ĥ
0

+ Ĥ
𝑖
                                   𝜓(𝑡) = 𝜓(ṟ , 𝑡)                                    (3.7.2) 

To shift time dependence of 𝜓 to be that of the operator Ȏ by defining  
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〈𝜓(𝑡)׀ = 𝔘(𝑡)׀𝜓(0)〉 = 𝔘׀𝜓0〉 = 𝔘׀𝜓〉0 = 𝔘׀𝜓〉𝐻 

𝜓(𝑡) = 𝜓𝑠                     𝜓0 = 𝜓𝐻                                                              (3.7.3) 

S= Schrödinger                      H= Heisenberg  

Thus the wave function in the Schrödinger picture and Heisenberg picture are 

related according to the relation  

𝜓〉𝑠׀ = 𝔘(𝑡)׀𝜓〉𝐻 = 𝔘(𝑡)׀𝜓〉0 

𝜓𝑠 = 𝔘(𝑡)𝜓𝐻 = 𝔘(𝑡)𝜓0                                                                           (3.7.4) 

Two methods can be used to find Heisenberg equation of motion . In the 

simplest one , one uses the fact that the expectation values in all representation 

take the same form . Thus the expectation of the operator   Ȏ  are equal , i.e 

〈𝜓׀
𝐻 

ȎH ׀𝜓〉H = 〈𝜓׀
𝑠
Os ׀𝜓〉s 

〈𝜓׀
𝐻 

𝔘−1𝑂s U׀𝜓〉H                                                                                     (3.7.5) 

ȎH = 𝔘−1𝑂s 𝔘                                                                                           (3.7.6) 

To find U , one must solve (3.7.1) to get  

𝑑׀𝜓〉

〈𝜓׀
=  

�̂� 

𝑖ħ
𝑑𝑡                                                                                        

∫
𝑑׀𝜓〉

〈𝜓׀
=  ∫

𝐻 

𝑖ħ

̂
𝑑𝑡                                                                                         (3.7.7) 

𝑙𝑛׀𝜓〉 =
−𝑖

ħ
∫ �̂� 𝑑𝑡 + 𝑐0                                                                    

〈𝜓׀ = c1e
−𝑖

ħ
∫ �̂� 𝑑𝑡 = e

−𝑖

ħ
∫ �̂� 𝑑𝑡c1                                                                 (3.7.8) 

But at 𝑡 = 0  

〈𝜓(𝑡)׀ = 〈𝜓(0)׀ = 𝜓〉0׀ = 𝑐1  

〈𝜓׀ = e
−𝑖

ħ
∫ Ĥ 𝑑𝑡

 𝜓〉0                                                                                   (3.7.9)׀

From (4.7.3) it follows that 

𝔘(𝑡) = e
−𝑖

ħ
∫ Ĥ 𝑑𝑡

                                                                                       (3.7.10) 
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from (3.7.1) and (3.7.3) 

𝑖ħ
𝑑𝔘

𝑑𝑡
𝜓〉0׀ = Ĥ 𝔘׀𝜓〉0                                                                              (3.7.11) 

Since the wave vector is time independent it follows that  

𝑖ħ
𝑑𝔘

𝑑𝑡
= Ĥ 𝔘  

𝑖ħ ∫ 𝔘 = ∫  Ĥ 𝑑𝑡   

∫
𝑑𝔘

𝑈
= ∫  

Ĥ

𝑖ħ
 𝑑𝑡                                                                                       (3.7.12) 

ln 𝔘 =
1

𝑖ħ
∫ Ĥ  𝑑𝑡                                                                                      (3.7.13) 

To find the second term consider again the action of the integral on 

𝜓0 , to get 

∫ Ĥ  𝑑𝑡׀𝜓0〉 =   ∫ 𝑖ħ
𝑑

dt
𝑑𝑡׀𝜓0〉   

=   𝑖ħ ∫
𝑑׀𝜓0〉

dt
𝑑𝑡     = 𝑖ħ׀𝜓0〉                                                                 (3.7.15) 

Assume that  

∫ Ĥ  𝑑𝑡 = Ĥ ∫ dt = Ĥ t                                                                        (3.7.16)   

Thus  

∫ Ĥ  𝑑𝑡׀𝜓0〉 = (Ĥ𝑡)׀𝜓0〉 = (𝑖ħ
𝑑

dt
𝑡) 〈𝜓0׀ = 𝑖ħ׀𝜓0〉                             (3.7.17) 

Thus the assumption (3.7.16) is true . 

Hence  

ln 𝔘 =
Ĥ𝑡

𝑖ħ
+ 𝐶0  

𝔘(𝑡) = 𝔘 = e𝐶0e
−𝑖Ĥ𝑡

ħ                                                                                 (3.7.18) 

To find 𝐶0, one can use relation (3.7.3), Where at t=0 

〈𝜓(0)׀ = 𝔘(0)׀𝜓(0)〉 
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Thus  

           𝔘 (0) = I                                                                                        (3.7.19) 

According to equation (3.7.18) 

𝔘(0) = 𝔘 = e𝐶0                                                                                       (3.7.20) 

There fore 

𝔘(𝑡) = e
−𝑖Ĥ 𝑡

ħ                                                                                              (3.7.21) 

In this work plank constant ħ is assumed to be unity to get  

𝔘𝐻(𝑡) = 𝔘(𝑡) = e
−𝑖Ĥ 𝑡

ħ = e−𝑖𝐻 𝑡                                                                (3.7.22) 

      Where the subscript H is used to differentiate it from that in the interaction 

picture  

     In view of equations (3.7.6) and (3.7.21) 

ȎH = e
𝑖Ĥ 𝑡

ħ Ȏse
−𝑖Ĥ 𝑡

ħ                                                                              

Differentiating both sides with respect to time yields  

dȎH

dt
=

−𝑖

ħ
Ĥe

𝑖Ĥ 𝑡
ħ Ȏse

−𝑖Ĥ 𝑡
ħ  + e

𝑖Ĥ 𝑡
ħ

∂Ȏs

∂t
e

−𝑖Ĥ 𝑡
ħ −

−𝑖

ħ
e

𝑖Ĥ 𝑡
ħ Ȏse

−𝑖Ĥ 𝑡
ħ  

=
𝑖

ħ
ĤȎH −

𝑖

ħ
ȎHĤ + (

∂Ȏs

∂t
)H =

𝑖

ħ
[Ĥ , ȎH]+(

∂Ȏs

∂t
)H                                   (3.7.23) 

Comparing this equation  (3.7.9)with equation  (3.7.3), yields 

𝔘 = e
−𝑖
ħ ∫ Ĥ 𝑡 = e

−𝑖
ħ

𝑔
 

𝔘−1 = e
−𝑖

ħ
𝑔                                                                                  (3.7.24) 

Where 

 𝑔 = ∫
𝑑𝑔

𝑑𝑡
𝑑𝑡 = ∫ 𝐻𝑑𝑡 

𝑑𝑔

𝑑𝑡
= 𝐻                                                                                                    (3.7.25) 
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This equation (3.7.25) together with equation (3.7.6) can be used to obtain the 

time evolution equation of the Heisenberg operator . 

Therefore , ones get:  

d𝑜H

dt
=

d

dt
[𝔘−1𝑂s 𝔘] =

d

dt
[e

𝑖

ħ
𝑔oe

−𝑖

ħ
𝑔]  

=
𝑖

ħ

𝑑𝑔

𝑑𝑡
e

𝑖

ħ
𝑔Oe

−𝑖

ħ
𝑔 + 𝑔e

𝑖

ħ
𝑔 𝑑𝑜

𝑑𝑡
e

−𝑖

ħ
𝑔 −

𝑖

ħ
e

𝑖

ħ
𝑔Oe

−𝑖

ħ
𝑔 𝑑𝑔

𝑑𝑡
  

𝑖

ħ
[𝐻 𝑂𝐻 , 𝑂𝐻𝐻]+(

𝜕𝑂𝑠

𝜕𝑡
)𝐻  

𝑑𝑂𝐻

𝑑𝑡
=

𝑖

ħ
[𝐻, 𝑂𝐻]+(

𝑑𝑂

𝑑𝑡
)𝐻                                                                           (3.7.26) 

On other 

(∫ �̂�𝑑𝑡)׀𝜓0〉 = ∫ 𝑖ħ
𝑑

dt
𝑑𝑡׀𝜓〉0 = 𝑖ħ ∫ 𝑑׀𝜓〉0 = 𝑖ħ׀𝜓〉0                         (3.7.27) 

But the same result (3.7.27) can be found if one proposes that  

 �̂� = 𝑖ħ
𝑑

dt
  

To be out of the integration sign to get  

∫ �̂�𝑑𝑡׀𝜓〉0 = �̂� ∫ 𝑑𝑡׀𝜓〉0 =   𝑖ħ
𝑑

dt
∫ 𝑑𝑡׀𝜓

0
〉 = ∫ 𝑑𝑡׀𝜓〉0  

𝑖ħ
𝑑

dt
𝑡׀𝜓〉0 = 𝑖ħ𝑡׀𝜓〉0                                                                            (3.7.28) 

Thus comparing(3.7.27)and (3.7.28) yields  

∫ �̂�𝑑𝑡 = �̂� ∫ 𝑑𝑡 =   𝑖ħ   

�̂� =  𝑖ħ                                                                                     (3.7.29) 

Thus from (3.7.9), (3.7.24)and(3.7.29)  

𝔘0 = 𝔘(𝑡 = 0) = e
−𝑖
ħ ∫ 𝐻 𝑑𝑡 = e0 = I                                                   (3.7.30) 

(3.7.1)New Derivation of Heisenberg special Evolution : 

            In this work an new tread based on the unitary operator which is found 

using some simple mathematical techniques besed on the ordinary 
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differentiation and integration is used . The quantum average of the momentum 

operator in the Schrodinger and Heisenberg picture is also used . Acting on the 

wave function by momentum operator   

     𝑖ħ
𝑑

dt
〈𝜓׀ = �̂�׀𝜓〉                                                                                 (3.7.31)   

       The unitary operator is defined by 

〈𝜓(𝑥)׀ = 𝜓(𝑥)〉𝑠׀ = 𝔘(𝑥)׀𝜓(0)〉 = 𝔘(𝑥)׀𝜓〉0  

= 𝔘׀𝜓〉0 = 𝔘׀𝜓〉𝐻                                                                                   (3.7.32) 

         The quantum average of  the operator 𝑂 is equal in the Schrodinger and 

Heisenberg picture .Therefore 

〈𝜓׀
𝐻 

𝑂H ׀𝜓〉H = 〈𝜓׀
𝑠
Os ׀𝜓〉s  

〈𝜓׀
𝐻 

𝑂H ׀𝜓〉H = 〈𝜓׀
𝐻

𝔘−1Os 𝔘׀𝜓〉H                                                         (3.7.33)  

  Hence the operator in the Heisenberg picture is given by  

𝑂H = 𝔘−1Os 𝔘                                                                                          (3.7.34) 

∫
𝑑

〈𝜓׀
〈𝜓׀ =

𝑖

ħ
∫ 𝑃 𝑑𝑥   

𝐿𝑛׀𝜓〉 =
𝑖

ħ
∫ 𝑃 𝑑𝑥 + 𝐶2  

〈𝜓׀ = e
𝑖

ħ
∫ 𝑃𝑑𝑥𝐶2                                                                                       (3.7.35) 

But at  

𝑥 = 〈𝜓(𝑥)׀      0 = 〈𝜓(0)׀ = 𝐶2                                                            (3.7.36) 

Thus equation  (3.7.35)and  (3.7.32) give  

〈𝜓׀ = e
𝑖

ħ
∫ 𝑃(𝑥)𝑑𝑥

𝜓〉0׀ = e
𝑖

ħ
𝑓(𝑥)

𝜓〉0׀ = e
𝑖

ħ
𝑓(𝑥)

 𝜓〉H                                   (3.7.37)׀

Where  

𝑓(𝑥) = ∫
𝑑𝑓

𝑑𝑥
𝑑𝑥 = ∫ 𝑃(𝑥)𝑑𝑥  

Thus  
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𝑃 =
𝑑𝑓

𝑑𝑥
                                                                                                     (3.7.38) 

Hence equation(3.7.2) and (3.7.9)  can be compared to get  

𝔘 = e
𝑖

ħ
∫ 𝑃(𝑥)𝑑𝑥 = e

𝑖

ħ
𝑓(𝑥)

= e
𝑖

ħ
𝑓
                                                               (3.7.39) 

Thus equation (4) is given by  

OH = e−
𝑖

ħ
𝑓𝑂e

𝑖

ħ
𝑓
  

The spatial evolution of the operator is therefore given by : 

𝑑𝑂𝐻

𝑑𝑥
= −

𝑖

ħ

𝑑𝑓

𝑑𝑥
e−

𝑖

ħ
𝑓𝑂e

𝑖

ħ
𝑓 + e−

𝑖

ħ
𝑓 𝑑𝑂

𝑑𝑥
e

𝑖

ħ
𝑓 =

𝑖

ħ
e−

𝑖

ħ
𝑓𝑂e

𝑖

ħ
𝑓 𝑑𝑓

𝑑𝑥
  

= −
𝑖

ħ
[𝑃𝑂𝐻 − 𝑂𝐻𝑃] + (

𝑑𝑂

𝑑𝑥
)

𝐻
  

ħ

𝑖

𝑑𝑂𝐻

𝑑𝑥
= [𝑂𝐻 , 𝑃] + (

𝑑𝑂

𝑑𝑥
)

𝐻
                                                                    (3.7.41) 

On the other hand 

∫ 𝑃 𝑑𝑥׀𝜓〉0 = ∫
ħ

𝑖

𝑑

𝑑𝑥
𝑑𝑥   𝜓〉0׀

∫ 𝑃 𝑑𝑥׀𝜓〉0 = ∫ 𝑑𝑥 𝜓〉0׀ =
ħ

𝑖
 𝜓〉0                                                         (3.7.42)׀

The same result can be obtained by suggesting that 

𝑃 =
ħ

𝑖

𝑑

𝑑𝑥
  

To be out of integration to get  

∫ 𝑃 𝑑𝑥׀𝜓〉0 = 𝑃 ∫ 𝑑𝑥 𝜓〉0׀ =
ħ

𝑖

𝑑

𝑑𝑥
(𝑥)׀𝜓〉0 =

ħ

𝑖
  𝜓〉0׀

Thus 

 ∫ 𝑃 𝑑𝑥 = 𝑃 ∫ 𝑑𝑥 =
ħ

𝑖
                                                                               (3.7.43) 

Form (4.7.25) , when  

〈𝜓׀ = 𝜓〉𝑥׀ = 0  

𝔘(𝑥 = 0) = 𝔘0 = e
𝑖

ħ
∫ 𝑃𝑑𝑥 = e0 = I                                                       (3.7.44) 
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(3.7.2)Special and General Relativistic Meaning of the Matrix: 

The proper length or proper time I a relativistic space- time takes the general 

form     

𝑐2𝑑𝜏2 = −𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣 = −𝑔𝜇𝑣
′ 𝑑𝑥𝜇′

𝑑𝑥𝑣′
                                               (3.7.45)  

Consider two space points in the frame 𝑠 and  𝑠′ that measured simultaneously . 

In this case 

𝑑𝑥0 = 0                  ,      𝑑𝑥0′
= 0  

Therefore  

𝑔𝑥𝑥𝑑𝑥2 = −𝑔𝑥𝑥
′ 𝑑𝑥′2

                                                                                 (3.7.46) 

An observer at 𝑠 observe  a rod which is at rest in 𝑠′ moving with constant 

speed 𝑣 . So 

𝑔𝑥𝑥 = 1      , 𝑔𝑥𝑥
′ = 1 − 𝑣2

𝑐2⁄                                                                  (3.7.47) 

To get the ordinary length contraction relation  

𝑑𝑥 = √1 − 𝑣2

𝑐2⁄ 𝑑𝑥′ = 𝛾𝑑𝑥′                                                                 (3.7.48)  

When 𝑠′ moves with speed of light  

𝑑𝑡′ = 0         �̇�′ = 𝑐2                                                                           (3.7.49)  

Thus from  (4.7.45) 

−𝑐2𝑑𝑡2 − 𝑔𝑥𝑥𝑑𝑥2 = −𝑔𝑥𝑥
′ 𝑑𝑥′2

                                                             (3.7.49) 

−𝑐2 − 𝑣2𝑔𝑥𝑥 = −𝑐2𝑔𝑥𝑥
′   

Thus since  

𝑔𝑥𝑥 = −1  

𝑔𝑥𝑥
′ = 1 − 𝑣2

𝑐2⁄                                                                                        (3.7.50) 

Consider also a clock at rest at a certain point in 𝑠′ . In this case one must use 

the time metric relation to get 
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𝑑𝑥0 = √𝑔
00
′ 𝑑𝑥0′

  

𝑑𝑡 = (1 − 𝑣2

𝑐2⁄ )
−

1

2
𝑑𝑡′                                                                           (3.7.51) 

= (1 − 𝑣2

𝑐2⁄ )
−

1

2 𝑑𝑡0  

It is very interesting to note that 

𝑔𝑥𝑥 = 𝑔𝑥𝑥
−1                                                                                                 (3.7.52) 

This conforms to Schwarzschild solution . thus in a curved space time 

(𝐶𝑢𝑟𝑣𝑒𝑑 ≡ 𝐶) which is equivalent to an accelerated frame 𝑠′ with respect to an 

observer which is at rest in 𝑠  

𝑑𝑥𝑐 = √𝑔𝑥𝑥
′ 𝑑𝑥′                                                                                      (3.7.53)     
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Chapter 4 

Results , Discussion and Conclusion  

(4.1) Introduction : 

                 In this chapter consist of the results , discussion and 

conclusion . 

(4.2) Results: 

       For the first time the spatial evolution of the quantum system in the 

interaction picture has bee obtained in the form [see(3.2.26) 

𝑖ħ
𝑑

𝑑𝑥
𝜓〉𝐼׀ = 𝑃𝐼׀𝜓〉𝐼                                                                                        (4.2.1) 

The viability and the reality of this equation comes from the fact that its form 

resembles the ordinary form momentum eigen equation . It also of resembles 

the  time evolution when replacing time with coordinate and Hamiltonian with 

momentum operator. The unitary operator is given by equation (3.2.33) 

𝑈(𝑥2) = 𝑈(𝑥1) −
𝑖

ħ
∫ 𝑃𝐼(х´´) [𝐼 −

𝑖

ħ
∫ 𝑃𝐼(х´)dх´

𝑥1

𝑥0

] dх´´
𝑥2

𝑥1

 

= 𝑈(𝑥1) + (
−𝑖

ħ
) ∫ 𝑃𝐼(х´´)dх´´ +

(−𝑖)2

ħ2

𝑥2

𝑥1
∫ ∫ 𝑃𝐼(х´´)

𝑥1

𝑥0
𝑃𝐼(х´)dх´dх´´

𝑥1

𝑥2
                                 

(4.2.2) 

Which describes its spatial evolution .Its viability comes from the fact that is 

resembles the time dependent one with the time replaced coordinate and 

Hamiltonian with the momentum operator . The energy relation in a curved 

space time is given by equation (3.3.9)  

𝑖ħ
𝜕𝜓

𝜕𝑡𝑐
= 𝐸𝜓                                                                                                 (4.2.3) 

From which one can deduce the relation between energy in a curved space and 

Eucleadian space in the form  

𝐸 = (𝑔00)−
1

2𝐸0                                                                                            (4.2.4) 

Which conforms with the fact that for static mass 
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𝑚 = (𝑔00)−
1

2𝑚0                                                                                          (4.2.5) 

𝐸 = 𝑚𝑐2 = (𝑔00)−
1

2𝑚0𝑐2 = (𝑔00)−
1

2𝐸0                                                    (4.2.6) 

The same hold for momentum . 

The momentum in a curved space time is given according to equation (3.3.12) 

by 

ħ

𝑖

𝜕𝜓

𝜕𝑥𝑐
= 𝑃𝜓 

With  

𝑑𝑥𝑐 = √𝑔𝑥𝑥𝑑𝑥                                                                                          (4.2.7) 

When compare it with that of Eucleadian space (4.3.15c) 

ħ

𝑖

𝜕𝜓

𝜕𝑥
= 𝑃0𝜓                                                                                                 (4.2.8) 

It gives 

𝑃 = (𝑔00)−
1

2𝑃0                                                                                            (4.2.9) 

Using the proper time relation [see(3.3.23)] 

𝑐2𝑑𝑡2 = 𝑐2𝑔00𝑑𝑡0
2 + 𝑔𝑥𝑥𝑑𝑥2  

𝛾−1 = (
𝑑𝜏

𝑑𝑡
) = [𝑔00 − 𝑔𝑥𝑥

𝑣0
2

𝑐2
]

1

2
                                                                  (4.2.10) 

One gets 

𝐸0
2 = 𝑃0

2𝑐2 + m̃0
2𝑐4                                                                                   (4.2.11) 

Which resembles the ordinary energy –momentum relation with the mass given 

by equation (3.3.32)to be  

𝑚 = √𝑔00𝑚0                                                                                            (4.2.12) 

Which resembles that of GSR for static mass . The perturbed momentum is 

given by   

�̂� = �̂�0 (1 +
𝐿0

𝐸0
) = �̂�0 + �̂�𝑖                                                                        (4.2.13) 



78 
 

     This means that the field changes momentum through the lagrangian which 

consists of a potential term . This effect can not be recognized by the ordinary 

model. 

The comparison of the proper interval shows that the metric space components 

related to Lorentz coefficient 𝛾 through the relation 

   𝑔𝑥𝑥
′ = 1 − 𝑣2

𝑐2⁄ = 𝛾−2                                                                         (4.2.14) 

(4.3) Discussion :    

             The  wave function in a curved time-space is given by equations  

(4.3.1) and (4.3.6) . Using this expression together with definition of time in a 

curved space –time in equation (4.3.10) , the curved space-Eigen equation take 

a form typical to Euclidian space ,this is very apparent when comparing 

equation (4.3.5)  and(4.3.7) . It is very striking to note that the energy Eigen 

equation in curved space-time [equation (4.3.9)] can be used to derive the 

energy Eigen equation in the Euclidean space . the same hold for momentum 

Eigen equation in curved space in equation (4.3.12) can be used to derive that 

Euclidian space in equation (4.3.15.c).Fortunately , the relation between the 

momentum in a curved space and momentum in equation (4.3.30) is typical to 

that obtained for Eigen equation in equation (4.3.10) and (4.3.15.a) . 

      Appling energy Eigen equation for harmonic oscillator in a curved space-

time shows that the energy in the curved space-time is equivalent to the 

existence of additional potential term typical to that Newton . This means that a 

particle in a curved space behavior is typically to behavior of particle moving in 

a potential . 

        The energy expression (4.4.1) in a curved space –time within the frame 

work of GSR is utilized to get a useful expression for the Hamiltonian (4.4.4). 

here one assumes that the velocity is less than the speed of light . Both of 

Schrodinger equation and expectation Values of the Hamiltonian in 

Schrodinger and interaction picture(see (4.4.11)&(4.4.16)). These tow 

expression are typicall each other only when the unperturbed Hamiltonian gives 

no contribution to the energy in the interaction picture . This is in agreement 

with the fact that the Hamiltonian in the interaction picture is only that wich 

causes perturbation . 

       Spatial evolution of the quantum system in the interaction picture is also 

derived using the expression of the momentum in a curved space-time within 

the frame work of the GSR. Here one assumes that the velocity is less than the 

speed of light and the potential is also less than the rest mass energy . The 

perturbed momentum is found to be proportional to the Lagrangin of the system 
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thus also to the perturbation energy (see(4.5.3) . Fortunately this new 

expression resembles that of the Hamiltonian , where the time differential is 

replaced by the space one and the Hamiltonian is replaced by the momentum 

(see (4.5.20) . The expression of the momentum using the Schrodinger equation 

is typical to the one found by equating the expectation values in the interaction 

picture and Schrodinger picture as shown in equations (4.5.25)& (4.5.21) . This 

requires that the unperturbed momentum to give no contribution in the 

interaction picture as shown in equation (4.5.24) . Finally the spatial evolution 

of the unitary operator is derived using the momentum operator . It is very 

interesting to note that this spatial evolution resembles that of time but here one 

replaces time integral by spatial one , and the Hamiltonian by the momentum 

operator.   

      Using the quantum average of Hamiltonian of the quantum system in 

equation(4.7.5) and the   definition of the unitary operator in (4.7.6)one finds 

the expression of the unitary operator in the Heisenberg time evolution equation 

in (4.7.26). Using the quantum average of momentum operator of quantum 

system in the Schrodinger and Heisenberg picture in equation (4.7.33)beside 

integration and differentiation technique ,one finds the functional form of the 

unitary operator defined in equation(4.7.32) . Then the Heisenberg spatial 

evolution is found in equation (4.7.41). The proper length in a curved space is 

written in equation(4.7.46). comparing this expression with the corresponding 

Special relativity expressions , one finds that the spatial and time metric is 

related to the Lorentz transformation factor as shown in equations (4.7.47)& 
(4.7.51). They satisfy a Schwarzschild relation.               

(4.4) Conclusion : 

         The energy and momentum Eigen equation in a curved space can be used 

to derive that the Euclidean space using the energy –momentum relation 

analogous in Euclidian and curved space . Its the expression of mass in a 

curved space was similar to that of GSR. 

      A useful expression of the spatial evolution of the quantum system in the 

interaction picture was derived . This expression was found to be typical to the 

Hamiltonian one when one replaces the time differential with the spatial one . 

Another expression of the spatial evolution of the unitary operator was also 

found to be typical to that of the Hamiltonian one . Here one replaces the time 

integral with the spatial one , and the Hamiltonian with the momentum .  

     The spatial evolution of the quantum system was found using unitary 

operator and simple mathematics based on the ordinary differentiation and 

integration . The metrics in the curved space time was found to be related to the 

Lorentz transformation factor. 
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