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Abstract

The growth of frequently hypercyclic functions and common
hypercyclic vectors for differential and translation operators and for the
conjugate class of a hypercyclic operator and a Sot-Dense path of
chaotic operators are studied. The spectral properties of the Cauchy
process and asymptotic estimate of eigenvalues of pseudo-differential
operators on half-line and interval with eigenvalues and refined
semiclassical asymptotics for fractional Laplace operators, trace
estimates and two-term estimates for unimodal Levy and relativistic
stable processes are determined. We also classify the sum of powers of
the Laplacian eigenvalues and normalized incidence energy of graphs
with Coulson-type integral formulas for the general Laplacian-energy-

like invariant of graphs.
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Introduction

We investigate the conjugate indicator diagram or, equivalently, the
indicator function of (frequently) hypercyclic functions of exponential type for
differential operators. Given a separable, infinite dimensional Hilbert space, it
was shown that there is a path of chaotic operators, which is dense in the operator
algebra with the strong operator topology, and along which every operator has
the exact same dense G set of hypercyclic vectors.

We study the spectral properties of the transition semigroup of the killed
one-dimensional Cauchy process on the half-line (0, o) and the interval (—1, 1).
This process is related to the square root of one-dimensional Laplacian A =

—/—(d?/dx?) with a Dirichlet exterior condition, and to a mixed Steklov
problem in the half-plane. For the half-line, an explicit formula for generalized
eigenfunctions y, of A is derived, and then used to construct a spectral
representation of A. Two-term Weyl-type asymptotic law for the eigenvalues of
the one-dimensional fractional Laplace operator (—A)a/2 (a € (0,2)) in the

_ a
interval (—1, 1) is given: the n-th eigenvalue is equal to (E e 8a)”) +0 (%)

We consider the fractional Laplacian on a domain and investigate the asymptotic
behavior of its eigenvalues.

Let G be a simple graph with n vertices and m edges. Let 44, 4,, -+, 1,, be
the eigenvalues of the adjacency matrix of G, and let u,,u,, -, u, be the
eigenvalues of Laplacian matrix of G. The energy of G is defined as E(G) =

* 114;]. For a graph G and a real a # 0, we study the graph invariant s, (G) —
the sum of the ath power of the non-zero Laplacian eigenvalues of G. The cases

a#* 2,% and —1 have appeared in different problems.

Many have obtained interesting results on the existence of a dense Gg set
of common hypercyclic vectors for a path of operators. We show that on a
separable infinite dimensional Hilbert space, there is a path of chaotic operators
that is dense in the operator algebra with the strong operator topology. Let H(C)
be the set of entire functions endowed with the topology of local uniform
convergence. Fix a sequence of non-zero complex numbers (4,,), |4,| = +oo,
which satisfies the following property:for every M > 0 there exists a
subsequence (,un) of (4,)) suchthat (i) |up+1| — |1t | > M foreveryn = 1,2,...

and (ii) Y12 T = +o00

We give two-term small-time approximation for the trace of the Dirichlet
heat kernel of bounded smooth domain for unimodal L"evy processes satisfying
the weak scaling conditions. We show a two-term Weyl-type asymptotic law,

with error term O (%) for the eigenvalues of the operator ¥(—4) in an interval,




with zero exterior condition, for complete Bernstein functions y such that
&Y' (&) converges to infinity as & — oo.

The energy of a graph G is the sum of the singular values of its adjacency
matrix. It is a graph invariant used in mathematical chemistry. The normalized
incidence energy of the graph G, denoted by NIE(G), is defined as the sum of the
singular values of its normalized incidence matrix. Let G be a simple graph. Its
energy is defined as E(G) = X.p—; |Akl, where 1, 4,,..., 4, are the eigenvalues
of G. A well-known result on the energy of graphs is the Coulson integral formula
which gives a relationship between the energy and the characteristic polynomial
of graphs. Let u; = p, =-- = u, = 0 be the Laplacian eigenvalues of G. The
general Laplacian-energy-like invariant of G, denoted by LEL,(G), is defined as
Yo M when yy # 0, and O when p; = 0, where a is a real number. Let G be
a graph of order n and 4; = A4, >---> A,, the eigenvalues of G. The energy of G
isdefinedas E(G) = Y3-1 |Ak|- A well-known result on the energy of graphs is
the Coulson integral formula which gives a relationship between the energy and
the characteristic polynomial of graphs. Let u; = u, =--=>pu,, =0 be the
Laplacian eigenvalues of G. The general Laplacian-energy-like invariant of G,
denoted by LEL,(G), is defined as ¥, »o ux When p; # 0, and O when u; = 0,
where «a is a real number. We give some Coulson-type integral formulas for the
general Laplacian-energy-like invariant of graphs in the case that « is a rational
number.
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Chapter 1
Growth of Hypercyclic Functions and Common Hypercyclic Vectors

We give growth conditions of the functions on particular rays or sectors. The research
extends known results in several respects. We show that the conjugate set of any hypercyclic
operator on a separable, infinite dimensional Banach space always contains a path of
operators which is dense with the strong operator topology, and yet the set of common
hypercyclic vectors for the entire path is a dense G set. As a corollary, the hypercyclic
operators on such a Banach space form a connected subset of the operator algebra with the
strong operator topology.

Section (1.1): Differential Operators

A continuous operator T : X — X, with X atopological vector space, is called hyper-
cyclic if there exists a vector x € X sucht that the orbit {T"x : n € N} isdense in X. Such
a vector x is said to be a hypercyclic vector. By HC(T,X), we denote the set of all
hypercyclic vectors for T (on X). The operator is called frequently hypercyclic if there exists
some x € X such that for every non-empty openset U ¢ X theset{n: T"x € U} has
positive lower density. The vector x is called a frequently hypercyclic vector in this case
and the set of all these vectors shall be denoted by FHC(T, X) in the following. We recall

that the lower density of a discrete set A < C is defined by

#{)L €A: Al =1}
lim inf =: dens(A).

T —>00

We are only concerned with spaces conS|st|ng of holomorphic functions and therefore the
hypercyclic vectors are called hypercyclic functions.

In [10], G. Godefroy and J. H. Shapiro show that for every non-constant entire func-tion
©(z) = Y=o Cnz™ of exponential type, the induced differential operator

p(D): H(C©) > H(C),f - z nf ™, (1)

where H(C) is endowed with the usual topology of IocaIIy uniform convergence, is
hypercyclic. This results also applies for the case of frequent hypercyclicity as it is shown
in [7]. Actually, in both [10] and [7], the outlined results are given for the case of H(CV).
The possible rate of growth of the corresponding (frequently) hypercyclic functions is
widely investigated (cf. [4], [5], [7], [8], [9]. [11]). It turns out that the level set

={z: lp@|=1} (2)
plays a cruical role. Under certain additional assumptions, it is known that for 7, :=
dist(0, C,,) there are functions of exponential type 7, that belong to HC(@(D), H(C)),
while every function of exponential type less than 7., cannot belong to H'C(¢(D), H(C))
(cf. [4]). It is also known that for every ¢ > 0 there are functions in FHC(¢(D), H(C))
that are of exponential type less or equal than 7, + € (cf. [7]). For the case of the translation
operator f = f(-+1), which is the differential operator induced by the exponential
function, and the ordinary differentiation operator D, growth conditions are achieved in [9],
[8], [11] and [5].




All investigations in this direction have in common that the rate of growth is measured
with respect to the maximum modulus Mg (r): = Imlaxl f(2)| or LP-Averages Mg, (r) :=
Z|=T

(1/2m ["|f(re™)|"dt)/?, where p € [1,00). We extend some of these results by
considering growth conditions with respect to rays emanating from the origin.

For the sake of completeness, we recall that an entire function f is said to be of exponential
type t if

log M (r
limsupg+0 =:7(f) =1,
r—00
where we set log(0) := —oo, and f is said to be a function of exponential type when the

above lim sup is not equal to +co. The indicator function of an entire function of exponential
type is defined by

| o
hs(0) := lim sup og|f§re )l

T—00

It is known that h; is determined by the support function of a certain compact and convex

set K(f) < C, to be more specific, for z = re‘® we have

rhs(0) = Hgr(2) := sup{Re(zu) : u € K(f)}
(cf. [3]). The set K(f ) is called the conjugate indicator diagram of f. Note that for
f = 0,wehave K(f) = @. We give necessary and sufficient conditions for the location
and the size of the conjugate indicator diagram of (frequently) hypercyclic functions for
differential operators ¢ (D). According to the above relations, this yields information about
the growth on particular rays or sectors in terms of the indicator function. Since

onax he(0) = max ful = 7 (f),

this also includes information about the possible exponential type. In particular, f is of
exponential type zero if and only of K(f ) = {0}.

We abbreviate the exponential function z — e“* by e,, for « some complex number.

For @ = te™ the indicator function of e, is given by

he, (0) = tcos(@ + )
and the conjugate indicator diagram is the singleton {a}.
With [6] it follows that for an entire function f of exponential type we have K(f ) = {a}
if and only if there is some entire function f, of exponential type zero with f = fye,. In
that sense, functions which have singleton conjugate indicator diagram are close to the
corresponding exponential function. In particular, the indicator functions of f and e,
coincide, which implies that f decreases exponentially in the half plane |arg(z) + Y| >
/2 if a # 0.

The first result shows that the conjugate indicator diagram of hypercyclic functions
for differential operators are not restricted with respect to their size and shape.

Let Q c C be adomain and K a compact subset of Q. AcycleT'in Q \ K, is called a
Cauchy cycle for K in Q if indp(u) = 1 for every u € K and indr(w) = 0 for every
w € C\ Q. The existence of such a cycle is always guaranteed and, moreover, the Cauchy
integral formula

i) g

2mi Jpé—z

, ® € [—m, m].

f(2) = $

2



isvalid forevery z € K (see[17]). By |I'| we denote the trace of and len(T") := ff |IT(t)]| dt

is the length of T'. In the following, K always has a simply connected complement. In this
case, may be chosen as a simple closed path. For a given compact and convex set K < C,
we denote by Exp(K) the space of all entire functions f of exponential type that satisfy
K(f ) < K. This space naturally of analytic functionals (cf. [14], [15], [3]). The differential
operators are mainly considered on Exp(K), which is very convenient as we will see.

For a function f of exponential type, Bf (2) := Y=, f™ (0)/z™*" is called the Borel
transform of f. The Borel transform is a holomorphic function on some neighbourhood of
infinity that vanishes at infinity. It is known that the conjugate indicator diagram K(f) is
the smallest convex, compact set such that Bf admits an analytic continuation to C\ K(f )
and that the inverse of the Borel transform is given by

1
F@) = 5 | Br@etta

where is a Cauchy cycle for K(f ) in C ( cf. [6], [3]). This integral formula is known as the
Polya representation.

Finally, we make use of the following notions: C,, is the extended complex plane
CU{o},D:= {z:|z]| < 1}andT:= {z: |z| = 1}.IfA cC,thenA 1 :={z: 1/z €
A}, where as usual 1/0 := 0,4 is the closure of A and conv(A) is the convex hull of A.
For an open set Q < C,, the space of functions holomorphic on Q and vanishing at oo (if
o € ) endowed with the topology of uniform convergence on compact subsets is denoted
by H(Q). Recall that a function f is said to be holomorphic at infinity if f(1/z) is
holomorphic at the origin.

For the proof of the next proposition, see [15].

Proposition (1.1.1)[1]: Let K < C be a compact and convex set.

(i) Foreveryn € N,

1
I llxn := suplf(z)| e &7l
Z€C

defines anorm ||-||x , on Exp(K) and the space Exp(K), endowed with the topology induced
by the sequence {||-||x, : n € N}, is a Fréchet space.
(ii) The Borel transfrom
B = By : Exp(K) = H(C\K), f— Bflco\x
IS an isomorphism.
By differentiation of the parameter integral, the Polya representation yields

1
0@ = o | BrEEesas.
r

Inspired by this formula, we introduce a class of operators on Exp(K) by replacing ™ in
the above integral by a function holomorphic on some neighborhood of K. We define H(K)
to be the space of germs of holomorphic functions on K, where K < C is some compact set.
In order to simplify the notation, an element of H(K) shall always be identified with some
of its representatives ¢ which is defined on an open neighbourhood Q,, of K. In case that K
is convex we always assume (2, to be simply connected (actually we may suppose £, to be
even convex).

Now, for a fixed compact and convex set K < C and agerm ¢ € H(K), we define

3



1
DI @):= 5 | B0 as ©

whereis a Cauchy cycle for K in Q,. Obviously, this definition is independent of the

particular choice of I. If ¢ extends to an entire function ¢(z) = Y.;°- ¢,2"™, the interchange
of integration and summation immediately yields

(0]

1
> af @ = | Br©eEe ds.
g T Jr
We see that the operators ¢ (D) from (3) are a natural extension of the differential operators
in (1).
Proposition (1.1.2)[1]: Let K be a compact, convex set in C and ¢ € H(K). Then (D)
defined by (3) is a continuous operator on Exp(K).

Proof: For a given positive integer n, we choose I" such that |T'| %ﬁ + K. Then
Heonv(rp < Hy,, 15 and that means (Re(§z) — Hg(z) — n~tlz|) < Oforall ¢ € |T'| and

1
all z € C. Consequently, |e€Z‘HK(Z)‘E'Z' <1 for all z€C and all £€|l|. As

B: Exp(K) = H(Cy\ K) is an isomorphism and |T'| is compact in C\ K, there isan m € N
and a constant C > 0 such that sup{|Bf(¢)|:¢ €T} < Cllfllxm- With M :=

1 .
Efr l@(&)|dé, we now obtain

1
— e_HK(Z)_lel
z€eC | &7

1
lo(D)fllxn = sup |— j 0 (B (€)et” dé
r

RESINOEETE]

1
< sup—— | (ENIBf(E) d§ < MClIfllkm-
zeC 4T r

This proves that ¢ (D) is a self-mapping on Exp(K) and the continuity of this operator.

Proposition (1.1.3)[1]: Let K c C be a compact and convex set.

(i) Foranya € K,theset{Pe, : P polynomial } is dense in Exp(K).

(i) If Alis an infinite subset of K, then span{e, : a« € A} is dense in Exp(K).

Proof: Let X denote the space of all polynomials. In a first case we assume that 0 € K.

For a function f € Exp(K) we have that Bf := (1/-) Bf (1/-) € H(C,,\ K~1). Since
B: Exp(K) » H(C,\ K) is an isomorphism, one verifies that B : Exp(K) —

H(C,\ K~1) is also an isomorphism. Now, X is dense in H(C.,\K 1) by Runge’s theorem

and observing that B~1(X) = X this shows that X is dense in Exp(K).

Let K be an arbitrary compact and convex set. By means of [6] it follows that for every

entire function f of exponential type and « € C we have K(fe_,) = K(f) — {a}. Thus,

ifg = f /e, foranf € Exp(K)anda € K,

az| g ~HKk () =5le]

= Su Z)||€e
11l = sup 1911

= sup |g(2)|e" K@ H-@ @l

zeC
=sup |g(z)|e
z€eC
= ”g”K—{a},n
which shows that f — f /e, is an isometric isomorphism from Exp(K) to Exp(K — {a}).
4
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With the first part, this implies (i).
Without loss of generality, we may assume 0 & A. Itis easily seen that Be, = 1/(- —a) and
thus B(span{e, : « € A}) = span{l/(-—a): a € A}. Since A has an accumulation
point in K, a variant of Runge’s theorem (see. [13]) yields that span{1/(- —a) : « € A}
Is dense in H(C.,\ K). According to the fact that B: Exp(K) = H(C,\K) is an
iIsomorphism, this shows (ii).
A germ @ € H(K) is said to be zero-free if there exists a representative ¢ which is zero-
free on some open neighbourhood of K. In this case, we always assume that ., is so small
that ¢ is zero-free on Q,, and thus 1/¢ € H({2,,).
Proposition (1.1.4)[1]: Let K < C be a compact, convex set and ¢,y in H(K). Then we
have ¢ (D)y(D) = @y (D). In particular, if ¢ is zero-free, then

o(D) (1/9)(D) = (1/9)(D) 9(D) = idgep)
and hence ¢ (D) is invertible with @ (D)™* = (1/¢)(D).
Proposition (1.1.4) is an immediate consequence of
Lemma (1.1.5)[1]: Let K be acompact, convexsetinC, f € Exp(K)and ¢ € H(K). Then
forallh € H(£,), we have

LBf(f) @($) h($) d§ = jFBGP(D)f)(f) h($) d¢

Where I' is a Cauchy cycle for K in Q,,.

Proof: Considering Runge’s theorem, one verifies that, for fixed a € C,{Pe, :
P polynomial } is dense in H({) whenever Q is a simply connected open subset of C.
According to the fact that Pe, € Exp(K) for « € K, this shows that Exp(K) is densely
embedded in H(Q) for every non-empty, compact and convex K < C. Thus, as a
consequence of Proposition (1.1.3) (ii), E := spanf{e, : a € C} is dense in H({,,) since
Q,, is simply connected.

We consider the functional

(A h) = L(Bf(f)w(é’) — B(e(D)f )(§)) h($) d§
on H(£,). With the Polya representation for (D)f , the following holds:

— | Blo©et ds = o) @) - [RIGIGER;
2mi Jp v - 2wy Y |

Hence (A, e,) = 0 for all « € C and consequently A|y = 0. As E is dense in H({,), we
have 4 = 0.

Proposition (1.1.6)[1]: Let K c C be a compact, compact set. Then the set of all f €
Exp(K) with K(f ) = K isresidual in Exp(K).

Proof: Let M c H(C\ K) be the set of functions that are exactly holomorphic in C.,\K,
that means, for every w € C\ K the radius of convergence of the Taylor series with center
w equals dist(w, K). Due to a result of V. Nestoridis (see [16]), M is a dense Gg-set in
H(Cx\ K).Since B"Y(M) c {f € Exp(K): K(f)=K}andB : Exp(K) - H(Cy,\ K)
IS an isomorphism, we obtain the assertion.

Theorem (1.1.7)[1]: Let K be a convex, compact subset of C and ¢ € H(K) non-constant.
Then HC(p(D),Exp(K))+ @ if and only if @(K)NnT+@. Further, if



HC(p(D),Exp(K)) + @, then the set of all f € HC(¢(D),Exp(K)) with K(f) = K is
residual in Exp(K) in the sense of Baire categories.

Before giving the proof, some auxiliary results for Exp(K) and ¢ (D) are established.
Proof: Firstly, assume that ¢(K) < . Let be a Cauchy cycle for K in Q,, being so close
to K that |¢| < 6 < 1 on. Then, considering Proposition (1.1.4), for any f € Exp(K)
we have

1 o"
OO = |z [ B0 ©ae| <5 [ Br©1as -+ o

as n tends to infinity. Consequently, ¢ (D) cannot be hypercyclic on Exp(K). If ¢(K) c

C\D, then ¢ (D) is zero-free, as an element of H(K), and thus, by Proposition (1.1.4), it is
invertible on Exp(K) with ¢(D)™! = (1/¢)(D). Now, since (1/¢)(K) < D, we have
HC((1/e)(D),Exp(K)) = @, and this is equivalent to HC(@(D),Exp(K)) = @ (see
[18]).

Let us now assume that ¢ (K) N T # @ and K to have non-emtpy interior. Taking
into account that ¢ is non-constant, we have that ¢(K) has non-empty interior and thus,
spanfe, : « € K,|p(a)] > 1} and span{e,: a € K,|p(a)| < 1} are dense in
Exp(K) by Proposition (1.1.3) (i). Observing that ¢ (D)e, = ¢(a)e,, the Godefroy-
Shapiro Criterion (see [18]) yields HC(¢(D),Exp(K)) # @. In order to prove the
hypercyclicity for the case that K has empty interior, we show that ¢ (D) is transitive on
Exp(K) (i.e. for every pair of non-empty open sets U,V < Exp(K) there exists a positive
integer k such that T*(U) n V # @), which is equivalent to the hypercyclicity of ¢ (D) on
Exp(K) (cf. [18]).

For every positive integer n we find some convex, compact set K ¢ L c [ that has
non-empty interior such that H,(z)+1/(n + 1)|z| < Hk(z) + 1/n|z| implying
I'[l.n+1 < I'llxn. Consequently, for given non-empty of open sets U,V c Exp(K), we
may assume the existence open sets U,V < Exp(L) with U = U n Exp(K) and
V = V n Exp(K).Bytheabove, ¢ (D) is hypercyclic and hence transitive on Exp(K). This
implies the existence of a positive integer k such that ' n T=* (V) is a non-empty open set
in Exp(L). The denseness of Exp(K) in Exp(L), which is for instance a consequence of
Proposition (1.1.3) (i), vields Exp(K) nUN T*@)=UnT*W@)+0 so that
TE(U) n V£ 0.

Since Exp(K) is a Frechet space, HC(¢(D),Exp(K))# @ implies that
HC(p(D),Exp(K)) isadense Gs-setin Exp(K) (see. [12]). Due to Proposition (1.1.6), we
obtainthat {f € Exp(K): K(f) = K} NnHC(p(D), Exp(K)) is residual in Exp(K).
As an easy consequence of Theorem (1.1.7) we obtain.

Theorem (1.1.8)[1]: Let ¢ be a non-constant entire function of exponential type. Then for
every compact and convex set K c C that intersects C, there exists an f €
HC(p(D),H(C)) that is of exponential type with K(f ) = K.

Theorem (1.1.8) implies that for every a € C, there exists some f, of exponential type
zero such that f = fye, € HC(@(D), H(C)). Consequently, in the case that C,, intersects
the origin, there is a function f € HC(¢p(D), H(C)) that is of exponential type zero. For the
translation operator e; (D), a much stronger result is due to S. M. Duyos-Ruiz. She proved
that functions f € HC(e;(D), H(C)) can have arbitrary slow tranzendental rate of growth,

6



that is, for every q : [0,00) — [1,00) such that g(r) — oo as r tends to infinity, there are
functions f € HC(e; (D), H(C)) such that My (r) = 0(r?™) (cf. [9]). In [8], this result is
extended the Hilbert spaces consisting of entire functions of small growth.

We will introduce a transform that quasi-conjugates differential operators and which

enables us to extend the result of S. M. Duyos-Ruiz to the whole class of differential
operators in the following sense.
Proof: As mentioned in the proof of Lemma (1.1.5), Exp(K) is densely embedded in H(C)
for every non-empty, compact and convex set K < C. Now, if ¢ is an entire function of
exponential type, we obtain HC (¢ (D), Exp(K)) € HC(¢(D), H(C)) and see that Theorem
(1.1.8) is an immediate consequence of Theorem (1.1.7).

LetT: X - XandS: Y — Y be two continuous operators acting on topological
vector spaces, Y . A very useful tool to link the dynamics of such operators is to show that
they are (quasi-) conjugated. That means, find a continuous mapping @ : X — Y having

dense range and suchthat® o T = S o @, that is, the diagram
T
X X

P P

Y E >Y

commutes. Then S is said to be quasi-conjugated to T (by ®). If ® is bijective and ®~1 is
continuous, then T and S are said to be conjugated.
Proposition (1.1.9)[1]: If S is quasi-conjugated to T by &, then ®(HC(T, X)) < HC(S,Y)
and ®(FHC(T, X)) c FHC(S,Y).
This result is immediately deduced from the definition of quasi-conjugacy (cf. [12]). We
introduce a transform that quasi-conjugates the operators.

Let K < C be a compact and convex set and ¢ € H(K). As in the definition of the
operators ¢ (D), our starting point is the Polya representation. For f € Exp(K),
we set

1
©of @)= 3 | BF@er g 4

where is a Cauchy cycle for K in @,. It is clear that this definition is independent of the
particular choice of T

Lemma (1.1.10)[1]: Let K < C be a compact, convex set and (K,,) a sequence of compact,
convex supersets of K suchthatK,, o K,,; and N,eyK, = K. Then Exp(K) =
Nnen Exp(K,) in algebraic and topological sense.

Proof: The equality in algebraic sense is clear. That the spaces also coincide in topological
sense is an immediate consequenc of the observation that for a given € N , we have
Hy ;j < Hyg, forasuitable choice ofn,j € N.

Proposition (1.1.11)[1]: Let K be a compact, convex subset of C and ¢ € H(K) non-
constant.



Then, for each f € Exp(K), the function @, f defined by (4) is an entire function of
exponential type with K (®,,f ) © conv(o(K(f ))). Further
@, : Exp(K) — Exp(conv(p(K)))
IS a continuous operator that has dense range.
Proof: One immediately verifies that @, f is an entire function. We fix some positive

integer n and choose I such that ¢ (|T'|) is contained in conv(@(K(f))) + %ﬁ.
Then

1
Hconv(<p(|l"|)) (Z) < Hconv(<p(K(f)))+%ﬁ(Z) = Hconv(<p(K(f))) (Z) +— |Z|
and thus

P2~ H@) - Iz
7t [ Br @ age

1
| Py f ||conv(<p(1<(f))),n sup ~Heonv(pk (/)@ 717l

()

1
S sup |Bf (£)| eHeon(erin@ g ~Heonvioxiom @317l (5
2T ger|

< len(T") 3
<5 SWIBfE)] < o

SElT|

As n was arbitrary, this yields that K(®,f ) is contained in conv(@(K(f))), which in
particular implies that @, f is of exponential type and ®f € Exp(conv(@(K))).

We proceed with the second assertion. Taking into account that for some € < coandm €
N we have fs;;lplle(E)I < C||f|lgxm due tothe factthat B : Exp(K) — H(Cy, \ K)isan

isomorphism, the continuity of @, follows from (5) when K (f*) is replaced by K. It remains
to show that @, (Exp(K)) is dense in Exp(conv(@(K))). Therefore, let K, K, ...
be a sequence of compact, convex sets in Q,, such that K; > K, and the intersection of
all these sets is equal to K. As already noted above, the Borel transform of e, is given by
§+— 1/(¢ — a). Inserting this in (4), the Cauchy integral formula yields ®,(e,) =
e, (a) for all a in some K. Consequently, for arbitrary n € N

d,(spanfe, : a € K,}) = span{e,(a) : a € K} © Exp(conv(¢p(Ky)))
which implies that ®,: Exp(K,) — Exp(conv(¢(K,)) has dense range according to
Proposition (1.1.3)(ii) and the fact that ¢ is non-constant. Since Exp(K) is dense in
Exp(K,), we obtain that @, (Exp(K)) lies densely in Exp(conv(@(Ky,))). Furthermore,
we have

(Y eonvio) = convip)

neN
and hence

ﬂExP(Conv(<P(Kn))) = Exp(conv(p(K)))

neN

in algebraic and topological sense by Lemma (1.1.10). It is now obvious that @, (Exp(K))
Is dense in Exp(conv(@(K))).



In the formulation of Theorem (1.1.11), it is necessary to form the convex hull in the image
space Exp(conv(@(K))), since Exp(K) is only defined for convex sets K. However, we
show that the Borel transform of @, f actually admits an analytic continuation beyond
Co \conv(e(K)). For that purpose, we have to introduce a further notation: For a compact
set K c C, the polynomially convex hull K is defined as the union of K with the bounded
components of its complement. Let K < C be a compact, convex set,

f € Exp(K)and @ € H(K).Forw € C\p(K) we set
1 Bf (£)
Hp(w): = f d
o(w) 2ni Jpw — @(§) d
With T" a Cauchy cycle for K € Q,, being so near to K that ¢ (|T'|) is contained in a simply

connected, compact set L D ¢(K) such thatw € C \L. This definition is independent of the
particular choice of I'. Since ¢ (|I'|) can be arbitrarily near to ¢ (K), we obtain a function

Hy| € H(Coo\@(K)).

Proposition (1.1.12)[1]: The function H,, € H(C,\¢(K)) defines an analytic continuation
of B(®,) € H(Cx \ conv(e(K))).

Proof: Let I, be a Cauchy cycle for conv(¢(K)) in C. Then we can chose a Cauchy cycle
for K in Q, being so near to K that indr (¢(u)) = 1forallu € |T|. Then

_j H, (w)e™* dw =—f Bf (&) me . _eW;@ dw d¢

=5 Bf(f)e"’(f)z d§ = D, f(2)
by the Cauchy integral formula. Con3|der|ng that B.onv(p(x)) 1S an isomorphism, we can

conclude Hy |co\conv(px)) = B(Pgp)lco\conv(p)):
Now, let f be an entire function of exponential type and ¢ € H(K(f )). Interchanging
integration and differentiation yields

1
@,NO@) =5 [ BFEQ9"(©e?©* d (6)
r
which implies that the Taylor expansion of @, f at the origin is given by
= (D) (0
oo f (1) = Y ZELTO ™

n:
Further, in accordance with our conventions, if ¢ € H(K(f )) is zero-free, &, is a simply
connected domain that contains no zeros of ¢. These conditions ensure the existence of a
logarithm function log ¢ € H(®,,) for ¢. Then for each non-negative integer n, we have

n _ _ 1 n log (&)
e1(D)" g (0) = Buog f (m) = 5 | BF(E)e" 10200 dg

1
= fr BF (§)g™ (§)dE = (D) f (0). (8)

We extend (6) and (8) by showing that @, commutes with differential operators on Exp(K).

For that purpose, we have to introduce another terminology: A germ ¢ € H(K) is said to
be biholomorphic, if Q,, can be choosensothat ¢ : Q, — @(£,,) is biholomorphic. In this

case, we always assume €, to be so small that the above property is ensured.
9



Proposition (1.1.13)[1]: Let K be a compact, convex subset of C and let ¢ € H(K).

(i) D: Exp(conv(p(K))) = Exp(conv(p(K))) is quasi conjugated to ¢(D):
Exp(K) — Exp(K) by @,

(i)  If ¢ is zero-free then e; (D) : Exp(conv(loge (K))) — Exp(conv(loge (K))) is
quasi conjugated to ¢ (D): Exp(K) — Exp(K) by ®y4g;

(iti)  If C is a compact, convex subset of C and yp € H(C) is biholomorphic and satisfies

W(C) 2 @(K) then (D) : Exp(conv(yp~" o p(K))) - Exp(conv(}p™" o ¢(K))) is
quasi conjugated to @(D): Exp(K) — Exp(K)by ®,-1,,.

Proof: Let f € Exp(K). In order to see (i), consider the Taylor expansion for @, f in (7)

and observe that
Ce(D)F(0) L\ e eD)F0)
D (Z n! z ) - Z n! z
n=0 n=0

Considering Lemma (1.1.5), we obtain
(D)"® ( ):L Bf (§)eztmloge@)g =L BF(E)p™(§)e?lose@y
€1 log(pfz 27Ti ffe 5 . f€§0 Ee f
L Jr 2mi Jp

1
- Z_MJFBQ"(D)nf(f)eZIOg(p(f)df = Diog 9 (D)"f (2).

Withn = 1, this is the assertion in (ii).

In order to show (iii), we consider an arbitrary z € C \ C and choose a Cauchy cycle I; for
K in Q, such that o (|T;|) © Q-1 and ™" o @(|I}]) is contained in some compact set
L c Q withz € C\ L. Further, let T, be a Cauchy cycle for L in Q. Then, according to
Proposition (1.1.12) see [8], we have

1
VD)@ 1o )@ = 7 | Byreg )"

_ 1 1 Bf ($) wz
_Zni_IFZZTIiJ;'IW_w_lo(p(g)dfe dw

_ 1 1 Y(w)e"?
- 2mi '[Fz Bf () 27Tl frlw —YP~1lop(é)

1 -1
= fr 1Bf(€)go(€)e¢ 02 g = D1, ((D)f ) (2).

Theorem (1.1.14)[1]: (Duyos-Ruiz - Chan and Shapiro). For every admissible comparison
function aand every a € C\{0}, thereisan f € HC(e;(D), Exp({0})) such that M¢(r) =
0(a(r)).
By means of the transfrom @ ,, we show that this result extends to the operators ¢ (D) as
follows:
Lemma (1.1.15)[1]: Let K c C be a compact, convex set, ¢ € H(K) and @ € C. Then for
every f € Exp(K),we have o(D)f = e, ¢,(D)(f /ey) Where ¢, := (- + a).
Proof: For A € K, we have ¢(D)e; = @(A)e; and hence

pD)ey = eqp(Ney_q = eqp(4 — a + a)ey_q,
which shows the assertion for f = e;, A4 € K. Since ¢ is holomorphic in a neighbourhood
of K, we can assume that K has non-empty interior. Then span{e; : 4 € K} is dense in

dw d
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Exp(K) by Proposition (1.1.3) (ii). Further, as outlined in the proof of Theorem (1.1.3),
f— f /e, is an isometric isomorphism from Exp(K) to Exp(K — {a}) and we can
conclude that the above equality extends to all f € Exp(K).

Theorem (1.1.16)[1]: Let K < C be a compact, convex set and ¢ € H(K) non-constant.
Then, forevery a € K suchthat |@(a)| = 1,¢'(a) # 0and every admissible comparison
function a, there is some f, € Exp({0}) that satisfies M (r) = O(a(r))andsuchthat f =
foea € HC(@(D), Exp(K)).

Proof: Let a(z) = Yp-oa,z" be an admissible comparison function.

Without loss of generality a € Exp({0}). Due to Lemma (1.1.15) we can assume thata =
0 and thus we only have to show the existence of some f € HC(¢@ (D), Exp({0})) with
Mg(r) = 0(a(r)),r > 0. We define b(z) := X;-obnz" With b, := a,/n! which is
again an admissible comparison function. Now, as outlined above, the results in [8] yield a
function g € E2(b) n J{C’(el(D) Exp({O})) By the definition of E2 and (b,,),

Z FRIOIN z Ig(”)(O)I

(n!by)?

This implies that G (z) := Zn olg™(0)] z" e Ez(a) and hence, as again outlined above,
Mg(r) = 0(a(r)).

According to the condition ¢'(0) # 0, we have that ¢ is biholomorphic as an element of
H({0}). We can assume that ¢(0) = 1, otherwise, replace e; by ¢(0)e; in what follows
and notice that g € HC(¢(0)e (D), Exp({0})) (see [18]). Then f:= @, -1, g €
HC(p(D),Exp({0})) due to Proposition (1.1.9) and Proposition (1.1.13). We find some
small § > 0and 0 < ¢ < oo such that |~ 1(e ()| < c|é| forall |&] < &. We fix an
r > Owith1/r < SandsuchthatforT, : [0,2m) - C,t — r~te* we have e!(|I}]) c
Q4-1 . Now, considering that Bg(&) = Y=o g™ (0) /E™** on every compact subset of

C\{0}, we have

1 _
M (r) < |mlax ij Bg(&)e® toe;)(§)z aé
. o (@ toe)(©)z
< n
gllaXZOLg (0)| 21Tl '[Fr €n+1 df

< Z|g(")(0)| rher
n=0

e G(r).
Thus, Me(r) = 0(Mg(r)) = O(a(r)) and this completes the proof.
Theorem (1.1.17)[1]: Let ¢ be a non-constant entire function of exponential type and let
a € C, be so that ¢'(a) # 0. Then for every q : [0,00) — [1,00) such that q(r) — o

as r tends to infinity, there is an entire function f, with Mg () = 0(r9M) and so that

foea € HC(9(D), H(C)).

The above results fail to hold in the case of frequent hypercyclicity. Here, some expansion

of the conjugate indicator diagram is required.

Proof: According to the proof of Theorem (1.1.8), we have the inclusion

HC(p(D),Exp(K)) c HC(¢p(D),H(C)) provided that ¢(D) extends to a continuous
11



operator on H(C). Now, the assertion of Theorem (1.1.17) follows from the observation that
for each q(r) : [0,00) — [1,00) with q(r) = o asr — oo, there exists an admissible
comparison function a such that a(r) = 0(r9™) and the application of Theorem (1.1.16).

We apply @, to extend known results for frequently hypercyclic functions for e, (D)
to the whole class of differential operator ¢ (D) on Exp(K) as well as on H(C).
[2], proves the following
Theorem (1.1.18)[1]: If K < C is a compact, convex set that contains two distinct points
of the imaginary axis, then FHC(e, (D), Exp(K)) + @.
We can conclude that it is sufficient to require that e; (K) N T contains a continuum in order
to have FHC(e (D), Exp(K)) # @. Similarily, this result holds in the general situation:
Theorem (1.1.19)[1]: Let K < C be a compact, convex set and ¢ € H(K) non-constant
such that ¢ (K) N T contains a continuum. Then we have FHC(¢(D), Exp(K))) + @.
Proof: Our assumptions ensure the existence of a compact, convex set K < K such that
o (K) contains some continuum of T and ¢ is biholomorphic as an element of H(K). We
choose suitable real numbers a < b so that eli®] < o (K). The preceding result yields an
f € FHC(e;(D),Exp([ia,ib])), and, by Proposition (1.1.9) and Proposition (1.1.13), we
have

D y-1ce,f € FHC(@(D), Exp(K)) < FHC(¢(D), Exp(K)).
The next result shows that the assumption in Theorem (1.1.19) are sharp.
Theorem (1.1.20)[1]: Let A be a complex number and @ € H({A}). Then we have
FHC(p(D),Exp({1})) = ©.
Proof: If there exists some f € FHC(¢(D), Exp({1}), then, by Proposition (1.1.9) and
Proposition (1.1.13),
d,f € FHCD,Exp({p(D)})) < FHC(D,H(C)),

contradicting Theorem (1.1.21)(ii).
Theorem (1.1.21)(ii) is stronger than the previous result since it excludes frequent hyper-
cyclicity with respect to the weaker topology of H(C). Unfortunately, the transform @,
does not carry over (frequent) hypercyclicity with respect to this topology. Thus, some extra
argument is required to show Theorem (1.1.21)(ii).
Theorem (1.1.21)[1]: Let ¢ be a non-constant entire function of exponential type.
(i) IfK < Cisacompactand convex set such that the intersection of K and C,, contains
a continuum, then there is a function f € FHC(¢(D), H(C)) that is of exponential type and
sothat K(f) c K.

(i)  There is no function f € FHC(p(D), H(C)) that is of exponential type and so that
K(f ) is asingleton.

In particular, the second part of the above result states that, in contrast to the case of
hypercyclicity, a function f of exponential type zero is never frequently hypercyclic for any
differential operator ¢ (D) (on H(C)).

Proof: The first part is an immediate consequence of Theorem (1.1.19) since
FHC(p(D),Exp(K)) € FHC(¢(D),H(C)). Thus, there is only (ii) left to prove.

We suppose there is some entire function f of exponential type such that K(f ) = {1},1 €
C and f € FHC(p(D),H(C)). Then necessarily, |@p(A)] = 1 because otherwise
e(D)"f(0) » 0asn — oo as it turns out from the proof of Theorem (1.1.7), and ¢ is

12



non-constant. Hence in some sufficiently small and simply connected, open neighbourhood
Q of 4, the function @ := ¢/@(4) is zero-free, which implies the existence of a logarithm
function log @ for @ on Q withlog @ (1) = 0. Weseth := ®y,,5f . Then K(h) = {0} by
Proposition (1.1.11) and, according to (8) applied to @, we have

h(n) = ()L) ——@(D)"f(0) foralln € N U {0}. (9)

Let S be the sector {z : |arg(z)| < E} \ {0}. By the Casorati-Weierstrass theorem, we can
choose a@ € C such that ¢ () is close enough to @ (A) to ensure that

P cfe: larg@ - nl <5} (10)

—=ScC
¢

and ¢(a) # 0. Now, according to the continuity of ¢ (D) on H(C), for every € > 0, there

aresomer > 0andé§ > 0 suchthatforall g € H(C) that satisfy

sup |g(z) — eq(2)| < 6, (11)

zer D

lp(D)g(0) — @(D)ey(0)] = |9(D)g(0) — @(a)| < &
We assume that §,& > 0 are so small that, whenever g satisfies (11), we have
g(0) € Sand ¢(D)g(0) € () S. (12)
Our assumption implies the existence of some sequence (n),en Of positive integers with
dens((ny)keny > 0 and such that sup [@(D)™ f(z) — eq(2)| < 6 for all k € N. The

we have

zer D
interpolating property of h in (9) combined with (12) yields
1 ¢(a)
h(n,) € O Sand h(n, +1) € WS forallk € N. (13)

(@)

Condition (10) implies that the factor > rotates S by an angle larger than —. Hence, from

(13), it follows that for each k € N elther Re(h) or Im(h) has a sign change in [ng,ng, +
1]. The intermediate value theorem yields a sequence (wy)en OF positive numbers with
wy € (ng,n, + 1) and

Re(h(wy)) Im(h(wy)) = Oforallk € N. (14)

Assuming that the Taylor series of h is given by Z;":O%z”, we set h,(2) := Z,‘;":sz”

v!

and h,(2) := Y5, %z". The functions h,, h, are of exponential type zero due to the of

fact that h is exponential type and thus h, h, is a function of exponential type zero.

Since Re(h(x)) = hy(x) and Im(h(x)) = h,(x) for every real x, we obtain h, h,(w;) =
0 for all k € N by (14). Taking into account that (w;),en has obviously the same lower
density as (ny)xen, We have that hqh, is a function of exponential type zero having zeros
of positive lower density which is impossible unless it is constantly zero (cf. [6]).

Section (1.2): Conjugate Class of a Hypercyclic Operator

Let X be a separable, infinite dimensional Banach space over the scalar field C or R,
and let B(X) denote the algebra of bounded linear operators T : X — X. An operator T in
B(X) is hypercyclic if there is a vector x in X for which its orbit, Orb(T ,x) = {T"x:n >
0}, is dense in X. Such a vector x is called a hypercyclic vector for . An operator T in B(X)
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Is hypercyclic if and only if the set of hypercyclic vectors for T , denoted by HC(T ), is a
dense Gg set; see Kitai [42]. For a countable family F of hypercyclic operators, a direct
application of the Baire Category Theorem implies that the set Ny HC(T ) of common
hypercyclic vectors is also a dense Gs set. However, for the situation when F is an
uncountable family of hypercyclic operators, we cannot apply this Baire Category Theorem
argument to show the set Nycx HC(T ) of common hypercyclic vectors is a dense Gg set,
or is even nonempty. This observation has prompted research on the existence of common
hypercyclic vectors for uncountable families of hypercyclic operators. Bayart and Matheron
[24], Chan and Sanders [32], and Costakis and Sambarino [38] have separately developed
different sufficient conditions for an uncountable family of operators to have a dense G set
of common hypercyclic vectors. Other results on common hypercyclic vectors include the
work of Abakumov and Gordon [20], Aron, Bés, Ledn, and Peris [22], Bayart [23], Bayart
and Grivaux [26], Conejero, Miller, and Peris [37], and Ledn and Mdller [43]. In much of
the above work on common hypercyclic vectors, the uncountable family of operators
maintains some sort of continuity within the family. This brings us to the definition of a path
of operators. A family of operators {F; € B(X):t € I}, where [ is an interval of real
numbers, is a path of operators if the map F : I — (B(X),||*|]), defined by F (t) = F;, is
continuous with respect to the usual topology on the interval I and the operator norm
topology on B(X). Ifthe interval I = [a, b], then the path {F; € B(X):t € I}isa path of
operators between F, and F,,. For any path, a vector x in X is called a common hypercyclic
vector for the path if x € N,¢; HC(F).

We examine common hypercyclic vectors for a family of operators which consists of
the conjugates of a single hypercyclic operator. Let S(T) = {L™T L: L invertible} be the
conjugate set of the operator.

The conjugate set S(T') is also often referred to as the similarity orbit of T. A standard
similarity argument shows that an operator T in B(X) is hypercyclic if and only if each
operator in the conjugate set S(T) is hypercyclic. From this observation, one can ask
whether the set N4esry HC(A) of common hypercyclic vectors for the entire conjugate
set S(T) of a hypercyclic operator T is a dense G set. In Proposition (1.2.1) below, we show
this set of common hypercyclic vectors has only two possibilities. If every nonzero vector
in X is a hypercyclic vector for T, then the set N 45y FC(A) of common hypercyclic
vectors for the conjugate set S(T) contains every nonzero vector also. Otherwise, the set
Naesry HC(A) of common hypercyclic vectors for the conjugate set S(T) is empty.

Not only does the conjugate set S(T) of a hypercyclic operator T consist entirely of
hypercyclic operators, those hypercyclic operators are dense in B(X) with respect to the
strong operator topology, or SOT. This result was proved by Bés and Chan [28] by applying
a fundamental property of the strong operator topology established by Hadwin, Nordgren,
Radjavi, and Rosenthal [41]. As we have mentioned above, if HC(T ) # X \ {0}, then the
set Nyesm HC(A) of common hypercyclic vectors for the conjugate set must be empty.
We show the conjugate set S(T') must contain a path {F, € B(X):t € [1,)} of operators
which is SOT-dense in B(X), and yet the set N.cp; o) HC(F) of common hypercyclic
vectors for the whole path is a dense G set; see Theorem (1.2.4) below. As a corollary, we
show the hypercyclic operators in B(X) form an SOT-connected subset of B(X); see
Corollary (1.2.10) below. Also using Theorem (1.2.4), we show that for any nonzero vector
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ginX,theset{T € B(X):g € HC(T )}is SOT-dense, as well as SOT-connected in B(X);
see Corollary (1.2.9) below.

A hypercyclic operator clearly has orbits which exhibit wild behavior. It may also
possess orbits with simple behavior. A vector x in X is a periodic point of the operator T if
T"x = x for some positive integer n. An operator T in B(X) is called chaotic if it is
hypercyclic and the set of periodic points for T is dense in X. Recently, Chan and Sanders
[34] showed that every separable, infinite dimensional Hilbert space H over the scalar field
C admits a path of chaotic operators which is SOT-dense in B(H), and yet each operator
along the path shares the exact same set of hypercyclic vectors. However, Bonet, Martinez-
Giménez, and Peris [30] provided examples of separable, infinite dimensional Banach
spaces which fail to support even a single chaotic operator. Hence, the techniques in [34] do
not work for an arbitrary separable, infinite dimensional Banach space. For this general
setting, even though we are not able to show that there is an SOT-dense path of hypercyclic
operators, each of which has the exact same set of hypercyclic vectors, Theorem (1.2.4)
below exhibits such a path with a dense G5 set of common hypercyclic vectors. In the case
where the Banach space does support a chaotic operator, using Theorem (1.2.4), we show
there does exist a path of chaotic operators which is SOT-dense in B(X), and for which the
set of common hypercyclic vectors for the whole path is a dense G set. Furthermore, the
chaotic operators in B(X) form a connected subset of B(X); see Corollary (1.2.11) below.

As stated, an operator T in B(X) is hypercyclic if and only if every operator in the
conjugate set S(T ) = {L™T L: L invertible} is hypercyclic. In fact, one can easily verify
that

x €EHC (LT L) ifandonlyif Lx € HC(T). (15)
We show that the set of common hypercyclic vectors for the conjugate set S(T ) of an
operator T has only two possibilities, either the set of all nonzero vectors or the empty set.
Proposition (1.2.1)[19]: Let T be an operator in B(X).
(i) If HC(T) = X\ {0}, then the set N 4¢5(ry HC(A) of common hypercyclic vectors for

the conjugate set S(T) is also X \ {0}.
(i) IF HC(T ) # X \ {0}, then the set N y¢5¢ry HC(A) of common hypercyclic vectors for
the conjugate set S(T) is empty.
Proof: Part (i) follows directly from the statement given in (15). For part (ii), let y be any
nonzero vector in X which fails to be a hypercyclic vector for the operator . For any nonzero
vector x in X, there exists an invertible operator L such that Lx = y. For instance, if x and
y are linearly independent, we may take Lx = y and Ly = x and L = [ on a closed
subspace complementary to the finite dimensional subspace spanned by x and y. If y = ax
for some nonzero scalar a, then let L = al on X. Since Lx = y &€ HC(T ), by (15), we
have x € HC(L™'T L). Therefore, N yes¢ry HC(A) = @.

Read [45] provided an example of an operator T on #* for which every nonzero vector
is a hypercyclic vector. Thus, it is possible for the set of common hypercyclic vectors for a
conjugate set to be nonempty. On the other hand, every separable, infinite dimensional
Banach space X admits a hypercyclic operator T for which HC(T) # X \{0}; see the
hypercyclic operator constructed by Ansari in [21] or by Bernal in [27]. Since the conjugate
set S(T) of this particular hypercyclic operator fails to have a single hypercyclic vector in

15



common, it follows trivially that the set of all hypercyclic operators in B(X) fails to have a
single hypercyclic vector in common.

The conjugate set S(T) of a hypercyclic operator T is SOT-dense in the operator
algebra B(X). However, in many cases, this SOT-dense set fails to have a single common
hypercyclic vector. On the positive side, it does contain a path of operators which is SOT -
dense in B(X), and for which the set of common hypercyclic vectors for the whole path is a
dense Gg set. For this, we need two technical results.

Lemma (1.2.2)[19]: Let x4, x,, ..., x;, be k linearly independent vectors in X, and let

d = 1r£1]1<r1 dlst(X],Span{xl li]})

There exists a § > 0 such that whenever y,,y,,...,y, are k vectors in X satisfying
|x; — v;|| < & for each integer j with 1 < j < k, we have

d
1121]1<nk dlSt(y];Span{yl i 7&]}) > P

Proof: Since all norms are equivalent on the finite dlmensmnal space span{xy, x5, ..., X},
there is a constant C > 0 such that

k k
z la;| < C Z a;x; (16)
i=1 i=1
for any scalars a4, a5, ..., a;. Choose a § > 0 such that
1
(1 - Co) 25 : (17)

Let 1,5, ...,y be any k vectors in X satisfying ||x; — y;|| < & for 1 < j < k. For any
integer j with 1 < j < k and for any scalars ay, ay, ..., @j_1, @41, ..., @y, We have

Vi _z a;yil| = (xj _z Ofixi> + (3’;' _xj) +z a;(x; — ;)

i#j i#j i#j

= xj_z aixiH_”xj_y]'” —z lec [lx; — il

i#j i#j
6|1 +Z |a | = xj —Z a;x; x]' —Z a;Xx;
i#j

L:#] i#j

> - 6C

Xj — Z a;x;

i#j

,by (16)

> (1 — €8)d >E by (17).

Thus, our result follows.

The second result involves the union of a finite linearly independent set with the tail end of
an orbit generated by a hypercyclic vector.

Proposition (1.2.3)[19]: Let T € B(X) be a hypercyclic operator. If g € HC(T) and
X1, X2,..., X; are k linearly independent vectors in X, then there is an integer N = 0 such
that the set {xy, x5,...,x,} U{T™ g: n = N} is linearly independent.

Proof: By way of contradiction, we suppose that no such integer N exists; that is, the set
{x1,%5,...,x,} U{T™ g: n = N} is linearly dependent for each integer N > 0. If we take
N = 1, then by the linear independence of the vectors x,x,,...,x; and the linear
independence of the orbit of a hypercyclic vector (see, for example Bourdon [31]), we obtain
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a nonzero polynomial p; for which p,(T )g € span{xy,x,,...,x;}. For similar reasons,
by taking N = 1 + deg p,, we obtain a nonzero polynomial p, with deg p, > deg p;
and p,(T )g € span{xy,x,,...,x;}. After k 4+ 1 steps, we obtain nonzero polynomial
Pr+1 With deg pr+1 > deg p, and pr+1(T)g € span{x;, x,,...,x;}. Since the k + 1
vectors p; (T )g,p2(T)g, ..., pr+1(T )g lie in the subspace span{xy, x5,..., X, }, which is
k-dimensional, it follows that they must be linearly dependent. However, this contradicts
the fact that g is a hypercyclic vector.
We are now ready to prove that every conjugate set of a hypercyclic operator contains a path
of operators which is SOT-dense in B(X).
Theorem (1.2.4)[19]: Let T be a hypercyclic operator in B(X). The conjugate set S(T ) =
{L™IT L: L invertible} contains a path {F, € B(X):t € [1, )} of operators which is SOT-
dense in B(X), and for which the set N,c; ) FC(F;) of common hypercyclic vectors for
the whole path is a dense G set.
Proof: We begin with an outline of the construction of the desired path of hypercyclic
operators. The path must contain a hypercyclic operator in every nonempty SOT-basic open
set O in B(X), which is of the form

0 = {A€eBX): ||Ax; — Bx;|| <€ forl1l <<k},
where B € B(X),e > 0, and x; € X. The vectors x; and Bx; provide a starting point of
our construction of an invertible operator L so that L~1T L is in O and it can be joined to the
given hypercyclic operator T with a path having a dense G set of common hypercyclic
vectors. For that, we may assume that the vectors x; are linearly independent and use
Proposition (1.2.3) to choose appropriate powers of T on a hypercyclic vector g € HC(T)
that can approximate x; and Bx;. Then we use Lemma (1.2.2) to control the norms of L and
L1 so that the terms L™1T L(x;) — Bx; qualify L™1TL to be in the set 0.
Furthermore, to create the desired path we first note that we can trivially write T as I71T I,
where [ is the identity, and so we have to join I with L with an appropriate path of invertible
operators. The operator L takes the form of the sum of the identity and a finite rank operator
K whose range is the linear span of carefully chosen powers T™ g. The path will then be in
the form of I + t K, where t in [0, 1] is the parameter for the path. However, in order to
carefully select vectors T™ g to make our argument work, we need to have good estimations
on their distances from each other and separate them in terms of linear functionals.
To this end, let g € HC(T). Let € be the collection of all sets E of the form

E={T™g,T™ g,.. T™k g, TN g, TN*1 g, ..., TN*2k-1 g} (18)
where N, k are integerswith N > 0and k = 1 and m,, m,, ..., m, are distinct integers with
eachm; = N + 2k. Note that the collection £ is countable. For the set E given in (18) and
for each integer j with 1 < j < 2k, define

djp = dist (T™ig,span (E\{T™ g})) and D; g
= dist (TN+j'1 g, span(E\{TN* /-1 g}))
Then define Ag by
Ap =min{dyg,dyg ..., doxg D1, E , Dag oo, Doy }.

Since the orbit of the hypercyclic vector g must be linearly independent, each set E € £ is
linearly independent, and so A > 0.
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Claim (1.2.5)[19]: For the set E € £ given in (18), there are 2k linear functionals
Mg, AzE ..., Ay g N the dual space X* such that for any integers i,j with 1 < i,j < 2k,

2
we have |[4;| < £-and

. [ — 1) lfl = jl

big (T™g) =g (T"79) ={o, if i # .
Proof: As a corollary of the Hahn-Banach Theorem, there exist linear functionals
O1E o0 Qo e aNd Y1 g ,..., Py g In the dual space X* such that for integers i,j with 1 <
i,j < 2k,wehave;(T™g) = land@;g(x) = Oforallx € span(E\{T™ g}),and
Yk (TN“"1 ) = 1and lp]E(x) = Ofor allx € span(E \ {T"*/=1 g}). Furthermore,
leiell = and el = — < — . Letting 4,z = @;p +1;z for each integer j

with1 <j < 2k completes the proof of Clalm (1.2.5).
We now use Claim (1.2.5) to form a countable collection of invertible operators in B(X).
For the set E € € given in (18), define the operator L;: X — X by

2k

Lp(x) = x +Z Aip)(TN*I g — T™ig) . (19)

To see that the operator Lg is mvertlble define the operator Ag : X — X by
2k

Ap(x) =x +Z Ai'E(x)(Tmig — TN+i‘1g) )
i=1

Forany x € X, observe that
2k

LgAg (x) = Lg(x) + Z Aig(x)Lg (Tmlg TN+ 19) -
=1
By Claim (1.2.5), for any mtegers ,j with 1<1i,j<2k, we have A;z(T™g —

TN*+=1g) = 0, and so by (19),
LE(Tmig _ TN+i—1g) — Tm‘g _ TN+i_1g.

Thus,
2k

LeAs (1) = Lg() + ) Aip(0)Ly TMg — TVl

i=1

2k
= x +z Ajp()(TNtI=lg — T™ig)
j=1

2k
+Z Aip(x)(TMig — T+ 1g) = x.
i=1
Likewise, AzL;(x) = x forany x € X. Therefore, the operator L, is invertible and Lz =

Ag . Moreover, by definitions of Lz , Lz and by Claim (1.2.5), both operators L , Lz! satisfy
the inequality
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2k

Iz el < 1+ [agellllreitg = Tmig]
Jj=1

2 .
R Il L T | (20)
Ag

j=1
Using the countable collection {L; : E € £} of invertible operators, we generate a countable
SOT-dense subset of S(T).
Claim (1.2.6)[19]: The countable collection {Lz' T Lg: E € £} is SOT-dense in B(X).
Proof: Let U be a nonempty SOT-open set in B(X). Then there exists an operator B €
B(X), an € > 0, and nonzero vectors x,, x,, ..., X in X such that

{A€eB(X): ||Ax; — Bx)|| <e for1 <l <k} CU.

Without loss of generality, we may assume the set {x,, x,,..., x;} is linearly independent.
By Proposition (1.2.3), there is an integer N > 0 such that the set {x;,x,,...,x;} U
{T™ g: n = N} is linearly independent. Since g € HC(T), we can choose k distinct integers
m,, My, ..., My, Satisfying

€
my, =N + 2k and ||[T™lg — Bx|l < > forl1<i<k (21)

Consider the linearly independent set
E={x,T™ g,x,,T™g,...,x,, T™2k g, TN g, TN*1g,..., TN*2k=14},
and define

dy_q = dist (xl,span(f? \ {xl})) for1 <<k,
d,; = dist ( T™ztg,span (E \{ Tmzlg})) forl1 <1<k,
D; = dist ( TNti=1g, span (E'\{ TN+j‘1g})) for1 <j < 2k,

A = min{d,,d,,...,dsx, D1, Dy, ..., Dy}

Set
k

— K +z [TVt — Tmzlg”_l_z | TV22g — x| (22)

=1
Since the set E is linearly independent, by Lemma (1. 2 2) there is a & > 0 such that

whenever m;, ms, ..., my,_; are k distinct integers with
E = {Tmlg,TmZg,...,TmZk—lg,TmZkg,TNg,...,TN+2k‘1g} €€
And
[T™2t-1g — x| < 6 for1 <1<k, (23)
We get

Ap > (24)

NII>Z

We may further assume that § satisfies

€
§ < min<1, 5 (- (25)

21171 (1 +£M)
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Note that there exists such an E' € £ because g is a hypercyclic vector for T. Moreover, for
any such E € &€ and for any integer I with 1 < [ < k, we have
ILE'T Lg(x) — Bxl|
<WLg' T Lg (x) — Lg'T Lg T g]|
+||Lg' T Ly T™2-1g — Bxy]| . (26)
To estimate the first summand on the right-hand side of (26), note that
Lz T Lg(x) — L' T Leg(T™ =2 )|l < ILE T NILg 2, — T2 g ||

< ILE'INITIILENS, by (23) ,

2k
2 .
<(1+4 > [lTvimig — Tmig]l | IITlls, by (20)
E =

2k 2

4 .
< 1+Zz |TN+i=tg — T™ig|| | IITIIS, by (24).(27)

j=1
We now estimate the above summation

2k k k
Z [T+ =g — T™mig|| ZZ |TV+2-1g — pmag) +z |TV+2i-2g — o g|
j=1 =1 =1

k

k k
Sz ITV+21g — Tmag|| _,_Z IT¥2-2g — x| +z lx, — Tmat-1g]|
=1 =1 =1
k K
<kt ) [[TvEtig - Tmag] 4 [TV2g — x| by (23), (25)
=1 =1
= M, by (22).

Combining inequality (27) with the above inequality gives us
2

4 €
I T Lo(r) = LT L (T2l < (1 +2M) TS < 5,by @5). (28)

To estimate the second summand on the right-hand side of (26), observe that for each integer
iwith1 <i < 2k, we have

2k
Ly (T™ g) =T™g + ) Lx(TMig)(T"*I7g = T™ig), by (19)
=1
= TMig + (fN+i‘1g — T™ig) ,by Claim
1 = TN+i-1g, (29)

Thus,
ILz* T Ly T™2-1g — Bxi|| = ||LE1 TTN*2"2g — Bxl“,by (29)
= ”LEl TN*2lm1g — Bxl” = [[T™2tg — Bx||,by (29)

< g . by (21). (30)

Combining inequality (26) with inequalities (28) and (30) yields ||Lz! T L (x;) — Bx;|| <
€,and so Lz* T L € U which completes the proof of Claim (1.2.6).
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We now construct a path of operators between T and Lz! T Ly which lies entirely within the
conjugate set §(T) of the operator T.

Claim (1.2.7)[19]: For each E € &, there is a path of operators between T and Lz T Lg
contained in the conjugate set S (T) for which the set of common hypercyclic vectors for the
whole path is a dense G set.

Proof: Let E be the set in £ given in (18). For each t € [0, 1], define an operator L :
X — X by

2k
Lig(x) = x +z tﬂj,E(x)(TN”‘lg — Tmfg) )
j=1

Using computations similar to those before Claim (1.2.5), each operator L, ¢ is invertible,
and its inverse L;1,E : X — X is given by
2k

Lip (x) = x + z t/li,E(x)(Tmig — TN+i‘1g) :

Consider the path of operators {G; é 1B(X): t € [0,1]}, where G, = L;; T L . Clearly
this path of operators is between T and L;* T L and lies entirely in the conjugate set S(T).
To show Nepo 17 HC(G,) is a dense G set, first note that by Corollary (1.2.3) in [32], the
set Neepo,) HC(Gy) is a G set, and so it suffices to show this set is also dense. We do this
by proving {span Orb(T, g)}\{0} is contained inside the set Nc(o1; HC(G). To begin,
note that given any nonzero polynomial p and any ¢t € [0,1], we have L, zp(T )g # 0
because p(T )g # 0 by the linear independence of the orbit of g, and because the operator
L, g is invertible. Furthermore,

2k
Legp(T)g = p(T)yg +z tA;gp(T)g(TN*/71g — T™ig) € {span Orb(T , g) }{0}
j=1

C HC(T),

because every nonzero vector from the linear span of a dense orbit is a hypercyclic vector;
see Bourdon [31] and Bés [29]. Therefore, by statement (15), we get p(T )g €
HC(LgsT Ly g) = HC(G,). Hence, {span Orb(T , g)}\{0} < Neepo,1; HC(Ge), and this
concludes the proof of Claim (1.2.7).

We construct the desired SOT-dense path of operators in the conjugate set S(7). Let
{E,,: n = 1} be an enumeration of the countable set £. By Claim (1.2.7), if for each integer
n=1,let G, =L3tg TLyg fort € [0,1/2] and G, = L3255 T Ly_p 5, for each
t € [1/2,1], then {G,,, € B(X):t € [0,1]} is a path of operators in the conjugate set
S(T) such that Gy, = Gy, =T and Lz T Ly, = Gy/2n € {Gey € B(X):t € [0,1]},
and in addition, the set Nycro1; HC(Gyy) is a dense Gs set. Foreach t € [n,n + 1], let
F = Gi_pnyn. Then {F, € B(X):t € [1,)}is a path of operators in the conjugate set S(T)
which is SOT-dense by Claim (1.2.6), and for which the set Ny oy HC(F) =
Na=1 Neepor; HC(Gey) is adense G set.

The SOT-dense path {F; € B(X):t € [1,0)} in the previous theorem consists of
operators of the form L™1T L, which share many properties that each other has; in fact, any
properties preserved by similarity. For instance, if one of them is chaotic, then every
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operator in the whole path is chaotic. If one of them has a nontrivial kernel, then every one
in the whole path has one. If one of them is surjective, then every one is. If one of them has
a nontrivial invariant subspace, then every one has one. If every nonzero vector is a
hypercyclic vector for one single operator in the path, then the same holds true for every
operator in the path. If one of them has a hypercyclic subspace, which is an infinite
dimensional closed subspace consisting, except the zero vector, of hypercyclic vector of the
operator, then every one in the path has such a subspace. We study more common properties
that a path of operators may share.

Theorem (1.2.4) has several interesting corollaries. First, let us examine the linear
structure within the dense Gg set of common hypercyclic vectors for the path of operators
given within the proof of Theorem (1.2.4). For each set E € &, consider the path of
operators {G, € B(X):t € [0, 1]} between the operators T and Lz* T Lg given in the proof
of Claim (1.2.7). To show the set Nyeo1; HC(G,) of common hypercyclic is dense, we

prove that if g is a hypercyclic vector for , then {span Orb(T , g)}\{0} is contained inside
the set N¢epo1; HC(Gy). Furthermore, these paths of operators are the building blocks for

the desired SOT-dense path of operators. Thus, the set of common hypercyclic vectors for
the path of operators constructed within the proof of Theorem (1.2.4) contains some natural
linear structure.

Corollary (1.2.8)[19]: Let T be a hypercyclic operator in B(X),and let g € HC(T ). There
exists a path {F; € B(X):t € [1,0)} of operators, contained entirely in the conjugate set
S(T), which is SOT-dense in B(X), and for which {span Orb(T , g)}\{0} is contained
within the dense Gs set N¢epy,00y HC(F) of common hypercyclic vectors.

Since the orbit of a hypercyclic vector is linearly independent, the set of common
hypercyclic vectors for the path of operators given in Corollary (1.2.8) contains an infinite
dimensional linear manifold for which every nonzero vector is a common hypercyclic
vector. However, the linear manifold given in Corollary (1.2.8) is not closed. Corollary 3.5
of Sanders [46] provides a natural sufficient condition for the set of common hypercyclic
vectors for a path of operators to contain a closed, infinite dimensional subspace of which
every nonzero vector is a common hypercyclic vector.

The existence of a path of hypercyclic operators that is SOT-dense in B(X) gives us
information about the connectedness of the hypercyclic operators in B(X). Recall that if Y
and Z are subsets of a topological space X satisfying € Z < Y, andif Y is connected, then
Z is also connected; see Munkres [44]. A path of operators in B(X) is SOT-connected, and
so any set of operators in B(X), which contains an SOT-dense path of operators, is also
SOT-connected. From this— topological argument and Corollary (1.2.8), we get the next
result.

Corollary (1.2.9)[19]: Let g be any nonzero vector in a separable, infinite dimensional
Banach space X. Then the set A ={T € B(X):g € HC(T )} is SOT-dense and SOT-
connected in B(X). Furthermore, its set of common hypercyclic vectors is
Nreqa HC(T) = (span{g}) \ {0}.

Proof: For the first part of the proof, it suffices to show there is an operator T in B(X) with
g € HC(T). By Corollary (1.2.8), it follows that the set {T € B(X):g € HC(T )}
contains a path of operators which is SOT-dense in B(X), and consequently SOT-connected
by the topological argument above. To this end, let T, be a hypercyclic operator with
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HC(T,) # X\ {0}; see Ansari in [21] or by Bernal in [27]. Let g, € HC(T,). Choose an
invertible map L : X — X suchthat Lg = g,, andset T = L™'T, L. Since Lg = g, €
HC(T,), by statement (15) we get g € HC(L T, L) = HC(T).

For the second part, observe that (span{g}) \ {0} S Nycq HC(T ) because g €
Nreq HC(T). To establish the reverse set inequality, let hy, € HC(T,) with hy # 0. For
any h & span{g}, the sets {g, h} and {g,, hy} are each linearly independent, and so there is
an invertible map L, : X — X withL, g = g, and Lyh = h,. Again by statement (15),
this implies g € HC(Ly* Ty Ly) and h & HC(Ly Ty Lo). Thus, h € Nypeq HE(T).

In many of the known cases, the set of common hypercyclic vectors for an uncountable
family of hypercyclic operators is either empty or a dense G4 set. Corollary (1.2.9) provides
an example of a set of common hypercyclic vectors which is a G set that fails to be dense.
When H is a separable, infinite dimensional Hilbert space over the scalar field C, the
invertible operators are path connected; see Douglas [40]. Thus, the conjugate set of a
hypercyclic operator is both SOT-dense and SOT-connected in B(H). By the topological
argument given before Corollary (1.2.9), the hypercyclic operators in B(H) then form an
SOT-connected subset of B(H); see [34]. For the Banach space version of the result, we can
combine Theorem (1.2.4) and the topological argument given before Corollary (1.2.9).
Corollary (1.2.10)[19]: Let X be a separable, infinite dimensional Banach space. The set of
all hypercyclic operators is SOT-connected in B(X).

The argument used in Corollary (1.2.9) can be used to show certain well-known classes of
hypercyclic operators are SOTconnected in B(X). For example, from the definition of a
chaotic operator, one can easily see that an operator is chaotic if and only if each operator
In its conjugate set is chaotic. Using the same argument as with Corollary (1.2.10), we get
the following result.

Corollary (1.2.11)[19]: Let X be a separable, infinite dimensional Banach space which
admits a chaotic operator. The set of all chaotic operators is SOT-connected in B(X).

For another example, an operator T in B(X) satisfies the Hypercyclicity Criterion if and
only if each operator in its conjugate set satisfies the criterion. Moreover, every separable,
infinite dimensional Banach space admits an operator which satisfies the Hypercyclicity
Criterion; see the hypercyclic operator constructed by Ansari in [21] or by Bernal in [27].
Thus, the collection of all hypercyclic operators in B(X) which satisfies the Hypercyclicity
Criterion is SOT-connected in B(X). De la Rosa and Read [39] provided an example of a
Banach space which admits a hypercyclic operator that fails to satisfy the Hypercyclicity
Criterion. Using techniques inspired by De la Rosa and Read, Bayart and Matheron [25]
showed some common Banach spaces, including the sequence Hilbert space £2, also admit
such hypercyclic operators. Since a hypercyclic operator fails to satisfy the Hypercyclicity
Criterion if and only if each operator in its conjugate set fails to satisfy the criterion, we get
that whenever a Banach space X admits a hypercyclic operator that fails to satisfy the
Hypercyclicity Criterion, then the collection of all such operators is SOT-connected in
B(X). Again, by a similar argument, if the Banach space X admits an operator with no
nontrivial, closed, invariant subset, then the collection of all such operators is SOTconnected
in B(X). Recently, Chan and Seceleanu [35],[36] provided classes of operators for each of
which having one orbit with a nonzero limit point imply the operator be hypercyclic. An
operator has this property if and only if each operator in the conjugate set also has this
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property. By our topological argument, the collection of all operators having this property
Is an SOT-connected subset of B(X).

We discuss some natural questions which arise from the results in the previous. To
begin, Proposition (1.2.1) states that the set of common hypercyclic vectors for the entire
conjugate set is either all nonzero vectors or the empty set. In the Hilbert space setting, the
unitary orbit, U(T ) = {U~'T U: U unitary}, of an operator T is a well-studied subset of
the conjugate set S(T). Obviously, the unitary orbit U(T) is strictly smaller than the
conjugate set S(T). Hence, in view of Proposition (1.2.1), one may ask whether the set
Nacuy HC(A) of common hypercyclic vectors for the unitary orbit U(T) is always a
dense Gg set if T is hypercyclic.

As it turns out, the answer is still negative, unless we have the trivial case that every
nonzero vector is a hypercyclic vector for T and hence the set of common hypercyclic
vectors is H \ {0}. Otherwise, we have a unit vector y that is not a hypercyclic vector for .
Extend the singleton set {y} to an orthonormal basis of H. For any unit vector x, extend the
singleton set {x} to an orthonormal basis of H. LetV : H — H be a unitary operator taking
the second orthonormal basis one-to-one and onto the first orthonormal basis with V x =
y. Since y & HC(T), by statement (15), we get x € HC(V 1T V). From this, we can
conclude N yeyry HE(T) = 9.

The unitary orbit U(T) cannot be SOT-dense in B(H) because every operator in the
unitary orbit U(T) has the same norm as the operator . Along that line, a question one may
ask is whether we can have a path of operators in the unitary orbit U(T) of a hypercyclic
operator T that is SOT-dense in ||T|| - Sph(H), where Sph(H) denotes the unit sphere of
H. This may appear to have a positive answer. However, the answer is negative because the
unitary orbit U(T) is not necessarily SOT-dense in ||T|| - Sph(H). One can easily construct
the following counterexample in the sequence space #%(Z) = {3%, ane,: X |a, |*? <
o}, where {e,:n € Z} is the canonical orthonormal basis of ¢2(Z).Let T : £*(Z) —
£2(Z) be the bilateral weighted backward shift on the sequence space defined by

o} -1 o}
1
T(Z anen) = z Eanen_1+z 20,€5_1-
n=0

n=—oo n=-—oo

The above formula defines a hypercyclic shift T due to a result of Salas [47]. Let A :
¢2(Z) — £*(Z) be defined by

A( Z anen) = 2ap€p.

n=—oo

Clearly ||T|| = [|Al] = 2. If we let

1
0:{5 € BLX(T): ||Se, — Ae,|| <Z}'

be an SOT-open set containing A, then one can easily show that no operator in the unitary
orbit U(T) is in O. In fact, ||IT f|l = ||f|l /2 for every vector f in ¢2(Z), and so
NU=ITUf || = || Il /2 for any unitary operator U. Hence we have

1
U TUe; — Aeq|| 2 5
andso U™IT U ¢ 0.
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We now switch our focus to weak hypercyclicity in the setting of a separable, infinite
dimensional Banach space X. An operator T in B(X) is weakly hypercyclic if there is a
vector x in X for which its orbit Orb(T , x) is dense in X with respect to the weak topology.
Any such vector x is called a weakly hypercyclic vector for T, and we use WHC(T) to
denote the set of all weakly hypercyclic vectors for the operator T . By a similarity argument,
an operator is weakly hypercyclic but not hypercyclic if and only if the same is true for each
operator in the conjugate set; see Chan and Sanders [33] or Shkarin [48] for the existence of
such operators. Bes and Chan [28] showed that the conjugate set of a weakly hypercyclic
operator is SOT-dense in the operator algebra B(X).
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Chapter 2
Spectral Properties with Eigenvalues and Refined Semiclassical Asymptotics

We show that explicit formulas for the transition density of the killed Cauchy process
on the half-line (or the heat kernel of A in (0, o)), and for the distribution of the first exit
time from the half-line follow. The formula for vy, is also used to construct approximations
to eigenfunctions of A in the interval. For the eigenvalues A,, of A in the interval the
asymptotic formula 4,, = nn/2 — /8 + 0(1/n) is derived, and all eigenvalues 4,, are
shown to be simple. Efficient numerical methods of estimation of eigenvalues A,, are applied
to obtain lower and upper numerical bounds for the first few eigenvalues up to the ninth
decimal point. Simplicity of eigenvalues is proved for a € [1,2). L? and L* properties of
eigenfunctions are studied. We also give precise numerical bounds for the first few
eigenvalues. Extending methods from semi-classical analysis we are able to show a two-
term formula for the sum of eigenvalues with the leading (Weyl) term given by the volume
and the subleading term by the surface area. Our result is valid under very weak assumptions
on the regularity of the boundary.

Section (2.1): Cauchy Process on Half-Line and Interval

Let (X;), with t <0, be the one-dimensional Cauchy process, that is, a one-
Dimensional symmetric a-stable process for a = 1. Let us consider the Cauchy process killed
upon first exit time from D for D = (0,0) and D = (—1,1). The purpose is to study the
spectral properties of the transition semigroup of this killed process, defined by

PPf(x) = E,(f(X.);Xs € Dfor all s € [0,t]), f € LF(D)
and it’s infinitesimal generatorcAp, which is the operator —/—(d?/dx?) with a Dirichlet
exterior condition (on D€¢). The key problem is the description of eigenfunctions and
eigenvalues of Apand PP . The study of the spectral theoretic properties of the semigroups
of killed symmetric a-stable processes has been the subject of many in recent years; see, for
example, [50]-[52], [64]-[66], [69], [70]. We show the continuation of the work of
Banuelos and Kulczycki [50].

The identification of the spectral problem for PP and the so-called mixed Steklov
problem in two dimensions, a method developed in [50], is applied for the case of the half-
line D = (0,00). Instead of searching for a function f satisfying

PPf(x) = e *f(x) forx € D,
and f(x) = 0 forx € D¢, we solve the equivalent mixed Steklov problem

Au(x,y) = 0,x € R,y > 0, (D
0

au(x, 0) = —Au(x,0),x € D, (2)

u(x,0) =0, x#+D,R (3)

Where A = 9% /0x? + 0% /dy? is the Laplace operator in R?. The relation between f and u
is given here by u(x,y) = E,f(X,). in this way a nonlocal spectral problem for the
pseudodifferential operator on R (or its semigroup (P?) on a domain D) is transformed into
a Local one for a harmonic function of two variables, with spectral parameter in the
Boundary conditions. From the point of view of stochastic processes, this Corresponds to
the identification of the jump-type process (X;) with the trace left on the horizontal axis by
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the two-dimensional Brownian motion. Similar or related methods were also applied, for
example, by DeBlassie and Mendez-H" ernandez [68]-[70], [85], and the idea can be traced
back to the work of Spitzer [94]; see also [86].

When D = (0, ), the spectrum of A is equal to (—oo,0] and is of continuous type,
and so there are no eigenfunctions of A, in L?(D) (this follows easily from scaling
properties of A p; see also Theorem (2.1.5) below). It turns out, however, that, for allA > 0,
there exist continuous generalized eigenfunctions y; € L°(D). We have PPy, = e ;.
Using the identification described, an explicit formula fory,is derived; see (26) and (27).

There are no earlier works concerning the spectral problem. PP f (x) = et f(x) For
x € Dand f(x) = 0forx € D¢ forthe half-lineD = (0, o), or the equivalent problem (1)—
(3). However, there is an extensive literature concerning the related sloshing problem in the
half-plane, that is, the problem given by (1), (2) and the Neumann condition

0
@u(x, 0) = 0,x &D,

In place of the Dirichlet one (3). The sloshing problem is one of the fundamental problems
in the theory of linear water waves; see, for example, [74]. The explicit solution of the
sloshing problem in the half-plane for D = (0, o) was first obtained by Friedrichs and Lewy
in 1947 [75]; see also [62], [78], [81]. Both methods and results are closely related to their
counterparts for the sloshing problem in the half-plane.

Certain holomorphic functions play an important role in the derivation ofy;, and one
of these functions is studied. In particular, the Fourier—Laplace transform of i, is derived,;
See (43). The formula for v, is of the form ¥, (x) = sin(Ax + ©/8) —r(Ax), where r is
the Laplace transform of a positive integrable function. We obtain estimates of the function
r.

It is proved that ¥, yield a generalized eigenfunction expansion of A, for D =
(0, 0) in the sense of [76]; see, for example, [87], [93]. The transformation I1f = (f, ;)
is an isometric (up to a constant) mapping of L?(D) onto L?(0, ) which diagonalizesAp,
with IT, Ap = AAp f; see Theorem (2.1.5).

The spectral decomposition and enable us to derive an explicit formula for the kernel
function PP (x, y) of PP that is, the transition density of the Cauchy process killed on exiting

D = (0, ) (or the heat kernel for \/—d?/ dx? —-with Dirichlet exterior condition onD¢);
see Theorem (2.1.6). This extends the results of [58], [59], [63], where two-sided Estimates
for PP (x,y) were obtained. As a Corollary, we obtain a new proof of the result by Darling
[67], the explicit formula for the density of the distribution Of the first exit time from (0, o0);
see Theorem (2.1.7). This can be rephrased in terms of the two dimensional Brownian
motion; see Corollary (2.1.8); namely, we obtain a formula for the distribution of some local
time of two-dimensional Brownian motion at some entrance time.

The spectral problem for the interval D = (—1,1). We remark that due to translation
invariance and scaling property of (X,), the results for (—1,1) extend easily to any open
interval. It is well known that there is an infinite Sequence of continuous eigenfunction ¢,, €
D suchthat Ay, = —A,,onDand @, = 00on D¢, where0 < 1; <A1, <13 < -+ - o0,
each ¢,, is either symmetric or antisymmetric. The study of the properties of ¢,, and A,,dates
back of Blumenthal and Getoor [54], where the Weyl-type asymptotic law was proved for a
class of Markov processes in Domains.
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In [54] it was proved that 4,,/n — /2 as n —oo. Over the last few years, there have
been an increasing amount of research related to this topic; see, [50], [51], [65], [66], [69],
[70], [83], [84]. In [50] it was shown that A,, < nm/2. The best known estimates for general
An, Namely/4 < A, < nm/2, were proved in [65], where subordinate Brownian motions in
bounded domains are studied. The simplicity of eigenvalues was studied in [50], where 4,
andA; are proved to be simple (simplicity of A,is standard), and in [84], where all
eigenvalues are proved to have at most double multiplicity.

All these results are improved below.

Approximations ¢, to eigenfunctions ¢, are constructed by interpolating the
translated eigenfunction for the half-lines ¥, (1 + x) and ¥, (1-xX) with A = nz /2 — m/8. It
Is then shown that A, @,, is nearly equal to—A¢,,. We show that

- (=P =z
" 2 8/l n" T
and that the eigenvalues A,, are simple; see Theorem (2.1.11). Finally, various properties of

@, see Corollary (2.1.13)— Corollary (2.1.16).

An application of numerical methods for estimation of eigenvalues to our problem is
described. To get the upper bounds we use the Rayleigh—Ritz method for the Green operator,
and for the lower bounds the Weinstein—Aronszajn method of intermediate problems is
applied for (1)—(3). The numerical bounds of an approximate 10-digit accuracy are given by
formula (88).

We use purely analytic arguments. In fact, the Cauchy process and related
probabilistic notions are only used to give a concise definition of the killed semigroup (PP).

We begin with a brief introduction to the Cauchy process (X;) and its relation to the
Steklov problem. We only collect the properties used in what follows; for a more detailed
exposition see to [50] or [57], [64], [82]. For an introduction to more general Markov
processes, see, [55], [72], [92]. Basic facts concerning the Fourier transform, the Hilbert
transform and Paley—Wiener theorems are recalled.
The one-dimensional Cauchy process (X;) is the symmetric 1-stable process, that is, the

L evy process with one-dimensional distributions
1 t
P(X) =p(y —x)dy = —— TG =22 dy.
Here P, corresponds to the process starting at x € R; we denote by Ex the expectation with
respect toP,. Clearly, the P.-distributions of (X;+a) and (bX;) are equal to P,.,
distribution of (X, + a) and (bX,)-distribution of (X,;), respectively; these are the
translation invariance and scaling property mentioned. The transition semigroup of (X;) is

defined by

Ptf(x) = Exf(Xt) = f* Pt(x)'f € LP(]R)'p € [1' OO],t > 0,
and Pyf(x) = f(x). This is a contraction semigroup on each LP(R), with p € [1,x],
strongly continuous ifp € [1, o), and when f is continuous and bounded, then P; f converges
to f locally uniformly as t\ 0. The infinitesimal generator Aof (P,) acting on L2(R) is the
square root of the second derivative operator. For a smooth function f with compact support
we have
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Where the integral is the Cauchy principal value (PV).
D always denotes the interval (—1,1) or the half-line (0, «). The time of the first exit from
D is defined by 7, = inf{t > 0 : X, &€ D}, and the semigroup of the process (X;) killed at
timet,, is given by

Pth(x) =Ex(f(X:); Xs €D
Forall s € [0,t]) = E,(f(X;); t <tp), where t=> 0. This is again a well-defined contraction
semigroup on every LF (D) space, with p € [1, ], strongly continuous ifp € [1, ). If f is
continuous and bounded in R and vanishes in (—oo, 0], thenP? f converges to f locally
uniformly as t 0. The semigroup (P?) admits a jointly continuous kernel functionP? (x, y)
(t > 0,x,y € D); clearly, PP f(x,y) < p(y - X) <Vxt. By Ap we denote the infinitesimal
generator of (PP) acting onL?(D). Since this is a Friedrichs extentsion on L?(D) of A
restricted to the class of smooth functions supported in a compact subset of D, we sometimes
say that A is the square root of Laplacian with Dirichlet exterior conditions (on D).

Let us describe in more detail the connection between the spectral problem for the
semigroup (P?) and the mixed Steklov problem (1)—(3), established in [50]. The main idea
IS to consider the harmonic extension u(x,y) of a function f to the upper half-plane x € R
andy > 0. Let f € LF(R)for somep € [1 oo],and define

u(xy) = Bf() = f T u e {OLS
Then u is harmonic in the upper half-plane ]R x (0, o), and if p € [1, ), thenu(:,y)
converges to f in LF(R) as y 0. Conversely, for p € (1, ), if u(x,y) is harmonic in the
upper halfplane and the LF (R) norms of u(+, y) are bounded fory > 0, then (-, y) converges
in LP(R) to some f wheny 0, and u(x,y) = P,f(x). By the definition,
2 (x0) =lim Pyf () =f ()

y\.O Y

Pomt wise for all x € R. When f is in the domain ofA, then the above limit exists in
L*(R)and it is equal to Af .

The motivation to study the mixed Steklov problem (1)—(3) comes from the following
simple extension of [50] to the case of unbounded domains. A partial converse is given in
the proof of Theorem (2.1.3).

Proposition (2.1.1)[49]: Let D = (0,) and A > 0. Suppose that f: R — R is continuous
and bounded, f(x) = 0 for x> 0, and u(x,y) = B,f(x). If Pf(x) = e ~tf(x) for all x €D and
t > 0, then u satisfies (1)—(3).

Proof: Formulas (1) and (3) hold true by the definition of u. Since P, PP f(x) = e ~(x),
we have

u(xy) —ux0) PBfx)—f(x) e flx)— lf(x) _ PyfP(x) = PP f(x)

Y Y Y Y '
As yNO, the first summand converges to —Af (x). the second one is estimated using formula

(101) (see also [50]). If 0 < y < x, then we have
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(0]

Py f(x) — PP f(x) <JPy(Z_x)_Pg)(x'Z)

Y

If (2)|dz

IIfllooj min(l Yy Y )dzzy(2+log (x\y))llflloo.

S —_—
T Tx?2

J x2' x2%z’ xz2

and this tends to 0 as y\O. Therefore, (2) is also satisfied.
The Fourier transform of a (complex-valued) function f € L*(R) is given byf(x) =

[ f(t)e~*dt; this can be continuously extended to LF(R) whenever 1 < p < 2. Forp €

(1,), the Hilbert transform of f € L?(R), denoted by Hf, satisfies(Hf)"(t) =

—ft)(isignt). This is a bounded linear operator on L? (R), and for almost all t, Hf (t) = 1

s
S

t —

Hiw = v | 4)
If f is Holder continuous, then the above formula holds for all t € R and Hf is continuous;
see, [95].
Let C,{z€C:Imz>0}and C, = {z€ C:Imz= 0};in a similar mannerC_ and are
defined. Let 1 <p < oo. If F is in the (complex) Hardy space HF(C,), that is, F is
holomorphic in C, and the L? (R) norms of F (-+i¢) are bounded in € > 0, then, we find that
F(- + ig) converges in L (R)to some fe L (R), which is said to be the boundary limit of
F. In this case
Im f = H(Ref)and Ref = —H(Im f). (5)

We also have

Hf(t) = —Hf(=t), where f(t) = f(=0). (6)
The following version of the Paley—Wiener theorem is important in what follows; see, for
example, [71]. For p € (1, ), a function f € LF(R) is a boundary limit of some function
F € HP(C,) if and only if vanishes in (—oo, 0). in this case

F(z) = %J f (x)e~#*dx, z€C,. (7)
0

We use small letters to denote functions of the real variable and capital letters for
functions on the upper half-planeC,. Real-valued functions are denoted by Greek letters,
whereas Latin letters are used for complex-valued functions.

We study the eigenproblem (1)—(3) for the half-line D = (0, o) using methods that were
earlier applied to the sloshing problem with a semiinfinite dock; see [62], [75], [78]. The
solution u is given as the imaginary part of a holomorphic function F of a complex
variablez = x + iy, where x € Rand y=> 0. Such a function is automatically harmonic, and
hence (1) is satisfied. Using the Cauchy—Riemann equations, we may restate (2) and (3) in
the following equivalent form:

Im(iF' (x) + AF(x)) =0, x>0, (8)
ImF(x)= 0,x <0. (9)
Observe that for all 9 € R and t < 0, the bounded holomorphic functions F(z) = e4#+%
and F(z) = etAz—iarctant gatisfy (8), and for all t > 0 the bounded holomorphic function
F(Z) = pldz+id
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Satisfies (9). This suggests searching for a solution of the form
0

F(z) = e#+¥ — j o(t)etAz-tarctant qr - Rez > 0,Imz > 0, (10)

— 00
(ee]

F(z) = f o(t)e* dt Rez < 0,Imz >0, (11)
0
where is an unknown real function, say in some L?(R), with p € (1,2], and 9 € R. The
values of F given by (10) and (11) must agree when Re z = 0 and Im z > 0, that is,

j ei)((t)Q(t)eitlydt — e—ily+i19 Y > 0.

— 00

Where y(t) = arctan t— = arctan(max(—t, 0)). Replacing Ay by -s yields that
j eXOo()et¥dt = e~ M+ 5 < 0, (12)

The right-hand side is the Fourier transform of g(t) = (e’/2m)(1/(1 + it)). Therefore,
formula (12) is equivalent to the condition the function a(t) = e*®p(t) — g(t) satisfies

a(s) =0fors < 0. (13)
Note that both and o are inLP (R), so that a is well defined and @ € L” (R). The foregoing
remarks can be summarized as follows: any real function ¢ € L (R) satisfying (13) yields
a solution to the problem (8)—(9).

By the Paley—Wiener theorem, (13) is satisfied if and only if a is the boundary
limit of a unique function A in the Hardy space HF(C,) in the upper half-plane C, =
{z € C: Im z > 0}. such afunction A can be derived as follows. (Formula (19)), a function
B holomorphic in C,. and continuous on C, is defined, such that iy(t) — B(t) € Rforallt €
R. The function

e B q(t) = eX(O-BWO) _ o=B®) g(¢)
Is therefore the boundary limit of e 2® A(z). Note that eX®~B® js real. The function
g(t) = (e /2m)(1/(1 + it)) is the boundary limit of a meromorphic function G(z) =
(e®/2m)(1 + iz)). The function G has a simple pole at i, so thatG(z)(e’?@~E®) js
holomorphic inC,.. It follows that

e‘B(t)a(t) + g(t)(e‘B(t) — e—B(i)) — eix(t)—B(t)Q(t) — e‘B(i)g(t) (14)

Is a boundary limit ofA(z) = e B@A(z) + G(2)(e 8@ — e75W), z € C,. Since G and A
are in H?(C,), and |e 8@ is bounded (see (109)), we must have 4 € H? (C,).
Let G(z) = (e~ /2m) (1/(1 - iz)). Note that, by (14), the boundary limit of the function
A(z) — e BWG(2) (belonging to HP(C,)) is equal to

eix(t)—B(t)Q(t) — e‘B(i)g(t) — e B g (1), (15)
Which is real for allt € R. The real part of the boundary limit of and H? (C,.) function is the
negative of the Hilbert transform of its imaginary part. Therefore, the function defined by
(15).
Is the Hilbert transform of the constant 0, and so it is identically O. It follows that
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eXO-Bo(t) = e BDg(t) + e BWg(t) =2Re(e BDg(t)),t € R. (16)

Also, A(z) — e~BW G(z)) has a boundary limit 0, and so it is identically zero in C,. Hence,
forze C, we have

e~ eB(z)—m el 1 — gB(@)-B()

— ,—B( A B(z —-B(i —

Az) =e ()(A(z)—G(Z)(e()—e ()))_ 2r 1—iz 2¢m 1+iz
Since |eZ®| is bounded by a constant multiple of 1 + |z| /1 + | z|(see (109)), it follows that
A defined by the above formula is in H?(C,) for any p € (2, %), and given by (16) is in
LP(R); later we show that in fact o € LP(R) for p € (1, ) if 3 = z/8. Also, the boundary
limit of A is the function a defined in (13) (this can be verified, for example, by a direct
calculation), so that indeed is a solution to (13).

We now come to the construction of the function B. We want it to be holomorphic in
C, and continuous in C,, and iy(t) — B(t) is to be real for all t € R. Therefore
ImB(t) = y(t) = arctan(t_), te€R. (17)
Clearly B is not in HP(C,), so that ReB(t) cannot be expressed directly as the Hilbert
transform of ImB'(t) = x'(t). We can, however, apply the Hilbert transform to/mB(t) =
x(t), which is an L2(R) function. It follows that
0

1 1
ReB'(t) = —H(Im B")(t) = —PV j(t T Sz)ds, t € R,
The integral on the right-hand side being the Cauchy principal value for t < 0. This equation
is studied. It follows that up to an additive constant, which we choose to be zero, we have
ReB(t) = n(t), where # is given by (102). By (103) and (107), for all t €R,

log|s

B(t) = ix(t) + n (t) = iarctan (t_) +log /1 + t2 __f : E|S|2
= larctan(t.) + Jloglt_sld 18
= larctan - o ds. (18)

— 00

this formula is easily extended to complex arguments, whenever/m z > 0, and we Have

0
1 loglz — s
f gl Ids

e (19)

provided that the continuous branch of log is chosen on the upper half-plane C, (that is, the
principal branch withlogs = log|s| + i for s < 0). We emphasize that (18) and (19)
agreeforz =t <0.

For the explicit formula for, the function B (i) needs to be computed. By (111) and (112),

=[BT 1 TloB( ),

1+s2 771 1+ s?
% ™
1 [ log|1 + s?| i [ /2 log2 im
= | = ds+-— ds = —. 20
2n)  1+s2 S+n_[1+sz =2 "3 (20)
0 0

Now (16) yields that
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. . el@-1/8)  q
o(t) = zeB(t)—lx(t)Re(e—B(l)g(t)) = Ze"(t)Re< )

277;\/7 1+t
_ Een(t) cos(9 —m/8) + tsin(I — n/8)’t cR
21 1+ t?
Since 9 €R is arbitrary, we conclude that there are two linearly independent solutions forp,
correspondingto ¥ = m/8and ¥ = 5m/8, respectively:
V2 1 V2 1

= — ﬂ(t) A —_—
o(t) 21 +tze and'g(t) 21 + t2

the solution to the problem (8)—(9) corresponding to 9 = z/8 and as above is therefore given
by

el

0
o V2 1 .
F(Z) — ellz+l7't/8 _ E j T en(t)etAZ—Larctan tdt,Re z > 0’ Imz >0 (21)
0
V2 1
F(z) = %e"“) f me"@emda Rez < 0,Imz > 0. (22)

By (106), we have ¢ € L*(R), and so F is bounded and continuous. Furthermore, it can be
easily verified that the solution corresponding to 9 = 5m/8 and ~ is given by F' (z)/A. Since
o decays at infinity as|t|~'/2, it follows that F’ (z) has a singularity of order|z|~1/? at zero
and it is not bounded near 0. For that reason, in what follows we only study the solution
F(z) given by (21) and (22).

Since e~farctant — (1 — jt)/\/1+ t2 and e"®) = e71OY1 + 241 + 12 (see (104)), we
can rewrite (21) as

F(Z) — et/12+19—n/8 _ Qf T+it
2w ) 1+ t?

0
Therefore, we have proved the following theorem.

Theorem (2.1.2)[49]: The bounded solution of (1)—(3) for D = (0, o) isgivenby u(x,y) =
e sin (Ax - g)

e"®e=tA2dt, Rez > 0,Imz > 0 (23)

V2 r cos(tAiy) — t sin(tiy) 1 r log(i+s)
- _ _IdN 7 tAzx 24
21 1+ t2 exp nf 1+ s2 ds |e”at, (24)
0 0
Forx = 0andy > 0, and

(o] [o0]

\/EJ t sin(tdy) lj‘ log(i + s)

= — tAzx
u(x,y) o 1T 2 ds |e**#*dt, (25)

ex
1+ t2 p T
0 0

Forx < 0Oandy > 0.
We stated below, follows from Theorem (2.1.2) and a partial converse to Proposition (2.1.1).
Theorem (2.1.3)[49]: Let D = (0, ). ForA > 0, the function (see Figure (1) [49])

Y, (x) sin (Ax + g) —nx),x >0, (26)
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Figure (1)[49]: (a) Graph of y; and (b) graph of the remainder term r(x) = sin (x + g) -
Y, (x).wherer

\/—OO t 1ool0g(i+s)
m@)_rQﬂ__j1+t2xp _Ej 1+ s2
0 0
is the eigenfunction of the semigroup (P?) acting on C(D) corresponding to eigenvalue /.
Proof. With the notation of Theorem (2.1.2), we havey, (x) = u(x, 0); we extend i, to be

0 on (—oo, 0]. since u is harmonic and bounded in the upper half-plane, we haveP,,(x) =
u(x,y)(y > 0,x € R). Since u satisfies (2), for allx >0, (1/y) (wa,b;l(x) —

ds |e~*dt (27)

wl(x))converges to —y,(x) as yNO. We will now prove (formula (33)) that this

convergence is dominated by an appropriate function.
Below we assume that A > 0,x > 0 and0 < y < 1/A. By formula (24), we have
P (x) — e, (x) B V2 [ cos(tiy) — sin(tdy) —e Mt

= — —N(t) p—tAx ¢ 28
y 21 (1+t2)y ¢ € , (28)

0
since |1 — cosz| < z%/2,|z—sinz| < z3/3 |1 —z—e % <z*/2and 1, < 1, we have

|t cos(tAy) — sin(tdy) — e ™Pt| < A%t ( +1 ;y + )y < A%t(1 + t?)y?2.
Using also e 1 < e€/m(1 4 ¢2)~1/* and then(1 + t2) > t?, , we obtain
1/Ay

f cos(tAy) — sin(tly) — e Mt

(1+t2)y
1/dy 1/dy

t(1+t?
e e s ey [ Vet 29)

e MO e~tAxge

0
< ef/m) 2y

In Furthermore,
1//1}’ o

r'3/4)
—tAx 3/4 1/4 —tAx
j Vte ™ dt < (Ay)~ j t dt < ————— TEMEL

In a similar manner by usmg|cos(t/’ly) —sin(tdy) —e™Mt| <t +tly + ¢t <3¢, we
obtain

(30)
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j‘o cos(tly) — sin(tiy) — e Mt

eﬂﬂﬂe—mxda
(1+t*)y

1/Ay

< Sec/n —t/lxdt

f 1+ t2)5/4

1/ ly
3eC/TL'

y

< t=3/2e~t0x g, (31)

1/Ay
and

oo oo

1/Ay
Formulas (28)—(32) yield, after S|mpI|f|cat|on that

BYa0) — e (| _ 2V2e T 3/HA 2y )y
y nx3/4 x3/4
With some constantc; (1)
We are now going to replace P, by PyDin (33). It is proved (using only the definition (26)
and (27) ofy,) that |1, (x)| = [, (Ax)| < 2v/Ax; see (53). This and (101), for 0 < y < «x,
yield that

Ir(3/4)(Ay)>/*
(1x)3/4

(32)

(33)

Py (x) — ey (x) Py (z —x) — P/ (x,2)
ihe : j ()| dz
y ; y
2 1 8vVay(3
< 22 i (3 2 ) aas - BREE D)
T J, x2'x27’ 72x 3mx x3/2
8\/_y
—cy7: (34)
When 0 < x < y, in a similar manner (35)
P, PP 2 1 1 16V 16Vayl/*
yWa(x) — By (x) \/_f mm = 2) Jrdz = < 3}’4 (35)
y 3wy ~  mx?/
Finally, by (33)—(35), there is a constant c, (/1) such that
PPy (x) — e M1y (x) y/?
y 5 < c,(4) NEYr (36)

For any fixed x > 0 andt > 0, the one-sided derivative of eAyPyDl,DA(x) with respect to t
equals
e NIPL i (x) — e PP, (x)
y
PP, (z) — e (2)
y dz

d
([ ,AypD — i
o (™ PPy (x)) lim

(0]

= lim eA(t*+Y) j PY (x,z)

0
yNO
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Since P (x,z) < 1/t, by (36) we have

oo (ee]

PP;(z) — e M1;(2) ¢ (Dy**
f PP (x,z) = 5 dz| < f 123—/4PyD (x,2)dz
0 0
0 1
1/4 D 1 1 4 1/4
<c,(Dy f Py (x,z)dz +?JZ3TCIZ < (1 +?) c,(D)y
1 0

The right-hand side tends to zero as y\ 0, that
d
E(elyPyDllia(x)) =0

Forall t > 0 andx > 0. By (36) (with both sides multiplied bye??), this also holds fort =
0.
Finally, the function e’“PyDt/),l(x) is continuous with respect to t for each x > 0 (this follows
from the weak continuity of PyD (x, z)dz with respect to t, which is a consequence of the
stochastic continuity of the killed Cauchy process; one can also prove this using the explicit
formula for p; and (101)). It follows thate’lthDl,[)A(x) Is constant in t > 0, and since
PPy, (x) = 1, (x),this completes the proof.

We study the properties of the function B. As an interesting corollary, the Laplace
transform of the eigenfunctions y;is computed.

The function B defined by (19) extends to a holomorphic function on C\ (—oo, 0],
satisfying B(Z) = B(z). Therefore B is defined on whole €, it is holomorphic in €\ (—oo, 0]
with a branch cut on (—oo, 0], and it is continuous on C... The following properties of B will
play an important role.

When Im z > 0, we have
0 0

B(2) + B(—z) = % j log(z — s) p 1 J log(—z — s) ds

1+sz 7% 1+ s2
0 0 00
1 [ log(z + s) 1 (log(z+s)—imr 1 (log(z—-s) i
- [ s | - [ e
T 1+ s? T 1+ 52 s 1+ s? 2

0 —o00 —0
On the right-hand side, the functions — log(z —s), holomorphic (and therefore
harmonic) inC_, is integrated against the Poisson kernel of the lower half-plane p,(s) =

(1/m)(1/1 + s?). The result is the value of log(z — s) ats = —i. It follows that

T
B(z) + B(—z) = log(z — (—i)) -5 = log(1 —iz).
By B(z) = B(z) we get B(z)B(—z) = = log(1+iz) whenever Imz <0, and so
eB® = (1—izo(z))e 52 (37)
where g(z) = 1 when Im z > 0and o(z) = —1 whenIm z < 0. A similar relation for

was used earlier in (23), see also (104). By continuity of B(z) in C, the formula (37) is also
valid forz € Rifweleto(z) =1 forz < 0and g(z) = —1 for z > 0. For completeness,
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we leta (0) = 0 By (21), (27), the relation between F, 1, and r;, and using B(t) = n(t) +
larctan

(0]

V2
r(x) = Ej. (t)e ™ dt Where 7(t) = Im
0
Note that by the definition, 7(t) = 0 for t< 0. In what follows, we need the Hilbert transform
of 7, which can be computed. The function e2® /(1 + z2) is Meromorphic in the upper
half-plane with a simple pole at i, so that the function
eB(Z) 1 eB(t) 1 em

1+2z2 21+4iz 21+iz
Is holomorphic inC,. In fact it is in HP (C,) forp € (1, o0); see (109). Its boundary limit on

R is equal to

eBO 1 eB® 1 ¢BO  oBO _ 2 cos(n/8) — t\/_sm(n/8)

1+t2 21+it 21+t 1+ t2
and the imaginary part of this function is justt(—t). Therefore, the Hilbert transform of
T(—t) is the negative of the real part of the above function. It follows by (6) that, for t €R,

eB(=1) _
o) = Re N _ .2 cos(ln-l/_8t)2+ t\v2 sm(n/8) 39)

We are now able to compute the Laplace transform Ly, 0fy,. By a direct computation, we
have

eB(_t)

1+t2 (38)

[ Ry

1+t?
On the other hand, by Fubini’s theorem and (38),

> 0. (40)

B(z)
j r(x)e ¥ dx = —J ds = —\/—EHT(—LL) t = 0.

t+s 2
By (39) we have
r V2 eB®  cos(m/8) — tsin(m/8)
—tx _ -
jr(x)e dx = > 1+t2+ 1+ 2 t=>0. (41)
0
In particular,
e oos (™) - V2
j r(x)e ™™ = cos (8) 5 (42)
0
Formulas (40) and (41) give
° . JVZ eB®
Ly, (t) = f Y, (0)r(x)e ¥ dx = > 172 t> 0. (43)

0
By scaling and the uniqueness of the holomorphic continuation, we obtain the following
result.
Corollary (2.1.4)[49]: The Laplace transform of 1y, is equal to
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V2 2eBC/D
Ya(z) = j bar(e ™ dx = —-—5——3,  Rez>0, (44)
0
where B(z) is given by (19).
We devoted to a detailed analysis of the remainder term r;; see (27). Recall that

r(x) = rp(x), where
t
logs

2 t 1 o\ omtrg 4
r(x)‘%j(1+t2)5/4exp Ef1+sz s|e et (45)
0 0

since r is the Laplace transform of a positive function, it is completely monotone, that is,
all functions(—1)"r™ are nonnegative and monotonically decreasing (see, for example,
[73]). In most of our estimates we simply use the inequality

t

logs
—CSJ ds <0 fort >0
1+ s?

0
and formula (113). The L*(R) norm of r, however, we have already calculated in (42) as

m V2
j r(x) = cos (5) - = € (0.216,0217). (46)
0
Since 1/(t + s) < 1/2+/ts, by Fubini’s theorem, it follows that
. 2
j( )2<1JJ t t 1dtd<1f t it
" =gz) ) Greo S Grsy it s TS S\ ) Aoy
0 0 0 0
2
re/4
- L))Z < 0.037. (47)
n(r(1/4))
In a similar manner,1/(t + s) > 1 1/(\/1 + 52V1 + t2), so that
2
b —Zc/n e—ZC/TL’
2 —
j r(x)%dx > J o t2)5/4 =5 > 0012 (48)
0
For x > 0, we have
t co
V2 VE logs V2
=— | ——=7; sds |e™¥dt < — | ¢
T =0n) T j 1+s2% ¢ ZI
0 0
In a similar manner,
V2 (n+1)!
(D" (x) < o= o X2 (50)
also,
r(x) <r(0) = sing = 2;5 (51)
and
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dt = (52)

Forx > 0, it follows that

Y, ()] < |sin (x + g) — sing| +|r(x) —r(0)| < x+ flr’(y)ldy <x+ \/;

?.
0
Since clearly |y, (x)| < |sin(x + ©/8)| + |[r(x)| < 2,we have

|1 (x)| < min (x - \/%, 2) < min(2vx, 2). (53)

This property was already used in the proof of Theorem (2.1.3).

We estimate the supremum norm of ;. We have r(x) > 0, so that i, (x) <1 for
all x > 0. Furthermore, since r is monotonically decreasing, the global minimum of ), is its
first local minimum, say ¥, (x,), which is attained at the second zero x, of ¥’ (x) =
cos(x + m/8) —r'(x)(x) > 0). Since -r is decreasing, by (50), we find that x0 is not less
than the second zero ofcos(x + m/8) + (V2/m)x~3; hence x, > 4.31. It follows that

ot

<1 =1 V2 e ” d 1.01; 54
lVallo <1+ 7(x0) = +%jm t <1.0L; (54)
0

For the last inequality, integrate by parts the left-hand side of formula 3.387(7) in [77]. The
estimate (54) is only used in Corollary (2.1.16), where a weaker version of (54) would only
result in a larger constant in (87). In fact, for the present constant 3, we only need that
[Pl < 1.19, which is easily obtained by (49) and x, > 4.

Let D = (0, o). We study the L2(D) properties of the operators P?. For f € C.(D),
define

Mf(x) = j FQOOPR(OdA,x €D, (55)

0
Where Y, = sin(Ax + m/8) — rA(x) is given by (26) and (27). Note that

F, (x) = J F@sin (Ax + g) dA,x €D,

Satisfies ||F; ||, < cqlIf|l,. Also, for

(ee)

F,(x) = j f(r(x)dA,x €D

0

we may apply (49) and (51) to obtain
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[00] (o]

f (F, (x))zdx <

0

\8

[ [ | vreons@ir@uormdudads
0

[
[
e

Which is bounded by c27r||f||2 and so by the Hardy-Hilbert inequality,

IF 112 < comlIf1I2.
It follows that||Tif||, = ||F; — F2ll, < c3lifll,, and therefore I1 can be continuously
extended to a unique bounded linear operator onL? (D).
For f € C.(D), we find that p? (x, y)f (1), (y) is integrable in(y, 1) € D x D, so that by
Theorem (2.1.3),

IA

0\18 0\8
\’80\‘8 OSSO

1+ ,UX)Z(l + Ax2)2 dx | |fIlf(A)|duda

IA

dx | If WIf(Dlduda

0\‘80\8

(1+(#+/1) )?

If(#)llf( )|

dudal,

Il
o

2

(0]

PPIIf(x) = j e (D, (x)dA, x € D. (56)

0
Let £, g € C.(D) and we define f,(1) = e ** £ (1) andg, (1) = e ¥ g(1). From (56) it
follows that p{Tlfy, = IfiandpP Ty, = Iyp4q. Since the operators pf are self-adjoint,
we have

J If (x)g(x)dx
- ] PPIIf 4 (Mg (¥)dx = ] 11, (GOPP g (x)dx = f 1/, ()Tlg; () dx.
By induction, ’ ’ ’

(ee] oo

f 1f (X)Tg (x)dx = f 1 ()T () dx

0 0
Suppose that supf < (0, 4,) and supp g < (4, ). Then we have

f If(x)Mg(x)dx = f (e tf ) ()M (e*t g; ) (x)dx.
0 0
Both e *%tf , and e**tg, tend to zero uniformly ask — oo, and so (e *%tf ;) and

(e k%tf ) converge to zero in L>(D). We conclude that ITf and I1g are orthogonal in

L?(D) .By an approximation argument, this is true for anyf, g € L2(D), provided that f (1)
=0fori=4pand (1) = 0ford < 4.
We define
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(0]

u(4) = j(l’[lA(x))zdx, A < D.

0
Clearly

1(4) < csll14ll5 = c3lAl, A < D.
Whenever A <€ (0,4,)and B < (A, ), we have
0o 2 00 2 00

u(AUB) = [ (M14(x)) dx + [ (M1p(x)) dx + 2 [ M1,(x)1p(x)dx = u(A4) +
1 (B).
Finally, when A = UyZ,; A,, where A; € A, € ---and |A| < oo, the sequence 1, converges
in L?(D) to 1,as n — oo. Hence IT11, converges to 111, inL*(D), and so u(A) =
lim u(4,).
n—oo
It follows that x is an absolutely continuous measure on (0, «). By an approximation
argument, we have

(0]

| nreongeadx [ rig@m@n

0 0

For anyf, g € L*>(D).

Note that ¥, (gx) = ¥, ,4(x), and therefore I1f, (x) = qllf(gx), wheref, (x) = f(x/q). It
follows that u(qA) = qu(A)and so u must be a multiple of the Lebesgue measure on (0, «),
say u(A) = c,|A|.This result is a version of Plancherel’s theorem, where the Fourier
transform is replaced by II:

[ nreng@ax [ rag@an

Forany f,g € L*(D).
The constant c, can be determined by considering (1) = (1/\/q)1[1,1+q] (1), where g >

0.
We then have||f]|, = 1. On the other hand,

wJa

The L?(D) norm of the first summand converges to /m/2 as g\ 0, just as in the case of the
Fourier sine transform. The second summand is bounded by ./qr(x) and so it converges to

zero inL?(D). It follows thatc, = /2. The Plancherel’s theorem can be therefore written
as

1 T T 1 o
If(x) =—=-= (cos (x + §) — cos ((1 +q)x + §>> — ﬁ j r(Ax)dA.

e}

[ nreongeodx [ rrg@aa (57)
0 0

In particular, /7 /2 I1 is an isometry onL?(D). Sincey, (x) = ¥, (1) , for f,g € C.(D) and
therefore for any f, g € L?(D)) we also have
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(0]

| nreg@ax | romg@a

0 0
Which combined with (57) yields that I1?f = (r/2)f. we collect the above results in the
following theorem.
Theorem (2.1.5)[49]: The operator /rr /2 I1: L?*(D) — L?(D) gives a spectral representation
of A, and the semi group (PP), acting onL?(D), where D = (0, »); that is, for any f €
L?(D), we have the following:

@ |fll, = m/2|[TIf]|,f (Plancherel’s theorem);
(b) IPP £ (1) = e MIIf (2);
(c) f isinthe domain of A if and only if AIlf(A) is square integrable;
(d) MeAp f (1) = —AILf (D).
Furthermore, 1?2 = (1r/2)1d (inversion formula).

The aim is to compute an explicit formula of the transition density PP (x,y) of the
Cauchy process killed on exiting a half-line D = (0, o), or the heat kernel forA,. Let
us note that the transition density of the Brownian motion killed on exiting a half-line (0,
o) equals

Le—lx—ylz/Zt _ e—lx+yl?/2t
V2mt V2mt

Which follows from the reflection principle. For the Cauchy process we cannot

Use the reflection principle and the computation of P? (x,y) requires using much more
complicated methods.

Theorem (2.1.6)[49]: For D = (0, «) and anyg € L?(D), with p€ [1, «], we have

PPo) = [ PP gddy, tx >0, (58)
Where ’
) L , tremor ()
PP (x,y) = T =) —EO STxE =5y ds, t,x,y >0, (59)
and
f(s)=%1_fszexp %jbf(j_—;:v)dw, , s>0. (60)

0
Fors > 0, note that f is positive continuous and bounded. This follows by the fact that
f(s) = (1/m)(s/1 + s?)eM(s)and (105). The function PP (x,y) can be effectively
computed by numerical integration. Indeed, by the same arguments we have
1 Sl—arctan/n i
f(s) = 7 (11 52)37% &P (E (Li2 (is) — Liz(_is))>;
Where L, is the dilogarithm function.
Proof. For g € C.(D) we have IIP? g(1) = e *T1g (1) (see (55) and Theorem (2.1.5)).
Applying IT"1 = (2 /)11 to both sides of this identity yields
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2 oo 2 oo o
PPo@) =~ [ e g =1 [ | e Mg o )90 dyd

T
0 O

0
By the Fubini’s theorem, (58) holds with

2
PPCoy) == [ 9aCa e da (61)
0

By an approximation argument, (58) holds for g € LP(R) with any p € [1, co]. we will
now prove (59).

Suppose first thatx < y, and lett = t; + t, > 0, witht;, t, > 0. By Plancherel’s theorem
and identitiesy, (x) = ¥, (1), and Ly, (z) = Ly, (Z) we have

PRCy) =5 [ (be@e™ ) (y (e ~)d2
0
tq+ioco

—_ 1 [ 1 ] = 1
- [+ -as = [ RO (62)
— o0 tl—ioo
Where (see (43))

2 1 xyexp(B(z/x) + B((t —2)/y)
R@) =~ L () Lihy (6 —2) = - (x§+zz) e p— )

Note that R is defined on C and it is meromorphic in C\ ((—oo,0] U [t, o)) with
simple poles at +ix andt +iy. Let z€ C\ [0,t]. By (37) and the identity(1 +
izo(z))(1 — iza(z)) = 1+ (zo(2))? =1+ z?, for allz € C, we have
R@) = 1 (1-i(z/x)a(z/x)) (1 —i((t=z/y)o (t - Z)/y)) exp(—B(=z/x) = B(— (t — 2)/y))

T xy(1+2z%2/x2)(1 + (t —2)?/y?)

_1 exp(=B(-z/x) — B(= (t — 2)/y))
Txy(1+ i(z/x)0(z/x)) (1 + i(t = 2)/yo((t - 2)/))

Sincea((t —2z)/y) = —a(z/x) forz € C\ [0, t], it follows that, for z € C\ [0, t],
exp(—B(—z/x) — B(=(t — 2)y)) z/x

nxy(z/x+ (t —2)/y) (1 +i(z/x)o(z/x)

N (t—2z)/y )

1+i(t—2)/yo((t—2)/y))
We therefore have R(z) = R,(2) + R,(z)for z C \ [0, t], where, again using (37), we
obtain

R(z) =

B exp(—B(— z/x) — B(—(t — Z)y)) z/x
Ri(2) = wxy(z/x + (t — 2) /) "1+ i(z/x)0(z/%) (63)
and
B exp(—B(z/x) — B(—(t — z)y)) zZ/x
Ri(z) = nxy(z/x + (t —z)/y) “14z%2/x? (64)

Also, in a similar manner,
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exp(-B(=z/x) + B(=(t— 2)y)) (t—2)/y

Ro(2) = nxy(z/x + (t — z)/y) 1+ (- 2)2/y* (©°)
and
R,(2)
_exp(B(z/x)+ B(=(t = 2)y)) _ (t=2) /y ! (66)

nxy(z/x + (t —z)/y) 1+ (t—2)2%/y? 1 —i(z/x)o(z/x)
The only zero of §+t_TZisz = xthy < 0. Hence R,(z) is holomorphic in the set

{Rez > 0} [0, t](by (63)), bounded in the neighbourhood of [0, t], and it decays as |z| 2
at infinity (by (110)). Also, R, (z) is meromorphic in the set {Re z < t} [0, t] (by (65))

with a simple pole at ;Txy bounded near[0, t], and it decays as |z| 2 at infinity.
Forn = 1,2,..., lety be the positively oriented contour consisting of the following
(i) Two vertical segments y; = [tl ni, t; ——] and ys = [tl +— t; + m]

(i) two horizontal segments y, = [tl — —, ——] and y, = [ Jt + ]
(iii) two semicircles y; = {Izl —,Re z < 0} and ye = {|z—t;| = n,Rez < t,}.
Clearly, f Rz(z)dz —>f Rz(z) Converges to f 1“ _ Ry(2)dz as n — . The

2 UY.
integrals over y3 and y, converge to zero by the propertles of R,. Finally, by (66),

exp (B(s/x) + B((t= 9)y))  (t—5) /y
wxy(s/x+ (= )/y) 1+ (E—9)2/y?

j RZ(Z)dZ%JRZ(Z) =

Y2UYs

x( 1 1 )d jZﬂlf(S/x)f((t—S)/y) s
1—i(s/x) 1—i(s/x) xy(s/x+ (t—s)/y)

Therefore, by the residue theorem,

O [ S5/
2mi f R (2)dz = _0 xy(s/x + (t —s)/y)

tl—ioo
In a similar manner, using (64) and analogous contours y consisting of two segments of
the line Re z = t;, two segments parallel to [¢,, t], and two semi-circles centered at t (the
small one) and t, (the large one), both contained in {Re z > t,}, we obtain that 1

e F/OfE =)

1
e f R@dz== | Seixrc—om™

2mi
tl—iOO 1

Therefore, (62), (67) and (68) yield that
D f (s/x)f((t—5)/y) tx
Pr(xy) = xy(s/x+(t—s)/y)ds+Res (Rz'x—y)'

Forz = tx/(x — y) we have z/x = t/(x —y) = —(t — z)/y. Therefore, by (65)
we get

ds +R (R tx) 67
S es 23 =y)" (67)

(68)
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tx 1 —t/(x —y) 1 t

x—y) Taly—x)1+t2/(x—y)2 wt2+ (x—y)?

and (59) follows for x <.

When x >y, simply note that PP (x,y) = PP (y, x) (see (61) or, for example, [64]), and
that the right-hand side of (59) has the same symmetry property (this follows by a
substitutions = t — v). Finally, for x = y simply use the continuity of P? (x,y) and f.
For the next result, we need the following simple observation, similar to the derivation
of (39). By (37) we have Im e 5% = —(s/(1 + §2))eP® for s > 0. Hence the
function f defined by (60) satisfies

S 1 s 1
Fls) ==

Tl+s2° e T1+s2° e’ =m—E1me‘B(‘S), s =0

If we extend f by f(s) = 0 for s <0, then f(—s) = (1/m)Im e~5®) for all real s. Since
e B@isin H?(C,) forp € (2, ) (see (109)), the Hilbert transform off is given by (see
(6))

Res (Rz,

1 1
Hf(s) = — ERe e B(=s) = Ee‘"(‘s),s € R.
It follows that
1 s 1 1
Hf(_s)_;1+s2%' s> 0, and Hf(O)—; . (69)

The following result has been previously obtained with different methods by Darling
[67];see also [53].
Theorem (2.1.7)[49]: (Darling [67]). For D = (0, o), we have

1 s 1 oolog(t/x+w)
Px(TDEdt)=51+szexp EJ 1+ w?
0

Using the function f defined in (60), we have P.(tp € dt) = (1/t)f(t/x)dt.
Proof: By Theorem (2.1.6) we have

dw | dt (70)

oo

Pu(tp > 1) = j P2 (x,y)dy
0

1 ¢ LG/ - 5)/Y)
Eof e fxy G/a+ =5y e (71)
By a substitution w = (t - s)/y we obtain
fG/X)f((t—5)/y) dy (S/ x) fw)
(s/x+({t—5)/y) w(s/x+w)
(S/X) f(W) fw)
f B f s/x+w dw

The right-hand side equals (n/s)f(s/x)( Hf(0) +0Hf(—s/x)). this, (69) and (71)
give
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(0]

P(tp > t) = 1J ‘ f(s/x) +_fL

t2 + (x — y)2 x? + 52
0
By substitution of v = x — yinthe flrst integral and v = xt/s inthe third one, we obtain
X [ee) t
1 f(S/x) t f(s/x)
Px(TD>t)_Eft2+v2 +7fo2+v2ds_1_ . ds

— 00 X

The result follows by dlfferentlatlon and (60).

Theorem (2.1.7) can be stated in terms of the two-dimensional Brownian motion;
namely, we obtain the distribution of some local time of the two-dimensional Brownian
motion at some entrance time. For the one-dimensional Brownian motion similar results
were widely studied and are usually called Ray—Knight theorems [56], [60], [61], [79]
[80], [88], [90].

Corollary (2.1.8)[49]: Let B, = (Bt(l),Bt(Z)) be the two-dimensional Brownian motion

and let
t
1
— 1 _ (2)
L(t) = gll,%l+ Zst( £, ¢€) (Bt )ds

0
Be the local time of B.on the line (—oo,00) X {0}. Let A = (—o0,0] X {0} and letT, =
inf {t > 0: B(t) € A}be the first entrance time for A. Then, for any x > 0, we have

1 X 1oolog(t/x+s)
0

dt

For (x,y) € R%,y # 0andt > 0 we have
0

0
1 |yl 1 |yl
PEY)(L(T =_j —f PEO(L(T,) <t).
(LT <0 T 2+(x—u)2du+7r y? + (x —u)? (LT =)

Proof: Letn, = inf{s > 0: L(s) > t} be the inverse of the local time L(t). It is well
known (see, for example, [94]) that the one-dimensional Cauchy process can be
identified withB (1) (nt). With this relation, we haveL(T,) = 7(0, o), where 7(0, ) =
inf{t=0:X, & (0,0)}.

This and Theorem (2.1.7) give the first equality. The second equality follows by the
harmonicity of (x,y) = P (x,y)(L(T,) t)in {(x,y) € R? : y > 0}and in {(x,y) €

R? : y < 0}.
Theinterval D = (—1,1) is studied. Let n be a positive integer andu,, = nm/2 — /8.
Our goal is to show that p,, is close to,,, the nth eigenvalue of the semigroup (P?).

Let g be the function equal to 0 on (oo, g) andto 1 on (§» o), defined by (115). We

construct approximations to eigenfunctions of (P?) by combining the eigenfunctions
Y, (1 +x)andy, (1 — x) forhalf-line. For a symmetric eigenfunction, when n is odd,

let

Pn(x) = (=), (1 + x) = q()P,, (1 = x).
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= (=172 cos(unx) 1p(x) — q(=2)1, (1 + %) — ()7, (1= x)  (72)
For an antisymmetric eigenfunction, when n is even, we define
an(x) = q(_x)l/)/,tn(]- + X) - q(x)d)un(l - X)

= (=) D2 sin(upx) 1p(x) — q(=20)1, (1 + %) — ()7, (1= x)  (73)
Lemma (2.1.9)[49]: With the above definitions,

A+ 6l < 121+8.00+13.66 1 24
pPn UnPnll2 . [y, ,LLZTL ..un. ( )

Proof: Note that we have
Gn(x) =Y, 1+x) =1 —-q(=0)¢, (1 +x) = (=D"q(x),, (1 —x)
= —q(0) (Y, G + 1) + (=)™, (1 — 1))
= q(x) (Y, O + 1) + (D™, (1 - 1))
— sin (un (1 +2) + g) 10 ()

Define h(x) = sin (u, (1 +x) + 7/8)(1)[1,00)(x) and f(x) =7, (1 + x)+(—=1)"r, (1 -
X), g(x) = q(x)f (x). by (49), (50) and (46), we have

2y, 4u, 452
M, = su | (x)lSr(—)+r( )g :
0 xe(—1/§,1/3) f 3 3 32muz 5
21, A\ 2432
M, = su "x)| < — r’(—)— r’( )S
! xe(—1/§,1/3)|f @l Hn 3 Hn 3 647\1/@
24k, 4\ 4131
M — 12 < 2 12 ( ) + 2.1 ( )
2 sup "GOl = par” (57 ) Huar (5 oE 67wn

x€(—=1/3,1/3)

%) 1

1=()j|f(x)|dx<J (1+x)dx+fr (1—x)dx——jr(y)dy

0
_ m V2
= | cos 8 2 .Un
The notation here corresponds. By (116) and (117),

0.605 0.156 1
Apg(2)] < ——+ (-1-3); (75)
n n 3
4444 0.622 1
|Apg(2)| <——+ , ZE€ (——,O). (76)
i n 3
Furthermore, |g(z)| = 0 for z € ( 1, ——) and
0.317 1
lung (2)| <7M0+ . ,Z € (—5,0). (77)

Finally, for z < 0 we have
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(0]

j‘ sin(u,(1+ x) +m/8)

1
|(~8)"2h(z)| = —

(x — z)?
147/ ln
B 1 j sin(u,(1+ x) + m/8) dy = 1
(1 —2)2 (x — 2)2 x= mu, (1 —z)?%’
1
So that
A\1/2 0.180 B _1 .
|(=8)*%h(2)| < z€(-1,-3); (78)
0319 '
|(=0)*2h(z)| < ——,z € (——,0>. (79)
Hn 3

Since, for z € (—1,0), we have

|Ap@n(2) + 1 Pn(2)| < [(=D)2R(2)| + |(=8)"?g(2)| + lng (2)]
The estimates (75)—(79) yield that

i : 0.605 1.258 1

Ao () + nfn (@] < = + ==, z€ (~1,-3); (80)

4444 0622 1
e(-Lo)

|‘-’4D¢)n(z) + .un(pn(z)l < 2 + —=,0 (81)
Hn n 3

By symmetry, estimates similar to (80) and (81) hold forz € (0,1). The estimate (74)
follows.
The estimate of the L?(D) norm of @,, plays an important role in what follows. We

have
0.52 _ 1.37
1- < @ullz = |1+ : (82)
HUn HUn

indeed, the lower bound follows by (46), (72), (73) and symmetry:

1

@5 = f (sin (un(x +1)+ g))Z n

-1
1

—4 f |q(—x)run(1 + x) sin (,un(x + 1)+ g)| dx

-1

(1 Y2\ _ A T V2
= " COS8 5

In a similar manner, using also (47),

@15 < <1 + 4£> — i(cos% — ?) + 4 f (T(#n(l + X)))Z dx

n ﬂn
< <1 + £> — i <cosE — \/—E> + 4(F(3/4)2 .
4 Hn 3 2 7'[(1_'(1/4)) Un

We continue denoting by ¢; the eigenfunctions of (PP), by A; (A; > 0) the
corresponding eigenvalues, and by @,, and u,, the approximations of the previous. Fix
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n > 1. Since @, € L*(D), we have @, =Y ;a;¢; for somea;. Moreover, ||@,|l5 =
Z] a]-z and CAD(ﬁn = —2] a]<p]
Let Axcny be the eigenvalue nearest tou,. Then

I fn — @l = ) (3= )]
]:

2\ % 2. .
2 (i =) )} 2 (Ray = ) 120l
]:
By (74) and (82), it follows that
1214 8.00/u, +13.66/u2 1
| ey — ] <

1-0.52/p, Hn (83)

The right-hand side is a decreasing function of n, so that |,y — uy| < 0.0987 <

/10 whenever n >4. Hence we have the following result.

Lemma (2.1.10)[49]: Each interval (nm/2 — m/4,nm/2), with n > 4, contains an

eigenvalue Ak(n)-
In particular A, are distinct for n= 4. We will now prove that there are only three

eigenvalues not included in the above lemma. Fort > 0, we have (see, for example, [52],

[82])
fzj _ coj(x)) thD (x,x)dx < th(o) dx =%_

D D
On the other hand,

00 00 =27t
z e Mmt > z e—(nm/2)t — e— > 1 _Z

For smallt > 0. It follows that there are at most three eigenvalues of (PP) other than
Akny(4). Furthermore, we have 1 < 4; <3m/8,2 <4, < m and 3.4> 13 3m/2 by
[50]. Therefore, k(n) = n for n> 4, and also by (83), we see that 1;> 3.83. We have
thus proved the following theorem.

Theorem (2.1.11)[49]: We have

T 3w
— 2<1A,<mM383<A4;<—,

1< < <
1= g 2
and
nr T T[<A <TlT[ T[ VIA ( >4)
2 8 10 2 gt =%

In particular, all eigenvalues of (PP) are simple, |1, —A1,,] > 0.69 when n #
mand|A,, — 4,,| > 3w /10 if, moreover,n > 4. Furthermore, asn — oo,

=" 0(2) a4
n — 2 8 n * ( )
More precisely,
1
- (5 -2 <=, n=1, (85)
n 2 8 n

That is, the constant in O(1/n) notation in (84) is not greater than 1. Indeed, by (83),
formula (85) holds for n > 7, and for n < 6 one can use the estimates (88). Without
referring to numerical calculation of upper and lower bounds, one can use (83) forn > 4
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and estimatesof 4,,4, and A, of Theorem (2.1.11) to obtain (85) with 1/n replaced
by 3/2n.

The approximations @,, to the eigenfunctions ¢,, were constructed and it was proved
that u,, = n/2 — m/8is close to A,,. Now we show that @,, is close to ¢,, in L?(D).
Let n = 4 be fixed. Recall that @, = X ;-; a;@;; with no loss of generality we may

assume thata,, > 0. For j # n we have |u, — 4;| = 37/10. Therefore,

- - « 2 92
”CAD(pn_.un(pn”% :2_ (.un_lj) (,un — A ) an""r'o aZ
J=1 j#n
We denote the left-hand side byM?2; the upper bound for M,, is given in (74). We have

© 100M2
~ ~ 2 _ 2 n
”(pn - anq)nllz - § jen a; = o2

Therefore,
20M,,

3

”(ﬁn - “@n”Z(pn”Z < ”an - an(pnllz + (”@nllz - an) < le(ﬁn - anq)nllz <

This, together with (82), yields the following result.

Lemma (2.1.12)[49]: Let n > 4. With the notation of the previous, we have

1 =222 < [|§,l13 < 1+, and

20 8.00 13.66 1
IPn — annllz < o~ |121+ —+ ——.—.

31 Hn  Hi  HUn
In particular, forn > 4 by the above result and (82),
20 M, 20 ™ 2
” - (pn S P < . ==
@nll2 3m./1-052/y, 3m 10 3

Since @,, is symmetric or antlsymmetric when n is odd or even, respectively, we have
the alternating type of symmetry of ¢,,.

Corollary (2.1.13)[49]: The function ¢,,is symmetric when n is odd, and antisymmetric
when n is even.

Proof: Forn < 3 thisis a result of [50]. Whenn > 4, we find that ¢,,is either symmetric
or antisymmetric, and the distance between ¢,, and the normed @,, does not exceed 2 3.
Therefore ¢, has the same type of symmetry as @,,.

Corollary (2.1.14)[49]: Asn — oo,

(pn—sin((nz—n—z)(1+x)+8> =0(\/%>.

By a rather standard argument, ||, |l < +/eA,/m; see, for example, [83]. A slight
modification gives the following result.
Proposition (2.1.15)[49]: Let ¢ = ||@,]l,. Then

1 ’e/ln 5
||<pn||oo = E 7 ”C(pn - <Pn||2 + ”djun”oo . (86)

Proof: Let t = 1/24,,. Using the Cauchy—Schwarz inequality, Plancherel theorem and
inequality PP (x,y) < p.(x — y), we obtain
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clpn ()] < e PP (cpn = §n) ()], + e’ PP G, ()]

<o j Pex = y)2dy Nlcon — Fall + Vel Galle

oo

e
— E f e~2tlzldz, ”CQDTL - (,anZ + \/Enlp.url”oo

e ~
= ’2_7'[1' “C(Pn - (anZ + \/E”lljﬂnl

and the proposition follows.
Corollary (2.1.16)[49]: The functions ¢,, (x) are uniformly bounded inn>1and x € D.
More precisely, forn > 1, we have

)
oo

lonlle < 3. (87)
Indeed, for n > 6, this follows from (86) when the right-hand side is estimated using

Theorem (2.1.11), Lemma (2.1.12) and (54). For < it is a consequence of
o]l < +ed,/m and A, < nm/2.

We give numerical estimates for the eigenvalues A,, of the semigroup (P?) whenD =
(—1,1). The following estimates hold true; the upper bounds are given in the superscript
and the lower bounds in the subscript:

A, = 1.157773883697323 , g = 9.032852690353538,
A, = 2.754754742218%3, A, = 10.60229309963%23,
A3 = 4.316801066593%38, Ag = 12.17411826275132,
Ay = 5.892147470932°%, Ao = 13.74410905944392,
As = 7.46017573933323, Ao = 15.31555499605382. (88)
This is the result of numerical computation of the eigenvalues of 900 x 900 matrices
using Mathematica 6.01. Different methods are used for the upper and lower bounds, as
is described below. For the Green operator and the Green function, see [55]. The explicit
formula for the Green function of the interval was first obtained by Riesz [91].

For the upper bounds, we use the Rayleigh—Ritz method, see [96]. Let G, be the Green
operator forP?. ThenGpe, = (1/1,)¢,. The following min-max variational
characterization of eigenvalues of G, is well known; see, for example, [89]:

= —Max{rjpeigl R(f): E is n — dimensional subspace of L? (D)} (89)

A
Where R(f) is the Rayleigh quotient for G, given by
J1 F()Gpf (x)dx
R(f) = =—————
I£113

Letf,, where n = 1,2,..., be a complete orthonormal system in L?(D) and let E be the
subspace spanned by f,,, where n = 1,2,..., N. By replacing L?>(D) by Ey in (89), we
clearly obtain the upper bound A;, 5 for 1,,, with n = 1,2,...,N. On the other hand,

(A%) " is the nth largest eigenvalue of the N x N matrix Ay of the coefficients a,,
of the operator G, in the basis (f3, f>, .... fy) (note that a,, ,, do not depend on N).
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The main difficulty is to find a convenient basis f,, for which the Approximations
converge sufficiently fast, while the entries of A, can be Computed explicitly.
For the sake of comparison, recall that analytical computation in [50] gives the upper
bound 37/8 = 1.178. Our first attempt to use the Rayleigh—Ritz method for Apinstead of
Gp, with f,(x) = sin((nm/2)(x + 1)), resulted in relatively poor estimates. For
example, for N = 1000 the upper bound for the first eigenvalue is1;,1000 =~ 1.1579,
accurate up to the third decimal place. A more efficient approach, described below, uses
Legendre polynomials we begin with computation the values of the Green operator of
the interval (—1,1) on the polynomials g, (x) = x™. Recall that the Green function of
the interval D = (—1,1) for theCauchy process is given by
(1-x*)(1-y?)/(x=y)?
j du 1. 1—xy+V1—x2J1—-y2

= —log

) Vuvu+1 @ |x — yl

Wherex,y € D. Integrating by parts gives, after some simplification,

1
1 WPV "1y

GD-gn(y) = f Gp(x, y)gn(x)dx =

GD(X,y) = %

-1 m JVI=x2(x—y)
B 1 1_y2 (xn+1 +yn+1)dx 1 — y yn+1 I( )
T n+1 2 \/ - X (x—y) 7T n+1 y,
Where
I(y) = PVJ
Vl—X(x—w

The indefinite integral is given by
1 1Ix—ywl y?
V1-y? SV —x%(x—y)
and there forel(y) = 0. Consequently, we have
11— y2 g (™t +y™Ddx 11— y? : i ‘ xtdx
T n+l m(x_y) T on+l ZY JVi=2

[/] )
T on+l Z F(]+1)

Finally, form,n = 0,1,2,. such that m + n is even, we get
1

Gm,n = jgm(y)GDgn(y)dy

-1

1
TG+ [ s
+1j=0 ‘J_FQ-+1) f L=y Yy

GDgn(y) ==
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[n/2]
1 Z rG+1/2)T(n+m+1)/2—j)
2(n+1) rG+1) '(n+m)/2+2—j)°
By simple induction, one can prove that in this case
( 1 Tm+1/2) T((n+1)/2)

c _Jm+n+1'F(m/2+1)' a2+ 1) ormmeven (©0)
mn — 1 rm/2+1) T'(n/2+1)
. . for m, n odd.
Lm +n+2T((m+3)/2) T'((n+3)/2)
If m + n is odd, then we obviously haveG,, ,, = 0.
The Legendre polynomials are defined by
[n/2]
fn(x) = z Cn'xn_Zi ’
j=0
Where
(—=1D'(2n — 2i)! (-1D'T2n—-2i—-1)
Cni = n: — Y = n — Y, , (91)
28 (n—0D!'(n—-2i)! 2% Tn—i+1D)!(n—-2i+1)
Form the orthogonal basis inL?(D). Therefore, we have
[n/2] [n/2]
j Fn0)Go a0y = 2 Z i G 92)

With ¢, ; and Gl j given by (90) and (921), respectlvely The upper bound for 4,,isA;; v

where (An,N) is the nth greatest eigenvalue of the N x N matrix Ay = (amn)-

To find the lower bounds to the eigenvalues of the problem (1)—(3) for an interval
D = (—1,1), we apply the Weinstein—Aronszajn method of intermediate problems. We
use the method described in [74], where the sloshing problem is considered.

The analytic function sin(z) = (sin ¢ cosh n, sinhé cosn), where z = & + in,
transforms the semiinfinite strip R = {(¢(,n) € R?: —n/2 <& < m/2,n = 0} onto
the upper half-space H{(x,y) € R? y > 0}. Let u be a solution to the eigenproblem (1)
(3) with D = (—1,1).Then the image v(z) = u(n(z)) of the function u under 5 is a
solution to the followingequivalent problem

Av(Em) = 0,-2§ <21 >0, (93)

—v(f 0) = —Acosév(¢,0), —<€<—,77—0 (94)
T T

(_E'"): (E"’):O' n > 0. (95)

For f € L>(—m/2,m/2) we denote by Af (not to be confused with Af) the normal
derivative of the harmonic function agreeing with f on (—m/2,7/2) and vanishing on
{—m/2,m/2} X [0,00) (this is an analogue of the Dirichlet-Neumann operator). Since
v(&,n) = sin(k(§ + m/2))e *atisfies (93) and (95), the eigenfunctions of A are
simply
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2 T
gk(®) = |~ sin (k (¢+ E)> and Age = kg

We define the operator of multiplication by the function sign &,/1 —cosé
T T
(TF)E) = signéT—cosE f©), f €L*(~5,5)

The problem (93)—(95) can be written in the operator form as

(Af)() =21 =T (). (96)
Let Pybe the orthogonal projection of L?(D) onto a linear subspace E, of L?(D) spanned
by the first N of the linearly dense set of functionsf, f5, ..... Then the eigenvaluesA;, y of
the spectral problem

Af(&) = A1 = TPyT)f (97)

Are lower bounds for the eigenvalues of (96) and consequently to the eigenvaluesA,, of
the problem (93)—(95). Roughly, this is because

/2 /2
f FOOTPYTF (W dx = |PATFCONZ < ITF@IE = j FCOT2f (W)dx,
—-T/2 -1/2

and so the Rayleigh quotient associated with (97) is dominated by the Rayleigh quotient
for (96), namely

/2

J™72 FGOASf (x)dx T FOAf (0 dx

<
" FOA=TPDf()dx  [77 F(x)(1 - T2)f (x)dx
The problem (97) is called the intermediate problem. We shall later choose f,, so that
each Tf,, is a linear combination of g;, the eigenfunctions of A, say
K

Tf, = z ¢i,igi, n=12,..,N, (98)
i=1
where K > N. Let C be the N X K matrix with entries c,, ; and let B be the N x N Gram

matrix of the functionsf;, ..., fy, that is, the matrix with the entries
/2

bun = | G
-1/2

Finally, let D be the K x K diagonal matrix of the first K eigenvalues 1,2,..., K of A.
Note that, for eachj > K, the function g; is the solution of (97) with an eigenvalue A = j
(this is because T, ; = 0). On the other hand, if fis the linear combination of g4, g5, ..., g
with the coefficients o = (a4, ...., ag), then f satisfies (97) if and only if « is the solution
to the K X K relative matrix Eigenvalue problem,

Da =A(I — C"B™10)a (99)
By arranging the eigenvalues of (99) and eigenvalues K+ 1,K + 2,...in the
nondecreasing order, we obtain the sequence of eigenvalues A, y of the intermediate
problem (97). As already noted, these are the lower bounds forA,,. We define

fn(x) = 2v1 + cosx g, (x).
It follows that
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Tfh(x) = 2sinxg,(x) = (=1)"gn_1(x) + (=1 gp41 (%),
Using the convention that g, (x) = 0. Consequently, Cis N X (N + 1) matrix of the form

0 1 0 0 - 0 0 0
/ 1 0 -1 0 - 0 0 0 \
| 0 =1 0 1 - 0 0 0 |

c=| 00 1 0 0 0 0 |
\ 00 0 0 « 0 (-1 0 /

0000 - (DY 0 (-DV*

The coefficients of the Gram matrix B can be easily computed, and we have

( 1)1+(m+n)/232mn
bmn = n((m—-n)? —1)((m+n)? —-1) + 40mn

Whenever m + n is even, and b, ,, = 0 otherwise. Finally, the solutions of the spectral
problem (99) are simply the inverses of the eigenvalues of the matrix D=1(I — CTB~1(C).
These numbers turn out to be less than N + 2, and therefore they form 47, i, wheren =
1,2,...,N + 1.

Let D = (0,0). Let p;(x,A) = P,(X; € A) for A € R, and fix x > 0. By the strong
Markov property,

2P, (X, < 0) = 2P, (X, € D°) = Ex(2p—2p(X(zp), D); Tp < 0).
Since 2ps(y, D) = 1fory < 0ands > 0, it follows that the right-hand side is bounded
below byP,(t, < t). Therefore, for t > 0 andx > 0,
0

2 t 2 X ] t
P(zp <t) < p- Jtz =22 dy =1- Earctan? < min <1;> (100)

Fort > 0,x,y € D = (0, oo) we have (see [50])

pe(y — x)t peCy) %Ex(pt_w(y —X(zD));D < t)

1 ( t—1D )
=—E, 2;TDSL“
s (t—1D)2% + (y —X(TD))

1 1 t
<—P(TD<t)<mln( =) )
Ty? Ty? mxy?

By symmetry, also

Pt(y—x)—p?(x,y)Smin<i t )

t mx?’ wx2y
Sincep;(y — x) < 1/nt we conclude that
- X X, 1 1 1 ¢t t
O<pt(y )~ pt( y)< <mm<—,—,—,—, ) t,x,y > 0. (101)
t T t2 x2"y2 ' x%2y xy?

A function # being the generalized Hilbert transform of -arctan t- is sought. More
precisely, # is the function satisfying n (0) =0 and

n'(t) = —PV f(t S)(l_l_sz)ds,t € R (102)

The integral being the Cauchy prmC|paI value whent < 0. Observe that
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f 1 ds = 1 J(s+t N 1 )d
(t—s)(1+s?) S_1+t2 1+s2 t—s S
1

1
— _ 2y _ —
=172 (t arctans + > log(1 + s%) — log|t sl).

Hence we have

(©) = =5 (5~ logll)
M=\ 7798

and so
t
log(1+t%) 1 [ log|s|
n(t)_T_EJ1+SZdS’tER' (103)
0
In particular,
n(—t) = —n(t) +log/1+t?,t €R. (104)

The integrals of log |s|/(1 + s?) over (0, 0) and over (—oo, 0) are zero (this follows
by asubstitution u = 1/s); and the maximum and minimum of the integral of
log |s|/(1 + s?), equal to the Catalan constant C =~ 0.916 and to -C, respectively, are
attained at -1 and 1. It follows that

11 (1+t2)C< (t)<11 (1+t2)+C teR 105
- - 4 Og T —_— 77 —_— 4 Og n_’ 4 ( )
and in particular,

e~ [|t|as|t| — oo. (106)
On the other hand, by (102),
0
(6 = 1d (log|t—s]| J
1 Cmdt 1+s2 ¥
and fort = 0,
1 [ logls| R C " logs d
og|s ogs ogs —logs ds
— ds = ds = d —=0
7Tf1+s2 S f+f 1+ s2 > J1+S2 S+ 1+ 57252
—o00 0 0 0 0
Therefore,
t
1 (log|t — s|
T](t) = ngdS, t € R (107)
0
A related holomorphic function B plays a major role. It is defined by
0
1 [log(z—s)
B(z) —; fﬁds, z € C. (108)

Here we agree that log(z) = log |z| + in/2 for z € (—0, 0], that is, log (and therefore
also B) is continuous on (—oo, 0] when approached from €., but not from C_. The
function ReB(z) is harmonicin C \ (—oo, 0], continuous in whole C and Re B(t) = n(t)
fort € R. For z € C, we have

0 0
1 [log|lz —s]| 1 [(log(lz| —s)
ReB(z)=E fﬁdSS; fwd5=n(|2|)
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and in a similar manner

ReB(z) = — f—loglz ~Slgs e L fologl_lzl LD
T 1+ s? s 1+ s2 ’
1 C 1 c
Z1og(1 + |z|?) — i Re B(z) < Zlog(l + |z|?) + —,7 € C. (109)
In particular,
|eB@|~[|z| as|z| — oo. (110)

The function ReB’(t) = n’'(t) is the Hilbert transform of (— arctan t—)," and at the
same time Re B(t) is the Hilbert transform of —Im B(t); hence Im B(t) = (arctan t—).
Since Im B(0) = 0 = arctan 0 —, we conclude that/m B’(t) = (arctant—)’.
The following auxiliary computations related to the functions » and B. We have

jn/z—arctansd 1 . (arctan s)?
1T s? s = sarctans — (arctan s)*,
So that.
1fjﬂ/2—arctansd 4 m 111
T 1+s2 %73 (1)
0
By a substitution s = 1/tan t, we have
—00 T[/Z
log(1 + s?) _
f st——Zf log sin t dt.
0 0
We have
/2 /2 /2
2f logsintdt=f logsintdt+f log cost dt
0 0 0
/2
_ mlog 2
=f log sin(2t) dt — >
0
T /2
_1[1 o d mlog2 log sinu d 7 log 2
=7 | logsinudu > = ogsinudu >
0 0
Therefore,
1 oolog(l + s2)
— | —————ds =log?2. 112
nJ 1+ s2 & (112)

0
Whenever a > —1 andb > (1 + a)/2, we have by a substitution 1 + t> = 1/sand a
formula for the beta integral
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t
——dt
j (1+ s2)b
0
1
_ _j(l _ 2)@-1)/2gb~(a+3)/24g

F((a +1)/2)I'(b — (a — 1)/2)

2T ) (113)
Also, by integration by parts and I'(1/2) = v/,
1— etx 0o e—tx

dt=2xj dt = 2\/mx,x > 0. 114

J, =7 o VE ()

Estimates for the generator on a piecewise smooth function the following estimate.
Define an auxiliary piecewise C? function

(0 forx € (—00,—%),
2
| 2bes) el .
1-5(x-3) forxe(03).
\ 1 forxe(%,oo).

Note thatg(x) + g(—x) = 1. Let f be a piecewise C? function on R and let g(x) =

q(x)f (x).
Suppose that g has compact support. We estimate Ag(x) for x € (—1,0).
Choose M,, M; and M, so that [f(x)| < My, |f'(x)| < M, and |f"(x)| < M,forx €

(=33
Let[.”|f(x)|dx.. Then
lg" ()] < Molq" ()| + 2M11q" ()| + Mzlq(x)| < IMg + 6M; + M.
Ifz € (—glé)- , then g(z) = 0, and so Ag(z) is estimated (up to the factor %) by
o 1/3 ©
f_1/3—(lcg£xz))|2dx < M0j1/3(|g( ))lzd +2 fl/glf(x)mx < 3M, +%;
Here we used q(x)/(x —z)* < E for x(—;,g)ln the second inequality. For z €

(— % 0) the principal value integral in the definition of A can be estimated by splitting it
into two parts. By Taylor’s expansion of g, we have sup

o [0 80 ] <2 Spfa oce o- Sr43)

1 1 1 2M,
S§ sup{lg”(x)l:x € (Z—E,Z-l-g).} < 3M, + 2M; +T

For the second inequality note that g'' (x) = Oforx < —é. Furthermore,

dx
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z—1/3 oo

f +f 9 -9

(x — z)?
—00 z+1/3
Z—1/3 [¢%) [ee]
1
<|g9(2)| f + f malx+9 j If (x)| dx < 6M, + 91
— o0 z+1/3 z+1/3

We conclude that

3M, + (9/4)1 1
|Ag(2)] < — n( /% ,zE(—l,g); (116)
3My + 2M; + (2/3)M, + 91 1
|Ag(2)] < —> : n(/) = ,ZE(—?O); (117)

Section (2.2): Fractional Laplace Operator in the Interval

Let D = (—1,1) and a« € (0,2). Below we study the asymptotic behavior of the
eigenvalues of the spectral problem for the one-dimensional fractional Laplace operator in
the interval D:

d2 a/2
<_W) o(x) = dp(x),x € D, (118)

where ¢ € L?(D) is extended to R by 0. It is known that there exists an infinite sequence
of eigenvalues 1,,0 < 1; < 4, < 43 <--, and the corresponding eigenfunctions ¢,,
form a complete orthonormal set in L?(D).

By following carefully the proof, one can take e.g. C = 30000 and C' = 4000 in
Theorem (2.2.3). Note that the constant in the error term 0 (1/n) in (140) tends to zero as «
approaches 2, and in the limiting case a« = 2 (not considered below), we have A, =
(nm/2)? without an error term. Theorem (2.2.3) for « = 1 (with better numerical
constants) was proved in [49]. The proof of Theorem (2.2.3) is modeled after [49], and the
idea can be sketched as follows. In [101], an explicit formula for the solution of the spectral
problem similar to (118) in half-line (0,00) was given: for all A > 0 there is an
eigenfunction Fy(x) such that (—d?/dx?)*/?F,(x) = A%F;(x) for x € (0,), and
Fy(x) = 0forx < 0. Furthermore, F;(x) ~ sin (Ax 4 o ) when A, is large enough.

The fractional Laplace operator (—d?/dx?)*/? is a non-local operator, so the
eigenfunctions in half-line are not restrictions of eigenfunctions in the entire real line. When
A is large enough and x is not too close to 0, then F,(x) behaves nearly as

sin (Ax + (2_8“)” ) which is an eigenfunction of (—=d?/dx?)%/? in R. One may expect a

similar approximate localization phenomenon for the solutions of the spectral problem (118)
in the interval D: locally near —1 and 1, the eigenfunctions ¢,,(x) on the interval D are
expected to be close to the eigenfunctions in half-lines (—1, ) and (—oo, 1) respectively.

In other words, for n large enough, and with u,, = /131/“ , We expect that
CiF, (1 + x) for xcloseto — 1,

on(x) = {CF, (1 + x) for xclosetol, ,

Cs sin(u,x + 6,) forx € D away from the boundary,
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for some constants C,, C,, Cs, 6,,. The above observation is exploited as follows. We define
the function @, (x) to be equal to F, (1 + x) for x close to =1, @, (x) = *F, (1 — x)
for x close to 1 (the sign depends on n), and so that @, (x) is approximately equal to

+cos(u,x) or + sin(u,,x) (again, depending on n) for x € D away from the boundary.
nmwo 2-a)m

Such a construction is possible when y,, = . .

Table (1)[97]:
~ _ a
Comparison of the approximation 4, = ("2—” e 8“)”) (roman font), and numerical

approximations to 4,, obtained using the method of [102] with 5000 x 5000 matrices (slanted
font).

o A 2, s
0.01 0.998 0.997 1.009 1.009 1.014 1.014
0.1 0.981 0.973 1.091 1.092 1.147 1.148
0.2 0.971 0.957 1.195 1.197 1.319 1.320
05 0.991 0.970 1.598 1.601 2.029 2.031

1 1.178 1.158 2.749 2754  4.316 4.320
15 1.611 1.597 5.055 5.059 9.592 9.597
1.8 2.056 2.048 7.500 7501 15795  15.801
1.9 2.248 2.243 8.594 8593 18710  18.718

1.99 2.444 2.442 9.733 9.729 21.820 21.829

Then we are able to prove that Ag,(x) = ujd,(x) forall x € D. This means that @,, is
an approximate eigenfunction. Using L?(D) decomposition of @,, in the orthonormal basis
of (true) eigenfunctions ¢,, we can show that u% must be close to some eigenvalue A;, . This
proves that there is an infinite sequence of eigenvalues satisfying (140). It remains to prove
that there are no other igenfunctions. This is achieved using a trace estimate for the
semigroup generated by (—d?/dx?)%/? on D (with zero exterior condition).

We briefly recall the history of the problem (118) and state it a more formal way. An
auxiliary estimate for the fractional Laplace operator is given. The formula from [101] for
the eigenfunctions F;(x) on the half-line is recalled. An approximation @&, to
eigenfunctions, and Theorem (2.2.3). Further properties of eigenfunctions and eigenvalues
in [49]. Proposition (2.2.6) gives simplicity of the eigenvalues when a« € [1,2). This result
follows relatively easily from the result for « = 1 in [49], and monotonicity in a properties
from [69]. L?(D) and L (D) bounds for the eigenfunctions are given. Numerical estimates
of 4,, in terms of eigenvalues of large dense matrices are obtained.

The spectral problem studied has long history. First-term Weyl-type asymptotic law
for 4,, was proved by Blumenthal and Getoor in 1959 [54]. The best known general estimate

nm [

.1 a nm \% .
for A, is > (7) < A, < (7) due to DeBlassie [69] and Chen and Song [65], also

known in a more general setting. The important case of « = 1 was studied in detail, see
[50], [49]. It is known that (1,,)Y/# is continuous and increasing in & € (0, 2], see [65]-
[70]. For a discussion of related results see [50], [49]. Theorem (2.2.3) is of interest in
physics, the asymptotic formula (140) (without the information about the order of the error
term) was stated, and supported by numerical experiments, in [102].
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The values of C and C' given above are rather large, numerical evidence suggests that
the error term in formula (140) is rather small also for small n in the full range of a €
(0,2),. It is an interesting open problem to prove Theorem (2.2.3) with € and C' non-
exploding as a approaches 0. This is related to simplicity of eigenvalues 4,,, conjectured to
hold for all « € (0,2), proved for « = 1 in [49], and extended to a € [1,2) in
Proposition (2.2.6).

By the results of [49] and [101], as well as by Theorem (2.2.3) above, one can
conjecture asymptotic law similar to (140) for eigenvalues on an interval for more general
operators A = Y(—d?/dx?), studied in [101]. While such a result for each individual
complete Bernstein function @ should present no difficulty (under some reasonable
regularity and growth assumptions on ), it is an interesting (and much more difficult)
problem to obtain estimates uniformalso in i, for a given class of ». One important example

here is the family of Klein—-Gordon square-root operators A = / m2 — d2/dx2 — m,

with mass m ranging from 0 to co. This operator is close to /—d?/dx? for small m, but
when m is large, it more similar to —d?/dx?.

To give a formal statement of the spectral problem (118), first we recall the definition
of the one-dimensional fractional Laplace operator A = (—d?/dx?)%/2. It is defined
pointwise by the principal value integral, if convergent,

Af (x) = ¢, pv j f|,(CX)__y|f1£Z) dy, x €ENR, (119)
where -
2¢r (1 -12_ a) ra+ a) sin%

Ca

ve|r (-7) T
Af (x) is convergent if, for example, f is C, in a neighborhood of x and bounded on R.
Note that
1 1
3 a2 — a) < ¢, < > a2 — a). (120)
Indeed, for the lower bound simply use sin % > % a2—a)and (1+a) > % , and for the

upper bound, we have I' (1 + @) < max(1,) and max(1,@) sin=* <~ a(2 — a). For

f € ¢ (R), the Fourier transform of Af is equal to |¢ | of £(&), and A extends to an
unbounded self-adjoint operator on L*(R). We write Aj, for the operator A on D with zero
exterior condition on R\D. For f € C;° (D), Apf isdefined to be the restriction of Af to D.
Again, the Friedrich’s extension of Ap is an unbounded self-adjoint operator on L?(D),
denoted by the same symbol 4,.
The operator —A is the generator of the one-dimensional symmetric a-stable process

X: , and —Aj, is the generator of X, killed upon leaving the interval D. This probabilistic
interpretation is a primary source of our motivation, but will not be exploited in the sequel.

Throughout, C,C', C" denote generic absolute constants (independent of ), and their
values may be different in each displayed equation. We will track the dependence of other
constants employed below on a to catch their asymptotic behavioras @ v 0 and a 7 2. For
brevity, we denote § = 2 - a.

Define, as in [49], an auxiliary function (see Fig. 1):
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Fig. (1)[97]: Plot of q(x) (dashed line), f (x) (dotted line) and g(x) = q(x)f (x) (solid
line). With the notation of Lemma (2.2.1), plots correspond to a = % and @) n = 1; (b)

n = 2.

( ¢ 1

0 orx € <—00,—§>,

9(x+1>2 foer( 1 0)
9 1 1

1 —5 <x —§) forx € (O'§)’

1
kl forx € (5,00).

(121)

Note that g, q’ are continuous and bounded on R, and g" is continuous and bounded on
R\ {—§ Og} Furthermore, g(x) + q(—x) = 1. Assume that f is an integrable function

onR such that f,f"and f' exist and are bounded in [—% %] We define g(x) =

q(x)f (x). Below we estimate Ag on (—1,0) in a very similar way as in [49].

Let M be the supremum of max(|f (X)|,1f" ()|, |f"(x)]) over x € [—% ,

let/ = [” |f (x)] dx. Then g"(x) = 0forx < —gand
9" (Ol < If (x)q”(lx)ll + 2| Coq" )] + " (x)qx)| < CM,
v e(-33)\ 1
Suppose first that x € (—1,—%].Sincegvanishes in (—1,—%],we have

=1 14g ()| Sf q(y)lf(y)ld

L |x — y[t*

SM[% 4 Cw+£w Fol

1 1+« |x _ y|1+a
3 |y +§|
1
<9M 3 11‘“d 1 o p
<[] +3 y+77WL If O)ldy
3 —

3
62
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21-a3ap 3M+ar oM
< +
2 — «a 21+a .8
. . . 9 1\2 1
In the third inequality we used the estimate q(y)z (y +§) (y eR).Forx € (—5 ,0)
the principal value integral in the definition of Ag(x) can be estimated by splitting it into
two parts. By Taylor’s expansion of g, for y € (—oo,g] we have

y
| 9@ - iz

+ CI.

lg(x)— g@y)— (v — x)g' )| =

y
< (esssup |g"(2)]) J (x — 2)dz
X
CM(x — y)?
5 .
Hence,
1 1
pvfx+§ gx)— g ay| = j“@ gx)— gy) — (x—y)g'(x) dy
x_% |X _ y|1+a x_% |x _ y|1+a
1
- CM (**3 (x —y)? dy = 21-ecm - CM
T2 e Y T -0 T 28
Furthermore,
1
*73 *® x) —
j +j1 g(x) gl?;)dy
—o00 x+3 |X - yl
1
x_§ * 1 1+« *
SJ +j1 mdy-l'?’ fllf(Y)ldy
—00 x+§ x+§
CM
7 + CI.
We conclude that
CM
czl [Ag(x)] B + CI, x € (—1,0). (122)

The main result of [101] is the formula for generalized eigenfunctions for a class of
operators on (0, 00). The case of the fractional Laplace operator is studied in [101]. In
particular, the eigenfunction F, of A(O0, o) (defined pointwise, or as an operator on
L (0, ); see [101] for more details) corresponding to the eigenvalue A* (1 > 0) is given

by Fy(x) = F(ix) = sin (Ax +%) — G(Ax) (recall that 8 = 2 — a), where G is a
completely monotone function.
G is the Laplace transform of a positive function y(s) (s > 0), given by the formula
y(s)
2a sin (ocz_n) L <1 foo 1 , 1 — rasad > 103
21 1+52a_25acos(“2_”)eXp o 1+ 1?2 °9 1T =422 )- (123)

T
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By [101], forx > 0 we have
G(x) <sin ('%T) < Cp, (124)

j:o G(x)dx = cos (ﬁg) — \/g CB. (125)

Note that the exponent in (123) is negative. Furthermore, for « € (0, 1] we have
an amy\\ 2
2a __ a : 2
1+ s 2s cos(—Z)Z(sm(—z )) > a“,

while fora € (1, 2), the left-hand side is not less than one. Hence, for all @ € (0, 2],

aZ

1 + s2% — 25%cos (ﬂ) > min( a?,1) > —.
2 4

and

Finally, sin (az—n) a(2 — a) = ap. Therefore,
2v2ap

an

s (126)

y(s) <
By direct integration, we find that for x > 0,

G(x) = j . e-%)dsszmﬁg S t O i-a <jf e (127)
0

Furthermore, —G' and G"' are the Laplace transforms of sy(s) and s2y(s) respectively.
Hence, (126) gives

CB CB
—G' () <— x?7%6"(x) — x737¢ 128
. = (128)
for x > 0. For simplicity, we let F(x) Oand G(x) = 0 for x < 0.

-1 1.0f
03
\:, (1.5 B
0.4 % ’
r
\\ !
04 A —15 —1.0 0.5 0.5 130 S
|
/ y
—0.5 3 //
b /
N
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-15 15 —1.0 <z
laj (b)
o 10 1.0)
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i / W /I '
i 0.5 / \ i 0.5 J
H \ H |
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Fig. (2)[97]: Plot of the approl;ldmation P, (x) (solid Iine(): and the shifted eigenfunctions
F, (1 + x) (dashed line) and F, (1 — x) (dotted line), fora = % and () n = 1; (b)
= 2;(Cc)n = 3;(d)n = 4

Let n be a fixed positive integer and u,, = "7" — % Our goal is to show that u§ is
nm

close to 4,,. Note that u,, = and — un —
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We construct approximations ¢, to eigenfunctions ¢, by combining shifted
eigenfunctions for half-line, F, (1 + x)and F, (1 — x), and using the auxiliary function
q given above in (121) to join them in a sufficiently smooth way. We let (see Fig. (2))

Pn(x) = q(=x0)F,, (1 + x) — (-D"q()E,, (1 — x),x eR. (129)
Note that @,,(x) = 0 for x /€ (—1,1). Suppose thatnisodd, n = 2m + 1. Then @, is
an even function. Furthermore,

sin (,un(l - x)+ %) = sin (% — 'l;—n) = (—1)™cos(u,x)

. /nm ) pr
= sin (7 + ,unx) = sin (,un(l + x) + ?) :
Recall that F; (x) = sin (Ax +%n) — G(Ax).Hence, forx € (—1,1),
Pn(x) = q(=x)F,, (1 + x) + q(0)F,, (1 — x)
= (=D™(q(=x) + q(x)) cos(ux) + q(=)G( (1 + x)) + q(x)G(ua(1 = x))
= (=™ cos(pnx) + q(=)G( (1 + %)) + qIG( (1 — x)) .(130)
In a similar manner, when n is even, n = 2m, then for x € (-1, 1),
Gn(x) = (D)™ sin(upx) + q(=0)G(n(1 + x))
— q()G(a(1 — 2)). (131)
It follows that away from the boundary ofD = (-1,1),%,is close to
+cos(u,x) or £sin(u,,)x, and it converges to zero near +1.
Lemma (2.2.1)[97]: We have
1AD@, — peall, < L2 (132)
Pn — UnPnll2 =Tan’

Proof: Note that for all x € R we have (see Fig. (2))
Pn(x) = F, 1 +x) =(q(=x)—1)F, 1 +x) - (D"q(x)E, (1 - x)
= —q(x)(Fﬂn 1+ x)+ (-D"E, (1 - x)).

Observe that
. pr . pr
sin (,un(l + x) + ?> + (—1)"sin (,un(l - x)+ ?)
= sin(n—n + ;mx) + (—1)”sin(n—n — u x) = 0.
2 2 n

since F(x) = sin (Ax +5°) 100y (¥) — G(AX)(x € R), it follows that for all x € R
we have

Fn(¥) = B, (1 + %) = q0) (611 + 0) + (D611 — 1))

. pr
— sin (,un(l + x) + ?) 1[1,00) (X).
For x € R, denote (see Fig. 1)
h(x) = sin (,un(l + x)+ %T) 1[1,00)(X),

f(x) = G(#n(l + X)) + (_1)716(#11(1 - X)),
gx) = q()f (x).
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It follows that @,(x) = F, (1 + x) + g(x) — h(x)(x €R). For x € (—1,0), we
have
AF, (1 + x) — ppF, (1 + x) = Oand h(x) = 0. Hence,
|A@n (%) — un@n ()| < [Ag()| + lung ()| + [Ah(x)],x € (=1,0).(133)
We will now estimate each summand on the right-hand side.
Recall that G is completely monotone, so that G,—G and G are positive, convex
functions on (0,00). This fact and estimates (125), (127) and (128) give

sup  [f ()| <G (Eﬂn) + G (fun)_cﬁ e,

Un
11 3 3
xe[‘m Va
! / 2 / 4 C'B -1-a

sup '] < —unG (— un) — Un G (— un) <—u, Y,

11 3 3 \/_
xe[‘? §] , A Cﬁ
sup " ()] < —pnG” (g un) — U G (5 un) <= [Tee

"33
1

joo |f (x)ldxfoo G,, (1 + x)dx + f G, (1 — x)dx
0 0 0

= L G(y)d <C'B (134)
Un Jo Y y_ﬂn.

By (122) and (120),

|Ag(x)] < \/E 7Y + Caf?uy;t,  x € (—1,0). (135)

For the second term in (133), we have |g(x)| = O0forx € (-1, —%). Furthermore, since
q(x) S% for x < 0, the estimate (134) gives

a cp
Heg (o] = utqGl f @ < |X ";(")" séu :

n, x € —13,0.(136)
Finally, for the third term in (133), we use the following estimate: if u is a decreasing
differentiable function such that lim wu(z) = 0, then, by integration by parts, for any

Z—00
a,9 e Rand A > 0 we have

foo u(z)sin(Az + 9)dz

‘ f u(z)cos(lda + 9)-cos(Az + 9)dz

2 2 f W ()] dz = Zu(a)
=7 . u\z Z 1
It follows that for all x < 0, we have
o sin (,un(l + y) +'%T) 2¢,
A = <
00l = feo | — g | < [
< afu;t. (137)
Estimates (135)—(137) applied to (133) yield that
|A@un(z) — undn(2)| < \/_ ',z € (=1,0). (138)
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By symmetry, (138) also holds for z € (0, 1). Formula (132), with A, @,, understood in the
pointwise sense, follows. It remains to prove that @,, is in the domain of Ap. To this end, we
will use the notion of the Green operator G, = Ap'. See [99] for formal definition and
properties of GD. Since A®,, is bounded on D, the function &, — G,A{,, is a bounded,
continuous in D, weakly a-harmonic functionin D = (—1, 1) with zero exterior condition.
Such a function is necessarily zero (see [57], [100]). It follows that ¢,, = GpA®,,, and
hence @,, is in the L* (D) domain of Ap. Since convergence in L* (D) is stronger than the
one in L2(D), the proof is complete.
Lemma (2.2.2)[97]: We have
CB . Cp
1 - <|[gnll, =1 +T' (139)

In particular, there is an absolute constant K such that ||@,, ]|, = %for n= K.
Proof: By (129), we have (see also (130) and (131))

7 () = sin (a1 + 2 +50) + 406011 + )
= (=D"q)G(ra(1 = 1))
Il — 1

j_ll ((ﬁn(x))2 —% dx j_ll <<sin (,un(l + x) +%T))2 —%) dx
| a6 (ua(1 + 2))

Hence,

<

+ 2

= (~D"qE6 (1 — 1) Gsin (1 + ) +3) d

* f (a=06(1n(1 + 0) = D46 (a1 — x)))2 dx.

We estimate each term on the right-hand side. First, by direct integration,

j_ll <(sin (,un(l + x) +%T>>2 —%) dx 1

j cos (Z,un(l + x) +€Tn> dx
-1
- sin (4yn +'B—n) — sin'BjTﬂ| Cp un.

" 4y, 4

2

By (124) and (125),

2

f G(un(1 + x))2 dx < C,BJOO G (1 + x)) < Cf .

n

Hence,

[ (60600 + 0) = CD"a@6(EA - 1)) dx
2] G(un(1 + x))2 dx + zf G(un(1 — x))2 dx < ¢k .

-1 n

Finally, again by (125),
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fl q(—x)G (u, (1 + x)sin(u a1+ x)+z) dx <ljl G(u, (1 + x)dx<%
» n n ) _,un » n = n,

and we can replace q(—x)G(u, (1 + x)) by q(x)G(p, (1 — x)). Formula (139) follows.
Theorem (2.2.3)[97]: We have

2 — “ 1

More precisely, there are absolute constants C, C' such that

nrt (2 — o)m\” 2-a)1
An ‘(7 _T> =73

forn > (C'/a)3/?9,

The scaling property of the fractional Laplace operator (—d? /dxz)g and its translation
invariance imply that for a similar spectral problem in D' = (a,b), the corresponding
eigenvalues A, satisfy 2, = ((b — a)/2) " A,(D). Hence, one easily finds the asymptotic
formula for 4;,.

Proof: Since @, € L*(D), we have @, = Y ajp;for some a; €R. Moreover,
I@all3 = X; aj2 and Ap@, = X; A; a;e;.Let A, (n) be the eigenvalue nearest to uy .
Then

lAp @, — Un(ﬁn Z (/1 ,un) (Ak(n) 'un) z

= (Ak(n) - :un) ”(ﬁn“%
Let K be the constant defined in Lemma (2.2.2). By (132) and Lemma (2.2.2), it follows
that forn > K,
CB 1
ey — HE| < o (141)
This will enable us to derive the two-term asymptotic formula for 4; .
Denote ¢ = %%ﬂ . We claim that for each a € (0, 2), there is a positive integer L, such

that Ay € ((Un — &% (up + &)%) forn > Lyg. Namely we take

1a
L, = [ 37, ‘ [ 2 l (142)
with the constant A large enough. In particular, we take A > 23*K?7 /16, sothat L, > K for
alla € (0,2). By (141) and (142), forn > L, we have
L CB1 Cﬁ 1 a*?en®  Caen®?
ey — wi| < Ton =
an \/_n AP A

On the other hand, we have % Up — EUp + € 7. Hence, by the mean value theorem,
|(un £ & — piil = (@eminu,, — 7', (uy + &)*7H)

> aen® ! min <(§)a—1 , (g)a_1> Casn® 1, (144)

If A is large enough, then (143) and (144) give Ag,) € ((un, — )% (un + £)%).

(143)
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This proves our claim. The intervals ((u,, — €)%, (u,, + €)%) are mutually disjoint.
Thus, Agey for n = L, are all distinct. We claim that there are strictly less than L,
eigenvalues not included in the above class. As in [49], the key step will be the trace
estimate.

Let J be the set of those j > 0 for which j # k(n) foralln = L,. We need to show
that #/ < L,. Denote by p, (x — y) and p? (x,y) the heat kernels for A and A,
respectively; we have p; (¢ ) = exp(—t [¢'|*).Fort > 0, we have (see e.g. [52], [82])

Z et = L; et (<Pj(x))2 dx = L p? (x,x)dx

2 (% @
Sf p.(0)dx = 2p.(0) =—f e S ds.
- - D - n 0 -
In the last step, Fourier inversion formula was used. We find that

[00]

T
Y gy g Y
2

Jj€J n Ly

Sf —ts ds — 2 —e —t(up+e)*
0

n=Lgy
The series on the right-hand side is an upper Riemann sum for the integral of et over
(uL, + &, ). Hence,

T 1ot 15 +& .
Ez e Mt < f e ™ ds < ulL, + e
0

—.
=

JEJ
As t \ 0, the left-hand side converges to (n/2)#] . It follows that
# <2( +e)=1 '8+2£
.] — T ‘LlLa €)= a 4 T *

Since e < %ﬂ , the right-hand side is less than L, and our claim is proved.

By [66], [69], forj < L, wehave A; < (jm/2)% < ((La — 1)n/2)a.on the other
hand, Ay = (u — €)* > ((Lg — 1)n/2)a for n>1L,. It follows that J contains
{1,2,...,L, — 1}. But since #/ <L, — 1, we must have ] = {1,2,...,L, — 1}. We
conclude that k(n) = nforall n > L,. Theorem (2.2.3) follows now from (141).

We study three additional properties of ¢,, and 1,,: the L?(D) estimates of ¢,, — @,,,
the L (D) bound for ¢,,, and simplicity of 4,,. This part is modeled after [49].

Proposition (2.2.4)[97]: (Cf. Lemma 3 and Corollary 4 in [49].) We can choose the sign of
the eigenfunctions ¢,, in such away that there are constants C, C with the following property:
for n (C/a)3/o,
g C'(2 — a)
Pn — @nll2 < — when a > 1,
y C'(2 - a)
IPn = @ull, <——5—— when a <1.
azn®
In particular, if ¢;(x) = (-1)®Y/2cos(u,x) for odd n and ¢@;(x) =
(—1)™? sin(u,x) for even n, then there is a constant €’ such that for n > (C/a)3/?®,
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o I < C"2 — a) " - 1
®On Pnll2 = \/E wnena =2 K
. C'2 — a) 1
lon = @ullz = —575—2— whena <5
Proof. Fix n>L, + 1 and ¢ = %%’T @n = X; aj@; . By changing the sign of ¢, if
necessary, we may assume that a,, > 0. Recall that L, was chosen in such a way that
|/1j — u;‘{| > Can®~! forj = n (see (144) and following discussion). Hence,

(00]

~ ~ 2 -
1ApPn — uzPnll? =Z (4 — ui)" af = Clan®™1)? Z aj .

j=1 Jj#n
By (132), we obtain that
B 1\ 1 B\
~ ~ _ 2 —
1 — angnlly = Z @ <C(J=0) ez = € (o) -149)
Jj#*n

Since ||g,|l, = 1, we have

U@r — @nlla@n ll2 1§n — an@ally + lay, — [[@4ll2] -
Furthermore,

lan = 1@nll21? < (IPnllz — a) UI@nllz + a)lI@allz — ai I$n — anen 113,
Hence, by (145),

. . . CB
16n = Prllzpn ll2 < 211@n = anenllz < 75— (146)
Finally, by (139) and (146),
2C6  CB

1B = @nllz < @n = 1Bullzgn 122 + Gall; = 11 < —72 +—

The first part of the proposition is proved. The other part is a simple consequence of the first
one and the definition of @,,. Indeed, by (130) and (131),

1§n — @nll* < (j_ll (61 + x)))2 alx)l/2 + (f_ll (6(un1 - x)))2 dx>

2 [ (%n . \"* g
-Gl Covw) <

the last step follows by (124), (125) and the inequality u,, = C,,.
Proposition (2.2.5)[97]: (Cf. Corollary 5 in [49].) If > % , then the eigenfunctions ¢,, (x)

are bounded uniformly inn > 1andx € D.
Proof: Let P? = exp(—tAp) (t > 0) be the heat semigroup for —A, (or the transition
semigroup of the symmetric a-stable process in D), and let p? (x,y) be the corresponding
heat kernel (or transition density). We have PP ¢, (x) = e ng,(x) forx € D. Itis well
known that p? (x,y) < p.(y — x), where p.(x) is the heat kernel for —A,pt(§) =
exp(—t|&|%); see e.g. [98].

By Cauchy—Schwarz inequality and Plancherel’s theorem, we obtain

1/2
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e_lnt |(pn(x)| = |PLP ((pn _(ﬁn)(x)l + |PtD (pn(x)l
sfmw—m%w—%wmwwW@m

Doo 1/2
2 ~
< (f (p.(x — ) dy) lon — @nllz + ll@nlle

12
1 [ . 3
= (2—j e~2tll dz) lon — @ull, + sup |F(x)]
TJ_o x€(0,0)

<21+ 1/a)2) Y| p, — Gall, + 2.
Lett = 1/A,. Then e=*nt = 1/e and t~Y/20 = 3D (up2)1/2 |fn > L, + 1 and
a2, then llg, — @ull, < CB/Vn, and finally |@,(x)| < C (forall n 2 L, + 1,x €

D). Since ¢, € L*”(D) also for each n<L,, the proof is complete.
Proposition (2.2.6)[97]: (Cf. Theorem 6 in [49].) If @ = 1, then the eigenvalues A,, are
simple.

Proof. Let us write A, , for A, in this proof. Since (An,a)l/a IS increasing in a, we have
1/a 1/2 nm
(An,a) = (An,z) =

5
By Theorem 6 in [49], for n > 3 we have

m+1)mr © w 1/a

z — § — E < An+1,1 (An+1,a’) .

Therefore, 4, , < Ap414,€XCEptperhapsn = 1orn = 2. Butasimilar argument works
alsoforn = 1andn = 2, since by [50] we have
1/«

i
(/11,05)1/“ (11,2)1/2 =5 < 2=, (llz,a) )

1/«

1/a 1/2
(/12,6!) (/12,2) =1 < 383 2.3’1 (/13’a) .
The proof is complete.
Numerical experiments suggest that ¢, are uniformly bounded also for « <%.

Furthermore, it would be interesting to obtain an upper estimate of sup,
o 1l , @and in particular, to find its behavior when a approaches 0. Finally, better bounds
for A,, may yield simplicity of eigenvalues also when a < 1.

For a = 1, a satisfactory method (an application of Rayleigh—Ritz and Weinstein—
Aronszajn methods) is described in [49]. For general a, even approximation of A, is
difficult: all known methods converge rather slowly, and thus the computation of
eigenvalues of very large matrices is required. A version of finite element method for
obtaining a lower bound for 4,, is described. It shares the main drawbacks of many related
algorithms: compared to the technique applied in [102], it converges slowly, and it suffers
large errors as a approaches 2. On the other hand, the method presented below gives
mathematically correct lower bounds, and there is no error estimate for the numerical
scheme of [102]. A somewhat similar method for the upper bound for A, is given. It gives
satisfactory results for large a, but deteriorates as a gets close to 0.

It should be pointed out that in some cases (e.g. a close to 2 or n large), the bound
a a
% ("2—”) < 1, < ("2—") of [65], [69] is sharper than the estimates obtained below, unless

extremely large matrices are used. Also, good numerical estimates of 4,, are available for
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a = 1 due to [49]. By the monotonicity of (1,)¥¢ in a, this gives a lower bound for A,
when @ € (1,2) and an upper bound for a« € (0, 1). Finally, a good estimate for A, can be
found in [50]. For a comparison of the above, see Table (2).

The method for the lower bound works for the fractional Laplace operator in an
arbitrary bounded open set D € R?, for any d > 1; in fact, it can be easily extended to
more general pseudo-differential operators (or Lévy processes). We use the following
monotonicity property: the eigenvalues A,, decrease when the kernel of A, i.e. the function
Caalx —y|737%, is replaced by a smaller one. This fact is a simple consequence of the
Rayleigh— Ritz variational formula. We cover the set D with small cubes I, , and replace the
kernel of A by a smaller kernel, which is constant whenever x € I, and y € I;. The
eigenvalues of the integral operator corresponding to the latter kernel can be easily
expressed in terms of eigenvalues of a certain matrix.

Fix ¢ >0 and let {I,:k € Z%}be the partition of R? into cubesl, =

91 |kje (ky + 1)e],k € Z%. Let K, < Z be the set of those k € Z? for which I,
intersects D, and let D, be the interior of Uyeg, I . Notethat D < D,.

The definition of A = (—A)%/2 in higher dimension is similar to (119): for smooth
bounded functions we have
x)= ) p

f
A —
F@= canpv| T

where ¢y = 2al” ((d + a)/2)/ (nd/z |F (—%)D Fractional Laplace operator in D

with zero exterior condition, denoted Ay, is defined as in dimension one. Below we denote
by A,, the eigenvalues of A,. By domain monotonicity of A,,, the eigenvalues for D are not
less than the eigenvalues of its superset D,. For notational convenience, we assume that
D = D..

The Dirichlet form E(f, f ) corresponding to A, is given by

E(f'f):%T'afRd de fF&- )

|x — y|d+a
As usual, f € L?(D) is extended to R% so that f (x) = 0 forx € R%\ D. By Rayleigh—
Ritz variational principle,

A, =inf{sup{E.(f,f):f € Ulfll, = 1}:U < L*(D),dim U = n}.
where U < L2(D) means that U is a linear subspace of L2(D). For k € Z% , we denote

¥, x € R%,

dxdy, f € L*(D).

d
00 = [ (] + 1)"
j=1

Table (2)[97]: Comparison of bounds and approximations to A,,. Each cell contains six numbers:
lower bound A, withe = ﬁ the best lower bound known Dbefore, approximation

nmw 2-a)m \* . . . "
(7 - ) , humerical approximation of [102], upper bound 47 .,the best upper bound known

before. The better estimates are underlined.

a A A, A3 Ay As A A Ag Ao 1o

0.01 | 0.9966 | 1.0086 | 1.0137 | 1.0171 | 1.0196 | 1.0217 1.0234 1.0248 | 1.0261 1.0273
0.9943! | 0.50572 | 0.50782 | 0.50922 | 0.51042 | 0.5113% | 0.51212 0.5128% | 0.51342 0.51392
0.9976 | 1.0086 | 1.0138 | 1.0172 | 1.0198 | 1.0218 1.0235 1.0250 1.0263 1.0274




0.9966* | 1.0087% | 1.0137% | 1.0172* | 1.0197* | 1.0218* | 1.0235* | 1.0250* | 1.0263* | 1.0274*
13.5210 n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.9974' | 1.01023 | 1.01483% | 1.0179°% | 1.02033 | 1.0223% | 1.02393 1.02543 1.02663 1.02773
0.9724 1.0919 1.1469 1.1863 1.2159 1.2405 1.2611 1.2791 1.2950 1.3094

0.1 | 0.9513 | 0.5606% | 0.58382 | 0.6008% | 0.6144% | 0.6257% | 0.6354> 0.64402 0.65162 0.65852
0.9809 1.0913 1.1477 1.1867 1.2167 1.2412 1.2620 1.2802 1.2962 1.3107
0.9726* | 1.0922% | 1.1473% | 1.1868* | 1.2165* | 1.2413* | 1.2620* 1.28024 1.2962* 1.3107*
1.8351 n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.9786" | 1.10673 | 1.1575% | 1.19413 | 1.22263 | 1.24623 | 1.26643 1.28403 1.29973 1.31383

0.2 0.9572 1.1960 1.3182 1.4093 1.4801 1.5402 1.5915 1.6373 1.6780 1.7154
0.9181' | 0.6286% | 0.6817% | 0.7221% | 0.7550% | 0.7831% | 0.8076> 0.82942 0.84922 0.86732
09712 1.1948 1.3199 | 1.4012% | 1.4819 1.5420 1.5939 1.6399 1.6812 1.7188
0.9575* | 1.1965* | 1.3191* | 1.4105* | 1.4817* | 1.5421* | 1.5938% 1.6400% 1.6811% 1.7188%
1.2376 n/a n/a n/a n/a n/a n/a n/a n\a n\a
0.9675" | 1.22473 | 1.3398% | 1.42583 | 1.49473 | 1.5530% | 1.6036° 1.64853 1.6890° 1.72603

0.5 0.9692 1.5991 2.0247 2.3809 2.6862 2.9618 3.2118 3.4443 3.6608 3.8654
0.8862% | .08862% | 1.08542 | 1.2533% | 1.4012% | 1.5349% | 1.6579> 1.77242 1.87992 1.98162
0.9908 1.5977 2.0306 2.3862 2.6954 2.9725 3.2259 3.4608 3.6808 3.8883
0.97014 | 1.6015* | 2.0288* | 2.3871* | 2.6947* | 2.9728* | 3.2255*% 3.4610* 3.6805* 3.8883*
1.0002 n/a n/a n/a n/a n/a n/a n/a n/a n/a
0.9863' | 1.65983 | 2.07773 | 2.42743 | 2.73143 | 3.0055% | 3.2562° 3.48922 3.70743 3.9136°

1 1.1516 2.7343 4.2756 5.8236 7.3584 8.8919 10.4166 11.9382 13.4528 14.9636
1.1577% | 2.75473 | 4.3168% | 5.8921% | 7.4601° | 9.0328°% | 10.60223 | 12.17413 | 13.74413 | 15.3155%
1.1781 2.7489 4,3197 | 5.8905 7.4613 9.0321 10.6029 12.1737 13.7445 15.315
1.1577% | 2.7545* | 4.3164* | 5.8916%* | 7.4594* | 9.0319* | 10.6012% | 12.1729* | 13.7427* | 15.3140*

Table (2)[97]: (continued)

« A A, Az Ay As A A7 Ag A 1o
1.1608 n/a n/a n/a n/a n/a n/a n/a n/a n/a
1.15783| 2.75483 | 4.31693 | 5.89223 | 7.46023 | 9.03293 | 10.60233 | 12.1742% | 13.7442% | 15.3156°

1.5 | 1.5139 | 4.7367 8.8817 13.7668 | 19.2502 | 25.2613 | 31.7334 38.6263 45.8896 53.5266
1.3293'| 4.57213 | 8.96893 | 14.3024%| 20.37623| 27.14793| 34.52223 | 42.47723 | 50.9536° | 59.93753
1.6114 | 5.0545 9.5970 | 15.0171 | 21.1905 | 28.0344 | 35.4886 43.5067 52.0514 61.0922
1.5971%| 5.0586% | 9.5921* | 15.0154*| 21.1846*| 28.0289*| 35.4800* | 43.4972* | 52.0392* | 61.0786*
1.5989 n/a n/a n/a n/a n/a n/a n/a n/a n/a
1.6224'| 5.56842 | 10.22972| 15.7497%| 22.0108%| 28.9339%| 36.4609% | 44.5467% | 53.1550% | 62.2558

1.8 | 1.4483 | 5.1149 | 10.4447 | 17.2231 | 25.2907 | 34.5448 | 44.8969 56.2813 68.6385 81.9210
1.6765' | 6.19653 | 13.90883%| 2434963 | 37.23473| 52.53933| 70.10023 | 89.90573 | 111.84323| 135.90603
2.0555 | 7.5003 | 15.8014 | 26.7233 | 40.1148 | 55.8658 | 73.8905 94,1188 | 116.4923 | 140.9605
2.0481*| 7.5007% | 15.7948*| 26.7156*| 40.1012*| 55.8481*| 73.8661* | 94.0884* | 116.4541*| 140.9145*
2.0501 n/a n/a n/a n/a n/a n/a n/a n/a n/a
2.0777'| 7.8501% | 16.2868%| 27.3353%| 40.8472%| 56.71382| 74.8501% | 95.1871% | 117.66642| 142.2381%

1.9 | 1.0353 | 3.7704 7.8734 | 13.1989 | 19.6379 | 27.1159 | 35.5691 44,9481 55.2082 66.3127
1.8273'| 6.85733 | 16.09933| 29.07503%| 45.52213| 65.47373| 88.76863 | 115.43333| 145.35213| 178.54683
2.2477 | 8.5942 | 18.7177 | 32.4615 | 49.7204 | 70.4157 | 94.4848 | 121.8754 | 152.5433 | 186.4500
2.2432%| 8.5926* | 18.7101%*| 32.4503%*| 49.7021*| 70.3905*| 94.4503* | 121.8313%| 152.4878%| 186.3822*
2.2455 n/a n/a n/a n/a n/a n/a n/a n/a n/a
2.2748'| 8.80212 | 19.0178%| 32.8505%| 50.1962%| 70.9766%| 95.12932% | 122.60242| 153.35172| 187.3822*

1.99| 0.1474 | 0.5494 1.1671 1.9816 2.9788 4.1482 5.4811 6.9705 8.6101 10.3994
1.9816%| 7.51213 | 18.36423| 34.10703%| 54.54693| 79.81633| 109.78563| 144.55083| 184.01443| 22.825173
2.4441 | 9.7330 | 21.8288 | 34.7113 | 60.3666 | 86.7839 | 117.9546 | 153.8713 | 194.5275 | 239.9178
2.4427%| 9.7293% | 21.8200*| 38.6960*| 60.3426*| 86.7495*| 117.9077*| 153.8100*| 194.4500*| 239.8220*
2.4452 n/a n/a n/a n/a n/a n/a n/a n/a n/a
2.4563%| 9.7573% | 21.86512| 38.7595%| 60.4267%| 86.8560%| 118.03852| 153.9670%| 194.63512| 240.0373%

(i) See [50], [65], [102]. (ii)) Combination of [49] with monotonicity in a.
Hence,whenx € I,,y € I,,k,1 € Z% we have |x —y| < eo(k — ). We define

vie = ()™,
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and
—-d—«a

)= — 3 v | [ (Feo-r o) axa.
k,l€d Tk 7l
Clearly, E.(f, f ) < E(f, f ). By Rayleigh—Ritz variational principle, the eigenvalues A,, are
bounded below by the sequence A, . of eigenvalues of the operator corresponding to the
Dirichlet form E,. Here 4,, . are defined in the usual way,
Ane = inf{sup{E.(f,f):f € UlIfll, = 1}:U < L*(D),dimU = n}.

We now express 4, as eigenvalues of a matrix. For f € L?(D)andk € Z%letf, =

g~d flk f (x)dx be the mean value of f on I, , and define f* to be equal to f; on each

I, .k € Z% .Hence f* € L?(D) isthe orthogonal projection of f onto the space of functions
constant on each I, , and flk f*(x)dx = flk f (x)dx. In particular, ||f 115 = IIf*l5 +

Ilf — f*||5.Furthermore,

—-d—a

()= v [ [ (F@) - 2f 0r 0+ (F ) dxay
k,lezd Tk I
= Caae™ | TIF M2 Y vifify |
klezd
Since (f*), = fiforallk € Z¢ , and |If 15 = IIf*II3 = If — f*Il3, we obtain that
E(f.f) = Ef) +caae™VIf — f =I5 (147)

This proves that the two orthogonal subspaces, {f € L*(D): f* = 0} and {f €
L*(D): f* = f}, are invariant under the action of the operator corresponding to £,. By
(147), the former subspace is in fact the eigenspace corresponding to the eigenvalue ¢, , ™.
The latter one is finite dimensional, and when f* = f, we have

FE=) fil, @,

keK,

Eff) = caae®™ (T 2= > v | (148)
kEK, k€K,
The normalized indicator functions of I, , that is, the functions e ~%/2 1, ,k € K, forman
orthonormal basis of the space {f € L*(D): f* = f }. By (148), in this basis, the action
of &, is given by the following |K.| X |K.| matrix V : if k is an enumeration of the elements
of K, (that is, a bijection between {1, 2,...,|K,|} and K,), then V}, , = cd,ae—a((sp,qv -
Viep)-k(a))-

We conclude that the sequence A,, . starts with all eigenvalues of the matrix V which
are less than cg o ™%V (there are at most |K,| of them), and then it is a constant sequence
Caa€” *v. We have thus proved the following result.

Proposition (2.2.7)[97]: LetD € R be an open setin R% , and let ¢ > 0. Let K, be the
set of those k € Z4 for which D N[, [k;& (k; + 1)e]is nonempty, and let  :
{1,2,...,]K.|} = K, be the enumeration of the elements of K. Finally, for k € Z¢ let
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d
o) = Y (gl + 1" and¥ = > (o)) ™"
j=1

kezd
Define a |K.| X |K | matrix V with entries

Cd, —d—«a
ho =~ 0k —x@) " ", pa=12.,IKlp * g

Cd,a (— —(d
Vo =Z(V_ d-(@+a)/z), p=1,2,...,|K

If n < |K.| and n-th smallest eigenvalue of V does not exceed c, ™%V, then let A, be
this eigenvalue. Otherwise, let A, = c4,e™%v. Then the eigenvalues 4,, of Ap satisfy
A = Ape.

Note that if v is replaced by a smaller number in the definition of V, the
eigenvalues 4,, . decrease. Hence, when doing numerical computations using Proposition
(2.2.7), one should approximate vfrom below.

In the one-dimensional case, we have ¢;, = c,,andv = 2 (1 + a) — 1, where

¢ is the Riemann zeta function. Consider now = (-1,1) € R , and ¢ =%. For

simplicity, assume that N is an even positive integer. Then K, = {—g —g + 1%

1}, so it is natural to choose k(p) = p —%— 1,p € {1,2,...,N}. Furthermore, V is a

Toeplitz matrix, thatis, V, , = V,_, depends onlyonp — gq. In this case we can prove that
all eigenvalues of the matrix V are less than c,e~%v . Indeed, the symbol of the Toeplitz
matrix V is given by (we omit some technical details here)

- e 2Ca $ cos(kx)
z V.e kx  — g_a((;(l +a)— L, m)

k=—oc0
2c Liy q(e™)
=e—aa ¢(1 +a)—Re<+ZT

t*(et — cosx) >

_ % (1 +a) ! foo dt
g ¢ @ 1+al, e? —2etcos x + 1

The right-hand side is easily checked to be symmetric, 2m-periodic and increasing in x €

[0,],and so it attains its global maximum for x = m. The symbol of V is therefore
bounded above by ans“"(c (14 a) — Lijpo(—1)) = 2177%,e7%(1 + @) < ce™ .
By a general result, the eigenvalues of V are bounded above by the supremum of the symbol.
It follows that all N eigenvalues

Table (3)[97]: Comparison of estimates of A,, for a square (—1, 1)2. LB and UB mean lower
bounds and upper bounds respectively.

Estimates are given in roman font, best numerical estimates known before are typeset in
slanted font.

Better estimates are underlined.

La |4 1B | | 4, (UB) | 2, (LB) | | A2 (UB) |
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0.1 | 1.0308 | 0.5230' | 1.04621 1.0880 0.5415" | 1.0831!
0.2 | 1.0506 | 0.5472! | 1.0946" 1.1691 0.5865' | 1.17311
0.5 | 1.1587 | 0.6266! | 1.2534! 1.4908 0.7452' | 1.4905?
1 | 1.3844 | 0.7853' | 1.5708! 2.1807 1.1107* | 2.2215?
1.5 | 1.4135 | 0.9843' | 1.9688! 2.6029 1.6554! | 3.3110?
1.8 | 09167 | 1.1271' | 2.25441 1.8164 2.1033 | 4.2068"
1.9 | 0.5427 | 1.1792' | 2.3585? 1.0984 2.2781' | 4.5563!

See [65].
Table (4)[97]: Comparison of estimates of A,, for a unit disk. LB and UB mean lower bounds
and upper bounds respectively. Estimates are given in roman font, best numerical estimates
known before are typeset in slanted font. Better estimates are underlined.
a | A; (LB) A, (UB) A, (LB) A, (UB)
0.1 | 1.0381 | 1.0157! | 6.6198 1.06411 1.0953 | 0.5718% | 1.16092
0.2 | 1.0655 | 1.0396' | 3.8878 1.13421 1.1849 | 0.6541% | 1.3476%
0.5 | 1.1986 | 1.1618 | 2.5081 1.39431 1.5404 | 0.9787% | 2.1079°
1 | 1.4734 | 1.5707t| 2.7588 2.09441 2.3201 | 1.9158% | 4.4429
1.5 | 1.5387 | 2.3891! | 4.0668 3.41311 2.8379 | 3.7502% | 9.3648
1.8 | 1.0087 | 3.2210%| 5.5014 4.74681 2.0045 | 5.61142 | 14.6487%
1.9 | 0.5990 | 3.5834! | 6.1369 5.29742 1.2165 | 6.4182% | 17.00452

See [50], [65], of V are included in the sequence 4,, ., as desired. Therefore, we have the
following specialized version of Proposition (2.2.7) (the case of odd N is very similar).
Proposition (2.2.8)[97]: Let D = (-1,1),N >0 and ¢ = 2/N. Let V be an N X

N Toeplitz matrix with entries
Cy 1
Voq :_e_“(lp — L+ DI’ p,q = 1,2,...,N,p # q;
2c 1 a)—1
A «(§ ( ; ) ), p=1,2..,N.
Define 4,. to be the n-th smallest eigenvalue of V when n< N, and A, =
Ce€ %(2{(1 + a) — 1) forn > N. Then the eigenvalues A,, of Ap, satisfy 1,, > 1, ..
The lower bounds A,, . for the interval D = (—1, 1) are presented in Table 2 above. In

higher dimensions, the complexity of computations increases dramatically. For example, a
unit disk B(0,1) or a square (—1,1)% with ¢ = % require handling matrices larger than
2000 x 2000. Some results for these two cases are given in Tables (3) and (4).

In principle, the upper bound is much more difficult. The above approach can be
modified to give an upper bound for the first eigenvalue A, whenever the Green function for
D can be computed. For the fractional Laplace operator, this is the case when D is a ball. By
a scaling property, it is enough to consider D = B(0,1).

Let G (x,y) be the Green function of D, Gp(x,y) = f0°° p? (x,v) dt, where p? is the
heat kernel for Aj, (see the proof of Proposition (2.2.5)). The Green function is the kernel of
Apl . M. Riesz proved that
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d —x2)(1—y2
r & —ypee LA

—— ds
2 a2
d a 0 1+ s)
2amd/? (F (2)>

d
F(—)(l —x?)% (1 —y*)*? a d a (1 —-x*1 —y?)
=2 2F (2,2 142;— 4
- 1 P ) .
2amdzr (%)F (1 _|_%) |x _yld 2°2 2 Ix — y|2
The eigenvalues of the Green operator GD = A~1D are A;! . Hence,

1
/1—=sup{ | | 6oGens @r Gydxdy:f € 2@LIf I = 1}-
1 D YD

Since Gp (x, y) is nonnegative, we may restrict the supremum to nonnegative functions only.
It follows that whenever 0 < g(x,y) < Gp(x,y), we have

M s<sup{ j j gGYf (Of Wdxdy: f € PO If I, = 1}) .

For k,l € Z%, let gy, be the infimum of G,(u,v) overu € I, and v € I, . When €
Iy ,y € I, ,wechoose g(x,y) = gx,; . Hence, by an argument similar to one used for the
lower bounds, 4, is bounded above by A7 ., the reciprocal of the largest eigenvalue of the
matrix U with entries U; ; = €% g,y (j)-

The results for D = (—1,1) € R and some values of «a are given in Table (2). Estimates
for the unit disk and the square (—1, 1)? are given in Tables (3) and (4). For the unit disk
ande = % , the estimate A7 . is worse than the one obtained in [50] using analytical

methods.

a2—-1

GD(xry) =

Section (2.3): Fractional Powers of the Laplace Operator

We study the asymptotic behavior of eigenvalues for fractional powers of the
Laplacian. The operator (—A)S with 0 < s < 1appears in numerous fields of
mathematical physics, mathematical biology and mathematical finance. The key difference
between this operator and the usual Laplacian is the non-locality of (—A)° , which allows
one to model long-range interactions in applications and leads to challenging mathematical
problems.

From a probabilistic point of view, the fractional Laplacian of order s on a domain
QO c R% can be defined as the generator of the 2s-stable process killed upon exiting Q. A
more operator theoretic definition, which we employ here, is in terms of the quadratic form

lu(x) — u(y)|? "
Ca | | e dxdy= | pFR@Ed,  149)

restricted to functions u € HS (R%) which satisfy u = 0in R¥\Q. Here HS (R%) is the
Sobolev space of order s,

a(p) = 2m)~4/? = J e'r*u(x) dx
R4
is the Fourier transform of u and Cj 4 is an explicit constant given in (153). The identity in

(149) is an easy consequence of Plancherel’s theorem.
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For bounded domains € the spectrum of the fractional Laplacian is discrete and we

denote its eigenvalues (in increasing order, repeated according to multiplicities) by AS).
Two- term asymptotic expansion of the sum of these eigenvalues,

(d-1+2s) (2s-1)

- Z A = C(1) |Q|—Zs/dN25/d+C§’25)|aQ| 0~ @& N 4 (1+ o(1)) (150)

as N — oo. Here |} and|dQ)| denote the d-dimensional measure of Q and the (d — 1)-
dimensional surface measure of 9, respectively, and CU(l,lS) and Cé'zs) are positive, universal

constants, depending only on d and s, for which we shall obtain explicit expressions. Our
result is valid for non-smooth domains, requiring only that 0Q € C1#_ for some (arbitrarily
small) ,a > 0. It is remarkable that, despite the fact that we are dealing with a non-local
operator, both coefficients in (150) have a local form, depending only on Q and 9, just like
in the case of the Laplacian. This will become clearer from the reformulation given in
Theorem (2.3.3) below.

We emphasize that the fractional Laplacian of order s on a domain £ is different from
the Dirichlet Laplacian on  raised to the s-th power. For the Dirichlet Laplacian, and hence
for its fractional powers, asymptotics analogous to (150) are well known. One of our results
Is that, while the first terms in (150) coincide for both operators, the second terms do not.
This means, in particular, that our result cannot be obtained from the study of the (local)
Dirichlet Laplacian, and that our analysis needs to take into account the non-locality inherent
in (150). For further results about the relation between the fractional Laplacian on a domain
and the fractional power of the Dirichlet Laplacian see [106].

The one-term asymptotics
Ay = (d+25) J;ZS) S 1Q|=2/4N2s/2 (1 + o(D)),
which is a fractional version of Weyl’s law, is a classical result of Blumenthal-Getoor [54].
Bafiuelos—Kulczycki [52] and Bariuelos—Kulczycki—Siudeja [104] have shown a two-term

asymptotic formula for Y2, exp (t/l(s)) ast —» 0. Note that ¥%_; exp (—t)l(s)) and

N-1 YN, A(S)correspond to the Abel and Cesaro summation of the sequence /1(5)
respectively. As is well known, asymptotics of Cesaro means imply asymptotics of Abel
means, but not vice versa. Hence for C** domains we recover and improve upon the result
of [52], [104].

This is, actually, a significant improvement since our asymptotics are no longer
derived for the infinitely smooth function e £ of the fractional Laplacian, but, as we shall
see shortly, for the Lipschitz function (A — E).. Moreover, since we are no longer able to
apply the probabilistic machinery available for the partition function, we have to find new
and more robust tools. The methods also work for the ordinary Dirichlet Laplacian on a
bounded domain, and in [108] we use the techniques developed here to give an elementary
and short proof of two-term asymptotics in that case.

Another point in which we go beyond [52], [104] is that we give an expression for the

constant Cé? in (150) in terms of a model operator on a half-line instead of a model operator
on a half-space. In this way our expression is similar to familiar two-term formulas in
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semiclassical analysis; see, for instance, [118]. This is possible due to some recent beautiful
results of Kwasnicki [112] about a general class of half-line operators.
We find it convenient to prove (150) in an equivalent form, namely,

1+d
z (A - AS))+ = 10|0jA7 — L§?§|69|A1+ (1 +0(1)) (151)
1=n
as A — oo. Here x, := max{x, 0} denotes the positive part of a number x. Note that (151)
can be rewritten as

(0]

Z (1-h=a?) = L010l ~ LE100Ih= (1 + 0(1) (152)
n=1
as h — 0+, and this is the form in which we shall state and prove the main theorem. The
small parameter h has the interpretation of Planck’s constant and (152) emphasizes the semi-
classical nature of the problem.

The approach extends the multiscale analysis to the fractional setting. By this we
mean that we localize simultaneously on different length scales according to the distance
from the boundary. A main difficulty when dealing with our non-local operator comes from
the treatment of the localization error. At this point we have to improve upon previous results
from [115], [119]. Another major impass, as compared to the local case, is the analysis of a
onedimensional model operator for which an (almost) explicit diagonalization is far from
trivial. This is where Kwasnicki’s work [112] enters. It requires, however, still substantial
work to bring these results into a form which is useful for us.

We assume that the dimension d > 2. In the one-dimensional case (the fractional
Laplacian on an interval) considerably stronger results are known [49], [97]. The powerful
methods developed there are, however, intrinsically one-dimensional and seem of little help
in the multi-dimensional case. The question raised in [104] of whether an analogue of Ivrii’s

two-term asymptotics [111] holds for AS) in d = 2 without Abel or Cesaro averaging
remains a challenging open problem.
LetQ ¢ R%,d > 2, beabounded openset. Forh > 0and0 < s < 1 let
= (—h?A)* — 1
be the self-adjoint operator in L? () generated by the quadratic form

(u, Ho 0) = f (s — D 1a@)I? dp
R

with form domain
7S (Q)={u€ HS (RY):u=0onR*\Q}L
For0 < s < 1 we have the representation

[u(x) u()|?
(u, Hou) = Cgq h% jd Jd X y[+%s dxdyf lu(x)|? dx
Rd JR Q

with constant

Ir'{d2 + s)
Coq = 2502 ——= > 0. 153
v )~ (153)

The main results hold without any global geometric conditions on Q. We only require
weak smoothness conditions on the boundary — namely that the boundary belongs to the
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class C¥® for some a > 0. That is, the local charts of dQ are differentiable and the
derivatives are Holder continuous with exponent «.

We will derive several representations of the constant L( in (161). One of these,
which emphasizes the semi-classical nature of the problem, Ieads to a rewriting of (161) as

dpdx dp'o(x )
— 2s __ 1128
TrHo)- = || (ol - Dl - j (1p'*) Gyt + R
T*Q
where T+ Q=QxR%and T x 9Q = 9Q X Rd 1 are the cotangent bundles over Q and

01, respectively, and where do is the surface element of dQ. Here &is a universal (i.e.,
depending on s, but independent of Q or d) function, which has the interpretation of an
energy shift (the integral of a spectral shift). It is given in terms of a one-dimensional model
operator A* on the half-line R, and its analogue A on the whole line by

Ew= pt f (alt,t,w) — a* (t,t,w))dt, pu > 0;
0

where a(t,u,u) and a*(¢t,u, u) denote the integral kernels of (A — u)_ and (A" — u)_,
respectively. Another representation, derived, shows that our result is consistent with the
result of [52], [104].

We show that Lgﬂ > 0. We compare this constant with the one obtained from the
corresponding fractional power of the Dirichlet Laplacian.

Proposition (2.3.1)[103]: Let 0 < s < 1 and assume that the boundary of Q satisfies
00 € C1* withsome 0 < a < 1. Let —A(, be the Dirichlet Laplacian on Q. Then
Tr((=h?Ag)* — 1)_ = L) |0|h¢ = L) |0Qlh~%*1 + R,  (155)
with R, = o(h™%*Y) ash —» 0 +. Here L( is the same as in (162) and L( satisfies
(2) 7(2)
Lyg < Lgg (156)

In other words, the operators Hy and (—h?Aq)® — 1 differ semi-classically to first
subleading order.

The proof of Theorem (2.3.3) is divided into three main steps: First, we localize the
operator Hg into balls, whose size varies depending on the distance to the complement of
Q. Then we can analyze separately the semiclassical limit in the bulk and at the boundary.

The key idea is to choose the localization depending on the distance to the complement

of Q, see [110] and [120]. Let d(u) = inf{|]x — u| : x & 2} denote the distance of u € R?
to the complement of Q. We set

(154)

1 1\ 71
1w =5 (1 +(dw)? + zg)‘z) , (157)
where 0 < [, < 1/2 is a small parameter depending only on h. Indeed, we will finally
choose [, proportional to h? with suitable 0 < g < 1.
We construct real-valued functions ¢, € C§° (R%) with support in the ball B, =
{x e R%: |x — u| < l(w)}.For all u € R% these functions satisfy

lpulles < C, ||A¢u||oo < Cl(w)™ (158)
and for all x € R?

f 2 (Ol(w) 4 du= 1. (159)
R4
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Here and in the following the letter C denotes various positive constants that are independent
of u,l, and h.
Proposition (2.3.2)[103]: Assume that ¢ € Cj (Q) is real-valued, supported in a ball of
radius ! > 0 and

Vol < Cli7t. (160)

Then for all h > 0 the estimates
—Cl%2p~%*2 < Tr(¢pHop)_ — Lg; J 2 (x)dxh 4 <0
Q

hold with a constant depending only on the constant in (160).

Close to the boundary of 0, more precisely, if the support of ¢ intersects the boundary,
a boundary term of the order h=%¢** appears.
Theorem (2.3.3)[103]: Let0 < s < 1 and assume that the boundary of Q satisfies 0Q) €
Ct% withsome 0 < a < 1. Then

Tr(Ho)_ = L&) |Qlh~4 = L2)| |0Q|h~ 4t + R, (161)

with R, = o(h™**Hash - 0 +. Here |
oo (Ip|>* = 1)_d 162
s,d (Zﬂ)d Rd p - ap ( )

and the positive constant Lg Is given in (220).

More precisely, we have the lower bound R,, > —Ch~%*1*¢- for any

* ilcs<n
1= S
a+2 2 ’
R B 1 £0 < s <~
a+lt+2s - S7
and the upper bound R, < Ch=4*1+€- for any
a d
0 —_— if1 ——< 1,
<€ < i 755 <
0 < <a(25—1+d/2) 0 < s < 1 d
€== a+2s+d/2 : S 4°

We do not claim that our remainder estimates are sharp. They show, however, that our
methods are rather explicit and they correctly reflect the intuitive fact that the estimate
worsens as the boundary gets rougher. We also mention that for not too small s we (almost)
get the same remainder estimate h~4*+1+/(@+2) that our method yields in the local case s =
1, see [108].
Proof: Inorder to apply Proposition (2.3.12) to the operators ¢,, Hy¢,,, We need to estimate
[(u) uniformly. Let

UQ) ={ueR*: B,n 00 # ¢}

be a small neighborhood of the boundary. For u € U(Q) we have d(u) < [(u), which by
the definition of [(u) implies

[
[(u) <

0
= (163)
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In view of (158) and (163) we can apply Proposition (2.3.2) and Proposition (2.3.12)
to all functions ¢,,u € R, if I, is sufficiently small. Combining these results with
Proposition (2.3.15) we get

—Cj l(w)~2 du h=%+2 f Rps(l(w), HI(w)~% du
Q\U(Q) u(Q)
du

(1) _
< Tr(Hg)- Ly, .fRa Jﬂ P2 (x)dxl(u)d h—d

du
(2) 2 —d+1
+ L d h
s,d j];d 20 ¢u (x) O-(x) l(u)d

< f Ryg(l(w), ML) du + C h™%*2 151 Ry, (1o, ).
U(Q)
Now we change the order of integration and in view of (159) we obtain
—Cj [(u)? du h=%+2 — j Ry (1(w), HI(w) " %du (164)
Q\U(Q) uQ)
< Tr(Hg) LY, [Q1h~¢ + LZ)|a0|r=9+1
< j Rpa(l(w), M)I(w) % du+ C h™%+2 [51 Ry (Lo, h).
U(Q)

It remains to estimate the error terms.
By the definition of I.u/ we have
1 l
l(w) 2 7min(d(u),1) and I(u) 2 ZO (165)

forallue RY¥andl, < 1.Foru € Q \ U(Q), we find d(u) > I(u) > [,/4. Hence, we
can estimate

[0.0)

f l(wW)?du < C<1 + j d(uw)? du) < C1+ J t2 08| dt;
Q\U(Q) {dwlo/4} lo/4

where |0Q,| denotes the surface area of the boundary of Q; = {x € Q: d(x) > t}. Using
the fact that |0Q,| is uniformly bounded and that |0Q.| = 0 for large t, we get

j QIW?du< Cl3t (166)
Q\U(Q)

For u € U(Q) the inequalities (163) and (165) show that [(u) is proportional to [,. Since
B,n dQ + @, wefindd(u) < l(u) < [, and

f l(w)*du<Cl§ f du < C I8+ (167)
U(Q) {d(w=lo}
forany a € R.
We insert (166) and (167) into (164) and get (using the fact that h < C~1 1)
—C (192 h% + 3% + 1§+ h~) (168)

< h9=1 (Tr(Ho) LY 10 + LZ) [90]ad+? )
<C (l;fl RSt + [@+1 g1 4 [T h Rloc(lo,h)).
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In order to choose [, we need to distinguish several cases. For the lower bound we
recall that 0 < 6, < min{1,2s}. The stated lower bound on R, follows with [,
proportional to A , where § = (1 +6,)/(1 + a + &,).

For the upper bound we have 0 < 6; < 1.If1—- d/4 < s < 1, then we pick [,
proportional to h® , where B = (1+ 6;)/(1+a+38,). If 0 < s < 1— d/4, then we
pick h® , where 8 = (2s + d/2)/(a + 2s + d/2). This completes the proof of Theorem
(2.3.3).

We analyze the local asymptotics in the bulk and prove Proposition (2.3.2). We
consider the local asymptotics in the case where Q is replaced by a half-space. We reduce
the problem close to the boundary to the analysis of a one-dimensional model operator given
on a half-line and give an analogue of Proposition (2.3.12) for a half-space. We show how
Proposition (2.3.12) follows from the previous considerations by local straightening of the
boundary. We perform the localization and, in particular, prove Proposition (2.3.15). We
provide some technical results about the one-dimensional model operator introduced.

We define the positive and negative parts of x € R by x; = max{0, +x}. We use a
similar notation for the Heaviside function, namely, x§ = 1if+x > 0andx) = 0if 'x <
0. For a self-adjoint operator X, the operators X* and X9 are defined similarly via the
Spectral Theorem.

Warm-up dealing with the spectral asymptotics in the boundaryless case. Although
the estimates in this case are essentially known, we include a proof for the sake of
completeness and in order to introduce the methods that will be important later on. We
divide the proof of Proposition (2.3.2). The operator

Hy = (=h?Q)S — 1 in L*(R%),
defined with form domain HS(R%), will appear frequently.
The lower bound is given by a variant of the Berezin—Lieb—Li—Yau inequality, see [105],
[113], [114].
Lemma (2.3.4)[103]: Forany ¢? L?(R*) and h > 0

Tr(¢pHap)_ < Lglglj ¢? (x) dx h™4.
A J o
Proof: We apply the variational principle for the sum of the eigenvalues
Tr(pHoe) = inf = Tr(¢Hab),

where the infimum is taken over all trial density matrices, i.e., over all trace-class operators
0 <y < 1 with range belonging to the form domain of H,. We apply this twice and find

Tr(¢pHadp)- < Tr(pHyd)- < Tr(dp(Hp)¢) .
Applying the Fourier transform to diagonalize the operator (H,) yields the bound

1 1 —
Te(@(H0)-9) = sz || $CO7 Ul = V- dpdx = 18] [ pGo)? dx e,

as claimed.
We now assume that - satisfies the conditions of Proposition (2.3.2). In particular, we
assume that - has support in Q. To derive the upper bound, we puty = x (HO)E)(qb, where

X denotes the characteristic function of the support of ¢. Then

Y(x, ) = 2rh) % x () x e (¥) PG/ gy,
Ipl<1
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and we obtain that

—Tr(¢Hod)- < Tr(ypHqod) = Tr(y¢pHo )

= | (lcwayzgera; s )
Lemma (2.3.5)[103]: For ¢ € C°(R%) and h > 0 we have

(169)

, 2 1 ~ 2
[-hayger® | = pgl5 + [ G p+ b1 +1p = wnP) |Gan [ dn.

Proof: By Plancherel’s theorem we get

”(—h?A)V2¢emh“z::(2nthJf €15 () (y)e'® = D=/ dydédx.

Since ¢ € C5° (R%), we can use the fact that
j d)(x)d)(y)ei(p—f)-(x—y)/h dxdy

— lim 11' =31 =Y ()b (y)e! @ O-C= /1 gy

50+
and since

1% || @eme -0 dxdy
is absolutely integrable as a function of ¢ € R% , we find

dydxd
27)52heiP-h _ eflx— y|? 2s i(p—=§).(x-y)/h 2"
[-rmy=gert | = Jim [[] HELIOTIOr i
=Jim || et @ie + 67 0) (660 - )
o ei(p‘f)-(xr_ly) dxdyd
2(2mh)4”
By symmetry in x and y the first two terms on the right side give

. dxdyd
Slx—yI? | £]2S 2 i(p—&).(x—y)h
|| e iazeree e
xdé&

” “ =12 23 12125 2 d
= — 2 S
5[] e s 1697 0 g
Now we can substltutelql2 |p &|%/(46h?) to get
dxdyd

lim jff eélx—y|2|§|25(¢ (x) + ¢? ()’))el(p_‘c)'(x_y)/hZ(ZHh)d

6-0+
= |p|2s f 7 (x) dx.

We are left with calculating the third term on the right side of (170), namely
dxdzd

8lz|% | £ 125 _ ip—$)z/h
|| g e - (oa+ ) e T

Again by Plancherel’s theorem we see that it equals

jff 5\z|? |€|25 ( ) |1 —Lz.n/h|zei(p—f).z/h

We can write
|1 _ e—iz.‘r)/h|2 - 2 _ e,iz.n/h _ e—iz.n/h

dndzdé&
2(2m)4p2d’
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and from the first summand we get
£ (M| ip-g).z/n 419248
¢ (E)| ¢ (2m)@h2a

Jf e
(DI v

2 2s
= || e+ 2mval” |8 ()] e

In the same way we can treat the second and third summand and after taking the limit § —
0 + we finally find

, dxdyd$
. [ 00 - om0
1
o= <|p|25—§(|p+n|25+ |p—n|25)>|¢(ﬁ)| dn. (172)

Hence, combining (170), (171) and (172) yields the claim.
In view of identity (169) and Lemma (2.3.5) we conclude

Tre(pHod) = (2h) f (IpI2= — 1) dp 6112 + (2mh)~< j Re@)dp (173)

_ Ipl<1 Ipl<1
with

1 ~ 2
Ru(@) = J (5 (p + il +1p = knl**) = 1pI?* ) |G a
We proceed to estimate R;, (p). Note that for any a > 0

max ((a+ )+ (a— t)S) = 2a°.

Taking a = |p|?> + n|?> and t = 2p .71 , we deduce that

1

SUp+ nl* +pI*) IpI** < (Ip” + Inl*)* IpI*.
Next,for0 < s < 1 concavity impliesthat (a + b)* < a® + sa’ tbfora,b > 0,from
which we learn that

(pl* + n|>)° = IpI* < s|plPC~Vinl2
Hence, replacing n with hn and using (160), we can estimate

Rh(p)j |P|_2+25|h77|2 |(;5(7])|2d77 — S|p|—2+25h2 f |V¢|2 dx < Chz |p|—2+25ld—2_

Thus the upper bound follows from (169) and (173).

We prove the analogue of Proposition (2.3.12) in the case where Q is the half-space
R4 = {(x',x4): x4 > 0}. We define the operator H* on L? (R%), in the same way as Hy,,
with form domain

75 (RY) = {v € HS(RY) : v= 0onR? \R_i}.
We shall prove

We collect some facts about the one-dimensional operator
d® s

AT = (dt2 * 1)
in L>(R,) with form domain .~ % (R..), and about the corresponding operator A4 in L? (R),

defined analogously to A*, but with form domain H* (R).

Foru > Oandt;u € R,,lete*(t,u,u) and a*(t, u, 1) be the integral kernels of the
operators (A* —u)? and (A% — u)_, respectively. Similarly, we define a(t, u,u) via
(A — ). To simplify notation we abbreviate a®(t,u) = a*(t, t,u). We also note that
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a(u) = a(t,t,u) is independent of t € R,.The inequality A* > 1 implies that
at(t,u,pu) = et (t,u,u) = 0foru < 1andsimilarly for a(t,u, u) and e(t, u, ).

The following two results about the integral kernels e* (¢, 1) and a™(t, 1) are rather
technical. The first one provides a rough a-priori bound on e* (¢, u, u).
Corollary (2.3.6)[103]: For x = (x',x4) € R¢andy = (y',y,) € R¢ the integral kernels
of (H*)? and (H™*)_ are related to those of (AT — )% and (A" — u)_ by

1 el ol T xql&'l yqlé'| 1 dé’
+)0 = i€ = y/h 5 o+ (24 d
and
1 Ll ! ! X |€,| ydlfll 1 dE,
HY)(x, =_f 125 pif (' =y hg+ (220 1 , 17
By =g | g1 a5 T o et (179)

Proof: Observe that Lemma (2.3.7) and the Spectral Theorem imply that for any bounded,
measurable function ¢ on R,

@
up+ U = [ qgana
RA4-1
This formula means that for any f € L? (R%),
(FoCH* + DFY = [ W) @A U5
R -1
From this, we easily conclude that if ¢ (|€'|>SA") has an integral kernel for all £’ € R4¢™1
,then ¢(H* + 1) has an integral kernel given by
¢(H' + D(x,y)
1 gt xalé'l yal'l 1 dg’
= — I pi€ .(x"=y)h 1125 g+ d d
w |, 1 PIg'1A )( e T
The corollary now follows from the fact that for ¢(E) = (E — 1) one has
P(IS'12°A%) = (AT1§']*)2
and for ¢p(E) = (E — 1) one has
P(IS'12°A%) = 1§12 (A" [€']%%).
We now give

Lemma (2.3.7)[103]: The mapping
(Uf)e(6) = (2mh)~(@=D/2p1/2]¢7| 71/ f f e 18 e M

RA-1

&e R4t >0,
defines a unitary operator from L*2(R%) to fﬂgz_l L2(0=) g’ Moreover,

@
UH"+ DU = f |E|2SAT dE'.

d-1
Before giving the proof we show how to dedu?e formulas for spectral projections.
Proof: The fact that U is unitary follows from Plancherel’s theorem together with a dilation.
To prove the formula for H*, let f € .7 S(R%), the form domain of H*, and denote by f
as before the Fourier transform of f with respect to both x" and x,; . Since f € .~ S(R%),
its extension to Rd by zero belongs to.~ S(R%) and we can also extend (Uf ) ¢ by zero to

R. A short computation shows that
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ah

and thus,

(Uf)e (el de = h=4/2|"[V2f(h~1¢", h™

HE ),

f Ihp|2|F ()| dp = f (j (|hp'|2+<hpd)2)5|f<p'.pd>|2dpd)dp'
R4 R4-1 R

- h—dj || 1+2s (f (1+wz)slf(h‘lf’,h‘lls"lw)|2dw>df'
Rd-1

=fRd_1 & |<f (1+0?)

J (UF)e (t)el®tdt

dw)df.

Since (Uf),s vanishes on (oo, 0), the previous formula can be rewritten as

f S| F )| dp = j €5 (AU | de
R d

This is equivalent to
®
UH"+ DU = |E'2SAY dé’
RA-1
and concludes the proof.

We state upper and lower bounds on —Tr(¢pH*¢)_ in terms of the one-dimensional
model operators A and A™, in particular, in terms of the function K(t) given in (219). As
explained below, Proposition (2.3.9), will be a direct consequence of the following

estimates.

Proposition (2.3.8)[103]: Assume that ¢ € C5° (R%) is supported in a ball of radius I = 1
and assume that (160) is satisfied with [ = 1. Then forany 0 < §, < min{1, 2s} there is

a constant Cs, such that for all h > 0 we have

—Tr(¢pH"¢)-
> —Lglc)i $2(x)dx h=¢
R$
K d h—d+1
+ R+ ¢* (x) (h) x
—Tr(¢pH"¢)-
> -1 [ ¢*(x)dx h?
R¢

j P?(x)— K( )dx p—d+1 + Cs, p-d+1+8;

Assuming Proposmon (2.3.8), we now give

(176)

(177)

Proposition (2.3.9)[103]: Assume that ¢ € C3 (R%) is supported in a ball of radius I > 0
and assume that (160) is satisfied. Thenforh > Oandany 0 < §; < 1and0 <4, <

min{1, 2s} we have
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_CS 5 (ld—1—61 h—d+1+61 + ld—1—62 h—d+1+62)
192
< Tr(pH*¢p)_ — Lgl) $2(x) dx h=¢
d -
+ L(S?C)i de_l ¢2 (x’, O)dx h—d+1 < Calld—1—51 h—d+1+51 .
This result depends on a more or less explicit diagonalization of the operator H*, which is

far from obvious. Relying crucially on recent results of Kwasnicki [112] about non-local
operators on a half-line.

Proof: To prove the proposition, we may rescale - and hence assume. Proposition (2.3.9)
Is then an immediate consequence of Proposition (2.3.8) provided we can show that for any
0 <4§; < 1thereisaCgs, suchthatforallh > 0

1 X4
2() 2 K ~ 1@ j
fm $2() 7K (37) dx $?(x', 0)dx’
In order to obtain the latter bound, we substltute x4 = th and write, recalling (220),

¢2(x)%1( (%1) dx —LS) $2(x',0)dx’

d
R¢ R¢

oo th
=f K(t)j j 0,¢%(x', t)drdx’dt.
0 R4-1 Jo

By Hoélder’s inequality we can further estimate

th
j j 0,¢*(x', t)dtdx’
Rd-1 Jo
81

th 81 o (1-6,)71 1=
<j dr) j j 9,02 (x', 7)drdx’ < Ct% por,
0 0 RA-1

Since fooo t91|K(t)|dt < oo < 1 by Lemma (2.3.25), we obtain inequality (178).
We shall prove the lower and the upper bound in Proposition (2.3.8), respectively.
(2.3.7). Lower bound on —Tr(¢pH* ¢)_. To prove (176) we use the fact that

—Tr(pH*¢)_ = —Tr(¢p(H")_¢) .

The lower bound follows from this by integrating the identity
X
(HY)_(x,x) = h™4L) haK (Fd) , (179)

against ¢ . Equation (179) is a consequence of (175). Indeed, by the same argument we
learn that

< Cs, h° (178)

IA

H)ex) = o [ 25025 "
0/ _(Zn)d_lhd Rd-1 .

On the other hand, by direct diagonalization, we find that
(Ho)(x,x) = 2L,
Comparing these two identities with (175), we arrive at (179), thus establishing (176).

To prove (177) we set= (H*)? . Its integral kernel is given by (174) in terms of the kernel
et (-, ,p) of (AT — )2 . By the variational principle it follows that
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~Tr(¢H*$)- < ~Tr($y¢H") .
—y + - -2s
thfRd ]Rd de 1 fRd €€ T x et (ralé' | R yald R 1E172)

X (|p|25 — 1)elp-(y—X)h¢(x)¢(y) dpdf’dXdy

We insert the identity

1
P(D() =5 (9*()P* () ~ PP,

and by a similar argument as in the proof of Lemma (2.3.5) we can use the symmetry in x
and y and substitute g = pd /|p'| to obtain

—Tr(¢pH ¢)_ < I[¢] — Rp[¢]

with the main term

Inl j j f j 6] €YV ¢ o (€| h7L, yal€'| R €172
~ had re Jra-1 Jpd
dpd&'dxdy

X et(yp—xp)lp 9/ ((q% + 1)% — [p'[72)Ip! 12592 O =

and the remainder

Rald de j j f 6] B8V h gt (e |£] Y, yg|E'] A7, €725
" h re Jrd Jpd-1 Jpd

dpd&'dxdy

2s ,ip.(y—x)/h _ 272 77

x |p|*e 1 () = 6O 55 o
Since ¢ € C5°(R%), we can perform the y' -integration in I,,[¢]. We use the fact that

[ e Grpmpm) (a2 + 1% = 172290 )1dyy dq = ~2ma* G 70 )
R YO
and obtain
1 [0 0]
ol =z | [ [ 18 el el 1)
rR¢ Jo JRrd-1 JRd
dqdé'dy,dx

(2m)?
1 r12s+ + ! - r|—2s d{’dx
s ng $2(0) fR €122 @ Gral€'| 17 1E172)

Using again (179), we find that
I[p] = (1)] $2(x) dx h=2 + J qb(x)K( )dxhd (181)

x (g% + 1* = [p'[729)e Cr)la/m g2 (x)

It remains to study R, [¢]. We clalm that for any 5 — s <0 <min {5 ,1— s} there is a

constant C, > 0 such that

R[]l < C, hm4¥25+20 (182)
forall h > 0. This, together with (181) will complete the proof of (177). In order to show
(182) we perform the p integration and find that
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- f f f 1€7| &' (x'-¥")/h xgl$'| yal§'l 1 |¢(x)_¢(y)|2d€’dxd
hd-2s R‘}- lR‘i Rd-1 h ' h '|§r|—25 |x_y|d+25 Y

We insert

20

ei¢" '~y —
112

(Ax,)aeif’.(x’—y’)/h

and integrate by parts to get

C S oW A X |€,| ydlfll 1
R, [}] = ri1-2o ,ié" .(x"-y"/h + [ 24 ’
h[ ] hd—ZS—ZO' j];Qg ‘[IRi ‘[IRd_l |€ | e e h ) h ) |€’|—ZS d{

_ 2
X (A,)° |¢|§sz ylfgs)l dxdy.

By Lemma (2.3. 22) and the fact that e* (¢, u, u) = 0 foru < 1 we arrive at

. () =901
Ral9) < s | de it e e
LORTOL
- hd 25— Zaj j _y|d+2$ dxdy

According to Lemma (2 3.26) this implies (182) and hence completes the proof of (177).
We show Proposition (2.3.12). After having analyzed the half-space, we now show
how the case of a general domain follows. We shall transform the operator H, locally to an
operator given on the half-space
R$ ={(y",y4) € R xXR: yq > 0}
and we shall quantify the error made by this straightening of the boundary.

Under the conditions of Proposition (2.3.12), let B denote the open ball of radius [ >
0, containing the support of ¢. For x, € B N 9Q let v, be the inner normal unit vector at
xo. We choose a Cartesian coordinate system such that x, = 0 and v,, = (0, ...,0,1), and
we write x = (x5 ,x4 ) € R x Rforx € R%.

For sufficiently small [ > 0 one can introduce new local coordinates near the
boundary. Let D denote the projection of B on the hyperplane given by x; = 0. Since the
boundary of Q is compact and C1%, there is a constant ¢ > 0 such thatfor0 < [ < c we
can find a real function f € C** given on D satisfying

00N B={(xg,x;):x"€ D,xq= f(x')}n B.
The choice of coordinates implies f (0) = 0 and Vf (0) = 0. Hence, we can estimate
sup [Vf (x)] = sup |Vf (x) = VF(O)l < Cp |x'|® < Cp 1™

x'€D x'€eD
Since the boundary of Q is compact, we can choose a constant C > 0, depending only on

Q, in particular independent of f, such that the following bound holds:
sup |Vf(x")| < CI“. (183)
x'eD
We introduce new local coordinates via the diffeomorphism ¢ : D x R —» R%, given by
yi=¢j(x)=x; for j=1,..,d—1
and

Va = @a(x) = xg f(x").
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Note that the determinant of the Jacobian matrix of ' equals 1 and that the inverse of ' is
givenonran ¢ = D X R. In particular, we get

p(00NB) c IR ={y e R*: y, = 0}.
Fixv € 7 S(Q) with supportin B. For y € rang putv(y) = v °p~1(y) and extend v by
zero to R% .
Lemma (2.3.10)[103]: The function ¥ belongs to .~ S(R%) and there exist positive
constants ¢ and C depending only on Q such thatfor0 < [ < c we have

(7. (—)547) — (B, (=) v)| < € 1@ min{(v, (~)5¢ v), (v, (—A)30) .
Proof: By definition, # belongs to .~ $(R%) and fory € .~ SR% /R< we find
xqg=yat f ) < fX),
thus #(y) = v(x) = 0. Therefore © belongs to .~ $(R%).
Using the new local coordinates we get

_ 2
0,00 = Coa [ [ e dx

17(y) — #(2)|?
= 184
s,d _]};{{d J]Rd x — w|a+2s dydz, (184)

where y = ¢ (x) and z = p(w), thusx = (y',yq + f (¥)) and w = (z',z4 + f (z)).
Let us write

1 1
‘Iy — z|d+2s o |x — w|d+2s

Z|d+25

1 ly —

= — ~|d+2s 2
Y =ATE Ny =22 4 e+ £ O = 20— £@))]
After multiplying out, the last fraction equals

(1 LUo0- F@))’ +20va — 2)(FO") — f(Z’))>
ly — z|?

a/2+s|’

and we can employ (183) to estimate
(FOY = @) +20a = 2 (F&) — £(2)
ly — z|?

ly' —z'|? ly' = 2'| lyq — z4l

Vil————— \%
SuplVf |-+ suplVf | =—

Choosing | small enough, we can assume C [* < 1/2. Then, combining the foregoing
relations, we find

< Cl*.

la

1 1

||x — w|d+zs - ly — z|d+2s
From (184) and (185) we conclude

(5, (-1)347) - 3, (~0)5 )|
< Cou || 1900 - 2P

1

|x — w|d+2s - ly — z|d+2s

dydz
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< Cl® (17, (—A);&ﬁ).
This proves the first claim of the lemma. The second claim follows by interchanging the
roles of (—A)HS& and (—A)§ .

On the range of ' we define ¢ = ¢ ° =1 and extend the function by zero to R% such
that$ € C5°(R%) and ||Vé|| < € 172 hold. Using Lemma (2.3.10), we show the following
relations.

Lemma (2.3.11)[103]: For0 < I < candany h > 0 the estimate
ITr(¢pHa¢)- — Tr(pH* ¢)_| < Cl1¥**h™¢ (186)
holds. Moreover, we have

j $?(x)do(x) = f F2(y)dy (187)
Q R¢
and

0 Sj d2(x)do(x) —j d%(y’,0)dy’ < Clé-1+2a (188)
0 RY

Proof: The definition of ¢ and the fact that the Jacobian of ¢ equals 1 immediately give
(187). Using (183), we estimate

$@dot) = [ 30,0 TH VY <
0 R

RA-1
from which (188) follows. To prove (186) we refer to the variational principle once more
and note that

d%(y’,0)dy’ + Clé-1+2a,
1

~Tr(pHa¢)- = jinf Tr($ydHo),
where we can assume that infimum is taken over trial density matrices supported in B X B.
Fix such a matrix . For y and z from D X R set

YO.2) =7y (07" .07 (@), o
so that 0 < ¥ < 1 and the range of ¥ belongs to the form domain of ¢H*¢. According to
Lemma (2.3.10) it follows that

Tr(¢ydHa) = Tr(@y@(h* (1 - CLl)(~A)pq — 1))
> Tr (¢’5 ((1 — CLYRZ (=A)5g — 1) ¢’5)
and consequently

Tr(¢pHqp)_ = Tr (¢'5 ((1 — cz“)hZS(—A)HS& — 1) ¢'E) .

Set ¢ = 2C1“ and assume [ to be sufficiently small, sothat 0 < ¢ < 1/2. Then
Tr(pHa)- < Tr ( ((1 — CL%R2S(~A)Sy - 1) ?)
Tr(pHae)- < Tr(((—h=8-1)54)¢) +Tr (S ((g — CLYRS (—D)3q — s) q"S)_
< Tr(@H*$)_+eTr (e ((h* /2) (=B34 - 1)4) .
Using Lemma (2.3.4), we estimate Tr (cf) ((hZS/Z)(—A)HS& — 1) gﬁ)_ < Cl?h~% and it

follows that
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Tr(¢pHad)_ < Tr(¢pH*$) + Cl4top™d
Finally, by interchanging the roles of H, and H™, we get an analogous lower bound and the
proof of the lemma is complete.
Proposition (2.3.12)[103]: There is a constant ¢ > 0 depending only on Q such that the
following holds. Assume that ¢ € €3 (R%) is real-valued, supported in a ball of radius 0 <
[ < cintersecting the boundary of Q and satisfies (160). Then for all A > 0 the estimates

~Rpa(Lh) < Tr(¢pHqo)_ L\ jﬂ ¢ () dxh~ %+ L | ¢? (x)da(x) h~a+

20
< Rpa(L )
hold. Here d denotes the (d — 1)-dimensional volume element of dQ and the remainder

terms satisfy forany 0 < §; < 1and 0 < 6, < min{1,2s}

d—1—61 ld+a

hd—151 + hd )’

ld—1—81 ld—1—62 [2a+d-1 ld+a>

Rpa(Lh) < Cs1.5, <hd—1—61 + hd—1-6, + hd-1 + hd

with positive constants Cs_ , Cs, s, depending on 85, §,, Q and the constant in (160).

Based on these propositions we can complete the proof of Theorem (2.3.3).
Proof: It suffices to combine Lemma (2.3.11) and Proposition (2.3.9).

We construct the family of localization functions (¢,),cge and prove Proposition
(2.3.15). Fix a real-valued function ¢ € C5° (R%) with support in {x € R? : |x| < 1} that
satisfies ||¢||? = 1. We recall the definition of the local length scale from (157). For u, x €
R% let J (x,u) be the Jacobian of the map u +~ (x — u)/ I(u). We define

#u0) = ¢ (T )V TG 1),

such that ¢,, is supported inthe ball B, = {x € R? |x — u| < l(w)}.

By definition, the function [ (w) is smooth and satisfies0 < [(u) < 1/2and ||VI||, <
1/2. Therefore, according to [120], the functions ¢,, satisfy (158) and (159) for all u €
R%.

To prove the lower bound in Proposition (2.3.15), we follow some ideas from [115]. In
particular, we need the following auxiliary results; the first one gives an IMS-type
localization formula for the fractional Laplacian.

Lemma (2.3.13)[103]: For the family of functions (¢,),,cge introduced above and for all
functions f € 7 *(Q) the identity .

(.01 = [ @uf (0PI du = (f, L)
Q*
holds with Q* = {u € R% supp ¢, N Q # @}. The operator L is of the form
L= J Ly, l(w)~% du, (189)
Q*

where Ly is a bounded operator with integral kernel

_ 2
e - 6 =00

Here yq denotes the characteristic function of (.

Rpa(Lh) < Cs,

Xa() xa ).
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Lemma (2.3.13) implies that for any operator with range in .~ *(Q)
Try(—A)S = j Tr(y ¢ (—8)5 P )I(w)~% du — TryL. (190)
Rd
The next result allows to estimate the localization error Tr yL.
Lemma (2.3.14)[103]: Foru € R%and 0 < & < 1/2 we have
Try Ly, < Try(C 8272 (wW)* xsxa) + Cllyll(w)* §~2+27%r(8)
with

( . d
1 lfl—Z<S<1,

d
r(8) = { |Iné| if 0<s=1-7,

d
6‘d+45—4 [ 0 < < 1 - —,
\ if S 2

where ys denotes the characteristic function of {x € R% |x — u| < [(wW)(1 + &)} .
Proof: By translation and scaling we can assume that u = 0 and [(u) = 1, and hence we
write ¢, = ¢ . (This rescaling changes Q, but the bound we are going to prove is
independent of the domain and therefore not affected by this dilation.) We set
1L, (x,y) {L¢(x, Vxs(x)xs(y) _if lx —y| <6,
0 iflx—yl =6,

and

0(x) = j Ly (x,y)dy.

By a simple adaption of the arguments of [115] we find that for any € > 0
TryLy < Try(6 + €x,) + MT (LY ) (191)

It remains to bound 6 and Tr(LY, )’

We begin by estimating 6. By definition, for |x| > 1 + § we have L} »(x,y) = 0and
hence 8(x) = 0, and for |x| < 1+ & we get

0(0) = Csa |y_yics ((’)jffi_yl(’fﬁ(f) xa()xa(y)dy

ly|<1+6

Thus, for all x € R¢

1
2 B
NI 20 [, S (192)

Finally, we estimate Tr(L ) .The symmetry LS o (1Y) |mpI|es

u(X) — ¢u(y)
Tr(L¢) ff <(¢ |xx ﬁwz}s]) ) dxdy,

where A denote the set {(x,¥) € R x R%:|x| < min(]y|, 1), |x —y = &}. Set
Ay ={(x,y)€ A:|y|=2} and4; ={(x,y) € A: |yl < 2}.

Then
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4 1
H(15)" < jj () dxay -+ clvoil jf iy

Observe that the rlght -hand side is bounded by C §=%~ e for1— d/4 < s < 1, by
Clln §|for0 < s= 1—-d/4,andbyC for0 < s < 1— d/4. Finally, we choose ¢ =
52725 and combining the last estimates with (191) and (192) yields the claimed result.
Proposition (2.3.15)[103]:  There is a constant C > 0 depending only on s and d such
that forall 0 < [, < 1/2andall0 < h < C~1 1, the estimates

0 < Tr(Hg). j  Tr(@uHad) L0 du S €R I Rige(lo, )
R

hold with a remainder

( d
1 ifl_Z<S<1’

1

lo\ |2 d

Rioc(lo, ) = 4 1n<ﬁ"> if0<s=1-7
lO 2—2s—d2 o< -1 d
(%) FO<s<l-g

In view of this result, one can analyze the local asymptotics, i.e., the asymptotic
behavior of Tr(¢,Hq¢,,), separately on different parts of Q. First, we consider the bulk,
where the influence of the boundary is not felt.

Proof: We apply Lemma (2.3.14) with a parameter 0 < §,, < 1/2 to be specified later. For
ease of notation we write u instead of &, . Identities (189) and (190) and the estimate from
Lemma (2.3.14) imply

Try(—8)° > j Try (du (=) by — € 62725 1(u) 2 yuxa) L(w)~du

—Cliyli S P22 (S )W)~ du. (193)
Q*

If the supports of u and ¢,/ overlap, we have |u —u'| (3/2)I(w) + L(u'). It follows
that 1(w') — L(w) < Vil ((B/2)L(w) + L(w')). Since|IVlll, < 172, we find
(W)™t < Clw)and L(w)~t < cl(w)~L. Similarly, we get [(u) < C I(u"). We assume
now that 1u satisfies

0, < Co,y if lu—u'|<= (l(u) + l(u’)) (194)

Using these locally uniform bounds on I(w)/ I(u") and 8, = &, together with (159), we
can deduce the pointwise bound for all x € R¢

[ 160 n @00 o
! du
f 62 Zsl(u) ZSXu(x)XQ(x) <f (pu (x)z l( /)d) l(u)d
< C d)u (x) 52 Zsl(u,) 25¢u (X) l( I)d

Rewriting the last integral W|th u as integration variable, in view of (193), we find
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T A > T Ays C82~2s du
I‘)/(— ) = f* ry(f d)u((_ ) - l(u)25>¢u>w

o du
I | 826 e
By the variational principle it follows that
Tr(Hg)_ = 0inf1 Try((—h?A)S — 1)
<ys<
du
< [ Tor@u (R - 1 - C RS 0 1

du
_|_Ch25 . 5;d+2—23r(5u)m_

To bound the first term, we use Lemma (2.3.4). For any u € R%, let p, be another
parameter satisfying 0 < p,, < 1/2 and estimate
Tr(pu((—h?A)° = 1 — C h*85 1 (w) ™) ¢,) -
< Tr(¢pyHo) - + CTr(¢u(puhzs(_A)s — Py — h25613_25l(u)_25)¢u)—
< Tr(puHady)— + CLW) % (p, h3)™ @ (p,, + R293721(u) ~25)1+¢/29),

We pick p, = h?S8§2725](u)~25. By (165) and our assumption that §,, < 1/2, we see that
2s

Ou < <£> 265—2.
lo

We assume now that h < C~1! [, (with a possibly large constant C) in order to guarantee
that p,, < 1/2. With this choice we find

(195)

62‘25l(u)d_25

Ch25512t—25 2
Tr <j bu <(—A)S —1- W) (,bu)_ < Tr(¢,Hqpp,)_ +C a-2s .(196)

Combining (195) and (196), we obtain

du 5272s h?585,;%r(68y,)
Tr(Hg)_ < jﬂ Tr(qbuHQ¢u)_W+ Cfﬂ* <hd‘25l(u)25 + TG >du. (197)

At this point we choose §,, in order to minimize the second integrand, which we shall denote
by I,,. We pick

. d
h/l(u) if 1_Z<S<1’
8y = { (hJIE)In (L) /W)|YE4 if 0<s=1— %.
| (hl(u) )¥/=%) if 0<s<1- %,

and note that §, < 1/2if h < C~1l, by (165). Moreover, (194) is an easy consequence of
the corresponding estimate for [(u)/L(u"). With this choice we arrive at the bounds

d
rh'd“l(u)‘2 if 1— 755< 1,
d
L, < C<{ h= % 21(w)~?|In (1(w)/h)|? if 0<s=1 — 7
d
Lh—d/2+Zsl(u)d/2—Zs lf 0<s<1 _Z’
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Finally, we integrate with respect to u. The same arguments that lead to (166) and (167)
yield

d

(pdvz-1 if 1-5<s<1,

d

f Ldu < C{h™ %251 In (I(u)/h)|Y/? if 0<s= 1—1,
Q*

d

- —-d/2—- ,
| hmd/2rs ) a/EmEe if 0<s<1-g,
This completes the proof of the lower bound with the remainder stated in Proposition

(2.3.15).
To prove the upper bound, we put

V= [ Tr@uHad ) dul)du
R
Obviously, y = 0 holds and in view of (159) also y = 1. The range of belongs to .~ ()

and by the variational principle it follows that
Tr(Ho)- < TryHg == | Tr(gHagh) 1) du
d

R
This yields the upper bound and finishes the proof of Proposition (2.3.15).

We study the second term of (161) in more detail. First we derive representation
(154).
Proposition (2.3.16)[103]: One has
dp’
(2) 11-2s
%) =
s,d de_l E(Ip | )(Zﬂ)d_l
s 2s
C2n)41(d-1)(d -1+ 25)
Here is the characteristic function of R, and

£0 =1 | (a) = a*(ew) d. (199)

0
Proof: The first identity follows immediately from (219) and (220). The second identity
follows from the fact that

Tr [)(A 2s y—(AY) 25 |.

(d-1) (d-1)
] (198)

125 o dp’ |42 2s
[ W@ =) ot = o

Rd-1 (2m) 2m)1(d-1)(d—-1+ 2s)

for any E > 0, which by the Spectral Theorem implies that
dp’ |42 2s
r12s ,+ ry—2s —

de_l PGP G T Gt @ D =11 29 ¢
and similarly for A.
Remark (2.3.17)[103]: There is another representation, namely,

—(d-1)/2s

A+)—(d—1)/25 (t, t)

2s dp’
@) _ 1|—2s
L = _ 200
s,d d _ 1 _I_ 25 _[Rd—l f(lp | ) (27‘[)‘1_1 ( )

where

(00]

(= [ (e - ) e (201)
0
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Here e(u) and e* (¢, ) are the diagonals of the integral kernels of the spectral projections
(A—w)? and (A" — u)?, respectively. We have not shown that the integral in (201)
converges, since we will not use (200). Identity (200) is an easy consequence of (198) and

the fact that
u

a(u) =J# e(t)dr, at(t,u) =f et(t,7)dr,
0 0

which follows by the Spectral Theorem from (E — u)_ = fo“ (E — 17)°dr. Representation

(200) is natural since in terms of this function the conjectured formula for the number of
negative eigenvalues of Hg takes the form
do(x )

ffﬂ S 2S)_(Z h)d ﬂag sl 2S)‘(z n)d- +o(h™)

which is the analogue of well-known two-term semi-classical formulas in the local case; see
[111], [118]. The function & plays the role of a spectral shift. Note that we avoided to write
(199) and (201) in terms of a trace. While the integrals on the diagonals converge, we do
not expect the operators to be trace class, see [117].
Lemma (2.3.18)[103]: Let B be a non-negative operator with ker B = {0} and let P be an
orthogonal projection. Then for any operator monotone function ¢ : (0,) — R,
P,(PBP)P > P,(B)P. (202)
If, in addition, B is positive definite and - is not affine linear, then P¢p(PBP)P = P¢(B)P
implies that the range of P is a reducing subspace of B.

By definition, the range of P is a reducing subspace of a non-negative (possibly
unbounded) operator if (B + 1)~ ranP c ranP for some T > 0. We note that this is
equivalent to (B + 7 )~! commuting with P, and we see that the definition is independent
of T since

B+t')P-PB+1)?
=B+t)B+)Y((B+r)P-PB+t)YHB+)B+1) L
Hansen [109] has proved Lemma (2.3.18) for bounded B and without the equality statement.
It is not clear how to extend his proof to our general case and we provide a different
argument.

We recall Lowner’s theorem [107] which characterizes operator monotone functions

on (0, «) by the representation

&(E) = a+ bE + =1 m (203)
f(o'oo) E+ 7

witha € R, b > 0 and afinite, positive measure p on [0, o). Note that the function ¢ (E) =
E’,0 < s < 1, to which we apply this lemma, is operator monotone in view of the
representation

_ sin(ms) @ 51 E
E+t
This is of the form (203) above with dp(7) = (sin(ms) m)(1 + %) 1t8dr,a =
fooo - Ydp(tr) and b = 0.
Proof: We first prove that

dr, 0 <s <1

PB~P > P (PBP)"'P. (204)
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Here on the right side, the operator PBP is inverted as an operator on the range of P. By a
monotone convergence argument we may assume that B is positive definite. Let f be an
arbitrary element in the Hilbert space. For any in the form domain of B we can write

(f,PB™'Pf) = (% ,BW) + 2Re(Pf,¥) + ||BY?p — B-/2Pf |
We apply thistoyy = P (PBP)~1Pf . Note that belongs to the operator domain of PBP and
hence also to the form domain of PBP, which means that Py = i belongs to the form
domain of B. We find
(f,PB~'Pf) = (f,P(PBP)™*Pf) + ||BY?P (PBP)™*Pf — B‘1/2Pf||2.
This proves (204). Moreover, if equality holds in (204) (still assuming that B is positive
definite), then BY/2P(PBP)~'Pf = BY?Pf forall f, thatis, P(PBP)~'Pf = B~1Pf for
all £, which means that B~ ranP < ranP. Thus, ranP reduces B.
Now assume that ¢ is of the form (203) and rewrite
tE—1 1%2+1
E4+t E4+71

By the Spectral Theorem,

P¢$(B)P = aP + bPBP + j (tP (72 + 1P (B +1)"'P) dp(7) .
[0,00)

Similarly, PBP is a self-adjoint operator in the range of P and by the Spectral Theorem in

that space

P¢(PBP)P = aP + bPBP + j (tP (2 + 1)P (PBP + tP)~1P) dp(7)
[0,00)
Here, as before PBP C P is inverted in the range of P. Thus,

P¢(PBP)P — P$(B)P = j (P (PBP +1P)™'P — P (B+ 17)"'P)(r? + 1)dp(7).
[0,00)

By (204) with B replaced by B + 7, the integrand is a non-positive operator for every t €
[0, ). Thus, P¢(PBP)P = P¢(B)P, as claimed.

This argument shows that P¢o(PBP)P = P¢(B)P implies

P(PBP +tP)™'P = P(B+1)"'P

for 7 € [0, ). If ¢ is not affine linear, then the measure p is not identically zero and there
is T € [0,0) with P(PBP +7P)™'P = P (B + 1)~ 'P.Now the analysis of equality in
(204) (note that B + T is positive definite) implies that ranP reduces B.
Here we shall prove

S . (2
Proposition (2.3.19)[103]: Forany 0 < s < landd = 2onehasL;; > 0.

Proof: We shall show that for arbitrary non-negative operators B with ker B = {0} and
orthogonal projections P,
Tr[PB*P (PBP)™*] = Oforalla > 0. (205)
If B is positive definite, then equality holds iff the range of P is a reducing subspace of B.
We apply this to the second representation in (198) with B = A and P = y and note
that A* = yAy. Thus (205) implies Lgi)i > 0. Since B = 1 and since the range of P is not a
reducing subspace for B (indeed, (A + 7)™ 'f does not necessarily vanish on (o, 0) if f

does), we even have Lfc)i > 0, as claimed.
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It remains to prove (205). The argument is somewhat different depending on whether
a < 1 ornot. In the first case we learn from Lemma (2.3.18) with ¢(E) = E~“ that
PB~%P > (PBP)™“
with equality if and only if ranP reduces B. This immediately implies (205) and the equality
statement. Now assume that @« > 1. Then Lemma (2.3.18) with ¢ (E) = E~1/¢ yields
PBP > (PB~%p)~ 1/«
with equality if and only if ranP reduces B~%. Since E — E~% is strictly monotone
decreasing, we obtain again (205) and, using the Spectral Theorem, the equality statement.
It is well known that the Dirichlet Laplacian —AQ on (Q satisfies
Tr(—h?Aq — 1) = L{)10R~¢ L|0Q|h=2*1 + o(h=0*Y),
see, [108] for a proof under the sole assumption that Q. € CY* forsome 0 < a < 1.Here

1
(€] 2
Ly = —1d
Ld = (2m)d fRd (Inl ) dp

and, by an argument similar to that in our Proposition (2.3.16), one can bring the second
constant in the form

@ _ 157 2s
L 2m)d-1(d—-1)(d—-1+ 2s)
where B = —d?/dt? + 1 inL%} and B* = d?/dt?>+ 1 with Dirichlet boundary
conditions in L%. A short computation, using the fact that

Tr [XB(d—l)/ZS X — (B+)(d—1)/25],

1
(ES—1)= s(1—5) j (E—1)_152%dt+ s(E—- 1),
0

gives
Tr((—h?A)S —1)_

1 g
= L(ﬁ;lﬂlh‘ds<(1 —s)j 2757 d 1 + 1)
0

1
— L) |00lh 41 s ((1 —s) j r@-D/2+s-1 g ¢ 4 1) + o(h™9%1)
0

s(d+1)

€Y) —d
S A 0] ]
1al d—1+2s

L)100|h=4 + o(h=+D),
that is,
=(2) . S(d + 1) )
Ld g —1+42s 1d
_ Jse7 25

C (2n)41(d-1)(d -1+ 25)

Tr [XB(d—l)/ZS X — (B+)(d—1)/25],

Since
1

1
ﬂfR (1+ p2)@-1/2

B@-D/2(¢ ) =

we find that

dp = A4V,

|42 2s

Z(Z) _ L(Z) —
ta  "id - (2m)d-1(d —1)(d — 1+ 2s)

Tr [(A+)(d—1)/25 _ (B+)(d_1)/2].

100



We now apply Lemma (2.3.18) with B = d?/dt? + 1inL*(R), with P being the
projection onto L?(R,) and with ¢(E) = ES. Then P¢p(PBP)P = (B*)Sand P ¢(B)P =
A*, and therefore (202) yields (B*)S > A*.Since E ~ E(@~1/25 js strictly monotone and
since the operators A* and (B*)® are not identical, we conclude that
Tr [(A+)(d—1)/25(B+)(d—1)/2] > 0.
This shows that Z(f; L(Z) > 0 and completes the proof of Proposition (2.3.1).
For the sake of completeness we have

Lemma (2.3.20)[103]: Let (A4, ) ey be a non-decreasing sequence of real numbers, and let
AC > 0,BbDeERand1 < a— 1 < b < a berelated by

C = AY%(a+ 1)A*¥/e D= B(A(a+ 1))
Then the asymptotic formula
N

—(1+b)/a

z A = ANS* 4 BNPHL 4 o(NP*1), N - oo, (206)
IS equivalent to
(1+b) (1+b)
z (A=), = CAC*®/a _DAa 4+ o(A @, A— oo, (207)

keN
Proof: This lemma is a consequence of Hardy, Littlewood and Polya’s majorization

theorem, which says that for any non- decreasmg sequences (ay) and (by)

z a < z b, forall N € N (208)

. . k=1
Is equivalent to

z (A—ak)+_z (A—by), forallA € R,

see, [116]. As usual, we will denote property (208) by (ai) < (by).
We fix € > 0 and set Bf = A(a+ 1)k*+ (B+e€)(b+1)k”. Note that the
assumptions on a and b imply
N

z BE = AN (B 4+ €)NP* + o(N**1), N > (209)
and
+ ad
z (A — ﬁk_)+ = TTi/a A(1+a)/a (210)
keN (A(a + 1))
B+ E(1+b)/ AQ*DY/a 4 o(\@+D)/a), A = oo
(ACa+ 1)) ¢

First, we assume that (206) holds. Then, by (206) and (209) there isan N € N such that

forall N > N,
N N N
D Bi< ) W< B

k=1 k=1 k=1
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We put af = Bf for k = N, and af = max(B; ,Ax), @ = min(By , ;) fork < N..
Thus

(a) < () < (af),
and therefore

2 (A—a;)+sz (A—/lk)+sz (A—ap), forallA€ R

keN keEN keEN

D (-ad), =) (A-pE), + 0,

keN keN
the assertion (207) follows from (210). The converse implication is proved similarly.

We outline the calculations that are necessary to complete the analysis of the model
operator A* introduced. The results depend on the following spectral representation of the
operator A* found in [112].

Theorem (2.3.21)[103]: For E > 0 let
YE)=E+ 1) -1
andforA > Oputy;(§) =0if0 <& < 1and
1 AP’ (A%) sin(ms) (82 — 1)S
1) = T + (7 - D7 — 200D E - 1) cos(rs)

10 & )R -2
XeXp( EL 1™ 5@ - v dz)

s 1 j“’ A WOH® -
YTl xR - ()

Since

if & > 1 Moreover, define a phase-shift

dq (211)

and functions

(00

Fy(x) =sin(Ax + 9;) + j e %y, (8)dE, x > 0. (212)
0

2 (0)0)
OF() = \E f FOOF(x) dx
0

defines a unitary operator from L?(R,) to L?(R,).

This operator diagonalizes A* in the sense that a function f € L2(R,) is in the domain
of At if and only if (A2 + 1)S®f(A) isin L?(R,), and in this case

PATF() = (P + 1)Of (D)
According to [112] the Laplace transform of y;, is a completely monotone function bounded
by one. From (212) it follows that forall t > 0
|IF,(t)| < 2. (213)

Theorem (2.3.21) states that the functions F, are generalized eigenfunctions of the operator
A*. Hence, we can write

2 0]
et(t,u,p) = - f (22 + 1) — )oK () Fy(w)dA. (214)

Then
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From (219), (220), and Proposition (2.3.16) it follows that

47 (d—1+4+ 2s)(d —1) (2m)4
x f ) f ) (1- 2r2()) (22 + sV gadt (215)
A .
0 0

Lemma (2.3.22)[103]: For any u > 0 and t,u € R, one has |e*(t,u,pn)| < Cu'/?s.
Quantifies that a™ (¢, u) is close to a(u) for large t.
Proof: Lemma (2.3.22) is an immediate consequence of (214). In view of (213) we estimate
(M1/s_1)i/2
let(t,u,pu) < C J dr < Cu'/@9.;
0
This proves the lemma.

We need the following technical result about 9,.
Lemma (2.3.23)[103]: The phase-shift 99, is monotone increasing and twice differentiable
in 1> 0. It satisfies

T
9y = Oand19,1—>Z 1—-5s)asd—>
The first and second derivatives are bounded and one has, as A — oo,
d19/1 _ d219/1 — 0 (1)
dr ~ diz

1)
Proof: Following [112], we substitute { = Az for { € (0,1) and { = A1/z for {E(A, o) in the
definition of 9, and obtain
1t 1 1 Y% —yp(A*z?)
191 = — J 21 —2 dZ.
0o 1—2z z? P(A%/z?) — P(4?)
Note that the function

A
1 Y(A%) —yp(A%z?) 1 a4+ A%)S — (1 + 2222)
z2 Y(A2/22) = P(A2) 22 (1 +22/22)S — (1 + A%)¢
equals 1 for A = 0 and that for all z € (0, 1) it is increasing in A > 0 and tends to z 2752
as A tends to infinity. By Lebesgue’s dominated convergence we find 9, = 0and

_ 1 1 ps s s
lim 19’1:;[0 1_Zzln (z )dzzz(l—s).

By (211), we also have
1 [0 0]
n=r| boO@

with

h,(© = L (S(l AT - (8 )).

{—2 2 +1)s—(+1)
We remark that

1 s¢?
9,b <9b —0 31
[02b2 (D] < I, A(C)'/’I—OCZ n ((1"'@2)5_1)

for all { € (0, o) . Since the last expression is integrable in { € (0, o), it follows that
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dﬁ’l—lfooﬁb()d
Is bounded and, in particular, we obtain
d19,1| 1 f°° 11 s i (216)
——|1=0 = — —In :
a T nly ¢ \1+d) -1

Similarly, we can show existence and boundedness of the second derivative and decay of
the derivatives as A — oo by explicit calculations and Lebesgue’s dominated convergence.
To simplify notation we put
1—E/2?

E) =
V) =T ® o)
for E > 0. Moreover, we write G, for the Laplace transform of y; and g, for the Laplace
transform of G,. According to [112] we have

_AcosT + tsindy _, [P'(A%) @a(t) _
9,(®) = T g2 A /1/}(/12) iz >0 (217)

P2(6) = exp (% | o 2l (l/u(é“z))dc)

To prove Lemma (2.3.25), we need the following properties of ¢;.
Lemma (2.3.24)[103]:  The function t — ¢, (t) is differentiable in t > 0 and its
derivative satisfies

With

©;(0) = 0(1) as A - oo,
! dﬁ/l
¢;(0) = ﬁlho + 0(1) asAd - oo,

Proof: For fixed { € (0, ) the functionA ~ 1,[),1((2) Is non-increasingin A > 0 and tends
to 1 as A — oo. Moreover,

1 s
—1 =
Fin () ((1 + ) - 1)
is integrable with respect to { € (0, o). Hence we find that
1 o1
@, (0) = - Jy (—zln (1,0/1(42)) a¢

and ¢; (0) = o(1) as A —» o by Lebesgue’s theorem.
In view of (216)

1”1 dd
P Oheo=7 [z () do= F oo

The second claim now follows from the fact that the derivative of 1 — ¢;(0) is bounded.
Lemma (2.3.25)[103]: Forany 0 < y < 1 there is a constant C such that forall u > 1

[ taremw aGlde < Gucamo? + 1, (218)
0

In particular, the function
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K(t) =

1
ot | ST — L)AL > 0,(219)
RA4-1

satisfies forevery0 < y < 1
j t|K(t)| dt < 1.
0
(2

With this lemma at hand we can now define the constant Lg ; which appears in our main
theorem by

L2 = f K(¢) dt. (220)
0

(This integral converges by Lemma (2.3.25).) See also (215), we will derive different

representations for L% .

The spectral projections of the operator H* on the half-space in terms of those of the
operator A* on the half-line. Since H* commutes with translations parallel to the boundary
of R<, it can be written as a direct integral; see, [89] for definitions and properties of direct
integrals.

Proof: In view of Theorem (2.3.21) we can write

1 o0
a@ - e =1 [ @+ D -0 (1- 26k
0

and by (212)
1 — 2FZ(t)? = cos(2At + 20,) 4sin(At + 9;) G,(t) — 2G, ()2 .
We get

j tla(w) — a* (6w dt < Ry () + Ro(u)
0

with

1/2

0o (ﬂ1/5_1)+
R,(u) = j tY j (u— (A% + 1)%) cos(2At + 29,) dA| dt,
0

0

1/2

% (ut/o-1),
R,(u) = j tY j (u— (A2 + D5 (2sin(At + 9)) G, (t) + G (t)?)dA| dt.
0

0
To estimate R, (u)we split the integration in t and integrate over t € [0, 1] first. We assume
0 <y < 1.The proof for y = 0 follows similarly.

We write

1d . cos(2At + 29,) d9I,
cos(2At + 29,) = Zﬁsm(ZAt + 29;) — ” i,

and insert this identity in the expression for R, (u). After integrating by parts in the A-integral
one can estimate

1/2

1 (ut/3-1),
f tY f (u— (A% + 1)%) cos(2At + 29,) dA|dt < Cu((In pw)?+1).
0 0

To estimate the integral over t € [1,1], we proceed similarly. We integrate by parts twice
and get
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1/5_1)1/2

o (u
j tY j (u— (A% + 1)%) cos(2At + 29,) dA|dt < Cu(ln u + 1).
0 0

We conclude
Ri(w) < Cu((n w)?*+ 1)
and turn to estimating R, (w).
Since G, is non-negative and uniformly bounded, we have

1 1
M§—1>2
Ry(w) < C j *

(u— (22 + 1D%) foo tY G, (t) dtdA. (221)
0 0

By definition,

(00 oo

G,(t) dt and g;(0) =J t Gy(t) dt.
0

_cosY, ,1,[)’(7\2)
and apply Lemma (2.3.23) to estimate
j G()dt< c(Aar).
0

ind (A2
93(0) =2 — /‘f’p&z)) ?4(0)

and we apply Lemma (2.3.23) and Lemma (2.3.24) to estimate
j tG(t)dt < C(1 ALY,
0

92(0) = j
0
We note that, by (217),

Moreover, by (217),

It follows that
j tG(t)dt < C(1 ALY,
0

Thus, by (221), we arrive at
(u2/s-1)}/"
R,(un) < Cj (u— A2+ DA AL HdA< Cu(ln p+1).

0
This finishes the first part of the proof of Lemma (2.3.25).
In order to prove the assertion about K (t), we bound

[ erk@laes [ geres [ eratels I - ade ) ldeds
0 1€7|<1 0
Here we also used that, since a(u) = a™(t,u) = 0 for u <1, we can restrict the

integration in the definition of K to || < 1.0n the other hand, from (218) we know that

f o at(tu25, 1) — a(u)| de < CEOFE) (I w2 + 1).
0
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Combining these two bounds and using thaty < 1 < d — 1, we obtain the second part of
Lemma (2.3.25).

The following technical lemma was needed in the proof of the upper bound near the
boundary.

Lemma (2.3.26)[103]: Assume that ¢ € C3 (R%) is supported in a ball of radius [ = 1

and that (160) is satisfied with [ = 1. Then for anyl 1—5s <o <min {% ,1— s} one has

o] ooreser

Proof: Forx = (x’,x;) € R4 1 x R4 and y = (y',vy4) € ZRd‘l x R4 put
(p(x',x0) = d(¥',¥a))

dxdy < C. (222)

de;y(x ) = (lxr _ y1|2 + (xd _ yd)Z)d/2+S'
To establish (222) we use the fact that
_ 2 E
600~ O] _ . f Fray 0D~ Fray @D 0 0
RA-1

_ o
(=Ay1) |x — y|d+zs |x' — z'|d-1+20

and split the integration in x € R and y € R¢ into four parts. First we assume that x and
y are in By. Then we have to show that

F, x')—F z'
j j j | xd.J/S ) , dici:yz( )| dzldxdy
B, /B, JRd-1 |x" —z'[e71F20
F, x') —F, z'
|x’ _ led 1+20
By YBy J|x'-Z'|<|x-yl|/2

F x") —F, A
+ f j f [Fray ( ) , dfffz(a )| dz'dxdy (224)
B, /B |x’—Z’|<|x;—y| |x" =z’

Is bounded from above.
To estimate the first integral over |[x' —z'| < |x — y|/2, we use the fact that

|x'—z'
F(Z’) F(X ) _ z (ZJ x])f (a F) <.’X,' + t( ] X])>
Forj=1,..,d— 1wehave

(6620 = 60 (99))

|x _y|d+25

)(cp(x) ()

y|d+25+2 !

(a,-de,y)(x') = —(d+ 25)(xj

thus

(a,-de,y)(x') < C|x — y|3*2s,
Hence, we obtain
|de,y(Z,) - de,y(x,)|

|x' —z! 2 B 1
<Clx'—Zz'|* (f ( + (x4 — yd)2> dt) ,(225)

with) <a < landpg = (% + S) /(a — 1), by applying Holder’s inequality. Note that

(Z] x]) y'

Ix z'|
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2
(ZJ x]) y' 2 2 4 42 (' —y). (2 —x7)
+(Xg —ya)? = lx —yl? +t2 + 2t

> (lx —yl — )%
Inserting this into (225), we get for |[x' — z'| < |x — y|/2
lx—yl/2
|Fey v () = Fyy(xD| < Clx' = 2'|* (f (Ix — yl - t)zﬁdt>
0

< Clx’ . Zrlalx _ y|(23+1)(1—a)’
where (28 +1)(1 — a) = —d — 2s + 2 — a.We conclude that for any 20 <o < 1 and
c <1<s

E X
f f j | o L dxﬂ/z(a )| dz'dxdy
B; /By YIx'-z'|<|x-yl/2 |x" — 2’|

|X' _ ZI|—d+1—20+aer|x — yl—d—25+2—adxdy

1-«x

By VB |x’—z’|<|x;—y|
<C. (226)
Now we turn to the second integral in (224) over |x' — z’| > | Since
0< de,y(x’) < |X _ | d 2s+2—«a (227)
and 0 < 1— s, we have
fBl fB e T deyl(d )1+20 dz'dxdy < Cf -[91 Ix—de‘”Z" dxdy < C.(228)

Moreover,

j de:y(x ) dZI
'z |<lx—ylj2 X —2'|471F20

1/q
< Clx _ yl—d+1—20'+(d—1)/P (j Fxcfi,y(zl) dZ/)
lx'=z"|<|x-yl|/2

With 1/p + 1/q 1, by Holder’s inequality. Since ¢ > 1/2 — s, we can choose p >
— and q > By (227), we have

1/q
<j sz,y (z") dz’)
lx'=z"|<|x~y|/2

1/q
< <j - (z' = y'|* + (x4 — }’d)z)_qd(d/2+s_1)d2'>
Rd-

< Clxd _ ydl—d—25+2+(d—1)/q_

It follows that

E, ., (x")
f f f ! xddj d-1+20 dZ,d'Xdy
By YBy Y|x'-Z'|<|x-yl|/2 |x —Z |

<| | oyl iy, -y, |mazszie-/

B, /B,
2 2

< Cf t—d—25+2(d—1)/qf rd=2(y2 4 t2)(-d+1-20)/2+2(d~1)/2p gy,
0 0
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where we substituted t = [x; — y;zlandr = |x" — y’|.Sincep > %and o < 1-— s,we
find

de'y(zl) / ? —d—-2s5+20
— T dz'dxdy <C | t dt < C. (229)
B, /By JIx'-z'|<|x-y|/2 |x" — 2’| 0
The estimates (228) and (229) show that

E,  ,(x")—FE ('
f j f sy ( ) , dfffz(a )| dz'dxdy < C (230)
B, By Jw—zr<ir-ylz X =7
and from (223), (226), and (230) it follows that
j f (—A)7 1p() — (I
5, JB, x |x_y|d+25
The proof that the respective integrals over the domains B; X (R¢ /B;),(R% / B;) x

B; and (R? /B;) x (R% / B,) are finite is similar but easier, since supp¢ c B, and we only
have to handle one singularity at a time.

dxdy < C.
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Chapter 3
Laplacian Energy-Like Invariant and Sum of Powers

We investigate a Laplacian energy-like graph invariant LEL(G) = }.[-, \/E Thereis

a great deal of analogy between the properties of E(G) and LEL(G). We also establish a few
sharp lower and upper bounds of LEL(G). Here we establish some properties for sa with

a # 0,1. We also discuss the cases a = 2,%.
Section (3.1): A Laplacian Energy-Like Invariant of a Graph

Let G be a stmple graph with n vertices and m edges. In what follows we write
G(n,m) for it. Let A be the symmetric (0,1)-adjacency matrix of G and D =
diag(d,,d,,...d,) be the diagonal matrix of vertex degrees. The Laplacian matrix of G is
C = D—A. LetAy, A5 ...1,be the adjacenry spectrum of G, and let u,, uy, ... 4, be the
Laplacian spectrum of G. The adjacency and Laplacian spectrum obey the following
relations

n
2 = 0; 2/1% = 2m, (1)
=1

n
i=1 i
n n

n
Zﬂi=2m; ZM?=2m+2 d7 2)
i=1 i=1 i=1

Furthermore, if the graph G has p components (p = 1), and if the Laplacian eigenvalues
are labelled so that y; > p, = -+ > p,, then [139]

Un-1 =0 for i=0,..,p—1 and py,_, >0 (3)
Eichinger [141] has shown how the spectrum of C may be used to calculate the radius of
gyration of a Gaussian molecule. Mohar [145] argues that, because of its importance in
various physical and chemical theories, the spectrum of C is more natural and important
than the more widely studied adjacency spectrum. The energy of the graph G is defined

as
n

E@ =) Il @

i=1
his quantity, introduced by I. Gutman in 1978 ([125]), has a long known chemical
application (see [126]-[128]). For some of the most recent works along these lines sec [132]-
[138].
E(G) has the following basic properties
(@) E(G) = 0; equality is attained if and only if m = 0.
(b) If the graph G consists of (disconnected) components G, and G, , then E(G) = E(G;) +
E(G,).
(c) If one component of the graph G is G, and all other components are isolated vertices,
then E(G) = E(G).

The Laplacian energy of the graph G has recently been defined ([129]) as
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LE(G)—i = am )

The Laplacian energy LE(G') and the ordlnary energy E(G) were found to have a
number of analogous properties ([129], [131]), but LE(G) does not possess the basic
properties (b), (c) as above.

We conceive a new graph-energy-like quantity, that instead of Eg. (5) would be
defined intense of Laplacian eigenvalues, and that hopefully would preserve properties (b),

(c). We introduce the auxiliary eigenvalues p;, i = 1,2,...n,definedviap; = \/E Then

we have,
z p?=2m= EAZ 6)

Definition (3.1.1)[121]: If the LapIaC| an eigenvalues of G(n m) are yy, Uy, ..., Uy, then
the Laplucian-energy-like invariant of G, denoted by LEL(G), is equal

to Y, \/E-, i.e
n
LEL@® =) p
i=1

where p; = Ju; , i = 1,2,...,n

We report some properties of LEL(G) and show that the above definition is well
chosen. A few sharp lower and upper bounds of LEL(G) arc established.
We present some properties of LE'L(G) which have a great deal of analogy with the
properties (a),(b), (c) of E(G).
Proposition (3.1.2)[121]: (a) LEL(G) = 0; equality is attained ifandonly ifm = 0
(b) If the graph G consists of (disconnected) components G, and G,, then

LEL(G) = LEL(G,) + LEL(G>).

(c) If one component of the graph G is G, and all other components are isolated vertices,
then LEL(G) = LEL(G,).
Proposition (3.1.3)[121]: LEL(G) < \/Zm(n — p), p is the number of components of
G (n, m). Equality is attained if and only if G is regular of degree 0 or G consists of n, copies
of complete graphs of order k and n — kn, isolated vertices.
Proof: Let

n-p

b n-p n-=p n-p
2
z (Ve = ) =ZZ 2m =2 z Vh VH;

j=1

n—

S =

i:
= 4m(n — p) — 2LEL(G)?

Since S > 0 ,we have LEL(G) < /2m(n — p)

The equality is attained if and only |f\/— \/_ forall i,j = .,n— p,and
then from above we conclude that G has at most two distinct Laplaman elgenvalues

(i) ug = —unp——(nip)
() pn_ps1 =+ —un—O-
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If m # 0, then G has exactly two distinct Laplacian eigenvalues. A connected graph
has curtly two distinct Laplacian eigenvalues if and only if Its diameter is equal to unity, i.
e., if it is a complot graph.

Ifn =porm = 0,then G is regular of degree 0.

The following lemma will be used in next proposition.

Lemma (3.1.4)[121]: [130] If G has at lease one edge, then u; = A+ 1 (A is the greatest
vertex degree in G). For G being a connected graph onn > 1 vertices, equality is attained
ifandoulyif A=n—1.
Proposition (3.1.5)[121]: If G has at least one edge, then

LEL(G):VA+ 1/ (n—p —1)(2mA — 1),

Proof: Using the Cauchy-Schwarz inequality
2

SoEss) o

i=1 i=1 i=1
which holds for arbitrary real-valued numbers a;, b;,i = 1,2 ..., n, we have
n—p 2 n—p
D | sa-p-D( >
i=1 i=1

(choosing in (7) a; = /u;, and b; = 1).
2
(LEL(G) = i) <(n —p— D@m — ).
Thus LEL(G) < Ju; + V(n—p— D(2m — py).
Sincey; = A+ 1 (m+ 0),where Ais the greatest vertex degree of G.By direct analysis
we verify that the function f(x) = x ++/(n — 1)(2m — x2) monotonically decreases in

the interval(@,\/Zm), for both VA + 1 and \/u;

belong to this interval, and therefore, We have

LEL(G)<SVA +1+ J(n— p— D(2m —A — 1). (8)
Proposition (3.1.6)[121]: v2m < LEL(G) < v2m, the right equality is attained if and
only if G =rK,U(n — 2r)K;,where0 <r < [ ] ] is the integral part of x, while

LEL(G) = V2m = v2m ifandonly if G = rK, U (n — 2r)K,, r = 0,1.
Proof: (i) Let p be the number of components of G(n m), then

LEL(G) = Z JHi

Therefore
(LEL(G))" _z (V) +zz \/_\/—>Z u; = 2m.
i#j
The left equality is analysis |f and onlyifu, =...= puy_p = O or u, >0
and p, =...= pp_, = 0, 1.e.,if G is regular of degree OorG = K,U(n — 2)K;,
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(ii) Since LEL(G) < /2m(n — p) (Proposition (3.1.3)), and n — p = m, where
p > 1, we obtain LEL(G) < v2m. Note that Proposition (3.1.3)andn — p = m if and
only if G is a forest. we obtain that LEL(G) = v2m if and only if G = rK, U
(n — 2r)K;,where 0 < r < E]

Combining (i) and (ii), we complete the proof of Proposition (3.1.6).

Now, we study the relation among the iterated line graphs of G.

The line graph of G will be denoted by L(G). The iterated line graphs of G are then
defined recursively as L2{G) = L(L(G)),L*(G) = L(L*(G)) ...,

L) = L(L"‘l(G)),... It is consistent to set L(G) = L*(G) and G = L°(G).

The line graph L(G) of a regular graph G is a regular graph. Let n; and r; denote the

order and degree of L1(G) respectively, t = 1,2, .., k. Then (see [122], [142])

1
n, = Erk—lnk—l and 1, = 2131 — 2 ... ...

Therefore,
T, = 2Kry — 281 4+ 2 (9)

1_[ r = 1_[ (2ir — 21*1 4 2) (10)

Proposition (3.1.7)[121]: Let G be a regular graph of order n, and of degree r, then
LEL (Lk(G)) = LEL (Lk 1(6)) + 21 (N — T y)- (11)
Proof: Let C;(u) ( or CL(G)(M)) be the Laplacian characteristic polynomial of

G(orL(G)), and let P;(2) (or PL(G)(A)) be the characteristic polynomial of the

adjacency matrix of G (or L(G)).
It is well known that
PL(G) (A) = (A + Z)nl_nOPG (A + 2— To)

and

and
Ce(u) = (=)™ Ps(—p + 1) (12)
Then by equation (12) we have
Cicy(W) = (D™Pe (-1 + @Cry — 2)) . (13)

Combating (11) and (13), we get Cpgy(1) = (u— 21p)™ ™ Cq ().
Therefore, the Laplacian spectrum of L(G) is
21y Ptz - Hng
(nl—no 11 . 1)
where g = uz = -+ = py, is the Laplacian spectrum of G.
In an analogous manner as above, we have the Laplacian spectrum of L?(G)
2y 20y ufy e iy,
(nz—n1 n-n 11 .. 1)
then for the Laplacian spectrum of L¥(G)
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( 21 2 21y Mylly - .Uno)
Mg = Mygog Mo ~ Mgz My =N 11 .01
forall k =1,2,..

Therefore LEL (Lk(c;)) = LEL (Lk—l(c;)) + 27 (M — M)

The proof is complete.

Now, we would like to give a pair of non-cospcctral graphs of the same order,
having equal LEL-energies. Let G; = K;, be a star of order 8. Then the Laplacian
eigenvalues of G; arc py; = 8,1, = 43 =... = Uy, = Lug = 0. Let G, =
2K, U K, be another graph of order 8. Then the Laplacian it is straightforward to check
that LEL(G,) = LEL(G,).

We point out the dissimilarities between E(G),LE(G),and LEL(G).

Dissimilarity (3.1.8)[121]: In Proposition (3.1.2), we can see that LEL(G) and E(G)
preserve the three elementary properties (a), (b), (c), and also they have the same
square sum by equality (6). This is the advantage of LEL(G) over LE(G). Since the
ordinary energy E(G) has a long known application in molecular-orbital theory of organic
molecules (see [126]-[128]), we preconceive that LEL(G) would also have some chemical
application.
Dissimilarity (3.1.9)[121]: If the graph G is regular of degree k, then LE(G) = E(G), while
LEL(G) =Y, Vk —A,_i;, differs from E(G). This is an advantage of LE(G) over
LEL(G).However.ifk = 0OorG = K,, then wehave E(G) = LE(G) = LEL(G).In
addition, for a regular graph G. LEL(G) satisfies Proposition (3.1.7) as above.

There are numerous known results (especially lower and upper bounds) that are
obtained by using the relations (1) and that depend on the parameters n and m. Then one
could expect analogous results for LEL, obtained by means of the relations (2), that would
depend on the parameters n,m and d;.

We point out a few more (n, m)-type new bounds for LEL(G). Furthermore, we prove
that for all simple graphs with n vortices. The complete graph K, has the maximum
LEL(G).

In Proposition (3.1.3) we proved that,

LEL(G) </2m(n — p), (14)

We now show that the right-hand side expression in (14) is a decreasing function of
the parameter p, then we have,

Theorem (3.1.10)[121]:
For any graph G, LEL(G) < \/Zm(n — 1). Equality holds ifand only if G = K,
Proof: We consider the function

fx)=y2mn—x) 1 <x <n.

Then

f(x)=\/%SO 1<x<n.

Because the upper bound (14) increases with decreasing p, by setting p = 1 we

obtain the estimate
LEL(G) <2m(n — 1), (15)
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which holds for all graphs G. And combining with the Proposition (3.1.3), we have that the
equality holds if and only if G = K,,.
Let f(m) = y2m(n — 1) 0<2m < n(n— 1). Obviously, f(m) is an increasing
function of the parameter m, then we have proved,
Theorem (3.1.11)[121]:
Let G be a simple graph of order n, then LEL(G) < (n — 1)v/n. Equality holds if and
onlyif G = K,,i.e., l.he graph of order n with maximum LELis K,.

In Proposition (3.1.5) we proved,

LEL(G) <Vd+ 1y(n — p— 1D@2m — d, —1). (16)

Similar to the proof of inequality (15), we now show that the right-hand side
expression in (16) is a decreasing function of the parameter p.Then the following result
holds immediately,
Theorem (3.1.12)[121]: If G has at least one edge. then LEL(G) <
Vd+1,/(n — 2)(2m — d; — 1).Equality holds ifand only if G = K,,.
Proof: We consider the function

fxX)=vd+1/(n —2)2m —d; — 1) 1<x<n

Then

, di+1-2m
fix)= 1<x<n.

\/(n -2)2m —-d; — 1)

The derived function f'(x) < 0 ifandonly if d; + 1 < 2m, which holds for any
graph G has at least one edge.

Because the upper bound (16) increases with decreasing p. By setting p = 1 we
obtain the estimate

LEL(G) <Vd+1{(n — 2)2m — d; — 1) (17)
The inequality (17) is sharp. Equality holds if and only if G = K,,.
We now show that the bound (17) is better than (15) indeed,
Vd+1+ {(n — 2)2m — d; — 1) /2m(n—1)

holds if and only if

(v - D@m - dy - D <(VZmm-DYG +1)

i.e.,

Cm+)n—1)(d; +1) </2m(n—1)(d; + 1),
which is directly transformed into

(\/Zm\/(n —1D(d, + 1))3 >0

and holds for any m, n, d,. The equality holds ifand only if 2Zm = (n — 1)(d; +1) =
(n—1d;, + (mn —1).Since2m =Y, (n — 1d; + (n— 1), hence G = K,
l.e., the equality holdsifandonly if G = K,,.

We present sonic bounds for LEL(G) which depend on the vertex degrees, and we
show that for all connected graphs with n vertices. the star K, ,_, has the minimal LEL(G).
Lemma (3.1.13)[121]: [144] If G is a connected graph on n > 2 vertices, then p, >
d,
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Theorem (3.1.14)[121]: If G is a connected graph on n > 2 vertices, then LEL(G) =
Jdi +1/d,.

Equality is attained if and only if G = P; (P, is the path of order n).

Proof: It is easy to see from the Lemma (3.1.4) and Lemma (3.1.13) that LEL(G) =
Jdi +1./d,, equality is attained if and only if o, = d; + Ly, = dy, py =... =
Uo = 0. Since G is a connected graph, so we have p = 1, thisimpliesn = 3. From
Lemma (3.1.4),wehaved, = 2,u; = 3.Sinced; , u;,=Y>, d;,wehave (d; +
1)+d, + 0 =d;, +d, + ds, thusd; = 1 and thend, = 1. Therefore G = P;.

Now, we will give another lower bound of LEL(G) for the connected graphs.

Let a = (ai,ay...,a,), ax = 0,1 =k >=n, then 4,(a) ==X}-, a; is called

the algebraic average value ofay,a,,..,a, G,(a) = ,/alaz,...,an is called the
geometry average value of a, , a,,...,a, . Itis well known that,

Lemma (3.1.15)[121]: [143]
Gn(a) < Ay(a) (19)

Equality holds ifand only if a; = a, =...= a,.
Let G be a connected graph and let ¢t(G) denote the number of spanning trees contained in
G.
Lemma (3.1.16)[121]: [124] Let G be a connected multigraph on n vertices, then t(G) =
1 -
;H?:f

It is easy to see that if G is connected then t(G) = 1. Thus we prove the following
result.
Theorem (3.1.17)[121]: Let G be a connected simple graph on n vertices, then LEL(G) =
Vn + (n — 2). Equality holds if and only if G = K;,_,, i.e., the connected simple
graph of order n with minimal LEL is Ky ,,_.
Proof: Using inequality (19), we have

Vitz + [z + - +\/un1
n—2

equality holds if and only if u; = u; = -+ = 4.
It is well known that y; < n. So

1_[#1>t(5)>1

the first equality holds if and only if u; = n, the second equality holds if and only if
G is atree.

Hencevu, + Jus+...+Jlp_1 = n — 2.

(n—
i 2\/#2113 o Un—1-

Therefore
n
LEL(G) = Z Jui=Jm+ g+ o) =+ (n — 2),
i=
equality holds if and only if 4y = n and yu, = pu3 =+ = u,_, and G is a tree,

which impliesthat ¢ = K;,_, and LEL(G) =vn+ (n—2)
Now, we will give upper bounds of LEL(G) for the connected graphs.
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Definition (3.1.18)[121]: [130] If vector (a) = (a;,a,,..,a,) and (b) =
(by, by, ..., b,) are nonincreasing sequences of real numbers, then (a) majorizes (b) if

k k
z a; = Z b; k=1,2,..,min{r,s}
i=1 i=1

and

T S
z ai = Z bi
i=1 i=1

we denote it by b < a.
Definition (3.1.19)[121]: [146] The relation x << y meansthatx < y and x is not
the rearrangement of y.
Definition (3.1.20)[121]: [143] A real valued function f(x) defined on a convex set D is
said to be convex if

fA+ A = Dy) <Af(x) + A = Df),
forall0 <A < 1and all x,y € D. If the above inequality is always strict for0 < 1 < 1
and x # y, then f is called strictly convex. If f is a convex function, then f is called
concave.
Lemma (3.1.21)[121]: [146] Let (x) = (x1,%3,..,x,) be majorized by (y) =
(Y1, V2, -, ¥n), 1.6, x <y, then for any convex function ¢;, the following inequality
holds,

n n

D o)== o)

j=1 j=1
Lemma (3.1.22)[121]: [146] Let x << y then for any strictly convex function ¢, the

following inequality holds,
n n

> o) <) o0y,
j=1 j=1
For convenience. letting (d) denote the nonincreasing sequence (d) =

(dy+ 1,d,,...,d,_1,d, — 1) of vertex degrees and letting (¢) denote the non-increasing
sequence(u) = (uq, Uy, -, Un—1, Uy) OF NONNegative real Laplacian eigenvalues.
Lemma (3.1.23)[121]: [142] Let G be a connected graph on n > 2 vertices, then (d) is
majorized by ().
Theorem (3.1.24)[121]: Let G be a connected graph on n > 2 vertices, then LEL(G) <

Jdi + 1+ /d, + -+ /d,_; +./d, — 1, where the equality holds if and only if (d) =
(w).

Proof: Let ¢(x) = —V/x,x € (0,+), then ¢(x)is a convex function. Since (d) is
majorized by (1), using Lemma (3.1.21) we have,

(V@ 1)+ (@) + o+ (s ) + (& = T)
< (=) + (~) + =+ (<) + (V= 1)

which is directly transformed into
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(i) + (i) + -+ (o) + (=)
< (VGF D) + (&) ++ ([T ) + (&= 1)

l.e.,

LEL(G) < Jdy + 1+ Jdy + -+ Jdpy + Jdy—1 (20)
And it is easy to see from Lemma (3.1.22) that the equality holds if and only if (d) =
(.

Remark (3.1.25)[121]: We show that the bounds (15) and (20) are also incomparable. Let
H,, H, be the graphs shown in Fig. (1).

O

H, g H,
Fig. (1)[121]:
Then for G = H, the upper bound (15) is better than (20). On the other hand, if G = H,
then the upper bound (20) is better than (15).

We now discuss the case LEL(G) = /d; + 1 +/d; + - +/dn_y +Jd,—1.
Lemma (3.1.26)[121]: [140] If an isolated vertex is connected by edges to all the vertices
of a graph G of order n, then the Laplacian eigenvalues of the resultant graph are as
follows: one of the eigenvalues is n + 1, the other eigenvalues can be obtained by
incrementing the eigenvalues of the old graph G by 1 except the lowest one and 0 as
another eigenvalue.

Example (3.1.27)[121]: Let G, G, be the graphs shown in Fig. (2). The Laplacian spectrum
of G, is (3, 1,0). We want to find out the spectrum of G,.

_— VAN

Gi PR G
Fig. (2)[121]:

Applying Lemma (3.1.26), we can easily get the spectrum of G, is (4, 4, 2, 0).
Theorem (3.1.28)[121]: Let G be a connected graph on n > 2 vertices, then (d) =
(w) ifandonly if G = Ky ;1.
Proof: If G = K;,,_1 then (d) = (p).

Conversely, let (d) = (u), we are to show that G is a star. If (d; +1,d,,

;dn—1; dn - 1) = (.ulnub'" uun—luun)’ then we have = dl + 1L

Since G is a connected graph, using Lemma (3.1.4), we haved; = n — 1.

Let G' = (V',E") be agraph with vertex set V' = {v,,v,,..,v,_1}, and edge
setE' # @,let a; = a; = -+ = a,_, = 0bethe Laplueian eigenvalues of G’, and let b; >
b, = --- = b, _, be the non increasing vertex degrees of G'. Let G be a graph obtained from
C' by adding a new vertex v,,, which is connected by edges to all the vertices of G'.
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Applying Lemma (3.1.26), the Laplacian spectrum of G is (n,a; + 1,a, + 1,
a,—, + 1,0), which we denoted it by(u). If(u) = (d) = (d; + 1,dy, ,dp_1,dy, —
1)thend;, =n—-1,d, =b, +1 =mn; +1. Henceb; = a,.Since E' # 0,
using Lemma (3.1.4), we have a, = b; + 1, a contradiction. Thus E’ = 0, which
implies

According to Theorem (3.1.24) and Theorem (3.1.28) and noting (d) < (u) we
obtain the following theorem.

Theorem (3.1.29)[121]: Let G be a connected graph on n > 2 vertices, then LEL(G) =

Jdi+1+Jdy + - +/dy +/d,—1ifand only if C = K;,_;

Now we give another upper bound depended on the vertex degrees.
Theorem (3.1.30)[121]: Let G be a connected graph on n > 2 vortices, then

1 1 —
LEL@@) < (Vn—=1+ /m (; \/E>

Proof: Using Cauchy-Schwarz inequality, we have

(% ) =x(3;

=1
On the other hand, since G is a connected graphonn > 2 vertices,thus1 < d; <n —
1 for any integer 1 < i <n. Then by Polya-Szego inequality, we have

n(Z dl-)S% AT+ | (Z ﬁ)

i=1

n n
Since n (Z ,ui> =n (z di) hence
1

i=1 i=

1 1 -
LEL(G) <5 (Vn—1+ /n—l <Z JE-) 21)

This completes the proof of the theorem.
Remark (3.1.31)[121]: Using Cauchv-Schwarz inequality, we have

(Z \/71-)3 n<2 \/d_i>=\/2%.

Combining with inequality (21), we obtain

1 ’ 1
LEL(G) < E vn—1+ m 2mn. (22)

119




Unfortunately, the bound (22) is not better than the bound (15). In fact, by direct
calculation, /2m(n — 1) S% (\/n— 1+ /ﬁ)\/Zmn if and only if n® — 4n? +

8n — 4 = 0,where the inequality always holds for any integer number n.

Section (3.2): Laplacian Eigenvalues of Graphs

Let G be a simple finite undirected graph with vertex set V(G). Let A(G) be the (0, 1)
adjacency matrix of G and D(G) the diagonal matrix of vertex degrees. Then L(G) =
D(G) — A(G) is called the Laplacian matrix of G. It is symmetric, positive semidefinite and
singular. The Laplacian eigenvalues of G are the eigenvalues of L(G). Let uy, u,, ..., u, be
the Laplacian eigenvalues of G arranged in a non-increasing manner, where n = |V (G)|.
When more than one graph is under discussion, we write u;(G) instead of ;. It is known
that u,, = 0 and the multiplicity of 0 is equal to the number of connected components of G.
Let a be a non-zero real number. Let G be a graph with n vertices. Let s, (G) be the sum of
the ath power of the non-zero Laplacian eigenvalues of G, i.e.,

Sa(6) = ) uf,
i=1

where h is the number of non-zero Laplacian eigenvalues of G. The case « = 1 is trivial
as s;(G) = 2m, where m is the number of edges. Some properties for s, were established
in [154], where Lazic called it the Laplacian energy of the graph. Recall that the energy of
a graph is equal to the sum of the absolute values of its ordinary eigenvalues [127] and that
an energy like quantity was proposed and studied in [129] based on the Laplacian
eigenvalues. Some properties of s: were given in [121]. We also note that for a connected

2
graph G with n vertices, ns_; (G) is equal to its Kirhhoff index or quasi-Wiener index, which
found applications in electric circuit, probabilistic theory and chemistry [152], [157].
We establish some properties for s,, where « is a real number with a« # 0, 1. We also
discuss further properties for s, and s .

2

Let K,, and B, be respectively the complete graph and the path on n vertices. Let K, ,
be the complete bipartite graph with two partite sets having a and b vertices, respectively.
We need some properties of the Laplacian eigenvalues. For more details, see [130], [145].
Let G be the complement of the graph G with n vertices. The Laplacian eigenvalues of G
aren — .un—l(G)! n — Upn—2 (G)' RPN (i nul(G)' 0.
Lemma (3.2.1)[147]: [145]. Let G be a non-complete graph with n vertices. If G* is obtained
from G by adding an edge, then
#1(G*) = ug(G) = pup(G*) = pp(G) -~

2 pn-1(G") = Up_1(G) = pyp(G*) = uy(G) = 0.

Lemma (3.2.2)[147]: [149]. Let G be a graph with at least one edge and maximum vertex
degree 4. Then
with equality for connected graph ifand only if A = n — 1.
Lemma (3.2.3)[147]: [130]. Let G be a connected graph with diameter d. Then G has at
least d + 1 distinct Laplacian eigenvalues.
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Lemma (3.2.4)[147]: Let G be a graph with n vertices. Then u; =--= u,_, ifand only if
G = K,orG = K,,.

Proof: Suppose that yu; =---= u,_;. If G is connected, then by Lemma (3.2.3), G = K,,.
If G is not connected, then u,,_;, = 0 and so all Laplacian eigenvalues are equal to zero,
which obviously implies that G = K,,. Conversely, it is easily seen that u; == p,_; Iif
G = K,orG = K,.

Lemma (3.2.5)[147]: Let G be a connected graph withn > 2 vertices. Thenu, == pt,_4
andu; = 1+ Aifandonlyif¢G = K,orG = K;,_;.

Proof: Suppose that y, === u,_; and ui; =1 +4 . By Lemma (3.2.2),A = n — 1.

Then G has an isolated vertex, say v, and the Laplacian eigenvalues of G — v are n —
Uyt — Hy,0. By Lemma (3.24), G —v =K, , or G — v = K,_,. Thus
G = K,orG = Ky 1.

Conversely, it is easy to see that y, == pu,_, and u; =14+Aif G = K, or
G = Kinq.

Foragraph G, let Z(G) = Y,ev (¢) di., where d,, stands for the degree of vertex u in G.
Lemma (3.2.6)[147]: [153]. Let G be a connected bipartite graph with n vertices. Then u, >

2 /%G) with equality if and only if G is a regular bipartite graph.

The subdivision graph S(G) of a graph G is obtained by inserting a new vertex (of degree
2) on each edge of G. The ordinary spectrum of a graph G is the spectrum of its adjacency
matrix.
Lemma (3.2.7)[147]: [158]. Let G be a bipartite graph with n vertices and m edges. If the
non-zero Laplacian eigenvalues of G areu;,i = 1,..., h,then the ordinary spectrum of S(G)
consists of the numbers i\/ﬁi,i = 1,...,h,andof n + m — 2h zeros.

Let 14, 4,,...,4, be the ordinary eigenvalues of the graph G, where n = |V (G)]|.
Then the energy of G is defined as [127], [150]
E(G) =%, |l
Lemma (3.2.8)[147]: [156], [134]. Let G be a graph with n vertices, m > 1 edges and q

quadrangles. Then
E(G) = (2m)”
)= 27Z(G) — 2m + 8q

with equality if and only if G is the vertex-disjoint union of K, ,, ,..., K, With a;b; =
= a,b, and r = 1, and isolated vertices.

It is obvious that for any graph G with n vertices, s, (G) = 0 for @ # 0 with equality
ifandonly if G = K,,.
Theorem (3.2.9)[147]: (i) For any non-complete graph G, if G* is obtained from G by
adding an edge, then s,(G) < s,(G*) fora > 0and s, (G) > s,(G*) fora < 0.
(ii) For any graph G with n vertices
S;(G)<(n — Dn® if a > 0,
Se(G)= (n — n®* if a <0
with either equality if and only if G is the complete graph K,,.
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Proof: Note that ¥"_1 w;(G*) —Y¥"21 w(G) = 2. By Lemma (3.2.1), the result in (i)
follows. Note that u, (K,,) == p,-1(K,) = nandu,(K,) = 0.From (i), we have (ii).
Theorem (3.2.10)[147]: Let a be a real number with a« # 0,1, and let G be a connected
graph with n > 3 vertices, t spanning trees and maximum vertex degree 4. Then

a

WOz A +8) + (- 2) (23)
with equality ifand only if 6 = K, orG = K; ;.

Proof: By the matrix-tree theorem (see [145]), [T/~ w; = tn. By the arithmetic—geometric
mean inequality

tn )Hii
1+A

1

n-1 n-1 s . a
ny\n-2
Sa(G)=#f‘+z Wz uf+(n=2) (1_[ #?‘) =+ (- 2) (—)
i=2 i=2 :ui
with equality if and only if pu, == p,_,. Let (x) = x* + (n — 2) (t;n)ﬁ By

a a

solving f'(x) = « (x“‘1 — (tn)n—2 x_n—z_l) > 0, it may be easily seen that f (x) is

1
increasing for x > (tn)n-t whether « > 0or a < 0. Obviously, 2Zm <nA< (n —
1)(1 +A). By Lemma (3.2.2)

1

om Yt (17 VO 1
U =144 - > 1_[ w| = ey

n—1 n—1 _
i=1

a
tn

and then s, (G) = f(1+A4)= (1+0)* + (n — 2) (1+A)"'2 . Hence (23) follows, and
equality holds in (23) if and only if u, == u,_; and u; =1+ 4, which, by Lemma
(3.2.5), isequivalentto G = K, orG = Ky,_1.
Theorem (3.2.11)[147]: Let G be a connected graph with n > 3 vertices, m edges and
maximum vertex degree A:

(i) Ifa < Oora > 1,then

2m — 1 — A"

> a
S(G) = (1+A)* + = 21 (24)
with equality ifand only if 6 = K, orG = K; 4.
(i) If0 <a< 1,then
2m — 1 — A)®
S(G) < (1 + A)* + (25)

(n — 2)e-1
with equality ifand only if 6 = K, orG = K; 4.

Proof: Observe that for « # 0,1and x > 0,x¢ is a strictly convex function if and only if
a<0ora>1.

Suppose that « < 0 or ¢ > 1.Then

n—-1 a n—-1
1 <Z 1 o
n_zl’l’l —= n_zuui'
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with equality if and only if Hz == Uy 4. Itfollows that
n—1 a
1 (Zm — W)
Sa(G)Z#f‘l'ﬁ(z Hi) =y oNa—1 "
(2m-2) N fn, )2)1
— L 2m—x)* . / _ a-1 _ @m-x)%" . .
Let (x) = x L= By solvmg gx)=«a (x = ) >0, it is easily

seen that g(x)is mcreasmg for 2 — . Note that (n — 1)(1 + A) = 2m. By Lemma

322y =21 +A> E and then
2m -1 - A)“
> = a
S(G)=g(1+A)= 1+ + = 21
with equality if and only if u, == p,_;andpu; = 1+ A. By Lemma (3.2.5), equality
holdsin (24) ifandonly if G = K, orG = K;,_4.
Now suppose that 0 < a < 1.Then

n-1 a  n-1
1 - 1,
Z n_z.“i —Z n_z.“i
=2 =2 ’m
with equality if and only if u, =---= u,_;,and g(x) is decreasing for x > —- By similar
arguments as above, the second part of the theorem follows.

We consider bipartite graphs.
Theorem (3.2.12)[147]: Let a be a real number with a« # 0,1, and let G be a connected
bipartite graph with n > 3 vertices, tspanning trees. Then

n—2

Z(G)

Sq = ZT +(n—2)\\/ﬁ/

with equality ifand only if G =

(26)

NIS
NIS

Z(6)

n

arguments as in the proof of Theorem (3.2.10), we have s, = f <2 /%) , from which

Proof: By Lemma (3.2.6), we have u, > 2

> Tm >0 > (tn)n 1. Thus, by similar

n_

(26) follows, and equality holds in (26) if and only if u, == pu,,_;and A, = 2 /Zsf

Suppose that equality holds in (26). Then G is a regular bipartite graph with at most three
distinct Laplacian eigenvalues Thus, by Lemma (3.2.3), G is a regular bipartite graph with
at most diameter 2, i.e., Kn .

2

Conversely, it is easily seen that u, == p,,_1,4; = 2 fZ(G and then (26) is an equality
ifG =K

n
2’

NIS
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Theorem (3.2.13)[147]: Let G be a connected bipartite graph with n > 3 vertices, m edges:
(i) Ifa < Oora > 1,then

a Z(G)
2) +<2 i )

n (n — 2)a1

S(G) =12 (27)

with equality ifandonly if G = Kn n.
2’2
(i) If0 <a< 1,then

« (om _ 5 [F©O
<2 [1© +<2’" 5 8)
Sallr) = n (n — 2)a-1

with equality ifandonly if G = Knn
2’2
Proof: By Lemma (3.2.6), we have u, > 2 Z(nG) > Tm > 5—1 Thus, by similar arguments

Z(G)

n

as in the proof of Theorem (3.2.11), we have s, = g (2 ) fora < Oora > 1,and

then (27) follows. Similarly, s, < g <2 fZ(nG> for 0 < a < 1, and then (28) follows.

Either equality in (27) or (28) holds if and only if p, == u,_, and A, = 2 /Zf
which, by the arguments in the proof of Theorem (3.2.12), is equivalentto G = Kn n .

2°2
Now we consider the special case @« = 2. Note that s,(G) is equal to the trace of
L*> where L = L(G), from which it may be shown that [154]

900 = ) (@d+ d = 26) + 2m,
uev (G)
where m is the number of edges of G. Thus, if both the number of vertices and the number
of edges are given, then the study of s,(G) is equivalent to that of Z(G).
Let G be a graph with n vertices and m edges. As restatements of the results in [151],
[155] on Z(G), respectively, we have

sor=am (2] + 2] 1) ~ 2

with equality if and only if any degree of G is either [—J or [ ] and

2m
s,(G) < m(— + n)
n—1
with equality if and only if G is K; ,,_, or K,.
Let G be a connected graph with n > 2 vertices. It was proved in [154] that
S,(G) = 6n- 8
with equality if and only if G is the path P,. An alternate argument is as follows: By Theorem
(3.2.9), if 5,(G) = s,(T ) with equality if and only if = T , where T is a spanning tree of
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G. Note that T has at least two vertices of degree one. By the Cauchy—Schwarz inequality,
we have

S,(G)=2s,(T)=Z(T)+2(n —1)=2 +

= 6n-8
and thens,(G) = 6n — 8with equality if and only if G is a tree that has exactly two vertices
of degree one and all other vertices have equal degrees, i.e., G is the path B,. Finally, we
turn to the special case = % :

Theorem (3.2.14)[147]: Let G be a bipartite graph with n vertices and m > 1 edges. Then
V2m

Vn + 2
with equality if and only if G = K.
Proof: For u,v € V (G),u ~ v means that u and v are adjacent in G. It follows that
Z(G)=Y,-., (d,+d,)<Y,., n = mnwithequality if and only if d,, + d,, = nfor
any edge uv of G, i.e., G is a complete bipartite graph. Note that S(G) possesses 2m edges,
it is quadrangle-free and Z(S(G)) = Z(G) + 4m. By Lemma (3.2.8)

(2 - 2m)3 _ (4m)3
E(5(6) = \/22(5(0)) —2.2m \/Z(Z(G) + 4m) — 4m

(2(n __1) 2" +2(n - 1)

2

s1(G) =2 (29)

- (4m)3 _ 4 V2m
—J2(mn + 4m)— 4m T n+ 2

By Lemma (3.2.7), we have s1(G) = %E(S(G)) and thus (29) follows. From the proof

above, equality in (29) if and only if G and S(G) are both complete bipartite graphs, i.e.,
G = K,. The lower bound in Theorem (3.2.14) is asymptotically best possible. For example,

let G be the complete bipartite graph K, , and then s1(G) = v2k + (2k — 2)Vk and the

- . _ 2k2 . . S%(G) _
corresponding lower bound is equal to == Obviously, zlf?o — =
. (2k—2+V2)VEk+1
lim = 1.
k—oo 2k Vk
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Chapter 4
A Sot-Dense Path and Common Hypercyclic Functions

We show that each operator along the path has the exact same dense Gs set of
hypercyclic vectors. The operators having that particular set of hypercyclic vectors form a
connected subset of the operator algebra with the strong operator topology. We show that
there exists a residual set G ¢ H(C) such that for every f € G and every non-zero complex
number a the set {f(z + 1,a): n = 1,2,...} is dense in H(C). This answers in the
affirmative and it also provides an extension of a theorem due to Costakis and Sambarino.
Section (4.1): Chaotic Operators with Same Hypercyclic Vectors

Let H be a separable, infinite dimensional Hilbert space over the complex field C, and
let B(H) denote the algebra of all bounded linear operators T : H — H. An operator T in
B(H) is hypercyclic if there is a vector x in H for which its orbit, Orb(T,x) =
{T"x : n > 0}, isdense in H. Such a vector x is called a hypercyclic vector for T, and we
use the notation H'C(T) to denote the set of hypercyclic vectors for T. The behavior of the
orbit of a hypercyclic vector is wild. On the other hand, even when the operator is
hypercyclic, the orbit of a certain vector may be finite. A vector x in H is called a periodic
point for the operator T if T"x = x for some positive integer n. The operator T is chaotic
if it is hypercyclic and has a dense set of periodic points. Godefroy and Shapiro [10] showed
this definition of chaos is equivalent to the notion of chaos proposed by Devaney [165].

Whenever the operator T is hypercyclic, the set HC(T) of hypercyclic vectors is a
dense G5 set; see Kitai [42]. It follows from the Baire Category Theorem that if we have a
countable collection {T™ € B(H):n > l}of hypercyclic operators, then the set
Np=1 HC(T™) of their common hypercyclic vectors is still a dense Gg set. Since this
argument fails when the collection of operators is uncountable, it becomes interesting to
study their common hypercyclic vectors, especially when the operators in the uncountable
collection are in fact related by continuity. This leads to the following definition. A
collection of operators {F; € B(H):t € 1} is a path of operators if the map F: I -
(B(H),|| = |]), defined on an interval I by F(t) = F;, is continuous with respect to the
operator norm topology of B(H) and the usual topology of the interval I. The set
Nty HC (F;) is referred to as the set of common hypercyclic vectors for the whole path,
and any vector in the set is called a common hypercyclic vector. If I is [a, b], then the
collection {F, € B(H):t € 1} is called a path of operators between F, and F,,.

Many results on common hypercyclic vectors were obtained. Leon-Saavedra and
Muller [43] showed that every operator in the path of rotations {e*T : 6 € [0,2n]} of a
single hyper cyclic operator T has the exact same hypercyclic vectors as the operator T itself.
Later, Conejero, Miller, and Peris [37] studied common hypercyclic vectors for a semigroup
of operators. The first example of a specific class of operators with common hypercyclic
vectors is perhaps the unilateral weighted backward shifts. We provide a formal definition
here.

Definition (4.1.1)[159]: An operator C in B(H) is called a unilateral weighted back ward
shift if there is an orthonormal basis {e,, e, €5, ...} and a sequence of nonzero scalars
{w;: j= 1}inCsuchthat Be, = 0and Be; = wje;_, foreach integer; j > 1. Itis easy

126



to check that B in B(H) implies that the weight sequence {wj P 1} Is bounded. This
class of operators was well studied in Shields [31]. If all the weights satisfy w; __ 4, then B
Is simply called the unilateral backward shift. This particular shift B was used to provide the
first examples of hypercyclic operators on a Hilbert space, as Rolewicz [28] showed that tB
Is hypercyclic whenever t > 1. Then Abakumov and Gordon [20] showed the path
{tB: t € (1,)}indeed has a dense set of common hypercyclic vectors. This result was
reobtained by Costakis and Sambarino [38] who introduced a sufficient condition for a path
of general operators to have such a dense set. In fact, they also provided many natural
examples of paths of operators with common hypercyclic vectors, including a path of
unilateral weighted backward shifts. Another sufficient condition was provided by Bayart
and Matheron [24] with applications for which Costakis and Sambarino's condition does not
apply. A necessary and sufficient condition was provided by Chan and Sanders [32] for a
path of operators to have a dense Gs set of common hypercyclic vectors. They used this
condition to prove another sufficient condition that reduces to the well known
Hypercyclicity Criterion for the case when the whole path contains exactly one operator.
Chan and Sanders used their conditions to reprove the result of Abakumov and Gordon, and
further showed that between any two hypercyclic unilateral weighted backward shifts, there
Is a path of such shifts whose common hypercyclic vectors form a dense Ggs set. For
techniques that are totally different from those of Chan and Sanders [32], their study on
unilateral weighted backward shifts help motivate some of the ideas here. Common
hypercyclic vectors include that of Bayart [23], and Bayart and Grivaux [26] who studied
composition operators on spaces of analytic functions, and Costakis [164] who studied
Cesaro hypercyclic operators. For nonexistence results, Aron, Bes, Leon, and Peris [22]
showed in their Example (4.1.4) that there does not exist a vector in H which is hypercyclic
for every hypercyclic operator in B(H). They proved this by showing for any nonzero vector
x in H, there is a hypercyclic operator T in B(H) for which Tx = 0. Along this line, Chan
and Sanders [32] showed there is a path of hypercyclic unilateral weighted backward shifts
which fails to have a common hypercyclic vector.

We need to turn our attention to the density of the hypercyclic operators in B(H).
Clearly the norm of any hypercyclic operator must be strictly greater than 1, it is still easy
to see that they collectively are not dense, with respect to the norm topology, in the
complement of the unit ball of B(H); see Chan [163]. As it turns out, they are dense in the
whole operator algebra B(H) with a weaker topology called the strong operator topology,
abbreviated SOT. This result was first obtained by Chan [163], and was generalized to the
Frechet space case by Bes and Chan [161] using a fundamental property of the strong
operator topology provided by Hadwin, Nordgren, Radjavi, and Rosenthal [167]. In fact,
Bes and Chan showed that if T is a hypercyclic operator, then the set of conjugates
{ATA™1: Ainvertible in B(H)} is SOT-dense in B(H). Even further, if the hypercyclic
operator T is chaotic, this SOT-dense set of conjugates consists entirely of chaotic operators.
On the other hand, that conjugate set is path connected be cause the collection of all
invertible operators in B(H) is indeed path connected; see Douglas ([40], Corollary 5.30).
Hence, any single chaotic operator generates a path connected set of chaotic operators that
Is SOT-dense in B(H). As a result, it is interesting to see whether we can improve the above
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results, by raising the following question: Does there exist a path of chaotic operators which
Is SOT-dense in B(H), and yet has a dense G set of common hypercyclic vectors?

The above question is answered in the positive with a constructive proof in Theorem
(4.1.7) below. Even more interesting, we show each operator along this path has the exact
same dense G set of hypercyclic vectors. It should be noted that Bonet, Martinez, and Peris
[30] have shown that there is a Banach space that fails to admit a chaotic operator, and so
Theorem (4.1.7) is purely a Hilbert space result. Since the collection of all hypercyclic
operators in B(H) fails to have a common hypercyclic vector, the path that we construct is
necessarily a proper subset of all hypercyclic operators. In fact, the path consists entirely of
operators that satisfy the Hypercyclicity Criterion due to the result by Bes and Peris [162]
that every chaotic operator satisfies the criterion. It should be pointed out here that de la
Rosa and Read [39] showed that there is a Banach space which admits a hypercyclic operator
that does not satisfy the hypercyclicity Criterion. Inspired by de la Rosa and Read, Bayart
and Matheron [25] were able to obtain an analogous result for a Hilbert space. We conclude
with a discussion about the SOT-connectedness of the hypercyclic operators in B(H).

We first examine unilateral weighted backward shifts in B(H). In particular, we show
that for any given orthonormal basis of H, there is a path of chaotic hypercyclic unilateral
weighted backward shifts which is SOT-dense in the set of all unilateral weighted backward
shifts on that particular basis and for which all operators along this path have the exact same
set of hypercyclic vectors. As a consequence, the common hypercyclic vectors for the whole
path is a dense G$ set; see Theorem (4.1.4) below.

Since hypercyclic vectors may form some sort of linear structure, common hypercyclic
vectors follow this natural pattern as well.

Definition (4.1.2)[159]: By the term hypercyclic subspace for an operator T, we mean a
closed, infinite dimensional subspace consisting entirely, except the zero vector, of
hypercyclic vectors for T.

A sufficient condition for the existence of common hypercyclic subspaces was obtained
by Bayart [160]. Different sufficient conditions were obtained by Aron, Bes, Leon, and Peris
in [22], and by Sanders in [30]. We show the SOT-dense paths of chaotic operators given in
Theorem (4.1.4) and Theorem (4.1.7) can be chosen to have common hypercyclic
subspaces; see Corollary (4.1.5) and Corollary (4.1.10) below.

Let B be the subset of B(H) consisting of all unilat eral weighted backward shifts of
a fixed orthonormal basis {e,, e4, €5, ... }. We show there is a path of chaotic shifts in B which
Is SOT-dense in B.

The first examples of hypercyclic operators on a Hilbert space, provided by Rolewicz
[28], were unilateral weighted backward shifts. Salas [29] later completely characterized
hypercyclic unilateral weighted backward shifts in terms of the weight sequences. His result
was originally stated for positive weight sequences. Since a unilateral weighted backward
shift with the complex weight sequence {w; : j = 1} is unitarily equivalent to one with the

positive weight sequence {|w;|: j > 1}; see Shields ([31], Corollary 1), Salas’

characterization can be stated in term of complex weights: A unilateral weighted backward
shift is hypercyclic if and only if its weight sequence satisfies
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n
sup 1_[|Wj|:n21 = 00 (D
j=1

A more general version of Salas' characterization was established by Grosse Erdmann [166].
Martinez and Peris ([169], Example (4.1.12)) also characterized the hypercyclic unilateral
weighted backward shifts which are chaotic in terms of weight sequences: A unilateral
weighted backward shift is chaotic if and only if its weight sequence satisfies

Z _ ! o )

2

n=1 ;}:1 |Wj|
From Salas' characterization (1), it is easy to see that if one takes the weight sequence of a
hypercyclic shift in B, and multiply one of its weights by a nonzero complex scalar, the new
resulting shift in B will also be hypercyclic. In fact, we now show they have the exact same
set of hypercyclic vectors.
Proposition (4.1.3)[159]: Let A € C \ {0} and let m be a positive integer. If A is a unilateral
weighted backward shift in B with weight sequence {Wj P 1}, and if B is another shift
in B whose weight sequence {vj o> 1} satisfies v; = w; for any positive integer j #
mand v,, = Aw,,, then HC (A) = HC(B).
Proof: Observe that for any integer n = m, we have:

n
Anej+n = <—[ Wj+i> e]-, fOI'j >0
i=1
n -
B, = (r Wj+l-) ej, for j > m,and
i=1
n
Bnej+n = /1(1_[ Wj+i) ej, for0 S] <m-1
i=1
Therefore, for any vector g € H and integer n > m, we have
(A"g,e;) = (B"g,¢;), forj = m,and (3)
(A"g,e;) = 271(B"g,¢;), for0<j< m—1,and (4)

Let P : H — H be the orthogonal projection onto the subspace span{ej :0<j<m-—
1}. That is, for any vector g € H, we have Z}?L‘Ol (g,ej)e;. Hence, by equations (3) and
(4), we have that for any integer n > m,
A"g = A"1P(B"g) + (I — P)B"g,and B"g = AP(A"g) + (I — P)A"g.

It follows that the orbit Orb(4, g) is dense if and only if the orbit Orb(B, g) is dense.

Using induction with Proposition (4.1.3), we get that if A and B are two hyper cyclic
unilateral weighted backward shifts in B whose weight sequences differ by only a finite
number of members, then the two shifts satisfy HC (A) = HC(B). This observation
together with Martinez and Peris' necessary and sufficient condition (2) allows us to create
a path of chaotic shifts in B which is SOT-dense in B, and each operator along the path has
the exact same set of hypercyclic vectors.
Theorem (4.1.4)[159]: There is a path {F, € B(H):t € [1,0)} of chaotic unilateral
weighted backward shifts in B which is SOT-dense in B. Moreover, for each t € [1, o),
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we have HC (F;) = HC(F)); that is, each operator along the path has the exact same dense
G$ set of hypercyclic vectors.
Proof: Let B, be a chaotic unilateral weighted backward shift in B with weight sequence

{wj P 1} satisfying w; € (Q + iQ) \ {0} for each integer j = 1. Consider the
collection A of all weight sequences w = {wj 2= 1} satis fying that each weight w; €
(Q + iQ) \ {0} and w; = wy; for all but finitely many positive integers j. The collection

A is countable, and so let w™ = {wj(") P> 1}, where n = 1,2,3,.., be an

enumeration of A. From the definition of the weight sequences in A, there is a sequence

(k,)_, of positive integers such that w™ = wj(““) = i, for any integer j > k, + 1.

For integers n,j with n > 1 and 1< j < kn, writt w™ =™ exp (iej(")) where

j j
1}-(”) > 0and 0 < Bj(n) < 2m.

To define the path of operators, for each integer n > 1 and foreach t € [0,1], let G,

be the unilateral weighted backward shift in B whose weight sequence {vj(t) o> 1} IS

givenby v = W; if j > k, + 1,and
1 _glmw (n+1)
vj(t) = [(1 — t)n(n) + t7}(n+1)]el[(1 00;"+c6;" | if 1<j< k,
Foreacht € [n,n + 1], define F, = G;_p, . Since Gy, = Gy 44 for each integer n >

1,themap F : [1,00) —» (B(H),||"|]), given by F(t) = F,, is well defined. Moreover, the
map F : [1,00) » (B(H),||-||) is continuous because the map 1 ~ G,,, is continuous on

-2
[0,1] for each integer n > 1. Lastly, note that the series Y7, []j-, |vj(t>| converges if

and only if the series Y52, 17—, |Wj|_2 converges. Thus, from condition (2), we get each
operator Ft is chaotic. Therefore, {F; € B(H):t € [1,)} is a path of chaotic unilateral
weighted backward shifts in B. To show KC (F;) = HC(F;) for each t € [1, o), observe
that the weights of each F; are the same as F; except at most a finite number of them. Thus,
by Proposition (4.1.3), we get HC (F;) = HC(F,).

To show the path {F; € B(H):t € [1,00)} is SOT-dense in B, let B be a shift in B
with the weight sequence {v; : j = 1}. Let fi,..., f, be r nonzero vectors in H, and lete >
0. Consider an SOT-basic open set U given by

U={A€ B(H):||(A — B)fxll < e, whenever1 < k < r}.

Let y, = sup {(|v~v]| +lv): )= 1}, and choose an integer N > 1 such that for each
vector f;, we have

(0]

2 &
> el < o

j=N+1
Lety, = max{||f,|l>: 1 < k < r}, and choose wy, ...,wy (Q + iQ) \ {0} to satisfy
2
2 &
wi — ;| <=—.
| J ]| 2]/2

Consider the weight sequence {w;, w,, ..., Wy, Wy 11, Wy 42, ... }. From the definition of the
collection A, there exists an integer n, = 1 such that
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(no) , ; _ o
{wj ij> 1} = {Wy, Wy, o, Wy, Wy i1, Wyio, oo}
Thus, for each vector f;,, we have
(e 0]

2
|5y = BYAI" = Z ™ = v ¢

Z wi =[G+ D 1% = [(fe e

j=N+1
N
Z (e + Z (Im] + o) [¢fe el
2 * 2 82 82
= 2 . = g?
<g WP +n ) Kool <g-+ng-=e
j=N+1

and so, F,, € U.

In fact, the above proof can be modified to show the following interesting connection
with some linear structure of the hypercyclic vectors.

Corollary (4.1.5)[159]: There is a path of chaotic shifts in B that is SOT-dense in B, and
the shifts along the whole path have a common hypercyclic subspace.

To see that, we first note that Leon and Montes [168] completely characterized, in
terms of weight sequences, the unilateral weighted backward shifts which possess a
hypercyclic subspace. Their characterization, expressed in terms of complex weights, states
that a unilateral weighted backward shift has a hyper cyclic subspace if and only if its weight
sequence satisfies

n - in
sup | | :n>1}p = oo,and 7111_>n20 inf | | |Wk+]-| < 1.
j=1 j=0

Using this condition, we see that each operator along the path given in the proof of Theorem
(4.1.4) may fail to have a hypercyclic subspace. However, if we select the chaotic shift B,
in the proof of Theorem (4.1.4) to also have a hypercyclic subspace, then each operator F;
along the corresponding path of shifts in B is chaotic and has a hypercyclic subspace.
Furthermore, since H'C (F,)— HC(F,) for each t, the whole path has a common hypercyclic
subspace within the dense Gs set of common hypercyclic vectors. The shift in B with the

weight sequence {]]ll] > 1} Is an example of such a chaotic shift with a hypercyclic

subspace.

We focused on the collection of all unilateral weighted back ward shifts of a fixed
orthonormal basis in the Hilbert space H. However, this collection fails to be SOT-dense in
B(H). To construct the path of chaotic operators desired in Theorem (4.1.7), we turn our
attention to generalized backward shifts. An operator T in B(H) is a generalized backward
shift if the kernel, Ker(T), of T is one dimensional, and the set U{Ker(T™): n > 1} is dense
in H. Godefroy and Shapiro ([10], Proposition (4.1.10)) showed that if the operator T is a
generalized backward shift, then there is a sequence {e; : j = 0} of vectors in H for which
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Tx; = x;_, for each integer; j > 1, and Ker(T) = span{x,}. For more on general ized
backward shifts, see Godefroy and Shapiro [10].

Proposition (4.1.6) below is the major building block of Theorem (4.1.7). By using
Proposition (4.1.3) and the fact that the invertible operators on the Hilbert space H are path
connected, Proposition (4.1.6) creates a path between a hypercyclic unilateral weighted

backward shift and a specific generalized backward shift. Let {ej i 0} be any
orthonormal basis of the Hilbert space H, and let By: H — H be a hypercyclic unilateral
weighted backward shift of the basis {e; : j > 0} with weight sequence {w; : j > 1}. Let
{gj o> 0} be a sequence of vectors in H and {v; : j = 1} a weight sequence for which
there is an integer N > 0 such that
span{g;: 0<j < N} = spanfe;: 0< j < N}, (5)
and for any integer N + 1, we have
gj = e and v; = w;. (6)
Define an operator B; : H - Hby B;g; = v;g;—, for each integer j = 1, and B, g, =

0. The operator B, is a generalized backward shift with x, = g,, and
; -1
J)

Xj = 1_[ v;| g;forintegers j > 1.
i=1

Proposition (4.1.6)[159]: There is a path {G, € B(H):t € [0,1]} of hypercyclic operators
between Bo and Bi such that for each t in [0,1], we have HC(G,) = HC(B,). Furthermore,
if the operator B, is chaotic, then this path may be chosen to consistentirely of chaotic
operators.

Proof. To begin our proof, first observe we can assume v; = w; for each inte gerj = 1.
To see this, note that in the general case where v; = w; for each integer j = N + 1, we

can use the argument in the first half of the proof of Theorem (4.1.4) to create a path of
hypercyclic operators between B, and the unilateral weighted backward shift of the basis

{e; : j = 0} with weight sequence {v; : j = 1} where each operator along the path has the
same set of hypercyclic vectors as the oper ator B,. Moreover, if the operator B, is chaotic,
then this path can be chosen so each operator along the path is chaotic.

To create the path of operators described in our proposition, let Hy = span{g i 0=
j< N} = spanfe;: 0<j < N}, and letA: Hy - Hybe the invertible operator
satisfying

Aej = gjfor 0<j<N. (7)
Since the invertible operators on Hy are path connected, see Douglas ([40], Corollary 5.30),
there exists a path {A; € B(Hy) : t € [0,1]} of invertible operators such that A, = I and
A, = A.Foreacht € [0,1] and each integer j > 0, let

gt,f:{ej if >N +1, ®)
and define the operator G, : H - H by

. ngt,j—l lf] > 1,

Geg; = {0 if j = 0.
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Then {G; € B(H):t € [0,1]} is a path of operators between G, = By, and G; = B;. To
show HC(G,) = HC(B,) foreach t € [0,1], let P : H — H be the orthogonal projection
onto the closed subspace Hy. For each f € [0,1], define the operator St : H - Hby S, =
AP + (I — P). Since the operator S; is invertible, it suffices to show G{* = S;Bj for
each integer n > N + 1. For such an integer n, we observe that by (5), (6), (8), and the
definition of B,, we get Ker(B{) = Span{gt’j :0<j<n—-1 } which give us

StBygj =0=0Gi'g,; for 0<j<n-1 (9)
From (8) and the definition of S;, we get S,e; = g, ; for each integer j = 0. Thus, for any
integer j > n, we have

Sthgt,j = StlBgej (by (8))
n

n-1

—_ —_ n
| | wWj_;Siej_p = | | Vi_igtj-n = Gt Gt
i=0

i=0
Therefore, G* = S; B{ whenevern > N + 1.

To complete the proof of our proposition, it remains to show that if the operator B, has
a dense set of periodic points, then so has each operator G,. For that we observe that if / is a
periodic point of B, then we choose an integer n > N + 1 such that B{'f = f. Now, the
vectors A.Pf and Pf € Hy S Ker(B{), and so

ByS.f = BR(APf+ (I — P)f) = BY(Pf + (I — P)f) = BYf = f.
It follows that G{'S;f = S:ByS:f = S:f.Hence S;f is a periodic point of G, if the f is a
periodic point of B,. Since the operator S, is invertible, it takes the dense set of periodic
points of B, to a dense set of periodic points of Gt .
Each operator along the path {G,: t € [0,1]} given in the proof of Proposition (4.1.6)

Is, in fact, a generalized backward shift. We now use Proposition (4.1.6).
Theorem (4.1.7)[159]: Let H be a separable, infinite dimensional Hilbert space over C.
Then there is a path {F, € B(H):t € [1,%)} of chaotic operators which is SOT-dense
in B(H). Furthermore, for each t in [0, 0], we have HC(F,) = HC(F,); that is, each
operator along the path has the same dense G set of hypercyclic vectors.
Proof: To start, fix an orthonormal basis {e; : j = 0} of the Hilbert space H. Let D be the
collection of all nonzero finite rank operators D € B(H) each of which has an integer n >
1such that De; € { Yo axer:ax € Q + iQ} whenever 0 <j <n, and De; = 0
whenever j > n + 1. Clearly D is a countable collection. It is also easy to see that D is
SOT-dense in B(H) because if T € B(H) and P, : H — H is the orthogonal projection
onto span{e; : 0 < j < n},then B,TP, > T in the strong operator topology. Let
{D, : « > 1} be an enumeration of the collection D such that

a

Dgye;j € {z ager:a; € Q + i@},wheneverO <j<a,
k=0
and

D,ej = 0, whenever j>a + 1. (10)

Let B,: H— Hbe a chaotic unilateral weighted backward shift of the basis

{e; : j = 0}withweightsequence {w;:j > 1}. For each D, and each pair of integers 8,y =
1, we define the linear operator T, g, : H — H in the following manner:
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Topyej = Dgej + ]—/ea+[;+1+]-, for0 < j<a; (11)

Tapy€a+1 = €o (12)

1 .
Ta,ﬂ,yea+1+j = Feaﬂ-, for 0 < ] < ﬁ — 1, (13)
Ta,ﬁ,yea+ﬁ+1+j = _VTa,ﬁ,yDaej tveii, for0< j<a (14)
Ta,ﬁ,yeZa+B+1 = _yTa,ﬁ,yDaea; (15)
Tapy€ra+p+z = —C2a+p+2€a+p (16)
Tapy€i = Wj€i_q, for j = 2a+ f + 3. (17)

Equations (14) and (15) define T, ;. because Ran(D,) S span{e,: 0 < k<0 }. In
fact, the operator T, z ,, is a compact perturbation of a chaotic unilateral weighted backward
shift, and hence a bounded linear operator on H.

Claim (4.1.8)[159]: The set{T, 3, : a,B,¥ = 1}is SOT — dense in B(H).

Proof: Let U be a nonempty SOT-open set in B(H). Since D is SOT-dense in B(H), there
Isan a = I, nonzero vectors f,..., f, € H,and € > 0 for which the basic SOT-open set
{A€ B(H): ||(A — D)fell < ¢ whenever1 < k< r} € U.

LetM; = max{|[fill: 1< k< 7}, and letM, = (a + 1)2(||D,l| + 2)2. Choose an

integer y = 2 such that

(a+1)M1<s di 1 < € 18
” 7 an 2,y <, (18)
]=
Since sup{|w;|:j = 1} = |IB,ll < o, we can then choose an integer B > 1 such that for
each vector f;,
8 . -

|(fk,ej)| <W' if j2a+f+1; (19)

N 2 2 €
> il ) <3 (20)

j=a+f+1

Toshow T, 5, € U, let T = Ty p,, and let k be an integer with 1 < k < r Observe
that

IT=Dell = || > [¢fio e T = D)e;
o = B+1
= z |(fk; ej)|||(T - Da)ej” + z |<fk' ea+1+j)|||(T - Da)ea+1+j||(21)
=0 =0

[00]

< Z |<fk: ea+ﬁ+1+j)|||(T - Da)ea+[>’+1+j|| + z |<fk: ej)l(T - Da)ej
j=0

j=2a+p+2
To estimate each of the above four summation, we note that for the first term
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Z [ e lICT = Do) —Z [(Foepls (1)

Z Il (22)

To estimate the second summation, observe that

B-1 B-1
Z |(fk» t9a+1+j)|||(T - Da)ea+1+j|| = z |<fk'ea+1+])| i+ (by(3.6), (12)(13))
j=0 j

< IIfell Z T (23)

To estimate the second summation, observe that by equalities (10),(16), and (17), we have

2
0o

[(fie €)| (T — Dy)e;
j=2a+p+2

oo

= W2a+ﬁ+2|<fk' eZa+B+2>|ea+ﬁ + z Wj|<fk' ej>|9j—1

j=2a+f+2
oo

= > wllhee) 24)
j=2a+p+2
2

< == (by(20)).
Lastly, to estimate the third summation, we observe that Ran(D,) € span{e, : 0 < k <
a}, and so for any vector g € H, we have

a
ITDegll = Z |Da.g'ej|Tej

a
< Z |<Dag' ej

&
Z 1291l (1Dagll +) < z (DMl + 1?1lgll = (@ + DUIDN + D2l

Thus, for any integerj with 0 < j < a -1
|(T = Da)easprajll = [[=¥TDae) + equal| (by(10),(14))
<y(a+ D(IDell + 1* +y < y(a + DDl + 1)
For similar reasons,

1
a '+;ea+ﬁ+1+j (by(11))

(T — Do)eq+p+1|| < v(a+ DD, + 1)
Therefore,
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a a
£2
Z |<fk: ea+ﬁ+1+j)|||(T - Da)ea+ﬁ+1+j|| < Z 4M,y a)ea+ﬁ+1+j||(b}’(19))
=0

2 2

2% y =5
<G Z Y@+ DUDN + 12 = My =7 (25)

Combining inequalities (22), (23) (24) and (25) with (21) yields
I(T — Do)fill <e,
which completes the proof of Claim (4.1.8).
We now use Proposition (4.1.6) to connect the chaotic shift B, with the operator T, g ,,.

Claim (4.1.9)[159]: For each triple of integers a, 8,y > 1, thereisapath {G, € B(H):t €
[0,1]} of chaotic operators between B, and T, z,, for which HC(Gt) = HC(B,)for each
te [01].

Prom[: Tc]) prove Claim (4.1.9) using Proposition (4.1.6), we define as proof of Claim (4.1.9).
To prove Claim (4.1.9) using Proposition (4.1.6), we define a sequence {gj 3 0} of
vectors in H and a weight sequence {v; : j = 1} in the following manner. For each integer
jwith0 <j < a,letl

1

92j = Dgeqj +;ea+3+1+(a—j)» (26)
92j+1 = €q-j,and (27)
Vpj = Vzj41 = L. (28)

For each integer jwith0 < j < f — 1, let
2a+2+j — Ca+1+j and Voa+2+j :F (29)

and for integers j > 2a + 8 + 2, let

gi = ¢ and v; = w;. (30)

Since Ran(D,) S span{ej: 0 < j<a}, we get span{g;:0<j<2a+p+1}=
spanfe; : 0 <j <2a+p+1}. Toshow T,p,9; = v;g;-, foreachand T, 3,9, =0,
observe that

1
Ta’,ﬁ,)/gO = Ta,ﬁ,yDaea + ;Ta,ﬁ,yea+[3+1 (bY(26))

1
= Ta,ﬁ,yDaea + ;(_VTa,ﬁ,yDaea)(by (15))
0,and
Ta,ﬁ,ygl = Ta,ﬁ,yea (by (27))

1
= Dypeq + ;ea+[>’+1(by (11))

= v19o (by (26) and (28)).
Using a similar argument, for integers j with

1
Ta,ﬁ,)/g2j = Ta,ﬁ’yDaea_j + ;Ta’ﬁ'yea+ﬁ+1+(a_j) (by (3 - 22))
= eq_ji1 (by (14))
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= V3;92j-1 (by (27) and (28)),and
Ta,B,y92j+1 = Ta,ﬁ,yea—j (by (27))

1
= Dgeq—; + ;ea+ﬁ+1 (by (11))

= Vzj+192; (by (26) and (28)).
Next, note that
Ta,B,yga+2+j = Ta,ﬁ,yea+1 (by (29))

1
= e (by (12))

= Vya+292a+1(by (27) and (29)),
and for integers j withl < j < 8 — 1 and for integers j with

Ta,ﬁ,y92a+2+j = lgpyCa+i+j (by (29))
1
=7 eq+1(by (13))

= Vaq+2+j92a+1+;(BY (29))
Lastly, observe that
Ta,ﬁ,y92a+ﬂ+2 = Ta,ﬂ,yea+ﬁ+2(by (30))
= Wqyp+2€a+p (by (16))
= Va+p+29a+p+1 (by (29) and (30)),
and for integers j = 2a + f + 3,
Tapy9j = Ta,ﬁ,yej(by (30))
= wjej_4 (by (17))
= v;g;-1 (by (30)),
which completes the proof of Claim (4.1.9).
To construct the desired SOT-dense path of chaotic operators. Let {Tak,ﬂk,yk k>
1} be an enumeration of the countable set {Taﬁ,y > 1}. By Claim (4.1.9), for each integer
k > 1, there is a path {G., € B(H):t € [0,1]} of chaotic operators such that G, =
Gix = Boand Ty p.y, € {Gex € B(H):t € [0,1]}, and in addition HC(G.x) =
HC(B,) for each t € [0,1]. For each t € [k, k + 1], let F, = G;_ ). Then {F, €
B(H):t € [1,0)} is a path of chaotic operators which is SOT-dense in B(H) by Claim
(4.1.8), and for which HC(F;) = HC(B,y) = HC(F,) foreacht € [1,x).

If we choose the chaotic shift B, given within the proof of Theorem (4.1.7) to have a
hypercyclic subspace, then the corresponding path of operators in the theorem maintains the
linear structure.

Corollary (4.1.10)[159]: There is a path of chaotic shifts that is SOT-dense in B(H), and
the shifts along the whole path have a common hypercyclic subspace.

Not only does the strong operator topology play an important role in the density of the
hypercyclic operators, it also plays a role in the connectedness of those operators. To
explain, recall Bes and Chan [161] showed that if an operator T in B(H) is hypercyclic, then
its conjugate class {ATA™!: Ainvertiblein B(H)} is an SOT-dense collection of
hypercyclic operators in B(H). That conjugate class is also path connected because the
invertible operators in B(H) are path connected; see Douglas ([40], Corollary 5.30). Hence,
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the conjugate class consisting entirely see Douglas ([40], Corollary 5.30). Hence, the
conjugate class consisting entirely of hypercyclic operators is SOT-dense and SOT-
cortnected in B(H). On the other of hypercyclic operators is SOT-dense and SOT-cortnected
in B(H). On the other hand, we observe that if Y and Z are two subsets of a topological

space X satis fying ¥ € Z C Y and if Y is connected, then Z is connected; see Munkres
([44], Theorem 1.4, page 149). This observation and our discussion above lead to the
following fact

Proposition (4.1.11)[159]: The set of all hypercyclic operators is SOT-connected in B(H).
Now, if the hypercyclic operator that generates the SOT-dense conjugate class is chaotic,
then the conjugate class consists entirely of chaotic operator, which by the same discussion
as above, implies that the set of all chaotic tors is also SOT-connected. Furthermore, one
can easily verify that an operator satisfies the Hypercyclicity Criterion if and only if every
operator in gate class does. Hence, the same argument shows the set of operators satisfying
the Hypercyclicity Criterion is SOT-connected. Similarly, the set of hypercyclic operators
not satisfying the criterion is SOT-connected as well.

With the same topological argument, we see that if we let G be the dense G set of
common hypercyclic vectors in Theorem (4.1.7), then we have the following conclusion.
Corollary (4.1.12)[159]: The set of operators T in B(H) with G € HC(T) is SOT
connected.

Likewise, if we let G be the common hypercyclic subspace in Corollary (4.1.10), then
the set of all operators T for which G € HC(T) is also SOT-connected in B(H).

Related to hypercyclicity are the concepts of supercyclicity and cyclicity. An operator
T in B(H) is supercyclic if there is a vector x in H for which the set {AT"x : n > 0,4 € C},
consisting of all scalar multiples of vectors from the orbit Orb(T, x), is dense in H. An
operator T is cyclic if there is a vector x in H for which the linear span of the orbit,
span Orb(T,x), is dense in H. Clearly, hypercyclic ity implies supercyclicity, and
supercyclicity implies cyclicity. From the above topological argument, the supercyclic
operators in B(H) are SOT-connected and SOT-dense. Furthermore, as in Corollary
(4.1.12), the set of supercyclic operators T in B(H) having the prescribed dense G set of
supercyclic vectors forms an SOT connected subset of B(H). Likewise, the same holds true
for the cyclic operators in B(H).

Section (4.2): Translation Operators with Large Gaps

By H(C) we denote the set of entire functions endowed with the topology of local
uniform convergence. For a subset A of H(C). A denotes the closure of A with respect to the
topology of local duniform convergence. Let X be a topological vector space. A subset G of
a X is called Gg if it can be written as a countable intersection of open sets in X and a subset
Y of X is called residual if it contains a Ggand dense subset of X. The symbol co whenever
appears in the present work denotes the complex infinity.

Let (T;,: X = X) be a sequence of continuous linear operators on a topological vector space
X.If (Tn(x))n>1 is dense in X for some x € X, then x is called hypercyclic for (T,,) and we

say that (T,,) is hypercyclic [180], [12]. The symbol HC ({T},}) stands for the collection of
all hypercyclic vectors for (T,). In the case where the sequence (T;,) comes from the iterates
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of asingle operator T: X — X,i.e.T,, := T", then we simply say that T is hypercyclic and x
Is hypercyclic for T. If T: X — X is hypercyclic then the symbol HC(T) stands for the
collection of all hypercyclic vectors for T.A simple consequence of Baire’s category
theorem is that for every continuous linear operator T on a separable topological vector
space X, if HC(T) is non-empty then it is necessarily (G5 and) dense. For an account of
results on the subject of hypercyclicity see [180], [12], see also [196].

We deal with translation operators. For every a € C \ {0} consider the translation
operator T,;: H(C) — H(C) defined by

To(f)(2) =f(z+a), feH.

An old result of Birkhoff [184] says that there exist entire functions the integer translates of
which dense in the space of all entire functions are endowed with the topology of local
uniform convergence. In other words T; is hypercyclic. Actually, it is not difficult to see
that for every a € C\ {0}, T, s hypercyclic and hence HC(T,) is Gs and dense in H(C).
Costakis and Sambarino [38] strengthened Birkhoff’s result by showing that the family
{{Ta} a€C\ {0}} has a residual set of common hypercyclic vectors i.e., the set
Naec 03 HC ({Tna}) is residual in H(C). In particular, it is non-empty. What makes their

result nontrivial is the uncountable range of a. At this point, let us mention a relevant
observation due to Bayart and Matheron, [180], [24]: suppose X is a Fréchet space and
{Sanla € A,n € N}isacollection of sequences of continuous linear operators on X, labelled
by the elements a of a set A. If A is a o-compact topological space, the maps — S, ,, are

SOT-continuous and each sequence (Sa'n)neN has a dense set of hypercyclic vectors then

either Ngea HC({Sun}) = @ or Nagea HC({S4,}) is a dense Gs-set in X. This observation
applies to all the collections of operators considered.
Recall that the set Nyecy (o) HC({Tnge}) is residual in H(C), [38]. Subsequently,

Costakis [188] asked whether, in this result, the sequence (n) can be replaced by more
general sequences (4,) of non-zero complex numbers. In this direction Costakis [188]
showed that, if the sequence (4,,) satisfies the following condition (}; ): for every M > 0
there exists a subsequence (u,,) of (4,,) such that

(1) |Mn+1| |,un| > M foreveryn = 1,2, ...and

Then the deswed conclusion holds if we restrict attention to a € €(0,1) {z €~ = 1}, that

|z|
is the set Nyeco.1) HC ({T,,0}) is residul in H(C).
In view of the above, Costakis led to the following question, see Question 1 in [188].
Theorem (4.2.1)[170]: Fix a sequence of non-zero complex numbers =A = (4,,) that tends
to infinity and satisfies the above condition (¥ ). Ten N yeeyroy HC({Th,0}) is @ Gs and dense
subset of H(C).
We mention here that one is forced to impose certain natural restrictions on the

sequence (4,) is order conclude that the set N ,cc\r0; HC({Th,q}) is non-empty. Indeed,

P |An+1l — i
[191] show that if lim aemgo} |/11+1|1 > 2 then Ngeevoy HC({Th,a}) = @. In particular,
Naecvioy HC({Tena}) = @ However, for sequences (4,) with
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1 <liminf({Ty ,}) = 9,

although it is plausible to conjecture that this is the case. In particular, we do not know what
happens when A,, = 2™ or A, = (3/2)™. This work can be seen as a try to understand the
nature of this restriction. In any case, it seems a quite difficult problem to fully characterize
the sequences (A,,) for which the conclusion of Theorem (4.2.1) holds.

We stress that Theorem (4.2.1) complements the main result from [203]. [203] showed that
the conclusion of Theorem (4.2.1) holds for sequences (4,) satisfying another type of
condition different from (3. ); condition, which we call it (3."), is also not very restrictive,
in the sense that it still allows sequences (A,,) with “large gaps”. We postpone the definition
of condition (3’ ). We note that although sequences of polynomial type of degree bigger
than one, such as (n?), (n?), (n* + n>) and so on, clearly do not satisfy condition (3 ) they
do satisfy (3." ). However, there exist sequences satisfying both conditions (3; ) and (3.").

The main argument uses Baire’s A few words about the proof of Theorem (4.2.1). Of
course the main argument uses Baire’s category theorem, but in order to do so the first and
most difficult thing is to construct a suitable two dimensional partition on a given sector of
the plane. After, to each point of the partition we assign a suitable closed disk of constant
radius so that these disks are pairwise disjoint and their union almost fills the sector.

Having done these steps we are ready for the final argument which involves a standard
use of Runge’s or Mergelyan’s approximation theorem along with Baire’s theorem. It is
important to say that in our framework one cannot use Ansari’s theorem [174], as Costakis
and Sambarino did in their proof, since now the sequence (A,) lacks the semigroup
structure, i.e. 1, + A,,, # 1,4, In general. Actually, this was the reason that led us to seek
higher order partitions in order to make things work. Overall, we elaborate on the work of
Costakis and Sambarino and we offer a general strategy how to construct two dimensional
partitions relevant to the problem. The proof shares certain similarities with the proof in
[203] and so we feel that will get a more clear and integrated picture by reading in parallel
the present in [203]. However, the methods of constructing the partitions in [203]
differentiate drastically. The reason for this, is that always the partition reflects the structure
of the sequence (A4,). The construction of the partition in [203] is very tight and quite
delicate and comes from our effort to deal firstly with the most natural sequence which fails
condition (¥, ), namely the sequence (n?). It is also evident that there is a huge distance
between sequences satisfying condition (3. ) and the sequences satisfying condition (3" ).
It would be desirable to exhibit a condition and a corresponding partition, if any, which
imply the main result of the present as well as the main result in [203]. Unfortunately, this
Is unclear to us.

There are several results concerning either the existence or the nonexistence of
common hypercyclic vectors for uncountable families of operators, such as weighted shifts,
adjoints of multiplication operators, differentiation and composition operators; see [171],
[23]-[181], [182] [185]-[186], [37]-[191], [193], [12], [43], [198], [46], [201], [202], [203].

The proof of Theorem (4.2.1) has several steps and occupies. We compare Theorem
(4.2.1) with the main result from [203] and we exhibit examples of sequences which
illustrate the main theorem.

We describe the steps for the proof of Theorem (4.2.1). Consider the sectors
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1 k k+1 .
Sk = {a eEC|are [ﬁ,n] and t € YA such that a = rez’”t}

4
Fork =0,1,2,3 andn = 2,3, ...since
3 4o

HC({Th,}) = ﬂ ([ ) He(ma))

aeC\{o} =0 n=2 gesk
An appeal of Baire’s category theorem reduces Theorem (4.2.1) to the following.
Proposition (4.2.2)[170]: Fix a sequence (4,,) of non-zero complex numbers that tends to
infinity which satisfies the above condition (3, ). Fix four real numbers r,, R, 85, 1 such

that 0 <1y <1 <Ry <+0,0<560,<6;: <1, 6r—86, =i and consider the sector S
defined by
S :={a € C| there existr € [ry,R,] and t € [6,,6;] suchthat a = re?t}

Then Naes HC({Th,4}) is a G5 and dense subset of H(C).

For the proof of Proposition (4.2.2) we introduce some notation which will be carried. Let
(pj), j =1,2,... be a dense sequence of H(C), (for instance, all the polynomials in one
complex variable with coefficients in Q + iQ). For every m, j, s, k € N we consider the set

VaeS In €N, n < m:sup

E(m,j,s,k) = {fEH((C) sup |1z + 2,) = p,(2) < 1|}

By Baire’s category theorem and the three lemmas stated below, Proposition (4.2.2) readily
follows.
Lemma (4.2.3)[170]:

+00 +00 400 +00

ﬂ HC({Ty,q}) = ﬂ ﬂ ﬂ U E(m,j,s, k).

aes j=1 s=1 k=1m=1
Lemma (4.2.4)[170]: For every m, j, s, k € N the set E(m, j, s, k) is open in H(C).
For the sequel we fix four positive numbers ¢y, c,,c3,¢c, Such that ¢; > 1, ¢, €
(0,1), ¢c3>1, ¢, > 1, where ¢ := rc—‘: ¢, = 4(c3 + 1). We also consider four positive
0t2

real numbers 8, 81,1y, Ry as in Proposition (4.2.2) and a sequence A = (4,,) of non zero
complex numbers which satisfies condition (3} ) and such that 1,, - o0 as n — +oo. After
the definition of the above numbers we fix a subsequence (u,,) of (/’In) such that:

lunl > 1, lpnsal — lunl > ¢, forevery n=12, .. and ZIMI e
k

We succeed the elementary structure of our construction. The followmg two steps are
based in this first one. For every positive integer m we shall construct a corresponding
partition A,,, of [HO,HT] So, let m € N be fixed.

The condition Y} 2 ke = +4oo implies that for every positive integer m = 1, 2,... there

exists the minimum natural number m, (m) such that:
mq(m)

Z L s 31)
— C —

= |,le| |.um|

Clearly m;(m) = m + 1 for every m = 1 2, ... because c; > 1. We defined the numbers
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9 m) _ — 00, 0 (m) 0 (m) 4+ 2 9 (m) 9 (m) 4+ 2 6 (m) =0 (m) +

| |u +1| my(m)-m+1 " ¥my(m)-m
or generally:
|.Um1(m)| c
H,Srfi Q,Em) 42 n=0,1,..,m@m)—m, (32)

_ |timnl

Where m;(m) — m = 1. Define
. pm
le(m) m+1 90'

Now let any positive integer v W|th
v>my(m)—m+ 1.
For such a v there exists a unique pair (k,j) € N?, where j € {0,1, ..., m;(m)m}, such that:
v=k(m(m)—-—m+1) +j.
We define
9("‘) = H(m) + ka(m) + koy,.

Itis obvious that lim H(m) = 4o and the sequence (9(’”)) Is strictly increasing, in respect

v—+00

to v. So there exists a maximum natural number v,, € N such that 95:) < 0r. We set
A= {05,000},
It holds that v,,, = m,;(m) —m + 1 (see Lemma (4.2.5)).
Consider the function ¢: [0, 0+] X (0, +o0) — C given by
d(t,r) = re?™, (t,1) € [8,,07].
For any given positive integer m, ¢,-(A,,) is a partition of the arc ¢,.([6,,87]), where A, is
the partition of the interval [6,, 8] constructed in Step 1. For every r > 0,m € N define

m
= ¢r(Am)
Which we call partition of the arc ¢,.([8,, 0+]) with height r, density m and order 0.

Consider the partition po ! from the previous step, Step 2 and set

C2
=1+ (33)
|'um1(1)|
After, we consider the partition pi*™** and we set
m; = ml(ml(lc) + 1),
rp=nr+ —
|'um2|

Inductively we define two sequences (), v =10,1,2,..,(m,), v =2,... As follows:

0,71, 1, and m, are above, see (33). Suppose that we have constructed the numbers m,, r;,,
Ty, My+1

for some v > 2. Then, taking into account the partition p, , We set
Myyq = my(m, + 1) (34)
And
C2
Ty+1 =Ty + (35)
|:um,,+1|
For the next step, consider the partition pg”" "™ *+** We show that lim 7, = +oo.

v—>+00

Therefore there exists a maximum natural number v, €\N such that r,, < R, because the
sequence (r,) is strictly increasing. In view of the above, we define
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Ty,My+1
p= Po (U Po )»

Which is the desire partition of our sector S.
Lemma (4.2.5)[170]: Let some fixed m € N. Then

1
_ plm)
Qm 1(m)-m+1 — 6, < Z
In particular, v,,, = my(m) —m + 1.

Proof: By the definition of the numbers Qj(m), j=0,1,..,m(m)+ 1we have

mq(m) 1
(m) —
Om, (m)-m+1 ~ b0 = 2. z el (36)
k=m
And by the definition of the number m, (m) it follows that
mq(m)
Z ! L D —— 37)
< C
|,um| |,um| |Mm1(m)| 5 | ml

Our hypotheses imply c1 =4(c;+ 1) and |y, | > ¢4 = 4(c3 + 1) > 4c,(c3 + 1) because
¢, € (0,1). This gives

c3+1 < 1 (38)
|t
Thus, (36), (37) and (38) yield g,,, < % and the proof is complete.
Lemma (4.2.6)[170]: liErn 1, = 400,
v—>+00
Proof: Below, let us rewrite the relations that define the numbers (1,),v = 0,1, 2,....
G2
T'l - TO (39)
C2
Tz == Tl (4‘0)
|'um2
C2
Tyr1 =T, + , v=1,2,.. (41)

.
Hm,+1

Where m, = m,(m, (1) + 1). Equalities (39), (40), (41) imply

1, =1y + Cy for v=1.2,.., wherem; =m (1) (42)

k=1 |‘umk|
By the definition of m, (1), m, we have

m4(1)

Zl< L (43)
T = 63. C3 Y

£ el Il |, | |11

m;
1 1

<(cs+1)——

. (44)
|'um1(1)|

T 1 S C3.
k=mq(1)+1 |‘le| |ﬂm1(1)+1| |'um2|
Inductively, for every v > 2 we get
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My+1
1 1 1 1
z — < 3. + <(cz+ 17— (45)
k=mp+1 |:uk| |.umv+1| |.umv+1| | m,,|

Because the sequence (|uy,,|) is strictly increasing. So by (43), (44) and (45) we conclude
that

my+1 " v
Z ﬁ < (C3 + 1)2 (46)
=1 M k=0 |Mmk|
Where
my =1, my:=my(1).
On the other hand Y72 | = = +oo by our assumption. This fact and (46) give us
+00
= +o00, (47)
k=0 |Mmk|
Now by (42) and (47) we conclude that lim 7, = +oo0 and the proof is complete.
v—>+00

Fix the numbers 1y, Ry, ,, 07, ¢4, C2, C3, €4 Which are defined. We fix a subsequence (u,,) of
(4,,) satisfying the following:

(I) |Aun| |Aun+1| |Aun| > € forn = 12, ..

(i) 22 el = +oo

Fmally, on the basis of the above, we consider the partition p constructed.

We construct a certain family of pairwise disjoint disks, based on the previous
partition p of the sector S. This family points out how one can use Runge’s theorem to
conclude the Proposition (4.2.2). Let us describe, very briefly, the highlights of our
argument. The main idea is to assign to each point w of the partition p a suitable closed disk
B(wu(w),c,) with center wu(w) and radius c, (the radius will be the same for every
member of the family of the disks), where u(w) will be chosen from the sequence (u,,), o
that on the one hand the disks B(wu(w), c,), w € p are pairwise disjoint and on the other
hand the union of the disks, U, ¢y B(wu(w), c,) “almost fills” the sector S.

So, let us begin with the desired construction. We set

B:={z € C/|z| < c,}.
Let w € p be a fixed point in p. By the definition of p there exist unique r' €
{ro,ry, o1 my € (1, my(1),my +1,...,m,, + 1} such that w € pj ™ . By definition,

pg"m’ = ¢,7(A,,7). So there exists unique k € N.k >1 and j € {0,1, ..., m;(m') — m'}
such thatn = k(m,;(m") —m’ + 1) + j; so we define

puw) = Hm! 4 j-
Thus we assign, in a unique way, a term of the sequence (u,,) to each one from the point of
p. Finally we set

B,, = B + wu(w).
The desired family of disks is the following:
D:={B}U{B,:w € p}.

Lemma (4.2.7)[170]: We have B n B,, = @ for every w € p.
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=% since ¢, € (0,1).50 2¢5 > Zi—“and inview of ¢c;4(c3 + 1) > 2¢5; we
0

ToC2 To

Proof: c; = = >
get
Cl > - (48)

Take w € p. The closed disks B, B,,, are centered at, 0, wu(w) respectively and they have
the same radius c,. Hence, we have to show that |[wu(w)| > 2c¢,. Since |w| = 1, it satisfices

to prove that [u(w)| > Zrﬁ Respectively and they have the same radius u(w),
0

pw) = u (49)
For some positive integer n € N and from the choice of (u,,)
|un| > c; forevery n € N. (50)

Now, (48), (49) and (50) imply |u(w)| > 2 i—‘* and this finishes the proof of the lemma.
0

Lemma (4.2.8)[170]: Let w;, w, € p such that |w;| < |w,|. Then B,, NB,,, = @.
Proof: We have
my=1<m;(1)+1
m, =my(m;(1) +1) > my(1)
And generally
my, =my(m,+1)>m, for v=12m..,v,

. T Ty, My +1
Since wy, w, € p, we have w; € p,”* "2 for some vy, v, € {0,1, ..., Vo}

,mv1+

1, w, € p,
and so |wy| =, ,|w;| =r,,. Our hypothesis |w;| < |w,| & 1, <, and the fact the
sequence (r,) is strictly increasing gives us vy < v,. Thus m, +1 <m,, + 1, because
the finite sequence (m,),v € {0,1 ...,v,} is strictly increasing; recall that m, = 1,m; =
m; (1). By the definition of u(w) forw € pg"m’ C p we get u(w) = p,,r; for some j €
{0,1,...,my(m") —m'}, so |u,| < |luw)| < |#m1(m') , since the sequence (|u,|) is

strictly increasing. The fact that w, € pg"l’m"lﬂ implies

|.um,,1+1| < lp(wy)| = |.um1(mv1+1) - |:um,,1+1| < |.um,,1+1| < |:um,,2+1
Since v; + 1 < v, and the sequence (|u,|) is strictly increasing (48). On the other hand we
have w, € pg”z'm”z“, SO

)

|um,,2+1 < lu(wy)| < |uva+1|-
Hence, the last two inequalities above give

lu(wy)| < |p(w,)l,
Which iin turn implies

(wau(wy)| > [wyp(wy)l. (51)
By (51) and the hypothesis we get

(Wap(wy) — wip(wy)| = |lwout (W) | = [wap(w)| = [wan(wy)| — lwipu(w,)|
> |willu(w)| = [willpw)| = ro(lpw)| = [(w)]) > roeq > 2¢y,
Where the last inequality in the right hand side above follows from ¢; > % which is already
established in Lemma (4.2.7). This shows that B, N B,,, = @.
Lemma (4.2.9)[170]: Let wy,w, € p such that w; # w, and |w,| = |w,|. Then B, N
B, = 0.
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Proof: We distinguish two cases:

() [pw)| < lu(wy)l.

In this case, by our hypothesis, we have

lwou(wy) —wypu(wy)| = ||W2H(W2)| - |W1.U(W1)|| = [wy]. (|I1(W2) - |.U(W1)||) = Tp.C1
> 2¢4.

Therefore B, N B,,, = @.

(if) lu(wy)| = [u(w,)I.

Since wy,w, € p it follows that w, € p(r,"l’m"lJrl,w2 € 'pg"z’ for some vy, v, €

{0,1, ..., vo}. By the equalities |w,| =1, , |w,| = 7,, and the hypothesis |w;| = [w,| we

conclude that ,,, = r,,, which in turn implies v; = v,, since the sequence (r,) is strictly

rv/,m

increasing. Setting v; = v, = v’ wegetwy, w, € p, 7 for some v’ € {0,1, ..., vy}, that
IS wy, wybelong to the same partition of zero order. For simplicity we write m,» + 1 = m'.

my,+1

ro 7 L. Fon! .
Also set v, =1'. S0, wy,w, € py ™ and the definition of the set p; ™ gives us w; =
! !
’ zme(m) ’ zmer(Lm)

r'.e””m w,=r'e 2 forsomeny,n, € {0,1,...,v,,/}, ny # ny, since w; # w,.
Without loss of generality suppose that n, < n,. Now, there exists a unique pair (k4,j;),
where k; € N,j; € {0,1,..., m;(m") —m'} and a unique pair (k,,j,) where k, € N and
j» €{0,1,...,my(m') —m'} such that

ny =ki(my(m’) —m’'+1) +j; (52)
and

ny = ky(my(m') —m' +1) +j, (53)
By definition, u(w,) = w4, and u(w, ) = up,r,;,and our hypothesis implies

luwy)| = [uw,)| & p(wy) = p(w,).

So we have j; =j, = j, and

61(172’1 )= ej(om ) + kZJm"
Thus

057 — 6™ = (ky — k). (54)

By (52), (53) and the fact that n, < n, and j; = j, we have k; <k, = k, = k; + 1. S0, in
view of (54) we arrive at

o) — ) > 5,0 > 0. (55)
The previous imply the following bound.
lwou(wy) — wip(wy)| = |u(w,)] , lwy — wy| Zl.um’| “lwy —wy , ,
— |;um’| i PR 627'[1'9,(::) _ r’eznief(lT) — rll,um’l . eZTtiQT(::) _ eZTtiQT(lT)
= r'| | - 2 sin (n (egznﬁ _ gfgln’)))
> 7o+ || - 2sin (n (65 - QTST’))) (56)
Now, consider Jordan’ s inequality
inx >~ e (0.2)
sin x 7Tx, X 5



We have
/ / 1 ’ ’ T
(m") (m") (m") (m")
0<0u —o0) < s =0<n (65 —00) <4
So, applying Jordan’s inequality for
X = n(e,g’z’” —9,(171"))

We get
sin (n (97(1’2”,) — 97(171”,))> > 2 (9,(172",) - 9,(171”’)) (57)
By (55), (56) and (57) it follows that
(wott(wz) = wyp(wy)| > 47|t | - O (58)
The definition of the number o,,- and relation (36) of Lemma (4.2.5) yield
my(m’)
0,/ = Cp" —
" 2 o ||
By this fact, inequality (58) and the definition of the number m, (m") we get
my(m")
Watt(wa) = winCw)| > drolinel ez ) T
i tic|
cs k=m
> 4‘7'0|‘lel| ' Cz |_,| = 4r0C2C3. (59)
m

Recall that ¢; = % So
0¢t2

4ryc,c3 = 410, S 4dcy > 2¢y.
ToCo

The last bound along with (59) give B,,, N B,,, = @ and the proof of the lemma is complete.
By Lemmas (4.2.7), (4.2.8), (4.2.9) we conclude the following
Corollary (4.2.10)[170]: The family D = {B} U {B,,: w € p} consists of pairwise disjoint
disks.
Lemma (4.2.11)[170]: For every j, s,k € N the set U2, E(m, j, s, k) is dense in H(C).
The proof of Lemma (4.2.3) is in [203]. The proof of Lemma (4.2.4) is similar to that in
Lemma 9 of [38] and it is omitted.
We now move on to Lemma (4.2.11).
Proof: Let j;, sy, k; € N be fixed. Our aim is to prove that the set U2, E(m, j;, 51, ky) iS
dense in H(C). For simplicity we write p; = p. Fix g € H(C), a compact set C < C and
gy > 0. We seek f € H(C) and a positive integer m, such that

f € E(my, j1, 51, k) (60)

sup|f(z) — g(2)| < &. (61)

Z€eC
Fix R, > 0 sufficiently large so that

CUu{zeC||lz| <k} c{zeCllz| <R}
And then choose 0 < §, < 1 such that

And

1
if|z| <R, and|z—w| < d,, wEC, then |p(z) —pw)|< PP (62)
1

Define
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B ={z € C||z| <R, + 8,},

8o
= Ry + &, = :
=T 2T oRT+ 1)
- Ch Ry + 6, B 2(Ry + 6y) 2Ry + 1)
: ToC2 do 1000 '

"02@2R,w + 1)
2(R{ +6y) 2Ryt + 1
01:4(03+1)=4-<(1 0)(2Rq )+1>.
7000
After the definition of the above numbers we choose a subsequence (u,,) of (1,,) such that
(i) |u,| > cl |tns1| — || > ¢, forn=1,2,...and

(“) Zn 1| =+

On the ba5|s of the fixed numbers ry, Ry, 8, 87, ¢4, C4, c3, ¢, and the choice of the sequence
(u,,) we define the set L as follows:
L:B U U B,

WED
where the partition p and the discs B,,,w € p are constructed. By Corollary (4.2.10), the
family © consists of pairwise disjoint disks. Therefore the compact set L has connected
complement. This property is needed in order to apply Mergelyan’s theorem. We now define
the function h on the compact set L, h: L — C by

hz) = { 9(2), z=B
p(z — W)L(W)), Z€B,, wenp.

By Mergelya’s theorem [199] there exists an entire function f (in fact a polynomial) such
that

1
sup|f(z) — h(z)| < min {2—51, 80}. (63)

Z€EL

The definition of h and (63) give
Suplf (2) —g9(2)| < suplf (2) —g(2)| = suplf (z) — h(2)| < &,

Which |mpI|es the desired mequallty (61). It remains to show (60).
Let a € S. Then a = re?™® for some r € [ry, Ry] and [6,, O7]. There exists a unique n, €
{0,1,...,v9 — 1} such that either r,,, <7 <7y, 44 Or 13, <7 < R,
We set
" =Thy T2 =g+t if Thg ST = Tyt
and
=T, T2=Ry if 1, ST <R,

T'lm

By the construction of the partition p there exists a unique m’ € N such that p,
addition, there exists unique p € {0,1, ..., v,,,y — 1} such that either

o) <6 < eg’fl) or ") <0<0r.

cp.In

Define now

6, =0, o™ if o™ <o<om)
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and
0,:=0") 6,=0, if 6" <6<0,

vml 4
and then set

!
; rm
wy =1y - e2™01 g pt ™

We shall prove now that for every z € C with |z| < Ry, z + au(w,) € B,,,.
Recall that B, := B + wou(wg) = D(wou(wy), Ry + 6,). It suffices to prove that
|z + au(wy) — wou(wo)| <Ry +6,  for |z| <R;. (64)
For |z| < R, we have,
|z + au(wy) —wou(wo)| < Ry + [u(wo)lla — wy|

=R, + |lu(wy)| - |r - g2mif _ rleZ”i91|. (65)
By (64) and (65) it suffices to prove
lu(wo)| - |[re?™8 — r e?™01| < 4. (66)
We now have
|7,.eZ7'ti91 _ rleZﬂi01| — |r62ni6 + rleZniG _ rleZniell

< |T62ni9 _ rleZni9| + |T‘1€2ni61|
< |T' _ 7‘1| + rlleZniG _ eZni61|
< |ry —1y| + Ry2 sin(n(91 - 9))
< (r, —11) + Ry2sin(m(6, — 6,))
< (rz - T‘l) + 2R07T(92 - 01)
C2 C2
<R

- +
O lu(we)| T lu(wo)l
84 1 8y

2(2Rom + 1) " |u(wy)| B 2|u(wo)|
which implies (66). So we proved that for every z € C, |z| < R,

z + ap(wy) € By, . (67)
By the definition of h and (67) we have that for every z € C with |z| < R,

= (2R, + 1) -

. . 1
|f(z + ap(wy)) —p (z + p(wy) (re?™ — 7‘132”191))| <o (68)
1
Take any z € C with |z| < R,. By (62) and (66)
. , 1
2mif6 __ 2mif, _ -
[p (2 + 1Gw) (re?® = re?®)) = p(2)| < 5~ (69)

and the triangle inequality gives
£ (2 + anwe)) = p(D)| < |f (2 + anw)) = p (2 + u(wo) (re?™? — rye?me1))

+ |p (Z + p(wy)(re?™® — rlez"iel)) — p(z)|. (70)
Using (68), (69), (70) we arrive at

1
[ (2 + an(ws)) = p(@)] < —
1
And since k,; < R, it readily follows that

1
sup |f(z + au(wy)) —p(2)| < 5 (71)

|z|sk
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Set
m, = max{n € N|A, = u(w), for some w € p}
And observe that the definition of m;is independent from a € S. Thus, by the previous we
conclude that for every a € S there exists somen € N, n < m; such that
1
sup |f(z + +ad,) —p(2)| <,
|z|<k, S1
Where f € H(C), since f is a polynomial. This completes the proof of the lemma.
By the remark in [188] we have a sample of first examples satisfying condition (3. );
An=mn, A, =n(logn)? for p<1, A, =nlognloglogn.

2
In all the above examples we also have |%*( - 1 as n — +o0. However, for sequences

n

— 1 we have that the conclusion of Theorem (4.2.1)

ATL+1

(4,,), such that A,, —» oo and
holds by the main result in [203]. It is our aim to show that there exist sequences (4,,), such
that: A,, —» oo, (1,,) satisfies condition (3 ) and the ratio Ants

— does not tend to 1.
Let us see things more specifically. Consider a sequence A = (4,,) of non-zero complex
numbers and define

B(A) = {a € 0,+|3(u,) € A with a = limsup
n
i(A) :=infB(A).

Un+1

Hn

Clearly
i(A) € [0,+o00]
and
If A,, > oo then B(A) c [1,+oo] and i(A) € [1.+].
We say that a sequence of non-zero complex numbers A = (A,,) satisfies condition (}.") if
i(A) = 1. In [203] we established the following result.
If A =(4,) is a sequence of non-zero complex numbers such that A,, » oo and A satisfies
condition ("), then the conclusion of Theorem (4.2.1) holds. In view of the above result
the following question arises naturally.
Below we construct specific examples of sequences A = (4,,) suchthat 4,, - o,i(A) = M
for any fixed positive number M > 1 and A ssatidfies (3. ).
(i) Firstly, we give affirmative reply to Question 1 of [188].
(ii) Secondly, for certain sequences, we also give a positive answer.
(iii)  Thirdly, we exhibit a variety of examples of sequences A = (4,,) of non-zero complex
numbers with A,, — oo such that A satisfies condition (3, ) and it does not satisfy
condition (3)").

The above discussion shows that the problem of deciding whether a sequence A4 = (1,,),
such that 1,, » o« and i(A) = M for some M > 1 satisfies the conclusion of Theorem
(4.2.1).

Proposition (4.2.12)[170]: For every M > 1 there exist a sequence A = (4,,) such that
A, = o, i(A) = M and condition (3. ) holds for A. Thus, for every M > 1 there exists a
sequence of non-zero complex numbers A = (4,,) such that 4,, - c0 asn — +oo, i(A) =

M and Nyeevoy HC({Th,0}) is @ Gs and dense subset of H(C).
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Proof: Fix a positive number M, > 1. We shall construct a sequence of non-zero complex
numbers A = (4,,) such that A,, » o, i(A) = M, and condition (3. ) holds for A. The
sequence A will be a strictly increasing sequence of positive numbers such that 4,, —»
+00 as n - +oco.
We construct inductively a countable family {D,}, n =1,2,... of sets D,, c [1, +)
according to the following rules.
(i) D, = {1}.
(i)D, ={a,+vlv=01,..,(Ja, ]+ 1!}, n=1.2,..
(i) min ®,,,; = M, max®,, foreachn = 1,2, ...,
Where a,, = min ®D,, and [x] denotes the integer part of the real number x as usual. Observe
thateverynmeN, n+m, D, ND,, = @. Set

+ o0

A= U D,,.
n=1

We define the sequence A = (4,,) to be the enumeration of A by the natural order. It is
obviousthat A, # 0vn € N, lim A, = 400, and (4,,) is a strictly increasing sequence of

n—-+oo

positive numbers. We prove now the following
Claim (4.2.13)[170]: For every subsequence u = (u,,) of A we have lim sup = fnil > M,..

n—-+oo

Proof: Firstly we prove that for every natural number m € N, there exists some N e NN >
m such that

UN+1

Un
So, take any m € N and let m, be the unique natural number such chat y,,, € Dy, ..

Setting A,,, == {n € N|u, } € D, }, itis obvious that A, # @, since m € A,
We set m, = max A, . Then up, 41 & Dy and SO 1 = Min Dy, 4. We have p,,, <
max D, , thus

> M,

.um2+1 = min $m1+1
Um, ~ MaxDp,
So we proved that for every m € N, there exist some N > m such that 22+ > M.

== MO and m2 2 ml.

We incorporate the last fact into an inductive argument and obtain the followmg
Form = 1 there exists k; € N, k; = 1 such that Batt > M,. Form = k; + 1, there exists

Hieq
H’kz +1

some k, > k, + 1 (especially k, > k;) such that .

> M,. Suppose that for some v € N

k2

we have some k,, € N such that ”zz“ > M,. Thenform =k, + 1
k2

There exist some k,,,; = k,, + 1 (especially k,,.; > k,,) such that —=———

Hip+1t1
Hip+1
Therefore we obtain a subsequence (#kv)» v =1,2,...0f (u,) such that k., > k,, for each

v=12,..and 22 > M,
Uiy
This gives lim sup

v—-+00 Hky

> M,.

Hiy+1

> M,, which in turn implies
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lim supu > M,|

n-+oo

This completes the proof of Claim (4.2.13).
Claim (4.2.14)[170]: llm sup = Ants = M,.

Proof: Letn € N. If An, Anﬂ € TD for some positive integer m, then by the construction
of ©,,, we have

n

An+1 1
=14+ — 72
PR (72)
If there is no m € N such that 4,,, A,,,1 € D,,,, then this can happen only if 4,, = max®,,
and 4,,,.; = min®,,,,, for some m € N, hence
A
Z“ = M,. (73)
n

By (72), (73) and since 4,, = +oo the conclusion follows. This completes the proof of Claim
(4.2.14).
Claims (4.2.13) and (4.2.14) imply that i(A) = M,,.
Claim (4.2.15)[170]: The sequence A satisfies condition (3. ).
Proof: Fix some natural number N, = 2. We will show that there exists a subsequence (u,,)
of A such that

(1) 41 — Uy > N, foreveryn = 1,2, ... and
(i) ZhZ o = +oo.

Recall that a,, = min®,, > N, for every n > 2. Since

An+1:/1n+1=>

1 1
lim <1+§+---+——logn)=

n—+oo 2
Where y = 0,57722156649 ... is the Euler constant, there exists some natural Number
n, € N such that

1<Zjiil 1 <’1 = > 2
> k_lk 0gn—y <3 for n=n, :
Letsome m,n € N,m > ny. Then we have

1

>
m m n
1 1 P z 1_21 zl
n+1 n+2 m k_klk k

k=n+1 = n=1
m 1 n
=( E_logm_y> (Z——logn y>+logm logn>log——1
szlTl mk:
_ m -1 _ -
—logn+loge —log(n.e )
=log(m) (74)
ne

It is easy to show that a, > n for n > 2. Set n; = max{n,, Ny} + 2. Let now some n € N
with n > n;. Recall that
D, ={a,a,+1,..,a,+ ([a,] + 1)1}
={a,+jlj=01,..,([a,] + D!}
Setting N; :== N, + 1 we obtain
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1 1 1 1

—+ + + e+
a, a,+N; a,+2N, ([a,] +1) N
an + =Ny
- + ! + ! + o+ !
Nia, = Nyan, + Ny Nya, +2N; NM#M-W
1
(lan]+1)! ([an]+1)!
N1 Nl
_ 1 z 1 S 1 1 (75)
N Loant TN L (et D+
We write for simplicity v = [a,,] + 1. So by (74), (75) we get
v!
N, V!
i t 1, "N, o L g (! 76
L+ kN, N Bl w—De | N B\ "N (76)
We will show that
1 | (v—1)! S
N, og N.e v

For v big enough. It follows that
1 (v—1)! (v—1)!
log > v © log > Nyv

N, N;e Nie
& (v—1)! > Nyje.eMV = N, eN1vtl

Let us consider the sequence y,, = Nfz;iil By the ratio criterion for (y,,) we have
v!
Vo1 _ NjeM1 0D+l vl - eNivHl v
o = (@@=l  (v—=1)-eN@+D+1 Ny’
So lim (¥) = +oo which implies that there exists some n, = n, such that ¥, > 1 for
v—o+o0o \ Vp
n = n, or equivalently
1 l (n—1)! S S 77
N, og Noe n, n==n,. (77)
Thus by (76) and (77) we have:
!
Ny
1
kz_om>[an]+1 for n=n,.

Now for n > n, define the set
([a,] + 1)! }
-~ N,

Dy, = {an, a, + Ny, a, + 2Ny, ...,a, + N
1

D = U Dy,

nzn,
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Let (u,,) be the sequence we get when we enumerate D’ by its natural order. Clearly (u,,)
Is a subsequence of A and satisfies the desired properties (i) and (ii). This completes the
proof of Claim (4.2.15) and hence that of Proposition (4.2.12) using Theorem (4.2.1)
Corollary (4.2.16)[170]: There exists a sequence A = (4,,) of non-zero complex numbers
with A,, - oo such that A satisfies condition (3. ) and it does not satisfy condition (3)").
Proof: Every sequence A = (4,,) of non-zero complex numbers with A,, - co which
satisfies the conclusion of Proposition (4.2.12), clearly does not satisfy (3)").

We point out that sequences of the form (n?), (n®), (n*) ..., satisfy condition (3."). but they
do not satisfy (3, ). To complete the picture we observe that there are sequences with
sufficiently slow growth, such as (n), (vn), (log(n + 1)), (loglog(n + 1)), that satisfy
both conditions (3, ) and (3’ ). Hence, neither (3, ) nor (3)') implies the other and, in
addition, they have non-empty intersection. This in turn shows that Theorem (4.2.1) does
not follow by the main result in [203].
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Chapter 5
Trace with Two-Term Trace and Asymptotic Estimate

We show trace estimates for the relativistic a-stable process extending the result of
Bafiuelos and Kulczycki in the stable case. We extend previous results obtained for the
fractional Laplace operator (y (&) = £%/2) and for the Klein—-Gordon square root operator
(&) = (1 + &»)?2 —1). The formula for the eigenvalues in (—a, a)is of the form 4,, =
Y(uz) + 0(%), where p, is the solution of yu,, = :—Z — %19(.“71)’ and 9(u) € [0, g) Is given
as an integral involving .

Section (5.1): Unimodal Levy Processes

A two-term small-time uniform approximation for the trace of the transition density
of the Wiener process killed off bounded R-smooth domain D c R%, i.e. the classical
Dirichlet heat kernel, was obtained by van den Berg [216]. The first term of the
approximation is proportional to the domain’s volume |D| and the second-to the surface
measure |dD| of the boundary, with explicit coefficient depending on time.

Asymptotic non-uniform expansions of the trace of the heat kernel were given earlier in
[212], see [216].

Banuelos and Kulczycki [52] obtained a uniform two-term approximation for the isotropic
a-stable Lévy processes. The closely related case of the relativistic a-stable Lévy processes
was resolved by Bafiuelos, Mijena and Nane [219]. A similar two-term approximation for
Lipschitz domains was given for the Wiener process by Brown [209], and for the isotropic
a-stable Lévy processes—by Baiiuelos, Kulczycki and Siudeja [104].

Park and Song [213] obtained a two-term small-time approximation of the trace for the
relativistic a-stable Lévy processes on Lipschitz domains, and gave an explicit power
expansion of the first term.

We investigate those Lévy processes X, in R%, where d > 2, which are unimodal
and satisfy the so-called weak lower and upper scaling conditions, denoted WLSC and
WUSC respectively, of orders strictly between 0 and 2. The isotropic stable and relativistic
Lévy processes are included as special cases but at present the orders of the lower and upper
scalings may differ. For bounded R-smooth open sets D c R? (also called C** open sets)
our main result gives a two-term small-time approximation of the trace of the corresponding
Dirichlet heat kernel. We resolve sums of independent isotropic stable Lévy processes with
different indexes.

We let i be the Lévy-Khintchine exponent and p; (x) be the transition density of X;.
We consider

I, ={t > 0: X, €D},
the first time that X, exits D. Fort > 0and x,y € R%, we define the heat remainder

mp(t,x,y) = E¥[tp < t,pr—r, (X(1p) — ¥)]. (1)
The Dirichlet heat kernel for X, is given by the Hunt formula:
po(t,x,y) = pe(y —x) —1p(t,x,y), (2)

and the trace of X, on D is
tr(t,D) = jpD(t,x,x)dx, t > 0. (3)
155



We denote H = {(xy,...,x4) € R%: x; > 0}, a half-space, and for t > 0 we let
Ca® = [ m @0 0,0, - ,0)da

0
For instance, Cy(t) = ct~4/**1/« for the isotropic a-stable Lévy process [52].

We remark in passing that the trace can also be studied and interpreted within the
spectral theory of the corresponding semigroup given by the integral kernel p, [52].

We note that sharp pointwise estimates of 1, (¢t, x, y) complementing [207] would be
of considerable interest. We also note that two-term approximations of the trace of the heat
kernel of general unimodal Lévy processes are open for Lipschitz domains.

A Borel measure on R® is called isotropic unimodal, in short: unimodal, if on
R4 \ {0} it is absolutely continuous with respect to the Lebesgue measure and has a radially
nonincreasing, in particular rotationally invariant, or isotropic density function. Recall that
Lévy measure is an arbitrary Borel measure concentrated on R¢ \ {0} and such that

(Jx]? A Dv(dx) < oo.

R4
In what follows we assume that v is a unimodal Lévy measure and define
W) = [ (= cos gV, §ER @
R

the Lévy -Khintchine exponent. It is a radial function, and we oftenlet () = (&), where
§eR%andr = |&] = 0. The same convention applies to all radial functions.

The (radially nonincreasing) density function of the unimodal Lévy measure v will also be
denoted by v, so v(dx) = v(x)dx and v(x) = v(|x|). We point out that for A > 1 and
r = 0, Y(Ar) = m%yP(r)and Y(Ar) = m %A%y (r) [206]. More restrictive inequalities
of this type define what are called the weak scaling conditions.

We consider the pure-jump Lévy process X = (X, t = 0) on R? [92], in short: X,,
determined by the Lévy-Khintchine formula

E oi6X0 = o—tw(®) — j e 60y (dx)
R4

The process is (isotropic) unimodal, meaning that all its one-dimensional distributions
p:(dx) are (isotropic) unimodal; in fact the unimodality of v is also necessary for the
unimodality of X, [217]. In what follows we always assume that iy is unbounded,
equivalently that v(R?) = oo. In other words X, below is not a compound Poisson process.
Clearly, ¥(0) = 0 and y(u) > 0 for u > 0. By [207], p;(dx) have bounded, in fact
smooth density functions p,(x) forall ¢ > 0 if and only if the following Hartman-Wintner
condition holds,

dim Y (§)
S =, (5)

In|¢]
Let VV be the renewal function of the corresponding ladder-height process of the first
coordinate of X;. Namely we consider Xt(l), the first coordinate process of X, its running

maximum M; := sup Xs(l) and the local time L; of M, — Xt(l) at 0 so normalized that its

0ss<t

inverse function L;! is a standard 1/2-stable subordinator. The resulting ladder-height
process 71(t) := XMW (L71) is a subordinator with the Laplace exponent
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wwd(}, w0,

1
k() = —log Ee 1M = exp {Ef e
0

and V' (x) is defined as the accumulated potential of #:

V(X) = ]EJ 1[0,x](nt)dt' X = 0.
0

Forx < OweletV (x) = 0. For instance, if ¥ (&) = |&|* with a € (0, 2), then V(x) =
xf [215]. Silverstein studied V and V' as g and ¥ in [214]. The Laplace transform of V is

® 1
|4 Wy = ——,
jo (x)e X oy
The function V is continuous and strictly increasing from [0, ) onto [0, o). We have
lim V(r) = oo. Also, V is subadditive:

T—00
Vx + ) = V) + V(y), xy € R (6)
For a more detailed discussion of V see [205] and [214].
In estimates we can use VV and interchangeably because by [207],
1

u > 0.

1I\] 2
V(r) = [1/1 (;)] , 1 > 0. (7)
The above means that there is a constant, i.e. a number C € (0, ), such thatforallr > 0
we have C~V(r) < [Y(1/r)]"Y2 < CV(r). In fact in (7) we have C = C(d), meaning
that C may be so chosen to depend only on the dimension, see ibid. To give full justice to
V7, the function is absolutely crucial in the proofs of [205], [207]. By (6),

1
EeV(r) < V(er) < V(r), 0 <e <1, 0 <r < oo (8)

We shall assume relative power-type behaviors of y(r) at infinity.
We say that 1 satisfies the weak lower scaling condition at infinity (WLSC) if there
are numbersa > 0, 8 € [0,0) and C € (0, 1], such that
Y(Ar) = CA%Y(r) for 1 = 1, r > 6.
Put differently and more explicitly, () /r< is almost increasing on (8, =), i.e.

() _ ()

@ _grg, if s=r>8.

In short we write 1 € WLSC(e, 0,C), Y € WLSC(a,8), Y € WLSC(a) or p € WLSC,
depending on how specific we wish to be about the constants. If iy € WLSC(«, 8), then we
say that v satisfies the global weak lower scaling condition (global WLSC) if 8 = 0.

If 8 > 0, then we can emphasize this by calling the scaling local at infinity. We always
assume that iy # 0, therefore in view of ¥ € WLSC we have the Hartman-Wintner
condition (5) satisfied, and so R 3 x +— p,(x) is smooth for each t > 0.

Similarly, the weak upper scaling condition at infinity (WUSC) means that there are

numbers@ < 2, 6 > 0and C € [1, ) such that
Y(Ar) < CA%Y(r) for A>1, r > 0.
In short, p € WUSC(a, 8, C) or p € WUSC. Global WUSC is WUSC(a, 0), etc.
We call @, 8, C, @, 8, C the scaling characteristics of 1. As pointed out in [207], by inflating
C and C we can replace 8 with 8/2 and 6 by 8/2 in the scalings, therefore we can always
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choose the same, arbitrarily small value 8 = 6 = 6 > 0 in both local scalings WLSC and
WUSC, if they hold at all. The scalings characterize the so-called common bounds for p; (x)
[206], and so they are natural conditions on i in the unimodal setting. See [206] many
examples of Lévy-Khintchine exponents which satisfy WLSC or WUSC.

For instance ¥ (&) = |&|%, the Lévy-Khintchine exponent of the isotropic a-stable Lévy
process in R? with a € (0,2), satisfies WLSC(a,0,1) and WUSC(a,0,1). The
characteristic exponent Y(&) = (1 + |£]?)%/? —1 of the relativistic a-stable Lévy
process with a € (0, 2) satisfies WLSC(a, 0) and WUSC(«, 1). Other examples include
Y& = &% + |€]%2 € WLSC(a4,0,1) N WUSC(a,0,1), where 0 < o < a, < 2,
etc. If Y(r) is a-regularly varying at infinity and 0 < a < 2, then p € WLSC(a) N
WUSC(a),withany 0 < a < a < a < 2.The connection of the scalings to the so-called
Matuszewska indices of ¥ (r) is explained in [206].

If 1 € WLSC(a, 8), then by (7) (or see [207]) we get the following scaling at 0:

a
V (er) < Ce2V (1), 0 <e <1, 0<r<1/6. (9)

Heretherangeis0 < r < oo if the lower scaling of i is global, in agreement with (9) and
the convention 1/0 = oo. If p € WUSC(«, ), then, similarly,

V(er)= Ce*?V(r), 0<e<1l 0<r7r<1/6. (10)
We shall need V1, the inverse function of V on [0, ). We let
T()=Vt+r), t=0. (11)

Put differently, [V (T(t))]” = t. For instance, T(t) = ¢/ for the isotropic a-stable Lévy
process. The functions V and T allow us to handle intrinsic difficulties which hampered
extensions of [216], [52], [219], [213] to general unimodal Lévy processes, namely the lack
of explicit formulas and estimates for the involved potential-theoretic objects.

We note that T(t) < a if and only if t < V?(a), wherever a,t = 0. The scaling
properties of T at zero reflect those of y (at infinity) as follows.

2
Lemma (5.1.1)[204]: If (9) holds, 0 < e < 1and 0 < t < V (%) , then T(et) >
ceVaT(t).
2 _
If (10) holds, 0 < & < 1and 0 < t < V (3) ,thenT(et) < ce'/@T(t).

2
Proof. To prove the first assertion we note that T is increasing. If 0 < t < V (%) , and
0 <e < 1,thenT(t) < 1/68and T(et)/T(t) < 1.By(9),

a/2
Ve = V (T(et)) <C (@) '
V(T(®)) T(t)

as needed. The proof of the second inequality is analogous but uses (10).
By (8) and the proof of Lemma (5.1.1) we always have

T(et) < cVeT(t), 0<e<1l 0<7r < oo (12)
In what follows we always assume that v is an infinite unimodal Lévy measure on R¢ with
d = 2 and the Lévy-Khintchine exponent defined by (4) satisfies

Y € WLSC(a, 8) N WUSC(a, ),
where 0 < a < a < 2,and 6 > 0. Many partial results below need less assumptions
but for simplicity of presentation.
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Definition (5.1.2)[204]: We say that (H) holds if for every r > 0 there is H, = 1 such
that
V(z)— V(y) < H.V'(x)(z —y) whenever 0 < x <y < 3 < 5x < 5r.

We say that (H*) holds if H,, := sup H, < co.
r>0
We may and do chose H, nondecreasing in r. By [205], (H) always holds in our setting

because 1 satisfiesWLSC andWUSC. If ip € WLSC(a, 0) n WUSC(«, 0), then (H*) even
holds.
By [207], thereisa C; = C;(d) such that

t
x) < C ———m——, t >0, x € R4\ {0}, 13
hence [206],
1
vix) < C 57—, x # 0. 14
0= ()
Since ¥ € WLSC(a, 8), by [207] we have
p:(x) < cT~%(t), t < V31, x €eR% (15)

We now discuss the heat remainder and the heat kernel of open sets D < R%. As usual,
0 < rp(t,x,y) < pi(x — y). Indeed, one directly checks that [0,t) 2 s » Y, =
p(t — s,X,y) is a P,-martingale for each x,y € R%. The martingale almost surely
convergesto 0 ass — t,and we let Y, = 0. By optional stopping, quasileft continuity of
X and Fatou’s lemma, for every stopping time T < twe have E, Y, < E,Y, = p(t, x,y).
The inequality 5 (t, x,y) < p:(x — y) follows by taking T = t, A t. The next resultis a
consequence of the strong Markov property of X,.
Lemma (5.1.3)[204]: Consider opensets D ¢ F < R%. Forallt > 0Oandx,y € R%,
pr(t,x,y) —pp(t,x,y) = EY [1p < ¢,X(tp) € F\D; pr (t- 7p, X(7p), X)].
Proof: We repeat verbatim the proof of [52].
Here is a well-known lkeda-Watanabe formula for the joint distribution of X(z,) and tp,
see [211] or [208] for proof.

Lemma (5.1.4)[204]: Let D ¢ R% beopen.Forx € D,t, > t; > 0andA c (5)6,

2
P,(X(zp) € A, t; < 1p < ty) =fj pD(s,x,y)dSJv(y — 3)dzdy.
DYty A

We denote 6, (x): = dist(x, D), x € R4,
Lemma (5.1.5)[204]: We have

n(txy) < CT()™, (16)
and
t d
p(t,x,y) < C; V2(6D(x))63(x)' x,y € R (17)

Proof. Since iy € WLSC(e, 6,C), we have (15), which yields (16). By (1), (13), and
symmetry,

t-1p
V2(I1X(zp) — xDIX(zp) — x|4T
Since | X(tp) — x| < 8p(x) and V is increasing, we obtain (17).
Recall that H is a half-space and Cy (t) is defined immediately before Theorem (5.1.12).

TD(t,x,y) = TD(t,y,x) < EY [TD <t Cl
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Lemma (5.1.6)[204]: If T(t) < 1/6,then Cy(t) < cT(t)" 4+,
Proof: Denote r(t,q) = my(t,(q,0,- - - ,0),(q,0,- - - ,0)).By(17)and (9),
[0} 2 00 a
1% (T(t))dq g f T(t)%

r(t,q)dq < cj
L(t) o V2 (@q? 0 4%
Using (16) we get

dq = cT(t)14,

T(t)

T(t)

f r(t,q)dq < cj T(t) %dq = cT(t)* ¢,
0 0

To obtain a lower bound for Cy(t) we shall use the existing heat kernel estimates for

geometrically regular domains. Recall that open set D < R satisfies the inner (outer) ball
condition at scale R > 0 if for every Q € dD there is a ball B(x',R) < D (a ball
B(x",R) € D) suchthatQ € dB(x',R) (Q € dB(x",R), respectively). An open set D
Is R-smooth if it satisfies both the inner and the outer ball conditions at some scale R > 0.
We call B(x',R) and B(x", R) the inner ball and the outer ball, respectively.
In the next lemma we collect a number of results from [207]. For brevity in what follows
we sometimes write T = T(t), wheret > 0 is given.
Lemma (5.1.7)[204]: Let open D < R¢ satisfy the outer ball condition at scale R < 1/6.
There is a constant c such that forT v |x — y| < 1/86,
V(sp(x) V(p() VA(T)
t,x,y) < —Al(—Al)T‘d/\ :

pPo(t:.7) C(m AR T )\VT AR x = y1eV2(x ~ yD)
Proof. We have (H). We note that v/t = V(T) and use the second part of [207]. We need
to justify that the quotient ]Zf?) is bounded, where Hy, is the constant from (H) and J(R) =
0<inva(B(0,r)C)V2(r). To this end we observe that Hy is increasing, and J(R) is

r<

nonincreasing, hence we get an upper bound for this quotient by replacing R with %. Ifo =
0, which we also allow, then by [205] the quotient is bounded as a function of R. By [207]
withr = % we also have pc(0) < cT~%(t).

Lemma (5.1.8)[204]: We have Cy(t) =~ T(t)" %! = p(0)T(t)as t - 0.
Proof: By Lemma (5.1.7) and (2) there is € > 0 such that r(t,q) = %pt(O) ifV(q) <

eVt
Since ¥ € WUSC, by scaling of V there is ¢ > 0 such that for 0 < g < cT(t) the
condition is satisfied and we have

cT(t) cT(t) c

f r(t,q)dq = E_f T(t) —ddq = ET(t)l‘d.
0 0

By WUSC and WLSC we have p,(0) = T(t)~%, see [206].

For M > 0, the truncated Green function of D is defined as
M

Ggl(xiy)zf pD(th'y)dtr X,y € Rd'
0
The Green function of D is

(0]

Go(x,y) = j po (6, %,y)dt = GE(x,7).
0
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Lemma (5.1.9)[204]: Let open D < R¢ satisfy the outer ball condition at scale R < 1/8,
x,y € R*and |x — y| < 1/6.LetM = V?(R). Then

V(8,(»))V(8
ey = 4 Dl(xy)l ;5 ) (18)
and
G¥(xy) < CV(SD(y))V(Ix— D (19)

lx — vl
Furthermore, if d > 2 or WUSC(«, 0) holds, then (18) and (19) even hold for M =
V2(1/6), including the case of global WLSC (M = ).

Proof: AssumingT < R A |x — y|, by Lemma (5.1.7) we get

V(T A S
Po(tx,y) < V(8(0)37 (Ix(—AyI)LI)afxi)yld’

hence
V2(]x=y|AR) V(SD(x))
fo R () P
< V(6p())V2(|x - y| A R)V(Ix - y| A 6p(x))
S C
lx - y[4V2(]x - z|)
< CV(5D(X))V(|X -yl /\5D(x))_

V2(lx—-y|AR)
f V(T A 6p(x))dt
0

h Ix — yl
This establishes (19) and (18) for small times. Then,
VZ(R) V2(R) T—d(t)
j pp(t, x,y)dt < cV(6p(x)) dt.
v2(x-y]) va(x-yp vt
By WUSC and Lemma (5.1.1),
1 cel/®
< .
T(t) ~ T(et)
With this in mind we obtain
2d
VZ(R) T4 (¢t 0 Va(lx -
j ()dtSCJ _ (lx - y) it
va(x-yp vt Vax-yD (g 2T (2 (1% — y))
d
Va(|x - y|) —
= ¢ —mM8M8M8M8MmM™— V2 x - —d/a—1/2+1,
pameral LG CERTN

where the integral converges, because d/a + 1/2 > 1 (recall that « < 2). We thus get
(19). To finish the proof of (18) we note that
VZ(R) V2(R) T—d(t)
[ motande < @@V E00) t
VZ(lx=yl) VZ(lx-yl)
and we proceed as before.
For M > 0, the truncated Poisson kernel is defined as

K (x,3) = jGi)”(x,y)V(y —z)dy, x €D, z€D"
D

dt,
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Lemma (5.1.10)[204]: Let open D < R¢ satisfy the outer ball condition at scale R. If
diam(D U {z}) < 1/86, then
V(R?) V(édp(x c
K,? (x,2) < (35() =
V(6p(2))Ix — =l
Proof: The previous lemma gives an estimate for Gp
controlled by (14). Thus,

V(R2) V(x-yDAV(8,(y)
K, % (x,2) < cV (5D(x))f lx — yl|¢y — |dlgz(|y z 3|)

Note that |[x —y| = |x —z|/20or |y —z| = |x — z|/2. Furthermore, if |[x —y| = |y —
z|,then |x — y| = |x — z|/2. Therefore, it is enough to verify that

x € D, z € D€,

VA(R) and the Lévy measure is

dy.

L V()
= > y < ————,and
ply — z|*V2(ly — z|) V(6p(2))
V —
11 :=j (lf > ) dy < ———.
Dn{|x—y|<|y—z|}|x — y|4V2(ly — z|) V(6p(2))
Considering I we note that §,(y) < |y — z|, hence
_ —-d 1/6 d
I < J == J r
y-zl>8p(2) V(1Y = 21) 5p(2) TV (1)

Using the scaling (9) we get

- c ® <6D(z)> 3 c

- V(6p(®) Jspip\ T r V(ép(3)
To verify the estimate for 11 we also use the scaling properties of V. For y € D we have
ly — z| < 1/6, hence

a
- 2 d
I < CJ (Ix y|> _ y
w—ylsly—zl \Y = 31} |x - ¥1?V(ly - 5]
Jy Bl )Z/Z dr c 2
B V(Sp(z)) y - 7| r V(ép(z)a

In the following statement we repeat our standing assumptions; see also the definition
of V and that of T in (11).
Theorem (5.1.11)[204]: Let v be an infinite unimodal Lévy measure on R® with d > 2,
and let the Lévy-Khintchine exponent (4) satisfy p € WLSC(a, 8) n WUSC(«, 6), where
0 <a<wa< 2and@d = 0. Let open bounded set D c R? be R-smooth with 0 <
R < 1/6. There is a constant cy depending only on v and 6 such that if 0 < t <
V2(071),or T(t) < 1/6,then the trace (3) of the Dirichlet heat kernel (2) satisfies

2
[tr(¢,D) — |DIp:(0) + |0D[Cu(t)] < cglDIpe(0) —5— () : (20)

If & = 0, then (20) holds forall t > 0.
Recall that Lemma (5.1.8) asserts that Cy(t) =~ p.(0)T(¢t) and p,(0) ~ T(t)" % ast —
0, so the approximation of the trace in Theorem (5.1.11) is given in terms of powers of T'(¢t).
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Theorem (5.1.12)[204]: If bounded open set D < R¢ is R-smooth, WLSC and WUSC hold
fory,and t = 0, then t,.(t, D) equals p;(0)|D| — Cy(t)|0D] plus lower order terms.
Heuristically, if x € D and t > 0 is small, then 1, (¢, x, x) is small and so pp (¢, x, x) is
close to pra(t,x,x) = p.(0). Therefore the first approximation to t,.(t, D) is p,(0)|D]|.
The second term in Theorem (5.1.12), Cy(t)|dD|, approximates fD rp(t, x,x)dx. As we

shall see, 1, (t, x, x) depends primarily on the distance of x from aD. It is here that the R-
smoothness of D plays a role by allowing for an asymptotic coefficient independent of D,
that is Cy (t). In view of the definition of Cy(t), the appearance of |dD| in the second term
of the approximation of the trace is natural.

Including the relativistic stable Lévy process, explicit expansions of p,(0) can be
given [213]. In more general situations p,(0), Cyx(t) and the bounds for the error terms
cannot be entirely explicit but Lemma (5.1.8) and Theorem (5.1.11) below provide a
satisfactory formulation.

Technically we only need to estimate fD rp(t, x, x)dx to prove Theorem (5.1.12). In this

connection we note that sharp global estimates for p,(t, x,y) were recently obtained by
Bogdan, Grzywny and Ryznar [207], but these estimates do not easily translate into sharp
estimates of r (¢t, x, y). Namely, if pp (¢, x,y) is only known to be proportional to p;(y —
x), then essential further work is needed to accurately estimate 1, (¢, x, y).

We give a unimodal Lévy processes with scaling, their heat kernel, Green function
and Poisson kernel for R-smooth open sets. We show Theorem (5.1.11), a stronger and more
detailed variant of Theorem (5.1.12). The most technical step of the proof of Theorem
(5.1.11) is given separately.

Proof: The result is a direct consequence of (15), Lemma (5.1.8) and Theorem (5.1.11),
where we take & > 0sosmallthatR < 1/6.

In the course of the proof of Theorem (5.1.11), which now follows, we usually write T =
T(t). As mentioned in the Introduction,

er(e,0) = IDIpe(0) = [ poltx0dx— [ 7
D

D

(t,x,x)dx = —frD(t, x,x)dx.
D
We only need to show that

TZ
fDrD(t x,x)dx — |0D|Cy(t)| < < Tagpz (21)
We first consider T = T(t) = R/2,and we have
TZ
J 7ot %) < [ pe(O)dx < DIpu(0) = 4IDIp(0) 75
D
By Lemma (5.1.6),
c|D|_, , clD|T*™¢
DIC(®) = 10D] [ 7a(t, 0,0+ 0), (0,0 ,0))dg < T T < 2

By [206], we see that (20) holds trivially in this case.

From now on we assumethatT < R/2.Forr > OweletD, = {x € D: 6p(x) > r}.
We have D = Dg/, U (D \ Dg/). In analyzing the decomposition we shall often use our
assumptions R < 1/6 and |x — y| < 1/6, and the heat kernel estimates from Lemma
(5.1.7). By Lemma (5.1.5),
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V2(T) 1
j rp(t,x,x)dx < C |Dr R < CIDl3pa= = CIDl morg= - (22)
Pare F V2 (z) R

Thus, the integral gives insignificant contribution to the trace.
To handle the integration near dD, we shall estimate the heat remainder of D using the heat
remainder of halfspace. Let x* € dD be such that |x - x*| = 6p(x). Let I and O be the
(inner and outer) balls with radii R suchthatdl N 00 = {x*}andl ¢ D c O°.Let H(x)
denote the halfspace satisfying I < H(x) < 0¢. By domain monotonicity of the heat
remainder, and by Lemma (5.1.3),
|rD (t, x,x) — T (L, x, x)| < 1(t, x,x)- roc(t, x, x)
= pOc(t' X,X)— pl(t:x;x)
= E*[t; < t,X(7;) €
0 poc(t - 77, X(77), %))
The next result is an analogue of [52].
Lemma (5.1.13)[204]: If T < R/2,then
c|D|T?
R2T4
Proof. This is an analog of [52] and is proved as follows. By the coarea formula and
Proposition (5.1.15) we find that the left side of (23) is bounded above by

cT R/2|6D | T4 1Y(T) Ay
RT? ), 177l g1V (q) T
Therefore [52] gives a simplified bound

cloD| R/ (T2 (T)

—— A 1]dg.

RT* 1)y \q%'V(q)
The integral over (0, T) is clearly bounded by T. To estimate the integral from T to R/2 we
note that scaling (9) for g € [T,R/2) yields V (T) < C(T/q)%/?V(q). Also,

R/2 o3)
j ql—d—g/qu < j ql—d—g/qu < o,
T T

< (23)

j rp(t,x,X) — Ty (L x, x) dx
D\Dg/>

sinced + a/2 > 2.
Recall that r(t,q) = r(t,(g,0,---,0),(q,0,---,0)),and Cy(t) = fOOOT(t, q)dq.
Lemma (5.1.14)[204]: If T < R/2, then

R/2
j Thex) (X, x)dx — |6D|f r(t,q)dq
D\Dg/, 0

Proof: Using the coarea formula we get

< —. (24)

R/2

f T (6 X, x)dx = f |6Dq|r(t, q)dq.
D\Dg/>

0
Hence the left side of the inequality (24) is bounded by

R/2 C
f 10D,] = 19D 1| r(t, a)dq <
0

| R/2
22 f qr(t q)dq,
0
as follows from Corollary 2.14(iii) in [52]. Forq € (0,T]we haver(t,q) < p:(0), hence
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T T q
f qr(t,q)dq < cf ﬁdq = cT?74,
0 0

For the remaining integration, using (17) and (9), we get
1 1

F (t,q)dqg < F ! dq < F VA d
r(t, <c¢| —————dq<c| ———
T 1 o T q?1V2(q) 1 T q?1V2%(q) 1

1/6 T\ % o]
< cj (—) dq < cT?" df g 4ti-adq.
T a/ q 1

d-1
The last integral converges sinced > 2and a > 0.
— R \

- ~

, ya ) .L._ _( _j / \\
| f xr ]
\ %
T \ g
\\‘\ \\.\"wm{__ . _."'/f
~_ aD

Fig. (1)[204]: Balls I < D (left), 0 < D¢ (right) and P (middle), and “a short jump” to
point X(z;). Here x € Pand |x| = §;(x).
Thus, for T < R/2 we have by Lemma (5.1.5)

c|D] VZ(T) CIDI CT?
|6D|j r(t,q)dq < J de(q) f Td ~242 Rsz’

which is a Iower order term. By Lemma (5.1.13), Lemma (5 1. 14) and (22) we obtain (21).
Proposition (5.1.15)[204]: If T < R/2, then

c V(T) _
E*[t; < t,X(t;) € OF; poc(t - 11, X(1)),x)] < E( AT? d>.
R,0,.

5D(x)d_1v(5D(x))
Proof: Let x* = 0,a = (—R,0,...,0),b = (R, ,0),I = B(a,R) and O =
B(b,R).
This also means that x = (x,,0,...,0) with 0 < x, < R/2, and §;(x) = |x|, see Fig.
(1). Recall that t < V?2(R/2) or equivalently T < R/2. Before we proceed to the heart of
the matter we need the following lemma based on spherical integration developed in [210]
and later used in [52], [104].
Lemma (5.1.16)[204]: For s < R we have

|d+1—ﬁ
f dz_V(8pc(2)) _ T if B >d+ 1, (25)
oronas - 3P V(5@) sUIB/RIFR < d + 1.

Proof: First we consider V (x) = x%/? with a € [0,2). Let 2 € A = (0°\]) n
B(0,s).
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Note that |x — z| = |x]. If |[x — 3] < 2]|x|, then |3] < |x — 3| + |x| < 3|x]|, which
leads to the integral

j dz _ 85e(2) _ 1 J 6p<(2)
anfx—zl<zixp 1X — BV (81(2)) T |x A sIF Jingzieaquinsy 07 (B)
The last integral is similar to [52]. Using [52] we get the following upper bound

c J3(|x|/\s) T'd C(lxl A S)d+1—B
— ’r’ = .
lx A s|f ), R R
If |[x — 3| = 2|x|,then|x — 3| = |z|/2and || = |z — x| — |x| = |x]|. By [52],
dz  65:(z 1 65(z c (*
j Z Z()Scf _BO“( )dzs—j rd-Bdr.
an{jx—z|>2ixy 1X — 317 6 (2)) angs|z)zpxy 1317 61 (z) R Jixins

If 8 > d + 1, then the last integral is bounded by c|x|¢*1=#, while for § < d + 1 we
get the upper bound cs?*1=#,

This settles (25) for V(x) = x%*/2 with a € [0, 2). Note that the form of the right hand
side of (25) does not depend on a.

Consider general » € WUSC(a) and the corresponding ladder-height function V.

Due to the scaling property (10) we have

V(6pe(2) _  85e(2)
V(6i(2) ~— 6§%(2))’
If 6pc(3) < 6; (), then the fraction is bounded by 1, since V is monotone. Therefore, we
can use the previous special case with ¢ = a and a = 0 to finish the proof.
We return to the core proof of Proposition (5.1.15). In view of Lemma (5.1.4) we want to
estimate

if 6pc(z) = 6; (2).

E*[t; < t,X(7;) € OF; poc(t - 71, X(17),x)]
t
=f f pI(S,x,y) V(y_ Z)poc(t— S,X,Z)dZdey
1 Jo e\l

== Il + IZ + 13,
which splits the integration into three subregions, as specified and estimated below:
I : |z] > R/2,

L:t/2 <s < tand|x — 3| < Tand|z| < R/2,
I3: (s <t/2or|x — 3| > T)and|z| < R/2.
The setting, especially that of I,, is illustrated on Fig. (1).
On I, we have |z| > R/2,hence |[x — 3| = R/3, thus by (13)

t
h :j j pi(s,xy) | v(y-2)p(t- s,z x)dsdzdy
I-o |Z|>§

ct t
< —Rf f p;(s,x,y) | v(y- z)dsdzdy
da e c
RaVy?2 (3) 170 P
t prr < b (x| > R/2) < — D
=T p~ Tr ) 17 = Sdu2cn oV
RAV? (%) RIV2(R/2)

where the last inequality follows from sublinearity (8) of V. Since T < R/2, we have
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cV3(T) c c

—— < — < .

RAV2(R/2) — R4 ~ RT4-1
Since |x| < R/2, by monotonicity of V we get

cV2(T) - cV(T) - cV(T)
RAV2(R/2) ~ RAV(R/2) ~ Rlx|%-V(|x])’
Here we have |x| < |x — 3| < T,and |3| < |x — z| + |x| < 2T.By Lemma (5.1.7),
t/2 < q < Tand (12),
V(6;(y))

< —-d
ri(q,xy) =T v
LetS = (0°\I) n {|z| < 2T}. We get the following upper bound,

t
I, = f f p1(q,%,y) J v(y - z)p(t- q,3,x)dqdzdy
1 7t/2 S

V(6 ) 1
= CJT(t) ’ (VET)) ly - zIdVZ(Iy z|) OC(R/Z)(x @)dzdy

V(8:(2)) Go: 1D (x, 7)
V(T)j j ly —

3|V (ly — 2l V(6:(2)
where we use §;(y) < |y — z|. Scaling (9) gives

J f 52(z) G P (x2)
V(T) BY(2,6,(2)) ly — z|%t%/2 V(6,(2))

We then rewrite the inner integral in spherical coordinates, use Green function estimate (18)
and |x| < T,

dydz,

I, S dydz.

52@)dr [ V(DY (60:(2))
& —va ey L|x-z|dv(a,<z))d

(0] d c
< (T f i V(6‘; () z
s lx — 2]V (6;(2))
V(5OC(Z))
= cT~ j dz. 26
Ix — 3]V (6;(2)) 0
Using Lemma (5.1.16) with § = dands = 2T we get
CTl—d
I <—

Since |x| < T, we get the desired estimate from Proposition (5.1.15).
Let S = (0°\I) n {|z] <R/2}. We have |x —z| > T or s < t/2. In either case,
Lemma (5.1.7) and sublinearity of VV implies

poc(t — 5,x,2) < <T‘d A
Therefore by Lemma (5.1.10),

VZ(T) ) V(80(2))
lx — z19V2(lx — 3)) V()
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V2(R/2) B VZ(T) V(50c(z))
el ] e [ -2 (T M= e - z|)> vy Y

_ V2(R) —d VZ(T) V(5OC(Z))
= cLK, (x,2) (T Alx ~ e (x = Zl)) TG dz
2
<. f vix) 1 (T_d A VE(T) )V(aoc(z)) i
sV(6,(2)) lx - 2] Ix — z1?V2(lx — z)) V(T)

If [x — z| < T,then we are satisfied with T=% from the minimum and we note V(|x|) <
V(T). We arrive at (26), and finish the proof in the same way as in the previous cases.
We are left with the case |[x — z| > T, and we have

L < e L . V(lx) V(50c@)

2P ([x — 2) V(o)
Since p € WLSC(a), we get

|x|g/2 V(500(Z))
b= CV(T)L x — 2P (x — o) V) ©
V(D)lx[? V(60:(2))

<
STV EDTVT VD) s Ix — sPTERY (G )
where the last inequality follows from the monotonicity of V, since |[x — z| = |x| Vv T.
Now we use Lemma (5.1.16) withf = d + 1 + a/2,to get
cV(T)
I; < — :
(T v |xP*=1V(T v |x])R
Here the right hand side is comparable with the required upper bound.

Section (5.2): Relativistic Stable Processes

For m > 0, an R%-valued process with independent, stationary increments having
the following characteristic function

Eeié %™ = o-t{m¥/erg )™ omf o pa

is called relativistic a-stable process with mass m. We assume that sample paths of X™
are right continuous and have left-hand limits a.s. If we put m = 0 we obtain the symmetric
rotation invariant a-stable process with the characteristic function e~t¥1% & € R4. We
refer to this process as isotropic a-stable Lévy process. We keep a, m and d > 2 fixed and
drop a, m in the notation, when it does not lead to confusion. Hence from now on the
relativistic a-stable process is denoted by X, and its counterpart isotropic a-stable Lévy
process by X,. We keep this notational convention consistently throughout, e.g., if p,(x —
y) is the transition density of X,, then #,(x — y) is the transition density of X,.

In Ryznar [224] Green function estimates of the Schddinger operator with the free
Hamiltonian of the form

(A + m2/@)™? _ o,
were investigated, where m > 0 and A is the Laplace operator acting on L?(R%). Using
the estimates in Lemma (5.2.9) below and proof in Bafiuelos and Kulczycki (2008) we
provide an extension of the asymptotics in [52] to the relativistic a-stable processes for any
0<a<?2
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Brownian motion has characteristic function
E0ei Be = e—tlEI* ¢ € R4

Let S = a/2. Ryznar showed that X, can be represented as a time-changed Brownian
motion. Let Tp (t),t > 0, denote the strictly p-stable subordinator with the following
Laplace transform

Ee=ATs(® = =t 21> 0. (27)
Let 65 (t,u),u > 0, denote the density function of Tj (). Then the process Br, (t) is the
standard symmetric a-stable process.
Ryznar [224] showed that we can obtain X; = Brg t;m), where a subordinator Tz (t, m) is
a positive infinitely divisible process with stationary increments with probability density
function

0p(t,u,m) = e‘ml/ﬁ‘”mteﬁ(t,u), u > 0.
Transition density of Tj (¢, m) is given by 6;(t,u — v, m). Hence the transition density of
|x|2

Xeisp(t,x,y) = p(t,x — y) given by

« 1
p(t;X) = g™ j Wé We_ml/ﬁugﬁ(t,u)du. (28)
0

Then
p(t x,x) = p(t,0) = emtJ W e m/ ”Hﬁ(t,u)du.
0

The function p(t, x) is a radially symmetric decreasing and that

°° 1 wyql(d/a)
< < pmt — pmty—d/a d
p(t,x) <p(t0)<e jo )y Op(t,u)du =e™t

2m)da ’ (29)

d/2

where w; = ;(7;/2) is the surface area of the unit sphere in R%. For an open set D in R% we
define the first exit time from D by 7, = inf{t > 0: X, € D}.
We set
rp(t,x,y) =E* [P(t — Tp, Xep,Y); Tp < t] ) (30)
And
po(t,x,y) = p(t,x,y) — 1p(L,x,), (31)

forany x,y € R%,t > 0. For a nonnegative Borel function f and t > 0,let
PPFG) =B [f ()it < Tl = | potmy)f 0)d,

D
be the semigroup of the killed process acting on L?(D), see, Ryznar [224].

Let D be a bounded domain (or of finite volume). Then the operator P? maps L?(D)
into L* (D) for every t > 0. This follows from (29), (30), and the general theory of heat
semigroups as described in [223]. It follows that there exists an orthonormal basis of
eigenfunctions {@,:n = 1,2,3,...} for L?(D) and corresponding eigenvalues {1,:n =
1,2,3,...} of the generator of the semigroup P? satisfying
M < Ay A3 <, with4,, = ocasn — oo. By definition, the pair {¢,, 4,,} satisfies

PP @, (x) = et @, (x), x € D,t > 0.
Under such assumptions we have
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(0]

pp(t,x,y) = z et @, () pn (). (32)

n=1

We are interested in the behavior of the trace of this semigroup
Zo® = | po(tx0)dx (33)
D

Because of (32) we can write (33) as

oo

Zp(t) =2 e"lntj;) ©2(x)dx =Z e nt (34)

n=1 n=1
We denote d-dimensional volume of D by |D|.

The first result is Weyl’s asymptotic for the eigenvalues of the relativistic Laplacian.
Definition (5.2.1)[218]: The boundary, aD, of an open set D in R is said to be R-smooth
if for each point x, € aD there are two open balls B; and B, with radii R such that B, c
D,B, c R*\(D U dD)andd B; n d B, = x,.

Remark (5.2.2)[218]: When m = 0,0 < a < 2,C,(t) = C,tY*/t¥% Then the result

in Theorem (5.2.12) becomes, for bounded domains with R-smooth boundary,
C,|D| C,|oD|tY*| C,|D|t¥“

ZD(t) o td/a + td/a thd/a ’

where C;, C, are as in Theorem (5.2.12). This was established by Bafuelos and Kulczycki

[52] recently.

The asymptotic for the trace of the heat kernel when a« = 2 (the case of the Laplacian with

Dirichlet boundary condition in a domain of R%), has been extensively studied. For

Brownian motion van den Berg [216], proved that under the R-smoothness condition

Jrt Cy|D|tt=%/2
Zp(t) — (4nt)‘d/2<|D| - |6D|> ST ,t > 0. (36)

(35)

For domains with C* boundaries the result

Tt
Zp(t) = (4mt)~4/2 | |D| —g |0D| + o (tY/?) | ,ast - 0, (37)

was proved by Brossard and Carmona [222], for Brownian motion.

Let the ball in R? with center at x and radius r,{y: |y — x| < 7}, be denoted by
B(x,r). We will use 6, (x) to denote the Euclidean distance between x and the boundary,
dD, of D. Thatis, 6,(x) = dist(x,dD). Define

Y(O) = j eV vP=12(9 + v2)P~1/2 dy, 0=>0,
0
where p = (d + @)/2. We put R(a,d) = A(—a,d)/P(0), where A(v,d) =
(I ((d — v)/2))/(®@H?2%|I" (v/2)]). Let v(x),¥(x) be the densities of the Lévy
measures of the relativistic a-stable process and the standard a-stable process, respectively.
These densities are given by
R(a,d) «
v(x) = [aTa e—ml/ |x| P (ml/alxl) ’ (38)

and
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A(—a,d)
R )
We need the following estimate of the transition probabilities of the process X; which is
given in [211]: Forany x,y € R®andt > 0 there exist constantsc; > 0Oandc, > 0,
t

—cylx— -d
g e o
We will also use the fact [221] that if D < R® is an open bounded set satisfying a uniform
outer cone condition, then P*(X(zp) € dD) = Oforall x € D.For the open bounded set
D we will denoted by G (x, y) the Green function for the set D equal to,

GD(ny) = j. pD(tliy)dt' x'y € Rd'
0
For any such D the expectation of the exit time of the processes X; from D is given by the

integral of the Green function over the domain. That is

FX(@) = | Gt y)dy
D
Lemma (5.2.3)[218]: Let D < R% be an open set. For any x,y € D we have

p(t,x,y) < Clemt< e~ C26p(x) A t—d/a> _

Proof: Using (30) and (40) we have
rp(t,x,y) = EY (p(t — tp, X(p), %) ; Tp < t)

7(x) =

p(t,x,y) < c;e™ min {

6g+a(x)

t
< o™t BV —c;lx=X(zp)| —d/a)
<cge™E (Ix—X(TD)|d+“e At
t
< ce™|——— e 260 A ¢-d/a ),
' <5S+“ (%)
We need the following result for the proof of Proposition (5.2.5).
Lemma (5.2.4)[218]:
lim p(t,0)e ™t¢td/e = C,, (41)
Where
« wyql (d/a)
- 4 d/Z j _d/z 1 = d—
C, = (4m) ) u 0p(1,u)du 2m)ia

Proof: By (28) we have

1 _ml/B
p(t,x,x) = p(t, 0) = emtjo W e m! ”Hﬁ(t,u)du.

Now using the scaling of stable subordinator 6 (t,u) = t™*/F 65 (1,ut™*/F) and a
change of variables we get

met % —-d/2 —ml/B 1/Bz Cl(t)emt
p(t,O) :WL VA e t HB(I,Z)dZ =th,
then by dominated convergence theorem we obtain
1 (00)
li t,0)e mtd/x = f —4/29,(1, z)dz,
g Pt 00 Gy |, %00

and this last integral is equal to the density of a-stable process at time 1 and x = 0 which
was calculated in [52] to be
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wgl (d/a)

(2m)%a
Proposition (5.2.5)[218]:
lim t¥%e™™m Zp(t) = C,ID], (42)
_ wgl(d/.a)
where C; = el

Let N(4) be the number of eigenvalues {4;} which do not exceed A. It follows from (42) and

the classical Tauberian theorem (see [73]) where L(t) = C;|D|e™ ¢ is our slowly varying
function at infinity that

: —-d/a,-m/A — C1|D]
/{1_{210 A /ae /N(/l)—r(1 T dD
This 1s the analogue for relativistic stable process of the celebrated Weyl’s asymptotic
formula for the eigenvalues of the Laplacian.

We obtain the second term in the asymptotics of Z,(t) under some additional
assumptions on the smoothness of D. The result is inspired by result for trace estimates for
stable processes by Bafuelos and Kulczycki [52]. We need the following property of the
domain D.

Proof: By (30) we see that

pD(t' X, X) _ p(t: 0) 7"D(t: X, X)

(43)

Clemtt—d/a - Clemtt—d/a - Clemtt—d/a : (44)
Since the firsttermtendto 1 ast — 0 by (41), in order to prove (42), we show that
td/a
ClemtJD rp(t,x,x)dx — 0, ast » 0. (45)

For g = 0, we define D, = {x € D:6p(x) = q}. Then for 0 < t < 1, consider the
subdomain D12« = {x € D:6p(x) =t¥?*} and its complement Df.. = {x €
D: 6, (x) < tY/?29}, Recalling that |D| < oo, by Lebesgue dominated convergence
theorem we get |Dtcl/2a| — 0,ast — 0.Since pp(t, x,x) < p(t,x,x), by (29) we see that

rp(t, x, %) <1
Clemtt—d/a
forall x € D. It follows that
td/(l
Coomt -[DC rp(t,x,x)dx = 0, ast = 0. (46)

t12/a
On the other hand, by Lemma (5.2.4) in [211] we obtain
T'D(t, X, x) _ [Ex[p(t - TD'X‘L’D ,X),' t = TD]
Clemtt—d/a - Clemtt—da
t1+d/a

|x — X(zp)|@*e

t1+d/a
5D(x)d+a
For x € D,12« and 0 < t < 1, the right-hand side of (47) is bounded above by
ct?/2a+1/2 and hence

S C]Ey min { e_Czlx_X(TD)l , 1}

< c¢min { e~28p(), 1} : (47)
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td/(l
Clemt
and this last quantity goesto 0 ast — O.
For an open set D c R and x € R%, the distribution P*(t, < o,X(tp) €-) will be
called the relativistic a-harmonic measure for D. The following Ikeda—Watanabe formula
recovers the relativistic a-harmonic measure for the set D from the Green function.

Proposition (5.2.6)[218]: (See [211].) Assume that D is an open, nonempty, bounded subset
of R%, and A is a Borel set such that dist(D,4) > 0. Then

P*(X(tp) €A, 1p < © =)J GD(x,y)f v(y — z)dzdy,x € D. (49)
D A

We need the following generalization already stated and used in [52].
Proposition (5.2.7)[218]: (See [79], [211].) Assume that D is an open, nonempty, bounded
subset of R%, and A is a Borel setsuchthat A ¢ D\oDand0<t; < t, < o,x € D,
Then we have

t2
P*(X(tp) EAt; <Tp <t,) = j j pD(s,x,y)dsJ v(y — z)dzdy.
D Jt; A

The following proposition holds for a large class of Lévy processes
Proposition (5.2.8)[218]: (See [52].) Let D and F be open sets in R? such that ¢ F . Then
for any x,y € R% we have
pr(t,x,y) —pp(t,x,y) = E*(tp <t,X(tp) € F/D; pp(t — 7p, X(Tp), ¥) ).
Lemma (5.2.9)[218]: (See [224].) Let D < R be an open set. Forany x,y € Dandt >
0 the following estimates hold
Pp (t' X, y) < emtﬁD (tr X, y);

TD(tI xry) < ezmth(tr X, y) (50)
We need the following lemma given by van den Berg in [216].
Lemma (5.2.10)[218]: (See [216].) Let D be an open bounded set in R% with R-smooth

boundary 0D and for 0 < g < R denote the area of boundary of 0D, by |0D,|.Then
R- g d-1 R d-1
1 < I < :
( = ) |0D| < |oD,| (R — q) oD|, 0<gq < R. (51)

Corollary (5.2.11)[218]: (See [52]) Let D be an open bounded set in R with R-smooth
boundary. Forany 0 < g < R we have

(i) 27%*'9D| < |aD,| <2971 |aD|,

.. 24|p|

(i) [oD| < =

(iiiy |aD,| —aD| <

D )Ny —_ a )
f1/2 5 (t, x, x)dx < ct?/?¢+1/2|p| (48)
D a

29dq|aD| < 2244q|D| .

R - R?
Theorem (5.2.12)[218]: Let D c R%,d > 2, be an open bounded set with R-smooth
boundary. Let |D| denote the volume (d-dimensional Lebesgue measure) of D and |dD|
denote its surface area ((d — 1)-dimensional Lebesgue measure) of its boundary. Suppose
a € (0,2). Then

Cl(t)emtlDl C3€2mt|D|t2/a
Zp(t) =g + G(O19DI| < g

t > 0, (52)
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where

C,(t) = Z‘d/ze‘(mt)l/ﬁz%(l,z)dz - C =

1
(47-[)d/2 j:)

1) C462mtt1/a
C,(t) =f0 1 (t, (x4, 0, ..., 0), (1,0, ..., 0)) dx; S

C4_ =j fH (1, (xl,O,...,O),(xl,O,...,O))dxl,
0

C3 = C3(d,a),H = {(x4,...,x4) € R% x; > 0} and ry is given by (30).

® wql(d/a)
(2m)%a

,ast — 0,

,t >0,

Proof: For the case t/* > R/2 the theorem holds trivially. Indeed, by Eq. (29)

c,e™|D| ¢ e™|D|t?/*

ZD(t) < J p(t; xlx)dx = td/a = thd/a

D
By Corollary (5.2.11) and Lemma (5.2.9) we also have

C,(t)|oD]| <

C4eth|aD|t1/a' - ch462mt|D|t1/a - 2d+1C4€2mt|D|t2/a

C1(t)e™|D| _ Cre™|D|t?/®
td/a - thd/a

td/a - th/a - thd/a ’

Therefore for t1/¢ > R/2 (52) holds. Here and in sequel we consider the case t/* < R/2.

mt
From (31) and the fact that p(¢t, x, x) = Cliii)/i , We have that
C1(t)e™|D]
Zp(t) — Ta/a =j pp(t, x,x)dx —f p(t,x,x)dx
D D

= —j rp(t, x, x)dx,
D

(53)

where C;(t) is as stated in the theorem. Therefore we must estimate (53). We break our
domain into two pieces, Dg,, and its complement Dg/z. We will first consider the

contribution of Dy /,.
Claim (5.2.13)[218]: For t*/* < R/2 we have

(L, x,x)dx < > dla
Drys R2td/

Proof: By Lemma (5.2.9) we have
j rp(t, x, x)dx < e?™ J 7o (t, x, x)dx,
D

R/2 Dg/2
and by scaling of the stable density the right-hand side of (55) equals
eth

. X X
td/a LRZ "pjer/e (1’t1/a ’tl/a)dx'
Forx € Dgj, we have 8, ,1/a(x/t"/%) = R/(2t"*) 1. By [52], we get

(54)

(55)

(56)

CtZ/O.’

# (1 X X )< c < Cc <
D/tl/a "ila itja) = 5d+a (X/tl/a) —= 6g/t1/a(X/t1/a) =

D/tl/a
Using the above inequality, we get
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eth Ctz/a CethlDltZ/a
f rp(t, x, x)dx < Ca/a f ?dxﬁ REgdja
Dg/2 D
which proves (54).
Since D has R-smooth boundary, for any point y € aD there are two open balls B, and
B, both of radius R such that B, ¢ D,B, < R*\(D U dD),d B n d B, = y. For any
x € Dg/, there exists a unique point x, € dD such that §p(x) = [x — x,|. Let B; =
B(z,R),B, = B(z,, R) be inner/outer balls for the point x,. Let H(x) be the half-space
containing B; such that @ H(x) contains x, and is perpendicular to the segment z;z,.
We will need the following very important proposition in the proof of Theorem (5.2.12).
Such a proposition has been proved for the stable process in [52].
Proposition (5.2.14)[218]: Let D < R%,d > 2, be an open bounded set with R-smooth

boundary dD. Then forany x € Dg/z and t > 0 such that t%/¢ < R/2 we have

ce2mtil/a t1/a d+a/2-1
|rD(t, X,X) — Theo (X, x)| < < ) Al ). (57)

R/2

Rtd/a Sp(x)
Proof: Exactly asin [52], let x, € dD be aunique pointsuchthat [x — x,| = dist(x,dD)
and B; and B, be balls with radius R such that B;, ¢ D,B, < R4\(D udD),d B; n
d B, = x,. Letusalso assume that x, = 0 and choose an orthonormal coordinate system
(x1,%,,...,%x4) SO that the positive axis 0x is in the direction of @ where p is the center of
the ball B, . Note that x lies on the interval Opso x = (]x|,0,0,...,0). Note alsothat B,
D c (By)°and B; € H(x) c (B,)¢ . For any open sets 4,,4, such that 4, c A, we
have r, (t,x,y) =1, (t,x,¥) SO
o (8, %, %) — Ty (6 x, )| S 15, (6,3, %) — T35 (&, X, %).

So in order to prove the proposition it suffices to show that

ce2mtil/a t1/a d+a/2-1
— T <
T31 (t; X, x) T(BZ) (t' X, x) - th/a (6D(x)> M '

forany x = (|x|,0,...,0),|x| € (0,R/2]. Such an estimate was proved for the case m =
0 in [52]. In order to complete the proof it is enough to prove that

Tp, (t,x,x) — T8¢ (t,x,x) < cezmt{f‘B1 (t,x,x) — Fg)e(t x, x)}.
To show this given the ball B,, we set U = (B,)¢. Now using the generalized Ikeda—
Watanabe formula, Proposition (5.2.8) and Lemma (5.2.9) we have

g, (6%, x) — 1y (t,x,x) = Ex[t > Tp, ,X(T31 ) € U\By; py (t - TByX(TBl)'x)]

t
f f Dg, (S, x, y)dsf v(y — z2)py(t —s,2,x)dzdy
B, Jo U\B;

t
< ethf f s, (s,x,¥)ds f oy — 2)py (t — s,2,x)dzdy
B; Yo U\B;

< ce?™E*[t > T5 ,X(75,) € U\By; Pyt — 5, X(T5, ), x)]

R ) ce2mtil/a 1/a \dra/2=1

= ce*™7g (t,x,x) — Ty (L, x,x) < Ridja (<5D(x)> A 1).
The last inequality follows by Proposition (5.2.14) in [52].
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Now using this proposition we estimate the contribution from D\Dg , to the integral of
rp(t, x,x) in (53).
Claim (5.2.15)[218]: For t¥/® < R/2 we get
CethlDltZa
j rp(t, x, x)dx — f T (6 x, x)dx R2 da
D\Dg/> D\Dg/>

Proof: By Proposition (5.2.14) the left-hand side of (58) is bounded above by

ce2mtil/a (R/2 t1/a d+a/2-1
——a j;) |6Dq| ( ; > A 1| dg.

By Corollary (5.2.11), (i), the last quantity is smaller than or equal to
Cethtl/alaDl R/2 t1/a d+a/2-1
A 1]dg.
Rtd/« 0 < q ) ) !

The integral in the last quantity is bounded by ct'/¢. To see this observe that since t/¢ <
R /2 the above integral is equal to

jtl/(l <t1/a)d+a/2—1 1 d .[R/Z (tl/a>d+a/2—1 1 d
N q+ A q
0 q tl/a q

d+a/2-1

t1/a R/2 [¢1/a
= J 1dq +J ( ) dq < ct'/®,
0 ti/e \ 4

Using this and Corollary (5.2.11), (ii), we get (58).
Recall that H = {(xy,...,x4) € R% x; > 0}. For abbreviation let us denote

fu(t,q) = 1y (t, (g,0,...,0),(q,0, ...,O)), t,g > 0.
of course we have 1y (x)(t, x,x) = fy (t, 6y (x)). In the next step we will show that

R/2 Ce2mt|D|t2/a
| ro@xnde=100l [ fu Gadde| < S
D\DR/2 0

< (58)

<

(59)

We have
R/2

j ry () (t, x, x)dx = j |0D,|fu (¢, q)dq.
D\Dg/ 0

Hence the left-hand side of (59) is bounded above by

R/2
[ 10041 = 10017, 20>,
0
By Corollary (5.2.11), (iii), this is smaller than
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ClDl R/2 ClDleth R/2 _
Rz qfu(t,q)dq < Tf qfu (t,q)dq
0 0

ClDleth R/2 _ . _
T T R? f qt=4* fu(1,qt™"/*)dq
0

c|D]e?mt fR/Zt”“ i
=—— qt** fy (1,9)dq
thd/a 0

<c|D|ezmtt2/“ e dea 1y <C|D|ezmtt2/“

This shows (59). Finally, we have

R/2 0 oo
|0D| fu(t,q)dq — IaDlj fu(t,@)dq| < |0D| | fu(t,q)dq
0 0 R/2
c|D| %
<

< fu(t,q)dq by Corollary (5.2.11), (ii)
R Jr/2

<C'D'ezmtjoo fu(1,qt/%)d ClD'ezmtthm fu (1, q)d
S F0idla q q= ,»q)aq.
th/a R/2 H th/a R/Ztl/a H

Since R/2tY/% > 1, so for ¢ = R/2tY* > 1 we have fy (1,q) <cq 4% < cq~>.
Therefore,

® . ® dqg ct/«
f fH(]-;CI)quCJ ZS—
R/2t1/ R/2t1/a 4

Hence,
R/2 00 ClDletht%
o0l [ fattdda= o0l [ futade| < T (60)
0 0 R2ta
Note that the constant C,(t) which appears in the formulation of Theorem (5.2.12)
satisfies C,(t) = f0°° fu(t,q)dq. Now Eqgs. (53), (54), (58), (59), (60) give (52).

Section (5.3): Eigenvalues of Pseudo-Differential Operators in an Interval

The fractional Laplace operator (—4)%/?was considered in [49] for « = 1 and in [97]
for general a € (0,2), while in [236] the case of the Klein—Gordon square-root operator
(=4 +1)"/?2 — 1 was solved (4 dentotes the second derivative operator, the Laplace
operator in dimension one). We extend the above results to operators (—4), where yis an
arbitrary complete Bernstein function such that &y’ (&)converges to infinity as & — oo.
Let A,, denote the nondecreasing sequence of eigenvalues of ¥(—A4) in an interval D =
(—a, a), with zero condition in the complement of D. Furthermore, for u > 0 define

1(* YW —r?)
9, =— j > > log > > dar.
o TP — 1 Y?) — P(r?)

(61)

7
T
T d 1 . .
We note that 9, € [O’E) and 519“ =0 (;) as u — oo, Finally, let u,, be a solution of
_nm 1 9 62
a Un® ( )

Upn = % -
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We remark that the solution is unique for n large enough, and
nt 1

Un = %__ﬁ(nn)/(Za) + 0( )
The following is the main result.
Example (5.3.1)[225]: Let (&) = &E%/2 + &P/2 where 0 < B < a < 2. Then (see
Example (5.3.12))
(2 — a)n
Oy = + 0(nf %),  up=

and consequently

— @ _ B
= (-G (mCoon

nmw 2-a)r

_ B«
2a 8a + 0™,

2a 8a 2a 8a
Example (5.3.2)[225]: If y is regularly varying at infinity with index % € (0,1], then one

has lim 9, =& a)”(see(72)) Therefore,
l,l_—)OO
_nm Q2-a)m +oc1
Hn = %a 8a @
and, using Karamata’s monotone density theorem, one easily finds that
2-a)a 1 nim 2

In= (1 =+ oOW((5 ) -

We point out that relatively little is known about 4,,. Most results, including all listed
below, cover also higher-dimensionaldomains, but provide significantly less detailed
information. Extension of Theorem (5.3.26) for higher-dimensional domains seems out of
reach with the present methods.

Best known estimates of A,,, proved in [65], are given in terms of the corresponding
eigenvalues A4 of the Laplace operator —A, namely

CY(Aa) < Ay < Y(Ap);

a more direct statement for the case of an interval is given in (69) below. First term of the
asymptotic expansion of 1,,, namely A,, ~ y(A2), is given in many cases in [54]. This result
follows by a Tauberian theorem from the asymptotic expression for the trace Y%, e~tn
ast - 07,

Second term of the asymptotic expansion of the trace has been found in [52], [227] for
(—=A)*/2,in [219], [213]for (=4 + 1)%/? — 1, and finally in [204]for a rather general class
of isotropic Lévy processes with unimodal Lévy measure, satisfying some mild regularity
conditions. Tauberian theory is, however, insufficient to obtain a result similar to
Theorem(5.3.26)from the two-term expansion of the trace. In this case, as well as for many
other local operators, two-term asymptotic formula for the eigenvalues in appropriate
domains was derived by V.lvrii [232], [233], thus resolving the famous Weyl conjecture.
The only related result for non-local operators, proved in [103], provides an analogous two-

term asymptotic expansion of Cesaro means %Zﬁzl A, for (=A4)%/2, using the methods of

semi-classical analysis.
The proof of Theorem (5.3.26) is based on the explicit expression for the generalised
eigenfunctions of the operator y(—4) in the half-line, found in [49] for (—4)'/2, and in
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[112], [238] for y(—A4) for a general complete Bernstein function . The asymptotic
expression (85)for (—A)%/? simplifies to

An=<"”_(2‘_“)”>a+0<l) 5 noow

2a 8a n
because ¥, = (2_80‘)”. As mentioned above, this was proved for @ = 1 in [49], with constant

1 in the asymptotic notation O (%) and for general a € (0,2) in [97], with a rather big

constant in the term O (%)
A very careful estimate of [236] yielded a version of (85) uniformin a > 0 for the operator
(-4 + 1)V -1,

We do not pay attention to the constant in the asymptotic term 0(%). All our estimates

are, however, explicit, and so it is theoretically possible to trace the dependence of this
constant on a and .

We sketch the main idea of the proof. The generalised eigen function of y(—4) in
the half-line (0, o) corresponding to the eigenvalue ¥ (u?) is given by an explicit formula
F,(x) =sin(ux +49,) — G,(x), where G, is the Laplace transform of a certain non-
negative measure. We construct approximation @,, to eigenfunctions of y»(—4) in (—a, a)
by interpolating between F,(a + x) near —-a and +F,(a — x) near a. In order that the sine
terms agree, we need to set u = u,, defined in(62). Due to non-locality of Y (—A4), @,, is not
an eigenfunction; we show that the L2(D) distance of y(—4) @,, and u,, @, does not exceed

0 (%) This is sufficient to prove that there is some eigenvalue 4, within the 0(%) range

from ¥ (u2). Using the assumption that &’ (§) diverges to infinity as & — oo, one easily
finds that the numbers k(n) are distinct for sufficiently large n. It remains to estimate the
number of eigenvalues A; not counted as A,,): this turn out to follow from an estimate of
the trace (Lemma (5.3.25)).

We conjecture that (85) holds for arbitrary complete Bernstein functions, without the
moderate growth condition Ell_)n;) &Y' (§) = oo. Note that, however, if this growth condition

Is not satisfied (for example, when ¥(&) = log(1 + &)) and a is large enough, then one
cannot expect that the numbers k(n) are distinct. Therefore, an extension of
Theorem(5.3.26)to general complete Bernstein function would require a completely
different approach. It is also natural to expect that (85) holds for more general functions 1,
for example, for all Bernstein functions i satisfying the growth condition. However, no
expressions for the generalised eigenfunctions F, are known unless ¢ is a complete
Bernstein function, and so our approach cannot currently be used in this case. Finally, we
believe that the semi-classical argument of [103], combined with the results of [112], [238]

and for the family of complete Bernstein functions ¥ (1/a? + ¢2), may lead to a two-term
asymptotic formula for Cesaro means %Zﬁzl A, of eigenvalues of the operator ¥(—4) in

sufficiently smooth domains in R<.
The method described above has been designed in [49] and successfully used in [97]
and [236]. The core of the argument remains the same. We showing Theorem (5.3.26) in

179



this generality requires rather non-obvious estimates of ﬁwd%ﬁ“ and G,(x), as well as

many other modifications.
All functions considered below are Borel measurable. For p € [1, o) and an open
set D C R, the Lebesgue space LP(D) is the set of functions f on D such that

Ifllepy = (fD |f(x)|pdx)1/p iIs finite, and f € L™ (D) if and only if the essential
supremum  [|fl,opy of |f(x)| over x € D is finite. The space of smooth functions with
compact support contained in D is denoted by C:°(D). By C,(D) we denote the space of

continuous functions in R which are equal to 0 in R\D and which satisfy the condition
lim f(x) =0.

xX—>+oo

The Fourier transform of a function f € L?(R) is denoted by F f. If f € L?(R) n L'(R),
then Ff (&) = f_oooo f(x)e~%*dx. The Laplace transform of a function f is denoted by Lf,

LF©E) = [, fx)e *dx.
Symbols x, y, z are used for spatial variables, while &, n, u typically correspond to ‘Fourier
space’ variables.

We write f(n) = 0(g(n)) iflimsup, . |f(n)/g(n)| < o,and f(n) = o(g(n))
It lim ~|f(n)/g(n)| = 0.

We recall several classical definitions. A function f(x) on (0,o) is said to be
completely monotone if (=1)"f™ (x) =0 for all x >0 and n =0,1,2,.... By
Bernstein’s theorem (see [239]), f is completely monotone if and only if it is the Laplace
transform of a (possibly infinite) Radon measure on [0, o). If f is nonnegative on (0, o)
and f’ is completely monotone, then f is said to be a Bernstein function. By Bernstein’s
theorem, Bernstein functions have the representation

f(x) =cx + ¢ +f( ) (1 — e™*)M(dz) (63)
0,00

for some ¢,¢ = 0 and a Radon measure M such that f(o ) min(z,1)M(dz) < oo. The

above formula extends to complex x such that e x > 0, and defines a continuous function
holomorphic in the region Re x > 0.

If the measure M in (63) is absolutely continuous with respect to the Lebesgue measure, and
the density function is completely monotone, then f is said to be a complete Bernstein
function. One easily verifies that in this case

1 x m(dz
f(x)=cx+6+—J (dz)
(O’Oo)x+z 3z

A
for some ¢,¢ = 0 and a Radon measure m such that f(o o) min(1/z,1z%)m(dz) < oo.

The above formula defines a holomorphic extension of f in the region C \ (—o, 0].

Bernstein and complete Bernstein functions appear in a number of different areas of
mathematics. For more information on these objects, see [239].

We will need the following technical result.

It is enough to assume that v is an increasing, nonnegative function on [0, o), which
satisfies

(64)

1+ y9E+n<c@+ %1+ ¢©) (65)
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forall ¢ = n = 0 and some C,a = 1. When v is a complete Bernstein function, then

(65) holds with ¢ = 1 and C = 1, because Y(& + n) < Y(&) + Y(n) < Y& +

cC(1 + n).

The operator A = y(—A4) is an unbounded, non-local, self-adjoint operator on L?(R),

defined as follows. The domain D(A4) of A consists of functions f € L?(R) such that

(1 + Y(EH)Ff (&) is square integrable. Clearly, D(A) contains C° (R). For f € D(A),
FAf() = Y(E*)Ff(E).

In other words, A is a Fourier multiplier with symbol ¢ (é2). This explains the notation A =

Y(—A): the second derivative operator 4 is a Fourier multiplier with symbol —&2.

Furthermore, by Plancherel’s theorem, A is positive-definite.

Let D(E) denote the space of f € L?(R) such that (1 +1/)(€2))1/2f7-"f($) IS square
integrable. For f,g € D(E) the quadratic form E(f, g) associated to A is defined by

1
£(F,0) = 3z | WEIFFOPEE.

The inner product &;(f,g) = (f,g) + E(f,g) makes D(E) into a Hilbert space. If f €
D(A), then E(f,g) = (Af,g), and D(A) is a dense subset of the Hilbert space D(E).

Let D be an open subset of R. The following definition states that the operator Ay is the
Friedrichs extension (or the minimal self-adjoint extension) of the restriction of A to
c (D).

Definition (5.3.3)[225]: The domain D(Ep) of the form &, is the closure of CZ°(D) in the
Hilbert space D(E), and &5(f,g9) = E(f,g) for f,g € D(Ep). The operator Ap is
associated to the form E,: f € D(Ep) is in the domain D(Ap) of A, if and only if there is
a function Apf € L?(D) such that £(f,g) = (Apf,g) for g € D(Ep) (or, equivalently,
forg € CZ°(D)).

The following result is well-known of general Dirichlet forms and generators of Lévy
processes, see [231], [92] for more general results in this direction.

Proposition (5.3.4)[225]: (See [236].) If D is a bounded interval, then f € D(Ep) if and
onlyif f e D(E)and f = 0 almost everywherein R \ D.

Proof: By definition, if f € D(Ep), then f € D(E) and f = 0 almost everywhere in
R\D.Letf € D(E)and f = 0 almost everywhere in R \ D. The result follows from the
following claim: there is a sequence f,, € CZ°(D) such that

Sl — fifa = Pmge [ (1 + E)FRE - PO
convergesto 0 asn — oo, -
Let h,, € CZ(RP) be an approximation to the identity such that h,,(x) = nh(nx),h(x) =
0, fR h(x)dx = 1and h(x) = 0forx & (—1,1). Note that h,, is zero outside (—% ,%).
Let
In(x) = hy * f(x), fa(x) = gn((x — by)/ay),

where (x — b,,)/a,, maps the %—neighbourhood of Iinto I, witha, = 1,lim a, =1
n—-oo
and lim b, = 0. Observe that f,, € CZ°(D) and

n—oo

. . 1
Fr() = ane_lbnfj:gn(anf) = ane_lbnfjsh <£ (an€)> Ff(an$).
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Since f,g € L'(R),Ff and Fh are continuous. Furthermore, Fh(0) = 1 and |Fh(§)| <
1for ¢ € R. It follows that Ff,, converges pointwise to Ff, and for n large enough
|Ff(] = 2[Ff(and)l

forall ¢ € R.Hence, ifu(¢) = (1 + ¥(&2))IFf(€)I?, then for n large enough,

(1 + YE)IFLE = FFEI? < 21 + pENUFLEI + IFFE)ID

< 4u(a,é) + 2u(é)

for all &. By the assumption, u(§) is integrable. Therefore, the family of functions
(L +YED)IFf(6) — Ff(E)|? is tight and uniformly integrable. By the Vitali’s
convergence theorem, &,(f,, — f,f» — f) convergesto 0 asn — oo, as desired.
We remark that the above result in general fails to be true for arbitrary open sets D. It is, in
particular, not true when D = R\ {0}and (&) = &2 witha € (1,2].

From now on, ¥ is a complete Bernstein function. The operator —4A = —y(—4)
generates a strongly continuous semigroup of self-adjoint contractions

T(t) = exp(—tA),

where t > 0. Note that T(0) is the identity operator, T(t) is the Fourier multiplier with
symbol exp(—ty(¢?)), and

D(A) = {f € I2(R): lim T(t)f% exists in LZ(R)},
—Af = lim —T(t)]; -/ (66)

Fort > 0, the operator T(t) is a convolution operator: for all f € L2(R),
rOf@ = [ fe - 91 dy, (67)

where T(t; dx) is a sub-probability measure with characteristic function exp(—ty(é?))
and total mass e ~t¥(® . Furthermore,

T(t; dx) = e () §.(dx) + T(t; x)dx,
where T(t; x) = T(t; —x) is a decreasing function of x > 0 (see [239]). Hence, T(¢t) is
a Markov operator, and formula (67) defines a contraction on every LP(R) (p € [1, o0]),
and also on Cy(R). In each of these Banach spaces, the generator of the semigroup T(t) is
defined in a similar way as in (66); for example,

D(4; Co(R)) = {f € CO(R):tlirgl+ T(t)ff_f exists in CO(R)},
~4f = lim T(t)ff—f

Since the above definitions of Af are consistent on the intersections of domains with limits
in different function spaces: LP (R) forp € [1, o] or C,(R), we abuse the notation and use
the same symbol —A for the generator of the semigroup T (t) in any of these spaces. Observe
that C.°(R) is contained in D(A4,LP(R)) (p € [1,]) and in D(4; Cy(R)), and it is the
core of A in each of these Banach spaces except L™ (R) (see [226], [234]). Whenever we
write D(A), we mean D(4; L*(R)).

If ¥ (&) has the representation given in (64), then for f € C.°(R) we have

Af(x) = —cf"() +ef(x) + ’PVI (fG) - fM)vlx — y)dz, (68)

182



where by the subordination formula,

1 172 m(dq)
= — -1zl / _
v(2) 27 Jig.00 e 7z
and ‘pv | ’ denotes the Cauchy principal value integral:
pvj (f(x) — f(x +2))v(z)dz = lirgl+ (f(x) = f(x +2)v(z)dz;
—00 &= R\(-¢,8)

see, [112].
Let D be a (possibly unbounded) interval. The operator —A, generates a strongly continuous
semigroup of operators
Tp(t) = exp(—tAp).
The operators T, (t) are given by

Ty (x) = jD FONTo(t; %, dy),

Where
Tp(t; x,dy) = e"™¥) §,(dy) + Tp(t; x,y)dy.

Itis known that 0 < Tp(t; x,y) < T(t,x — y), and we let Tp(¢t; x,y) = 0 whenever
x¢&D or yé&D. Hence, Tp(t) form a contraction semigroup on each of the spaces
LP(D) (p € [1,0]), and if ¥ is unbounded, then also on C,(D) (see [228], [112], [92]).
The generator of each of these semigroups is again denoted by —Ap, and it acts on an
appropriate domain D (Ap; LP) or D(Ap; Cy).

Suppose that D is a bounded interval and that exp(—2ty(£2)) is integrable for some
t > 0. Then Ty (t; x,y) is a Hilbert—Schmidt kernel, and so Ty (t) is a compact operator
on L*(D). Hence, there is a complete orthonormal set of eigenfunctions ¢,, € L*(D) of
Tp(t). By strong continuity and the semigroup property, the eigenfunctions do not depend
ont > 0, and the corresponding eigenvalues have the form e =t forall t > 0, where the
sequence A,, is nondecreasing and converges to oo,

By translation invariance, we may assume that D = (—a,a). By symmetry,
Tp(t; x,y) = Tp(t; —x,—Yy), and hence the spaces of odd and even L?(D) functions are
invariant under the action of T, (t). Therefore, we may assume that every ¢, is either an
odd or an even function. The ground state eigenvalue A, is positive and simple (unless ¥ is
constant), and the corresponding ground state eigenfunction has constant sign in D; we
choose it to be positive in D. The functions ¢,, are also the eigenfunctions of A, (because
—Ap is the generator of the semigroup T (t)), and 4,, are the corresponding eigenvalues.
No closed-form expression for A,, and ¢,, is available, except when Y (§) = ¢ +¢.Bya

general result of [54] (see Theorem (5.3.4) therein), 4,, ~ w((Z—Z)Z) as n — oo (the
original statement includes only the case when (&) ~ &%/2 for some a € (0,2), but it

can be easily extended to more general v). Best known general estimates of 1,, are found in
[65], where it is proved that:

3o (Go) < < v (G @

Note that the upper bound in (69) follows relatively easily from the operator monotonicity
of y: the form associated to A, is bounded above by the form of y(—A4p), and the
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2
eigenvalues of the latter are equal to ‘/’((Z_Z) ). The proof of the lower bound is more

intricate.
The spectrum of A, for an unbounded interval D is continuous. When D = R, then

Ap = A takes diagonal form in the Fourier space, and e®* (¢ € R) are the L*
eigenfunctions of A. Similar eigenfunction expansion was obtained for the half-line using
an appropriate version of the Wiener—Hopf method in [112], [238]. Due to translation
invariance and symmetry, it suffices to consider D = (0, ).
Definition (5.3.5)[225]: Suppose that i is a non-constant complete Bernstein function such
that Y (0) = 0. Forx,u > 0, let

FE,(x) = sin(ux + 9,) — G,(x),
where 9, € [0,%) and G, is a completely monotone function on (0, ). More precisely,

1 u P W) W? - r?)
Oy :_f > 2 log 2y — 2
Ty T —U Yu?) — P(r?)

(as in (61)), and G,, is the Laplace transform of a measure y,,,

Gu(x) =Ly, (x) = j( ) e %y, (df),
0,00

dr

With
]/'u(df) = Esll)r(r)l_'_ Im <¢(M2) _ w(_e—i852)> , , ,
1 0 é’ lp,(,u )(au -r )
X exp <—Ej;) W lOg w(MZ) — 1)[)(7‘2) dr‘) d€
foru,&,x > 0.

Equivalently, F, (x) is defined by its Laplace transform: for ¢ € C with Re & > 0,

LE,(&) = j F, (x)e~$*dx
0

k. 1[‘”#10 ' (u)(p? —1r?) i
e P\a )y 2 P = e )
see [238] and [112]. We have the short-hand expressions

RG]
LE = ,
ﬂ(f) ‘le +€2 ll,b'u(,uz)
9= Arg (),
1 u  Imy,(—e¥E?)

Yu(dé) = = lim — >
I et

T e-07F
again see [112] and [238]. The expressions for y,(d¢) given above are slightly different
than in [112], [238], so we provide a short justification. By Lemma (5.3.30) and the identity

ucosy, + & sind
L6 = ——5ra— —LRG,

dg,

we have
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1 . 1 .
vu(d§) =~ lim  Im(LG,(e7%¢))d¢ = —— lim Im(LE,(e78))dE.
The expression for LF, (£) and the Wiener-Hopf identity 1,/ (), (—&) = 1, (—&?) give
1 ¢ pu(—e ?482)
dg) =~ 1 . d
)= (ﬂz +eHg Wwﬂe-iff)) :

T e-0%
1 . U Im t,l)u(—e“'sfz)
= — lim
mes0t pu? + 8 [, WY (§)
as desired; here we used Lemma (5.3.30) again.
We extend the definition of F, and G, to R so that F,(x) = G,(x) = 0forx < 0. The
functions F, (u > 0) are L* eigenfunctions of Ap and play a similar role for Aj, as the

Fourier kernel e*(& € R) for A. This is formally stated in the following result.
Theorem (5.3.6)[225]: (See [112] and [238].) The functions F, are L* eigenfunctions of

A(p.»); the corresponding eigenvalues are 1 (u*). The operator A, o,y takes a diagonal form
under the integral transform with kernel F, (x). More precisely, let

nfw) = | FeoReod

dg,

1/2
for f € L2((0,9)) N L'((0,)). Then (%) Il extends to a unitary mapping on
L?((0, o)), such that for f € L2((0, «)),
f €ED(Apw) & (1 + YpWNIf) € L*((0,)),
and if f € D(A(g,«)), then
M(Aef)W) = YEHAf @),  OTp0)f) = e W If ().

We only use the first part of the above result, namely, that F, are the L*((0,c0))
eigenfunctions of A, ). We remark that a similar eigenfunction expansion is available for
D = R\ {0}, see [235], [237], and there are no other known explicit expressions for the

eigenfunctions of Ap unlessD = Rory(§) = ¢ + C.
Recall that according to (61), Definition (5.3.5) and [112],

P zlj‘” u logw’(uz)(uz—sz)
Poom )y 5?7 —p? T Y?) - 9(s?)
1 fl 1 Pu?) —puz?)

0

— — 1 dz.
e ] (IO (o)

ds (70)

- (7D

We remark that if i is regularly varying at infinity with index a € (0,2], then, by
dominated convergence,

lim 9, =-—Ilim P! log L= Y0z dz
poo H s Joo 1 =22 7° 2P /zH) /P ) — 1)
1 1 1—-3“ 2—a (! —log 3
=Efo =7 09 e — 15 = fo —— dz
_@-aor (72)
g
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see [112]. By [112], dominated convergence can be used to differentiate the right-hand side
of (70) in u > 0 under the integral sign. This yields

9, 2 (' 1 <u2¢’(u2) — w2z (u*z?)
dp  mp Jy 1-32 Y(u?) —Ppu?z?)
_ (uz/zz)lli’(uz/zz)—uzw’(u2)> iz
Y2 /z?) — )
for all u > 0. We prove two properties of 9, that are needed in the remaining part of the
article. First, we find estimates of 9, that imply that the lower limits of ¥, as u — 0% or

(73)

u — oo do not exceed 3?” (Lemma (5.3.10)). Next, a simple estimate of dd—ﬂﬁ“ is found

(Lemma (5.3.11)).
By [238], we have the following general estimate of J,,:

WO\ SO\ 7
(ggg ) zp’(f))ZSﬁ“ = (fé‘i%’ ‘W>z

forall u > 0. Furthermore, the supremum in the upper bound is always not greater than 2.
If Y is a Thorin—Bernstein function (see [239]), then one easily checks that the supremum

Is in fact not greater than 1, and therefore 9, < % . Below we find more refined bounds for
9,. By [238],

1 P s
- arcsin? /Q + arcsin? /1 ? 5 arcsin? ’% <Y, < 5 arcsin VP (74)

With

p_ KV W) 0 = —u*P" (u?)
Y 2¢' (p?)
(note that the factor% Is missing in the lower bound in the original statement). By the same

argument as in the proof of the lower bound of [238] (using the lower bound for v, (12{?%)
and the upper bound for 1y, (4% /¢?)), one easily shows that, with the same P and Q,

r_1 in2 _ -Zf_L_ -2/_ﬂ
'9;134 7T(arcsm J1 — Q + arcsin 1 — —arcsin 1 1_P>. (18)

One can also verify that this bound is always at least as good as the upper bound of (74),
with equality when P + Q = 1.
The following technical result states that P + Q < 1. This in fact follows indirectly from
the proof of [238] (note that the right-hand side of (75) is not well-defined when P + Q >
1), but we choose to give a simple, direct argument.
Lemma (5.3.7)[225]: If ¥ is a non-constant complete Bernstein function, then

8@ L 2@

I Y&

Proof: The lemma is equivalent to the inequality

=§P(OP"(E) = 29" W(E) — §P'(§)).

Assuming vy has the representation (64), we need to prove
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. § uds)) (1 s u(ds)
€<C€+C+Ej(0’oo)€+5 S )(E .[(o,oo)(f'l's)g S >

1 s u@ds)\/. 1 & u(ds)
= <C+E_];O,oo) (6 + 5)%2 s ><C+EJ(O,OO) (6 +5s)2 s )

This follows by simple integration from the following bounds: 0 < c¢,

N
R S RS L NS

3 S2 ¢ S1
f(r P RIS ER A 51)3)
S1 fz S2 52

< .

NI E N GE T
the last two inequalities are easily proved by direct calculations.
Lemma (5.3.8)[225]: The left-hand side of (74) is decreasing in P € [0,1 — Q]. The right-
hand side of (75) is increasingin P € [0,1 — Q].

N

Proof: LetP =1 — ﬁ =50’S € [0,1 — Q]. Note that P increases with increasing s,

and the left-hand side of (74) is equal to
1
E(arcsin2 JQ +arcsin? /s + Q —arcsin? +/s).

Since arcsin? /s is convex, the above expression is increasing in s. In a similar way, with
P =1-— 135 = 115__5(2 ,s € [0,1 — Q], the right-hand side of (75) is equal to
m 1

7 (arcsin? /1 — Q + arcsin? +/s —arcsin? /s + Q),

which is again an increasing function of s, but now P decreases with increasing s.
Substituting P = 0, we obtain immediately the following elegant result.

Corollary (5.3.9)[225]: If ¥ is a non-constant complete Bernstein function such that
Y(0) = 0, then

2 —u*P" (u?) T 2 prP" (u?)
—arcsin? | ————— < 9, < = ——arcsin? |1 + ————.
™ «/ 2" (u?) T2 om 2" (u?)

Lemma (5.3.10)[225]: If i is a non-constant complete Bernstein function such that ¢y (0) =
0, then

And

3 " n
llﬂl’r_l>(l)£_1f Y, < 3
If ¢ is unbounded, then also

o 3w
lim inf ﬁﬂ S?'

lL—)OO

Proof: Suppose that lim (i)gf v, > 3?’T.Then thereare up > 0andgq € (0,1) suchthatd, =
u-
Z - for u € (0, up). By Corollary (5.3.9),

2 8
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. @) _ qn?
2
arcsin \/1 + 20 (D) < 16

for u € (0, uy), and hence
241 (4,2 T
Y'(p?)
for i € (0, uy). If @ denotes the right-hand side, then @ > 1. By integration (see [235]), we

have ' (u?)/Y'(ud) = (ué/u?)* forall u € (0, uy), which contradicts integrability of 1’
at 0. This proves the first statement of the lemma.

In a similar manner, if liminf 9, >3 , then there are u, > 0 and g € (0, 1) such that

I,L—)OO

U, > - — —foru € (Ug, o). Again thls implies

_ 2 "e,,2 T

—}/) Z('U) > 2 -2 <sm—\/_>

Y’ (p?)

foru € (ug, ). If a denotes the right-hand side, then @ > 1, and by integration, ¥’ (u?)/
Y'(ud) < (ué/u?)* forall u € (ug, ). This implies integrability of 1’ at oo,
We conjecture that the above lemma holds with %’T replaced with % . An example of a
complete Bernstein function 1 for which the set of partial limits of ¥, as 4 — 07 is equal to
[0,%] is given in [238].

Lemma (5.3.11)[225]: If i is a non-constant complete Bernstein function such that ¢y (0) =
0, then forall u > 0,

<_
du

Proof: By (73) and the Cauchy’s mean value theorem, for some &, € (u?z%, p*)and &, €
(u?,u%/z%) (where z € (0,1)),
g, 2 (* 1 <€z¢”(€z)+¢'(€z) B flzll)"(flz)+¢'(51z)> iz
du 7 ), 1—22 P'(€,) Y’ (§1z)
2t <fzzp"(fz) _fl/zw”(fl/z)> 4
Ty T2\ @& ) )
By (64), 0 < —&y""(§) < 2y'(§) and 0 < §2PB)(§) < 69'($). Hence,
4 <f¢”(€)>=52¢(3)(€) =@ (- f¢"(é)) _6.6]
E\Y'(©) P'(§) P'(§) (' (g)) T
Furthermore, §,9"(§,)/Y'(§2) — $1/:%" (§1/2) /¥ (§1/5) € [—2,2]. It follows that
dd, 2 (1 _ 2 1d rlp”(r)
Tl =% |, 7= <Z'L/z dr ( e > ‘dr>d‘z

2 (! 1
< — > min | 2, 6l0g€1/z dz.

Ty 1 -2 $s
Recall that ¢, ,, /&, < z~*. Hence,

d19| 3
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L' min(2,—-24 log Z)

1—z2
Since — log z < i —1,we have
@‘ .2 ! min(2,24(1z — 1)) _100log5 — 48log24 _3
dul — mu 1— 232 U U

We conjecture that in fact — ; < 519” < i We with the following simple example.

Example (5.3.12)[225]: Lety (&) = E% + &B/2,where 0 < B < a Byashort calculation
YW —Ppuz?) 1 1-2z% 1 \[1-z% zB\
z22(Y(u?/z%) —p?)) 2@ ( = u“‘ﬁ) (1 —eh u“‘ﬁ>
If we denotew = (1 —3z%)/(1 — z#), then
YW -z 1 p*Fw +1 1 <1 L L= 7% F )

22(p(u2/z?) —p(u?) 37 p Pw 2o T 52e pebw + 2476

As in the last equality of (72), we obtain

ﬁ_(Z—a)n+1f1 1 wo (1 + 1—z%F p
ko 8 T ), 1 —232 09 peBw + z2=B <

Clearly, the integrand is nonnegative. Since log(1 + s) < 5,5 % >z%2andw > 1,
jl 1, 1+1—z“5 d<j1 1 1—3%F 4
o 1—232 09 peFPw + 1 ‘= o 1—22pu%Pw + 7276 ¢
<j1 1 1—-3 dy = 1
= 0 1— g2 Ma—ﬁ 2 = Ma—ﬁ'

2 — a)m 2 — a)m 1
2L S L, S
8 8 Tu*h
The remaining part of the article we will need the following simple estimate of LF, and a
more refined estimate of G,,.

Lemma (5.3.13)[225]: If i is a non-constant complete Bernstein function such that ¥ (0) =
0,thenforalluy > O0and &suchthatReé > 0

7 P ()W —1§1%)
lw? + &2 | YW —yE12)

Proof: Recall that (u* + §*)LF,(§) = u(tpu(uz))_l/z zp;[(f) is a complete Bernstein
function of &, and hence by [112] and [238],

Therefore,

|LE, (O] < 22

P w?)w? = 1§1°%)
YW — PUE®)

1 + E2|LE )] < V2 (W + IE1DLE, (D) < 2\/511\/

for all £ such that Re ¢ > 0.
Lemma (5.3.14)[225]: If i is a non-constant complete Bernstein function such that ¥(0) =
0, then for all u, x > 0 such that ux # 1,
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6. () S 1 pA/x) e 1 - Y(W?)/(Px*p(1/x%))
T T e ) ) 1 —ypA/x2) /bW
In particular, if ¥ is unbounded, then

2
lim sup (m/J(,uZ)GM(x)) < pa/x) .

U—oo X
Proof: Recall that ¥} (§) > ¥1(0) = ,(0) = 1. Hence,

1
Vu(dE) £ ———===lim Imy,(—e"¢E?)d¢.
W S G o T
After a substitution § = /s it follows that

Y
SincexvVse™s < 2/(1 + x s),we have

Imy,(—es)ds
- .

[ s

1 y j Imy,(—es)ds lpu(l/xz) -1
/Y, (4?) = o 1+x2s S = mpx /i, (u? )’

for the last inequality note that the integral converges to the integral term in the
representation (64) for the complete Bernstein function 1, and we have ¥, (0) =
(therefore the inequality becomes equality if ¥, contains no linear term, that is, if ¥ is
unbounded). To prove the first statement, it remains to use the definition of 1. The other
statement of the lemma follows from the first one by the inequality &yY'(¢) < Y (§).

We implicitly assume that ¥ is a non-constant complete Bernstein function such that
Y(0) = 0,thatis,¢ = 0intherepresentation (64) for . By c and v we denote the constant
and the measure in the representation (64) for y. Finally, we letD = (—a, a) forsomea >
0.
Recall that A = w(—dz/dxz), and for f € C(R) we have, as in (68),

Af(x) = —cf"(x) + PVJ () = fO)v(x — y)dy

G,(x) <

= —cf"(x0) + j @f@) - f(x + 2) - f(x — Dv(@Ddz.  (76)

We denote the right-hand side by A f (x) (with a calligraphic letter .4) whenever the integral
converges and, if ¢ > 0, f"" is well-defined. The following estimates of Af (x) are proved
in [236] in the special case ¥(&) = (& + 1)/2 — 1, but their proofs rely only on the
symmetry, unimodality and positivity of the kernel function v. Note that in [236] the
notation A, is used for A.

Lemma (5.3.15)[225]: (See [236].) Let x € R,b > 0, and let g have an absolutely
continuous derivative in (x — b,x + b). Then

b
|Ag<x>|§c|g"<x)|+( sup |g"<y)|) j
0

yE(x—b,x+b)

=ZZV(Z)dZ+j\( s (g@)| + lgDHv(y — x)dy.
R\(x—b,x+

As in [236], [49], [97],for b > 0 we define an auxiliary function:
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(0 for x € (—oo,—b],

_]@/2)(x/b + 1)? forx € [—b,0],
q(x) = i1 — (1/2)(x/b — 1) forx € [0,b], 77
1 for x € [b, ),

Note that g is C1,q" is absolutely continuous, 0 < ¢"”(x) < 1/b? (for x €
R\ {—b,0,b}), the distributional derivative ¢© is a finite signed measure, and q(x) +
q(—x) = 1.

Lemma (5.3.16)[225]: (See [236].) Letbh > 0,let f € L'(R), and suppose that the second
derivative f"(x) exists for x € [—b, b] and it is continuous in [—b, b]. Define

My = f £ GOldx, Mo= sup Il
0 X€[-b,b]

M= sup If'Col My= sup If"GoOl
x€[—b,b] x€[—b,b]

Let q(x) be given by (77), and define g(x) = q(x)f(x). Forx € (—,0), we have
|Ag(x)| = C(b,Y)(M_y + My + My + My).

More precisely, for x € (—oo,—b] we have
2b

M
|Ag(x)] < Z_boz j z%v(2)dz + v(2b)M_,
0
and forx € (—b,0),

b oo

M, 2M, ,
|Ag(x)| < Myc+ (F + 5 + M2> J z“v(z)dz + 2M, j v(z)dz + v(b)M_,.
0 b

Recall that D = (—a, a). Following [236], [49], [97], for n = 1, let u'n be the largest

solution of
nrm

- (78)
2
with 9, defined in (61); this agrees with the definition of u, in (62), but we choose to use

the notation fi,,, so that all approximations are clearly distinguished from true values by the
presence of a tilde. Although we are interested in large n only, note that by Lemma (5.3.10),

the equation au + 9, = % has a solution for all n > 1, and every such solution satisfies

a[in + 191711 =

n—-Dm _ nm
2a ~—H =0
We remark that (78) may fail to have a unique solution forn = 1 (for example, whena =

(n-Dm

land(§) = §/(10* +¢§) +§/107). Nevertheless, ifn > 3andp = ——= ==, then,
by Lemma (5.3.11),

d 3 3a
ﬁ(au+ﬁﬂ)>a—;2a—?>0,
and so the solution fi,, is in fact unique.
We let
An = Y (i)

In order to show that 1,, is close to some eigenvalue of A, we construct an approximate
eigenfunction @,, of Ap, using the eigenfunctions F; (a — x), F;;  (a + x) for the one-sided
problems corresponding t0 A(_, ) and A(_q o). As in [236], [49], [97], we define
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Pn(x) = q(=x)Fy, (a + x) = (=D"q()F, (a — x), (79)
with the auxiliary function q defined by (77). Here x € R, butwe have ¢,,(x) = 0forx ¢
D, so that @', is equal to zero in the complement of D. Clearly, @,, is continuously
differentiable in D, @,, is absolutely continuous in D, @, exists in D \{—b, b}, and @,, is
locally bounded in D. Note that A,, depends on a and n, while ¢,,(x) depends also on b. We
could fix b in order to optimise the constants (in many cases b = %a seems to be a
reasonable choice), but since we do not track the exact value of the constants, we will simply
indicate their dependence on b. Note also that @, is not normed in L?(D), its norm is
approximately equal to va (see Lemma (5.3.19)).

The following result is intuitively clear, although its formal proof is rather long and
technical.

Lemma (5.3.17)[225]: (See [236].) We have @,, € D(Ap) and Ap P, (x) = AP, (x) for
almostall x € D.

Proof: For brevity, in this proof we write i = fi,, and ¢§ = @,,. The domain of A, is
described in Definition (5.3.3): we need to prove that ¢ € D(E) and that (@, Ag) =
(AP, g)forall g € C° (D). We first verify the latter condition.

Note that A@(x) is well-defined forall x € D \ {—b, b}, since @ is smooth in D \ {—b, b}
and bounded on R. Let g € C.°(D). Since @' is absolutely continuous in (—a,a),
integration by parts gives

a a
| eaengedx = [ pe(-cq" e
—-a —-a
Furthermore, by the definition of A (see (76)),

f A(0)g(x)dx — j §(0Ag(x)dx
- j ( j (9Gx + )P + g0 — DFE) — gEFx + 2)

—g(x)P(x — z))v(z)dz) dx.
We claim that the double integral exists. Then, by Fubini, it is equal to 0, and so (@, Ag) =
(AP, g), as desired.
Denote the integrand by I(x, z)v(z), and let e = % dist(supp g, R\ D), so that supp g <
(—a+3¢,a—3¢). When z = ¢, then |I(x,2)| < 4 |[@|l1or) [g]lLor)- Suppose that
z2€(0,¢). If x¢ (—a + 2¢a — 2¢), then I(x,z) = 0. Otherwise, by first-order
Taylor’s expansion of I(x, z) around z = 0 (note that I(x,0) = a% I1(x,0) = 0) with the
remainder in the integral form, we obtain that

V4 2
|1(x,2)] Sj (Z—s)a— I(x,s)ds

0 ds?

< 22 (N Pllory 19" Nlory + 19" oo ((area—ey) 1glliom))
(recall that @' is bounded in (—a + &,a — €)). We conclude that |I(x,z)v(z)| <
C.( @, 9) min(1,z2)v(z), which implies joint integrability of I(x,z)v(z). Our claim is
proved.
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It remains to verify that @ € D(E), thatis, (1 + ¥(£2))IF@(&)|? isintegrable. Let f(x) =
qla — x)Fz(x),sothat §(x) = f(a + x) — (=1)"f(a — x) (see (79)). It suffices to
prove integrability of (1 + ¥(&2))IFf (€)%

Fixe > Oandlet G(x) = q(a — x)e®. Since the distributional derivatives g, q' and q"”
are integrable functions, and the third distributional derivative of g(x) is a finite signed
measure on R, the function §(x) has the same property. Therefore, Fq(¢) and Fq®) (&) =
—i&3Fq(&) are bounded functions, and so |FG(¢)| < C,(&,a,b)/(1 + |€])3. The Fourier
transform of e™**F;(x) is equal to LF;(e + i¢), and the Fourier transform of f(x) =
qla — x)Fz(x) = q(x)e™**F;(x) is given by the convolution

1 (e 0]
Ff€) = f FG(€ — s)LF(e + is)ds.
Suppose that ¢ > 0. To estimate |T}OE§)|, we write

Ff(é) = ijoo FG(€ —s)LFE;(e +is)ds +—— ) Fq(s)LF;(e +i(¢ — s))ds. (80)
21 £/2 21 £/2
By Lemma (5.3.13), we have

|LFi(e + is)| < 2V2

f P (@2) (% — |e + is|?)
|72 + (e + is)?| | Y(@) —Y(le + is|?)

1 1
< C3(€,ﬁ,l/)) 14+ s m

(for the second inequality observe that the expression under the square root is bounded by a
constantwhens < 2jandby ¢’ (i*)(1 + s2) /(P (s?) — Y ({i*)) when s > 2fi). The right-
hand side decreases with s > 0. Hence,
< [IEEDIE
§/2

joo Fq(& — s)LF;(e +is)ds 172
£/2 (1+¢/2(1+9(E%/D)
C3 (81 ﬁ' l/))CZ (E, a, b) ® 1
= 1/zf 3 ds
(1 +&/2(1+pE/9) gz A+ K =sD
8C3(8r ‘lj, lp)CZ(SJ a, b) .
= 1/2 "’
1+ +9¥(ED)
in the last inequality we used the fact that 4y (é2/4) > ¥ (¢2) and that the integral is

bounded by 1. The estimate of the other integral in (80) is simpler: |[LF;(e + is)| <
C,(g i) forall s € R, and hence

joo FG(s)LF;(e +i(E —s))ds
£/2

Therefore, for & > 0,

1 1
IFF(O)] < Cs(e,a,b, fi izt 2"
Fol=Ele “)<(1+|f|)(1+¢<52>)/ (”'5'))

Since Ff(=¢&) = Ff (&), the above estimate extends to all € € R. We conclude that for all
§ ER,

CS (81 ﬁ, lp)

° Ca(e, B)Cy(e,a,b)
< GED|  1FaE)lds <
B ), T 2(1+¢/2)?

193



N2 1 1+9(&?)
(L+EFFOI <2(Csle a,b ) ((1 T T AT )
and the right-hand side is integrable because (1 + |&])72(1 + ¥(&?)) is bounded.

Following [236], we introduce the following notation:
X

vo(x) =c¢ +j z%v(z)dz, Voo (X) = foo v(z)dz,

0
I, = fo G, (x)dx, Gup(x) = G, (x —b) + G, (x + b).

We recall two fundamental estimates, which were proved in [236] for (&) = (§ + 1)1/2 —
1, but their proofs work for general non-constant complete Bernstein functions i such that
Y(0) = 0. One minor change is required in the proof of Lemma (5.3.18): an extra term
M, c appears when Lemma (5.3.16) is applied (as compared to the application of [236] in
the proof of [236]). This extra term is absorbed into M,v,(b). Also, note two typos in the
first displayed formula in the original statement of [236]: the norm in the left-hand side
should not be squared, and the term /TnGﬁn,b (a) is missing in the right-hand side. (These
typos did not appear in the other displayed formula in the original statement, which was the
one used later in the proof of the main result.)

Lemma (5.3.18)[225]: (See [236].) We have

”Angn - An@n ||L2(D)

3 ! " 1
< C(a,b,P)(1+ 4,)G, p(a) — G (@) + G () + Iy, + T ).
n
More precisely, we have

s 2 Gy, p(@)vo(2D) 2v(a)\
”AD(pn - }Ln(pn”IJz(D) <2(a - b)( 2]2 + V(Zb)lﬁn + i,
(Gap(@) = 2bGh, (@) + b2GE, ,(2)) vo(b)

+ 2b

bZ

~ 2
A,Gy p(a 2v(a
+ 26y, p(@)Veo (B) + V(D) +— “;"’( ) 4 ﬁ( )> .
n
Lemma (5.3.19)[225]: (See [236].) We have
||¢n||]%2(D) - a|S 8(Iiin + 1/iiy).
More precisely,

sin( Yy sin(9Yy
a —%’1) — 4y, < N@ulliey < a +% + 4l (1 + sindy).

n n

Lemma (5.3.20)[225]: If ¥ is unbounded, then forn > 2,
. x C(a,b, )
“AD(pn - Angon”Lz(D) < T

And

20a - 36a
a _E < ||§0n||L2(D) < a +E

Proof: By [112],
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cos VY cos 9 "(u?
T LR =—— - LA,

1
T Y2 T u

I, = £G,(0) = (8D

Furthermore, by complete monotonicity,
X X 1
I, =2 j G,(z2)dz = f (G#(x) — G () (x—3) + EGLIL(X)(x — Z)Z) dz
0 0

1 o 1 3 1
= xG,(x) — Ex G, (x) + gx G, (%),
so that
1 . 2 N 6
GM(X) S,l;, G#(x) Sm, GM (x) S—g.

Uux
By Lemma (5.3.14), foru > fi,

C,
PUD)G, () < (ix).

> for n > 2. The result follows from Lemmas (5.3.18) and

(n-1m

Finally, @, =
(5.3.19).

Let o(Ap) denote the spectrum of Ap. Recall that the spectrum of Ap is purely
discrete, and the eigenvalues of A, are denoted by A,. The following result was given in
[236] for Y(&) = (£ + 1)¥2 — 1 only, but the proof extends to arbitrary self-adjoint
operators A, that preserve the spaces of even and odd functions.

Lemma (5.3.21)[225]: (See [236].) We have

”Angn - in@n ||L2(D)

| @nll2 )
In fact, if A%7™ and A%* are the restrictions of A, to the (invariant) subspaces of L?(D)
consisting of even and odd functions, respectively, then (82) holds with o (Ap) replaced by
o (A%7®™) when n is odd, and by o (4%%%) when n is even.

The following result is an immediate consequence of Lemmas (5.3.20) and (5.3.21).
Corollary (5.3.22)[225]: If ¥ is unbounded, for all n > 7 there is a positive integer k(n)
such that

dist (2, 0(4p)) < (82)

Lemma (5.3.23)[225]: Suppose that fhm &Y' (§) = oo. For n larger than some (integer)

constant C(a, b,y) the numbers k(n) are distinct. Moreover, for any € > 0, for n larger
than some (integer) constant C(a, b, Y, €),

Y((fn — ) < Ay < P((An + %) (83)
Proof: Lete € (0,.-). For some &, € (fiy, fiy + €),
V(i + %) — P(@ER) = 2e8,9' (60

Since & <= + & <=, it follows that

WG + %) — () > 22V CD.
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Since &, > (n;)” , we have lim é&2y'(é2) = o, and so, by Corollary (5.3.22), for n
n—>0oo

greater than some constant C(a, b, Y, €),
V(@ + %) = YD) > 1Ay — -

Since ¥ Is concave,

5 lp(ﬁn) - lp((ﬁn - ‘9)2) = lp((ﬁn + ‘9)2) - lp(ﬁn)
Finally, A,, = ¥ (ji3). This proves (83).
Observe that, by Lemma (5.3.11),

B 5 T T 3 5
AUn+1 — AlUn = E+l9ﬁn — Up,41 2 2 _E (Bns1 — Hn)
- T 6a B 5
- 2 (n _ 1)7_[ (MTL+1 Hn)’
-1
so that f,,, — i, = % (1 + (n—61)7r) = % for n = 3. The first statement of the

lemma follows hence from (83) with e = ;T—a :
Lemma (5.3.24)[225]: Suppose that glim &Y'(§) = oo. Then k(n) = n for infinitely

many n.

Proof: By Lemma (5.3.23),
2

- T
Ay 2 ¢((Hn - E) )
for n large enough. On the other hand, by (69),

1 2
s = 0( 5 )

for all n = 1. Finally, by Lemma (5.3.10) and Lemma (5.3.11), 9 <3?”+1l6 for

infinitely many n, and hence
_ s nt 1 s nt (3T W s (n—Drm

I~ Ter = 2¢ ~2 " ~Tea 7 2a | ) tea=" 2
for infinitely many n.

Recall that the kernel functions of the operators exp(—tA) and exp(—tAp) are
denoted by T(t; x — y) and Tp(t; x,y), respectively. Furthermore, 0 < Tp(t; x,y) <
T(t; x — y)forallt > 0Oandx,y € D = (—a,a), and the Fourier transform of T (¢t; x)
is exp(—t(&2)). In order to estimate the number of eigenvalues 1,, not counted as A,
for n large enough, we use the trace estimate method, applied previously in [49], [97] and
[236], see also [52], [82].

Lemma (5.3.25)[225]: Suppose that €h—>r£10 &Y' (§) = oo. For n greater than some constant

C(a,b,y) we have k(n) = n.
Proof: Let ¢ = i and let N be the constant C(a, b,y, €) in Lemma (5.3.23). Define | =

{k(n): n > N}and let /"= {j = 1: j &J}. We claim that it suffices to show that
|J'l < N. Indeed, there is ny, > N such that k(n,) =1 + max ]’ , and k(n) is strictly
increasing forn > N. Itfollowsthat k(n) = k(n0) + n — nyforn > ny. If|J'| < N,
then k(ny) = |J'| + (ny —N) < ngy, so that k(n) < n forn > n,. Since k(n) = n
infinitely many times by Lemma (5.3.24), necessarily k(n) = n forn > n,, as desired.
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Lett > 0. By the assumption, Y (§) > % log & — C(t) for some constant C(t), and

therefore exp(—ty(&?)) is integrable. Therefore, T(t; x) is bounded in x € R. In
particular, T, (t; x,7) is in L?(D), and so, by Parseval’s identity,

[ [ @ mmyass = [ ([ 5 mm o) o

[00]

f z Rk ‘Pj(x) " dx = Z o—2A5t

j=1
On the other hand, by Plancherel S 1dent1ty,
a a Za
f f (Tp (& x,y))zdydx < Zaf (Tt x — y)) dy = e "2V gg.
-a Y—-a - 0
It follows that for all t > 0,
Z e At SZ—aJ et gg. (84)
. T Jo
j=1
Observe that
z oMt = Z et > 2 e~V (EnteD)t > Z e~ (m/a)+eD)t
jel n=N n=N+1 n=N

Denote &, = nn/(2a) + ¢ = (n + l)7r/(2a) Since e"™¥®@) js concave in z > 0,

$n+1 $n+1 2 2 2 2
j T e g < j ' <M RGO S (S e—tw(f%+1)> dé

n n €n+1 gn En+1 5121
_ 25721+1 B €n€n+1 B En e—“/’(frzl) +€n+1 + fnfn+1 B 25121 e—tw(frzlﬂ)
3($n + $n+1) 3(6n + $ns1)
— i (3n + 3 e_tlp(le) _|_ 3n + 2 e_tlp(§721+1))_
2a \6n + 5 6n + 5
Hence,
207 et gr < Z (3" t 3 wep S E 2 e—tw(f%+1))
T Jg, o 6n + 5 6n + 5
3N + 3 3N + 3
e-tW(ER) | z (D) < 20 T 0 —ep(ER) +Z
SeN+5 ¢ “6N + 5
n=N+1 ]E]
(the second inequality is a consequence of nte | 3mAHs 1, while the last one follows

6n+5 6(n+1)+5

from Ay < $((n + &)%) < P(&7) forn > N). By (84),

z e At SZ_a e~ t(EM g _z
T Jo

je! jel
2a SN 3N + 3 )
<= YD g 42— 2 o-t(&R)
=7 ), Sten+s©

Passing to a limitast — 0%, we obtain
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|,|<2a +3N+3_N+1+3N+3
]—nf’v 6N + 5 3 6N +5

This shows that |J'| < N, as desired.
Theorem (5.3.26)[225]: If ¢ is a complete Bernstein function and élim &Y' (&) = oo, then

Ay, =vu3)+ 0 (%) as n— oo, (85)
In many cases, u,, can be approximated with more explicit expressions, at the price of a
weaker estimate of the error term. We provide two examples.
Proof: By Lemma (5.3.25), k(n) = n for n large enough. Hence, by Corollary (5.3.22),

b= I+ 0C) = W(E) + 0C).

As in [236], [49], [97], the intermediate results in the proof of Theorem (5.3.26)
provide some approximation results for the eigenfunctions. The details of the argument
differ slightly from that of [236], [49], [97], so we sketch the proofs.

Proposition (5.3.27)[225]: (See [97] and [236].) Suppose thatgi_)rglo &Y'(§) = oo. With the
appropriate choice of the signs of ¢,, and with

Bn = “(pn“LZ(D)
we have B, = Va + 0(%)asn — o0, and

<N + 1

1
IPn — Bn @ullizpy = O )2) asn — oo,

nm\2 ,,((nn
(za) ¥ ((%
Proof: By Lemma (5.3.20), indeed B, = Va + 0(%). Let ay j = (@n, @;)12(p), SO that
=Yje1 Qnj@jin L?(D). We choose the sign of ¢, so that @, , = 0. We have
”@n - :Bn(pn“Lz(D) < ”(ﬁn - an,n(pn” 2 + |an,n - IBnl
1%(D)
= ”(ﬁn - an,n(pn”LZ(D) + |||an,n§0n”L2(D) - ”@n”LZ(D)l
< 2 ”(ﬁn - an,n<pn”L2(D)-
As in the proof of Lemma (5.3.23), for n larger than some constant, if j # n and ¢ = % :

then
|2 = 4| = max@ (s — €)% — Y (@ + )2, Y ((Fn — €)) — P((fHin—y + €)?)

m—Dn (((n+Dm ? T 2
=2 Y ((2—) ) (e 2) =53 v(30) >
Therefore,

. 2 G, 2 2
”‘Pn_“n,ngon”LZ(D) :z | nJl = ((nn)) Z (4 = An) " |an ]

j#n 2a¢ 2a Jjn
Cy ~ 5 -2 < Cy(a, b, )

2 ”Aqun _Anqon” 2 = 2 N !
nr((G2)) Gy T mm e (o
2q ¥ ((Za (Za) ¥ (Za)
2
again by Lemma (5.3.%0).
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Proposition (5.3.28)[225]: (See [97] and [236].) Suppose that S;im &Y'(§) = oo. With the
appropriate choice of the signs of ¢,, and with

1
((—1)("‘1)/2 7 cos(jl,x) whenn is odd,
a
fu(x) =
(—1)™?% — sin(fi,x) when n is even,
Va
we have
0 1 N 1
_ _ — - oo.
“fn gon”Lz(D) \/ﬁ (n_n)z 1’[)’ ((Tl_T[)2> asn
2a 2a
Proof: Clearly,
= oallzoy < [[fo—0ul| + = 16n — Bupullzin + ]2 ~ 1[llgul
— Pnllg2 = Nk 4 —— IPn — PnPnllL2 - = Pnllz(p)-
n nllL=(D) n \/a n . \/a n n¥nllL=(D) \/E nllL“(D)

2 2
The middle summand is 0(1/((%) w’((g) ))), while the last one is 0(%). Finally, by
the definition (79) of @,, and the properties of g(x) and F, (x),

IV fu = Gallory = | (a6, (0 + 00 = (1"aG)Gg, (@ - 0) dx

<4 f . (Gﬁn(s))2 ds < 4Gy (0) j i Gy (s)ds = 4Gy (0)LGy, (0).

Since G,(0) = cos ¥y < 1and LG,(0) =1, < % (see (81)), we have

5 1
”\/afn - (pn“LZ(D) = 0(\/_%)

Proposition (5.3.29)[225]: (See [97] and [236].) Suppose thatif &, > & > 1, then

Y(&2) &2\
ekt (50)
for some M, e > 0. Suppose in addition that
1i€nlglf &34y’ (&) > 0. (87)

Then ¢,,(x) are bounded uniformlyinn > 1andx € (—a,a).

Condition (86) is known under various names, including weak lower scaling condition and
subregularity; such a function i is also said to have positive lower Matuszewska index. We
remark that although (87) does not imply (86), examples of complete Bernstein functions
which satisfy (87), but not (86), are rather artificial.

Proof: Observe that &p'(€) diverges to oo as § — oo, and therefore main results of the

present article apply. Furthermore, by (86), we have T(t,0) < C,(¥)/y¥~1(1/t) fort <
1, see, for example, [206]. We have

lonllomy = e I Tp(O)@nlli=pm)

150 (60— - 00

1
< e/nt + elntﬁ_ T () @nll Lo (D).

L*(D) n
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Since |, (x)| < 2, the latter term in the right-hand side does not exceed ﬁi e’nt  For the
former one, observe that [Tp(t)f(x)| < Tp(t )2y If 20y, To(t x,y) <
T(t,x — y), and, by Plancherel’s theorem,

1 r® 2
Iy =5 [ (79 ds = 7(22,0)

Finally, T(2t,0) < Cl(l/))\/l/)_l(l/(Zt)) < C,(¥)JY~1(1/t) whent < 1. Therefore,

witht = ﬁ
l@nllLen) Si (Cl(¢)) (1,0_1(/1,1))

2
In the right-hand side, 8, = 0(1),%~1(1,) < (—) (by (69)), and, by Lemma (5.3.20),

2a

1/4 - Ze
| Brn _(pn”Lz(D) + .

n

1/2

1
nm\? ,, (ma\2, |
(za) v(z2))
Lemma (5.3.30)[225]: Let f is a complete Bernstein function with representation (64). Let

g be a holomorphic function in {w € C: | Argw| < C;} (with 0 < €; <) such that

g(x)isreal forx > 0, and let h be a continuous function on (0, o). Denote
Gy)= sup |g(3)| H(y) = sup |h(x)]

V/4<|z|<4y y/4sx<4y
| Arg z|<Cq

| Bron — @n”LZ(D) =0

and suppose that

GOOH®) < Cmin(x4x72), G = f A + YCOHM)dy <
0
forx > 0. Then

j( ) g () h(x)m(dx) =glir(1)1+ 1 joo Im (f(—e‘igx)g(e‘isx)) h(x)dx (88)

VA
= lim 1 joo Im (f(—e‘igx))g(x)h(x)dx. (89)
-0t 1T 0
Following [112], [238], if ¥ is a non-constant complete Bernstein function such that
Y(0) = 0,and u > 0, we denote
1-&/u?

)= T )
for§ € €\ ((—,0] U {u?}), and ¥, (u*) = p(u?)/(W*P'(W*)). We also let
1 > &
t(E) = _ 2
0= e [ i g waar)

for & € C with Re¢ > 0. Then 1, is a complete Bernstein function, YT extends to a
complete Bernstein function, and we have the Wiener—Hopf identity ¥t (&)yT(=¢§) =
W(—&2) for§ € C\R, see, for example, [112]. Finally, we denote = (l/)”)-l-.

In principle we could extend the definition of 1, to general non-constant complete

Bernstein functions ¢, so that ,(§) = (1 — &2/u®)/(1 — (&) — ¥(0))/Ww*) —
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1(0))). All results proved below hold true with this definition. We will typically assume
that 1»(0) = 0. For brevity, we also denote (o) = gim Y(&) € [0, 00].

We assume that 1 (§) is a non-constant complete Bernstein function which satisfies
Y(0) = 0,thatis, ¢ = 0 in representation (64) for .
Proof: Letx > 0,0 < ¢ < %Cl and y > 0, and denote for simplicity § = —e~*x . By
the representation (64) of the complete Bernstein function f and Fubini, we have

f Im(f(&)g(—&))h(x)dx
0

—cj Im(fg( f))h(x)dx+6f Im(g(—f))h(x)dx
0
j j fg( f) h(o)dx m(dz) (90)
(0,00) z

We provide estimates for the mtegrands and find their pointwise limits as e — 0% in order
to apply dominated convergence.

For the first integral in the right-hand side of (90), we simply use |Eg(—=&)h(x)| <
xG (x)H (x), integrability of xG (x)H(x) and Im(ég(—¢)) —» Oase — 0*.Bydominated
convergence, the limitas € — 07 of the first integral in the right-hand side of (90) is zero.
Similarly, |g(=&)h(&)| < G(x)H(x),G(x)H(x) is integrable and Im(g(—¢§)) — 0 as
¢ — 07, and so also the second integral in the right-hand side of (90) converges to zero as
g - 0%,

To estimate the last integral in the right-hand side of (90), we consider separately two cases.
Whenx <% > orx > 2y, we have

- . O] < 6w <

E+y
< 3min(1, y‘l)(l + x)G(x),
so that by dominated convergence,

y/2 oo &
{ +j2y) ””(f — g(—s)) o)

81% <f0y/2 _|_L:j)1m (% g(—f)) h(x)dx = 0. 91)

When % < x < 2y, we need a more careful estimate. Observe that

§9(=) _ygy) = (=Hg(=9) yg)
E+y ¥y = (=9 E+y
The estimate for g and Cauchy’s integral formula for g’ easily give
l9'()| < Coy™'G(y)
in{z € C: |Argz| < %cl,y/z < |z| < 2y}, with ¢, = 4C;! . By the mean value
theorem,

5 xG(x) < 3min(1,xy DG (x)

dx < 3C3min(1,y™1),

yg() — (=§)g(=%) 1
Y — (=%) < Gy G(y)
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when% < x < 2y, and therefore, by dominated convergence,

2y y9(y) — (=§)g(=%) 3 . 3 . _
-[y/z Im( Y — (=9 >h(x) dx SECALY 'GHW) 5562C4m1n(1,y D,
. 2y yg() — (=8g(=%) B
81Lr51+ L Im( Y = (=D )h(x)dx = 0. (92)

Finally, if P;(s) and Q;(s) denote the (classical) Poisson and conjugate Poisson kernels for
the half-plane, then

1
Im <_§ = y) = 1 coS(e)P sin(x — ycose) + msin(e)Qy sin(x — ycos &).

Clearly, Py gin (x — ¥ cos €)1(y/724)(x)dx converges weakly to §,,(x), and therefore

2y
f |7t cos(€)P) sin «(x — y cos )yg()h(x)|dx < myg(y)H(y) £ C,mmin(1,y™Y),
y/2

2y

lim 1 coS(€)Py sin (x — Yy cos €)yg(y)h(x)dx = myg(y)h(y).

0+
&= y/2

Furthermore, |tQ:(s)| s% and tQ.(s) » 0 as t— 0", and hence, by dominated
convergence,

2y 3 3
f | sin(€)Qy sin «(x — ¥ cos €)yg(y)h(x)|dx < S YIMHG) <56, min(1,y~1),
v/2

2y

lim 1 sin(&)Qy sine(x — y cos &)yg(y)h(x)dx = 0.

e-0t /2
We have thus proved that

2y ;
jyz fm (_%) h(x)|dx < G, (ﬂ +§>min(1,y‘1),
N y9(y) B
SIL%L v[y/z Im <——E n y) h(x)dx = myg(y)h(y). (93)

Due to estimates (91), (92) and (93), as well as the integrability condition on m, indeed we
could use Fubini in (90). The same estimates allow us to use dominated convergence in the
limitas e - 0%. We conclude that

(00]

im [ Im(F@g(=E)h@dx = = f( o fo gOIRGIMy).

-0t 0

This proves the first equality in (88). The other one follows by replacing the pair g(z), h(x)
with 1 and g(x)h(x).

Corollary (5.3.31)[274]: (See [236].) If D is a bounded interval, then f € D(&Ep) if and
onlyif f e D(E)and f = 0 almost everywhere in R\ D.

Proof. By definition, if f € D(Ep), then f € D(E) and f = 0 almost everywhere in
R\D.Letf € D(E)and f = 0 almost everywhere in R \ D. The result follows from the
following claim: there is a sequence f,, € CZ°(D) such that
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gl(fn - f;fn _1 f)oo

— [ (U BEH OM)IFRE + O~ FIE + OPAE + )
convergesto 0 asn — oo,
Let h,, € CZ(RP) be an approximation to the identity such that h,,(x) = nh(nx),h(x) =
0, fR h(x)dx = 1and h(x) = 0 forx & (—1,1). Note that h,, is zero outside (—% ,%).
Let

gn(x) - h *f(x) fn(x) gn((x - n)/an)
where (x — b,,)/a,, maps the ——nelghbourhood of Iinto I, witha, = 1,lim a, =1

n—-0oo

and lim b,, = 0. Observe that f,, € C°(D) and

T FRGE+ O = ae i EORg, (@, +6)

= q,e G+ Fp (% (an (€ + e))> Ff(a, (& +€)).

Since f,g € L'(R),Ff and Fh are continuous. Furthermore, Fh(0) = 1 and |Fh(¢ +
€)] < 1for (¢ +¢€) € R. It follows that Ff,, converges pointwise to Ff, and for n large
enough

|Ffn (€ + E)I < 2|1Ff(an(§ +€))l
for all (£ +€) € R. Hence, if u(€ +¢€) = (1 + Y((€ +€)?))IFf (€ + €)|?, then for n
large enough,
(1 + (€ +))IFflE +e) —Ff(E +e)l?

< 2(1 + PG+ NUFfLE+OI? + IFfE+I?)

< 4u(a,(§+¢€))+2u(é +e)
for all (¢ + €). By the assumption, u(¢ + €) is integrable. Therefore, the family of functions
(L+ (€ +2))IFfu(E +€) — Ff (€ +e€)? is tight and uniformly integrable. By the
Vitali’s convergence theorem, £;(f,, — f,fn — f) convergesto 0 asn — oo, as desired.
Corollary (5.3.32)[274]: If y is a non-constant complete Bernstein function, then

_GreowGte _ 26 +ovEte
YE+e) PE+o)

Proof. The lemma is equivalent to the inequality

—E+ePE+e’E+e) < 2P E+aWE +e) -+ '€ +e)

Assuming ¥ has the representation (64), we need to prove

1 E+e) (u+e)ds)) (1 1
(f+6)<C(f+6) + ¢+ — J;OOO) (E+€+S) S ><; j;o‘oo)(f-l-e—+s)3(ﬂ+6)(ds)>

1 1 o1 (E+6€)? (u+e)ds)
S<c+ f(ow)—(€+€+ )2(H+6)(ds)><c+;j;0’m) &L . )

This follows by simple integration from the following bounds: 0 < c¢,

(¢ +¢)? 5 s
(€+6)(C(€+E)+C)(€+e+s)3 S G rer o2 ‘Grer o

and
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(§+¢€) S2 N (§ +e€) S1 )
E+e+s)E+e+s,)3 (E+e+s,)(E+e+ s)3
__ s E+er s E+e)?
T(Ete+ 5?2 (E+e+sy)? (Ete+ s)2(E+e+ss)?]
the last two inequalities are easily proved by direct calculations.
Corollary (5.3.33)[274]: The left-hand side of (74) is decreasing in P € [0,1 — Q]. The
right-hand side of (75) is increasingin P € [0,1 — Q].

Proof. LetP =1 — ﬁ = ﬁ ,s € [0,1 — Q]. Note that P increases with increasing s,

and the left-hand side of (74) is equal to
1
E(arc sin? \/Q + arcsin? /s + Q —arcsin?+s).

Since arc sin? /s is convex, the above expression is increasing in s. In a similar way, with
p=1-2% = 1;‘:(2 ,s € [0,1 — @], the right-hand side of (75) is equal to

¢+o

1-s
T 1

i (arcsin?,/1 — Q + arcsin?+/s —arcsin®,/s + Q),

which is again an increasing function of s, but now P decreases with increasing s.
Substituting P = 0, we obtain immediately the following elegant result (see [225]).
Corollary (5.3.34)[274]: If ¥ is a non-constant complete Bernstein function such that
Y(0) = 0, then

" - n
liminfd,, < 3

u+e—0
If ¥ is unbounded, then also

liminfd < —
H.+€—>00 LL+€ 8

Proof. Suppose that lifn ig{ Yyye > 3?” . Thenthereare (u+€), >0and 0 < € < 1such
ute-

(1-e)r
8

arc sin? \/1 + (n+e)2y"((u+€)?) - (1 - €)r?

that 9,4 =2 — for (u + €) € (0, (u + €),). By Corollary (5.3.9),

29'(u+e?) 16
for (u+¢€) € (0,(u+ €)y), and hence
—w+efwxw+ef)>2__2(wgwl—ef
P'((u+e)?) B 4

for (u+¢€) € (0,(u+¢€)y). If (1+¢€) denotes the right-hand side, then € > 0. By
integration (see [235]), we have ¥'((u+ e)?) /P ((u+€)3) = ((u+€)3/(u+ e)*)1*e
for all (u+ €) € (0, (u + €)), Which contradicts integrability of ¢’ at 0. This proves the
first statement of the corollary.

In a similar manner, if liminf 9,,. > 3?” , then there are (u+¢€), > 0and 0 <

u+e—-oo
3+€

€ < lsuchthatd,,. = %(T) for (u +€) € ((u+ €)y, ). Again this implies
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P ((n+e)?) 4
for (u+e€) € ((u+€)y, ). If (1+ €) denotes the right-hand side, then € > 0, and by
integration, Y'((u + €)*) /' (k+ €)5) < (k+ )5/ +e)?)'*e for all (u+e) €
((u + €)g, ). This implies integrability of i’ at co.
Corollary (5.3.35)[274]: If ¥ is a non-constant complete Bernstein function such that
Y(0) = 0,thenforallu+¢ > 0,

~Wt O (ted (1 ) (Sm mVT—¢ ))

AV, e 3

diu+e)l u+e’
Proof. By (73) and the Cauchy’s mean value theorem, for some (§+¢€), €
((k+e)?z% (u+e)?)and (§ + €)1 € (u+e)? (u+e€)?/z%) (where z € (0,1)),

Aure _ 2 Jl 1 E+e)P"(E+e),)+¢P'((§+6e))
diu+e) mu+e) ), 1—32 Y€ +6€);)

G+ (€ + o)+ (€ +on)
_ 3z 3z 3z d
v (€ +en)

__ 2 f 1 [@rap@ren COP (¢ +on) o
n(u+e) ), 1-3° Y((E +¢€),) " ((f . 6)1) .

By (64),0 < —((+e)Y'"(E+€) < 2/ +e)and0 < (E+ )PP (E+¢e) <6Y/'(E+

€). Hence,
d (E+ey"E+e)
(‘Z+6)d(5+e>< VE+O )
_GHoOC+ -(GFap'¢+e (-E+ayE+e)
P'(§+e) P'(§ +e) W' +e)
€ [—6, 6].

Furthermore, (£ +€),9"((§ +€))/P'((§ +€)z) — (§+ 6)?/}"((5 + 6);)/111'((5 +

€)1) € [—2,2]. It follows that
y) 1 1 (&+e), d rwl!(r)
< — min Z,J — dr |dz
m(p+€) .[o 1 -32 ( E+en 19T < P'(r) ) ‘

S 1 €+
Sn(,u+6),j; T min 2,6log(€+6)z dz.

(§+e)1

Recall that 2 < z~*. Hence,
(E+e),

AUy +e
d(p +€)
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dYyte 2 L' min(2,-24 log 2)

diu+e)l “m(u+e) J, 1—232

Since — log z < i — 1,we have
dd, e 2 mm(Z 24(1z — 1)) _100log 5 — 48log24
diu+e)l “nm(u+e 1—232 dz = m(u+ €)
3
< .
u+e
1 d

We conjecture that in fact — . We close this section with the

2wro e = g
following simple example(see [225]).

Corollary (5.3.36)[274]: If ¥ is a non-constant complete Bernstein function such that
Y(0) = O0,thenforallu+¢e¢ > 0and (¢ +€)suchthat Re (§+¢€) > 0

pte Y ((n+e)?)((u+e)?—|E+el?)
|(u+e€)? + (€ +e)? Y(u+e))—yP(E+el®)

Proof. Recall that ((u+€)? + (§+OLFueE+6) = (u+6) (Yure((u +

-1/2
6)2)) v,b;rﬁ(f + €) is a complete Bernstein function of (¢ + €), and hence by [112] and

[238],
I+ €)%+ (E+ €)2|LF G+ )| < V2((u+6e)?+I|E+€elDLE (€ +el)

< 2V2(u+e) \/lp,((u +))((u+e)?—[S+el?)

|LF,c(E + )| < 22

Y((u+e)?)— s +e€l?)
forall (¢ + €) such that Re (¢ +€) > 0.
Corollary (5.3.37)[274]: If ¥ is a non-constant complete Bernstein function such that
Y(0) = 0,thenforall (u+¢€),x > Osuchthat (u+e)x + 1,

G () < — Y(A/x?) [P+ 1 — P+ e)?)/((+e)2x*P(1/x?))
W T mep((n+ 02 Yk +e)?) 1 — p(1/x2)/P((u + ©)2) |

In particular, if ¥ is unbounded, then

1
limsup ((+ €)Y + €)2)Gype(®)) < 4 (xz) .

u+e—oo X
Proof. Recall that .}, (£ + €) > ¥}, .(0) = ¥,,.(0) = 1. Hence,

1 .
li __p—lE 2 )
Yure(d(§ +€)) < T+ E)\/¢[,L+E((H ¥ €)?) it Imy,.(—e™( +e))d( +¢€)
After a substitution (¢ + €) = +/s it follows that
Gure(x) = f e_(§+6)xyu+e(d(f +€))
0

1 ~ Imy +E( e ‘Es)ds
< Vs x\s K .
2m(p + €)y/Pure((u + 6)2) R f 0
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Sincexvse™ < 2/(1 + x2s), we have
1 y J“’ 1 Imyy(—es)ds
1m

(i + €)X\ Pure (1 + €)2) €0° 1+x2s $

< ¢M+6(1/x2) -1

-t O)xyPure((n + €)?)
for the last inequality note that the integral converges to the integral term in the
representation (64) for the complete Bernstein function v, and we have ¥,,,.(0) = 1
(therefore the inequality becomes equality if 1, contains no linear term, that is, if  is
unbounded). To prove the first statement, it remains to use the definition of ¥, ... The other

statement of the lemma follows from the first one by the inequality (¢ + e)yY'(¢é +€) <
P +e).

Corollary (5.3.38)[274]: (See [236].) We have @,, € D(Ap) and Ap$,(x) = AP, (x) for
almost all x € D.

Proof. For brevity, in this proof we write (u + €) = (u + €),, and @ = @,. The domain of
Ap is described in Definition (5.3.3): we need to prove that ¢ € D(E) and that (@, Ag) =
(AP, g)forall g € C°(D). We first verify the latter condition.

Note that A@(x) is well-defined for all x € D\ {—(b — €),b — €}, since @ is smooth in
D\{—(b—¢€),b—¢€} and bounded on R. Let g € C°(D). Since @' is absolutely
continuous in (—(a — €), (a — €)), integration by parts gives

a—e

a—e
j (—cd" (g @)dx = j (0 (—cg" (X)) dx.
—(a—e) —(a—e)
Furthermore, by the definition of A (see (76)),

a—e€

f_ AP(0)g(x)dx — j §(0)Ag(X)dx

—-(a—¢€) —(a—e)

Gu+e(x) <

.
)

=f ) <f (g(x +2)F() + gx — 2)P(x) — g)P(x + 2)
0

—(a-e)

—g()p(x — Z))v(z)dz) dx.
We claim that the double integral exists. Then, by Fubini, it is equal to 0, and so (@, Ag) =
(AP, g), as desired.
Denote the integrand by I(x, z)v(z), and lete = § dist(supp g, R \ D), so that supp

g € (—a+4e,a—4€). When z > ¢, then |I(x,2)| < 4 ||@llor) 191l r)- Suppose
that z € (0,€). If x € (—a + 3¢,a — 3¢€), then I(x,z) = 0. Otherwise, by first-order

Taylor’s expansion of I(x, z) around z = 0 (note that I(x,0) = a% I1(x,0) = 0) with the
remainder in the integral form, we obtain that

3z 62
1(x,2)| < f (5-)5y 10os)ds

< 22 (N1@llo@ 19" Iy + 10" o0 ((—a+2e,a-26)) 191l2R))
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(recall that @"' is bounded in (—a + 2 ¢€,a — 2¢€)). We conclude that |I(x,z)v(z)| <
C.(D,9) mm(l,zz)v(z), which implies joint integrability of I(x, z)v(z). Our claim is
proved.

It remains to verify that ¢ € D(E), that is, (1 + Y((€ + €)H))IFP(E +e)|* is
integrable. Let f(x) = qla—€ — x)F 55 (x), so that ¢(x) = f(a—€ + x) —
(=D™*f(a—€ — x) (see (79)). It suffices to prove integrability of (1 + Y((&+
ONNFF(E +e)*.

Fix e > 0 and let G(x) = q(a—e€ — x)e®*. Since the distributional derivatives
q,q' and q"’ are integrable functions, and the third distributional derivative of q(x) is a finite
signed measure on R, the function g(x) has the same property. Therefore, Fq(¢ + €) and

Fq®E +€) = —i(¢ +€)3Fq(& +¢€) are bounded functions, and so |FG(& +¢€)| <
% The Fourier transform of e~*F = (x) is equal to LF (e + i(€ + €)),
and the Fourier transform of f(x) = q(a —€ — X)F 5 (x) = §(x)e™F 3¢, (x) is

given by the convolution

1 (0]
Ff(€ +¢€) :%f_oo FG +e — s)LF e (e + is)ds.
Suppose that (§ + €) > 0. To estimate |Ff (¢ + €)], we write

1
FfE+o =5 |,

ﬁ

FGgé+e— S)L'F(ﬁ;;e)(e + is)ds

0

"o gre FA(LF ey (e + i + €= 5))ds. (94)

By Corollary (5.3.36), we have

|LF(,ITG)(E+1'S)| < 242 (e \/1,[)'((,u+e)2)((‘u+€)2 — le + is|?)

|1+ €)2 + (e +i5)?| P+ €)2) —p(le +is|?)

1
< C(e,(u+e), ll’)<1+s> m

(for the second inequality observe that the expression under the square root is bounded by a
constant when s < 2(u + €) and by ¥'((u + €)?)(1 + s2) /(¥ (s?) — P((u + €)?)) when
s > 2(u + €)). The right-hand side decreases with s > 0. Hence,
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f; FG +e€ — S)LF 5oy (e + is)ds
z
Cg(E,(lm),l/)) ®
§+e
(-9 (e n(52)
- Cs(e,(n+€),9)C(e,a—€,b—¢€)
(1+f;f)(1+¢(<f+e> ))
8C3(€ (L+e€),¥)C(e,a—¢b —e) _

(I+E+a(1+y(E + e)z))2
in the last inequality we used the fact that 4y ((‘qe) ) > P ((¢ + €)?) and that the integral
Is bounded by 1. The estimate of the other integral in (94) is simpler: |LF 7y (€ + is)| <
Ci(e,(u+¢€)) forall s € R, and hence

U’”E Tq(s)LF(lT;E)(e +i(é+e— s))ds < C4(e, (;m)) J&E |FG(s)|ds
2 C4(e (L+e€)C(e,a—€b—¢€) ’

2(1+559)

<

|FG(& +€—s)|ds

1
J+€ (1+I€+6—S|)3

Therefore, for £ + € > 0,

— 1
|IFF(E+e)| < Cs(e,a—e,b—e,(u+e))(

A+1E+eD(1+yY((E+6)?))

1/2

1
Tae |€+6I)2> |
Since Ff(—(§+¢€)) =Ff(&+¢€), the above estimate extends to all (¢ +¢€) € R. We
conclude that for all (¢ + €) € R,

(1+9(E +M)IFfE + o) 2
 \2 1 1+yY((E+¢€))
< Z(Cs(e,a €, b 6,(,u+6))) <(1+ F T eD? + A+ te)? >,
and the right-hand side is integrable because (1+ |€+€e)72(1 + Y ((§ +¢€)?)) is
bounded.
Corollary (5.3.39)[274]: If Y is unbounded, then forn > 2,
Cla—¢€,b—¢€1)

”AD(ﬁn - (m)nfﬁn”Lz(D) < n )

and
20(a —€) _ 36(a —€)
(@-6) — == < gl < (a-€) + 72—
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Proof. By [112],

cos Uy4e oy COSUyye Y'((u+€)?) 1
= = — = — < .
huve = LOue(0) == ™ — LR (00 == 20 purod Supre O

Furthermore, by complete monotonicity,

x x 1
Iu+e = jo Gu+e(z)dz = Jo (G,u+e(x) - G;,i+e(x)(x - Z) + EG,LIL+E(X)('X - Z)2> dz

1., 1 ..,
= xGyie(x) — Ex Gure(x) + gx Gu+e(x)f

so that

< ! < _ I < -
Gu+e(x) —= (,ll + G)X ’ GM+E(X) —= (,Ll + E)XZ ) Gu+€(x) — (‘u + E)XS '
By Corollary (5.3.37), foru + € = (u + ¢€),
C(¥, x)

¢((H+6)2)G re(x) = e

forn > 2. The result follows from Lemmas (5.3.18)

(n-1m
2(a—e€) 4(a €)

Finally, (u + €),, =

and (5.3.19).
Corollary (5.3.40)[274]: Suppose that EJ}im (6 +e)yY'(E+€) = oo. For n larger than
€—00

some (integer) constant C(a — €, b — €,y) the numbers k(n) are distinct. Moreover, for any
e > 0, for n larger than some (integer) constant C(a — €, b — €,, €),

Y((@Fn —€))< A+ w < ¥ (T +€)). (96)
Proof. Lete € (o,ﬁ). For some (¢ 4+ €),, € (U + )y, (U F €), + €),

Y((Fon +€)) = w((F ) = 26(§ + ' (€ + D).
Since (¢ 4+ €), < + e <=, it follows that

2(a — )€ + )y’ (€ + )n)

2(a—e)
v(EFon +¢)) - w(ro) = —
Since (& + €),, > (z’z 1)’)’ we have lim (£ + €)21'((§ + €)2) = oo, and so, by Corollary

(5.3.22), for n greater than some constant Cla—e€,b—¢€1,6),
Y(UF O+ €)) = YUFOD > [AF O — (A+ ).
Since ¥ Is concave,
YT R) - ((@Fon — )z p((F e+ )) - pwFo3)
Finally, (1 + €),, = ¥((u + €)2). This proves (96).
Observe that, by Corollary (5.3.35),

P —_ T
(@a—e)(+6ny —(@—)+e), = 5> taren ~ Yaronm

T —_
> E - (,llT )n ((.u €)n+1 - (.u + E)n)
Lm_sbla-¢g n 1+ €
25" = Dn (U + np1 — (L)),
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— — T 6 -1 T .
sothat (u+€)psy — (U+€), = a0 (1 + (n_l)n) = o) for n > 3. The first
statement of the lemma follows hence from (96) with € = 5o
Corollary (5.3.41)[274]: Suppose that flim (E+e)y'(E+e€) = oo. Then k(n) = n

E— 0O

for infinitely many n.
Proof. By Corollary (5.3.40),

— [ 2
A+ km = ¥ (((H +€), — m) )
for n large enough. On the other hand, by (69),

(n—Dm
A+6E)p-1 =Y (2(a—_6)>

3T T

foralln > 1. Finally, by Corollary (5.3.34) and Corollary (5.3.35), V7o), < < T for
infinitely many n, and hence
T T _nm 1 9 s
(f+€n 16(a—€) 2(a—€) a—€ Hn  16(a—¢)
S nm ( 3m N is ) is B (n—Dm
2(a—€) \8(a—¢€) 16(a—¥¢€) 16(a—€) 2(a—¢€)

for infinitely many n.
Corollary (5.3.42)[274]: Suppose that elim (§ +e)yY'(€ + €) = oo. Forn greater than
€—00

some constant C(a — €, b — €,¥) we have k(n) = n.
Proof. Lete = 6(:_6) and let N be the constant C(a — €,b — €,1, €) in Corollary (5.3.40).

Define ] = {k(n): n > N}andletJ = {j = 1: j ¢ J}. We claim that it suffices to
show that |J'| < N. Indeed, there is ny > N such that (ny) =1 + maxJ', and k(n) is
strictly increasing for n > N. It follows that k(n) = k(ny) + n — noforn > n,. If
IJ'l < N, then k(ny) = |J'| + (np —N) < ny, so that k(n) < n forn > n,. Since
k(n) = ninfinitely many times by Corollary (5.3.41), necessarily k(n) = nforn > n,,
as desired.

Let € > —1. By the assumption, Y(& +¢€) = 1%5 log&+e—C(1+¢€) for some

constant C(1 + €), and therefore exp(—(1 + e)yY((€ + €)?)) is integrable. Therefore,
T(1+ €; x) is bounded in x € R. In particular, T, (1 + €; x,°) is in L?(D), and so, by
Parseval’s identity,

a—e a—e 2
f f (TD(l +€; x, y)) dydx
—(a—-€) Y-(a-e)

a—e *® a—e 2
=f Z (f Tro(1+ 6 x,y)@; (y)dy> dx
~(a—¢) &4 —€)

_(a
(0] (00)

a—e ,
= f( | Z e—2(A+6)j(1+e) (goj (x)) dx = z e 2(A+e)j(1+e)
—(a—e

j=1 j=1
On the other hand, by Plancherel’s identity,
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a—e a—e ['e]
j j (T (1 + € x,y))zdydx < 2(a—¢) j (Tl+e€ x — y))zdy
—(a-€) Y—(a—¢€) — 00

= M j- e—2(1+)Y((§+6)?) d(¢ + €).
T 0

It follows that for all e > —1,

(0]

z e~ (Ate)j(1+e) SMJ. e~ (1+OP((E+)?) d(& + €). (97)
. n 0
Jj=1
Observe that
Z e—()l+e)j(1+6) — z e—(l+6)k(n)(1+e) > Z e—z/)(((ﬁ-ré)n+e)2)(1+e)
n=N+1

jel n=

N
['e] 2
> z e ¢<<2<27—TE>+6) >(1+€).
n=N
nm (n+3)m

2(a—¢€) te= 2(a—¢€)

E+E)n+1 ,
f e~ (HVE+OT) q(& + €)
(

§+€)n
< j 1 n <(§ t O ) _rapieron
(E+E)n €+ —(E+e)3
C+E)" = C+n _qsom(Erorn)
Cronm —Gron’ )d(“e)
26+ — GG +Dnn — GO ioyenon
3(+E)n+ (€ +6E)ns1)
E+nr1 + E+ O+ i1 = 26+ D0 _ip(erony)

3(E+6)n + €+ E)ns1)

__T (3" T3 p-arouron 4T 2
2(a—€) \6bn + 5 6n + 5

Denote (§ + €),, = . Since e~(1+€)¥() js concave in z > 0,

e—(1+e)w((f+e>%+1))_

Hence,
2(a—¢€) (*

- e~ (1+OP(E+e?) q(& + ¢)

(f"‘f)zvoo

< Z (3" T3 —arou@ran 4 Mt 2 e‘<1+6>"’((5+6)%+1)>
- 6n + 5 6n + 5

n=N

3N + 3
< -
~ 6N + 5
3N + 3
<
~ 6N + 5

o~ rOU(E+od) 4 z o~ (LHOP(E+OD)
n=N+1
o~ (1+OY(E+e}) _|_Z o—(1+)(A+e);

JjeJ
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3n+2 . 3(n+1)+3

(the second inequality is a consequence of + < 1, while the last one follows
n+5  6(n+1)+5

from (A + €)rmy < W((U+€)n + 6) ) < Y((§ +e)p) forn > N). By (97),
2 o-Oreare) L 20 7€) f i e~ (+OW(E+O?) (£ 4 €) _z p—(A+)j(1+€)
jeJ' jeJ
< 2@a-¢ f(HE)N e~ (1+OP(E+0N g (£ 4 ¢)

+ 3N + 3 e~ (1+Ov(E+oR)
6N + 5
Passing to a limitas e — —1, we obtain
||<(—) N 3N+3_ +1+3N+3<N+1
J S v T VI

This shows that |]| < N, as desired.
Corollary (5.3.43)[274]: If y is a complete Bernstein function and §.|l.im E+ey'(E+
€E— 00

€) = oo, then
A+e), =P((u+e2)+ 0 (%) as n - oo, (98)
In many cases, (u + €),, can be approximated with more explicit expressions, at the

price of a weaker estimate of the error term. We provide two examples [225].
Proof. By Corollary (5.3.42), k(n) = n for n large enough. Hence, by Corollary (5.3.22),

— 1 — 1
A+¢e), = (1A+e), + 0 (;) =yP((u+e)?) + 0(5)'
Corollary (5.3.44)[274]: (See [97] and [236].) Suppose that SCiiergoo(f + e)Y'(¢ + €) = oo,

With the appropriate choice of the signs of ¢,, and with
Bn = ”(ﬁn“LZ(D)
we have 8, = Vva—¢€ + 0(%) asn — oo,and

1
@n — Bn <pn”L2(D) =0 >2>

azs) ¥ (e

Proof. By Corollary (5.3.39), indeed 5,, = va—€¢ + 0 (%) Let ay, j = (P, ©;)12(p)s SO
that @, = ¥72; ap j; in L?(D). We choose the sign of ¢, so that a;,,, = 0. We have
”(;bn - :Bn(pn”Lz(D) =< ”(ﬁn - an,n¢nl|L2(D) + |an,n - IBnl
= ”(ﬁn - an,n(pn”LZ(D) + |||an,n§0n||Lz(D) - ||§5n”L2(D)|
< 2 ”(ﬁn - an,n<pn”L2(D)-
As in the proof of Corollary (5.3.40), for n larger than some constant, if j # nand =
, then

asn — oo,

A

8(a—e)
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A+ €);— A+ ) 2 2 2
> max (Y(((LF Oner —€) ) =P F )n +€))Y((EF )n —€))
~P(UF Ons +€))

m—-Dr (((n+Dn ? T
=2 2(a—¢€) v (<Z(a— e)) > . (2(a— €) B 26)

- 1 nm , nm 2
= ¢ 2(a—¢) v ((Z(a — e)) )
Therefore,

~ 2 2
|80 = tnntnllry =D letnsl

j#EN

C —
< 1 2) > (@t - AT en)

—2(;71 a ¥ ((2(;”1 e)> J=n
C1

nrm

nm d,’ (Ta—e)
2(a—¢€)

C,(a—€,b—€1)

S 2 2\ ’
(=) v (=)

again by Corollary (5.3.39).
Corollary (5.3.45)[274]: (See [97] and [236].) Suppose that EJ}im E+ey'(E+e
E—0CO

oo, With the appropriate choice of the signs of ¢,, and with

2 ”Angn - (m)n(ﬁnuzz
) ) L*(D)

(—1)(m-1/2 cos((u+ €)nx) when n is odd,
fu(x) = -
(—1)™/? \/;7 sin((u + €)nx) when n is even,
a—e
we have

1

1o = @nllizpy = O = +
\/ﬁ 2 . 2
(za=a) ¥ ((_2(; =) )
Proof. Clearly,

asn — oo,

1/ = @ullizy
= ||/ —; - P = Bnenll
> —— - 2
n m‘pn LZ(D) m Pn n®Pn L“(D)
Bn
A gl
m ||§0n||L2(D)
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1

nm \2 I} niw
(Z(a——e)) 1/) ((z(a—e)
definition (79) of @,, and the properties of g(x) and F,,.(x),

2
|| vVa — Efn - (pnlllfe(D)

= q(—x)G 7o), (@ — € + x)
—(a-e€)

The middle summand is O ( )2)> while the last one is O (%) Finally, by the

_ (—1)nq(x)G(ﬁr€)n(a —€ — x))2 dx < 4JOOO (G(ﬁ—e)n(s))2 ds

< 46 75, (0) JO G (i7e),(8)ds = 4G i5g), (0)LG ), (0).

. 1
Since G,1¢(0) = cos 934 < 1and LG4 (0) = [,4¢ < s (see (95)), we have

~ 1
V&= fu = @ullry = 0(5)
Corollary (5.3.46)[274]: (See [97] and [236].) Suppose that if (§ +€), > (§+€); > 1,

then

P((§ +€)y) E+6)\
PG oy - ((E+6)1> )
for some M,e > 0. Suppose in addition that
lglﬂlrg &+ E)%llil(f +¢€)> 0. (100)

Then ¢, (x) are bounded uniformlyinn > 1andx € (—(a —¢€),(a — €)).

Condition (99) is known under various names, including weak lower scaling
condition and subregularity; such a function y is also said to have positive lower
Matuszewska index. We remark that although (100) does not imply (99), examples of
complete Bernstein functions which satisfy (100), but not (99), are rather artificial [225].
Proof. Observe that (¢ + €)Y’ (¢ + €) diverges to oo as ¢ + € — oo, and therefore main
results of the present article apply. Furthermore, by (99), we have T(1—¢,0) <

o)) /1/)—1 (1—;) for e > 0, see, for example, [206]. We have

||<Pn||L°°(D) = e()l-hg)"(l_'g)||TD(1 - 6)‘Pn||L°°(D)
1
=< e(l+e)n(1—e) TD(1 - E) (‘pn - ,3_ @n)
n

L* (D)

1
+ @A Ty (1 = Ognllimeoy

n

Since |, (x)| < 2, the latter term in the right-hand side does not exceed Bi e(A+em(1=6)

For the former one, observe that ITo(1—e)f(x)| < |[Tp(1—
&, %, )M zioy If 20y, To(1 — €,x,¥) < T(1—¢€,x — y), and, by Plancherel’s theorem,

1 ® 2
IT(1 - E")”iZ(R) — ﬂj (e—(l—e)w((€+e)2) ) d( +¢€) = T(2(1 —¢),0).
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Finally, T(2(1 —€),0) < 61(1/))\/1/)—1(1/(2(1 —e))) < C;(Y) /1/)—1 (1—;) when € >

. 1
0. Therefore, with1 — e = oL

2
@nllioy < ﬂi (@) 2 (W A+ ) 1Bagn — Bullzy + =

2
In the right-hand side, B, = 0(1), v " 1((A +¢€),) < (Z(Zfe)) (by (69)), and, by
Corollary (5.3.39),

( 1 \

| Bron — an”Lz(D) =0 |

=) v (e2=5)))

Corollary (5.3.47)[274]: Let f be a complete Bernstein function with representation (64).
Let g be a holomorphic functionin{w € C: |[Argw]| < C;} (with0 < C; < %) such

that g(x) is real for x > 0, and let h be a continuous function on (0, o). Denote
G(y)= sup [g(2)l H(y) = sup |h(x)|

y/4<|z|s4y V/4<x<4y
| Arg z|<Cq

and suppose that

GOOH®) < Cmin(xLx72), G = j A + YCOH)dy <
0
forx > 0. Then

j g()h(x)m(dx) = lim 1 foo Im (f(—e‘iex)g(e‘iex)) h(x)dx (101)
(0,00) -0 0

[
= lim 1 Im(f(—e‘ifx)) (x)h(x)dx (102)
e->0t 1 J, g .
Proof. Letx > 0,0 < € <161 andy > 0, and denote for simplicity § + € = —e~*x .
2

By the representation (64) of the complete Bernstein function f and Fubini, we have

| m(r + O9(=( + n)htardx
= cf Im((f +e)g(—(&+ e)))h(x)dx

+ f Im(g(—(f + e)))h(x)dx

+1j j m& +e)g(=(§ +¢€)) h(x)dxm(dZ)
T Jo,0) Jo $+e+3 z
(an estimate which allows us to use Fubini is shown below). Our goal is to provide estimates
for the integrands and find their pointwise limits as e — 0% in order to apply dominated
convergence.

For the first integral in the right-hand side of (103), we simply use |(§ + €)g(—(& +
e)Nh(x)| < xG(x)H(x), integrability of xG(x)H(x) and Im((¢ + €)g(—(¢ +€))) = 0
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ase — 0*.Bydominated convergence, the limitase — 07 of the first integral in the right-
hand side of (103) is zero. Similarly, |g(—(¢ +€))h(¢é +€)| < G(x)H(x),G(x)H(x) is
integrable and Im(g(—(¢ + €))) » 0ase — 0F, and so also the second integral in the
right-hand side of (103) converges to zero as e — 0% [225].

To estimate the last integral in the right-hand side of (103), we consider separately

two cases. When x < yorx > 2y, we have

- g€+ )| S e 96 S 6

St+ety
< 3min(L,xy HG(x) < 3min(L,y H(1 + x)G(x),
so that by dominated convergence,

y/2 00
(j +f )hn(—f+ e (€+6))> h(x)
0 2y

E+e +
. S {+e _
Ell,%l+ <jo + Ly )Im <€+—+ g(—(& + e))) h(x)dx = 0. (104)

When % < x < 2y, we need a more careful estimate. Observe that
C+e)g=C+e) ygiy) - C+e)Ng(=C+e)  ygly)

tety y = (G +e) {t+e+y
The estimate for g and Cauchy’s integral formula for g’ easily give

) l9'(@)| < Coy™'G(y)
in{z € C: |Arg 3| <s;CLy/2 < |3 < 2y}, with €, = 4C?! . By the mean value
theorem,

dx < 3C;min(1,y™1),

yg(y) — (=€ +e)g(—(E +e) 1
‘ y = G +e) = G 6D)

when% < x < 2y, and therefore, by dominated convergence,

jzy I (yg(y)—( (§+e)g(—(§+ ))) hGO
/2 y — (=€ +e)
< 2626'4 min(1,y™1),
2y yg») — (= +€)g(—=(¢ +¢)) B
fy/z Im ( = (=G + ) )h(x)dx = 0. (105)

Finally, if P, .(s) and Q,,.(s) denote the (classical) Poisson and conjugate Poisson kernels
for the half-plane, then

m (- ﬁ)

= 1 coS(6)Py sinc(x — ycose) + msin(e)Qysine(x — ycose).
Clearly, Py sin «(x — ¥y cos €)1(y/2,2,)(x)dx converges weakly to §,, (x), and therefore

3
dx < §C4y‘1G (WH)

lim
e—~0t

2y
f |t cos(€)Py sin e(x — y cos €)yg(y)h(x)|dx < myg(y)H(y) < C,mmin(1,y™b),
y/2
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2y
Jim, j 1 c05(€)Py sine(x — ¥ cos €)yg(y)h(x)dx = myg(y)h(y).
y/2

Furthermore, |(1 + €)Q1,(s)| < % and (14 €)Qq4¢(s) = 0 as e » —1, and hence, by
dominated convergence,

2y 3 3
j | sin(€)Qy sin e (x — y cos €)yg(y)h(x)|dx < S YIMHG) <56 min(1,y~1),
/2

2y
lir(l)’l+ 7 Sin(€)Qy sine(x — y cos €)yg(y)h(x)dx = 0.
€ /2
We have thus proved that
2y
y9(y) 3\ . _
I ———— | h dx <C ( —) 1,y 1),
jyz m<€+e+y> (x)| dx 2n+2 min(1,y™")
2y
. yg () B
I ) Im( req y) h()dx = myg(h). (106)

Due to estimates (104), (105) and (106), as well as the integrability condition on m, indeed
we could use Fubini in (103). The same estimates allow us to use dominated convergence
in the limitas e — 0*. We conclude that

lim [ mGE+Og-E+oh@dr = [ [ guheIm@.
0 (0,0) YO

This proves the first equality in (101). The other one follows by replacing the pair g(z), h(x)
with 1 and g(x)h(x).
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Chapter 6
Normalized Incidence Energy and Coulson-Type Integral Formulas

We find some upper and lower bounds and determine the Coulson integral formula
for NIE(G). Based on the integral formula, we give a way to compare the normalized
incidence energies. We show a relation between normalized incidence energy and Randi’c
energy. We give a Coulson-type integral formula for the general Laplacian-energy-like

invariant for a = % with p € Z*\{1}. This implies integral formulas for the Laplacian-

energy-like invariant, the normalized incidence energy and the Laplacian incidence energy
of graphs. We further give some Coulson-type integral formulas for the general energy and
general Laplacian energy of graphs in the case that a is a rational number. We also show
that our formulas hold when « is an irrational number with 0 < |a| < 1 and do not hold
with |a| > 1.
Section (6.1): Incidence Energy of a Graph

Let G be a simple graph on n vertices and let v, v,,...,v, be its vertices. The
eigenvalues of G are the eigenvalues of its adjacency matrix A(G) [124]. These eigenvalues,
arranged in a non-increasing order, are denoted as 1, (G), 1,(G), ..., A,(G). Then the energy
of the graph G is defined as

n
E@) =) (@),
k=1

This concept was proposed by Gutman [125]. Research on graph energy is nowadays very
active in mathematical chemistry, as seen from [243], [249]-[251], [253], and [254].
We use d§ to denote the degree of a vertex v, in G, and D(G) to denote the diagonal matrix
of order n whose (k, k)-entry is d$ . If there is only one graph in question, we simply write
d, and D. The normalized Laplacian matrix of a graph G, denoted by L(G) or L, is defined
to be the matrix with entries

1 ifi = jandd; # 0;

- 1

L(i,j) =1 — — if v; and v; are adjacent in G;
i%j
0 otherwise.

It is well known that 0 is an eigenvalue of L and that the remaining eigenvalues lie in the
interval [0,2] (see [245]).
Let A be the adjacency matrix of G. The Randi’c matrix of G, denoted by A(G) or 4,

is the square matrix of order n whose (i, j)-entry is equal to —_if v; and v; are adjacent

did;
in G, and zero otherwise.
Let D~1/2 is the matrix with entries
. . _1 2 . . _ . _ .
D2, j) Z{D(l,j) / ifi = jandd; = 0;
0 otherwise.

Then A = D=Y24AD~1/2, The Randic matrix appeared in [242], [259].
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Let D be the square matrix of order n where (i, j)-entry is equal to 1 if i = j and d; # 0,

and is equal to 0 otherwise. Then it follows that L = D — A. We unit matrix of order n is
denoted by I or I,. If G has no isolated vertices, then

L=1-A (1)
If M is a real symmetric matrix of order n, we denote the eigenvalues of M (or M-
eigenvalues) by 4, (M), A,(M),...,A,,(M). If G is a graph of order n and M is a real

symmetric matrix associated with G, then the M-energy of G is
n

Eu(©) =)

k=1
where tr(M) is the trace of M (see [246]).
Let G be a graph of order n. The Randi’c energy RE(G) of G, is defined as RE(G) =
k=1 |A(A).
For a graph G of order n with no isolated vertices, Caversetal. [244] introduced the
normalized Laplacian energy E; (G) of G by (2), i.e.,
n

Ei(6) = ) 14@©@) - 1]
k=1
Then it can be verified that E; (G) = RE(G) for a graph G with no isolated vertices.
The normalized signless Laplacian matrix of a graph G, denoted by L + (G) or L*, is defined
to be the matrix with entries

tr(M)
n

A (M) — : (2)

(1 ifi = jandd; # 0;
L*@i,j) = if v; and v; are adjacent in G;
d;d;
0 otherwise.

Then

It =D + A

Specially for a graph with no isolated vertices, we have

I* =1+ A (3)

Let G be a graph of order n with no isolated vertices. With M taken to be L* in (2), the
normalized signless Laplacian energy NSE (G) of G is defined as
n

NSE(G) = ) 12(@*(6) — 1
k=1
By (1) and (3), we have RE(G) = E;(G) = NSE(G) if G has no isolated vertices.
The concept of graph energy was extended to any matrix by Nikiforov in the following
manner. The singular values of a real n X m matrix M, denoted by
o, (M), a,(M),...,q,(M), are the square roots of the eigenvalues of the square matrix MM*
, where M® denotes the transpose of M. The energy £(M) of the matrix M is then defined as

the sum of its singular values [257]
n

EM) =) ().
Obviously, E(G) = £(A(G)). !



For a graph G with vertex set {v;, v,,...,v,} and edge set {e,, e,, ..., e, }, the (vertex-edge)
incidence matrix of G, denoted by I(G), is defined to be the n X m matrix with entries

16) (i, ]) = { 1 if v; is incident w1‘Fh ej;
o _ 0 _ otherwise. o
The incidence matrix should not be confused with the unit matrix of order p, which is
denoted by I or I,. The normalized incidence matrix of G is I(G) = D~?I(G). Then
[(OIG):=D+A=L"
The energy for the incidence matrix was introduced by [248], [252]. Now we discuss the
energy for the normalized incidence matrix.

For a graph G of order n, the normalized incidence energy NIE(G) is defined as NIE(G) =
E(I(G)). If G is an empty graph, i.e., G contains no edges, then we define NIE(G) = 0.

Therefore we have NIE(G) =Y, 0,(I(6)) =X, VAL (6)).

E(G) has the following basic properties.

(@) E(G) = 0; equality is attained if and only if G is an empty graph.

(b) If the graph G consists of connected components G, and G,, then E(G) = E(G,) +
E(G,).

(c) If one connected component of the graph G is G, and all other connected components
are isolated vertices, then E(G) = E(G,).

We will discuss some properties of NIE(G) and give some bounds for NIE(G). We
will determine the Coulson integral formula for NIE(G). A relation between NIE(G) and
Randi"c energy will be shown.

We first present some properties of NIE (G) which are analogous to the properties (a),
(b) and (c) of E(G).

(@) NIE(G) = 0; equality is attained if and only if G is an empty graph.
(b) If the graph G consists of connected components G; and G,, then NIE(G) =
NIE(G,) + NIE(G,).
(c) If one component of the graph G is G, and all other components are isolated vertices,
then NIE(G) = NIE(G,).
If a connected component of the graph G contains at least one edge, then the connected
component is said to be nontrivial. We denote by d(G) the diameter of a connected graph
G. If G contains only one vertex, then we define d(G) = 0. We use K,, for the complete
graph on n vertices. For a graph G, G denotes the complement of G.
From (1) and (3), if G has no isolated vertices, then

It + L = 2L (4)
From some properties for the normalized Laplacian matrix in [245], we obtain their
corresponding results for the normalized signless Laplacian matrix by (4). We state them as
follows.
Lemma (6.1.1)[240]: Suppose the n-vertex graph G has no isolated vertices and p connected
components. If the eigenvalues of L*(G) are ordered and denoted by uf > ud >--- ut |
thenpf =--= pf = 2and p;,, < 2.
LLemma (6.1.2)[240]: Suppose G is a graph. If u* is an eigenvalues of L*(G), then u* > 0.
Lemma (6.1.3)[240]: Suppose the n-vertex connected graph G is not a complete graph. If
the eigenvalues of L* (G) are ordered and denoted by uf > uf > > pub , thenuf > 1.
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Lemma (6.1.4)[240]: Let G be a connected graph with diameter d and s distinct L*-
eigenvalues. Thend < s — 1.

Thus by Lemma (6.1.1), we have

Lemma (6.1.5)[240]: Suppose the n-vertex graph G has p nontrivial connected components
where p > 1. If the eigenvalues of L*(G) are ordered and denoted by pf > puf >--- > u}
thenpf =--- = b = 2and g, < 2.

Lemma (6.1.6)[240]: Let G be a graph with s distinct L*-eigenvalues. Then d < s — 1,
where d = max{d(G*) : G is aconnected component of G}.

Proof. Suppose G, is a connected component of G such that d(G,;) = d. Let s; be the
number of the distinct eigenvalues of L*(G,). Thend <s; — 1 by Lemma (6.1.4). Since
s; < s, the result follows.

The following result is immediate.

LLemma (6.1.7)[240]: If the connected graph G has exactly two distinct L*-eigenvalues, then
the diameter of G is 1, i.e., G is complete.

We present an upper bound for NIE(G).

Theorem (6.1.8)[240]: Suppose G has n vertices, p nontrivial connected components, and
t isolated vertices where p > 1. Then

NIE(G)<V2p +/(n — t — p)(n — t — 2p)
with equality holding if and only if G is pK, U K, where r = nT_t.

Proof. Suppose the eigenvalues of L* (G) are ordered and denoted by uf > pf > - > put .
Thenw)_,,; == ut = 0by the fact that G has ¢t isolated vertices. By Lemma (6.1.5),

we have NIE(G) = \2p + ﬁ;f,ﬂ VUi - By the Cauchy—Schwarz inequality,

n-—t

NIE(G) <V2p+ |[(n—t—p) Z ur =2p + \/(n —t—p)(tr(L*) — 2p)
k=p+1
=V2p + J(n —t — p)(n — t — 2p)
with equality holding if and only if yu; = u, == u, = 2,44y == pp_ and
Hn-t+1 == U = 0.
SUppose py = Hp == [y = 2,fpyq == Up_p AN pp_¢yq == p, = 0. Then

for every nontrivial connected component G',L*(G") has exactly two distinct eigenvalues.
A connected graph has exactly two distinct normalized signless Laplacian eigenvalues if
and only if its diameter is equal to unity, i.e., it is a complete graph. Therefore the graph G
must consist of connected components that are mutually isomorphic complete graphs (say,
of order r) and t isolated vertices. Thusrp +t = nandthen = "T_t . Therefore G is pK, U

— ~t
K, where ==

p
Corollary (6.1.9)[240]: If the connected graph G has n vertices where n > 2, then

NIE(G) < V2 + \/(n — 1)(n — 2) with equality holding if and only if G is the complete
graph K,,.
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Theorem (6.1.10)[240]: Let G be a connected graph on n vertices where n > 2. If G is not
a complete graph, then NIE(G) <1++v2+/(n — 2)(n — 3) with equality holding if
and only if G is a graph with L*-eigenvalues 2, 1,2—:2 % (n — 2’s "—_3)

Proof: Suppose the eigenvalues of L*(G), arranged in a non-increasing order, are
ufuy,...,ut . Then uf = 2 from Lemma (6.1.5). By the Cauchy-Schwarz inequality,

; it = (n—Z)ng i= o - 2 -2 - )

with equality holding if and only if 3 =---= ut.

Let f(x) = V& + /(n — 2)(n — 2 — x). Then f'(x) = = —Zjn% and thus £ (x)

decreases with x > 1.
By Lemma (6.1.3), we have

NIE(G):\/E+\/E+§: \/Es \/§+u;+\/(n—2)(n—2—y;)
k=3

<V2+ 1+ J(n-2)n-3)
with equality holding if and only if u = 1and u3 =---= u;} . Then the equality holds if
and only if the L*-eigenvalues of G are 2, 1,:—j :—j (n — 2’s "—_3)
Next we give some lower bounds for NIE(G).
Theorem (6.1.11)[240]: Let G be a graph on n vertices. Then NIE(G)vn — t where t is

the number of isolated vertices in G, and equality holds if and only if G isK,, or K, U K,,_,.
Proof: Let the eigenvalues of L*(G) be uf ,u3 ,..., 1 . Then

and equality holds if and only if G has at most one positive L*-eigenvalue if and only if G
isK,orkK, U K,_,.

As a corollary, we have

Corollary (6.1.12)[240]: Let G be a graph of order n with no isolated vertices. Then
NIE(G) = +/n, with equality if and only if G is K.

Let a,y,a,,...,as be positive integers. By Holder’s inequality, we obtain

S S s 1/3
Z a; =z ai2/3ai1/3ﬁ<z af)

2/3

e

i=1 i=1 i=1 i=1
and hence
S S 3
1/2 (Zi=1 al-)
2wz [ ®)
i=1 i=1 i
with equality ifand only if a;, = a, == a;.



Let G be a graph of order n with no isolated vertices. The general Randi"c index R, (G) is

defined as
Ro(G) = ) (did))” (6)
Vi~Vj
where the summation is over all (unordered) edges v;v; in G, and a # 0 is a fixed real
number. In 1975, Randi’c [258] introduced a topological index R (with = —%) under the

name ‘branching index’. In 1998, BollobKas and ErdRos [241] generalized this index by
replacing the %with any real number R, (G) (as defined in (6)).

The following result is from [255].
Lemma (6.1.13)[240]: [255]. Let G be a graph of order n with no isolated vertices. Then

R_,(G) < EJ , with equality if and only if either (i) n is even and G is the disjoint union of
% paths of length 1, or (ii) n is odd and G is the disjoint union of "7_3 paths of length 1 and

one path of length 2.
Now we improve Corollary (6.1.12).
Theorem (6.1.14)[240]: Let G be a graph of order n with no isolated vertices. Then

NIE(G) = fﬁ with equality if and only if n is even and G is the disjoint union of
~ paths of length 1.
Proof: Let the eigenvalues of L*(G) be uf ,ud ..., 1 . By (5), we see that

_ C + (Z?:1 u )3

with equality if and only if all nonzero L* -eigenvalues are equal, i.e., n is even and G is the
disjoint union of g paths of length 1.

Since G contains no isolated vertices, it follows that Y-, uf = n and X, (u)?* =
tr ((E*)Z) =n+2R_;<n + 2 EJ by Lemma (6.1.13).

n3 2n3 . . . . .
Therefore (G) = ’KEJ = /m , with equality if and only if n is even and G is

the disjoint union of% paths of length 1.
Corollary (6.1.15)[240]: Let G be a graph of order n with no isolated vertices. Then (G) >
— , with equality if and only if n is even and G is the disjoint union of % paths of length 1.

>

The graph-energy concept has been extended to polynomials in [256]. Lety = ¥ (4)

be a (complex or real) monic polynomial of degree n, written in the form Y (1) = A™ +

n @Ak and let zy, z,, ..., z, beits zeros. Set [ = {z,: Rez, > 0and1 <k <

nyand[[~ = {z: Rez, < 0and 1<k <n}. Lets* (respectively s~) be the sum of

zeros of i in [+ (respectively [17), counting multiplicities. The energy E (i) of the
polynomial v, is defined as

E@W) = st — s™.
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For a matrix M, ¢ (M, A) denotes its characteristic polynomial, i.e., ¢(M, 1) = det(Al —
M). As early as in 1940, Charles Coulson [247] obtained a formula in which E(G) was
expressed in terms of the characteristic polynomial ¢ (A(G), 1):

EG) = % v.p.foo _ 9'(A>G), ix)

n X,

~ B0, ix)

where n is the order of G. In this formula v. p. f_zo F(x) dx stands for the principle value

of the respective integral, i.e., tlir+n f_tt F(x) dx. This result has been generalized in

[256].
Theorem (6.1.16)[240]: [256]. Let f be a polynomial of degree n with leading coefficient
1. Then

1 e S (ix)
E(f) = v.p.j_oo [n — lx(f(ix)

For the normalized incidence energy of a graph G, we have
Theorem (6.1.17)[240]: Let G be a graph of order n. Then

1 +oo
NIE(G) = o= v.p.j

where f(x) = ¢(L*(G),x?).

Proof: Let ui,ud,...,u; be the eigenvalues of L*(G). Then the zeros of f(x) are
+Juf £ Jud,.. £ . Hence E(f) = 23, Juf = 2NIE(G), and thus
NIE(G) = % E(f). The result follows from Theorem (6.1.16).

Corollary (6.1.18)[240]: Let G be a graph of order n. Then

dx.

£
F@0)

2n — ix ( dx,

NIE(G) = - f s UG 7
= — n-—i - X,

R T Jo f(ix)

where f(x) = ¢(LT(G), x?).

Proof: It follows from the fact that g(x) = 2n — ix% is an even function.

The Coulson integral formula gives us a new way to obtain the normalized incidence energy
of a graph G. For example, take G = K; ,,_4, a tree on n vertices with one vertex having
degreen — 1.

Then  ¢(Lr(Kyp_1),x) = x(x — 1) 2(x — 2). Therefore f(x) = x3(x? —

)" 2(x? — 2), and thus 2n — ix 22 =222 4 2 S0 NIE(Kypoy) = n — 2 +

f(ix) x2+1 x2+
V2.

Now we present another way to write the Coulson integral formula and use it to compare
the normalized incidence energies.

The characteristic polynomial of L*(G) can be written in the coefficient form as
S(LH(6), ) =Ty (~1Fb(GIA ¥, 0r p(L*(6), 1) =Zpoy (—1)*beA™7*. We see
that by, = 1. By Lemma (6.1.2), b;, = 0.

Theorem (6.1.19)[240]: Let G be a graph of order n and let the characteristic polynomial
of L* (G) be of the form ¥%_, (—1)*b, A""*. Then
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1 (*® - dx
NIE(G)=;j In Z by x %k el
0

Proof: Set x = % in (7), and it follows that

P (L
1 [+ 1\3) |d
NIE(G)=EJ om — = (ly) =
0 y f(§) y
where f(x) = ¢(L*(6G),x?).
Integrating by parts and considering
(L
1 om0 S (i)
u =—anddv = — - - dy,
y y Yy f(L)
y

one can obtain that

we@ =2 Gl (B)) 2 [ 5 mlyenr (L)
= — — Mn —_ —_ — n —_
T\y v/, T J, y? Y g
1 [+ . d
= — j In Z bkka _:;] .
T Jo k=0 Y
We introduce a quasi-order relation here. For two n-vertex graphs G; and G,, if
bi(Gy) < by (Gy) (8)

holds for 0 < k < n, then we write G; < G,. Moreover, if at least one of the inequalities in
(8) is strict, then we write G; < G,.

From Theorem (6.1.19), we have

Corollary (6.1.20)[240]: If G, < G,, then NIE(G,) < NIE(G,). If G, < G,, then
NIE(G,) < NIE(G,).

We give a connection between the eigenvalues of Randi’c matrix and L*(G) using a
method from Zhou and Gutman [158]. The subdivision graph G of a graph G, is obtained by
inserting an additional vertex into each edge of G. If G is a graph with n vertices and m
edges, then G hasn + m vertices and 2m edges.

Theorem (6.1.21)[240]: Let G be a graph with n vertices and m edges, and let G be its
subdivision graph. Then ¢(A(G), 1) = 27"A™ "¢ (L*(G),21?).
Proof: We have ¢(A(G),A) = det[Alsm — A(G)] =det (4 ' ), where M =

-Mt ALy
1 —
=D 21(6).

It follows that
A~ 1 .
P(A(G), 1) = A "det[A%, — MM'] = A™ "det [)lzln —3 I(G)I(G)t]
= 27" A det[22%], — LT (G)] = 27"AMTp(LT(G), 242).
Corollary (6.1.22)[240]: Let G a graph with n vertices and m edges, G its subdivision graph.
If ui are the non-zero eigenvalues of the normalized signless Laplacian matrix of G, then
the spectrum of the Randi’c matrix of G consists of the number + Jui 2,k = 1,...,h,

and of n + m — 2h zeros.
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By Corollary (6.1.22), we have

NIE(G) = zh: \/:; = g (zzh: \/E) = \/; RE(G).

Corollary (6.1.23)[240]: Let G be a graph. Then NIE(G) = — RE(G).

| N

Section (6.2): General Laplacian-Energy-Like Invariant of Graphs

All graphs considered are finite and simple. See to Cvetkovi¢ et al. [124].

Let G be a graph with n vertices and m edges. The eigenvalues of the adjacency
matrix A(G) of G are said to be the eigenvalues of G and form the spectrum of G. We denote
the eigenvalues of G by A, = 4, = 1, in non-increasing order. The matrix L(G) =
D(G) — A(G) is called the Laplacian matrix of G, where D(G) = diag(dy,ds,...,d,) 1S
the diagonal matrix of vertex degrees of G. It is well known that L(G) is a positive semi-
definite symmetric matrix, and moreover 0 is the smallest eigenvalue of L(G). We denote
the eigenvalues of L(G) by u; = p, =+ > u, = 0, which are called the Laplacian
eigenvalues of G.

The energy of a graph G is defined as E(G) = Y- |A«|, which is derived from the
total m-electron energy [267]. Graph energy has been studied extensively by many
mathematicians and chemists, and there have been many results obtained on this invariant
of graphs (see [264]). In the theory of graph energy there is an important result called the
Coulson integral formula which makes it possible to calculate the energy of a graph without
knowing its spectrum. For a graph G, its Coulson integral formula is

+00
1 ixpa(G,ix)
5@ =5 | [” PaG i) |

where ¢4(G, x) is the characteristic polynomial of A(G) (called the  characteristic
polynomial of G).

This formula was obtained by Coulson [247], and has many applications in the theory of
graph energy (see [264]).

For a graph G, since y;, = 0fork = 1,2,...,n, it would be trivial to define its Laplacian
energy as Yp—q |kl = Xr=1 Ux = 2m. Gutman and Zhou [129] defined the Laplacian
energy of a graph G as

LEG) —Z|uk——|

Later, Liu and Liu [121] introduced the LapIaC|an energy-like invariant of G, which is
similar to the definition of the graph energy, as
n

LEL(G) = Z N

This invariant has many similar properties as the=energy of a graph. For more results on the
Laplacian-energy-like invariant, we refer the reader to the references [263], [121], [266],
[268].
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In[147], Zhou studied the sum of powers of the Laplacian eigenvalues of graphs, which can
be regarded as a generalization of the Laplacian-energy-like invariant. Here we call this
invariant the general Laplacian-energy-like invariant of graphs.

Definition (6.2.1)[260]: Let G be a graph of order n, u; = u, = -+ > u,, = Othe Laplacian
eigenvalues of G and « a real number. The general Laplacian-energy-like invariant of G,
denoted by LE L, (G), is defined as )., »o ui When iy # 0, and 0 when y; # 0.

Obviously, LEL(G) = LEL:i(G).

2

We obtain a Coulson-type integral formula for the general Laplacian-energy-like
invariant of graphs. We present a Coulson-type integral formula for the general energy of
polynomials, which is an extension of the general Laplacian- energy-like invariant of
graphs, and show that it implies two known integral formulas for the normalized incidence
energy and the Laplacian incidence energy.

We first introduce some basic concepts and results from complex analysis which will
be used later. Let D be a bounded domain. The boundary of D is denoted by aD.
The following two results in complex analysis are well known (see [262]).
Lemma (6.2.2)[260]: (Cauchy’s theorem). Let D be a bounded domain with piecewise
smooth boundary. If f(z) is analytic on D, and extends smoothly to dD, then

jf(z)dz = 0.

aD
Lemma (6.2.3)[260]: (Cauchy integral formula). Let D be a bounded domain with
piecewise smooth boundary. If f(z) is analytic on D, and extends smoothly to dD, then
1 rfE¢ )
f(z) = i ) 7=

We also need the following simple Iemmas The proofs are omitted here.
Lemma (6.2.4)[260]: Let S, bethe arc z(8) = a, + re'®,0, < 6 < 6,,wherer > 0
is a real number. If f(z) is a continuous function on the arc S, for all small r such that

rllr(r)1+9€r[2a>§ |re®®f(a, +ret?) — /1|

d¢, z € D.

then
lim jf(z)dz =i(6, — 0

r—0+

Lemma (6.2.5)[260]: Suppose that F Is a piecewise smooth curve. Iff(z)is a continuous
functionon I, then | [ f(2)dz| < [ |f(2)| - |d,|. Further, if I' has length L, and |f (2)| <
M on I, then

ff(z)dz < M L.
r
Setting f (z) = 1in Lemmas (6.2.2) and (6.2.3), we get
(2,) = 1 a¢ _{1, if z, € int(dD);
f(z0) = 2mi ) ¢ —z, 0,  if zy € ext(dD),

oD
where z, € int(dD) and z, € ext(dD) mean that z, lies in the interior of dD and in the

exterior of dD, respectively.
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Let ¢p(2) = Yr_oarz™* = ay[1k.,(z — z,) be a complex polynomial of degree n. By
direct computing, we get

n

zqs'(z):E z__ N\

Z zZ—Z zZ— Z
6 Lz-z | Lz

That is

n

26’ o %
% "‘kzlz—zk'

If z4,2,,...,2, € int(dD), then we have

1 (ch'(z) ) J z Z
2 T 2mi —
| Tl A o(2) i & z zk =0
Coulson-type integral formula for the general Laplaman energy-like invariant of graphs
Theorem (6.2.6)[260]: Let G be a graph of order n, ¢, (G, x) the characteristic polynomial
of the Laplacian matrix L(G), and @ = 1/p a number with p € Z*\{1}. Then the general

Laplacian-energy-like invariant of G can be given by the following integral formula

+o00
1 xPo; (G, —xP T
LEL,(G) =EJ <p P )+pn>-sin;dx.
0

¢L (G, _xp)

Proof: Letyu; = u, = -+ = u,, = 0 be the roots of ¢, (G, x). It is well known that if G has
¢ (< n) components, then the multiplicity of u,, = 0 is ¢, which means that y, > u, >

> Uy S Ppeeyy = = ﬂn =0.Letp,(G,2z) = ¢,(G,zP). Then we have
n—c [p—-1 1 o
0.(G,2) = (&P)° - ]_[<zp—uk> = 2. 1_[ H(z—uke )
and
n—c [p—1 n—-cb-1
zp, (G, z) cp 1 Z
=z|—+ 1 =cp+ 1
¢1(G,2) =R = p i k=1 t=0 R
- T Z— e P T z— e P
_ 1 2tn o 1 otn
n—cp-1 ,uZelT ) n—-cp-1 ,uZel p
_cp+zz %izm+ —cp+(n—c)p+zz %izm
k=1 t=0 k=1 t=0
z—pe’p z—puep

Therefore,

Let ' = [RUL, US, UL, be the positively (i.e., counterclockwise) oriented

1

piecewise smooth Jordan curve (see Fig. (1)), where R > max{,ul, yf},o <r<
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1
min{#fl_c;un—c};ﬂe is the contour {2(9) = Reie,—gse s%, Lyis the line

{2(0) =pel? , r<p<R, 0= —} S, is the curve {2(9) e'? ,—% <6< g} ,and L,
1 1 1
is the line {z(8) = pe? ,r <p <R,0 = ——} Then the points uf, u?, ..., u5__ are all in
1 2t 1 2t 1 j2tm
the interior of the contour I', and the points 0, ufe P ,,u’z’e P, U _.e P, t=

1,2,...,p — 1, are all in the exterior of the contour I'. It follows from Lemmas (6.2.2) and
(6.2.3) that

Y .

Fig. (1)[260]: The contour I" in Theorem (6.2.6).

n—-cp-1 % 2L n—c %
1 zp; (G, z) 1 pe P 1 Iy,
f —pn|dz=5— T 1 o dz:—,f dz
2mi 0. (G,z) 21i L 2tn 27i 1
r rk:lt:OZ_.uze D pk=1Z_#£
% n—c 1
Z Zm_[ - 1dz= ) = LEL1(G)
r 5 — ‘uz k=1 p

Since the value of the integral

Is independent of r and R, we obtain that
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2., (G, Z)
LEL,(G) _%R—"*‘OO_I‘IQOL(G 2 ]dz

:L lim f —Z(pL(G'Z)— n dz+J —zgoi(G,z)_ n|dz
2nirie | J (o (G P 0.(Gz) F
-0t |y L,

z¢1(G,z) z91(G,z)
¥ Sf ( 9.(G,2) p") dot Lj ( 9.(G,2) p") 4

where S, is the same curve as S, but has clockwise orientation. Suppose that z =
p(cos 8 + isin@),wherep > 0. Then

1
1 2tn 1 2tn .. ? 2tm | . . 2tm
1 _#Zel > _ |Z—u,€el D | _ |p(cos 0 + i sin 6) —,uk(cosT-HS —)|
z |z] p
z 2t 5 z e 1
p P 1
pz+ﬂk—2C°S(9 —T)P#k p* + wy — 2pu P
B - =
p B p p
Thus
l Ztn
. (G ) - 4 ; 12% n—-cp-1 P n—-cpb-1 %
QL\G,z n z :uk PH
¢, (G,2) Py = L lzm L 1ot T L L %
k=1 t=0 Z—‘lee D k=1 t=0 . auke p k=1 t=0 p_‘uk
z
Since
n—cb-1 z
P
et ——0, forp—-0
k=1 t=0 P—Mz‘

by Lemma (6.2.4) we have

29, (G, 2) )
— —pnldz - 0, orp — 0.
j_ (ma,z) P forp

2t

H
Suppose that wy; =“ZQLT' Then |wyol = k1| = =+ = |wgep-1| = uy, .- Thus,
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i_
Z ”Ze :
VA
% 2t
t=0 ., _ o
zZ— ye
p-1 % iZtTL’ % l.2t7't % l.2t7't % L.Ztrt
> . p—1 -2 - > \p—2 > \p—1
B Zzuke P (2P +zP e P+ -+ z(ue PP+ (ue PP
i zZP — Uy

p-1 _ _ 2 1
2 Wee(ZPL + 2P 2w + - + zol T+ wp,
= |z

zP —
i Uy
2 P—l p
p-1 Wit kt wkt
- lik '
t=0 1 VAS

Obviously, there exists N, > 0,fork € {1,2,...,n — c}, suchthat |1 —%l Z%for lz| >
N, .Forany e > 0, there exists M, > 0,fork € {1,2,...,n — c}, such that

p_l 1
w? w? w? €
Z kt oo Bkt Pkt )| o
VA zP—2 =~ zp-1 2n

t=0
for |z| > M,. Noting that Zp o Wre = 0 unlessr = p. Therefore, for any € > 0, there
exists N = max{N;,N,,..., Nn_C,Ml,Mz,... n—c} such that
% 2t
; zg(G,2) z Z e ?
9.(G,2) % j2in
k 1
2 p- P
n—cp-1 Wit Kt Wit
B Wyt + — + + P2 + Zp-1
a Mg
k=1 t=0 1- 7D
n—-cpb-1 n—c |p-1
2 p-1 p
<2 We | + 2 2<%+---+w’“ +w’“>
= t p—2 p—1
k=1 t=0 k=1 |t=0 d d d
n—c
&
<0+ ZZ—< ¢
- 2n

for |z| > N . By Lemma (6.2.5), it can be obtained that for any ¢ > 0 there exists N =
max{Ny,Ny,...,N,_., My, M,,...,M,__.} such that

j zp;(G,z) p <2T[R zp; (G, z) 2 zp; (G, z)
—————pn|dz < —max|—————pn| = —max |z |—————pn
FRNACHED) P p 2t | (G z) T p et | |0uGz) "
! 2T
<—€
p
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for |z| > N . In other words,

z¢1(G,z) )
— —pnldz - 0, for|z]| —» +oo.
f((pL(G,Z) P g

R
Consequently, we have
1 z91(G,z) z91(G,z)
lj R R A
HELe(O) = il f (ma,z) ) dz+ [ (GG~
—0" |y Ly
29 (G, z) ) f z¢(G, z) )
+f——ndz+ —————pnldz
S(«pL(G,z) g J\oGn ~°
r 2

=i lim j —z<p£(G,z)_ n dz+J —ZQDII“(G'Z)— n | dz
2mi o | |\ (Gz) P 0.Gz) T
r—0* Lq L,

- ZLRiRl—i}Poo f plpe P)P¢.(G, (Pe P)P) _ d(Pei%)
r-0t |R ¢L(G (pe p)p)

R

+j ploe DP9 (G, (pe P)p) d(pe”'p)
r ¢.(G, (pe p)p)

_ 1 pePeLG.— ") l-z
Zndiote f (_ $.(G, ~p?) ‘p">e Pap
R ]

ppP ¢, (G, —pP) T
+J<— .G, —pP) —pn)e Pdp

’ _

1 ppP ¢ (G, —pP) mo.T

"2 U (g —m) eosp snds
r—

R
ppP (G, — pP) ) A
— —pn | (cos(——=) + isin(——))dp
j ( ¢.(G,— pP) p p
R
1 ppP ¢L(G,—p?) om
=z, | ( G M
r-ot r
+ 00
1 f (pqubz(a, —xP) | > .y
= — nij-sin—ax.
n) oGy TP p
If G has n components, which means that y; = --- = u,, = 0, then ¢(G, x) = x,, . Thus, we
have
pxP ¢ (G, —xP) pxPn(—xP)""*
= = 0
D N ) DR
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1
and LEL1(G) = Y3 1, = 0. Therefore,

p
400
1 xP; (G, —xP T
LEL,(G) = EJ <p P ) + pn) - sin—dx.
0

¢L(GJ _xp) p

This completes the proof.

Clearly, it is easy to obtain the following result from Theorem (6.2.6).
Corollary (6.2.7)[260]: Let G be a graph of order n, and ¢,(G,x) the
characteristic polynomial of the Laplacian matrix L(G). Then the Laplacian-energy-like
invariant of G can be given by the following integral formula

+00
1 x2¢; (G, —x?)
LEL(G) = - j < (G —x7) + n) dx.
Proof: By Theorem (6.2.6), it can be obtained that

B LA (2x%¢)(G,—x?)
LEL(G) = LEL1(6) _;j ( > (o +2n>

2 B, %)\ L[ (¥i6 =)
) f(cm(c: ~x7) )dx‘n_lo(mc,—xa +">dx’

which completes the proof
Let G, and G, be two graphs of same order. The Coulson—Jacobs formula (see [261], [264])
gives the difference of their energies, that is

- nd
sm2 X

G1,
E(Gy) = E(Gy) = j o —

where ¢ (G, x) is the characteristic polynomial of the matrix A(G). Similar to this, we obtain
the following theorem on the difference of the general Laplacian-energy-like invariant of
two graphs.

Theorem (6.2.8)[260]: Let G, and G, be two graphs of equal order. Then

LEL1(Gy) — LEL1(Gy) = j M EACHELD)

dx

sm dx p € Z*\{1},

1% 1% d)L (GZ' xp)
where ¢, (G, x) is the characteristic polynomial of the Laplaman matrix L(G).
Proof. By Theorem (6.2.6), it can be obtained that
+00
1J (pxpgbi((;l; _xp) pxp(l)i(GZ) _xp)> . T

LEL1(Gy) — LEL1(G,) = = b, (Gy,—xP) $.(G, —xP) . Sln;dx

P P
1 (4G —x)  $y(G—xP)  m
of <¢L(G1 —xP) ¢L(G2»—xp)> Smpd( )
_ 1+Oo ¢L(G11 —X )
——;Oj xsm dl 5 Gy —xP)

234



sinZ +oo T

|4 ¢L(Gl; _xp) d)L (Gli _xp)
= — xIn — | In dx
s ¢ (G, —xP) 0 ] ¢, (G,, —xP)
and
1. d)L(Glt _xp) g — llm 1 + ¢L(G1r _xp) - ¢L(GZI _xp) ¥
x>+ \ ¢pp (G, —xP) x—=+00 ¢ (G, —xP)
b1(Go,—xP)[p(G1,—xP) =1 (G, —xP)]x
. ¢L (Gll _xp) - ¢L (Gz, _xp) [¢L(G1'_xp)_¢L(GZ'_xp)]¢L(GZ:_xp)
= |lim (1+
x>+ ¢L(GZ' _xp)

=eO: )

since the degree of [¢p, (G{, —xP) — ¢, (G,, —xP)]x is less than the degree of ¢, (G,, —xP).
Thus,

¢L (Glr _xp)
¢ (G, —xP)

lim xIn

xX—+00

Suppose that

n—1
¢.(Gj,x) =x1_[(x — u(Gy)), j = 1,2,
k=1

where py (G;),..., un(G;) are the Laplacian eigenvalues of G; (j = 1, 2). Then

n-1
¢L(Gy, —xP) _ 1—[ —xP = (Gy)
¢ (G5, —xP) o1 —xP — 1 (Gy)
Since lirréxlnx = 0, we have
X—
n—-1
lim x In P (61, —xP) = limxlnl_[ —x" — (G =0
x>0 ¢ (G, —xP)| x>0 ol —xP — 1, (G,)
Therefore,
+o0
1 ¢1(G1, —xP) 4
LEL1(G,) — LEL1(G,) = —j In - sin—dx
5 TR S A G0 B

This completes the proof.
Corollary (6.2.9)[260]: Let G be a simple graph of order n, and ¢, (G, x) = XR_, apx™ %
. Then
+o0 n 2
1 T
LEL1(G) = —J x"?In <Z(—1)kakxpk> -sin—dx,p € Zt\{1}.

> 21 14

p 0 k=0
Proof: Noting that (K,,,x) = x™, by Theorem (6.2.8) we have

+0o n 0 n

T 1
Z ay(—xP)7*| . sin—dx = — fln Z a,(—xP)7k
p T
k=0 +co k=0
n
Z(—l)kakxpk
k=0
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1
LEL1(G) = —J In
%y T

p

in—d(x)
cSin— X
p

0
+ oo

1
=—f x~?In
s

0

m
-sin—dx
p



1 + 0o n 2
T
= —f x?1In (Z(—l)kakxpk> - sin—dx
21 p
0 k=0

Thus, the proof is complete.

We first extend the concept of the general Laplacian-energy-like invariant of graphs
to complex polynomials.
Definition (6.2.10)[260]: Let

¢ (2) =zn:ak2"_k = ag ﬁ(z ~ Zi)
k=1

k=0 =

be a complex polynomial of degree n and a a real number. The general energy of ¢(z),
denoted by E,(¢(2)), is defined as Y., .olz,|* when there exists iy € {1,2,...,n} such
that z;, # 0,and O whenz; == z, = 0.

By an analogous argument in the proof of Theorem (6.2.6), we can obtain the following
result on the general energy of polynomials fora = 1/p withp € Z*\{1}.

Theorem (6.2.11)[260]: Let ¢p(z) be a monic polynomial of degree n, whose roots are all
non-negative real numbers, and a = 1/p a number with p € Z*\{1}. Then the general
energy of ¢(z) can be given by the following integral formula

0

LEL,(G) = % f <pxp¢’(_xp) + pn) sin S dx

¢(—xP) p
As an extension of the concept of graph energy, the energy E(M ) of areal n X m matrix
M is defined by Nikiforov [257] as the sum of its singular values, which are the square roots

of the eigenvalues of the square matrix MT , where MT is the transpose of M . Let
o,(M),0,(M),...,0,(M) be the singular values of . Then
n

EM) = ) 0 (M).
k=1
The normalized incidence energy NIE(G) of G, introduced by Cheng and Liu in [240], is
the energy of the matrix [(G) = D™z(G)I (G), where I(G) is the incidence matrix of
G,D72 (G) is the diagonal matrix with entries D72(G)(k, k) = 1//d) if d; # 0 and

D‘%(G)(k, k) = 0 otherwise. Then

n n

NIE @) = o, d@) = Y. R d@IGT)

k=1 k=1
where 4, (I(G)I(G)T)(k = 1,...,n) are the eigenvalues of the matrix [(G)I(G)T.
Obviously, I(G)I(G)T is a positive semi-definite matrix.
Cheng and Liu [240] gave an integral formula for the normalized incidence energy of
graphs. We find that their result is an immediate consequence of Theorem (6.2.11).
Corollary (6.2.12)[260]: (See Cheng and Liu [240].) Let G be a graph of order n, and ¢ (x)
the characteristic polynomial of the matrix (G)I(G)T. Then the normalized incidence
energy of G can be given by the following integral formula
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£

f(ix)

+ o0
1
NIE(G) = — f [271 — ix dx,
21
where f(x) = ¢(x?).
Proof: Clearly [(G)I(G)T is a positive semi-definite matrix, and all the roots of ¢ (x) are
nonnegative. Note that

filix) = 2- (0)9'(((0)?*) = 2ixd'(—x?)
f'(ix) - 2ix’(—x*) x?¢'(—x*)

Nn—ix——=2n—ix————= 2[n+
() o Mt
By Theorem (6.2.11), it can be obtained that

X (x )+2n]singdx=3j [M+n]dx

and

.

NIE(G) = Ey(#()) = j
0

$(—x?) $(—x?)
x2¢'(—x) ] X2 (—x
f [ $(—x?) +"_ sz [ $(—x?) 4 ndx
1 G
=5 2n — f(lx)_dx

—00

Thus, the proof is complete.
By assigning an arbitrary orientation to the edges of G with vertex set V(G) = {v4,...,v,},
the vertex-arc incidence matrix 5(5) = (S) Of G is defined as
1, ifwv; isthe head ofe;
Sie = { —1, ifv; isthetail of e;
0, otherwise.
The normalized oriented incidence matrix of G, denoted by S'(G), is defined as S’(C?) =
1

D z— (6)5(5). The normalized Laplacian matrix of G, denoted by NL(G) = (l;;), is the
matrix with entries
1, ifi = jandd; # 0;
1

\

Clearly, NL(G) = §'(G)S'(G), where G is an arbitrary oriented graph of G. The
Laplacian incidence energy LIE(G) of G, introduced by Shi and Wang in [265], is defined
as

if v; and v; are adjacent in G;

0, otherwise.

LIE(G) = Z 0. (S'(@)) = z S NL(G)),

k=1
where 4, (NL(G)) (k = 1,...,n) are the elgenvalues of NL(G).

Shi and Wang [265] gave an integral formula for Laplacian incidence energy of graphs.
Their result is also an immediate consequence of Theorem (6.2.11).
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Corollary (6.2.13)[260]: (See Shi and Wang [265].) Let G be a graph of order n, and ¢ (x)
the characteristic polynomial of the normalized Laplacian matrix NL(G) of G. Then the
Laplacian incidence energy of G can be given by the following integral formula

X’ (—x?
LIE (G) = j[ ) | x

We omit the proof of this corollary here.
Section (6.3): General Laplacian-Energy-Like Invariant of Graphs
We only consider simple graphs. See [124].

Let G be a graph of order n. The spectrum of G consists of the eigenvalues 1, > 1; = - >
A, of the adjacency matrix A(G) of G, which are called the eigenvalues of G. It is well
known that A, = max{|A,|, -, |4,|} The Laplacian matrix of G is the matrix L(G) =
D(G) — A(G), where D(G) = diag(d,,d,, -, d,) is the diagonal matrix of vertex degrees
of G. The Laplacian eigenvalues of G are the eigenvalues of L(G), denoted by y; = pu, =
- > u,. As we all know, L(G) is a positive semi-definite symmetric matrix and px,, = 0.
The energy E(G) of G is defined as the sum of the absolute values of the eigenvalues of G,
which is an invariant related to total z-electron energy [267]. Many mathematicians and
chemists have done lots of work in the field of the theory of graph energy (see [273]). In
1940, Coulson [247] obtained an important integral formula which makes it possible to
calculate the energy of a graph without knowing its spectrum. For a graph G on n vertices,

its energy is
lxqu(G ix)
@ = .[ [ ¢A(G ix) dx
where ¢, (G, x) is the characteristic polynomial of A(G) (the characteristic polynomial of
G). This formula is called the Coulson integral formula, and has many applications in the
theory of graph energy (see [273]).
Moreover, Gutman and Zhou [129] defined the Laplacian energy of G as

LE(G) = zn:

k=1
where n and m are the number of vertices and edges of G, respectively. At the same time,
Liu and Liu [121] defined the Laplacian-energy-like invariant of G as
n

LEL(G) = z N

k=1
This invariant has many similar properties as the energy of graphs. For results and problems
on these two invariants, see [272], [273].
In [147], Zhou studied the sum of powers of the Laplacian eigenvalues of graphs, which can
be regarded as a generalization of the Laplacian-energy-like invariant and is called the
general Laplacian-energy-like invariant of graphs in [260].
Definition (6.3.1)[269]: Let G be a graph of order n, u; = u, = -+ = u,, = 0 the Laplacian
eigenvalues of G and «a a real number. The general Laplacian-energy-like invariant of G,
denoted by LEL,(G), is defined as Y, .o 1 When p; # 0, and 0 when u; = 0 Qiao et al.

[260] obtained an integral formula for general Laplacian-energy-like invariant in the case

2m
Uy I
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that « = 1/p,p € Z*{1}, gave an extension of the general Laplacian-energylike invariant
of graphs to complex polynomials and obtained an integral formula for it.

Theorem (6.3.2)[269]: ([260]). Let G be a graph of order n, ¢, (G, x) the characteristic
polynomial of the Laplacian matrix L(G) of G, and a = 1/p with p € Z+\{1}.

Then the general Laplacian-energy-like invariant of G can be given by the following integral

formula
T (xPh (G, xP T
LELa(G)=§f ( P )>.sin—dx
0

¢ (G — xPP) p

Definition (6.3.3)[269]: ([260]). Let

6@ =) @z =ag | |-z

k=0 k=1
Be a complex polynomial of degree nand a a real number. The general energy of ¢(2),
denoted by E,(¢(2)), is defined as 3., .|z |* when there exist iy € {1,2,--,n} that z; #
0,andOwhenz; =:-=2,=0
Theorem (6.3.4)[269]: ([260]). Let ¢(z) be a monic polynomial of degree n, whose roots
are all nonnegative real numbers, and @ = 1/p with p € Z*\{1}. Then the general energy
of ¢ (z) can be given by the following integral formula

p (T (xP¢'(=xP) T
Ea((p(Z)) =EJO <W+n>.sm;dx
The two following concepts are regarded as generalizations of graph energy and Laplacian
graph energy, respectively.
Definition (6.3.5)[269]: Let G be a graph of order n, A, > 4, = --- > A,, the eigenvalues of
G and a areal number. The general energy of G, denoted by E, (G), is defined as ¥, .ol 4x|*

when 1; # 0, and 0 when 4; = 0.
Definition (6.3.6)[269]: Let G be a graph, yy = u, == u, = 0the Laplacian
eigenvalues of G and a a real number. The general Laplacian energy of G is defined as

LE(G)= ) Zm)®

e ———
_2m
Uk n

n

We obtain some Coulson-type integral formulas for the general Laplacian energy-
like invariant of graphs and the general energy of polynomials with a« € Q. We present
Coulson-type integral formulas for the general energy and general Laplacian energy of
graphs with a € Q, respectively. We also show that our formulas in Theorem (6.3.10) (i)
and (iv), Theorem (6.3.11) (i) and (iv) and Theorem (6.3.12) (i) and (iv) hold when « is an
irrational number with 0 < |a@| < 1 and do not hold with |a| > 1.

We first introduce some basic concepts and results in complex analysis which will be
used later.
Let D be a bounded domain. The boundary of D is denoted by dD. We need the following
simple lemma. The proofs are omitted here.
Lemma (6.3.7)[269]: Let S, be the are z(0) = ay,re?,0, < 6 < 6, where a,andr >
0 are two real numbers. If f(z) is a continuous function on the arc S,. for all small r such
that
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Jim o s, re®® flao +re®) 2] =0

Then
lim | f(z2)dz=1i(6, — 06,
r—07t S

Suppose f(z) = 1.By Cauchy’s Theorem and Integral Formula, we get

1 a¢ (1, if zy€int(0)

f(zo) = o { :

i Jyp ¢ — 24 (0, if z,€ext(dD)
Where z, € int (0D) mean that z, lies in the interior of dD and in the exterior of aD,
respectively.
Let ¢p(2) = Y7 o apz™* = ag [17.,(z — z,) be a complex polynomial of degree n. By
direct computing, we get

n

20'(2) _ "7
P (2) _kzzlz—zk zZ—Zk

k=1

That is

n
29'(2) __ Y
¢(2) k—1Z — Zg
If zy,2,,++, 2, € int (0D), then we have

] (o) [ 3

Suppose that qb(z) =(z—2z)(z—12,) (z—z,). Then
p(VZ)$(—2) = ﬂwz - 2) (V7 - %)

ﬂ(z—zkx D= (- 1)”1_[(z—zk

0@ = (~D"$(V2)p(—Z) = ﬂ(z—zk)

Thus, by Theorem (6.3.4) it is easy to get the following theorem
Theorem (6.3.8)[269]: Let ¢(z) be a monic polynomial of degree n, whose roots are all

non-negative real numbers, and « = 1. Then E1(¢(z)) can be given by the following

integral formula
2 + 00 2,1 (__ A2
Ei(¢(2) = gj (—x(pqz_(xf) ) + n) dx
0

Where ¢(z) = (—=1)"¢(Vz)p(—Vz).
Theorem (6.3.9)[269]: Let G be a graph of order n with ¢ (< n) components, ¢, (G, x) the
characteristic polynomial of the Laplacian matrix L(G) of G, and a € Q. Suppose that

Therefore, we have
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; 1 _.2n 1 .2(q-Dm
0.(G,z) = ell@Dnm g, (G,qu “q ) gy (G,qu T ) then the general Laplacing —
energy - like invariant of G can be given as follows
() Ifa= %,p € Z+\{1}, then

to (xPhr (G, —xP i
LELa(G)=§f ( Pi( ) ).sin;dx
0

+n
¢L(Gr _xp)
(i) ifa = q,q € Z*, then

2
LELE,(G) =~ j
0

Where ¢(z) = (-1)"¢.(G, \/E)QDL(G, —\/E)
(iii) if « = %,p,q e Z*\{1}, then

to (xPol (G, —xP yia
LELa<G)=§f ( #1( )>.sin—dx
0

+00 <x2¢r(_x2)

2 (—x) + n) dx

¢ (G,—xP) 4
. 1 + *
(iv) Ifa = —;,p € Z7\{1}, then

400 [ =2 1 =2
LELa(G)=§J ( x 9 x )—c>dx,
0

@' (=x7%)
Where ¢(2) = (—=1)"¢,(G,Vz)p, (G, —Vz)
(i) ifa = —%,q € Z*\{1}, then

p (T (—xPe,(G,—x7P)\  m
LEL,(G) _”Jo < o (G —xP) ).smpdx
Proof: (i) this is just the result of Theorem (6.3.2)
Let uy =y, = -+ = u, = 0 be the roots of ¢, (G,x). Then ¢, (G,x) = (x — py) -+ (x —
U,). Therefore, we have

. 1 1 _;2n 1 _i_z(q—l)”
0.(G,2) = el@ Vg, (G) 1 (G'Z""’ ! ) (G zTe” d
1 1 27 1 .2(g-D=m
. 1 1 _en 1 _;2g-1)m
— el(q—l)nn <Zq — #k) (qu q — .uk) ..-| zde q — U

. 1 1 2T 1 2(q-Dm .
= eilg-Dnrm (Zq - Hk) (Zq — ppe 4 ) | zdppe @ e~ ilg-1m
1

= [e-uD.

k=1

By Theorem (6.3.8) we obtain that
n 2 +oo xz(p/(_xZ)
LEL,(G) =Z,u,z = E1(¢.(G,2)) =—f <—+n> dx
0

] m o (—x?)
Where ¢(2) = (=1)"¢.(G,Vz)p.(G, —Vz)
(iii) By Theorem (6.3.4), it is easy to obtain that
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LEL,(6) —Zuk Z(uZ)P ACACR)

pj+°°(x”90L(G —x ) ) o
== +n |.sin—dx
T Jo @L(G, —xP) p
(iv) Suppose that py = py, =" = ty_¢ > Up—(c+1) =+ = n = 0 are the roots of
¢.(G,x). Thus we can write ¢,(G,x) as ¢.(G,x) = x[[p={(x — ux). Therefore, we
obtain that

n—c

0.(6,2) = 27, (6,5) = 27" (i,,)cl_[(i—uk) = (-1 (zpuk—l)
= (D" Cl_[#k(zp_—> =(—-D" Cﬁ#kﬂ<2_ﬂkle iz%)
= (D" Cl_[ (—1)P- 11_[< M%elzgz—1>

Then
1
n—-cp—1 n—-cpb—-1 D —izﬂ
L(G Z) z pe P
ZZ =2 |
<PL(G Z) 1  2tn 1 ot
P, k=1t=0 _, P
— U, e z—u, e
1
n—cp—l _5 _Zﬂ
e p
R
-1 _jam
k=11t=0 , _ ,ukpe D

Suppose thatT' =T U L; U S, U L, see Figure (1) is a positively (i.e., counter clockwisely)

oriented piecewise smooth Jordan curve, where R >max{u1,,u;lc,unfc}, 0<r<

1
min{yn_c,ul‘l,ulp},FR is the curve {z(@)zReie, —%SBS%},Ll Is the line

1 1 1

{z(e) =pef,r<p<R, 0= %} Then the point ul_p,uzp, ---,u;fc aret =1,2,..,p— 1,
are all in the exterior of the curve I'. By Cauchy’s Theorem and Integral Formula, we get
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ey
Figure (1): The curve I" in Corollary (6.3. 13) (iv).
n—cpb-1 R e
1 j 2¢1(G,2) (n— o) dz——j 22 e lp .
2mi Jr | 9.(G, 2) P 2mi 1 _atn
=1t=0 7 — D
1
u? ST
k kg, — P —
ij z rdz = z 2mf rdz = Z Hie LEL—%(G)
lz — uk =1
Since the value of the integral
1 zp; (G, z)
— —c)|d
Zm'fF [ ¢.(G,z) p(n—c)|dz
Is independent of the actual values of R and r,, it can be gotten that

1 2 (G, z)
LEL,(G) = o Rl_l%loof [m—p(n—c)] dz

1 291 (G, 2) 291 (G, 2)
Tngrme G (n—c)]dz+ J—L(G )—p(n—c)]dz

z¢1(G, 2) z2¢.(G, 2)
H oGz PO C)] ot f LoL(G,z)

When S, is the same curve as S, but has clockwise orientation
Suppose that z = p(cos 8 + i sinf), where p > 0. Then

—p(n — c)] dz]

1
1 ot 1 ot i _.p 2t 2t
#kpe—lT 7 Mkpe—lT p(cos@ +isinf) —u, (cos . i sin . )
1-— = -
z || p

2 1 -
2 P _ p —
pr+u, —2pp,"  |PTH
2 =
p p

Thus we have



1 2t _% _izﬂ
- -1 - _i - -1 1%
Z(pL(G z) =X zu Pe P =X Hi €
p(n - C) < Z z 1 = 1
(pL(G 2) k=1 t=0 P —12% k=1 t=0 P —l%
Z— U, e 1 ty, eZ
n-cp-1 p‘u__
k
<))
k=1 t=0 p— ’uk
Obviously,
n-cp-1 %
Z L"l -0, forp—-0
=120 1p — ui‘
Then by Lemma (6.3.7) we get that
z¢,(G,z)
_— — (n—c)]dz—> 0, forr—0.
J, [ 0GP /
1 om _1
Suppose that Wy = w.le P Then lwy | = lwkl| = - = |wkp-1y| = 1,7 We have

.Ztn

Z e
= Ztn

-2 -1
l 2 _1 2t _% 2t P _% 2t p
p—-1 p=2, P,” - -
Zto,uk I W, e P +-zly e P +\u e P

zP — it
p-1 p-1 w? a)p
_ - - -2 kt
B Zz e (2P + 2P 2w + o+ Wl D+ 0l ) wkt+wkt+ -+ Zp -2 17
- -1
zP —
t=0 Hie =0 — Mz

-1
It is easy to get that there exists N, > 0, for k € {1,2,---,n — c}, such that |1 - ”Zip| > %for

|z| > N,. Forany &€ > 0, there exists M, > 0, for k € {1,2,-:-,n — ¢}, such that
p—1

2 p—-1 p
Wit a)kt wkt &
2( z ot zP=2 + Zp_1> 2n
t=0
For |z| > M,. Note that Z” o Wit = 0 unless r = p. Therefore, for any € > 0, there exists
N maX{Nl, NZ’-“NTL—C' Ml' Mz," TL—C} SUCh that
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, n—cp-1 p _Am
‘Z[ (pLG,Z p(n C)] . ‘le e p
- 1
¢.(G,2) £ £ — A
P z—p e P
2 p-1 p
n—cp-1 Wit Wt Wit
- 1
k=1 t=0 D
1—pu,
n—-cp—-1 n—-c /|p—1
2 p-1 p

<2 Wge| + 2 Dt pooyp Dty Bt
- et A zp=2 ~ zp-1

k=1 t=0 k=1 \ |t=0

n—c
£
<0+2 Z —< g,
2n
k=1

For |z| > N. By stander estimate, we obtain that, for any & > 0, there exists N =
max{N,, N,, N,,_., My, M,,--- M,,_.} such the integral

j‘ [zgoL(G z) p(n—0) 2nR
I'r

dz < —max
¢.(G,2) p z€lR

. [M -0
QDL(GiZ)

z91(G, 2)
(pL (G, Z)
2T

<—¢,
p

—p(n—c)

For |z| > N. This implies

! G,
j [%—p(n—c)] dz — 0, for |z| = +oo.
FR ’

Therefore, we obtain that

LEL,(G) = ERATOO l% —p(n—c)|dz + f l% —p(n— c)] dz
f [¢<(GG zz)) - C)] ot J L;p((GG e ")] “
+sz %-p n—c)]dz
= g o= crmgp ) do+ [ oo e e s
N e e

r-0ot
¢.(G,z7P)
¥ f [”C "8G p] dz]
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RI[ ol) (G' (pe lg>p> _\P B
- — P d p
Ra ey e
eSS )
)
+jR Pc—d)L i (pe _:>_p P(pe_i%) ’ d(pe_i%>
I (G. (pe™) )

’ _¢£(G’_p—p) . _p] iz

R / —n— .TT
+j [pc—d)L(G' p_) (—p)p‘”]e_‘ﬁdp

¢.(G,—p7P)
_ 1 ¢L(G —p p) T T
— _B lim ¢L(G —p p) SlnT[d
7'[R—>-|(;io ¢L(G ,0 p) ,0
= BJM) (_ BCACTil) — c) sinz dx
o ¢.(G,—x7P) p

Note that the formula above also holds for the general energy E, (¢(2)) of ¢(z) whose roots
are all nonnegative (here c is the multiplicity of 0 as root of ¢ (2)).
(v) Clearly, we have that

2 oo /=2 (42
LEL_q(G)zE_%(go(z)):E f <x¢(qi ;_29; )>dx

Where ¢(z) = (—1)"¢.(G,Vz)(G, —Vz)
(vi) it can be easy to get that

LEL_(6) —Zu = () b = ELE 1<<p 1 (6, x))

k=1 p

_pf —x P (G, —x7P) T
_T[ L(G xp) —C .smp X

The proof is complete
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Suppose that ¢(z) is a monic polynomial whose roots are all non-negative real numbers
Similar to the proof of the above theorem, we can get the integral formulas for the general
energy of ¢(x) as follows.

Theorem (6.3.10)[269]: Let ¢(z) be a monic complex polynomial, ¢ € {0,1,...,n — 1}
the multiplicity of 0 as root of ¢(z)and a € Q. Suppose that ¢(z) =

1 .2(q-1)m

ell@—1nm 4 (zae_i7> ) (zﬁe_l q ) Then the general energy of ¢(z) can be given as
follows
(i) ifa = %,p € Z*\{1}, then

+00 PAh!'(—~DP
E.(¢p(2)) = %L (%).sin%dx

+00 xZP’C—xz)
(P

(i) ifa = q,q € Z*, then

2

Ea(¢(z)) = EJ;)
Where P(z) = (-1)"¢(Vzp)p(—Vz).
(iii) if « = %,,p,q € Z*\{1}, then

P [T (xPe'(—xP) T
Ea(¢(Z)) = E-fo (W + n) . Slnde

+ n) dx.

(iv) if « = —%,p € Z+\{1}, then

+0 /_ P A((—A—D
Ea(d)(z)):%jo ( x(p(g:f_p); )—c>.sin%dx

(v) ifa = —q,q € Z*, then

2 +oo /__ —ZPI 2
Ea(¢(z)) = EJ < xp(_i_;; ) — c) dx,
Where P(z) = (—1)"¢.(G,Vz)p,(G,Vz).
i) ifa = —%,q e Z*\{1}, then

+0 /=D, ("D
Ea(¢(z))=§f0 <x(p((f£_px) )—C>.singdx

We define a new polynomial ¢, (G,z) = (—1)"$4(G,Vz)$4(G, —Vz). Then the roots of
©04(G,z) are 12,13, -+, 12. Note that

Eo(6) = ) I4l® = ) 2" = Ea(9a(6.2)

A#0 Ap#0
Thus, by Theorems (6.3.4) and (6.3.8) we halfve the following results.
Theorem (6.3.11)[269]: Let G be a graph of order n, ¢p4 (G, x) the characteristic polynomial
of the adjacency matrix A(G) of G, and ¢ € {0,1,:--n — 1} is multiplicity of 0 as root of
$4(G,z). Suppose that ¢, (G, z) = (—1)"$4(G,Vz)p4(G, —Vz). Then the general energy
of G can be given as follows

(i) ifa = %,p € Z*, then
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2p (Y (x?P @, (G, —x?P) T
E = — .sin—d
«(G) njo < 2. (C.—x7) +n sin dx

(ii) if a = S,p,q € Z*, then

2p (T (x?P o) (G, —x?P i’
E.(G) =7pf < #al )+n>.sin—dx
0

©a(G, —x?P) 2p

, i _.2n 1 .2(q-1)x
Where ¢,(z) = el@ Dy, (G,qu “q ) SN (G,qu T )

(i) Ifa= —%,p € Z*, then

2p (Y° [—x?P @, (G, —x~?P) s
EL(G) = — —c).sin—
« (@) - j(.) ( o (G, —x ) c |.sin 2 dx
(iV)Ifa = —%,p,q € Z*, then
2p (Y [—x?P @, (G, —x7?P) T
E,(G)=— —c|.sin—d
«(G) - jo ( 9.(G, —x-2) c |.sin o X
: 1 1_;2m 1 _2e-nr
Where ¢, (z) = el@ Dy, <G,ZP) Oy <G,qu q ) SN (G,qu q )
Let G be a graph of order n and size m. Suppose that ¢, (G, z) = (—1)"¢,, (G,\/E +

sz) oy (G, —z + sz) Then the roots of ¢, (G, z) are (,ul — sz)Z , (,uz — Z—m)z R (#n —

n

2m

2
T) . Thus get that

LE() = ) Y [(uk—%’")zl = Ea((G,2))

Hk#F—~ He# =~
By Theorem (6.3.4) and (6.3.8), we can get the following results.
Theorem (6.3.12)[269]: Let G be a graph of order n and size m, ¢, (G, x) the characteristic

polynomial of the Laplacian matrix L(G) of G, and c € {0,1, ...n — 1} the multiplicity onTm
as roots of ¢, (G,z) = (—1)"¢, (G, Vz + sz) oy (G, —/z + sz)

Then the general Laplacing energy of G can be given as follows

(i) ifa = %,p € Z*, the

2p (% (x*PoL(G,—x?P) n
LE,(G) = == sin-
2(G) ﬂj; ( 2,(C, —x2P) +n smzpdx

N R

2m
Uy n

(i) If a = %,p,q € Z*, then
2p (** (x?P@; (G, —x?P) T
LE,(G) =— .sin—d
«(G) - .[0 ( 0,(G, —x?P) +n SmZp X
. L 1o _pm 1 _2g-nm
Where ¢, (z) = el@-Dnrgp, (G,Zq) L (G,zqe q ) Q) (que q )
(iii) If & = —%,p € p € ZF, then
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2p (Y° (—x"?P@; (G, —x~?P) s
LE = — .sin—d
«(G) - jo < 2.(G,—x20) +n |.sin 2 X

GWIhx=—%4xquﬂﬂwn

2p (Y° (—x"?P@; (G, —x~?P) s
LE,(G) = Z£ _ ) sin ™
«(G) - jo < =) c)-sino dx

1 _iz(q—l)n'

1 2T
Where ¢, (z) = e®®W@-Dnrgy, (G, ZEe_lF) ey (G,Zae q )

It is natural to ask that whether the formulas obtained above hold for the case that «
Is an irrational number. Now we consider this problem.
Let 0 <a=1/p <1 be an irrational number. Then 1 <p € R\Q. For a graph G,

LEL,(G) = X, 40 ,u,lc/p. The integral in Theorem (6.3.9) (i) is

2 [ (LG )
— nj).sin—ax
T 0 ¢L(Gi_xp) p

p  w (*® xP
=—sm—J (—+n)dx
T Py —xP — Uy
n

P ”f+°° Ui
= —sin— dx
o pJy L xP
HiD ”f+°° 1

0

= ——sin— 5
= [ p xXP + Uy
k

By using the software mathematica, we have
[ A=t (151422
X+ b T2\ a b))
k .k
Where ,F;(ay, a;; by; x) = Z,‘;‘;O% % is a hypergeometric function with a >
0/k :
1,b>0and (), =z(z+1)(z+2)--(z+k—1) (see |1])Again, using the software
Mathematica, we get

_ 1 1 x¢ 1 1 1
lim x2F1(1,5;1+ ;7>=baF(1+—>F(1——)

dx

X—+00 a a
and
l F<111+1x3—0
o0 2\ Ty a’ b/
Where I'(x) is the Gamma function, since

[ =0T = sin tx

For0 < x < 1and
I'(1+x) =xzG (x)
We have

T (T 1 T X 1 1 x¢
DUk f gy = PP T 5 <’ ;1+5__)
0

—siin—
T p



& Q-
ERRS

m1 /1 N 31 m w3
sm;.;f‘(—)f‘(l——)=yk—sm—. —7 = U,

U
p p T P sin=
Therefore,
p (T (xPPL(G,—xP)\ m " mp . m(T° 1 ~ 5
- .G, —xP) .sm;dx— Tsm; o dx = Iy,
0 LA Ug*0 0 . Ur#0

= LEL,(G)
Let —1 < a = —1/p < 0 be an irrational number. Then 1 < p € R\Q a graph
With ¢ components, LEL,(G) = X, 0 #;1/;:_ The integral in Theorem (6.3.9) (iv) is

p (T (—x"Pp,(G,—x7P) T p  mw (™ —x7P
—j —c|.sin—dx =—51n—f (——c) dx
0 0

T ¢ (G, —x7P) 14 T p —X7P —
+oo M€ n—-c . 1 n—c
p . T 1 p . T Ui 1
=—sm—j zl_l_ _1dx=Esm—zj ﬁdx=2p,uk
T Pl & Hr Pi=lo X0 T Hk k=1

= LEL,(G).
Different from the case that « is an irrational number with 0 < |a| < 1, the integral
formulas in Theorem (6.3.9) for the case || > 1 do not hold when « is irrational. Note that

p (T (xP$1(G,—xP) o pep . m (¢ 1
— +n|.sin—dx = ——sin— dx.
) L (G, —xP) p m T PJy XP + Uy

Then it follows from that the important integral

+ oo 1
dx,0<p<1l,a>0
JO xp+ax( p @ )

PJ+°°<XP¢1(G,—X”)+ ) wy
— nj).sin—ax
T[ 0 ¢L(G,—Xp) p

Diverges that the integral

Diverges.

It can also be shown that the formulas in Theorem (6.3.10) (i) and (iv), Theorem (6.3.11) (i)
and (iv) and Theorem (6.3.12) (i) and (iv) hold when « is an irrational number with 0 <
|| < 1 and do not hold with || > 1.

Corollary (6.3.13)[274]: Let G be a graph of order n+r —1 with c (<K n+7r —1)
components, ¢, (G, x) the characteristic polynomial of the Laplacian matrix L(G) of G, and

a? € Q. Suppose that
1

o —~ 2T = _2a*-Dm
9.(G,z,_,) = e!@ " DFr=Dmg, G,Zﬁ_ze L B G'Zg—ze e :

Then the general Laplacing - energy - like invariant of G can be given as follows
(i) Ifa = %,pz € Z+\{1}, then

2 pto Py (G —xP” s
LELaz(G)zp_f ( ¢L( _ )+n+r—1>.sin—2dx
T Jo ¢L(G» —xP ) p

(i) ifa = q,q% € Z*, then
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LELE.2(G) = 2 jm ) o 1)d
o2 = . o(—x2) n+r X
Where ‘P(Zr—z) = (_1)n+r—1¢L(G’ VZr—Z)QDL(Gr _VZr—Z)-
(iii) if « = %,pz,qz e Z*\{1}, then

2 +® [xP G,—xP
LEL,(6) == f ( i )> sin—dx
T 0 p

goL(G, —xP )
(iv) If a® = —=,p? € Z*\{1}, then
P[P D)
LEL,2(G) = - JO ( o (—x2) C> dx,

Where @(Zr—z)f (_1)n+r_1§0L(G: VZr—2)<pL(G: _er—z)
(vi) if a2 = —Z—Z,qz € Z*\{1}, then

2 x7P G,—x7P
LEL2(6) == j ( i )> sin— dx
T Jo @L(Gr —x7P ) p*
Proof. (i) This is just the result of Theorem (6.3.2). Let i, = pyyq = -+ = Upyr—1 = 0 be
the roots of ¢, (G, x). Then ¢, (G,x) = (x — u,) - (x — u,41). Therefore, we have

¢.(G,z,_3)

1 iz 2 iz _.2(¢*-Dm
= ell@-Dmir-vrg (G d. |Gz e | p (G2 e @

nir—1 1 1 21 1 2(g*-Dm
_ Li(@?*-1D)(n+r-1)m a? q? _i?_ q% i q2 _
=e€ Zp_o5 MUk || Z,_5€ Uy Z,._,€ Uy
k=r
n+r—1 1 1
_ Li(@?-1D)(n+r-1)m q? q?
=€ J Zp_p ~ Hk Zr_3
k=r

2T 1 2(q*-Dm
l1— 2 |—— A2 _ 2
B () )

By Theorem (6.3.8) we obtain that
+0 f0.2 102
(M +n+r-— 1> dx

n+r—1
p(—x?)

LEL,2(6) = z ul’ = E(0u6.5) ==

0
Where ¢(z,_,) —( D™ (G Nz )91 (G, —VZ:—3)
(iif) By Theorem (6.3.4), it is easy to obtain that

n+r-—1 q2 n+r-—1

LEL:(G) = z u = z (uZZ)F=Ep_12(<pL(G,zr_z))

k=r k=r
2 P’ (G —xP°

_p—j (x #1(6, xz )+n+r—1>.sin£2dx
T Jo ¢.(G,—xP*) p
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(iv) Suppose that p, = plryq = 2 ncyr-1 > Un-ctr—2 = " = Unyr—1 = 0 are the
roots of ¢,(G,x). Thus we can write ¢,(G,x) as ¢, (G, x) = xS [IRZE 1 (x — wy).
Therefore, we obtain that

p? n+r 1) 1 p?(n+r—1) 1 T 1
(pL(G Zp_p) = Z oL\ G, pz =Zp_y \ Tz 1_[ D2
2 Zr z

r -2 k=r r—2
n-c+r-1
2
— n+r—1—c 14
_-(__1) ) (Zr—zﬂk _'1)
k=1
n—c+r-—1
2
— n+r—1—c p
= (-1) pe (727
A A
k=r 5
_ — +r-2
1 n—c+r—-1 p _55 _iggz
n+r—1-—c 2
_M_)(_l) | | M | | Zy_p — M € P
k k=r k=r
n—c+r—1 p*-1 1 o
— n+r—1-c 21 p? 7
= (-1 [ [ |cor] |(z ol e P’ —1)
k=r t=0

Then

n—c+r—1p%-1

(PL(G Zy— 2) Z z Zy—2
L(G Zy— 2) —;% 2t

t=0 Y

1
n—c+r-1p°-1 “p2 —izgt
2 e ?
=p‘n+r—1—-c)+ T
k=r  t=0 p? "7

Suppose thatT' =Tz U L; U S, U L, see Figure (2) is a positively (i.e., counter clockwisely)

1
oriented piecewise smooth Jordan curve, where R > max {ur,y,‘llﬁr_l,unfi +r_1}, 0<

1
r< mln{yn crr—1 Uy 5 1, } [ is the curve {Z(Qr—z) = Relfr-2, _plzg 0, , <

l} L, is the line {z(@r_z) = p2eir2r<p._, <R, 0,_, =%}. Then the point
2 2 —

TR T ---,unf;r_l are t = 1,2,...,p% — 1, are all in the exterior of the curve I". By
Cauchy's Theorem and Integral Formula, we get
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Figure (2): The curve I' in Corollary (6.3.13) (iv).
1 zp; (G, z,_5)
Znij[ L2 —pz(n+r—1—c)]dzr_2

<pL(GJZT—2)
n—c+r—1p>-1 p2 —iZL;T
1 u, e P
LSS T
2mi _1 2tn
' = t=o 2 T
Zy_p — .uk e
1 1
n—c+r-—1 Yy n—c+r-—1 52
1 T 1 ,ukp
= —dz = — | % —dz,_,
2T -— 271l _1
r - 2 - r 2
r k=r
Zy—_2 :uk Zk
n+r—1—c 1
_2
_ w.” =LEL 1 (G)

Since the value of the mtegral

Zr 291G, Zp_ 2) 2
—1-c¢)|dz,_

anj [ ¢.(G,z,_3) prntr )| dzr-
Is independent of the actual values of R and r, it can be gotten that

LEL(6) = —le+00 | [Z(;L"(’g(izz)” SPar—1- c)] iz,
g[St e 1]
| st et r-1-0) i
e e -ajen
(R ofr
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When S, is the same curve as S, but has clockwise orientation suppose that z,._, =
Pr—o(cos,_, +isinb,_,), where p,_, > 0. Then

_iz i2tn _iz iZtn
p YA p Y
1 U, € . Zyr—2 — MK, € p
Zy—3 |Zr—2|

1
Pr_2(cosB,_, +isinf,_,) — ,ukpz (Cossz;T — isin %)

Pr-2
2 1 L
2 p? 2 P pr —m”
Pr_p t Hy — 4Pr—2ly, = k
> —
Pr-2 Pr-2
Thus we have
1
, n—c+r—1p*-1 p2 —iZL;T
Zr291(G,Zr_3) 2 Zr_oly, € P
Zy_o —p*n+r—1—-0o)|| < T
Y (G Zy— ) _ 2t
LA or=2 k=r  t=0 p?Z ~ior
Zyr—2 — MK, € p
1 otn
L. 5 1
n—c+r-1p° -1 |l € n—c+r—-1p°—1 pZ
3 <)
_iz 27t _iz
k=r t=0 Y k= t=0 D
1— ‘le e P r Pr—2 — ,llk
Zy—2
Obviously,
1
n—-c+r—-1p°-1 pZ
Pr—2H1
z z kl -0, forp,_, =0
k=r t=0 p?
4 Pr—2 — ‘le

Then by Lemma (6.3.7) we get that
f [Zr—zfpi (G,z,_3)
.-

—pz(n+r— 1—C)]er—2 - 0, forr —> 0.

¢L(G,zr—3)
_r 2t _*
2 -] 2
Suppose that wy, = p,” e 72. Then |wy | = |wk,| = = = |0kpz_p| = 1" - We have
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2w + W o+ K
p 1 kt kt p2_2

_ E Zy_p Zy_p
1 —_ ﬂ_lz
;P

t=0

It is easy to get that there exists N, >0, for k € {1,2,---,n+r —1 —c}, such that

-1
1- _M,fz = % for |z._,| > Ny. For any € > 0, there exists M, > 0, for k € {1,2,---,n +
Zy_p
r — 1 — c}, such that
pz_l 2 2
p°-1 p
o, Tt e T 4P <2(n+r 1)

t=0 T2 Zr—2 Zr_2

For |z,_,| > M,. Note that z@’jgl wy; = 0 unless r = p. Therefore, for any € > 0, there
exists N = max{N,, Ny;1, " Npyy—1—c» My, My yq, -+, My r_1_.} SUCh that

1
, n—c+r—1p*-1 “p2 -4329
016G, Zr_ 2 u, e P
Zyp_y | —————=—-p*(n+r—-1-c¢) T
0. (G,z,_3) 1 otn
LM £r=2 k=r  t=0 p? 77
= = — P
2= M, e
2 p*-1 wpz
n—c+r—10° -1 Wyt 2_5 21
r—2 ZP Zp
_ r—2 r—2
- _1
k=r  t=0 p?
1—p,
2 2
n+r—-1—-cp°-1 n+r—-1—c /|p°-1 2 p2-1 p2
<9 2 Wit Wyt Wy
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For |z,_,| > N. By standard estimate, we obtain that, for any &€ > 0, there exists N =
max{N,, N, ;1, " Npsr_1—c, My, My 1, -+, M, _1_.} SUCh the integral
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For |z,._,| > N. This implies
f Zr—ZQDE,(GrZT—Z)

rml YL (G, zr—>)

Therefore, we obtain that

1
LEL,2(G) = — lim

2mi R>+o
r-0t

[ZT_ZQDi(G, Zr—z)
(pL(G, Zr—Z)

Zr—z(Pi(G;Zr—z) 2 ]
+j —p‘(n+r—1—-c)|dz,_
Lll ¢.(G, 2z, _3) P T
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+f - 2(n+r—1—c)]dz_
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—-p*n+r—1- c)] dz,_,

-p’n+r—1- c)] dz,_, = 0,for |z,_,| = +oo.
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Note that the formula above also holds for the general energy E,z(¢(z,-_2)) of ¢(z,_,)
whose roots are all nonnegative (here c is the multiplicity of 0 as root of ¢(z,_,)).
(v) Clearly, we have that
2 (Y (—x"2@'(—x7?)
LEL_,2(G) = E_%((p(zr_z)) =— jo < pra—— )dx
Where ¢(z,_5) = (=)™ ¢, (G,V2,3) (G, —VZ,_3)

(vi) it can be easy to get that

n+r-—1 q? n+r-1 1
_a- -2
LEL ,2(G) = z ﬂk?’z = Z (“Z ) p? _ ELE 1 ((p_1(G,X))
2 k=1 k=1 p° P’
2 o/ Pl (G, —xP° T
=p_j vi( - )—c .sin— dx

The proof is complete.
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