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Abstract 

 

The growth of frequently hypercyclic functions and common 

hypercyclic vectors for differential and translation operators and for the 

conjugate class of a hypercyclic operator and a Sot-Dense path of 

chaotic operators are studied. The spectral properties of the Cauchy 

process and asymptotic estimate of eigenvalues of pseudo-differential 

operators on half-line and interval with eigenvalues and refined 

semiclassical asymptotics for fractional Laplace operators, trace 

estimates and two-term estimates for unimodal Levy and relativistic 

stable processes are determined. We also classify the sum of powers of 

the Laplacian eigenvalues and normalized incidence energy of graphs 

with Coulson-type integral formulas for the general Laplacian-energy-

like invariant of graphs. 

  



 

 

IV 
 

 الخلاصة
 

ية المفرطة قمنا بدراسة النمو للدوال الدورية المفرطة والمتجهات الدور

العامة لأجل المؤثرات التفاضلية والانسحابية ولأجل العائلة المرافقة للمؤثر الدوري 

ثم تحديد  .الفوضويةللمؤثر التبولوجي للمؤثرات  ىالمفرط والمسار الكثيف القو

الخصائص الطيفية لعملية كوشي والتقدير التقاربي للقيم الذاتية للمؤثرات شبه 

الفترة مع القيم الذاتية والمقاربات شبه التقليدية ولخط ا-التفاضلية على نصف

لأجل  دالح-ثنائيةالمحسنة لأجل مؤثرات لابلاس الكسرية وتقديرات الأثر وتقدير

للقيم  أيضاً تم تصنيف جمع القوى أحادية الواسطة واستقراية النسبوية. يفيعمليات ل

كولسون -مع صيغ تكامل نوع ائدية للابلسيان والطاقة الحادثة الناظمة للبياناتزال

  طاقة اللابلسيان العامة للبيانات.-لأجل لامتغيرمثل
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Introduction 

 

We investigate the conjugate indicator diagram or, equivalently, the 

indicator function of (frequently) hypercyclic functions of exponential type for 

differential operators. Given a separable, infinite dimensional Hilbert space, it 

was shown that there is a path of chaotic operators, which is dense in the operator 

algebra with the strong operator topology, and along which every operator has 

the exact same dense 𝐺𝛿 set of hypercyclic vectors.  

We study the spectral properties of the transition semigroup of the killed 

one-dimensional Cauchy process on the half-line (0,∞) and the interval (−1, 1). 
This process is related to the square root of one-dimensional Laplacian 𝐴 =

−√−(𝑑2/𝑑𝑥2) with a Dirichlet exterior condition, and to a mixed Steklov 

problem in the half-plane. For the half-line, an explicit formula for generalized 

eigenfunctions 𝜓𝜆 of 𝐴 is derived, and then used to construct a spectral 

representation of 𝐴. Two-term Weyl-type asymptotic law for the eigenvalues of 

the one-dimensional fractional Laplace operator (−∆)𝛼/2 (𝛼 ∈ (0, 2)) in the 

interval (−1, 1) is given: the n-th eigenvalue is equal to (
𝑛𝜋

2
−
(2−𝛼)𝜋

8
)
𝛼

+ 𝑂 (
1

𝑛
). 

We consider the fractional Laplacian on a domain and investigate the asymptotic 

behavior of its eigenvalues.  

Let 𝐺 be a simple graph with 𝑛 vertices and 𝑚 edges. Let 𝜆1, 𝜆2, ⋯, 𝜆𝑛 be 

the eigenvalues of the adjacency matrix of 𝐺, and let 𝜇1, 𝜇2, ⋯ , 𝜇𝑛 be the 

eigenvalues of Laplacian matrix of 𝐺. The energy of 𝐺 is defined as 𝐸(𝐺) =
∑ |𝜆𝑖|
𝑛
𝑖=1 . For a graph G and a real 𝛼 ≠ 0, we study the graph invariant 𝑠𝛼(𝐺) – 

the sum of the αth power of the non-zero Laplacian eigenvalues of 𝐺. The cases 

𝛼 ≠ 2,
1

2
 and −1 have appeared in different problems.  

Many have obtained interesting results on the existence of a dense 𝐺𝛿 set 

of common hypercyclic vectors for a path of operators. We show that on a 

separable infinite dimensional Hilbert space, there is a path of chaotic operators 

that is dense in the operator algebra with the strong operator topology. Let 𝐻(ℂ) 
be the set of entire functions endowed with the topology of local uniform 

convergence. Fix a sequence of non-zero complex numbers (𝜆𝑛), |𝜆𝑛| → +∞, 

which satisfies the following property:for every 𝑀 >  0 there exists a 

subsequence (𝜇𝑛) of (𝜆𝑛) such that (i) |𝜇𝑛+1| − |𝜇𝑛| >  𝑀 for every 𝑛 =  1, 2, . .. 

and (ii) ∑
1

|𝜇𝑛|
+∞
𝑛=1 = +∞.  

We give two-term small-time approximation for the trace of the Dirichlet 

heat kernel of bounded smooth domain for unimodal L´evy processes satisfying 

the weak scaling conditions. We show a two-term Weyl-type asymptotic law, 

with error term 𝑂 (
1

𝑛
), for the eigenvalues of the operator 𝜓(−𝛥) in an interval, 
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with zero exterior condition, for complete Bernstein functions 𝜓 such that 

𝜉𝜓′(𝜉)  converges to infinity as 𝜉 → ∞. 

The energy of a graph G is the sum of the singular values of its adjacency 

matrix. It is a graph invariant used in mathematical chemistry. The normalized 

incidence energy of the graph G, denoted by NIE(G), is defined as the sum of the 

singular values of its normalized incidence matrix. Let 𝐺 be a simple graph. Its 

energy is defined as 𝐸(𝐺) = ∑  𝑛
𝑘=1 |𝜆𝑘|, where 𝜆1, 𝜆2, . . . , 𝜆𝑛 are the eigenvalues 

of 𝐺. A well-known result on the energy of graphs is the Coulson integral formula 

which gives a relationship between the energy and the characteristic polynomial 

of graphs. Let 𝜇1 ≥ 𝜇2  ≥ ··· ≥  𝜇𝑛  =  0 be the Laplacian eigenvalues of 𝐺. The 

general Laplacian-energy-like invariant of 𝐺, denoted by 𝐿𝐸𝐿𝛼(𝐺), is defined as 

∑  𝜇𝑘≠0 𝜇𝑘
𝛼 when 𝜇1 ≠ 0, and 0 when 𝜇1 = 0, where 𝛼 is a real number. Let 𝐺 be 

a graph of order 𝑛 and 𝜆1 ≥ 𝜆2 ≥···≥ 𝜆𝑛 the eigenvalues of 𝐺. The energy of 𝐺 

is defined as 𝐸(𝐺)  = ∑  𝑛
𝑘=1 |𝜆𝑘|. A well-known result on the energy of graphs is 

the Coulson integral formula which gives a relationship between the energy and 

the characteristic polynomial of graphs. Let 𝜇1 ≥ 𝜇2 ≥ ··· ≥ 𝜇𝑛 = 0 be the 

Laplacian eigenvalues of 𝐺. The general Laplacian-energy-like invariant of 𝐺, 

denoted by 𝐿𝐸𝐿𝛼(𝐺), is defined as ∑  𝜇𝑘≠0 𝜇𝑘
𝛼 when 𝜇1 ≠ 0, and 0 when 𝜇1 = 0, 

where 𝛼 is a real number. We give some Coulson-type integral formulas for the 

general Laplacian-energy-like invariant of graphs in the case that 𝛼 is a rational 

number. 
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Chapter 1 

Growth of Hypercyclic Functions and Common Hypercyclic Vectors 

  

We give growth conditions of the functions on particular rays or sectors. The research 

extends known results in several respects. We show that the conjugate set of any hypercyclic 

operator on a separable, infinite dimensional Banach space always contains a path of 

operators which is dense with the strong operator topology, and yet the set of common 

hypercyclic vectors for the entire path is a dense 𝐺𝛿 set. As a corollary, the hypercyclic 

operators on such a Banach space form a connected subset of the operator algebra with the 

strong operator topology. 

Section (1.1): Differential Operators 

 

A continuous operator 𝑇 ∶  𝑋 →  𝑋, with 𝑋 a topological vector space, is called hyper-

cyclic if there exists a vector 𝑥 ∈  𝑋 sucht that the orbit {𝑇𝑛𝑥 ∶  𝑛 ∈ ℕ} is dense in 𝑋. Such 

a vector 𝑥 is said to be a hypercyclic vector. By ℋ𝒞(𝑇, 𝑋), we denote the set of all 

hypercyclic vectors for 𝑇 (on 𝑋). The operator is called frequently hypercyclic if there exists 

some 𝑥 ∈  𝑋 such that for every non-empty open set 𝑈 ⊂  𝑋 the set {𝑛 ∶  𝑇𝑛𝑥 ∈  𝑈 } has 

positive lower density. The vector 𝑥 is called a frequently hypercyclic vector in this case 

and the set of all these vectors shall be denoted by ℱℋ𝒞(𝑇, 𝑋) in the following. We recall 

that the lower density of a discrete set 𝛬 ⊂  ℂ is defined by 

lim inf
𝑟→∞

#{𝜆 ∈  𝛬 ∶  |𝜆|  ≤  𝑟}

𝑟
 = : dens(Λ). 

We are only concerned with spaces consisting of holomorphic functions and therefore the 

hypercyclic vectors are called hypercyclic functions. 

In [10], G. Godefroy and J. H. Shapiro show that for every non-constant entire func-tion 

𝜑(𝑧) = ∑ 𝑐𝑛𝑧
𝑛∞

𝑛=0  of exponential type, the induced differential operator 

𝜑(𝐷): 𝐻(ℂ) →  𝐻(ℂ), 𝑓 ↦ ∑𝑐𝑛𝑓
(𝑛)

∞

𝑛=0

,                                       (1) 

where 𝐻(ℂ) is endowed with the usual topology of locally uniform convergence, is 

hypercyclic. This results also applies for the case of frequent hypercyclicity as it is shown 

in [7]. Actually, in both [10] and [7], the outlined results are given for the case of 𝐻(ℂ𝑁). 
The possible rate of growth of the corresponding (frequently) hypercyclic functions is 

widely investigated (cf. [4], [5], [7], [8], [9], [11]). It turns out that the level set 

𝐶𝜑 ∶=  {𝑧 ∶  |𝜑(𝑧)| =  1}                                                 (2) 

plays a cruical role. Under certain additional assumptions, it is known that for 𝜏𝜑 ∶=

 dist(0, 𝐶𝜑) there are functions of exponential type 𝜏𝜑 that belong to ℋ𝒞(𝜑(𝐷),𝐻(ℂ)), 

while every function of exponential type less than 𝜏𝜑 cannot belong to ℋ𝒞(𝜑(𝐷),𝐻(ℂ)) 

(cf. [4]). It is also known that for every 𝜀 >  0 there are functions in ℱℋ𝒞(𝜑(𝐷),𝐻(ℂ)) 
that are of exponential type less or equal than 𝜏𝜑 + 𝜀 (cf. [7]). For the case of the translation 

operator 𝑓 ↦ 𝑓(∙ +1), which is the differential operator induced by the exponential 

function, and the ordinary differentiation operator 𝐷, growth conditions are achieved in [9], 

[8], [11] and [5]. 
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All investigations in this direction have in common that the rate of growth is measured 

with respect to the maximum modulus 𝑀𝑓(𝑟):= max
|𝑧|=𝑟

|𝑓(𝑧)|  or 𝐿𝑝-Averages 𝑀𝑓,𝑝(𝑟) ∶=

 (1 2𝜋⁄  ∫ |𝑓(𝑟𝑒𝑖𝑡)|
𝑝
𝑑𝑡

2𝜋

0
)1/𝑝, where 𝑝 ∈  [1,∞). We extend some of these results by 

considering growth conditions with respect to rays emanating from the origin. 

For the sake of completeness, we recall that an entire function 𝑓 is said to be of exponential 

type 𝜏 if 

lim sup
𝑟→∞

log𝑀𝑓(𝑟)

𝑟
 = : 𝜏 (𝑓 )  =  𝜏, 

where we set log(0) ∶=  −∞, and 𝑓 is said to be a function of exponential type when the 

above lim sup is not equal to +∞. The indicator function of an entire function of exponential 

type is defined by 

ℎ𝑓(Θ) ∶= lim sup
𝑟→∞

log|𝑓(𝑟𝑒𝑖𝛩)|

𝑟
 , Θ ∈  [−𝜋, 𝜋]. 

It is known that ℎ𝑓 is determined by the support function of a certain compact and convex 

set 𝐾(𝑓 )  ⊂ ℂ, to be more specific, for 𝑧 = 𝑟𝑒𝑖𝛩 we have 

𝑟ℎ𝑓(𝛩)  =  𝐻𝐾(𝑓)(𝑧) ∶=  sup{𝑅𝑒(𝑧𝑢) ∶  𝑢 ∈  𝐾(𝑓)} 

 (cf. [3]). The set 𝐾(𝑓 ) is called the conjugate indicator diagram of 𝑓. Note that for 

𝑓 ≡  0, we have 𝐾(𝑓 )  =  ∅. We give necessary and sufficient conditions for the location 

and the size of the conjugate indicator diagram of (frequently) hypercyclic functions for 

differential operators 𝜑(𝐷). According to the above relations, this yields information about 

the growth on particular rays or sectors in terms of the indicator function. Since   

max
𝛩∈[−𝜋,𝜋]

ℎ𝑓(𝛩) = max
𝑢∈𝐾(𝑓)

|𝑢|  =  𝜏 (𝑓 ), 

this also includes information about the possible exponential type. In particular, 𝑓 is of 

exponential type zero if and only of 𝐾(𝑓 )  =  {0}. 
We abbreviate the exponential function 𝑧 ↦ 𝑒𝛼𝑧 by 𝑒𝛼, for 𝛼 some complex number. 

For 𝛼 =  𝜏𝑒𝑖𝜓 the indicator function of 𝑒𝛼 is given by 

ℎ𝑒𝛼(𝛩)  =  𝜏 𝑐𝑜𝑠(𝛩 + 𝜓) 

and the conjugate indicator diagram is the singleton {𝛼}. 
With [6] it follows that for an entire function 𝑓 of exponential type we have 𝐾(𝑓 )  =  {𝛼} 
if and only if there is some entire function 𝑓0 of exponential type zero with 𝑓 =  𝑓0𝑒𝛼. In 

that sense, functions which have singleton conjugate indicator diagram are close to the 

corresponding exponential function. In particular, the indicator functions of 𝑓 and 𝑒𝛼 

coincide, which implies that 𝑓 decreases exponentially in the half plane |𝑎𝑟𝑔(𝑧)  +  𝜓|  >
 𝜋/2 if 𝛼 ≠ 0. 

The first result shows that the conjugate indicator diagram of hypercyclic functions 

for differential operators are not restricted with respect to their size and shape. 

Let Ω ⊂  ℂ be a domain and 𝐾 a compact subset of Ω. A cycle Γ in Ω \ 𝐾, is called a 

Cauchy cycle for 𝐾 in Ω if indΓ(𝑢)  =  1 for every 𝑢 ∈  𝐾 and indΓ(𝑤)  =  0 for every 

𝑤 ∈  ℂ \ Ω. The existence of such a cycle is always guaranteed and, moreover, the Cauchy 

integral formula 

𝑓(𝑧) =
1

2𝜋𝑖
 ∫

𝑓(𝜉)

𝜉 − 𝑧
𝑑𝜉

 

Γ

 



 

 

3 
 

is valid for every 𝑧 ∈  𝐾 (see [17]). By |Γ| we denote the trace of and len(Γ) ∶= ∫ |Γ(𝑡)| 𝑑𝑡
𝑏

𝑎
 

is the length of Γ. In the following, 𝐾 always has a simply connected complement. In this 

case, may be chosen as a simple closed path. For a given compact and convex set 𝐾 ⊂  𝐶, 

we denote by Exp(𝐾) the space of all entire functions 𝑓 of exponential type that satisfy 

𝐾(𝑓 )  ⊂  𝐾. This space naturally of analytic functionals (cf. [14], [15], [3]). The differential 

operators are mainly considered on 𝐸𝑥𝑝(𝐾), which is very convenient as we will see. 

For a function 𝑓 of exponential type, ℬ𝑓 (𝑧) ∶= ∑ 𝑓(𝑛)(0)/𝑧𝑛+1∞
𝑛=0  is called the Borel 

transform of 𝑓. The Borel transform is a holomorphic function on some neighbourhood of 

infinity that vanishes at infinity. It is known that the conjugate indicator diagram 𝐾(𝑓) is 

the smallest convex, compact set such that ℬ𝑓 admits an analytic continuation to ℂ\ 𝐾(𝑓 ) 
and that the inverse of the Borel transform is given by 

𝑓(𝑧) =
1

2𝜋𝑖
 ∫ℬ𝑓(𝜉)𝑒𝜉𝑧𝑑𝜉

 

Γ

 

where is a Cauchy cycle for 𝐾(𝑓 ) in ℂ ( cf. [6], [3]). This integral formula is known as the 

Pólya representation. 

Finally, we make use of the following notions: ℂ∞  is the extended complex plane 

ℂ ∪ {∞},𝔻 ∶=  {𝑧 ∶ |𝑧|  <  1} and 𝕋 ∶=  {𝑧 ∶  |𝑧|  =  1}. If 𝐴 ⊂ ℂ, then 𝐴−1 ∶= {𝑧 ∶  1/𝑧 ∈

 𝐴}, where as usual 1/0 ∶=  ∞,𝐴 is the closure of 𝐴 and conv(𝐴) is the convex hull of 𝐴. 

For an open set Ω ⊂  ℂ∞ the space of functions holomorphic on Ω and vanishing at ∞ (if 

∞ ∈  Ω) endowed with the topology of uniform convergence on compact subsets is denoted 

by 𝐻(Ω). Recall that a function f is said to be holomorphic at infinity if 𝑓(1/𝑧) is 

holomorphic at the origin. 

For the proof of the next proposition, see [15]. 

Proposition (1.1.1)[1]: Let 𝐾 ⊂  ℂ be a compact and convex set. 

(i) For every 𝑛 ∈ ℕ, 

‖𝑓‖𝐾,𝑛 ∶= sup
𝑧∈ℂ

|𝑓(𝑧)| 𝑒−𝐻𝐾(𝑧)−
1
𝑛
|𝑧| 

defines a norm ‖∙‖𝐾,𝑛 on Exp(𝐾) and the space Exp(𝐾), endowed with the topology induced 

by the sequence {‖∙‖𝐾,𝑛 ∶  𝑛 ∈ ℕ}, is a Fréchet space. 

(ii) The Borel transfrom 

ℬ = ℬ𝐾 ∶  Exp(𝐾)  →  𝐻(ℂ∞\ 𝐾),   𝑓 ⟼ ℬ𝑓|ℂ∞\𝐾  

is an isomorphism. 

By differentiation of the parameter integral, the Polya representation yields 

𝑓(𝑛)(𝑧) =
1

2𝜋𝑖
 ∫ℬ𝑓(𝜉)𝜉𝑛𝑒𝜉𝑧𝑑𝜉

 

Γ

. 

Inspired by this formula, we introduce a class of operators on Exp(𝐾) by replacing 𝜉𝑛 in 

the above integral by a function holomorphic on some neighborhood of 𝐾. We define 𝐻(𝐾) 
to be the space of germs of holomorphic functions on 𝐾, where 𝐾 ⊂ ℂ is some compact set. 

In order to simplify the notation, an element of 𝐻(𝐾) shall always be identified with some 

of its representatives 𝜑 which is defined on an open neighbourhood Ω𝜑 of 𝐾. In case that 𝐾 

is convex we always assume Ω𝜑 to be simply connected (actually we may suppose Ω𝜑 to be 

even convex). 

Now, for a fixed compact and convex set 𝐾 ⊂ ℂ and a germ 𝜑 ∈  𝐻(𝐾), we define 
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𝜑(𝐷)𝑓(𝑧):=
1

2𝜋𝑖
 ∫ℬ𝑓(𝜉)𝜑(𝜉)𝑒𝜉𝑧 𝑑𝜉

 

Γ

                            (3) 

where is a Cauchy cycle for 𝐾 in Ω𝜑. Obviously, this definition is independent of the 

particular choice of Γ. If 𝜑 extends to an entire function 𝜑(𝑧) = ∑ 𝑐𝑛𝑧
𝑛∞

𝑛=0 , the interchange 

of integration and summation immediately yields 

∑𝑐𝑛𝑓
(𝑛)(𝑧)

∞

𝑛=0

 =
1

2𝜋𝑖
 ∫ℬ𝑓(𝜉)𝜑(𝜉)𝑒𝜉𝑧 𝑑𝜉

 

Γ

. 

We see that the operators 𝜑(𝐷) from (3) are a natural extension of the differential operators 

in (1).  

Proposition (1.1.2)[1]: Let 𝐾 be a compact, convex set in ℂ and 𝜑 ∈  𝐻(𝐾). Then 𝜑(𝐷) 
defined by (3) is a continuous operator on Exp(𝐾). 

Proof: For a given positive integer 𝑛, we choose Γ such that |Γ| ⊂
1

𝑛
𝔻+𝐾. Then 

𝐻𝑐𝑜𝑛𝑣(|Γ|) ≤ 𝐻𝐾+1
𝑛
𝔻

 and that means (𝑅𝑒(𝜉𝑧)  − 𝐻𝐾(𝑧)  − 𝑛
−1|𝑧|)  ≤  0 for all 𝜉 ∈ |Γ| and 

all 𝑧 ∈ ℂ. Consequently, |𝑒𝜉𝑧−𝐻𝐾
(𝑧)−

1

𝑛
|𝑧|| ≤  1 for all 𝑧 ∈ ℂ and all 𝜉 ∈ |Γ|. As 

ℬ: Exp(𝐾) → 𝐻(ℂ∞\ 𝐾) is an isomorphism and |Γ| is compact in ℂ\ 𝐾, there is an 𝑚 ∈ ℕ 

and a constant 𝐶 >  0 such that sup{|ℬ𝑓(𝜉)| ∶ 𝜉 ∈ |Γ|} ≤ 𝐶‖𝑓‖𝐾,𝑚. With 𝑀 ∶=
1

2𝜋
∫ |𝜑(𝜉)|𝑑𝜉
 

Γ
, we now obtain      

‖𝜑(𝐷)𝑓‖𝐾,𝑛  = sup
𝑧∈ℂ

|
1

2𝜋𝑖
 ∫𝜑(𝜉)ℬ𝑓(𝜉)𝑒𝜉𝑧 𝑑𝜉

 

Γ

| 𝑒−𝐻𝐾
(𝑧)−

1
𝑛
|𝑧| 

≤ sup
𝑧∈ℂ

1

2𝜋
 ∫ |𝜑(𝜉)||ℬ𝑓(𝜉)|

 

Γ

|𝑒𝜉𝑧−𝐻𝐾
(𝑧)−

1
𝑛
|𝑧|| 𝑑𝜉 ≤ 𝑀𝐶‖𝑓‖𝐾,𝑚. 

This proves that 𝜑(𝐷) is a self-mapping on Exp(𝐾) and the continuity of this operator. 

Proposition (1.1.3)[1]: Let 𝐾 ⊂ ℂ be a compact and convex set. 

(i) For any 𝛼 ∈  𝐾, the set {𝑃𝑒𝛼 ∶  𝑃 polynomial } is dense in Exp(𝐾). 
(ii) If A is an infinite subset of 𝐾, then span{𝑒𝛼 ∶  𝛼 ∈  𝐴} is dense in Exp(𝐾). 
Proof: Let Σ denote the space of all polynomials. In a first case we assume that 0 ∈  𝐾. 

For a function 𝑓 ∈  𝐸𝑥𝑝(𝐾) we have that ℬ̃𝑓 ∶=  (1/⋅) ℬ𝑓 (1/⋅) ∈ 𝐻(ℂ∞\ 𝐾
−1). Since

 ℬ ∶ 𝐸𝑥𝑝(𝐾)  →  𝐻(ℂ∞\ 𝐾) is an isomorphism, one verifies that ℬ̃ ∶ 𝐸𝑥𝑝(𝐾)  →
 𝐻(ℂ∞\ 𝐾

−1) is also an isomorphism. Now, Σ is dense in 𝐻(ℂ∞\𝐾
−1) by Runge’s theorem 

and observing that ℬ̃−1(𝛴)  =  𝛴 this shows that 𝛴 is dense in 𝐸𝑥𝑝(𝐾). 
Let 𝐾 be an arbitrary compact and convex set. By means of [6] it follows that for every 

entire function 𝑓 of exponential type and 𝛼 ∈ ℂ we have 𝐾(𝑓𝑒−𝛼)  =  𝐾(𝑓)  −  {𝛼}. Thus, 

if 𝑔 =  𝑓 /𝑒𝛼 for an 𝑓 ∈  𝐸𝑥𝑝(𝐾) and 𝛼 ∈  𝐾, 

||𝑓||
𝐾,𝑛

= sup
𝑧∈ℂ

 |𝑔(𝑧)||𝑒𝛼𝑧|𝑒−𝐻𝐾
(𝑧)−

1
𝑛
|𝑧| 

= sup
𝑧∈ℂ

 |𝑔(𝑧)|𝑒−𝐻𝐾
(𝑧)−𝐻−{𝛼}(𝑧)−

1
𝑛
|𝑧| 

= sup
𝑧∈ℂ

 |𝑔(𝑧)|𝑒−𝐻𝐾−{𝛼}
(𝑧)−

1
𝑛
|𝑧| 

= ||𝑔||𝐾−{𝛼},𝑛 

which shows that 𝑓 ⟼ 𝑓 /𝑒𝛼 is an isometric isomorphism from 𝐸𝑥𝑝(𝐾) to 𝐸𝑥𝑝(𝐾 − {𝛼}). 
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With the first part, this implies (i). 

Without loss of generality, we may assume 0 ∉ 𝐴. It is easily seen that ℬ𝑒𝛼 = 1/(⋅ −𝛼) and 

thus ℬ(𝑠𝑝𝑎𝑛{𝑒𝛼 ∶ 𝛼 ∈  𝐴})  =  𝑠𝑝𝑎𝑛{1/(⋅ − 𝛼) ∶  𝛼 ∈  𝐴}. Since 𝐴 has an accumulation 

point in 𝐾, a variant of Runge’s theorem (see. [13]) yields that 𝑠𝑝𝑎𝑛{1/(⋅  − 𝛼) ∶ 𝛼 ∈  𝐴} 
is dense in 𝐻(ℂ∞\ 𝐾). According to the fact that ℬ ∶  𝐸𝑥𝑝(𝐾)  →  𝐻(ℂ∞\ 𝐾) is an 

isomorphism, this shows (ii). 
A germ 𝜑 ∈  𝐻(𝐾) is said to be zero-free if there exists a representative 𝜑 which is zero-

free on some open neighbourhood of 𝐾. In this case, we always assume that Ω𝜑 is so small 

that 𝜑 is zero-free on Ω𝜑 and thus 1/𝜑 ∈ 𝐻(𝛺𝜑). 

Proposition (1.1.4)[1]: Let 𝐾 ⊂ ℂ be a compact, convex set and 𝜑,𝜓 in 𝐻(𝐾). Then we 

have 𝜑(𝐷)𝜓(𝐷)  = 𝜑𝜓(𝐷). In particular, if 𝜑 is zero-free, then 

𝜑(𝐷) (1/𝜑)(𝐷)  =  (1/𝜑)(𝐷) 𝜑(𝐷)  =  id𝐸𝑥𝑝(𝐾) 

and hence 𝜑(𝐷) is invertible with 𝜑(𝐷)−1  =  (1/𝜑)(𝐷). 
Proposition (1.1.4) is an immediate consequence of 

Lemma (1.1.5)[1]: Let 𝐾 be a compact, convex set in ℂ, 𝑓 ∈  𝐸𝑥𝑝(𝐾) and 𝜑 ∈  𝐻(𝐾). Then 

for all ℎ ∈  𝐻(𝛺𝜑), we have 

∫ℬ𝑓(𝜉) 𝜑(𝜉) ℎ(𝜉) 𝑑𝜉
 

Γ

 = ∫ℬ(𝜑(𝐷)𝑓 )(𝜉) ℎ(𝜉) 𝑑𝜉
 

Γ

 

Where Γ is a Cauchy cycle for 𝐾 in Ω𝜑. 

Proof: Considering Runge’s theorem, one verifies that, for fixed 𝛼 ∈ ℂ, {𝑃𝑒𝛼 ∶
 𝑃 polynomial } is dense in 𝐻(Ω) whenever Ω is a simply connected open subset of ℂ. 

According to the fact that 𝑃𝑒𝛼  ∈  𝐸𝑥𝑝(𝐾) for 𝛼 ∈  𝐾, this shows that 𝐸𝑥𝑝(𝐾) is densely 

embedded in 𝐻(Ω) for every non-empty, compact and convex 𝐾 ⊂ ℂ. Thus, as a 

consequence of Proposition (1.1.3) (ii), 𝐸 ∶=  𝑠𝑝𝑎𝑛{𝑒𝛼 ∶  𝛼 ∈ ℂ} is dense in 𝐻(Ω𝜑) since 

Ω𝜑 is simply connected. 

We consider the functional 

〈Λ, ℎ〉 ∶= ∫(ℬ𝑓(𝜉) 𝜑(𝜉)  −  ℬ(𝜑(𝐷)𝑓 )(𝜉)) ℎ(𝜉) 𝑑𝜉
 

Γ

 

on 𝐻(Ω𝜑). With the Polya representation for (𝐷)𝑓 , the following holds: 

1

2𝜋𝑖
∫ℬ(𝜑(𝐷)𝑓 )(𝜉)𝑒𝜉𝛼 𝑑𝜉
 

Γ

 =  𝜑(𝐷)𝑓(𝛼)  =
1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝜑(𝜉)𝑒𝜉𝛼 𝑑𝜉
 

Γ

. 

Hence 〈Λ, 𝑒𝛼〉 =  0 for all 𝛼 ∈ ℂ and consequently Λ|𝐸 =  0. As 𝐸 is dense in 𝐻(Ω𝜑), we 

have 𝛬 =  0.   

Proposition (1.1.6)[1]: Let 𝐾 ⊂ ℂ be a compact, compact set. Then the set of all 𝑓 ∈
 𝐸𝑥𝑝(𝐾) with 𝐾(𝑓 )  =  𝐾 is residual in 𝐸𝑥𝑝(𝐾). 
Proof: Let 𝑀 ⊂  𝐻(ℂ∞\ 𝐾) be the set of functions that are exactly holomorphic in ℂ∞\𝐾, 

that means, for every 𝑤 ∈ ℂ\ 𝐾 the radius of convergence of the Taylor series with center 

𝑤 equals dist(𝑤,𝐾). Due to a result of V. Nestoridis (see [16]), 𝑀 is a dense 𝐺𝛿-set in 

𝐻(ℂ∞\ 𝐾). Since ℬ−1(𝑀 ) ⊂ {𝑓 ∈  𝐸𝑥𝑝(𝐾) ∶  𝐾(𝑓 ) = 𝐾} and ℬ ∶  𝐸𝑥𝑝(𝐾)  → 𝐻(ℂ∞\ 𝐾) 
is an isomorphism, we obtain the assertion. 

Theorem (1.1.7)[1]: Let 𝐾 be a convex, compact subset of ℂ and 𝜑 ∈  𝐻(𝐾) non-constant. 

Then ℋ𝒞(𝜑(𝐷), Exp(𝐾)) ≠ ∅ if and only if 𝜑(𝐾) ∩ 𝕋 ≠ ∅. Further, if 
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ℋ𝒞(𝜑(𝐷), Exp(𝐾)) ≠ ∅, then the set of all 𝑓 ∈ ℋ𝒞(𝜑(𝐷), Exp(𝐾)) with 𝐾(𝑓 )  =  𝐾 is 

residual in Exp(K) in the sense of Baire categories. 

Before giving the proof, some auxiliary results for Exp(𝐾) and 𝜑(𝐷) are established. 

Proof: Firstly, assume that 𝜑(𝐾)  ⊂ 𝔻. Let be a Cauchy cycle for 𝐾 in Ω𝜑 being so close 

to 𝐾 that |𝜑|  <  𝛿 <  1 on . Then, considering Proposition (1.1.4), for any 𝑓 ∈  𝐸𝑥𝑝(𝐾) 
we have 

|𝜑(𝐷)𝑛𝑓(0)|  = |
1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝜑𝑛(𝜉)𝑑𝜉
 

Γ

| ≤
𝛿𝑛

2𝜋
∫|ℬ𝑓(𝜉)|
 

Γ

𝑑𝜉 →  0 

as 𝑛 tends to infinity. Consequently, 𝜑(𝐷) cannot be hypercyclic on 𝐸𝑥𝑝(𝐾). If 𝜑(𝐾)  ⊂

ℂ \𝔻, then 𝜑(𝐷) is zero-free, as an element of 𝐻(𝐾), and thus, by Proposition (1.1.4), it is 

invertible on 𝐸𝑥𝑝(𝐾) with 𝜑(𝐷)−1  =  (1/𝜑)(𝐷). Now, since (1/𝜑)(𝐾)  ⊂ 𝔻, we have 

ℋ𝒞((1/𝜑)(𝐷), 𝐸𝑥𝑝(𝐾))  =  ∅, and this is equivalent to ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾))  =  ∅ (see 

[18]). 

Let us now assume that 𝜑(𝐾)  ∩  𝑇 ≠ ∅ and 𝐾 to have non-emtpy interior. Taking 

into account that 𝜑 is non-constant, we have that 𝜑(𝐾) has non-empty interior and thus, 

span{𝑒𝛼 ∶  𝛼 ∈  𝐾, |𝜑(𝛼)|  >  1} and span{𝑒𝛼 ∶  𝛼 ∈  𝐾, |𝜑(𝛼)|  <  1} are dense in 

𝐸𝑥𝑝(𝐾) by Proposition (1.1.3) (i). Observing that 𝜑(𝐷)𝑒𝛼  =  𝜑(𝛼)𝑒𝛼, the Godefroy-

Shapiro Criterion (see [18]) yields ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾)) ≠ ∅. In order to prove the 

hypercyclicity for the case that 𝐾 has empty interior, we show that 𝜑(𝐷) is transitive on 

𝐸𝑥𝑝(𝐾) (i.e. for every pair of non-empty open sets 𝑈, 𝑉 ⊂  𝐸𝑥𝑝(𝐾) there exists a positive 

integer 𝑘 such that 𝑇𝑘(𝑈)  ∩  𝑉 ≠ ∅), which is equivalent to the hypercyclicity of 𝜑(𝐷) on 

𝐸𝑥𝑝(𝐾) (cf. [18]). 

For every positive integer n we find some convex, compact set 𝐾 ⊂  𝐿 ⊂  𝛺 that has 

non-empty interior such that 𝐻𝐿(𝑧) + 1/(𝑛 +  1)|𝑧|  <  𝐻𝐾(𝑧) + 1/𝑛|𝑧| implying 

‖·‖𝐿,𝑛+1   < ‖·‖𝐾,𝑛. Consequently, for given non-empty of open sets 𝑈 , 𝑉 ⊂ 𝐸𝑥𝑝(𝐾), we 

may assume the existence  open sets �̃�, �̃�  ⊂ Exp(𝐿) with 𝑈 =  �̃�  ∩ 𝐸𝑥𝑝(𝐾) and 

𝑉 =  �̃� ∩ 𝐸𝑥𝑝(𝐾). By the above, 𝜑(𝐷) is hypercyclic and hence transitive on 𝐸𝑥𝑝(𝐾). This 

implies the existence of a positive integer 𝑘 such that �̃� ∩  𝑇−𝑘 (�̃� ) is a non-empty open set 

in 𝐸𝑥𝑝(𝐿). The denseness of 𝐸𝑥𝑝(𝐾) in 𝐸𝑥𝑝(𝐿), which is for instance a consequence of 

Proposition (1.1.3) (i), yields 𝐸𝑥𝑝(𝐾) ∩ �̃� ∩ 𝑇−𝑘  (�̃� ) = 𝑈 ∩ 𝑇−𝑘 (�̃� ) ≠ ∅ so that 

𝑇𝑘(𝑈 )  ∩  𝑉 ≠ ∅. 

Since 𝐸𝑥𝑝(𝐾) is a Frechet space, ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾)) ≠ ∅ implies that 

ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾)) is a dense 𝐺𝛿-set in 𝐸𝑥𝑝(𝐾) (see. [12]). Due to Proposition (1.1.6), we 

obtain that {𝑓 ∈  𝐸𝑥𝑝(𝐾) ∶  𝐾(𝑓 )  =  𝐾}  ∩ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾)) is residual in 𝐸𝑥𝑝(𝐾).    
As an easy consequence of Theorem (1.1.7) we obtain. 

Theorem (1.1.8)[1]: Let 𝜑 be a non-constant entire function of exponential type. Then for 

every compact and convex set 𝐾 ⊂  ℂ that intersects 𝐶𝜑 there exists an 𝑓 ∈

 ℋ𝒞(𝜑(𝐷),𝐻(ℂ)) that is of exponential type with 𝐾(𝑓 )  =  𝐾. 

Theorem (1.1.8) implies that for every 𝛼 ∈  𝐶𝜑 there exists some 𝑓0 of exponential type 

zero such that 𝑓 =  𝑓0𝑒𝛼 ∈  ℋ𝒞(𝜑(𝐷),𝐻(ℂ)). Consequently, in the case that 𝐶𝜑 intersects 

the origin, there is a function 𝑓 ∈  ℋ𝒞(𝜑(𝐷),𝐻(ℂ)) that is of exponential type zero. For the 

translation operator 𝑒1(𝐷), a much stronger result is due to S. M. Duyos-Ruiz. She proved 

that functions 𝑓 ∈ ℋ𝒞(𝑒1(𝐷), 𝐻(ℂ)) can have arbitrary slow tranzendental rate of growth, 
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that is, for every 𝑞 ∶  [0,∞)  →  [1,∞) such that 𝑞(𝑟)  →  ∞ as 𝑟 tends to infinity, there are 

functions 𝑓 ∈ ℋ𝒞(𝑒1(𝐷), 𝐻(ℂ)) such that 𝑀𝑓(𝑟)  =  𝑂(𝑟
𝑞(𝑟)) (cf. [9]). In [8], this result is 

extended the Hilbert spaces consisting of entire functions of small growth. 

We will introduce a transform that quasi-conjugates differential operators and which 

enables us to extend the result of S. M. Duyos-Ruiz to the whole class of differential 

operators in the following sense. 

Proof: As mentioned in the proof of Lemma (1.1.5), 𝐸𝑥𝑝(𝐾) is densely embedded in 𝐻(ℂ) 
for every non-empty, compact and convex set 𝐾 ⊂  ℂ. Now, if 𝜑 is an entire function of 

exponential type, we obtain ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾)) ⊂ ℋ𝒞(𝜑(𝐷),𝐻(ℂ)) and see that Theorem 

(1.1.8) is an immediate consequence of Theorem (1.1.7).    

Let 𝑇 ∶  𝑋 →  𝑋 and 𝑆 ∶  𝑌 →  𝑌 be two continuous operators acting on topological 

vector spaces , 𝑌 . A very useful tool to link the dynamics of such operators is to show that 

they are (quasi-) conjugated. That means, find a continuous mapping 𝛷 ∶  𝑋 →  𝑌 having 

dense range and such that 𝛷 ∘  𝑇 =  𝑆 ∘  𝛷, that is, the diagram 

 
commutes. Then 𝑆 is said to be quasi-conjugated to 𝑇 (by Φ). If Φ is bijective and Φ−1 is 

continuous, then 𝑇 and 𝑆 are said to be conjugated. 

Proposition (1.1.9)[1]: If 𝑆 is quasi-conjugated to 𝑇 by Φ, then Φ(ℋ𝒞(𝑇, 𝑋))  ⊂  ℋ𝒞(𝑆, 𝑌) 
and Φ(ℱℋ𝒞(𝑇, 𝑋))  ⊂  ℱℋ𝒞(𝑆, 𝑌 ). 
This result is immediately deduced from the definition of quasi-conjugacy (cf. [12]). We 

introduce a transform that quasi-conjugates the operators. 

Let 𝐾 ⊂ ℂ be a compact and convex set and 𝜑 ∈  𝐻(𝐾). As in the definition of the 

operators 𝜑(𝐷), our starting point is the Polya representation. For 𝑓 ∈  𝐸𝑥𝑝(𝐾), 
we set 

Φ𝜑𝑓(𝑧):=
1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝑒𝜑(𝜉)𝑧 𝑑𝜉
 

Γ

                                               (4) 

where is a Cauchy cycle for 𝐾 in Φ𝜑. It is clear that this definition is independent of the 

particular choice of Γ. 

Lemma (1.1.10)[1]: Let 𝐾 ⊂ ℂ be a compact, convex set and (𝐾𝑛) a sequence of compact, 

convex supersets of 𝐾 such that 𝐾𝑛
∘  ⊃  𝐾𝑛+1  and ⋂ 𝐾𝑛𝑛∈𝑁 =  𝐾. Then 𝐸𝑥𝑝(𝐾)  =

⋂ 𝐸𝑥𝑝(𝐾𝑛)𝑛∈𝑁  in algebraic and topological sense.    

Proof: The equality in algebraic sense is clear. That the spaces also coincide in topological 

sense is an immediate consequenc of the observation that for a given  ∈  𝑁 , we have 

𝐻𝐾𝑛,𝑗  ≤  𝐻𝐾,𝑙 for a suitable choice of 𝑛, 𝑗 ∈  𝑁 . 

Proposition (1.1.11)[1]: Let 𝐾 be a compact, convex subset of ℂ and 𝜑 ∈  𝐻(𝐾) non-

constant. 
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Then, for each 𝑓 ∈  𝐸𝑥𝑝(𝐾), the function Φ𝜑𝑓 defined by (4) is an entire function of 

exponential type with 𝐾(Φ𝜑𝑓 ) ⊂  conv(𝜑(𝐾(𝑓 ))). Further 

Φ𝜑 ∶  𝐸𝑥𝑝(𝐾)  →  𝐸𝑥𝑝(conv(𝜑(𝐾))) 

is a continuous operator that has dense range. 

Proof: One immediately verifies that Φ𝜑𝑓 is an entire function. We fix some positive 

integer 𝑛 and choose Γ such that 𝜑(|Γ|) is contained in conv(𝜑(𝐾(𝑓))) +
1

𝑛
𝔻.  

Then 

𝐻𝑐𝑜𝑛𝑣(𝜑(|Γ|))(𝑧) ≤  𝐻conv(𝜑(𝐾(𝑓)))+1
𝑛
𝔻
(𝑧) = 𝐻conv(𝜑(𝐾(𝑓)))(𝑧)  +

1

𝑛
|𝑧| 

and thus 

𝜙(𝜉)𝑧 − 𝐻(𝑧) − |𝑧| 

||Φ𝜑𝑓||conv(𝜑(𝐾(𝑓))),𝑛 = sup
𝑧∈ℂ

|
1

2𝜋𝑖
 ∫ℬ𝑓(𝜉)𝑒𝜑(𝜉)𝑧 𝑑𝜉

 

Γ

| 𝑒−𝐻conv(𝜑(𝐾(𝑓)))
(𝑧)−

1
𝑛
|𝑧|

 

≤
len(Γ)

2𝜋
sup
𝜉∈|Γ|

|ℬ𝑓(𝜉)| 𝑒𝐻𝑐𝑜𝑛𝑣(𝜑(|Γ|))(𝑧)𝑒−𝐻conv(𝜑(𝐾(𝑓)))
(𝑧)−

1
𝑛
|𝑧|     (5) 

≤
len(Γ)

2𝜋
sup
𝜉∈|Γ|

|ℬ𝑓(𝜉)| <  ∞. 

As n was arbitrary, this yields that 𝐾(Φ𝜑𝑓 ) is contained in conv(𝜑(𝐾(𝑓))), which in 

particular implies that Φ𝜑𝑓 is of exponential type and Φ𝑓 ∈  𝐸𝑥𝑝(conv(𝜑(𝐾))). 

We proceed with the second assertion. Taking into account that for some 𝐶 <  ∞ and 𝑚 ∈
ℕ we have sup

𝜉∈|Γ|
|ℬ𝑓(𝜉)| ≤  𝐶 ||𝑓||𝐾,𝑚 due to the fact that ℬ ∶  𝐸𝑥𝑝(𝐾)  →  𝐻(ℂ∞ \ 𝐾) is an 

isomorphism, the continuity of Φ𝜑 follows from (5) when 𝐾(𝑓 ) is replaced by 𝐾. It remains 

to show that Φ𝜑(𝐸𝑥𝑝(𝐾)) is dense in 𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾))). Therefore, let 𝐾1, 𝐾2, . . . 

be a sequence of compact, convex sets in Ω𝜑 such that 𝐾𝑛
∘  ⊃  𝐾𝑛+1 and the intersection of 

all these sets is equal to 𝐾. As already noted above, the Borel transform of 𝑒𝛼 is given by 

𝜉 ⟼ 1/(𝜉 −  𝛼). Inserting this in (4), the Cauchy integral formula yields Φ𝜑(𝑒𝛼)  =

 𝑒𝜑(𝛼) for all 𝛼 in some 𝐾𝑛. Consequently, for arbitrary 𝑛 ∈  ℕ 

Φ𝜑(𝑠𝑝𝑎𝑛{𝑒𝛼 ∶  𝛼 ∈  𝐾𝑛})  =  𝑠𝑝𝑎𝑛{𝑒𝜑(𝛼) ∶  𝛼 ∈  𝐾𝑛}  ⊂  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾𝑛))) 

which implies that Φ𝜑: 𝐸𝑥𝑝(𝐾𝑛)  →  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾𝑛)) has dense range according to 

Proposition (1.1.3)(ii) and the fact that 𝜑 is non-constant. Since 𝐸𝑥𝑝(𝐾) is dense in 

𝐸𝑥𝑝(𝐾𝑛), we obtain that Φ𝜑(𝐸𝑥𝑝(𝐾)) lies densely in 𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾𝑛))). Furthermore, 

we have 

⋂𝑐𝑜𝑛𝑣(𝜑(𝐾𝑛))

𝑛∈ℕ

 =  𝑐𝑜𝑛𝑣(𝜑(𝐾)) 

and hence 

⋂𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾𝑛)))

𝑛∈ℕ

 =  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾))) 

in algebraic and topological sense by Lemma (1.1.10). It is now obvious that Φ𝜑(𝐸𝑥𝑝(𝐾)) 

is dense in 𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾))).   
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In the formulation of Theorem (1.1.11), it is necessary to form the convex hull in the image 

space 𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾))), since 𝐸𝑥𝑝(𝐾) is only defined for convex sets 𝐾. However, we 

show that the Borel transform of Φ𝜑𝑓 actually admits an analytic continuation beyond 

ℂ∞\𝑐𝑜𝑛𝑣(𝜑(𝐾)). For that purpose, we have to introduce a further notation: For a compact 

set 𝐾 ⊂  ℂ, the polynomially convex hull 𝐾 is defined as the union of 𝐾 with the bounded 

components of its complement. Let 𝐾 ⊂ ℂ be a compact, convex set,  

𝑓 ∈  𝐸𝑥𝑝(𝐾) and 𝜑 ∈  𝐻(𝐾). For 𝑤 ∈ ℂ\𝜑(𝐾)̂ we set  

𝐻𝜑(𝑤):=
1

2𝜋𝑖
∫

ℬ𝑓(𝜉)

𝑤 −  𝜑(𝜉)
𝑑𝜉

 

Γ

 

With Γ a Cauchy cycle for 𝐾 ∈ Ω𝜑 being so near to 𝐾 that 𝜑(|Γ|) is contained in a simply 

connected, compact set 𝐿 ⊃ 𝜑(𝐾)̂ such that 𝑤 ∈ ℂ \𝐿. This definition is independent of the 

particular choice of Γ. Since 𝜑(|Γ|) can be arbitrarily near to 𝜑(𝐾), we obtain a function 

𝐻𝜑| ∈ 𝐻(ℂ∞\𝜑(𝐾)̂). 

Proposition (1.1.12)[1]: The function 𝐻𝜑 ∈ 𝐻(ℂ∞\𝜑(𝐾)̂) defines an analytic continuation 

of ℬ(Φ𝜑)  ∈  𝐻(ℂ∞ \ 𝑐𝑜𝑛𝑣(𝜑(𝐾))). 

Proof: Let Γ0 be a Cauchy cycle for 𝑐𝑜𝑛𝑣(𝜑(𝐾)) in ℂ. Then we can chose a Cauchy cycle 

for 𝐾 in Ω𝜑 being so near to 𝐾 that indΓ0(𝜑(𝑢))  =  1 for all 𝑢 ∈  |Γ|. Then 

1

2𝜋𝑖
∫ 𝐻𝜑(𝑤)𝑒

𝑤𝑧 𝑑𝑤
 

Γ0

 =
1

2𝜋𝑖
∫ℬ𝑓(𝜉)
 

Γ

1

2𝜋𝑖
∫

𝑒𝑤𝑧

𝑤 −  𝜑(𝜉)
 𝑑𝑤

 

Γ0

𝑑𝜉

=
1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝑒𝜑(𝜉)𝑧
 

Γ

𝑑𝜉 = Φ𝜑𝑓(𝑧) 

by the Cauchy integral formula. Considering that ℬ𝑐𝑜𝑛𝑣(𝜑(𝐾)) is an isomorphism, we can 

conclude 𝐻𝜑|ℂ∞\𝑐𝑜𝑛𝑣(𝜑(𝐾)) =  ℬ(Φ𝜑)|ℂ∞\𝑐𝑜𝑛𝑣(𝜑(𝐾)). 

Now, let 𝑓 be an entire function of exponential type and 𝜑 ∈  𝐻(𝐾(𝑓 )). Interchanging 

integration and differentiation yields 

 (Φ𝜑𝑓)
(𝑛)(𝑧)  =

1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝜑𝑛(𝜉)𝑒𝜑(𝜉)𝑧
 

Γ

𝑑𝜉                              (6) 

which implies that the Taylor expansion of Φ𝜑𝑓 at the origin is given by 

Φ𝜑𝑓 (𝑧)  = ∑
𝜑(𝐷)𝑛𝑓(0)

𝑛!

∞

𝑛=0

𝑧𝑛.                                              (7) 

Further, in accordance with our conventions, if 𝜑 ∈  𝐻(𝐾(𝑓 )) is zero-free, Φ𝜑 is a simply 

connected domain that contains no zeros of 𝜑. These conditions ensure the existence of a 

logarithm function log 𝜑 ∈  𝐻(Φ𝜑) for 𝜑. Then for each non-negative integer 𝑛, we have  

𝑒1(𝐷)
𝑛Φlog𝜑𝑓(0) = Φlog𝜑𝑓 (𝑛)  =

1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝑒𝑛 log𝜑(𝜉)
 

Γ

𝑑𝜉 

=
1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝜑𝑛
 

Γ

(𝜉)𝑑𝜉 = 𝜑(𝐷)𝑛𝑓 (0).                               (8) 

We extend (6) and (8) by showing that Φ𝜑 commutes with differential operators on 𝐸𝑥𝑝(𝐾). 

For that purpose, we have to introduce another terminology: A germ 𝜑 ∈  𝐻(𝐾) is said to 

be biholomorphic, if Ω𝜑 can be choosen so that 𝜑 ∶  Ω𝜑  →  𝜑(Ω𝜑) is biholomorphic. In this 

case, we always assume Ω𝜑 to be so small that the above property is ensured. 
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Proposition (1.1.13)[1]: Let 𝐾 be a compact, convex subset of ℂ and let 𝜑 ∈  𝐻(𝐾). 
(i) 𝐷 ∶  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾)))  →  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜑(𝐾))) is quasi conjugated to 𝜑(𝐷) ∶
 𝐸𝑥𝑝(𝐾)  →  𝐸𝑥𝑝(𝐾) 𝑏𝑦 Φ𝜑; 

(ii) If 𝜑 is zero-free then 𝑒1(𝐷) ∶  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(log𝜑 (𝐾)))  →  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(log𝜑 (𝐾))) is 

quasi conjugated to 𝜑(𝐷): 𝐸𝑥𝑝(𝐾) →  𝐸𝑥𝑝(𝐾) by Φlog𝜑; 

(iii) If 𝐶 is a compact, convex subset of ℂ and 𝜓 ∈  𝐻(𝐶) is biholomorphic and satisfies 

𝜓(𝐶)  ⊃  𝜑(𝐾) then 𝜓(𝐷) ∶  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜓−1 ∘ 𝜑(𝐾)))  →  𝐸𝑥𝑝(𝑐𝑜𝑛𝑣(𝜓−1 ∘ 𝜑(𝐾))) is 

quasi conjugated to 𝜑(𝐷): 𝐸𝑥𝑝(𝐾) →  𝐸𝑥𝑝(𝐾)𝑏𝑦 Φ𝜓−1∘𝜑. 

Proof: Let 𝑓 ∈  𝐸𝑥𝑝(𝐾). In order to see (i), consider the Taylor expansion for Φ𝜑𝑓 in (7) 

and observe that 

𝐷 (∑
𝜑(𝐷)𝑛𝑓(0)

𝑛!

∞

𝑛=0

𝑧𝑛) = ∑
𝜑(𝐷)𝑛+1𝑓(0)

𝑛!

∞

𝑛=0

𝑧𝑛 

Considering Lemma (1.1.5), we obtain 

𝑒1(𝐷)
𝑛Φlog𝜑𝑓(𝑧) =

1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝑒(𝑧+𝑛) log𝜑(𝜉)𝑑𝜉
 

Γ

=
1

2𝜋𝑖
∫ℬ𝑓(𝜉)𝜑𝑛(𝜉)𝑒𝑧 log𝜑(𝜉)𝑑𝜉
 

Γ

=
1

2𝜋𝑖
∫ℬ𝜑(𝐷)𝑛𝑓(𝜉)𝑒𝑧 log𝜑(𝜉)𝑑𝜉
 

Γ

= Φlog𝜑𝜑(𝐷)
𝑛𝑓(𝑧). 

With 𝑛 =  1, this is the assertion in (ii). 

In order to show (iii), we consider an arbitrary 𝑧 ∈ ℂ \ 𝐶 and choose a Cauchy cycle Γ1 for 

𝐾 in Ω𝜑 such that 𝜑(|Γ1|)  ⊂  Ω𝜓−1 and 𝜓−1 ∘ 𝜑(|Γ1|) is contained in some compact set 

𝐿 ⊂  Ω𝜓 with 𝑧 ∈ ℂ \ 𝐿. Further, let Γ2 be a Cauchy cycle for 𝐿 in Ω𝜓. Then, according to 

Proposition (1.1.12) see [8], we have 

𝜓(𝐷)(Φ𝜓−1∘𝜑𝑓)(𝑧)  =
1

2𝜋𝑖
∫ ℬ(Φ𝜓−1∘𝜑𝑓)(𝑤)𝑒

𝑤𝑧𝑑𝑤
 

Γ2

=
1

2𝜋𝑖
∫

1

2𝜋𝑖
∫

ℬ𝑓(𝜉)

𝑤 − 𝜓−1 ∘ 𝜑(𝜉)
𝑑𝜉 𝑒𝑤𝑧 𝑑𝑤

 

Γ1

 

Γ2

=
1

2𝜋𝑖
∫ ℬ𝑓(𝜉)

1

2𝜋𝑖
∫

𝜓(𝑤)𝑒𝑤𝑧

𝑤 − 𝜓−1 ∘ 𝜑(𝜉)
 𝑑𝑤 𝑑𝜉

 

Γ1

 

Γ2

=
1

2𝜋𝑖
∫ ℬ𝑓(𝜉)𝜑(𝜉)𝑒𝜓

−1∘𝜑(𝜉)𝑧 𝑑𝜉
 

Γ1

= Φ𝜓−1∘𝜑(𝜑(𝐷)𝑓 )(𝑧). 

Theorem (1.1.14)[1]: (Duyos-Ruiz - Chan and Shapiro). For every admissible comparison 

function a and every 𝛼 ∈ ℂ\{0}, there is an 𝑓 ∈ ℋ𝒞(𝑒1(𝐷), 𝐸𝑥𝑝({0})) such that 𝑀𝑓(𝑟)  =

 𝑂(𝑎(𝑟)). 
By means of the transfrom Φ𝜑, we show that this result extends to the operators 𝜑(𝐷) as 

follows: 

Lemma (1.1.15)[1]: Let 𝐾 ⊂ ℂ be a compact, convex set, 𝜑 ∈  𝐻(𝐾) and 𝛼 ∈ ℂ. Then for 

every 𝑓 ∈  𝐸𝑥𝑝(𝐾), we have 𝜑(𝐷)𝑓 =  𝑒𝛼 𝜑𝛼(𝐷)(𝑓 /𝑒𝛼) where 𝜑𝛼 ∶=  𝜑(·  + 𝛼). 
Proof: For 𝜆 ∈  𝐾, we have 𝜑(𝐷)𝑒𝜆  =  𝜑(𝜆)𝑒𝜆 and hence 

𝜑(𝐷)𝑒𝜆  =  𝑒𝛼𝜑(𝜆)𝑒𝜆−𝛼 = 𝑒𝛼𝜑(𝜆 −  𝛼 +  𝛼)𝑒𝜆−𝛼 , 
which shows the assertion for 𝑓 =  𝑒𝜆, 𝜆 ∈  𝐾. Since 𝜑 is holomorphic in a neighbourhood 

of 𝐾, we can assume that 𝐾 has non-empty interior. Then span{𝑒𝜆 ∶  𝜆 ∈  𝐾} is dense in 
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𝐸𝑥𝑝(𝐾) by Proposition (1.1.3) (ii). Further, as outlined in the proof of Theorem (1.1.3), 

𝑓 ⟼ 𝑓 /𝑒𝛼 is an isometric isomorphism from 𝐸𝑥𝑝(𝐾) to 𝐸𝑥𝑝(𝐾 − {𝛼}) and we can 

conclude that the above equality extends to all 𝑓 ∈  𝐸𝑥𝑝(𝐾). 
Theorem (1.1.16)[1]: Let 𝐾 ⊂ ℂ be a compact, convex set and 𝜑 ∈  𝐻(𝐾) non-constant. 

Then, for every 𝛼 ∈  𝐾 such that |𝜑(𝛼)|  =  1, 𝜑′(𝛼) ≠ 0 and every admissible comparison 

function a, there is some 𝑓0  ∈  𝐸𝑥𝑝({0}) that satisfies 𝑀𝑓0(𝑟)  = 𝑂(𝑎(𝑟)) and such that 𝑓 =

 𝑓0𝑒𝛼  ∈ ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾)). 
Proof: Let 𝑎(𝑧)  = ∑ 𝑎𝑛𝑧

𝑛∞
𝑛=0   be an admissible comparison function. 

Without loss of generality 𝑎 ∈  𝐸𝑥𝑝({0}). Due to Lemma (1.1.15) we can assume that 𝛼 =
 0 and thus we only have to show the existence of some 𝑓 ∈  ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝({0})) with 

𝑀𝑓(𝑟)  =  𝑂(𝑎(𝑟)), 𝑟 >  0. We define 𝑏(𝑧) ∶=  ∑ 𝑏𝑛𝑧
𝑛∞

𝑛=0  with 𝑏𝑛 ∶=  𝑎𝑛/𝑛! which is 

again an admissible comparison function. Now, as outlined above, the results in [8] yield a 

function 𝑔 ∈  𝐸2(𝑏)  ∩  ℋ𝒞(𝑒1(𝐷), 𝐸𝑥𝑝({0})). By the definition of 𝐸2 and (𝑏𝑛), 

∑
|𝑔(𝑛)(0)|

2

(𝑛! 𝑏𝑛)
2

∞

𝑛=0

= ∑
|𝑔(𝑛)(0)|

2

𝑎𝑛
2

∞

𝑛=0

<  ∞. 

This implies that 𝐺(𝑧) ∶=  ∑ |𝑔(𝑛)(0)|∞
𝑛=0 𝑧𝑛 ∈ 𝐸2(𝑎) and hence, as again outlined above, 

𝑀𝐺(𝑟)  =  𝑂(𝑎(𝑟)). 
According to the condition 𝜑′(0) ≠ 0, we have that 𝜑 is biholomorphic as an element of 

𝐻({0}). We can assume that 𝜑(0)  =  1, otherwise, replace 𝑒1 by 𝜑(0)𝑒1 in what follows 

and notice that 𝑔 ∈ ℋ𝒞(𝜑(0)𝑒1(𝐷), 𝐸𝑥𝑝({0})) (see [18]). Then 𝑓 ∶=  Φ𝜑−1∘𝑒1
 𝑔 ∈

ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝({0})) due to Proposition (1.1.9) and Proposition (1.1.13). We find some 

small 𝛿 >  0 and 0 <  𝑐 <  ∞ such that |𝜑−1(𝑒1(𝜉))|  ≤  𝑐|𝜉| for all |𝜉|  <  𝛿. We fix an 

𝑟 >  0 with 1/𝑟 ≤  𝛿 and such that for Γ𝑟 ∶  [0, 2𝜋)  →  ℂ, 𝑡 ⟼ 𝑟−1𝑒𝑖𝑡 we have 𝑒1(|Γ𝑟|)  ⊂

 Ω𝜙−1 . Now, considering that 𝐵𝑔(𝜉) = ∑ 𝑔(𝑛)(0)∞
𝑛=0 /𝜉𝑛+1 on every compact subset of 

ℂ\{0}, we have 

𝑀𝑓(𝑟) ≤ max
|𝑧|=𝑟

|
1

2𝜋𝑖
∫ ℬ𝑔(𝜉)𝑒(𝜑

−1∘𝑒1)(𝜉)𝑧 𝑑𝜉
 

Γr

| 

≤ max
|𝑧|=𝑟

∑|𝑔(𝑛)(0)|

∞

𝑛=0

|
1

2𝜋𝑖
∫
𝑒(𝜑

−1∘𝑒1)(𝜉)𝑧

𝜉𝑛+1
 𝑑𝜉

 

Γr

| 

≤∑|𝑔(𝑛)(0)|

∞

𝑛=0

𝑟𝑛𝑒
𝑐
𝑟
𝑟
 

= 𝑒𝑐  𝐺(𝑟). 
Thus, 𝑀𝑓(𝑟)  =  𝑂(𝑀𝐺(𝑟))  =  𝑂(𝑎(𝑟)) and this completes the proof. 

Theorem (1.1.17)[1]: Let 𝜑 be a non-constant entire function of exponential type and let 

𝛼 ∈  𝐶𝜑 be so that 𝜑′(𝛼) ≠ 0. Then for every 𝑞 ∶  [0,∞)  →  [1,∞) such that 𝑞(𝑟)  →  ∞ 

as 𝑟 tends to infinity, there is an entire function 𝑓0 with 𝑀𝑓0(𝑟) = 𝑂(𝑟
𝑞(𝑟)) and so that 

𝑓0𝑒𝛼 ∈ ℋ𝒞(𝜑(𝐷),𝐻(ℂ)). 
The above results fail to hold in the case of frequent hypercyclicity. Here, some expansion 

of the conjugate indicator diagram is required. 

Proof: According to the proof of Theorem (1.1.8), we have the inclusion 

ℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾))  ⊂  ℋ𝒞(𝜑(𝐷),𝐻(ℂ)) provided that 𝜑(𝐷) extends to a continuous 
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operator on 𝐻(ℂ). Now, the assertion of Theorem (1.1.17) follows from the observation that 

for each 𝑞(𝑟) ∶  [0,∞)  →  [1,∞) with 𝑞(𝑟)  →  ∞ as 𝑟 →  ∞, there exists an admissible 

comparison function 𝑎 such that 𝑎(𝑟)  =  𝑂(𝑟𝑞(𝑟)) and the application of Theorem (1.1.16).   

We apply Φ𝜑 to extend known results for frequently hypercyclic functions for 𝑒1(𝐷) 

to the whole class of differential operator 𝜑(𝐷) on 𝐸𝑥𝑝(𝐾) as well as on 𝐻(ℂ). 
[2], proves the following 

Theorem (1.1.18)[1]: If 𝐾 ⊂ ℂ is a compact, convex set that contains two distinct points 

of the imaginary axis, then ℱℋ𝒞(𝑒1(𝐷), 𝐸𝑥𝑝(𝐾)) ≠ ∅. 

We can conclude that it is sufficient to require that 𝑒1(𝐾)  ∩ 𝕋 contains a continuum in order 

to have ℱℋ𝒞(𝑒1(𝐷), 𝐸𝑥𝑝(𝐾)) ≠ ∅. Similarily, this result holds in the general situation: 

Theorem (1.1.19)[1]: Let 𝐾 ⊂ ℂ be a compact, convex set and 𝜑 ∈  𝐻(𝐾) non-constant 

such that 𝜑(𝐾) ∩ 𝕋 contains a continuum. Then we have ℱℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾))) ≠ ∅. 

Proof: Our assumptions ensure the existence of a compact, convex set �̃�  ⊂  𝐾 such that 

𝜑(�̃�) contains some continuum of 𝕋 and 𝜑 is biholomorphic as an element of 𝐻(�̃�). We 

choose suitable real numbers 𝑎 <  𝑏 so that 𝑒[𝑖𝑎,𝑖𝑏] ⊂ 𝜑(�̃�). The preceding result yields an 

𝑓 ∈ ℱℋ𝒞(𝑒1(𝐷), 𝐸𝑥𝑝([𝑖𝑎, 𝑖𝑏])), and, by Proposition (1.1.9) and Proposition (1.1.13), we 

have 

Φ𝜑−1∘𝑒1
𝑓 ∈ ℱℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(�̃�))  ⊂ ℱℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾)). 

The next result shows that the assumption in Theorem (1.1.19) are sharp. 

Theorem (1.1.20)[1]: Let 𝜆 be a complex number and 𝜑 ∈  𝐻({𝜆}). Then we have 

ℱℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝({𝜆}))  =  ∅. 

Proof: If there exists some 𝑓 ∈ ℱℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝({𝜆}), then, by Proposition (1.1.9) and 

Proposition (1.1.13), 

Φ𝜑𝑓 ∈  ℱℋ𝒞(𝐷, 𝐸𝑥𝑝({𝜑(𝜆)}))  ⊂ ℱℋ𝒞(𝐷,𝐻(ℂ)), 

contradicting Theorem (1.1.21)(ii). 

Theorem (1.1.21)(ii) is stronger than the previous result since it excludes frequent hyper-

cyclicity with respect to the weaker topology of 𝐻(ℂ). Unfortunately, the transform Φ𝜑 

does not carry over (frequent) hypercyclicity with respect to this topology. Thus, some extra 

argument is required to show Theorem (1.1.21)(ii). 

Theorem (1.1.21)[1]: Let 𝜑 be a non-constant entire function of exponential type. 

(i) If 𝐾 ⊂ ℂ is a compact and convex set such that the intersection of 𝐾 and 𝐶𝜑 contains 

a continuum, then there is a function 𝑓 ∈ ℱℋ𝒞(𝜑(𝐷),𝐻(ℂ)) that is of exponential type and 

so that 𝐾(𝑓 )  ⊂  𝐾. 

 

(ii) There is no function 𝑓 ∈ ℱℋ𝒞(𝜑(𝐷),𝐻(ℂ)) that is of exponential type and so that 

𝐾(𝑓 ) is a singleton. 

In particular, the second part of the above result states that, in contrast to the case of 

hypercyclicity, a function 𝑓 of exponential type zero is never frequently hypercyclic for any 

differential operator 𝜑(𝐷) (on 𝐻(ℂ)). 
Proof: The first part is an immediate consequence of Theorem (1.1.19) since 

ℱℋ𝒞(𝜑(𝐷), 𝐸𝑥𝑝(𝐾))  ⊂ ℱℋ𝒞(𝜑(𝐷),𝐻(ℂ)). Thus, there is only (ii) left to prove. 

We suppose there is some entire function 𝑓 of exponential type such that 𝐾(𝑓 )  =  {𝜆}, 𝜆 ∈
ℂ and 𝑓 ∈ ℱℋ𝒞(𝜑(𝐷),𝐻(ℂ)). Then necessarily, |𝜑(𝜆)|  ≥  1 because  otherwise 

𝜑(𝐷)𝑛𝑓(0)  →  0 as 𝑛 →  ∞ as it turns out from the proof of Theorem (1.1.7), and 𝜑 is 
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non-constant. Hence in some sufficiently small and simply connected, open neighbourhood 

Ω of 𝜆, the function �̃� ∶= 𝜑/𝜑(𝜆) is zero-free, which implies the existence of a logarithm 

function log �̃� for �̃� on Ω with log �̃� (𝜆)  =  0. We set ℎ ∶= Φlog �̃�𝑓 . Then 𝐾(ℎ)  =  {0} by 

Proposition (1.1.11) and, according to (8) applied to �̃�, we have 

ℎ(𝑛)  =
1

𝜑(𝜆)
𝜑(𝐷)𝑛𝑓(0) for all 𝑛 ∈ ℕ ∪ {0}.                               (9) 

Let 𝑆 be the sector {𝑧 ∶ |𝑎𝑟𝑔(𝑧)| ≤
𝜋

5
} \ {0}. By the Casorati-Weierstrass theorem, we can 

choose 𝛼 ∈ ℂ such that 𝜑(𝛼) is close enough to 𝜋𝜑(𝜆) to ensure that 
𝜑(𝛼)

𝜑(𝜆)
𝑆 ⊂ {𝑧 ∶  | 𝑎𝑟𝑔(𝑧)  −  𝜋|  ≤

𝜋

4
}                                       (10) 

and 𝜑(𝛼) ≠ 0. Now, according to the continuity of 𝜑(𝐷) on 𝐻(ℂ), for every 𝜀 >  0, there 

are some 𝑟 >  0 and 𝛿 >  0 such that for all 𝑔 ∈  𝐻(ℂ) that satisfy 

sup
𝑧∈𝑟 𝔻

|𝑔(𝑧)  − 𝑒𝛼(𝑧)|   <  𝛿,                                               (11) 

we have  

|𝜑(𝐷)𝑔(0)  −  𝜑(𝐷)𝑒𝛼(0)|  =  |𝜑(𝐷)𝑔(0)  −  𝜑(𝛼)|  <  𝜀. 
We assume that 𝛿, 𝜀 >  0 are so small that, whenever 𝑔 satisfies (11), we have 

𝑔(0)  ∈  𝑆 and 𝜑(𝐷)𝑔(0)  ∈  𝜑(𝛼) 𝑆.                                   (12) 
Our assumption implies the existence of some sequence (𝑛𝑘)𝑘∈ℕ of positive integers with 

dens((𝑛𝑘)𝑘∈ℕ  >  0 and such that sup
𝑧∈𝑟 𝔻

|𝜑(𝐷)𝑛𝑘  𝑓(𝑧)  − 𝑒𝛼(𝑧)|  <  𝛿 for all 𝑘 ∈ ℕ. The 

interpolating property of h in (9) combined with (12) yields 

ℎ(𝑛𝑘)  ∈
1

𝜑(𝜆)𝑛𝑘
𝑆 and ℎ(𝑛𝑘 + 1)  ∈

𝜑(𝛼)

𝜑(𝜆)𝑛𝑘+1
𝑆 for all 𝑘 ∈  ℕ.                   (13) 

Condition (10) implies that the factor 
𝜑(𝛼)

𝜑(𝜆)
 rotates 𝑆 by an angle larger than 

𝜋

2
. Hence, from 

(13), it follows that for each 𝑘 ∈ ℕ either 𝑅𝑒(ℎ) or 𝐼𝑚(ℎ) has a sign change in [𝑛𝑘 , 𝑛𝑘 +
1]. The intermediate value theorem yields a sequence (𝑤𝑘)𝑘∈ℕ of positive numbers with 

𝑤𝑘 ∈ (𝑛𝑘, 𝑛𝑘 + 1) and  

𝑅𝑒(ℎ(𝑤𝑘)) 𝐼𝑚(ℎ(𝑤𝑘))  =  0 for all 𝑘 ∈  ℕ.                            (14) 

Assuming that the Taylor series of h is given by ∑
ℎ𝜈

𝑣!
𝑧𝑣∞

𝑣=0 , we set ℎ1(𝑧) ∶= ∑
Re(ℎ𝜈)

𝑣!
𝑧𝑣∞

𝑣=0  

and ℎ2(𝑧) ∶= ∑
Im(ℎ𝜈)

𝑣!
𝑧𝑣∞

𝑣=0 . The functions ℎ1, ℎ2 are of exponential type zero due to the of 

fact that ℎ is exponential type and thus ℎ1ℎ2 is a function of exponential type zero. 

Since Re(ℎ(𝑥))  =  ℎ1(𝑥) and Im(ℎ(𝑥))  =  ℎ2(𝑥) for every real 𝑥, we obtain ℎ1ℎ2(𝑤𝑘) =
0 for all 𝑘 ∈  ℕ by (14). Taking into account that (𝑤𝑘)𝑘∈ℕ has obviously the same lower 

density as (𝑛𝑘)𝑘∈ℕ, we have that ℎ1ℎ2 is a function of exponential type zero having zeros 

of positive lower density which is impossible unless it is constantly zero (cf. [6]).   

 

Section (1.2): Conjugate Class of a Hypercyclic Operator 

 

Let 𝑋 be a separable, infinite dimensional Banach space over the scalar field ℂ or ℝ, 

and let 𝐵(𝑋) denote the algebra of bounded linear operators 𝑇 ∶  𝑋 → 𝑋. An operator 𝑇 in 

𝐵(𝑋) is hypercyclic if there is a vector 𝑥 in 𝑋 for which its orbit, 𝑂𝑟𝑏(𝑇 , 𝑥)  =  {𝑇𝑛𝑥: 𝑛 ≥
0}, is dense in 𝑋. Such a vector 𝑥 is called a hypercyclic vector for  . An operator 𝑇 in 𝐵(𝑋) 
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is hypercyclic if and only if the set of hypercyclic vectors for 𝑇 , denoted by ℋ𝒞(𝑇 ), is a 

dense 𝐺𝛿 set; see Kitai [42]. For a countable family ℱ of hypercyclic operators, a direct 

application of the Baire Category Theorem implies that the set ⋂   
𝑇∈ℱ ℋ𝒞(𝑇 ) of common 

hypercyclic vectors is also a dense 𝐺𝛿 set. However, for the situation when ℱ is an 

uncountable family of hypercyclic operators, we cannot apply this Baire Category Theorem 

argument to show the set ⋂   
𝑇∈ℱ ℋ𝒞(𝑇 ) of common hypercyclic vectors is a dense 𝐺𝛿 set, 

or is even nonempty. This observation has prompted research on the existence of common 

hypercyclic vectors for uncountable families of hypercyclic operators. Bayart and Matheron 

[24], Chan and Sanders [32], and Costakis and Sambarino [38] have separately developed 

different sufficient conditions for an uncountable family of operators to have a dense 𝐺𝛿 set 

of common hypercyclic vectors. Other results on common hypercyclic vectors include the 

work of Abakumov and Gordon [20], Aron, Bès, León, and Peris [22], Bayart [23], Bayart 

and Grivaux [26], Conejero, Müller, and Peris [37], and León and Müller [43]. In much of 

the above work on common hypercyclic vectors, the uncountable family of operators 

maintains some sort of continuity within the family. This brings us to the definition of a path 

of operators. A family of operators {𝐹𝑡 ∈ 𝐵(𝑋): 𝑡 ∈ 𝐼}, where 𝐼 is an interval of real 

numbers, is a path of operators if the map 𝐹 ∶  𝐼 ⟶ (𝐵(𝑋), ‖·‖), defined by 𝐹 (𝑡)  =  𝐹𝑡, is 

continuous with respect to the usual topology on the interval 𝐼 and the operator norm 

topology on 𝐵(𝑋). If the interval 𝐼 =  [𝑎, 𝑏], then the path {𝐹𝑡  ∈  𝐵(𝑋): 𝑡 ∈  𝐼} is a path of 

operators between 𝐹𝑎 and 𝐹𝑏. For any path, a vector 𝑥 in 𝑋 is called a common hypercyclic 

vector for the path if 𝑥 ∈ ⋂   
𝑡∈𝐼  ℋ𝒞(𝐹𝑡). 

We examine common hypercyclic vectors for a family of operators which consists of 

the conjugates of a single hypercyclic operator. Let 𝒮(𝑇)  =  {𝐿−1𝑇 𝐿: 𝐿 invertible} be the 

conjugate set of the operator. 

The conjugate set 𝒮(𝑇) is also often referred to as the similarity orbit of 𝑇. A standard 

similarity argument shows that an operator 𝑇 in 𝐵(𝑋) is hypercyclic if and only if each 

operator in the conjugate set 𝒮(𝑇) is hypercyclic. From this observation, one can ask 

whether the set ⋂   
𝐴∈𝒮(𝑇)  ℋ𝒞(𝐴) of common hypercyclic vectors for the entire conjugate 

set 𝒮(𝑇) of a hypercyclic operator 𝑇 is a dense 𝐺𝛿 set. In Proposition (1.2.1) below, we show 

this set of common hypercyclic vectors has only two possibilities. If every nonzero vector 

in 𝑋 is a hypercyclic vector for 𝑇, then the set ⋂   
𝐴∈𝒮(𝑇)  ℋ𝒞(𝐴) of common hypercyclic 

vectors for the conjugate set 𝒮(𝑇) contains every nonzero vector also. Otherwise, the set 

⋂   
𝐴∈𝒮(𝑇) ℋ𝒞(𝐴) of common hypercyclic vectors for the conjugate set 𝒮(𝑇) is empty. 

Not only does the conjugate set 𝒮(𝑇) of a hypercyclic operator 𝑇 consist entirely of 

hypercyclic operators, those hypercyclic operators are dense in 𝐵(𝑋) with respect to the 

strong operator topology, or SOT. This result was proved by Bès and Chan [28] by applying 

a fundamental property of the strong operator topology established by Hadwin, Nordgren, 

Radjavi, and Rosenthal [41]. As we have mentioned above, if ℋ𝒞(𝑇 ) ≠ 𝑋 \ {0}, then the 

set ⋂   
𝐴∈𝒮(𝑇) ℋ𝒞(𝐴) of common hypercyclic vectors for the conjugate set must be empty. 

We show the conjugate set 𝒮(𝑇) must contain a path {𝐹𝑡  ∈ 𝐵(𝑋): 𝑡 ∈  [1,∞)} of operators 

which is SOT-dense in 𝐵(𝑋), and yet the set ⋂   
𝑡∈[1,∞) ℋ𝒞(𝐹𝑡) of common hypercyclic 

vectors for the whole path is a dense 𝐺𝛿 set; see Theorem (1.2.4) below. As a corollary, we 

show the hypercyclic operators in 𝐵(𝑋) form an SOT-connected subset of 𝐵(𝑋); see 

Corollary (1.2.10) below. Also using Theorem (1.2.4), we show that for any nonzero vector 
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g in 𝑋, the set {𝑇 ∈  𝐵(𝑋): 𝑔 ∈ ℋ𝒞(𝑇 )} is SOT-dense, as well as SOT-connected in 𝐵(𝑋); 
see Corollary (1.2.9) below. 

A hypercyclic operator clearly has orbits which exhibit wild behavior. It may also 

possess orbits with simple behavior. A vector 𝑥 in 𝑋 is a periodic point of the operator 𝑇 if 

𝑇𝑛𝑥 =  𝑥 for some positive integer 𝑛. An operator 𝑇 in 𝐵(𝑋) is called chaotic if it is 

hypercyclic and the set of periodic points for 𝑇 is dense in 𝑋. Recently, Chan and Sanders 

[34] showed that every separable, infinite dimensional Hilbert space 𝐻 over the scalar field 

ℂ admits a path of chaotic operators which is SOT-dense in 𝐵(𝐻), and yet each operator 

along the path shares the exact same set of hypercyclic vectors. However, Bonet, Martínez-

Giménez, and Peris [30] provided examples of separable, infinite dimensional Banach 

spaces which fail to support even a single chaotic operator. Hence, the techniques in [34] do 

not work for an arbitrary separable, infinite dimensional Banach space. For this general 

setting, even though we are not able to show that there is an SOT-dense path of hypercyclic 

operators, each of which has the exact same set of hypercyclic vectors, Theorem (1.2.4) 

below exhibits such a path with a dense 𝐺𝛿 set of common hypercyclic vectors. In the case 

where the Banach space does support a chaotic operator, using Theorem (1.2.4), we show 

there does exist a path of chaotic operators which is SOT-dense in 𝐵(𝑋), and for which the 

set of common hypercyclic vectors for the whole path is a dense 𝐺𝛿 set. Furthermore, the 

chaotic operators in 𝐵(𝑋) form a connected subset of 𝐵(𝑋); see Corollary (1.2.11) below. 

As stated, an operator 𝑇 in 𝐵(𝑋) is hypercyclic if and only if every operator in the 

conjugate set 𝒮(𝑇 )  =  {𝐿−1𝑇 𝐿: 𝐿 invertible} is hypercyclic. In fact, one can easily verify 

that 

𝑥 ∈ ℋ𝒞 (𝐿−1𝑇 𝐿)      if and only if   𝐿𝑥 ∈ ℋ𝒞(𝑇 ).                  (15) 
We show that the set of common hypercyclic vectors for the conjugate set 𝒮(𝑇 ) of an 

operator 𝑇 has only two possibilities, either the set of all nonzero vectors or the empty set. 

Proposition (1.2.1)[19]: Let 𝑇 be an operator in 𝐵(𝑋). 
(i) If  ℋ𝒞(𝑇 )  =  𝑋 \ {0}, then the set ⋂   

𝐴∈𝒮(𝑇) ℋ𝒞(𝐴) of common hypercyclic vectors for 

the conjugate set 𝒮(𝑇) is also 𝑋 \ {0}. 
(ii) If ℋ𝒞(𝑇 ) ≠ 𝑋 \ {0}, then the set ⋂   

𝐴∈𝒮(𝑇) ℋ𝒞(𝐴) of common hypercyclic vectors for 

the conjugate set 𝒮(𝑇) is empty. 

Proof: Part (i) follows directly from the statement given in (15). For part (ii), let 𝑦 be any 

nonzero vector in 𝑋 which fails to be a hypercyclic vector for the operator  . For any nonzero 

vector 𝑥 in 𝑋, there exists an invertible operator 𝐿 such that 𝐿𝑥 =  𝑦. For instance, if 𝑥 and 

y are linearly independent, we may take 𝐿𝑥 =  𝑦 and 𝐿𝑦 =  𝑥 and 𝐿 =  𝐼 on a closed 

subspace complementary to the finite dimensional subspace spanned by 𝑥 and 𝑦. If 𝑦 =  𝛼𝑥 

for some nonzero scalar 𝛼, then let 𝐿 =  𝛼𝐼 on 𝑋. Since 𝐿𝑥 =  𝑦 ∉ ℋ𝒞(𝑇 ), by (15), we 

have 𝑥 ∉ ℋ𝒞(𝐿−1𝑇 𝐿). Therefore, ⋂   
𝐴∈𝒮(𝑇) ℋ𝒞(𝐴) = ∅. 

Read [45] provided an example of an operator 𝑇 on ℓ1 for which every nonzero vector 

is a hypercyclic vector. Thus, it is possible for the set of common hypercyclic vectors for a 

conjugate set to be nonempty. On the other hand, every separable, infinite dimensional 

Banach space 𝑋 admits a hypercyclic operator 𝑇 for which ℋ𝒞(𝑇) ≠ 𝑋 \{0}; see the 

hypercyclic operator constructed by Ansari in [21] or by Bernal in [27]. Since the conjugate 

set 𝒮(𝑇) of this particular hypercyclic operator fails to have a single hypercyclic vector in 
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common, it follows trivially that the set of all hypercyclic operators in 𝐵(𝑋) fails to have a 

single hypercyclic vector in common. 

The conjugate set 𝒮(𝑇) of a hypercyclic operator 𝑇 is SOT-dense in the operator 

algebra 𝐵(𝑋). However, in many cases, this SOT-dense set fails to have a single common 

hypercyclic vector. On the positive side, it does contain a path of operators which is SOT-

dense in 𝐵(𝑋), and for which the set of common hypercyclic vectors for the whole path is a 

dense 𝐺𝛿 set. For this, we need two technical results. 

Lemma (1.2.2)[19]: Let 𝑥1, 𝑥2, . . . , 𝑥𝑘 be 𝑘 linearly independent vectors in 𝑋, and let 

𝑑 = min
1≤𝑗≤𝑘

 𝑑𝑖𝑠𝑡(𝑥𝑗 , 𝑠𝑝𝑎𝑛{𝑥𝑖: 𝑖 ≠ 𝑗})  . 

There exists 𝑎 𝛿 >  0 such that whenever 𝑦1, 𝑦2, . . . , 𝑦𝑘  are 𝑘 vectors in 𝑋 satisfying 

‖𝑥𝑗 − 𝑦𝑗‖ <  𝛿 for each integer 𝑗 with 1 ≤ 𝑗 ≤ 𝑘, we have 

min
1≤𝑗≤𝑘

  𝑑𝑖𝑠𝑡(𝑦𝑗 , 𝑠𝑝𝑎𝑛{𝑦𝑖: 𝑖 ≠ 𝑗}) ≥
𝑑

2
 . 

Proof: Since all norms are equivalent on the finite dimensional space span{𝑥1, 𝑥2, . . . , 𝑥𝑘}, 
there is a constant 𝐶 >  0 such that 

∑ 

𝑘

𝑖=1

 |𝛼𝑖| ≤ 𝐶 ‖∑ 

𝑘

𝑖=1

 𝛼𝑖𝑥𝑖‖                                                 (16) 

for any scalars 𝛼1, 𝛼2, . . . , 𝛼𝑘. Choose 𝑎 𝛿 >  0 such that 

(1 −  𝐶𝛿) ≥
1

2
  .                                                                       (17) 

Let 𝑦1, 𝑦2, . . . , 𝑦𝑘  be any 𝑘 vectors in 𝑋 satisfying ‖𝑥𝑗 − 𝑦𝑗‖ <  𝛿 for 1 ≤ 𝑗 ≤ 𝑘. For any 

integer 𝑗 with 1 ≤ 𝑗 ≤ 𝑘 and for any scalars 𝛼1, 𝛼2, . . . , 𝛼𝑗−1, 𝛼𝑗+1, . . . , 𝛼𝑘, we have 

‖𝑦𝑗 −∑ 

𝑖≠𝑗

 𝛼𝑖𝑦𝑖‖ =  ‖(𝑥𝑗  −∑ 

𝑖≠𝑗

𝛼𝑖𝑥𝑖) + (𝑦𝑗 − 𝑥𝑗) +∑ 

𝑖≠𝑗

 𝛼𝑖(𝑥𝑖 − 𝑦𝑖)‖

≥ ‖𝑥𝑗 −∑ 

𝑖≠𝑗

𝛼𝑖𝑥𝑖‖ − ‖𝑥𝑗 − 𝑦𝑗‖ −∑ 

𝑖≠𝑗

 |𝛼𝑖|‖𝑥𝑖 − 𝑦𝑖‖ 

> ‖𝑥𝑗 −∑ 

𝑖≠𝑗

𝛼𝑖𝑥𝑖‖ − 𝛿 (1 +∑ 

𝑖≠𝑗 

 |𝛼𝑖|) ≥ ‖𝑥𝑗 −∑ 

𝑖≠𝑗

𝛼𝑖𝑥𝑖‖ −  𝛿𝐶 ‖ 𝑥𝑗 −∑ 

𝑖≠𝑗

 𝛼𝑖𝑥𝑖‖ , by (16)

≥ (1 −  𝐶𝛿)𝑑 ≥
𝑑

2
 , by (17). 

Thus, our result follows. 

The second result involves the union of a finite linearly independent set with the tail end of 

an orbit generated by a hypercyclic vector. 

Proposition (1.2.3)[19]: Let 𝑇 ∈  𝐵(𝑋) be a hypercyclic operator. If 𝑔 ∈ ℋ𝒞(𝑇) and 

𝑥1, 𝑥2, . . . , 𝑥𝑘 are 𝑘 linearly independent vectors in 𝑋, then there is an integer 𝑁 ≥ 0 such 

that the set {𝑥1, 𝑥2, . . . , 𝑥𝑘} ∪ {𝑇
𝑛 𝑔: 𝑛 ≥ 𝑁} is linearly independent. 

Proof: By way of contradiction, we suppose that no such integer 𝑁 exists; that is, the set 

{𝑥1, 𝑥2, . . . , 𝑥𝑘} ∪ {𝑇
𝑛 𝑔: 𝑛 ≥ 𝑁} is linearly dependent for each integer 𝑁 ≥ 0. If we take 

𝑁 =  1, then by the linear independence of the vectors 𝑥1, 𝑥2, . . . , 𝑥𝑘 and the linear 

independence of the orbit of a hypercyclic vector (see, for example Bourdon [31]), we obtain 
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a nonzero polynomial 𝑝1 for which 𝑝1(𝑇 )𝑔 ∈  𝑠𝑝𝑎𝑛{𝑥1, 𝑥2, . . . , 𝑥𝑘}. For similar reasons, 

by taking 𝑁 =  1 +  𝑑𝑒𝑔 𝑝1, we obtain a nonzero polynomial 𝑝2 with 𝑑𝑒𝑔 𝑝2  >  𝑑𝑒𝑔 𝑝1 

and 𝑝2(𝑇 )𝑔 ∈  𝑠𝑝𝑎𝑛{𝑥1, 𝑥2, . . . , 𝑥𝑘}. After 𝑘 +  1 steps, we obtain nonzero polynomial 

𝑝𝑘+1 with 𝑑𝑒𝑔 𝑝𝑘+1  >  𝑑𝑒𝑔 𝑝𝑘 and 𝑝𝑘+1(𝑇 )𝑔 ∈  𝑠𝑝𝑎𝑛{𝑥1, 𝑥2, . . . , 𝑥𝑘}. Since the 𝑘 +  1 

vectors 𝑝1(𝑇 )𝑔, 𝑝2(𝑇 )𝑔, . . . , 𝑝𝑘+1(𝑇 )𝑔 lie in the subspace 𝑠𝑝𝑎𝑛{𝑥1, 𝑥2, . . . , 𝑥𝑘}, which is 

𝑘-dimensional, it follows that they must be linearly dependent. However, this contradicts 

the fact that 𝑔 is a hypercyclic vector. 

We are now ready to prove that every conjugate set of a hypercyclic operator contains a path 

of operators which is SOT-dense in 𝐵(𝑋). 
Theorem (1.2.4)[19]: Let 𝑇 be a hypercyclic operator in 𝐵(𝑋). The conjugate set 𝒮(𝑇 )  =
 {𝐿−1𝑇 𝐿: 𝐿 invertible} contains a path {𝐹𝑡 ∈ 𝐵(𝑋): 𝑡 ∈  [1,∞)} of operators which is SOT-

dense in 𝐵(𝑋), and for which the set ⋂   
𝑡∈[1,∞) ℋ𝒞(𝐹𝑡) of common hypercyclic vectors for 

the whole path is a dense 𝐺𝛿 set. 

Proof: We begin with an outline of the construction of the desired path of hypercyclic 

operators. The path must contain a hypercyclic operator in every nonempty SOT-basic open 

set 𝒪 in 𝐵(𝑋), which is of the form 

𝒪 =  {𝐴 ∈ 𝐵(𝑋): ‖𝐴𝑥𝑙 − 𝐵𝑥𝑙‖  < 𝜖  for 1 ≤ 𝑙 ≤ 𝑘} , 
where 𝐵 ∈  𝐵(𝑋), 𝜖 > 0, and 𝑥𝑙  ∈  𝑋. The vectors 𝑥𝑙 and 𝐵𝑥𝑙 provide a starting point of 

our construction of an invertible operator 𝐿 so that 𝐿−1𝑇 𝐿 is in 𝒪 and it can be joined to the 

given hypercyclic operator 𝑇 with a path having a dense 𝐺𝛿 set of common hypercyclic 

vectors. For that, we may assume that the vectors 𝑥𝑙 are linearly independent and use 

Proposition (1.2.3) to choose appropriate powers of 𝑇 on a hypercyclic vector 𝑔 ∈ ℋ𝒞(𝑇) 
that can approximate 𝑥𝑙 and 𝐵𝑥𝑙. Then we use Lemma (1.2.2) to control the norms of 𝐿 and 

𝐿−1 so that the terms 𝐿−1𝑇 𝐿(𝑥𝑙) − 𝐵𝑥𝑙 qualify 𝐿−1𝑇𝐿 to be in the set 𝒪. 

Furthermore, to create the desired path we first note that we can trivially write 𝑇 as 𝐼−1𝑇 𝐼, 
where 𝐼 is the identity, and so we have to join 𝐼 with 𝐿 with an appropriate path of invertible 

operators. The operator 𝐿 takes the form of the sum of the identity and a finite rank operator 

𝐾 whose range is the linear span of carefully chosen powers 𝑇𝑚 𝑔. The path will then be in 

the form of 𝐼 +  𝑡 𝐾, where t in [0, 1] is the parameter for the path. However, in order to 

carefully select vectors 𝑇𝑚 𝑔 to make our argument work, we need to have good estimations 

on their distances from each other and separate them in terms of linear functionals. 

To this end, let 𝑔 ∈ ℋ𝒞(𝑇). Let ℰ be the collection of all sets 𝐸 of the form 

𝐸 = {𝑇𝑚1  𝑔, 𝑇𝑚2  𝑔, … , 𝑇𝑚2𝑘  𝑔, 𝑇𝑁 𝑔, 𝑇𝑁+1 𝑔, … , 𝑇𝑁+2𝑘−1 𝑔}         (18) 
where 𝑁, 𝑘 are integers with 𝑁 ≥ 0 and 𝑘 ≥ 1 and 𝑚1, 𝑚2, . . . , 𝑚2𝑘 are distinct integers with 

each 𝑚𝑗 ≥ 𝑁 +  2𝑘. Note that the collection ℰ is countable. For the set 𝐸 given in (18) and 

for each integer 𝑗 with 1 ≤ 𝑗 ≤ 2𝑘, define 

𝑑𝑗,𝐸 =  𝑑𝑖𝑠𝑡 (𝑇
𝑚𝑗𝑔, 𝑠𝑝𝑎𝑛 (𝐸 \{𝑇𝑚𝑗  𝑔}))   and   𝐷𝑗,𝐸

= 𝑑𝑖𝑠𝑡 (𝑇𝑁+ 𝑗−1 𝑔, 𝑠𝑝𝑎𝑛(𝐸\{𝑇𝑁+ 𝑗−1 𝑔})). 

Then define Δ𝐸 by 

Δ𝐸 = 𝑚𝑖𝑛{𝑑1,𝐸  , 𝑑2,𝐸  , . . . , 𝑑2𝑘,𝐸  , 𝐷1, 𝐸 , 𝐷2,𝐸  , . . . , 𝐷2𝑘,𝐸  }.   
Since the orbit of the hypercyclic vector 𝑔 must be linearly independent, each set 𝐸 ∈ ℰ is 

linearly independent, and so Δ𝐸  >  0. 
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Claim (1.2.5)[19]: For the set 𝐸 ∈ ℰ given in (18), there are 2𝑘 linear functionals 

𝜆1,𝐸  , 𝜆2,𝐸  , . . . , 𝜆2𝑘,𝐸 in the dual space 𝑋∗ such that for any integers 𝑖, 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 2𝑘, 

we have ‖𝜆𝑗,𝐸‖ ≤
2

Δ𝐸
 and 

𝜆𝑗,𝐸  (𝑇
𝑚𝑖𝑔)  = 𝜆𝑗,𝐸  (𝑇

𝑁+𝑖−1𝑔)   = {
1,     𝑖𝑓 𝑖 =  𝑗,
0,       𝑖𝑓 𝑖 ≠ 𝑗.

 

Proof: As a corollary of the Hahn–Banach Theorem, there exist linear functionals 

𝜑1,𝐸  , . . . , 𝜑2𝑘,𝐸 and 𝜓1,𝐸  , . . . , 𝜓2𝑘,𝐸 in the dual space 𝑋∗ such that for integers 𝑖, 𝑗 with 1 ≤
𝑖, 𝑗 ≤ 2𝑘, we have 𝜑𝑗,𝐸(𝑇

𝑚𝑗𝑔)  =  1 and 𝜑𝑗,𝐸(𝑥)  =  0 for all 𝑥 ∈  𝑠𝑝𝑎𝑛(𝐸 \ {𝑇𝑚𝑗 𝑔}), and 

𝜓𝑗,𝐸  (𝑇
𝑁+ 𝑗−1 𝑔)  =  1 and 𝜓𝑗,𝐸(𝑥)  =  0 for all 𝑥 ∈  𝑠𝑝𝑎𝑛(𝐸 \ {𝑇𝑁+ 𝑗−1 𝑔}). Furthermore, 

‖𝜑𝑗,𝐸‖ =
1

𝑑𝑗,𝐸
≤

1

Δ𝐸
 and ‖𝜓𝑗,𝐸‖ =

1

𝐷𝑗,𝐸
≤

1

Δ𝐸
 . Letting 𝜆𝑗,𝐸 = 𝜑𝑗,𝐸 + 𝜓𝑗,𝐸 for each integer 𝑗 

with 1 ≤ 𝑗 ≤ 2𝑘 completes the proof of Claim (1.2.5). 

We now use Claim (1.2.5) to form a countable collection of invertible operators in 𝐵(𝑋). 
For the set 𝐸 ∈ ℰ given in (18), define the operator 𝐿𝐸: 𝑋 ⟶ 𝑋 by 

𝐿𝐸(𝑥) =  𝑥 +∑ 

2𝑘

𝑗=1

 𝜆𝑗,𝐸(𝑥)(𝑇
𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔)  .                               (19) 

To see that the operator 𝐿𝐸 is invertible, define the operator 𝐴𝐸 ∶  𝑋 ⟶ 𝑋 by 

𝐴𝐸(𝑥) = 𝑥 +∑ 

2𝑘

𝑖=1

 𝜆𝑖,𝐸(𝑥)(𝑇
𝑚𝑖𝑔 − 𝑇𝑁+𝑖−1𝑔)  . 

For any 𝑥 ∈  𝑋, observe that 

𝐿𝐸𝐴𝐸  (𝑥) = 𝐿𝐸(𝑥) +∑ 

2𝑘

𝑖=1

 𝜆𝑖,𝐸(𝑥)𝐿𝐸  (𝑇
𝑚𝑖𝑔 − 𝑇𝑁+𝑖−1𝑔)  . 

By Claim (1.2.5), for any integers 𝑖, 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 2𝑘, we have 𝜆𝑗,𝐸(𝑇
𝑚𝑖𝑔 −

𝑇𝑁+𝑖−1𝑔)  =  0, and so by (19), 

𝐿𝐸(𝑇
𝑚𝑖𝑔 − 𝑇𝑁+𝑖−1𝑔 ) = 𝑇𝑚𝑖𝑔 − 𝑇𝑁+𝑖−1𝑔. 

Thus, 

𝐿𝐸𝐴𝐸  (𝑥) = 𝐿𝐸(𝑥) +∑ 

2𝑘

𝑖=1

 𝜆𝑖,𝐸(𝑥)𝐿𝐸  𝑇
𝑚𝑖𝑔 − 𝑇𝑁+𝑖−1𝑔 

=  𝑥 +∑ 

2𝑘

𝑗=1

𝜆𝑗,𝐸(𝑥)(𝑇
𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔) 

+∑ 

2𝑘

𝑖=1

𝜆𝑖,𝐸(𝑥)(𝑇
𝑚𝑖𝑔 − 𝑇𝑁+𝑖−1𝑔)  =  𝑥.  

Likewise, 𝐴𝐸𝐿𝐸(𝑥)  =  𝑥 for any 𝑥 ∈  𝑋. Therefore, the operator 𝐿𝐸 is invertible and 𝐿𝐸
−1 =

𝐴𝐸 . Moreover, by definitions of 𝐿𝐸  , 𝐿𝐸
−1 and by Claim (1.2.5), both operators 𝐿𝐸  , 𝐿𝐸

−1 satisfy 

the inequality 
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‖𝐿𝐸
−1‖, ‖𝐿𝐸‖ ≤ 1 +∑ 

2𝑘

𝑗=1

‖𝜆𝑗,𝐸‖‖𝑇
𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔‖  

≤ 1 +
2

Δ𝐸
∑ 

2𝑘

𝑗=1

‖𝑇𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔‖.                                                                (20) 

Using the countable collection {𝐿𝐸 ∶  𝐸 ∈ ℰ} of invertible operators, we generate a countable 

SOT-dense subset of 𝒮(𝑇). 
Claim (1.2.6)[19]: The countable collection {𝐿𝐸

−1 𝑇 𝐿𝐸: 𝐸 ∈ ℰ} is SOT-dense in 𝐵(𝑋). 
Proof: Let 𝒰 be a nonempty SOT-open set in 𝐵(𝑋). Then there exists an operator 𝐵 ∈
 𝐵(𝑋), an 𝜖 > 0, and nonzero vectors 𝑥1, 𝑥2, . . . , 𝑥𝑘 in 𝑋 such that 

{𝐴 ∈ 𝐵(𝑋): ‖𝐴𝑥𝑙 − 𝐵𝑥𝑙‖ < 𝜖  for 1 ≤ 𝑙 ≤ 𝑘}  ⊆ 𝒰. 
Without loss of generality, we may assume the set {𝑥1, 𝑥2, . . . , 𝑥𝑘} is linearly independent. 

By Proposition (1.2.3), there is an integer 𝑁 ≥ 0 such that the set {𝑥1, 𝑥2, . . . , 𝑥𝑘} ∪
{𝑇𝑛 𝑔: 𝑛 ≥ 𝑁} is linearly independent. Since 𝑔 ∈ ℋ𝒞(𝑇), we can choose 𝑘 distinct integers 

𝑚2, 𝑚4, . . . , 𝑚2𝑘 satisfying 

𝑚2𝑙 ≥ 𝑁 +  2𝑘    and   ‖𝑇𝑚2𝑙𝑔 −  𝐵𝑥𝑙‖    <  
𝜖

2
    for 1 ≤ 𝑙 ≤ 𝑘.      (21) 

Consider the linearly independent set 

�̃� =  {𝑥1, 𝑇
𝑚2  𝑔, 𝑥2, 𝑇

𝑚4𝑔, . . . , 𝑥𝑘, 𝑇
𝑚2𝑘  𝑔, 𝑇𝑁 𝑔, 𝑇𝑁+1𝑔, . . . , 𝑇𝑁+2𝑘−1𝑔} , 

and define  

�̃�2𝑙−1 =  𝑑𝑖𝑠𝑡 (𝑥𝑙 , 𝑠𝑝𝑎𝑛(�̃� \ {𝑥𝑙})) for 1 ≤ 𝑙 ≤ 𝑘, 

�̃�2𝑙 =  𝑑𝑖𝑠𝑡 ( 𝑇
𝑚2𝑙𝑔, 𝑠𝑝𝑎𝑛 (�̃� \{ 𝑇𝑚2𝑙𝑔})) for 1 ≤ 𝑙 ≤ 𝑘, 

�̃� 𝑗  =  𝑑𝑖𝑠𝑡 ( 𝑇
𝑁+ 𝑗−1𝑔, 𝑠𝑝𝑎𝑛 (�̃� \{ 𝑇𝑁+ 𝑗−1𝑔}))  for 1 ≤ 𝑗 ≤ 2𝑘, 

Δ̃ =  𝑚𝑖𝑛{ �̃�1, �̃�2, . . . , �̃�2𝑘, �̃�1, �̃�2, . . . , �̃�2𝑘}. 
Set 

𝑀 =  𝑘 +∑ 

𝑘

𝑙=1

 ‖𝑇𝑁+2𝑙−1𝑔 − 𝑇𝑚2𝑙𝑔‖ +∑ 

𝑘

𝑙=1

‖ 𝑇𝑁+2𝑙−2𝑔 − 𝑥𝑙‖.       (22) 

Since the set �̃� is linearly independent, by Lemma (1.2.2), there is 𝑎 𝛿 >  0 such that 

whenever 𝑚1, 𝑚3, . . . , 𝑚2𝑘−1 are 𝑘 distinct integers with 

𝐸 = {𝑇𝑚1𝑔, 𝑇𝑚2𝑔, . . . , 𝑇𝑚2𝑘−1𝑔, 𝑇𝑚2𝑘𝑔, 𝑇𝑁𝑔, . . . , 𝑇𝑁+2𝑘−1𝑔}  ∈ ℰ  
And 

‖𝑇𝑚2𝑙−1𝑔 − 𝑥𝑙‖ <  𝛿   for 1 ≤ 𝑙 ≤ 𝑘,                                             (23) 
We get 

Δ𝐸 ≥
Δ̃

2
 .                                                                     (24) 

We may further assume that 𝛿 satisfies 

𝛿 <  𝑚𝑖𝑛 {1,
𝜖

2‖𝑇‖ (1 +
4
Δ
𝑀)

2 }.                               (25) 
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Note that there exists such an 𝐸 ∈ ℰ because 𝑔 is a hypercyclic vector for 𝑇. Moreover, for 

any such 𝐸 ∈ ℰ and for any integer 𝑙 with 1 ≤ 𝑙 ≤ 𝑘, we have 

‖𝐿𝐸
−1𝑇 𝐿𝐸(𝑥𝑙) −  𝐵𝑥𝑙‖

≤ ‖𝐿𝐸
−1 𝑇 𝐿𝐸  (𝑥𝑙) − 𝐿𝐸

−1𝑇 𝐿𝐸  𝑇
𝑚2𝑙−1𝑔‖

+ ‖𝐿𝐸
−1 𝑇 𝐿𝐸  𝑇

𝑚2𝑙−1𝑔  −  𝐵𝑥𝑙‖  .                                                                      (26) 
To estimate the first summand on the right-hand side of (26), note that 

‖𝐿𝐸
−1 𝑇 𝐿𝐸(𝑥𝑙) − 𝐿𝐸

−1 𝑇 𝐿𝐸(𝑇
𝑚2𝑙−1𝑔)‖ ≤ ‖𝐿𝐸

−1‖‖𝑇‖‖𝐿𝐸‖‖𝑥𝑙 − 𝑇
𝑚2𝑙−1𝑔 ‖

< ‖𝐿𝐸
−1‖‖𝑇‖‖𝐿𝐸‖𝛿,     by (23) 

≤ (1 +
2

Δ𝐸
  ∑  

2𝑘

𝑗=1

‖𝑇𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔‖)

2

‖𝑇‖𝛿,      by (20) 

≤ (1 +
4

Δ̃
∑  

2𝑘

𝑗=1

 ‖𝑇𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔‖)

2

 ‖𝑇‖𝛿,       by (24). (27) 

We now estimate the above summation 

∑ 

2𝑘

𝑗=1

‖𝑇𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔‖  =∑ 

𝑘

𝑙=1

‖𝑇𝑁+2𝑙−1𝑔 − 𝑇𝑚2𝑙𝑔‖ +∑ 

𝑘

𝑙=1

‖𝑇𝑁+2𝑙−2𝑔 − 𝑇𝑚2𝑙−1𝑔‖ 

≤∑ 

𝑘

𝑙=1

 ‖𝑇𝑁+2𝑙−1𝑔 − 𝑇𝑚2𝑙𝑔‖ +∑ 

𝑘

𝑙=1

 ‖𝑇𝑁+2𝑙−2𝑔 − 𝑥𝑙‖ +∑ 

𝑘

𝑙=1

 ‖𝑥𝑙  −  𝑇
𝑚2𝑙−1𝑔‖  

 <  𝑘 +∑ 

𝑘

𝑙=1

‖𝑇𝑁+2𝑙−1𝑔 − 𝑇𝑚2𝑙𝑔‖ +∑ 

𝑘

𝑙=1

‖𝑇𝑁+2𝑙−2𝑔 − 𝑥𝑙‖, by (23), (25)  

=  𝑀,    by (22). 
Combining inequality (27) with the above inequality gives us 

‖𝐿𝐸
−1 𝑇 𝐿𝐸(𝑥𝑙) − 𝐿𝐸

−1 𝑇 𝐿𝐸  (𝑇
𝑚2𝑙−1𝑔)‖ < (1 +

4

Δ
𝑀)

2

‖𝑇‖𝛿 <  
𝜖

2
 , by (25).       (28) 

To estimate the second summand on the right-hand side of (26), observe that for each integer 

𝑖 with 1 ≤ 𝑖 ≤ 2𝑘, we have 

𝐿𝐸  (𝑇
𝑚𝑖  𝑔) = 𝑇𝑚𝑖𝑔 +∑ 

2𝑘

𝑗=1

 𝜆𝑗,𝐸(𝑇
𝑚𝑖𝑔)(𝑇𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔) ,   by (19)

=  𝑇𝑚𝑖𝑔 + (𝑇𝑁+𝑖−1𝑔 − 𝑇𝑚𝑖𝑔)  , by Claim 

1 =  𝑇𝑁+𝑖−1𝑔.                                                                                (29) 
Thus, 

‖𝐿𝐸
−1 𝑇 𝐿𝐸  𝑇

𝑚2𝑙−1𝑔  −  𝐵𝑥𝑙‖ = ‖𝐿𝐸
−1 𝑇 𝑇𝑁+2𝑙−2𝑔 −  𝐵𝑥𝑙‖, by (29)

= ‖𝐿𝐸
−1 𝑇𝑁+2𝑙−1𝑔 −  𝐵𝑥𝑙‖ = ‖𝑇

𝑚2𝑙𝑔 −  𝐵𝑥𝑙‖ , by (29) 

<
𝜖

2
 ,    by (21).                                                                                  (30) 

Combining inequality (26) with inequalities (28) and (30) yields ‖𝐿𝐸
−1 𝑇 𝐿𝐸(𝑥𝑙)  −  𝐵𝑥𝑙‖ <

 𝜖, and so 𝐿𝐸
−1 𝑇 𝐿𝐸  ∈ 𝒰 which completes the proof of Claim (1.2.6). 
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We now construct a path of operators between 𝑇 and 𝐿𝐸
−1 𝑇 𝐿𝐸 which lies entirely within the 

conjugate set 𝒮(𝑇) of the operator 𝑇. 

Claim (1.2.7)[19]: For each 𝐸 ∈ ℰ, there is a path of operators between 𝑇 and 𝐿𝐸
−1 𝑇 𝐿𝐸  

contained in the conjugate set 𝒮(𝑇) for which the set of common hypercyclic vectors for the 

whole path is a dense 𝐺𝛿 set. 

Proof: Let 𝐸 be the set in ℰ given in (18). For each 𝑡 ∈  [0, 1], define an operator 𝐿𝑡,𝐸 ∶
 𝑋 ⟶ 𝑋 by 

𝐿𝑡,𝐸(𝑥)  =  𝑥 +∑ 

2𝑘

𝑗=1

 𝑡𝜆𝑗,𝐸(𝑥)(𝑇
𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔)  . 

Using computations similar to those before Claim (1.2.5), each operator 𝐿𝑡,𝐸 is invertible, 

and its inverse 𝐿𝑡
−1, 𝐸 ∶  𝑋 ⟶ 𝑋 is given by 

𝐿𝑡,𝐸
−1  (𝑥)  =  𝑥 +∑ 

2𝑘

𝑖=1

 𝑡𝜆𝑖,𝐸(𝑥)(𝑇
𝑚𝑖𝑔 − 𝑇𝑁+𝑖−1𝑔)  . 

Consider the path of operators {𝐺𝑡  ∈  𝐵(𝑋): 𝑡 ∈  [0, 1]}, where 𝐺𝑡  =  𝐿𝑡,𝐸
−1  𝑇 𝐿𝑡,𝐸  . Clearly 

this path of operators is between 𝑇 and 𝐿𝐸
−1 𝑇 𝐿𝐸 and lies entirely in the conjugate set 𝒮(𝑇). 

To show ⋂   
𝑡∈[0,1] ℋ𝒞(𝐺𝑡) is a dense 𝐺𝛿 set, first note that by Corollary (1.2.3) in [32], the 

set ⋂   
𝑡∈[0,1]  ℋ𝒞(𝐺𝑡) is a 𝐺𝛿 set, and so it suffices to show this set is also dense. We do this 

by proving {span 𝑂𝑟𝑏(𝑇 , 𝑔)}\{0} is contained inside the set ⋂   
𝑡∈[0,1]  ℋ𝒞(𝐺𝑡). To begin, 

note that given any nonzero polynomial 𝑝 and any 𝑡 ∈  [0, 1], we have 𝐿𝑡,𝐸𝑝(𝑇 )𝑔 ≠ 0 

because 𝑝(𝑇 )𝑔 ≠ 0 by the linear independence of the orbit of 𝑔, and because the operator 

𝐿𝑡,𝐸 is invertible. Furthermore, 

𝐿𝑡,𝐸𝑝(𝑇 )𝑔 =  𝑝(𝑇 )𝑔 +∑ 

2𝑘

𝑗=1

 𝑡𝜆𝑗,𝐸𝑝(𝑇 )𝑔(𝑇
𝑁+ 𝑗−1𝑔 − 𝑇𝑚𝑗𝑔) ∈ {𝑠𝑝𝑎𝑛 𝑂𝑟𝑏(𝑇 , 𝑔) }{0}

⊆ ℋ𝒞(𝑇 ), 
because every nonzero vector from the linear span of a dense orbit is a hypercyclic vector; 

see Bourdon [31] and Bès [29]. Therefore, by statement (15), we get 𝑝(𝑇 )𝑔 ∈
ℋ𝒞(𝐿𝑡,𝐸

−1𝑇 𝐿𝑡,𝐸) = ℋ𝒞(𝐺𝑡). Hence, {𝑠𝑝𝑎𝑛 𝑂𝑟𝑏(𝑇 , 𝑔)}\{0}  ⊆ ⋂   
𝑡∈[0,1] ℋ𝒞(𝐺𝑡), and this 

concludes the proof of Claim (1.2.7). 

We construct the desired SOT-dense path of operators in the conjugate set 𝒮(𝑇). Let 

{𝐸𝑛: 𝑛 ≥ 1} be an enumeration of the countable set ℰ. By Claim (1.2.7), if for each integer 

𝑛 ≥ 1, let 𝐺𝑡,𝑛 = 𝐿2𝑡,𝐸𝑛
−1  𝑇 𝐿2𝑡,𝐸𝑛  for 𝑡 ∈  [0, 1/2] and 𝐺𝑡,𝑛 = 𝐿2−2𝑡,𝐸𝑛

−1  𝑇 𝐿2−2𝑡,𝐸𝑛 for each 

𝑡 ∈  [1/2, 1], then {𝐺𝑡,𝑛  ∈  𝐵(𝑋): 𝑡 ∈  [0, 1]} is a path of operators in the conjugate set 

𝒮(𝑇 ) such that 𝐺0,𝑛 = 𝐺1,𝑛 = 𝑇 and 𝐿𝐸𝑛
−1 𝑇 𝐿𝐸𝑛  =  𝐺1/2,𝑛  ∈  {𝐺𝑡,𝑛  ∈  𝐵(𝑋): 𝑡 ∈  [0, 1]}, 

and in addition, the set ⋂   
𝑡∈[0,1]  ℋ𝒞(𝐺𝑡,𝑛) is a dense 𝐺𝛿 set. For each 𝑡 ∈  [𝑛, 𝑛 +  1], let 

𝐹𝑡 = 𝐺𝑡−𝑛,𝑛. Then {𝐹𝑡 ∈ 𝐵(𝑋): 𝑡 ∈  [1,∞)} is a path of operators in the conjugate set 𝒮(𝑇) 

which is SOT-dense by Claim (1.2.6), and for which the set ⋂   
𝑡∈[1,∞)  ℋ𝒞(𝐹𝑡)  =

⋂  ∞
𝑛=1 ⋂   

𝑡∈[0,1]  ℋ𝒞(𝐺𝑡,𝑛) is a dense 𝐺𝛿 set. 

The SOT-dense path {𝐹𝑡  ∈  𝐵(𝑋): 𝑡 ∈  [1,∞)} in the previous theorem consists of 

operators of the form 𝐿−1𝑇 𝐿, which share many properties that each other has; in fact, any 

properties preserved by similarity. For instance, if one of them is chaotic, then every 
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operator in the whole path is chaotic. If one of them has a nontrivial kernel, then every one 

in the whole path has one. If one of them is surjective, then every one is. If one of them has 

a nontrivial invariant subspace, then every one has one. If every nonzero vector is a 

hypercyclic vector for one single operator in the path, then the same holds true for every 

operator in the path. If one of them has a hypercyclic subspace, which is an infinite 

dimensional closed subspace consisting, except the zero vector, of hypercyclic vector of the 

operator, then every one in the path has such a subspace. We study more common properties 

that a path of operators may share. 

Theorem (1.2.4) has several interesting corollaries. First, let us examine the linear 

structure within the dense 𝐺𝛿 set of common hypercyclic vectors for the path of operators 

given within the proof of Theorem (1.2.4). For each set 𝐸 ∈ ℰ, consider the path of 

operators {𝐺𝑡  ∈  𝐵(𝑋): 𝑡 ∈  [0, 1]} between the operators 𝑇 and 𝐿𝐸
−1 𝑇 𝐿𝐸 given in the proof 

of Claim (1.2.7). To show the set ⋂   
𝑡∈[0,1]  ℋ𝒞(𝐺𝑡) of common hypercyclic is dense, we 

prove that if 𝑔 is a hypercyclic vector for  , then {𝑠𝑝𝑎𝑛 𝑂𝑟𝑏(𝑇 , 𝑔)}\{0} is contained inside 

the set ⋂   
𝑡∈[0,1]  ℋ𝒞(𝐺𝑡). Furthermore, these paths of operators are the building blocks for 

the desired  SOT-dense path of operators. Thus, the set of common hypercyclic vectors for 

the path of operators constructed within the proof of Theorem (1.2.4) contains some natural 

linear structure. 

Corollary (1.2.8)[19]: Let 𝑇 be a hypercyclic operator in 𝐵(𝑋), and let 𝑔 ∈ ℋ𝒞(𝑇 ). There 

exists a path {𝐹𝑡  ∈  𝐵(𝑋): 𝑡 ∈  [1,∞)} of operators, contained entirely in the conjugate set 

𝒮(𝑇 ), which is SOT-dense in 𝐵(𝑋), and for which {𝑠𝑝𝑎𝑛 𝑂𝑟𝑏(𝑇 , 𝑔)}\{0} is contained 

within the dense 𝐺𝛿 set ⋂   
𝑡∈[1,∞)  ℋ𝒞(𝐹𝑡) of common hypercyclic vectors. 

Since the orbit of a hypercyclic vector is linearly independent, the set of common 

hypercyclic vectors for the path of operators given in Corollary (1.2.8) contains an infinite 

dimensional linear manifold for which every nonzero vector is a common hypercyclic 

vector. However, the linear manifold given in Corollary (1.2.8) is not closed. Corollary 3.5 

of Sanders [46] provides a natural sufficient condition for the set of common hypercyclic 

vectors for a path of operators to contain a closed, infinite dimensional subspace of which 

every nonzero vector is a common hypercyclic vector. 

The existence of a path of hypercyclic operators that is SOT-dense in 𝐵(𝑋) gives us 

information about the connectedness of the hypercyclic operators in 𝐵(𝑋). Recall that if 𝑌 

and 𝑍 are subsets of a topological space 𝑋 satisfying  ⊆  𝑍 ⊆  �̅� , and if 𝑌 is connected, then 

𝑍 is also connected; see Munkres [44]. A path of operators in 𝐵(𝑋) is SOT-connected, and 

so any set of operators in 𝐵(𝑋), which contains an SOT-dense path of operators, is also 

SOT-connected. From this⟶ topological argument and Corollary (1.2.8), we get the next 

result.  

Corollary (1.2.9)[19]: Let g be any nonzero vector in a separable, infinite dimensional 

Banach space 𝑋. Then the set 𝒜 = {𝑇 ∈  𝐵(𝑋): 𝑔 ∈ ℋ𝒞(𝑇 )} is SOT-dense and SOT-

connected in 𝐵(𝑋). Furthermore, its set of common hypercyclic vectors is 

⋂   
𝑇∈𝒜  ℋ𝒞(𝑇 )  =  (𝑠𝑝𝑎𝑛{𝑔}) \ {0}. 

Proof: For the first part of the proof, it suffices to show there is an operator 𝑇 in 𝐵(𝑋) with 

𝑔 ∈ ℋ𝒞(𝑇 ). By Corollary (1.2.8), it follows that the set {𝑇 ∈  𝐵(𝑋): 𝑔 ∈ ℋ𝒞(𝑇 )} 
contains a path of operators which is SOT-dense in 𝐵(𝑋), and consequently SOT-connected 

by the topological argument above. To this end, let 𝑇0 be a hypercyclic operator with 
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ℋ𝒞(𝑇0)  ≠  𝑋 \ {0}; see Ansari in [21] or by Bernal in [27]. Let 𝑔0 ∈ ℋ𝒞(𝑇0). Choose an 

invertible map 𝐿 ∶  𝑋 ⟶ 𝑋 such that 𝐿𝑔 =  𝑔0, and set 𝑇 =  𝐿−1𝑇0 𝐿. Since 𝐿𝑔 =  𝑔0  ∈
ℋ𝒞(𝑇0), by statement (15) we get 𝑔 ∈ ℋ𝒞(𝐿−1𝑇0 𝐿)  = ℋ𝒞(𝑇 ). 
For the second part, observe that (𝑠𝑝𝑎𝑛{𝑔}) \ {0}  ⊆ ⋂   

𝑇∈𝒜  ℋ𝒞(𝑇 ) because 𝑔 ∈
⋂   
𝑇∈𝒜 ℋ𝒞(𝑇 ). To establish the reverse set inequality, let ℎ0 ∉ ℋ𝒞(𝑇0) with ℎ0 ≠ 0. For 

any ℎ ∉ 𝑠𝑝𝑎𝑛{𝑔}, the sets {𝑔, ℎ} and {𝑔0, ℎ0} are each linearly independent, and so there is 

an invertible map 𝐿0 ∶  𝑋 ⟶ 𝑋 with 𝐿0  𝑔 =  𝑔0 and 𝐿0ℎ =  ℎ0. Again by statement (15), 

this implies 𝑔 ∈ ℋ𝒞(𝐿0
−1 𝑇0 𝐿0) and ℎ ∉ ℋ𝒞(𝐿0

−1 𝑇0 𝐿0). Thus, ℎ ∉ ⋂   
𝑇∈𝒜  ℋ𝒞(𝑇 ). 

In many of the known cases, the set of common hypercyclic vectors for an uncountable 

family of hypercyclic operators is either empty or a dense 𝐺𝛿 set. Corollary (1.2.9) provides 

an example of a set of common hypercyclic vectors which is a 𝐺𝛿 set that fails to be dense. 

When 𝐻 is a separable, infinite dimensional Hilbert space over the scalar field ℂ, the 

invertible operators are path connected; see Douglas [40]. Thus, the conjugate set of a 

hypercyclic operator is both SOT-dense and SOT-connected in 𝐵(𝐻). By the topological 

argument given before Corollary (1.2.9), the hypercyclic operators in 𝐵(𝐻) then form an 

SOT-connected subset of 𝐵(𝐻); see [34]. For the Banach space version of the result, we can 

combine Theorem (1.2.4) and the topological argument given before Corollary (1.2.9). 

Corollary (1.2.10)[19]: Let 𝑋 be a separable, infinite dimensional Banach space. The set of 

all hypercyclic operators is SOT-connected in 𝐵(𝑋). 
The argument used in Corollary (1.2.9) can be used to show certain well-known classes of 

hypercyclic operators are SOTconnected in 𝐵(𝑋). For example, from the definition of a 

chaotic operator, one can easily see that an operator is chaotic if and only if each operator 

in its conjugate set is chaotic. Using the same argument as with Corollary (1.2.10), we get 

the following result. 

Corollary (1.2.11)[19]: Let 𝑋 be a separable, infinite dimensional Banach space which 

admits a chaotic operator. The set of all chaotic operators is SOT-connected in 𝐵(𝑋). 
For another example, an operator 𝑇 in 𝐵(𝑋) satisfies the Hypercyclicity Criterion if and 

only if each operator in its conjugate set satisfies the criterion. Moreover, every separable, 

infinite dimensional Banach space admits an operator which satisfies the Hypercyclicity 

Criterion; see the hypercyclic operator constructed by Ansari in [21] or by Bernal in [27]. 

Thus, the collection of all hypercyclic operators in 𝐵(𝑋) which satisfies the Hypercyclicity 

Criterion is SOT-connected in 𝐵(𝑋). De la Rosa and Read [39] provided an example of a 

Banach space which admits a hypercyclic operator that fails to satisfy the Hypercyclicity 

Criterion. Using techniques inspired by De la Rosa and Read, Bayart and Matheron [25] 

showed some common Banach spaces, including the sequence Hilbert space ℓ2, also admit 

such hypercyclic operators. Since a hypercyclic operator fails to satisfy the Hypercyclicity 

Criterion if and only if each operator in its conjugate set fails to satisfy the criterion, we get 

that whenever a Banach space 𝑋 admits a hypercyclic operator that fails to satisfy the 

Hypercyclicity Criterion, then the collection of all such operators is SOT-connected in 

𝐵(𝑋). Again, by a similar argument, if the Banach space 𝑋 admits an operator with no 

nontrivial, closed, invariant subset, then the collection of all such operators is SOTconnected 

in 𝐵(𝑋). Recently, Chan and Seceleanu [35],[36] provided classes of operators for each of 

which having one orbit with a nonzero limit point imply the operator be hypercyclic. An 

operator has this property if and only if each operator in the conjugate set also has this 
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property. By our topological argument, the collection of all operators having this property 

is an SOT-connected subset of 𝐵(𝑋). 
We discuss some natural questions which arise from the results in the previous. To 

begin, Proposition (1.2.1) states that the set of common hypercyclic vectors for the entire 

conjugate set is either all nonzero vectors or the empty set. In the Hilbert space setting, the 

unitary orbit, 𝒰(𝑇 )  =  {𝑈−1𝑇 𝑈: 𝑈 unitary}, of an operator 𝑇 is a well-studied subset of 

the conjugate set 𝒮(𝑇). Obviously, the unitary orbit 𝒰(𝑇) is strictly smaller than the 

conjugate set 𝒮(𝑇). Hence, in view of Proposition (1.2.1), one may ask whether the set 

⋂   
𝐴∈𝒰(𝑇) ℋ𝒞(𝐴) of common hypercyclic vectors for the unitary orbit 𝒰(𝑇) is always a 

dense 𝐺𝛿 set if T is hypercyclic. 

As it turns out, the answer is still negative, unless we have the trivial case that every 

nonzero vector is a hypercyclic vector for 𝑇 and hence the set of common hypercyclic 

vectors is 𝐻 \ {0}. Otherwise, we have a unit vector 𝑦 that is not a hypercyclic vector for  . 

Extend the singleton set {𝑦} to an orthonormal basis of 𝐻. For any unit vector 𝑥, extend the 

singleton set {𝑥} to an orthonormal basis of 𝐻. Let 𝑉 ∶  𝐻 ⟶ 𝐻 be a unitary operator taking 

the second orthonormal basis one-to-one and onto the first orthonormal basis with 𝑉 𝑥 =
 𝑦. Since 𝑦 ∉ ℋ𝒞(𝑇 ), by statement (15), we get 𝑥 ∉ ℋ𝒞(𝑉−1𝑇 𝑉 ). From this, we can 

conclude ⋂   
𝐴∈𝒰(𝑇) ℋ𝒞(𝑇)  =  ∅. 

The unitary orbit 𝒰(𝑇) cannot be SOT-dense in 𝐵(𝐻) because every operator in the 

unitary orbit 𝒰(𝑇) has the same norm as the operator  . Along that line, a question one may 

ask is whether we can have a path of operators in the unitary orbit 𝒰(𝑇) of a hypercyclic 

operator 𝑇 that is SOT-dense in ‖𝑇‖ ·  𝑆𝑝ℎ(𝐻), where 𝑆𝑝ℎ(𝐻) denotes the unit sphere of 

𝐻. This may appear to have a positive answer. However, the answer is negative because the 

unitary orbit 𝒰(𝑇) is not necessarily SOT-dense in ‖𝑇‖ ·  𝑆𝑝ℎ(𝐻). One can easily construct 

the following counterexample in the sequence space ℓ2(ℤ)  =  {∑  ∞
−∞  𝑎𝑛𝑒𝑛: ∑ |𝑎𝑛 |

2  <
 ∞}, where {𝑒𝑛: 𝑛 ∈ ℤ} is the canonical orthonormal basis of ℓ2(ℤ). 𝐿𝑒𝑡 𝑇 ∶ ℓ2(ℤ)  ⟶
ℓ2(ℤ) be the bilateral weighted backward shift on the sequence space defined by 

𝑇 ( ∑  

∞

𝑛=−∞

 𝑎𝑛𝑒𝑛)   = ∑  

−1

𝑛=−∞

1

2
 𝑎𝑛𝑒𝑛−1 +∑  

∞

𝑛=0

 2𝑎𝑛𝑒𝑛−1. 

The above formula defines a hypercyclic shift 𝑇 due to a result of Salas [47]. Let 𝐴 ∶
ℓ2(ℤ) ⟶ ℓ2(ℤ) be defined by 

𝐴( ∑  

∞

𝑛=−∞

 𝑎𝑛𝑒𝑛 ) =  2𝑎0𝑒0. 

Clearly ‖𝑇‖ = ‖𝐴‖  =  2. If we let 

𝒪 = {𝑆 ∈  𝐵 ℓ2(ℤ) ∶  ‖𝑆𝑒1  −  𝐴𝑒1‖  <
1

4
 }, 

be an SOT-open set containing 𝐴, then one can easily show that no operator in the unitary 

orbit 𝒰(𝑇 ) is in 𝒪. In fact, ‖𝑇 𝑓‖ ≥ ‖𝑓‖ /2 for every vector 𝑓 in ℓ2(ℤ), and so 

‖𝑈−1𝑇𝑈𝑓 ‖ ≥ ‖ 𝑓‖ /2 for any unitary operator 𝑈. Hence we have 

‖𝑈−1𝑇𝑈𝑒1 − 𝐴𝑒1‖ ≥
1

2
 , 

and so 𝑈−1𝑇 𝑈 ∉ 𝒪. 
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We now switch our focus to weak hypercyclicity in the setting of a separable, infinite 

dimensional Banach space 𝑋. An operator 𝑇 in 𝐵(𝑋) is weakly hypercyclic if there is a 

vector 𝑥 in 𝑋 for which its orbit 𝑂𝑟𝑏(𝑇 , 𝑥) is dense in 𝑋 with respect to the weak topology. 

Any such vector 𝑥 is called a weakly hypercyclic vector for 𝑇, and we use 𝒲ℋ𝒞(𝑇) to 

denote the set of all weakly hypercyclic vectors for the operator 𝑇 . By a similarity argument, 

an operator is weakly hypercyclic but not hypercyclic if and only if the same is true for each 

operator in the conjugate set; see Chan and Sanders [33] or Shkarin [48] for the existence of 

such operators. Bès and Chan [28] showed that the conjugate set of a weakly hypercyclic 

operator is SOT-dense in the operator algebra 𝐵(𝑋).  
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Chapter 2 

Spectral Properties with Eigenvalues and Refined Semiclassical Asymptotics 

  

We show that explicit formulas for the transition density of the killed Cauchy process 

on the half-line (or the heat kernel of 𝐴 in (0,∞)), and for the distribution of the first exit 

time from the half-line follow. The formula for 𝜓𝜆 is also used to construct approximations 

to eigenfunctions of 𝐴 in the interval. For the eigenvalues 𝜆𝑛 of 𝐴 in the interval the 

asymptotic formula 𝜆𝑛 = 𝑛𝜋/2 − 𝜋/8 + 𝑂(1/𝑛) is derived, and all eigenvalues 𝜆𝑛 are 

shown to be simple. Efficient numerical methods of estimation of eigenvalues 𝜆𝑛 are applied 

to obtain lower and upper numerical bounds for the first few eigenvalues up to the ninth 

decimal point. Simplicity of eigenvalues is proved for 𝛼 ∈ [1, 2). 𝐿2 and 𝐿∞ properties of 

eigenfunctions are studied. We also give precise numerical bounds for the first few 

eigenvalues. Extending methods from semi-classical analysis we are able to show a two-

term formula for the sum of eigenvalues with the leading (Weyl) term given by the volume 

and the subleading term by the surface area. Our result is valid under very weak assumptions 

on the regularity of the boundary. 

Section (2.1): Cauchy Process on Half-Line and Interval 

 

Let (𝑋𝑡), with 𝑡 ≤ 0, be the one-dimensional Cauchy process, that is, a one-

Dimensional symmetric α-stable process for α = 1. Let us consider the Cauchy process killed 

upon first exit time from D for 𝐷 = (0,∞) and 𝐷 = (−1, 1). The purpose is to study the 

spectral properties of the transition semigroup of this killed process, defined by 

𝑃𝑡
𝐷𝑓(𝑥) = 𝐸𝑥(𝑓(𝑋𝑡); 𝑋𝑠 ∈ 𝐷𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ [0, 𝑡]),   𝑓 ∈ 𝐿

𝑃(𝐷) 

and it’s infinitesimal generator𝒜𝐷, which is the operator −√−(𝑑2 𝑑𝑥2⁄ ) with a Dirichlet 

exterior condition (on 𝐷𝑐). The key problem is the description of eigenfunctions and 

eigenvalues of 𝒜𝐷and 𝑃𝑡
𝐷 . The study of the spectral theoretic properties of the semigroups 

of killed symmetric α-stable processes has been the subject of many in recent years; see, for 

example, [50]–[52], [64]–[66], [69], [70]. We show the continuation of the work of 

Banuelos and Kulczycki [50]. 

The identification of the spectral problem for 𝑃𝑡
𝐷 and the so-called mixed Steklov 

problem in two dimensions, a method developed in [50], is applied for the case of the half-

line 𝐷 = (0,∞). Instead of searching for a function f satisfying 

𝑃𝑡
𝐷𝑓(𝑥) = 𝑒−𝜆𝑡𝑓(𝑥) for 𝑥 ∈ 𝐷, 

and 𝑓(𝑥) = 0 for𝑥 ∈  𝐷𝑐, we solve the equivalent mixed Steklov problem 

𝛥𝑢(𝑥, 𝑦) =  0, 𝑥 ∈  ℝ, 𝑦 >  0,                                           (1) 
𝜕

𝜕𝑥
𝑢(𝑥, 0) = −𝜆𝑢(𝑥, 0), 𝑥 ∈ 𝐷,                                         (2) 

                               𝑢(𝑥, 0) =  0,    𝑥 ≠ 𝐷,ℝ                                                        (3) 
Where 𝛥 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 is the Laplace operator in ℝ2. The relation between f and u 

is given here by 𝑢(𝑥, 𝑦)  =  𝐸𝑥𝑓(𝑋𝑦). in this way a nonlocal spectral problem for the 

pseudodifferential operator on ℝ (or its semigroup (𝑃𝑡
𝐷) on a domain D) is transformed into 

a Local one for a harmonic function of two variables, with spectral parameter in the 

Boundary conditions. From the point of view of stochastic processes, this Corresponds to 

the identification of the jump-type process (𝑋𝑡) with the trace left on the horizontal axis by 
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the two-dimensional Brownian motion. Similar or related methods were also applied, for 

example, by DeBlassie and Mendez-H´ ernandez [68]–[70], [85], and the idea can be traced 

back to the work of Spitzer [94]; see also [86]. 

      When 𝐷 = (0,∞), the spectrum of 𝒜𝐷 is equal to (−∞, 0] and is of continuous type, 

and so there are no eigenfunctions of 𝒜𝐷 in 𝐿𝑃(𝐷) (this follows easily from scaling 

properties of 𝒜𝐷; see also Theorem (2.1.5) below). It turns out, however, that, for all𝜆 > 0, 

there exist continuous generalized eigenfunctions 𝜓𝜆 ∈ 𝐿
∞(𝐷). We have 𝑃𝑡

𝐷𝜓𝜆 = 𝑒
−𝜆𝑡𝜓𝜆. 

Using the identification described, an explicit formula for𝜓𝜆is derived; see (26) and (27). 

There are no earlier works concerning the spectral problem. 𝑃𝑡
𝐷𝑓(𝑥) = 𝑒−𝜆𝑡𝑓(𝑥) For 

𝑥 ∈ 𝐷 and 𝑓(𝑥) = 0 for 𝑥 ∈  𝐷𝑐 for the half-line𝐷 = (0,∞), or the equivalent problem (1)–

(3). However, there is an extensive literature concerning the related sloshing problem in the 

half-plane, that is, the problem given by (1), (2) and the Neumann condition 
𝜕

𝜕𝑦
𝑢(𝑥, 0)  =  0, 𝑥 ∉ 𝐷, 

In place of the Dirichlet one (3). The sloshing problem is one of the fundamental problems 

in the theory of linear water waves; see, for example, [74]. The explicit solution of the 

sloshing problem in the half-plane for 𝐷 = (0,∞) was first obtained by Friedrichs and Lewy 

in 1947 [75]; see also [62], [78], [81]. Both methods and results are closely related to their 

counterparts for the sloshing problem in the half-plane. 

Certain holomorphic functions play an important role in the derivation of𝜓𝜆, and one 

of these functions is studied. In particular, the Fourier–Laplace transform of 𝜓𝜆 is derived; 

See (43). The formula for 𝜓𝜆 is of the form 𝜓𝜆(𝑥) = sin(𝜆𝑥 + 𝜋 8⁄ ) − 𝑟(𝜆𝑥), where r is 

the Laplace transform of a positive integrable function. We obtain estimates of the function 

r. 

It is proved that 𝜓𝜆 yield a generalized eigenfunction expansion of 𝒜𝐷 for 𝐷 =
 (0,∞) in the sense of [76]; see, for example, [87], [93]. The transformation Π𝑓 = 〈𝑓, 𝜓𝜆〉 
is an isometric (up to a constant) mapping of 𝐿2(𝐷) onto 𝐿2(0,∞) which diagonalizes𝒜𝐷, 

with Π,𝒜𝐷 = 𝜆𝒜𝐷𝑓; see Theorem (2.1.5). 

    The spectral decomposition and enable us to derive an explicit formula for the kernel 

function 𝑃𝑡
𝐷(𝑥, 𝑦) of 𝑃𝑡

𝐷 that is, the transition density of the Cauchy process killed on exiting 

𝐷 = (0,∞) (or the heat kernel for √−𝑑2  ⁄ 𝑑𝑥2 −-with Dirichlet exterior condition on𝐷𝑐); 
see Theorem (2.1.6). This extends the results of [58], [59], [63], where two-sided Estimates 

for 𝑃𝑡
𝐷(𝑥, 𝑦) were obtained. As a Corollary, we obtain a new proof of the result by Darling 

[67], the explicit formula for the density of the distribution Of the first exit time from (0,∞); 
see Theorem (2.1.7). This can be rephrased in terms of the two dimensional Brownian 

motion; see Corollary (2.1.8); namely, we obtain a formula for the distribution of some local 

time of two-dimensional Brownian motion at some entrance time. 

     The spectral problem for the interval 𝐷 =  (−1,1). We remark that due to translation 

invariance and scaling property of (𝑋𝑡), the results for (−1,1) extend easily to any open 

interval. It is well known that there is an infinite Sequence of continuous eigenfunction 𝜑𝑛 ∈
𝐷 such that 𝒜𝐷𝜑𝑛 = −𝜆𝑛𝜑𝑛 on D and 𝜑𝑛 ≡ 0 on 𝐷𝑐, where 0 < 𝜆1 < 𝜆2 ≤ 𝜆3 ≤ ⋯ → ∞. 
each 𝜑𝑛 is either symmetric or antisymmetric. The study of the properties of 𝜑𝑛 and 𝜆𝑛dates 

back of Blumenthal and Getoor [54], where the Weyl-type asymptotic law was proved for a 

class of Markov processes in Domains. 
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In [54] it was proved that 𝜆𝑛 𝑛⁄ ⟶ 𝜋 2⁄  as n →∞. Over the last few years, there have 

been an increasing amount of research related to this topic; see, [50], [51], [65], [66], [69], 

[70], [83], [84]. In [50] it was shown that 𝜆𝑛 ≤ 𝑛𝜋/2. The best known estimates for general 

𝜆𝑛, namely/4 ≤ 𝜆𝑛 ≤ 𝑛𝜋/2, were proved in [65], where subordinate Brownian motions in 

bounded domains are studied. The simplicity of eigenvalues was studied in [50], where 𝜆2 

and𝜆3  are proved to be simple (simplicity of 𝜆1is standard), and in [84], where all 

eigenvalues are proved to have at most double multiplicity. 

All these results are improved below. 

Approximations �̂�𝑛 to eigenfunctions 𝜑𝑛 are constructed by interpolating the 

translated eigenfunction for the half-lines 𝜓𝜆(1 + x) and 𝜓𝜆(1-x) with 𝜆 = 𝑛𝜋/2 −  𝜋/8. It 
is then shown that 𝒜𝐷�̂�𝑛 is nearly equal to−𝜆�̂�𝑛. We show that 

|𝜆𝑛 − (
𝑛𝜋

2
−
𝜋

8
)| ≤

1

𝑛
, 𝑛 ≥ 1. 

and that the eigenvalues 𝜆𝑛 are simple; see Theorem (2.1.11). Finally, various properties of 

𝜑𝑛, see Corollary (2.1.13)– Corollary (2.1.16). 

     An application of numerical methods for estimation of eigenvalues to our problem is 

described. To get the upper bounds we use the Rayleigh–Ritz method for the Green operator, 

and for the lower bounds the Weinstein–Aronszajn method of intermediate problems is 

applied for (1)–(3). The numerical bounds of an approximate 10-digit accuracy are given by 

formula (88). 

We use purely analytic arguments. In fact, the Cauchy process and related 

probabilistic notions are only used to give a concise definition of the killed semigroup (𝑃𝑡
𝐷). 

We begin with a brief introduction to the Cauchy process (𝑋𝑡) and its relation to the 

Steklov problem. We only collect the properties used in what follows; for a more detailed 

exposition see to [50] or [57], [64], [82]. For an introduction to more general Markov 

processes, see, [55], [72], [92]. Basic facts concerning the Fourier transform, the Hilbert 

transform and Paley–Wiener theorems are recalled. 

The one-dimensional Cauchy process (𝑋𝑡) is the symmetric 1-stable process, that is, the 

L´evy process with one-dimensional distributions 

𝑃𝑥(𝑋𝑡) = 𝑝𝑡(𝑦 − 𝑥)𝑑𝑦 =
1

𝜋

𝑡

𝑡2 + (𝑦 − 𝑥)2
𝑑𝑦. 

Here 𝑃𝑥 corresponds to the process starting at x ∈ ℝ; we denote by Ex the expectation with 

respect to𝑃𝑥. Clearly, the 𝑃𝑥-distributions of (𝑋𝑡 + 𝑎) and (𝑏𝑋𝑡) are equal to 𝑃𝑥+𝑎 

distribution of (𝑋𝑡 + 𝑎) and (𝑏𝑋𝑡)-distribution of (𝑋𝑏𝑡), respectively; these are the 

translation invariance and scaling property mentioned. The transition semigroup of (𝑋𝑡) is 

defined by 

𝑃𝑡𝑓(𝑥) = 𝐸𝑥𝑓(𝑋𝑡) = f ∗ 𝑃𝑡(𝑥), 𝑓 ∈ 𝐿
𝑃(ℝ), 𝑝 ∈ [1,∞], 𝑡 > 0, 

and 𝑃0𝑓(𝑥) = 𝑓(𝑥). This is a contraction semigroup on each 𝐿𝑃(ℝ), with 𝑝 ∈ [1,∞], 
strongly continuous if𝑝 ∈ [1,∞), and when f is continuous and bounded, then 𝑃𝑡𝑓 converges 

to f locally uniformly as t↘ 0. The infinitesimal generator 𝒜of (𝑃𝑡) acting on 𝐿2(ℝ) is the 

square root of the second derivative operator. For a smooth function f with compact support 

we have 
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𝒜𝑓(𝑥) = −√−
𝑑2

𝑑𝑥2
𝑓(𝑥) =

1

𝜋
𝑃𝑉 ∫

𝑓(𝑦) − 𝑓(𝑥)

(𝑦 − 𝑥)2
𝑑𝑦

∞

−∞

 

Where the integral is the Cauchy principal value (PV). 

D always denotes the interval (−1,1) or the half-line (0, ∞).  The time of the first exit from 

D is defined by 𝜏𝐷 = inf{𝑡 > 0 ∶  𝑋𝑡 ∉ 𝐷}, and the semigroup of the process (𝑋𝑡) killed at 

time𝜏𝐷 is given by 

𝑃𝑡
𝐷𝑓(𝑥) = 𝐸𝑥(𝑓(𝑋𝑡); 𝑋𝑠 ∈ 𝐷 

 For all 𝑠 ∈ [0, 𝑡]) = 𝐸𝑥(𝑓(𝑋𝑡); 𝑡 <𝜏𝐷), where t≥  0. This is again a well-defined contraction 

semigroup on every 𝐿𝑃(𝐷) space, with p ∈ [1, ∞], strongly continuous if𝑝 ∈ [1,∞). If f is 

continuous and bounded in ℝ and vanishes in (−∞, 0], then𝑃𝑡
𝐷𝑓 converges to f locally 

uniformly as t 0. The semigroup (𝑃𝑡
𝐷) admits a jointly continuous kernel function𝑃𝑡

𝐷(𝑥, 𝑦) 
(𝑡 > 0, 𝑥, 𝑦 ∈ 𝐷); clearly, 𝑃𝑡

𝐷𝑓(𝑥, 𝑦) ≤ 𝑝𝑡(y - x) ≤1/πt. By 𝒜𝐷 we denote the infinitesimal 

generator of (𝑃𝑡
𝐷) acting on𝐿2(𝐷). Since this is a Friedrichs extentsion on 𝐿2(𝐷) of 𝐴 

restricted to the class of smooth functions supported in a compact subset of D, we sometimes 

say that 𝒜𝐷is the square root of Laplacian with Dirichlet exterior conditions (on 𝐷𝑐). 
     Let us describe in more detail the connection between the spectral problem for the 

semigroup (𝑃𝑡
𝐷) and the mixed Steklov problem (1)–(3), established in [50]. The main idea 

is to consider the harmonic extension 𝑢(𝑥, 𝑦) of a function f to the upper half-plane x ∈ ℝ 

and y > 0. Let 𝑓 ∈ 𝐿𝑃(ℝ)for some 𝑝 ∈  [1,∞],and define 

𝑢(𝑥, 𝑦)  =  𝑃𝑦𝑓(𝑥)  =
1

𝜋
∫

𝑦

𝑦2 + (𝑧 − 𝑥)2

∞

−∞

𝑓(𝑧)𝑑𝑧 1 

Then u is harmonic in the upper half-plane ℝ × (0, ∞), and if p ∈ [1, ∞), then 𝑢(·, 𝑦) 
converges to 𝑓 in 𝐿𝑃(ℝ) as y 0. Conversely, for 𝑝 ∈ (1,∞), if 𝑢(𝑥, 𝑦) is harmonic in the 

upper halfplane and the 𝐿𝑃(ℝ) norms of 𝑢(·, 𝑦) are bounded for y > 0, then 𝑢(·, 𝑦) converges 

in 𝐿𝑃(ℝ) to some 𝑓 when y 0, and 𝑢(𝑥, 𝑦)  =  𝑃𝑦𝑓(x). By the definition, 
𝜕

𝜕𝓎
 𝑢(x,0) =lim

𝓎↘0

𝑃𝑦𝑓(𝑥)−𝑓(𝑦)

𝓎
 

Point wise for all x ∈ ℝ. When f is in the domain of𝒜, then the above limit exists in 

𝐿2(ℝ)and it is equal to 𝒜𝑓 . 

The motivation to study the mixed Steklov problem (1)–(3) comes from the following 

simple extension of [50] to the case of unbounded domains. A partial converse is given in 

the proof of Theorem (2.1.3). 

Proposition (2.1.1)[49]: Let 𝐷 = (0,∞) and λ > 0. Suppose that f: ℝ → ℝ is continuous 

and bounded, f(x) = 0 for x≥ 0, and 𝑢(𝑥, 𝑦)  =  𝑃𝑦f(x). If 𝑃𝑡
𝐷f(x) = 𝑒−𝜆𝑡f(x) for all x ∈ D and 

t > 0, then u satisfies (1)–(3). 

Proof: Formulas (1) and (3) hold true by the definition of u. Since 𝑃𝑦  𝑃𝑡
𝐷𝑓(𝑥)  = 𝑒−𝜆𝑡f(x), 

we have 

𝑢(𝑥, 𝑦)  −  𝑢(𝑥, 0)

𝓎
=
𝑃𝑦𝑓(𝑥) − 𝑓(𝑥)

𝓎
=
𝑒−𝜆𝑡𝑓(𝑥) − 1

𝓎
𝑓(𝑥) −

𝑃𝑦𝑓𝑃𝑦(𝑥) − 𝑃𝑡
𝐷𝑓(𝑥) 

𝓎
. 

As y↘0, the first summand converges to −𝜆𝑓(𝑥). the second one is estimated using formula 

(101) (see also [50]). If 0 <  𝑦 <  𝑥, then we have 
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|
𝑃𝑦𝑓(𝑥) − 𝑃𝑡

𝐷𝑓(𝑥) 

𝓎
| ≤ ∫

𝑃𝑦(𝑧 − 𝑥) − 𝑃𝑡
𝐷(𝑥, 𝑧) 

𝓎

∞

0

|𝑓(𝑧)|𝑑𝑧

≤
‖𝑓‖∞
𝜋

∫ min
 
(
1

𝑥2
,
𝓎

𝑥2𝑧
,
𝓎

𝑥𝑧2
)𝑑𝑧 =

𝓎(2 + log (𝑥\𝑦))‖𝑓‖∞
𝜋𝑥2

∞

0

. 

 and this tends to 0 as y↘0. Therefore, (2) is also satisfied. 

The Fourier transform of a (complex-valued) function 𝑓 ∈ 𝐿1(ℝ) is given by𝑓(𝑥) =

∫𝑓(𝑡)𝑒−𝑖𝑡𝑥𝑑𝑡; this can be continuously extended to 𝐿𝑃(ℝ) whenever 1 ≤  𝑝 ≤ 2. For 𝑝 ∈
(1,∞), the Hilbert transform of 𝑓 ∈ 𝐿𝑃(ℝ), denoted by 𝐻𝑓, satisfies(𝐻𝑓)ˆ(𝑡) =

−𝑓𝑡)(𝑖𝑠𝑖𝑔𝑛𝑡). This is a bounded linear operator on 𝐿𝑃(ℝ), and for almost all t, 𝐻𝑓(𝑡) = 1 

𝐻𝑓(𝑡) =
1

𝜋
𝑃𝑉 ∫

𝑓(𝑠)

𝑡 − 𝑠

∞

−∞

𝑑𝑠                                                       (4) 

If f is Holder continuous, then the above formula holds for all t ∈ ℝ and 𝐻𝑓 is continuous; 

see, [95]. 

Let 𝐶+{𝑧 ∈ 𝑪: 𝐼𝑚 𝑧 > 0} and 𝐶+̅ = {𝑧 ∈ 𝑪 ∶ 𝐼𝑚 𝑧 ≥  0}; in a similar manner𝐶− and are 

defined. Let 1 < 𝑝 < ∞. If F is in the (complex) Hardy space 𝐻𝑃(𝐶+), that is, F is 

holomorphic in 𝐶+ and the 𝐿𝑃(ℝ) norms of 𝐹(·+𝑖𝜀) are bounded in 𝜀 > 0, then, we find that 

𝐹(·  + 𝑖𝜀) converges in 𝐿𝑃(ℝ)to some f∈ 𝐿𝑃(ℝ), which is said to be the boundary limit of 

F. In this case 

𝐼𝑚 𝑓 = 𝐻(𝑅𝑒𝑓)and 𝑅𝑒𝑓 = −𝐻(𝐼𝑚 𝑓).                             (5) 
We also have 

𝐻𝑓(𝑡) = −𝐻𝑓(−𝑡),     where  𝑓(𝑡) = 𝑓(−𝑡).                             (6) 
The following version of the Paley–Wiener theorem is important in what follows; see, for 

example, [71]. For 𝑝 ∈ (1,∞), a function f ∈ 𝐿𝑃(ℝ) is a boundary limit of some function 

𝐹 ∈ 𝐻𝑃(𝐶+) if and only if vanishes in (−∞, 0). in this case 

𝐹(𝑧) =
1

2𝜋
∫ 𝑓

∞

0

(𝑥)𝑒−𝑖𝑧𝑥𝑑𝑥, 𝑧 ∈ 𝐶+.                           (7) 

We use small letters to denote functions of the real variable and capital letters for 

functions on the upper half-plane𝐶+. Real-valued functions are denoted by Greek letters, 

whereas Latin letters are used for complex-valued functions. 

     We study the eigenproblem (1)–(3) for the half-line 𝐷 = (0,∞) using methods that were 

earlier applied to the sloshing problem with a semiinfinite dock; see [62], [75], [78]. The 

solution u is given as the imaginary part of a holomorphic function F of a complex 

variable𝑧 = 𝑥 + 𝑖𝑦, where 𝑥 ∈ ℝ and y≥  0. Such a function is automatically harmonic, and 

hence (1) is satisfied. Using the Cauchy–Riemann equations, we may restate (2) and (3) in 

the following equivalent form: 

𝐼𝑚(𝑖𝐹′(𝑥) + 𝜆𝐹(𝑥)) = 0,    𝑥 > 0,                                   (8) 
𝐼𝑚 𝐹(𝑥) =  0, 𝑥 ≤ 0.                                                (9) 

Observe that for all 𝜗 ∈ ℝ and 𝑡 < 0, the bounded holomorphic functions 𝐹(𝑧) = 𝑒𝑖𝜆𝑧+𝑖𝜗 

and 𝐹(𝑧) = 𝑒𝑖𝜆𝑧−𝑖𝑎𝑟𝑐𝑡𝑎𝑛 𝑡 satisfy (8), and for all 𝑡 > 0 the bounded holomorphic function 

𝐹(𝑧) = 𝑒𝑖𝜆𝑧+𝑖𝜗 
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  Satisfies (9). This suggests searching for a solution of the form  

 𝐹(𝑧) = 𝑒𝑖𝜆𝑧+𝑖𝜗 − ∫𝜚(𝑡)𝑒𝑖𝜆𝑧−𝑖𝑎𝑟𝑐𝑡𝑎𝑛 𝑡
0

−∞

𝑑𝑡,    𝑅𝑒 𝑧 ≥  0, 𝐼𝑚 𝑧 ≥  0,        (10) 

 𝐹(𝑧) = ∫ 𝜚(𝑡)𝑒𝑖𝜆𝑧
∞

0

𝑑𝑡                          𝑅𝑒𝑧 ≤ 0, 𝐼𝑚𝑧 ≥ 0,                   (11) 

where is an unknown real function, say in some 𝐿𝑃(ℝ), with 𝑝 ∈ (1,2], and 𝜗 ∈ ℝ. The 

values of F given by (10) and (11) must agree when Re 𝑧 = 0 and 𝐼𝑚 𝑧 ≥ 0, that is, 

∫ 𝑒𝑖𝜒(𝑡)𝜚(𝑡)𝑒𝑖𝑡𝜆𝓎𝑑𝑡 = 𝑒−𝑖𝜆𝓎+𝑖𝜗
∞

−∞

, 𝓎 > 0. 

Where 𝜒(𝑡)  =  arctan 𝑡− =  arctan(𝑚𝑎𝑥(−𝑡, 0)). Replacing 𝜆𝑦 by -s yields that 

      ∫ 𝑒𝑖𝜒(𝑡)𝜚(𝑡)𝑒𝑖𝑡𝜆𝓎𝑑𝑡 = 𝑒−𝑖𝜆𝓎+𝑖𝜗
∞

−∞

 𝑠 <  0.                                          (12) 

The right-hand side is the Fourier transform of 𝑔(𝑡) = (𝑒𝑒𝜗/2𝜋)(1/(1 + 𝑖𝑡)). Therefore, 

formula (12) is equivalent to the condition the function 𝑎(𝑡)  = 𝑒𝑖𝜒(𝑡)𝜚(𝑡) − 𝑔(𝑡) satisfies 

 �̂�(𝑠) = 0 for 𝑠 < 0.                                                           (13) 
Note that both and 𝜚 are in𝐿𝑃(ℝ), so that  �̂� is well defined and �̂� ∈ 𝐿𝑃(ℝ). The foregoing 

remarks can be summarized as follows: any real function 𝜚 ∈ 𝐿𝑃(ℝ) satisfying (13) yields 

a solution to the problem (8)–(9). 

      By the Paley–Wiener theorem, (13) is satisfied if and only if 𝑎 is the boundary 

limit of a unique function A in the Hardy space 𝐻𝑃(𝐶+) in the upper half-plane 𝐶+ =
{𝑧 ∈ 𝑪 ∶ 𝐼𝑚 𝑧 > 0}. such a function A can be derived as follows. (Formula (19)), a function 

B holomorphic in 𝐶+ and continuous on 𝐶+̅ is defined, such that 𝑖𝜒(𝑡) − 𝐵(𝑡) ∈ ℝ for all𝑡 ∈
ℝ. The function 

𝑒−𝐵(𝑡)𝑎(𝑡) = 𝑒𝑖𝜒(𝑡)−𝐵(𝑡) − 𝑒−𝐵(𝑡)𝑔(𝑡) 
Is therefore the boundary limit of 𝑒−𝐵(𝑧)𝐴(z). Note that 𝑒𝑖𝜒(𝑡)−𝐵(𝑡) is real. The function 

𝑔(𝑡) = (𝑒𝑖𝜗/2𝜋)(1/(1 + 𝑖𝑡)) is the boundary limit of a meromorphic function 𝐺(𝑧) =

(𝑒𝑖𝜗/2𝜋)(1 + 𝑖𝑧)). The function G has a simple pole at i, so that𝐺(𝑧)(𝑒𝑖𝐵(𝑧)−𝐵(𝑡)) is 

holomorphic in𝐶+. It follows that  

𝑒−𝐵(𝑡)𝑎(𝑡) + 𝑔(𝑡)(𝑒−𝐵(𝑡) − 𝑒−𝐵(𝑖)) = 𝑒𝑖𝜒(𝑡)−𝐵(𝑡)𝜚(𝑡) − 𝑒−𝐵(𝑖)𝑔(𝑡)               (14) 

Is a boundary limit of�̂�(𝑧) = 𝑒−𝐵(𝑧)𝐴(𝑧) + 𝐺(𝑧)(𝑒−𝐵(𝑧) − 𝑒−𝐵(𝑖)), 𝑧 ∈ 𝐶+. Since G and 𝐴 

are in 𝐻𝑃(𝐶+), and |𝑒−𝐵(𝑖)| is bounded (see (109)), we must have �̂� ∈ 𝐻𝑃(𝐶+). 

Let �̂�(z) = (𝑒−𝑖𝜗/2𝜋) (1/(1 - 𝑖𝑧)). Note that, by (14), the boundary limit of the function 

�̃�(𝑧) − 𝑒−𝐵(𝑖)
̅̅ ̅̅ ̅̅

�̃�(𝑧) (belonging to 𝐻𝑃(𝐶+)) is equal to 

𝑒𝑖𝜒(𝑡)−𝐵(𝑡)𝜚(𝑡) − 𝑒−𝐵(𝑖)𝑔(𝑡) − 𝑒−𝐵(𝑖)𝑔(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,                           (15) 

Which is real for all𝑡 ∈ ℝ. The real part of the boundary limit of and 𝐻𝑃(𝐶+) function is the 

negative of the Hilbert transform of its imaginary part. Therefore, the function defined by 

(15). 

Is the Hilbert transform of the constant 0, and so it is identically 0. It follows that 
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𝑒𝑖𝜒(𝑡)−𝐵(𝑡)𝜚(𝑡) = 𝑒−𝐵(𝑖)𝑔(𝑡) + 𝑒−𝐵(𝑖)𝑔(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =2Re(𝑒−𝐵(𝑖)𝑔(𝑡)), 𝑡 ∈ ℝ.  (16) 

Also, �̃�(𝑧) − 𝑒−𝐵(𝑖) �̃�(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) has a boundary limit 0, and so it is identically zero in 𝐶+. Hence, 

for z ∈ 𝐶+  we have 

𝐴(𝑧) = 𝑒−𝐵(𝑖) ( �̃�(𝑧) − 𝐺(𝑧)(𝑒𝐵(𝑧) − 𝑒−𝐵(𝑖))) =
𝑒−𝑖𝜗

2𝜋

𝑒𝐵(𝑧)−𝐵(𝑖)
̅̅ ̅̅ ̅̅

1 − 𝑖𝑧
−
𝑒𝑖𝜗

2𝜋

1 − 𝑒𝐵(𝑧)−𝐵(𝑖)

1 + 𝑖𝑧
 

Since |𝑒𝐵(𝑧)| is bounded by a constant multiple of 1 + |z| √1 + |𝑧|(see (109)), it follows that 

A defined by the above formula is in 𝐻𝑃(𝐶+) for any 𝑝 ∈ (2,∞), and given by (16) is in 

𝐿𝑃(ℝ); later we show that in fact 𝜚 ∈  𝐿𝑃(ℝ) for p ∈ (1, ∞) if ϑ = π/8. Also, the boundary 

limit of A is the function a defined in (13) (this can be verified, for example, by a direct 

calculation), so that indeed is a solution to (13). 

We now come to the construction of the function B. We want it to be holomorphic in 

𝐶+ and continuous in 𝐶+, and 𝑖𝜒(𝑡) − 𝐵(𝑡) is to be real for all t ∈ ℝ. Therefore 

                      𝐼𝑚 𝐵(𝑡) =  𝜒(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑡−),       𝑡 ∈ ℝ.                   (17)  

Clearly B is not in 𝐻𝑃(𝐶+), so that 𝑅𝑒𝐵(𝑡) cannot be expressed directly as the Hilbert 

transform of 𝐼𝑚𝐵′(𝑡)  =  𝜒′(𝑡). We can, however, apply the Hilbert transform to𝐼𝑚𝐵(𝑡) =
𝜒(𝑡), which is an 𝐿2(ℝ) function. It follows that 

𝑅𝑒𝐵′(𝑡) = −𝐻(𝐼𝑚 𝐵′)(𝑡) =
1

𝜋
𝑃𝑉 ∫

1

(𝑡 − 𝑠)(1 + 𝑠2)

0

−∞

𝑑𝑠, 𝑡 ∈  ℝ, 

The integral on the right-hand side being the Cauchy principal value for 𝑡 < 0. This equation 

is studied. It follows that up to an additive constant, which we choose to be zero, we have 

Re𝐵(𝑡) = 𝜂(𝑡), where η is given by (102). By (103) and (107), for all t ∈ ℝ, 

𝐵(𝑡) = 𝑖𝜒(𝑡) +  𝜂 (𝑡)  =  𝑖 arctan (𝑡−)  + log √1 + 𝑡
24
−
1

𝜋
∫
log|𝑠|

1 + 𝑠2
𝑑𝑠

𝑡

0

 

= 𝐼𝑎𝑟𝑐𝑡𝑎𝑛(𝑡−) + 
1

𝜋
∫
log|𝑡 − 𝑠|

1 + 𝑠2
𝑑𝑠

0

−∞

.                   (18) 

this formula is easily extended to complex arguments, whenever𝐼𝑚 𝑧 ≥  0, and we Have 

𝐵(𝑧) =
1

𝜋
∫
log|𝑧 − 𝑠|

1 + 𝑠2
𝑑𝑠

0

−∞

                                                (19) 

provided that the continuous branch of log is chosen on the upper half-plane 𝐶+̅̅̅̅  (that is, the 

principal branch withlog 𝑠 =  log |𝑠| +  𝑖𝜋 𝑓𝑜𝑟 𝑠 < 0). We emphasize that (18) and (19) 

agree for 𝑧 = 𝑡 < 0. 

For the explicit formula for, the function 𝐵(𝑖) needs to be computed. By (111) and (112), 

𝐵(𝑖) =
1

𝜋
∫
log(𝑖 + 𝑠)

1 + 𝑠2
𝑑𝑠

∞

0

=
1

𝜋
∫
log(𝑖 + 𝑠)

1 + 𝑠2
𝑑𝑠

∞

0

 

=
1

2𝜋
∫
log|1 + 𝑠2|

1 + 𝑠2
𝑑𝑠

∞

0

+
𝑖

𝜋
∫

𝜋/2

1 + 𝑠2
𝑑𝑠

∞

0

=
log 2

2
+
𝑖𝜋

8
.          (20) 

Now (16) yields that 
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𝜚(𝑡) = 2𝑒𝐵(𝑡)−𝑖𝜒(𝑡)Re(𝑒−𝐵(𝑖)𝑔(𝑡)) = 2𝑒𝜂(𝑡)Re(
𝑒𝑖(𝜗−𝜋 8⁄ )

2𝜋√2

1

1 + 𝑖𝑡
)

=
√2

2𝜋
𝑒𝜂(𝑡)

cos(𝜗 − 𝜋 8⁄ ) + 𝑡 sin(𝜗 − 𝜋 8⁄ )

1 + 𝑡2
, 𝑡 ∈ ℝ. 

Since 𝜗∈ℝ is arbitrary, we conclude that there are two linearly independent solutions for𝜚, 

corresponding to 𝜗 =  𝜋/8 and 𝜗 =  5𝜋/8, respectively: 

𝜚(𝑡) =  
√2

2𝜋

1

1 + 𝑡2
𝑒𝜂(𝑡) and �̃�(𝑡) =

√2

2𝜋

1

1 + 𝑡2
𝑒𝜂(𝑡) 

the solution to the problem (8)–(9) corresponding to ϑ = π/8 and as above is therefore given 

by 

 𝐹(𝑧) = 𝑒𝑖𝜆𝑧+𝑖𝜋 8⁄ −
√2

2𝜋
∫

1

1 + 𝑡2
𝑒𝜂(𝑡)𝑒𝑡𝜆𝑧−𝑖𝑎𝑟𝑐𝑡𝑎𝑛 𝑡𝑑𝑡,

0

−∞

𝑅𝑒 𝑧 ≥ 0, 𝐼𝑚𝑧 ≥ 0         (21) 

𝐹(𝑧) =  
√2

2𝜋
𝑒𝜂(𝑡) ∫

1

1 + 𝑡2
𝑒𝜂(𝑡)𝑒𝑡𝜆𝑧𝑑𝑡,

0

−∞

 𝑅𝑒𝑧 ≤ 0, 𝐼𝑚𝑧 ≥ 0.                 (22) 

By (106), we have 𝜚 ∈ 𝐿1(ℝ), and so F is bounded and continuous. Furthermore, it can be 

easily verified that the solution corresponding to 𝜗 =  5𝜋/8 and ˜ is given by 𝐹′ (z)/λ. Since 

�̃� decays at infinity as|𝑡|−1 2⁄ , it follows that 𝐹′ (z) has a singularity of order|𝑧|−1 2⁄  at zero 

and it is not bounded near 0. For that reason, in what follows we only study the solution 

𝐹(𝑧) given by (21) and (22). 

Since 𝑒−𝑖𝑎𝑟𝑐𝑡𝑎𝑛 𝑡 = (1 − 𝑖𝑡) √1 + 𝑡2⁄  and 𝑒𝜂(𝑡) = 𝑒−𝜂(−𝑡)√1 + 𝑡2√1 + t2 (see (104)), we 

can rewrite (21) as 

 𝐹(𝑧) = 𝑒𝑡𝜆𝑧+𝜗−𝜋 8⁄ −
√2

2𝜋
∫
1 + 𝑖𝑡

1 + 𝑡2
𝑒𝜂(𝑡)𝑒−𝑡𝜆𝑧𝑑𝑡,

∞

0

  𝑅𝑒 𝑧 ≥ 0, 𝐼𝑚𝑧 ≥ 0          (23) 

Therefore, we have proved the following theorem. 

Theorem (2.1.2)[49]: The bounded solution of (1)–(3) for 𝐷 = (0,∞) is given by 𝑢(𝑥, 𝑦) =

𝑒𝜆𝓎 sin (𝜆𝑥 +
𝜋

8
)  

 
√2

2𝜋
∫
𝑐𝑜𝑠(𝑡𝜆𝓎) − 𝑡 𝑠𝑖𝑛(𝑡𝜆𝓎)

1 + 𝑡2
𝑒𝑥𝑝(−

1

𝜋
∫
𝑙𝑜𝑔(𝑖 + 𝑠)

1 + 𝑠2
𝑑𝑠

∞

0

)𝑒𝑡𝜆𝑧𝑥𝑑𝑡,

∞

0

          (24) 

For 𝑥 ≥  0 and 𝑦 ≥ 0, and 

  𝑢(𝑥, 𝑦) =
√2

2𝜋
∫
𝑡 𝑠𝑖𝑛(𝑡𝜆𝓎)

1 + 𝑡2
𝑒𝑥𝑝(−

1

𝜋
∫
𝑙𝑜𝑔(𝑖 + 𝑠)

1 + 𝑠2
𝑑𝑠

∞

0

)𝑒𝑡𝜆𝑧𝑥𝑑𝑡 ,               

∞

0

   (25) 

For 𝑥 ≤  0 and 𝑦 ≥  0. 

We stated below, follows from Theorem (2.1.2) and a partial converse to Proposition (2.1.1). 

Theorem (2.1.3)[49]: Let 𝐷 = (0,∞). For𝜆 > 0, the function (see Figure (1) [49]) 

𝜓𝜆(𝑥) 𝑠𝑖𝑛 (𝜆𝑥 +
𝜋

8
) − 𝑟𝜆(𝑥), 𝑥 >  0,                                      (26) 
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Figure (1)[49]: (a) Graph of 𝜓1 and (b) graph of the remainder term 𝑟(𝑥) = 𝑠𝑖𝑛 (𝑥 +
𝜋

8
) − 

𝜓1(𝑥).wherer 

 𝑟𝜆(𝑥) = 𝑟(𝜆𝑥)
√2

2𝜋
∫

𝑡

1 + 𝑡2
𝑒𝑥𝑝

∞

0

(−
1

𝜋
∫
𝑙𝑜𝑔(𝑖 + 𝑠)

1 + 𝑠2
𝑑𝑠

∞

0

)𝑒−𝑡𝜆𝑥𝑑𝑡            (27) 

is the eigenfunction of the semigroup (𝑃𝑡
𝐷) acting on 𝐶(𝐷) corresponding to eigenvalue λ. 

Proof. With the notation of Theorem (2.1.2), we have𝜓𝜆(𝑥) = 𝑢(𝑥, 0); we extend 𝜓𝜆 to be 

0 on (−∞, 0]. since u is harmonic and bounded in the upper half-plane, we have𝑃𝑦𝜓𝜆(𝑥) =

𝑢(𝑥, 𝑦)(𝑦 > 0, 𝑥 ∈ ℝ). Since u satisfies (2), for all𝑥 > 0, (1 𝑦⁄ ) (𝑃𝑦𝜓𝜆(𝑥) −

𝜓𝜆(𝑥))converges to −𝜓𝜆(𝑥) as y↘0. We will now prove (formula (33)) that this 

convergence is dominated by an appropriate function. 

Below we assume that 𝜆 > 0, 𝑥 > 0 and0 < 𝑦 < 1/𝜆. By formula (24), we have 

 
𝑃𝑦𝜓𝜆(𝑥) − 𝑒

𝑡𝜆𝑦𝜓𝜆(𝑥)

𝓎
=
√2

2𝜋
∫
𝑐𝑜𝑠(𝑡𝜆𝓎) − 𝑠𝑖𝑛(𝑡𝜆𝓎) − 𝑒−𝜆𝑦𝑡

(1 + 𝑡2)𝑦
𝑒−𝜂(𝑡)𝑒−𝑡𝜆𝑥𝑑𝑡,

∞

0

     (28) 

since |1 − cos 𝑧| ≤ 𝑧2 2,⁄ |𝑧 − sin 𝑧| ≤ 𝑧3 3, |1 − 𝑧 − 𝑒−𝑧| ≤ 𝑧2 2⁄⁄  and 𝜆𝑦 < 1, we have 

|𝑡 cos(𝑡𝜆𝑦) − sin(𝑡𝜆𝑦) − 𝑒−𝜆𝑦𝑡| ≤ 𝜆2𝑡 (
𝑡2

2
+
𝑡2𝜆𝑦

3
+
1

2
) 𝑦2 < 𝜆2𝑡(1 + 𝑡2)𝑦2. 

  Using also 𝑒−𝜂(𝑡) ≤ 𝑒𝐶 𝜋⁄ (1 + 𝑡2)−1 4⁄  and then(1 + 𝑡2) ≥ 𝑡2, , we obtain  

| ∫
cos(𝑡𝜆𝓎) − sin(𝑡𝜆𝓎) − 𝑒−𝜆𝑦𝑡

(1 + 𝑡2)𝑦
𝑒−𝜂(𝑡)𝑒−𝑡𝜆𝑥𝑑𝑡,

1 𝜆𝑦⁄

0

| 

≤ 𝑒𝐶 𝜋⁄ 𝜆2𝓎 ∫
𝑡(1 + 𝑡2)

(1 + 𝑡2)5 4⁄
𝑒−𝑡𝜆𝑥𝑑𝑡 ≤ 𝑒𝐶 𝜋⁄ 𝜆2𝓎 ∫ √𝑡𝑒−𝑡𝜆𝑥𝑑𝑡.

1 𝜆𝑦⁄

0

1 𝜆𝑦⁄

0

      (29) 

In Furthermore,  

∫ √𝑡𝑒−𝑡𝜆𝑥𝑑𝑡 ≤ (𝜆𝑦)−3 4⁄

1 𝜆𝑦⁄

0

∫ 𝑡1 4⁄ 𝑒−𝑡𝜆𝑥𝑑𝑡 ≤
Γ(3 4⁄ )

(𝜆2𝑥𝓎)3 4⁄

∞

0

                         (30) 

In a similar manner, by using|cos(𝑡𝜆𝓎) − sin(𝑡𝜆𝓎) − 𝑒−𝜆𝑦𝑡| ≤ 𝑡 + 𝑡𝜆𝑦 + 𝑡 ≤ 3𝑡,  we 

obtain 
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| ∫
cos(𝑡𝜆𝓎) − sin(𝑡𝜆𝓎) − 𝑒−𝜆𝑦𝑡

(1 + 𝑡2)𝑦
𝑒−𝜂(𝑡)𝑒−𝑡𝜆𝑥𝑑𝑡,

∞

1 𝜆𝑦⁄

|

≤ 3𝑒𝐶 𝜋⁄ ∫
𝑡

(1 + 𝑡2)5 4⁄ 𝑦
𝑒−𝑡𝜆𝑥𝑑𝑡

∞

1 𝜆𝑦⁄

≤
3𝑒𝐶 𝜋⁄

𝑦
∫ 𝑡−3 2⁄ 𝑒−𝑡𝜆𝑥𝑑𝑡,

∞

1 𝜆𝑦⁄

                                                                                 (31) 

and 

 ∫ 𝑡−3 2⁄ 𝑒−𝑡𝜆𝑥𝑑𝑡,

∞

1 𝜆𝑦⁄

≤ (𝜆𝑦)5 4⁄ ∫ 𝑡−1 4⁄ 𝑒−𝑡𝜆𝑥𝑑𝑡 ≤
𝛤(3 4⁄ )(𝜆𝑦)5 4⁄

(𝜆 𝑥)3 4⁄

∞

0

            (32) 

Formulas (28)–(32) yield, after simplification, that 

 |
𝑃𝑦𝜓𝜆(𝑥) − 𝑒

−𝜆𝑦𝜓𝜆(𝑥)

𝑦
| ≤

2√2𝑒𝐶 𝜋⁄ 𝛤(3 4⁄ )𝜆1 2⁄ 𝑦1 4⁄

𝜋𝑥3 4⁄
=
𝑐1(𝜆)𝑦

1 4⁄

𝑥3 4⁄
.                           (33) 

With some constant𝑐1(𝜆) 
     We are now going to replace 𝑃𝑦 by 𝑃𝑦

𝐷in (33). It is proved (using only the definition (26) 

and (27) of𝜓𝜆) that |𝜓𝜆(𝑥)| = |𝜓1(𝜆𝑥)| ≤ 2√𝜆𝑥;   see (53). This and (101), for 0 < 𝑦 < 𝑥, 
yield that 

 |
𝑃𝑦𝜓𝜆(𝑥) − 𝑒

−𝜆𝑦𝜓𝜆(𝑥)

𝑦
| ≤ ∫

𝑃𝑦(𝑧 − 𝑥) − 𝑃𝑦
𝐷(𝑥, 𝑧)

𝑦
|𝜓𝜆(𝑧)|

∞

0

𝑑𝑧

≤
2√𝜆

𝜋
∫ 𝑚𝑖𝑛 (

1

𝑥2
,
𝑦

𝑥2𝑧
,
𝑦

𝑧2𝑥
)√𝑧𝑑𝑧 =

8√𝜆𝑦(3√𝑥 − √𝑦)

3𝜋𝑥2
≤
8√𝜆𝑦

𝜋𝑥3 2⁄

∞

0

≤
8√𝜆𝑦

𝜋𝑥3 4⁄
                                                                                                                 (34) 

When 0 < 𝑥 < 𝑦, in a similar manner (35) 

 |
𝑃𝑦𝜓𝜆(𝑥) − 𝑃𝑦

𝐷𝜓𝜆(𝑥)

𝑦
| ≤

2√𝜆

𝜋
∫ 𝑚𝑖𝑛 (

1

𝑦2
,
1

𝑧2
)√𝑧𝑑𝑧 =

16√𝜆

3𝜋√𝑦
≤
16√𝜆𝑦1 4⁄

𝜋𝑥3 4⁄

∞

0

        (35) 

Finally, by (33)–(35), there is a constant 𝑐2(𝜆) such that 

|
𝑃𝑦
𝐷𝜓𝜆(𝑥) − 𝑒

−𝜆𝑦𝜓𝜆(𝑥)

𝑦
| ≤ 𝑐2(𝜆)

𝑦1 2⁄

𝑥3 4⁄
                                           (36) 

For any fixed 𝑥 > 0 and𝑡 > 0, the one-sided derivative of 𝑒𝜆𝑦𝑃𝑦
𝐷𝜓𝜆(𝑥) with respect to 𝑡 

equals 

𝜕

𝜕𝑡+
(𝑒𝜆𝑦𝑃𝑦

𝐷𝜓𝜆(𝑥)) = lim
𝑦↘0

𝑒𝜆(𝑡+𝑦)𝑃𝑡+𝑦
𝐷 𝜓𝜆(𝑥) − 𝑒

𝜆𝑡𝑃𝑦
𝐷𝜓𝜆(𝑥)

𝑦

= lim 𝑒𝜆(𝑡+𝑦)∫ 𝑃𝑦
𝐷(𝑥, 𝑧) 

∞

0
𝑦↘0

𝑃𝑦
𝐷𝜓𝜆(𝑧) − 𝑒

𝜆𝑦𝜓𝜆(𝑧)

𝑦
𝑑𝑧 
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 Since 𝑃𝑦
𝐷(𝑥, 𝑧) ≤ 1 𝑡⁄ ,  by (36) we have 

|∫ 𝑃𝑦
𝐷(𝑥, 𝑧) 

∞

0
 

𝑃𝑦
𝐷𝜓𝜆(𝑧) − 𝑒

−𝜆𝑦𝜓𝜆(𝑧)

𝑦
𝑑𝑧| ≤ ∫

𝑐1(𝜆)𝑦
1 4⁄

𝑧3 4⁄
𝑃𝑦
𝐷(𝑥, 𝑧)𝑑𝑧

∞

0

≤ 𝑐2(𝜆)𝑦
1 4⁄ (∫ 𝑃𝑦

𝐷(𝑥, 𝑧)𝑑𝑧 +

∞

1
 

1

𝑡
∫

1

𝑧3 4⁄
𝑑𝑧

1

0

) ≤ (1 +
4

𝑡
) 𝑐2(𝜆)𝑦

1 4⁄  

The right-hand side tends to zero as y↘ 0, that 
𝜕

𝜕𝑡+
(𝑒𝜆𝑦𝑃𝑦

𝐷𝜓𝜆(𝑥)) = 0 

 For all 𝑡 > 0 and𝑥 > 0. By (36) (with both sides multiplied by𝑒𝜆𝑦), this also holds for𝑡 =
0. 

Finally, the function 𝑒𝜆𝑡𝑃𝑦
𝐷𝜓𝜆(𝑥) is continuous with respect to t for each x > 0 (this follows 

from the weak continuity of 𝑃𝑦
𝐷(𝑥, 𝑧)𝑑𝑧 with respect to t, which is a consequence of the 

stochastic continuity of the killed Cauchy process; one can also prove this using the explicit 

formula for 𝑝𝑖 and (101)). It follows that𝑒𝜆𝑡𝑃𝑦
𝐷𝜓𝜆(𝑥) is constant in 𝑡 ≥ 0, and since 

𝑃0
𝐷𝜓𝜆(𝑥) = 𝜓𝜆(𝑥),this completes the proof. 

We study the properties of the function B. As an interesting corollary, the Laplace 

transform of the eigenfunctions 𝜓𝜆is computed. 

    The function B defined by (19) extends to a holomorphic function on 𝑪 \ (−∞, 0], 

satisfying 𝐵(𝑧̅) = 𝐵(𝑧)̅̅ ̅̅ ̅̅ . Therefore B is defined on whole 𝑪, it is holomorphic in 𝑪\(−∞, 0] 
with a branch cut on (−∞, 0], and it is continuous on 𝐶+̅. The following properties of B will 

play an important role. 

When 𝐼𝑚 𝑧 > 0, we have 

𝐵(𝑧) + 𝐵(−𝑧) =
1

𝜋
∫
log(𝑧 − 𝑠)

1 + 𝑠2
𝑑𝑠 +

1

𝜋
∫
log(−𝑧 − 𝑠)

1 + 𝑠2

0

−∞

0

−∞

𝑑𝑠

=
1

𝜋
∫
log(𝑧 + 𝑠)

1 + 𝑠2
𝑑𝑠 +

1

𝜋
∫
log(𝑧 + 𝑠) − 𝑖𝜋

1 + 𝑠2

0

−∞

∞

0

=
1

𝜋
∫
log(𝑧 − 𝑠)

1 + 𝑠2
𝑑𝑠 −

𝑖𝜋

2
 .

∞

−∞

 

 On the right-hand side, the function𝑠 →  𝑙𝑜𝑔(𝑧 − 𝑠), holomorphic (and therefore 

harmonic) in𝐶−, is integrated against the Poisson kernel of the lower half-plane 𝑝1(𝑠) =
(1 𝜋⁄ )(1 1 + 𝑠2⁄ ). The result is the value of 𝑙𝑜𝑔(𝑧 − 𝑠) at𝑠 = −𝑖. It follows that 

𝐵(𝑧) + 𝐵(−𝑧) = log(𝑧 − (−𝑖)) −
𝑖𝜋

2
= log(1 − 𝑖𝑧). 

By 𝐵(𝑧̅) = 𝐵(𝑧)̅̅ ̅̅ ̅̅  we get 𝐵(𝑧)𝐵(−𝑧) = = 𝑙𝑜𝑔(1 + 𝑖𝑧) whenever 𝐼𝑚 𝑧 < 0, and so 

 𝑒𝐵(𝑧) = (1 − 𝑖𝑧𝜎(𝑧))𝑒−𝐵(−𝑍)                                        (37) 
where 𝜎(𝑧) = 1 when 𝐼𝑚 𝑧 > 0 and 𝜎(𝑧) = −1 when𝐼𝑚 𝑧 <  0. A similar relation for η 

was used earlier in (23), see also (104). By continuity of 𝐵(𝑧) in 𝐶+ the formula (37) is also 

valid for 𝑧 ∈  ℝ if we let 𝜎(𝑧) = 1 for 𝑧 < 0 and 𝜎(𝑧) = −1 for 𝑧 > 0. For completeness, 
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we let𝜎(0) = 0 By (21), (27), the relation between F, 𝜓𝜆 and 𝑟𝜆, and using 𝐵(𝑡) =  𝜂(𝑡) +
 𝑖𝑎𝑟𝑐𝑡𝑎𝑛    

 𝑟(𝑥) =
√2

2𝜋
∫ 𝜏(𝑡)𝑒−𝑡𝑥𝑑𝑡

∞

0

 Where 𝜏(𝑡) = 𝐼𝑚
𝑒𝐵(−𝑡)

1 + 𝑡2
                        (38) 

Note that by the definition, 𝜏(𝑡) = 0 for t≤ 0. In what follows, we need the Hilbert transform 

of τ, which can be computed. The function 𝑒𝐵(𝑧)/(1 + 𝑧2) is Meromorphic in the upper 

half-plane with a simple pole at i, so that the function 

𝑒𝐵(𝑧)

1 + 𝑧2
−
1

2

𝑒𝐵(𝑡)

1 + 𝑖𝑧
−
1

2

𝑒𝐵(𝑖)
̅̅ ̅̅ ̅̅

1 + 𝑖𝑧
 

Is holomorphic in𝐶+. In fact it is in 𝐻𝑃(𝐶+) for𝑝 ∈ (1,∞); see (109). Its boundary limit on 

ℝ is equal to 

𝑒𝐵(𝑡)

1 + 𝑡2
−
1

2

𝑒𝐵(𝑡)

1 + 𝑖𝑡
−
1

2

𝑒𝐵(𝑖)
̅̅ ̅̅ ̅̅

1 + 𝑖𝑡
=
𝑒𝐵(𝑡) − √2 cos(𝜋 8⁄ ) − 𝑡√2 sin(𝜋 8⁄ )

1 + 𝑡2
, 

and the imaginary part of this function is just𝜏(−𝑡). Therefore, the Hilbert transform of 

𝜏(−𝑡) is the negative of the real part of the above function. It follows by (6) that, for 𝑡 ∈ℝ, 

𝐻𝜏(𝑡) =  𝑅𝑒 
𝑒𝐵(−𝑡) − √2𝑐𝑜𝑠(𝜋 8⁄ ) + 𝑡√2 𝑠𝑖𝑛(𝜋 8⁄ )

1 + 𝑡2
 .                                (39) 

We are now able to compute the Laplace transform ℒ𝜓𝜆of𝜓𝜆. By a direct computation, we 

have 

∫ sin (𝑥 +
𝜋

8
) 𝑒−𝑡𝑥𝑑𝑥 =

√2 cos(𝜋 8⁄ ) − 𝑡√2 sin(𝜋 8⁄ )

1 + 𝑡2

∞

0

  𝑡 >  0.                         (40) 

On the other hand, by Fubini’s theorem and (38), 

∫ 𝑟(𝑥)𝑒−𝑡𝑥
∞

0

𝑑𝑥 =
√2

2𝜋
∫
𝑒𝐵(𝑧)

𝑡 + 𝑠

∞

0

𝑑𝑠 = −
√2

2
𝐻𝜏(−𝑡) 𝑡 ≥ 0. 

By (39) we have 

∫ 𝑟(𝑥)𝑒−𝑡𝑥
∞

0

𝑑𝑥 =
√2

2

𝑒𝐵(𝑡)

1 + 𝑡2
+
cos(𝜋 8⁄ ) − 𝑡 sin(𝜋 8⁄ )

1 + 𝑡2
  𝑡 ≥ 0.                (41) 

In particular, 

∫ 𝑟(𝑥)𝑒−𝑡𝑥
∞

0

= cos (
𝜋

8
) −

√2

2
.                                            (42) 

Formulas (40) and (41) give 

𝐿𝜓1(𝑡) = ∫ 𝜓1(𝑥)𝑟(𝑥)𝑒
−𝑡𝑥

∞

0

𝑑𝑥 =
√2

2

𝑒𝐵(𝑡)

1 + 𝑡2
,           𝑡 > 0.              (43) 

By scaling and the uniqueness of the holomorphic continuation, we obtain the following 

result. 

Corollary (2.1.4)[49]: The Laplace transform of 𝜓𝜆 is equal to 
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𝜓𝜆(𝑧) = ∫ 𝜓𝜆𝑟(𝑥)𝑒
−𝑧𝑥

∞

0

𝑑𝑥 =
√2

2

𝜆𝑒𝐵(𝑧 𝜆⁄ )

𝜆2 + 𝑧2
,         𝑅𝑒𝑧 > 0,               (44) 

where 𝐵(𝑧) is given by (19). 

We devoted to a detailed analysis of the remainder term 𝑟𝜆; see (27). Recall that 

𝑟𝜆(𝑥) = 𝑟𝜆(𝑥), where 

𝑟(𝑥) =
√2

2𝜋
∫

𝑡

(1 + 𝑡2)5 4⁄
𝑒𝑥𝑝(

1

𝜋
∫
log 𝑠

1 + 𝑠2
𝑑𝑠

𝑡

0

)𝑒−𝑡𝑥𝑑𝑡.

∞

0

                            (45) 

 since 𝑟 is the Laplace transform of a positive function, it is completely monotone, that is, 

all functions(−1)𝑛𝑟(𝑛) are nonnegative and monotonically decreasing (see, for example, 

[73]). In most of our estimates we simply use the inequality 

−𝐶 ≤ ∫
log 𝑠

1 + 𝑠2
𝑑𝑠

𝑡

0

≤ 0   for𝑡 > 0 

and formula (113). The 𝐿1(ℝ) norm of r, however, we have already calculated in (42) as 

∫ 𝑟(𝑥)

∞

0

= cos (
𝜋

8
) −

√2

2
∈ (0.216,0.217).                   (46) 

Since 1/(𝑡 + 𝑠) ≤ 1 2√𝑡𝑠⁄ , by Fubini’s theorem, it follows that 

∫(𝑟(𝑥))2
∞

0

≤
1

2𝜋2
∫ ∫

𝑡

(1 + 𝑡2)5 4⁄

∞

0

∞

0

𝑠
𝑡

(1 + 𝑠2)5 4⁄

1

𝑡 + 𝑠
𝑑𝑡𝑑𝑠 ≤

1

4𝜋2
(∫

√𝑡

(1 + 𝑡2)5 4⁄
𝑑𝑡

∞

0

)

2

=
(𝛤(3 4⁄ ))

2

𝜋(𝛤(1 4⁄ ))
2  <  0.037.                                                                                   (47) 

In a similar manner,1/(𝑡 +  𝑠) ≥ 11 (√1 + 𝑠2√1 + 𝑡2),⁄  so that 

∫ 𝑟(𝑥)2𝑑𝑥 ≥
𝑒−2𝑐 𝜋⁄

2𝜋2

∞

0

(∫
√𝑡

(1 + 𝑡2)5 4⁄
𝑑𝑡

∞

0

)

2

=
𝑒−2𝑐 𝜋⁄

9𝜋2
>  0.012.                 (48) 

For 𝑥 > 0, we have 

𝑟(𝑥) =
√2

2𝜋
∫

√𝑡

(1 + 𝑡2)5 4⁄
𝑒𝑥𝑝(∫

log 𝑠

1 + 𝑠2
𝑑𝑠

𝑡

0

)

∞

0

𝑒−𝑡𝑥𝑑𝑡 ≤
√2

2𝜋
∫ 𝑡𝑒−𝑡𝑥𝑑𝑡 ≤

√2

2𝜋𝑥2
.

∞

0

(49) 

In a similar manner, 

(−1)𝑛𝑟(𝑛)(𝑥) ≤
√2

2𝜋

(𝑛 + 1)!

𝑥𝑛+2
                                               (50) 

also, 

                          𝑟(𝑥) ≤ 𝑟(0) = sin
𝜋

8
=

√2−√2

2
< 0.383,                                  (51) 

and 



 

 

39 
 

−𝑟′(𝑥) ≤
√2

2𝜋
∫
𝑒−𝑡𝑥

√𝑡

∞

0

𝑑𝑡 =
1

√2𝜋𝑥
                                                (52) 

 
For𝑥 > 0, it follows that 

|𝜓1(𝑥)| ≤ |sin (𝑥 +
𝜋

8
) − sin

𝜋

8
| + |𝑟(𝑥) − 𝑟(0)| ≤ 𝑥 + ∫|𝑟′(𝑦)|𝑑𝑦 ≤ 𝑥 + √

2𝑥

𝜋

𝑥

0

. 

Since clearly |𝜓1(𝑥)| ≤ |sin(𝑥 + 𝜋 8⁄ )| + |𝑟(𝑥)| ≤ 2,we have 

               |𝜓1(𝑥)| ≤ 𝑚𝑖𝑛 (𝑥 + √
2𝑥

𝜋
, 2) ≤ 𝑚𝑖𝑛(2√𝑥, 2).                            (53) 

This property was already used in the proof of Theorem (2.1.3). 

We estimate the supremum norm of 𝜓𝜆. We have 𝑟(𝑥) > 0, so that 𝜓1(𝑥) < 1  for 

all x > 0. Furthermore, since r is monotonically decreasing, the global minimum of 𝜓1 is its 

first local minimum, say 𝜓1(𝑥0), which is attained at the second zero 𝑥0 of 𝜓′
1
(𝑥) =

cos(𝑥 + 𝜋 8⁄ ) − 𝑟′(𝑥)(𝑥) > 0). Since -r is decreasing, by (50), we find that x0 is not less 

than the second zero of𝑐𝑜𝑠(𝑥 + 𝜋/8) + (√2/𝜋)𝑥−3; hence 𝑥0 > 4.31. It follows that 

‖𝜓𝜆‖∞ ≤ 1 + 𝑟(𝑥0) = 1 +
√2

2𝜋
∫

𝑡𝑒−𝑥0𝑡

(1 + 𝑡2)5 4⁄
𝑑𝑡

∞

0

< 1.01;                      (54) 

For the last inequality, integrate by parts the left-hand side of formula 3.387(7) in [77]. The 

estimate (54) is only used in Corollary (2.1.16), where a weaker version of (54) would only 

result in a larger constant in (87). In fact, for the present constant 3, we only need that 
‖𝜓𝜆‖∞ ≤ 1.19, which is easily obtained by (49) and 𝑥0 ≥ 4.  

Let 𝐷 = (0,∞). We study the 𝐿2(𝐷) properties of the operators 𝑃𝑡
𝐷. For 𝑓 ∈ 𝐶𝑐(𝐷), 

define 

𝛱𝑓(𝑥)  = ∫ 𝑓(𝜆)𝜓𝜆(𝑥)𝑑𝜆 ,

∞

0

𝑥 ∈ 𝐷,                                         (55) 

Where 𝜓𝜆 = 𝑠𝑖𝑛(𝜆𝑥 + 𝜋/8) − 𝑟𝜆(𝑥) is given by (26) and (27). Note that 

𝐹1(𝑥) = ∫ 𝑓(𝜆) sin (𝜆𝑥 +
𝜋

8
)𝑑𝜆 ,

∞

0

𝑥 ∈ 𝐷, 

 Satisfies ‖𝐹1‖2 ≤ 𝑐1‖𝑓‖2. Also, for 

𝐹2(𝑥) = ∫ 𝑓(𝜆)𝑟𝜆(𝑥)𝑑𝜆 ,

∞

0

𝑥 ∈ 𝐷 

we may apply (49) and (51) to obtain 
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∫(𝐹2(𝑥))
2
𝑑𝑥 ≤ ∫ ∫ ∫ |𝑓(𝜇)||𝑓(𝜆)|𝑟(𝜇𝑥)𝑟(𝜆𝑥)𝑑𝜇𝑑𝜆𝑑𝑥

∞

0

∞

0

∞

0

∞

0

≤ ∫  

∞

0

∫ (∫
𝑐0

(1 + 𝜇𝑥)2(1 + 𝜆𝑥2)2
𝑑𝑥

∞

0

) |𝑓(𝜇)||𝑓(𝜆)|𝑑𝜇𝑑𝜆

∞

0

≤ ∫  

∞

0

∫ (∫
𝑐0

(1 + (𝜇 + 𝜆)𝑥)2
𝑑𝑥

∞

0

) |𝑓(𝜇)||𝑓(𝜆)|𝑑𝜇𝑑𝜆

∞

0

= 𝑐2∫  ∫
|𝑓(𝜇)||𝑓(𝜆)|

𝜇 + 𝜆
𝑑𝜇𝑑𝜆,

∞

0

∞

0

 

Which is bounded by 𝑐2𝜋‖𝑓‖2
2 and so by the Hardy-Hilbert inequality, 

 ‖𝐹2‖2
2 ≤ 𝑐2𝜋‖𝑓‖2

2. 
 It follows that‖Π𝑓‖2 = ‖𝐹1 − 𝐹2‖2 ≤ 𝑐3‖𝑓‖2, and therefore Π can be continuously 

extended to a unique bounded linear operator on𝐿2(𝐷). 
For f ∈ 𝐶𝑐(D), we find that 𝑝𝑡

𝐷(𝑥, 𝑦)𝑓(𝜆)𝜓𝜆(𝑦) is integrable in(𝑦, 𝜆) ∈ 𝐷 × 𝐷, so that by 

Theorem (2.1.3), 

𝑝𝑡
𝐷Π𝑓(𝑥) = ∫ 𝑒−𝜆𝑡𝑓(𝜆)𝜓𝜆(𝑥)𝑑𝜆,

∞

0

 𝑥 ∈  𝐷.                               (56) 

Let 𝑓, 𝑔 ∈ 𝐶𝑐(D) and we define 𝑓𝑘(𝜆) = 𝑒
−𝑘𝜆𝑡𝑓(𝜆) and𝑔𝑘(𝜆) = 𝑒

−𝑘𝜆𝑡𝑔(𝜆). From (56) it 

follows that 𝑝𝑡
𝐷Π𝑓𝑘 = Π𝑓𝑘+1and𝑝𝑡

𝐷Π𝑔𝑘 = Π𝑔𝑘+1. Since the operators 𝑝𝑡
𝐷 are self-adjoint, 

we have 

∫ Π𝑓(𝑥)Π𝑔(𝑥)𝑑𝑥

∞

0

= ∫ 𝑝𝑡
𝐷Π𝑓−1(𝑥)Π𝑔(𝑥)𝑑𝑥 = ∫ Π𝑓−1(𝑥)𝑝𝑡

𝐷Π𝑔(𝑥)𝑑𝑥 = ∫ Π𝑓−1(𝑥)Π𝑔1(𝑥)𝑑𝑥

∞

0

∞

0

∞

0

. 

By induction, 

∫ Π𝑓(𝑥)Π𝑔(𝑥)𝑑𝑥 = ∫ Π𝑓−𝑘(𝑥)Π𝑔𝑘(𝑥)𝑑𝑥

∞

0

∞

0

 

Suppose that sup𝑓 ⊆ (0, 𝜆0) and supp 𝑔 ⊆ (𝜆0, ∞). Then we have 

∫ Π𝑓(𝑥)Π𝑔(𝑥)𝑑𝑥 = ∫ Π(𝑒−𝑘𝜆0𝑡𝑓−𝑘) 
(𝑥)Π(𝑒𝑘𝜆0𝑡𝑔𝑘)(𝑥)𝑑𝑥.

∞

0

∞

0

 

Both 𝑒−𝑘𝜆0𝑡𝑓−𝑘 and 𝑒𝑘𝜆0𝑡𝑔𝑘 tend to zero uniformly ask → ∞, and so Π(𝑒−𝑘𝜆0𝑡𝑓−𝑘) and 

Π(𝑒−𝑘𝜆0𝑡𝑓−𝑘)  converge to zero in 𝐿2(𝐷). We conclude that Π𝑓 and Π𝑔 are orthogonal in 

𝐿2(𝐷) .By an approximation argument, this is true for any𝑓, 𝑔 ∈ 𝐿2(𝐷), provided that 𝑓(𝜆) 
= 0 for λ≥ 𝜆0 and (𝜆)  =  0 for 𝜆 ≤ 𝜆0. 

We define 
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𝜇(𝐴) = ∫(Π1𝐴(𝑥))
2
𝑑𝑥,

∞

0

    𝐴 ⊆  𝐷. 

Clearly 

𝜇(𝐴) ≤ 𝑐3‖1𝐴‖2
2 = 𝑐3|𝐴|, 𝐴 ⊆  𝐷. 

 Whenever 𝐴 ⊆ (0, 𝜆0)and 𝐵 ⊆ (𝜆0,∞), we have 

 𝜇(𝐴 ∪ 𝐵) = ∫ (Π1𝐴(𝑥))
2
𝑑𝑥 + ∫ (Π1𝐵(𝑥))

2
𝑑𝑥 + 2∫ Π1𝐴(𝑥)Π1𝐵(𝑥)𝑑𝑥 = 𝜇(𝐴) +

∞

0

∞

0

∞

0

𝜇(𝐵). 
Finally, when 𝐴 = ⋃ 𝐴𝑛,

∞
𝑛=1  where 𝐴1 ⊆ 𝐴2 ⊆ ⋯ and |𝐴| < ∞, the sequence 1𝐴𝑛 converges 

in 𝐿2(𝐷) to 1𝐴as n → ∞. Hence Π1𝐴𝑛 converges to Π1𝐴 in𝐿2(𝐷), and so 𝜇(𝐴)  =

lim
𝑛→∞

𝜇(𝐴𝑛). 

It follows that μ is an absolutely continuous measure on (0, ∞). By an approximation 

argument, we have 

∫ Π𝑓(𝑥)Π𝑔(𝑥)𝑑𝑥∫ 𝑓(𝜆)𝑔(𝜆)𝜇(𝑑𝜆)

∞

0

∞

0

 

For any𝑓, 𝑔 ∈ 𝐿2(𝐷). 
Note that 𝜓𝜆(𝑞𝑥) = 𝜓𝜆 𝑞⁄ (𝑥), and therefore Π𝑓𝑞(𝑥) = 𝑞Πf(𝑞𝑥), where𝑓𝑞(𝑥) = 𝑓(𝑥 𝑞⁄ ). It 

follows that 𝜇(𝑞𝐴) = 𝑞𝜇(𝐴)and so μ must be a multiple of the Lebesgue measure on (0,∞), 
say 𝜇(𝐴) = 𝑐4|𝐴|.This result is a version of Plancherel’s theorem, where the Fourier 

transform is replaced by Π: 

∫ Π𝑓(𝑥)Π𝑔(𝑥)𝑑𝑥∫ 𝑓(𝜆)𝑔(𝜆)𝑑𝜆

∞

0

∞

0

 

For any 𝑓, 𝑔 ∈ 𝐿2(𝐷). 

The constant 𝑐4 can be determined by considering 𝑓(𝜆) = (1/√𝑞)1[1,1+𝑞](𝜆), where 𝑞 >

0. 

We then have‖𝑓‖2 = 1. On the other hand, 

𝛱𝑓(𝑥) =
1

𝑥√𝑞
= (cos (𝑥 +

𝜋

8
) − cos ((1 + 𝑞)𝑥 +

𝜋

8
)) −

1

√𝑞
∫ 𝑟(𝜆𝑥)𝑑𝜆

1+𝑞

1

. 

The 𝐿2(𝐷) norm of the first summand converges to √𝜋 2⁄  as q↘ 0, just as in the case of the 

Fourier sine transform. The second summand is bounded by √𝑞𝑟(𝑥) and so it converges to 

zero in𝐿2(𝐷). It follows that𝑐4 = 𝜋 2⁄ . The Plancherel’s theorem can be therefore written 

as 

    ∫ 𝛱𝑓(𝑥)𝛱𝑔(𝑥)𝑑𝑥∫ 𝑓(𝜆)𝑔(𝜆)𝑑𝜆

∞

0

∞

0

                                           (57) 

 In particular, √𝜋 2⁄ Π is an isometry on𝐿2(𝐷). Since𝜓𝜆(𝑥) = 𝜓𝑥(𝜆) , for 𝑓, 𝑔 ∈ 𝐶𝑐(𝐷) and 

therefore for any 𝑓, 𝑔 ∈ 𝐿2(𝐷)) we also have 
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∫ Π𝑓(𝑥)𝑔(𝑥)𝑑𝑥∫ 𝑓(𝜆)Π𝑔(𝜆)𝑑𝜆,

∞

0

∞

0

 

Which combined with (57) yields that Π2𝑓 = (𝜋 2⁄ )𝑓. we collect the above results in the 

following theorem. 

Theorem (2.1.5)[49]: The operator √𝜋 2⁄ Π: 𝐿2(𝐷) → 𝐿2(𝐷) gives a spectral representation 

of 𝒜𝐷 and the semi group (𝑃𝑡
𝐷), acting on𝐿2(𝐷), where 𝐷 = (0,∞); that is, for any 𝑓 ∈

𝐿2(𝐷), we have the following: 

(a) ‖𝑓‖2 = √𝜋 2⁄ ‖Π𝑓‖2f  (Plancherel’s theorem); 

(b) Π𝑃𝑡
𝐷𝑓(𝜆) = 𝑒−𝜆𝑡Π𝑓(𝜆); 

(c)  𝑓 is in the domain of 𝒜𝐷 if and only if 𝜆𝛱𝑓(𝜆) is square integrable; 

(d) Π𝒜𝐷𝑓(𝜆) = −𝜆Π𝑓(𝜆). 
Furthermore, Π2 = (𝜋 2⁄ )Id (inversion formula). 

The aim is to compute an explicit formula of the transition density 𝑃𝑡
𝐷(𝑥, 𝑦) of the 

Cauchy process killed on exiting a half-line 𝐷 = (0,∞), or the heat kernel for𝒜𝐷. Let 

us note that the transition density of the Brownian motion killed on exiting a half-line (0, 

∞) equals 
1

√2𝜋𝑡
𝑒−|𝑥−𝑦|

2 2𝑡⁄ −
1

√2𝜋𝑡
𝑒−|𝑥+𝑦|

2 2𝑡⁄ , 

Which follows from the reflection principle. For the Cauchy process we cannot  

Use the reflection principle and the computation of 𝑃𝑡
𝐷(𝑥, 𝑦) requires using much more 

complicated methods. 

Theorem (2.1.6)[49]: For D = (0, ∞) and any𝑔 ∈ 𝐿𝑝(𝐷), with p∈ [1, ∞], we have 

𝑃𝑡
𝐷𝑔(𝑥) = ∫ 𝑃𝑡

𝐷(𝑥, 𝑦)𝑔(𝑦)𝑑𝑦,

∞

0

    𝑡, 𝑥 > 0,                                     (58) 

Where  

𝑃𝑡
𝐷(𝑥, 𝑦) =

1

𝜋

𝑡

𝑡2 + (𝑥 − 𝑦)2
−
1

𝑥𝑦
∫
𝑓(𝑠 𝑥⁄ )𝑓 (

(𝑡 − 𝑠)
𝑦 )

𝑠 𝑥⁄ + (𝑡 − 𝑠) 𝑦⁄
𝑑𝑠,

𝑡

0

  𝑡, 𝑥, 𝑦 > 0,             (59) 

and 

𝑓(𝑠) =
1

𝜋

𝑠

1 + 𝑠2
𝑒𝑥𝑝(

1

𝜋
∫
log(𝑠 + 𝑤)

1 + 𝑤2
𝑑𝑤,

∞

0

) ,       𝑠 > 0.                    (60) 

For 𝑠 >  0, note that f is positive continuous and bounded. This follows by the fact that 

𝑓(𝑠) = (1/𝜋)(𝑠/1 + 𝑠2)𝑒𝜂(𝑠) and (105). The function 𝑃𝑡
𝐷(𝑥, 𝑦) can be effectively 

computed by numerical integration. Indeed, by the same arguments we have 

𝑓(𝑠) =
1

𝜋

𝑠1−𝑎𝑟𝑐𝑡𝑎𝑛/𝜋

(1 + 𝑠2)3 4⁄
𝑒𝑥𝑝 (

𝑖

2𝜋
(𝐿𝑖2(𝑖𝑠) − 𝐿𝑖2(−𝑖𝑠))) , 

Where 𝐿𝑖2is the dilogarithm function. 

Proof. For 𝑔 ∈ 𝐶𝑐(𝐷) we have Π𝑃𝑡
𝐷𝑔(𝜆) = 𝑒−𝜆𝑡Π𝑔(𝜆) (see (55) and Theorem (2.1.5)). 

Applying Π−1 = (2 𝜋⁄ )Π to both sides of this identity yields 
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𝑃𝑡
𝐷𝑔(𝑥) =

2

𝜋
∫ 𝑒−𝜆𝑡Π𝑔(𝜆)𝜓𝜆(𝑥)

∞

0

=
2

𝜋
∫  ∫ 𝑒−𝜆𝑡Π𝑔(𝜆)𝜓𝜆(𝑥)𝜓𝜆(𝑦)𝑔(𝑦)𝑑𝑦𝑑𝜆.

∞

0

∞

0

 

By the Fubini’s theorem, (58) holds with 

𝑃𝑡
𝐷(𝑥, 𝑦) =

2

𝜋
∫ 𝜓𝜆(𝑥)𝜓𝜆(𝑦)𝑒

−𝜆𝑡𝑑𝜆.

∞

0

                                       (61) 

By an approximation argument, (58) holds for 𝑔 ∈ 𝐿𝑝(ℝ) with any 𝑝 ∈ [1,∞]. we will 

now prove (59). 

Suppose first that𝑥 < 𝑦, and let𝑡 = 𝑡1 + 𝑡2 > 0, with𝑡1, 𝑡2 > 0. By Plancherel’s theorem 

and identities𝜓𝜆(𝑥) = 𝜓𝜆(𝜆), and ℒ𝜓𝑦(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ℒ𝜓𝑦(𝑧̅) we have 

𝑃𝑡
𝐷(𝑥, 𝑦) =

𝜋

2
∫(𝜓𝑥(𝜆)𝑒

−𝑡1𝜆)(𝜓𝑦(𝜆)𝑒
−𝑡2𝜆)𝑑𝜆

∞

0

 

=
1

𝜋2
∫ ℒ𝜓𝑥(𝑡1 + 𝑖𝑠)

∞

−∞

ℒ𝜓𝑦(𝑡2 − 𝑖𝑠)𝑑𝑠 =
1

2𝜋𝑖
∫ 𝑅(𝑧)𝑑𝑧,

𝑡1+𝑖∞

𝑡1−𝑖∞

                 (62) 

Where (see (43)) 

𝑅(𝑧) =
2

𝜋
ℒ𝜓𝑥(𝑧)ℒ𝜓𝑦(𝑡 − 𝑧) =

1

𝜋

𝑥𝑦𝑒𝑥𝑝(𝐵(𝑧 𝑥⁄ ) + 𝐵((𝑡 − 𝑧) 𝑦⁄ ))

(𝑥2+𝑧2)(𝑦2 + (𝑡 − 𝑧)2)
. 

 Note that R is defined on C and it is meromorphic in 𝑪 \ ((−∞, 0]  ∪ [𝑡,∞)) with 

simple poles at ±𝑖𝑥 and𝑡 ± 𝑖𝑦. Let 𝑧 ∈ 𝑪 \ [0, 𝑡]. By (37) and the identity(1 +
𝑖𝑧𝜎(𝑧))(1 −  𝑖𝑧𝜎(𝑧)) = 1 + (𝑧𝜎(𝑧))2 = 1 + 𝑧2, for all𝑧 ∈ 𝑪, we have 

𝑅(𝑧) =
1

𝜋

(1 − 𝑖(𝑧 𝑥⁄ )𝜎(𝑧 𝑥⁄ )) (1 − 𝑖((𝑡 − 𝑧 𝑦⁄ )𝜎 (𝑡 − 𝑧) 𝑦⁄ )) 𝑒𝑥𝑝(−𝐵(−𝑧 𝑥⁄ ) − 𝐵(− (𝑡 − 𝑧) 𝑦⁄ ))

𝑥𝑦(1 + 𝑧2 𝑥2⁄ )(1 + (𝑡 − 𝑧)2 𝑦2⁄ )

=
1

𝜋

𝑒𝑥𝑝(−𝐵(−𝑧 𝑥⁄ ) − 𝐵(− (𝑡 − 𝑧) 𝑦⁄ ))

𝑥𝑦(1 + 𝑖(𝑧 𝑥⁄ )𝜎(𝑧 𝑥⁄ )) (1 + 𝑖(𝑡 − 𝑧)/𝑦𝜎((𝑡 − 𝑧)/𝑦))
 

Since 𝜎((𝑡 − 𝑧)/𝑦) = −𝜎(𝑧/𝑥) for 𝑧 ∈ 𝑪 \ [0, 𝑡], it follows that, for 𝑧 ∈  𝑪 \ [0, 𝑡],  

𝑅(𝑧) =
exp(−𝐵(−𝑧 𝑥⁄ ) −  𝐵(−(𝑡 −  𝑧)𝑦))

𝜋𝑥𝑦(𝑧 𝑥⁄ + (𝑡 − 𝑧) 𝑦⁄ )
(

𝑧 𝑥⁄

1 + 𝑖(𝑧 𝑥⁄ )𝜎(𝑧 𝑥⁄ )

+
(𝑡 − 𝑧) 𝑦⁄

1 + 𝑖 (𝑡 − 𝑧) 𝑦𝜎((𝑡 − 𝑧) 𝑦⁄ )⁄
). 

We therefore have 𝑅(𝑧) = 𝑅1(𝑧) + 𝑅2(𝑧)for 𝑧  𝑪 \ [0, 𝑡], where, again using (37), we 

obtain 

𝑅1(𝑧) =
exp(−𝐵(−𝑧 𝑥⁄ ) −  𝐵(−(𝑡 −  𝑧)𝑦))

𝜋𝑥𝑦(𝑧 𝑥⁄ + (𝑡 − 𝑧) 𝑦⁄ )
.

𝑧 𝑥⁄

 1 + 𝑖(𝑧 𝑥⁄ )𝜎(𝑧 𝑥⁄ )
                         (63) 

and 

𝑅1(𝑧) =
exp(−𝐵(𝑧 𝑥⁄ ) −  𝐵(−(𝑡 −  𝑧)𝑦))

𝜋𝑥𝑦(𝑧 𝑥⁄ + (𝑡 − 𝑧) 𝑦⁄ )
.

𝑧 𝑥⁄

 1 + 𝑧2 𝑥2⁄
,                                    (64) 

Also, in a similar manner, 
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𝑅2(𝑧) =
exp(−𝐵(−𝑧 𝑥⁄ ) +  𝐵(−(𝑡 −  𝑧)𝑦))

𝜋𝑥𝑦(𝑧 𝑥⁄ + (𝑡 − 𝑧) 𝑦⁄ )
.

(𝑡 − 𝑧)  𝑦⁄

 1 + (𝑡 − 𝑧)2 𝑦2⁄
,                          (65) 

and 

𝑅2(𝑧)

=
exp(𝐵(𝑧 𝑥⁄ ) +  𝐵(−(𝑡 −  𝑧)𝑦))

𝜋𝑥𝑦(𝑧 𝑥⁄ + (𝑡 − 𝑧) 𝑦⁄ )
.

(𝑡 − 𝑧)  𝑦⁄

 1 + (𝑡 − 𝑧)2 𝑦2⁄
.

1

 1 − 𝑖(𝑧 𝑥⁄ )𝜎(𝑧 𝑥⁄ )
      (66) 

 The only zero of 
𝑧

𝑥
+
𝑡− 𝑧

𝑦
𝑖𝑠 𝑧 =

𝑡𝑥

𝑥−𝑦
< 0. Hence 𝑅1(𝑧) is holomorphic in the set 

{𝑅𝑒𝑧 > 0} [0, 𝑡](by (63)), bounded in the neighbourhood of [0, 𝑡], and it decays as |𝑧|−2 

at infinity (by (110)). Also, 𝑅2(𝑧) is meromorphic in the set {𝑅𝑒 𝑧 <  𝑡} [0, 𝑡] (by (65)) 

with a simple pole at 
𝑡𝑥

𝑥−𝑦
, bounded near[0, 𝑡], and it decays as |𝑧|−2 at infinity. 

For 𝑛 =  1,2, . . ., let γ be the positively oriented contour consisting of the following: 

(i) Two vertical segments 𝛾1 = [𝑡1 −  𝑛𝑖, 𝑡1 −
𝑖

𝑛
] 𝑎𝑛𝑑 𝛾5 = [𝑡1 +

𝑖

𝑛
, 𝑡1  +  𝑛𝑖] ; 

(ii) two horizontal segments 𝛾2 = [𝑡1 −
𝑖

𝑛
, −

𝑖

𝑛
] 𝑎𝑛𝑑 𝛾4 = [

𝑖

𝑛
, 𝑡1 +

𝑖

𝑛
] ; 

(iii) two semicircles 𝛾3 = {|𝑧| =
1

𝑛
, 𝑅𝑒 𝑧 ≤ 0}𝑎𝑛𝑑 𝛾6 = {|𝑧 − 𝑡1| =  𝑛, 𝑅𝑒 𝑧 ≤ 𝑡1}. 

Clearly, ∫ 𝑅2(𝑧)𝑑𝑧 → ∫ 𝑅2(𝑧)
𝑡1
0

 

𝛾2∪𝛾4
  Converges to ∫ 𝑅2(𝑧)𝑑𝑧

𝑡1+𝑖∞

𝑡1−𝑖∞
 as n → ∞. The 

integrals over 𝛾3 and 𝛾6 converge to zero by the properties of 𝑅2. Finally, by (66), 

∫ 𝑅2(𝑧)𝑑𝑧 → ∫ 𝑅2(𝑧) =
exp (𝐵(𝑠 𝑥⁄ ) +  𝐵((𝑡 −  𝑠)𝑦))

𝜋𝑥𝑦(𝑠 𝑥⁄ + (𝑡 − 𝑠) 𝑦⁄ )
.

(𝑡 − 𝑠)  𝑦⁄

 1 + (𝑡 − 𝑠)2 𝑦2⁄

𝑡1

0

 

𝛾2∪𝛾4

× (
1

1 − 𝑖(𝑠 𝑥⁄ )
−

1

1 − 𝑖(𝑠 𝑥⁄ )
)𝑑𝑠 = ∫

2𝜋𝑖𝑓(𝑠 𝑥⁄ )𝑓((𝑡 − 𝑠) 𝑦⁄ )

𝑥𝑦(𝑠 𝑥⁄ + (𝑡 − 𝑠) 𝑦⁄ )
𝑑𝑠.

𝑡1

0

 

 Therefore, by the residue theorem, 

1

2𝜋𝑖
∫ 𝑅2(𝑧)𝑑𝑧 = −

𝑡1+𝑖∞

𝑡1−𝑖∞

∫
𝑓(𝑠 𝑥⁄ )𝑓((𝑡 − 𝑠) 𝑦⁄ )

𝑥𝑦(𝑠 𝑥⁄ + (𝑡 − 𝑠) 𝑦⁄ )
𝑑𝑠 + 𝑅𝑒 𝑠 (𝑅2,

𝑡𝑥

𝑥 − 𝑦
) .

𝑡1

0

      (67) 

In a similar manner, using (64) and analogous contours γ consisting of two segments of 

the line Re 𝑧 = 𝑡1, two segments parallel to [𝑡1, 𝑡], and two semi-circles centered at t (the 

small one)  and 𝑡1 (the large one), both contained in {𝑅𝑒 𝑧 ≥ 𝑡1}, we obtain that 1 

1

2𝜋𝑖
∫ 𝑅1(𝑧)𝑑𝑧 = −

𝑡1+𝑖∞

𝑡1−𝑖∞

∫
𝑓(𝑠 𝑥⁄ )𝑓((𝑡 − 𝑠) 𝑦⁄ )

𝑥𝑦(𝑠 𝑥⁄ + (𝑡 − 𝑠) 𝑦⁄ )
𝑑𝑠.

𝑡

𝑡1

                         (68) 

Therefore, (62), (67) and (68) yield that 

𝑃𝑡
𝐷(𝑥, 𝑦) = ∫

𝑓(𝑠 𝑥⁄ )𝑓((𝑡 − 𝑠) 𝑦⁄ )

𝑥𝑦(𝑠 𝑥⁄ + (𝑡 − 𝑠) 𝑦⁄ )
𝑑𝑠 + 𝑅𝑒𝑠 (𝑅2,

𝑡𝑥

𝑥 − 𝑦
) .

𝑡

0

 

For 𝑧 =  𝑡𝑥/(𝑥 −  𝑦) we have 𝑧 𝑥⁄ =  𝑡/(𝑥 − 𝑦) = −(𝑡 −  𝑧)/𝑦. Therefore, by (65) 

we get 



 

 

45 
 

Res (𝑅2,
𝑡𝑥

𝑥 − 𝑦
) =

1

𝜋(𝑦 − 𝑥)
.
−𝑡 (𝑥 − 𝑦)⁄

1 + 𝑡2 (𝑥 − 𝑦)2⁄
=
1

𝜋

𝑡

𝑡2 + (𝑥 − 𝑦)2
, 

and (59) follows for x < y. 

When x > y, simply note that 𝑃𝑡
𝐷(𝑥, 𝑦) = 𝑃𝑡

𝐷(𝑦, 𝑥) (see (61) or, for example, [64]), and 

that the right-hand side of (59) has the same symmetry property (this follows by a 

substitution𝑠 = 𝑡 − 𝑣). Finally, for 𝑥 =  𝑦 simply use the continuity of 𝑃𝑡
𝐷(𝑥, 𝑦) and f. 

For the next result, we need the following simple observation, similar to the derivation 

of (39). By (37) we have 𝐼𝑚 𝑒−𝐵(−𝑆) = −(𝑠/(1 + 𝑆2))𝑒𝐵(𝑆) for s > 0. Hence the 

function 𝑓 defined by (60) satisfies 

𝑓(𝑠) =
1

𝜋

𝑠

1 + 𝑠2
𝑒𝜂(𝑠).

1

𝜋

𝑠

1 + 𝑠2
𝑒𝐵(𝑠) = 𝑚 −

1

𝜋
𝐼𝑚 𝑒−𝐵(−𝑠), 𝑠 >  0. 

If we extend f by f(s) = 0 for s < 0, then 𝑓(−𝑠)  =  (1/𝜋)Im 𝑒−𝐵(𝑠) for all real s. Since 

𝑒−𝐵(𝑧) is in 𝐻𝑝(𝐶+) for 𝑝 ∈  (2,∞) (see (109)), the Hilbert transform off is given by (see 

(6)) 

𝐻𝑓(𝑠) =  − 
1

𝜋
𝑅𝑒 𝑒−𝐵(−𝑠) =

1

𝜋
𝑒−𝜂(−𝑠), 𝑠 ∈ ℝ. 

It follows that 

                     𝐻𝑓(−𝑠) =
1

𝜋2
𝑠

1+𝑠2
1

𝑓(𝑠)
,   𝑠 > 0, and            𝐻𝑓(0) =

1

𝜋
  .      (69) 

The following result has been previously obtained with different methods by Darling 

[67];see also [53]. 

Theorem (2.1.7)[49]: (Darling [67]). For 𝐷 = (0,∞), we have 

𝑃𝑥(𝜏𝑫 ∈ 𝑑𝑡) =
1

𝜋

𝑠

1 + 𝑠2
𝑒𝑥𝑝(

1

𝜋
∫
log(𝑡 𝑥 + 𝑤⁄ )

1 + 𝑤2

∞

0

𝑑𝑤)𝑑𝑡                          (70) 

Using the function f defined in (60), we have 𝑃𝑥(𝜏𝑫 ∈ 𝑑𝑡) = (1 𝑡⁄ )𝑓(𝑡 𝑥⁄ )𝑑𝑡. 
Proof: By Theorem (2.1.6) we have 

𝑃𝑥(𝜏𝑫 > 𝑡) = ∫ 𝑃𝑡
𝐷(𝑥, 𝑦)𝑑𝑦

∞

𝟎

 

 
1

𝜋
∫

𝑡

𝑡2 + (𝑥 − 𝑦)2

∞

0

𝑑𝑦 −∫  ∫
1

𝑥𝑦

𝑓(𝑠 𝑥⁄ )𝑓((𝑡 − 𝑠) 𝑦⁄ )

(𝑠 𝑥⁄ + (𝑡 − 𝑠) 𝑦⁄ )
𝑑𝑦𝑑𝑠.

∞

0

𝑡

0

                 (71) 

By a substitution w = (t - s)/y we obtain 

∫
𝑓(𝑠 𝑥⁄ )𝑓((𝑡 − 𝑠) 𝑦⁄ )

(𝑠 𝑥⁄ + (𝑡 − 𝑠) 𝑦⁄ )
𝑑𝑦 =

𝑓(𝑠 𝑥⁄ )

𝑥
∫

𝑓(𝑤)

𝑤(𝑠 𝑥⁄ + 𝑤)

∞

0

𝑑𝑤

∞

0

=
𝑓(𝑠 𝑥⁄ )

𝑠
(∫

𝑓(𝑤)

𝑤

∞

0

𝑑𝑤 −∫
𝑓(𝑤)

𝑠 𝑥⁄ + 𝑤
𝑑

∞

0

𝑤) . 

 The right-hand side equals (𝜋/𝑠)𝑓(𝑠/𝑥)(−𝐻𝑓(0) + 𝐻𝑓(−𝑠/𝑥)). this, (69) and (71) 

give 
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𝑃𝑥(𝜏𝑫 > 𝑡) =
1

𝜋
∫

𝑡

𝑡2 + (𝑥 − 𝑦)2

∞

0

𝑑𝑦 −∫
𝑓(𝑠 𝑥⁄ )

𝑥

𝑡

0

𝑑𝑠 +
1

𝜋
∫

𝑥

𝑥2 + 𝑠2

𝑡

0

𝑑𝑠 

 By substitution of 𝑣 = 𝑥 − 𝑦 in the first integral and 𝑣 = 𝑥𝑡/𝑠 in the third one, we obtain 

𝑃𝑥(𝜏𝑫 > 𝑡) =
1

𝜋
∫

𝑡

𝑡2 + 𝑣2

𝑥

−∞

𝑑𝑦 −∫
𝑓(𝑠 𝑥⁄ )

𝑠

𝑡

0

𝑑𝑠 +
1

𝜋
∫

𝑡

𝑥2 + 𝑣2

∞

𝑥

𝑑𝑠 = 1 −∫
𝑓(𝑠 𝑥⁄ )

𝑠
𝑑𝑠.

𝑡

0

 

 The result follows by differentiation and (60). 

 

    Theorem (2.1.7) can be stated in terms of the two-dimensional Brownian motion; 

namely, we obtain the distribution of some local time of the two-dimensional Brownian 

motion at some entrance time. For the one-dimensional Brownian motion similar results 

were widely studied and are usually called Ray–Knight theorems [56], [60], [61], [79] 

[80], [88], [90]. 

Corollary (2.1.8)[49]: Let 𝐵𝑡 = (𝐵𝑡
(1)
, 𝐵𝑡

(2)
) be the two-dimensional Brownian motion 

and let 

𝐿(𝑡) = lim
𝜀→0+

1

2𝜀
∫𝜒(−𝜀, 𝜀) (𝐵𝑡

(2)
) 𝑑𝑠

𝑡

0

 

 Be the local time of 𝐵𝑡on the line (−∞,∞) × {0}. Let 𝐴 = (−∞, 0] × {0} and let𝑇𝐴 =
𝑖𝑛𝑓 {𝑡 ≥  0 ∶  𝐵(𝑡)  ∈  𝐴} be the first entrance time for A. Then, for any x > 0, we have 

𝑃(𝑥,0)(𝐿(𝑇𝐴) ∈ 𝑑𝑡) =
1

𝜋

𝑥

𝑥2 + 𝑡2
𝑒𝑥𝑝(

1

𝜋
∫
log(𝑡 𝑥 + 𝑠⁄ )

1 + 𝑠2

∞

0

𝑑𝑠)𝑑𝑡 

   For (𝑥, 𝑦)  ∈ ℝ𝟐, 𝑦 ≠  0 and 𝑡 ≥ 0 we have 

𝑃(𝑥,𝑦)(𝐿(𝑇𝐴) < 𝑡) =
1

𝜋
∫

|𝑦|

𝑦2 + (𝑥 − 𝑢)2
𝑑𝑢 +

0

−∞

1

𝜋
∫

|𝑦|

𝑦2 + (𝑥 − 𝑢)2
𝑃(𝑥,0)(𝐿(𝑇𝐴) ≤ 𝑡)

0

−∞

. 

Proof: Let 𝜂𝑡 = 𝑖𝑛𝑓{𝑠 > 0 ∶  𝐿(𝑠) > 𝑡} be the inverse of the local time 𝐿(𝑡). It is well 

known (see, for example, [94]) that the one-dimensional Cauchy process can be 

identified with𝐵(1)(𝜂𝑡). With this relation, we have𝐿(𝑇𝐴) = 𝜏(0,∞), where 𝜏(0,∞) =
𝑖𝑛𝑓 {𝑡 ≥ 0 ∶ 𝑋𝑡 ∉  (0,∞)}. 

This and Theorem (2.1.7) give the first equality. The second equality follows by the 

harmonicity of (𝑥, 𝑦) → 𝑃 (𝑥, 𝑦)(𝐿(𝑇𝐴)  𝑡) in {(𝑥, 𝑦) ∈ ℝ𝟐 ∶ 𝑦 > 0} and in {(𝑥, 𝑦) ∈
 ℝ𝟐 ∶ 𝑦 < 0}. 

The interval 𝐷 = (−1,1) is studied. Let n be a positive integer and𝜇𝑛 = 𝑛𝜋 2⁄ − 𝜋 8⁄ . 

Our goal is to show that 𝜇𝑛 is close to𝜆𝑛, the nth eigenvalue of the semigroup (𝑃𝑡
𝐷). 

     Let q be the function equal to 0 on (∞,
1

3
) and to 1 on ( 

1

3
, ∞), defined by (115). We 

construct approximations to eigenfunctions of (𝑃𝑡
𝐷) by combining the eigenfunctions 

𝜓𝜇𝑛(1 + 𝑥) and 𝜓𝜇𝑛(1 − 𝑥) for half-line. For a symmetric eigenfunction, when n is odd, 

let 

�̃�𝑛(𝑥) = 𝑞(−𝑥)𝜓𝜇𝑛(1 + 𝑥) − 𝑞(𝑥)𝜓𝜇𝑛(1 − 𝑥). 
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= (−1)(𝑛−1) 2⁄ cos(𝜇𝑛𝑥) 1𝐷(𝑥) − 𝑞(−𝑥)𝑟𝜇𝑛(1 + 𝑥) − 𝑞(𝑥)𝑟𝜇𝑛(1 − 𝑥)     (72) 

For an antisymmetric eigenfunction, when n is even, we define 

�̃�𝑛(𝑥) = 𝑞(−𝑥)𝜓𝜇𝑛(1 + 𝑥) − 𝑞(𝑥)𝜓𝜇𝑛(1 − 𝑥) 

= (−1)(𝑛−1) 2⁄ sin(𝜇𝑛𝑥) 1𝐷(𝑥) − 𝑞(−𝑥)𝑟𝜇𝑛(1 + 𝑥) − 𝑞(𝑥)𝑟𝜇𝑛(1 − 𝑥)     (73) 

Lemma (2.1.9)[49]: With the above definitions, 

‖𝒜𝐷�̃�𝑛 + 𝜇𝑛�̃�𝑛‖2 < √1.21 +
8.00

𝜇𝑛
+
13.66

𝜇2𝑛
.
1

𝜇𝑛
.                          (74) 

Proof: Note that we have 

�̃�𝑛(𝑥) − 𝜓𝜇𝑛(1 + 𝑥) = (1 − 𝑞(−𝑥)𝜓𝜇𝑛(1 + 𝑥) − (−1)
𝑛𝑞(𝑥)𝜓𝜇𝑛(1 − 𝑥)

= −𝑞(𝑥) (𝜓𝜇𝑛(𝑥 + 1) + (−1)
𝑛𝜓𝜇𝑛(1 − 𝑥))

= 𝑞(𝑥) (𝜓𝜇𝑛(𝑥 + 1) + (−1)
𝑛𝜓𝜇𝑛(1 − 𝑥))

− sin (𝜇𝑛(1 + 𝑥) +
𝜋

8
)1[1,∞)(𝑥) 

Define h(x) = sin (𝜇𝑛 (1 + 𝑥) +  𝜋/8)(𝟏)[𝟏,∞)(𝑥) and f(x) = 𝑟𝜇𝑛(1 + 𝑥)+(−1)
𝑛𝑟𝜇𝑛(1 - 

x), 𝑔(𝑥) = 𝑞(𝑥)𝑓(𝑥). by (49), (50) and (46), we have 

𝑀0 = 𝑠𝑢𝑝
𝑥∈(−1 3⁄ ,1 3⁄ )

|𝑓(𝑥)| ≤ 𝑟 (
2𝜇𝑛
3
) + 𝑟 (

4𝜇𝑛
3
) ≤

45√2

32𝜋𝜇𝑛
2
, 

𝑀1 = 𝑠𝑢𝑝
𝑥∈(−1 3⁄ ,1 3⁄ )

|𝑓′(𝑥)| ≤ −𝜇𝑛𝑟
′ (
2𝜇𝑛
3
) − 𝜇𝑛𝑟

′ (
4𝜇𝑛
3
) ≤

243√2

64𝜋𝜇𝑛
2

 

𝑀2 = 𝑠𝑢𝑝
𝑥∈(−1 3⁄ ,1 3⁄ )

|𝑓′′(𝑥)| ≤ 𝜇𝑛
2𝑟′′ (

2𝜇𝑛
3
) + 𝜇𝑛

2𝑟′′ (
4𝜇𝑛
3
) ≤

4131√2

256𝜋𝜇𝑛
2
, 

1 = ∫|𝑓(𝑥)|

∞

0

𝑑𝑥 ≤ ∫ 𝑟𝜇𝑛(1 + 𝑥)𝑑𝑥

∞

0

+∫𝑟𝜇𝑛(1 − 𝑥)𝑑𝑥

1

0

=
1

𝜇𝑛
∫ 𝑟(𝑦)𝑑𝑦

∞

0

= (cos
𝜋

8
−
√2

2
)
1

𝜇𝑛
; 

The notation here corresponds. By (116) and (117), 

|𝒜𝐷𝑔(𝑧)| <
0.605

𝜇𝑛
2

+
0.156

𝜇𝑛
, 𝑧 ∈ (−1,−

1

3
) ;                           (75) 

|𝒜𝐷𝑔(𝑧)| <
4.444

𝜇𝑛
2

+
0.622

𝜇𝑛
,   𝑧 ∈ (−

1

3
, 0).                           (76) 

Furthermore, |𝑔(𝑧)| = 0 for 𝑧 ∈ (−1,−
1

3
) and 

|𝜇𝑛𝑔(𝑧)| <
𝜇𝑛
2
𝑀0 +

0.317

𝜇𝑛
, 𝑧 ∈ (−

1

3
, 0).                           (77) 

Finally, for z < 0 we have 
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|(−∆)1 2⁄ ℎ(𝑧)| =
1

𝜋
|∫

sin(𝜇𝑛(1 + 𝑥) + 𝜋 8⁄ )

(𝑥 − 𝑧)2

∞

0

|

≤
1

𝜋(1 − 𝑧)2
∫ |

sin(𝜇𝑛(1 + 𝑥) + 𝜋 8⁄ )

(𝑥 − 𝑧)2
|

1+𝜋 𝜇𝑛⁄

1

𝑑𝑥 =
1

𝜋𝜇𝑛(1 − 𝑧)
2
, 

 So that 

|(−∆)1 2⁄ ℎ(𝑧)| <
0.180

𝜇𝑛
, 𝑧 ∈ (−1,−

1

3
) ;                                (78) 

|(−∆)1 2⁄ ℎ(𝑧)| <
0.319

𝜇𝑛
, 𝑧 ∈ (−

1

3
, 0).                                   (79) 

Since, for 𝑧 ∈ (−1,0), we have 

|𝒜𝐷�̃�𝑛(𝑧) + 𝜇𝑛�̃�𝑛(𝑧)| ≤ |(−∆)
1 2⁄ ℎ(𝑧)| + |(−∆)1 2⁄ 𝑔(𝑧)| + |𝜇𝑛𝑔(𝑧)| 

 The estimates (75)–(79) yield that 

|𝒜𝐷�̃�𝑛(𝑧) + 𝜇𝑛�̃�𝑛(𝑧)| <
0.605

𝜇𝑛
2

+
1.258

𝜇𝑛
,   𝑧 ∈ (−1,−

1

3
) ;                 (80) 

|𝒜𝐷�̃�𝑛(𝑧) + 𝜇𝑛�̃�𝑛(𝑧)| <
4.444

𝜇𝑛
2

+
0.622

𝜇𝑛
,   𝑧 ∈ (−

1

3
, 0) ;                 (81) 

 By symmetry, estimates similar to (80) and (81) hold for𝑧 ∈ (0,1). The estimate (74) 

follows. 

The estimate of the 𝐿2(𝐷) norm of �̃�𝑛 plays an important role in what follows. We 

have 

√1 −
0.52

𝜇𝑛
≤ ‖�̃�𝑛‖2 ≤ √1 +

1.37

𝜇𝑛
.                                (82) 

indeed, the lower bound follows by (46), (72), (73) and symmetry: 

‖�̃�𝑛‖2
2 ≥ ∫(sin (𝜇𝑛(𝑥 + 1) +

𝜋

8
))

2

𝑑𝑥

1

−1

− 4 ∫ |𝑞(−𝑥)𝑟𝜇𝑛(1 + 𝑥) sin (𝜇𝑛(𝑥 + 1) +
𝜋

8
)| 𝑑𝑥

1

−1

≥ (1 +
√2

4𝜇𝑛
) −

4

𝜇𝑛
(cos

𝜋

8
−
√2

2
) 

In a similar manner, using also (47), 

‖�̃�𝑛‖2
2 ≤ (1 +

√2

4𝜇𝑛
) −

4

𝜇𝑛
(cos

𝜋

8
−
√2

2
) + 4 ∫(𝑟(𝜇𝑛(1 + 𝑥)))

2
𝑑𝑥

1

−1

≤ (1 +
√2

4𝜇𝑛
) −

4

𝜇𝑛
(cos

𝜋

8
−
√2

2
) +

4(Γ(3 4⁄ ))
2

𝜋(Γ(1 4⁄ ))
2
𝜇𝑛
. 

We continue denoting by 𝜑𝑗 the eigenfunctions of (𝑃𝑡
𝐷), by 𝜆𝑗 (𝜆𝑗 > 0) the 

corresponding eigenvalues, and by �̃�𝑛 and 𝜇𝑛 the approximations of the previous. Fix 
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𝑛 ≥ 1. Since �̃�𝑛 ∈ 𝐿
2(𝐷), we have �̃�𝑛 = ∑ 𝑎𝑗𝜑𝑗𝑗  for some𝑎𝑗. Moreover, ‖�̃�𝑛‖2

2 =

∑ 𝑎𝑗
2

𝑗   and 𝒜𝐷�̃�𝑛 = −∑ 𝑎𝑗𝜑𝑗𝑗 . 

Let 𝜆𝑘(𝑛) be the eigenvalue nearest to𝜇𝑛. Then 

‖𝒜𝐷�̃�𝑛 − 𝜇𝑛�̃�𝑛‖2
2 =∑ (𝜆𝑗 − 𝜇𝑛)

2
𝑎𝑗
2

∞

𝑗=1

≥ (𝜆𝑘(𝑛) − 𝜇𝑛)
2
∑ 𝑎𝑗

2 ≥
∞

𝑗=1
(𝜆𝑘(𝑛) − 𝜇𝑛)

2
‖�̃�𝑛‖2

2. 

 By (74) and (82), it follows that 

|𝜆𝑘(𝑛) − 𝜇𝑛| ≤ √
1.21 + 8.00 𝜇𝑛 +⁄ 13.66 𝜇𝑛  

2⁄

1 − 0.52 𝜇𝑛⁄
.
1

𝜇𝑛
                        (83) 

The right-hand side is a decreasing function of n, so that |𝜆𝑘(𝑛) − 𝜇𝑛| < 0.098𝜋 <

𝜋 10⁄  whenever n ≥4. Hence we have the following result. 

Lemma (2.1.10)[49]: Each interval (𝑛𝜋/2 −  𝜋/4, 𝑛𝜋/2), with 𝑛 ≥ 4, contains an 

eigenvalue 𝜆𝑘(𝑛). 

     In particular 𝜆𝑘(𝑛) are distinct for n≥ 4. We will now prove that there are only three 

eigenvalues not included in the above lemma. For𝑡 > 0, we have (see, for example, [52], 

[82]) 

∑ 𝑒−𝜆𝑗𝑡
∞

𝑗=1
= ∫∑ 𝑒−𝜆𝑗𝑡

∞

𝑗=1
(𝜑𝑗(𝑥))

2
 

𝐷

= ∫𝑃𝑡
𝐷

 

𝐷

(𝑥, 𝑥)𝑑𝑥 ≤ ∫𝑝𝑡(0)

 

𝐷

𝑑𝑥 =
2

𝜋𝑡
. 

 On the other hand,  

∑ 𝑒−𝜆𝑘(𝑛)𝑡
∞

𝑗=1
≥∑ 𝑒−(𝑛𝜋 2⁄ )𝑡

∞

𝑗=4
=

𝑒−2𝜋𝑡

1 − 𝑒−(𝜋 2⁄ )𝑡
≥
2

𝜋𝑡
−
7

2
 

For small𝑡 > 0. It follows that there are at most three eigenvalues of (𝑃𝑡
𝐷) other than 

𝜆𝑘(𝑛)(4). Furthermore, we have 1 < 𝜆1 < 3𝜋/8, 2 ≤ 𝜆2 ≤  𝜋 and 3.4≥ 𝜆3  3𝜋/2 by 

[50]. Therefore, 𝑘(𝑛) = 𝑛 for n≥ 4, and also by (83), we see that 𝜆3> 3.83. We have 

thus proved the following theorem. 

Theorem (2.1.11)[49]: We have 

1 < 𝜆1 < 
3𝜋

8
 ,2 ≤ 𝜆2 ≤  𝜋, 3.83 < 𝜆3 ≤

3𝜋

2
, 

and 
𝑛𝜋

2
−
𝜋

8
−
𝜋

10
< 𝜆𝑛 <

𝑛𝜋

2
−
𝜋

8
+
𝜋

10
      (𝑛 ≥ 4). 

In particular, all eigenvalues of (𝑃𝑡
𝐷) are simple, |𝜆𝑛 − 𝜆𝑚| > 0.69 when 𝑛 ≠

 𝑚 and|𝜆𝑛 − 𝜆𝑚| > 3𝜋/10 if, moreover,𝑛 ≥ 4. Furthermore, as 𝑛 →  ∞, 

𝜆𝑛 =
𝑛𝜋

2
−
𝜋

8
+ Ο(

1

𝑛
).                                           (84) 

More precisely, 

|𝜆𝑛 − (
𝑛𝜋

2
−
𝜋

8
)| ≤

1

𝑛
,     𝑛 ≥ 1,                                     (85) 

That is, the constant in 𝑂(1/𝑛) notation in (84) is not greater than 1. Indeed, by (83), 

formula (85) holds for 𝑛 ≥ 7, and for 𝑛 ≤ 6 one can use the estimates (88). Without 

referring to numerical calculation of upper and lower bounds, one can use (83) for 𝑛 ≥ 4 
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and estimatesof 𝜆1, 𝜆2 and 𝜆4 of Theorem (2.1.11) to obtain (85) with 1/𝑛 replaced 

by 3/2𝑛. 
The approximations �̃�𝑛 to the eigenfunctions 𝜑𝑛 were constructed and it was proved 

that 𝜇𝑛 = 𝑛𝜋/2 −  𝜋/8 is close to 𝜆𝑛. Now we show that �̃�𝑛 is close to 𝜑𝑛 in 𝐿2(𝐷). 
Let 𝑛 ≥ 4 be fixed. Recall that �̃�𝑛 = ∑ 𝑎𝑗𝜑𝑗

 
𝑗=1 ; with no loss of generality we may 

assume that𝑎𝑛 > 0. For 𝑗 ≠ 𝑛 we have |𝜇𝑛 − 𝜆𝑗| ≥ 3𝜋/10. Therefore, 

‖𝒜𝐷�̃�𝑛 − 𝜇𝑛�̃�𝑛‖2
2 =∑ (𝜇𝑛 − 𝜆𝑗)

2
𝑎𝑗
2

∞

𝑗=1
≥ (𝜇𝑛 − 𝜆𝑗)

2
𝑎𝑛
2 +

9𝜋2

100
∑𝑎𝑗

2

𝑗≠𝑛

. 

We denote the left-hand side by𝑀𝑛
2; the upper bound for 𝑀𝑛 is given in (74). We have 

‖�̃�𝑛 − 𝑎𝑛�̃�𝑛‖2
2 =∑ 𝑎𝑗

2 ≤
100𝑀𝑛

2

9𝜋2

∞

𝑗≠𝑛
. 

Therefore, 

‖�̃�𝑛 − ‖�̃�𝑛‖2𝜑𝑛‖2 ≤ ‖�̃�𝑛 − 𝑎𝑛𝜑𝑛‖2 + (‖�̃�𝑛‖2 − 𝑎𝑛) ≤ 2‖�̃�𝑛 − 𝑎𝑛𝜑𝑛‖2 ≤
20𝑀𝑛

3𝜋
 

This, together with (82), yields the following result. 

Lemma (2.1.12)[49]: Let 𝑛 ≥ 4. With the notation of the previous, we have 

1 −
0.52

𝜇𝑛
< ‖�̃�𝑛‖2

2 < 1 +
1.37

𝜇𝑛
, and 

‖�̃�𝑛 − 𝑎𝑛𝜑𝑛‖2 ≤
20

3𝜋
√1.21 +

8.00

𝜇𝑛
+
13.66

𝜇𝑛
2
.
1

𝜇𝑛
 . 

In particular, for 𝑛 ≥ 4, by the above result and (82), 

‖
�̃�𝑛

‖�̃�𝑛‖2
− 𝜑𝑛‖

2

≤
20

3𝜋

𝑀𝑛

√1 − 0.52 𝜇𝑛⁄
<
20

3𝜋
.
𝜋

10
=
2

3
 

Since �̃�𝑛 is symmetric or antisymmetric when n is odd or even, respectively, we have 

the alternating type of symmetry of 𝜑𝑛. 

Corollary (2.1.13)[49]: The function 𝜑𝑛is symmetric when 𝑛 is odd, and antisymmetric 

when 𝑛 is even. 

Proof: For 𝑛 ≤ 3 this is a result of [50]. When 𝑛 ≥ 4, we find that 𝜑𝑛is either symmetric 

or antisymmetric, and the distance between 𝜑𝑛 and the normed �̃�𝑛 does not exceed 2 3. 

Therefore 𝜑𝑛has the same type of symmetry as �̃�𝑛. 

Corollary (2.1.14)[49]: As 𝑛 →  ∞, 

‖𝜑𝑛 − sin ((
𝑛𝜋

2
−
𝜋

8
) (1 + 𝑥) +

𝜋

8
)‖

2

= 𝜊 (
1

√𝑛
). 

  By a rather standard argument, ‖𝜑𝑛‖∞ ≤ √𝑒𝜆𝑛 𝜋⁄ ; see, for example, [83]. A slight 

modification gives the following result. 

Proposition (2.1.15)[49]: Let 𝑐 = ‖�̃�𝑛‖2. Then 

‖𝜑𝑛‖∞ ≤
1

𝑐
(√

𝑒𝜆𝑛
𝜋
. ‖𝑐𝜑𝑛 − �̃�𝑛‖2 + ‖𝜓𝜇𝑛‖∞

).                          (86) 

Proof: Let 𝑡 = 1/2𝜆𝑛. Using the Cauchy–Schwarz inequality, Plancherel theorem and 

inequality 𝑃𝑡
𝐷(𝑥, 𝑦) ≤ 𝑝𝑡(𝑥 − 𝑦), we obtain 
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𝑐|𝜑𝑛(𝑥)| ≤ 𝑒𝜆𝑛𝑡|𝑃𝑡
𝐷(𝑐𝜑𝑛 − �̃�𝑛)(𝑥)|2 + 𝑒

𝜆𝑛𝑡|𝑃𝑡
𝐷�̃�𝑛(𝑥)|

≤ √𝑒.√ ∫(𝑝𝑡(𝑥 − 𝑦))
2𝑑𝑦

∞

−∞

. ‖𝑐𝜑𝑛 − �̃�𝑛‖2 + √𝑒‖�̃�𝑛‖∞

= √
𝑒

2𝜋
∫ 𝑒−2𝑡|𝑧|𝑑𝑧.

∞

−∞

‖𝑐𝜑𝑛 − �̃�𝑛‖2 + √𝑒‖𝜓𝜇𝑛‖∞

= √
𝑒

2𝜋𝑡
‖𝑐𝜑𝑛 − �̃�𝑛‖2 + √𝑒‖𝜓𝜇𝑛‖∞

, 

 and the proposition follows. 

Corollary (2.1.16)[49]: The functions 𝜑𝑛(𝑥) are uniformly bounded in n≥ 1 and 𝑥 ∈ 𝐷. 
More precisely, for 𝑛 ≥ 1, we have 

‖𝜑𝑛‖∞ < 3.                                                     (87) 
Indeed, for 𝑛 ≥ 6, this follows from (86) when the right-hand side is estimated using 

Theorem (2.1.11), Lemma (2.1.12) and (54). For ≤ it is a consequence of 

‖𝜑𝑛‖∞ ≤ √𝑒𝜆𝑛 𝜋⁄  and  𝜆𝑛 ≤ 𝑛𝜋 2⁄ . 
We give numerical estimates for the eigenvalues 𝜆𝑛 of the semigroup (𝑃𝑡

𝐷) when𝐷 =
(−1,1). The following estimates hold true; the upper bounds are given in the superscript 

and the lower bounds in the subscript: 

𝜆1 = 1.15777388369758
92  , 𝜆6 = 9.03285269048857

50838, 
𝜆2 = 2.75475474221510

695, 𝜆7 = 10.60229309961113
3854, 

𝜆3 = 4.31680106659303
758, 𝜆8 = 12.17411826272585

6180, 
𝜆4 = 5.89214747093908

4751, 𝜆9 = 13.74410905939799
44402, 

𝜆5 = 7.46017573939764
41122, 𝜆10 = 15.31555499602690

8382.                    (88) 
This is the result of numerical computation of the eigenvalues of 900 × 900 matrices 

using Mathematica 6.01. Different methods are used for the upper and lower bounds, as 

is described below. For the Green operator and the Green function, see [55]. The explicit 

formula for the Green function of the interval was first obtained by Riesz [91]. 

For the upper bounds, we use the Rayleigh–Ritz method, see [96]. Let 𝐺𝐷be the Green 

operator for𝑃𝑡
𝐷. Then𝐺𝐷𝜑𝑛 = (1 𝜆𝑛⁄ )𝜑𝑛. The following min–max variational 

characterization of eigenvalues of 𝐺𝐷 is well known; see, for example, [89]: 

      
1

𝜆𝑛
=Max{min

𝑓∈𝐸
𝑅(𝑓) : 𝐸 𝑖𝑠 𝑛 − dimensional subspace 𝑜𝑓 𝐿2(𝐷)}       (89) 

Where 𝑅(𝑓) is the Rayleigh quotient for 𝐺𝐷, given by  

𝑅(𝑓) =
∫ 𝑓(𝑥)𝐺𝐷𝑓(𝑥)𝑑𝑥
1

−1

‖𝑓‖2
2 . 

Let𝑓𝑛, where 𝑛 = 1,2, . . ., be a complete orthonormal system in 𝐿2(𝐷) and let 𝐸𝑁 be the 

subspace spanned by 𝑓𝑛, where 𝑛 = 1,2, . . . , 𝑁. By replacing 𝐿2(𝐷) by 𝐸𝑁 in (89), we 

clearly obtain the upper bound 𝜆𝑛,𝑁
+  for 𝜆𝑛, with 𝑛 =  1,2, . . . , 𝑁. On the other hand, 

(𝜆𝑛,𝑁
+ )

−1
 is the 𝑛th largest eigenvalue of the 𝑁 ×𝑁 matrix 𝐴𝑁 of the coefficients 𝑎𝑚,𝑛 

of the operator 𝐺𝐷 in the basis (𝑓1, 𝑓2, … . 𝑓𝑁) (note that 𝑎𝑚,𝑛 do not depend on N). 
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    The main difficulty is to find a convenient basis 𝑓𝑛 for which the Approximations 

converge sufficiently fast, while the entries of 𝐴𝑁 can be Computed explicitly. 

For the sake of comparison, recall that analytical computation in [50] gives the upper 

bound 3π/8 ≈ 1.178. Our first attempt to use the Rayleigh–Ritz method for 𝐴𝐷instead of 

𝐺𝐷, with 𝑓𝑛(𝑥) = 𝑠𝑖𝑛((𝑛𝜋/2)(𝑥 +  1)), resulted in relatively poor estimates. For 

example, for N = 1000 the upper bound for the first eigenvalue is𝜆1,1000 ≈  1.1579, 

accurate up to the third decimal place. A more efficient approach, described below, uses 

Legendre polynomials we begin with computation the values of the Green operator of 

the interval (−1,1) on the polynomials 𝑔𝑛(𝑥)  =  𝑥
𝑛. Recall that the Green function of 

the interval 𝐷 = (−1,1) for theCauchy process is given by 

𝐺𝐷(𝑥, 𝑦) =
1

2𝜋
∫

𝑑𝑢

√𝑢√𝑢 + 1
=
1

𝜋
log

1 − 𝑥𝑦 + √1 − 𝑥2√1 − 𝑦2

|𝑥 − 𝑦|

(1−𝑥2)(1−𝑦2) (𝑥−𝑦)2⁄

0

 

 Where𝑥, 𝑦 ∈ 𝐷. Integrating by parts gives, after some simplification, 

 𝐺𝐷𝑔𝑛(𝑦) = ∫ 𝐺𝐷(𝑥, 𝑦)𝑔𝑛(𝑥)𝑑𝑥
1

−1

=
1

𝜋

√1 − 𝑦2

𝑛 + 1
𝑃𝑉 ∫

𝑥𝑛+1𝑑𝑥

√1 − 𝑥2(𝑥 − 𝑦)

1

−1

=
1

𝜋

√1 − 𝑦2

𝑛 + 1
∫
(𝑥𝑛+1 + 𝑦𝑛+1)𝑑𝑥

√1 − 𝑥2(𝑥 − 𝑦)
+

1

−1

1

𝜋

√1 − 𝑦2𝑦𝑛+1

𝑛 + 1
𝐼(𝑦), 

Where 

𝐼(𝑦) = 𝑃𝑉 ∫
𝑑𝑥

√1 − 𝑥2(𝑥 − 𝑦)

1

−1

. 

 The indefinite integral is given by 

1

√1 − 𝑦2
log

|𝑥 − 𝑦|√1 − 𝑦2

√1 − 𝑥2(𝑥 − 𝑦)
, 

 and there fore𝐼(𝑦) = 0. Consequently, we have  

𝐺𝐷𝑔𝑛(𝑦) ==
1

𝜋

√1 − 𝑦2

𝑛 + 1
∫
(𝑥𝑛+1 + 𝑦𝑛+1)𝑑𝑥

√1 − 𝑥2(𝑥 − 𝑦)

1

−1

=
1

𝜋

√1 − 𝑦2

𝑛 + 1
∑𝑦𝑛−𝑖
𝑛

𝑖=0

∫
𝑥𝑖𝑑𝑥

√1 − 𝑥2

1

−1

=
1

𝜋

√1 − 𝑦2

𝑛 + 1
∑ 𝑦𝑛−2𝑗

[𝑛 2]⁄

𝑗=0

Γ (𝑗 +
1
2)

Γ(𝑗 + 1)
. 

 Finally, for 𝑚,𝑛 = 0,1,2, . .. such that 𝑚 + 𝑛 is even, we get  

𝐺𝑚,𝑛 = ∫𝑔𝑚(𝑦)𝐺𝐷𝑔𝑛(𝑦)𝑑𝑦

1

−1

 

=
1

𝑛 + 1
∑ 𝑦𝑛−2𝑗

[𝑛 2]⁄

𝑗=0

Γ(𝑗 + 1 2⁄ )

√𝜋Γ(𝑗 + 1)
∫√1 − 𝑦2𝑦𝑛+𝑚−2𝑗𝑑𝑦

1

−1
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1

2(𝑛 + 1)
∑  

[𝑛 2]⁄

𝑗=0

Γ(𝑗 + 1 2⁄ )

Γ(𝑗 + 1)

Γ((𝑛 +𝑚 + 1) 2 − 𝑗⁄ )

Γ((𝑛 +𝑚) 2 + 2 − 𝑗⁄ )
 .  

By simple induction, one can prove that in this case 

𝐺𝑚,𝑛 =

{
 
 

 
 1

𝑚 + 𝑛 + 1
.
Γ(𝑚 + 1 2⁄ )

Γ(𝑚 2⁄ + 1)
.
Γ((𝑛 + 1) 2⁄ )

Γ(𝑛 2 + 1⁄ )
 for 𝑚, 𝑛 even,

1

𝑚 + 𝑛 + 2
.
Γ(𝑚 2 + 1⁄ )

Γ((𝑚 + 3) 2⁄ )
.
Γ(𝑛 2 + 1⁄ )

Γ((𝑛 + 3) 2⁄ )
for 𝑚, 𝑛 odd.

                (90) 

If 𝑚 + 𝑛 is odd, then we obviously have𝐺𝑚,𝑛 = 0. 

The Legendre polynomials are defined by 

𝑓𝑛(𝑥) = ∑ 𝑐𝑛, 𝑥
𝑛−2𝑖

[𝑛 2]⁄

𝑗=0

 , 

Where 

𝑐𝑛,𝑖 =
(−1)𝑖(2𝑛 − 2𝑖)!

2𝑛𝑖! (𝑛 − 𝑖)! (𝑛 − 2𝑖)!
=

(−1)𝑖Γ(2𝑛 − 2𝑖 − 1)

2𝑛𝑖! Γ(𝑛 − 𝑖 + 1)! (𝑛 − 2𝑖 + 1)
,            (91) 

Form the orthogonal basis in𝐿2(𝐷). Therefore, we have 

𝑎𝑚,𝑛 = ∫𝑓𝑚(𝑦)𝐺𝐷𝑓𝑛(𝑦)𝑑𝑦 = ∑ ∑ 𝑐𝑛,𝑖𝑐𝑚,𝑗𝐺𝑖,𝑗 ,

[𝑛 2]⁄

𝑗=0

[𝑛 2]⁄

𝑗=0

1

−1

                        (92) 

 With 𝑐𝑛,𝑖 and 𝐺𝑖,𝑗 given by (90) and (91), respectively. The upper bound for 𝜆𝑛is𝜆𝑛,𝑁
+  

where (𝜆𝑛,𝑁
+ )

−1
 is the nth greatest eigenvalue of the 𝑁 ×𝑁 matrix 𝐴𝑁 = (𝑎𝑚,𝑛).  

To find the lower bounds to the eigenvalues of the problem (1)–(3) for an interval 

𝐷 = (−1,1), we apply the Weinstein–Aronszajn method of intermediate problems. We 

use the method described in [74], where the sloshing problem is considered. 

    The analytic function 𝑠𝑖𝑛(𝑧) = (𝑠𝑖𝑛 𝜉 𝑐𝑜𝑠ℎ 𝜂, 𝑠𝑖𝑛ℎ𝜉 𝑐𝑜𝑠 𝜂), where 𝑧 =  𝜉 +  𝑖𝜂, 
transforms the semiinfinite strip 𝑅 =  {(𝜉, 𝜂)  ∈ ℝ2 ∶ −𝜋/2 ≤ 𝜉 ≤  𝜋/2, 𝜂 ≥  0} onto 

the upper half-space 𝐻{(𝑥, 𝑦) ∈ ℝ2  𝑦 ≥ 0}. Let u be a solution to the eigenproblem (1)–

(3) with 𝐷 = (−1,1).Then the image 𝑣(𝑧) = 𝑢(𝜂(𝑧)) of the function u under η is a 

solution to the followingequivalent problem 

∆𝑣(𝜉, 𝜂) = 0,−
𝜋

2
𝜉 <

𝜋

2
, 𝜂 > 0,                              (93) 

𝜕𝑦

𝜕𝑥
𝑣(𝜉, 0) = −𝜆 cos 𝜉𝑣(𝜉, 0),   

𝜋

2
≤ 𝜉 ≤

𝜋

2
, 𝜂 = 0,                  (94) 

𝑣 (−
𝜋

2
, 𝜂) = 𝑣 (

𝜋

2
, 𝜂) = 0, 𝜂 ≥ 0.                                    (95) 

For 𝑓 ∈ 𝐿2(−𝜋/2, 𝜋/2) we denote by 𝐴𝑓 (not to be confused with 𝒜𝑓) the normal 

derivative of the harmonic function agreeing with f on (−𝜋/2, 𝜋/2) and vanishing on 

{−𝜋/2, 𝜋/2} × [0,∞) (this is an analogue of the Dirichlet–Neumann operator). Since 

𝑣(𝜉, 𝜂) = 𝑠𝑖𝑛(𝑘(𝜉 +  𝜋/2))𝑒−𝑘𝜂atisfies (93) and (95), the eigenfunctions of 𝐴 are 

simply 
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𝑔𝑘(𝜉) = √
2

𝜋
 𝑠𝑖𝑛 (𝑘 (𝜉 +

𝜋

2
))   𝑎𝑛𝑑 𝐴𝑔𝑘  =  𝑘𝑔𝑘. 

We define the operator of multiplication by the function sign 𝜉√1 − cos 𝜉   

(𝑇𝑓)(𝜉) = 𝑠𝑖𝑔𝑛𝜉√1 − cos 𝜉 𝑓(𝜉),   𝑓 ∈ 𝐿2 (−
𝜋

2
,
𝜋

2
). 

 The problem (93)–(95) can be written in the operator form as 

(𝐴𝑓)(𝜉) = 𝜆(1 − 𝑇2)𝑓(𝜉).                                      (96) 
Let 𝑃𝑁be the orthogonal projection of 𝐿2(𝐷) onto a linear subspace 𝐸𝑁 of 𝐿2(𝐷) spanned 

by the first 𝑁 of the linearly dense set of functions𝑓1, 𝑓2, …. . Then the eigenvalues𝜆𝑛,𝑁
−  of 

the spectral problem  

𝐴𝑓(𝜉) = 𝜆(1 − 𝑇𝑃𝑁𝑇)𝑓                                         (97) 
Are lower bounds for the eigenvalues of (96) and consequently to the eigenvalues𝜆𝑛 of 

the problem (93)–(95). Roughly, this is because 

∫ 𝑓(𝑥)𝑇𝑃𝑁𝑇𝑓(𝑥)𝑑𝑥 = ‖𝑃𝑁𝑇𝑓(𝑥)‖2
2 ≤ ‖𝑇𝑓(𝑥)‖2

2

𝜋 2⁄

−𝜋 2⁄

= ∫ 𝑓(𝑥)𝑇2𝑓(𝑥)𝑑𝑥

𝜋 2⁄

−𝜋 2⁄

, 

 and so the Rayleigh quotient associated with (97) is dominated by the Rayleigh quotient 

for (96), namely 

∫ 𝑓(𝑥)𝐴𝑓(𝑥)𝑑𝑥
𝜋 2⁄

−𝜋 2⁄

∫ 𝑓(𝑥)(1 − 𝑇𝑃𝑁𝑇)𝑓(𝑥)𝑑𝑥
𝜋 2⁄

−𝜋 2⁄

≤
∫ 𝑓(𝑥)𝐴𝑓(𝑥)𝑑𝑥
𝜋 2⁄

−𝜋 2⁄

∫ 𝑓(𝑥)(1 − 𝑇2)𝑓(𝑥)𝑑𝑥
𝜋 2⁄

−𝜋 2⁄

 

The problem (97) is called the intermediate problem. We shall later choose 𝑓𝑛 so that 

each 𝑇𝑓𝑛 is a linear combination of 𝑔𝑖, the eigenfunctions of 𝐴, say 

𝑇𝑓𝑛 =∑𝑐𝑖 , 𝑖𝑔𝑖 ,    𝑛 = 1,2,… ,𝑁,

𝐾

𝑖=1

                                            (98) 

where 𝐾 ≥ 𝑁. Let C be the 𝑁 × 𝐾 matrix with entries 𝑐𝑛,𝑖 and let B be the 𝑁 ×𝑁 Gram 

matrix of the functions𝑓1, … , 𝑓𝑁, that is, the matrix with the entries 

𝑏𝑚,𝑛 = ∫ 𝑓𝑚(𝑥)𝑓𝑛(𝑥)𝑑𝑥.

𝜋 2⁄

−𝜋 2⁄

 

Finally, let 𝐷 be the 𝐾 × 𝐾 diagonal matrix of the first 𝐾 eigenvalues 1,2, . . . , 𝐾 of A. 

Note that, for each𝑗 > 𝐾, the function 𝑔𝑗 is the solution of (97) with an eigenvalue 𝜆 = 𝑗 

(this is because 𝑇𝑔𝑗 = 0). On the other hand, if f is the linear combination of 𝑔1, 𝑔2, … , 𝑔𝐾 

with the coefficients α = (𝛼1, … . , 𝛼𝐾), then f satisfies (97) if and only if α is the solution 

to the 𝐾 × 𝐾 relative matrix Eigenvalue problem, 

𝐷𝛼 = 𝜆(𝐼 − 𝐶𝑇𝐵−1𝐶)𝛼                                 (99) 
By arranging the eigenvalues of (99) and eigenvalues 𝐾 + 1,𝐾 + 2, . .. in the 

nondecreasing order, we obtain the sequence of eigenvalues 𝜆𝑛,𝑁
−  of the intermediate 

problem (97). As already noted, these are the lower bounds for𝜆𝑛. We define 

𝑓𝑛(𝑥) = 2√1 + cos 𝑥 𝑔𝑛(𝑥). 
 It follows that 
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𝑇𝑓𝑛(𝑥) = 2 sin 𝑥𝑔𝑛(𝑥) = (−1)
𝑛𝑔𝑛−1(𝑥) + (−1)

𝑛+1𝑔𝑛+1(𝑥), 
Using the convention that 𝑔0(x) = 0. Consequently, C is 𝑁 × (𝑁 + 1) matrix of the form 

𝐶 =

(

 
 
 
   

0
1
0
0
⋮

1
0
−1
0
⋮

0
−1
0
1
⋮

0
0
1
0
⋮

⋯
⋯
⋯
⋯
⋱

0
0
0
0
⋮

0
0
0
0
⋮

0
0
0
0
⋮

0 0 0 0 ⋯ 0 (−1)𝑁 0

         0 0 0 0 ⋯ (−1)𝑁 0 (−1)𝑁+1)

 
 
 
 

 

The coefficients of the Gram matrix B can be easily computed, and we have  

𝑏𝑚,𝑛 =
(−1)1+(𝑚+𝑛) 2⁄ 32𝑚𝑛

𝜋((𝑚 − 𝑛)2 − 1)((𝑚 + 𝑛)2 − 1)
+ 4𝛿𝑚,𝑛 

 Whenever 𝑚+ 𝑛 is even, and 𝑏𝑚,𝑛 = 0 otherwise. Finally, the solutions of the spectral 

problem (99) are simply the inverses of the eigenvalues of the matrix 𝐷−1(𝐼 − 𝐶𝑇𝐵−1𝐶). 
These numbers turn out to be less than 𝑁 + 2, and therefore they form 𝜆𝑛,𝑁

− , where𝑛 =
1,2, . . . , 𝑁 +  1. 

Let 𝐷 = (0,∞). Let 𝑝𝑡(𝑥, 𝐴) = 𝑃𝑥(𝑋𝑡 ∈ 𝐴) for 𝐴 ⊆ ℝ, and fix x > 0. By the strong 

Markov property, 

2𝑃𝑥(𝑋𝑡 ≤ 0) = 2𝑃𝑥(𝑋𝑡 ∈ 𝐷
𝑐) = 𝐸𝑥(2𝑝𝑡−𝜏𝐷(𝑋(𝜏𝐷), 𝐷

𝑐); 𝜏𝐷 ≤ 𝑡). 

 Since 2𝑝𝑆(𝑦, 𝐷
𝐶) ≥ 1 for 𝑦 ≤ 0 and 𝑠 > 0, it follows that the right-hand side is bounded 

below by𝑃𝑥(𝜏𝐷 ≤ 𝑡). Therefore, for 𝑡 > 0 and𝑥 > 0, 

𝑃𝑥(𝜏𝐷 ≤ 𝑡) ≤
2

𝜋
∫

𝑡

𝑡2 + (𝑦 − 𝑥)2

0

−∞

𝑑𝑦 = 1 −
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛

𝑥

𝑡
≤ min

 
(1,

𝑡

𝑥
) .    (100) 

For𝑡 > 0, 𝑥, 𝑦 ∈ 𝐷 = (0,∞), we have (see [50]) 

𝑝𝑡(𝑦 − 𝑥) − 𝑝𝑡
𝐷(𝑥, 𝑦)

𝑡
=
1

𝑡
𝐸𝑥(𝑝𝑡−𝜏𝐷(𝑦 − 𝑋(𝜏𝐷)); 𝜏𝐷 ≤ 𝑡) 

=
1

𝜋𝑡
𝐸𝑥 (

𝑡 − 𝜏𝐷

(𝑡 − 𝜏𝐷)2 + (𝑦 − 𝑋(𝜏𝐷))
2 ; 𝜏𝐷 ≤ 𝑡) 

≤
1

𝜋𝑦2
𝑃𝑥(𝜏𝐷 ≤ 𝑡) ≤ 𝑚𝑖𝑛 (

1

𝜋𝑦2
,
𝑡

𝜋𝑥𝑦2
). 

 By symmetry, also 

𝑝𝑡(𝑦 − 𝑥) − 𝑝𝑡
𝐷(𝑥, 𝑦)

𝑡
≤ 𝑚𝑖𝑛 (

1

𝜋𝑥2
,
𝑡

𝜋𝑥2𝑦
) 

   Since𝑝𝑡(𝑦 − 𝑥) ≤ 1 𝜋𝑡⁄  we conclude that 

0 ≤
𝑝𝑡(𝑦 − 𝑥) − 𝑝𝑡

𝐷(𝑥, 𝑦)

𝑡
≤
1

𝜋
≤ 𝑚𝑖𝑛 (

1

𝑡2
,
1

𝑥2
,
1

𝑦2
,
𝑡

𝑥2𝑦
,
𝑡

𝑥𝑦2
) , 𝑡, 𝑥, 𝑦 > 0.   (101) 

A function η being the generalized Hilbert transform of -arctan t- is sought. More 

precisely, η is the function satisfying η (0) = 0 and 

𝜂′(𝑡) =
1

𝜋
𝑃𝑉 ∫

1

(𝑡 − 𝑠)(1 + 𝑠2)

0

−∞

𝑑𝑠, 𝑡 ∈  ℝ,                          (102) 

The integral being the Cauchy principal value when𝑡 < 0. Observe that  
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∫
1

(𝑡 − 𝑠)(1 + 𝑠2)
𝑑𝑠 =

1

1 + 𝑡2
∫(

𝑠 + 𝑡

1 + 𝑠2
+

1

𝑡 − 𝑠
)𝑑𝑠

=
1

1 + 𝑡2
(𝑡 arctan 𝑠 +

1

2
log(1 + 𝑠2) − log|𝑡 − 𝑠|). 

 Hence we have 

𝜂′(𝑡) =
1

1 + 𝑡2
(
𝑡

2
−
1

𝜋
log|𝑡|) 

 and so  

𝜂(𝑡) =
log(1 + 𝑡2)

4
−
1

𝜋
∫
log|𝑠|

1 + 𝑠2
𝑑𝑠,

𝑡

0

𝑡 ∈ ℝ.                              (103) 

In particular, 

𝜂(−𝑡) = −𝜂(𝑡) + log√1 + 𝑡2 , 𝑡 ∈ ℝ.                                    (104) 
The integrals of 𝑙𝑜𝑔 |𝑠|/(1 + 𝑠2) over (0,∞) and over (−∞, 0) are zero (this follows 

by asubstitution 𝑢 = 1/𝑠); and the maximum and minimum of the integral of 

𝑙𝑜𝑔 |𝑠|/(1 + 𝑠2), equal to the Catalan constant C ≈ 0.916 and to -C, respectively, are 

attained at -1 and 1. It follows that 
1

4
log(1 + 𝑡2)

𝐶

𝜋
≤ 𝜂(𝑡) ≤

1

4
log(1 + 𝑡2) +

𝐶

𝜋
,  𝑡 ∈ ℝ,                        (105) 

and in particular, 

𝑒𝜂(𝑡)~√|𝑡|as|𝑡|  → ∞.                                             (106) 
On the other hand, by (102), 

𝜂′(𝑡) =
1

𝜋

𝑑

𝑑𝑡
∫
log|𝑡 − 𝑠|

1 + 𝑠2
𝑑𝑠,

0

−∞

 

and for 𝑡 =  0, 

1

𝜋
∫
log|𝑠|

1 + 𝑠2
𝑑𝑠 = (∫  

1

0

+∫  

∞

0

)
log 𝑠

1 + 𝑠2
𝑑𝑠 = ∫

log 𝑠

1 + 𝑠2
𝑑𝑠 + ∫

− log 𝑠

1 + 𝑠−2
𝑑𝑠

𝑠2
= 0.

1

0

1

0

0

−∞

 

  Therefore, 

𝜂(𝑡) =
1

𝜋
∫
log|𝑡 − 𝑠|

1 + 𝑠2
𝑑𝑠,

𝑡

0

 𝑡 ∈  ℝ.                                   (107) 

A related holomorphic function B plays a major role. It is defined by   

𝐵(𝑧) =
1

𝜋
∫
log(𝑧 − 𝑠)

1 + 𝑠2
𝑑𝑠,

0

−∞

 𝑧 ∈  𝑪.                                  (108) 

Here we agree that 𝑙𝑜𝑔(𝑧) = 𝑙𝑜𝑔 |𝑧| + 𝑖𝜋/2 for 𝑧 ∈ (−∞, 0], that is, log (and therefore 

also B) is continuous on (−∞, 0] when approached from 𝑪+, but not from 𝑪−. The 

function 𝑅𝑒𝐵(𝑧) is harmonic in 𝑪 \ (−∞, 0], continuous in whole C and Re 𝐵(𝑡) = 𝜂(𝑡) 
for 𝑡 ∈ ℝ. For 𝑧 ∈ 𝑪, we have  

Re𝐵(𝑧) =
1

𝜋
∫
log|𝑧 − 𝑠|

1 + 𝑠2
𝑑𝑠

0

−∞

≤
1

𝜋
∫
log(|𝑧| − 𝑠)

1 + 𝑠2
𝑑𝑠 = 𝜂(|𝑧|)

0

−∞

. 
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and in a similar manner 

Re𝐵(𝑧) =
1

𝜋
∫
log|𝑧 − 𝑠|

1 + 𝑠2
𝑑𝑠

0

−∞

≥
1

𝜋
∫
log|−|𝑧| − 𝑠|

1 + 𝑠2
𝑑𝑠 = 𝜂(−|𝑧|),

0

−∞

 

1

4
log(1 + |𝑧|2) −

𝐶

𝜋
≤ Re 𝐵(𝑧) ≤

1

4
log(1 + |𝑧|2) +

𝐶

𝜋
, z ∈  𝐂.                    (109) 

In particular, 

|𝑒𝐵(𝑍)|~√|𝑧| as|𝑧|  → ∞.                                            (110) 

The function 𝑅𝑒𝐵′(𝑡) = 𝜂′(𝑡) is the Hilbert transform of (− 𝑎𝑟𝑐𝑡𝑎𝑛 𝑡−),′ and at the 

same time Re B(t) is the Hilbert transform of −𝐼𝑚 𝐵(𝑡); hence Im B(t) = (arctan t−). 
Since Im 𝐵(0) = 0 = arctan 0 −, we conclude that𝐼𝑚 𝐵′(𝑡)  = ( arctan t−)′. 
The following auxiliary computations related to the functions η and B. We have 

∫
𝜋 2⁄ − 𝑎𝑟𝑐𝑡𝑎𝑛 𝑠

1 + 𝑆2
𝑑𝑠 =

1

2
arctan 𝑠 − (arctan 𝑠)2, 

 So that.      

1

𝜋
∫ ∫

𝜋 2⁄ − 𝑎𝑟𝑐𝑡𝑎𝑛 𝑠

1 + 𝑆2
𝑑𝑠 =

∞

0

𝑑𝑠 =
𝜋

8
                                    (111) 

By a substitution 𝑠 = 1/𝑡𝑎𝑛 𝑡, we have 

∫
log(1 + 𝑠2)

1 + 𝑠2
𝑑𝑠 =

−∞

0

− 2∫ log sin 𝑡 𝑑𝑡.

𝜋 2⁄

0

 

 We have 

2 ∫ log sin 𝑡 𝑑𝑡 = ∫ log sin 𝑡 𝑑𝑡 + ∫ log cos 𝑡 𝑑𝑡

𝜋 2⁄

0

  

𝜋 2⁄

0

𝜋 2⁄

0

= ∫ log sin(2𝑡) 𝑑𝑡 −
𝜋 log 2

2

𝜋 2⁄

0

=
1

2
∫ log sin 𝑢 𝑑𝑢 −

𝜋 log 2

2
= ∫ log sin 𝑢 𝑑𝑢

𝜋 2⁄

0

−
𝜋 log 2

2
.

𝜋

0

 

 Therefore, 

1

𝜋
∫
log(1 + 𝑠2)

1 + 𝑠2
𝑑𝑠

∞

0

= log 2.                                   (112) 

 Whenever 𝑎 > −1 and𝑏 > (1 +  𝑎)/2, we have by a substitution 1 + 𝑡2 =  1/𝑠 and a 

formula for the beta integral 
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∫
𝑡𝑎

(1 + 𝑠2)𝑏
𝑑𝑡

∞

0

=
1

2
∫(1 − 2)(𝑎−1) 2⁄ 𝑠𝑏−(𝑎+3) 2⁄ 𝑑𝑠

1

0

=
Γ((𝑎 + 1) 2⁄ )Γ(𝑏 − (𝑎 − 1) 2⁄ )

2Γ(𝑏)
.                                                           (113) 

Also, by integration by parts and 𝛤(1/2) = √𝜋, 

∫
1 − 𝑒𝑡𝑥

𝑡3 2⁄
𝑑𝑡 = 2𝑥∫

𝑒−𝑡𝑥

√𝑡
𝑑𝑡 = 2√𝜋𝑥,

∞

0

𝑥 > 0.
∞

0

                       (114) 

Estimates for the generator on a piecewise smooth function the following estimate. 

Define an auxiliary piecewise 𝐶2 function 

{
 
 
 
 

 
 
 
 0                                               𝑓𝑜𝑟 𝑥 ∈ (−∞,−

1

3
) ,

9

2
(𝑥 +

1

3
)
2

                        𝑓𝑜𝑟 𝑥 (−
1

3
, 0) ,

1 −
9

2
(𝑥 −

1

3
)
2

               𝑓𝑜𝑟 𝑥 ∈ (0,
1

3
) ,

1                                           𝑓𝑜𝑟 𝑥 ∈ (
1

3
,∞) .

                                           (115) 

Note that𝑞(𝑥) +  𝑞(−𝑥) = 1. Let f be a piecewise 𝐶2 function on ℝ and let 𝑔(𝑥) =
 𝑞(𝑥)𝑓(𝑥). 
Suppose that 𝑔 has compact support. We estimate 𝐴𝑔(𝑥) for 𝑥 ∈ (−1,0). 
Choose 𝑀0, 𝑀1 and 𝑀2 so that |𝑓(𝑥)| ≤  𝑀0, |𝑓

′(𝑥)| ≤ 𝑀1 𝑎𝑛𝑑 |𝑓
′′(𝑥)| ≤ 𝑀2for𝑥 ∈

(−
 1

3
,
1

3
). 

Let∫ |𝑓(𝑥)|𝑑𝑥.
∞

0
. Then  

|𝑞′′(𝑥)| ≤ 𝑀0|𝑞
′′(𝑥)| + 2𝑀1|𝑞

′(𝑥)| + 𝑀2|𝑞(𝑥)| ≤ 9𝑀0 + 6𝑀1 +𝑀2. 

If𝑧 ∈ (−
 1

3
,
1

3
). , then 𝑔(𝑧) = 0, and so 𝐴𝑔(𝑧) is estimated (up to the factor  

1

𝜋
 ) by 

∫
|𝑔(𝑥)|

(𝑥 − 𝑧)2
𝑑𝑥 ≤ 𝑀0

∞

−1 3⁄

∫
|𝑔(𝑥)|

(𝑥 − 𝑧)2
𝑑𝑥 +

9

4
∫ |𝑓(𝑥)|𝑑𝑥 ≤ 3𝑀0 +

9𝐼

4
;

∞

1 3⁄

1 3⁄

−1 3⁄

 

 Here we used 𝑞(𝑥)/(𝑥 − 𝑧)2 ≤
9

2
 for 𝑥 (−

 1

3
,
1

3
)In the second inequality. For 𝑧 ∈

(−
1

3
, 0) the principal value integral in the definition of 𝐴 can be estimated by splitting it 

into two parts. By Taylor’s expansion of g, we have sup 

|𝑃𝑉∫
𝑔(𝑥) − 𝑔(𝑧)

(𝑥 − 𝑧)2
𝑑𝑥

𝑧+1 3⁄

𝑧−1 3⁄

| ≤
2

3
.
1

2
𝑠𝑢𝑝 {|𝑔′′(𝑥)|: 𝑥 ∈ (𝑧 −

 1

3
, 𝑧 +

1

3
) . }

≤
1

3
 𝑠𝑢𝑝 {|𝑔′′(𝑥)|: 𝑥 ∈ (𝑧 −

 1

3
, 𝑧 +

1

3
) . } ≤ 3𝑀0 + 2𝑀1 +

2𝑀2

3
 

For the second inequality note that 𝑔′′(𝑥) = 0for𝑥 < −
1

3
. Furthermore, 
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|( ∫  

𝑧−1 3⁄

−∞

+ ∫  

∞

𝑧+1 3⁄

)
𝑔(𝑥) − 𝑔(𝑧)

(𝑥 − 𝑧)2
𝑑𝑥|

≤ |𝑔(𝑧)|( ∫  

𝑧−1 3⁄

−∞

+ ∫  

∞

𝑧+1 3⁄

)
1

(𝑥 − 𝑧)2
𝑑𝑥 + 9 ∫ |𝑓(𝑥)|

∞

𝑧+1 3⁄

𝑑𝑥 ≤ 6𝑀0 + 9𝐼 

 We conclude that  

|𝒜𝑔(𝑧)| ≤
3𝑀0 + (9 4⁄ )𝐼

𝜋
, 𝑧 ∈ (−1,

1

3
) ;                                          (116) 

|𝒜𝑔(𝑧)| ≤
3𝑀0 + 2𝑀1 + (2 3⁄ )𝑀2 + 9𝐼

𝜋
, 𝑧 ∈ (−

 1

3
, 0) ;                             (117) 

 

Section (2.2): Fractional Laplace Operator in the Interval 

        Let 𝐷 =  (−1, 1) and 𝛼 ∈  (0, 2). Below we study the asymptotic behavior of the 

eigenvalues of the spectral problem for the one-dimensional fractional Laplace operator in 

the interval 𝐷: 

 (−
𝑑2

𝑑𝑥2
)

𝛼/2

 𝜑(𝑥) =  𝜆𝜑(𝑥), 𝑥 ∈  𝐷,                                          (118)  

where 𝜑 ∈  𝐿2(𝐷) is extended to ℝ by 0. It is known that there exists an infinite sequence 

of eigenvalues 𝜆𝑛, 0 <  𝜆1  <  𝜆2 ≤ 𝜆3 ≤ ···, and the corresponding eigenfunctions 𝜑𝑛 

form a complete orthonormal set in 𝐿2(𝐷). 
        By following carefully the proof, one can take e.g. 𝐶 =  30 000 and 𝐶′  =  4000 in 

Theorem (2.2.3). Note that the constant in the error term 𝑂(1/𝑛) in (140) tends to zero as 𝛼 

approaches 2, and in the limiting case 𝛼 =  2 (not considered below), we have 𝜆𝑛  =
 (𝑛𝜋/2)2 without an error term. Theorem (2.2.3) for 𝛼 =  1 (with better numerical 

constants) was proved in [49]. The proof of Theorem (2.2.3) is modeled after [49], and the 

idea can be sketched as follows. In [101], an explicit formula for the solution of the spectral 

problem similar to (118) in half-line (0,∞) was given: for all 𝜆 >  0 there is an 

eigenfunction 𝐹𝜆(𝑥) such that (−𝑑2/𝑑𝑥2)𝛼/2𝐹𝜆(𝑥)  =  𝜆
𝛼𝐹𝜆(𝑥) for 𝑥 ∈  (0,∞), and 

𝐹𝜆(𝑥)  =  0 for 𝑥 ≤  0. Furthermore, 𝐹𝜆(𝑥) ≈ sin (𝜆𝑥 +
(2−𝛼)𝜋

8
 ) when 𝜆𝑥 is large enough. 

The fractional Laplace operator (−𝑑2/𝑑𝑥2)𝛼/2 is a non-local operator, so the 

eigenfunctions in half-line are not restrictions of eigenfunctions in the entire real line. When 

𝜆 is large enough and x is not too close to 0, then 𝐹𝜆(𝑥) behaves nearly as 

sin (𝜆𝑥 +
(2−𝛼)𝜋

8
 ), which is an eigenfunction of (−𝑑2/𝑑𝑥2)𝛼/2 in ℝ. One may expect a 

similar approximate localization phenomenon for the solutions of the spectral problem (118) 

in the interval 𝐷: locally near −1 and 1, the eigenfunctions  𝜑𝑛(𝑥) on the interval 𝐷 are 

expected to be close to the eigenfunctions in half-lines (−1,∞) and (−∞, 1) respectively. 

In other words, for n large enough, and with 𝜇𝑛  ≈  𝜆𝑛
1/𝛼

 , we expect that  

 𝜑𝑛(𝑥)  ≈  {

𝐶1𝐹𝜇𝑛  (1 +  𝑥)  for   𝑥 close to −  1,                                      

𝐶2𝐹𝜇𝑛 (1 +  𝑥)  for    𝑥 close to 1,                                           

𝐶3 sin(𝜇𝑛𝑥 + 𝜃𝑛)  for 𝑥 ∈  𝐷 away from the boundary,

,  
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 for some constants 𝐶1, 𝐶2, 𝐶3, 𝜃𝑛. The above observation is exploited as follows. We define 

the function �̃�𝑛(𝑥) to be equal to 𝐹𝜇𝑛 (1 +  𝑥) for 𝑥 close to −1, �̃�𝑛(𝑥)  =  ±𝐹𝜇𝑛  (1 −  𝑥) 

for 𝑥 close to 1 (the sign depends on 𝑛), and so that �̃�𝑛(𝑥) is approximately equal to 

±cos (𝜇𝑛𝑥) or ± sin(𝜇𝑛𝑥) (again, depending on 𝑛) for 𝑥 ∈  𝐷 away from the boundary. 

Such a construction is possible when 𝜇𝑛  =
𝑛𝜋

2
 −

(2−𝛼)𝜋

8
 .  

Table (1)[97]: 

Comparison of the approximation �̃�𝑛  =  (
𝑛𝜋

2
 −

(2−𝛼)𝜋

8
 )
𝛼

 (roman font), and numerical 

approximations to 𝜆𝑛 obtained using the method of [102] with 5000 × 5000 matrices (slanted 

font).  

𝛼 𝜆1  𝜆2  𝜆3  

0.01 0.998 0.997 1.009 1.009 1.014 1.014 

0.1 0.981 0.973 1.091 1.092 1.147 1.148 

0.2 0.971 0.957 1.195 1.197 1.319 1.320 

0.5 0.991 0.970 1.598 1.601 2.029 2.031 

1 1.178 1.158 2.749 2.754 4.316 4.320 

1.5 1.611 1.597 5.055 5.059 9.592 9.597 

1.8 2.056 2.048 7.500 7.501 15.795 15.801 

1.9 2.248 2.243 8.594 8.593 18.710 18.718 

1.99 2.444 2.442 9.733 9.729 21.820 21.829 

 

Then we are able to prove that 𝐴�̃�𝑛(𝑥)  ≈  𝜇𝑛
𝛼�̃�𝑛(𝑥) for all 𝑥 ∈  𝐷. This means that �̃�𝑛 is 

an approximate eigenfunction. Using 𝐿2(𝐷) decomposition of �̃�𝑛 in the orthonormal basis 

of (true) eigenfunctions 𝜑𝑘, we can show that 𝜇𝑛
𝛼 must be close to some eigenvalue 𝜆𝑘 . This 

proves that there is an infinite sequence of eigenvalues satisfying (140). It remains to prove 

that there are no other igenfunctions. This is achieved using a trace estimate for the 

semigroup generated by (−𝑑2/𝑑𝑥2)𝛼/2 on 𝐷 (with zero exterior condition).  

We briefly recall the history of the problem (118) and state it a more formal way. An 

auxiliary estimate for the fractional Laplace operator is given. The formula from [101] for 

the eigenfunctions 𝐹𝜆(𝑥) on the half-line is recalled. An approximation �̃�𝑛 to 

eigenfunctions, and Theorem (2.2.3). Further properties of eigenfunctions and eigenvalues 

in [49]. Proposition (2.2.6) gives simplicity of the eigenvalues when 𝛼 ∈  [1, 2). This result 

follows relatively easily from the result for 𝛼 =  1 in [49], and monotonicity in 𝛼 properties 

from [69]. 𝐿2(𝐷) and 𝐿∞(𝐷) bounds for the eigenfunctions are given. Numerical estimates 

of 𝜆𝑛 in terms of eigenvalues of large dense matrices are obtained.  

         The spectral problem studied has long history. First-term Weyl-type asymptotic law 

for 𝜆𝑛 was proved by Blumenthal and Getoor in 1959 [54]. The best known general estimate 

for 𝜆𝑛 is 
1

2
 (
𝑛𝜋

2
 )
𝛼
≤ 𝜆𝑛 ≤ (

𝑛𝜋

2
 )
𝛼

 due to DeBlassie [69] and Chen and Song [65], also 

known in a more general setting. The important case of 𝛼 =  1 was studied in detail, see 

[50], [49]. It is known that (𝜆𝑛)
1/𝛼 is continuous and increasing in 𝛼 ∈  (0, 2], see [65]–

[70]. For a discussion of related results see [50], [49]. Theorem (2.2.3) is of interest in 

physics, the asymptotic formula (140) (without the information about the order of the error 

term) was stated, and supported by numerical experiments, in [102].  
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The values of 𝐶 and 𝐶′ given above are rather large, numerical evidence suggests that 

the error term in formula (140) is rather small also for small n in the full range of 𝛼 ∈
 (0, 2),. It is an interesting open problem to prove Theorem (2.2.3) with 𝐶 and 𝐶′ non-

exploding as 𝛼 approaches 0. This is related to simplicity of eigenvalues 𝜆𝑛, conjectured to 

hold for all 𝛼 ∈  (0, 2), proved for 𝛼 =  1 in [49], and extended to 𝛼 ∈  [1, 2) in 

Proposition (2.2.6).  

By the results of [49] and [101], as well as by Theorem (2.2.3) above, one can 

conjecture asymptotic law similar to (140) for eigenvalues on an interval for more general 

operators 𝐴 =  𝜓(−𝑑2/𝑑𝑥2), studied in [101]. While such a result for each individual 

complete Bernstein function 𝜓 should present no difficulty (under some reasonable 

regularity and growth assumptions on 𝜓), it is an interesting (and much more difficult) 

problem to obtain estimates uniform also in 𝜓, for a given class of 𝜓. One important example 

here is the family of Klein–Gordon square-root operators 𝐴 =  √ 𝑚2  −  𝑑2/𝑑𝑥2 −  𝑚, 

with mass 𝑚 ranging from 0 to ∞. This operator is close to √−𝑑2/𝑑𝑥2 for small 𝑚, but 

when m is large, it more similar to −𝑑2/𝑑𝑥2.  
        To give a formal statement of the spectral problem (118), first we recall the definition 

of the one-dimensional fractional Laplace operator 𝐴 =  (−𝑑2/𝑑𝑥2)𝛼/2. It is defined 

pointwise by the principal value integral, if convergent,  

𝐴𝑓 (𝑥) =  𝑐𝛼 pv∫  
∞

−∞

𝑓 (𝑥) −  𝑓 (𝑦)

|𝑥 −  𝑦|1+𝛼
𝑑𝑦, 𝑥 ∈ ℝ,                        (119)  

where  

𝑐𝛼  =
2𝛼𝛤 (

1 + 𝛼
2 )

√𝜋 |𝛤 (−
𝛼
2 )|

 =
𝛤(1 +  𝛼) sin

𝛼𝜋
2

𝜋
 ; 

 𝐴𝑓 (𝑥) is convergent if, for example, 𝑓 is 𝐶2 in a neighborhood of 𝑥 and bounded on ℝ. 

Note that  
1

8
 𝛼(2 −  𝛼) ≤  𝑐𝛼 ≤

1

2
 𝛼(2 −  𝛼).                              (120)  

Indeed, for the lower bound simply use sin 
𝛼𝜋

2
≥

𝜋

4
 𝛼(2 − 𝛼) and  (1 + 𝛼) ≥

1

2
 , and for the 

upper bound, we have 𝛤 (1 +  𝛼) ≤  max (1, 𝛼) and max(1, 𝛼) sin
𝛼𝜋

2
≤

𝜋

2
 𝛼(2 −  𝛼). For 

𝑓 ∈  𝐶𝑐
∞ (ℝ), the Fourier transform of 𝐴𝑓 is equal to |𝜉 | αf 𝑓(𝜉) , and 𝐴 extends to an 

unbounded self-adjoint operator on 𝐿2(ℝ). We write 𝐴𝐷 for the operator 𝐴 on 𝐷 with zero 

exterior condition on ℝ\𝐷. For 𝑓 ∈  𝐶𝑐
∞ (𝐷), 𝐴𝐷𝑓 is defined to be the restriction of 𝐴𝑓 to 𝐷. 

Again, the Friedrich’s extension of 𝐴𝐷 is an unbounded self-adjoint operator on 𝐿2(𝐷), 
denoted by the same symbol 𝐴𝐷.  

        The operator −𝐴 is the generator of the one-dimensional symmetric 𝛼-stable process 

𝑋𝑡 , and −𝐴𝐷 is the generator of 𝑋𝑡 killed upon leaving the interval 𝐷. This probabilistic 

interpretation is a primary source of our motivation, but will not be exploited in the sequel.  

Throughout, 𝐶, 𝐶′ , 𝐶′′ denote generic absolute constants (independent of 𝛼), and their 

values may be different in each displayed equation. We will track the dependence of other 

constants employed below on α to catch their asymptotic behavior as 𝛼 ↘  0 and 𝛼 ↗ 2. For 

brevity, we denote 𝛽 =  2 –  𝛼.  
Define, as in [49], an auxiliary function (see Fig. 1):  
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Fig. (1)[97]: Plot of 𝑞(𝑥) (dashed line), 𝑓 (𝑥) (dotted line) and 𝑔(𝑥)  =  𝑞(𝑥)𝑓 (𝑥) (solid 

line). With the notation of Lemma (2.2.1), plots correspond to 𝛼 =
1

5
 and (a) 𝑛 =  1; (b) 

𝑛 =  2.  

𝑞(𝑥)  =  

{
 
 
 
 

 
 
 
 0                               for 𝑥 ∈  (−∞,−

1

3
 ) ,

9

2
 (𝑥 +

1

3
 )
2

              for 𝑥 ∈  (−
1

3
 , 0) ,

1 −
9

2
 (𝑥 −

1

3
 )
2

          for 𝑥 ∈  (0,
1

3
) ,

1                                      for 𝑥 ∈  (
1

3
 ,∞) .

                    (121)  

Note that 𝑞, 𝑞′ are continuous and bounded on ℝ, and 𝑞′′ is continuous and bounded on 

ℝ \ {−
1

3
 , 0,

1

3
 }. Furthermore, 𝑞(𝑥)  +  𝑞(−𝑥)  =  1. Assume that f is an integrable function 

on ℝ such that 𝑓 , 𝑓′ and 𝑓′′ exist and are bounded in [−
1

3
 ,
1

3
 ]. We define 𝑔(𝑥)  =

 𝑞(𝑥)𝑓 (𝑥). Below we estimate 𝐴𝑔 on (−1, 0) in a very similar way as in [49].  

         Let 𝑀 be the supremum of max(|𝑓 (𝑥)|, |𝑓′  (𝑥)|, |𝑓′′(𝑥)|) over 𝑥 ∈  [−
1

3
 ,
1

3
 ], and 

let 𝐼 =  ∫  
∞

0
 |𝑓 (𝑥)| 𝑑𝑥. Then 𝑔′′(𝑥)  =  0 for 𝑥 <  −

1

3
 and 

 |𝑔′′(𝑥)| ≤ |𝑓 (𝑥)𝑞′′(𝑥)|  +  2 |𝑓′  (𝑥)𝑞′ (𝑥)|  + |𝑓′′(𝑥)𝑞(𝑥)| ≤ 𝐶𝑀,

𝑥 ∈ (−
1

3
,
1

3
) \ {0}. 

 Suppose first that 𝑥 ∈  (−1,−
1

3
 ]. Since g vanishes in (−1,−

1

3
 ], we have  

𝑐𝛼
−1  |𝐴𝑔(𝑥)| ≤ ∫  

∞

−
1
3

  
𝑞(𝑦)|𝑓 (𝑦)|

|𝑥 −  𝑦|1+𝛼
𝑑𝑦  

≤ 𝑀∫  

1
3

−
1
3

𝑞(𝑦)

|𝑦 +
1
3
 |
1+𝛼  𝑑𝑦 + ∫  

∞

1
3

|𝑓 (𝑦)|

|𝑥 −  𝑦|1+𝛼
 𝑑𝑦  

≤
9𝑀

2
∫  

1
3

−
1
3

| 𝑦 +
1

3
|
1−𝛼

𝑑𝑦 +
1

(
2
3
 )
1+𝛼∫  

∞

1
3

|𝑓 (𝑦)|𝑑𝑦  
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≤
21−𝛼3𝛼𝑀

2 −  𝛼
 +
31+𝛼𝐼

21+𝛼
 
𝐶𝑀

𝛽
  +  𝐶𝐼. 

 In the third inequality we used the estimate 𝑞(𝑦)
9

2
  (𝑦 +

1

3
 )
2
 (𝑦 ∈ ℝ). For 𝑥 ∈  (−

1

3
 , 0) 

the principal value integral in the definition of 𝐴𝑔(𝑥) can be estimated by splitting it into 

two parts. By Taylor’s expansion of 𝑔, for 𝑦 ∈  (−∞,
1

3
 ] we have   

|𝑔(𝑥) −  𝑔(𝑦) − (𝑦 −  𝑥)𝑔′ (𝑥)|  =     |∫  
𝑦

𝑥

 𝑔′′(𝑧)(𝑥 −  𝑧)𝑑𝑧|  

≤ (ess sup  |𝑔′′(𝑧)|) |∫  
𝑦

𝑥

 (𝑥 −  𝑧)𝑑𝑧| 

𝐶𝑀(𝑥 −  𝑦)2

2
 .  

Hence,       

|pv∫  
𝑥+
1
3

𝑥−
1
3

𝑔(𝑥) −  𝑔(𝑦)

|𝑥 −  𝑦|1+𝛼
𝑑𝑦|  = |∫  

𝑥+
1
3

𝑥−
1
3

𝑔(𝑥) −  𝑔(𝑦) − (𝑥 − 𝑦)𝑔′(𝑥)

|𝑥 −  𝑦|1+𝛼
 𝑑𝑦| 

≤
𝐶𝑀

2
 ∫  

𝑥+
1
3

𝑥−
1
3

(𝑥 − 𝑦)2

|𝑥 −  𝑦|1+𝛼
 𝑑𝑦 =

21−𝛼𝐶𝑀

32−𝛼(2 −  𝛼)
≤
𝐶𝑀

2𝛽
 .  

Furthermore,        

|(∫  
𝑥−
1
3

−∞

 + ∫  
∞

𝑥+
1
3

)  
𝑔(𝑥) −  𝑔(𝑦)

|𝑥 −  𝑦|1+𝛼
𝑑𝑦|

≤ (∫  
𝑥−
1
3

−∞

 + ∫  
∞

𝑥+
1
3

)  
1

|𝑥 −  𝑦|1+𝛼
𝑑𝑦 + 31+𝛼∫  

∞

𝑥+
1
3

|𝑓 (𝑦)| 𝑑𝑦  

𝐶𝑀

𝛼
 +  𝐶𝐼.  

We conclude that  

𝑐𝛼
−1  |𝐴𝑔(𝑥)| 

𝐶𝑀

𝛼𝛽
 +  𝐶𝐼, 𝑥 ∈  (−1, 0).                 (122)  

        The main result of [101] is the formula for generalized eigenfunctions for a class of 

operators on (0,∞). The case of the fractional Laplace operator is studied in [101]. In 

particular, the eigenfunction 𝐹𝜆 of 𝐴(0,∞) (defined pointwise, or as an operator on 

𝐿∞(0,∞); see [101] for more details) corresponding to the eigenvalue 𝜆𝛼 (𝜆 >  0) is given 

by 𝐹𝜆(𝑥) =  𝐹(𝜆𝑥) = sin (𝜆𝑥 +
𝛽𝜋

8
 )  −  𝐺(𝜆𝑥) (recall that 𝛽 =  2 −  𝛼), where 𝐺 is a 

completely monotone function. 

𝐺 is the Laplace transform of a positive function 𝛾(𝑠) (𝑠 >  0), given by the formula  
𝛾(𝑠)

=
√2𝛼 sin (

𝛼𝜋
2
 )

2𝜋

𝑠𝛼

1 + 𝑠2𝛼  −  2𝑠𝛼 cos (
𝛼𝜋
2
 )
exp (

1

𝜋
 ∫  

∞

0

1

1 + 𝑟2
𝑙𝑜𝑔  

1 − 𝑟𝛼𝑠𝛼

1 − 𝑟2𝑠2
𝑑𝑟) .   (123)  
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By [101], for 𝑥 >  0 we have  

𝐺(𝑥) ≤ sin (
𝛽𝜋

8
) ≤ 𝐶𝛽,                                               (124) 

 and  

∫  
∞

0

 𝐺(𝑥)𝑑𝑥 = cos (
𝛽𝜋

8
) − √

𝛼

2
 𝐶𝛽.                               (125)  

Note that the exponent in (123) is negative. Furthermore, for 𝛼 ∈  (0, 1] we have  

1 + 𝑠2𝛼  −  2𝑠𝛼 cos (
𝛼𝜋

2
) ≥ (sin (

𝛼𝜋

2
))

2

≥ 𝛼2,  

while for 𝛼 ∈  (1, 2), the left-hand side is not less than one. Hence, for all 𝛼 ∈  (0, 2], 

 1 +  𝑠2𝛼  − 2𝑠𝛼 cos (
𝛼𝜋

2
) ≥ min( 𝛼2, 1) ≥

𝛼2

4
 .  

Finally, sin (
𝛼𝜋

2
 )  𝛼(2 −  𝛼)  =  𝛼𝛽. Therefore, 

 𝛾(𝑠) ≤
2√2𝛼𝛽

𝛼𝜋
 𝑠𝛼 .                                             (126) 

 By direct integration, we find that for 𝑥 >  0,  

𝐺(𝑥) = ∫  
∞

0

 𝑒−𝑥𝑠𝛾(𝑠)𝑑𝑠 ≤
2√2𝛼𝛽𝛤(1 +  𝛼)

𝛼𝜋
 𝑥−1−𝛼 ≤

𝐶𝛽

√𝛼
 𝑥−1−𝛼 .      (127) 

 Furthermore, −𝐺′ and 𝐺′′ are the Laplace transforms of 𝑠𝛾(𝑠) and 𝑠2𝛾(𝑠) respectively. 

Hence, (126) gives  

−𝐺′ (𝑥) ≤
𝐶𝛽

√𝛼
  𝑥−2−𝛼 , 𝐺′′(𝑥) ≤

𝐶𝛽

√𝛼
 𝑥−3−𝛼                            (128)  

for 𝑥 >  0. For simplicity, we let 𝐹(𝑥)  =  0 and 𝐺(𝑥)  =  0 for 𝑥 ≤  0.  
 

 
Fig. (2)[97]: Plot of the approximation �̃�𝑛(𝑥) (solid line), and the shifted eigenfunctions 

𝐹𝜇𝑛 (1 +  𝑥) (dashed line) and 𝐹𝜇𝑛  (1 −  𝑥) (dotted line), for 𝛼 =
1

5
 and (a) 𝑛 =  1; (b) 

𝑛 =  2; (c) 𝑛 =  3; (d) 𝑛 =  4.  

        Let 𝑛 be a fixed positive integer and 𝜇𝑛  =
𝑛𝜋

2
 −

𝛽𝜋

8
 . Our goal is to show that 𝜇𝑛

𝛼 is 

close to 𝜆𝑛. Note that 𝜇𝑛 ≥
𝜋

4
 and 

𝑛𝜋

4
 μn 

𝑛𝜋

2
 .  
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       We construct approximations �̃�𝑛 to eigenfunctions 𝜑𝑛 by combining shifted 

eigenfunctions for half-line, 𝐹𝜇𝑛 (1 +  𝑥) and 𝐹𝜇𝑛 (1 −  𝑥), and using the auxiliary function 

𝑞 given above in (121) to join them in a sufficiently smooth way. We let (see Fig. (2))  

�̃�𝑛(𝑥)  =  𝑞(−𝑥)𝐹𝜇𝑛  (1 +  𝑥)  − (−1)
𝑛𝑞(𝑥)𝐹𝜇𝑛 (1 −  𝑥), 𝑥 ∈ ℝ.          (129)  

Note that �̃�𝑛(𝑥)  =  0 for 𝑥 /∈  (−1, 1). Suppose that n is odd, 𝑛 =  2𝑚 +  1. Then �̃�𝑛 is 

an even function. Furthermore,  

sin (𝜇𝑛(1 −  𝑥) +
𝛽𝜋

8
)  = sin (

𝑛𝜋

2
 −
𝜇𝑛
𝑥
) =  (−1)𝑚 cos(𝜇𝑛𝑥) 

= sin (
𝑛𝜋

2
 + 𝜇𝑛𝑥) = sin (𝜇𝑛(1 +  𝑥) +

𝛽𝜋

8
) .  

Recall that 𝐹𝜆(𝑥) = sin (𝜆𝑥 +
𝛽𝜋

8
 )  −  𝐺(𝜆𝑥). Hence, for 𝑥 ∈  (−1, 1),  

�̃�𝑛(𝑥)  =  𝑞(−𝑥)𝐹𝜇𝑛 (1 +  𝑥)  +  𝑞(𝑥)𝐹𝜇𝑛  (1 −  𝑥)  

= (−1)𝑚( 𝑞(−𝑥) +  𝑞(𝑥)) cos(𝜇𝑛𝑥) +  𝑞(−𝑥)𝐺( 𝜇𝑛(1 +  𝑥)) +  𝑞(𝑥)𝐺( 𝜇𝑛(1 −  𝑥)) 

= (−1)𝑚 cos (𝜇𝑛𝑥)  +  𝑞(−𝑥)𝐺( 𝜇𝑛(1 +  𝑥)) +  𝑞(𝑥)𝐺( 𝜇𝑛(1 −  𝑥))  . (130)  
In a similar manner, when n is even, n = 2m, then for x ∈ (−1, 1),  

�̃�𝑛(𝑥)  =  (−1)
𝑚 sin (𝜇𝑛𝑥)  +  𝑞(−𝑥)𝐺(𝜇𝑛(1 +  𝑥)) 

−  𝑞(𝑥)𝐺(𝜇𝑛(1 −  𝑥)) .                                                                          (131)  
It follows that away from the boundary of 𝐷 =  (−1, 1), �̃�𝑛 is close to 

±cos (𝜇𝑛𝑥) or ±sin (𝜇𝑛)𝑥, and it converges to zero near ±1.  
Lemma (2.2.1)[97]: We have 

 ‖𝐴𝐷�̃�𝑛  −  𝜇𝑛
𝛼�̃�𝑛‖2 ≤

𝐶𝛽

√𝛼

1

𝑛
 .                                    (132)  

Proof: Note that for all x ∈ R we have (see Fig. (2))  

�̃�𝑛(𝑥)  − 𝐹𝜇𝑛  (1 +  𝑥)  = ( 𝑞(−𝑥) −  1 ) 𝐹𝜇𝑛  (1 +  𝑥)  −  (−1)
𝑛𝑞(𝑥)𝐹𝜇𝑛 (1 −  𝑥)  

= −𝑞(𝑥) ( 𝐹𝜇𝑛  (1 +  𝑥) + (−1)
𝑛𝐹𝜇𝑛  (1 −  𝑥)) .  

Observe that  

sin (𝜇𝑛(1 +  𝑥) +
𝛽𝜋

8
) + (−1)𝑛 sin (𝜇𝑛(1 −  𝑥) +

𝛽𝜋

8
) 

= sin (
𝑛𝜋

2
 +  𝜇𝑛𝑥 ) + (−1)𝑛 sin (

𝑛𝜋

2
 − 𝜇𝑛𝑥 ) =  0.  

Since 𝐹𝜆(𝑥) = sin (𝜆𝑥 +
𝛽𝜋

8
 ) 1(0,∞)(𝑥)  −  𝐺(𝜆𝑥)(𝑥 ∈ ℝ), it follows that for all 𝑥 ∈ ℝ 

we have  

�̃�𝑛(𝑥)  − 𝐹𝜇𝑛 (1 +  𝑥)  =  𝑞(𝑥) ( 𝐺( 𝜇𝑛(1 +  𝑥)) + (−1)
𝑛𝐺( 𝜇𝑛(1 −  𝑥)))  

−sin (𝜇𝑛(1 +  𝑥) +
𝛽𝜋

8
) 1[1,∞)(𝑥).   

For 𝑥 ∈ ℝ, denote (see Fig. 1)  

ℎ(𝑥) = sin (𝜇𝑛(1 +  𝑥) +
𝛽𝜋

8
) 1[1,∞)(𝑥),  

𝑓 (𝑥) =  𝐺( 𝜇𝑛(1 +  𝑥)) + (−1)
𝑛𝐺( 𝜇𝑛(1 −  𝑥)) , 

 𝑔(𝑥)  =  𝑞(𝑥)𝑓 (𝑥).  
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It follows that  �̃�𝑛(𝑥)  =  𝐹𝜇𝑛 (1 +  𝑥)  +  𝑔(𝑥)  −  ℎ(𝑥)(𝑥 ∈ ℝ). For 𝑥 ∈  (−1, 0), we 

have 

𝐴𝐹𝜇𝑛 (1 +  𝑥)  − 𝜇𝑛
𝛼𝐹𝜇𝑛 (1 +  𝑥)  =  0 and ℎ(𝑥)  =  0. Hence,   

|𝐴�̃�𝑛(𝑥) − 𝜇𝑛
𝛼�̃�𝑛(𝑥)| ≤  |𝐴𝑔(𝑥)|  + |𝜇𝑛

𝛼𝑔(𝑥)|  + |𝐴ℎ(𝑥)|, 𝑥 ∈  (−1, 0). (133)  
We will now estimate each summand on the right-hand side.  

        Recall that 𝐺 is completely monotone, so that 𝐺,−𝐺 and 𝐺 are positive, convex 

functions on (0,∞). This fact and estimates (125), (127) and (128) give  

sup
𝑥∈[−

1
3
 ,
1
3
 ]

   |𝑓 (𝑥)| ≤ 𝐺 (
2

3
 𝜇𝑛) +  𝐺 (

4

3
 𝜇𝑛) ≤

𝐶𝛽

√𝛼
 𝜇𝑛
−1−𝛼 ,  

sup
𝑥∈[−

1
3
 ,
1
3
 ]

   |𝑓′(𝑥)| ≤ −𝜇𝑛𝐺
′  (
2

3
 𝜇𝑛) − 𝜇𝑛 𝐺

′  (
4

3
 𝜇𝑛) ≤

𝐶𝛽

√𝛼
 𝜇𝑛
−1−𝛼 , 

sup
𝑥∈[−

1
3
 ,
1
3
 ]

   |𝑓′′ (𝑥)| ≤ −𝜇𝑛
2𝐺′′  (

2

3
 𝜇𝑛) − 𝜇𝑛

2  𝐺′′  (
4

3
 𝜇𝑛) ≤

𝐶𝛽

√𝛼
 𝜇𝑛
−1−𝛼 , 

∫  
∞

0

 |𝑓 (𝑥)| 𝑑𝑥∫  
∞

0

 𝐺𝜇𝑛 (1 +  𝑥)𝑑𝑥 + ∫  
1

0

 𝐺𝜇𝑛  (1 −  𝑥)𝑑𝑥  

=
1

𝜇𝑛
∫  
∞

0

 𝐺(𝑦)𝑑𝑦 ≤
𝐶𝛽

𝜇𝑛
 .                                    (134) 

By (122) and (120), 

|𝐴𝑔(𝑥)| ≤
𝐶𝛽

√𝛼
 𝜇𝑛
−1−𝛼  +  𝐶𝛼𝛽2𝜇𝑛

−1 , 𝑥 ∈  (−1, 0).          (135) 

For the second term in (133), we have |𝑔(𝑥)|  =  0 for 𝑥 ∈  (−1,−
1

3
 ). Furthermore, since 

𝑞(𝑥) ≤
1

2
  for 𝑥 <  0, the estimate (134) gives   

|𝜇𝑛
𝛼𝑔(𝑥)|  =  𝜇𝑛

𝛼𝑞(𝑥)| 𝑓 (𝑥)| ≤ |
𝜇𝑛
𝛼|𝑓 (𝑥)|

2
| ≤

𝐶𝛽

√𝛼
 𝜇𝑛
−1 , 𝑥 ∈  −1 3 , 0 . (136) 

Finally, for the third term in (133), we use the following estimate: if u is a decreasing 

differentiable function such that lim
𝑧→∞

  𝑢(𝑧)  =  0, then, by integration by parts, for any 

𝑎, 𝜗 ∈ ℝ and 𝜆 >  0 we have      

|∫  
∞

𝑎

𝑢(𝑧) sin(𝜆𝑧 +  𝜗) 𝑑𝑧|       =      |
1

𝜆
 ∫  

∞

𝑎

 𝑢(𝑧) cos(𝜆𝑎 +  𝜗) – cos(𝜆𝑧 +  𝜗) 𝑑𝑧|      

≤
2

𝜆
 ∫  

∞

𝑎

  |𝑢′(𝑧)| 𝑑𝑧 =
2𝑢(𝑎)

𝜆
 .  

It follows that for all 𝑥 <  0, we have   

|𝐴ℎ(𝑥)|  =  |𝑐𝛼∫  
∞

1

sin (𝜇𝑛(1 +  𝑦) +
𝛽𝜋
8
 )

|𝑥 −  𝑦|1+𝛼
 𝑑𝑦| ≤ |

2𝑐𝛼
𝜇𝑛|𝑥 −  1|

1+𝛼
|

≤ 𝛼𝛽𝜇𝑛
−1 .                                                                                                            (137) 

Estimates (135)–(137) applied to (133) yield that   

|𝐴�̃�𝑛𝑛(𝑧)  − 𝜇𝑛
𝛼�̃�𝑛(𝑧)| ≤

𝐶𝛽

√𝛼
 𝜇𝑛
−1 , 𝑧 ∈  (−1, 0).            (138)  
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By symmetry, (138) also holds for z ∈ (0, 1). Formula (132), with 𝐴𝐷�̃�𝑛 understood in the 

pointwise sense, follows. It remains to prove that �̃�𝑛 is in the domain of 𝐴𝐷. To this end, we 

will use the notion of the Green operator 𝐺𝐷  =  𝐴𝐷
−1 . See [99] for formal definition and 

properties of GD. Since 𝐴�̃�𝑛 is bounded on 𝐷, the function �̃�𝑛 − 𝐺𝐷𝐴�̃�𝑛 is a bounded, 

continuous in 𝐷, weakly 𝛼-harmonic function in 𝐷 =  (−1, 1) with zero exterior condition. 

Such a function is necessarily zero (see [57], [100]). It follows that �̃�𝑛  =  𝐺𝐷𝐴�̃�𝑛, and 

hence �̃�𝑛 is in the 𝐿∞(𝐷) domain of 𝐴𝐷. Since convergence in 𝐿∞(𝐷) is stronger than the 

one in 𝐿2(𝐷), the proof is complete.  
Lemma (2.2.2)[97]: We have  

1 −
𝐶𝛽

𝑛
≤ ‖�̃�𝑛‖2 ≤ 1 +

𝐶𝛽

𝑛
 .                            (139)  

In particular, there is an absolute constant 𝐾 such that ‖�̃�𝑛‖2 ≥
1

2
 for 𝑛 ≥  𝐾.  

Proof: By (129), we have (see also (130) and (131))  

�̃�𝑛(𝑥) = sin (𝜇𝑛(1 +  𝑥) +
𝛽𝜋

8
) +  𝑞(−𝑥)𝐺(𝜇𝑛(1 +  𝑥)) 

− (−1)𝑛𝑞(𝑥)𝐺(𝜇𝑛(1 −  𝑥)) .  
Hence,   

            |‖�̃�𝑛‖2  −  1|    

= |∫  
1

−1

  (�̃�𝑛(𝑥))
2
 −
1

2
 𝑑𝑥| ≤ |∫  

1

−1

 ((sin (𝜇𝑛(1 +  𝑥) +
𝛽𝜋

8
))

2

 −
1

2
)  𝑑𝑥 |      

+ 2 |∫  
1

−1

 𝑞(−𝑥)𝐺 (𝜇𝑛(1 +  𝑥))  

− (−1)𝑛𝑞(𝑥)𝐺(𝜇𝑛(1 −  𝑥))(sin (𝜇𝑛(1 +  𝑥) +
𝜋

8
)  𝑑𝑥| 

+∫  
1

−1

 (𝑞(−𝑥)𝐺(𝜇𝑛(1 +  𝑥)) − (−1)
𝑛𝑞(𝑥)𝐺(𝜇𝑛(1 −  𝑥)))

2
 𝑑𝑥.  

We estimate each term on the right-hand side. First, by direct integration,  

|∫  
1

−1

 ((sin (𝜇𝑛(1 +  𝑥) +
𝛽𝜋

8
))

2

 −
1

2
)𝑑𝑥 |  =

1

2
|∫  

1

−1

cos (2𝜇𝑛(1 +  𝑥) +
𝛽𝜋

4
)𝑑𝑥| 

=
1

4𝜇𝑛
 |sin (4𝜇𝑛  +

𝛽𝜋

4
) −  sin 

𝛽𝜋

4
|     𝐶𝛽 𝜇𝑛 .  

By (124) and (125),  

∫  
1

−1

 𝐺(𝜇𝑛(1 +  𝑥))
2
 𝑑𝑥 ≤ 𝐶𝛽∫  

∞

−1

 𝐺(𝜇𝑛(1 +  𝑥)) ≤
𝐶𝛽2

𝜇𝑛
 .  

Hence,  

∫  
1

−1

(𝑞(−𝑥)𝐺(𝜇𝑛(1 +  𝑥)) − (−1)
𝑛𝑞(𝑥)𝐺(𝜇𝑛(1 −  𝑥)))

2
 𝑑𝑥  

2∫  
1 

−1

 𝐺(𝜇𝑛(1 +  𝑥))
2
 𝑑𝑥 +  2∫  

1

−1

 𝐺(𝜇𝑛(1 −  𝑥))
2
 𝑑𝑥 ≤

𝐶𝛽2

𝜇𝑛
 .  

Finally, again by (125),       
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|∫  
1

−1

 𝑞(−𝑥)𝐺(𝜇𝑛(1 +  𝑥) sin (𝜇𝑛(1 +  𝑥) +
𝜋

8
)  𝑑𝑥| ≤

1

𝜇𝑛
∫  
1

−1

 𝐺(𝜇𝑛(1 +  𝑥)𝑑𝑥 ≤
𝐶𝛽

𝜇𝑛
 ,  

and we can replace 𝑞(−𝑥)𝐺(𝜇𝑛(1 +  𝑥)) by 𝑞(𝑥)𝐺(𝜇𝑛(1 −  𝑥)). Formula (139) follows.  

Theorem (2.2.3)[97]: We have  

𝜆𝑛  = (
𝑛𝜋

2
 −
(2 −  𝛼)𝜋

8
)

𝛼

 +  𝑂 (
1

𝑛
) .                               (140)  

More precisely, there are absolute constants 𝐶, 𝐶′ such that      

|𝜆𝑛  − (
𝑛𝜋

2
 −
(2 −  𝛼)𝜋

8
)

𝛼

| ≤  𝐶
(2 −  𝛼)

√𝛼

1

𝑛
 

for 𝑛 ≥ (𝐶′/𝛼)3/(2𝛼).  

        The scaling property of the fractional Laplace operator (−𝑑2/𝑑𝑥2)
𝛼

2 and its translation 

invariance imply that for a similar spectral problem in 𝐷′  =  (𝑎, 𝑏), the corresponding 

eigenvalues 𝜆𝑛
′  satisfy 𝜆𝑛

′  =  ((𝑏 −  𝑎)/2)
−𝛼
𝜆𝑛(𝐷). Hence, one easily finds the asymptotic 

formula for 𝜆𝑛
′ .  

Proof: Since �̃�𝑛  ∈  𝐿
2(𝐷), we have �̃�𝑛  =  ∑  𝑗 𝑎𝑗𝜑𝑗  for some 𝑎𝑗  ∈ ℝ. Moreover,  

 ‖�̃�𝑛‖2
2  =   ∑  𝑗  𝑎𝑗

2 and 𝐴𝐷�̃�𝑛  =   ∑  𝑗 𝜆𝑗  𝑎𝑗𝜑𝑗  . Let 𝜆𝑘(𝑛) be the eigenvalue nearest to 𝜇𝑛
𝛼 . 

Then  

‖𝐴𝐷�̃�𝑛  −  𝜇𝑛
𝛼�̃�𝑛‖2

2  =∑ 

∞

𝑗=1

 (𝜆𝑗  −  𝜇𝑛
𝛼 )

2
 𝑎𝑗
2  (𝜆𝑘(𝑛)  −  𝜇𝑛

𝛼)
2
∑ 

∞

𝑗=1

𝑎𝑗
2  

=   (𝜆𝑘(𝑛)  − 𝜇𝑛
𝛼)

2
 ‖�̃�𝑛‖2

2.  

Let 𝐾 be the constant defined in Lemma (2.2.2). By (132) and Lemma (2.2.2), it follows 

that for 𝑛 ≥ 𝐾,   

|𝜆𝑘(𝑛)  −  𝜇𝑛
𝛼| ≤  

𝐶𝛽

√𝛼

1

𝑛
 .                                   (141)  

This will enable us to derive the two-term asymptotic formula for 𝜆𝑗  .  

       Denote 𝜀 =
1

2

𝛽𝜋

8
 . We claim that for each α ∈ (0, 2), there is a positive integer 𝐿𝛼 such 

that 𝜆𝑘(𝑛)  ∈  ((𝜇𝑛  −  𝜀)
𝛼, (𝜇𝑛  +  𝜀)

𝛼) for 𝑛 ≥ 𝐿𝛼 . Namely, we take  

𝐿𝛼  =  ⌈(
𝐴𝛽

𝛼32𝜀
)
1𝛼

 ⌉ =  ⌈(
𝐶𝐴

𝛼32
)
1𝛼

⌉,                               (142)  

with the constant A large enough. In particular, we take 𝐴 ≥ 234𝐾2𝜋/16, so that 𝐿𝛼 ≥ 𝐾 for 

all 𝛼 ∈  (0, 2). By (141) and (142), for 𝑛 ≥ 𝐿𝛼 we have   

|𝜆𝑘(𝑛)  −  𝜇𝑛
𝛼| ≤

𝐶𝛽

√𝛼

1

𝑛
≤
𝐶𝛽

√𝛼

1

𝑛
·
𝛼32𝜀𝑛𝛼

𝐴𝛽
 =

𝐶𝛼𝜀𝑛𝛼−1

𝐴
 .              (143)  

On the other hand, we have 
𝑛𝜋

8
 𝜇𝑛  −  𝜀 𝜇𝑛  +  𝜀 ≤

𝑛𝜋

2
 . Hence, by the mean value theorem,   

 |(𝜇𝑛  ±  𝜀)
𝛼  −  𝜇𝑛

𝛼| ≥  (𝛼𝜀min(𝜇𝑛  −  𝜀)
𝛼−1 , (𝜇𝑛  +  𝜀)

𝛼−1)

≥ 𝛼𝜀𝑛𝛼−1min ((
𝜋

7
)
𝛼−1

 , (
𝜋

2
)
𝛼−1

) 𝐶𝛼𝜀𝑛𝛼−1.                                               (144) 

If 𝐴 is large enough, then (143) and (144) give 𝜆𝑘(𝑛)  ∈  ((𝜇𝑛  −  𝜀)
𝛼 , (𝜇𝑛 +  𝜀)𝛼).  
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        This proves our claim. The intervals ((𝜇𝑛  −  𝜀)
𝛼, (𝜇𝑛  +  𝜀)

𝛼) are mutually disjoint. 

Thus, 𝜆𝑘(𝑛) for 𝑛 ≥ 𝐿𝛼 are all distinct. We claim that there are strictly less than 𝐿𝛼 

eigenvalues not included in the above class. As in [49], the key step will be the trace 

estimate.  

         Let 𝐽 be the set of those 𝑗 >  0 for which 𝑗 ≠  𝑘(𝑛) for all 𝑛 ≥ 𝐿𝛼 . We need to show 

that #𝐽 < 𝐿𝛼 . Denote by 𝑝𝑡 (𝑥 −  𝑦) and 𝑝𝑡
𝐷 (𝑥, 𝑦) the heat kernels for 𝐴 and 𝐴𝐷 

respectively; we have �̂�𝑡 (𝜉 ) = exp(−𝑡 |𝜉
′|𝛼). For 𝑡 >  0, we have (see e.g. [52], [82])  

∑ 

∞

𝑗=1

𝑒−𝜆𝑗 𝑡  =  ∫  
𝐷

∑ 

∞

𝑗=1

 𝑒−𝜆𝑗 𝑡   (𝜑𝑗(𝑥))
2
 𝑑𝑥 =  ∫  

𝐷

 𝑝𝑡
𝐷  (𝑥, 𝑥)𝑑𝑥  

≤ ∫  
𝐷

 𝑝𝑡(0)𝑑𝑥 =  2𝑝𝑡(0) =
2

𝜋
 ∫  

∞

0

 𝑒−𝑡𝑠
𝛼
𝑑𝑠.  

In the last step, Fourier inversion formula was used. We find that  

𝜋

2
 ∑  

 𝑗∈𝐽

𝑒−𝜆𝑗 𝑡  =
𝜋

2
∑ 

∞

𝑗=1

 𝑒−𝜆𝑗 𝑡  −
𝜋

2
 ∑  

∞

𝑛=𝐿𝛼

 𝑒−𝜆𝑘(𝑛)𝑡

≤ ∫  
∞

0

𝑒−𝑡𝑠
𝛼
 𝑑𝑠 − ∑  

∞

𝑛=𝐿𝛼

𝜋

2
 𝑒−𝑡(𝜇𝑛+𝜀)

𝛼
 .  

The series on the right-hand side is an upper Riemann sum for the integral of 𝑒−𝑡𝑠
𝛼
 over 

(𝜇𝐿𝛼  +  𝜀,∞). Hence,  

𝜋

2
∑ 

 𝑗∈𝐽

 𝑒−𝜆𝑗 𝑡 ≤ ∫  
𝜇𝐿𝛼  +𝜀

0

 𝑒−𝑡𝑠
𝛼
 𝑑𝑠 ≤ 𝜇𝐿𝛼  +  𝜀.  

As 𝑡 ↘ 0, the left-hand side converges to (π/2)#J . It follows that  

#𝐽 ≤
2

𝜋
 (𝜇𝐿𝛼  +  𝜀) =  𝐿𝛼  −

𝛽

4
 +
2𝜀

𝜋
 .  

Since 𝜀 <
𝛽𝜋

8
 , the right-hand side is less than 𝐿𝛼 , and our claim is proved.  

         By [66], [69], for 𝑗 < 𝐿𝛼 we have  𝜆𝑗 ≤ (𝑗𝜋/2)
𝛼 ≤ ((𝐿𝛼  −  1)𝜋/2)

𝛼
.on the other 

hand, 𝜆𝑘(𝑛) ≥ (𝜇𝑛 − 𝜀)
𝛼 > ((𝐿𝛼  −  1)𝜋/2)

𝛼
 for 𝑛 ≥ 𝐿𝛼 . It follows that 𝐽 contains 

{1, 2, . . . , 𝐿𝛼  −  1}. But since #𝐽 ≤ 𝐿𝛼  −  1, we must have 𝐽 =  {1, 2, . . . , 𝐿𝛼  −  1}. We 

conclude that 𝑘(𝑛)  =  𝑛 for all 𝑛 ≥ 𝐿𝛼 . Theorem (2.2.3) follows now from (141).  

We study three additional properties of 𝜑𝑛 and 𝜆𝑛: the 𝐿2(𝐷) estimates of 𝜑𝑛  −  �̃�𝑛, 

the 𝐿∞(𝐷) bound for 𝜑𝑛, and simplicity of 𝜆𝑛. This part is modeled after [49].  

Proposition (2.2.4)[97]: (𝐶𝑓. Lemma 3 and Corollary 4 in [49].) We can choose the sign of 

the eigenfunctions 𝜑𝑛 in such a way that there are constants 𝐶, 𝐶 with the following property: 

for 𝑛 (𝐶/𝛼)3/(2𝛼),  

‖�̃�𝑛  −  𝜑𝑛‖2 ≤
𝐶′(2 −  𝛼)

𝑛
    𝑤ℎ𝑒𝑛  𝛼 ≥ 1, 

‖�̃�𝑛  −  𝜑𝑛‖2 ≤
𝐶′(2 −  𝛼)

𝛼
3
2𝑛𝛼

    𝑤ℎ𝑒𝑛  𝛼 < 1. 

In particular, if 𝜑𝑛
∗(𝑥)  =  (−1)(𝑛−1)/2 cos (𝜇𝑛𝑥) for odd n and 𝜑𝑛

∗(𝑥)  =

 (−1)𝑛/2 sin (𝜇𝑛𝑥) for even n, then there is a constant 𝐶′′ such that for 𝑛 ≥ (𝐶/𝛼)3/(2𝛼),  
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‖𝜑𝑛
∗  −  𝜑𝑛‖2 ≤

𝐶′′(2 −  𝛼)

√𝑛
   𝑤ℎ𝑒𝑛 𝛼 ≥

1

2
 , 

‖𝜑𝑛
∗  −  𝜑𝑛‖2 ≤

𝐶′(2 −  𝛼)

𝛼3/2𝑛𝛼
    𝑤ℎ𝑒𝑛 𝛼 <

1

2
 . 

Proof. Fix 𝑛 ≥ 𝐿𝛼  +  1 and 𝜀 =
1

2

𝛽𝜋

8
, �̃�𝑛  =  ∑  𝑗 𝑎𝑗𝜑𝑗  . By changing the sign of 𝜑𝑛 if 

necessary, we may assume that 𝑎𝑛  >  0. Recall that 𝐿𝛼 was chosen in such a way that 

|𝜆𝑗  −  𝜇𝑛
𝛼| ≥ 𝐶𝛼𝑛𝛼−1 for 𝑗 =  𝑛 (see (144) and following discussion). Hence,  

‖𝐴𝐷�̃�𝑛  −  𝜇𝑛
𝛼�̃�𝑛‖2

2  = ∑ 

∞

𝑗=1

  (𝜆𝑗  −  𝜇𝑛
𝛼)

2
 𝑎𝑗
2 ≥ 𝐶(𝛼𝑛𝛼−1)2  ∑  

𝑗 ≠𝑛

 𝑎𝑗
2 .  

By (132), we obtain that   

‖�̃�𝑛  −  𝑎𝑛𝜑𝑛‖2
2˜ = ∑  

𝑗 ≠𝑛

 𝑎𝑗
2 ≤ 𝐶 (

𝛽

√𝛼

1

𝑛
)
2 1

(𝛼𝑛𝛼−1)2
 =  𝐶 (

𝛽

𝛼3/2𝑛𝛼
)
2

 . (145) 

Since ‖𝜑𝑛‖2  =  1, we have 

 ‖�̃�𝑛  − ‖�̃�𝑛‖2𝜑𝑛 ‖2  ‖�̃�𝑛  −  𝑎𝑛𝜑𝑛‖2  +  |𝑎𝑛  − ‖�̃�𝑛‖2|  .  
Furthermore,   

 |𝑎𝑛  − ‖�̃�𝑛‖2|
2 ≤ (‖�̃�𝑛‖2 − 𝑎𝑛)(‖�̃�𝑛‖2 + 𝑎𝑛)‖�̃�𝑛‖2

2 − 𝑎𝑛
2  ‖�̃�𝑛  − 𝑎𝑛𝜑𝑛 ‖2

2. 
Hence, by (145),  

‖�̃�𝑛  − ‖�̃�𝑛‖2𝜑𝑛 ‖2 ≤ 2 ‖�̃�𝑛  − 𝑎𝑛𝜑𝑛‖2 ≤
𝐶𝛽

𝛼3/2𝑛𝛼
 .             (146)  

𝐹inally, by (139) and (146), 

‖�̃�𝑛  − 𝜑𝑛 ‖2 ≤ ‖�̃�𝑛  − ‖�̃�𝑛‖2𝜑𝑛 ‖22 + |‖�̃�𝑛‖2  −  1| ≤
2𝐶𝛽

𝛼3/2𝑛𝛼
 +
𝐶𝛽

𝑛
 .  

The first part of the proposition is proved. The other part is a simple consequence of the first 

one and the definition of �̃�𝑛. Indeed, by (130) and (131),  

‖�̃�𝑛  −  𝜑𝑛
∗‖2 ≤ (∫  

1

−1

 (𝐺(𝜇𝑛(1 +  𝑥)))
2
 𝑑𝑥)

1/2

 + (∫  
1

−1

 (𝐺(𝜇𝑛(1 −  𝑥)))
2
 𝑑𝑥)

1/2

  

=
2

√𝜇𝑛
 (∫  

2𝜇𝑛

0

 (𝐺(𝑦))
2
 𝑑𝑦)

1/2

≤
𝐶𝛽

√𝑛
; 

 the last step follows by (124), (125) and the inequality 𝜇𝑛 ≥ 𝐶𝑛.  

Proposition (2.2.5)[97]: (𝐶𝑓. Corollary 5 in [49].) If ≥
1

2
 , then the eigenfunctions 𝜑𝑛(𝑥) 

are bounded uniformly in 𝑛 ≥  1 and 𝑥 ∈  𝐷.  
Proof: Let 𝑃𝑡

𝐷  = exp(−𝑡𝐴𝐷) (𝑡 >  0) be the heat semigroup for −𝐴𝐷 (or the transition 

semigroup of the symmetric α-stable process in 𝐷), and let 𝑝𝑡
𝐷  (𝑥, 𝑦) be the corresponding 

heat kernel (or transition density). We have 𝑃𝑡
𝐷 𝜑𝑛(𝑥)  =  𝑒

−𝑡𝜆𝑛𝜑𝑛(𝑥) for 𝑥 ∈  𝐷. It is well 

known that 𝑝𝑡
𝐷 (𝑥, 𝑦) ≤ 𝑝𝑡(𝑦 −  𝑥), where 𝑝𝑡(𝑥) is the heat kernel for −𝐴, �̂�𝑡(𝜉) =

exp(−𝑡|𝜉|𝛼) ; see e.g. [98].  

          By Cauchy–Schwarz inequality and Plancherel’s theorem, we obtain  
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𝑒−𝜆𝑛𝑡  |𝜑𝑛(𝑥)| ≤ |𝑃𝑡
𝐷  (𝜑𝑛  − �̃�𝑛)(𝑥)|  +  |𝑃𝑡

𝐷  �̃�𝑛(𝑥)|

≤  ∫  
𝐷

 𝑝𝑡(𝑥 −  𝑦)|𝜑𝑛(𝑦) − �̃�𝑛(𝑦)| 𝑑𝑦 +  ‖𝑃𝑡
𝐷  �̃�𝑛‖∞

≤ (∫  
∞

−∞

(𝑝𝑡(𝑥 −  𝑦))
2
 𝑑𝑦)

1/2

 ‖𝜑𝑛  −  �̃�𝑛‖2  + ‖𝜑𝑛‖∞  

= (
1

2𝜋
∫  
∞

−∞

 𝑒−2𝑡|𝑧|
𝛼
 𝑑𝑧)

12

 ‖𝜑𝑛  −  �̃�𝑛‖2  + sup
𝑥∈(0,∞)

 |𝐹(𝑥)|  

≤ 2 √ 𝛤 (1 +  1/𝛼)(2𝑡)−1/(2𝛼)‖𝜑𝑛  −  �̃�𝑛‖2  +  2.  

Let 𝑡 =  1/𝜆𝑛. Then 𝑒−𝜆𝑛𝑡  =  1/𝑒 and 𝑡−1/(2𝛼)  =  𝜆𝑛
1/(2𝛼)

 (𝑛𝜋2)1/2. If 𝑛 ≥ 𝐿𝛼  +  1 and 

𝛼 ≥
1

2
 , then ‖𝜑𝑛  −  �̃�𝑛‖2 ≤ 𝐶𝛽/√𝑛, and finally |𝜑𝑛(𝑥)| ≤ 𝐶 (for all 𝑛 ≥ 𝐿𝛼  +  1, 𝑥 ∈

 𝐷). Since 𝜑𝑛  ∈  𝐿
∞(𝐷) also for each 𝑛 ≤ 𝐿𝛼, the proof is complete.  

Proposition (2.2.6)[97]: (Cf. Theorem 6 in [49].) If 𝛼 ≥ 1, then the eigenvalues 𝜆𝑛 are 

simple.  

Proof. Let us write 𝜆𝑛,𝛼 for 𝜆𝑛 in this proof. Since (𝜆𝑛,𝛼)
1/𝛼

 is increasing in 𝛼, we have  

(𝜆𝑛,𝛼)
1/𝛼

≤ (𝜆𝑛,2)
1/2
 =

𝑛𝜋

2
 .  

By Theorem 6 in [49], for 𝑛 ≥ 3 we have  
(𝑛 +  1)𝜋

2
 −
𝜋

8
 −

𝜋

10
 <  𝜆𝑛+1,1 (𝜆𝑛+1,𝛼)

1/𝛼
.  

Therefore, 𝜆𝑛,𝛼  <  𝜆𝑛+1,𝛼, except perhaps 𝑛 =  1 or 𝑛 =  2. But a similar argument works 

also for 𝑛 =  1 and 𝑛 =  2, since by [50] we have  

(𝜆1,𝛼)
1/𝛼
  (𝜆1,2)

1/2
 =

𝜋

2
 <  2 ≤ 𝜆2,1 (𝜆2,𝛼)

1/𝛼
,  

(𝜆2,𝛼)
1/𝛼
 (𝜆2,2)

1/2
 =  𝜋 <  3.83 𝜆3,1 (𝜆3,𝛼)

1/𝛼
.  

The proof is complete. 

         Numerical experiments suggest that 𝜑𝑛 are uniformly bounded also for 𝛼 <
1

2
 . 

Furthermore, it would be interesting to obtain an upper estimate of sup𝑛  
‖𝜑𝑛‖∞, and in particular, to find its behavior when 𝛼 approaches 0. Finally, better bounds 

for 𝜆𝑛 may yield simplicity of eigenvalues also when 𝛼 <  1.  
For 𝛼 =  1, a satisfactory method (an application of Rayleigh–Ritz and Weinstein–

Aronszajn methods) is described in [49]. For general 𝛼, even approximation of 𝜆𝑛 is 

difficult: all known methods converge rather slowly, and thus the computation of 

eigenvalues of very large matrices is required. A version of finite element method for 

obtaining a lower bound for 𝜆𝑛 is described. It shares the main drawbacks of many related 

algorithms: compared to the technique applied in [102], it converges slowly, and it suffers 

large errors as 𝛼 approaches 2. On the other hand, the method presented below gives 

mathematically correct lower bounds, and there is no error estimate for the numerical 

scheme of [102]. A somewhat similar method for the upper bound for 𝜆1 is given. It gives 

satisfactory results for large 𝛼, but deteriorates as 𝛼 gets close to 0.  

         It should be pointed out that in some cases (e.g. α close to 2 or n large), the bound 
1

2
 (
𝑛𝜋

2
 )
𝛼
≤ 𝜆𝑛 ≤ (

𝑛𝜋

2
 )
𝛼

 of [65], [69] is sharper than the estimates obtained below, unless 

extremely large matrices are used. Also, good numerical estimates of 𝜆𝑛 are available for 



 

 

72 
 

𝛼 =  1 due to [49]. By the monotonicity of (𝜆𝑛)
1/𝛼 in 𝛼, this gives a lower bound for 𝜆𝑛 

when 𝛼 ∈  (1, 2) and an upper bound for 𝛼 ∈  (0, 1). Finally, a good estimate for 𝜆1 can be 

found in [50]. For a comparison of the above, see Table (2).  

The method for the lower bound works for the fractional Laplace operator in an 

arbitrary bounded open set 𝐷 ⊆  ℝ𝑑  , for any 𝑑 ≥  1; in fact, it can be easily extended to 

more general pseudo-differential operators (or Lévy processes). We use the following 

monotonicity property: the eigenvalues 𝜆𝑛 decrease when the kernel of 𝐴, i.e. the function 

𝑐𝑑,𝛼|𝑥 − 𝑦|
−𝑑−𝛼, is replaced by a smaller one. This fact is a simple consequence of the 

Rayleigh– Ritz variational formula. We cover the set 𝐷 with small cubes 𝐼𝑘  , and replace the 

kernel of A by a smaller kernel, which is constant whenever 𝑥 ∈  𝐼𝑘 and 𝑦 ∈  𝐼𝑙 . The 

eigenvalues of the integral operator corresponding to the latter kernel can be easily 

expressed in terms of eigenvalues of a certain matrix.  

         Fix 𝜀 >  0 and let {𝐼𝑘: 𝑘 ∈  ℤ
𝑑  } be the partition of ℝ𝑑 into cubes 𝐼𝑘  =

 ∏  𝑑
𝑗=1 [𝑘𝑗 𝜀, (𝑘𝑗  +  1)𝜀], 𝑘 ∈  ℤ

𝑑  . Let 𝐾𝜀  ⊆  ℤ
𝑑 be the set of those 𝑘 ∈  ℤ𝑑  for which 𝐼𝑘 

intersects 𝐷, and let 𝐷𝜀 be the interior of  ⋃  𝑘∈𝐾𝜀 𝐼𝑘  . Note that 𝐷 ⊆  𝐷𝜀 .  

         The definition of 𝐴 =  (−∆)𝛼/2 in higher dimension is similar to (119): for smooth 

bounded functions we have  

𝐴𝑓 (𝑥) =  𝑐𝑑,𝛼 pv∫  
ℝ𝑑

𝑓 (𝑥) −  𝑓 (𝑦)

|𝑥 −  𝑦|𝑑+𝛼
𝑑𝑦, 𝑥 ∈  ℝ𝑑  ,  

where 𝑐𝑑,𝛼  =  2𝛼𝛤 ((𝑑 +  𝛼)/2)/ (𝜋
𝑑/2 |𝛤 (−

𝛼

2
)|). Fractional Laplace operator in 𝐷 

with zero exterior condition, denoted 𝐴𝐷, is defined as in dimension one. Below we denote 

by 𝜆𝑛 the eigenvalues of 𝐴𝐷. By domain monotonicity of 𝜆𝑛, the eigenvalues for 𝐷 are not 

less than the eigenvalues of its superset 𝐷𝜀. For notational convenience, we assume that 

𝐷 =  𝐷𝜀.  
       The Dirichlet form 𝐸(𝑓, 𝑓 ) corresponding to 𝐴𝐷 is given by  

𝐸(𝑓, 𝑓 ) =
𝑐𝑑,𝛼
2
 ∫  
ℝ𝑑
∫  
ℝ𝑑

(𝑓 (𝑥) −  𝑓 (𝑦))
2

|𝑥 −  𝑦|𝑑+𝛼
 𝑑𝑥𝑑𝑦, 𝑓 ∈  𝐿2(𝐷).  

As usual, 𝑓 ∈  𝐿2(𝐷) is extended to ℝ𝑑 so that 𝑓 (𝑥)  =  0 for 𝑥 ∈  ℝ𝑑  \ 𝐷. By Rayleigh–

Ritz variational principle,  

𝜆𝑛  = inf{𝑠𝑢𝑝{ℰ𝜀(𝑓, 𝑓 ): 𝑓 ∈  𝑈, ‖𝑓 ‖2  =  1} : 𝑈 < 𝐿
2(𝐷), 𝑑𝑖𝑚  𝑈 = 𝑛}. 

where 𝑈 < 𝐿2(𝐷) means that 𝑈 is a linear subspace of 𝐿2(𝐷). For 𝑘 ∈  ℤ𝑑  , we denote 

𝜚(𝑘)  = √∑ 

𝑑

𝑗=1

(|𝑘𝑗| +  1)
2
. 

Table (2)[97]: Comparison of bounds and approximations to 𝜆𝑛. Each cell contains six numbers: 

lower bound 𝜆𝑛,𝜀 with 𝜀 =
1

2500
 , the best lower bound known before, approximation 

(
𝑛𝜋

2
−

(2−𝛼)𝜋

8
 )
𝛼

, numerical approximation of [102], upper bound 𝜆1,𝜀
∗ ,the best upper bound known 

before. The better estimates are underlined. 
𝛼 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7 𝜆8 𝜆9 𝜆10 

0.01 0.9966 

0.99431 

0.9976 

1.0086 

0.50572 

1.0086 

1.0137 

0.50782 

1.0138 

1.0171 

0.50922 

1.0172 

1.0196 

0.51042 

1.0198 

1.0217 

0.51132 

1.0218 

1.0234 

0.51212 

1.0235 

1.0248 

0.51282 

1.0250 

1.0261 

0.51342 

1.0263 

1.0273 

0.51392 

1.0274 
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0.99664 

13.5210 

0.99741 

1.00874 

n/a 

1.01023 

1.01374 

n/a 

1.01483 

1.01724 

n/a 

1.01793 

1.01974 

n/a 

1.02033 

1.02184 

n/a 

1.02233 

1.02354 

n/a 

1.02393 

1.02504 

n/a 

1.02543 

1.02634 

n/a 

1.02663 

1.02744 

n/a 

1.02773 

 

0.1 

0.9724 

0.95131 

0.9809 

0.97264 

1.8351 

0.97861 

1.0919 

0.56062 

1.0913 

1.09224 
n/a 

1.10673 

1.1469 

0.58382 

1.1477 

1.14734 
n/a 

1.15753 

1.1863 

0.60082 

1.1867 

1.18684 
n/a 

1.19413 

1.2159 

0.61442 

1.2167 

1.21654 
n/a 

1.22263 

1.2405 

0.62572 

1.2412 

1.24134 
n/a 

1.24623 

1.2611 

0.63542 

1.2620 

1.26204 
n/a 

1.26643 

1.2791 

0.64402 

1.2802 

1.28024 
n/a 

1.28403 

1.2950 

0.65162 

1.2962 

1.29624 
n/a 

1.29973 

1.3094 

0.65852 

1.3107 

1.31074 
n/a 

1.31383 

0.2  0.9572 

0.91811 

0.9712 

0.95754 

1.2376 

0.96751 

1.1960 

0.62862 

1.1948 

1.19654 

n/a 

1.22473 

1.3182 

0.68172 

1.3199 

1.31914 

n/a 

1.33983 

1.4093 

0.72212 

1.40122 

1.41054 

n/a 

1.42583 

1.4801 

0.75502 

1.4819 

1.48174 

n/a 

1.49473 

1.5402 

0.78312 

1.5420 

1.54214 

n/a 

1.55303 

1.5915 

0.80762 

1.5939 

1.59384 

n/a 

1.60363 

1.6373 

0.82942 

1.6399 

1.64004 

n/a 

1.64853 

1.6780 

0.84922 

1.6812 

1.68114 

n\a 

1.68903 

1.7154 

0.86732 
1.7188 
1.71884 
n\a 

1.72603 

0.5 0.9692 
0.88622 
0.9908 
0.97014 
1.0002 
0.98631 

1.5991 
. 088622 
1.5977 
1.60154 

n/a 

1.65983 

2.0247 

1.08542 
2.0306 
2.02884 
n/a 

2.07773 

2.3809 
1.25332 
2.3862 
2.38714 
n/a 

2.42743 

2.6862 
1.40122 
2.6954 
2.69474 
n/a 

2.73143 

2.9618 
1.53492 
2.9725 
2.97284 

n/a 

3.00553 

3.2118 
1.65792 
3.2259 
3.22554 

n/a 

3.25623 

3.4443 
1.77242 
3.4608 
3.46104 

n/a 

3.48922 

3.6608 
1.87992 
3.6808 
3.68054 

n/a 

3.70743 

3.8654 
1.98162 
3.8883 
3.88834 

n/a 

3.91363 

1 1.1516 
1.15773 
1.1781 
1.15774 

2.7343 
2.75473 
2.7489 
2.75454 

4.2756 
4.31683 
4. 3197 
4.31644 

5.8236 
5.89213 
5.8905 
5.89164 

7.3584 
7.46013 
7.4613 
7.45944  

8.8919 
9.03283 
9.0321 
9.03194 

10.4166 
10.60223 
10.6029 
10.60124 

11.9382 
12.17413 
12.1737 
12.17294 

13.4528 
13.74413 
13.7445 
13.74274 

14.9636 
15.31553 
15.315 
15.31404 

Table (2)[97]: (continued) 
α 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7 𝜆8 𝜆9 𝜆10 

 1.1608 
1.15783   

n/a 

2.75483 

n/a 

4.31693 

n/a 

5.89223 

n/a 

7.46023 

n/a 

9.03293 

n/a 

10.60233 

n/a 

12.17423 

n/a 

13.74423 

n/a 

15.31563 

1.5 1.5139 

1.32931 

1.6114 

1.59714 

1.5989 

1.62241 

4.7367 

4.57213 

5.0545 

5.05864 

n/a 

5.56842 

8.8817 

8.96893 

9.5970 

9.59214 

n/a 

10.22972 

13.7668 
14.30243 
15.0171 
15.01544 

n/a 

15.74972 

19.2502 
20.37623 
21.1905 
21.18464 

n/a 
22.01082 

25.2613 
27.14793 
28.0344 
28.02894 

n/a 
28.93392 

31.7334 
34.52223 
35.4886 
35.48004 

n/a 
36.46092 

38.6263 
42.47723 
43.5067 
43.49724 

n/a 
44.54672 

45.8896 
50.95363 
52.0514 
52.03924 

n/a 

53.15502 

53.5266 
59.93753 
61.0922 
61.07864 

n/a 

62.25582 

1.8 1.4483 
1.67651 
2.0555 
2.04814 
2.0501 
2.07771 

5.1149 
6.19653 

7.5003 

7.50074 

n/a 

7.85012 

10.4447 
13.90883 
15.8014 
15.79484 

n/a 

16.28682 

17.2231 
2434963 
26.7233 
26.71564 

n/a 

27.33532 

25.2907 
37.23473 
40.1148 
40.10124 

n/a 

40.84722 

34.5448 
52.53933 
55.8658 
55.84814 

n/a 

56.71382 

44.8969 
70.10023 
73.8905 
73.86614 

n/a 

74.85012 

56.2813 
89.90573 
94.1188 
94.08844 

n/a 

95.18712 

68.6385 
111.84323 
116.4923 
116.45414 

n/a 

117.66642 

81.9210 
135.90603 
140.9605 
140.91454 

n/a 

142.23812 

1.9 1.0353 
1.82731 
2.2477 
2.24324 
2.2455 
2.27481 

3.7704 
6.85733 
8.5942 
8.59264 

n/a 

8.80212 

7.8734 
16.09933 
18.7177 
18.71014 

n/a 

19.01782 

13.1989 
29.07503 
32.4615 
32.45034 

n/a 

32.85052 

19.6379 
45.52213 
49.7204 
49.70214 

n/a 

50.19622 

27.1159 
65.47373 
70.4157 
70.39054 

n/a 

70.97662 

35.5691 
88.76863 
94.4848 
94.45034 

n/a 

95.12932 

44.9481 
115.43333 
121.8754 
121.83134 

n/a 

122.60242 

55.2082 
145.35213 
152.5433 
152.48784 

n/a 

153.35172 

66.3127 
178.54683 
186.4500 
186.38224  

n/a 

187.38224 

1.99 0.1474 
1.98161 
2.4441 
2.44274 
2.4452 
2.45632 

0.5494 
7.51213 
9.7330 
9.72934 

n/a 

9.75732  

1.1671 
18.36423 
21.8288 
21.82004 

n/a 

21.86512 

1.9816 
34.10703 
34.7113 
38.69604 

n/a 

38.75952 

2.9788 
54.54693 
60.3666 
60.34264 

n/a 

60.42672 

4.1482 
79.81633 
86.7839 
86.74954 

n/a 

86.85602 

5.4811 
109.78563 
117.9546 
117.90774 

n/a 

118.03852 

6.9705 
144.55083 
153.8713 
153.81004 

n/a 

153.96702 

8.6101 

184.01443 
194.5275 
194.45004 

n/a 

194.63512   

10.3994 
22.825173 
239.9178 
239.82204 

n/a 

240.03732 

(i) See [50], [65], [102]. (ii) Combination of [49] with monotonicity in 𝛼. 

Hence, when 𝑥 ∈  𝐼𝑘  , 𝑦 ∈  𝐼𝑙 , 𝑘, 𝑙 ∈  ℤ
𝑑 , we have |𝑥 − 𝑦| ≤  𝜀𝜚(𝑘 − 𝑙). We define 

𝜈𝑘  = (𝜚(𝑘))
−𝑑−𝛼

, 𝜈  = ∑  

𝑘∈ℤ𝑑

𝜈𝑘, 
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and 

ℰ𝜀(𝑓, 𝑓 ) =
𝑐𝑑,𝛼𝜀

−𝑑−𝛼

2
∑  

𝑘,𝑙∈ℤ𝑑

𝜈𝑘−𝑙∫  
𝐼𝑘

∫ 
𝐼𝑙

(𝑓 (𝑥) − 𝑓 (𝑦))
2
𝑑𝑥 𝑑𝑦. 

Clearly, ℰ𝜀(𝑓, 𝑓 ) ≤ ℰ(𝑓, 𝑓 ). By Rayleigh–Ritz variational principle, the eigenvalues 𝜆𝑛 are 

bounded below by the sequence 𝜆𝑛,𝜀  of eigenvalues of the operator corresponding to the 

Dirichlet form ℰ𝜀 . Here 𝜆𝑛,𝜀 are defined in the usual way, 

𝜆𝑛,𝜀  = inf{𝑠𝑢𝑝{ℰ𝜀(𝑓, 𝑓 ): 𝑓 ∈  𝑈, ‖𝑓 ‖2  =  1} : 𝑈 < 𝐿
2(𝐷), 𝑑𝑖𝑚𝑈 =  𝑛}. 

        We now express 𝜆𝑛,𝜀  as eigenvalues of a matrix. For 𝑓 ∈  𝐿2(𝐷) and 𝑘 ∈  ℤ𝑑 , let 𝑓𝑘  =

𝜀−𝑑 ∫  
𝐼𝑘
𝑓 (𝑥)𝑑𝑥 be the mean value of 𝑓 on 𝐼𝑘 , and define 𝑓∗ to be equal to 𝑓𝑘 on each 

𝐼𝑘  , 𝑘 ∈  ℤ
𝑑  . Hence 𝑓∗  ∈  𝐿2(𝐷) is the orthogonal projection of f onto the space of functions 

constant on each 𝐼𝑘 , and ∫  
𝐼𝑘
𝑓∗(𝑥) 𝑑𝑥 = ∫  

𝐼𝑘
𝑓 (𝑥)𝑑𝑥. In particular, ‖𝑓 ‖2

2 = ‖𝑓∗‖2
2 +

 ‖𝑓 − 𝑓∗‖2
2.Furthermore, 

ℰ𝜀(𝑓, 𝑓 ) =
𝑐𝑑,𝛼𝜀

−𝑑−𝛼

2
∑  

𝑘,𝑙∈ℤ𝑑

𝜈𝑘−𝑙  ∫  
𝐼𝑘

∫ 
𝐼𝑙

((𝑓 (𝑥))
2
 −  2𝑓 (𝑥)𝑓 (𝑦) + (𝑓 (𝑦))

2
)𝑑𝑥 𝑑𝑦 

= 𝑐𝑑,𝛼𝜀
−𝛼 (𝜈‖𝑓 ‖2

2 − 𝜀𝑑 ∑  

𝑘,𝑙∈ℤ𝑑

𝜈𝑘−𝑙𝑓𝑘𝑓𝑙). 

Since (𝑓∗)𝑘  =  𝑓𝑘 for all 𝑘 ∈  ℤ𝑑  , and ‖𝑓 ‖2
2 − ‖𝑓∗‖2

2 = ‖𝑓 − 𝑓∗‖2
2, we obtain that 

ℰ𝜀(𝑓, 𝑓 ) =  ℰ𝜀(𝑓
∗, 𝑓∗) + 𝑐𝑑,𝛼𝜀

−𝛼𝜈‖𝑓 − 𝑓 ∗‖2
2.                   (147) 

This proves that the two orthogonal subspaces, {𝑓 ∈  𝐿2(𝐷) ∶  𝑓∗  =  0} and {𝑓 ∈
 𝐿2(𝐷): 𝑓∗  =  𝑓 }, are invariant under the action of the operator corresponding to ℰ𝜀 . By 

(147), the former subspace is in fact the eigenspace corresponding to the eigenvalue 𝑐𝑑,𝛼𝜀
−𝛼 . 

The latter one is finite dimensional, and when 𝑓∗  =  𝑓, we have 

𝑓 (𝑥) = ∑  

𝑘∈𝐾𝜀

𝑓𝑘𝟏𝐼𝑘  (𝑥),

ℰ𝜀(𝑓, 𝑓 ) =  𝑐𝑑,𝛼𝜀
𝑑−𝛼 (𝜈 ∑  

𝑘∈𝐾𝜀

𝑓𝑘
2 − ∑  

𝑘,𝑙∈𝐾𝜀

𝜈𝑘−𝑙𝑓𝑘𝑓𝑙).                              (148) 

The normalized indicator functions of 𝐼𝑘  , that is, the functions 𝜀−𝑑/2𝟏𝐼𝑘  , 𝑘 ∈  𝐾𝜀 , form an 

orthonormal basis of the space {𝑓 ∈  𝐿2(𝐷): 𝑓∗  =  𝑓 }. By (148), in this basis, the action 

of ℰ𝜀 is given by the following |𝐾𝜀|  ×  |𝐾𝜀| matrix 𝑉 ∶ if 𝜅 is an enumeration of the elements 

of 𝐾𝜀  (that is, a bijection between {1, 2, . . . , |𝐾𝜀|} and 𝐾𝜀), then 𝑉𝑝,𝑞  =  𝑐𝑑,𝛼𝜀
−𝛼(𝛿𝑝,𝑞𝜈  −

 𝜈𝜅(𝑝)−𝜅(𝑞)). 

         We conclude that the sequence 𝜆𝑛,𝜀  starts with all eigenvalues of the matrix 𝑉 which 

are less than 𝑐𝑑,𝛼𝜀
−𝛼𝜈 (there are at most |𝐾𝜀| of them), and then it is a constant sequence 

𝑐𝑑,𝛼𝜀
−𝛼𝜈. We have thus proved the following result. 

Proposition (2.2.7)[97]: Let 𝐷 ⊆  ℝ𝑑  be an open set in ℝ𝑑 , and let 𝜀 >  0. Let 𝐾𝜀 be the 

set of those 𝑘 ∈  ℤ𝑑 for which 𝐷 ∩ ∏  𝑑
𝑗=1  [𝑘𝑗 𝜀, (𝑘𝑗  +  1)𝜀] is nonempty, and let 𝜅 ∶

 {1, 2, . . . , |𝐾𝜀|} → 𝐾𝜀 be the enumeration of the elements of 𝐾𝜀. Finally, for 𝑘 ∈  ℤ𝑑 let 
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𝜚(𝑘)  = √∑ 

𝑑

𝑗=1

(|𝑘𝑗| +  1)
2
, and 𝜈  = ∑  

𝑘∈ℤ𝑑

(𝜚(𝑘))
−𝑑−𝛼

. 

Define a |𝐾𝜀|  × |𝐾𝜀| matrix 𝑉 with entries 

𝑉𝑝,𝑞  = −
𝑐𝑑,𝛼
𝜀𝛼

𝜚(𝜅(𝑝) − 𝜅(𝑞))
−𝑑−𝛼

, 𝑝, 𝑞 =  1, 2, . . . , |𝐾𝜀|, 𝑝 ≠  𝑞; 

𝑉𝑝,𝑝  =
𝑐𝑑,𝛼
𝜀𝛼

(𝜈 − 𝑑−(𝑑+𝛼)/2), 𝑝 =  1, 2, . . . , |𝐾𝜀|. 

If 𝑛 ≤  |𝐾𝜀|  and 𝑛-𝑡ℎ smallest eigenvalue of 𝑉 does not exceed 𝑐𝑑,𝛼𝜀
−𝛼𝜈 , then let 𝜆𝑛 be 

this eigenvalue. Otherwise, let 𝜆𝑛,𝜀  =  𝑐𝑑,𝛼𝜀
−𝛼𝜈 . Then the eigenvalues 𝜆𝑛 of 𝐴𝐷 satisfy 

𝜆𝑛 ≥ 𝜆𝑛,𝜀 . 
        Note that if 𝜈 is replaced by a smaller number in the definition of 𝑉 , the 

eigenvalues 𝜆𝑛,𝜀 decrease. Hence, when doing numerical computations using Proposition 

(2.2.7), one should approximate 𝜈from below. 

        In the one-dimensional case, we have 𝑐1,𝛼  =  𝑐𝛼, and 𝜈  =  2ζ(1 +  𝛼)  −  1, where 

ζ is the Riemann zeta function. Consider now  =  (−1, 1)  ⊆ ℝ , and 𝜀 =
2

𝑁
 . For 

simplicity, assume that N is an even positive integer. Then 𝐾𝜀  =  {−
𝑁

2
, −

𝑁

2
 +  1, . . . ,

𝑁

2
 −

 1}, so it is natural to choose 𝜅(𝑝) =  𝑝 −
𝑁

2
− 1, 𝑝 ∈  {1, 2, . . . , 𝑁}. Furthermore, V is a 

Toeplitz matrix, that is, 𝑉𝑝,𝑞  =  𝑉𝑝−𝑞 depends only on 𝑝 −  𝑞. In this case we can prove that 

all eigenvalues of the matrix V are less than 𝑐𝛼𝜀
−𝛼𝜈 . Indeed, the symbol of the Toeplitz 

matrix V is given by (we omit some technical details here) 

∑  

∞

𝑘=−∞

𝑉𝑘𝑒
𝑖𝑘𝑥  =

2𝑐𝛼
𝜀𝛼

(ζ(1 + 𝛼) −∑  

∞

𝑘=0

cos(𝑘𝑥)

(1 +  𝑘)1+𝛼
)  

=
2𝑐𝛼
𝜀𝛼

(ζ(1 + 𝛼) − Re(
𝐿𝑖1+𝛼(𝑒

𝑖𝑥 )

𝑒𝑖𝑥
)) 

=
2𝑐𝛼
𝜀𝛼

(ζ(1 + 𝛼) −
1

1 + 𝛼
∫  
∞

0

𝑡𝛼(𝑒𝑡  − cos 𝑥)

𝑒2𝑡  − 2𝑒𝑡 cos  𝑥 +  1
𝑑𝑡). 

The right-hand side is easily checked to be symmetric, 2𝜋-periodic and increasing in 𝑥 ∈
 [0, 𝜋],and so it attains its global maximum for 𝑥 =  𝜋. The symbol of V is therefore 

bounded above by 2𝑐𝛼𝜀
−𝛼(ζ (1 + 𝛼) − 𝐿𝑖1+𝛼(−1)) =  2

1−𝛼𝑐𝛼𝜀
−𝛼ζ(1 + 𝛼) ≤  𝑐𝛼𝜀

−𝛼𝜈 . 
By a general result, the eigenvalues of V are bounded above by the supremum of the symbol. 

It follows that all N eigenvalues 

 

Table (3)[97]: Comparison of estimates of 𝜆𝑛 for a square (−1, 1)2. LB and UB mean lower 

bounds and upper bounds respectively. 

Estimates are given in roman font, best numerical estimates known before are typeset in 

slanted font. 

Better estimates are underlined. 

𝛼  𝜆1 (LB)  𝜆1 (UB) 𝜆2 (LB)  𝜆2 (UB) 
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0.1 1.0308 0.52301 1.04621  1.0880  0.54151  1.08311 

0.2 1.0506 0.54721 1.09461 1.1691 0.58651 1.17311 

0.5 1.1587 0.62661 1.25341 1.4908  0.74521 1.49051 

1  1.3844 0.78531 1.57081 2.1807 1.11071 2.22151 

1.5 1.4135 0.98431 1.96881 2.6029 1.65541 3.31101 

1.8 0.9167 1.12711 2.25441 1.8164 2.10331 4.20681 

1.9  0.5427 1.17921 2.35851 1.0984 2.27811 4.55631 

See [65]. 

Table (4)[97]: Comparison of estimates of 𝜆𝑛 for a unit disk. LB and UB mean lower bounds 

and upper bounds respectively. Estimates are given in roman font, best numerical estimates 

known before are typeset in slanted font. Better estimates are underlined. 

𝛼  𝜆1 (LB)  𝜆1 (UB)  𝜆2 (LB)  𝜆2 (UB) 
0.1 1.0381 1.01571  6.6198  1.06411  1.0953  0.57182 1.16092 

0.2 1.0655  1.03961  3.8878  1.13421  1.1849  0.65412 1.34762 

0.5 1.1986 1.16181  2.5081  1.39431  1.5404  0.97872 2.10792 

1  1.4734  1.57071  2.7588  2.09441  2.3201  1.91582 4.44292 

1.5 1.5387  2.38911 4.0668  3.41311  2.8379 3.75022 9.36482 

1.8 1.0087  3.22101  5.5014  4.74681  2.0045  5.61142 14.64872 

1.9  0.5990  3.58341  6.1369  5.29742  1.2165  6.41822 17.00452 

 

See [50], [65], of V are included in the sequence 𝜆𝑛,𝜀 , as desired. Therefore, we have the 

following specialized version of Proposition (2.2.7) (the case of odd N is very similar). 

Proposition (2.2.8)[97]: Let 𝐷 =  (−1, 1), 𝑁 > 0 and 𝜀 =  2/𝑁. Let V be an 𝑁 ×
 𝑁 Toeplitz matrix with entries 

𝑉𝑝,𝑞  = −
𝑐𝛼
𝜀𝛼

1

(|𝑝 −  𝑞| +  1)1+𝛼
, 𝑝, 𝑞 =  1, 2, . . . , 𝑁, 𝑝 ≠  𝑞; 

𝑉𝑝,𝑝  =
2𝑐𝛼(𝜁 (1 +  𝛼) − 1)

𝜀𝛼
, 𝑝 =  1, 2, . . . , 𝑁. 

Define 𝜆𝑛,𝜀 to be the n-th smallest eigenvalue of V when 𝑛 ≤  𝑁, and 𝜆𝑛,𝜀  =
 𝑐𝛼𝜀

−𝛼(2𝜁(1 + 𝛼) − 1) for 𝑛 > 𝑁. Then the eigenvalues 𝜆𝑛 of 𝐴𝐷 satisfy 𝜆𝑛 ≥ 𝜆𝑛,𝜀 . 
        The lower bounds 𝜆𝑛,𝜀 for the interval 𝐷 =  (−1, 1) are presented in Table 2 above. In 

higher dimensions, the complexity of computations increases dramatically. For example, a 

unit disk 𝐵(0, 1) or a square (−1, 1)2 with 𝜀 =
1

25
 require handling matrices larger than 

2000 ×  2000. Some results for these two cases are given in Tables (3) and (4). 

        In principle, the upper bound is much more difficult. The above approach can be 

modified to give an upper bound for the first eigenvalue 𝜆1 whenever the Green function for 

D can be computed. For the fractional Laplace operator, this is the case when D is a ball. By 

a scaling property, it is enough to consider 𝐷 =  𝐵(0, 1). 

Let 𝐺𝐷(𝑥, 𝑦) be the Green function of 𝐷, 𝐺𝐷(𝑥, 𝑦)  = ∫  
∞

0
 𝑝𝑡
𝐷 (𝑥, 𝑦) 𝑑𝑡 , where 𝑝𝑡

𝐷 is the 

heat kernel for 𝐴𝐷 (see the proof of Proposition (2.2.5)). The Green function is the kernel of 

𝐴𝐷
−1 . M. Riesz proved that 
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𝐺𝐷(𝑥, 𝑦) =  
𝛤 (
𝑑
2
 )|𝑥 − 𝑦|𝛼−𝑑

2𝛼𝜋𝑑/2 (𝛤 (
𝛼
2
))

2∫  

(1−𝑥2)(1−𝑦2)

|𝑥−𝑦|2

0

𝑠𝛼2−1

(1 +  𝑠)𝑑/2
  𝑑𝑠

=
𝛤 (
𝑑
2
 ) (1 − 𝑥2)𝛼2(1 − 𝑦2)𝛼2

2𝛼𝜋𝑑2𝛤 (
𝛼
2
)𝛤 (1 +

𝛼
2
) |𝑥 − 𝑦|𝑑

 2𝐹1 (
𝛼

2
,
𝑑

2
;  1 +

𝛼

2
;−
(1 − 𝑥2)(1 − 𝑦2)

|𝑥 −  𝑦|2
). 

The eigenvalues of the Green operator 𝐺𝐷 =  𝐴−1𝐷 are 𝜆𝑛
−1 . Hence, 

1

𝜆1
= sup {∫  

𝐷

∫  
𝐷

𝐺𝐷(𝑥, 𝑦)𝑓 (𝑥)𝑓 (𝑦)𝑑𝑥 𝑑𝑦: 𝑓 ∈  𝐿
2(𝐷), ‖𝑓 ‖2  =  1}. 

Since 𝐺𝐷(𝑥, 𝑦) is nonnegative, we may restrict the supremum to nonnegative functions only. 

It follows that whenever 0 ≤  𝑔(𝑥, 𝑦) ≤  𝐺𝐷(𝑥, 𝑦), we have 

𝜆1 ≤ (sup {∫  
𝐷

∫  
𝐷

𝑔(𝑥, 𝑦)𝑓 (𝑥)𝑓 (𝑦)𝑑𝑥 𝑑𝑦: 𝑓 ∈  𝐿2(𝐷), ‖𝑓 ‖2  =  1 })

−1

. 

For 𝑘, 𝑙 ∈  ℤ𝑑, let 𝑔𝑘,𝑙 be the infimum of 𝐺𝐷(𝑢, 𝑣) over 𝑢 ∈  𝐼𝑘 and 𝑣 ∈  𝐼𝑙 . When  ∈
 𝐼𝑘  , 𝑦 ∈  𝐼𝑙 , we choose 𝑔(𝑥, 𝑦)  =  𝑔𝑘,𝑙  . Hence, by an argument similar to one used for the 

lower bounds, 𝜆1 is bounded above by 𝜆1,𝜀
∗  , the reciprocal of the largest eigenvalue of the 

matrix U with entries 𝑈𝑖,𝑗  =  𝜀
𝑑𝑔𝜅(𝑖),𝜅(𝑗). 

The results for 𝐷 =  (−1, 1)  ⊆ ℝ and some values of 𝛼 are given in Table (2). Estimates 

for the unit disk and the square (−1, 1)2 are given in Tables (3) and (4). For the unit disk 

and 𝜀 =
1

25
 , the estimate 𝜆1,𝜀

∗  is worse than the one obtained in [50] using analytical 

methods. 

 

Section (2.3): Fractional Powers of the Laplace Operator 

We study the asymptotic behavior of eigenvalues for fractional powers of the 

Laplacian. The operator (−∆)s with 0 <  𝑠 <  1 appears in numerous fields of 

mathematical physics, mathematical biology and mathematical finance. The key difference 

between this operator and the usual Laplacian is the non-locality of (−∆)𝑠 , which allows 

one to model long-range interactions in applications and leads to challenging mathematical 

problems.  

From a probabilistic point of view, the fractional Laplacian of order s on a domain 

Ω ⊂ ℝ𝑑 can be defined as the generator of the 2𝑠-stable process killed upon exiting Ω. A 

more operator theoretic definition, which we employ here, is in terms of the quadratic form  

𝐶𝑠,𝑑  ∫  
ℝ𝑑
∫  
ℝ𝑑

|𝑢(𝑥) − 𝑢(𝑦)|2

|𝑥 −  𝑦|𝑑+2𝑠
 𝑑𝑥𝑑𝑦 = ∫  

ℝ𝑑
 |𝑝|2𝑠|�̂�(𝑝)|2 𝑑𝑝,                 (149) 

 restricted to functions 𝑢 ∈  𝐻𝑠 (ℝ𝑑 ) which satisfy 𝑢 =  0 in ℝ𝑑\Ω̅. Here 𝐻𝑠 (ℝ𝑑) is the 

Sobolev space of order s, 

 �̂�(𝑝) = (2𝜋)−𝑑/2 = ∫  
ℝ𝑑
𝑒𝑖𝑝.𝑥𝑢(𝑥) 𝑑𝑥  

is the Fourier transform of u and 𝐶𝑠,𝑑  is an explicit constant given in (153). The identity in 

(149) is an easy consequence of Plancherel’s theorem. 
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         For bounded domains Ω the spectrum of the fractional Laplacian is discrete and we 

denote its eigenvalues (in increasing order, repeated according to multiplicities) by 𝜆𝑛
(𝑠)

. 

Two-term asymptotic expansion of the sum of these eigenvalues,  

1

𝑁
 ∑  

𝑁

𝑛=1

  𝜆𝑛
(𝑠)
= 𝐶𝑑,𝑠

(1)
 |Ω|−2𝑠/𝑑𝑁2𝑠/𝑑 + 𝐶𝑑,𝑠

(2)|𝜕Ω| |Ω|−
(𝑑−1+2𝑠)

𝑑 𝑁
(2𝑠−1)
𝑑 (1 +  𝑜(1))    (150) 

as 𝑁 → ∞. Here |Ω| and|𝜕Ω| denote the d-dimensional measure of Ω and the (𝑑 − 1)-

dimensional surface measure of 𝜕Ω, respectively, and 𝐶𝑑,𝑠
(1)

 and 𝐶𝑑,𝑠
(2)
  are positive, universal 

constants, depending only on 𝑑 and 𝑠, for which we shall obtain explicit expressions. Our 

result is valid for non-smooth domains, requiring only that 𝜕Ω ∈  𝐶1,𝛼˛ for some (arbitrarily 

small) ˛𝛼 >  0. It is remarkable that, despite the fact that we are dealing with a non-local 

operator, both coefficients in (150) have a local form, depending only on Ω and 𝜕Ω, just like 

in the case of the Laplacian. This will become clearer from the reformulation given in 

Theorem (2.3.3) below.  

We emphasize that the fractional Laplacian of order 𝑠 on a domain Ω is different from 

the Dirichlet Laplacian on Ω raised to the s-th power. For the Dirichlet Laplacian, and hence 

for its fractional powers, asymptotics analogous to (150) are well known. One of our results 

is that, while the first terms in (150) coincide for both operators, the second terms do not. 

This means, in particular, that our result cannot be obtained from the study of the (local) 

Dirichlet Laplacian, and that our analysis needs to take into account the non-locality inherent 

in (150). For further results about the relation between the fractional Laplacian on a domain 

and the fractional power of the Dirichlet Laplacian see [106].  

        The one-term asymptotics 

𝜆𝑁
(𝑠)
=
(𝑑 + 2𝑠)

𝑑
 𝐶𝑑,𝑠
(1)
 |Ω|−2𝑠/𝑑𝑁2𝑠/𝑑  (1 +  𝑜(1)), 

 which is a fractional version of Weyl’s law, is a classical result of Blumenthal–Getoor [54]. 

Bañuelos–Kulczycki [52] and Bañuelos–Kulczycki–Siudeja [104] have shown a two-term 

asymptotic formula for ∑  ∞
𝑛=1 exp (𝑡𝜆𝑛

(𝑠)
)  as 𝑡 →  0. Note that ∑  ∞

𝑛=1 exp (−𝑡𝜆𝑛
(𝑠)
) and 

𝑁−1  ∑  𝑁
𝑛=1 𝜆𝑛

(𝑠)
correspond to the Abel and Cesàro summation of the sequence  𝜆𝑛

(𝑠)
, 

respectively. As is well known, asymptotics of Cesàro means imply asymptotics of Abel 

means, but not vice versa. Hence for 𝐶1,𝛼 domains we recover and improve upon the result 

of [52], [104].  

         This is, actually, a significant improvement since our asymptotics are no longer 

derived for the infinitely smooth function 𝑒−𝑡𝐸  of the fractional Laplacian, but, as we shall 

see shortly, for the Lipschitz function (Λ − 𝐸)+. Moreover, since we are no longer able to 

apply the probabilistic machinery available for the partition function, we have to find new 

and more robust tools. The methods also work for the ordinary Dirichlet Laplacian on a 

bounded domain, and in [108] we use the techniques developed here to give an elementary 

and short proof of two-term asymptotics in that case.  

        Another point in which we go beyond [52], [104] is that we give an expression for the 

constant 𝐶𝑑,𝑠
(2)

 in (150) in terms of a model operator on a half-line instead of a model operator 

on a half-space. In this way our expression is similar to familiar two-term formulas in 
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semiclassical analysis; see, for instance, [118]. This is possible due to some recent beautiful 

results of Kwasnicki [112] about a general class of half-line operators. 

        We find it convenient to prove (150) in an equivalent form, namely,  

∑(Λ− 𝜆𝑛
(𝑠)
)
+

∞

1=𝑛

= 𝐿𝑠,𝑑
(1)|Ω|Λ

1+𝑑
2𝑠 − 𝐿𝑠,𝑑

(2)|∂Ω|Λ1+
𝑑−1
2𝑠 (1 + 𝑜(1))              (151) 

as Λ → ∞. Here 𝑥+ ≔ max{𝑥, 0} denotes the positive part of a number 𝑥. Note that (151) 

can be rewritten as  

∑(1 − ℎ2𝑠𝜆𝑛
(𝑠)
)
+

∞

𝑛=1

= 𝐿𝑠,𝑑
(1)|Ω|ℎ−𝑑 − 𝐿𝑠,𝑑

(2)|∂Ω|ℎ−𝑑+1(1 + 𝑜(1))                        (152) 

as ℎ → 0 +, and this is the form in which we shall state and prove the main theorem. The 

small parameter h has the interpretation of Planck’s constant and (152) emphasizes the semi-

classical nature of the problem.  

The approach extends the multiscale analysis to the fractional setting. By this we 

mean that we localize simultaneously on different length scales according to the distance 

from the boundary. A main difficulty when dealing with our non-local operator comes from 

the treatment of the localization error. At this point we have to improve upon previous results 

from [115], [119]. Another major impass, as compared to the local case, is the analysis of a 

onedimensional model operator for which an (almost) explicit diagonalization is far from 

trivial. This is where Kwasnicki’s work [112] enters. It requires, however, still substantial 

work to bring these results into a form which is useful for us.  

We assume that the dimension 𝑑 ≥  2. In the one-dimensional case (the fractional 

Laplacian on an interval) considerably stronger results are known [49], [97]. The powerful 

methods developed there are, however, intrinsically one-dimensional and seem of little help 

in the multi-dimensional case. The question raised in [104] of whether an analogue of Ivrii’s 

two-term asymptotics [111] holds for  𝜆𝑛
(𝑠)

 in 𝑑 ≥  2 without Abel or Cesàro averaging 

remains a challenging open problem.  

  Let Ω ⊂  ℝ𝑑  , 𝑑 ≥  2, be a bounded open set. For ℎ >  0 and 0 <  𝑠 <  1 let  

𝐻Ω = (−ℎ
2∆)𝑠 −  1  

be the self-adjoint operator in 𝐿2 (Ω) generated by the quadratic form  

(𝑢, 𝐻Ω  𝑢) =  ∫  
ℝ𝑑
 (|ℎ𝑝|2𝑠  −  1)| |�̂�(𝑝)|2 𝑑𝑝  

with form domain  

H   𝑠 (Ω) = {𝑢 ∈  𝐻𝑠 (ℝ𝑑): 𝑢 = 0 𝑜𝑛 ℝ𝑑  \Ω̅}.  
For 0 <  𝑠 <  1 we have the representation  

(𝑢, 𝐻Ω𝑢) =  𝐶𝑠,𝑑  ℎ
2𝑠  ∫  

ℝ𝑑
∫  
ℝ𝑑

|𝑢(𝑥) 𝑢(𝑦)|2

|𝑥 𝑦|𝑑+2𝑠
 𝑑𝑥𝑑𝑦 ∫  

Ω

 |𝑢(𝑥)|2 𝑑𝑥  

with constant  

𝐶𝑠,𝑑 = 2
2𝑠−1𝜋𝑑/2  

Γ(𝑑2 +  𝑠)

|Γ(−𝑠)|
    >  0.                                       (153) 

         The main results hold without any global geometric conditions on Ω. We only require 

weak smoothness conditions on the boundary – namely that the boundary belongs to the 
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class 𝐶1,𝛼  for some 𝛼 >  0. That is, the local charts of 𝜕Ω are differentiable and the 

derivatives are Hölder continuous with exponent 𝛼.   

We will derive several representations of the constant 𝐿𝑠,𝑑
(2)

 in (161). One of these, 

which emphasizes the semi-classical nature of the problem, leads to a rewriting of (161) as  

Tr(𝐻Ω)−  =  ∬  

 

𝑇∗Ω

(|𝑝|2𝑠 −  1)
𝑑𝑝𝑑𝑥

(2𝜋ℎ)𝑑
− ∬  

 

𝑇∗𝜕Ω

 (|𝑝′|2𝑠)
𝑑𝑝′𝜎(𝑥)

(2𝜋ℎ)𝑑−1
+ 𝑅ℎ ,            (154) 

 where 𝑇 ∗  Ω = Ω × ℝ𝑑 and 𝑇 ∗  𝜕Ω =  𝜕Ω × ℝ𝑑−1 are the cotangent bundles over Ω and 

𝜕Ω, respectively, and where 𝑑𝜎 is the surface element of 𝜕Ω. Here 𝜉is a universal (i.e., 

depending on s, but independent of Ω or 𝑑) function, which has the interpretation of an 

energy shift (the integral of a spectral shift). It is given in terms of a one-dimensional model 

operator 𝐴+ on the half-line ℝ+ and its analogue 𝐴 on the whole line by  

𝜉(𝜇) =   𝜇−1  ∫  
∞

0

(𝑎(𝑡, 𝑡, 𝜇) − 𝑎+ (𝑡, 𝑡, 𝜇)) 𝑑𝑡, 𝜇  >  0; 

 where 𝑎(𝑡, 𝑢, 𝜇) and 𝑎+(𝑡, 𝑢, 𝜇) denote the integral kernels of (𝐴 − 𝜇)− and (𝐴+ − 𝜇)−, 

respectively. Another representation, derived, shows that our result is consistent with the 

result of [52], [104].  

         We show that 𝐿𝑠,𝑑
(2)
 >  0. We compare this constant with the one obtained from the 

corresponding fractional power of the Dirichlet Laplacian.  

Proposition (2.3.1)[103]:   Let 0 <  𝑠 <  1 and assume that the boundary of Ω satisfies 

𝜕Ω ∈  𝐶1,𝛼 with some 0 < 𝛼 ≤ 1. Let −∆Ω be the Dirichlet Laplacian on Ω. Then  

Tr((−ℎ2∆Ω)
𝑠 −  1)− = 𝐿𝑠,𝑑

(1)
 |Ω|ℎ−𝑑 − �̃�𝑠,𝑑

(2)
 |𝜕Ω|ℎ−𝑑+1 + 𝑅ℎ        (155) 

with 𝑅ℎ =  𝑜(ℎ
−𝑑+1) as ℎ →  0 +. Here 𝐿𝑠,𝑑

(1)
 is the same as in (162) and 𝐿𝑠,𝑑

(2)
 satisfies 

 𝐿𝑠,𝑑
(2)
 <  �̃�𝑠,𝑑

(2)
.                                                         (156)  

         In other words, the operators 𝐻Ω and (−ℎ2∆Ω)
𝑠 −  1 differ semi-classically to first 

subleading order. 

The proof of Theorem (2.3.3) is divided into three main steps: First, we localize the 

operator 𝐻Ω into balls, whose size varies depending on the distance to the complement of 

Ω. Then we can analyze separately the semiclassical limit in the bulk and at the boundary.  

        The key idea is to choose the localization depending on the distance to the complement 

of Ω, see [110] and [120]. Let 𝑑(𝑢) = inf{|𝑥 −  𝑢| ∶ 𝑥 ∉ 𝛺} denote the distance of 𝑢 ∈  ℝ𝑑 

to the complement of Ω. We set  

𝑙(𝑢) =
1

2
 (1 + (𝑑(𝑢)2 + 𝑙0

2)−
1
2)
−1

 ,                                          (157) 

 where 0 <  𝑙0 ≤ 1/2 is a small parameter depending only on h. Indeed, we will finally 

choose 𝑙0 proportional to ℎ𝛽 with suitable 0 < 𝛽 <  1.  
We construct real-valued functions 𝜙𝑢 ∈  𝐶0

∞ (ℝ𝑑) with support in the ball 𝐵𝑢 =
{𝑥 ∈  ℝ𝑑 ∶ |𝑥 −  𝑢| <  𝑙(𝑢)}.For all 𝑢 ∈  ℝ𝑑 these functions satisfy  

‖𝜙𝑢‖∞ ≤  𝐶, ‖∆𝜙𝑢‖∞
≤   𝐶𝑙(𝑢)−1                                (158) 

 and for all 𝑥 ∈  ℝ𝑑   

∫  
ℝ𝑑
 𝜙𝑢

2 (𝑥)𝑙(𝑢)−𝑑  𝑑𝑢 =  1.                                         (159) 
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Here and in the following the letter 𝐶 denotes various positive constants that are independent 

of 𝑢, 𝑙0 and ℎ.  

Proposition (2.3.2)[103]:   Assume that 𝜙 ∈  𝐶0
1 (Ω) is real-valued, supported in a ball of 

radius 𝑙 >  0 and 

‖∇𝜙‖∞
≤  𝐶 𝑙−1 .                                                           (160) 

 Then for all ℎ >  0 the estimates  

−𝐶𝑙𝑑−2ℎ−𝑑+2 ≤  Tr(𝜙𝐻Ω𝜙)− − 𝐿𝑠,𝑑
(1)
∫  
Ω

𝜙2 (𝑥) 𝑑𝑥 ℎ−𝑑 ≤ 0 

hold with a constant depending only on the constant in (160).  

        Close to the boundary of Ω, more precisely, if the support of 𝜙 intersects the boundary, 

a boundary term of the order ℎ−𝑑+1 appears.  

Theorem (2.3.3)[103]:   Let 0 <  𝑠 <  1 and assume that the boundary of Ω satisfies 𝜕Ω ∈
 𝐶1,𝛼 with some 0 < 𝛼 ≤  1. Then  

Tr(𝐻Ω)− = 𝐿𝑠,𝑑
(1)
 |Ω|ℎ−𝑑 − 𝐿𝑠,𝑑

(2)
| |𝜕Ω|ℎ−𝑑+1  +  𝑅ℎ                          (161)  

with 𝑅ℎ =  𝑜(ℎ
−𝑑+1) as ℎ →  0 +. Here  

 𝐿𝑠,𝑑
(1)
 =

1

(2𝜋)𝑑
 ∫  
ℝ𝑑
 (|𝑝|2𝑠 −  1)− 𝑑𝑝                                      (162) 

 and the positive constant 𝐿𝑠,𝑑
(2)

 is given in (220).  

        More precisely, we have the lower bound 𝑅ℎ ≥ −𝐶ℎ
−𝑑+1+𝜖−  for any  

0 < 𝜖−  < {

𝛼

𝛼 + 2
   if

1

2
≤ 𝑠 < 1,

2𝑠𝛼

𝛼 + 1 + 2𝑠
  if 0 < 𝑠 <

1

2
.

 

and the upper bound 𝑅ℎ ≤ 𝐶ℎ
−𝑑+1+𝜖−  for any  

0 < 𝜖+  <
𝛼

𝛼 + 2
           if 1 −

𝑑

4
≤ 𝑠 <  1, 

 0 < 𝜖= ≤
𝛼(2𝑠 −  1 +  𝑑/2)

𝛼 + 2𝑠 + 𝑑/2
      if 0 <  𝑠 <  1 −

𝑑

4
 . 

         We do not claim that our remainder estimates are sharp. They show, however, that our 

methods are rather explicit and they correctly reflect the intuitive fact that the estimate 

worsens as the boundary gets rougher. We also mention that for not too small s we (almost) 

get the same remainder estimate ℎ−𝑑+1+𝛼/(𝛼+2) that our method yields in the local case 𝑠 =
 1, see [108].  

Proof:   In order to apply Proposition (2.3.12) to the operators 𝜙𝑢𝐻Ω𝜙𝑢, we need to estimate 

𝑙(𝑢) uniformly. Let  

𝑈(Ω) = {𝑢 ∈ ℝ𝑑 ∶  𝐵𝑢 ∩  𝜕Ω ≠ ∅}  
be a small neighborhood of the boundary. For 𝑢 ∈  𝑈(Ω) we have 𝑑(𝑢) ≤  𝑙(𝑢), which by 

the definition of 𝑙(𝑢) implies  

𝑙(𝑢) ≤  
𝑙0

√3
 .                                                           (163) 
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         In view of (158) and (163) we can apply Proposition (2.3.2) and Proposition (2.3.12) 

to all functions 𝜙𝑢, 𝑢 ∈  ℝ
𝑑  , if 𝑙0 is sufficiently small. Combining these results with 

Proposition (2.3.15) we get 

−𝐶∫  
Ω\𝑈(Ω)

 𝑙(𝑢)−2 𝑑𝑢 ℎ−𝑑+2  ∫  
𝑈(Ω)

�̃�𝑏𝑑(𝑙(𝑢), ℎ)𝑙(𝑢)
−𝑑  𝑑𝑢 

≤  Tr(𝐻Ω)− 𝐿𝑠,𝑑
(1)
 ∫  
ℝ𝑑
∫  
Ω

𝜙𝑢
2 (𝑥)𝑑𝑥

𝑑𝑢

𝑙(𝑢)𝑑
 ℎ−𝑑

+ 𝐿𝑠,𝑑
(2)
 ∫  
ℝ𝑑
 ∫  
𝜕Ω

𝜙𝑢
2 (𝑥) 𝑑𝜎(𝑥)

𝑑𝑢

𝑙(𝑢)𝑑
 ℎ−𝑑+1

≤ ∫  
𝑈(Ω)

𝑅𝑏𝑑(𝑙(𝑢), ℎ)𝑙(𝑢)
𝑑  𝑑𝑢 +  𝐶 ℎ−𝑑+2 𝑙0

−1 𝑅loc(𝑙0, ℎ). 

 Now we change the order of integration and in view of (159) we obtain  

−𝐶∫  
Ω\𝑈(Ω)

𝑙(𝑢)2 𝑑𝑢 ℎ−𝑑+2 −∫  
𝑈(Ω)

 �̃�𝑏𝑑(𝑙(𝑢), ℎ)𝑙(𝑢)
−𝑑𝑑𝑢                                          (164) 

≤ Tr(𝐻Ω) 𝐿𝑠,𝑑
(1)
 |Ω|ℎ−𝑑 + 𝐿𝑠,𝑑

(2)|𝜕Ω|ℎ−𝑑+1

≤ ∫  
𝑈(Ω)

 𝑅𝑏𝑑(𝑙(𝑢), ℎ)𝑙(𝑢)
−𝑑  𝑑𝑢 +  𝐶 ℎ−𝑑+2 𝑙0

−1 𝑅loc(𝑙0, ℎ).  

 It remains to estimate the error terms.  

         By the definition of l.u/ we have  

𝑙(𝑢) ≥
1

4
min(𝑑(𝑢), 1)     and    𝑙(𝑢) ≥

𝑙0
4
                              (165) 

 for all 𝑢 ∈  ℝ𝑑 and 𝑙0 ≤  1. For 𝑢 ∈  Ω  \ 𝑈(Ω), we find 𝑑(𝑢) ≥  𝑙(𝑢) ≥  𝑙0/4. Hence, we 

can estimate  

∫  
Ω\𝑈(Ω)

𝑙(𝑢)2 𝑑𝑢 ≤  𝐶 (1 + ∫  
{𝑑(𝑢)𝑙0/4}

 𝑑(𝑢)2 𝑑𝑢) ≤  𝐶(1 + ∫  
∞

𝑙0/4

 𝑡−2 |𝜕Ωt| 𝑑𝑡 ; 

 where |𝜕Ωt| denotes the surface area of the boundary of Ω𝑡 = {𝑥 ∈  Ω ∶  𝑑(𝑥)  >  𝑡}. Using 

the fact that |𝜕Ωt| is uniformly bounded and that |𝜕Ωt| =  0 for large 𝑡, we get  

∫  
Ω\𝑈(Ω)

(Ω)𝑙(𝑢)2 𝑑𝑢 ≤  𝐶 𝑙0
−1.                                              (166) 

 For 𝑢 ∈  𝑈(Ω) the inequalities (163) and (165) show that 𝑙(𝑢) is proportional to 𝑙0. Since 

𝐵𝑢 ∩  𝜕Ω ≠ ∅, we find 𝑑(𝑢) ≤   𝑙(𝑢) ≤  𝑙0 and  

∫  
𝑈(Ω)

𝑙(𝑢)𝑎 𝑑𝑢 ≤ 𝐶 𝑙0
𝑎  ∫  

{ 𝑑(𝑢)≤𝑙0}

 𝑑𝑢 ≤  𝐶 𝑙0
𝑎+1                        (167) 

for any 𝑎 ∈ ℝ.  
        We insert (166) and (167) into (164) and get (using the fact that ℎ ≤ 𝐶−1 𝑙0) 

−𝐶 (𝑙0
𝛿2  ℎ𝛿2 + 𝑙0

2𝛼  +  𝑙0
𝛼+1 ℎ−1)                                                                            (168)  

≤ ℎ𝑑−1  (Tr(𝐻Ω) 𝐿𝑠,𝑑
(1)|Ω|ℎ−𝑑 + 𝐿𝑠,𝑑

(2)
 |𝜕Ω|ℎ𝑑+1 ) 

≤ 𝐶 (𝑙0
𝛿1   ℎ𝛿1 + 𝑙0

𝛼+1 ℎ−1 + 𝑙0
−1 ℎ 𝑅loc(𝑙0, ℎ)). 
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         In order to choose 𝑙0 we need to distinguish several cases. For the lower bound we 

recall that 0 <  𝛿2  < min{1, 2𝑠}. The stated lower bound on 𝑅ℎ follows with 𝑙0 

proportional to ℎ𝛽 , where 𝛽 = (1 + 𝛿2)/(1 + 𝛼 + 𝛿2). 
         For the upper bound we have 0 < 𝛿1  <  1. If 1 −  𝑑/4 <  𝑠 <  1, then we pick 𝑙0 

proportional to ℎ𝛽 , where 𝛽 = (1 + 𝛿1)/(1 + 𝛼 + 𝛿1). If 0 <  𝑠 ≤  1 −  𝑑/4, then we 

pick ℎ𝛽 , where 𝛽 = (2𝑠 +  𝑑/2)/(𝛼 +  2𝑠 +  𝑑/2). This completes the proof of Theorem 

(2.3.3).  

We analyze the local asymptotics in the bulk and prove Proposition (2.3.2). We 

consider the local asymptotics in the case where Ω is replaced by a half-space. We reduce 

the problem close to the boundary to the analysis of a one-dimensional model operator given 

on a half-line and give an analogue of Proposition (2.3.12) for a half-space. We show how 

Proposition (2.3.12) follows from the previous considerations by local straightening of the 

boundary. We perform the localization and, in particular, prove Proposition (2.3.15). We 

provide some technical results about the one-dimensional model operator introduced.  

We define the positive and negative parts of 𝑥 ∈ ℝ by 𝑥± = max{0,±𝑥}. We use a 

similar notation for the Heaviside function, namely, 𝑥±
0 =  1 if ±𝑥 ≥  0 and 𝑥±

0 =  0 if ̇ 𝑥 <

 0. For a self-adjoint operator 𝑋, the operators 𝑋± and 𝑋±
0   are defined similarly via the 

Spectral Theorem.  

Warm-up dealing with the spectral asymptotics in the boundaryless case. Although 

the estimates in this case are essentially known, we include a proof for the sake of 

completeness and in order to introduce the methods that will be important later on. We 

divide the proof of Proposition (2.3.2). The operator  

𝐻0 = (−ℎ
2Ω)𝑠  −  1     in   𝐿2(ℝ𝑑), 

 defined with form domain 𝐻𝑠(ℝ𝑑), will appear frequently.  

The lower bound is given by a variant of the Berezin–Lieb–Li–Yau inequality, see [105], 

[113], [114].  

Lemma (2.3.4)[103]:   For any 𝜙2 𝐿2(ℝ𝑑) and ℎ >  0  

Tr(𝜙𝐻Ω𝜙)− ≤ 𝐿𝑠,𝑑
(1)
∫  
ℝ𝑑
 𝜙2 (𝑥) 𝑑𝑥 ℎ−𝑑 . 

Proof: We apply the variational principle for the sum of the eigenvalues  

Tr(𝜙𝐻Ω𝜙) = inf
0≤𝛾≤1

  Tr(𝜙𝐻Ω𝜙),  

where the infimum is taken over all trial density matrices, i.e., over all trace-class operators 

0 ≤ 𝛾 ≤  1 with range belonging to the form domain of 𝐻Ω. We apply this twice and find  

Tr(𝜙𝐻Ω𝜙)− ≤  Tr(𝜙𝐻0𝜙)− ≤  Tr(𝜙(𝐻0)𝜙) . 
Applying the Fourier transform to diagonalize the operator (𝐻0) yields the bound  

Tr(𝜙(𝐻0)−𝜙) =
1

(2𝜋ℎ)𝑑
∬ 𝜙(𝑥)2 (|𝑝|2𝑠 −  1)− 𝑑𝑝𝑑𝑥 =  𝐿𝑠,𝑑

(1)
∫  𝜙(𝑥)2 𝑑𝑥 ℎ−𝑑  , 

 as claimed. 

We now assume that - satisfies the conditions of Proposition (2.3.2). In particular, we 

assume that - has support in Ω. To derive the upper bound, we put 𝛾 =  𝜒𝜙(𝐻0)−
0𝜒𝜙, where 

𝜒𝜙 denotes the characteristic function of the support of 𝜙. Then  

γ(𝑥, 𝑦) = (2𝜋ℎ)−𝑑𝜒𝜙(𝑥)𝜒𝜙(𝑦)∫  
|𝑝|<1

𝑒𝑖𝑝.(𝑥−𝑦)/ℎ𝑑𝑝, 
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and we obtain that 

−Tr(𝜙𝐻Ω𝜙)− ≤ Tr(𝛾𝜙𝐻Ω𝜙) = Tr(𝛾𝜙𝐻𝑂𝜙)

= ∫  
|𝑝|<1

(‖(−ℎ2∆)𝑠2𝜙𝑒𝑖𝑝.ℎ‖
2

2
− ‖𝜙‖2

2)
𝑑𝑝

(2𝜋ℎ)𝑑
                                         (169) 

Lemma (2.3.5)[103]:  For 𝜙 ∈ 𝐶0
∞(ℝ𝑑) and ℎ > 0 we have 

‖(−ℎ2∆)𝑠/2𝜙𝑒𝑖𝑝.ℎ  ‖
2

2
= |𝑝|2𝑠‖𝜙‖2

2 +∫  (
1

2
 (|𝑝 +  ℎ|2𝑠 + |𝑝 −  ℎ𝜂|2𝑠) |�̂�(𝜂)|

2
𝑑𝜂. 

Proof: By Plancherel’s theorem we get  

‖(−ℎ2∆)𝑠/2𝜙𝑒𝑖𝑝.ℎ‖
2

2
= (2𝜋ℎ)𝑑  ∭ |𝜉|2𝑠𝜙(𝑥)𝜙(𝑦)𝑒𝑖(𝑝 − 𝜉).(𝑥− 𝑦)/ℎ 𝑑𝑦𝑑𝜉𝑑𝑥.  

Since 𝜙 ∈  𝐶0
∞ (ℝ𝑑), we can use the fact that  

∬ 𝜙(𝑥)𝜙(𝑦)𝑒𝑖(𝑝−𝜉).(𝑥− 𝑦)/ℎ 𝑑𝑥𝑑𝑦

= lim
𝛿→0+

  ∬   𝑒−𝛿|𝑥 − 𝑦|
2
 𝜙(𝑥)𝜙(𝑦)𝑒𝑖(𝑝− 𝜉).(𝑥− 𝑦)/ℎ 𝑑𝑥𝑑𝑦  

and since  

|𝜉|2𝑠  ∬  𝜙(𝑥)𝜙(𝑦)𝑒𝑖(𝑝−𝜉).(𝑥− 𝑦)/ℎ 𝑑𝑥𝑑𝑦  

is absolutely integrable as a function of 𝜉 ∈  ℝ𝑑 , we find  

‖(−ℎ2∆)𝑠2𝜙𝑒𝑖𝑝.ℎ ‖
2

2
= lim

𝛿→0+
  ∭  𝑒𝛿|𝑥−𝑦|

2
 |𝜉|2𝑠𝜙(𝑥)𝜙(𝑦)𝑒𝑖(𝑝−𝜉).(𝑥−𝑦)/ℎ

𝑑𝑦𝑑𝑥𝑑

(2𝜋ℎ)𝑑
 

= lim
𝛿→0+

  ∭  𝑒𝛿|𝑥−𝑦|
2
|𝜉|2𝑠(𝜙2(𝑥) + 𝜙2 (𝑦) (𝜙(𝑥) − 𝜙(𝑦))

2

× 𝑒𝑖
(𝑝−𝜉).

(𝑥−𝑦)
ℎ

𝑑𝑥𝑑𝑦𝑑

2(2𝜋ℎ)𝑑
.                                                                                    (170) 

 By symmetry in 𝑥 and 𝑦 the first two terms on the right side give  

∭  𝑒𝛿|𝑥−𝑦|
2
 |𝜉|2𝑠𝜙2(𝑥)𝑒𝑖(𝑝−𝜉).(𝑥−𝑦)ℎ

𝑑𝑥𝑑𝑦𝑑

(2𝜋ℎ)𝑑

= (
𝜋

𝛿
)
𝑑2

∭  𝑒−|𝑝−𝜉|
2
/(4𝛿ℎ2) |𝜉|2𝑠𝜙2 (𝑥)

𝑑𝑥𝑑𝜉

(2𝜋ℎ)𝑑
 

Now we can substitute |𝑞|2 = |𝑝 − 𝜉|2/(4𝛿ℎ2) to get  

lim
𝛿→0+

  ∭  𝑒𝛿|𝑥−𝑦|
2
|𝜉|2𝑠(𝜙2(𝑥) + 𝜙2(𝑦))𝑒𝑖(𝑝−𝜉).(𝑥−𝑦)/ℎ

𝑑𝑥𝑑𝑦𝑑

2(2𝜋ℎ)𝑑

= |𝑝|2𝑠  ∫  𝜙2 (𝑥) 𝑑𝑥.                                                                                        (171) 

We are left with calculating the third term on the right side of (170), namely  

∭ 𝑒𝛿|𝑧|
2
|𝜉|2𝑠(𝜙(𝑥) − (𝜙(𝑥 +  𝑧))

2
 𝑒𝑖(𝑝−𝜉).𝑧/ℎ

𝑑𝑥𝑑𝑧𝑑

2(2𝜋ℎ)𝑑
.  

Again by Plancherel’s theorem we see that it equals  

∭ 𝑒𝛿|𝑧|
2
 |𝜉|2𝑠 |�̂� (

𝑛

𝜂
)|
2

|1 − 𝑒−𝑖𝑧.𝜂/ℎ|
2
𝑒𝑖(𝑝−𝜉).𝑧/ℎ

𝑑𝜂𝑑𝑧𝑑𝜉

2(2𝜋)𝑑ℎ2𝑑
 . 

We can write  

|1 − 𝑒−𝑖𝑧.𝜂/ℎ|
2
=  2 − 𝑒𝑖𝑧.𝜂/ℎ − 𝑒−𝑖𝑧.𝜂/ℎ  
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and from the first summand we get  

∭  𝑒𝛿|𝑧|
2
|𝜉|2𝑠 |�̂� (

𝜂

ℎ
)|
2

𝑒𝑖(𝑝−𝜉).𝑧/ℎ
𝑑𝜂𝑑𝑧𝑑𝜉

(2𝜋)𝑑ℎ2𝑑

= ∬  𝑒−|𝑞|
2
|𝑝 +  2ℎ√𝛿𝑞|

2𝑠
|�̂� (

𝜂

ℎ
)|
2 𝑑𝜂𝑑𝑞

𝜋𝑑2ℎ𝑑
. 

In the same way we can treat the second and third summand and after taking the limit 𝛿 →
0 + we finally find 

lim
𝛿→0+

  ∭ 𝑒−𝛿|𝑥−𝑦|
2
 |𝜉|2𝑠(𝜙(𝑥) − 𝜙(𝑦))

2
 𝑒𝑖(𝑝−𝜉).(𝑥−𝑦)ℎ

𝑑𝑥𝑑𝑦𝑑𝜉

2(2𝜋ℎ)𝑑

=
1

ℎ𝑑
∫  (|𝑝|2𝑠 −

1

2
(|𝑝 + 𝜂|2𝑠 + |𝑝 − 𝜂|2𝑠)) |�̂� (

𝜂

ℎ
)|
2

𝑑𝜂.                       (172) 

Hence, combining (170), (171) and (172) yields the claim.  

         In view of identity (169) and Lemma (2.3.5) we conclude 

Tr(𝜙𝐻0𝜙) = (2𝜋ℎ)
𝑑  ∫  

|𝑝|<1

(|𝑝|2𝑠 − 1) 𝑑𝑝 ‖𝜙‖2
2 + (2𝜋ℎ)−𝑑∫  

|𝑝|<1

𝑅ℎ(𝑝)𝑑𝑝     (173) 

with 

𝑅ℎ(𝑝) = ∫ (
1

2
(|𝑝 + ℎ𝜂|2𝑠 + |𝑝 − ℎ𝜂|2𝑠) − |𝑝|2𝑠) |�̂�(𝜂)|

2
𝑑𝜂. 

We proceed to estimate 𝑅ℎ(𝑝). Note that for any 𝑎 > 0 

max
|𝑡|≤𝑎

  ((𝑎 +  𝑡)𝑠 + (𝑎 −  𝑡)𝑠 )  =  2𝑎𝑠 . 

Taking 𝑎 = |𝑝|2 + |𝜂|2 and 𝑡 =  2𝑝 . 𝜂  , we deduce that  
1

2
(|𝑝 +  𝜂|2𝑠 + |𝑝|2𝑠) |𝑝|2𝑠 ≤ (|𝑝|2 + |𝜂|2 )𝑠 |𝑝|2𝑠. 

Next, for 0 <  𝑠 <  1 concavity implies that (𝑎 +  𝑏)𝑠 ≤ 𝑎𝑠 +  𝑠𝑎𝑠−1𝑏 for 𝑎, 𝑏 >  0, from 

which we learn that  

(|𝑝|2 + |𝜂|2 )𝑠 − |𝑝|2𝑠  ≤ 𝑠|𝑝|2(𝑠−1)|𝜂|2. 
 Hence, replacing 𝜂 with ℎ𝜂 and using (160), we can estimate  

𝑅ℎ(𝑝)∫  |𝑝|
−2+2𝑠|ℎ𝜂|2 |�̂�(𝜂)|

2
𝑑𝜂 =  𝑠|𝑝|−2+2𝑠ℎ2  ∫  |∇𝜙|

2
 𝑑𝑥 ≤  𝐶 ℎ2 |𝑝|−2+2𝑠𝑙𝑑−2. 

 Thus the upper bound follows from (169) and (173).  

We prove the analogue of Proposition (2.3.12) in the case where Ω is the half-space 

ℝ+
𝑑  = {(𝑥′, 𝑥𝑑): 𝑥𝑑  >  0}. We define the operator 𝐻+ on 𝐿2 (ℝ+

𝑑), in the same way as 𝐻Ω, 

with form domain  

H  𝑠 (ℝ+
𝑑) = {𝑣 ∈ 𝐻𝑠(ℝ𝑑) ∶  𝑣 =  0 on ℝ𝑑  \ ℝ+

𝑑}. 

We shall prove  

We collect some facts about the one-dimensional operator  

𝐴+ = (
𝑑𝑠

𝑑𝑡2
+ 1)

𝑠

 

in 𝐿2(ℝ+) with form domain H  𝑠 (ℝ+), and about the corresponding operator 𝐴 in 𝐿2 (ℝ), 
defined analogously to 𝐴+, but with form domain 𝐻𝑠 (ℝ).  
        For 𝜇  >  0 and t; 𝑢 ∈  ℝ+, let 𝑒+(𝑡, 𝑢, 𝜇) and 𝑎+(𝑡, 𝑢, 𝜇) be the integral kernels of the 

operators (𝐴+ − 𝜇)−
0  and (𝐴+ − 𝜇)−, respectively. Similarly, we define 𝑎(𝑡, 𝑢, 𝜇) via 

(𝐴 − 𝜇). To simplify notation we abbreviate 𝑎+(𝑡, 𝜇) =  𝑎+(𝑡, 𝑡, 𝜇). We also note that 
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𝑎(𝜇) =  𝑎(𝑡, 𝑡, 𝜇) is independent of 𝑡 ∈   ℝ+. The inequality 𝐴+ ≥  1 implies that 

𝑎+(𝑡, 𝑢, 𝜇) =  𝑒+(𝑡, 𝑢, 𝜇) =  0 for 𝜇 <  1 and similarly for 𝑎(𝑡, 𝑢, 𝜇) and 𝑒(𝑡, 𝑢, 𝜇).  
        The following two results about the integral kernels 𝑒+(𝑡, 𝜇) and 𝑎+(𝑡, 𝜇) are rather 

technical. The first one provides a rough a-priori bound on 𝑒+(𝑡, 𝑢, 𝜇).  
Corollary (2.3.6)[103]: For 𝑥 = (𝑥′, 𝑥𝑑) ∈  ℝ+

𝑑  and 𝑦 = (𝑦′, 𝑦𝑑) ∈  ℝ+
𝑑  the integral kernels 

of (𝐻+)−
0   and (𝐻+)− are related to those of (𝐴+ − 𝜇)−

0  and (𝐴+ − 𝜇)− by  

(𝐻+)−
0 (𝑥, 𝑦) =

1

ℎ𝑑
 ∫  
ℝ𝑑−1

 |𝜉′|𝑒𝑖𝜉
′.(𝑥′− 𝑦′)/ℎ  × 𝑒+  (

𝑥𝑑|𝜉
′|

ℎ
,
𝑦𝑑|𝜉

′|

ℎ
,
1

|𝜉′|2𝑠
)

𝑑𝜉′

(2𝜋)𝑑−1 
 (174) 

 and  

(𝐻+)(𝑥, 𝑦) =
1

ℎ𝑑
 ∫  
ℝ𝑑−1

 |𝜉′|1+2𝑠𝑒𝑖𝜉
′.(𝑥′− 𝑦′)/ℎ𝑎+ (

𝑥𝑑|𝜉
′|

ℎ
,
𝑦𝑑|𝜉

′|

ℎ
,
1

|𝜉′|2𝑠
)

𝑑𝜉′

(2𝜋)𝑑−1 
(175) 

Proof: Observe that Lemma (2.3.7) and the Spectral Theorem imply that for any bounded, 

measurable function 𝜙  on ℝ,  

𝒰𝜙(𝐻+ +  1)𝒰∗ = ∫  
⊕

ℝ𝑑−1
 (|𝜉′|2𝑠𝐴+)𝑑𝜉′. 

This formula means that for any 𝑓 ∈   𝐿2 (ℝ+
𝑑),  

(𝑓, 𝜙(𝐻+ +  1)𝑓 ) =  ∫  
ℝ𝑑−1

(𝒰𝑓 )𝜉′  , 𝜙(|𝜉
′|2𝑠𝐴+)(𝒰𝑓)𝜉′𝑑𝜉

′. 

 From this, we easily conclude that if 𝜙(|𝜉′|2𝑠𝐴+) has an integral kernel for all 𝜉′ ∈  ℝ𝑑−1 

, then 𝜙(𝐻+  +  1) has an integral kernel given by  

𝜙(𝐻+  +  1)(𝑥, 𝑦)

=
1

ℎ𝑑
 ∫  
ℝ𝑑−1

 |𝜉′|𝑒𝑖𝜉
′.(𝑥′−𝑦′)ℎ𝜙(|𝜉′|2𝑠𝐴+) (

𝑥𝑑|𝜉
′|

ℎ
,
𝑦𝑑|𝜉

′|

ℎ
,
1

|𝜉′|2𝑠
)

𝑑𝜉′

(2𝜋)𝑑−1 
. 

The corollary now follows from the fact that for 𝜙(𝐸) = (𝐸 − 1)−
0  one has  

𝜙(|𝜉′|2𝑠𝐴+) = (𝐴+|𝜉′|2𝑠)−
0  

and for 𝜙(𝐸) = (𝐸 − 1)−
0  one has  

𝜙(|𝜉′|2𝑠𝐴+) = |𝜉′|2𝑠(𝐴+ |𝜉′|2𝑠). 
        We now give  

Lemma (2.3.7)[103]: The mapping  

(𝒰𝑓)𝜉(𝑡) = (2𝜋ℎ)
−(𝑑−1)/2ℎ1/2|𝜉′|−1/2∫  

ℝ𝑑−1
 𝑓 (𝑥′ , |𝜉′|−1ℎ𝑡)𝑒𝑖𝜉

′.𝑥′/ℎ 𝑑𝑥′ ,

𝜉′ ∈  ℝ𝑑−1 , 𝑡 >  0, 

defines a unitary operator from 𝐿^2(ℝ𝑑) to ∫  
⊕

ℝ𝑑−1
 𝐿2(0,∞)𝑑𝜉′ . Moreover,  

𝒰 (𝐻+ +  1) 𝒰∗ = ∫  
⊕

ℝ𝑑−1
 |𝜉′|2𝑠𝐴+ 𝑑𝜉′. 

 Before giving the proof we show how to deduce formulas for spectral projections. 

Proof: The fact that 𝒰 is unitary follows from Plancherel’s theorem together with a dilation. 

To prove the formula for 𝐻+, let 𝑓 ∈ H   𝑠(ℝ+
𝑑), the form domain of 𝐻+, and denote by 𝑓 

as before the Fourier transform of 𝑓 with respect to both 𝑥′ and 𝑥𝑑   . Since 𝑓 ∈ H   𝑠(ℝ+
𝑑), 

its extension to Rd by zero belongs toH   𝑠(ℝ+
𝑑) and we can also extend (𝒰𝑓 )𝜉′ by zero to 

ℝ. A short computation shows that  
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1

√2𝜋
 ∫  
ℝ

 (𝒰𝑓)𝜉′(𝑡)𝑒
𝑖𝜔𝑡 𝑑𝑡 =  ℎ−𝑑/2|𝜉′|1/2𝑓(ℎ−1𝜉′, ℎ−1 |𝜉′|𝜔), 

and thus, 

∫  
ℝ𝑑
 |ℎ𝑝|2𝑠|𝑓 (𝑝)|

2
 𝑑𝑝 =  ∫  

ℝ𝑑−1
 (∫  

ℝ

(|ℎ𝑝′|2 + (ℎ𝑝𝑑)2)𝑠|𝑓(𝑝′, 𝑝𝑑)|
2
𝑑𝑝𝑑)𝑑𝑝′  

=  ℎ−𝑑  ∫  
ℝ𝑑−1

|𝜉′|1+2𝑠 (∫  
ℝ

(1 + 𝜔2)𝑠|𝑓(ℎ−1𝜉′, ℎ−1|𝜉′|𝜔)|
2
𝑑𝜔)𝑑𝜉′  

= ∫  
ℝ𝑑−1

|𝜉′|2𝑠 (∫  
ℝ

(1 + 𝜔2)𝑠 |
1

√2𝜋
 ∫  
ℝ

 (𝒰𝑓)𝜉′(𝑡)𝑒
𝑖𝜔𝑡𝑑𝑡|

2

𝑑𝜔)𝑑𝜉′. 

 Since (𝒰𝑓)𝜉′ vanishes on (∞, 0), the previous formula can be rewritten as  

∫  
ℝ𝑑
|ℎ𝑝|2𝑠|𝑓(𝑝)|

2
 𝑑𝑝 =  ∫  

ℝ𝑑−1
 |𝜉′|2𝑠‖(𝐴+)1/2(𝒰𝑓)𝜉′‖

2
 𝑑𝜉′. 

This is equivalent to  

𝒰(𝐻+ + 1)𝒰 =  ∫  
⊕

ℝ𝑑−1
|𝜉′|2𝑠𝐴+ 𝑑𝜉′  

and concludes the proof. 

We state upper and lower bounds on −Tr(𝜙𝐻+𝜙)− in terms of the one-dimensional 

model operators 𝐴 and 𝐴+, in particular, in terms of the function 𝐾(𝑡) given in (219). As 

explained below, Proposition (2.3.9), will be a direct consequence of the following 

estimates.  

Proposition (2.3.8)[103]: Assume that 𝜙 ∈  𝐶0
∞ (ℝ𝑑)  is supported in a ball of radius 𝑙 =  1 

and assume that (160) is satisfied with 𝑙 =  1. Then for any 0 < 𝛿2  <  min {1, 2𝑠} there is 

a constant 𝐶𝛿2 such that for all ℎ >  0 we have  

−Tr(𝜙𝐻+𝜙)−

≥ −𝐿𝑠,𝑑
(1)
∫  
ℝ+
𝑑
 𝜙2(𝑥)𝑑𝑥 ℎ−𝑑

+ ∫  
ℝ+
𝑑
 𝜙2(𝑥)

1

ℎ
𝐾 (

𝑥𝑑
ℎ
)  𝑑𝑥 ℎ−𝑑+1 ,                                                                (176) 

−Tr(𝜙𝐻+𝜙)−

≥ −𝐿𝑠,𝑑
(1)
∫  
ℝ+
𝑑
 𝜙2(𝑥)𝑑𝑥 ℎ−𝑑

+ ∫  
ℝ+
𝑑
 𝜙2(𝑥)

1

ℎ
𝐾 (

𝑥𝑑
ℎ
)  𝑑𝑥 ℎ−𝑑+1 , + 𝐶𝛿2  ℎ

−𝑑+1+𝛿2  .                                (177) 

        Assuming Proposition (2.3.8), we now give  

Proposition (2.3.9)[103]: Assume that 𝜙 ∈  𝐶0
1 (ℝ𝑑) is supported in a ball of radius 𝑙 >  0 

and assume that (160) is satisfied. Then for ℎ >  0 and any 0 <  𝛿1  <  1 and 0 < 𝛿2  <
 min {1, 2𝑠} we have  
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       −𝐶𝛿1,𝛿2(𝑙
𝑑−1−𝛿1  ℎ−𝑑+1+𝛿1 + 𝑙𝑑−1−𝛿2  ℎ−𝑑+1+𝛿2)   

≤  Tr(𝜙𝐻+𝜙)− − 𝐿𝑠,𝑑
(1)
∫  
ℝ+
𝑑
 𝜙2(𝑥) 𝑑𝑥 ℎ−𝑑

+ 𝐿𝑠,𝑑
(2)
 ∫  
ℝ𝑑−1

 𝜙2 (𝑥′, 0)𝑑𝑥′ ℎ−𝑑+1  ≤  𝐶𝛿1𝑙
𝑑−1−𝛿1  ℎ−𝑑+1+𝛿1  . 

This result depends on a more or less explicit diagonalization of the operator 𝐻+, which is 

far from obvious. Relying crucially on recent results of Kwasnicki [112] about non-local 

operators on a half-line. 

Proof:   To prove the proposition, we may rescale - and hence assume. Proposition (2.3.9) 

is then an immediate consequence of Proposition (2.3.8) provided we can show that for any 

0 < 𝛿1  <  1 there is a 𝐶𝛿1 such that for all ℎ >  0  

 |∫  
ℝ+
𝑑
 𝜙2(𝑥)

1

ℎ
𝐾 (

𝑥𝑑
ℎ
) 𝑑𝑥 − 𝐿𝑠,𝑑

(2)
∫  
ℝ+
𝑑
 𝜙2(𝑥′, 0)𝑑𝑥′| ≤ 𝐶𝛿1  ℎ

𝛿1                     (178) 

In order to obtain the latter bound, we substitute 𝑥𝑑 =  𝑡ℎ and write, recalling (220),  

∫  
ℝ+
𝑑
 𝜙2(𝑥)

1

ℎ
𝐾 (

𝑥𝑑
ℎ
)𝑑𝑥 − 𝐿𝑠,𝑑

(2)
∫  
ℝ+
𝑑
 𝜙2(𝑥′, 0)𝑑𝑥′

= ∫  
∞

0

𝐾(𝑡)∫  
ℝ 
𝑑−1

 ∫  
𝑡ℎ

0

 𝜕𝜏𝜙
2(𝑥′, 𝜏)𝑑𝜏𝑑𝑥′𝑑𝑡. 

By Hölder’s inequality we can further estimate  

|∫  
ℝ 
𝑑−1

 ∫  
𝑡ℎ

0

 𝜕𝜏𝜙
2(𝑥′, 𝜏)𝑑𝜏𝑑𝑥′|

≤  (∫  
𝑡ℎ

0

 𝑑𝜏)

𝛿1

  (∫  
∞

0

|∫  
ℝ 
𝑑−1

  𝜕𝜏𝜙
2(𝑥′, 𝜏)𝑑𝜏𝑑𝑥′|

(1−𝛿1)
−1

)

1−𝛿1

≤ 𝐶𝑡𝛿1  ℎ𝛿1  . 

 Since ∫  
∞

0
𝑡𝛿1|𝐾(𝑡)|𝑑𝑡 < ∞ < 1 by Lemma (2.3.25), we obtain inequality (178). 

We shall prove the lower and the upper bound in Proposition (2.3.8), respectively. 

(2.3.7). Lower bound on −Tr(𝜙𝐻+𝜙)−. To prove (176) we use the fact that  

−Tr(𝜙𝐻+𝜙)− ≥ −Tr(𝜙(𝐻
+)−𝜙) . 

 The lower bound follows from this by integrating the identity  

(𝐻+)−(𝑥, 𝑥) =  ℎ
−𝑑𝐿𝑠,𝑑

(1)
 ℎ−𝑑𝐾 (

𝑥𝑑
ℎ
) ,                           (179) 

 against 𝜙2 . Equation (179) is a consequence of (175). Indeed, by the same argument we 

learn that  

(𝐻0)(𝑥, 𝑥) =
1

(2𝜋)𝑑−1
1

ℎ𝑑
 ∫  
ℝ 
𝑑−1

|𝜉′|1+2𝑠𝑎(|𝜉′|2𝑠)𝑑𝜉′. 

 On the other hand, by direct diagonalization, we find that  

(𝐻0)(𝑥, 𝑥) =  ℎ
−𝑑𝐿𝑠,𝑑

(1)
. 

Comparing these two identities with (175), we arrive at (179), thus establishing (176).  

To prove (177) we set= (𝐻+)−
0  . Its integral kernel is given by (174) in terms of the kernel 

𝑒+(∙ ,∙ , 𝜇) of (𝐴+ − 𝜇)−
0  . By the variational principle it follows that  
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−Tr(𝜙𝐻+𝜙)− ≤ −Tr(𝜙𝛾𝜙𝐻
+) 

=
1

ℎ2𝑑
∫  
ℝ+
𝑑
∫  
ℝ+
𝑑
∫  
ℝ 
𝑑−1

∫  
ℝ 
𝑑

|𝜉′| 𝑒𝑖𝜉
′.
𝑥′−𝑦′

ℎ × 𝑒+(𝑥𝑑|𝜉
′| ℎ−1, 𝑦𝑑|𝜉

′| ℎ−1, |𝜉′|−2𝑠 )

× (|𝑝|2𝑠 − 1)𝑒𝑖𝑝.(𝑦−𝑥)ℎ𝜙(𝑥)𝜙(𝑦)
𝑑𝑝𝑑𝜉′𝑑𝑥𝑑𝑦

(2𝜋)2𝑑−1
.                                           (180) 

We insert the identity  

𝜙(𝑥)𝜙(𝑦) =
1

2
(𝜙2(𝑥)𝜙2(𝑦) − |𝜙(𝑥)𝜙(𝑦)|2), 

and by a similar argument as in the proof of Lemma (2.3.5) we can use the symmetry in 𝑥 

and 𝑦 and substitute 𝑞 =  𝑝𝑑 /|𝑝′| to obtain  

−Tr(𝜙𝐻+𝜙)− ≤ 𝐼ℎ[𝜙] − 𝑅ℎ[𝜙] 
with the main term  

𝐼ℎ[𝜙] =
1

ℎ2𝑑
∫  
ℝ+
𝑑
∫  
ℝ+
𝑑
∫  
ℝ 
𝑑−1

∫  
ℝ 
𝑑

|𝜉′| 𝑒𝑖𝜉
′.(𝑥′−𝑦′)/ℎ × 𝑒+(𝑥𝑑|𝜉

′| ℎ−1, 𝑦𝑑|𝜉
′| ℎ−1, |𝜉′|−2𝑠 )

× 𝑒𝑖(𝑦𝑝−𝑥𝑝)|𝑝
′|𝑞/ℎ((𝑞2 + 1)𝑠 − |𝑝′|−2𝑠)|𝑝′|1+2𝑠𝜙2(𝑥)

𝑑𝑝𝑑𝜉′𝑑𝑥𝑑𝑦

(2𝜋)2𝑑−1
 

and the remainder  

𝑅ℎ[𝜙] =
1

ℎ2𝑑
∫  
ℝ+
𝑑
∫  
ℝ+
𝑑
∫  
ℝ 
𝑑−1

∫  
ℝ 
𝑑

|𝜉′| 𝑒𝑖𝜉
′.(𝑥′−𝑦′)/ℎ𝑒+(𝑥𝑑|𝜉

′| ℎ−1, 𝑦𝑑|𝜉
′| ℎ−1, |𝜉′|−2𝑠 )

× |𝑝|2𝑠𝑒𝑖𝑝.(𝑦−𝑥)/ℎ|𝜙 (𝑥) − 𝜙(𝑦)|2
𝑑𝑝𝑑𝜉′𝑑𝑥𝑑𝑦

2(2𝜋)2𝑑−1
. 

Since 𝜙 ∈   𝐶0
∞(ℝ𝑑), we can perform the 𝑦′ -integration in 𝐼ℎ[𝜙]. We use the fact that  

∫  
ℝ 
 

∫  
∞

0

𝑒+(𝑥𝑝, 𝑦𝑝𝑥𝜇)((𝑞
2 + 1)𝑠 − |𝑝′|−2𝑠)𝑒𝑖(𝑦𝑝−𝑥𝑝)𝑞𝑑𝑦𝑝𝑑𝑞 = −2𝜋𝑎+(𝑥𝑑 , 𝑧𝑑 , 𝜇) 

and obtain  

𝐼ℎ[𝜙] =
1

ℎ𝑑+1
∫  
ℝ+
𝑑
∫  
∞

0

∫  
ℝ 
𝑑−1

∫  
ℝ 
𝑑

|𝜉′|2𝑠+2 𝑒+(𝑥𝑑|𝜉
′| ℎ−1, 𝑦𝑑|𝜉

′| ℎ−1, |𝜉′|−2𝑠 )

× ((𝑞2 + 1)𝑠 − |𝑝′|−2𝑠)𝑒𝑖(𝑦𝑝−𝑥𝑝)|𝜉
′|𝑞/ℎ𝜙2(𝑥)

𝑑𝑞𝑑𝜉′𝑑𝑦𝑑𝑑𝑥

(2𝜋)𝑑

= −
1

ℎ𝑑
∫  
ℝ+
𝑑
𝜙2(𝑥)∫  

ℝ 
𝑑−1

|𝜉′|2𝑠+2 𝑎+(𝑥𝑑|𝜉
′| ℎ−1, |𝜉′|−2𝑠 )

𝑑𝜉′𝑑𝑥

(2𝜋)𝑑−1
. 

Using again (179), we find that 

𝐼ℎ[𝜙]  =  𝐿𝑠,𝑑
(1)
 ∫  
ℝ+
𝑑
 𝜙2(𝑥) 𝑑𝑥 ℎ−𝑑 + ∫  

ℝ+
𝑑
 𝜙2(𝑥) 𝐾 (

𝑥𝑑
ℎ
) 𝑑𝑥 ℎ−𝑑 .      (181) 

It remains to study 𝑅ℎ[𝜙]. We claim that for any 
1

2
−  𝑠 < 𝜎 < min {

1

2
 , 1 −  𝑠} there is a 

constant 𝐶𝜎  >  0 such that 

|𝑅ℎ[𝜙]| ≤  𝐶𝜎  ℎ
−𝑑+2𝑠+2𝜎                                                (182) 

for all ℎ >  0. This, together with (181) will complete the proof of (177). In order to show 

(182) we perform the p integration and find that 
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𝑅ℎ[𝜙]

=
𝐶

ℎ𝑑−2𝑠
∫  
ℝ+
𝑑
∫  
ℝ+
𝑑
∫  
ℝ 
𝑑−1

|𝜉′|  𝑒𝑖𝜉
′.(𝑥′−𝑦′)/ℎ (

𝑥𝑑|𝜉
′| 

ℎ
,
𝑦𝑑|𝜉

′| 

ℎ
,

1

|𝜉′|−2𝑠 
)
|𝜙 (𝑥) − 𝜙(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠
𝑑𝜉′𝑑𝑥𝑑𝑦. 

We insert 

𝑒𝑖𝜉
′.(𝑥′−𝑦′)/ℎ =

ℎ2𝜎

|𝜉′|2𝜎
(∆𝑥′)

𝜎𝑒𝑖𝜉
′.(𝑥′−𝑦′)/ℎ 

and integrate by parts to get 

𝑅ℎ[𝜙] =
𝐶

ℎ𝑑−2𝑠−2𝜎
∫  
ℝ+
𝑑
∫  
ℝ+
𝑑
∫  
ℝ 
𝑑−1

|𝜉′|1−2𝜎𝑒𝑖𝜉
′.(𝑥′−𝑦′)/ℎ𝑒+ (

𝑥𝑑|𝜉
′| 

ℎ
,
𝑦𝑑|𝜉

′| 

ℎ
,

1

|𝜉′|−2𝑠 
)𝑑𝜉′ 

× (∆𝑥′)
𝜎
|𝜙 (𝑥) − 𝜙(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠
𝑑𝑥𝑑𝑦. 

By Lemma (2.3.22) and the fact that 𝑒+(𝑡, 𝑢, 𝜇) =   0 for 𝜇 ≤  1 we arrive at 

𝑅ℎ[𝜙] ≤
𝐶

ℎ𝑑−2𝑠−2𝜎
∫  
ℝ+
𝑑
∫  
ℝ+
𝑑
∫  
{𝜉′∈ℝ 

𝑑−1|𝜉′|<1}

|𝜉′|2𝜎𝑑𝜉′ |(∆𝑥′)
𝜎
|𝜙 (𝑥) − 𝜙(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠
| 𝑑𝑥𝑑𝑦 

     ≤
𝐶

ℎ𝑑−2𝑠−2𝜎
∫  
ℝ+
𝑑
∫  
ℝ+
𝑑
|(∆𝑥′)

𝜎
|𝜙 (𝑥) − 𝜙(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠
| 𝑑𝑥𝑑𝑦 

According to Lemma (2.3.26) this implies (182) and hence completes the proof of (177). 

We show Proposition (2.3.12). After having analyzed the half-space, we now show 

how the case of a general domain follows. We shall transform the operator 𝐻Ω locally to an 

operator given on the half-space 

ℝ+
𝑑 = {(𝑦′, 𝑦𝑑  ) ∈  ℝ

𝑑−1 ×ℝ ∶  𝑦𝑑  >  0} 
and we shall quantify the error made by this straightening of the boundary.  

        Under the conditions of Proposition (2.3.12), let B denote the open ball of radius 𝑙 >
 0, containing the support of 𝜙. For 𝑥0 ∈  𝐵 ∩  𝜕Ω let 𝑣𝑥0 be the inner normal unit vector at 

𝑥0. We choose a Cartesian coordinate system such that 𝑥0 =  0 and 𝑣𝑥0 = (0,… ,0,1), and 

we write 𝑥 = (𝑥0 , 𝑥𝑑  ) ∈  ℝ
𝑑−1 ×ℝ for 𝑥 ∈  ℝ𝑑  .  

        For sufficiently small 𝑙 >  0 one can introduce new local coordinates near the 

boundary. Let 𝐷 denote the projection of 𝐵 on the hyperplane given by 𝑥𝑑 =  0. Since the 

boundary of Ω is compact and 𝐶1,𝛼 , there is a constant 𝑐 >  0 such that for 0 <  𝑙 ≤  𝑐 we 

can find a real function 𝑓 ∈  𝐶1,𝛼 given on 𝐷 satisfying  

𝜕Ω ∩  𝐵 = {(𝑥0 , 𝑥𝑑  ): 𝑥
′ ∈  𝐷, 𝑥𝑑 =  𝑓(𝑥

′)} ∩   𝐵.  
The choice of coordinates implies 𝑓 (0) =  0 and ∇𝑓 (0) =  0. Hence, we can estimate  

sup
𝑥′∈𝐷

  |∇𝑓 (𝑥′)| = sup
𝑥′∈𝐷

 |∇𝑓 (𝑥′) − ∇𝑓(0)| ≤  𝐶𝑓 |𝑥
′|𝛼 ≤ 𝐶𝑓 𝑙

𝛼 . 

Since the boundary of Ω is compact, we can choose a constant 𝐶 >  0, depending only on 

Ω, in particular independent of 𝑓 , such that the following bound holds:  

sup
𝑥′∈𝐷

  |∇𝑓(𝑥′)| ≤  𝐶 𝑙𝛼 .                                                 (183) 

We introduce new local coordinates via the diffeomorphism 𝜑 ∶  𝐷 × ℝ → ℝ𝑑  , given by  

𝑦𝑗 = 𝜑𝑗  (𝑥) =  𝑥𝑗    for   𝑗 =  1,… , 𝑑 − 1  

and  

𝑦𝑑 = 𝜑𝑑(𝑥) =  𝑥𝑑  𝑓(𝑥
′).  
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Note that the determinant of the Jacobian matrix of ' equals 1 and that the inverse of ' is 

given on ran 𝜑 =  𝐷 × ℝ. In particular, we get  

𝜑(𝜕Ω ∩ 𝐵)  ⊂  𝜕ℝ+
𝑑 = {𝑦 ∈  ℝ𝑑 ∶  𝑦𝑑 =  0}. 

Fix 𝑣 ∈  H   𝑠(Ω) with support in 𝐵. For 𝑦 ∈  ran𝜑 put 𝑣(𝑦) =   𝑣 °𝜑−1(𝑦) and extend 𝑣 by 

zero to ℝ𝑑  .  
Lemma (2.3.10)[103]:   The function �̃� belongs to H   𝑠(ℝ+

𝑑) and there exist positive 

constants 𝑐 and 𝐶 depending only on Ω  such that for 0 <  𝑙 ≤  𝑐 we have  

|(�̃�, (−∆)
ℝ+
𝑑

𝑠 �̃�) − (�̃�, (−∆)Ω
𝑠   𝑣)| ≤  𝐶 𝑙𝛼min {(𝑣, (−∆)

ℝ+
𝑑

𝑠  𝑣) , (𝑣, (−∆)𝛺
𝑠 𝑣)}.  

Proof: By definition, �̃� belongs to H   𝑠(ℝ 
𝑑) and for 𝑦 ∈  H   𝑠ℝ 

𝑑  /ℝ+
𝑑  we find 

 𝑥𝑑 = 𝑦𝑑 +  𝑓 (𝑦
′)   <  𝑓(𝑥′), 

 thus �̃�(𝑦) =  𝑣(𝑥) =  0. Therefore �̃� belongs to H   𝑠(ℝ+
𝑑).  

         Using the new local coordinates we get  

(𝑣, (−∆)Ω
𝑠 𝑣) =  𝐶𝑠,𝑑  ∫  

ℝ 
𝑑

∫  
ℝ 
𝑑

|𝑣(𝑥) − 𝑣(𝑤)|2

|𝑥 − 𝑤|𝑑+2𝑠
𝑑𝑥𝑑𝑤

= 𝐶𝑠,𝑑  ∫  
ℝ 
𝑑

∫  
ℝ 
𝑑

|�̃�(𝑦) − �̃�(𝑧)|2

|𝑥 − 𝑤|𝑑+2𝑠
𝑑𝑦𝑑𝑧,                                                            (184) 

where 𝑦 = 𝜑 (𝑥) and 𝑧 = 𝜑(𝑤), thus 𝑥 = (𝑦′ , 𝑦𝑑 +  𝑓 (𝑦
′)) and 𝑤 = (𝑧′, 𝑧𝑑 +  𝑓 (𝑧

′)) .  
Let us write 

  |
1

|𝑦 − 𝑧|𝑑+2𝑠 
−

1

|𝑥 − 𝑤|𝑑+2𝑠
|

=
1

|𝑦 − 𝑧|𝑑+2𝑠 
|

|𝑦 − 𝑧|𝑑+2𝑠

[|𝑦′ − 𝑧′|2 + (𝑦𝑑 + 𝑓(𝑦
′) − 𝑧𝑑 − 𝑓(𝑧

′))
2
]
𝑑/2+𝑠

|. 

After multiplying out, the last fraction equals  

(1 +
(𝑓(𝑦′) − 𝑓(𝑧′))

2
+ 2(𝑦𝑑 − 𝑧𝑑)(𝑓(𝑦

′) − 𝑓(𝑧′))

|𝑦 − 𝑧|2
) 

and we can employ (183) to estimate  

|
(𝑓(𝑦′) − 𝑓(𝑧′))

2
+ 2(𝑦𝑑 − 𝑧𝑑)(𝑓(𝑦

′) − 𝑓(𝑧′))

|𝑦 − 𝑧|2
| 

sup|∇𝑓|
|𝑦′ − 𝑧′|2

|𝑦 − 𝑧|2
+ sup|∇𝑓|

|𝑦′ − 𝑧′| |𝑦𝑑 − 𝑧𝑑|

|𝑦 − 𝑧|2
< 𝐶𝑙𝛼 . 

Choosing l small enough, we can assume 𝐶 𝑙𝛼  <  1/2. Then, combining the foregoing 

relations, we find  

|
1

|𝑥 − 𝑤|𝑑+2𝑠
−

1

|𝑦 − 𝑧|𝑑+2𝑠 
| < 𝐶

𝑙𝛼

|𝑦 − 𝑧|𝑑+2𝑠 
.                   (185) 

 From (184) and (185) we conclude  

          |(�̃�, (−∆)
ℝ+
𝑑

𝑠 �̃�) − (�̃�, (−∆)Ω
𝑠   𝑣)| 

≤ 𝐶𝑠,𝑑∬ |�̃�(𝑦) − �̃�(𝑧)|2 |
1

|𝑥 − 𝑤|𝑑+2𝑠
−

1

|𝑦 − 𝑧|𝑑+2𝑠 
| 𝑑𝑦𝑑𝑧 
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                    ≤ 𝐶𝑙𝛼 (�̃�, (−∆)
ℝ+
𝑑

𝑠 �̃�). 

This proves the first claim of the lemma. The second claim follows by interchanging the 

roles of (−∆)
ℝ+
𝑑

𝑠  and (−∆)Ω
𝑠  .  

        On the range of ' we define �̃� = 𝜙 ° 𝜑−1  and extend the function by zero to ℝ𝑑 such 

that �̃� ∈  𝐶0
∞(ℝ𝑑) and ‖∇�̃�‖ ≤  𝐶 𝑙−1 hold. Using Lemma (2.3.10), we show the following 

relations.  

Lemma (2.3.11)[103]:   For 0 <  𝑙 ≤  𝑐 and any ℎ >  0 the estimate  

|Tr(𝜙𝐻Ω𝜙)− − Tr(𝜙𝐻
+𝜙)−| ≤ 𝐶𝑙

𝑑+𝛼ℎ−𝑑                      (186)  
holds. Moreover, we have  

 ∫  
Ω

𝜙2(𝑥)𝑑𝜎(𝑥) = ∫  
ℝ+
𝑑
�̃�2(𝑦)𝑑𝑦                                    (187) 

and  

0 ≤ ∫  
∂Ω

𝜙2(𝑥)𝑑𝜎(𝑥) − ∫  
ℝ+
𝑑
�̃�2(𝑦′, 0)𝑑𝑦′ ≤ 𝐶𝑙𝑑−1+2𝛼           (188) 

Proof: The definition of �̃� and the fact that the Jacobian of 𝜙 equals 1 immediately give 

(187). Using (183), we estimate  

∫  
∂Ω

𝜙2(𝑥)𝑑𝜎(𝑥) = ∫  
ℝ 
𝑑−1

�̃�2(𝑦′, 0)√1 + |∇𝑓|2𝑑𝑦′ ≤ ∫  
ℝ 
𝑑−1

�̃�2(𝑦′, 0)𝑑𝑦′ + 𝐶𝑙𝑑−1+2𝛼 . 

from which (188) follows. To prove (186) we refer to the variational principle once more 

and note that  

−Tr(𝜙𝐻Ω𝜙)− = inf
0≤γ≤1

 Tr(𝜙𝛾𝜙𝐻Ω) , 

where we can assume that infimum is taken over trial density matrices supported in 𝐵 × 𝐵. 
Fix such a matrix . For y and z from 𝐷 × ℝ set  

γ̃(𝑦, 𝑧) = 𝛾 (𝜑−1 (𝑦), 𝜑−1 (𝑧)),  

so that 0 ≤ γ̃ ≤ 1 and the range of γ̃ belongs to the form domain of �̃�𝐻+�̃�. According to 

Lemma (2.3.10) it follows that  

Tr(𝜙𝛾𝜙𝐻Ω) ≥ Tr (�̃�𝛾�̃�(ℎ
2𝑠(1 − 𝐶𝑙𝛼)(−∆)

ℝ+
𝑑

𝑠 − 1))
 

≥ Tr (�̃� ((1 − 𝐶𝑙𝛼)ℎ2𝑠(−∆)
ℝ+
𝑑

𝑠 − 1) �̃�)
−

 

and consequently  

Tr(𝜙𝐻Ω𝜙)− ≥ Tr (�̃� ((1 − 𝐶𝑙
𝛼)ℎ2𝑠(−∆)

ℝ+
𝑑

𝑠 − 1) �̃�)
−
. 

Set 𝜀 = 2𝐶𝑙𝛼 and assume 𝑙 to be sufficiently small, so that 0 <  𝜀 ≤ 1/2. Then 

         Tr(𝜙𝐻Ω𝜙)− ≤ Tr (�̃� ((1 − 𝐶𝑙
𝛼)ℎ2𝑠(−∆)

ℝ+
𝑑

𝑠 − 1) �̃�)
−

 

Tr(𝜙𝐻Ω𝜙)− ≤ Tr (�̃� ((−ℎ
2𝑠∆ − 1)

ℝ+
𝑑

𝑠 ) �̃�)
−
+ Tr (�̃� ((𝜀 − 𝐶𝑙𝛼)ℎ2𝑠(−∆)

ℝ+
𝑑

𝑠 − 𝜀) �̃�)
−

≤ Tr(�̃�𝐻+�̃�)
−
+ 𝜀 Tr (�̃� ((ℎ2𝑠/2)(−∆)

ℝ+
𝑑

𝑠 − 1) �̃�)
−
. 

Using Lemma (2.3.4), we estimate Tr (�̃� ((ℎ2𝑠/2)(−∆)
ℝ+
𝑑

𝑠 − 1) �̃�)
−
≤ 𝐶𝑙𝑑ℎ−𝑑 and it 

follows that  
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Tr(𝜙𝐻Ω𝜙)− ≤ Tr(�̃�𝐻
+�̃�)

−
+ 𝐶𝑙𝑑+𝛼ℎ−𝑑   

Finally, by interchanging the roles of 𝐻Ω and 𝐻+, we get an analogous lower bound and the 

proof of the lemma is complete.  

Proposition (2.3.12)[103]:   There is a constant 𝑐 >  0 depending only on Ω such that the 

following holds. Assume that 𝜙 ∈  𝐶0
1 (ℝ𝑑) is real-valued, supported in a ball of radius 0 <

 𝑙 ≤  𝑐 intersecting the boundary of Ω and satisfies (160). Then for all ℎ >  0 the estimates  

−�̃�𝑏𝑑(𝑙, ℎ) ≤ Tr(𝜙𝐻Ω𝜙)− 𝐿𝑠,𝑑
(1)
 ∫  
Ω

 𝜙2 (𝑥) 𝑑𝑥 ℎ−𝑑 + 𝐿𝑠,𝑑
(2)
∫  
𝜕Ω

𝜙2 (𝑥)𝑑𝜎(𝑥) ℎ−𝑑+1

≤ �̃�𝑏𝑑(𝑙, ℎ)  
hold. Here d denotes the (𝑑 −  1)-dimensional volume element of 𝜕Ω and the remainder 

terms satisfy for any 0 <  𝛿1  <  1 and 0 < 𝛿2  < min{1, 2𝑠} 

𝑅𝑏𝑑(𝑙, ℎ) ≤  𝐶𝛿1  (
𝑙𝑑−1−𝛿1

ℎ𝑑−1𝛿1
+
𝑙𝑑+𝛼

ℎ𝑑
),  

�̃�𝑏𝑑(𝑙, ℎ) ≤  𝐶𝛿1,𝛿2   (
𝑙𝑑−1−𝛿1

ℎ𝑑−1−𝛿1
+ 
𝑙𝑑−1−𝛿2

ℎ𝑑−1−𝛿2
+
𝑙2𝛼+𝑑−1

ℎ𝑑−1
+ 
𝑙𝑑+𝛼

ℎ𝑑
),  

with positive constants 𝐶𝛿1  , 𝐶𝛿1,𝛿2 depending on 𝛿1, 𝛿2, Ω and the constant in (160).  

         Based on these propositions we can complete the proof of Theorem (2.3.3). 

Proof: It suffices to combine Lemma (2.3.11) and Proposition (2.3.9).  

We construct the family of localization functions (𝜙𝑢)𝑢∈ℝ𝑑 and prove Proposition 

(2.3.15). Fix a real-valued function 𝜙 ∈  𝐶0
∞ (ℝ𝑑) with support in {𝑥 ∈ ℝ𝑑 ∶ |𝑥| <  1} that 

satisfies ‖𝜙‖2 =  1. We recall the definition of the local length scale from (157). For 𝑢, 𝑥 ∈
 ℝ𝑑 let 𝐽(𝑥, 𝑢) be the Jacobian of the map 𝑢 ↦ (𝑥 − 𝑢)/ 𝑙(𝑢). We define  

𝜙𝑢(𝑥) = 𝜙 (
𝑥 −  𝑢

𝑙(𝑢)
)√ 𝐽(𝑥, 𝑢) 𝑙(𝑢)𝑑/2,  

such that 𝜙𝑢 is supported in the ball 𝐵𝑢 = {𝑥 ∈ ℝ
𝑑   |𝑥 −  𝑢|   <  𝑙(𝑢)}  . 

        By definition, the function 𝑙(𝑢) is smooth and satisfies 0 <  𝑙(𝑢) ≤  1/2 and ‖∇𝑙‖∞ ≤
 1/2. Therefore, according to [120], the functions 𝜙𝑢 satisfy (158) and (159) for all 𝑢 ∈
 ℝ𝑑  .  
        To prove the lower bound in Proposition (2.3.15), we follow some ideas from [115]. In 

particular, we need the following auxiliary results; the first one gives an IMS-type 

localization formula for the fractional Laplacian.  

Lemma (2.3.13)[103]: For the family of functions (𝜙𝑢)𝑢∈ℝ𝑑 introduced above and for all 

functions 𝑓 ∈  H   𝑠(Ω) the identity . 

(𝑓, (−∆)𝑠𝑓 ) = ∫  
Ω∗
 (𝜙𝑢𝑓, (−∆)

𝑠𝜙𝑢𝑓)𝑙(𝑢)
−𝑑  𝑑𝑢 − (𝑓, 𝐿𝑓)  

holds with Ω∗ = {𝑢 ∈  ℝ𝑑  supp 𝜙𝑢  ∩   Ω ≠ ∅}. The operator 𝐿 is of the form  

𝐿 = ∫   
Ω∗
 𝐿𝜙𝑢  𝑙(𝑢)

−𝑑  𝑑𝑢,                                                        (189)  

where 𝐿𝜙𝑢 is a bounded operator with integral kernel  

𝐿𝜙𝑢  (𝑥, 𝑦) =  𝐶𝑠,𝑑  
|𝜙𝑢(𝑥) − 𝜙𝑢(𝑦)|

2

|𝑥 −  𝑦|𝑑+2𝑠
 𝜒Ω(𝑥)𝜒Ω(𝑦).  

Here 𝜒Ω denotes the characteristic function of Ω. 



 

94 
 

        Lemma (2.3.13) implies that for any operator with range in H  𝑠(Ω)  

 Tr𝛾(−∆)𝑠 = ∫  
ℝ𝑑
 Tr(𝛾𝜙𝑢(−∆)

𝑠𝜙𝑢)𝑙(𝑢)
−𝑑  𝑑𝑢 − Tr𝛾𝐿.                  (190) 

The next result allows to estimate the localization error Tr 𝛾𝐿.  

Lemma (2.3.14)[103]: For 𝑢 ∈  ℝ𝑑 and 0 < 𝛿 ≤ 1/2 we have  

Tr𝛾 𝐿𝜙𝑢 ≤  Tr𝛾(𝐶 𝛿2−2𝑠(𝑢)2𝑠𝜒𝛿𝜒Ω) + 𝐶‖𝛾‖(𝑢)
2𝑠 𝛿−𝑑+2−2𝑠𝑟(𝛿) 

with  

𝑟(𝛿) =

{
 
 

 
 1              𝑖𝑓  1 −

𝑑

4
< 𝑠 < 1,

|ln𝛿|          𝑖𝑓   0 < 𝑠 = 1 −
𝑑

4
,

𝛿𝑑+4𝑠−4      𝑖𝑓  0 < 𝑠 < 1 −
𝑑

4
,

 

where 𝜒𝛿 denotes the characteristic function of {𝑥 ∈  ℝ𝑑  |𝑥 −  𝑢| <  𝑙(𝑢)(1 +  𝛿)}  .  
Proof: By translation and scaling we can assume that 𝑢 =  0 and 𝑙(𝑢) =  1, and hence we 

write 𝜙𝑢 = 𝜙 . (This rescaling changes Ω, but the bound we are going to prove is 

independent of the domain and therefore not affected by this dilation.) We set  

𝐿𝜙
1 (𝑥, 𝑦) − {

𝐿𝜙(𝑥, 𝑦)𝜒𝛿(𝑥)𝜒𝛿(𝑦)    𝑖𝑓|𝑥 − 𝑦| < 𝛿,

0                                      𝑖𝑓|𝑥 − 𝑦| ≥ 𝛿,
 

𝐿𝜙
0 (𝑥, 𝑦) = 𝐿𝜙

 (𝑥, 𝑦) − 𝐿𝜙
1 (𝑥, 𝑦) 

and 

𝜃(𝑥) = ∫  𝐿𝜙
1 (𝑥, 𝑦)𝑑𝑦. 

By a simple adaption of the arguments of [115] we find that for any 𝜖 > 0  

Tr𝛾𝐿𝜙 ≤ Tr𝛾(𝜃 + 𝜀𝜒0) +
‖𝛾‖

2𝜀
Tr(𝐿𝜙

0 )
2
.                         (191) 

It remains to bound 𝜃 and Tr(𝐿𝜙
0 )

2
.  

         We begin by estimating 𝜃. By definition, for |𝑥| ≥  1 + 𝛿 we have 𝐿𝜙
1 (𝑥, 𝑦) = 0 and 

hence 𝜃(𝑥) =  0, and for |𝑥| <  1 + 𝛿  we get 

𝜃(𝑥) =  𝐶𝑠,𝑑∫  
|𝑥−𝑦|<𝛿
|𝑦|<1+𝛿

 
(𝜙𝑢(𝑥) − 𝜙𝑢(𝑦))

2

|𝑥 −  𝑦|𝑑+2𝑠
 𝜒Ω(𝑥)𝜒Ω(𝑦)𝑑𝑦 

Thus, for all 𝑥 ∈ ℝ𝑑 

𝐶‖∇𝜙‖∞
2  𝜒Ω(𝑥)∫  

|𝑥−𝑦|<𝛿
 

 
1

|𝑥 −  𝑦|𝑑+2𝑠
𝑑𝑦.                 (192) 

        Finally, we estimate Tr(𝐿𝜙
0 )

2
 .The symmetry 𝐿𝜙

0 (𝑥, 𝑦) implies  

Tr(𝐿𝜙
0 )

2
∬ 

 

𝐴

(
(𝜙𝑢(𝑥) − 𝜙𝑢(𝑦))

2

|𝑥 −  𝑦|𝑑+2𝑠
)

2

𝑑𝑥𝑑𝑦, 

where 𝐴 denote the set {(𝑥, 𝑦) ∈ ℝ𝑑 × ℝ𝑑: |𝑥| < min(|𝑦|, 1) , |𝑥 − 𝑦 ≥ 𝛿}. Set  

𝐴1 = {(𝑥, 𝑦) ∈   𝐴 ∶ |𝑦| ≥ 2}   and 𝐴2 = {(𝑥, 𝑦) ∈  𝐴 ∶ |𝑦| <  2}. 
Then  
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Tr(𝐿𝜙
0 )

2
≤∬ 

 

𝐴1

(
𝜙(𝑥)4

|𝑥 −  𝑦|𝑑+2𝑠
)

 

𝑑𝑥𝑑𝑦 + 𝐶‖∇𝜙‖∞
4 ∬ 

 

𝐴2

1

|𝑥 −  𝑦|2𝑑+4𝑠−4
𝑑𝑥𝑑𝑦. 

Observe that the right-hand side is bounded by 𝐶 𝛿−𝑑−4𝑠+4 for 1 −  𝑑/4 <  𝑠 <  1, by 

𝐶|ln  𝛿| for 0 <  𝑠 =  1 − 𝑑/4, and by 𝐶 for 0 <  𝑠 <  1 −  𝑑/4. Finally, we choose 𝜀 =
𝛿2−2𝑠 and combining the last estimates with (191) and (192) yields the claimed result.  

Proposition (2.3.15)[103]:    There is a constant 𝐶 >  0 depending only on 𝑠 and 𝑑 such 

that for all 0 <  𝑙0 ≤  1/2 and all 0 <  ℎ ≤  𝐶−1 𝑙0 the estimates  

0 ≤ Tr(𝐻Ω)−  ∫  
ℝ𝑑
 Tr(𝜙𝑢𝐻Ω𝜙𝑢)−𝑙(𝑢)

−𝑑  𝑑𝑢 ≤  𝐶 ℎ−𝑑+2 𝑙0
−1 𝑅loc(𝑙0, ℎ)  

hold with a remainder  

𝑅loc(𝑙0, ℎ) =  

{
  
 

  
 1          𝑖𝑓  1 −

𝑑

4
< 𝑠 < 1,

|ln (
𝑙0
ℎ
)|

1
2
     𝑖𝑓 0 < 𝑠 = 1 −

𝑑

4
 

(
𝑙0
ℎ
)
2−2𝑠−𝑑2

    𝑖𝑓 0 < 𝑠 < 1 −
𝑑

4

 

        In view of this result, one can analyze the local asymptotics, i.e., the asymptotic 

behavior of Tr(𝜙𝑢𝐻Ω𝜙𝑢), separately on different parts of Ω. First, we consider the bulk, 

where the influence of the boundary is not felt. 

Proof: We apply Lemma (2.3.14) with a parameter 0 < 𝛿𝑢 ≤  1/2 to be specified later. For 

ease of notation we write 𝑢 instead of 𝛿𝑢 . Identities (189) and (190) and the estimate from 

Lemma (2.3.14) imply  

Tr𝛾(−∆)𝑠 ≥ ∫  
Ω∗
 Tr𝛾(𝜙𝑢(−∆)

𝑠𝜙𝑢 − 𝐶 𝛿𝑢
2−2𝑠 𝑙(𝑢)−2𝑠𝜒𝑢𝜒Ω) 𝑙(𝑢)

−𝑑𝑑𝑢

− 𝐶‖𝛾‖ ∫  
Ω∗
 𝛿𝑢
−𝑑+2−2𝑠 𝑟(𝛿𝑢)𝑙(𝑢)

−𝑑−2𝑠 𝑑𝑢.                                                  (193) 

        If the supports of 𝑢 and 𝜙𝑢′ overlap, we have |𝑢 − 𝑢′| (3/2)𝑙(𝑢)  +  𝑙(𝑢′). It follows 

that 𝑙(𝑢′) −  𝑙(𝑢) ≤  ‖∇𝑙‖∞
 . ((3/2)𝑙(𝑢) +  𝑙(𝑢′)) . Since ‖∇𝑙‖∞

 ≤  1/2, we find 

𝑙(𝑢′)−1 ≤  𝐶 𝑙(𝑢) and 𝑙(𝑢)−1 ≤  𝐶𝑙(𝑢′)−1 . Similarly, we get 𝑙(𝑢) ≤  𝐶 𝑙(𝑢′). We assume 

now that ıu satisfies  

𝛿𝑢 ≤  𝐶𝛿𝑢′      if    |𝑢 − 𝑢
′| ≤

3

2
 (𝑙(𝑢) +  𝑙(𝑢′))                      (194) 

Using these locally uniform bounds on 𝑙(𝑢)/ 𝑙(𝑢′) and 𝛿𝑢 = 𝛿𝑢′, together with (159), we 

can deduce the pointwise bound for all 𝑥 ∈  ℝ𝑑  

               ∫  
Ω∗
𝛿𝑢
2−2𝑠𝑙(𝑢)−2𝑠𝜒u(𝑥)𝜒Ω(𝑥)

𝑑𝑢

𝑙(𝑢)𝑑
  

= ∫  
Ω∗
𝛿𝑢
2−2𝑠𝑙(𝑢)−2𝑠𝜒u(𝑥)𝜒Ω(𝑥) (∫  𝜙𝑢′(𝑥)

2
𝑑𝑢′

𝑙(𝑢′)𝑑
)
𝑑𝑢

𝑙(𝑢)𝑑
 

≤ 𝐶∫  
Ω∗
𝜙𝑢′(𝑥)

 𝛿𝑢′
2−2𝑠𝑙(𝑢′)−2𝑠𝜙𝑢′(𝑥)

 
𝑑𝑢′

𝑙(𝑢′)𝑑
. 

Rewriting the last integral with 𝑢 as integration variable, in view of (193), we find  



 

96 
 

Tr𝛾(−∆)𝑠 ≥ ∫  
Ω∗
 Tr𝛾 (∫  𝜙𝑢 ((−∆)

𝑠 −
𝐶𝛿𝑢

2−2𝑠

𝑙(𝑢)2𝑠
)𝜙𝑢)

𝑑𝑢

𝑙(𝑢)𝑑
 

−𝐶‖𝛾‖∫  
Ω∗
𝛿𝑢
−𝑑+2−2𝑠𝑟(𝛿𝑢

 )
𝑑𝑢

𝑙(𝑢)𝑑+2𝑠
. 

By the variational principle it follows that  

Tr(𝐻Ω)− = inf
0≤𝛾≤1

 Tr𝛾((−ℎ2∆)𝑠 − 1)

≤ ∫  
Ω∗
Tr𝛾(𝜙𝑢((−ℎ

2∆)𝑠 − 1 − 𝐶 ℎ2𝑠𝛿𝑢
2−2𝑠𝑙(𝑢)−2𝑠)𝜙𝑢)

𝑑𝑢

𝑙(𝑢)𝑑

+ 𝐶ℎ2𝑠∫  
Ω∗
𝛿𝑢
−𝑑+2−2𝑠𝑟(𝛿𝑢

 )
𝑑𝑢

𝑙(𝑢)𝑑+2𝑠
.                                                             (195) 

To bound the first term, we use Lemma (2.3.4). For any 𝑢 ∈  ℝ𝑑  , let 𝜌𝑢 be another 

parameter satisfying 0 <  𝜌𝑢 ≤  1/2 and estimate  

Tr(𝜙𝑢((−ℎ
2∆)𝑠 − 1 − 𝐶 ℎ2𝑠𝛿𝑢

2−2𝑠𝑙(𝑢)−2𝑠)𝜙𝑢)−
≤ Tr(𝜙𝑢𝐻Ω𝜙𝑢)− + 𝐶Tr(𝜙𝑢(𝜌𝑢ℎ

2𝑠(−∆)𝑠 − 𝜌𝑢 − ℎ
2𝑠𝛿𝑢

2−2𝑠𝑙(𝑢)−2𝑠)𝜙𝑢)−
≤ Tr(𝜙𝑢𝐻Ω𝜙𝑢)− + 𝐶𝑙(𝑢)

𝑑(𝜌𝑢ℎ
2𝑠)−𝑑/(2𝑠)(𝜌𝑢 + ℎ

2𝑠𝛿𝑢
2−2𝑠𝑙(𝑢)−2𝑠)1+𝑑/(2𝑠). 

We pick 𝜌𝑢 = ℎ
2𝑠𝛿𝑢

2−2𝑠𝑙(𝑢)−2𝑠. By (165) and our assumption that 𝛿𝑢 ≤  1/2, we see that  

𝜌𝑢 ≤ (
ℎ

𝑙0
)
2𝑠

 26𝑠−2. 

We assume now that ℎ ≤  𝐶−1 𝑙0 (with a possibly large constant 𝐶) in order to guarantee 

that 𝜌𝑢 ≤  1/2. With this choice we find  

Tr (∫  𝜙𝑢 ((−∆)
𝑠 − 1 −

𝐶ℎ2𝑠𝛿𝑢
2−2𝑠

𝑙(𝑢)2𝑠
)𝜙𝑢)

−

≤ Tr(𝜙𝑢𝐻Ω𝜙𝑢)− + 𝐶
𝛿𝑢
2−2𝑠𝑙(𝑢)𝑑−2𝑠

ℎ𝑑−2𝑠
. (196) 

Combining (195) and (196), we obtain  

Tr(𝐻Ω)− ≤ ∫  
Ω∗
Tr(𝜙𝑢𝐻Ω𝜙𝑢)−

𝑑𝑢

𝑙(𝑢)𝑑
+ 𝐶∫  

Ω∗
(

𝛿𝑢
2−2𝑠

ℎ𝑑−2𝑠𝑙(𝑢)2𝑠
+
ℎ2𝑠𝛿𝑢

−𝑑𝑟(𝛿𝑢)

𝑙(𝑢)𝑑+2𝑠
)𝑑𝑢.  (197) 

At this point we choose 𝛿𝑢 in order to minimize the second integrand, which we shall denote 

by 𝐼𝑢. We pick 

𝛿𝑢 =

{
 
 

 
 ℎ/𝑙(𝑢)                                               𝑖𝑓  1 −

𝑑

4
< 𝑠 < 1,

(ℎ/𝑙(𝑢))|ln  (𝑙(𝑢)/ℎ)|1/(4−4𝑠)    𝑖𝑓  0 < 𝑠 = 1 −
𝑑

4
,

(ℎ𝑙(𝑢) )𝑑/(4−4𝑠)                               𝑖𝑓  0 < 𝑠 < 1 −
𝑑

4
,

 

and note that 𝛿𝑢 ≤  1/2 if ℎ ≤   𝐶
−1𝑙0 by (165). Moreover, (194) is an easy consequence of 

the corresponding estimate for 𝑙(𝑢)/𝑙(𝑢′). With this choice we arrive at the bounds  

𝐼𝑢 ≤ 𝐶

{
 
 

 
 ℎ−𝑑+2𝑙(𝑢)−2                                               𝑖𝑓  1 −

𝑑

4
< 𝑠 < 1,

ℎ−𝑑+2𝑙(𝑢)−2|ln  (𝑙(𝑢)/ℎ)|1/2              𝑖𝑓  0 < 𝑠 = 1 −
𝑑

4
,

ℎ−𝑑/2+2𝑠𝑙(𝑢)𝑑/2−2𝑠                               𝑖𝑓  0 < 𝑠 < 1 −
𝑑

4
,
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Finally, we integrate with respect to u. The same arguments that lead to (166) and (167) 

yield  

∫  
Ω∗
𝐼𝑢𝑑𝑢 ≤ 𝐶

{
 
 

 
 ℎ−𝑑+2𝑙0

−1                                                    𝑖𝑓  1 −
𝑑

4
< 𝑠 < 1,

ℎ−𝑑+2𝑙0
−1|ln  (𝑙(𝑢)/ℎ)|1/2                     𝑖𝑓  0 < 𝑠 = 1 −

𝑑

4
,

ℎ−𝑑/2+2𝑠𝑙𝑙0
−𝑑/2−2𝑠+1

                               𝑖𝑓  0 < 𝑠 < 1 −
𝑑

4
,

 

This completes the proof of the lower bound with the remainder stated in Proposition 

(2.3.15). 

        To prove the upper bound, we put  

γ = ∫  
ℝ𝑑
Tr(𝜙𝑢𝐻Ω𝜙𝑢)−

0𝜙𝑢𝑙(𝑢)
−𝑑𝑑𝑢. 

Obviously, γ ≥  0 holds and in view of (159) also γ ≥  1. The range of belongs to H   𝑠(Ω) 
and by the variational principle it follows that  

Tr(𝐻Ω)− ≤ Trγ𝐻Ω = −∫  
ℝd
Tr(𝜙𝑢𝐻Ω𝜙𝑢)−𝑙(𝑢)

−𝑑𝑑𝑢. 

This yields the upper bound and finishes the proof of Proposition (2.3.15).  

We study the second term of (161) in more detail. First we derive representation 

(154).  

Proposition (2.3.16)[103]: One has  

𝐿𝑠,𝑑
(2)
 =  ∫  

ℝ𝑑−1
𝜉(|𝑝′|−2𝑠)

𝑑𝑝′

(2𝜋)𝑑−1

=
|𝑆𝑑−2|

(2𝜋)𝑑−1
2𝑠

(𝑑 − 1)(𝑑 − 1 +  2𝑠)
 Tr [𝜒𝐴

(𝑑−1)
2𝑠  𝜒 − (𝐴+)

(𝑑−1)
2𝑠 ].             (198) 

Here  is the characteristic function of ℝ+ and  

𝜉(𝜇) = 𝜇−1∫  
∞

0

(𝑎(𝜇) − 𝑎+(𝑡, 𝜇)) 𝑑𝑡.                          (199) 

 Proof: The first identity follows immediately from (219) and (220). The second identity 

follows from the fact that  

∫  
ℝ𝑑−1

|𝑝′|2𝑠(𝐸 − |𝑝′|−2𝑠)−
𝑑𝑝′

(2𝜋)𝑑−1
= 

|𝑆𝑑−2|

(2𝜋)𝑑−1
2𝑠

(𝑑 − 1)(𝑑 − 1 +  2𝑠)
𝐸−(𝑑−1)/2𝑠 

for any E > 0, which by the Spectral Theorem implies that  

∫  
ℝ𝑑−1

|𝑝′|2𝑠𝑎+(𝑡, |𝑝′|−2𝑠) 
𝑑𝑝′

(2𝜋)𝑑−1
= 

|𝑆𝑑−2|

(2𝜋)𝑑−1
2𝑠

(𝑑 − 1)(𝑑 − 1 +  2𝑠)
(𝐴+)−(𝑑−1)/2𝑠(𝑡, 𝑡) 

and similarly for 𝐴.  

Remark (2.3.17)[103]: There is another representation, namely,  

𝐿𝑠,𝑑
(2)
=

2𝑠

𝑑 − 1 +  2𝑠
∫  
ℝ𝑑−1

𝜉(|𝑝′|−2𝑠)−
𝑑𝑝′

(2𝜋)𝑑−1
                     (200) 

where  

𝜉(𝜇) = ∫  
∞

0

(𝑒(𝜇) − 𝑒+(𝑡, 𝜇)) 𝑑𝑡.                                (201) 
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Here 𝑒(𝜇) and 𝑒+(𝑡, 𝜇) are the diagonals of the integral kernels of the spectral projections 

(𝐴 − 𝜇)−
0  and (𝐴+ − 𝜇)−

0  , respectively. We have not shown that the integral in (201) 

converges, since we will not use (200). Identity (200) is an easy consequence of (198) and 

the fact that  

𝑎(𝜇) = ∫  
𝜇

0

 𝑒(𝜏)𝑑𝜏, 𝑎+(𝑡, 𝜇) = ∫  
𝜇

0

 𝑒+(𝑡, 𝜏 )𝑑𝜏,  

which follows by the Spectral Theorem from (𝐸 − 𝜇)− = ∫  
𝜇

0
(𝐸 − 𝜏)−

0𝑑𝜏. Representation 

(200) is natural since in terms of this function the conjectured formula for the number of 

negative eigenvalues of 𝐻Ω takes the form 

∬  
 

𝑇∗Ω

(|𝑝′|−2𝑠)−
0
𝑑𝑝 𝑑𝑥

(2𝜋ℎ)𝑑
−∬  

 

𝑇∗ ∂Ω

𝜉(|𝑝′|−2𝑠)−
𝑑𝑝′𝑑𝜎(𝑥)

(2𝜋ℎ)𝑑−1
+ 𝑜(ℎ−𝑑+1) 

which is the analogue of well-known two-term semi-classical formulas in the local case; see 

[111], [118]. The function 𝜉 plays the role of a spectral shift. Note that we avoided to write 

(199) and (201) in terms of a trace. While the integrals on the diagonals converge, we do 

not expect the operators to be trace class, see [117].  

Lemma (2.3.18)[103]: Let 𝐵 be a non-negative operator with ker 𝐵 = {0} and let P be an 

orthogonal projection. Then for any operator monotone function 𝜙 ∶ (0,∞) → ℝ,  

 𝑃𝜙(𝑃𝐵𝑃)𝑃 ≥ 𝑃𝜙(𝐵)𝑃.                                              (202) 

If, in addition, 𝐵 is positive definite and - is not affine linear, then 𝑃𝜙(𝑃𝐵𝑃)𝑃 =  𝑃𝜙(𝐵)𝑃 

implies that the range of 𝑃 is a reducing subspace of 𝐵.  

By definition, the range of 𝑃 is a reducing subspace of a non-negative (possibly 

unbounded) operator if (𝐵 + 𝜏)−1 ran𝑃 ⊂  ran𝑃 for some 𝜏 >  0. We note that this is 

equivalent to (𝐵 + 𝜏 )−1 commuting with 𝑃, and we see that the definition is independent 

of 𝜏 since  

(𝐵 + 𝜏 ′ )−1𝑃 − 𝑃(𝐵 + 𝜏′)−1

= (𝐵 + 𝜏 ) (𝐵 + 𝜏′)−1((𝐵 + 𝜏 )−1𝑃 − 𝑃(𝐵 + 𝜏′)−1)(𝐵 + 𝜏 ) (𝐵 + 𝜏′)−1. 
Hansen [109] has proved Lemma (2.3.18) for bounded B and without the equality statement. 

It is not clear how to extend his proof to our general case and we provide a different 

argument. 

We recall Löwner’s theorem [107] which characterizes operator monotone functions 

on (0,∞) by the representation  

𝜙(𝐸) =  𝑎 +  𝑏𝐸 + ∫  
(0,∞)

𝜏𝐸 − 1

𝐸 +  𝜏
  𝑑𝜌(𝜏)                                  (203) 

with 𝑎 ∈ ℝ, 𝑏 ≥  0 and a finite, positive measure 𝜌 on [0,∞). Note that the function 𝜙(𝐸) =
 𝐸𝑠 , 0 <  𝑠 <  1, to which we apply this lemma, is operator monotone in view of the 

representation  

𝐸𝑠 =
sin(𝜋𝑠)

𝜋
∫  
∞

0

 𝜏𝑠−1  
𝐸

𝐸 + 𝜏
𝑑𝜏, 0 <  𝑠 <  1.  

This is of the form (203) above with 𝑑𝜌(𝜏) = (sin(𝜋𝑠) 𝜋)(1 + 𝜏2)−1𝜏𝑠𝑑𝜏, 𝑎 =

∫  
∞

0
𝜏−1𝑑𝜌(𝜏)  and 𝑏 =  0.  

Proof: We first prove that  

𝑃𝐵−1𝑃 ≥  𝑃 (𝑃𝐵𝑃)−1𝑃.                             (204)  
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Here on the right side, the operator PBP is inverted as an operator on the range of 𝑃. By a 

monotone convergence argument we may assume that 𝐵 is positive definite. Let 𝑓 be an 

arbitrary element in the Hilbert space. For any in the form domain of 𝐵 we can write 

(𝑓, 𝑃𝐵−1𝑃𝑓) = (𝜓 , 𝐵 𝜓 ) +  2Re(𝑃𝑓, 𝜓) + ‖𝐵1/2𝜓 − 𝐵−1/2𝑃𝑓 ‖
2
 .  

We apply this to𝜓 =  𝑃 (𝑃𝐵𝑃)−1𝑃𝑓 . Note that belongs to the operator domain of 𝑃𝐵𝑃 and 

hence also to the form domain of 𝑃𝐵𝑃, which means that 𝑃𝜓 = 𝜓 belongs to the form 

domain of 𝐵. We find 

(𝑓, 𝑃𝐵−1𝑃𝑓) = (𝑓, 𝑃(𝑃𝐵𝑃)−1𝑃𝑓) + ‖𝐵1/2𝑃 (𝑃𝐵𝑃)−1𝑃𝑓 − 𝐵−1/2𝑃𝑓‖
2
. 

This proves (204). Moreover, if equality holds in (204) (still assuming that B is positive 

definite), then 𝐵1/2𝑃(𝑃𝐵𝑃)−1𝑃𝑓 =  𝐵1/2𝑃𝑓 for all 𝑓 , that is, 𝑃(𝑃𝐵𝑃)−1𝑃𝑓 =  𝐵−1𝑃𝑓 for 

all 𝑓 , which means that 𝐵−1 ran𝑃 ⊂  ran𝑃. Thus, ran𝑃 reduces 𝐵.  

        Now assume that 𝜙 is of the form (203) and rewrite  

𝜏𝐸 − 1

𝐸 + 𝜏
=  
𝜏2 + 1

𝐸 + 𝜏
. 

By the Spectral Theorem,  

𝑃𝜙(𝐵)𝑃 =  𝑎𝑃 +  𝑏𝑃𝐵𝑃 + ∫  
[0,∞)

(𝜏𝑃 (𝜏2 +  1)𝑃 (𝐵 + 𝜏)−1𝑃) 𝑑𝜌(𝜏) . 

Similarly, 𝑃𝐵𝑃 is a self-adjoint operator in the range of 𝑃 and by the Spectral Theorem in 

that space  

𝑃𝜙(𝑃𝐵𝑃)𝑃 =  𝑎𝑃 +  𝑏𝑃𝐵𝑃 + ∫  
[0,∞)

(𝜏𝑃 (𝜏2 +  1)𝑃 (𝑃𝐵𝑃 + 𝜏𝑃)−1𝑃) 𝑑𝜌(𝜏)   

Here, as before PBP C P is inverted in the range of P. Thus,  

𝑃𝜙(𝑃𝐵𝑃)𝑃 − 𝑃𝜙(𝐵)𝑃 =  ∫  
[0,∞)

(𝑃 (𝑃𝐵𝑃 + 𝜏𝑃)−1𝑃 − 𝑃 (𝐵 + 𝜏)−1𝑃)(𝜏2 +  1)𝑑𝜌(𝜏). 

By (204) with B replaced by 𝐵 + 𝜏, the integrand is a non-positive operator for every 𝜏 ∈
[0,∞). Thus, 𝑃𝜙(𝑃𝐵𝑃)𝑃 ≥  𝑃𝜙(𝐵)𝑃, as claimed.  

        This argument shows that 𝑃𝜙(𝑃𝐵𝑃)𝑃 =  𝑃𝜙(𝐵)𝑃 implies 

𝑃(𝑃𝐵𝑃 + 𝜏𝑃)−1𝑃 =  𝑃 (𝐵 + 𝜏)−1𝑃  
for 𝜏 ∈ [0,∞). If 𝜙 is not affine linear, then the measure 𝜌 is not identically zero and there 

is 𝜏 ∈ [0,∞) with 𝑃(𝑃𝐵𝑃 + 𝜏𝑃)−1𝑃 =  𝑃 (𝐵 +  𝜏)−1𝑃. Now the analysis of equality in 

(204) (note that 𝐵 + 𝜏 is positive definite) implies that ranP reduces 𝐵.  

Here we shall prove  

Proposition (2.3.19)[103]: For any 0 <  𝑠 <  1 and 𝑑 ≥  2 one has 𝐿𝑠,𝑑
(2)
>  0.  

Proof: We shall show that for arbitrary non-negative operators 𝐵 with ker 𝐵 = {0} and 

orthogonal projections 𝑃,  

Tr[𝑃𝐵𝛼𝑃 (𝑃𝐵𝑃)−𝛼 ] ≥  0 for all 𝛼 >  0.                        (205) 
If 𝐵 is positive definite, then equality holds iff the range of 𝑃 is a reducing subspace of 𝐵.  

        We apply this to the second representation in (198) with 𝐵 =  𝐴 and 𝑃 = 𝜒 and note 

that 𝐴+ = 𝜒𝐴𝜒. Thus (205) implies 𝐿𝑠,𝑑
(2)
≥ 0. Since 𝐵 ≥  1 and since the range of 𝑃 is not a 

reducing subspace for 𝐵 (indeed, (𝐴 +  𝜏)−1f does not necessarily vanish on (∞, 0) if f 

does), we even have 𝐿𝑠,𝑑
(2)
>  0, as claimed.  
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        It remains to prove (205). The argument is somewhat different depending on whether 

𝛼 ≤  1 or not. In the first case we learn from Lemma (2.3.18) with 𝜙(𝐸) =  𝐸−𝛼  that 

𝑃𝐵−𝛼𝑃 ≥ (𝑃𝐵𝑃)−𝛼 

with equality if and only if ran𝑃 reduces 𝐵. This immediately implies (205) and the equality 

statement. Now assume that 𝛼 >  1. Then Lemma (2.3.18) with 𝜙 (𝐸) =  𝐸−1/𝛼 yields  

𝑃𝐵𝑃 ≥ (𝑃𝐵−𝛼𝑃)−1/𝛼   
with equality if and only if ran𝑃 reduces 𝐵−𝛼 . Since 𝐸 ↦ 𝐸−𝛼 is strictly monotone 

decreasing, we obtain again (205) and, using the Spectral Theorem, the equality statement.  

It is well known that the Dirichlet Laplacian −∆Ω on Ω satisfies  

Tr(−ℎ2∆Ω − 1) =  𝐿1,𝑑
(1) |Ω|ℎ−𝑑  𝐿1,𝑑

(2) |𝜕Ω|ℎ−𝑑+1 +  𝑜(ℎ−𝑑+1),  

see, [108] for a proof under the sole assumption that 𝜕Ω ∈  𝐶1,𝛼  for some 0 <  𝛼 ≤  1. Here 

 𝐿1,𝑑
(1)

=
1

(2𝜋)𝑑
 ∫  
ℝ𝑑
 (|𝑝|2 −  1) 𝑑𝑝  

and, by an argument similar to that in our Proposition (2.3.16), one can bring the second 

constant in the form  

𝐿1,𝑑
(2)

=
|𝑆𝑑−2|

(2𝜋)𝑑−1
2𝑠

(𝑑 − 1)(𝑑 − 1 +  2𝑠)
 Tr [𝜒𝐵(𝑑−1)/2𝑠 𝜒 − (𝐵+)(𝑑−1)/2𝑠], 

where 𝐵 =  −𝑑2/𝑑𝑡2  +  1 in𝐿1,𝑑
(2)

 and 𝐵+ = 𝑑2/𝑑𝑡2 +  1 with Dirichlet boundary 

conditions in 𝐿1,𝑑
(2)

. A short computation, using the fact that  

(𝐸𝑠 − 1) =  𝑠(1 − 𝑠) ∫  
1

0

 (𝐸 − 𝜏)−𝜏
𝑠−2 𝑑𝜏 +  𝑠(𝐸 −  1),  

gives  

Tr((−ℎ2∆)𝑠 − 1 )−

=  𝐿1,𝑑
(1) |Ω|ℎ−𝑑  𝑠 ((1 − 𝑠)∫  

1

0

 𝜏
𝑑
2
+𝑠−1 𝑑 𝜏 +  1)

− 𝐿1,𝑑
(2) |∂Ω|ℎ−𝑑+1 𝑠 ((1 − 𝑠)∫  

1

0

 𝜏(𝑑−1)/2+𝑠−1 𝑑 𝜏 +  1) + 𝑜(ℎ−𝑑+1)

= 𝐿1,𝑑
(1) |Ω|ℎ−𝑑 −

𝑠(𝑑 + 1)

𝑑 − 1 + 2𝑠
𝐿1,𝑑
(2) |∂Ω|ℎ−𝑑+1 + 𝑜(ℎ−𝑑+1), 

that is,  

�̃�1,𝑑
(2)

=
𝑠(𝑑 + 1)

𝑑 − 1 + 2𝑠
𝐿1,𝑑
(2)

=
|𝑆𝑑−2|

(2𝜋)𝑑−1
2𝑠

(𝑑 − 1)(𝑑 − 1 +  2𝑠)
 Tr [𝜒𝐵(𝑑−1)/2𝑠 𝜒 − (𝐵+)(𝑑−1)/2𝑠], 

Since  

𝐵(𝑑−1)/2(𝑡, 𝑡) =
1

2𝜋
∫  
ℝ

1

(1 + 𝑝2)(𝑑−1)/2
 𝑑𝑝 =  𝐴−(𝑑−1)/2𝑠(𝑡, 𝑡) ,  

we find that  

�̃�1,𝑑
(2)
− 𝐿1,𝑑

(2)
=

|𝑆𝑑−2|

(2𝜋)𝑑−1
2𝑠

(𝑑 − 1)(𝑑 − 1 +  2𝑠)
 Tr [(𝐴+)(𝑑−1)/2𝑠  − (𝐵+)(𝑑−1)/2]. 
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We now apply Lemma (2.3.18) with 𝐵 =  𝑑2/𝑑𝑡2  +  1 in 𝐿2(ℝ), with 𝑃 being the 

projection onto 𝐿2(ℝ+) and with 𝜙(𝐸) =  𝐸𝑠 . Then 𝑃𝜙(𝑃𝐵𝑃)𝑃 = (𝐵+)𝑠 and 𝑃 𝜙(𝐵)𝑃 =

 𝐴+, and therefore (202) yields (𝐵+)𝑠 ≥ 𝐴+. Since 𝐸 ↦  𝐸(𝑑−1)/2𝑠 is strictly monotone and 

since the operators 𝐴+ and (𝐵+)𝑠 are not identical, we conclude that  

Tr [(𝐴+)(𝑑−1)/2𝑠(𝐵+)(𝑑−1)/2]  >  0. 

This shows that �̃�1,𝑑
(2)
− 𝐿1,𝑑

(2)
>  0 and completes the proof of Proposition (2.3.1).  

        For the sake of completeness we have 

Lemma (2.3.20)[103]:   Let (𝜆𝑘)𝑘∈ℕ be a non-decreasing sequence of real numbers, and let 

𝐴, 𝐶 >  0, 𝐵, 𝐷 ∈ ℝ and 1 <  𝑎 −  1 <  𝑏 <  𝑎 be related by  

𝐶 = 𝐴1/𝑎𝑎(𝑎 +  1)(1+𝑎)/𝑎, 𝐷 =  𝐵(𝐴(𝑎 +  1))
−(1+𝑏)/𝑎

 . 
Then the asymptotic formula  

∑ 

𝑁

𝑘=1

 𝜆𝑘 =  𝐴𝑁
𝑎+1 +  𝐵𝑁𝑏+1 +  𝑜(𝑁𝑏+1), 𝑁 → ∞,              (206) 

is equivalent to  

∑ 

𝑘∈ℕ

 (Λ − 𝜆𝑘)+ =   𝐶Λ
(1+𝑎)/𝑎 − 𝐷Λ

(1+𝑏)
𝑎 +  𝑜(Λ

(1+𝑏)
𝑎 ,   Λ → ∞.               (207) 

Proof: This lemma is a consequence of Hardy, Littlewood and Polya’s majorization 

theorem, which says that for any non-decreasing sequences (𝑎𝑘) and (𝑏𝑘) 

∑ 

𝑁

𝑘=1

 𝑎𝑘 ≤ ∑  

𝑁

𝑘=1

 𝑏𝑘  for all 𝑁 ∈ ℕ                                       (208) 

is equivalent to  

∑ 

∞

𝑘=1

 (Λ − 𝑎𝑘)+ ≥ ∑  

∞

𝑘=1

 (Λ − 𝑏𝑘)+ for all Λ ∈  ℝ,  

see, [116]. As usual, we will denote property (208) by (𝑎𝑘) ≺  (𝑏𝑘).  

        We fix 𝜖 >  0 and set 𝛽𝑘
±  =  𝐴(𝑎 +  1)𝑘𝑎 + (𝐵 ± 𝜖)(𝑏 + 1)𝑘𝑏 . Note that the 

assumptions on 𝑎 and 𝑏 imply  

∑ 

𝑁

𝑘=1

𝛽𝑘
± =  𝐴𝑁𝑎+1 (𝐵 ± 𝜖)𝑁𝑏+1 +  𝑜(𝑁𝑏+1), 𝑁 → ∞                 (209)  

and  

∑ 

𝑘∈ℕ

 (Λ − 𝛽𝑘
±)

+
=

𝑎𝐴

(𝐴(𝑎 + 1))
1+1/𝑎

Λ(1+𝑎)/𝑎                           (210) 

𝐵 ± 𝜖

(𝐴(𝑎 + 1))
(1+𝑏)/𝑎

Λ(1+𝑏)/𝑎 + 𝑜(Λ(1+𝑏)/𝑎), Λ → ∞ 

       First, we assume that (206) holds. Then, by (206) and (209) there is an 𝑁 ∈ ℕ such that 

for all 𝑁 ≥ 𝑁𝜖   

∑ 

𝑁

𝑘=1

𝛽𝑘
− ≤ ∑  

𝑁

𝑘=1

 𝜆𝑘 ≤ ∑  

𝑁

𝑘=1

 𝛽𝑘
+.  
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We put 𝛼𝑘
+ = 𝛽𝑘

+ for 𝑘 ≥  𝑁𝜖 and 𝛼𝑘
+ = max(𝛽𝑘

+ , 𝜆𝑘) , 𝛼𝑘
− = min(𝛽𝑘 , 𝜆𝑘)  for 𝑘 <  𝑁𝜖. 

Thus  

(𝛼𝑘
−) ≺ (𝜆𝑘) ≺ (𝛼𝑘

+),  
and therefore  

∑ 

𝑘∈ℕ

 (Λ − 𝛼𝑘
+)+ ≤∑  

𝑘∈ℕ

 (Λ − 𝜆𝑘
 )+ ≤ ∑  

𝑘∈ℕ

 (Λ − 𝛼𝑘
−)+   for all Λ ∈  ℝ.  

Since  

∑ 

𝑘∈ℕ

 (Λ − 𝛼𝑘
±)

+
= ∑  

𝑘∈ℕ

 (Λ − 𝛽𝑘
±)

+
+ 𝑂(1), 

the assertion (207) follows from (210). The converse implication is proved similarly.  

We outline the calculations that are necessary to complete the analysis of the model 

operator 𝐴+ introduced. The results depend on the following spectral representation of the 

operator 𝐴+ found in [112].  

Theorem (2.3.21)[103]: For 𝐸 >  0 let  

𝜓(𝐸) = (𝐸 +  1)𝑠 −  1 

 and for 𝜆 >  0 put 𝛾𝜆(𝜉) =  0 if 0 < 𝜉 <  1 and 

𝛾𝜆(𝜉) =
1

𝜋

𝜆𝜓′(𝜆2) sin(𝜋𝑠) (𝜉2 − 1)𝑠

𝜓(𝜆2)2 + (𝜉2 − 1)𝑠 − 2𝜓(𝜆2)(𝜉2 − 1) cos(𝜋𝑠)
 

× exp(−
1

𝜋
∫  
∞

0

𝜉  

𝜉2 + 𝜁2
ln  

𝜓′(𝜆2)(𝜆2 − 𝜁2)

𝜓(𝜆2) − 𝜓(𝜁2)
𝑑𝜁) 

if 𝜉 ≥ 1 Moreover, define a phase-shift  

𝜗𝜆 =
1

𝜋
∫  
∞

0

𝜆

𝜉2 + 𝜁2
ln  

𝜓′(𝜆2)(𝜆2 − 𝜁2)

𝜓(𝜆2) − 𝜓(𝜁2)
𝑑𝜁             (211) 

 

and functions  

𝐹𝜆(𝑥) = sin(𝜆𝑥 + 𝜗𝜆) + ∫  
∞

0

 𝑒𝑥𝜉𝛾𝜆(𝜉)𝑑𝜉, 𝑥 >  0.          (212)  

Then  

Φ𝑓(𝜆) = √
2

𝜋
 ∫  

∞

0

 𝑓(𝑥)𝐹𝜆(𝑥) 𝑑𝑥 

defines a unitary operator from 𝐿2(ℝ+) to 𝐿2(ℝ+).  
       This operator diagonalizes 𝐴+ in the sense that a function 𝑓 ∈ 𝐿2(ℝ+) is in the domain 

of 𝐴+ if and only if (𝜆2 +  1)𝑠Φ𝑓(𝜆) is in 𝐿2(ℝ+), and in this case  

Φ𝐴+𝑓(𝜆) =  (𝜆2 +  1)𝑠Φ𝑓(𝜆) 
According to [112] the Laplace transform of 𝛾𝜆 is a completely monotone function bounded 

by one. From (212) it follows that for all 𝑡 ≥  0   

 |𝐹𝜆(𝑡)| ≤  2.                                                (213)  
Theorem (2.3.21) states that the functions 𝐹𝜆 are generalized eigenfunctions of the operator 

𝐴+. Hence, we can write  

 𝑒+(𝑡, 𝑢, 𝜇) =
2

𝜋
 ∫  

∞

0

((𝜆2 + 1)𝑠 − 𝜇)−
0𝐹𝜆(𝑡)𝐹𝜆(𝑢)𝑑𝜆.           (214) 
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From (219), (220), and Proposition (2.3.16) it follows that 

𝐿𝑠,𝑑
(2)
=

4𝑠

(𝑑 − 1 +  2𝑠)(𝑑 − 1)
 
|𝑆𝑑−2|

(2𝜋)𝑑

×∫  
∞

0

∫  
∞

0

(1 −  2𝐹𝜆
2(𝑡)) (𝜆2 + 1)𝑠

(𝑑−1)/2
 𝑑𝜆𝑑𝑡.                                        (215) 

Lemma (2.3.22)[103]: For any 𝜇 >  0 and 𝑡, 𝑢 ∈  ℝ+ one has |𝑒+(𝑡, 𝑢, 𝜇)| ≤  𝐶𝜇1/2𝑠 . 
Quantifies that 𝑎+(𝑡, 𝜇) is close to 𝑎(𝜇) for large t. 

Proof: Lemma (2.3.22) is an immediate consequence of (214). In view of (213) we estimate  

|𝑒+(𝑡, 𝑢, 𝜇) ≤ 𝐶 ∫  
(𝜇1/𝑠−1)

+

1/2

0

𝑑𝜆 ≤  𝐶𝜇1/(2𝑠).:  

This proves the lemma.  

We need the following technical result about 𝜗𝜆.  

Lemma (2.3.23)[103]:   The phase-shift 𝜗𝜆 is monotone increasing and twice differentiable 

in  𝜆 > 0. It satisfies  

𝜗0 =  0 and 𝜗𝜆 →
𝜋

4
 (1 −  𝑠) 𝑎𝑠 𝜆 → ∞  

The first and second derivatives are bounded and one has, as 𝜆 → ∞, 

𝑑𝜗𝜆
𝑑𝜆

=
𝑑2𝜗𝜆
𝑑𝜆2

=  𝑂 (
1

𝜆
). 

Proof: Following [112], we substitute ζ = 𝜆𝑧 for ζ ∈ (0, 𝜆) and ζ = 𝜆/𝑧 for ζ∈(𝜆,∞) in the 

definition of 𝜗𝜆 and obtain  

𝜗𝜆 =
1

𝜋
 ∫  

1

0

1

1 − 𝑧2
ln  (

1

𝑧2
 
𝜓(𝜆2) − 𝜓(𝜆2𝑧2)

𝜓(𝜆2/𝑧2) − 𝜓(𝜆2)
)𝑑𝑧.  

Note that the function  

1

𝑧2
 
𝜓(𝜆2) − 𝜓(𝜆2𝑧2)

𝜓(𝜆2/𝑧2) − 𝜓(𝜆2)
=
1

𝑧2
 
(1 + 𝜆2)𝑠 − (1 + 𝜆2𝑧2)

(1 + 𝜆2/𝑧2)𝑠 − (1 + 𝜆2)𝑠
 

equals 1 for 𝜆 =  0 and that for all 𝑧 ∈ (0, 1) it is increasing in 𝜆 >  0 and tends to 𝑧−2−𝑠2 

as 𝜆 tends to infinity. By Lebesgue’s dominated convergence we find 𝜗0 =  0 and  

lim
𝜆→∞

   𝜗𝜆 =
1

𝜋
∫  
1

0

1

1 − 𝑧2
ln  (𝑧2𝑠−2) 𝑑𝑧 =

𝜋

4
 (1 −  𝑠).  

        By (211), we also have  

𝜗𝜆 =
1

𝜋
 ∫  

∞

0

 𝑏𝜆(ζ) 𝑑ζ 

with  

𝑏𝜆(ζ) =
𝜆

ζ− 𝜆
ln  (

𝑠(1 + 𝜆2)𝑠−1 − (𝜆2 − ζ
2)

(𝜆2 + 1)𝑠 − (ζ2 + 1)
𝑠 ).  

We remark that  

|𝜗𝜆𝑏𝜆(ζ)| ≤ 𝜗𝜆𝑏𝜆(ζ)|𝜆=0
1

ζ
2 ln  (

𝑠ζ
2

(1 + ζ
2)
𝑠
− 1

)  

for all ζ ∈ (0,∞) . Since the last expression is integrable in ζ ∈ (0,∞), it follows that  
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𝑑𝜗𝜆
𝑑𝜆

=
1

𝜋
∫  
∞

0

𝜗𝜆𝑏𝜆(ζ) 𝑑ζ  

is bounded and, in particular, we obtain  

𝑑𝜗𝜆
𝑑𝜆

|𝜆=0 =
1

𝜋
 ∫  

∞

0

1

ζ
2 ln  (

𝑠ζ
2

(1 + ζ
2)
𝑠
− 1

)𝑑ζ.                    (216) 

 Similarly, we can show existence and boundedness of the second derivative and decay of 

the derivatives as 𝜆 → ∞ by explicit calculations and Lebesgue’s dominated convergence.  

         To simplify notation we put  

𝜓𝜆(𝐸) =
1 − 𝐸/𝜆2

1 − 𝜓(𝐸)/𝜓(𝜆2)
  

for 𝐸 >  0. Moreover, we write 𝐺𝜆 for the Laplace transform of 𝛾𝜆 and 𝑔𝜆 for the Laplace 

transform of 𝐺𝜆. According to [112] we have  

𝑔𝜆(𝑡) =
𝜆 cos 𝜗𝜆 +  𝑡 sin 𝜗𝜆

𝜆2 + 𝑡2
  𝜆2√

𝜓′(𝜆2)

𝜓(𝜆2)

𝜑𝜆(𝑡)

𝜆2 + 𝑡2
, 𝑡 >  0;                          (217) 

With 

𝜑𝜆(𝑡) = exp(
1

𝜋
∫  
∞

0

𝑡

𝑡2  +  ζ2
𝑙𝑛  (𝜓λ(ζ

2)) 𝑑ζ
 ). 

        To prove Lemma (2.3.25), we need the following properties of 𝜑𝜆.  

Lemma (2.3.24)[103]:   The function 𝑡 ↦  𝜑𝜆(𝑡) is differentiable in 𝑡 >  0 and its 

derivative satisfies  

𝜑𝜆
′ (0) =  𝑜(1)  as 𝜆 → ∞, 

 𝜑𝜆
′ (0) =  

𝑑𝜗𝜆
𝑑𝜆

|𝜆=0 +  𝑂(𝜆)    as 𝜆 → ∞.  

Proof: For fixed ζ
 ∈ (0,∞) the function 𝜆 ↦ 𝜓𝜆(ζ

2) is non-increasing in 𝜆 >  0 and tends 

to 1 as 𝜆 → ∞. Moreover,  

1

ζ
2 ln  (𝜓0(ζ

2)) =  (
𝑠ζ
2

(1 + ζ
2)
𝑠
− 1

)  

is integrable with respect to ζ
 ∈ (0,∞). Hence we find that  

𝜑𝜆
′  (0) =

1

𝜋
 ∫
0

∞
 
1

ζ
2 ln  (𝜓𝜆(ζ

2))  𝑑ζ  

and 𝜑𝜆
′  (0) =  𝑜(1) as 𝜆 → ∞ by Lebesgue’s theorem.  

        In view of (216) 

𝜑𝜆
′ (0)|𝜆=0 =

1

𝜋
∫  
∞

0

1

ζ
2 ln  (𝜓0(ζ

2)) 𝑑ζ = 
𝑑𝜗𝜆
𝑑𝜆

|𝜆=0. 

The second claim now follows from the fact that the derivative of 𝜆 ↦  𝜑𝜆
′ (0) is bounded.  

Lemma (2.3.25)[103]: For any 0 ≤ 𝛾 <  1 there is a constant 𝐶 such that for all 𝜇 ≥  1  

 ∫  
∞

0

 𝑡|𝑎+(𝑡, 𝜇) 𝑎(𝜇)| 𝑑𝑡 ≤  𝐶𝛾𝜇((ln𝜇)
2 +  1).                     (218)  

 In particular, the function 
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 𝐾(𝑡) =
1

(2𝜋)𝑑−1
 ∫  
ℝ𝑑−1

 |𝜉′|1+2𝑠(𝑎(|𝜉′|−2𝑠) − 𝑎+(𝑡|𝜉′|, |𝜉′|−2𝑠))𝑑𝜉′, 𝑡 >  0, (219) 

satisfies for every 0 ≤  𝛾 <  1 

∫  
∞

0

𝑡|𝐾(𝑡)| 𝑑𝑡 <  1. 

With this lemma at hand we can now define the constant 𝐿𝑠,𝑑
(2)

 which appears in our main 

theorem by 

 𝐿𝑠,𝑑
(2)
= ∫  

∞

0

 𝐾(𝑡) 𝑑𝑡.                                                               (220) 

 (This integral converges by Lemma (2.3.25).) See also (215), we will derive different 

representations for 𝐿𝑠,𝑑
(2)
 .  

The spectral projections of the operator 𝐻+ on the half-space in terms of those of the 

operator 𝐴+ on the half-line. Since 𝐻+ commutes with translations parallel to the boundary 

of ℝ+
𝑑 , it can be written as a direct integral; see, [89] for definitions and properties of direct 

integrals. 

Proof: In view of Theorem (2.3.21) we can write  

𝑎(𝜇) − 𝑎+(𝑡, 𝜇) =
1

𝜋
 ∫  

∞

0

((𝜆2 +  1)𝑠 − 𝜇)−(1 −  2𝐹𝜆
2)𝑑𝜆  

and by (212)  

1 −  2𝐹𝜆
2(𝑡)2 = cos(2𝜆𝑡 +  2𝜗𝜆) 4 sin(𝜆𝑡 + 𝜗𝜆) 𝐺𝜆(𝑡) − 2𝐺𝜆(𝑡)

2 . 
We get  

∫  
∞

0

 𝑡𝛾|𝑎(𝜇) − 𝑎+(𝑡, 𝜇)| 𝑑𝑡 ≤  𝑅1(𝜇) + 𝑅2(𝜇) 

with  

𝑅1(𝜇) =  ∫  
∞

0

 𝑡𝛾 |∫  
(𝜇1/𝑠−1)

+

1/2

0

(𝜇 − (𝜆2 + 1)𝑠) cos(2𝜆𝑡 + 2𝜗𝜆) 𝑑𝜆| 𝑑𝑡,  

𝑅2(𝜇) =  ∫  
∞

0

 𝑡𝛾 |∫  
(𝜇1/𝑠−1)

+

1/2

0

(𝜇 − (𝜆2 + 1)𝑠)(2 sin(𝜆𝑡 + 𝜗𝜆) 𝐺𝜆(𝑡) + 𝐺𝜆(𝑡)
2)𝑑𝜆| 𝑑𝑡. 

To estimate 𝑅1(𝜇)we split the integration in t and integrate over 𝑡 ∈ [0, 1] first. We assume 

0 < 𝛾 <  1. The proof for 𝛾 =  0 follows similarly.  

        We write  

cos(2𝜆𝑡 + 2𝜗𝜆) =
1

2𝑡

𝑑

𝑑𝜆
sin(2𝜆𝑡 + 2𝜗𝜆) −

cos(2𝜆𝑡 + 2𝜗𝜆)

𝑡

𝑑𝜗𝜆
𝑑𝜆

 

and insert this identity in the expression for 𝑅1(𝜇). After integrating by parts in the 𝜆-integral 

one can estimate  

∫  
1

0

 𝑡𝛾 |∫  
(𝜇1/𝑠−1)

+

1/2

0

(𝜇 − (𝜆2 + 1)𝑠) cos(2𝜆𝑡 + 2𝜗𝜆) 𝑑𝜆| 𝑑𝑡 ≤ 𝐶𝜇((ln  𝜇)2 + 1) . 

To estimate the integral over 𝑡 ∈ [1,1], we proceed similarly. We integrate by parts twice 

and get  
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∫  
∞

0

 𝑡𝛾 |∫  
(𝜇1/𝑠−1)

+

1/2

0

(𝜇 − (𝜆2 + 1)𝑠) cos(2𝜆𝑡 + 2𝜗𝜆) 𝑑𝜆| 𝑑𝑡 ≤ 𝐶𝜇(ln  𝜇 + 1). 

We conclude  

𝑅1(𝜇) ≤  𝐶𝜇((ln  𝜇)
2 +  1)  

and turn to estimating 𝑅2(𝜇).  
        Since 𝐺𝜆 is non-negative and uniformly bounded, we have  

𝑅2(𝜇) ≤ 𝐶∫  
(𝜇

1
𝑠−1)

+

1
2

0

(𝜇 − (𝜆2 + 1)𝑠)∫  
∞

0

 𝑡𝛾𝐺𝜆(𝑡) 𝑑𝑡𝑑𝜆.                       (221) 

By definition,  

𝑔𝜆(0) = ∫  
∞

0

 𝐺𝜆(𝑡) 𝑑𝑡   and  𝑔𝜆
′ (0) = ∫  

∞

0

 𝑡  𝐺𝜆(𝑡) 𝑑𝑡. 

We note that, by (217),  

𝑔𝜆(0) =
cos𝜗𝜆
λ

 −√
𝜓′(λ2)

𝜓(λ2)
  

and apply Lemma (2.3.23) to estimate  

∫  
∞

0

 𝐺𝜆(𝑡) 𝑑𝑡 ≤  𝐶(𝜆 Λ 𝜆
−1).  

Moreover, by (217),  

𝑔𝜆
′ (0) =

sin𝜗𝜆
λ

−√
𝜓′(𝜆2)

𝜓(𝜆2)
𝜑𝜆
′ (0) 

and we apply Lemma (2.3.23) and Lemma (2.3.24) to estimate  

∫  
∞

0

 𝑡𝐺𝜆(𝑡) 𝑑𝑡 ≤  𝐶(1 Λ 𝜆
−1). 

It follows that 

∫  
∞

0

 𝑡𝐺𝜆(𝑡) 𝑑𝑡 ≤  𝐶(1 Λ 𝜆
−1). 

 Thus, by (221), we arrive at 

 𝑅2(𝜇) ≤  𝐶 ∫  
(𝜇1/𝑠−1)

+

1/2

0

(𝜇 − (𝜆2 + 1)𝑠)(1 Λ 𝜆−1)𝑑𝜆 ≤ 𝐶𝜇(ln  𝜇 + 1).  

This finishes the first part of the proof of Lemma (2.3.25).  

        In order to prove the assertion about 𝐾(𝑡), we bound  

∫  
∞

0

𝑡𝛾|𝐾(𝑡)|𝑑𝑡 ≤ ∫  
|𝜉′|<1

|𝜉′|1+2𝑠∫  
∞

0

𝑡𝛾|𝑎+(𝑡|𝜉′|, |𝜉′|−2𝑠) − 𝑎(|𝜉′|−2𝑠)|𝑑𝑡𝑑𝜉′. 

Here we also used that, since 𝑎(𝜇) =  𝑎+(𝑡, 𝜇) =  0 for 𝜇 ≤ 1, we can restrict the 

integration in the definition of 𝐾 to |𝜉′|  <  1.On the other hand, from (218) we know that  

∫  
∞

0

𝑡𝛾 |𝑎+(𝑡𝜇−1/2𝑠, 𝜇) − 𝑎(𝜇)| 𝑑𝑡 ≤  𝐶𝛾𝜇
1+(𝛾+1)/(2𝑠)((ln  𝜇)2 +  1).   
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Combining these two bounds and using that 𝛾 <  1 ≤  𝑑 −  1, we obtain the second part of 

Lemma (2.3.25).  

The following technical lemma was needed in the proof of the upper bound near the 

boundary.  

Lemma (2.3.26)[103]:   Assume that 𝜙 ∈  𝐶0
1 (ℝ𝑑) is supported in a ball of radius 𝑙 =  1 

and that (160) is satisfied with 𝑙 =  1. Then for any 
1

2
 1 − 𝑠 < 𝜎 < min {

1

2
 , 1 − 𝑠} one has  

∫  
ℝ𝑑
∫  
ℝ𝑑
|(−∆𝑥′)

𝜎
|𝜙(𝑥) − 𝜙(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠
| 𝑑𝑥𝑑𝑦 ≤  𝐶.                     (222)  

Proof: For 𝑥 = (𝑥′, 𝑥𝑑) ∈    ℝ
𝑑−1 × ℝ𝑑   and 𝑦 = (𝑦′, 𝑦𝑑)  ∈    ℝ

𝑑−1 ×ℝ𝑑   put  

𝐹𝑥𝑑,𝑦(𝑥
′) =

(𝜙(𝑥′, 𝑥𝑑) − 𝜙(𝑦
′, 𝑦𝑑))

2

(|𝑥′ − 𝑦′|2 + (𝑥𝑑 − 𝑦𝑑)
2)𝑑/2+𝑠

. 

To establish (222) we use the fact that  

|(−∆𝑥′)
𝜎
|𝜙(𝑥) − 𝜙(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠
| ≤ 𝐶 ∫  

ℝ𝑑−1

|𝐹𝑥𝑑,𝑦(𝑥
′) − 𝐹𝑥𝑑,𝑦(𝑧

′)|
 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′          (223) 

and split the integration in 𝑥 ∈  ℝ𝑑  and 𝑦 ∈  ℝ𝑑  into four parts. First we assume that 𝑥 and 

𝑦 are in 𝐵1. Then we have to show that 

∫  
𝐵1

∫  
𝐵1

∫  
ℝ𝑑−1

|𝐹𝑥𝑑,𝑦(𝑥
′) − 𝐹𝑥𝑑,𝑦(𝑧

′)|
 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′𝑑𝑥𝑑𝑦

= ∫  
𝐵1

∫  
𝐵1

∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

|𝐹𝑥𝑑,𝑦(𝑥
′) − 𝐹𝑥𝑑,𝑦(𝑧

′)|
 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′𝑑𝑥𝑑𝑦

+∫  
𝐵1

∫  
𝐵1

∫  
|𝑥′−𝑧′|<

|𝑥−𝑦|
2

|𝐹𝑥𝑑,𝑦(𝑥
′) − 𝐹𝑥𝑑,𝑦(𝑧

′)|
 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′𝑑𝑥𝑑𝑦                        (224) 

is bounded from above. 

        To estimate the first integral over |𝑥′ − 𝑧′| < |𝑥 − 𝑦|/2, we use the fact that 

𝐹(𝑧′) −  𝐹(𝑥′) = ∑  

𝑑−1

𝑗=1

(𝑧𝑗 − 𝑥𝑗)

|𝑥′ − 𝑧′|
∫  
|𝑥′−𝑧′|

0

(𝜕𝑗𝐹)(𝑥
′ + 𝑡

(𝑧𝑗 − 𝑥𝑗)

|𝑥′ − 𝑧′|
)𝑑𝑡. 

For 𝑗 =  1,… , 𝑑 −  1 we have 

(𝜕𝑗𝐹𝑥𝑑,𝑦)(𝑥
′) =

(𝜙(𝑥′, 𝑥𝑑) − 𝜙(𝑦) (𝜕𝑗𝜙(𝑥)))
 

|𝑥 − 𝑦|𝑑+2𝑠
− (𝑑 + 2𝑠)(𝑥𝑗 − 𝑦𝑗)

(𝜙(𝑥) − 𝜙(𝑦))
2

|𝑥 − 𝑦|𝑑+2𝑠+2
, 

thus 

(𝜕𝑗𝐹𝑥𝑑,𝑦)(𝑥
′) ≤ 𝐶|𝑥 − 𝑦|𝑑+2𝑠. 

Hence, we obtain 

|𝐹𝑥𝑑,𝑦(𝑧
′) − 𝐹𝑥𝑑,𝑦(𝑥

′)|

≤ 𝐶|𝑥′ − 𝑧′|𝛼 (∫  
|𝑥′−𝑧′|

0

(|𝑥′ + 𝑡
(𝑧𝑗 − 𝑥𝑗)

|𝑥′ − 𝑧′|
− 𝑦′|

2

+ (𝑥𝑑 − 𝑦𝑑)
2)

𝛽

𝑑𝑡)

1−𝛼

, (225) 

with 0 < 𝛼 <  1 and 𝛽 = (
𝑑−1

2
+  𝑠) /(𝛼 −  1), by applying Hölder’s inequality. Note that 
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|𝑥′ + 𝑡
(𝑧𝑗 − 𝑥𝑗)

|𝑥′ − 𝑧′|
− 𝑦′|

2

+ (𝑥𝑑 − 𝑦𝑑)
2 = |𝑥 − 𝑦|2 + 𝑡2 + 2𝑡

(𝑥′ − 𝑦′). (𝑧′ − 𝑥′)

|𝑥′ − 𝑧′|
 

≥ (|𝑥 − 𝑦| − 𝑡)2. 
Inserting this into (225), we get for |𝑥′ − 𝑧′|  < |𝑥 −  𝑦|/2 

|𝐹𝑥𝑑 ,𝑦(𝑧
′) − 𝐹𝑥𝑑 ,𝑦(𝑥

′)| ≤  𝐶|𝑥′ − 𝑧′|𝛼 (∫  
|𝑥−𝑦|/2

0

(|𝑥 −  𝑦| −  𝑡)2𝛽𝑑𝑡)

1−𝛼

_ 

≤ 𝐶|𝑥′ − 𝑧′|𝛼|𝑥 −  𝑦|(2𝛽+1)(1−𝛼), 
where (2𝛽 + 1)(1 − 𝛼) = −𝑑 − 2𝑠 + 2 − 𝛼.We conclude that for any 2𝜎 < 𝜎 <  1 and 

𝜎 <  1 ≤ 𝑠 

∫  
𝐵1

∫  
𝐵1

∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

|𝐹𝑥𝑑,𝑦(𝑥
′) − 𝐹𝑥𝑑,𝑦(𝑧

′)|
 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′𝑑𝑥𝑑𝑦

≤ 𝐶∫  
𝐵1

∫  
𝐵1

∫  
|𝑥′−𝑧′|<

|𝑥−𝑦|
2

|𝑥′ − 𝑧′|−𝑑+1−2𝜎+𝛼𝑑𝑧′|𝑥 − 𝑦|−𝑑−2𝑠+2−𝛼𝑑𝑥𝑑𝑦

≤ 𝐶.                                                                                                                          (226) 

Now we turn to the second integral in (224) over |𝑥′ − 𝑧′| ≥
|𝑥−𝑦|

2
. Since 

0 ≤  𝐹𝑥𝑑 ,𝑦(𝑥
′) ≤ |𝑥 − 𝑦|−𝑑−2𝑠+2−𝛼                       (227) 

and  𝜎 <  1 −  𝑠, we have 

∫  
𝐵1

∫  
𝐵1

∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

𝐹𝑥𝑑,𝑦(𝑥
′) 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′𝑑𝑥𝑑𝑦 ≤ 𝐶 ∫  

𝐵1

∫  
𝐵1

1 

|𝑥 − 𝑦|𝑑−1+2𝜎
𝑑𝑥𝑑𝑦 ≤ 𝐶. (228) 

Moreover, 

∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

𝐹𝑥𝑑,𝑦(𝑥
′) 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′

≤ 𝐶|𝑥 − 𝑦|−𝑑+1−2𝜎+(𝑑−1)/𝑃 (∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

𝐹𝑥𝑑,𝑦
𝑞 (𝑧′) 𝑑𝑧′)

1/𝑞

 

with 1/𝑝 +  1/𝑞 =  1, by Hölder’s inequality. Since 𝜎 >  1/2 −  𝑠, we can choose 𝑝 >
𝑑−1

2𝜎
 and 𝑞 >

𝑑−1

𝑑+2𝑠−2
 . By (227), we have 

          (∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

𝐹𝑥𝑑,𝑦
𝑞 (𝑧′) 𝑑𝑧′)

1/𝑞

 

≤ (∫  
ℝ𝑑−1

(|𝑧′ − 𝑦′|2 + (𝑥𝑑 − 𝑦𝑑)
2)−𝑞𝑑(𝑑/2+𝑠−1)𝑑𝑧′)

1/𝑞

 

≤ 𝐶|𝑥𝑑 − 𝑦𝑑|
−𝑑−2𝑠+2+(𝑑−1)/𝑞 . 

It follows that 

∫  
𝐵1

∫  
𝐵1

∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

𝐹𝑥𝑑,𝑦(𝑥
′) 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′𝑑𝑥𝑑𝑦

≤ ∫  
𝐵1

∫  
𝐵1

|𝑥 − 𝑦|−𝑑−1−2𝜎+(𝑑−1)/𝑝|𝑥𝑑 − 𝑦𝑑|
−𝑑−2𝑠+2+(𝑑−1)/𝑞

≤ 𝐶∫  
2

0

𝑡−𝑑−2𝑠+2(𝑑−1)/𝑞∫  
2

0

𝑟𝑑−2(𝑟2 + 𝑡2)(−𝑑+1−2𝜎)/2+2(𝑑−1)/2𝑝𝑑𝑟𝑑𝑡, 
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where we substituted 𝑡 = |𝑥𝑑 − 𝑦𝑑| and 𝑟 = |𝑥′ − 𝑦′|. Since 𝑝 >
𝑑−1

2𝜎
 and 𝜎 <  1 −  𝑠, we 

find 

∫  
𝐵1

∫  
𝐵1

∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

𝐹𝑥𝑑,𝑦(𝑧
′) 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′𝑑𝑥𝑑𝑦 ≤ 𝐶 ∫  

2

0

𝑡−𝑑−2𝑠+2𝜎𝑑𝑡 ≤ 𝐶.    (229) 

The estimates (228) and (229) show that 

∫  
𝐵1

∫  
𝐵1

∫  
|𝑥′−𝑧′|<|𝑥−𝑦|/2

|𝐹𝑥𝑑,𝑦(𝑥
′) − 𝐹𝑥𝑑,𝑦(𝑧

′)|
 

|𝑥′ − 𝑧′|𝑑−1+2𝜎
𝑑𝑧′𝑑𝑥𝑑𝑦 ≤ 𝐶                 (230) 

and from (223), (226), and (230) it follows that 

∫  
𝐵1

∫  
𝐵1

|(−∆𝑥′)
𝜎
|𝜙(𝑥) − 𝜙(𝑦)|2

|𝑥 − 𝑦|𝑑+2𝑠
| 𝑑𝑥𝑑𝑦 ≤  𝐶. 

        The proof that the respective integrals over the domains 𝐵1 × (ℝ
𝑑 /𝐵1) , ( ℝ

𝑑 / 𝐵1) ×
𝐵1 and (ℝ𝑑 /𝐵1) × (ℝ

𝑑 / 𝐵1) are finite is similar but easier, since supp𝜙 ⊂ 𝐵1 and we only 

have to handle one singularity at a time.  
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Chapter 3 

Laplacian Energy-Like Invariant and Sum of Powers 

 

 We investigate a Laplacian energy-like graph invariant 𝐿𝐸𝐿(𝐺) = ∑ √𝜇𝑖
𝑛
𝑖=1 . There is 

a great deal of analogy between the properties of 𝐸(𝐺) and 𝐿𝐸𝐿(𝐺). We also establish a few 

sharp lower and upper bounds of 𝐿𝐸𝐿(𝐺). Here we establish some properties for sα with 

𝛼 ≠ 0, 1. We also discuss the cases 𝛼 = 2,
1

2
 . 

Section (3.1): A Laplacian Energy-Like Invariant of a Graph 

 

        Let G be a stmple graph with 𝑛 vertices  and  𝑚 edges. In what follows we write 

𝐺(𝑛,𝑚)  for it. Let 𝐴 be the symmetric (0, 1)-adjacency matrix of 𝐺 and 𝐷 =
 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, . . . 𝑑𝑛)  be the diagonal matrix of vertex degrees. The Laplacian matrix of 𝐺 is 

𝐶 =  𝐷 − 𝐴.  Let 𝜆1, 𝜆3…𝜆𝑛be the adjacenry spectrum of 𝐺, and let 𝜇1, 𝜇2, … 𝜇𝑛  be the 

Laplacian spectrum of 𝐺. The adjacency and Laplacian spectrum obey the following 

relations 

∑ 

𝑛

𝑖=1

𝜆𝑖 = 0;    ∑𝜆𝑖
2

𝑛

 𝑖=1

= 2𝑚,                                (1) 

∑ 

𝑛

𝑖=1

𝜇𝑖 = 2𝑚;    ∑  

𝑛

𝑖=1

𝜇𝑖
2 = 2𝑚 +∑ 

𝑛

𝑖=1

𝑑𝑖
2                               (2) 

 Furthermore, if the graph 𝐺 has 𝑝 components (𝑝 ≥ 1),  and if  the  Laplacian eigenvalues  

are labelled  so that 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛,  then [139] 

𝜇𝑛−1 = 0     𝑓𝑜𝑟  𝑖 = 0,… , 𝑝 − 1    𝑎𝑛𝑑   𝜇𝑛−𝑝 > 0                               (3) 

Eichinger [141] has shown how the spectrum of 𝐶 may be used to calculate the radius of 

gyration of a Gaussian molecule. Mohar [145] argues that, because of its  importance in 

various physical and  chemical theories, the  spectrum  of 𝐶  is more  natural  and  important  

than the more widely  studied adjacency spectrum. The energy of the  graph 𝐺 is  defined  

as 

𝐸(𝐺) =∑ 

𝑛

𝑖=1

|𝜆𝑖|                                               (4) 

his quantity, introduced by I. Gutman in 1978  ([125]),  has a long known  chemical 

application (see [126]-[128]). For some of the most recent works along these lines sec [132]-

[138]. 

𝐸(𝐺) has  the following  basic  properties 

(a) 𝐸(𝐺) ≥ 0;  equality is attained  if and only if 𝑚 = 0. 
(b) If the graph 𝐺 consists of (disconnected) components 𝐺1   and 𝐺2 , then 𝐸(𝐺) = 𝐸(𝐺1) +
𝐸(𝐺2). 
(c) If one component of the graph 𝐺 is 𝐺1 and all other components are isolated vertices, 

then 𝐸(𝐺)  = 𝐸(𝐺1). 
The Laplacian energy of the graph 𝐺 has recently been defined ([129]) as 
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𝐿𝐸(𝐺) =∑ 

𝑛

𝑖=1

|𝜇𝑖 −
2𝑚

𝑛
|                                            (5) 

        The Laplacian energy  𝐿𝐸(𝐺′) and the ordinary energy 𝐸(𝐺)  were  found  to have a 

number of analogous  properties  ([129], [131]),  but 𝐿𝐸(𝐺) does not possess the basic 

properties  (b),  (c) as above. 

We conceive a new graph-energy-like quantity, that instead of Eq.  (5)  would be 

defined intense of Laplacian eigenvalues, and that  hopefully would preserve properties  (b), 

(c). We introduce the auxiliary eigenvalues  𝑝𝑖 , 𝑖 =  1, 2, . . . 𝑛, defined via 𝑝𝑖  =  √𝜇𝑖 . Then  

we have, 

∑ 

𝑛

𝑖=1

𝑝𝑖
2 = 2𝑚 =∑𝜆𝑖

2

𝑛

𝑖=𝑛

                                        (6) 

Definition (3.1.1)[121]:  If the Laplaci.an eigenvalues of 𝐺(𝑛,𝑚) are 𝜇1, 𝜇2, . . . , 𝜇𝑛, then 

the Laplucian-energy-like invariant of 𝐺, denoted  by 𝐿𝐸𝐿(𝐺), is equal 

to ∑  𝑛
𝑖=1 √𝜇𝑖   ,     𝑖. 𝑒 

𝐿𝐸𝐿(𝐺) =∑ 

𝑛

𝑖=1

𝜌𝑖 

where  𝜌𝑖  =  √𝜇𝑖  ,    𝑖 =  1, 2, … , 𝑛. 

We report some properties of 𝐿𝐸𝐿(𝐺) and show that the above definition is well 

chosen. A few sharp lower and upper bounds of 𝐿𝐸𝐿(𝐺) arc established. 

We present  some properties  of 𝐿𝐸𝐿(𝐺)  which  have  a great deal of analogy with  the 

properties  (a),(b), (c) of 𝐸(𝐺). 
Proposition (3.1.2)[121]: (a)  𝐿𝐸𝐿(𝐺) ≥  0;  equality is  attained  if and only  if 𝑚 =  0. 
(b) If the graph 𝐺 consists of (disconnected) components 𝐺1 and 𝐺2,  then 

𝐿𝐸𝐿(𝐺)  =  𝐿𝐸𝐿(𝐺1)  +  𝐿𝐸𝐿(𝐺2). 
 (c) If one component of the graph 𝐺 is 𝐺1 and all other components are isolated vertices, 

then 𝐿𝐸𝐿(𝐺)  =  𝐿𝐸𝐿(𝐺1). 

Proposition (3.1.3)[121]: 𝐿𝐸𝐿(𝐺) ≤ √2𝑚(𝑛 −  𝑝), 𝑝 is the number of components of 

𝐺(𝑛,𝑚). Equality is attained if and only if 𝐺 is regular of degree 0 or 𝐺 consists of 𝑛1  copies 

of complete graphs of order 𝑘 and 𝑛 −  𝑘𝑛1  isolated  vertices. 

Proof: Let 

𝑆 = ∑  

𝑛−𝑝

𝑖=1

∑ 

𝑛−𝑝

𝑗=1

(√𝜇𝑖 = √𝜇𝑗)
2
= 2∑  

𝑛−𝑝

𝑖=1

2𝑚 − 2(∑  

𝑛−𝑝

𝑖=1

√𝜇𝑖)(∑  

𝑛−𝑝

𝑗=1

√𝜇𝑗)

= 4𝑚(𝑛 − 𝑝) − 2𝐿𝐸𝐿(𝐺)2 

Since 𝑆 ≥ 0 ,we have 𝐿𝐸𝐿(𝐺) ≤ √2𝑚(𝑛  −  𝑝) 

        The  equality is attained if and only if √𝜇𝑖  =  √𝜇𝑗 , for all  𝑖, 𝑗 =  1, 2, . . , 𝑛 −  𝑝, and  

then  from above  we conclude  that  𝐺 has  at most  two  distinct  Laplacian eigenvalues 

        (i)  𝜇1 = ⋯ = 𝜇𝑛−𝑝 =
2𝑚

𝑛−𝑝
(𝑛 ≠ 𝑝); 

        (ii)  𝜇𝑛−𝑝+1 = ⋯ = 𝜇𝑛 = 0. 
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        If 𝑚 ≠  0, then 𝐺 has exactly two distinct Laplacian eigenvalues. A connected graph 

has curtly two distinct Laplacian eigenvalues if and only if Its diameter is equal to unity, i. 

e., if it is a complot graph. 

        If 𝑛 = 𝑝 or 𝑚 =  0, then 𝐺 is  regular  of degree 0. 

        The following lemma will be used in next proposition. 

Lemma (3.1.4)[121]:  [130] If 𝐺 has at lease one edge, then 𝜇1 ≥ ∆ + 1 (∆ is the greatest 

vertex degree in G).  For 𝐺 being a connected graph on 𝑛 >  1 vertices, equality is attained 

if and ouly if ∆ = 𝑛 − 1. 

Proposition (3.1.5)[121]: If 𝐺 has at least one edge, then 

𝐿𝐸𝐿(𝐺):√∆ + 1√(𝑛 − 𝑝 − 1)(2𝑚∆ − 1), 
Proof:  Using the Cauchy-Schwarz inequality 

(∑ 

𝑛

𝑖=1

𝑎𝑖𝑏𝑖)

2

(∑ 

𝑛

𝑖=1

𝑎𝑖
2)(∑ 

𝑛

𝑖=1

𝑏𝑖
2),                               (7) 

which holds for arbitrary  real-valued  numbers 𝑎𝑖 , 𝑏𝑖 , 𝑖 = 1,2… , 𝑛, we have 

(∑  

𝑛−𝑝

𝑖=1

√𝜇𝑖)

2

≤ (𝑛 − 𝑝 − 1)(∑  

𝑛−𝑝

𝑖=1

𝜇𝑖) 

(choosing in (7)  𝑎𝑖 = √𝜇𝑖 , and 𝑏𝑖  =  1). 

(𝐿𝐸𝐿(𝐺) − √𝜇𝑖)
2
≤ (𝑛  −  𝑝 −   1)(2𝑚  − 𝜇1). 

Thus  𝐿𝐸𝐿(𝐺) ≤ √𝜇𝑖 + √(𝑛 − 𝑝 −  1)(2𝑚  − 𝜇1). 

Since 𝜇1 ≥ ∆ +  1  (𝑚 ≠   0), where ∆ is the greatest  vertex  degree of 𝐺.By direct analysis 

we verify that the function 𝑓(𝑥) = 𝑥 + √(𝑛 − 1)(2𝑚 − 𝑥2) monotonically decreases in  

the interval(
√2𝑚

𝑛
, √2𝑚), for both √∆ + 1 and √𝜇1 

belong to  this interval, and therefore, We have 

𝐿𝐸𝐿(𝐺) ≤ 𝑆√∆ + 1 + √(𝑛 −  𝑝 −  1)(2𝑚  − ∆ −  1).                           (8) 

Proposition (3.1.6)[121]: √2𝑚 ≤ 𝐿𝐸𝐿(𝐺) ≤ √2𝑚, the right equality is  attained if  and  

only  if  𝐺  = 𝑟𝐾2 ∪ (𝑛  −  2𝑟)𝐾1, where 0 ≤ 𝑟 ≤ [
𝑎

2
] , [𝑥] is  the integral  part of  𝑥, while 

𝐿𝐸𝐿(𝐺)  =  √2𝑚  =  √2𝑚  if and only if 𝐺 =  𝑟𝐾2 ∪ (𝑛 − 2𝑟)𝐾1, 𝑟 = 0,1. 
Proof:  (i)  Let 𝑝 be the number of components of 𝐺(𝑛,𝑚),  then 

𝐿𝐸𝐿(𝐺) = ∑  

𝑛−𝑝

𝑖=1

√𝜇𝑖 

Therefore 

(𝐿𝐸𝐿(𝐺))
2
= ∑  

𝑛−𝑝

𝑖=1

(√𝜇𝑖)
2
+ 2∑ 

𝑖≠𝑗

√𝜇𝑖√𝜇𝑗 ≥ ∑  

𝑛−𝑝

𝑖=1

𝜇𝑖 = 2𝑚. 

The left equality is analysis if and only if 𝜇1 = . . . = 𝜇𝑛−𝑝 =  0 or 𝜇1   >  0 

and 𝜇2 = . . . = 𝜇𝑛−𝑝 =  0, i.e., if 𝐺 is regular of degree 0 or 𝐺 =  𝐾2 ∪ (𝑛 −  2)𝐾1, 
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        (ii) Since 𝐿𝐸𝐿(𝐺) ≤ √2𝑚(𝑛 −  𝑝)  (Proposition (3.1.3)), and  𝑛 −  𝑝 =  𝑚, where 

𝑝 ≥   1, we obtain 𝐿𝐸𝐿(𝐺) ≤  √2𝑚. Note that Proposition (3.1.3) and 𝑛 −  𝑝 =  𝑚 if and 

only if 𝐺 is a forest. we obtain that 𝐿𝐸𝐿(𝐺)   =  √2𝑚  if and only if 𝐺 =  𝑟𝐾2 ∪

(𝑛 −  2𝑟)𝐾1, where 0 ≤  𝑟 ≤ [
𝑛

2
] 

       Combining (i) and (ii), we complete the proof of Proposition (3.1.6).   

       Now, we study the relation among the iterated line graphs of G. 

        The line graph of 𝐺 will be denoted by 𝐿(𝐺). The iterated line graphs of 𝐺 are then 

defined recursively as 𝐿2{𝐺)  =  𝐿(𝐿(𝐺)), 𝐿3(𝐺) =  𝐿(𝐿2(𝐺))… , 

𝐿𝑘(𝐺)  =  𝐿 (𝐿𝑘−1(𝐺)) ,…  It is consistent to set 𝐿(𝐺) ≡ 𝐿1(𝐺)  and  𝐺 ≡  𝐿0(𝐺). 

        The line graph 𝐿(𝐺) of a regular graph 𝐺 is a regular graph.  Let 𝑛𝑖 and 𝑟𝑖 denote the 

order and degree of 𝐿1(𝐺) respectively, 𝑡 =  1, 2, . . , 𝑘. Then (see [122], [142]) 

𝑛𝑘 =
1

2
𝑟𝑘−1𝑛𝑘−1   𝑎𝑛𝑑  𝑟𝑘 = 2𝑟𝑘−1 − 2…… 

Therefore, 

𝑟𝑘 = 2
𝑘𝑟0 − 2

𝑘+1 + 2                                               (9)  
and 

𝑛𝑘 =
𝑛0
2𝑘
∏ 

𝑘−1

𝑖=0

𝑟𝑖 =
𝑛0
2𝑘
∏ 

𝑘−1

𝑖=0

(2𝑖𝑟0 − 2
𝑖+1 + 2)                           (10) 

Proposition (3.1.7)[121]:  Let 𝐺 be a regular graph of order 𝑛0 and of degree 𝑟0 then 

𝐿𝐸𝐿 (𝐿𝑘(𝐺))   =  𝐿𝐸𝐿 (𝐿𝑘−1(𝐺)) + √2𝑟𝑘−1(𝑛𝑘 − 𝑛𝑘−1).                          (11) 

Proof:  Let 𝐶𝐺(𝜇) ( or 𝐶𝐿(𝐺)(𝜇))  be the Laplacian characteristic polynomial of 

𝐺( or 𝐿(𝐺)), and let 𝑃𝐺(𝜆)  ( or  𝑃𝐿(𝐺)(𝜆)) be the characteristic polynomial of the  

adjacency  matrix  of 𝐺 ( or 𝐿(𝐺)). 
        It is well known that 

𝑃𝐿(𝐺)(𝜆) =  (𝜆 + 2)
𝑛1−𝑛0𝑃𝐺(𝜆 + 2 − 𝑟0) 

and 

𝐶𝐺(𝜇) = (−1)
𝑛0𝑃𝐺(−𝜇 + 𝑟0)                                                    (12) 

Then  by equation  (12)  we have 

𝐶𝐿(𝐺)(𝜇)  =  (−1)
𝑛1𝑃𝐿(𝐺)(−µ + (2𝑟0  −  2))                            .   (13) 

Combating (11)  and  (13),  we get 𝐶𝐿(𝐺)(𝜇)  =  (𝜇 −  2𝑟0)
𝑛1−𝑛0𝐶𝐺(𝜇). 

        Therefore, the Laplacian spectrum of 𝐿(𝐺) is 

(
2𝑟0 𝜇1𝜇2 …  𝜇𝑛0

𝑛1 − 𝑛0 1 1 …    1
) 

where 𝜇1 ≥ 𝜇3 ≥ ⋯ ≥ 𝜇𝑛0 is the Laplacian  spectrum  of 𝐺. 

        In an analogous manner as above, we have the Laplacian spectrum of 𝐿2(𝐺) 

(
2𝑟0  2𝑟0          𝜇1𝜇2 …  𝜇𝑛0

𝑛2 − 𝑛1 𝑛1 − 𝑛0  1 1 …    1
) 

then for the Laplacian  spectrum of 𝐿𝑘(𝐺) 
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(
2𝑟𝑘−1           2𝑟𝑘−2 …          2𝑟0 𝜇1𝜇2 …  𝜇𝑛0

𝑛𝑘 − 𝑛𝑘−1 𝑛𝑘−1 − 𝑛𝑘−2 … 𝑛1 − 𝑛0 1  1  …    1
) 

for all 𝑘 = 1,2,… 

        Therefore    𝐿𝐸𝐿 (𝐿𝑘(𝐺)) = 𝐿𝐸𝐿 (𝐿𝑘−1(𝐺)) + √2𝑟𝑘−1(𝑛𝑘 − 𝑛𝑘−1).   

        The proof is complete.                                                                                                   

        Now,  we would  like  to  give  a  pair of  non-cospcctral  graphs  of  the  same order,  

having  equal 𝐿𝐸𝐿-energies.  Let 𝐺1 = 𝐾1.7   be a star of order 8.   Then the  Laplacian 

eigenvalues  of 𝐺1 arc  𝜇11  =  8, 𝜇12   =  𝜇13     = . . .  =   𝜇17     =   1, 𝜇18  =  0.  Let  𝐺2    =
 2𝐾2 ∪ 𝐾4  be another graph of order 8. Then the Laplacian it is straightforward to  check 

that 𝐿𝐸𝐿(𝐺1)   =  𝐿𝐸𝐿(𝐺2). 
We point  out  the  dissimilarities between  𝐸(𝐺), 𝐿𝐸(𝐺), and 𝐿𝐸𝐿(𝐺). 

Dissimilarity (3.1.8)[121]: In Proposition (3.1.2), we can see that 𝐿𝐸𝐿(𝐺) and  𝐸(𝐺) 
preserve  the  three elementary  properties  (a),  (b),  (c),  and  also  they have the same 

square sum by  equality (6).  This is the advantage of 𝐿𝐸𝐿(𝐺) over 𝐿𝐸(𝐺).  Since  the 

ordinary energy 𝐸(𝐺) has a long known application in molecular-orbital  theory of organic  

molecules (see [126]-[128]), we preconceive that  𝐿𝐸𝐿(𝐺) would  also have some chemical 

application. 

Dissimilarity (3.1.9)[121]: If the graph 𝐺 is regular of degree 𝑘, then 𝐿𝐸(𝐺) =  𝐸(𝐺), while 

𝐿𝐸𝐿(𝐺)  = ∑  𝑛
𝑖=1 √𝑘 − 𝜆𝑛−𝑖+1  differs from 𝐸(𝐺). This is an advantage of 𝐿𝐸(𝐺) over 

𝐿𝐸𝐿(𝐺). However. if 𝑘 =  0 or 𝐺 =  𝐾4,   then  we have 𝐸(𝐺)    =  𝐿𝐸(𝐺)  =  𝐿𝐸𝐿(𝐺). In 

addition, for a regular graph 𝐺.   𝐿𝐸𝐿(𝐺)  satisfies Proposition  (3.1.7) as above. 

       There are numerous known results (especially lower and upper bounds) that are 

obtained by using the relations (1) and that depend on the parameters 𝑛 and 𝑚.  Then one 

could expect analogous results for 𝐿𝐸𝐿, obtained by means of the relations (2), that would 

depend on the parameters 𝑛,𝑚 and 𝑑𝑖. 
We point out a few more (𝑛,𝑚)-type new bounds for 𝐿𝐸𝐿(𝐺). Furthermore, we prove 

that for all simple graphs with 𝑛 vortices. The complete graph 𝐾𝑛 has the maximum  

𝐿𝐸𝐿(𝐺). 
        In Proposition (3.1.3) we proved that, 

𝐿𝐸𝐿(𝐺) ≤ √2𝑚(𝑛 −  𝑝),                                              (14) 

We now show that  the right-hand side expression in (14) is a decreasing function  of 

the parameter 𝑝,  then  we have, 

Theorem (3.1.10)[121]: 

For any graph 𝐺, 𝐿𝐸𝐿(𝐺) ≤ √2𝑚(𝑛 −  1).  Equality holds if and only if 𝐺 =  𝐾𝑛, 
Proof:  We consider the function 

𝑓(𝑥) = √2𝑚(𝑛 − 𝑥)  1 ≤ 𝑥 ≤ 𝑛. 
Then 

𝑓(𝑥) =
−𝑚

√2𝑚(𝑛 − 𝑥)
≤ 0    1 ≤ 𝑥 ≤ 𝑛. 

        Because the upper bound (14) increases with decreasing 𝑝,  by setting 𝑝 =  1 we 

obtain the estimate 

𝐿𝐸𝐿(𝐺) ≤ √2𝑚(𝑛 −  1),                                   (15) 
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which holds for all graphs 𝐺. And combining with the Proposition (3.1.3), we have that the 

equality holds if and only if 𝐺 = 𝐾𝑛. 

Let 𝑓 (𝑚)  =  √2𝑚(𝑛 −  1)    0 ≤ 2𝑚 ≤  𝑛(𝑛 −  1).  Obviously, 𝑓(𝑚) is an increasing 

function of the parameter 𝑚, then we have proved, 

Theorem (3.1.11)[121]: 

Let 𝐺 be a simple graph of order 𝑛, then 𝐿𝐸𝐿(𝐺) ≤  (𝑛 − 1)√𝑛.  Equality  holds if and  

only if 𝐺 =  𝐾𝑛, i.e.,  I.he graph of order 𝑛  with  maximum  𝐿𝐸𝐿 is  𝐾𝑛. 

        In Proposition (3.1.5) we proved, 

𝐿𝐸𝐿(𝐺) ≤ √𝑑 +  1√(𝑛 −  𝑝 −   1)(2𝑚 − 𝑑1 − 1).                     (16) 
        Similar to the proof of inequality (15), we now show that the right-hand side 

expression in (16) is a decreasing function of the parameter 𝑝.Then the following result 

holds immediately, 

Theorem (3.1.12)[121]: If 𝐺 has at least one edge. then 𝐿𝐸𝐿(𝐺) ≤

√𝑑 + 1 √(𝑛  −  2)(2𝑚 − 𝑑1   −  1). Equality holds if and  only  if 𝐺 =  𝐾𝑛. 

Proof: We consider the function 

𝑓(𝑥) = √𝑑 + 1 √(𝑛  −  2)(2𝑚 − 𝑑1   −  1)   1 ≤ 𝑥 ≤ 𝑛. 
Then 

𝑓′(𝑥) =
𝑑1 + 1 − 2𝑚

√(𝑛  −  2)(2𝑚 − 𝑑1   −  1)
   1 ≤ 𝑥 ≤ 𝑛. 

        The derived function 𝑓′(𝑥) ≤ 0 if and only if 𝑑1    +  1 ≤ 2𝑚,  which holds for any 

graph 𝐺 has at least one edge. 

        Because the upper bound (16) increases with decreasing 𝑝. By setting 𝑝 =  1 we 

obtain the estimate 

𝐿𝐸𝐿(𝐺) ≤ √𝑑 + 1 √(𝑛  −  2)(2𝑚 − 𝑑1   −  1)                              (17) 
The inequality (17) is sharp. Equality holds if and only if 𝐺 = 𝐾𝑛. 
We now  show  that the  bound  (17)  is better  than  (15) indeed,  

√𝑑 + 1 + √(𝑛  −  2)(2𝑚 − 𝑑1   −  1) √2𝑚(𝑛 − 1) 
holds if and only if 

(𝑛  −  2)(2𝑚 − 𝑑1   −  1) ≤ ( √2𝑚(𝑛 − 1)√𝑑1 + 1)
2
 

i.e., 

(2𝑚 + )(𝑛 − 1)(𝑑1 + 1) ≤ √2𝑚(𝑛 − 1)(𝑑1 + 1), 
which is directly  transformed  into 

( √2𝑚√(𝑛 − 1)(𝑑1 + 1))
3
≥ 0 

and holds for any 𝑚, 𝑛, 𝑑1. The equality holds if and only if 2𝑚 =  (𝑛 −  1)(𝑑1   + 1)   =
 (𝑛 −  1)𝑑1   +  (𝑛 − 1). Since 2𝑚  =  ∑  𝑛

𝑖=1  (𝑛 −  1)𝑑1  +  (𝑛 −   1),  hence 𝐺 =  𝐾𝑛, 
i.e.,  the equality  holds if and only if 𝐺 =  𝐾𝑛. 

We present sonic bounds for 𝐿𝐸𝐿(𝐺) which depend on the vertex degrees, and we 

show that for all connected graphs with 𝑛 vertices. the star 𝐾1,𝑛−1 has the minimal 𝐿𝐸𝐿(𝐺). 
Lemma (3.1.13)[121]: [144] If 𝐺 is a connected graph on 𝑛 >  2 vertices, then 𝜇2 ≥
𝑑2  
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Theorem (3.1.14)[121]: If 𝐺 is a connected graph on 𝑛  >  2 vertices, then 𝐿𝐸𝐿(𝐺) ≥

√𝑑1 + 1 √𝑑2. 
Equality is attained if and only if 𝐺 =  𝑃3 (𝑃𝑎 is the path of order 𝑛). 

Proof:  It is easy to see from the Lemma (3.1.4) and Lemma (3.1.13) that 𝐿𝐸𝐿(𝐺) ≥

√𝑑1 + 1 √𝑑2, equality is attained if and only if 𝜇1    =  𝑑1    +  1, 𝜇2  =  𝑑2,   𝜇3    =. . .  =
 𝜇0  =  0.  Since 𝐺 is a connected  graph, so we have 𝑝 =  1,  this implies 𝑛   =  3.  From  

Lemma  (3.1.4), we have 𝑑1     =  2, 𝜇1    =  3.  Since ∑  3
𝑖=1 𝜇𝑖 , = ∑  3

𝑖=1 𝑑𝑖, we have  (𝑑1   +
 1)  + 𝑑2  +  0 =  𝑑1   +  𝑑2   +  𝑑3,  thus 𝑑3   =  1  and  then 𝑑2   =  1.  Therefore 𝐺 = 𝑃3.  
         Now, we will give another lower bound  of 𝐿𝐸𝐿(𝐺) for the connected graphs. 

        Let 𝑎 =   (𝑎1, 𝑎2, . . . , 𝑎𝑛), 𝑎𝑘 ≥  0, 1 ≥ 𝑘 ≥ 𝑛,  then 𝐴𝑛(𝑎)  =
1

𝑛
∑  𝑛
𝑘=1 𝑎𝑘 is called 

the algebraic  average value of 𝑎1, 𝑎2, … , 𝑎𝑛, 𝐺𝑛(𝑎)  =  √𝑎1𝑎2, … , 𝑎𝑛
𝑛  is called the 

geometry  average value of 𝑎1 , 𝑎2, . . . , 𝑎𝑛 . It is well known that, 

Lemma (3.1.15)[121]:  [143] 

𝐺𝑛(𝑎) ≤ 𝐴𝑛(𝑎)                                                         (19) 
Equality holds if and only if 𝑎1 = 𝑎2  = . . . =  𝑎𝑛. 

Let 𝐺 be a connected graph and let 𝑡(𝐺) denote the number of spanning trees contained in 

𝐺. 

Lemma (3.1.16)[121]: [124] Let 𝐺 be a connected multigraph on 𝑛 vertices, then 𝑡(𝐺)  =
1

𝑛
∏  𝑛−1
𝑖=1  𝜇𝑖 . 

        It is easy to see that if 𝐺 is connected then 𝑡(𝐺) ≥   1.  Thus we prove the following 

result.  

Theorem (3.1.17)[121]: Let 𝐺 be a connected simple graph on 𝑛 vertices, then 𝐿𝐸𝐿(𝐺) ≥

√𝑛
 
 +  (𝑛 −  2). Equality holds if and only if 𝐺 =  𝐾1,𝑛−1,  i.e.,  the  connected  simple 

graph  of order 𝑛  with  minimal 𝐿𝐸𝐿 is 𝐾1,𝑛−1. 
Proof:  Using inequality (19), we have 

√𝜇2 +√𝜇3 +⋯+√𝜇𝑛−1

𝑛 − 2
≥ √𝜇2𝜇3…𝜇𝑛−1

2(𝑛−2)
. 

equality holds if and only if 𝜇1 = 𝜇3 = ⋯ = 𝜇𝑛−1. 
        It is well known that 𝜇1 ≤ 𝑛. So 

∏ 

𝑛−1

𝑖=2

𝜇𝑖 > 𝑡(𝐺) ≥ 1, 

        the first equality holds if and only if 𝜇1  = 𝑛,  the  second equality  holds if and only if 

𝐺 is a tree. 

Hence√𝜇2
  + √𝜇3+ . . . +√𝜇𝑛−1 ≥   𝑛 −  2. 

Therefore 

𝐿𝐸𝐿(𝐺) =∑ 

𝑛

𝑖=1

√𝜇𝑖 = √𝜇1 + (√𝜇2
  + . . . +√𝜇𝑛−1) ≥ √𝜇1 + (𝑛 −  2), 

        equality holds if and  only  if 𝜇1  =  𝑛  and 𝜇2  =  𝜇3 = ⋯ = 𝜇𝑛−1 and 𝐺 is a tree, 

which  implies that  𝐺 =  𝐾1,𝑛−1  and 𝐿𝐸𝐿(𝐺) ≥ √𝑛 + (𝑛 − 2) 
        Now, we will give upper bounds of 𝐿𝐸𝐿(𝐺) for the connected graphs. 
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Definition (3.1.18)[121]: [130]  If vector  (𝑎)   =  (𝑎1, 𝑎2, … , 𝑎𝑟)  and (𝑏)   =
(𝑏1, 𝑏2, … , 𝑏𝑠) are nonincreasing  sequences of real numbers, then  (a)  majorizes (b) if 

∑ 

𝑘

𝑖=1

𝑎𝑖 ≥∑ 

𝑘

𝑖=1

𝑏𝑖    𝑘 = 1,2,… ,min {𝑟, 𝑠} 

and 

∑ 

𝑟

𝑖=1

𝑎𝑖 ≡∑ 

𝑠

𝑖=1

𝑏𝑖 . 

we denote it  by 𝑏 ≺  𝑎. 

Definition (3.1.19)[121]:  [146] The relation  𝑥  ≺≺  𝑦 means that 𝑥  ≺   𝑦  and  𝑥  is not 

the rearrangement of 𝑦. 
Definition (3.1.20)[121]: [143] A real valued function 𝑓(𝑥)  defined on a convex set 𝐷 is 

said to be convex if 

𝑓(𝜆 + (1 −  𝜆)𝑦) ≤ 𝜆𝑓(𝑥)   + (1 −  𝜆)𝑓(𝑦), 
for all 0 ≤ 𝜆 ≤ 1 and  all 𝑥, 𝑦 ∈ 𝐷. If the above inequality is always strict  for 0 <  𝜆 <  1  

and 𝑥 ≠  𝑦, then 𝑓 is called strictly convex. If 𝑓 is a convex function, then 𝑓 is called 

concave. 

Lemma (3.1.21)[121]: [146] Let (𝑥)   =  (𝑥1, 𝑥3, … , 𝑥𝑛) be majorized by (𝑦)   =
 (𝑦1, 𝑦2, … , 𝑦𝑛), i.e., 𝑥 ≺    𝑦, then for any convex function 𝜑𝑖, the following inequality 

holds, 

∑ 

𝑛

𝑗=1

𝜑(𝑥𝑗) ≤ −∑ 

𝑛

𝑗=1

𝜑(𝑦𝑗), 

Lemma (3.1.22)[121]: [146] Let 𝑥 ≺≺ 𝑦 then for any strictly convex function 𝜑, the 

following inequality holds, 

∑ 

𝑛

𝑗=1

𝜑(𝑥𝑗) <∑ 

𝑛

𝑗=1

𝜑(𝑦𝑗). 

        For convenience. letting (d)  denote  the  nonincreasing  sequence (𝑑)   =
 (𝑑1 +  1, 𝑑2, … , 𝑑𝑛−1, 𝑑𝑛 − 1) of vertex degrees and letting (𝜇) denote the non-increasing 

sequence(𝜇)   =  (𝜇1, 𝜇2, … , 𝜇𝑛−1, 𝜇𝑛) of nonnegative real Laplacian eigenvalues. 

Lemma (3.1.23)[121]: [142] Let 𝐺 be a connected graph on  𝑛 ≥  2 vertices,  then (d)  is 

majorized by (µ). 
Theorem (3.1.24)[121]: Let 𝐺 be a connected graph on 𝑛 ≥  2 vertices, then 𝐿𝐸𝐿(𝐺) ≤

√𝑑1 + 1 + √𝑑2 +⋯+√𝑑𝑛−1  + √𝑑𝑛 − 1, where the equality holds if and only if (𝑑)   =

 (𝜇).  

Proof:  Let 𝜑(𝑥) =  −√𝑥, 𝑥 ∈  (0,+∞), then 𝜑(𝑥) is  a convex function. Since (𝑑) is 

majorized by (𝜇),  using  Lemma (3.1.21)  we have, 

(−√𝑑1 + 1) + (−√𝑑2) + ⋯+ (−√𝑑𝑛−1 ) + (−√𝑑𝑛 − 1)

≤ (−√𝜇1) + (−√𝜇2) + ⋯+ (−√𝜇𝑛−1) + (−√𝜇𝑛 − 1) 

        which is directly transformed into 
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(√𝜇1) + (√𝜇2) + ⋯+ (√𝜇𝑛−1) + (√𝜇𝑛 − 1)

≤ (√𝑑1 + 1) + (√𝑑2) + ⋯+ (√𝑑𝑛−1 ) + (√𝑑𝑛 − 1) 
        i.e., 

𝐿𝐸𝐿(𝐺) ≤ √𝑑1 + 1 + √𝑑2 +⋯+√𝑑𝑛−1  + √𝑑𝑛 − 1                                             (20) 
And it is easy to see from Lemma (3.1.22) that  the equality  holds if and only if (𝑑)   =
 (𝜇).  
Remark (3.1.25)[121]:  We show that the bounds (15) and (20) are also incomparable. Let 

𝐻1,   𝐻2 be the graphs shown in Fig. (1). 
 

 
Fig. (1)[121]: 

Then for 𝐺 =  𝐻1 the upper bound (15) is better than (20). On the other hand, if 𝐺 =  𝐻2 

then the upper bound (20) is better than (15). 

        We now discuss the case 𝐿𝐸𝐿(𝐺)  = √𝑑1 + 1 + √𝑑2 +⋯+√𝑑𝑛−1  + √𝑑𝑛 − 1 . 

Lemma (3.1.26)[121]:  [140]  If an isolated vertex is connected  by edges to all the vertices 

of a graph 𝐺 of order 𝑛, then  the Laplacian  eigenvalues of the resultant  graph are  as  

follows: one of the eigenvalues is 𝑛 +  1, the other eigenvalues can be obtained by 

incrementing the  eigenvalues  of the  old  graph 𝐺 by 1 except  the lowest  one and 0 as 

another  eigenvalue. 

Example (3.1.27)[121]: Let 𝐺1, 𝐺2 be the graphs shown in Fig. (2). The Laplacian spectrum 

of 𝐺1  is (3, 1, 0).  We want to find out the spectrum of 𝐺2. 
 

 
Fig. (2)[121]: 

        Applying Lemma (3.1.26), we can easily get the spectrum of 𝐺2 is (4, 4, 2, 0). 

Theorem (3.1.28)[121]: Let  𝐺 be a connected graph on  𝑛 ≥   2 vertices, then (𝑑)   =
 (𝜇) if and only if 𝐺 = 𝐾1,𝑛−1. 
Proof:  If 𝐺 = 𝐾1,𝑛−1  then  (d) = (µ). 

        Conversely, let (𝑑)   =  (𝜇),  we are  to show that 𝐺 is a star. If (𝑑1    + 1, 𝑑2,···
  , 𝑑𝑛−1, 𝑑𝑛  − 1)   =  (𝜇1, 𝜇2,···  , 𝜇𝑛−1, 𝜇𝑛),  then  we have  𝜇1     =  𝑑1   +  1.  

Since 𝐺 is a connected graph, using Lemma (3.1.4), we have 𝑑1    =  𝑛 −  1. 

        Let 𝐺′   = (𝑉′, 𝐸′) be a graph  with  vertex  set  𝑉′    =  { 𝑣1, 𝑣2, … , 𝑣𝑛−1},  and edge  

set 𝐸′  ≠  ∅, let  𝑎1 ≥ 𝑎3 ≥ ⋯ ≥ 𝑎𝑛−1 = 0 be the Laplueian eigenvalues of 𝐺′, and let 𝑏1 ≥
 𝑏2 ≥ ⋯ ≥ 𝑏𝑛−1 be the non increasing vertex  degrees of 𝐺′. Let 𝐺 be a graph obtained from 

𝐶′ by adding a new vertex 𝑣11, which is connected by edges  to  all the vertices of 𝐺′. 
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       Applying Lemma (3.1.26), the Laplacian spectrum of 𝐺 is (𝑛, 𝑎1  +  1, 𝑎2 + 1,···
𝑎𝑛−2 + 1,0), which we denoted it by(𝜇). If(𝜇) =   (𝑑)   =  (𝑑1   +  1, 𝑑2,···  , 𝑑𝑛−1, 𝑑𝑛  −
1) then 𝑑1    =  𝑛 −  1, 𝑑2  =  𝑏1   +  1 =  𝑛1   + 1.   Hence 𝑏1   =  𝑎1. Since  𝐸′  ≠   ∅,  

using Lemma (3.1.4), we have 𝑎1 ≥ 𝑏1    +  1, a contradiction. Thus 𝐸′  =  0, which  

implies 

        According to Theorem (3.1.24) and Theorem (3.1.28) and noting (𝑑)   ≺   (𝜇) we 

obtain the following theorem. 

Theorem (3.1.29)[121]: Let 𝐺 be a connected graph on 𝑛 ≥ 2 vertices, then  𝐿𝐸𝐿(𝐺)  =

√𝑑1 + 1 + √𝑑2 +⋯+√𝑑𝑛−1  + √𝑑𝑛 − 1 if and  only  if 𝐶 =  𝐾1,𝑛−1 

 

        Now we give another upper bound depended on the vertex degrees.  

Theorem (3.1.30)[121]: Let 𝐺 be a connected graph on 𝑛 ≥  2 vortices, then 

𝐿𝐸𝐿(𝐺) ≤
1

2
 (√𝑛 − 1 + √

1

𝑛 − 1
) (∑ 

𝑛

𝑖=1

√𝑑𝑖) 

Proof:  Using Cauchy-Schwarz inequality, we have 

(∑ 

𝑛

𝑖=1

√𝜇𝑖)

2

≤ 𝑛(∑ 

𝑛

𝑖=1

𝜇𝑖) 

         On the other hand, since 𝐺 is a connected graph on 𝑛 ≥  2 vertices, thus 1 ≤ 𝑑𝑖 ≤ 𝑛 −
1 for any integer 1 ≤   𝑖 ≤ 𝑛.   Then by Polya-Szegö inequality, we have 

𝑛 (∑ 

𝑛

𝑖=1

𝑑𝑖) ≤
1

4
 (√𝑛 − 1 + √

1

𝑛 − 1
)

2

(∑ 

𝑛

𝑖=1

√𝑑𝑖)

2

 

Since 𝑛 (∑ 

𝑛

𝑖=1

𝜇𝑖) = 𝑛(∑ 

𝑛

𝑖=1

𝑑𝑖)   hence 

𝐿𝐸𝐿(𝐺) ≤
1

2
 (√𝑛 − 1 + √

1

𝑛 − 1
) (∑ 

𝑛

𝑖=1

√𝑑𝑖)                           (21) 

This completes the proof of the theorem. 

Remark (3.1.31)[121]: Using Cauchv-Schwarz inequality, we have 

(∑ 

𝑛

𝑖=1

√𝑑𝑖) ≤ √𝑛(∑ 

𝑛

𝑖=1

√𝑑𝑖) = √2𝑚𝑛. 

        Combining with inequality (21), we obtain 

𝐿𝐸𝐿(𝐺) ≤
1

2
 (√𝑛 − 1 + √

1

𝑛 − 1
)√2𝑚𝑛.                                        (22) 
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        Unfortunately, the bound (22) is not better than the bound (15). In fact, by direct 

calculation, √2𝑚(𝑛  −  1) ≤
1

2
 (√𝑛 − 1 + √

1

𝑛−1
)√2𝑚𝑛  if and only if 𝑛3  −  4𝑛2  +

 8𝑛 −  4 ≥  0,where the inequality always holds  for any  integer number 𝑛. 

 

Section (3.2): Laplacian Eigenvalues of Graphs 

Let 𝐺 be a simple finite undirected graph with vertex set 𝑉(𝐺). Let 𝐴(𝐺) be the (0, 1) 
adjacency matrix of 𝐺 and 𝐷(𝐺) the diagonal matrix of vertex degrees. Then 𝐿(𝐺) =
𝐷(𝐺) − 𝐴(𝐺) is called the Laplacian matrix of 𝐺. It is symmetric, positive semidefinite and 

singular. The Laplacian eigenvalues of 𝐺 are the eigenvalues of 𝐿(𝐺). Let 𝜇1, 𝜇2, . . . , 𝜇𝑛 be 

the Laplacian eigenvalues of 𝐺 arranged in a non-increasing manner, where 𝑛 =  |𝑉 (𝐺)|. 
When more than one graph is under discussion, we write 𝜇𝑖(𝐺) instead of 𝜇𝑖. It is known 

that 𝜇𝑛 = 0 and the multiplicity of 0 is equal to the number of connected components of 𝐺. 

Let 𝛼 be a non-zero real number. Let 𝐺 be a graph with 𝑛 vertices. Let 𝑠𝛼(𝐺) be the sum of 

the 𝛼th power of the non-zero Laplacian eigenvalues of 𝐺, i.e., 

𝑠𝛼(𝐺)  =∑ 

𝑖=1

𝜇𝑖
𝛼  , 

where ℎ is the number of non-zero Laplacian eigenvalues of 𝐺. The case 𝛼 =  1 is trivial 

as 𝑠1(𝐺)  =  2𝑚, where 𝑚 is the number of edges. Some properties for 𝑠2 were established 

in [154], where Lazic called it the Laplacian energy of the graph. Recall that the energy of 

a graph is equal  to the sum of the absolute values of its ordinary eigenvalues [127] and that 

an energy like quantity was proposed and studied in [129] based on the Laplacian 

eigenvalues. Some properties of 𝑠1
2

 were given in [121]. We also note that for a connected 

graph 𝐺 with 𝑛 vertices, 𝑛𝑠−1(𝐺) is equal to its Kirhhoff index or quasi-Wiener index, which 

found applications in electric circuit, probabilistic theory and chemistry [152], [157]. 

We establish some properties for 𝑠𝛼, where 𝛼 is a real number with 𝛼 ≠ 0, 1. We also 

discuss further properties for 𝑠2 and 𝑠1
2

 . 

Let 𝐾𝑛 and 𝑃𝑛 be respectively the complete graph and the path on 𝑛 vertices. Let 𝐾𝑎,𝑏 

be the complete bipartite graph with two partite sets having 𝑎 and 𝑏 vertices, respectively. 

We need some properties of the Laplacian eigenvalues. For more details, see [130], [145]. 

Let �̅� be the complement of the graph 𝐺 with 𝑛 vertices. The Laplacian eigenvalues of �̅� 

are 𝑛 − 𝜇𝑛−1(𝐺), 𝑛 −  𝜇𝑛−2(𝐺), . . . , 𝑛 − 𝜇1(𝐺), 0. 

Lemma (3.2.1)[147]: [145]. Let 𝐺 be a non-complete graph with 𝑛 vertices. If 𝐺∗ is obtained 

from 𝐺 by adding an edge, then 

𝜇1(𝐺
∗) ≥ 𝜇1(𝐺) ≥ 𝜇2(𝐺

∗) ≥  𝜇2(𝐺) ··· 
≥ 𝜇𝑛−1(𝐺

∗) ≥ 𝜇𝑛−1(𝐺) ≥ 𝜇𝑛(𝐺
∗)  =  𝜇𝑛(𝐺)  =  0. 

Lemma (3.2.2)[147]: [149]. Let 𝐺 be a graph with at least one edge and maximum vertex 

degree 𝛥. Then 

𝜇1 ≥ 1 +  Δ  
with equality for connected graph if and only if Δ =  𝑛 −  1. 

Lemma (3.2.3)[147]: [130]. Let 𝐺 be a connected graph with diameter 𝑑. Then 𝐺 has at 

least 𝑑 +  1 distinct Laplacian eigenvalues. 
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Lemma (3.2.4)[147]: Let 𝐺 be a graph with 𝑛 vertices. Then 𝜇1  =···=  𝜇𝑛−1 if and only if 

𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾𝑛. 

Proof: Suppose that 𝜇1  =···=  𝜇𝑛−1. If 𝐺 is connected, then by Lemma (3.2.3), 𝐺 =̃  𝐾𝑛. 

If 𝐺 is not connected, then 𝜇𝑛−1  =  0 and so all Laplacian eigenvalues are equal to zero, 

which obviously implies that 𝐺 =̃  𝐾𝑛. Conversely, it is easily seen that 𝜇1  =···=  𝜇𝑛−1 if 

𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾𝑛. 

Lemma (3.2.5)[147]: Let 𝐺 be a connected graph with 𝑛 ≥ 2 vertices. Then 𝜇2  =···=  𝜇𝑛−1 

and 𝜇1 =  1 + Δ if and only if 𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾1,𝑛−1. 

Proof: Suppose that 𝜇2 =···=  𝜇𝑛−1 and 𝜇1  = 1 + 𝛥 . By Lemma (3.2.2), Δ =  𝑛 −  1. 

Then 𝐺 ̅ has an isolated vertex, say 𝑣, and the Laplacian eigenvalues of �̅�  −  𝑣 are 𝑛 −
 𝜇𝑛−1, . . . , 𝑛 − 𝜇2, 0. By Lemma (3.2.4), 𝐺 ̅  −  𝑣 =̃  𝐾𝑛−1 or 𝐺 ̅  −  𝑣 =̃  𝐾𝑛−1̅̅ ̅̅ ̅̅ . Thus 

𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾1,𝑛−1. 

Conversely, it is easy to see that 𝜇2  =···=  𝜇𝑛−1 and 𝜇1 = 1 + Δ 𝑖𝑓 𝐺 =̃  𝐾𝑛 or 

𝐺 =̃  𝐾1,𝑛−1. 

For a graph 𝐺, let 𝑍(𝐺)  = ∑  𝑢∈𝑉 (𝐺)  𝑑𝑢
2, where 𝑑𝑢 stands for the degree of vertex 𝑢 in 𝐺. 

Lemma (3.2.6)[147]: [153]. Let 𝐺 be a connected bipartite graph with 𝑛 vertices. Then 𝜇1 ≥

2√
𝑍(𝐺)

𝑛
 with equality if and only if 𝐺 is a regular bipartite graph. 

The subdivision graph 𝑆(𝐺) of a graph 𝐺 is obtained by inserting a new vertex (of degree 

2) on each edge of 𝐺. The ordinary spectrum of a graph 𝐺 is the spectrum of its adjacency 

matrix. 

Lemma (3.2.7)[147]: [158]. Let 𝐺 be a bipartite graph with 𝑛 vertices and 𝑚 edges. If the 

non-zero Laplacian eigenvalues of 𝐺 are𝜇𝑖 , 𝑖 =  1, . . . , ℎ,then the ordinary spectrum of 𝑆(𝐺) 

consists of the numbers ±√𝜇𝑖 , 𝑖 =  1, . . . , ℎ, and of 𝑛 +  𝑚 −  2ℎ zeros. 

Let 𝜆1, 𝜆2, . . . , 𝜆𝑛 be the ordinary eigenvalues of the graph 𝐺, where 𝑛 =  |𝑉 (𝐺)|. 
Then the energy of 𝐺 is defined as [127], [150] 

𝐸(𝐺)  = ∑  𝑛
𝑖=1  |𝜆𝑖|.  

Lemma (3.2.8)[147]: [156], [134]. Let 𝐺 be a graph with 𝑛 vertices, 𝑚 ≥ 1 edges and 𝑞 

quadrangles. Then 

𝐸(𝐺) ≥  √
(2𝑚)3

2𝑍(𝐺) −  2𝑚 +  8𝑞
  

with equality if and only if 𝐺 is the vertex-disjoint union of 𝐾𝑎1,𝑏1 , . . . , 𝐾𝑎𝑟,𝑏𝑟 with 𝑎1𝑏1 =

···=  𝑎𝑟𝑏𝑟 and 𝑟 ≥ 1, and isolated vertices. 

It is obvious that for any graph 𝐺 with 𝑛 vertices, 𝑠𝛼(𝐺) ≥ 0 for 𝛼 ≠ 0 with equality 

if and only if 𝐺 =̃  𝐾𝑛̅̅̅̅ . 

Theorem (3.2.9)[147]: (i) For any non-complete graph 𝐺, if 𝐺∗ is obtained from 𝐺 by 

adding an edge, then 𝑠𝛼(𝐺)  <  𝑠𝛼(𝐺
∗) for 𝛼 >  0 and 𝑠𝛼(𝐺)  >  𝑠𝛼(𝐺

∗) for 𝛼 <  0. 

(ii) For any graph 𝐺 with n vertices 

𝑠𝛼(𝐺) ≤ (𝑛 −  1)𝑛
𝛼    𝑖𝑓   𝛼 >  0,  

𝑠𝛼(𝐺) ≥  (𝑛 −  1)𝑛
𝛼   𝑖𝑓   𝛼 <  0  

with either equality if and only if 𝐺 is the complete graph 𝐾𝑛. 
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Proof: Note that ∑  𝑛−1
 𝑖=1  𝜇𝑖(𝐺

∗)  − ∑  𝑛−1
 𝑖=1  𝜇𝑖(𝐺)  =  2. By Lemma (3.2.1), the result in (i) 

follows. Note that 𝜇1(𝐾𝑛)  =···=  𝜇𝑛−1(𝐾𝑛)  =  𝑛 and 𝜇𝑛(𝐾𝑛)  =  0. From (i), we have (ii). 

Theorem (3.2.10)[147]: Let 𝛼 be a real number with 𝛼 ≠ 0, 1, and let 𝐺 be a connected 

graph with 𝑛 ≥ 3 vertices, 𝑡 spanning trees and maximum vertex degree 𝛥. Then 

𝑠𝛼(𝐺) ≥ (1 + Δ )
𝛼  +  (𝑛 −  2)  (

𝑡𝑛

1 + Δ
 )

𝛼
𝑛−2

                            (23) 

with equality if and only if 𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾1,𝑛−1. 

Proof: By the matrix-tree theorem (see [145]), ∏  𝑛−1
𝑖=1 𝜇𝑖 = 𝑡𝑛. By the arithmetic–geometric 

mean inequality 

𝑠𝛼(𝐺) =  𝜇1
𝛼  +∑  

𝑛−1

 𝑖=2

 𝜇𝑖
𝛼 ≥ 𝜇1

𝛼 + (𝑛 − 2)  (∏ 

𝑛−1

𝑖=2

𝜇𝑖
𝛼)

1
𝑛−2

= 𝜇1
𝛼  +  (𝑛 −  2)  (

𝑡𝑛

𝜇1 
)

𝛼
𝑛−2

 

with equality if and only if 𝜇2  =···=  𝜇𝑛−1. Let  (𝑥)  =  𝑥𝛼  +  (𝑛 −  2) (
𝑡𝑛

𝑥
)

𝛼

𝑛−2
 . By 

solving 𝑓′(𝑥) =  𝛼  (𝑥𝛼−1  −  (𝑡𝑛)
𝛼

𝑛−2 𝑥−
𝛼

𝑛−2
 −1) ≥ 0, it may be easily seen that 𝑓 (𝑥) is 

increasing for 𝑥 ≥ (𝑡𝑛)
1

𝑛−1 whether 𝛼 >  0 or 𝛼 <  0. Obviously, 2𝑚 ≤ 𝑛 Δ ≤  (𝑛 −
 1)(1 + Δ). By Lemma (3.2.2) 

𝜇1 ≥ 1 + Δ ≥
2𝑚

𝑛 − 1
=
∑  𝑛−1
𝑖=1 𝜇𝑖
𝑛 − 1

≥ (∏ 

𝑛−1

𝑖=1

𝜇𝑖)

1
𝑛−1

 =  (𝑡𝑛)
1

𝑛−1 

and then 𝑠𝛼(𝐺) ≥ 𝑓 (1 + Δ) =  (1 + Δ)
𝛼  +  (𝑛 −  2) (

𝑡𝑛

1+Δ
)

𝛼

𝑛−2
 . Hence (23) follows, and 

equality holds in (23) if and only if 𝜇2  =···=  𝜇𝑛−1 and 𝜇1  = 1 + 𝛥 , which, by Lemma 

(3.2.5), is equivalent to 𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾1,𝑛−1. 
Theorem (3.2.11)[147]: Let 𝐺 be a connected graph with 𝑛 ≥ 3 vertices, 𝑚 edges and 

maximum vertex degree 𝛥: 

(i) If 𝛼 <  0 or 𝛼 >  1, then 

𝑠𝛼(𝐺) ≥ (1 + Δ)
𝛼  +

(2𝑚 −  1 −  Δ)𝛼

(𝑛 −  2)𝛼−1
                                           (24) 

with equality if and only if 𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾1,𝑛−1. 
(ii) If 0 < 𝛼 <  1, then 

   𝑠𝛼(𝐺) ≤ (1 +  Δ)
𝛼  +

(2𝑚 −  1 −  Δ)𝛼

(𝑛 −  2)𝛼−1
                                    (25) 

with equality if and only if 𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾1,𝑛−1. 

Proof: Observe that for 𝛼 ≠ 0, 1 and 𝑥 >  0, 𝑥𝛼 is a strictly convex function if and only if 

𝛼 < 0 or 𝛼 > 1. 

Suppose that 𝛼 < 0 or 𝛼 > 1.Then 

(∑  

𝑛−1

𝑖=2

1

𝑛 − 2
 𝜇𝑖)

𝛼

≤ ∑  

𝑛−1

 𝑖=2

1

𝑛 −  2
 𝜇𝑖
𝛼 , 

i.e., 
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∑ 

𝑛−1

𝑖=2

𝜇𝑖
𝛼 ≥

1

(𝑛 − 2)𝛼−1
(∑  

𝑛−1

𝑖=2

𝜇𝑖)

𝛼

 

with equality if and only if 𝜇2  =···=  𝜇𝑛−1. It follows that 

𝑠𝛼(𝐺) ≥ 𝜇1
𝛼 +

1

(𝑛 − 2)𝛼−1
 (∑  

𝑛−1

𝑖=2

𝜇𝑖)

𝛼

 = 𝜇1
𝛼  +

(2𝑚 − 𝜇1)
𝛼

 (𝑛 −  2)𝛼−1
 . 

Let (𝑥) =  𝑥𝛼  +
(2𝑚−𝑥)𝛼

(𝑛−2)𝛼−1
 . By solving 𝑔′(𝑥) =  𝛼  (𝑥𝛼−1  −

(2𝑚−𝑥)𝛼−1

(𝑛−2)𝛼−1
) ≥ 0, it is easily 

seen that 𝑔(𝑥)is increasing for ≥
2𝑚

𝑛−1
 . Note that (𝑛 −  1)(1 +  Δ) ≥  2𝑚. By Lemma 

(3.2.2),𝜇1 ≥ 1 + Δ ≥
2𝑚

𝑛−1
 and then 

𝑠𝛼(𝐺) ≥ 𝑔(1 + Δ) =  (1 + Δ)
𝛼  +

(2𝑚 −  1 −  Δ)𝛼

(𝑛 −  2)𝛼−1
 

with equality if and only if 𝜇2  =···=  𝜇𝑛−1 and 𝜇1  =  1 + Δ . By Lemma (3.2.5), equality 

holds in (24) if and only if 𝐺 =̃  𝐾𝑛 or 𝐺 =̃  𝐾1,𝑛−1. 

Now suppose that 0 < 𝛼 < 1.Then  

(∑  

𝑛−1

𝑖=2

 
1

𝑛 − 2
 𝜇𝑖)

𝛼

≥∑  

𝑛−1

 𝑖=2

 
1

𝑛 − 2
 𝜇𝑖
𝛼 

with equality if and only if 𝜇2  =···=  𝜇𝑛−1, and 𝑔(𝑥) is decreasing for 𝑥 ≥
2𝑚

𝑛−1
 . By similar 

arguments as above, the second part of the theorem follows. 

We consider bipartite graphs. 

Theorem (3.2.12)[147]: Let 𝛼 be a real number with 𝛼 ≠ 0, 1, and let 𝐺 be a connected 

bipartite graph with 𝑛 ≥ 3 vertices, t spanning trees. Then 

𝑠𝛼 ≥ (2√
𝑍(𝐺)

𝑛
)

𝛼

 +  (𝑛 − 2)

(

 
𝑡𝑛

2√
𝑍(𝐺)
𝑛 )

 

𝛼
𝑛−2

                                                (26) 

with equality if and only if 𝐺 =̃  𝐾𝑛

2
 ,
𝑛

2
 . 

Proof: By Lemma (3.2.6), we have 𝜇1 ≥ 2 √
𝑍(𝐺)

𝑛
≥

4𝑚

𝑛
≥

2𝑚

𝑛−1
≥ (𝑡𝑛)

1

𝑛−1 . Thus, by similar 

arguments as in the proof of Theorem (3.2.10), we have 𝑠𝛼 ≥ 𝑓 (2 √
𝑍(𝐺)

𝑛
) , from which 

(26) follows, and equality holds in (26) if and only if 𝜇2  =···=  𝜇𝑛−1 and 𝜆1 = 2√
𝑍(𝐺)

𝑛
 . 

Suppose that equality holds in (26). Then 𝐺 is a regular bipartite graph with at most three 

distinct Laplacian eigenvalues. Thus, by Lemma (3.2.3), 𝐺 is a regular bipartite graph with 

at most diameter 2, i.e.,  =̃  𝐾𝑛

2
 ,
𝑛

2
 . 

Conversely, it is easily seen that 𝜇2 =···=  𝜇𝑛−1, 𝜆1 = 2 √
𝑍(𝐺)

𝑛
 , and then (26) is an equality 

if 𝐺 =̃ 𝐾𝑛

2
 ,
𝑛

2
 . 
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Theorem (3.2.13)[147]: Let 𝐺 be a connected bipartite graph with 𝑛 ≥ 3 vertices, 𝑚 edges: 

(i) If 𝛼 <  0 or 𝛼 >  1, then 

𝑠𝛼(𝐺) ≥ (2√
𝑍(𝐺)

𝑛
)

𝛼

 +  

(2𝑚 −  2 √
𝑍(𝐺)
𝑛
 )

𝛼

(𝑛 −  2)𝛼−1
                                   (27) 

with equality if and only if 𝐺 =̃  𝐾𝑛

2
 ,
𝑛

2
 . 

(ii) If 0 < 𝛼 <  1, then 

𝑠𝛼(𝐺) ≤ (2√
𝑍(𝐺)

𝑛
)

𝛼

+

(2𝑚 −  2 √
𝑍(𝐺)
𝑛
 )

𝛼

(𝑛 −  2)𝛼−1
                                      (28) 

with equality if and only if 𝐺 =̃  𝐾𝑛

2
 ,
𝑛

2
 . 

Proof: By Lemma (3.2.6), we have 𝜇1 ≥ 2√
𝑍(𝐺)

𝑛
≥

4𝑚

𝑛
≥

2𝑚

𝑛−1
 . Thus, by similar arguments 

as in the proof of Theorem (3.2.11), we have 𝑠𝛼 ≥ 𝑔 (2√
𝑍(𝐺)

𝑛
)  for 𝛼 <  0 or 𝛼 >  1, and 

then (27) follows. Similarly, 𝑠𝛼 ≤ 𝑔 (2 √
𝑍(𝐺)

𝑛
)  for 0 < 𝛼 <  1, and then (28) follows. 

Either equality in (27) or (28) holds if and only if 𝜇2 =···=  𝜇𝑛−1 and 𝜆1 = 2√
𝑍(𝐺)

𝑛
 , 

which, by the arguments in the proof of Theorem (3.2.12), is equivalent to 𝐺 =̃  𝐾𝑛

2
 ,
𝑛

2
 . 

Now we consider the special case 𝛼 =  2. Note that 𝑠2(𝐺) is equal to the trace of 

𝐿2 where 𝐿 =  𝐿(𝐺), from which it may be shown that [154] 

𝑠2(𝐺)  = ∑  

𝑢∈𝑉 (𝐺)

(𝑑𝑢
2 + 𝑑𝑢) =  𝑍(𝐺)  +  2𝑚, 

where 𝑚 is the number of edges of 𝐺. Thus, if both the number of vertices and the number 

of edges are given, then the study of 𝑠2(𝐺) is equivalent to that of 𝑍(𝐺). 
Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges. As restatements of the results in [151], 

[155] on 𝑍(𝐺), respectively, we have 

𝑠2(𝐺) ≥ 2𝑚 (⌊
2𝑚

𝑛
⌋  + ⌈

2𝑚

𝑛
⌉   +  1)  − ⌊

2𝑚

𝑛
⌋ ⌈
2𝑚

𝑛
⌉  𝑛 

with equality if and only if any degree of 𝐺 is either  ⌊
2𝑚

𝑛
⌋  or ⌈

2𝑚

𝑛
⌉ , and 

𝑠2(𝐺) ≤ 𝑚(
2𝑚

𝑛 − 1
 +  𝑛)  

with equality if and only if 𝐺 is 𝐾1,𝑛−1 or 𝐾𝑛. 

Let 𝐺 be a connected graph with 𝑛 ≥ 2 vertices. It was proved in [154] that 

𝑠2(𝐺) ≥ 6𝑛 –  8 

with equality if and only if 𝐺 is the path 𝑃𝑛. An alternate argument is as follows: By Theorem 

(3.2.9), if 𝑠2(𝐺) ≥ 𝑠2(𝑇 ) with equality if and only if  =  𝑇 , where 𝑇 is a spanning tree of 
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𝐺. Note that 𝑇 has at least two vertices of degree one. By the Cauchy–Schwarz inequality, 

we have 

𝑠2(𝐺) ≥ 𝑠2(𝑇 ) = 𝑍(𝑇 ) + 2(𝑛 −  1) ≥ 2 +
(2(𝑛 −  1) −  2)2

𝑛 − 2
+  2(𝑛 −  1)  

=  6𝑛 –  8 

and then 𝑠2(𝐺) ≥ 6𝑛 −  8 with equality if and only if 𝐺 is a tree that has exactly two vertices 

of degree one and all other vertices have equal degrees, i.e., 𝐺 is the path 𝑃𝑛. Finally, we 

turn to the special case =
1

2
 . 

Theorem (3.2.14)[147]: Let 𝐺 be a bipartite graph with 𝑛 vertices and 𝑚 ≥ 1 edges. Then 

𝑠1
2
 (𝐺) ≥ 2

√2𝑚

√𝑛 + 2
                                                                 (29) 

with equality if and only if 𝐺 =̃  𝐾2. 

Proof: For 𝑢, 𝑣 ∈  𝑉 (𝐺), 𝑢 ∼  𝑣 means that 𝑢 and 𝑣 are adjacent in 𝐺. It follows that 

𝑍(𝐺) = ∑  𝑢∼𝑣  (𝑑𝑢 + 𝑑𝑣) ≤ ∑  𝑢∼𝑣  𝑛 =  𝑚𝑛 with equality if and only if 𝑑𝑢 + 𝑑𝑣 = 𝑛 for 

any edge 𝑢𝑣 of 𝐺, i.e., 𝐺 is a complete bipartite graph. Note that 𝑆(𝐺) possesses 2𝑚 edges, 

it is quadrangle-free and 𝑍(𝑆(𝐺))  =  𝑍(𝐺)  +  4𝑚. By Lemma (3.2.8) 

𝐸(𝑆(𝐺)) ≥ √
(2 ·  2𝑚)3

2𝑍(𝑆(𝐺)) −  2 ·  2𝑚
= √

(4𝑚)3

2(𝑍(𝐺) +  4𝑚) −  4𝑚
 

≥ √
(4𝑚)3

2(𝑚𝑛 +  4𝑚) −  4𝑚
= 4

√2𝑚

√𝑛 + 2
 . 

By Lemma (3.2.7), we have 𝑠1
2

(𝐺) =
1

2
𝐸(𝑆(𝐺)) and thus (29) follows. From the proof 

above, equality in (29) if and only if 𝐺 and 𝑆(𝐺) are both complete bipartite graphs, i.e., 

𝐺 =̃ 𝐾2. The lower bound in Theorem (3.2.14) is asymptotically best possible. For example, 

let 𝐺 be the complete bipartite graph 𝐾𝑘,𝑘 and then 𝑠1
2

(𝐺) =  √2𝑘 + (2𝑘 −  2)√𝑘 and the 

corresponding lower bound is equal to =
2𝑘2

√𝑘+1
 . Obviously, lim

𝑘→∞
 
𝑠1
2

(𝐺)

𝑐
 =

lim
𝑘→∞

 
(2𝑘−2+ √2)√𝑘+1

 2𝑘 √𝑘
 =  1. 
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Chapter 4 

A Sot-Dense Path and Common Hypercyclic Functions 

 

 We show that each operator along the path has the exact same dense 𝐺𝛿 set of 

hypercyclic vectors. The operators having that particular set of hypercyclic vectors form a 

connected subset of the operator algebra with the strong operator topology. We show that 

there exists a residual set 𝐺 ⊂ 𝐻(ℂ) such that for every 𝑓 ∈ 𝐺 and every non-zero complex 

number a the set {𝑓(𝑧 + 𝜆𝑛𝑎) ∶  𝑛 =  1, 2, . . . } is dense in 𝐻(ℂ). This answers in the 

affirmative and it also provides an extension of a theorem due to Costakis and Sambarino. 

Section (4.1): Chaotic Operators with Same Hypercyclic Vectors 

 

Let 𝐻 be a separable, infinite dimensional Hilbert space over the complex field ℂ, and 

let 𝐵(𝐻) denote the algebra of all bounded linear operators 𝑇 ∶  𝐻 →  𝐻. An operator 𝑇 in 

𝐵(𝐻) is hypercyclic if there is a vector 𝑥 in 𝐻 for which its orbit, Orb(𝑇, 𝑥)  =
 {𝑇𝑛𝑥 ∶  𝑛 ≥  0}, is dense in 𝐻. Such a vector 𝑥 is called a hypercyclic vector for 𝑇, and we 

use the notation ℋ𝒞(𝑇) to denote the set of hypercyclic vectors for 𝑇. The behavior of the 

orbit of a hypercyclic vector is wild. On the other hand, even when the operator is 

hypercyclic, the orbit of a certain vector may be finite. A vector 𝑥 in 𝐻 is called a periodic 

point for the operator 𝑇 if 𝑇𝑛𝑥 =  𝑥 for some positive integer 𝑛. The operator 𝑇 is chaotic 

if it is hypercyclic and has a dense set of periodic points. Godefroy and Shapiro [10] showed 

this definition of chaos is equivalent to the notion of chaos proposed by Devaney [165].  

        Whenever the operator 𝑇 is hypercyclic, the set ℋ𝒞(𝑇) of hypercyclic vectors is a 

dense 𝐺𝛿   set; see Kitai [42]. It follows from the Baire Category Theorem that if we have a 

countable collection {𝑇𝑛 ∈  𝐵(𝐻): 𝑛 >  𝑙} of hypercyclic operators, then the set 

 ⋂  ∞
𝑛=1 ℋ𝒞(𝑇

𝑛) of their common hypercyclic vectors is still a dense 𝐺𝛿 set. Since this 

argument fails when the collection of operators is uncountable, it becomes interesting to 

study their common hypercyclic vectors, especially when the operators in the uncountable 

collection are in fact related by continuity. This leads to the following definition. A 

collection of operators {𝐹𝑡 ∈  𝐵(𝐻): 𝑡 ∈  1} is a path of operators if the map 𝐹 ∶  𝐼 →
 (𝐵(𝐻), ‖ • ‖), defined on an interval 𝐼 by 𝐹(𝑡)  =  𝐹𝑡, is continuous with respect to the 

operator norm topology of 𝐵(𝐻) and the usual topology of the interval 𝐼. The set 

⋂   
𝑡∈𝐼  ℋ𝒞 (𝐹𝑡 ) is referred to as the set of common hypercyclic vectors for the whole path, 

and any vector in the set is called a common hypercyclic vector. If 𝐼 is [𝑎, 𝑏], then the 

collection {𝐹𝑡 ∈  𝐵(𝐻): 𝑡 ∈  1} is called a path of operators between 𝐹𝑎 and 𝐹𝑏.  

           Many results on common hypercyclic vectors were obtained. Leon-Saavedra and 

Müller [43] showed that every operator in the path of rotations {𝑒𝑖𝜃𝑇 ∶  𝜃 ∈  [0,2𝜋]} of a 

single hyper cyclic operator 𝑇 has the exact same hypercyclic vectors as the operator 𝑇 itself. 

Later, Conejero, Müller, and Peris [37] studied common hypercyclic vectors for a semigroup 

of operators. The first example of a specific class of operators with common hypercyclic 

vectors is perhaps the unilateral weighted backward shifts. We provide a formal definition 

here.  

Definition (4.1.1)[159]: An operator 𝐶 in 𝐵(𝐻) is called a unilateral weighted back ward 

shift if there is an orthonormal basis {𝑒0, 𝑒1, 𝑒2, … } and a sequence of nonzero scalars 

{𝑤𝑗 ∶  𝑗 ≥  1} in 𝐶 such that 𝐵𝑒0  =  0 and 𝐵𝑒𝑗  =  𝑤𝑗𝑒𝑗−1 for each integer; 𝑗 ≥  1. It is easy 
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to check that 𝐵 in 𝐵(𝐻) implies that the weight sequence {𝑤𝑗 ∶  𝑗 ≥  1} is bounded. This 

class of operators was well studied in Shields [31]. If all the weights satisfy 𝑤𝑗 — 1, then 𝐵 

is simply called the unilateral backward shift. This particular shift 𝐵 was used to provide the 

first examples of hypercyclic operators on a Hilbert space, as Rolewicz [28] showed that 𝑡𝐵 

is hypercyclic whenever 𝑡 >  1. Then Abakumov and Gordon [20] showed the path 

{𝑡𝐵 ∶  𝑡 ∈  (1,∞)} indeed has a dense set of common hypercyclic vectors. This result was 

reobtained by Costakis and Sambarino [38] who introduced a sufficient condition for a path 

of general operators to have such a dense set. In fact, they also provided many natural 

examples of paths of operators with common hypercyclic vectors, including a path of 

unilateral weighted backward shifts. Another sufficient condition was provided by Bayart 

and Matheron [24] with applications for which Costakis and Sambarino's condition does not 

apply. A necessary and sufficient condition was provided by Chan and Sanders [32] for a 

path of operators to have a dense 𝐺𝛿 set of common hypercyclic vectors. They used this 

condition to prove another sufficient condition that reduces to the well known 

Hypercyclicity Criterion for the case when the whole path contains exactly one operator. 

Chan and Sanders used their conditions to reprove the result of Abakumov and Gordon, and 

further showed that between any two hypercyclic unilateral weighted backward shifts, there 

is a path of such shifts whose common hypercyclic vectors form a dense 𝐺𝛿 set. For 

techniques that are totally different from those of Chan and Sanders [32], their study on 

unilateral weighted backward shifts help motivate some of the ideas here. Common 

hypercyclic vectors include that of Bayart [23], and Bayart and Grivaux [26] who studied 

composition operators on spaces of analytic functions, and Costakis [164] who studied 

Cesaro hypercyclic operators. For nonexistence results, Aron, Bes, Leon, and Peris [22] 

showed in their Example (4.1.4) that there does not exist a vector in 𝐻 which is hypercyclic 

for every hypercyclic operator in 𝐵(𝐻). They proved this by showing for any nonzero vector 

𝑥 in 𝐻, there is a hypercyclic operator 𝑇 in 𝐵(𝐻) for which 𝑇𝑥 =  0. Along this line, Chan 

and Sanders [32] showed there is a path of hypercyclic unilateral weighted backward shifts 

which fails to have a common hypercyclic vector.  

We need to turn our attention to the density of the hypercyclic operators in 𝐵(𝐻). 
Clearly the norm of any hypercyclic operator must be strictly greater than 1, it is still easy 

to see that they collectively are not dense, with respect to the norm topology, in the 

complement of the unit ball of 𝐵(𝐻); see Chan [163]. As it turns out, they are dense in the 

whole operator algebra 𝐵(𝐻) with a weaker topology called the strong operator topology, 

abbreviated SOT. This result was first obtained by Chan [163], and was generalized to the 

Frechet space case by Bes and Chan [161] using a fundamental property of the strong 

operator topology provided by Hadwin, Nordgren, Radjavi, and Rosenthal [167]. In fact, 

B�̀�s and Chan showed that if 𝑇 is a hypercyclic operator, then the set of conjugates 

{𝐴𝑇𝐴−1 ∶  𝐴 invertible in 𝐵(𝐻)}    is SOT-dense in 𝐵(𝐻). Even further, if the hypercyclic 

operator 𝑇 is chaotic, this SOT-dense set of conjugates consists entirely of chaotic operators. 

On the other hand, that conjugate set is path connected be cause the collection of all 

invertible operators in 𝐵(𝐻) is indeed path connected; see Douglas ([40], Corollary 5.30). 

Hence, any single chaotic operator generates a path connected set of chaotic operators that 

is SOT-dense in 𝐵(𝐻). As a result, it is interesting to see whether we can improve the above 
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results, by raising the following question: Does there exist a path of chaotic operators which 

is SOT-dense in B(H), and yet has a dense 𝐺𝛿 set of common hypercyclic vectors?  

        The above question is answered in the positive with a constructive proof in Theorem 

(4.1.7) below. Even more interesting, we show each operator along this path has the exact 

same dense 𝐺𝛿 set of hypercyclic vectors. It should be noted that Bonet, Martinez, and Peris 

[30] have shown that there is a Banach space that fails to admit a chaotic operator, and so 

Theorem (4.1.7) is purely a Hilbert space result. Since the collection of all hypercyclic 

operators in 𝐵(𝐻) fails to have a common hypercyclic vector, the path that we construct is 

necessarily a proper subset of all hypercyclic operators. In fact, the path consists entirely of 

operators that satisfy the Hypercyclicity Criterion due to the result by Bes and Peris [162] 

that every chaotic operator satisfies the criterion. It should be pointed out here that de la 

Rosa and Read [39] showed that there is a Banach space which admits a hypercyclic operator 

that does not satisfy the hypercyclicity Criterion. Inspired by de la Rosa and Read, Bayart 

and Matheron [25] were able to obtain an analogous result for a Hilbert space. We conclude 

with a discussion about the SOT-connectedness of the hypercyclic operators in 𝐵(𝐻).  
We first examine unilateral weighted backward shifts in 𝐵(𝐻). In particular, we show 

that for any given orthonormal basis of 𝐻, there is a path of chaotic hypercyclic unilateral 

weighted backward shifts which is SOT-dense in the set of all unilateral weighted backward 

shifts on that particular basis and for which all operators along this path have the exact same 

set of hypercyclic vectors. As a consequence, the common hypercyclic vectors for the whole 

path is a dense G$ set; see Theorem (4.1.4) below.  

        Since hypercyclic vectors may form some sort of linear structure, common hypercyclic 

vectors follow this natural pattern as well.  

Definition (4.1.2)[159]: By the term hypercyclic subspace for an operator 𝑇, we mean a 

closed, infinite dimensional subspace consisting entirely, except the zero vector, of 

hypercyclic vectors for 𝑇.  

        A sufficient condition for the existence of common hypercyclic subspaces was obtained 

by Bayart [160]. Different sufficient conditions were obtained by Aron, Bes, Leon, and Peris 

in [22], and by Sanders in [30]. We show the SOT-dense paths of chaotic operators given in 

Theorem (4.1.4) and Theorem (4.1.7) can be chosen to have common hypercyclic 

subspaces; see Corollary (4.1.5) and Corollary (4.1.10) below.   

Let 𝐵 be the subset of 𝐵(𝐻) consisting of all unilat eral weighted backward shifts of 

a fixed orthonormal basis {𝑒0, 𝑒1, 𝑒2, … }. We show there is a path of chaotic shifts in 𝐵 which 

is SOT-dense in 𝐵.  

        The first examples of hypercyclic operators on a Hilbert space, provided by Rolewicz 

[28], were unilateral weighted backward shifts. Salas [29] later completely characterized 

hypercyclic unilateral weighted backward shifts in terms of the weight sequences. His result 

was originally stated for positive weight sequences. Since a unilateral weighted backward 

shift with the complex weight sequence {𝑤𝑗 ∶  𝑗 ≥  1} is unitarily equivalent to one with the 

positive weight sequence {|𝑤𝑗| ∶  𝑗 ≥  1}; see Shields ([31], Corollary 1), Salas′ 

characterization can be stated in term of complex weights: A unilateral weighted backward 

shift is hypercyclic if and only if its weight sequence satisfies  
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sup{∏ 

𝑛

𝑗=1

|𝑤𝑗| ∶  𝑛 ≥  1}  = ∞                                 (1)  

A more general version of Salas' characterization was established by Grosse Erdmann [166]. 

Martinez and Peris ([169], Example (4.1.12)) also characterized the hypercyclic unilateral 

weighted backward shifts which are chaotic in terms of weight sequences: A unilateral 

weighted backward shift is chaotic if and only if its weight sequence satisfies  

∑ 

∞

𝑛=1

1

∏  𝑛
𝑗=1 |𝑤𝑗|

2 < ∞.                                       (2) 

From Salas' characterization (1), it is easy to see that if one takes the weight sequence of a 

hypercyclic shift in 𝐵, and multiply one of its weights by a nonzero complex scalar, the new 

resulting shift in 𝐵 will also be hypercyclic. In fact, we now show they have the exact same 

set of hypercyclic vectors.  

Proposition (4.1.3)[159]: Let 𝜆 ∈ ℂ  \ {0} and let m be a positive integer. If A is a unilateral 

weighted backward shift in В with weight sequence {𝑤𝑗 ∶  𝑗 ≥  1}, and if 𝐵 is another shift 

in 𝐵 whose weight sequence {𝑣𝑗 ∶  𝑗 >  1} satisfies 𝑣𝑗  =  𝑤𝑗  for any positive integer 𝑗 ≠

 𝑚 and 𝑣𝑚  = 𝜆 𝑤𝑚, then ℋ𝒞 (𝐴) = ℋ𝒞(𝐵).  
Proof: Observe that for any integer 𝑛 ≥  𝑚, we have:  

𝐴𝑛𝑒𝑗+𝑛 = (∏ 

𝑛

𝑖=1

𝑤𝑗+𝑖)𝑒𝑗 , for 𝑗 ≥ 0  

𝐵𝑛𝑒𝑗+𝑛 = (∏ 

𝑛

𝑖=1

𝑤𝑗+𝑖)𝑒𝑗 , for 𝑗 ≥ 𝑚, and 

𝐵𝑛𝑒𝑗+𝑛 = 𝜆(∏ 

𝑛

𝑖=1

𝑤𝑗+𝑖) 𝑒𝑗 , for0 ≤ 𝑗 ≤ 𝑚 − 1 

Therefore, for any vector 𝑔 ∈  𝐻 and integer 𝑛 >  𝑚, we have  

〈𝐴𝑛𝑔, 𝑒𝑗〉 = 〈𝐵
𝑛𝑔, 𝑒𝑗〉,   for 𝑗 ≥  𝑚, and                                                  (3)  

〈𝐴𝑛𝑔, 𝑒𝑗〉 = 𝜆
−1〈𝐵𝑛𝑔, 𝑒𝑗〉,   for 0 ≤ 𝑗 ≤  𝑚 − 1, and                                (4) 

Let 𝑃 ∶  𝐻 →  𝐻 be the orthogonal projection onto the subspace span{𝑒𝑗 ∶  0 ≤  𝑗 ≤  𝑚 −

 1}. That is, for any vector 𝑔 ∈  𝐻, we have ∑  𝑚−1
𝑗=0  〈𝑔, 𝑒𝑗〉𝑒𝑗. Hence, by equations (3) and 

(4), we have that for any integer 𝑛 ≥ 𝑚,  
𝐴𝑛𝑔 = 𝜆−1𝑃(𝐵𝑛𝑔) + (𝐼 −  𝑃)𝐵𝑛𝑔, and 𝐵𝑛𝑔 = 𝜆𝑃(𝐴𝑛𝑔)  + (𝐼 −  𝑃)𝐴𝑛𝑔. 

It follows that the orbit Orb(𝐴, 𝑔) is dense if and only if the orbit Orb(𝐵, 𝑔) is dense.  

        Using induction with Proposition (4.1.3), we get that if 𝐴 and 𝐵 are two hyper cyclic 

unilateral weighted backward shifts in ℬ whose weight sequences differ by only a finite 

number of members, then the two shifts satisfy ℋ𝒞 (𝐴) = ℋ𝒞(𝐵). This observation 

together with Martinez and Peris' necessary and sufficient condition (2) allows us to create 

a path of chaotic shifts in ℬ which is SOT-dense in ℬ, and each operator along the path has 

the exact same set of hypercyclic vectors.  

Theorem (4.1.4)[159]: There is a path {𝐹𝑡 ∈  𝐵(𝐻): 𝑡 ∈  [1,∞)} of chaotic unilateral 

weighted backward shifts in ℬ which is SOT-dense in ℬ. Moreover, for each 𝑡 ∈  [1,∞), 
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we have ℋ𝒞 (𝐹𝑡) = ℋ𝒞(𝐹𝑙); that is, each operator along the path has the exact same dense 

G$ set of hypercyclic vectors.  

Proof: Let 𝐵0 be a chaotic unilateral weighted backward shift in В with weight sequence 

{𝑤𝑗 ∶  𝑗 ≥ 1} satisfying 𝑤𝑗 ∈  (ℚ +  𝑖ℚ) \ {0} for each integer 𝑗 ≥  1. Consider the 

collection 𝐴 of all weight sequences 𝑤 =  {𝑤𝑗 ∶  𝑗 ≥  1} satis fying that each weight 𝑤𝑗 ∈

 (ℚ +  𝑖ℚ) \ {0} and 𝑤𝑗  =  �̃�𝑗 for all but finitely many positive integers 𝑗. The collection 

𝐴 is countable, and so let 𝑤(𝑛) = {𝑤𝑗
(𝑛)

∶  𝑗 >  1}, where    𝑛 =  1,2,3, . . ., be an 

enumeration of 𝐴. From the definition of the weight sequences in 𝐴, there is a sequence 

(𝑘𝑛
 )𝑛=1
∞  of positive integers such that 𝑤(𝑛)  = 𝑤𝑗

(𝑛+1)
= �̃�𝑗 for any integer 𝑗 ≥  𝑘𝑛  +  1. 

For integers 𝑛, 𝑗 with 𝑛 >  1 and 1 ≤  𝑗 ≤  𝑘𝑛, write 𝑤𝑗
(𝑛)
 = 𝑟𝑗

(𝑛)
exp (𝑖𝜃𝑗

(𝑛)
) where 

𝑟𝑗
(𝑛)
 >  0 and 0 ≤ 𝜃𝑗

(𝑛)
 <  2𝜋.  

        To define the path of operators, for each integer 𝑛 ≥  1 and for each 𝑡 ∈  [0,1], let 𝐺𝑡,𝑛 

be the unilateral weighted backward shift in ℬ whose weight sequence {𝑣𝑗
(𝑡)
∶  𝑗 >  1} is 

given by  𝑣𝑗
(𝑡)
 =  �̃�𝑗     if    𝑗 >  𝑘𝑛  +  1, and 

 𝑣𝑗
(𝑡)
 =  [(1 −  𝑡)𝑟𝑗

(𝑛)
 +  𝑡𝑟𝑗

(𝑛+1)
] 𝑒

𝑖[(1−𝑡)𝜃𝑗
(𝑛)
+𝑡𝜃𝑗

(𝑛+1)
]
    if    1 ≤  𝑗 ≤  𝑘𝑛.  

For each 𝑡 ∈  [𝑛, 𝑛 +  1], define 𝐹𝑡  =  𝐺𝑡−𝑛,𝑛 . Since 𝐺1,𝑛  =  𝐺0,𝑛+1 for each integer 𝑛 ≥
 1, the map 𝐹 ∶  [1,∞) →  (𝐵(𝐻), ‖∙‖), given by 𝐹(𝑡) =  𝐹𝑡 , is well defined. Moreover, the 

map 𝐹 ∶  [1,∞) →  (𝐵(𝐻), ‖∙‖) is continuous because the map 1 ↦ 𝐺𝑡,𝑛 is continuous on 

[0,1] for each integer 𝑛 ≥  1. Lastly, note that the series ∑  ∞
𝑛=1 ∏  𝑛

𝑗=1 |𝑣𝑗
(𝑡)
|
−2

 converges if 

and only if the series ∑  ∞
𝑛=1 ∏  𝑛

𝑗=1 |�̃�𝑗
 |
−2

 converges. Thus, from condition (2), we get each 

operator Ft is chaotic. Therefore, {𝐹𝑡 ∈  𝐵(𝐻): 𝑡 ∈  [1,∞)} is a path of chaotic unilateral 

weighted backward shifts in 𝐵. To show 𝒦𝒞 (𝐹𝑡) = ℋ𝒞(𝐹𝑖) for each 𝑡 ∈  [1,∞), observe 

that the weights of each 𝐹𝑡 are the same as 𝐹1 except at most a finite number of them. Thus, 

by Proposition (4.1.3), we get ℋ𝒞 (𝐹𝑡) = ℋ𝒞(𝐹1).  
        To show the path {𝐹𝑡 ∈  𝐵(𝐻): 𝑡 ∈  [1,∞)}  is SOT-dense in 𝐵, let 𝐵 be a shift in 𝐵 

with the weight sequence {𝑣𝑗 ∶  𝑗 ≥  1}. Let 𝑓1, . . . , 𝑓𝑟 be r nonzero vectors in H, and let 𝑒 >

 0. Consider an SOT-basic open set 𝑈 given by  

𝑈 =  {𝐴 ∈  𝐵(𝐻): ‖ (𝐴 −  𝐵)𝑓𝑘‖  <  𝜀, whenever 1 ≤  𝑘 ≤  𝑟}. 

Let 𝛾2 = sup {(|�̃�𝑗|  + |𝑣𝑗|)
2
∶  𝑗 ≥  1}, and choose an integer 𝑁 >  1 such that for each 

vector 𝑓𝑘, we have  

∑  

∞

𝑗=𝑁+1

|〈𝑓𝑘 , 𝑒𝑗〉|
2
 <

𝜀

2𝛾1
 

Let 𝛾2  = max{‖𝑓𝑘‖
2 ∶  1 <  𝑘 ≤  𝑟}, and choose 𝑤1, … , 𝑤𝑁 (ℚ +  𝑖ℚ) \ {0} to satisfy  

|𝑤𝑗 − 𝑣𝑗|
2
<
𝜀2

2𝛾2
.  

Consider the weight sequence {𝑤1, 𝑤2, … , 𝑤𝑁 , �̃�𝑁+1, �̃�𝑁+2, … }. From the definition of the 

collection 𝐴, there exists an integer 𝑛0 ≥  1 such that  
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{𝑤𝑗
(𝑛0) ∶ 𝑗 ≥  1}  = {𝑤1, 𝑤2, … , 𝑤𝑁 , �̃�𝑁+1, �̃�𝑁+2, … } 

Thus, for each vector 𝑓𝑘, we have  

‖(𝐹𝑛0 − 𝐵)𝑓𝑘‖
2
=∑ 

∞

𝑗=1

|𝑤𝑗
(𝑛0) − 𝑣𝑗|

2

|〈𝑓𝑘 , 𝑒𝑗〉|
2

=∑ 

𝑁

𝑗=1

|𝑤𝑗 − 𝑣𝑗|
2
|〈𝑓𝑘, 𝑒𝑗〉|

2
+ ∑  

∞

𝑗=𝑁+1

|�̃�𝑗 − 𝑣𝑗|
2
|〈𝑓𝑘, 𝑒𝑗〉|

2
 

<
𝜀2

2𝛾2
∑ 

𝑁

𝑗=1

|〈𝑓𝑘 , 𝑒𝑗〉|
2
+ ∑  

∞

𝑗=𝑁+1

(|�̃�𝑗|
 
+ |𝑣𝑗|)

2
|〈𝑓𝑘, 𝑒𝑗〉|

2

<
𝜀2

2𝛾2
‖𝑓𝑘‖

2 + 𝛾1 ∑  

∞

𝑗=𝑁+1

|〈𝑓𝑘 , 𝑒𝑗〉|
2
<
𝜀2

2𝛾2
+ 𝛾1

𝜀2

2𝛾1
= 𝜀2, 

 and so, 𝐹𝑛0 ∈  𝑈.  

        In fact, the above proof can be modified to show the following interesting connection 

with some linear structure of the hypercyclic vectors.  

Corollary (4.1.5)[159]: There is a path of chaotic shifts in ℬ that is SOT-dense in ℬ, and 

the shifts along the whole path have a common hypercyclic subspace.  

        To see that, we first note that Leon and Montes [168] completely characterized, in 

terms of weight sequences, the unilateral weighted backward shifts which possess a 

hypercyclic subspace. Their characterization, expressed in terms of complex weights, states 

that a unilateral weighted backward shift has a hyper cyclic subspace if and only if its weight 

sequence satisfies  

sup{∏ 

𝑛

𝑗=1

: 𝑛 ≥ 1} = ∞, and lim
𝑛→∞

 (inf  ∏ 

𝑛−1

𝑗=0

|𝑤𝑘+𝑗|)

1𝑛

≤ 1. 

Using this condition, we see that each operator along the path given in the proof of Theorem 

(4.1.4) may fail to have a hypercyclic subspace. However, if we select the chaotic shift 𝐵0  
in the proof of Theorem (4.1.4) to also have a hypercyclic subspace, then each operator 𝐹𝑡 
along the corresponding path of shifts in 𝐵 is chaotic and has a hypercyclic subspace. 

Furthermore, since ℋ𝒞 (𝐹𝑡)—ℋ𝒞(𝐹1) for each t, the whole path has a common hypercyclic 

subspace within the dense 𝐺𝛿 set of common hypercyclic vectors. The shift in 𝐵 with the 

weight sequence {
𝑗+1

𝑗
: 𝑗 ≥ 1} is an example of such a chaotic shift with a hypercyclic 

subspace.  

We focused on the collection of all unilateral weighted back ward shifts of a fixed 

orthonormal basis in the Hilbert space 𝐻. However, this collection fails to be SOT-dense in 

𝐵(𝐻). To construct the path of chaotic operators desired in Theorem (4.1.7), we turn our 

attention to generalized backward shifts. An operator T in 𝐵(𝐻) is a generalized backward 

shift if the kernel, Ker(𝑇), of 𝑇 is one dimensional, and the set 𝑈{Ker(𝑇𝑛): 𝑛 ≥  1} is dense 

in 𝐻. Godefroy and Shapiro ([10], Proposition (4.1.10)) showed that if the operator 𝑇 is a 

generalized backward shift, then there is a sequence {𝑒𝑗 ∶  𝑗 ≥  0} of vectors in 𝐻 for which 



 

132 
 

𝑇𝑥𝑗  =  𝑥𝑗−1 for each integer; 𝑗 ≥  1, and Ker(𝑇)  =  span{𝑥0}. For more on general ized 

backward shifts, see Godefroy and Shapiro [10].  

        Proposition (4.1.6) below is the major building block of Theorem (4.1.7). By using 

Proposition (4.1.3) and the fact that the invertible operators on the Hilbert space H are path 

connected, Proposition (4.1.6) creates a path between a hypercyclic unilateral weighted 

backward shift and a specific generalized backward shift. Let {𝑒𝑗 ∶  𝑗 ≥  0} be any 

orthonormal basis of the Hilbert space 𝐻, and let 𝐵0: 𝐻 →  𝐻 be a hypercyclic unilateral 

weighted backward shift of the basis {𝑒𝑗 ∶  𝑗 ≥  0} with weight sequence {𝑤𝑗 ∶  𝑗 ≥  1}. Let 

{𝑔𝑗 ∶  𝑗 >  0} be a sequence of vectors in 𝐻 and {𝑣𝑗 ∶  𝑗 ≥  1} a weight sequence for which 

there is an integer 𝑁 ≥  0 such that  

span{𝑔𝑗 ∶  0 ≤ 𝑗 ≤  𝑁}  =  span{𝑒𝑗 ∶  0 ≤  𝑗 ≤  𝑁},                    (5) 

and for any integer 𝑁 + 1, we have  

𝑔𝑗  =  𝑒𝑗    and    𝑣𝑗  =  𝑤𝑗 .                                              (6) 

Define an operator 𝐵1 ∶  𝐻 →  𝐻 by 𝐵1𝑔𝑗  =  𝑣𝑗𝑔𝑗−1 for each integer 𝑗 ≥  1, and 𝐵1𝑔0  =

 0. The operator 𝐵1 is a generalized backward shift with 𝑥0 = 𝑔0, and  

𝑥𝑗  = [∏ 

𝑗

𝑖=1

𝑣𝑖]

−1

𝑔𝑗  for integers  𝑗 >  1. 

Proposition (4.1.6)[159]: There is a path {𝐺𝑡 ∈  𝐵(𝐻): 𝑡 ∈  [0,1]} of hypercyclic operators 

between Bo and Bi such that for each 𝑡 in [0,1], we have ℋ𝒞(𝐺𝑡) = ℋ𝒞(𝐵0). Furthermore, 

if the operator 𝐵0 is chaotic, then this path may be chosen to consistentirely of chaotic 

operators.  

Proof. To begin our proof, first observe we can assume 𝑣𝑗  =  𝑤𝑗 for each inte ger 𝑗 ≥  1. 

To see this, note that in the general case where 𝑣𝑗  =  𝑤𝑗 for each integer 𝑗 ≥  𝑁 +  1, we 

can use the argument in the first half of the proof of Theorem (4.1.4) to create a path of 

hypercyclic operators between 𝐵0 and the unilateral weighted backward shift of the basis 

{𝑒𝑗 ∶ 𝑗 ≥  0} with weight sequence {𝑣𝑗 ∶  𝑗 ≥  1} where each operator along the path has the 

same set of hypercyclic vectors as the oper ator 𝐵0. Moreover, if the operator 𝐵0 is chaotic, 

then this path can be chosen so each operator along the path is chaotic.  

        To create the path of operators described in our proposition, let 𝐻𝑁 =  span{𝑔𝑗 ∶  0 ≤

 𝑗 ≤  𝑁}  =  𝑠𝑝𝑎𝑛{𝑒𝑗 ∶  0 ≤ 𝑗 ≤  𝑁}, and let 𝐴 ∶  𝐻𝑁 → 𝐻𝑁 be the invertible operator 

satisfying  

 𝐴𝑒𝑗  =  𝑔𝑗  for     0 ≤ 𝑗 ≤ 𝑁.                                                (7)  

Since the invertible operators on 𝐻𝑁 are path connected, see Douglas ([40], Corollary 5.30), 

there exists a path {𝐴𝑡 ∈  𝐵(𝐻𝑁) ∶  𝑡 ∈  [0,1]} of invertible operators such that 𝐴0  =  𝐼 and 

𝐴1  =  𝐴. For each 𝑡 ∈  [0,1] and each integer 𝑗 >  0, let  

𝑔𝑡,𝑗 = {
𝐴𝑡𝑒𝑗     if  0 ≤ 𝑗 ≤ 𝑁,

𝑒𝑗         if  𝑗 ≥ 𝑁 + 1,
                                               (8) 

and define the operator 𝐺𝑡 ∶  𝐻 →  𝐻 by 

𝐺𝑡𝑔𝑗 = {
𝑣𝑗𝑔𝑡,𝑗−1    if  𝑗 ≥ 1,

0                 if  𝑗 = 0.
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 Then {𝐺𝑡 ∈  𝐵(𝐻): 𝑡 ∈  [0,1]} is a path of operators between 𝐺0  =  𝐵0 and 𝐺1  =  𝐵1. To 

show ℋ𝒞(𝐺𝑡) = ℋ𝒞(𝐵0) for each 𝑡 ∈  [0,1], let 𝑃 ∶  𝐻 →  𝐻 be the orthogonal projection 

onto the closed subspace 𝐻𝑁. For each 𝑓 ∈  [0,1], define the operator 𝑆𝑡 ∶  𝐻 →  𝐻 by 𝑆𝑡  =
 𝐴𝑡𝑃 + (𝐼 —  𝑃). Since the operator 𝑆𝑡 is invertible, it suffices to show 𝐺𝑡

𝑛  =  𝑆𝑡𝐵0
𝑛 for 

each integer 𝑛 ≥  𝑁 + 1. For such an integer 𝑛, we observe that by (5), (6), (8), and the 

definition of 𝐵0, we get Ker(𝐵0
𝑛)  =  span{𝑔𝑡,𝑗 ∶ 0 ≤  𝑗 ≤  𝑛 − 1 } which give us 

𝑆𝑡𝐵0
𝑛𝑔𝑡,𝑗 = 0 = 𝐺𝑡

𝑛𝑔𝑡,𝑗    for   0 ≤ j ≤ n − 1.               (9) 

From (8) and the definition of 𝑆𝑡, we get 𝑆𝑡𝑒𝑗  =  𝑔𝑡,𝑗 for each integer 𝑗 ≥  0. Thus, for any 

integer 𝑗 ≥  𝑛, we have  

𝑆𝑡𝐵0
𝑛𝑔𝑡,𝑗  =  𝑆𝑡𝐵0

𝑛𝑒𝑗  (𝑏𝑦 (8)) 

 ∏ 

𝑛−1

𝑖=0

𝑤𝑗—𝑖𝑆𝑡𝑒𝑗—𝑛  =∏ 

𝑛−1

𝑖=0

𝑣𝑗−𝑖𝑔𝑡,𝑗−𝑛 = 𝐺𝑡
𝑛 𝑔𝑡,𝑗 .  

Therefore, 𝐺𝑛  =  𝑆𝑡 𝐵0
𝑛 whenever 𝑛 ≥  𝑁 +  1.  

        To complete the proof of our proposition, it remains to show that if the operator 𝐵0 has 

a dense set of periodic points, then so has each operator 𝐺𝑡. For that we observe that if / is a 

periodic point of 𝐵0, then we choose an integer 𝑛 ≥  𝑁 + 1 such that 𝐵0
𝑛𝑓 = 𝑓. Now, the 

vectors 𝐴𝑡𝑃𝑓 and 𝑃𝑓 ∈  𝐻𝑁 ⊆  Ker(𝐵0
𝑛), and so  

𝐵0
𝑛𝑆𝑡𝑓 =  𝐵0

𝑛(𝐴𝑡𝑃𝑓 + (𝐼 −  𝑃)𝑓)  =  𝐵0
𝑛(𝑃𝑓 + (𝐼 −  𝑃)𝑓)  =  𝐵0

𝑛𝑓 =  𝑓. 
It follows that 𝐺𝑡

𝑛𝑆𝑡𝑓 =  𝑆𝑡𝐵0
𝑛𝑆𝑡𝑓 =  𝑆𝑡𝑓. Hence 𝑆𝑡𝑓 is a periodic point of 𝐺𝑡 if the 𝑓 is a 

periodic point of 𝐵0. Since the operator 𝑆𝑡 is invertible, it takes the dense set of periodic 

points of 𝐵0 to a dense set of periodic points of 𝐺𝑡 .  
Each operator along the path {𝐺𝑡: 𝑡 ∈  [0,1]} given in the proof of Proposition (4.1.6) 

is, in fact, a generalized backward shift. We now use Proposition (4.1.6).  

Theorem (4.1.7)[159]: Let 𝐻 be a separable, infinite dimensional Hilbert space over 𝐶. 

Then there is a path {𝐹𝑡 ∈  𝐵(𝐻): 𝑡 ∈  [1,∞)} of chaotic operators which is SOT-dense 

in 𝐵(𝐻). Furthermore, for each t in [0,∞], we have ℋ𝒞(𝐹𝑡) = ℋ𝒞(𝐹1); that is, each 

operator along the path has the same dense 𝐺𝛿 set of hypercyclic vectors.  

Proof: To start, fix an orthonormal basis {𝑒𝑗 ∶ 𝑗 ≥  0} of the Hilbert space 𝐻. Let 𝒟 be the 

collection of all nonzero finite rank operators 𝐷 ∈  𝐵(𝐻) each of which has an integer 𝑛 >
 1 such that 𝐷𝑒𝑗 ∈  { ∑  𝑛

𝑘=0  𝑎𝑘𝑒𝑘 ∶ 𝑎𝑘 ∈ ℚ +  𝑖ℚ} whenever 0 ≤ 𝑗 ≤ 𝑛, and 𝐷𝑒𝑗  =  0 

whenever 𝑗 ≥  𝑛 +  1. Clearly 𝒟 is a countable collection. It is also easy to see that 𝒟 is 

SOT-dense in 𝐵(𝐻) because if 𝑇 ∈  𝐵(𝐻) and 𝑃𝑛 ∶  𝐻 →  𝐻 is the orthogonal projection 

onto 𝑠𝑝𝑎𝑛{𝑒𝑗 ∶  0 ≤  𝑗 ≤  𝑛}, then 𝑃𝑛𝑇𝑃𝑛 →  𝑇 in the strong operator topology. Let 

{𝐷𝛼 ∶ 𝛼 >  1} be an enumeration of the collection 𝒟 such that  

𝐷𝛼𝑒𝑗 ∈  { ∑  

𝛼

𝑘=0

𝑎𝑘𝑒𝑘: 𝑎𝑘 ∈ ℚ +  𝑖ℚ} , whenever 0 <  𝑗 < 𝛼,  

and  

 𝐷𝛼𝑒𝑗  =  0, whenever   𝑗 ≥ 𝛼 + 1.                                        (10) 

        Let 𝐵0 ∶  𝐻 →  𝐻 be a chaotic unilateral weighted backward shift of the basis 

{𝑒𝑗 ∶  𝑗 ≥  0} with weight sequence {𝑤𝑗: 𝑗 ≥  1}. For each 𝐷𝛼 and each pair of integers 𝛽, 𝛾 ≥

1, we define the linear operator 𝑇𝛼,𝛽,𝛾 ∶  𝐻 →  𝐻 in the following manner:  
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𝑇𝛼,𝛽,𝛾𝑒𝑗 = 𝐷𝛼𝑒𝑗 +
1

𝛾
𝑒𝛼+𝛽+1+𝑗 , for 0 ≤  𝑗 ≤ 𝛼;                      (11) 

 𝑇𝛼,𝛽,𝛾𝑒𝛼+1 = 𝑒0                                                                                  (12)  

 𝑇𝛼,𝛽,𝛾𝑒𝛼+1+𝑗  =
1

𝛾𝑗+1
𝑒𝛼+𝑗 , for 0 ≤  𝑗 ≤ 𝛽 − 1;                      (13) 

 𝑇𝛼,𝛽,𝛾𝑒𝛼+𝛽+1+𝑗 = −𝛾𝑇𝛼,𝛽,𝛾𝐷𝛼𝑒𝑗 + 𝛾𝑒𝑗+1, for 0 ≤  𝑗 ≤ 𝛼;   (14) 

𝑇𝛼,𝛽,𝛾𝑒2𝛼+𝛽+1 = −𝛾𝑇𝛼,𝛽,𝛾𝐷𝛼𝑒𝛼;                                                        (15) 

𝑇𝛼,𝛽,𝛾𝑒2𝛼+𝛽+2 = −𝑒2𝛼+𝛽+2𝑒𝛼+𝛽;                                                      (16) 

𝑇𝛼,𝛽,𝛾𝑒𝑗 = 𝑤𝑗𝑒𝑗−1, for  𝑗 ≥ 2𝛼 + 𝛽 + 3.                                   (17) 

Equations (14) and (15) define 𝑇𝛼,𝛽,𝛾 because Ran(𝐷𝛼)  ⊆  𝑠𝑝𝑎𝑛{𝑒𝑘 ∶  0 ≤  к ≤ 0  }. In 

fact, the operator 𝑇𝛼,𝛽,𝛾 is a compact perturbation of a chaotic unilateral weighted backward 

shift, and hence a bounded linear operator on 𝐻. 

Claim (4.1.8)[159]: The set {𝑇𝛼,𝛽,𝛾 ∶  𝛼, 𝛽, 𝛾 ≥ 1} is SOT − dense in 𝐵(𝐻). 

Proof: Let 𝑈 be a nonempty SOT-open set in 𝐵(𝐻). Since 𝒟 is SOT-dense in 𝐵(𝐻), there 

is an 𝛼 ≥  𝐼, nonzero vectors 𝑓1, . . . , 𝑓𝑟 ∈  𝐻, and 𝜀 >  0 for which the basic SOT-open set  

{𝐴 ∈  𝐵(𝐻) ∶  ‖ (𝐴 − 𝐷𝛼)𝑓𝑘‖  <  𝜀, whenever 1 ≤  𝑘 ≤  𝑟}  ⊆  𝑈.  
Let 𝑀1  = max{‖𝑓𝑘‖ ∶  1 ≤  𝑘 ≤  𝑟}, and let 𝑀2  =  (𝑎 +  1)

2(‖𝐷𝛼‖ +  2)
2. Choose an 

integer 𝛾 ≥ 2 such that 

(𝛼 +  1)𝑀1
𝛾

<
𝜀

4
 , and ∑  

∞

𝑗=0

1

𝛾𝑗+1
 <

𝜀

4𝑀1
                               (18) 

Since sup{|𝑤𝑗|: 𝑗 ≥  1}  =  ‖𝐵0‖ < ∞, we can then choose an integer 𝐵 ≥ 1 such that for 

each vector 𝑓𝑘,  

|〈𝑓𝑘, 𝑒𝑗〉| <
𝜀

4𝛾𝑀2
, if    𝑗 ≥ 𝛼 + 𝛽 + 1;                     (19) 

( ∑  

∞

𝑗=𝛼+𝛽+1

|𝑤𝑗|
2
|〈𝑓𝑘, 𝑒𝑗〉|

2
) <

𝜀

4
.                                      (20) 

        To show 𝑇𝛼,𝛽,𝛾 ∈ 𝒰, let 𝑇 =  𝑇𝛼,𝛽,𝛾, and let 𝑘 be an integer with 1 ≤ 𝑘 ≤ 𝑟 Observe 

that  

‖𝑇 − 𝐷𝛼‖ = ‖∑ 

∞

𝑗=0

|〈𝑓𝑘, 𝑒𝑗〉|(𝑇 − 𝐷𝛼)𝑒𝑗‖ 

≤∑ 

𝛼

𝑗=0

|〈𝑓𝑘 , 𝑒𝑗〉|‖(𝑇 − 𝐷𝛼)𝑒𝑗‖ +∑  

𝛽+1

𝑗=0

|〈𝑓𝑘 , 𝑒𝛼+1+𝑗〉|‖(𝑇 − 𝐷𝛼)𝑒𝛼+1+𝑗‖(21) 

≤∑ 

𝛼

𝑗=0

|〈𝑓𝑘 , 𝑒𝛼+𝛽+1+𝑗〉|‖(𝑇 − 𝐷𝛼)𝑒𝛼+𝛽+1+𝑗‖ + ‖ ∑  

∞

𝑗=2𝛼+𝛽+2

|〈𝑓𝑘 , 𝑒𝑗〉|(𝑇 − 𝐷𝛼)𝑒𝑗‖ 

To estimate each of the above four summation, we note that for the first term 
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∑ 

𝛼

𝑗=0

|〈𝑓𝑘, 𝑒𝑗〉|‖(𝑇 − 𝐷𝛼)𝑒𝑗‖ =∑ 

𝛼

𝑗=0

|〈𝑓𝑘, 𝑒𝑗〉|
1

𝛾
  (by(11))  

≤
1

𝛾
∑ 

𝛼

𝑗=0

‖𝑓𝑘‖                                                   (22) 

To estimate the second summation, observe that  

∑ 

𝛽−1

𝑗=0

|〈𝑓𝑘 , 𝑒𝛼+1+𝑗〉|‖(𝑇 − 𝐷𝛼)𝑒𝛼+1+𝑗‖ = ∑  

𝛽−1

𝑗=0

|〈𝑓𝑘 , 𝑒𝛼+1+𝑗〉|
1

𝛾𝑗+1
(by(3.6), (12)(13)) 

≤ ‖𝑓𝑘‖∑ 

∞

𝑗=0

1

𝛾𝑗+1
                                             (23) 

=
𝜀

4
. 

To estimate the second summation, observe that by equalities (10),(16), and (17), we have  

‖ ∑  

∞

𝑗=2𝛼+𝛽+2

|〈𝑓𝑘 , 𝑒𝑗〉|(𝑇 − 𝐷𝛼)𝑒𝑗‖

2

= ‖𝑤2𝛼+𝛽+2|〈𝑓𝑘, 𝑒2𝛼+𝛽+2〉|𝑒𝛼+𝛽 + ∑  

∞

𝑗=2𝛼+𝛽+2

𝑤𝑗|〈𝑓𝑘 , 𝑒𝑗〉|𝑒𝑗−1‖ 

= ∑  

∞

𝑗=2𝛼+𝛽+2

|𝑤𝑗|
2
|〈𝑓𝑘 , 𝑒𝑗〉|

2
                                  (24) 

<
𝜀2

16
(by(20)). 

Lastly, to estimate the third summation, we observe that Ran(𝐷𝛼)  ⊆  𝑠𝑝𝑎𝑛{𝑒𝑘 ∶  0 ≤  𝑘 ≤
𝛼}, and so for any vector 𝑔 ∈  𝐻, we have 

‖𝑇𝐷𝛼𝑔‖ = ‖∑ 

𝛼

𝑗=0

|𝐷𝛼𝑔, 𝑒𝑗|𝑇𝑒𝑗‖

 

 

≤∑ 

𝛼

𝑗=0

|〈𝐷𝛼𝑔, 𝑒𝑗〉| ‖𝐷𝛼𝑒𝑗 +
1

𝛾
𝑒𝛼+𝛽+1+𝑗‖ (by(11)) 

≤∑ 

𝛼

𝑗=0

‖𝐷𝛼𝑔‖(‖𝐷𝛼𝑔‖ +
1

𝛾
) ≤∑ 

𝛼

𝑗=0

(‖𝐷𝛼‖ + 1)
2‖𝑔‖ = (𝛼 + 1)(‖𝐷𝛼‖ + 1)

2‖𝑔‖. 

Thus, for any integer𝑗 with 0 ≤ 𝑗 ≤ 𝛼 − 1  

‖(𝑇 − 𝐷𝛼)𝑒𝛼+𝛽+1+𝑗‖ = ‖−𝛾𝑇𝐷𝛼𝑒𝑗 + 𝑒𝛼+1‖  (by(10), (14)) 

≤ 𝛾(𝛼 + 1)(‖𝐷𝛼‖ + 1)
2 + 𝛾 ≤ 𝛾(𝛼 + 1)(‖𝐷𝛼‖ + 1)

2. 
For similar reasons, 

‖(𝑇 − 𝐷𝛼)𝑒𝛼+𝛽+1‖ ≤ 𝛾(𝛼 + 1)(‖𝐷𝛼‖ + 1)
2. 

 Therefore, 
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∑ 

𝛼

𝑗=0

|〈𝑓𝑘 , 𝑒𝛼+𝛽+1+𝑗〉|‖(𝑇 − 𝐷𝛼)𝑒𝛼+𝛽+1+𝑗‖ <∑ 

𝛼

𝑗=0

𝜀2

4𝑀2𝛾
‖(𝑇 − 𝐷𝛼)𝑒𝛼+𝛽+1+𝑗‖(by(19)) 

<
𝜀2

4𝑀2𝛾
∑ 

𝛼

𝑗=0

𝛾(𝛼 + 1)(‖𝐷𝛼‖ + 1)
2 =

𝜀2

4𝑀2
𝑀2 =

𝜀2

4
.                (25) 

Combining inequalities (22), (23),(24) and (25) with (21) yields  

‖(𝑇 − 𝐷𝛼)𝑓𝑘‖ < 𝜀, 
which completes the proof of Claim (4.1.8). 

        We now use Proposition (4.1.6) to connect the chaotic shift 𝐵0 with the operator 𝑇𝛼,𝛽,𝛾 .  

Claim (4.1.9)[159]: For each triple of integers 𝛼, 𝛽, 𝛾 >  1, there is a path {𝐺𝑡 ∈  𝐵(𝐻): 𝑡 ∈
 [0,1]} of chaotic operators between 𝐵0 and 𝑇𝛼,𝛽,𝛾 for which ℋ𝒞(𝐺𝑡) = ℋ𝒞(𝐵0)for each 

𝑡 ∈   [0,1].  
Proof: To prove Claim (4.1.9) using Proposition (4.1.6), we define as proof of Claim (4.1.9). 

To prove Claim (4.1.9) using Proposition (4.1.6), we define a sequence {𝑔𝑗 ∶ 𝑗 ≥  0} of 

vectors in H and a weight sequence {𝑣𝑗 ∶  𝑗 ≥  1} in the following manner. For each integer 

𝑗 with 0 ≤ 𝑗 ≤ 𝛼, let 1  

 𝑔2𝑗 = 𝐷𝛼𝑒𝛼−𝑗  +
1

𝛾
𝑒𝛼+𝛽+1+(𝛼−𝑗),                                        (26) 

 𝑔2𝑗+1 = 𝑒𝛼−𝑗  , and                                                                        (27)  

𝑣2𝑗  =  𝑣2𝑗+1  =  1.                                                                (28) 

For each integer 𝑗 with 0 ≤  𝑗 ≤ 𝛽 −  1, let  

 𝑔2𝛼+2+𝑗  — 𝑒𝛼+1+𝑗      and     𝑣2𝛼+2+𝑗  =
1

𝛾𝑗+1
                      (29) 

and for integers 𝑗 ≥  2𝛼 + 𝛽 +  2, let  

 𝑔𝑗  =  𝑒𝑗      and     𝑣𝑗  =  𝑤𝑗 .                                   (30) 

Since Ran(𝐷𝛼)  ⊆  𝑠𝑝𝑎𝑛{𝑒𝑗 ∶  0 ≤  𝑗 ≤ 𝛼}, we get 𝑠𝑝𝑎𝑛{𝑔𝑗: 0 ≤ 𝑗 ≤ 2𝛼 + 𝛽 + 1} =

span{𝑒𝑗 ∶  0 ≤ 𝑗 ≤ 2𝛼 + 𝛽 + 1}. To show 𝑇𝛼,𝛽,𝛾𝑔𝑗  =  𝑣𝑗𝑔𝑗−1 for each and 𝑇𝛼,𝛽,𝛾𝑔0  = 0, 

observe that  

𝑇𝛼,𝛽,𝛾𝑔0  =   𝑇𝛼,𝛽,𝛾𝐷𝛼𝑒𝛼 + 
1

𝛾
𝑇𝛼,𝛽,𝛾𝑒𝛼+𝛽+1 (by(26)) 

                       =  𝑇𝛼,𝛽,𝛾𝐷𝛼𝑒𝛼 + 
1

𝛾
(−𝛾𝑇𝛼,𝛽,𝛾𝐷𝛼𝑒𝛼)(by (15)) 

                                            =  0, and  
                           𝑇𝛼,𝛽,𝛾𝑔1  =   𝑇𝛼,𝛽,𝛾𝑒𝛼 (by (27)) 

                                             =  𝐷𝛼𝑒𝛼 + 
1

𝛾
𝑒𝛼+𝛽+1(by (11)) 

= 𝑣1𝑔0 (by (26) and (28)).  
Using a similar argument, for integers j with  

                      𝑇𝛼,𝛽,𝛾𝑔2𝑗  =   𝑇𝛼,𝛽,𝛾𝐷𝛼𝑒𝛼−𝑗 + 
1

𝛾
𝑇𝛼,𝛽,𝛾𝑒𝛼+𝛽+1+(𝛼−𝑗)(𝑏𝑦 (3 − 22))  

                                             =  𝑒𝛼−𝑗+1 (by (14))  
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               =  𝑣2𝑗𝑔2𝑗−1 (by (27) and (28)), and  

                      𝑇𝛼,𝛽,𝛾𝑔2𝑗+1  =   𝑇𝛼,𝛽,𝛾𝑒𝛼−𝑗   (by (27))  

  = 𝐷𝛼𝑒𝛼−𝑗 + 
1

𝛾
𝑒𝛼+𝛽+1 (by (11))  

        =  𝑣2𝑗+1𝑔2𝑗  (by (26) and (28)).  

Next, note that  

                              𝑇𝛼,𝛽,𝛾𝑔𝛼+2+𝑗    =   𝑇𝛼,𝛽,𝛾𝑒𝛼+1 (by (29))  

= 
1

𝛾
𝑒0 (by (12))  

                                    = 𝑣2𝛼+2𝑔2𝛼+1(by (27) and (29)), 
 and for integers 𝑗 with1 ≤ 𝑗 ≤ 𝛽 − 1 and for integers j with  

                               𝑇𝛼,𝛽,𝛾𝑔2𝛼+2+𝑗  =   𝑇𝛼,𝛽,𝛾𝑒𝛼+1+𝑗  (by (29)) 

         =
1

𝛾𝑗+1
𝑒𝛼+1(by (13))  

                       = 𝑣2𝛼+2+𝑗𝑔2𝛼+1+𝑗(by (29)) 

Lastly, observe that  

                               𝑇𝛼,𝛽,𝛾𝑔2𝛼+𝛽+2  =   𝑇𝛼,𝛽,𝛾𝑒𝛼+𝛽+2(by (30)) 

                    =  𝑤𝛼+𝛽+2𝑒𝛼+𝛽  (by (16)) 

                                                 =   𝑣𝛼+𝛽+2𝑔𝛼+𝛽+1 (by (29) and (30)), 

 and for integers 𝑗 ≥ 2𝛼 + 𝛽 +  3,  

𝑇𝛼,𝛽,𝛾𝑔𝑗 =  𝑇𝛼,𝛽,𝛾𝑒𝑗(by (30))  

             =  𝑤𝑗𝑒𝑗−1 (by (17)) 

               =  𝑣𝑗𝑔𝑗−1 (by (30)),  

which completes the proof of Claim (4.1.9).  

To construct the desired SOT-dense path of chaotic operators. Let {𝑇𝛼𝑘,𝛽𝑘,𝛾𝑘 ∶  𝑘 ≥

 1} be an enumeration of the countable set {𝑇𝛼,𝛽,𝛾 ≥ 1}. By Claim (4.1.9), for each integer 

𝑘 >  1, there is a path {𝐺𝑡,𝑘 ∈  𝐵(𝐻): 𝑡 ∈  [0,1]} of chaotic operators such that 𝐺0,𝑘  =

 𝐺1,𝑘  =  𝐵0 and 𝑇𝛼𝑘,𝛽𝑘,𝛾𝑘 ∈  {𝐺𝑡,𝑘 ∈  𝐵(𝐻): 𝑡 ∈  [0,1]}, and in addition ℋ𝒞(𝐺𝑡,𝑘)  =

ℋ𝒞(𝐵0) for each 𝑡 ∈  [0,1]. For each 𝑡 ∈  [𝑘, 𝑘 +  1], let 𝐹𝑡  =  𝐺𝑡−𝑘,𝑘. Then {𝐹𝑡 ∈
 𝐵(𝐻): 𝑡 ∈  [1,∞)} is a path of chaotic operators which is SOT-dense in 𝐵(𝐻) by Claim 

(4.1.8), and for which ℋ𝒞(𝐹𝑡) = ℋ𝒞(𝐵0) = ℋ𝒞(𝐹1) for each 𝑡 ∈  [1,∞).  
        If we choose the chaotic shift 𝐵0 given within the proof of Theorem (4.1.7) to have a 

hypercyclic subspace, then the corresponding path of operators in the theorem maintains the 

linear structure.  

Corollary (4.1.10)[159]: There is a path of chaotic shifts that is SOT-dense in 𝐵(𝐻), and 

the shifts along the whole path have a common hypercyclic subspace.  

        Not only does the strong operator topology play an important role in the density of the 

hypercyclic operators, it also plays a role in the connectedness of those operators. To 

explain, recall Bes and Chan [161] showed that if an operator 𝑇 in 𝐵(𝐻) is hypercyclic, then 

its conjugate class {𝐴𝑇𝐴−1 ∶  𝐴 invertible in 𝐵(𝐻)} is an SOT-dense collection of 

hypercyclic operators in 𝐵(𝐻). That conjugate class is also path connected because the 

invertible operators in 𝐵(𝐻) are path connected; see Douglas ([40], Corollary 5.30). Hence, 
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the conjugate class consisting entirely see Douglas ([40], Corollary 5.30). Hence, the 

conjugate class consisting entirely of hypercyclic operators is SOT-dense and SOT-

cortnected in 𝐵(𝐻). On the other of hypercyclic operators is SOT-dense and SOT-cortnected 

in 𝐵(𝐻). On the other hand, we observe that if 𝛶 and 𝑍 are two subsets of a topological 

space 𝑋 satis fying 𝛶 ⊆ 𝑍 ⊆ 𝛶 and if 𝛶 is connected, then 𝑍 is connected; see Munkres 

([44], Theorem 1.4, page 149). This observation and our discussion above lead to the 

following fact  

Proposition (4.1.11)[159]: The set of all hypercyclic operators is SOT-connected in 𝐵(𝐻). 
Now, if the hypercyclic operator that generates the SOT-dense conjugate class is chaotic, 

then the conjugate class consists entirely of chaotic operator, which by the same discussion 

as above, implies that the set of all chaotic tors is also SOT-connected. Furthermore, one 

can easily verify that an operator satisfies the Hypercyclicity Criterion if and only if every 

operator in gate class does. Hence, the same argument shows the set of operators satisfying 

the Hypercyclicity Criterion is SOT-connected. Similarly, the set of hypercyclic operators 

not satisfying the criterion is SOT-connected as well.  

        With the same topological argument, we see that if we let 𝒢 be the dense 𝐺𝛿 set of 

common hypercyclic vectors in Theorem (4.1.7), then we have the following conclusion.  

Corollary (4.1.12)[159]: The set of operators 𝑇 in 𝐵(𝐻) with 𝒢 ⊆ ℋ𝒞(𝑇) is SOT 

connected.  

        Likewise, if we let 𝒢 be the common hypercyclic subspace in Corollary (4.1.10), then 

the set of all operators 𝑇 for which 𝒢 ⊆ ℋ𝒞(𝑇) is also SOT-connected in 𝐵(𝐻).  
        Related to hypercyclicity are the concepts of supercyclicity and cyclicity. An operator 

𝑇 in 𝐵(𝐻) is supercyclic if there is a vector 𝑥 in 𝐻 for which the set {𝜆𝑇𝑛𝑥 ∶ 𝑛 ≥ 0 , 𝜆 ∈ ℂ}, 
consisting of all scalar multiples of vectors from the orbit Orb(𝑇, 𝑥), is dense in 𝐻. An 

operator T is cyclic if there is a vector 𝑥 in 𝐻 for which the linear span of the orbit, 

span Orb(𝑇, 𝑥), is dense in 𝐻. Clearly, hypercyclic ity implies supercyclicity, and 

supercyclicity implies cyclicity. From the above topological argument, the supercyclic 

operators in 𝐵(𝐻) are SOT-connected and SOT-dense. Furthermore, as in Corollary 

(4.1.12), the set of supercyclic operators T in 𝐵(𝐻) having the prescribed dense 𝐺𝛿 set of 

supercyclic vectors forms an SOT connected subset of 𝐵(𝐻). Likewise, the same holds true 

for the cyclic operators in 𝐵(𝐻).  
 

Section (4.2): Translation Operators with Large Gaps 

 

By 𝐻(ℂ) we denote the set of entire functions endowed with the topology of local 

uniform convergence. For a subset 𝐴 of 𝐻(ℂ). �̅� denotes the closure of 𝐴 with respect to the 

topology of local duniform convergence. Let 𝑋 be a topological vector space. A subset G of 

a X is called 𝐺𝛿 if it can be written as a countable intersection of open sets in 𝑋 and a subset 

𝑌 of 𝑋 is called residual if it contains a 𝐺𝛿and dense subset of 𝑋. The symbol ∞ whenever 

appears in the present work denotes the complex infinity. 

Let (𝑇𝑛: 𝑋 → 𝑋) be a sequence of continuous linear operators on a topological vector space 

𝑋. If (𝑇𝑛(𝑥))𝑛≥1 is dense in 𝑋 for some 𝑥 ∈ 𝑋, then 𝑥 is called hypercyclic for (𝑇𝑛) and we 

say that (𝑇𝑛) is hypercyclic [180], [12]. The symbol 𝐻𝐶({𝑇𝑛}) stands for the collection of 

all hypercyclic vectors for (𝑇𝑛). In the case where the sequence (𝑇𝑛) comes from the iterates 



 

139 
 

of a single operator 𝑇: 𝑋 → 𝑋, i. e. 𝑇𝑛 ≔ 𝑇𝑛, then we simply say that 𝑇 is hypercyclic and 𝑥 

is hypercyclic for T. If 𝑇: 𝑋 → 𝑋 is hypercyclic then the symbol 𝐻𝐶(𝑇) stands for the 

collection of all hypercyclic vectors for 𝑇. 𝐴 simple consequence of Baire’s category 

theorem is that for every continuous linear operator 𝑇 on a separable topological vector 

space 𝑋, if 𝐻𝐶(𝑇) is non-empty then it is necessarily (𝐺𝛿 and) dense. For an account of 

results on the subject of hypercyclicity see [180], [12], see also [196]. 

We deal with translation operators. For every 𝑎 ∈ ℂ \ {0} consider the translation 

operator 𝑇𝑎: 𝐻(ℂ) → 𝐻(ℂ) defined by  

𝑇𝑎(𝑓)(𝑧) = 𝑓(𝑧 + 𝑎),         𝑓 ∈ 𝐻(ℂ). 
An old result of Birkhoff [184] says that there exist entire functions the integer translates of 

which dense in the space of all entire functions are endowed with the topology of local 

uniform convergence. In other words 𝑇1 is hypercyclic. Actually, it is not difficult to see 

that for every 𝑎 ∈ ℂ \ {0}, 𝑇𝑎 s hypercyclic and hence 𝐻𝐶(𝑇𝑎) is 𝐺𝛿 and dense in 𝐻(ℂ). 
Costakis and Sambarino [38] strengthened Birkhoff’s result by showing that the family 

{{𝑇𝑎} 𝑎 ∈ ℂ \ {0}} has a residual set of common hypercyclic vectors i.e., the set 

⋂ 𝐻𝐶 
𝑎∈ℂ \ {0} ({𝑇𝑛𝑎}) is residual in 𝐻(ℂ). In particular, it is non-empty. What makes their 

result nontrivial is the uncountable range of 𝑎. At this point, let us mention a relevant 

observation due to Bayart and Matheron, [180], [24]: suppose 𝑋 is a Fréchet space and 

{𝑆𝑎,𝑛|𝑎 ∈ 𝐴, 𝑛 ∈ ℕ} is a collection of sequences of continuous linear operators on 𝑋, labelled 

by the elements a of a set 𝐴. If A is a 𝜎-compact topological space, the maps → 𝑆𝑎,𝑛 are 

SOT-continuous and each sequence (𝑆𝑎,𝑛)𝑛∈ℕ has a dense set of hypercyclic vectors then 

either ⋂ 𝐻𝐶({𝑆𝑎,𝑛})
 
𝑎∈𝐴 = ∅ or ⋂ 𝐻𝐶({𝑆𝑎,𝑛})

 
𝑎∈𝐴  is a dense 𝐺𝛿-set in 𝑋. This observation 

applies to all the collections of operators considered. 

Recall that the set ⋂ 𝐻𝐶({𝑇𝑛𝑎})
 
𝑎∈ℂ \ {0}  is residual in 𝐻(ℂ), [38]. Subsequently, 

Costakis [188] asked whether, in this result, the sequence (n) can be replaced by more 

general sequences (𝜆𝑛) of non-zero complex numbers. In this direction Costakis [188] 

showed that, if the sequence (𝜆𝑛) satisfies the following condition (∑  ): for every 𝑀 > 0 

there exists a subsequence (𝜇𝑛) of (𝜆𝑛) such that 

(i) |𝜇𝑛+1| − |𝜇𝑛| > 𝑀 for every 𝑛 = 1,2,… and   

(ii) ∑
1

|𝜇𝑛|
+∞
𝑛=1 = +∞  

Then the desired conclusion holds if we restrict attention to 𝑎 ∈ 𝐶(0,1) {𝑧 ∈
ℂ

|𝑧|
= 1},  that 

is the set ⋂ 𝐻𝐶({𝑇𝜆𝑛𝑎})
 
𝑎∈𝐶(0,1)  is residul in 𝐻(ℂ). 

In view of the above, Costakis led to the following question, see Question 1 in [188]. 

Theorem (4.2.1)[170]: Fix a sequence of non-zero complex numbers =Λ = (𝜆𝑛) that tends 

to infinity and satisfies the above condition (∑  ). Ten ⋂ 𝐻𝐶({𝑇𝜆𝑛𝑎})
 
𝑎∈ℂ\{0}  is a 𝐺𝛿 and dense 

subset of 𝐻(ℂ). 
We mention here that one is forced to impose certain natural restrictions on the 

sequence  (𝜆𝑛) is order conclude that the set ⋂ 𝐻𝐶({𝑇𝜆𝑛𝑎})
 
𝑎∈ℂ\{0}  is non-empty. Indeed, 

[191] show that if lim inf
𝑎∈ℂ\{0}

|𝜆𝑛+1|

|𝜆𝑛|
> 2 then ⋂ 𝐻𝐶({𝑇𝜆𝑛𝑎})

 
𝑎∈ℂ\{0} = ∅. In particular, 

⋂ 𝐻𝐶({𝑇𝑒𝑛𝑎})
 
𝑎∈ℂ\{0} = ∅ However, for sequences (𝜆𝑛) with  
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1 < lim
𝑛
inf({𝑇𝜆𝑛𝑎}) = ∅, 

although it is plausible to conjecture that this is the case. In particular, we do not know what 

happens when 𝜆𝑛 = 2
𝑛 or 𝜆𝑛 = (3/2)

𝑛. This work can be seen as a try to understand the 

nature of this restriction. In any case, it seems a quite difficult problem to fully characterize 

the sequences (𝜆𝑛) for which the conclusion of Theorem (4.2.1) holds. 

We stress that Theorem (4.2.1) complements the main result from [203]. [203] showed that 

the conclusion of Theorem (4.2.1) holds for sequences (𝜆𝑛) satisfying another type of 

condition different from (∑  ); condition, which we call it (∑  ′ ), is also not very restrictive, 

in the sense that it still allows sequences (𝜆𝑛) with “large gaps”. We postpone the definition 

of condition (∑  ′ ). We note that although sequences of polynomial type of degree bigger 

than one, such as (𝑛2), (𝑛3), (𝑛4 + 𝑛5) and so on, clearly do not satisfy condition (∑  ) they 

do satisfy (∑  ′ ). However, there exist sequences satisfying both conditions (∑  ) and (∑  ′ ). 
The main argument uses Baire’s A few words about the proof of Theorem (4.2.1). Of 

course the main argument uses Baire’s category theorem, but in order to do so the first and 

most difficult thing is to construct a suitable two dimensional partition on a given sector of 

the plane. After, to each point of the partition we assign a suitable closed disk of constant 

radius so that these disks are pairwise disjoint and their union almost fills the sector. 

Having done these steps we are ready for the final argument which involves a standard 

use of Runge’s or Mergelyan’s approximation theorem along with Baire’s theorem. It is 

important to say that in our framework one cannot use Ansari’s theorem [174], as Costakis 

and Sambarino did in their proof, since now the sequence (𝜆𝑛) lacks the semigroup 

structure, i.e. 𝜆𝑛 + 𝜆𝑚 ≠ 𝜆𝑛+𝑚 in general. Actually, this was the reason that led us to seek 

higher order partitions in order to make things work. Overall, we elaborate on the work of 

Costakis and Sambarino and we offer a general strategy how to construct two dimensional 

partitions relevant to the problem. The proof shares certain similarities with the proof in 

[203] and so we feel that will get a more clear and integrated picture by reading in parallel 

the present in [203]. However, the methods of constructing the partitions in [203] 

differentiate drastically. The reason for this, is that always the partition reflects the structure 

of the sequence (𝜆𝑛). The construction of the partition in [203] is very tight and quite 

delicate and comes from our effort to deal firstly with the most natural sequence which fails 

condition (∑  ), namely the sequence (𝑛2). It is also evident that there is a huge distance 

between sequences satisfying condition (∑  ) and the sequences satisfying condition (∑  ′ ). 
It would be desirable to exhibit a condition and a corresponding partition, if any, which 

imply the main result of the present as well as the main result in [203]. Unfortunately, this 

is unclear to us. 

There are several results concerning either the existence or the nonexistence of 

common hypercyclic vectors for uncountable families of operators, such as weighted shifts, 

adjoints of multiplication operators, differentiation and composition operators; see [171], 

[23]-[181], [182] [185]-[186], [37]-[191], [193], [12], [43], [198], [46], [201], [202], [203]. 

The proof of Theorem (4.2.1) has several steps and occupies. We compare Theorem 

(4.2.1) with the main result from [203] and we exhibit examples of sequences which 

illustrate the main theorem. 

We describe the steps for the proof of Theorem (4.2.1). Consider the sectors 
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𝑆𝑛
𝑘 ≔ {𝑎 ∈ ℂ|∃ 𝑟 ∈ [

1

𝑛
, 𝑛]    and  𝑡 ∈ [

𝑘

4
,
𝑘 + 1

4
]     such that  𝑎 = 𝑟𝑒2𝜋𝑖𝑡} 

For 𝑘 = 0,1,2,3    and 𝑛 = 2,3,…since 

⋂ 𝐻𝐶({𝑇𝜆𝑛𝑎})

𝑎∈ℂ\{0}

=⋂⋂ ⋂ 𝐻𝐶({𝑇𝜆𝑛𝑎})

𝑎∈𝑆𝑛
𝑘

+∞

𝑛=2

3

𝑘=0

 

An appeal of Baire’s category theorem reduces Theorem (4.2.1) to the following. 

Proposition (4.2.2)[170]: Fix a sequence (𝜆𝑛) of non-zero complex numbers that tends to 

infinity which satisfies the above condition (∑  ). Fix four real numbers 𝑟0, 𝑅0, 𝜃0, 𝜃𝑇 such 

that 0 < 𝑟0 < 1 < 𝑅0 < +∞, 0 ≤ 𝜃0 < 𝜃𝑇 ≤ 1,     𝜃𝑇 − 𝜃0 =
1

4
 and consider the sector 𝑆 

defined by  

𝑆 ≔ {𝑎 ∈ ℂ| 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑟 ∈ [𝑟0, 𝑅0]    𝑎𝑛𝑑   𝑡 ∈ [𝜃0, 𝜃𝑇]    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑎 = 𝑟𝑒2𝜋𝑖𝑡} 

Then ⋂ 𝐻𝐶({𝑇𝜆𝑛𝑎})𝑎∈𝑆  is 𝑎 𝐺𝛿 and dense subset of 𝐻(ℂ). 

For the proof of Proposition (4.2.2) we introduce some notation which will be carried. Let 

(𝑝𝑗),   𝑗 = 1,2,… be a dense sequence of 𝐻(ℂ), (for instance, all the polynomials in one 

complex variable with coefficients in ℚ+ 𝑖ℚ). For every 𝑚, 𝑗, 𝑠, 𝑘 ∈ ℕ we consider the set  

𝐸(𝑚, 𝑗, 𝑠, 𝑘) ≔ {𝑓 ∈ 𝐻(ℂ) |∀𝑎 ∈ 𝑆   ∃𝑛 ∈ ℕ,   𝑛 ≤ 𝑚: sup
|𝑧|≤𝑘

|𝑓(𝑧 + 𝜆𝑛𝑎) − 𝑝𝑗(𝑧) <
1

𝑠
|} 

By Baire’s category theorem and the three lemmas stated below, Proposition (4.2.2) readily 

follows. 

Lemma (4.2.3)[170]: 

⋂𝐻𝐶({𝑇𝜆𝑛𝑎})

𝑎∈𝑆

=⋂⋂⋂⋃𝐸(𝑚, 𝑗, 𝑠, 𝑘)

+∞

𝑚=1

+∞

𝑘=1

+∞

𝑠=1

+∞

𝑗=1

. 

Lemma (4.2.4)[170]: For every 𝑚, 𝑗, 𝑠, 𝑘 ∈ ℕ the set 𝐸(𝑚, 𝑗, 𝑠, 𝑘) is open in 𝐻(ℂ). 
For the sequel we fix four positive numbers 𝑐1, 𝑐2, 𝑐3, 𝑐4 such that 𝑐1 > 1, 𝑐2 ∈

(0,1),   𝑐3 > 1, 𝑐4 > 1, where 𝑐3 ≔
𝑐4

𝑟0𝑐2
, 𝑐1 ≔ 4(𝑐3 + 1). We also consider four positive 

real numbers 𝜃0, 𝜃𝑇 , 𝑟0, 𝑅0 as in Proposition (4.2.2) and a sequence 𝛬 = (𝜆𝑛) of non zero 

complex numbers which satisfies condition (∑  ) and such that 𝜆𝑛 → ∞ as 𝑛 → +∞. After 

the definition of the above numbers we fix a subsequence (𝜇𝑛) of (𝜆𝑛) such that: 

|𝜇𝑛| > 𝑐1,   |𝜇𝑛+1| − |𝜇𝑛| > 𝑐1    for every     𝑛 = 1,2,…   𝑎𝑛𝑑   ∑
1

|𝜇𝑘|

+∞

𝑘=1

= +∞. 

We succeed the elementary structure of our construction. The following two steps are 

based in this first one. For every positive integer m we shall construct a corresponding 

partition ∆𝑚  𝑜𝑓 [𝜃0, 𝜃𝑇]. So, let 𝑚 ∈ ℕ be fixed. 

The condition ∑
1

|𝜇𝑛|
+∞
𝑛=1 = +∞ implies that for every positive integer 𝑚 =  1, 2, . .. there 

exists the minimum natural number 𝑚1(𝑚) such that: 

∑
1

|𝜇𝑘|

𝑚1(𝑚)

𝑘=𝑚

> 𝑐3.
1

|𝜇𝑚|
                                                (31) 

Clearly 𝑚1(𝑚) ≥ 𝑚 + 1 for every 𝑚 = 1,2,… because 𝑐3 > 1. We defined the numbers 
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𝜃0
(𝑚)

≔ 𝜃0, 𝜃1
(𝑚)

≔ 𝜃0
(𝑚)

+
𝑐2

|𝜇𝑚|
, 𝜃2

(𝑚)
≔ 𝜃1

(𝑚)
+

𝑐2

|𝜇+1|
, … , 𝜃𝑚1(𝑚)−𝑚+1

(𝑚)
≔ 𝜃𝑚1(𝑚)−𝑚

(𝑚)
+

𝑐2

|𝜇𝑚1(𝑚)|
, or generally:  

𝜃𝑛+1
(𝑚)

≔ 𝜃𝑛
(𝑚)

+
𝑐2

|𝜇𝑚+𝑛|
, 𝑛 = 0,1,… ,𝑚1(𝑚) − 𝑚,                        (32) 

Where 𝑚1(𝑚) −𝑚 ≥ 1. Define  

𝜎𝑚 ≔ 𝜃𝑚1(𝑚)−𝑚+1
(𝑚)

− 𝜃0. 

Now let any positive integer 𝜈 with 

𝑣 > 𝑚1(𝑚) −𝑚 + 1. 
For such a 𝜈 there exists a unique pair (𝑘, 𝑗) ∈ ℕ2, where 𝑗 ∈ {0,1,… ,𝑚1(𝑚)𝑚}, such that:  

𝑣 = 𝑘(𝑚1(𝑚) −𝑚 + 1) + 𝑗. 
We define  

𝜃𝑣
(𝑚)

≔ 𝜃𝑗
(𝑚)

+ 𝑘𝜎𝑗
(𝑚)

+ 𝑘𝜎𝑚. 

It is obvious that lim
𝑣→+∞

𝜃𝑣
(𝑚)

= +∞ and the sequence (𝜃𝑣
(𝑚)
) is strictly increasing, in respect 

to 𝜈. So there exists a maximum natural number 𝑣𝑚 ∈ ℕ such that 𝜃𝑣𝑚
(𝑚)

≤ 𝜃𝑇. We set  

∆𝑚≔ {𝜃0
(𝑚)
, 𝜃1

(𝑚)
, … , 𝜃𝑣𝑚

(𝑚)
}. 

It holds that 𝑣𝑚 ≥ 𝑚1(𝑚) −𝑚 + 1 (see Lemma (4.2.5)). 

Consider the function 𝜙: [𝜃0, 𝜃𝑇] × (0,+∞) → ℂ given by  

𝜙(𝑡, 𝑟) ≔ 𝑟𝑒2𝜋𝑖𝑡 , (𝑡, 𝑟) ∈ [𝜃0, 𝜃𝑇]. 
For any given positive integer 𝑚,𝜙𝑟(∆𝑚) is a partition of the arc 𝜙𝑟([𝜃0, 𝜃𝑇]), where ∆𝑚 is 

the partition of the interval [𝜃0, 𝜃𝑇] constructed in Step 1. For every 𝑟 > 0,𝑚 ∈ ℕ define  

𝑝0
𝑟,𝑚 ≔ 𝜙𝑟(∆𝑚) 

Which we call partition of the arc 𝜙𝑟([𝜃0, 𝜃𝑇]) with height 𝑟, density 𝑚 and order 0. 

Consider the partition 𝑝0
𝑟0,1 from the previous step, Step 2 and set  

𝑟1 ≔ 𝑟0 +
𝑐2

|𝜇𝑚1(1)|
                                                       (33) 

After, we consider the partition 𝑝0
𝑟1,𝑚1(1)+1 and we set  

𝑚2 ≔ 𝑚1(𝑚1(1) + 1), 

𝑟2 ≔ 𝑟1 +
𝑐2

|𝜇𝑚2
|
. 

Inductively we define two sequences (𝑟𝑣),   𝑣 = 0,1,2, … , (𝑚𝑣),    𝑣 = 2,…. As follows: 

𝑟0, 𝑟1, 𝑟2 and 𝑚2 are above, see (33). Suppose that we have constructed the numbers 𝑚𝑣, 𝑟𝑣, 

for some 𝑣 ≥ 2. Then, taking into account the  partition 𝑝0
𝑟𝑣,𝑚𝑣+1, we set  

𝑚𝑣+1 = 𝑚1(𝑚𝑣 + 1)                                              (34) 
And  

𝑟𝑣+1 ≔ 𝑟𝑣 +
𝑐2

|𝜇𝑚𝑣+1|
                                                  (35) 

For the next step, consider the partition 𝑝0
𝑟𝑣+1,𝑚𝑣+1+1. We show that lim

𝑣→+∞
𝑟𝑣 = +∞. 

Therefore there exists a maximum natural number  𝑣0 ∈\ℕ such that 𝑟𝑣0 ≤ 𝑅0 because the 

sequence (𝑟𝑣) is strictly increasing. In view of the above, we define  
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𝑝 ≔ 𝑝0
𝑟0,1 ∪ (⋃𝑝0

𝑟𝑣,𝑚𝑣+1

𝑣0

𝑣=1

), 

Which is the desire partition of our sector 𝑆. 
Lemma (4.2.5)[170]: Let some fixed 𝑚 ∈ ℕ. Then  

𝜎𝑚 = 𝜃𝑚1(𝑚)−𝑚+1
(𝑚)

− 𝜃0 <
1

4
 

In particular, 𝑣𝑚 ≥ 𝑚1(𝑚) − 𝑚 + 1. 

Proof: By the definition of the numbers 𝜃𝑗
(𝑚)
, 𝑗 = 0,1,… ,𝑚1(𝑚) + 1 we have  

𝜃𝑚1(𝑚)−𝑚+1
(𝑚)

− 𝜃0 = 𝑐2. ∑
1

|𝜇𝑘|

𝑚1(𝑚)

𝑘=𝑚

,                                   (36) 

And by the definition of the number 𝑚1(𝑚) it follows that  

∑
1

|𝜇𝑚|

𝑚1(𝑚)

𝑘=𝑚

≤ 𝑐3.
1

|𝜇𝑚|
+

1

|𝜇𝑚1(𝑚)|
< (𝑐3 + 1)

1

|𝜇𝑚|
.                      (37) 

Our hypotheses imply 𝑐1 = 4(𝑐3 + 1) and |𝜇𝑚| > 𝑐1 = 4(𝑐3 + 1) > 4𝑐2(𝑐3 + 1) because 

𝑐2 ∈ (0,1). This gives  
𝑐3 + 1

|𝜇𝑚|
<

1

4𝑐2
.                                                              (38) 

Thus, (36), (37) and (38) yield 𝜎𝑚 <
1

4
 and the proof is complete. 

Lemma (4.2.6)[170]: lim
𝑣→+∞

𝑟𝑣 = +∞. 

Proof: Below, let us rewrite the relations that define the numbers (𝑟𝜈), 𝜈 =  0, 1, 2, . . .. 

𝑟1 = 𝑟0 +
𝑐2

|𝜇𝑚1(1)|
,                                                 (39) 

𝑟2 = 𝑟1 +
𝑐2

|𝜇𝑚2 |
,                                                 (40) 

𝑟𝑣+1 = 𝑟𝑣 +
𝑐2

|𝜇𝑚𝑣+1|
,       𝑣 = 1,2,…                               (41) 

Where 𝑚2 ≔ 𝑚1(𝑚1(1) + 1). Equalities (39), (40), (41) imply  

𝑟𝑣 = 𝑟0 + 𝑐2∑
1

|𝜇𝑚𝑘
|

𝑣

𝑘=1

    𝑓𝑜𝑟  𝑣 = 1,2,… ,     𝑤ℎ𝑒𝑟𝑒 𝑚1 = 𝑚1(1)           (42) 

By the definition of 𝑚1(1),𝑚2 we have  

∑
1

|𝜇𝑘|

𝑚1(1)

𝑘=1

≤ 𝑐3.
1

|𝜇1|
+

1

|𝜇𝑚1(1)|
< (𝑐3 + 1)

1

|𝜇1|
,                    (43) 

∑
1

|𝜇𝑘|

𝑚2

𝑘=𝑚1(1)+1

≤ 𝑐3.
1

|𝜇𝑚1(1)+1|
+

1

|𝜇𝑚2
|
< (𝑐3 + 1).

1

|𝜇𝑚1(1)|
.          (44) 

Inductively, for every 𝜈 ≥  2 we get  
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∑
1

|𝜇𝑘|

𝑚𝑣+1

𝑘=𝑚𝑣+1

≤ 𝑐3.
1

|𝜇𝑚𝑣+1|
+

1

|𝜇𝑚𝑣+1|
< (𝑐3 + 1)

1

|𝜇𝑚𝑣
|
,                     (45) 

Because the sequence (|𝜇𝑛|) is strictly increasing. So by (43), (44) and (45) we conclude 

that 

∑
1

|𝜇𝑘|

𝑚𝑣+1

𝑘=1

< (𝑐3 + 1).∑
1

|𝜇𝑚𝑘
|

𝑣

𝑘=0

,                                  (46) 

Where  

𝑚0 ≔ 1,     𝑚1 ≔ 𝑚1(1). 

On the other hand ∑
1

|𝜇𝑘|
= +∞+∞

𝑘=1  by our assumption. This fact and (46) give us  

∑
1

|𝜇𝑚𝑘
|

+∞

𝑘=0

= +∞.                                              (47) 

Now by (42) and (47) we conclude that lim
𝑣→+∞

𝑟𝑣 = +∞ and the proof is complete. 

Fix the numbers 𝑟0, 𝑅0, 𝜃0, 𝜃𝑇 , 𝑐1, 𝑐2, 𝑐3, 𝑐4 which are defined. We fix a subsequence (𝜇𝑛) of 

(𝜆𝑛) satisfying the following:  

(i) |𝜇𝑛|, |𝜇𝑛+1| − |𝜇𝑛| > 𝑐1 for 𝑛 = 1,2,… 

(ii) ∑
1

|𝜇𝑘|
+∞
𝑘=1 = +∞ 

Finally, on the basis of the above, we consider the partition 𝑝 constructed. 

We construct a certain family of pairwise disjoint disks, based on the previous 

partition 𝑝 of the sector 𝑆. This family points out how one can use Runge’s theorem to 

conclude the Proposition (4.2.2). Let us describe, very briefly, the highlights of our 

argument. The main idea is to assign to each point w of the partition 𝑝 a suitable closed disk 

𝐵(𝓌𝜇(𝓌), 𝑐4) with center 𝓌𝜇(𝓌) and radius 𝑐4 (the radius will be the same for every 

member of the family of the disks), where 𝜇(𝑤) will be chosen from the sequence (𝜇𝑛), so 

that on the one hand the disks 𝐵(𝓌𝜇(𝓌), 𝑐4), 𝓌 ∈ 𝑝 are pairwise disjoint and on the other 

hand the union of the disks, ⋃ 𝐵(𝓌𝜇(𝓌), 𝑐4)
 
𝓌∈𝑝  “almost fills” the sector S.  

So, let us begin with the desired construction. We set  

ℬ ≔ {𝑧 ∈ ℂ/|𝑧| ≤ 𝑐4}. 
Let 𝓌 ∈ 𝑝 be a fixed point in 𝑝. By the definition of 𝑝 there exist unique 𝑟′ ∈

{𝑟0, 𝑟1, … , 𝑟𝑣0},𝑚1 ∈ {1,𝑚1(1),𝑚2 + 1,… ,𝑚𝑣0 + 1} such  that 𝑤 ∈ 𝑝0
𝑟′,𝑚′

. By definition, 

𝑝0
𝑟′,𝑚′

= 𝜙𝑟′(∆𝑚′). So there exists unique 𝑘 ∈ ℕ. 𝑘 ≥ 1 and 𝑗 ∈ {0,1, … ,𝑚1(𝑚
′) − 𝑚′} 

such that 𝑛 = 𝑘(𝑚1(𝑚
′) − 𝑚′ + 1) + 𝑗; so we define  

𝜇(𝑤) ≔ 𝜇𝑚′+𝑗 . 

Thus we assign, in a unique way, a term of the sequence (𝜇𝑛) to each one from the point of 

𝑝. Finally we set  

𝐵𝑤 ≔ 𝐵 +𝑤𝜇(𝑤). 
The desired family of disks is the following:  

𝔇 ≔ {𝐵} ∪ {𝐵𝑤: 𝑤 ∈ 𝑝}. 
Lemma (4.2.7)[170]: We have 𝐵 ∩ 𝐵𝑤 = ∅ for every 𝑤 ∈ 𝑝. 
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Proof: 𝑐3 =
𝑐4

𝑟0𝑐2
>

𝑐4

𝑟0
, since 𝑐2 ∈ (0,1). So 2𝑐3 > 2

𝑐4

𝑟0
 and in view of 𝑐14(𝑐3 + 1) > 2𝑐3 we 

get  

𝑐1 >
2𝑐4
𝑟0
                                                                   (48) 

Take 𝑤 ∈ 𝑝. The closed disks 𝐵,𝐵𝑤, are centered at, 0, 𝑤𝜇(𝑤) respectively and they have 

the same radius 𝑐4. Hence, we have to show that |𝑤𝜇(𝑤)| > 2𝑐4. Since |𝑤| ≥ 𝑟0, it satisfices 

to prove that |𝜇(𝑤)| >
2𝑐4

𝑟0
. Respectively and they have the same radius 𝜇(𝑤),  

𝜇(𝑤) = 𝜇                                                             (49) 
For some positive integer 𝑛 ∈ ℕ and from the choice of (𝜇𝑛) 

|𝜇𝑛| > 𝑐1   for every    𝑛 ∈ ℕ.                                              (50) 

Now, (48), (49) and (50) imply |𝜇(𝑤)| > 2
𝑐4

𝑟0
 and this finishes the proof of the lemma. 

Lemma (4.2.8)[170]: Let 𝑤1, 𝑤2 ∈ 𝑝 such that |𝑤1| < |𝑤2|. Then 𝐵𝑤1⋂𝐵𝑤2 = ∅. 

Proof: We have  

𝑚0 = 1 < 𝑚1(1) + 1 

𝑚2 = 𝑚1(𝑚1(1) + 1) > 𝑚1(1) 
And generally  

𝑚𝑣+1 = 𝑚1(𝑚𝑣 + 1) > 𝑚𝑣      𝑓𝑜𝑟      𝑣 = 1,2𝑚… , 𝑣0 

Since 𝑤1, 𝑤2 ∈ 𝑝, we have 𝑤1 ∈ 𝑝0
𝑟𝑣1 ,𝑚𝑣1+1, 𝑤2 ∈ 𝑝0

𝑟𝑣2,𝑚𝑣2+1 for some 𝑣1, 𝑣2 ∈ {0,1,… , 𝑣0} 

and so |𝑤1| = 𝑟𝑣1 , |𝑤2| = 𝑟𝑣2. Our hypothesis |𝑤1| < |𝑤2| ⟺ 𝑟𝑣1 < 𝑟𝑣2 and the fact the 

sequence (𝑟𝑣) is strictly increasing gives us 𝑣1 < 𝑣2. Thus 𝑚𝑣1 + 1 < 𝑚𝑣2 + 1,  because 

the finite sequence (𝑚𝑣), 𝑣 ∈ {0,1… , 𝑣0} is strictly increasing; recall that 𝑚0 = 1,𝑚1 =

𝑚1(1). By the definition of 𝜇(𝑤) for 𝑤 ∈ 𝑝0
𝑟′,𝑚′

⊂ 𝑝 we get 𝜇(𝑤) = 𝜇𝑚′+𝑗 for some 𝑗 ∈

{0,1, … . , 𝑚1(𝑚
′) − 𝑚′}, so |𝜇𝑚′| ≤ |𝜇(𝑤)| ≤ |𝜇𝑚1(𝑚

′) |, since the sequence (|𝜇𝑛|) is 

strictly increasing. The fact that 𝑤1 ∈ 𝑝0
𝑟𝑣1 ,𝑚𝑣1+1 implies  

|𝜇𝑚𝑣1+1
| ≤ |𝜇(𝑤1)| ≤ |𝜇𝑚1(𝑚𝑣1+1)

| = |𝜇𝑚𝑣1+1
| < |𝜇𝑚𝑣1+1

| ≤ |𝜇𝑚𝑣2+1
|, 

Since 𝑣1 + 1 ≤ 𝑣2 and the sequence (|𝜇𝑛|) is strictly increasing (48). On the other hand we 

have 𝑤2 ∈ 𝑝0
𝑟𝑣2 .𝑚𝑣2+1, so  

|𝜇𝑚𝑣2+1
| ≤ |𝜇(𝑤2)| ≤ |𝜇𝑚𝑣2+1

|. 

Hence, the last two inequalities above give  

|𝜇(𝑤1)| < |𝜇(𝑤2)|, 
Which iin turn implies  

|𝑤2𝜇(𝑤2)| > |𝑤1𝜇(𝑤1)|.                                            (51) 
By (51) and the hypothesis we get  

|𝑤2𝜇(𝑤2) − 𝑤1𝜇(𝑤1)| ≥ ||𝑤2𝜇(𝑤2)| − |𝑤1𝜇(𝑤1)|| = |𝑤2𝜇(𝑤2)| − |𝑤1𝜇(𝑤1)|

> |𝑤1||𝜇(𝑤2)| − |𝑤1||𝜇(𝑤1)| ≥ 𝑟0(|𝜇(𝑤2)| − |(𝑤1)|) > 𝑟0𝑐1 > 2𝑐4, 

Where the last inequality in the right hand side above follows from 𝑐1 >
2𝑐4

𝑟0
 which is already 

established in Lemma (4.2.7). This shows that 𝐵𝑤1 ∩ 𝐵𝑤2 = ∅. 

Lemma (4.2.9)[170]: Let 𝑤1, 𝑤2 ∈ 𝑝 such that 𝑤1 ≠ 𝑤2 and |𝑤1| = |𝑤2|. Then 𝐵𝑤1 ∩

𝐵𝑤2 = ∅. 
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Proof: We distinguish two cases:  

(i) |𝜇(𝑤1)| < |𝜇(𝑤2)|.  
In this case, by our hypothesis, we have  

|𝑤2𝜇(𝑤2) − 𝑤1𝜇(𝑤1)| ≥ ||𝑤2𝜇(𝑤2)| − |𝑤1𝜇(𝑤1)|| = |𝑤1|. (|𝜇(𝑤2) − |𝜇(𝑤1)||) ≥ 𝑟0. 𝑐1
> 2𝑐4. 

Therefore 𝐵𝑤1 ∩ 𝐵𝑤2 = ∅. 

(ii) |𝜇(𝑤1)| = |𝜇(𝑤2)|. 

Since 𝑤1, 𝑤2 ∈ 𝑝 it follows that 𝑤1 ∈ 𝑝0
𝑟𝑣1 ,𝑚𝑣1+1, 𝑤2 ∈ 𝑝0

𝑟𝑣2 ,𝑚𝑣2+1 for some 𝑣1, 𝑣2 ∈

{0,1,… , 𝑣0}. By the equalities |𝑤1| = 𝑟𝑣1 , |𝑤2| = 𝑟𝑣2 and the hypothesis |𝑤1| = |𝑤2| we 

conclude that 𝑟𝑣1 = 𝑟𝑣2 , which in turn implies 𝑣1 = 𝑣2, since the sequence (𝑟𝑣) is strictly 

increasing. Setting 𝑣1 = 𝑣2 = 𝑣
′ we get 𝑤1, 𝑤2 ∈ 𝑝0

𝑟
𝑣′
,𝑚

𝑣′
+1

 for some 𝑣′ ∈ {0,1,… , 𝑣0}, that 

is 𝑤1, 𝑤2belong to the same partition of zero order. For simplicity we write 𝑚𝑣′ + 1 = 𝑚
′. 

Also set 𝑟𝑣′ = 𝑟
′. So, 𝑤1, 𝑤2 ∈ 𝑝0

𝑟′,𝑚′

 and the definition of the set 𝑝0
𝑟′,𝑚′

gives us 𝑤1 =

𝑟′. 𝑒2𝜋𝑖𝜃𝑛1
(𝑚′)

, 𝑤2 = 𝑟
′. 𝑒2𝜋𝑖𝜃𝑛2

(𝑚′)

 for some 𝑛1, 𝑛2 ∈ {0,1,… , 𝑣𝑚′},     𝑛1 ≠ 𝑛2, since 𝑤1 ≠ 𝑤2. 

Without loss of generality suppose that 𝑛1 < 𝑛2. Now, there exists a unique pair (𝑘1, 𝑗1), 
where 𝑘1 ∈ ℕ, 𝑗1 ∈ {0,1,… ,𝑚1(𝑚

′) − 𝑚′} and a unique pair (𝑘2, 𝑗2) where 𝑘2 ∈ ℕ and 

𝑗2 ∈ {0,1,… ,𝑚1(𝑚
′) − 𝑚′} such that  

𝑛1 = 𝑘1(𝑚1(𝑚
′) − 𝑚′ + 1) + 𝑗1                                 (52) 

and  

𝑛2 = 𝑘2(𝑚1(𝑚
′) − 𝑚′ + 1) + 𝑗2                                 (53) 

By definition, 𝜇(𝑤1) = 𝜇𝑚′+𝑗1
 and 𝜇(𝑤2 ) = 𝜇𝑚′+𝑗2

and our hypothesis implies  

|𝜇(𝑤1)| = |𝜇(𝑤2)| ⟺ 𝜇(𝑤1) = 𝜇(𝑤2). 
So we have 𝑗1 = 𝑗2 = 𝑗0 and  

𝜃𝑛1
(𝑚′)

= 𝜃𝑗0
(𝑚′)

+ 𝑘1𝜎𝑚′ , 

𝜃𝑛2
(𝑚′)

= 𝜃𝑗0
(𝑚′)

+ 𝑘2𝜎𝑚′ , 

Thus  

𝜃𝑛2
(𝑚′)

− 𝜃𝑛1
(𝑚′)

= (𝑘2 − 𝑘1)𝜎𝑚′ .                                           (54) 

By (52), (53) and the fact that 𝑛1 < 𝑛2 and 𝑗1 = 𝑗2 we have 𝑘1 < 𝑘2 ⇒ 𝑘2 ≥ 𝑘1 + 1. So, in 

view of (54) we arrive at  

𝜃𝑛2
(𝑚′)

− 𝜃𝑛1
(𝑚′)

≥ 𝜎𝑚′ > 0.                                       (55) 

The previous imply the following bound.  

|𝑤2𝜇(𝑤2) − 𝑤1𝜇(𝑤1)| = |𝜇(𝑤1)| ∙ |𝑤1 −𝑤2| ≥ 𝜇𝑚′| ∙ |𝑤1 −𝑤2|

= |𝜇𝑚′| ∙ |𝑟′ ∙ 𝑒2𝜋𝑖𝜃𝑛2
(𝑚′)

− 𝑟′𝑒2𝜋𝑖𝜃𝑛1
(𝑚′)

| = 𝑟′|𝜇𝑚′| ∙ |𝑒2𝜋𝑖𝜃𝑛2
(𝑚′)

− 𝑒2𝜋𝑖𝜃𝑛1
(𝑚′)

|

= 𝑟′|𝜇𝑚′| ∙ 2 sin (𝜋 (𝜃𝑛2
(𝑚′)

− 𝜃𝑛1
(𝑚′)

)) 

≥ 𝑟0 ∙ |𝜇𝑚′| ∙ 2 sin (𝜋 (𝜃𝑛2
(𝑚′)

− 𝜃𝑛1
(𝑚′)

))                                                       (56) 

Now, consider Jordan’s inequality  

sin 𝑥 >
2

𝜋
𝑥,            𝑥 ∈ (0,

𝜋

2
). 
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We have  

0 < 𝜃𝑛2
(𝑚′)

− 𝜃𝑛1
(𝑚′)

≤
1

4
⟹ 0 < 𝜋 (𝜃𝑛2

(𝑚′)
− 𝜃𝑛1

(𝑚′)
) <

𝜋

4
. 

So, applying Jordan’s inequality for  

𝑥 = 𝜋 (𝜃𝑛2
(𝑚′)

− 𝜃𝑛1
(𝑚′)

) 

We get  

sin (𝜋 (𝜃𝑛2
(𝑚′)

− 𝜃𝑛1
(𝑚′)

)) > 2 (𝜃𝑛2
(𝑚′)

− 𝜃𝑛1
(𝑚′)

)                      (57) 

By (55), (56) and (57) it follows that  

|𝑤2𝜇(𝑤2) − 𝑤1𝜇(𝑤1)| > 4𝑟0|𝜇𝑚′| ∙ 𝜎𝑚′                                    (58) 
The definition of the number 𝜎𝑚′ and relation (36) of Lemma (4.2.5) yield  

𝜎𝑚′ = 𝑐2 ∙ ∑
1

|𝜇𝑘|

𝑚1(𝑚
′)

𝑘=𝑚′

. 

By this fact, inequality (58) and the definition of the number 𝑚1(𝑚
′) we get  

|𝑤2𝜇(𝑤2) − 𝑤1𝜇(𝑤1)| > 4𝑟0|𝜇𝑚′| ∙ 𝑐2 ∑
1

|𝜇𝑘|

𝑚1(𝑚
′)

𝑘=𝑚′

 

> 4𝑟0|𝜇𝑚′| ∙ 𝑐2
𝑐3
|𝜇𝑚′|

= 4𝑟0𝑐2𝑐3.                                 (59) 

Recall that 𝑐3 =
𝑐4

𝑟0𝑐2
. So  

4𝑟0𝑐2𝑐3 = 4𝑟0𝑐2 ∙
𝑐4
𝑟0𝑐2

= 4𝑐4 > 2𝑐4. 

The last bound along with (59) give 𝐵𝑤1 ∩ 𝐵𝑤2 = ∅ and the proof of the lemma is complete. 

By Lemmas (4.2.7), (4.2.8), (4.2.9) we conclude the following  

Corollary (4.2.10)[170]: The family 𝔇 ≔ {𝐵} ∪ {𝐵𝑤: 𝑤 ∈ 𝑝} consists of pairwise disjoint 

disks. 

Lemma (4.2.11)[170]: For every 𝑗, 𝑠, 𝑘 ∈ ℕ the set ⋃ 𝐸(𝑚, 𝑗, 𝑠, 𝑘)+∞
𝑚=1  is dense in 𝐻(ℂ). 

The proof of Lemma (4.2.3) is in [203]. The proof of Lemma (4.2.4) is similar to that in 

Lemma 9 of [38] and it is omitted. 

We now move on to Lemma (4.2.11). 

Proof: Let 𝑗1, 𝑠1, 𝑘1 ∈ ℕ be fixed. Our aim is to prove that the set ⋃ 𝐸(𝑚, 𝑗1, 𝑠1, 𝑘1)
+∞
𝑚=1  is 

dense in 𝐻(ℂ). For simplicity we write 𝑝𝑗1 = 𝑝. Fix 𝑔 ∈ 𝐻(ℂ), a compact set 𝐶 ⊆ ℂ and 

𝜀0 > 0. We seek 𝑓 ∈ 𝐻(ℂ) and a positive integer 𝑚1 such that  

𝑓 ∈ 𝐸(𝑚1, 𝑗1, 𝑠1, 𝑘1)                                                 (60) 
And   

sup
𝑧∈𝐶

|𝑓(𝑧) − 𝑔(𝑧)| < 𝜀0.                                                  (61) 

Fix 𝑅1 > 0 sufficiently large so that  

𝐶 ∪ {𝑧 ∈ ℂ||𝑧| ≤ 𝑘1} ⊂ {𝑧 ∈ ℂ||𝑧| ≤ 𝑅1} 
And then choose 0 < 𝛿0 < 1 such that  

if |𝑧| ≤ 𝑅1   and |𝑧 − 𝑤| < 𝛿0,     𝑤 ∈ ℂ,   then   |𝑝(𝑧) − 𝑝(𝑤)| <
1

2𝑠1
.          (62) 

Define  
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𝐵 ≔ {𝑧 ∈ ℂ||𝑧| ≤ 𝑅1 + 𝛿0}, 

𝑐4 ≔ 𝑅1 + 𝛿0,         𝑐2 ≔
𝛿0

2(2𝑅0𝜋 + 1)
, 

𝑐3 =
𝑐4
𝑟0𝑐2

=
𝑅1 + 𝛿0

𝑟0
𝛿0

2(2𝑅0𝜋 + 1)

=
2(𝑅1 + 𝛿0)(2𝑅0𝜋 + 1)

𝑟0𝛿0
, 

𝑐1 = 4(𝑐3 + 1) = 4 ∙ (
2(𝑅1 + 𝛿0)(2𝑅0𝜋 + 1)

𝑟0𝛿0
+ 1). 

After the definition of the above numbers we choose a subsequence (𝜇𝑛) of (𝜆𝑛) such that  

(i) |𝜇𝑛| > 𝑐1     |𝜇𝑛+1| − |𝜇𝑛| > 𝑐1  for 𝑛 = 1,2,… and  

(ii) ∑
1

|𝜇𝑛|
+∞
𝑛=1 = +∞ 

On the basis of the fixed numbers 𝑟0, 𝑅0, 𝜃0, 𝜃𝑇 , 𝑐1, 𝑐2, 𝑐3, 𝑐4 and the choice of the sequence 
(𝜇𝑛) we define the set 𝐿 as follows:  

𝐿: 𝐵 ∪ (⋃𝐵𝑤
𝑤∈𝑝

) 

where the partition 𝑝 and the discs 𝐵𝑤, 𝑤 ∈ 𝑝 are constructed. By Corollary (4.2.10), the 

family 𝔇 consists of pairwise disjoint disks. Therefore the compact set 𝐿 has connected 

complement. This property is needed in order to apply Mergelyan’s theorem. We now define 

the function ℎ on the compact set  𝐿, ℎ: 𝐿 → ℂ by  

ℎ(𝑧) = {
𝑔(𝑧),                                         𝑧 = 𝐵

𝑝(𝑧 − 𝑤𝜆(𝑤)),                    𝑧 ∈ 𝐵𝑤,   𝑤 ∈ 𝑝.
 

By Mergelya’s theorem [199] there exists an entire function f (in fact a polynomial) such 

that 

sup
𝑧∈𝐿

|𝑓(𝑧) − ℎ(𝑧)| < min {
1

2𝑠1
, 𝜀0} .                                  (63) 

The definition of ℎ and (63) give  

sup
𝑧∈𝐶

|𝑓(𝑧) − 𝑔(𝑧)| ≤ sup
𝑧∈𝐵

|𝑓(𝑧) − 𝑔(𝑧)| = sup
𝑧∈𝐿

|𝑓(𝑧) − ℎ(𝑧)| < 𝜀0, 

Which implies the desired inequality (61). It remains to show (60).  

Let 𝑎 ∈ 𝑆. Then 𝑎 = 𝑟𝑒2𝜋𝑖𝜃 for some 𝑟 ∈ [𝑟0, 𝑅0] and  [𝜃0, 𝜃𝑇]. There exists a unique 𝑛0 ∈
{0,1,… , 𝑣0 − 1} such that either 𝑟𝑛0 < 𝑟 < 𝑟𝑛0+1 or 𝑟𝑣0 ≤ 𝑟 ≤ 𝑅0. 

We set  

𝑟1 ≔ 𝑟𝑛0,       𝑟2 ≔𝑛0+1      𝑖𝑓    𝑟𝑛0 ≤ 𝑟 ≤ 𝑟𝑛0+1 

and  

𝑟1 ≔ 𝑟𝑣0 ,     𝑟2 ≔ 𝑅0   𝑖𝑓   𝑟𝑣0 ≤ 𝑟 ≤ 𝑅0. 

By the construction of the partition 𝑝 there exists a unique 𝑚′ ∈ ℕ such that 𝑝0
𝑟1,𝑚

′

⊂ 𝑝. In 

addition, there exists unique 𝜌 ∈ {0,1,… , 𝑣𝑚′ − 1} such that either  

𝜃𝜌
(𝑚′)

≤ 𝜃 < 𝜃𝜌+1
(𝑚′)

   𝑜𝑟     𝜃𝑣
𝑚′

(𝑚′)
≤ 𝜃 ≤ 𝜃𝑇 . 

Define now  

𝜃1 ≔ 𝜃𝜌
(𝑚′)

,     𝜃𝜌
(𝑚′)

  𝑖𝑓    𝜃𝜌
(𝑚′)

≤ 𝜃 < 𝜃𝜌+1
(𝑚′)
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and  

𝜃1 ≔ 𝜃𝑣
𝑚′

(𝑚′)
,    𝜃2 ≔ 𝜃𝑇    𝑖𝑓    𝜃𝑣

𝑚′

(𝑚′)
≤ 𝜃 ≤ 𝜃𝑇 

and then set 

𝑤0 ≔ 𝑟1 ∙ 𝑒
2𝜋𝑖𝜃1 ∈ 𝑝0

𝑟1,𝑚
′

. 
We shall prove now that for every 𝑧 ∈ ℂ with |𝑧| ≤ 𝑅1, 𝑧 + 𝑎𝜇(𝑤0) ∈ 𝐵𝑤0 . 

Recall that 𝐵𝑤0 ≔ 𝐵 + 𝑤0𝜇(𝑤0) = �̅�(𝑤0𝜇(𝑤0), 𝑅1 + 𝛿0). It suffices to prove that  

|𝑧 + 𝑎𝜇(𝑤0) − 𝑤0𝜇(𝑤0)| < 𝑅1 + 𝛿0        𝑓𝑜𝑟    |𝑧| ≤ 𝑅1.              (64) 
For |𝑧| ≤ 𝑅1 we have, 

|𝑧 + 𝑎𝜇(𝑤0) − 𝑤0𝜇(𝑤0)| ≤ 𝑅1 + |𝜇(𝑤0)||𝑎 − 𝑤0| 
= 𝑅1 + |𝜇(𝑤0)| ∙ |𝑟 ∙ 𝑒

2𝜋𝑖𝜃 − 𝑟1𝑒
2𝜋𝑖𝜃1|.                                (65) 

By (64) and (65) it suffices to prove  

|𝜇(𝑤0)| ∙ |𝑟𝑒
2𝜋𝑖𝜃 − 𝑟1𝑒

2𝜋𝑖𝜃1| < 𝛿0.                               (66) 
We now have  

|𝑟𝑒2𝜋𝑖𝜃1 − 𝑟1𝑒
2𝜋𝑖𝜃1| = |𝑟𝑒2𝜋𝑖𝜃 + 𝑟1𝑒

2𝜋𝑖𝜃 − 𝑟1𝑒
2𝜋𝑖𝜃1| 

≤ |𝑟𝑒2𝜋𝑖𝜃 − 𝑟1𝑒
2𝜋𝑖𝜃| + |𝑟1𝑒

2𝜋𝑖𝜃1| 

≤ |𝑟 − 𝑟1| + 𝑟1|𝑒
2𝜋𝑖𝜃 − 𝑒2𝜋𝑖𝜃1| 

≤ |𝑟1 − 𝑟2| + 𝑅02 sin(𝜋(𝜃1 − 𝜃)) 

≤ (𝑟2 − 𝑟1) + 𝑅02 sin(𝜋(𝜃2 − 𝜃1)) 

< (𝑟2 − 𝑟1) + 2𝑅0𝜋(𝜃2 − 𝜃1) 

≤ 𝑅0𝜋 ∙
𝑐2

|𝜇(𝑤0)|
+

𝑐2
|𝜇(𝑤0)|

 

= (2𝑅0𝜋 + 1) ∙
𝛿0

2(2𝑅0𝜋 + 1)
.

1

|𝜇(𝑤0)|
=

𝛿0
2|𝜇(𝑤0)|

 

which implies (66). So we proved that for every 𝑧 ∈ ℂ, |𝑧| ≤ 𝑅1 

𝑧 + 𝑎𝜇(𝑤0) ∈ 𝐵𝑤0 .                                            (67) 

By the definition of ℎ and (67) we have that for every 𝑧 ∈ ℂ with |𝑧| ≤ 𝑅1 

|𝑓(𝑧 + 𝑎𝜇(𝑤0)) − 𝑝 (𝑧 + 𝜇(𝑤0)(𝑟𝑒
2𝜋𝑖𝜃 − 𝑟1𝑒

2𝜋𝑖𝜃1))| <
1

2𝑠1
.           (68) 

Take any 𝑧 ∈ ℂ with |𝑧| ≤ 𝑅1. By (62) and (66) 

|𝑝 (𝑧 + 𝜇(𝑤0)(𝑟𝑒
2𝜋𝑖𝜃 − 𝑟1𝑒

2𝜋𝑖𝜃1)) − 𝑝(𝑧)| <
1

2𝑠1
                   (69) 

and the triangle inequality gives  

|𝑓(𝑧 + 𝑎𝜇(𝑤0)) − 𝑝(𝑧)| ≤ |𝑓(𝑧 + 𝑎𝜇(𝑤0)) − 𝑝 (𝑧 + 𝜇(𝑤0)(𝑟𝑒
2𝜋𝑖𝜃 − 𝑟1𝑒

2𝜋𝑖𝜃1))| 

+|𝑝 (𝑧 + 𝜇(𝑤0)(𝑟𝑒
2𝜋𝑖𝜃 − 𝑟1𝑒

2𝜋𝑖𝜃1)) − 𝑝(𝑧)|.                 (70) 

Using (68), (69), (70) we arrive at  

|𝑓(𝑧 + 𝑎𝜇(𝑤0)) − 𝑝(𝑧)| <
1

𝑠1
 

And since 𝑘1 ≤ 𝑅1 it readily follows that  

sup
|𝑧|≤𝑘1

|𝑓(𝑧 + 𝑎𝜇(𝑤0)) − 𝑝(𝑧)| <
1

𝑠1
                                        (71) 
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Set  

𝑚1 ≔ max{𝑛 ∈ ℕ|𝜆𝑛 = 𝜇(𝑤),        for some         𝑤 ∈ 𝑝} 
And observe that the definition of 𝑚1is independent from 𝑎 ∈ 𝑆. Thus, by the previous we 

conclude that for every 𝑎 ∈ 𝑆 there exists some 𝑛 ∈ ℕ,   𝑛 ≤ 𝑚1 such that  

sup
|𝑧|≤𝑘1

|𝑓(𝑧 + +𝑎𝜆𝑛) − 𝑝(𝑧)| <
1

𝑠1
, 

 Where 𝑓 ∈ 𝐻(ℂ), since 𝑓 is a polynomial. This completes the proof of the lemma. 

By the remark in [188] we have a sample of first examples satisfying condition (∑  ); 
𝜆𝑛 = 𝑛,        𝜆𝑛 = 𝑛(log𝑛)

𝑝   𝑓𝑜𝑟    𝑝 ≤ 1,        𝜆𝑛 = 𝑛 log 𝑛 log log 𝑛. 

In all the above examples we also have |
𝜆𝑛+1

𝜆𝑛
| → 1 as 𝑛 → +∞. However, for sequences 

(𝜆𝑛), such  that 𝜆𝑛 → ∞ and |
𝜆𝑛+1

𝜆𝑛
| → 1 we have that the conclusion of Theorem (4.2.1) 

holds by the main result in [203]. It is our aim to show that there exist sequences  (𝜆𝑛), such 

that: 𝜆𝑛 → ∞, (𝜆𝑛) satisfies condition (∑  ) and the ratio |
𝜆𝑛+1

𝜆𝑛
| does not tend to 1. 

Let us see things more specifically. Consider a sequence 𝛬 = (𝜆𝑛) of non-zero complex 

numbers and define  

𝐵(𝛬) ≔ {𝑎 ∈ 0,+∞|∃(𝜇𝑛) ⊂ 𝛬  𝑤𝑖𝑡ℎ 𝑎 = lim sup
𝑛
|
𝜇𝑛+1
𝜇𝑛

|}, 

𝑖(𝛬) ≔ inf𝐵(𝐴). 
Clearly  

𝑖(𝛬) ∈ [0,+∞] 
and 

If 𝜆𝑛 → ∞ then 𝐵(𝛬) ⊂ [1,+∞] and 𝑖(𝛬) ∈ [1.+∞]. 
We say that a sequence of non-zero complex numbers 𝛬 = (𝜆𝑛) satisfies condition (∑  ′ ) if 
𝑖(𝛬) = 1. In [203] we established the following result.  

If 𝛬 = (𝜆𝑛) is a sequence of non-zero complex numbers such that 𝜆𝑛 → ∞ and 𝛬 satisfies 

condition (∑  ′ ), then the conclusion of Theorem (4.2.1) holds. In view of the above result 

the following question arises naturally.  

Below we construct specific examples of sequences 𝛬 = (𝜆𝑛) such that 𝜆𝑛 → ∞, 𝑖(𝛬) = 𝑀 

for any fixed positive number 𝑀 > 1 and 𝛬 ssatidfies (∑  ). 
(i) Firstly, we give affirmative reply to Question 1 of [188].  

(ii) Secondly, for certain sequences, we also give a positive answer.  

(iii) Thirdly, we exhibit a variety of examples of sequences 𝛬 = (𝜆𝑛) of non-zero complex 

numbers with 𝜆𝑛 → ∞ such that 𝛬 satisfies condition (∑  ) and it does not satisfy 

condition (∑  ′ ). 

The above discussion shows that the problem of deciding whether a sequence 𝛬 = (𝜆𝑛), 
such that 𝜆𝑛 → ∞ and 𝑖(𝛬) = 𝑀 for some 𝑀 > 1 satisfies the conclusion of Theorem 

(4.2.1). 

Proposition (4.2.12)[170]: For every 𝑀 > 1 there exist a sequence Λ = (𝜆𝑛) such that 

𝜆𝑛 → ∞,    𝑖(𝛬) = 𝑀 and condition (∑  ) holds for 𝛬. Thus, for every 𝑀 > 1 there exists a 

sequence of non-zero complex numbers 𝛬 = (𝜆𝑛) such that 𝜆𝑛 → ∞ as 𝑛 → +∞,   𝑖(𝛬) =

𝑀  and ⋂ 𝐻𝐶({𝑇𝜆𝑛𝑎})
 
𝑎∈ℂ\{0}  is a 𝐺𝛿 and dense subset of 𝐻(ℂ). 
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Proof: Fix a positive number 𝑀0 > 1. We shall construct a sequence of non-zero complex 

numbers 𝛬 = (𝜆𝑛) such that 𝜆𝑛 → ∞,   𝑖(𝛬) = 𝑀0 and condition (∑  ) holds for 𝛬. The 

sequence 𝛬 will be a strictly increasing sequence of positive numbers such that 𝜆𝑛 →
+∞   𝑎𝑠  𝑛 → +∞. 
We construct inductively a countable family {𝔇𝑛}, 𝑛 = 1,2,… of sets 𝔇𝑛 ⊂ [1,+∞) 
according to the following rules.  

(i) 𝔇1 = {1}. 
(ii) 𝔇𝑛 = {𝑎𝑛 + 𝑣|𝑣 = 0,1,… , ([𝑎𝑛] + 1)!},     𝑛 = 1,2,… 

(iii) min𝔇𝑛+1 = 𝑀0 max𝔇𝑛 for each 𝑛 = 1,2,…, 
Where 𝑎𝑛 = min𝔇𝑛 and [𝑥] denotes the integer part of the real number 𝑥 as usual. Observe 

that every 𝑛,𝑚 ∈ ℕ,    𝑛 ≠ 𝑚,𝔇𝑛 ∩𝔇𝑚 = ∅. Set  

�̃� =⋃𝔇𝑛

+∞

𝑛=1

. 

We define the sequence 𝛬 = (𝜆𝑛) to be the enumeration of �̃� by the natural order. It is 

obvious that 𝜆𝑛 ≠ 0 ∀𝑛 ∈ ℕ, lim
𝑛→+∞

𝜆𝑛 = +∞, and (𝜆𝑛) is a strictly increasing sequence of 

positive numbers. We prove now the following 

Claim (4.2.13)[170]: For every subsequence 𝜇 = (𝜇𝑛) of 𝛬 we have lim
𝑛→+∞

sup
𝜇𝑛+1

𝜇𝑛
≥ 𝑀0.. 

Proof: Firstly we prove that for every natural number 𝑚 ∈ ℕ, there exists some 𝑁 ∈ ℕ 𝑁 ≥
𝑚 such that  

𝜇𝑁+1
𝜇𝑁

≥ 𝑀0 

So, take any 𝑚 ∈ ℕ and let 𝑚1 be the unique natural number such chat 𝜇𝑚 ∈ 𝔇𝑚1
. 

Setting 𝐴𝑚1
≔ {𝑛 ∈ ℕ|𝜇𝑛} ∈ 𝔇𝑚1

}, it is obvious that 𝐴𝑚1
≠ ∅, since 𝑚 ∈ 𝐴𝑚1

. 

We set 𝑚2 ≔ max𝐴𝑚1
. Then 𝜇𝑚2+1 ∉ 𝔇𝑚1

and so 𝜇𝑚2+1 ≥ min𝔇𝑚1+1. We have 𝜇𝑚2
≤

max𝔇𝑚1
, thus  

𝜇𝑚2+1

𝜇𝑚2

≥
min𝔇𝑚1+1

max𝔇𝑚1

= 𝑀0     𝑎𝑛𝑑   𝑚2 ≥ 𝑚1. 

So we proved that for every 𝑚 ∈ ℕ, there exist some 𝑁 ≥ 𝑚 such that 
𝜇𝑁+1

𝜇𝑁
≥ 𝑀0. 

We incorporate the last fact into an inductive argument and obtain the following. 

For 𝑚 = 1 there exists 𝑘1 ∈ ℕ, 𝑘1 ≥ 1 such that 
𝜇𝑘1+1

𝜇𝑘1
≥ 𝑀0. For 𝑚 = 𝑘1 + 1, there exists 

some 𝑘2 ≥ 𝑘1 + 1 (especially 𝑘2 > 𝑘1) such that 
𝜇𝑘2+1

𝜇𝑘2
≥ 𝑀0. Suppose that for some 𝑣 ∈ ℕ 

we have some 𝑘𝑣 ∈ ℕ such that 
𝜇𝑘2+1

𝜇𝑘2
≥ 𝑀0. Then for 𝑚 = 𝑘𝑣 + 1 

There exist some 𝑘𝑣+1 ≥ 𝑘𝑣 + 1 (especially 𝑘𝑣+1 > 𝑘𝑣) such that 
𝜇𝑘𝑣+1+1

𝜇𝑘𝑣+1
≥ 𝑀0.  

Therefore we obtain a subsequence (𝜇𝑘𝑣),   𝑣 = 1,2,… of (𝜇𝑛) such that 𝑘𝑣+1 > 𝑘𝑣 for each 

𝑣 = 1,2,… and 
𝜇𝑘𝑣+1

𝜇𝑘𝑣
≥ 𝑀0. 

This gives lim
𝑣→+∞

sup
𝜇𝑘𝑣+1

𝜇𝑘𝑣
≥ 𝑀0, which in turn implies  
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lim
𝑛→+∞

sup
𝜇𝑛+1
𝜇𝑛

≥ 𝑀0| 

This completes the proof of Claim (4.2.13).  

Claim (4.2.14)[170]: lim
𝑛→+∞

sup
𝜆𝑛+1

𝜆𝑛
= 𝑀0. 

Proof: Let 𝑛 ∈ ℕ. If 𝜆𝑛, 𝜆𝑛+1 ∈ 𝔇𝑚 for some positive integer 𝑚, then by the construction 

of 𝔇𝑚 we have  

𝜆𝑛+1 = 𝜆𝑛 + 1 ⇒
λ𝑛+1
𝜆𝑛

= 1 +
1

𝜆𝑛
                                         (72) 

If there is no 𝑚 ∈ ℕ such that 𝜆𝑛, 𝜆𝑛+1 ∈ 𝔇𝑚, then this can happen only if 𝜆𝑛 = max𝔇𝑚 

and 𝜆𝑛+1 = min𝔇𝑚+1 for some 𝑚 ∈ ℕ, hence  
𝜆𝑛+1
𝜆𝑛

= 𝑀0.                                                                (73) 

By (72), (73) and since 𝜆𝑛 → +∞ the conclusion follows. This completes the proof of Claim 

(4.2.14). 

Claims (4.2.13) and (4.2.14) imply that 𝑖(𝛬) = 𝑀0. 
Claim (4.2.15)[170]: The sequence Λ satisfies condition (∑  ). 
Proof: Fix some natural number 𝑁0 ≥ 2. We will show that there exists a subsequence (𝜇𝑛) 
of 𝛬 such that  

(i) 𝜇𝑛+1 − 𝜇𝑛 > 𝑁0 for every 𝑛 = 1,2,… and  

(ii) ∑
1

𝜇𝑛 

+∞
𝑛=1 = +∞. 

Recall that 𝑎𝑛 = min𝔇𝑛 > 𝑁0 for every 𝑛 ≥ 2. Since   

lim
𝑛→+∞

(1 +
1

2
+⋯+

1

2
− log 𝑛) = 𝛾, 

Where 𝛾 ≃ 0, 57722156649… is the Euler constant, there exists some natural Number 

𝑛0 ∈ ℕ such that  

−
1

2
<∑

1

𝑘
− log 𝑛 −𝛾

𝑛

𝑘=1

<
1

2
   𝑓𝑜𝑟   𝑛 ≥ 𝑛0 > 2. 

Let some 𝑚,𝑛 ∈ ℕ,𝑚 > 𝑛 ≥ 𝑛0. Then we  have  

1

𝑛 + 1
+

1

𝑛 + 2
+⋯+

1

𝑚
= ∑

1

𝑘

𝑚

𝑘=𝑛+1

=∑
1

𝑘

𝑚

𝑘=1

−∑
1

𝑘

𝑛

𝑛=1

= (∑
1

𝑘
− log𝑚 − 𝛾

𝑚

𝑘=1

) − (∑
1

𝑘
− log𝑛 − 𝛾

𝑛

𝑘=1

) + log𝑚 − log 𝑛 > log
𝑚

𝑛
− 1

= log
𝑚

𝑛
+ log 𝑒−1 = log (

𝑚

𝑛
. 𝑒−1)

= log (
𝑚

𝑛𝑒
)                                                                                                              (74) 

It is easy to show that 𝑎2 > 𝑛 for 𝑛 ≥ 2. Set 𝑛1 ≔ max{𝑛0, 𝑁0} + 2. Let now some 𝑛 ∈ ℕ 

with 𝑛 ≥ 𝑛1. Recall that  

𝔇𝑛 = {𝑎𝑛, 𝑎𝑛 + 1,… , 𝑎𝑛 + ([𝑎𝑛] + 1)!} 
= {𝑎𝑛 + 𝑗|𝑗 = 0,1,… , ([𝑎𝑛] + 1)!} 

Setting 𝑁1 ≔ 𝑁0 + 1 we obtain  
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1

𝑎𝑛
+

1

𝑎𝑛 +𝑁1
+

1

𝑎𝑛 + 2𝑁1
+⋯+

1

𝑎𝑛 +
([𝑎𝑛] + 1)

𝑁1
. 𝑁1

>
1

𝑁1𝑎𝑛
+

1

𝑁1𝑎𝑛 +𝑁1
+

1

𝑁1𝑎𝑛 + 2𝑁1
+⋯+

1

𝑁1𝑎𝑛 +𝑁1.
([𝑎𝑛] + 1)!

𝑁1

 

=
1

𝑁1
. ∑

1

𝑎𝑛 + 𝑗
>
1

𝑁1
. ∑

1

([𝑎𝑛] + 1) + 𝑗

([𝑎𝑛]+1)!
𝑁1

𝑗=0

([𝑎𝑛]+1)!
𝑁1

𝑗=0

                             (75) 

We write for simplicity 𝑣 = [𝑎𝑛] + 1. So by (74), (75) we get  

∑
1

𝑎𝑛 + 𝑘𝑁1

𝑣!
𝑁1

𝑘=0

>
1

𝑁1
. log(

𝑣 +
𝑣!
𝑁1

(𝑣 − 1)𝑒
) >

1

𝑁1
. log (

(𝑣 − 1)!

𝑁1𝑒
)                (76) 

We will show that  

1

𝑁1
. log (

(𝑣 − 1)!

𝑁1𝑒
) > 𝑣 

For 𝑣 big enough. It follows that  

1

𝑁1
. log (

(𝑣 − 1)!

𝑁1𝑒
) > 𝑣 ⇔ log (

(𝑣 − 1)!

𝑁1𝑒
) > 𝑁1𝑣 

⟺ (𝑣 − 1)! > 𝑁1𝑒. 𝑒
𝑁1𝑣 = 𝑁1. 𝑒

𝑁1𝑣+1 

Let us consider the sequence 𝛾𝑣 =
(𝑣−1)!

𝑁1𝑒
𝑁1𝑣+1

. By the ratio criterion for (𝛾𝑣) we have  

𝛾𝑣+1
𝛾𝑣

=

𝑣!
𝑁1𝑒

𝑁1(𝑣+1)+1

(𝑣 − 1)!
𝑁1𝑒

𝑁1𝑣+1

=
𝑣! ∙ 𝑒𝑁1𝑣+1

(𝑣 − 1)! ∙ 𝑒𝑁1(𝑣+1)+1
=

𝑣

𝑒𝑁1
. 

So lim
𝑣→+∞

(
𝛾𝑣+1

𝛾𝑣
) = +∞ which implies that there exists some 𝑛2 ≥ 𝑛1 such that 𝛾𝑛 > 1 for 

𝑛 ≥ 𝑛2 or equivalently  

1

𝑁1
∙ log (

(𝑛 − 1)!

𝑁1𝑒
) > 𝑛,       𝑛 ≥ 𝑛2.                                (77) 

Thus by (76) and (77) we have:  

∑
1

𝑎𝑛 + 𝑘𝑁1

𝑣!
𝑁1

𝑘=0

> [𝑎𝑛] + 1     𝑓𝑜𝑟    𝑛 ≥ 𝑛2. 

Now for 𝑛 ≥ 𝑛2 define the set  

𝔇𝑛
′ ≔ {𝑎𝑛, 𝑎𝑛 +𝑁1, 𝑎𝑛 + 2𝑁1, … , 𝑎𝑛 +

([𝑎𝑛] + 1)!

𝑁1
∙ 𝑁1} 

And consider the union  

𝔇′ ≔ ⋃ 𝔇𝑛
′

𝑛≥𝑛2

. 
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Let (𝜇𝑛) be the sequence we get when we enumerate 𝔇′ by its natural order. Clearly (𝜇𝑛) 
is a subsequence of 𝛬 and satisfies the desired properties (i) and (ii). This completes the 

proof of Claim (4.2.15) and hence that of Proposition (4.2.12) using Theorem (4.2.1) 

Corollary (4.2.16)[170]: There exists a sequence 𝛬 = (𝜆𝑛) of non-zero complex numbers 

with 𝜆𝑛 → ∞ such that 𝛬 satisfies condition (∑  ) and it does not satisfy condition (∑  ′ ). 
Proof: Every sequence 𝛬 = (𝜆𝑛) of non-zero complex numbers with 𝜆𝑛 → ∞ which 

satisfies the conclusion of Proposition (4.2.12), clearly does not satisfy (∑  ′ ). 
We point out that sequences of the form (𝑛2), (𝑛3), (𝑛4)…, satisfy condition (∑  ′ ). but they 

do not satisfy (∑  ). To complete the picture we observe that there are sequences with 

sufficiently slow growth, such as (𝑛), (√𝑛), (log(𝑛 + 1)), (log log(𝑛 + 1)), that satisfy 

both conditions (∑  ) and (∑  ′ ). Hence, neither (∑  ) nor (∑  ′ ) implies the other and, in 

addition, they have non-empty intersection. This in turn shows that Theorem (4.2.1) does 

not follow by the main result in [203].  
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Chapter 5 

Trace with Two-Term Trace and Asymptotic Estimate 

 

 We show trace estimates for the relativistic 𝛼-stable process extending the result of 

Bañuelos and Kulczycki in the stable case. We extend previous results obtained for the 

fractional Laplace operator (𝜓(𝜉)  = 𝜉𝛼/2) and for the Klein–Gordon square root operator 

(𝜓(𝜉)  = (1 + 𝜉2)1/2 − 1). The formula for the eigenvalues in (−𝑎, 𝑎)is of the form 𝜆𝑛 =

𝜓(𝜇𝑛
2)  + 𝑂(

1

𝑛
), where 𝜇𝑛 is the solution of 𝜇𝑛 =

𝑛𝜋

2𝑎
−

1

𝑎
𝜗(𝜇𝑛), and 𝜗(𝜇)  ∈ [0,

𝜋

2
) is given 

as an integral involving 𝜓. 

Section (5.1): Unimodal Levy Processes 

 

A two-term small-time uniform approximation for the trace of the transition density 

of the Wiener process killed off bounded 𝑅-smooth domain 𝐷 ⊂  ℝ𝑑 , i.e. the classical 

Dirichlet heat kernel, was obtained by van den Berg [216]. The first term of the 

approximation is proportional to the domain’s volume |𝐷| and the second–to the surface 

measure |𝜕𝐷| of the boundary, with explicit coefficient depending on time. 

Asymptotic non-uniform expansions of the trace of the heat kernel were given earlier in 

[212], see [216]. 

Bañuelos and Kulczycki [52] obtained a uniform two-term approximation for the isotropic 

𝛼-stable L�́�vy processes. The closely related case of the relativistic 𝛼-stable L�́�vy processes 

was resolved by Bañuelos, Mijena and Nane [219]. A similar two-term approximation for 

Lipschitz domains was given for the Wiener process by Brown [209], and for the isotropic 

𝛼-stable L�́�vy processes–by Bañuelos, Kulczycki and Siudeja [104]. 

Park and Song [213] obtained a two-term small-time approximation of the trace for the 

relativistic 𝛼-stable L�́�vy processes on Lipschitz domains, and gave an explicit power 

expansion of the first term. 

We investigate those L�́�vy processes 𝑋𝑡 in ℝ𝑑 , where 𝑑 ≥  2, which are unimodal 

and satisfy the so-called weak lower and upper scaling conditions, denoted WLSC and 

WUSC respectively, of orders strictly between 0 and 2. The isotropic stable and relativistic 

L�́�vy processes are included as special cases but at present the orders of the lower and upper 

scalings may differ. For bounded 𝑅-smooth open sets 𝐷 ⊂  ℝ𝑑 (also called 𝐶1,1 open sets) 

our main result gives a two-term small-time approximation of the trace of the corresponding 

Dirichlet heat kernel. We resolve sums of independent isotropic stable L�́�vy processes with 

different indexes. 

We let 𝜓 be the L�́�vy-Khintchine exponent and 𝑝𝑡(𝑥) be the transition density of 𝑋𝑡 . 
We consider 

𝜏𝐷 = {𝑡 >  0 ∶  𝑋𝑡  ∉ 𝐷}, 
the first time that 𝑋𝑡 exits 𝐷. For 𝑡 >  0 and 𝑥, 𝑦 ∈ ℝ𝑑 , we define the heat remainder 

𝑟𝐷(𝑡, 𝑥, 𝑦)  =  𝔼
𝑥[𝜏𝐷 <  𝑡, 𝑝𝑡−𝜏𝐷(𝑋(𝜏𝐷)  −  𝑦)] .                           (1) 

The Dirichlet heat kernel for 𝑋𝑡 is given by the Hunt formula: 

𝑝𝐷(𝑡, 𝑥, 𝑦)  =  𝑝𝑡(𝑦 − 𝑥) − 𝑟𝐷(𝑡, 𝑥, 𝑦),                         (2) 
and the trace of 𝑋𝑡 on 𝐷 is 

𝑡𝑟(𝑡, 𝐷) = ∫𝑝𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 , 𝑡 >  0.                     (3) 
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We denote ℍ =  {(𝑥1, . . . , 𝑥𝑑) ∈ ℝ
𝑑 ∶  𝑥1 > 0}, a half-space, and for 𝑡 >  0 we let 

𝐶ℍ(𝑡)  = ∫ 𝑟ℍ(𝑡, (𝑞, 0,・ ・ ・ , 0), (𝑞, 0,・ ・ ・ , 0))𝑑𝑞
∞

0

. 

For instance, 𝐶ℍ(𝑡)  =  𝑐𝑡−𝑑/𝛼+1/𝛼 for the isotropic 𝛼-stable L�́�vy process [52]. 

We remark in passing that the trace can also be studied and interpreted within the 

spectral theory of the corresponding semigroup given by the integral kernel 𝑝𝐷 [52]. 

We note that sharp pointwise estimates of 𝑟𝐷(𝑡, 𝑥, 𝑦) complementing [207] would be 

of considerable interest. We also note that two-term approximations of the trace of the heat 

kernel of general unimodal L�́�vy processes are open for Lipschitz domains. 

A Borel measure on ℝ𝑑 is called isotropic unimodal, in short: unimodal, if on 

ℝ𝑑  \ {0} it is absolutely continuous with respect to the Lebesgue measure and has a radially 

nonincreasing, in particular rotationally invariant, or isotropic density function. Recall that 

L�́�vy measure is an arbitrary Borel measure concentrated on ℝ𝑑  \ {0} and such that 

∫ (|𝑥|2  ∧  1)𝜈(𝑑𝑥) < ∞
 

ℝ𝑑
. 

In what follows we assume that 𝜈 is a unimodal L�́�vy measure and define 

𝜓(𝜉) = ∫ (1 −  𝑐𝑜𝑠 〈𝜉, 𝑥〉)𝜈(𝑑𝑥)
 

ℝ𝑑
,      𝜉 ∈ ℝ𝑑 ,                     (4) 

the L�́�vy -Khintchine exponent. It is a radial function, and we often let 𝜓(𝑟)  =  𝜓(𝜉), where 

𝜉 ∈ ℝ𝑑 and 𝑟 =  |𝜉|  ≥  0. The same convention applies to all radial functions. 

The (radially nonincreasing) density function of the unimodal L�́�vy measure 𝜈 will also be 

denoted by 𝜈, so 𝜈(𝑑𝑥)  =  𝜈(𝑥)𝑑𝑥 and 𝜈(𝑥)  =  𝜈(|𝑥|). We point out that for 𝜆 ≥  1 and 

𝑟 ≥  0,  𝜓(𝜆𝑟)  ≥  𝜋−2𝜓(𝑟) and  𝜓(𝜆𝑟)  ≥  𝜋−2𝜆2𝜓(𝑟) [206]. More restrictive inequalities 

of this type define what are called the weak scaling conditions. 

We consider the pure-jump L�́�vy process 𝑋 =  (𝑋𝑡 , 𝑡 ≥  0) on ℝ𝑑 [92], in short: 𝑋𝑡 , 
determined by the L�́�vy-Khintchine formula 

𝔼 𝑒𝑖〈𝜉,𝑋𝑡〉 = 𝑒−𝑡𝜓(𝜉) = ∫ 𝑒𝑖〈𝜉,𝑥〉𝑝𝑡(𝑑𝑥)
 

ℝ𝑑
. 

The process is (isotropic) unimodal, meaning that all its one-dimensional distributions 

𝑝𝑡(𝑑𝑥) are (isotropic) unimodal; in fact the unimodality of 𝜈 is also necessary for the 

unimodality of 𝑋𝑡 [217]. In what follows we always assume that 𝜓 is unbounded, 

equivalently that 𝜈(ℝ𝑑)  =  ∞. In other words 𝑋𝑡 below is not a compound Poisson process. 

Clearly, 𝜓(0)  =  0 and 𝜓(𝑢)  >  0 for 𝑢 >  0. By [207], 𝑝𝑡(𝑑𝑥) have bounded, in fact 

smooth density functions 𝑝𝑡(𝑥) for all 𝑡 >  0 if and only if the following Hartman-Wintner 

condition holds, 
lim
|𝜉|→∞

𝜓(𝜉)

ln|𝜉|
 = ∞.                                                            (5) 

Let 𝑉 be the renewal function of the corresponding ladder-height process of the first 

coordinate of 𝑋𝑡 . Namely we consider 𝑋𝑡
(1)
, the first coordinate process of 𝑋𝑡 , its running 

maximum 𝑀𝑡 ∶= sup
0≤𝑠≤𝑡

𝑋𝑠
(1)
  and the local time 𝐿𝑡 of 𝑀𝑡 − 𝑋𝑡

(1)
 at 0 so normalized that its 

inverse function 𝐿𝑡
−1 is a standard 1/2-stable subordinator. The resulting ladder-height 

process 𝜂(𝑡) ∶=  𝑋(1)(𝐿𝑡
−1) is a subordinator with the Laplace exponent 
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𝜅(𝑢) =  −log 𝔼𝑒−𝑢𝜂(1) = exp {
1

𝜋
∫

log𝜓(𝑢𝜁)

1 + ζ2
𝑑𝜁

∞

0

} , 𝑢 ≥  0, 

and 𝑉 (𝑥) is defined as the accumulated potential of 𝜂: 

𝑉(𝑥) = 𝔼∫ 1[0,𝑥](𝜂𝑡)𝑑𝑡
∞

0

, 𝑥 ≥ 0. 

For 𝑥 <  0 we let 𝑉 (𝑥)  =  0. For instance, if  𝜓(𝜉) = |𝜉|𝛼 with 𝛼 ∈ (0, 2), then 𝑉(𝑥) =

𝑥+

𝛼

2  [215]. Silverstein studied 𝑉 and 𝑉′ as 𝑔 and 𝜓 in [214]. The Laplace transform of 𝑉 is 

∫ 𝑉(𝑥)𝑒−𝑢𝑥𝑑𝑥
∞

0

=
1

𝑢𝜅(𝑢)
, 𝑢 >  0. 

The function 𝑉 is continuous and strictly increasing from [0,∞) onto [0,∞). We have 

lim
𝑟→∞

𝑉(𝑟) = ∞. Also, 𝑉 is subadditive: 

𝑉(𝑥 +  𝑦) ≤  𝑉(𝑥) +  𝑉(𝑦), 𝑥, 𝑦 ∈  ℝ.                            (6) 
For a more detailed discussion of 𝑉 see [205] and [214]. 

In estimates we can use 𝑉 and   interchangeably because by [207], 

𝑉(𝑟)  ≈  [𝜓 (
1

𝑟
)]
−
1
2
,      𝑟 >  0.                                             (7) 

The above means that there is a constant, i.e. a number 𝐶 ∈  (0,∞), such that for all 𝑟 >  0 

we have 𝐶−1𝑉(𝑟)  ≤  [𝜓(1/𝑟)]−1/2 ≤ 𝐶𝑉(𝑟). In fact in (7) we have 𝐶 =  𝐶(𝑑), meaning 

that 𝐶 may be so chosen to depend only on the dimension, see ibid. To give full justice to 

𝑉, the function is absolutely crucial in the proofs of [205], [207]. By (6), 
1

2
𝜀𝑉(𝑟) ≤  𝑉(𝜀𝑟) ≤  𝑉(𝑟), 0 <  𝜀 ≤  1, 0 <  𝑟 <  ∞.                 (8) 

We shall assume relative power-type behaviors of 𝜓(𝑟) at infinity. 

We say that 𝜓 satisfies the weak lower scaling condition at infinity (WLSC) if there 

are numbers 𝛼 >  0, 𝜃  ∈  [0,∞) and 𝐶  ∈  (0, 1], such that 

𝜓(𝜆𝑟) ≥  𝐶𝜆𝛼𝜓(𝑟)  for    𝜆 ≥  1, 𝑟 > 𝜃. 
Put differently and more explicitly, 𝜓(𝑟)/𝑟𝛼 is almost increasing on (𝜃,∞), i.e. 

𝜓(𝑠)

𝑠𝛼
≥ 𝐶

𝜓(𝑟)

𝑟𝛼
, if      s ≥ r > 𝜃. 

In short we write 𝜓 ∈ WLSC(𝛼, 𝜃, 𝐶),   𝜓 ∈  WLSC(𝛼, 𝜃),   𝜓 ∈  WLSC(𝛼) or 𝜓 ∈  WLSC, 

depending on how specific we wish to be about the constants. If  𝜓 ∈  WLSC(𝛼, 𝜃), then we 

say that 𝜓 satisfies the global weak lower scaling condition (global WLSC) if 𝜃 = 0.  
If 𝜃  ≥  0, then we can emphasize this by calling the scaling local at infinity. We always 

assume that 𝜓 ≢  0, therefore in view of 𝜓 ∈ WLSC we have the Hartman-Wintner 

condition (5) satisfied, and so ℝ𝑑  ∋  𝑥 ⟼ 𝑝𝑡(𝑥) is smooth for each 𝑡 >  0. 
Similarly, the weak upper scaling condition at infinity (WUSC) means that there are 

numbers 𝛼  <  2, 𝜃  ≥  0 and 𝐶 ∈  [1,∞) such that 

𝜓(𝜆𝑟) ≤  𝐶𝜆𝛼𝜓(𝑟)  for   𝜆 ≥ 1, 𝑟 > 𝜃. 

In short, 𝜓 ∈  WUSC(𝛼, 𝜃, 𝐶) or 𝜓 ∈  WUSC. Global WUSC is WUSC(𝛼, 0), etc. 

We call 𝛼, 𝜃, 𝐶, 𝛼, 𝜃, 𝐶 the scaling characteristics of 𝜓. As pointed out in [207], by inflating 

𝐶 and 𝐶 we can replace 𝜃 with 𝜃/2 and 𝜃 by 𝜃/2 in the scalings, therefore we can always 
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choose the same, arbitrarily small value 𝜃 = 𝜃 = 𝜃  >  0 in both local scalings WLSC and 

WUSC, if they hold at all. The scalings characterize the so-called common bounds for 𝑝𝑡(𝑥) 
[206], and so they are natural conditions on 𝜓 in the unimodal setting. See [206] many 

examples of Lévy-Khintchine exponents which satisfy WLSC or WUSC. 

For instance 𝜓(𝜉)  =  |𝜉|𝛼 , the Lévy-Khintchine exponent of the isotropic 𝛼-stable Lévy 

process in ℝ𝑑 with 𝛼 ∈  (0, 2), satisfies WLSC(𝛼, 0, 1) and WUSC(𝛼, 0, 1). The 

characteristic exponent 𝜓(𝜉)  =  (1 + |𝜉|2)𝛼/2 − 1 of the relativistic 𝛼-stable Lévy 

process with 𝛼 ∈  (0, 2) satisfies WLSC(𝛼, 0) and WUSC(𝛼, 1). Other examples include 

𝜓(𝜉)  =  |𝜉|𝛼1 + |𝜉|𝛼2 ∈ WLSC(𝛼1, 0, 1) ∩WUSC(𝛼2, 0, 1), where 0 <  𝛼1  <  𝛼2  <  2, 
etc. If 𝜓(𝑟) is 𝛼-regularly varying at infinity and 0 <  𝛼 <  2, then 𝜓 ∈ WLSC(𝛼) ∩
WUSC(𝛼), with any 0 <  𝛼  <  𝛼 < 𝛼  <  2. The connection of the scalings to the so-called 

Matuszewska indices of 𝜓(𝑟) is explained in [206]. 

If  𝜓 ∈ WLSC(𝛼, 𝜃), then by (7) (or see [207]) we get the following scaling at 0: 

𝑉 (𝜀𝑟) ≤  𝐶𝜀
𝛼
2𝑉 (𝑟), 0 <  𝜀 ≤  1, 0 <  𝑟 <  1/𝜃.                              (9) 

Here the range is 0 <  𝑟 <  ∞ if the lower scaling of 𝜓 is global, in agreement with (9) and 

the convention 1/0 =  ∞. If 𝜓 ∈ WUSC(𝛼, 𝜃), then, similarly, 

𝑉 (𝜀𝑟) ≥  𝐶𝜀𝛼 2⁄ 𝑉 (𝑟), 0 <  𝜀 ≤  1, 0 <  𝑟 <  1/𝜃.                 (10) 
We shall need 𝑉−1, the inverse function of 𝑉 on [0,∞). We let 

𝑇(𝑡) =  𝑉−1(√𝑡), 𝑡 ≥  0.                                                                      (11) 

Put differently, [𝑉(𝑇(𝑡))]
2
= 𝑡. For instance, 𝑇(𝑡)  =  𝑡1/𝛼 for the isotropic 𝛼-stable Lévy 

process. The functions 𝑉 and 𝑇 allow us to handle intrinsic difficulties which hampered 

extensions of [216], [52], [219], [213] to general unimodal Lévy processes, namely the lack 

of explicit formulas and estimates for the involved potential-theoretic objects. 

We note that 𝑇(𝑡)  <  𝑎 if and only if 𝑡 <  𝑉2(𝑎), wherever 𝑎, 𝑡 ≥  0. The scaling 

properties of 𝑇 at zero reflect those of 𝜓 (at infinity) as follows. 

Lemma (5.1.1)[204]: If (9) holds, 0 <  𝜀 ≤  1 and 0 ≤  𝑡 <  𝑉 (
1

𝜃
)
2
 , then 𝑇(𝜀𝑡)  ≥

 𝑐𝜀1/𝛼𝑇(𝑡). 

If (10) holds, 0 <  𝜀 ≤  1 and 0 ≤  𝑡 <  𝑉 (
1

𝜃
)
2
, then 𝑇(𝜀𝑡)  ≤  𝑐𝜀1/𝛼𝑇(𝑡). 

Proof. To prove the first assertion we note that 𝑇 is increasing. If 0 <  𝑡 <  𝑉 (
1

𝜃
)
2
, and 

0 ≤ 𝜀 ≤  1, then 𝑇(𝑡)  <  1/𝜃 and 𝑇(𝜀𝑡)/𝑇(𝑡)  ≤  1. By (9), 

√𝜀  =
𝑉 (𝑇(𝜀𝑡))

𝑉 (𝑇(𝑡))
≤ 𝐶 (

𝑇(𝜀𝑡)

𝑇(𝑡)
)

𝛼/2

, 

as needed. The proof of the second inequality is analogous but uses (10). 

By (8) and the proof of Lemma (5.1.1) we always have 

𝑇(𝜀𝑡) ≤  𝑐√𝜀𝑇(𝑡), 0 <  𝜀 ≤  1, 0 <  𝑟 <  ∞.                            (12) 
In what follows we always assume that 𝜈 is an infinite unimodal Lévy measure on ℝ𝑑 with 

𝑑 ≥  2 and the Lévy-Khintchine exponent defined by (4) satisfies 

𝜓 ∈  WLSC(𝛼, 𝜃)  ∩ WUSC(𝛼, 𝜃), 

where 0 <  𝛼  ≤  𝛼  <  2, and 𝜃 ≥  0. Many partial results below need less assumptions 

but for simplicity of presentation. 
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Definition (5.1.2)[204]: We say that (𝐇) holds if for every 𝑟 >  0 there is 𝐻𝑟  ≥  1 such 

that 

𝑉(𝓏) −  𝑉 (𝑦)  ≤  𝐻𝑟  𝑉
′(𝑥)(𝓏 −  𝑦)    whenever   0 <  𝑥 ≤  𝑦 ≤  𝓏 ≤  5𝑥 ≤  5𝑟. 

We say that (𝐇∗) holds if 𝐻∞ ∶= sup
𝑟>0

𝐻𝑟 < ∞. 

We may and do chose 𝐻𝑟 nondecreasing in 𝑟. By [205], (𝐇) always holds in our setting 

because 𝜓 satisfiesWLSC andWUSC. If  𝜓 ∈ WLSC(𝛼, 0) ∩ WUSC(𝛼, 0), then (𝐇∗) even 

holds. 

By [207], there is a 𝐶1  =  𝐶1(𝑑) such that 

𝑝𝑡(𝑥) ≤  𝐶1
𝑡

|𝑥|𝑑𝑉2(|𝑥|)
, 𝑡 >  0, 𝑥 ∈  ℝ𝑑  \ {0},                      (13) 

hence [206], 

𝜈(𝑥) ≤  𝐶1
1

𝑉2(|𝑥|)|𝑥|𝑑
, 𝑥 ≠ 0.                                                                     (14) 

Since 𝜓 ∈ WLSC(𝛼, 𝜃), by [207] we have 

𝑝𝑡(𝑥) ≤  𝑐𝑇
−𝑑(𝑡), 𝑡 <  𝑉2(𝜃−1), 𝑥 ∈ ℝ𝑑 .                           (15) 

We now discuss the heat remainder and the heat kernel of open sets 𝐷 ⊂  ℝ𝑑 . As usual, 

0 ≤  𝑟𝐷(𝑡, 𝑥, 𝑦)  ≤  𝑝𝑡(𝑥 −  𝑦). Indeed, one directly checks that [0, 𝑡)  ∋  𝑠 ↦  𝑌𝑠  =
 𝑝(𝑡 −  𝑠, 𝑋𝑠, 𝑦) is a ℙ𝑥-martingale for each 𝑥, 𝑦 ∈  ℝ𝑑 . The martingale almost surely 

converges to 0 as 𝑠 →  𝑡, and we let 𝑌𝑡  =  0. By optional stopping, quasileft continuity of 

𝑋 and Fatou’s lemma, for every stopping time 𝑇 ≤  𝑡 we have 𝔼𝑥𝑌𝑇  ≤  𝔼𝑥𝑌0  =  𝑝(𝑡, 𝑥, 𝑦). 
The inequality 𝑟𝐷(𝑡, 𝑥, 𝑦) ≤ 𝑝𝑡(𝑥 − 𝑦) follows by taking 𝑇 =  𝜏𝐷  ∧  𝑡. The next result is a 

consequence of the strong Markov property of 𝑋𝑡 . 
Lemma (5.1.3)[204]: Consider open sets 𝐷 ⊂  𝐹 ⊂  ℝ𝑑 . For all 𝑡 >  0 and 𝑥, 𝑦 ∈  ℝ𝑑 , 

𝑝𝐹(𝑡, 𝑥, 𝑦) − 𝑝𝐷(𝑡, 𝑥, 𝑦)  =  𝔼
𝑦 [𝜏𝐷  <  𝑡, 𝑋(𝜏𝐷)  ∈  𝐹 \ 𝐷; 𝑝𝐹  (𝑡 – 𝜏𝐷, 𝑋(𝜏𝐷), 𝑥)]. 

Proof: We repeat verbatim the proof of [52]. 

Here is a well-known Ikeda-Watanabe formula for the joint distribution of 𝑋(𝜏𝐷) and 𝜏𝐷, 
see [211] or [208] for proof. 

Lemma (5.1.4)[204]: Let 𝐷 ⊂  ℝ𝑑 be open. For 𝑥 ∈  𝐷, 𝑡2 ≥ 𝑡1  ≥  0 and 𝐴 ⊂  (𝐷)
𝑐
, 

ℙ𝑥(𝑋(𝜏𝐷)  ∈  𝐴, 𝑡1  <  𝜏𝐷  <  𝑡2)  = ∫ ∫ 𝑝𝐷(𝑠, 𝑥, 𝑦)𝑑𝑠
𝑡2

𝑡1

 

𝐷

∫𝜈(𝑦 − 𝓏)𝑑𝓏𝑑𝑦
 

𝐴

. 

We denote 𝛿𝐷(𝑥):=  dist(𝑥, 𝐷
𝑐), 𝑥 ∈  ℝ𝑑 . 

Lemma (5.1.5)[204]: We have 

𝑟𝐷(𝑡, 𝑥, 𝑦)  ≤  𝐶𝑇(𝑡)
−𝑑 ,                                                                        (16) 

and 

𝑟𝐷(𝑡, 𝑥, 𝑦)  ≤  𝐶1
𝑡

𝑉2(𝛿𝐷(𝑥))𝛿𝐷
𝑑(𝑥)

, 𝑥, 𝑦 ∈  ℝ𝑑 .                                (17) 

Proof. Since 𝜓 ∈  WLSC(𝛼, 𝜃, 𝐶), we have (15), which yields (16). By (1), (13), and 

symmetry, 

𝑟𝐷(𝑡, 𝑥, 𝑦)  =  𝑟𝐷(𝑡, 𝑦, 𝑥)  ≤  𝔼
𝑦 [𝜏𝐷 <  𝑡;  𝐶1

𝑡 – 𝜏𝐷
𝑉2(|𝑋(𝜏𝐷) −  𝑥|)|𝑋(𝜏𝐷) − 𝑥|

𝑑
]. 

Since |𝑋(𝜏𝐷)  −  𝑥|  ≤  𝛿𝐷(𝑥) and 𝑉 is increasing, we obtain (17). 

Recall that ℍ is a half-space and 𝐶ℍ(𝑡) is defined immediately before Theorem (5.1.12). 
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Lemma (5.1.6)[204]: If 𝑇(𝑡)  <  1/𝜃, then 𝐶ℍ(𝑡)  ≤  𝑐𝑇(𝑡)
−𝑑+1. 

Proof: Denote 𝑟(𝑡, 𝑞)  =  𝑟ℍ(𝑡, (𝑞, 0,・ ・ ・ , 0), (𝑞, 0,・ ・ ・ , 0)). By (17) and (9), 

∫ 𝑟(𝑡, 𝑞)𝑑𝑞
∞

𝑇(𝑡)

≤ 𝑐∫
𝑉2(𝑇(𝑡))

𝑉2(𝑞)𝑞𝑑
𝑑𝑞

∞

𝑇(𝑡)

≤ 𝑐∫
𝑇(𝑡)𝛼

𝑞𝑑+𝛼
𝑑𝑞

∞

𝑇(𝑡)

= 𝑐𝑇(𝑡)1−𝑑 . 

Using (16) we get 

∫ 𝑟(𝑡, 𝑞)𝑑𝑞
𝑇(𝑡)

0

≤  𝑐 ∫ 𝑇(𝑡)−𝑑𝑑𝑞
𝑇(𝑡)

0

= 𝑐𝑇(𝑡)1−𝑑 . 

To obtain a lower bound for 𝐶ℍ(𝑡) we shall use the existing heat kernel estimates for 

geometrically regular domains. Recall that open set 𝐷 ⊂  ℝ𝑑 satisfies the inner (outer) ball 

condition at scale 𝑅 >  0 if for every 𝑄 ∈  𝜕𝐷 there is a ball 𝐵(𝑥′, 𝑅)  ⊂  𝐷 (a ball 

B(𝑥′′, 𝑅)  ⊂  𝐷𝑐) such that 𝑄 ∈  𝜕𝐵(𝑥′, 𝑅) (𝑄 ∈  𝜕𝐵(𝑥′′, 𝑅), respectively). An open set 𝐷 

is 𝑅-smooth if it satisfies both the inner and the outer ball conditions at some scale 𝑅 >  0. 
We call 𝐵(𝑥′, 𝑅) and 𝐵(𝑥′′, 𝑅) the inner ball and the outer ball, respectively. 

In the next lemma we collect a number of results from [207]. For brevity in what follows 

we sometimes write 𝑇 =  𝑇(𝑡), where 𝑡 >  0 is given. 

Lemma (5.1.7)[204]: Let open 𝐷 ⊂  ℝ𝑑 satisfy the outer ball condition at scale 𝑅 <  1/𝜃. 
There is a constant 𝑐 such that for 𝑇 ∨ |𝑥 −  𝑦|  <  1/𝜃, 

𝑝𝐷(𝑡, 𝑥, 𝑦) ≤  𝑐 (
𝑉(𝛿𝐷(𝑥))

𝑉(𝑇 ∧  𝑅)
 ∧  1) (

𝑉(𝛿𝐷(𝑦))

𝑉(𝑇 ∧  𝑅)
 ∧  1)(𝑇−𝑑  ∧

𝑉2(𝑇)

|𝑥 −  𝑦|𝑑𝑉2(|𝑥 −  𝑦|)
). 

Proof. We have (𝐇). We note that √𝑡  =  𝑉(𝑇) and use the second part of [207]. We need 

to justify that the quotient 
𝐻𝑅

𝐽4(𝑅)
 is bounded, where 𝐻𝑅 is the constant from (𝐇) and 𝐽(𝑅) =

inf
0<𝑟≤𝑅

𝜈(𝐵(0, 𝑟)𝑐)𝑉2(𝑟). To this end we observe that 𝐻𝑅 is increasing, and 𝐽(𝑅) is 

nonincreasing, hence we get an upper bound for this quotient by replacing 𝑅 with 
1

𝜃
. If 𝜃 =

 0, which we also allow, then by [205] the quotient is bounded as a function of 𝑅. By [207] 

with 𝑟 =
1

2
, we also have 𝑝𝑡

2

(0)  ≤  𝑐𝑇−𝑑(𝑡). 

Lemma (5.1.8)[204]: We have 𝐶ℍ(𝑡)  ≈  𝑇(𝑡)
−𝑑+1  ≈  𝑝𝑡(0)𝑇(𝑡) 𝑎𝑠  𝑡 →  0. 

Proof: By Lemma (5.1.7) and (2) there is 𝜀 >  0 such that 𝑟(𝑡, 𝑞)  ≥  
1

2
𝑝𝑡(0) if 𝑉(𝑞)  <

𝜀√𝑡. 
Since 𝜓 ∈ WUSC, by scaling of 𝑉 there is 𝑐 >  0 such that for 0 <  𝑞 ≤  𝑐𝑇(𝑡) the 

condition is satisfied and we have 

∫ 𝑟(𝑡, 𝑞)𝑑𝑞
𝑐𝑇(𝑡)

0

≥
1

2
∫ 𝑇(𝑡) − 𝑑𝑑𝑞
𝑐𝑇(𝑡)

0

=
𝑐

2
𝑇(𝑡)1−𝑑 . 

By WUSC and WLSC we have 𝑝𝑡(0)  ≈  𝑇(𝑡)
−𝑑 , see [206]. 

For 𝑀 ≥  0, the truncated Green function of 𝐷 is defined as 

𝐺𝐷
𝑀(𝑥, 𝑦) = ∫ 𝑝𝐷(𝑡, 𝑥, 𝑦)𝑑𝑡

𝑀

0

, 𝑥, 𝑦 ∈  ℝ𝑑 . 

The Green function of 𝐷 is 

𝐺𝐷(𝑥, 𝑦)  = ∫ 𝑝𝐷(𝑡, 𝑥, 𝑦)𝑑𝑡
∞

0

= 𝐺𝐷
∞(𝑥, 𝑦). 
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Lemma (5.1.9)[204]: Let open 𝐷 ⊂  ℝ𝑑 satisfy the outer ball condition at scale 𝑅 <  1/𝜃, 
𝑥, 𝑦 ∈  ℝ𝑑 and |𝑥 −  𝑦|  <  1/𝜃. Let 𝑀 =  𝑉2(𝑅). Then 

𝐺𝐷
𝑀(𝑥, 𝑦)  ≤  𝑐

𝑉(𝛿𝐷(𝑦))𝑉(𝛿𝐷(𝑥))

|𝑥 −  𝑦|𝑑
,                                                                 (18) 

and 

𝐺𝐷
𝑀(𝑥, 𝑦) ≤  𝑐

𝑉(𝛿𝐷(𝑦))𝑉(|𝑥 –  𝑦|)

|𝑥 −  𝑦|𝑑
.                                                        (19) 

Furthermore, if 𝑑 >  2 or WUSC(𝛼, 0) holds, then (18) and (19) even hold for 𝑀 =
𝑉2(1/𝜃), including the case of global WLSC (𝑀 =  ∞). 
Proof: Assuming 𝑇 <  𝑅 ∧  |𝑥 −  𝑦|, by Lemma (5.1.7) we get 

𝑝𝐷(𝑡, 𝑥, 𝑦)  ≤  𝑐𝑉(𝛿𝐷(𝑦))
𝑉(𝑇 ∧  𝛿𝐷(𝑥))

𝑉2(|𝑥 −  𝑦|)|𝑥 −  𝑦|𝑑
, 

hence 

∫ 𝑝𝐷(𝑡, 𝑥, 𝑦)𝑑𝑡
𝑉2(|𝑥−𝑦|∧𝑅)

0

≤  𝑐
𝑉(𝛿𝐷(𝑥))

𝑉2(|𝑥 –  𝑦|)|𝑥 –  𝑦|𝑑
∫ 𝑉(𝑇 ∧  𝛿𝐷(𝑥))𝑑𝑡
𝑉2(|𝑥−𝑦|∧𝑅)

0

≤  𝑐
𝑉(𝛿𝐷(𝑥))𝑉

2(|𝑥 –  𝑦|  ∧  𝑅)𝑉(|𝑥 –  𝑦|  ∧  𝛿𝐷(𝑥))

|𝑥 –  𝑦|𝑑𝑉2(|𝑥 –  𝓏|)

≤  𝑐
𝑉(𝛿𝐷(𝑥))𝑉(|𝑥 −  𝑦|  ∧ 𝛿𝐷(𝑥))

|𝑥 −  𝑦|𝑑
. 

This establishes (19) and (18) for small times. Then, 

∫ 𝑝𝐷(𝑡, 𝑥, 𝑦)𝑑𝑡
𝑉2(𝑅)

𝑉2(|𝑥−𝑦|)

≤ 𝑐𝑉(𝛿𝐷(𝑥))∫
𝑇−𝑑(𝑡)

√𝑡
𝑑𝑡

𝑉2(𝑅)

𝑉2(|𝑥−𝑦|)

. 

By WUSC and Lemma (5.1.1), 

1

𝑇(𝑡)
≤
𝑐𝜀1/𝛼

𝑇(𝜀𝑡)
. 

With this in mind we obtain 

∫
𝑇−𝑑(𝑡)

√𝑡
𝑑𝑡

𝑉2(𝑅)

𝑉2(|𝑥−𝑦|)

≤  𝑐∫
𝑉
2𝑑
𝛼 (|𝑥 –  𝑦|)

𝑡
𝑑
𝛼
+
1
2𝑇𝑑(𝑉2(|𝑥 −  𝑦|))

𝑑𝑡
∞

𝑉2(|𝑥−𝑦|)

 

=  𝑐
𝑉
𝑑
𝛼(|𝑥 –  𝑦|)

|𝑥 −  𝑦|𝑑
[𝑉2(|𝑥 –  𝑦|)]−𝑑/𝛼−1/2+1, 

where the integral converges, because 𝑑/𝛼 + 1/2 >  1 (recall that 𝛼  <  2). We thus get 

(19). To finish the proof of (18) we note that 

∫ 𝑝𝐷(𝑡, 𝑥, 𝑦)𝑑𝑡
𝑉2(𝑅)

𝑉2(|𝑥−𝑦|)

≤  𝑐𝑉(𝛿𝐷(𝑥))𝑉(𝛿𝐷(𝑦))∫
𝑇−𝑑(𝑡)

𝑡
𝑑𝑡

𝑉2(𝑅)

𝑉2(|𝑥−𝑦|)

, 

and we proceed as before. 

For 𝑀 ≥  0, the truncated Poisson kernel is defined as 

𝐾𝐷
𝑀(𝑥, 𝓏) = ∫𝐺𝐷

𝑀(𝑥, 𝑦)𝜈(𝑦 −  𝓏)𝑑𝑦
 

𝐷

, 𝑥 ∈  𝐷, 𝓏 ∈  𝐷𝑐 . 
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Lemma (5.1.10)[204]: Let open 𝐷 ⊂  ℝ𝑑 satisfy the outer ball condition at scale 𝑅. If 

diam(𝐷 ∪ {𝑧}) < 1/𝜃, then 

𝐾𝐷

𝑉(𝑅2)
2 (𝑥, 𝓏) ≤

𝑉(𝛿𝐷(𝑥))

𝑉(𝛿𝐷(𝓏))

𝑐

|𝑥 −  𝓏|𝑑
, 𝑥 ∈  𝐷, 𝓏 ∈  𝐷𝑐 . 

Proof: The previous lemma gives an estimate for 𝐺𝐷
𝑉2(𝑅)

 , and the Lévy measure is 

controlled by (14). Thus, 

𝐾𝐷

𝑉(𝑅2)
2 (𝑥, 𝓏)  ≤  𝑐𝑉 (𝛿𝐷(𝑥))∫

𝑉(|𝑥 –  𝑦|) ∧ 𝑉(𝛿𝐷(𝑦))

|𝑥 −  𝑦|𝑑|𝑦 −  𝓏|𝑑𝑉2(|𝑦 −  𝓏|)

 

𝐷

𝑑𝑦. 

Note that |𝑥 − 𝑦|  ≥  |𝑥 − 𝑧|/2 or |𝑦 − 𝑧|  ≥  |𝑥 − 𝑧|/2. Furthermore, if |𝑥 − 𝑦|  ≥  |𝑦 −
𝑧|, then |𝑥 −  𝑦|  ≥  |𝑥 −  𝑧|/2. Therefore, it is enough to verify that 

𝐼 ∶= ∫
𝑉(𝛿𝐷(𝑦))

|𝑦 −  𝑧|𝑑𝑉2(|𝑦 −  𝑧|)
𝑑𝑦

 

𝐷

≤
𝐶

𝑉(𝛿𝐷(𝑧))
, and 

𝐼𝐼 ∶= ∫
𝑉(|𝑥 −  𝑦|)

|𝑥 −  𝑦|𝑑𝑉2(|𝑦 −  𝑧|)
𝑑𝑦

 

𝐷∩{|𝑥−𝑦|<|𝑦−𝑧|}

 ≤
𝐶

𝑉(𝛿𝐷(𝑧))
. 

Considering 𝐼 we note that 𝛿𝐷(𝑦)  ≤  |𝑦 −  𝑧|, hence 

𝐼 ≤ ∫
|𝑦 −  𝓏|−𝑑

𝑉(|𝑦 −  𝓏|)
𝑑𝑦

 

|𝑦−𝓏|>𝛿𝐷(𝓏)

≤  𝑐∫
𝑑𝑟

𝑟𝑉(𝑟)

1/𝜃

𝛿𝐷(𝓏)

 

Using the scaling (9) we get 

𝐼 ≤
𝑐

𝑉(𝛿𝐷(𝓏))
∫ (

𝛿𝐷(𝓏)

𝑟
)

𝛼/2∞

𝛿𝐷(𝓏)

𝑑𝑟

𝑟
=

𝑐

𝑉(𝛿𝐷(𝓏))
. 

To verify the estimate for 𝐼𝐼 we also use the scaling properties of 𝑉. For 𝑦 ∈  𝐷 we have 

|𝑦 −  𝑧|  <  1/𝜃, hence 

𝐼𝐼 ≤  𝑐 ∫ (
|𝑥 –  𝑦|

|𝑦 –  𝓏|
)

𝛼
2 

|𝑥−𝑦|≤|𝑦−𝓏|

𝑑𝑦

|𝑥 –  𝑦|𝑑𝑉(|𝑦 –  𝓏|)
 

≤
𝑐

𝑉(𝛿𝐷(𝓏))
∫ (

𝑟

|𝑦 –  𝓏|
)
𝛼/2|𝑦−𝓏|

0

 
𝑑𝑟

𝑟
=

𝑐

𝑉(𝛿𝐷(𝓏))

2

𝛼
. 

 

In the following statement we repeat our standing assumptions; see also the definition 

of 𝑉 and that of 𝑇 in (11). 

Theorem (5.1.11)[204]: Let 𝜈 be an infinite unimodal Lévy measure on ℝ𝑑 with 𝑑 ≥  2, 
and let the Lévy-Khintchine exponent (4) satisfy 𝜓 ∈  WLSC(𝛼, 𝜃)  ∩ WUSC(𝛼, 𝜃), where 

0 <  𝛼  ≤  𝛼  <  2 and 𝜃 ≥  0. Let open bounded set 𝐷 ⊂  ℝ𝑑 be 𝑅-smooth with 0 <
 𝑅 < 1/𝜃. There is a constant 𝑐𝜃 depending only on 𝜈 and 𝜃 such that if 0 <  𝑡 <
 𝑉2(𝜃−1), or 𝑇(𝑡)  <  1/𝜃, then the trace (3) of the Dirichlet heat kernel (2) satisfies 

|𝑡𝑟(𝑡, 𝐷)  − |𝐷|𝑝𝑡(0)  + |𝜕𝐷|𝐶ℍ(𝑡)| ≤  𝑐𝜃|𝐷|𝑝𝑡(0)
𝑇(𝑡)2

𝑅2
.             (20) 

If 𝜃 =  0, then (20) holds for all 𝑡 >  0. 
Recall that Lemma (5.1.8) asserts that 𝐶ℍ(𝑡)  ≈  𝑝𝑡(0)𝑇(𝑡) and 𝑝𝑡(0)  ≈  𝑇(𝑡)

−𝑑 as 𝑡 →
 0, so the approximation of the trace in Theorem (5.1.11) is given in terms of powers of 𝑇(𝑡). 
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Theorem (5.1.12)[204]: If bounded open set 𝐷 ⊂ ℝ𝑑 is 𝑅-smooth, WLSC and WUSC hold 

for 𝜓, and 𝑡 → 0, then 𝑡𝑟(𝑡, 𝐷) equals 𝑝𝑡(0)|𝐷|  − 𝐶ℍ(𝑡)|𝜕𝐷| plus lower order terms. 

Heuristically, if 𝑥 ∈  𝐷 and 𝑡 >  0 is small, then 𝑟𝐷(𝑡, 𝑥, 𝑥) is small and so 𝑝𝐷(𝑡, 𝑥, 𝑥) is 

close to 𝑝ℝ𝑑(𝑡, 𝑥, 𝑥)  =  𝑝𝑡(0). Therefore the first approximation to 𝑡𝑟(𝑡, 𝐷) is 𝑝𝑡(0)|𝐷|. 

The second term in Theorem (5.1.12), 𝐶ℍ(𝑡)|𝜕𝐷|, approximates ∫ 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥
 

𝐷
. As we 

shall see, 𝑟𝐷(𝑡, 𝑥, 𝑥) depends primarily on the distance of 𝑥 from 𝜕𝐷. It is here that the 𝑅-

smoothness of 𝐷 plays a role by allowing for an asymptotic coefficient independent of 𝐷, 
that is 𝐶ℍ(𝑡). In view of the definition of 𝐶ℍ(𝑡), the appearance of |𝜕𝐷| in the second term 

of the approximation of the trace is natural. 

Including the relativistic stable L�́�vy process, explicit expansions of 𝑝𝑡(0) can be 

given [213]. In more general situations 𝑝𝑡(0), 𝐶ℍ(𝑡) and the bounds for the error terms 

cannot be entirely explicit but Lemma (5.1.8) and Theorem (5.1.11) below provide a 

satisfactory formulation. 

Technically we only need to estimate ∫ 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥
 

𝐷
 to prove Theorem (5.1.12). In this 

connection we note that sharp global estimates for 𝑝𝐷(𝑡, 𝑥, 𝑦) were recently obtained by 

Bogdan, Grzywny and Ryznar [207], but these estimates do not easily translate into sharp 

estimates of 𝑟𝐷(𝑡, 𝑥, 𝑦). Namely, if 𝑝𝐷(𝑡, 𝑥, 𝑦) is only known to be proportional to 𝑝𝑡(𝑦 −
𝑥), then essential further work is needed to accurately estimate 𝑟𝐷(𝑡, 𝑥, 𝑦). 

We give a unimodal L�́�vy processes with scaling, their heat kernel, Green function 

and Poisson kernel for 𝑅-smooth open sets. We show Theorem (5.1.11), a stronger and more 

detailed variant of Theorem (5.1.12). The most technical step of the proof of Theorem 

(5.1.11) is given separately. 

Proof: The result is a direct consequence of (15), Lemma (5.1.8) and Theorem (5.1.11), 

where we take 𝜃 >  0 so small that 𝑅 <  1/𝜃. 

In the course of the proof of Theorem (5.1.11), which now follows, we usually write 𝑇 =
 𝑇(𝑡). As mentioned in the Introduction, 

𝑡𝑟(𝑡, 𝐷)  − |𝐷|𝑝𝑡(0)  = ∫𝑝𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥
 

𝐷

−∫𝑝(𝑡, 𝑥, 𝑥)𝑑𝑥
 

𝐷

= −∫𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥
 

𝐷

. 

We only need to show that 

|∫ 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥
 

𝐷

 −  |𝜕𝐷|𝐶ℍ(𝑡)| ≤
𝑐𝑇2

𝑇𝑑𝑅2
.                                                        (21) 

We first consider 𝑇 =  𝑇(𝑡)  ≥  𝑅/2, and we have 

∫𝑟𝐷(𝑡, 𝑥, 𝑥)
 

𝐷

≤ ∫𝑝𝑡(0)𝑑𝑥
 

𝐷

≤ |𝐷|𝑝𝑡(0)  ≤  4|𝐷|𝑝𝑡(0)
𝑇2

𝑅2
. 

By Lemma (5.1.6), 

|𝜕𝐷|𝐶ℍ(𝑡)  =  |𝜕𝐷|∫ 𝑟ℍ(𝑡, (𝑞, 0,∙ ∙ ∙  , 0), (𝑞, 0,∙ ∙ ∙  , 0))𝑑𝑞
∞

0

≤
𝑐|𝐷|

𝑅
𝑇1−𝑑 ≤

𝑐|𝐷|𝑇2−𝑑

𝑅2
. 

By [206], we see that (20) holds trivially in this case. 

From now on we assume that 𝑇 <  𝑅/2. For 𝑟 >  0 we let 𝐷𝑟  =  {𝑥 ∈  𝐷 ∶  𝛿𝐷(𝑥)  >  𝑟}. 
We have 𝐷 =  𝐷𝑅/2 ∪ (𝐷 \ 𝐷𝑅/2). In analyzing the decomposition we shall often use our 

assumptions 𝑅 <  1/𝜃 and |𝑥 −  𝑦|  <  1/𝜃, and the heat kernel estimates from Lemma 

(5.1.7). By Lemma (5.1.5), 
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∫ 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥
 

𝐷𝑅/2

 ≤  𝐶 |𝐷𝑅
2
|
𝑉2(𝑇)

𝑉2 (
𝑅
2)
𝑅𝑑

≤ 𝐶|𝐷|
1

𝑅2𝑅𝑑−2
≤ 𝐶|𝐷|

1

𝑅2𝑇𝑑−2
. (22) 

Thus, the integral gives insignificant contribution to the trace. 

To handle the integration near 𝜕𝐷, we shall estimate the heat remainder of 𝐷 using the heat 

remainder of halfspace. Let 𝑥∗  ∈  𝜕𝐷 be such that |𝑥 – 𝑥∗|  =  𝛿𝐷(𝑥). Let 𝐼 and 𝑂 be the 

(inner and outer) balls with radii 𝑅 such that 𝜕𝐼 ∩  𝜕𝑂 =  {𝑥∗} and 𝐼 ⊂  𝐷 ⊂  𝑂𝑐 . Let ℍ(𝑥) 
denote the halfspace satisfying 𝐼 ⊂  ℍ(𝑥)  ⊂  𝑂𝑐 . By domain monotonicity of the heat 

remainder, and by Lemma (5.1.3), 

|𝑟𝐷(𝑡, 𝑥, 𝑥) − 𝑟ℍ(𝑥)(𝑡, 𝑥, 𝑥)| ≤  𝑟𝐼(𝑡, 𝑥, 𝑥)– 𝑟𝑂𝑐(𝑡, 𝑥, 𝑥) 

                                                                           = 𝑝𝑂𝑐(𝑡, 𝑥, 𝑥)– 𝑝𝐼(𝑡, 𝑥, 𝑥) 
                                                                           = 𝔼𝑥[𝜏𝐼  <  𝑡, 𝑋(𝜏𝐼)  ∈
 𝑂𝑐; 𝑝𝑂𝑐(𝑡 – 𝜏𝐼 , 𝑋(𝜏𝐼), 𝑥)]. 
The next result is an analogue of [52]. 

Lemma (5.1.13)[204]: If 𝑇 <  𝑅/2, then 

|∫ 𝑟𝐷(𝑡, 𝑥, 𝑥)  − 𝑟ℍ(𝑥)(𝑡, 𝑥, 𝑥) 𝑑𝑥
 

𝐷\𝐷𝑅/2

| ≤
𝑐|𝐷|𝑇2

𝑅2𝑇𝑑
.                                          (23) 

Proof. This is an analog of [52] and is proved as follows. By the coarea formula and 

Proposition (5.1.15) we find that the left side of (23) is bounded above by 

𝑐𝑇

𝑅𝑇𝑑
∫ |𝜕𝐷𝑞|
𝑅/2

0

 (
𝑇𝑑−1𝑉(𝑇)

𝑞𝑑−1𝑉(𝑞)
 ∧  1)𝑑𝑞. 

Therefore [52] gives a simplified bound 

𝑐|𝜕𝐷 |

𝑅𝑇𝑑−1
∫ (

𝑇𝑑−1𝑉(𝑇)

𝑞𝑑−1𝑉(𝑞)
 ∧  1)𝑑𝑞

𝑅/2

0

. 

The integral over (0, 𝑇) is clearly bounded by 𝑇. To estimate the integral from 𝑇 to 𝑅/2 we 

note that scaling (9) for 𝑞 ∈  [𝑇, 𝑅/2) yields 𝑉 (𝑇)  ≤  𝐶(𝑇/𝑞)𝛼/2𝑉(𝑞). Also, 

∫ 𝑞1−𝑑−𝛼/2𝑑𝑞
𝑅/2

𝑇

≤ ∫ 𝑞1−𝑑−𝛼/2𝑑𝑞
∞

𝑇

< ∞, 

since 𝑑 + 𝛼/2 >  2. 

Recall that 𝑟(𝑡, 𝑞)  =  𝑟ℍ(𝑡, (𝑞, 0,⋯ , 0), (𝑞, 0,⋯ , 0)), and 𝐶ℍ(𝑡)  = ∫ 𝑟(𝑡, 𝑞)𝑑𝑞
∞

0
. 

Lemma (5.1.14)[204]: If 𝑇 <  𝑅/2, then 

|∫ 𝑟ℍ(𝑥)(𝑡, 𝑥, 𝑥)𝑑𝑥 − |𝜕𝐷|
 

𝐷\𝐷𝑅/2

∫ 𝑟(𝑡, 𝑞)𝑑𝑞
𝑅/2

0

| ≤
𝑐|𝐷|𝑇2

𝑅2𝑇𝑑
.                       (24) 

Proof: Using the coarea formula we get 

∫ 𝑟ℍ(𝑥)(𝑡, 𝑥, 𝑥)𝑑𝑥
 

𝐷\𝐷𝑅/2

= ∫ |𝜕𝐷𝑞|𝑟(𝑡, 𝑞)𝑑𝑞
𝑅/2

0

. 

Hence the left side of the inequality (24) is bounded by 

∫ ||𝜕𝐷𝑞| − |𝜕𝐷 || 𝑟(𝑡, 𝑞)𝑑𝑞
𝑅/2

0

≤
𝐶|𝐷|

𝑅2
∫ 𝑞 𝑟(𝑡, 𝑞)𝑑𝑞
𝑅/2

0

, 

as follows from Corollary 2.14(iii) in [52]. For 𝑞 ∈  (0, 𝑇] we have 𝑟(𝑡, 𝑞)  ≤  𝑝𝑡(0), hence 
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∫ 𝑞𝑟(𝑡, 𝑞)𝑑𝑞
𝑇

0

≤  𝑐 ∫
𝑞

𝑇𝑑
𝑑𝑞

𝑇

0

= 𝑐𝑇2−𝑑 . 

For the remaining integration, using (17) and (9), we get 

∫ 𝑞𝑟(𝑡, 𝑞)𝑑𝑞

1
𝜃

𝑇

  ≤  𝑐 ∫
𝑡

𝑞𝑑−1𝑉2(𝑞)
𝑑𝑞

1
𝜃

𝑇

≤ 𝑐∫
𝑉2(𝑇)

𝑞𝑑−1𝑉2(𝑞)
𝑑𝑞

1
𝜃

𝑇

 

≤  𝑐 ∫ (
𝑇

𝑞
)
𝛼 𝑑𝑞

𝑞𝑑−1

1/𝜃

𝑇

≤  𝑐𝑇2−𝑑∫ 𝑞−𝑑+1−𝛼𝑑𝑞
∞

1

. 

The last integral converges since 𝑑 ≥  2 and 𝛼  >  0. 

 
Fig. (1)[204]: Balls 𝐼 ⊂  𝐷 (left), 𝑂 ⊂  𝐷𝑐 (right) and 𝑃 (middle), and “a short jump” to 

point 𝑋(𝜏𝐼). Here 𝑥 ∈  𝑃 and |𝑥|  =  𝛿𝐼(𝑥). 
Thus, for 𝑇 <  𝑅/2 we have by Lemma (5.1.5) 

|𝜕𝐷|∫ 𝑟(𝑡, 𝑞)𝑑𝑞
∞

𝑅
2

≤
𝑐|𝐷|

𝑅
∫

𝑉2(𝑇)

𝑞𝑑𝑉2(𝑞)
𝑑𝑞

∞

𝑅
2

≤
𝑐|𝐷|

𝑅
∫

𝑑𝑞

𝑇𝑑−2𝑞2

∞

𝑅
2

=
𝐶𝑇2

𝑅2𝑇𝑑
, 

which is a lower order term. By Lemma (5.1.13), Lemma (5.1.14) and (22) we obtain (21). 

Proposition (5.1.15)[204]: If 𝑇 <  𝑅/2, then 

𝔼𝑥[𝜏𝐼  <  𝑡, 𝑋(𝜏𝐼)  ∈  𝑂
𝑐;  𝑝𝑂𝑐(𝑡 – 𝜏𝐼 , 𝑋(𝜏𝐼), 𝑥)]  ≤

𝑐

𝑅
(

𝑉(𝑇)

𝛿𝐷(𝑥)
𝑑−1𝑉(𝛿𝐷(𝑥))

∧ 𝑇1−𝑑). 

Proof: Let 𝑥∗  =  0, 𝑎 =  (−𝑅, 0, . . . , 0), 𝑏 =  (𝑅, 0, . . . , 0), 𝐼 =  𝐵(𝑎, 𝑅) and 𝑂 =
 𝐵(𝑏, 𝑅). 
This also means that 𝑥 =  (𝑥0, 0, . . . , 0) with 0 ≤  𝑥0  <  𝑅/2, and 𝛿𝐼(𝑥)  =  |𝑥|, see Fig. 

(1). Recall that 𝑡 <  𝑉2(𝑅/2) or equivalently 𝑇 <  𝑅/2. Before we proceed to the heart of 

the matter we need the following lemma based on spherical integration developed in [210] 

and later used in [52], [104]. 

Lemma (5.1.16)[204]: For 𝑠 <  𝑅 we have 

∫
𝑑𝓏

|𝑥 –  𝓏|𝛽
𝑉(𝛿𝑂𝑐(𝓏))

𝑉(𝛿𝐼(𝓏))

 

(𝑂𝑐\𝐼)∩𝐵(0,𝑠)

≤  𝑐 {

|𝑥|𝑑+1−𝛽

𝑅
  𝑖𝑓 𝛽 >  𝑑 +  1,

𝑠𝑑+1−𝛽/𝑅 𝑖𝑓 𝛽 <  𝑑 +  1.

            (25) 

Proof: First we consider 𝑉 (𝑥)  =  𝑥𝛼/2 with 𝛼 ∈  [0, 2). Let 𝓏 ∈  𝐴 =  (𝑂𝑐  \ 𝐼)  ∩
 𝐵(0, 𝑠). 
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Note that |𝑥 −  𝓏| ≥ |𝑥|. If |𝑥 − 𝓏|  ≤  2|𝑥|, then |𝓏|  ≤  |𝑥 −  𝓏|  +  |𝑥|  ≤  3|𝑥|, which 

leads to the integral 

∫
𝑑𝓏

|𝑥 −  𝓏|𝛽
𝛿𝑂𝑐
𝛼 (𝓏)

𝑉(𝛿𝐼(𝓏))

 

𝐴∩{|𝑥−𝓏|≤2|𝑥|}

≤
1

|𝑥 ∧  𝑠|𝛽
∫

𝛿𝑂𝑐
𝛼 (𝓏)

𝛿𝐼
𝛼(𝓏)

𝑑𝓏
 

𝐴∩{|𝓏|≤3(|𝑥|∧𝑠)}

. 

The last integral is similar to [52]. Using [52] we get the following upper bound 

𝑐

|𝑥 ∧  𝑠|𝛽
∫

𝑟𝑑

𝑅
𝑑𝑟

3(|𝑥|∧𝑠)

0

=
𝑐(|𝑥| ∧  𝑠)𝑑+1−𝛽

𝑅
. 

If |𝑥 −  𝓏|  ≥  2|𝑥|, then |𝑥 −  𝓏|  ≥  |𝓏|/2 and |𝓏|  ≥  |𝓏 −  𝑥|  − |𝑥|  ≥  |𝑥|. By [52], 

∫
𝑑𝓏

|𝑥 −  𝓏|𝛽
𝛿𝑂𝑐
𝛼 (𝓏)

𝛿𝐼
𝛼(𝓏))

 

𝐴∩{|𝑥−𝓏|>2|𝑥|}

≤ 𝑐∫
1

|𝓏|𝛽
𝛿𝑂𝑐
𝛼 (𝓏)

𝛿𝐼
𝛼(𝓏)

 

𝐴∩{𝑠≥|𝓏|≥|𝑥|}

𝑑𝓏 ≤
𝑐

𝑅
∫  𝑟𝑑−𝛽𝑑𝑟
𝑠

|𝑥|∧𝑠

. 

If 𝛽 >  𝑑 +  1, then the last integral is bounded by 𝑐|𝑥|𝑑+1−𝛽 , while for 𝛽 <  𝑑 +  1 we 

get the upper bound 𝑐𝑠𝑑+1−𝛽 . 
This settles (25) for 𝑉(𝑥)  =  𝑥𝛼/2 with 𝛼 ∈  [0, 2). Note that the form of the right hand 

side of (25) does not depend on 𝛼. 
Consider general 𝜓  ∈ WUSC(𝛼) and the corresponding ladder-height function 𝑉. 
Due to the scaling property (10) we have 

𝑉(𝛿𝑂𝑐(𝓏))

𝑉(𝛿𝐼(𝓏))
≤  𝑐

𝛿𝑂𝑐
𝛼 (𝓏)

𝛿𝐼
𝛼(𝓏))

, if  𝛿𝑂𝑐(𝓏) ≥  𝛿𝐼 (𝓏). 

If 𝛿𝑂𝑐(𝓏) ≤ 𝛿𝐼 (𝓏), then the fraction is bounded by 1, since 𝑉 is monotone. Therefore, we 

can use the previous special case with 𝛼 =  𝛼 and 𝛼 =  0 to finish the proof. 

We return to the core proof of Proposition (5.1.15). In view of Lemma (5.1.4) we want to 

estimate 

𝔼𝑥[𝜏𝐼  <  𝑡, 𝑋(𝜏𝐼) ∈  𝑂
𝑐; 𝑝𝑂𝑐(𝑡 – 𝜏𝐼 , 𝑋(𝜏𝐼), 𝑥)]

= ∫ ∫ 𝑝𝐼(𝑠, 𝑥, 𝑦)
𝑡

0

 

𝐼

∫ 𝜈(𝑦 –  𝓏)𝑝𝑂𝑐(𝑡 –  𝑠, 𝑥, 𝓏)𝑑𝓏𝑑𝑠𝑑𝑦
 

𝑂𝑐\𝐼

 

                                            = 𝐼1  +  𝐼2  +  𝐼3, 
which splits the integration into three subregions, as specified and estimated below: 

                                 𝐼1 ∶  |𝓏|  >  𝑅/2, 
𝐼2 ∶  𝑡/2 <  𝑠 <  𝑡 and |𝑥 −  𝓏|  <  𝑇 and |𝓏|  ≤  𝑅/2, 

                                 𝐼3 ∶  (𝑠 <  𝑡/2 or |𝑥 −  𝓏|  >  𝑇) and |𝓏|  ≤  𝑅/2. 
The setting, especially that of 𝐼2, is illustrated on Fig. (1). 

On 𝐼1 we have |𝓏|  >  𝑅/2, hence |𝑥 −  𝓏|  ≥  𝑅/3, thus by (13) 

𝐼1  = ∫ ∫ 𝑝𝐼(𝑠, 𝑥, 𝑦)
𝑡

0

 

𝐼

∫ 𝜈(𝑦 –  𝓏)𝑝(𝑡 –  𝑠, 𝓏, 𝑥)𝑑𝑠𝑑𝓏𝑑𝑦
 

|𝓏|>
𝑅
2

≤
𝑐𝑡

𝑅𝑑𝑉2 (
𝑅
3)
∫ ∫ 𝑝𝐼(𝑠, 𝑥, 𝑦)

𝑡

0

 

𝐼

∫ 𝜈(𝑦 –  𝓏)𝑑𝑠𝑑𝓏𝑑𝑦
 

𝑝𝑐
 

=
𝑐𝑡

𝑅𝑑𝑉2 (
𝑅
3)
ℙ𝑥(𝜏𝐼  <  𝑡, |𝑋(𝜏𝐼)|  >  𝑅/2)  ≤

𝑐𝑉2(𝑇)

𝑅𝑑𝑉2(𝑅/2)
, 

where the last inequality follows from sublinearity (8) of 𝑉. Since 𝑇 <  𝑅/2, we have 
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𝑐𝑉2(𝑇)

𝑅𝑑𝑉2(𝑅/2)
≤

𝑐

𝑅𝑑
≤

𝑐

𝑅𝑇𝑑−1
. 

Since |𝑥|  <  𝑅/2, by monotonicity of 𝑉 we get 

𝑐𝑉2(𝑇)

𝑅𝑑𝑉2(𝑅/2)
≤

𝑐𝑉(𝑇)

𝑅𝑑𝑉(𝑅/2)
≤

𝑐𝑉(𝑇)

𝑅|𝑥|𝑑−1𝑉(|𝑥|)
. 

Here we have |𝑥|  ≤  |𝑥 − 𝓏|  <  𝑇, and |𝓏|  ≤  |𝑥 −  𝓏|  + |𝑥|  <  2𝑇. By Lemma (5.1.7), 

𝑡/2 <  𝑞 <  𝑇 and (12), 

𝑝𝐼(𝑞, 𝑥, 𝑦)  ≤  𝑇
−𝑑
𝑉(𝛿𝐼(𝑦))

𝑉(𝑇)
. 

Let 𝑆 =  (𝑂𝑐  \ 𝐼)  ∩  {|𝓏|  <  2𝑇}. We get the following upper bound, 

𝐼2 = ∫ ∫ 𝑝𝐼(𝑞, 𝑥, 𝑦)
𝑡

𝑡/2

 

𝐼

∫𝜈(𝑦 –  𝓏)𝑝(𝑡 –  𝑞, 𝓏, 𝑥)𝑑𝑞𝑑𝓏𝑑𝑦
 

𝑆

≤  𝑐 ∫𝑇(𝑡)−𝑑
 

𝐼

𝑉(𝛿𝐼(𝑦))

𝑉(𝑇)
∫

1

|𝑦 –  𝓏|𝑑𝑉2(|𝑦 –  𝓏|)
𝐺𝑂𝑐
𝑉2(𝑅/2)

(𝑥, 𝓏)𝑑𝓏𝑑𝑦
 

𝑆

≤
𝑐𝑇−𝑑

𝑉(𝑇)
∫ ∫

𝑉(𝛿𝐼(𝓏))

|𝑦 −  𝓏|𝑑𝑉(|𝑦 −  𝓏|)

𝐺𝑂𝑐
𝑉2(𝑅/2)

(𝑥, 𝓏)

𝑉(𝛿𝐼(𝓏))
𝑑𝑦𝑑𝓏

 

𝐼

 

𝑆

, 

where we use 𝛿𝐼(𝑦)  ≤  |𝑦 −  𝓏|. Scaling (9) gives 

𝐼2  ≤
𝑐𝑇−𝑑

𝑉(𝑇)
∫ ∫

𝛿𝐼

𝛼
2(𝓏)

|𝑦 −  𝓏|𝑑+𝛼/2
𝐺𝑂𝑐
𝑉2(𝑅/2)

(𝑥, 𝓏)

𝑉(𝛿𝐼(𝓏))
𝑑𝑦𝑑𝓏

 

𝐵𝑐(𝓏,𝛿𝐼(𝓏))

 

𝑆

. 

We then rewrite the inner integral in spherical coordinates, use Green function estimate (18) 

and |𝑥|  <  𝑇, 

𝐼2 ≤
𝑐𝑇−𝑑

𝑉(𝑇)
∫

𝛿𝐼

𝛼
2(𝓏)𝑑𝑟

𝑟1+
𝛼
2

∞

1

∫
𝑉(|𝑥|)𝑉(𝛿𝑂𝑐(𝓏))

|𝑥 –  𝓏|𝑑𝑉(𝛿𝐼(𝓏))
𝑑𝓏

 

𝑆

 

≤  𝑐𝑇−𝑑∫
𝑑𝑟

𝑟1+
𝛼
2

∞

1

∫
𝑉(𝛿𝑂𝑐(𝓏))

|𝑥 −  𝓏|𝑑𝑉(𝛿𝐼(𝓏))
𝑑𝓏

 

𝑆

  

=  𝑐𝑇−𝑑∫
𝑉(𝛿𝑂𝑐(𝓏))

|𝑥 −  𝓏|𝑑𝑉(𝛿𝐼(𝓏))
𝑑𝓏

 

𝑆

.                                        (26) 

Using Lemma (5.1.16) with 𝛽 =  𝑑 and 𝑠 =  2𝑇 we get 

𝐼2  ≤
𝑐𝑇1−𝑑

𝑅
. 

Since |𝑥|  <  𝑇, we get the desired estimate from Proposition (5.1.15). 

Let 𝑆 =  (𝑂𝑐  \ 𝐼)  ∩  {|𝓏|  < 𝑅/2}. We have |𝑥 − 𝓏|  >  𝑇 or 𝑠 <  𝑡/2. In either case, 

Lemma (5.1.7) and sublinearity of 𝑉 implies 

𝑝𝑂𝑐(𝑡 −  𝑠, 𝑥, 𝓏)  ≤ (𝑇
−𝑑 ∧

𝑉2(𝑇)

|𝑥 −  𝓏|𝑑𝑉2(|𝑥 −  𝓏|)
)
𝑉(𝛿𝑂𝑐(𝓏))

𝑉(𝑇)
. 

Therefore by Lemma (5.1.10), 
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𝐼3  ≤ ∫ ∫ 𝑝𝐼(𝑠, 𝑥, 𝑦)
𝑉2(𝑅/2)

0

 

𝐼

 ∫ 𝜈(𝑦 −  𝓏)
 

𝑆

(𝑇−𝑑 ∧
𝑉2(𝑇)

|𝑥 −  𝓏|𝑑𝑉2(|𝑥 −  𝓏|)
)
𝑉(𝛿𝑂𝑐(𝓏))

𝑉(𝑇)
 𝑑𝓏𝑑𝑠𝑑𝑦

=  𝑐 ∫𝐾𝐼
𝑉2(𝑅)

 

𝑆

(𝑥, 𝓏) (𝑇−𝑑 ∧
𝑉2(𝑇)

|𝑥 −  𝓏|𝑑𝑉2(|𝑥 −  𝓏|)
)
𝑉(𝛿𝑂𝑐(𝓏))

𝑉(𝑇)
 𝑑𝓏

≤ 𝑐 ∫
𝑉(|𝑥|)

𝑉(𝛿𝐼(𝓏))

1

|𝑥 –  𝓏|𝑑

 

𝑆

(𝑇−𝑑 ∧
𝑉2(𝑇)

|𝑥 −  𝓏|𝑑𝑉2(|𝑥 −  𝓏|)
)
𝑉(𝛿𝑂𝑐(𝓏))

𝑉(𝑇)
 𝑑𝓏. 

If |𝑥 −  𝓏|  <  𝑇, then we are satisfied with 𝑇−𝑑 from the minimum and we note 𝑉(|𝑥|)  <
 𝑉(𝑇). We arrive at (26), and finish the proof in the same way as in the previous cases. 

We are left with the case |𝑥 −  𝓏|  >  𝑇, and we have 

𝐼3 ≤  𝑐𝑉(𝑇)∫
𝑉(|𝑥|)

|𝑥 −  𝓏|2𝑑𝑉2(|𝑥 −  𝓏|)

𝑉(𝛿𝑂𝑐(𝓏))

𝑉(𝛿𝐼(𝓏))
𝑑𝓏

 

𝑆

. 

Since 𝜓 ∈ WLSC(𝛼), we get 

𝐼3  ≤  𝑐𝑉(𝑇)∫
|𝑥|𝛼/2

|𝑥 −  𝓏|2𝑑+𝛼/2𝑉(|𝑥 −  𝓏|)

𝑉(𝛿𝑂𝑐(𝓏))

𝑉(𝛿𝐼(𝓏))
𝑑𝓏

 

𝑆

≤
𝑐𝑉(𝑇)|𝑥|

𝛼
2

(𝑇 ∨ |𝑥|)𝑑−1𝑉(𝑇 ∨  |𝑥|)
∫

𝑉(𝛿𝑂𝑐(𝓏))

|𝑥 −  𝓏|2𝑑+𝛼/2𝑉(𝛿𝐼(𝓏))
𝑑𝓏

 

𝑆

, 

where the last inequality follows from the monotonicity of 𝑉, since |𝑥 −  𝓏|  ≥  |𝑥|  ∨  𝑇. 
Now we use Lemma (5.1.16) with 𝛽 =  𝑑 +  1 + 𝛼/2, to get 

𝐼3  ≤
𝑐𝑉(𝑇)

(𝑇 ∨  |𝑥|)𝑑−1𝑉(𝑇 ∨  |𝑥|)𝑅
. 

Here the right hand side is comparable with the required upper bound. 

 

Section (5.2): Relativistic Stable Processes 

For 𝑚 >  0, an ℝ𝑑-valued process with independent, stationary increments having 

the following characteristic function 

𝔼𝑒𝑖𝜉 ·𝑋𝑡
𝛼,𝑚
 =  𝑒−𝑡{(𝑚

2/𝛼+|𝜉 |2)
𝛼/2

−𝑚} ,         𝜉 ∈ ℝ𝑑 , 
is called relativistic 𝛼-stable process with mass 𝑚. We assume that sample paths of 𝑋𝑡

𝛼,𝑚  
are right continuous and have left-hand limits a.s. If we put 𝑚 =  0 we obtain the symmetric 

rotation invariant 𝛼-stable process with the characteristic function 𝑒−𝑡|𝜉 |
𝛼
 , 𝜉 ∈ ℝ𝑑 . We 

refer to this process as isotropic 𝛼-stable Lévy process. We keep 𝛼, 𝑚 and 𝑑 ≥ 2 fixed and 

drop 𝛼, 𝑚 in the notation, when it does not lead to confusion. Hence from now on the 

relativistic 𝛼-stable process is denoted by 𝑋𝑡 and its counterpart isotropic 𝛼-stable Lévy 

process by �̃�𝑡. We keep this notational convention consistently throughout, e.g., if 𝑝𝑡(𝑥 −
 𝑦) is the transition density of 𝑋𝑡, then �̃�𝑡(𝑥 −  𝑦) is the transition density of �̃�𝑡. 

In Ryznar [224] Green function estimates of the Schödinger operator with the free 

Hamiltonian of the form 

(−Δ + 𝑚2/𝛼)
𝛼/2

 −  𝑚, 

were investigated, where 𝑚 >  0 and Δ  is the Laplace operator acting on 𝐿2(ℝ𝑑). Using 

the estimates in Lemma (5.2.9) below and proof in Bañuelos and Kulczycki (2008) we 

provide an extension of the asymptotics in [52] to the relativistic 𝛼-stable processes for any 

0 < 𝛼 < 2. 
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Brownian motion has characteristic function 

𝔼0𝑒𝑖𝜉 ·𝐵𝑡  =  𝑒−𝑡|𝜉 |
2
 ,              𝜉 ∈ ℝ𝑑 .  

Let 𝛽 =  𝛼/2. Ryznar showed that 𝑋𝑡 can be represented as a time-changed Brownian 

motion. Let 𝑇𝛽  (𝑡), 𝑡 >  0, denote the strictly 𝛽-stable subordinator with the following 

Laplace transform 

𝔼0𝑒−𝜆𝑇𝛽 (𝑡)  =  𝑒−𝑡𝜆𝛽  ,         𝜆 >  0.                                                     (27) 
Let 𝜃𝛽  (𝑡, 𝑢), 𝑢 >  0, denote the density function of 𝑇𝛽(𝑡). Then the process 𝐵𝑇𝛽  (𝑡) is the 

standard symmetric 𝛼-stable process. 

Ryznar [224] showed that we can obtain 𝑋𝑡  =  𝐵𝑇𝛽 (𝑡,𝑚), where a subordinator 𝑇𝛽(𝑡,𝑚) is 

a positive infinitely divisible process with stationary increments with probability density 

function 

𝜃𝛽(𝑡, 𝑢,𝑚) =  𝑒
−𝑚1/𝛽 𝑢+𝑚𝑡𝜃𝛽(𝑡, 𝑢),          𝑢 >  0. 

Transition density of 𝑇𝛽(𝑡,𝑚) is given by 𝜃𝛽(𝑡, 𝑢 −  𝑣,𝑚). Hence the transition density of 

𝑋𝑡 is 𝑝(𝑡, 𝑥, 𝑦)  =  𝑝(𝑡, 𝑥 −  𝑦) given by 

𝑝(𝑡, 𝑥) =  𝑒𝑚𝑡  ∫  
∞

0

1

(4𝜋𝑢)𝑑/2
𝑒−

|𝑥|2

4𝑢  𝑒−𝑚
1/𝛽𝑢𝜃𝛽(𝑡, 𝑢)𝑑𝑢.                     (28) 

Then 

𝑝(𝑡, 𝑥, 𝑥) =  𝑝(𝑡, 0) =  𝑒𝑚𝑡∫  
∞

0

1

(4𝜋𝑢)𝑑/2
 𝑒−𝑚

1/𝛽𝑢𝜃𝛽(𝑡, 𝑢)𝑑𝑢. 

The function 𝑝(𝑡, 𝑥) is a radially symmetric decreasing and that 

𝑝(𝑡, 𝑥) ≤ 𝑝(𝑡, 0) ≤ 𝑒𝑚𝑡∫  
∞

0

1

(4𝜋𝑢)𝑑/2
𝜃𝛽(𝑡, 𝑢)𝑑𝑢 = 𝑒

𝑚𝑡𝑡−𝑑/𝛼  
𝜔𝑑𝛤(𝑑/𝛼)

(2𝜋)𝑑𝛼
 ,       (29) 

where 𝜔𝑑 =
2𝜋𝑑/2

𝛤(𝑑/2)
 is the surface area of the unit sphere in ℝ𝑑. For an open set 𝐷 in ℝ𝑑 we 

define the first exit time from 𝐷 by 𝜏𝐷 =  𝑖𝑛𝑓{𝑡 ≥ 0: 𝑋𝑡 ∉ 𝐷}. 
We set 

𝑟𝐷(𝑡, 𝑥, 𝑦)  = 𝔼
𝑥 [𝑝(𝑡 − 𝜏𝐷, 𝑋𝜏𝐷  , 𝑦); 𝜏𝐷  <  𝑡]  ,                          (30) 

And 

𝑝𝐷(𝑡, 𝑥, 𝑦)  =  𝑝(𝑡, 𝑥, 𝑦)  − 𝑟𝐷(𝑡, 𝑥, 𝑦),                                        (31) 
for any 𝑥, 𝑦 ∈ ℝ𝑑 , 𝑡 >  0. For a nonnegative Borel function 𝑓 and 𝑡 >  0,let 

𝑃𝑡
𝐷 𝑓 (𝑥)  = 𝔼𝑥  [𝑓 (𝑋𝑡): 𝑡 <  𝜏𝐷]   = ∫  

𝐷

 𝑝𝐷(𝑡, 𝑥, 𝑦)𝑓 (𝑦)𝑑𝑦, 

be the semigroup of the killed process acting on 𝐿2(𝐷), see, Ryznar [224]. 

Let 𝐷 be a bounded domain (or of finite volume). Then the operator 𝑃𝑡
𝐷 maps 𝐿2(𝐷) 

into 𝐿∞(𝐷) for every 𝑡 >  0. This follows from (29), (30), and the general theory of heat 

semigroups as described in [223]. It follows that there exists an orthonormal basis of 

eigenfunctions {𝜑𝑛: 𝑛 =  1, 2, 3, . . . } for 𝐿2(𝐷) and corresponding eigenvalues {𝜆𝑛: 𝑛 =
 1, 2, 3, . . . } of the generator of the semigroup 𝑃𝑡

𝐷 satisfying 

𝜆1  <  𝜆2 ≤ 𝜆3 ≤···, with 𝜆𝑛  →  ∞ as 𝑛 →  ∞. By definition, the pair {𝜑𝑛, 𝜆𝑛} satisfies 

𝑃𝑡
𝐷 𝜑𝑛(𝑥) =  𝑒

−𝜆𝑛𝑡 𝜑𝑛(𝑥),              𝑥 ∈  𝐷, 𝑡 >  0. 
Under such assumptions we have 
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𝑝𝐷(𝑡, 𝑥, 𝑦)  = ∑  

∞

𝑛=1

 𝑒−𝜆𝑛𝑡 𝜑𝑛(𝑥)𝜑𝑛(𝑦).                                           (32) 

We are interested in the behavior of the trace of this semigroup 

𝑍𝐷(𝑡)  = ∫  
𝐷

 𝑝𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥.                                                                     (33) 

Because of (32) we can write (33) as 

𝑍𝐷(𝑡) = ∑  

∞

𝑛=1

 𝑒−𝜆𝑛𝑡  ∫  
𝐷

 𝜑𝑛
2(𝑥)𝑑𝑥 = ∑  

∞

𝑛=1

 𝑒−𝜆𝑛𝑡  .                             (34) 

We denote 𝑑-dimensional volume of 𝐷 by |𝐷|. 
The first result is Weyl’s asymptotic for the eigenvalues of the relativistic Laplacian. 

Definition (5.2.1)[218]: The boundary, 𝜕𝐷, of an open set 𝐷 in ℝ𝑑 is said to be 𝑅-smooth 

if for each point 𝑥0  ∈  𝜕𝐷 there are two open balls 𝐵1 and 𝐵2 with radii 𝑅 such that 𝐵1  ⊂
 𝐷, 𝐵2  ⊂ ℝ

𝑑\(𝐷 ∪  𝜕𝐷) and 𝜕 𝐵1  ∩  𝜕 𝐵2  =  𝑥0. 

Remark (5.2.2)[218]: When 𝑚 =  0, 0 <  𝛼 ≤ 2, 𝐶2(𝑡)  =  𝐶4𝑡
1/𝛼/𝑡𝑑/𝛼. Then the result 

in Theorem (5.2.12) becomes, for bounded domains with 𝑅-smooth boundary, 

|𝑍𝐷(𝑡) −
𝐶1|𝐷|

𝑡𝑑/𝛼
 +
𝐶4|𝜕𝐷|𝑡

1/𝛼

𝑡𝑑/𝛼
| ≤

𝐶7|𝐷|𝑡
2/𝛼

𝑅2𝑡𝑑/𝛼
 ,                                     (35) 

where 𝐶1, 𝐶4 are as in Theorem (5.2.12). This was established by Bañuelos and Kulczycki 

[52] recently. 

The asymptotic for the trace of the heat kernel when 𝛼 =  2 (the case of the Laplacian with 

Dirichlet boundary condition in a domain of ℝ𝑑), has been extensively studied. For 

Brownian motion van den Berg [216], proved that under the 𝑅-smoothness condition 

|𝑍𝐷(𝑡) − (4𝜋𝑡)
−𝑑/2 (|𝐷| −

√𝜋𝑡

2
 |𝜕𝐷|)| ≤

𝐶𝑑|𝐷|𝑡
1−𝑑/2

𝑅2
 , 𝑡 >  0.          (36) 

For domains with 𝐶1 boundaries the result 

𝑍𝐷(𝑡) =  (4𝜋𝑡)
−𝑑/2  (|𝐷| −

√𝜋𝑡

2
 |𝜕𝐷|  +  𝑜 (𝑡1/2)) , 𝑎𝑠 𝑡 →  0,       (37) 

was proved by Brossard and Carmona [222], for Brownian motion. 

Let the ball in ℝ𝑑 with center at 𝑥 and radius 𝑟, {𝑦: |𝑦 −  𝑥|  <  𝑟}, be denoted by 

𝐵(𝑥, 𝑟). We will use 𝛿𝐷(𝑥) to denote the Euclidean distance between 𝑥 and the boundary, 

𝜕𝐷, of 𝐷. That is, 𝛿𝐷(𝑥)  =  𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐷). Define 

𝜓(𝜃 ) = ∫  
∞

0

 𝑒−𝑣 𝑣𝑝−1/2(𝜃 +  𝑣2)𝑝−1/2 𝑑𝑣,            𝜃 ≥ 0, 

where 𝑝 =  (𝑑 +  𝛼)/2. We put ℛ(𝛼, 𝑑)  = 𝒜(−𝛼, 𝑑)/𝜓(0), where 𝒜(𝑣, 𝑑)  =
 (𝛤 ((𝑑 −  𝑣)/2))/(𝜋𝑑/22𝑣 |𝛤 (𝑣/2)|). Let 𝜈(𝑥), 𝜈(𝑥) be the densities of the Lévy 

measures of the relativistic 𝛼-stable process and the standard 𝛼-stable process, respectively. 

These densities are given by 

𝜈(𝑥) =
ℛ(𝛼, 𝑑)

|𝑥|𝑑+𝛼
 𝑒−𝑚

1/𝛼|𝑥| 𝜓 (𝑚1/𝛼|𝑥|) ,                                                  (38) 

and 
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�̃�(𝑥) =
𝒜(−𝛼, 𝑑)

|𝑥|𝑑+𝛼
 .                                                                                      (39) 

We need the following estimate of the transition probabilities of the process 𝑋𝑡 which is 

given in [211]: For any 𝑥, 𝑦 ∈ ℝ𝑑  and 𝑡 >  0 there exist constants 𝑐1  >  0 and 𝑐2  >  0, 

𝑝(𝑡, 𝑥, 𝑦) ≤ 𝑐1𝑒
𝑚𝑡min  {

𝑡

|𝑥 −  𝑦|𝑑+𝛼
 𝑒−𝑐2|𝑥−𝑦| , 𝑡−𝑑/𝛼} .                  (40) 

We will also use the fact [221] that if 𝐷 ⊂ ℝ𝑑 is an open bounded set satisfying a uniform 

outer cone condition, then 𝑃𝑥(𝑋(𝜏𝐷)  ∈  𝜕𝐷)  =  0 for all 𝑥 ∈  𝐷. For the open bounded set 

𝐷 we will denoted by 𝐺𝐷(𝑥, 𝑦) the Green function for the set 𝐷 equal to, 

𝐺𝐷(𝑥, 𝑦) = ∫  
∞

0

 𝑝𝐷(𝑡, 𝑥, 𝑦)𝑑𝑡,                 𝑥, 𝑦 ∈ ℝ
𝑑 . 

For any such 𝐷 the expectation of the exit time of the processes 𝑋𝑡 from 𝐷 is given by the 

integral of the Green function over the domain. That is 

𝐸𝑥(𝜏𝐷)  = ∫  
𝐷

 𝐺𝐷(𝑥, 𝑦)𝑑𝑦. 

Lemma (5.2.3)[218]: Let 𝐷 ⊂ ℝ𝑑 be an open set. For any 𝑥, 𝑦 ∈  𝐷 we have 

𝑟𝐷(𝑡, 𝑥, 𝑦) ≤ 𝑐1𝑒
𝑚𝑡 (

𝑡

𝛿𝐷
𝑑+𝛼(𝑥)

𝑒−𝑐2𝛿𝐷(𝑥)  ∧  𝑡−𝑑/𝛼) . 

Proof: Using (30) and (40) we have 

𝑟𝐷(𝑡, 𝑥, 𝑦) =  𝐸
𝑦 (𝑝(𝑡 −  𝜏𝐷, 𝑋(𝜏𝐷), 𝑥)  ;  𝜏𝐷  <  𝑡)

≤ 𝑐1𝑒
𝑚𝑡 𝐸𝑦 (

𝑡

|𝑥 −  𝑋(𝜏𝐷)|
𝑑+𝛼

 𝑒−𝑐2|𝑥−𝑋(𝜏𝐷)|  ∧  𝑡−𝑑/𝛼)

≤ 𝑐1𝑒
𝑚𝑡 (

𝑡

𝛿𝐷
𝑑+𝛼 (𝑥)

 𝑒−𝑐2𝛿𝐷(𝑥)  ∧  𝑡−𝑑/𝛼) . 

We need the following result for the proof of Proposition (5.2.5). 

Lemma (5.2.4)[218]: 

lim
𝑡→0

  𝑝(𝑡, 0)𝑒−𝑚𝑡𝑡𝑑/𝛼 = 𝐶1,                                                        (41) 

Where 

𝐶1 = (4𝜋)𝑑/2  ∫  
∞

0

 𝑢−𝑑/2𝜃𝛽(1, 𝑢)𝑑𝑢 =  
𝜔𝑑𝛤 (𝑑/𝛼)

(2𝜋)𝑑𝛼
 . 

Proof: By (28) we have 

𝑝(𝑡, 𝑥, 𝑥) =  𝑝(𝑡, 0) =  𝑒𝑚𝑡∫  
∞

0

1

(4𝜋𝑢)𝑑/2
 𝑒−𝑚

1/𝛽𝑢𝜃𝛽(𝑡, 𝑢)𝑑𝑢. 

Now using the scaling of stable subordinator 𝜃𝛽  (𝑡, 𝑢)  =  𝑡
−1/𝛽  𝜃𝛽  (1, 𝑢𝑡

−1/𝛽  ) and a 

change of variables we get 

𝑝(𝑡, 0) =
𝑒𝑚𝑡

(4𝜋)𝑑/2𝑡𝑑/𝛼
 ∫  

∞

0

 𝑧−𝑑/2𝑒−𝑚
1/𝛽
𝑡1/𝛽𝑧𝜃𝛽(1, 𝑧)𝑑𝑧 =

𝐶1(𝑡)𝑒
𝑚𝑡

𝑡𝑑/𝛼
 , 

then by dominated convergence theorem we obtain 

lim
𝑡→0

  𝑝(𝑡, 0)𝑒−𝑚𝑡𝑡𝑑/𝛼 =
1

(4𝜋)𝑑/2
 ∫  

∞

0

 𝑧−𝑑/2𝜃𝛽(1, 𝑧)𝑑𝑧, 

and this last integral is equal to the density of 𝛼-stable process at time 1 and 𝑥 =  0 which 

was calculated in [52] to be 
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𝜔𝑑𝛤 (𝑑/𝛼)

(2𝜋)𝑑𝛼
 . 

Proposition (5.2.5)[218]: 

lim
𝑡→0

  𝑡𝑑/𝛼𝑒−𝑚𝑡 𝑍𝐷(𝑡) =  𝐶1|𝐷|,                                                                 (42) 

where 𝐶1  =
𝜔𝑑𝛤(𝑑/.𝛼)

(2𝜋)𝑑𝛼
 . 

Let 𝑁(𝜆) be the number of eigenvalues {𝜆𝑗} which do not exceed 𝜆. It follows from (42) and 

the classical Tauberian theorem (see [73]) where 𝐿(𝑡)  =  𝐶1|𝐷|𝑒
𝑚/𝑡 is our slowly varying 

function at infinity that 

lim
𝜆→∞

  𝜆−𝑑/𝛼𝑒−𝑚/𝜆𝑁(𝜆) =
𝐶1|𝐷|

𝛤 (1 +  𝑑/𝛼)
 .                                             (43) 

This is the analogue for relativistic stable process of the celebrated Weyl’s asymptotic 

formula for the eigenvalues of the Laplacian. 

We obtain the second term in the asymptotics of 𝑍𝐷(𝑡) under some additional 

assumptions on the smoothness of 𝐷. The result is inspired by result for trace estimates for 

stable processes by Bañuelos and Kulczycki [52]. We need the following property of the 

domain 𝐷. 

Proof: By (30) we see that 
𝑝𝐷(𝑡, 𝑥, 𝑥)

𝐶1𝑒
𝑚𝑡𝑡−𝑑/𝛼

 =
𝑝(𝑡, 0)

𝐶1𝑒
𝑚𝑡𝑡−𝑑/𝛼

 −
𝑟𝐷(𝑡, 𝑥, 𝑥)

𝐶1𝑒
𝑚𝑡𝑡−𝑑/𝛼

 .                                  (44) 

Since the first term tend to 1 as 𝑡 →  0 by (41), in order to prove (42), we show that 

𝑡𝑑/𝛼

𝐶1𝑒
𝑚𝑡
 ∫  
𝐷

 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 →  0,                      𝑎𝑠 𝑡 →  0.                (45) 

For 𝑞 ≥ 0, we define 𝐷𝑞  =  {𝑥 ∈  𝐷: 𝛿𝐷(𝑥) ≥ 𝑞}. Then for 0 <  𝑡 <  1, consider the 

subdomain 𝐷𝑡1/2𝛼  =  {𝑥 ∈  𝐷: 𝛿𝐷(𝑥) ≥ 𝑡
1/2𝛼} and its complement 𝐷

𝑡1/2𝛼
𝐶  =  {𝑥 ∈

 𝐷: 𝛿𝐷(𝑥)  <  𝑡
1/2𝛼}. Recalling that |𝐷|  <  ∞, by Lebesgue dominated convergence 

theorem we get |𝐷
𝑡1/2𝛼
𝐶  |  →  0, as 𝑡 →  0. Since 𝑝𝐷(𝑡, 𝑥, 𝑥) ≤ 𝑝(𝑡, 𝑥, 𝑥), by (29) we see that 

𝑟𝐷(𝑡, 𝑥, 𝑥)

𝐶1𝑒
𝑚𝑡𝑡−𝑑/𝛼

≤ 1, 

for all 𝑥 ∈  𝐷. It follows that 

𝑡𝑑/𝛼

𝐶1𝑒
𝑚𝑡
 ∫  
𝐷
𝑡12/𝛼
𝐶

  𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 →  0,                         𝑎𝑠 𝑡 →  0.                (46) 

On the other hand, by Lemma (5.2.4) in [211] we obtain 

𝑟𝐷(𝑡, 𝑥, 𝑥)

𝐶1𝑒
𝑚𝑡𝑡−𝑑/𝛼

 =
𝔼𝑥[𝑝(𝑡 − 𝜏𝐷, 𝑋𝜏𝐷  , 𝑥); 𝑡 ≥ 𝜏𝐷]

𝐶1𝑒
𝑚𝑡𝑡−𝑑𝛼

≤ 𝑐𝔼𝑦min  {
𝑡1+𝑑/𝛼

|𝑥 −  𝑋(𝜏𝐷)|
𝑑+𝛼

𝑒−𝑐2|𝑥−𝑋(𝜏𝐷)| , 1} 

≤ 𝑐min  {
𝑡1+𝑑/𝛼

𝛿𝐷(𝑥)
𝑑+𝛼

 𝑒−𝑐2𝛿𝐷(𝑥), 1} .                                       (47) 

For 𝑥 ∈  𝐷𝑡1/2𝛼 and 0 <  𝑡 <  1, the right-hand side of (47) is bounded above by 

𝑐𝑡𝑑/2𝛼+1/2 and hence 
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𝑡𝑑/𝛼

𝐶1𝑒
𝑚𝑡
 ∫  
𝐷𝑡
1/2𝛼

 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 ≤ 𝑐𝑡
𝑑/2𝛼+1/2|𝐷|,                            (48) 

and this last quantity goes to 0 as 𝑡 →  0. 

For an open set 𝐷 ⊂ ℝ𝑑 and 𝑥 ∈ ℝ𝑑, the distribution 𝑃𝑥(𝜏𝐷  <  ∞,𝑋(𝜏𝐷)  ∈ ·) will be 

called the relativistic 𝛼-harmonic measure for 𝐷. The following Ikeda–Watanabe formula 

recovers the relativistic 𝛼-harmonic measure for the set 𝐷 from the Green function. 

Proposition (5.2.6)[218]: (See [211].) Assume that 𝐷 is an open, nonempty, bounded subset 

of ℝ𝑑, and 𝐴 is a Borel set such that dist(𝐷, 𝐴)  >  0. Then 

𝑃𝑥(𝑋(𝜏𝐷) ∈ 𝐴, 𝜏𝐷 < ∞ =)∫  
𝐷

𝐺𝐷(𝑥, 𝑦)∫ 
𝐴

𝑣(𝑦 −  𝑧)𝑑𝑧𝑑𝑦, 𝑥 ∈ 𝐷.        (49) 

We need the following generalization already stated and used in [52]. 

Proposition (5.2.7)[218]: (See [79], [211].) Assume that 𝐷 is an open, nonempty, bounded 

subset of 𝑅𝑑, and 𝐴 is a Borel set such that 𝐴 ⊂  𝐷𝑐\𝜕𝐷 and 0 ≤ 𝑡1  <  𝑡2  <  ∞, 𝑥 ∈  𝐷. 

Then we have 

𝑃𝑥(𝑋(𝜏𝐷) ∈ 𝐴, 𝑡1 < 𝜏𝐷 < 𝑡2) = ∫  
𝐷

∫  
𝑡2

𝑡1

𝑝𝐷(𝑠, 𝑥, 𝑦)𝑑𝑠∫ 
𝐴

𝑣(𝑦 − 𝑧)𝑑𝑧𝑑𝑦. 

The following proposition holds for a large class of Lévy processes 

Proposition (5.2.8)[218]: (See [52].) Let 𝐷 and 𝐹 be open sets in ℝ𝑑 such that  ⊂  𝐹 . Then 

for any 𝑥, 𝑦 ∈ ℝ𝑑 we have 

𝑝𝐹(𝑡, 𝑥, 𝑦) − 𝑝𝐷(𝑡, 𝑥, 𝑦) = 𝐸
𝑥(𝜏𝐷 < 𝑡, 𝑋(𝜏𝐷) ∈ 𝐹/𝐷; 𝑝𝐹(𝑡 − 𝜏𝐷, 𝑋(𝜏𝐷), 𝑦) ). 

Lemma (5.2.9)[218]: (See [224].) Let 𝐷 ⊂ ℝ𝑑 be an open set. For any 𝑥, 𝑦 ∈  𝐷 and 𝑡 >
 0 the following estimates hold 

𝑝𝐷(𝑡, 𝑥, 𝑦) ≤ 𝑒
𝑚𝑡�̃�𝐷(𝑡, 𝑥, 𝑦), 

𝑟𝐷(𝑡, 𝑥, 𝑦) ≤ 𝑒
2𝑚𝑡�̃�𝐷(𝑡, 𝑥, 𝑦).                              (50) 

We need the following lemma given by van den Berg in [216]. 

Lemma (5.2.10)[218]: (See [216].) Let 𝐷 be an open bounded set in ℝ𝑑 with 𝑅-smooth 

boundary 𝜕𝐷 and for 0 ≤ 𝑞 <  𝑅 denote the area of boundary of 𝜕𝐷𝑞 by |𝜕𝐷𝑞|.Then 

(
𝑅 −  𝑞

𝑅
)
𝑑−1

 |𝜕𝐷| ≤ |𝜕𝐷𝑞| (
𝑅

𝑅 −  𝑞
)
𝑑−1

 |𝜕𝐷|,        0 ≤ 𝑞 <  𝑅.     (51) 

Corollary (5.2.11)[218]: (See [52]) Let 𝐷 be an open bounded set in ℝ𝑑 with 𝑅-smooth 

boundary. For any 0 <  𝑞 ≤ 𝑅 we have 

(i) 2−𝑑+1|𝜕𝐷| ≤ |𝜕𝐷𝑞| ≤ 2
𝑑−1 |𝜕𝐷|, 

(ii) |𝜕𝐷| ≤
2𝑑|𝐷|

𝑅
 , 

(iii) |𝜕𝐷𝑞| − |𝜕𝐷| ≤
2𝑑𝑑𝑞|𝜕𝐷|

𝑅
≤

22𝑑𝑑𝑞|𝐷|

𝑅2
 . 

Theorem (5.2.12)[218]: Let 𝐷 ⊂ ℝ𝑑 , 𝑑 ≥ 2, be an open bounded set with 𝑅-smooth 

boundary. Let |𝐷| denote the volume (𝑑-dimensional Lebesgue measure) of 𝐷 and |𝜕𝐷| 
denote its surface area ((𝑑 −  1)-dimensional Lebesgue measure) of its boundary. Suppose 

𝛼 ∈  (0, 2). Then 

|𝑍𝐷(𝑡) −
𝐶1(𝑡)

𝑒𝑚𝑡|𝐷|

𝑡𝑑/𝛼
 +  𝐶2(𝑡)|𝜕𝐷|| ≤

𝐶3𝑒
2𝑚𝑡|𝐷|𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
 , 𝑡 >  0,              (52) 
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where 

𝐶1(𝑡) =
1

(4𝜋)𝑑/2
 ∫  

∞

0

 𝑧−𝑑/2𝑒−(𝑚𝑡)
1/𝛽𝑧𝜃𝛽(1, 𝑧)𝑑𝑧 →  𝐶1  =  

𝜔𝑑𝛤(𝑑/𝛼)

(2𝜋)𝑑𝛼
 , 𝑎𝑠 𝑡 →  0, 

𝐶2(𝑡) = ∫  
∞

0

 𝑟𝐻(𝑡, (𝑥1, 0, … , 0), (𝑥1, 0, … , 0)) 𝑑𝑥1 ≤
𝐶4𝑒

2𝑚𝑡𝑡1/𝛼

𝑡𝑑/𝛼
 , 𝑡 >  0, 

𝐶4  = ∫  
∞

0

 �̃�𝐻 (1, (𝑥1, 0, . . . , 0), (𝑥1, 0, . . . , 0))𝑑𝑥1,  

𝐶3 = 𝐶3(𝑑, 𝛼), 𝐻 =  {(𝑥1, . . . , 𝑥𝑑) ∈ ℝ
𝑑: 𝑥1  >  0} and 𝑟𝐻 is given by (30). 

Proof: For the case 𝑡1/𝛼  >  𝑅/2 the theorem holds trivially. Indeed, by Eq. (29) 

𝑍𝐷(𝑡) ≤ ∫  
𝐷

 𝑝(𝑡, 𝑥, 𝑥)𝑑𝑥 ≤
𝑐1𝑒

𝑚𝑡|𝐷|

𝑡𝑑/𝛼
≤
𝑐1𝑒

𝑚𝑡|𝐷|𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
 . 

By Corollary (5.2.11) and Lemma (5.2.9) we also have 

𝐶2(𝑡)|𝜕𝐷| ≤
𝐶4𝑒

2𝑚𝑡|𝜕𝐷|𝑡1/𝛼

𝑡𝑑/𝛼
≤
2𝑑𝐶4𝑒

2𝑚𝑡|𝐷|𝑡1/𝛼

𝑅𝑡𝑑/𝛼
≤
2𝑑+1𝐶4𝑒

2𝑚𝑡|𝐷|𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
, 

𝐶1(𝑡)𝑒
𝑚𝑡|𝐷|

𝑡𝑑/𝛼
≤
𝐶1𝑒

𝑚𝑡|𝐷|𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
  . 

Therefore for 𝑡1/𝛼  >  𝑅/2 (52) holds. Here and in sequel we consider the case 𝑡1/𝛼 ≤ 𝑅/2. 

From (31) and the fact that 𝑝(𝑡, 𝑥, 𝑥) =
𝐶1(𝑡)𝑒

𝑚𝑡

𝑡𝑑/𝛼
 , we have that 

𝑍𝐷(𝑡) −
𝐶1(𝑡)𝑒

𝑚𝑡|𝐷|

𝑡𝑑/𝛼
 = ∫  

𝐷

 𝑝𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 − ∫  
𝐷

𝑝(𝑡, 𝑥, 𝑥)𝑑𝑥

=  −∫  
𝐷

 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥,                                                                                     (53) 

where 𝐶1(𝑡) is as stated in the theorem. Therefore we must estimate (53). We break our 

domain into two pieces, 𝐷𝑅/2 and its complement 𝐷𝑅/2
𝐶 . We will first consider the 

contribution of 𝐷𝑅/2. 

Claim (5.2.13)[218]: For 𝑡1/𝛼 ≤ 𝑅/2 we have  

∫  
𝐷𝑅/2

 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 ≤
𝑐𝑒2𝑚𝑡|𝐷|𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
 .                                        (54) 

Proof: By Lemma (5.2.9) we have   

∫  
𝐷𝑅/2

 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 ≤ 𝑒
2𝑚𝑡∫  

𝐷𝑅/2

 �̃�𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥,                          (55) 

and by scaling of the stable density the right-hand side of (55) equals 

𝑒2𝑚𝑡

𝑡𝑑/𝛼
 ∫  
𝐷𝑅2

 �̃�𝐷/𝑡1/𝛼  (1,
𝑥

𝑡1/𝛼
 ,
𝑥

𝑡1/𝛼
 ) 𝑑𝑥.                                               (56) 

For 𝑥 ∈  𝐷𝑅/2 we have 𝛿𝐷/𝑡1/𝛼(𝑥/𝑡
1/𝛼) ≥ 𝑅/(2𝑡1/𝛼) 1. By [52], we get 

�̃�𝐷/𝑡1/𝛼  (1,
𝑥

𝑡1/𝛼
 ,
𝑥

𝑡1/𝛼
) ≤

𝑐

𝛿𝐷/𝑡1/𝛼
𝑑+𝛼 (𝑥/𝑡1/𝛼)

≤
𝑐

𝛿
𝐷/𝑡1/𝛼
2 (𝑥/𝑡1/𝛼)

≤
𝑐𝑡2/𝛼

𝑅2
 . 

Using the above inequality, we get  
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∫  
𝐷𝑅/2

 𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 ≤
𝑒2𝑚𝑡

𝑡𝑑/𝛼
 ∫  
𝐷𝑅/2

𝑐𝑡2/𝛼

𝑅2
𝑑𝑥 ≤

𝑐𝑒2𝑚𝑡|𝐷|𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
 ,  

which proves (54). 

Since 𝐷 has 𝑅-smooth boundary, for any point 𝑦 ∈  𝜕𝐷 there are two open balls 𝐵1 and 

𝐵2 both of radius 𝑅 such that 𝐵1  ⊂  𝐷, 𝐵2  ⊂ ℝ
𝑑\(𝐷 ∪  𝜕𝐷), 𝜕 𝐵1  ∩  𝜕 𝐵2  =  𝑦. For any 

𝑥 ∈  𝐷𝑅/2 there exists a unique point 𝑥∗  ∈  𝜕𝐷 such that 𝛿𝐷(𝑥)  =  |𝑥 − 𝑥∗|. Let 𝐵1  =

 𝐵(𝑧1, 𝑅), 𝐵2  =  𝐵(𝑧2, 𝑅) be inner/outer balls for the point 𝑥∗. Let 𝐻(𝑥) be the half-space 

containing 𝐵1 such that 𝜕 𝐻(𝑥) contains 𝑥∗ and is perpendicular to the segment 𝑧1𝑧2̅̅ ̅̅ ̅̅ . 

We will need the following very important proposition in the proof of Theorem (5.2.12). 

Such a proposition has been proved for the stable process in [52]. 

Proposition (5.2.14)[218]: Let 𝐷 ⊂  𝑅𝑑 , 𝑑 ≥ 2, be an open bounded set with 𝑅-smooth 

boundary 𝜕𝐷. Then for any 𝑥 ∈  𝐷𝑅/2
𝐶  and 𝑡 >  0 such that 𝑡1/𝛼 ≤ 𝑅/2 we have 

|𝑟𝐷(𝑡, 𝑥, 𝑥) − 𝑟𝐻(𝑥)(𝑡, 𝑥, 𝑥)| ≤
𝑐𝑒2𝑚𝑡𝑡1/𝛼

𝑅𝑡𝑑/𝛼
((

𝑡1/𝛼

𝛿𝐷(𝑥)
)

𝑑+𝛼/2−1

∧ 1).           (57) 

Proof: Exactly as in [52], let 𝑥∗  ∈  𝜕𝐷 be a unique point such that |𝑥 − 𝑥∗|  =  𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐷) 
and 𝐵1 and 𝐵2 be balls with radius 𝑅 such that 𝐵1  ⊂  𝐷, 𝐵2  ⊂ ℝ

𝑑\(𝐷 ∪ 𝜕𝐷), 𝜕 𝐵1  ∩
𝜕 𝐵2  =  𝑥∗. Let us also assume that 𝑥∗  =  0 and choose an orthonormal coordinate system 

(𝑥1, 𝑥2, . . . , 𝑥𝑑) so that the positive axis 0𝑥1 is in the direction of 0𝑝⃗⃗⃗⃗  where 𝑝 is the center of 

the ball 𝐵1. Note that 𝑥 lies on the interval 0𝑝 so 𝑥 =  (|𝑥|, 0, 0, . . . , 0). Note also that 𝐵1  ⊂
 𝐷 ⊂  (𝐵2̅̅ ̅)

𝑐 and 𝐵1  ⊂  𝐻(𝑥)  ⊂  (𝐵2̅̅ ̅)
𝑐 . For any open sets 𝐴1, 𝐴2 such that 𝐴1  ⊂  𝐴2 we 

have 𝑟𝐴1  (𝑡, 𝑥, 𝑦) ≥ 𝑟𝐴2  (𝑡, 𝑥, 𝑦) so 

|𝑟𝐷(𝑡, 𝑥, 𝑥) − 𝑟𝐻(𝑥)(𝑡, 𝑥, 𝑥)| ≤ 𝑟𝐵1  (𝑡, 𝑥, 𝑥) − 𝑟(𝐵2̅̅̅̅ )𝑐  (𝑡, 𝑥, 𝑥). 

So in order to prove the proposition it suffices to show that 

𝑟𝐵1  (𝑡, 𝑥, 𝑥) − 𝑟(𝐵2̅̅̅̅ )𝑐  (𝑡, 𝑥, 𝑥) ≤
𝑐𝑒2𝑚𝑡𝑡1/𝛼

𝑅𝑡𝑑/𝛼
((

𝑡1/𝛼

𝛿𝐷(𝑥)
)

𝑑+𝛼/2−1

 ∧  1) , 

for any 𝑥 =  (|𝑥|, 0, . . . , 0), |𝑥|  ∈  (0, 𝑅/2]. Such an estimate was proved for the case 𝑚 =
 0 in [52]. In order to complete the proof it is enough to prove that 

𝑟𝐵1  (𝑡, 𝑥, 𝑥) − 𝑟(𝐵2̅̅̅̅ )𝑐  (𝑡, 𝑥, 𝑥) ≤ 𝑐𝑒
2𝑚𝑡{�̃�𝐵1  (𝑡, 𝑥, 𝑥) − �̃�(𝐵2)𝑐(𝑡, 𝑥, 𝑥)}.  

To show this given the ball 𝐵2, we set 𝑈 =  (𝐵2̅̅ ̅)
𝑐  . Now using the generalized Ikeda–

Watanabe formula, Proposition (5.2.8) and Lemma (5.2.9) we have 

𝑟𝐵1(𝑡, 𝑥, 𝑥) − 𝑟𝑈(𝑡, 𝑥, 𝑥) = 𝐸
𝑥[𝑡 > 𝜏𝐵1  , 𝑋(𝜏𝐵1  ) ∈ 𝑈\𝐵1; 𝑝𝑈 (𝑡 − 𝜏𝐵1 , 𝑋(𝜏𝐵1), 𝑥)]  

= ∫  
𝐵1

∫  
𝑡

0

𝑝𝐵1(𝑠, 𝑥, 𝑦)𝑑𝑠∫  
𝑈\𝐵1

𝑣(𝑦 − 𝑧)𝑝𝑈(𝑡 − 𝑠, 𝑧, 𝑥)𝑑𝑧𝑑𝑦

≤ 𝑒2𝑚𝑡∫  
𝐵1

∫  
𝑡

0

 �̃�𝐵1  (𝑠, 𝑥, 𝑦)𝑑𝑠 ∫  
𝑈\𝐵1

 �̃�(𝑦 −  𝑧)�̃�𝑈 (𝑡 −  𝑠, 𝑧, 𝑥)𝑑𝑧𝑑𝑦

≤ 𝑐𝑒2𝑚𝑡𝐸𝑥[𝑡 > �̃�𝐵1  , �̃�(𝜏𝐵1) ∈  𝑈\𝐵1; �̃�𝑈(𝑡 − �̃�𝐵1 , �̃�(�̃�𝐵1  ), 𝑥)]  

=  𝑐𝑒2𝑚𝑡�̃�𝐵1(𝑡, 𝑥, 𝑥) − �̃�𝑈(𝑡, 𝑥, 𝑥) ≤
𝑐𝑒2𝑚𝑡𝑡1/𝛼

𝑅𝑡𝑑/𝛼
((

𝑡1/𝛼

𝛿𝐷(𝑥)
)

𝑑+𝛼/2−1

 ∧  1) . 

The last inequality follows by Proposition (5.2.14) in [52]. 
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Now using this proposition we estimate the contribution from 𝐷\𝐷𝑅/2 to the integral of 

𝑟𝐷(𝑡, 𝑥, 𝑥) in (53). 

Claim (5.2.15)[218]: For 𝑡1/𝛼 ≤ 𝑅/2 we get   

|∫  
𝐷\𝐷𝑅/2

𝑟𝐷(𝑡, 𝑥, 𝑥)𝑑𝑥 − ∫  
𝐷\𝐷𝑅/2

𝑟𝐻(𝑥)(𝑡, 𝑥, 𝑥)𝑑𝑥| ≤
𝑐𝑒2𝑚𝑡|𝐷|𝑡2𝛼

𝑅2𝑡𝑑𝛼
 .            (58) 

Proof: By Proposition (5.2.14) the left-hand side of (58) is bounded above by 

𝑐𝑒2𝑚𝑡𝑡1/𝛼

𝑅𝑡𝑑/𝛼
∫  
𝑅/2

0

|𝜕𝐷𝑞| ((
𝑡1/𝛼

𝑞
)

𝑑+𝛼/2−1

 ∧  1)  𝑑𝑞. 

By Corollary (5.2.11), (i), the last quantity is smaller than or equal to 

𝑐𝑒2𝑚𝑡𝑡1/𝛼|𝜕𝐷|

𝑅𝑡𝑑/𝛼
∫  
𝑅/2

0

((
𝑡1/𝛼

𝑞
)

 𝑑+𝛼/2−1

 ∧  1)𝑑𝑞. 

The integral in the last quantity is bounded by 𝑐𝑡1/𝛼. To see this observe that since 𝑡1/𝛼 ≤
𝑅/2 the above integral is equal to 

∫  
𝑡1/𝛼

0

((
𝑡1/𝛼

𝑞
)

𝑑+𝛼/2−1

 ∧  1)𝑑𝑞 + ∫  
𝑅/2

𝑡1/𝛼
((
𝑡1/𝛼

𝑞
)

𝑑+𝛼/2−1

 ∧  1)𝑑𝑞 

= ∫  
𝑡1/𝛼

0

 1𝑑𝑞 + ∫  
𝑅/2

𝑡1/𝛼
(
𝑡1/𝛼

𝑞
)

𝑑+𝛼/2−1

 𝑑𝑞 ≤ 𝑐𝑡1/𝛼 . 

Using this and Corollary (5.2.11), (ii), we get (58). 

Recall that 𝐻 =  {(𝑥1, . . . , 𝑥𝑑)  ∈ ℝ
𝑑: 𝑥1  >  0}. For abbreviation let us denote 

𝑓𝐻 (𝑡, 𝑞) =  𝑟𝐻 (𝑡, (𝑞, 0, … , 0), (𝑞, 0,… , 0)),         𝑡, 𝑞 >  0. 
of course we have 𝑟𝐻(𝑥)(𝑡, 𝑥, 𝑥)  =  𝑓𝐻 (𝑡, 𝛿𝐻 (𝑥)). In the next step we will show that 

|∫  
𝐷\𝐷𝑅/2

 𝑟𝐻(𝑥)(𝑡, 𝑥, 𝑥)𝑑𝑥 − |𝜕𝐷|∫  
𝑅/2

0

 𝑓𝐻 (𝑡, 𝑞)𝑑𝑞| ≤
𝑐𝑒2𝑚𝑡|𝐷|𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
 .        (59) 

We have 

∫  
𝐷\𝐷𝑅/2

𝑟𝐻(𝑥)(𝑡, 𝑥, 𝑥)𝑑𝑥 = ∫  
𝑅/2

0

 |𝜕𝐷𝑞|𝑓𝐻 (𝑡, 𝑞)𝑑𝑞. 

Hence the left-hand side of (59) is bounded above by 

∫  
𝑅/2

0

 |𝜕𝐷𝑞| − |𝜕𝐷|𝑓𝐻 (𝑡, 𝑞)𝑑𝑞. 

By Corollary (5.2.11), (iii), this is smaller than 
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𝑐|𝐷|

𝑅2
∫  
𝑅/2

0

 𝑞𝑓𝐻(𝑡, 𝑞)𝑑𝑞 ≤
𝑐|𝐷|𝑒2𝑚𝑡

𝑅2
∫  
𝑅/2

0

 𝑞𝑓𝐻 (𝑡, 𝑞)𝑑𝑞 

=
𝑐|𝐷|𝑒2𝑚𝑡

𝑅2
∫  
𝑅/2

0

 𝑞𝑡−𝑑/𝛼 𝑓𝐻(1, 𝑞𝑡
−1/𝛼)𝑑𝑞 

=
𝑐|𝐷|𝑒2𝑚𝑡

𝑅2𝑡𝑑/𝛼
 ∫  

𝑅/2𝑡1/𝛼

0

 𝑞𝑡2/𝛼 𝑓𝐻 (1, 𝑞)𝑑𝑞

≤
𝑐|𝐷|𝑒2𝑚𝑡𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
∫  
∞

0

 𝑞(𝑞−𝑑−𝛼  ∧  1)𝑑𝑞 ≤
𝑐|𝐷|𝑒2𝑚𝑡𝑡2/𝛼

𝑅2𝑡𝑑/𝛼
 . 

This shows (59). Finally, we have 

||𝜕𝐷|∫  
𝑅/2

0

𝑓𝐻(𝑡, 𝑞)𝑑𝑞 − |𝜕𝐷|∫  
∞

0

𝑓𝐻(𝑡, 𝑞)𝑑𝑞| ≤ |𝜕𝐷|∫  
∞

𝑅/2

𝑓𝐻(𝑡, 𝑞)𝑑𝑞

≤
𝑐|𝐷|

𝑅
∫  
∞

𝑅/2

 𝑓𝐻(𝑡, 𝑞)𝑑𝑞 by Corollary (5.2.11), (ii)

≤
𝑐|𝐷|𝑒2𝑚𝑡

𝑅𝑡𝑑/𝛼
∫  
∞

𝑅/2

 𝑓𝐻(1, 𝑞𝑡
−1/𝛼)𝑑𝑞 =

𝑐|𝐷|𝑒2𝑚𝑡𝑡1/𝛼

𝑅𝑡𝑑/𝛼
∫  
∞

𝑅/2𝑡1/𝛼
 𝑓𝐻 (1, 𝑞)𝑑𝑞. 

Since 𝑅/2𝑡1/𝛼 ≥ 1, so for 𝑞 ≥ 𝑅/2𝑡1/𝛼 ≥ 1 we have 𝑓𝐻 (1, 𝑞) ≤ 𝑐𝑞
−𝑑−𝛼 ≤ 𝑐𝑞−2. 

Therefore, 

∫  
∞

𝑅/2𝑡1/𝛼
 𝑓𝐻 (1, 𝑞)𝑑𝑞 ≤ 𝑐∫  

∞

𝑅/2𝑡1/𝛼

𝑑𝑞

𝑞2
≤
𝑐𝑡1/𝛼

𝑅
 . 

Hence, 

||𝜕𝐷|∫  
𝑅/2

0

 𝑓𝐻(𝑡, 𝑞)𝑑𝑞 − |𝜕𝐷|∫  
∞

0

 𝑓𝐻(𝑡, 𝑞)𝑑𝑞| ≤
𝑐|𝐷|𝑒2𝑚𝑡𝑡

2
𝛼

𝑅2𝑡
𝑑
𝛼

 .                (60) 

Note that the constant 𝐶2(𝑡) which appears in the formulation of Theorem (5.2.12) 

satisfies 𝐶2(𝑡) = ∫  
∞

0
𝑓𝐻(𝑡, 𝑞)𝑑𝑞. Now Eqs. (53), (54), (58), (59), (60) give (52). 

 

Section (5.3): Eigenvalues of Pseudo-Differential Operators in an Interval 

The fractional Laplace operator (−𝛥)𝛼/2was considered in [49] for 𝛼 = 1 and in [97] 

for general 𝛼 ∈ (0, 2), while in [236] the case of the Klein–Gordon square-root operator 

(−𝛥 + 1)1/2 − 1 was solved (𝛥 dentotes the second derivative operator, the Laplace 

operator in dimension one). We extend the above results to operators 𝜓(−𝛥), where ψis an 

arbitrary complete Bernstein function such that 𝜉𝜓′(𝜉)converges to infinity as 𝜉 → ∞. 

Let 𝜆𝑛 denote the nondecreasing sequence of eigenvalues of 𝜓(−𝛥) in an interval 𝐷 =
(−𝑎, 𝑎), with zero condition in the complement of 𝐷. Furthermore, for 𝜇 > 0 define 

𝜗𝜇  =
1

𝜋
 ∫  

∞

0

𝜇

𝑟2  −  𝜇2
log  

𝜓′(𝜇2)(𝜇2  −  𝑟2)

𝜓(𝜇2) −  𝜓(𝑟2)
 𝑑𝑟.                      (61) 

We note that 𝜗𝜇 ∈ [0,
𝜋

2
) and 

𝑑

𝑑𝜇
𝜗𝜇 = 𝑂 (

1

𝜇
) as 𝜇 → ∞. Finally, let 𝜇𝑛 be a solution of  

𝜇𝑛  =
𝑛𝜋

2𝑎
 −
1

𝑎
𝜗𝜇𝑛 .                                                                          (62) 
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We remark that the solution is unique for 𝑛 large enough, and  

𝜇𝑛  =
𝑛𝜋

2𝑎
−
1

𝑎
𝜗(𝑛𝜋)/(2𝑎)  +  𝑂(

1

𝑛
). 

The following is the main result. 

Example (5.3.1)[225]: Let 𝜓(𝜉)  = 𝜉𝛼/2 + 𝜉𝛽/2, where 0 < 𝛽 < 𝛼 ≤ 2. Then (see 

Example (5.3.12))  

𝜗𝜇  =
(2 − 𝛼)𝜋

8
 +  𝑂(𝑛𝛽−𝛼),       𝜇𝑛 =

𝑛𝜋

2𝑎
−
(2 − 𝛼)𝜋

8𝑎
 +  𝑂(𝑛𝛽−𝛼), 

and consequently 

𝜆𝑛  =  (
𝑛𝜋

2𝑎
 −
(2 − 𝛼)𝜋

8𝑎
)

𝛼

 +  (
𝑛𝜋

2𝑎
−
(2 − 𝛼)𝜋

8𝑎
)

𝛽

 +  𝑂(𝑛𝛽−1). 

Example (5.3.2)[225]: If 𝜓 is regularly varying at infinity with index 
𝛼

2
∈ (0, 1], then one 

has lim
𝜇→∞

 𝜗𝜇 =
(2−𝛼)𝜋

8
(see(72)). Therefore, 

𝜇𝑛  =
𝑛𝜋

2𝑎
−
(2 − 𝛼)𝜋

8𝑎
 + 𝑂(1), 

and, using Karamata’s monotone density theorem, one easily finds that  

𝜆𝑛 = (1 −
(2 − 𝛼)𝛼

4𝑛
 +  𝑜(

1

𝑛
))𝜓((

𝑛𝜋

2𝑎
 )
2

). 

` We point out that relatively little is known about 𝜆𝑛. Most results, including all listed 

below, cover also higher-dimensionaldomains, but provide significantly less detailed 

information. Extension of Theorem (5.3.26) for higher-dimensional domains seems out of 

reach with the present methods. 

Best known estimates of 𝜆𝑛, proved in [65], are given in terms of the corresponding 

eigenvalues 𝜆𝑛
𝛥 of the Laplace operator −𝛥, namely  

𝐶𝜓(𝜆𝑛
𝛥)  ≤  𝜆𝑛  ≤  𝜓(𝜆𝑛

𝛥); 
a more direct statement for the case of an interval is given in (69) below. First term of the 

asymptotic expansion of 𝜆𝑛, namely 𝜆𝑛 ∼ 𝜓(𝜆𝑛
𝛥), is given in many cases in [54]. This result 

follows by a Tauberian theorem from the asymptotic expression for the trace ∑  ∞
𝑛=1 𝑒

−𝑡𝜆𝑛  

as 𝑡 → 0+. 

Second term of the asymptotic expansion of the trace has been found in [52], [227] for 

(−𝛥)𝛼/2, in [219], [213]for (−𝛥 + 1)𝛼/2 − 1, and finally in [204]for a rather general class 

of isotropic Lévy processes with unimodal Lévy measure, satisfying some mild regularity 

conditions. Tauberian theory is, however, insufficient to obtain a result similar to 

Theorem(5.3.26)from the two-term expansion of the trace. In this case, as well as for many 

other local operators, two-term asymptotic formula for the eigenvalues in appropriate 

domains was derived by 𝑉.Ivrii [232], [233], thus resolving the famous Weyl conjecture. 

The only related result for non-local operators, proved in [103], provides an analogous two-

term asymptotic expansion of Cesàro means 
1

𝑁
∑  𝑁
𝑛=1 𝜆𝑛 for (−𝛥)𝛼/2, using the methods of 

semi-classical analysis.  

The proof of Theorem (5.3.26) is based on the explicit expression for the generalised 

eigenfunctions of the operator 𝜓(−𝛥) in the half-line, found in [49] for (−𝛥)1/2, and in 
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[112], [238] for 𝜓(−𝛥) for a general complete Bernstein function 𝜓. The asymptotic 

expression (85)for (−𝛥)𝛼/2 simplifies to 

𝜆𝑛  =  (
𝑛𝜋

2𝑎
 −
(2 − 𝛼)𝜋

8𝑎
 )

𝛼

 +  𝑂 (
1

𝑛
)            𝑎𝑠        𝑛 → ∞, 

𝑏ecause 𝜗𝜇 =
(2−𝛼)𝜋

8
. As mentioned above, this was proved for 𝛼 = 1 in [49], with constant 

1 in the asymptotic notation 𝑂 (
1

𝑛
), and for general 𝛼 ∈ (0, 2) in [97], with a rather big 

constant in the term 𝑂 (
1

𝑛
). 

A very careful estimate of [236] yielded a version of (85) uniform in 𝑎 > 0 for the operator 

(−𝛥 + 1)1/2 − 1. 

We do not pay attention to the constant in the asymptotic term 𝑂(
1

𝑛
). All our estimates 

are, however, explicit, and so it is theoretically possible to trace the dependence of this 

constant on 𝑎 and 𝜓. 

We sketch the main idea of the proof. The generalised eigen function of 𝜓(−𝛥) in 

the half-line (0,∞) corresponding to the eigenvalue 𝜓(𝜇2) is given by an explicit formula 

𝐹𝜇(𝑥)  = 𝑠𝑖𝑛(𝜇𝑥 + 𝜗𝜇)  − 𝐺𝜇(𝑥), where 𝐺𝜇 is the Laplace transform of a certain non-

negative measure. We construct approximation �̃�𝑛 to eigenfunctions of 𝜓(−𝛥) in (−𝑎, 𝑎) 
by interpolating between 𝐹𝜇(𝑎 + 𝑥) near – 𝑎 and ±𝐹𝜇(𝑎 − 𝑥) near 𝑎. In order that the sine 

terms agree, we need to set 𝜇 = 𝜇𝑛 defined in(62). Due to non-locality of 𝜓(−𝛥), �̃�𝑛 is not 

an eigenfunction; we show that the 𝐿2(𝐷) distance of 𝜓(−𝛥) �̃�𝑛 and 𝜇𝑛 �̃�𝑛 does not exceed 

𝑂 (
1

𝑛
). This is sufficient to prove that there is some eigenvalue 𝜆𝑘(𝑛) within the 𝑂(

1

𝑛
) range 

from 𝜓(𝜇𝑛
2). Using the assumption that 𝜉𝜓′(𝜉) diverges to infinity as 𝜉 → ∞, one easily 

finds that the numbers 𝑘(𝑛) are distinct for sufficiently large 𝑛. It remains to estimate the 

number of eigenvalues 𝜆𝑗 not counted as 𝜆𝑘(𝑛): this turn out to follow from an estimate of 

the trace (Lemma (5.3.25)). 

We conjecture that (85) holds for arbitrary complete Bernstein functions, without the 

moderate growth condition lim
𝜉→∞

 𝜉𝜓′(𝜉)  = ∞. Note that, however, if this growth condition 

is not satisfied (for example, when 𝜓(𝜉)  = 𝑙𝑜𝑔(1 + 𝜉)) and 𝑎 is large enough, then one 

cannot expect that the numbers 𝑘(𝑛) are distinct. Therefore, an extension of 

Theorem(5.3.26)to general complete Bernstein function would require a completely 

different approach. It is also natural to expect that (85) holds for more general functions 𝜓, 

for example, for all Bernstein functions 𝜓 satisfying the growth condition. However, no 

expressions for the generalised eigenfunctions 𝐹𝜇 are known unless 𝜓 is a complete 

Bernstein function, and so our approach cannot currently be used in this case. Finally, we 

believe that the semi-classical argument of [103], combined with the results of [112], [238] 

and for the family of complete Bernstein functions 𝜓(√𝑎2 + 𝜉2), may lead to a two-term 

asymptotic formula for Cesàro means 
1

𝑁
∑  𝑁
𝑛=1 𝜆𝑛 of eigenvalues of the operator 𝜓(−𝛥) in 

sufficiently smooth domains in 𝑹𝑑. 

The method described above has been designed in [49] and successfully used in [97] 

and [236]. The core of the argument remains the same. We showing Theorem (5.3.26) in 
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this generality requires rather non-obvious estimates of 𝜗𝜇 ,
𝑑

𝑑𝜇
𝜗𝜇  𝑎𝑛𝑑 𝐺𝜇(𝑥), as well as 

many other modifications. 

All functions considered below are Borel measurable. For 𝑝 ∈ [1,∞) and an open 

set 𝐷 ⊆ 𝑹, the Lebesgue space 𝐿𝑝(𝐷) is the set of functions 𝑓 on 𝐷 such that

 ‖𝑓‖𝐿𝑝(𝐷) = (∫  
𝐷
|𝑓(𝑥)|𝑝𝑑𝑥)

1/𝑝
 is finite, and 𝑓 ∈ 𝐿∞(𝐷) if and only if the essential 

supremum  ‖𝑓‖𝐿∞(𝐷)  𝑜𝑓  |𝑓(𝑥)| over 𝑥 ∈ 𝐷 is finite. The space of smooth functions with 

compact support contained in 𝐷 is denoted by 𝐶𝑐
∞(𝐷). By 𝐶0(𝐷) we denote the space of 

continuous functions in 𝑹 which are equal to 0 in 𝑹\𝐷 and which satisfy the condition 

lim
𝑥→±∞

 𝑓(𝑥)  = 0. 

The Fourier transform of a function 𝑓 ∈ 𝐿2(𝑹) is denoted by ℱ 𝑓. If  𝑓 ∈ 𝐿2(𝑹) ∩ 𝐿1(𝑹), 

then ℱ𝑓(𝜉)  = ∫  
∞

−∞
𝑓(𝑥)𝑒−𝑖𝜉𝑥𝑑𝑥. The Laplace transform of a function 𝑓 is denoted by ℒ𝑓,

ℒ𝑓(𝜉)  = ∫  
∞

0
𝑓(𝑥)𝑒−𝜉𝑥𝑑𝑥. 

Symbols 𝑥, 𝑦, 𝓏 are used for spatial variables, while 𝜉, 𝜂, 𝜇 typically correspond to ‘Fourier 

space’ variables. 

We write 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if lim sup𝑛→∞  |𝑓(𝑛)/𝑔(𝑛)|  < ∞, and 𝑓(𝑛) = 𝑜(𝑔(𝑛)) 

if lim
𝑛→∞

 |𝑓(𝑛)/𝑔(𝑛)|  = 0. 

We recall several classical definitions. 𝐴 function 𝑓(𝑥) on (0,∞) is said to be 

completely monotone if (−1)𝑛𝑓(𝑛) (𝑥)  ≥ 0 for all 𝑥 > 0 and 𝑛 = 0, 1, 2, . . .. By 

Bernstein’s theorem (see [239]), 𝑓 is completely monotone if and only if it is the Laplace 

transform of a (possibly infinite) Radon measure on [0,∞). If 𝑓 is nonnegative on (0,∞) 
and 𝑓′ is completely monotone, then 𝑓 is said to be a Bernstein function. By Bernstein’s 

theorem, Bernstein functions have the representation 

𝑓(𝑥)  =  𝑐𝑥 + �̃�  + ∫  
(0,∞)

 (1 − 𝑒−𝓏𝑥)𝑀(𝑑𝓏)                              (63) 

for some 𝑐, �̃� ≥  0 and a Radon measure 𝑀 such that ∫  
(0,∞)

 𝑚𝑖𝑛(𝓏, 1)𝑀(𝑑𝓏)  <  ∞. The 

above formula extends to complex 𝑥 such that 𝑒 𝑥 ≥  0, and defines a continuous function 

holomorphic in the region 𝑅𝑒 𝑥 >  0. 

If the measure 𝑀 in (63) is absolutely continuous with respect to the Lebesgue measure, and 

the density function is completely monotone, then 𝑓 is said to be a complete Bernstein 

function. One easily verifies that in this case 

𝑓(𝑥) =  𝑐𝑥 + �̃�  +
1

𝜋
 ∫  
(0,∞)

𝑥

𝑥 + 𝓏

𝑚(𝑑𝓏)

𝓏
                                     (64) 

for some 𝑐, �̃� ≥  0 and a Radon measure 𝑚 such that ∫  
(0,∞)

 𝑚𝑖𝑛(1/𝓏, 1𝓏2)𝑚(𝑑𝓏)  <  ∞. 

The above formula defines a holomorphic extension of 𝑓 in the region 𝐶 \ (−∞, 0]. 
Bernstein and complete Bernstein functions appear in a number of different areas of 

mathematics. For more information on these objects, see [239]. 

We will need the following technical result. 

It is enough to assume that 𝜓 is an increasing, nonnegative function on [0,∞), which 

satisfies 

1 +  𝜓(𝜉 +  𝜂) ≤  𝐶(1 +  𝜂)𝛼(1 +  𝜓(𝜉))                              (65) 



 

181 
 

for all 𝜉 ≥  𝜂 ≥  0 and some 𝐶, 𝛼 ≥  1. When 𝜓 is a complete Bernstein function, then 

(65) holds with 𝛼 =  1 and 𝐶 =  1, because 𝜓(𝜉 +  𝜂)  ≤  𝜓(𝜉)  +  𝜓(𝜂)  ≤  𝜓(𝜉)  +
 𝐶(1 +  𝜂). 
The operator 𝐴 =  𝜓(−𝛥) is an unbounded, non-local, self-adjoint operator on 𝐿2(𝑅), 
defined as follows. The domain 𝒟(𝐴) of 𝐴 consists of functions 𝑓 ∈  𝐿2(𝑅) such that 

(1 +  𝜓(𝜉2))ℱ𝑓(𝜉) is square integrable. Clearly, 𝒟(𝐴) contains 𝐶𝑐
∞ (𝑅). For 𝑓 ∈ 𝒟(𝐴), 

ℱ𝐴𝑓(𝜉)  =  𝜓(𝜉2)ℱ𝑓(𝜉). 
In other words, 𝐴 is a Fourier multiplier with symbol 𝜓(𝜉2). This explains the notation 𝐴 =
 𝜓(−𝛥): the second derivative operator 𝛥 is a Fourier multiplier with symbol −𝜉2. 

Furthermore, by Plancherel’s theorem, 𝐴 is positive-definite. 

Let 𝒟(ℰ) denote the space of 𝑓 ∈  𝐿2(𝑅) such that (1 + 𝜓(𝜉2))
1/2
ℱ𝑓(𝜉) is square 

integrable. For 𝑓, 𝑔 ∈ 𝒟(ℰ) the quadratic form ℰ(𝑓, 𝑔) associated to 𝐴 is defined by 

ℰ(𝑓, 𝑔) =
1

2𝜋
 ∫ 
𝑅

 𝜓(𝜉2)ℱ𝑓(𝜉)ℱ𝑔(𝜉)𝑑𝜉. 

The inner product ℰ1(𝑓, 𝑔)  =  〈𝑓, 𝑔〉 + ℰ(𝑓, 𝑔) makes 𝒟(ℰ) into a Hilbert space. If 𝑓 ∈
𝒟(𝐴), then ℰ(𝑓, 𝑔)  =  〈𝐴𝑓, 𝑔〉, and 𝒟(𝐴) is a dense subset of the Hilbert space 𝒟(ℰ). 
Let 𝐷 be an open subset of 𝑅. The following definition states that the operator 𝐴𝐷 is the 

Friedrichs extension (or the minimal self-adjoint extension) of the restriction of 𝐴 to 

𝐶𝑐
∞ (𝐷). 

Definition (5.3.3)[225]: The domain 𝒟(ℰ𝐷) of the form ℰ𝐷 is the closure of 𝐶𝑐
∞(𝐷) in the 

Hilbert space 𝒟(ℰ), and ℰ𝐷(𝑓, 𝑔)  = ℰ(𝑓, 𝑔) for 𝑓, 𝑔 ∈ 𝒟(ℰ𝐷). The operator 𝐴𝐷 is 

associated to the form ℰ𝐷: 𝑓 ∈ 𝒟(ℰ𝐷) is in the domain 𝒟(𝐴𝐷) of 𝐴𝐷 if and only if there is 

a function 𝐴𝐷𝑓 ∈  𝐿
2(𝐷) such that ℰ(𝑓, 𝑔)  =  〈𝐴𝐷𝑓, 𝑔〉 for 𝑔 ∈ 𝒟(ℰ𝐷) (or, equivalently, 

for 𝑔 ∈  𝐶𝑐
∞(𝐷)). 

The following result is well-known of general Dirichlet forms and generators of Lévy 

processes, see [231], [92] for more general results in this direction. 

Proposition (5.3.4)[225]: (See [236].) If 𝐷 is a bounded interval, then 𝑓 ∈ 𝒟(ℰ𝐷) if and 

only if 𝑓 ∈ 𝒟(ℰ) and 𝑓 =  0 almost everywhere in 𝑅 \ 𝐷. 

Proof: By definition, if 𝑓 ∈ 𝒟(ℰ𝐷), then 𝑓 ∈ 𝒟(ℰ) and 𝑓 =  0 almost everywhere in 

𝑅 \ 𝐷. Let 𝑓 ∈ 𝒟(ℰ) and 𝑓 =  0 almost everywhere in 𝑅 \ 𝐷. The result follows from the 

following claim: there is a sequence 𝑓𝑛 ∈ 𝐶𝑐
∞(𝐷) such that 

ℰ1(𝑓𝑛  −  𝑓, 𝑓𝑛  −  𝑓) =
1

2𝜋
 ∫  

∞

−∞

 (1 +  𝜓(𝜉2))|ℱ𝑓𝑛(𝜉) − ℱ𝑓(𝜉)|
2𝑑𝜉 

converges to 0 as 𝑛 →  ∞. 

Let ℎ𝑛 ∈ 𝐶𝑐
∞(𝑅𝐷) be an approximation to the identity such that ℎ𝑛(𝑥)  =  𝑛ℎ(𝑛𝑥), ℎ(𝑥)  ≥

 0, ∫  
𝑅
 ℎ(𝑥)𝑑𝑥 =  1 𝑎𝑛𝑑 ℎ(𝑥)  =  0 for 𝑥 ∉ (−1, 1). Note that ℎ𝑛 is zero outside (−

1

𝑛
 ,
1

𝑛
). 

Let 

𝑔𝑛(𝑥) =  ℎ𝑛 ∗ 𝑓(𝑥),          𝑓𝑛(𝑥) = 𝑔𝑛((𝑥 −  𝑏𝑛)/𝑎𝑛), 

where (𝑥 − 𝑏𝑛)/𝑎𝑛 maps the 
2

𝑛
 -neighbourhood of 𝐼 into 𝐼, with 𝑎𝑛  ≥  1, lim

𝑛→∞
  𝑎𝑛  =  1 

and lim
𝑛→∞

  𝑏𝑛 = 0. Observe that 𝑓𝑛 ∈ 𝐶𝑐
∞(𝐷) and 

ℱ𝑓𝑛(𝜉)  =  𝑎𝑛𝑒
−𝑖𝑏𝑛𝜉ℱ𝑔𝑛(𝑎𝑛𝜉)  =  𝑎𝑛𝑒

−𝑖𝑏𝑛𝜉ℱℎ(
1

𝑛
(𝑎𝑛𝜉))ℱ𝑓(𝑎𝑛𝜉). 
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Since 𝑓, 𝑔 ∈  𝐿1(𝑅),ℱ𝑓 and ℱℎ are continuous. Furthermore, ℱℎ(0)  =  1 and |ℱℎ(𝜉)|  ≤
 1 for 𝜉 ∈  𝑅. It follows that ℱ𝑓𝑛 converges pointwise to ℱ𝑓, and for 𝑛 large enough 

 |ℱ𝑓𝑛(𝜉)|  ≤  2|ℱ𝑓(𝑎𝑛𝜉)| 

for all 𝜉 ∈  𝑅. Hence, if 𝑢(𝜉)  =  (1 +  𝜓(𝜉2))|ℱ𝑓(𝜉)|2, then for 𝑛 large enough, 

(1 +  𝜓(𝜉2))|ℱ𝑓𝑛(𝜉) − ℱ𝑓(𝜉)|
2  ≤  2(1 +  𝜓(𝜉2))(|ℱ𝑓𝑛(𝜉)|

2  +  |ℱ𝑓(𝜉)|2)  

≤  4𝑢(𝑎𝑛𝜉) + 2𝑢(𝜉) 
for all 𝜉. By the assumption, 𝑢(𝜉) is integrable. Therefore, the family of functions 

(1 + 𝜓(𝜉2))|ℱ𝑓𝑛(𝜉) − ℱ𝑓(𝜉)|
2 is tight and uniformly integrable. By the Vitali’s 

convergence theorem, ℰ1(𝑓𝑛  −  𝑓, 𝑓𝑛  −  𝑓) converges to 0 as 𝑛 →  ∞, as desired. 

We remark that the above result in general fails to be true for arbitrary open sets 𝐷. It is, in 

particular, not true when 𝐷 =  𝑅 \ {0} and 𝜓(𝜉)  =  𝜉𝛼/2 with 𝛼 ∈  (1, 2]. 
From now on, 𝜓 is a complete Bernstein function. The operator −𝐴 =  −𝜓(−𝛥) 

generates a strongly continuous semigroup of self-adjoint contractions 

𝑇(𝑡)  =  𝑒𝑥𝑝(−𝑡𝐴), 
where 𝑡 ≥  0. Note that 𝑇(0) is the identity operator, 𝑇(𝑡) is the Fourier multiplier with 

symbol 𝑒𝑥𝑝(−𝑡𝜓(𝜉2)), and 

𝒟(𝐴) =  {𝑓 ∈  𝐿2(𝑅): lim
𝑡→0+

  
𝑇(𝑡)𝑓 − 𝑓

𝑡
 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝐿2(𝑅)}, 

−𝐴𝑓 = lim
𝑡→0+

  
𝑇(𝑡)𝑓 − 𝑓

𝑡
 .                                                                                (66) 

For 𝑡 >  0, the operator 𝑇(𝑡) is a convolution operator: for all 𝑓 ∈  𝐿2(𝑅), 

𝑇(𝑡)𝑓(𝑥)  = ∫  
∞

−∞

 𝑓(𝑥 −  𝑦)𝑇(𝑡;  𝑑𝑦),                                     (67) 

where 𝑇(𝑡;  𝑑𝑥) is a sub-probability measure with characteristic function 𝑒𝑥𝑝(−𝑡𝜓(𝜉2)) 

and total mass 𝑒−𝑡𝜓(0). Furthermore, 

𝑇(𝑡;  𝑑𝑥)  =  𝑒−𝑡𝜓(∞) 𝛿0(𝑑𝑥)  +  𝑇(𝑡;  𝑥)𝑑𝑥, 
where 𝑇(𝑡;  𝑥)  =  𝑇(𝑡;  −𝑥) is a decreasing function of 𝑥 >  0 (see [239]). Hence, 𝑇(𝑡) is 

a Markov operator, and formula (67) defines a contraction on every 𝐿𝑝(𝑅) (𝑝 ∈  [1,∞]), 
and also on 𝐶0(𝑅). In each of these Banach spaces, the generator of the semigroup 𝑇(𝑡) is 

defined in a similar way as in (66); for example, 

𝒟(𝐴; 𝐶0(𝑅)) =  {𝑓 ∈  𝐶0(𝑅): lim
𝑡→0+

  
𝑇(𝑡)𝑓 − 𝑓

𝑡
 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝐶0(𝑅)}, 

−𝐴𝑓 = lim
𝑡→0+

  
𝑇(𝑡)𝑓 − 𝑓

𝑡
 . 

Since the above definitions of 𝐴𝑓 are consistent on the intersections of domains with limits 

in different function spaces: 𝐿𝑝(𝑅) for 𝑝 ∈  [1,∞] or 𝐶0(𝑅), we abuse the notation and use 

the same symbol −𝐴 for the generator of the semigroup 𝑇(𝑡) in any of these spaces. Observe 

that 𝐶𝑐
∞(𝑅) is contained in 𝒟(𝐴, 𝐿𝑝(𝑅)) (𝑝 ∈  [1,∞]) and in 𝒟(𝐴; 𝐶0(𝑅)), and it is the 

core of 𝐴 in each of these Banach spaces except 𝐿∞(𝑅) (see [226], [234]). Whenever we 

write 𝒟(𝐴), we mean 𝒟(𝐴; 𝐿2(𝑅)). 
If 𝜓(𝜉) has the representation given in (64), then for 𝑓 ∈  𝐶𝑐

∞(𝑅) we have 

𝐴𝑓(𝑥)  =  −𝑐𝑓′′(𝑥) + �̃�𝑓(𝑥)  +  𝑝𝑣∫  
∞

−∞

 (𝑓(𝑥) −  𝑓(𝑦))𝜈(𝑥 −  𝑦)𝑑𝓏,              (68) 
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where by the subordination formula, 

𝜈(𝓏) =
1

2𝜋
 ∫  
(0,∞)

 𝑒−|𝓏|𝜁
1/2𝑚(𝑑𝜁)

𝜁1/2
 , 

and ‘𝑝𝑣∫  ’ denotes the Cauchy principal value integral: 

𝑝𝑣∫  
∞

−∞

 (𝑓(𝑥) −  𝑓(𝑥 + 𝓏))𝜈(𝓏)𝑑𝓏 = lim
𝜀→0+

  ∫  
𝑅\(−𝜀,𝜀)

 (𝑓(𝑥) −  𝑓(𝑥 + 𝓏))𝜈(𝓏)𝑑𝓏; 

see, [112]. 

Let 𝐷 be a (possibly unbounded) interval. The operator −𝐴𝐷 generates a strongly continuous 

semigroup of operators 

𝑇𝐷(𝑡)  =  𝑒𝑥𝑝(−𝑡𝐴𝐷). 
The operators 𝑇𝐷(𝑡) are given by 

𝑇𝐷(𝑡)𝑓(𝑥)  = ∫  
𝐷

 𝑓(𝑦)𝑇𝐷(𝑡;  𝑥, 𝑑𝑦), 

Where 

𝑇𝐷(𝑡;  𝑥, 𝑑𝑦)  =  𝑒
−𝑡𝜓(∞) 𝛿𝑥(𝑑𝑦)  + 𝑇𝐷(𝑡;  𝑥, 𝑦)𝑑𝑦. 

It is known that 0 ≤  𝑇𝐷(𝑡;  𝑥, 𝑦)  ≤  𝑇(𝑡, 𝑥 −  𝑦), and we let 𝑇𝐷(𝑡;  𝑥, 𝑦)  =  0 whenever 

𝑥 ∉ 𝐷 or 𝑦 ∉ 𝐷. Hence, 𝑇𝐷(𝑡) form a contraction semigroup on each of the spaces 

𝐿𝑝(𝐷) (𝑝 ∈  [1,∞]), and if 𝜓 is unbounded, then also on 𝐶0(𝐷) (see [228], [112], [92]). 

The generator of each of these semigroups is again denoted by −𝐴𝐷, and it acts on an 

appropriate domain 𝒟(𝐴𝐷; 𝐿
𝑝) or 𝒟(𝐴𝐷;  𝐶0). 

Suppose that 𝐷 is a bounded interval and that 𝑒𝑥𝑝(−2𝑡𝜓(𝜉2)) is integrable for some 

𝑡 >  0. Then 𝑇𝐷(𝑡;  𝑥, 𝑦) is a Hilbert–Schmidt kernel, and so 𝑇𝐷(𝑡) is a compact operator 

on 𝐿2(𝐷). Hence, there is a complete orthonormal set of eigenfunctions 𝜑𝑛 ∈ 𝐿
2(𝐷) of 

𝑇𝐷(𝑡). By strong continuity and the semigroup property, the eigenfunctions do not depend 

on 𝑡 >  0, and the corresponding eigenvalues have the form 𝑒−𝑡𝜆𝑛 for all 𝑡 >  0, where the 

sequence 𝜆𝑛 is nondecreasing and converges to ∞. 

By translation invariance, we may assume that 𝐷 =  (−𝑎, 𝑎). By symmetry, 

𝑇𝐷(𝑡;  𝑥, 𝑦)  =  𝑇𝐷(𝑡;  −𝑥,−𝑦), and hence the spaces of odd and even 𝐿2(𝐷) functions are 

invariant under the action of 𝑇𝐷(𝑡). Therefore, we may assume that every 𝜑𝑛 is either an 

odd or an even function. The ground state eigenvalue 𝜆1 is positive and simple (unless 𝜓 is 

constant), and the corresponding ground state eigenfunction has constant sign in 𝐷; we 

choose it to be positive in 𝐷. The functions 𝜑𝑛 are also the eigenfunctions of 𝐴𝐷 (because 

−𝐴𝐷 is the generator of the semigroup 𝑇𝐷(𝑡)), and 𝜆𝑛 are the corresponding eigenvalues. 

No closed-form expression for 𝜆𝑛 and 𝜑𝑛 is available, except when 𝜓(𝜉)  =  𝑐𝜉 + �̃�. By a 

general result of [54] (see Theorem (5.3.4) therein), 𝜆𝑛  ∼  𝜓((
𝑛𝜋

2𝑎
)2) as 𝑛 →  ∞ (the 

original statement includes only the case when 𝜓(𝜉)  ∼  𝜉𝛼/2 for some 𝛼 ∈  (0, 2), but it 

can be easily extended to more general 𝜓). Best known general estimates of 𝜆𝑛 are found in 

[65], where it is proved that: 
1

2
 𝜓 ((

𝑛𝜋

2𝑎
)
2

)   ≤  𝜆𝑛  ≤  𝜓 ((
𝑛𝜋

2𝑎
)
2

)  .                                           (69) 

Note that the upper bound in (69) follows relatively easily from the operator monotonicity 

of 𝜓: the form associated to 𝐴𝐷 is bounded above by the form of 𝜓(−𝛥𝐷), and the 
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eigenvalues of the latter are equal to 𝜓((
𝑛𝜋

2𝑎
 )
2
). The proof of the lower bound is more 

intricate. 

The spectrum of 𝐴𝐷 for an unbounded interval 𝐷 is continuous. When 𝐷 =  𝑅, then 

𝐴𝐷 = 𝐴 takes diagonal form in the Fourier space, and 𝑒𝑖𝜉𝑥 (𝜉 ∈  𝑅) are the 𝐿∞ 

eigenfunctions of 𝐴. Similar eigenfunction expansion was obtained for the half-line using 

an appropriate version of the Wiener–Hopf method in [112], [238]. Due to translation 

invariance and symmetry, it suffices to consider 𝐷 =  (0,∞). 
Definition (5.3.5)[225]: Suppose that 𝜓 is a non-constant complete Bernstein function such 

that 𝜓(0)  =  0. For 𝑥, 𝜇 >  0, let 

𝐹𝜇(𝑥)  =  𝑠𝑖𝑛(𝜇𝑥 + 𝜗𝜇)  − 𝐺𝜇(𝑥), 

where 𝜗𝜇  ∈  [0,
𝜋

2
 ) and 𝐺𝜇 is a completely monotone function on (0,∞). More precisely, 

𝜗𝜇  =
1

𝜋
 ∫  

∞

0

𝜇

𝑟2  −  𝜇2
 𝑙𝑜𝑔

𝜓′(𝜇2)(𝜇2  −  𝑟2)

𝜓(𝜇2) −  𝜓(𝑟2)
 𝑑𝑟 

(as in (61)), and 𝐺𝜇 is the Laplace transform of a measure 𝛾𝜇, 

𝐺𝜇(𝑥)  = ℒ𝛾𝜇(𝑥)  = ∫  
(0,∞)

 𝑒−𝑥𝜉𝛾𝜇(𝑑𝜉), 

With 

𝛾𝜇(𝑑𝜉) =
1

𝜋
lim
𝜀→0+

  𝐼𝑚 (
𝜇𝜓′(𝜇2)

𝜓(𝜇2) − 𝜓(−𝑒−𝑖𝜀𝜉2)
)

×  𝑒𝑥𝑝 (−
1

𝜋
 ∫  

∞

0

𝜉

𝜉2 + 𝑟2
 𝑙𝑜𝑔

𝜓′(𝜇2)(𝜇2 − 𝑟2)

𝜓(𝜇2) −  𝜓(𝑟2)
 𝑑𝑟)𝑑𝜉 

for 𝜇, 𝜉, 𝑥 >  0. 

Equivalently, 𝐹𝜇(𝑥) is defined by its Laplace transform: for 𝜉 ∈  𝐶 with 𝑅𝑒 𝜉 >  0, 

ℒ𝐹𝜇(𝜉) = ∫  
∞

0

 𝐹𝜇(𝑥)𝑒
−𝜉𝑥𝑑𝑥 

=
𝜇

𝜇2 + 𝜉2
 𝑒𝑥𝑝 (

1

𝜋
 ∫  

∞

0

𝜉

𝜉2  +  𝑟2
 𝑙𝑜𝑔

𝜓′(𝜇2)(𝜇2 − 𝑟2)

 𝜓(𝜇2) −  𝜓(𝑟2)
 ) 𝑑𝑟 , 

see [238] and [112]. We have the short-hand expressions 

ℒ𝐹𝜇(𝜉) =
𝜇

𝜇2 + 𝜉2
𝜓𝜇
†(𝜉)

√𝜓𝜇(𝜇
2)
 , 

𝜗𝜇 = 𝐴𝑟𝑔 𝜓𝜇
†(𝑖𝜇), 

𝛾𝜇(𝑑𝜉) =
1

𝜋
lim
𝜀→0+

 
𝜇

𝜇2 + 𝜉2
 
𝐼𝑚 𝜓𝜇(−𝑒

−𝑖𝜀𝜉2)

√𝜓𝜇(𝜇
2)𝜓𝜇

†(𝜉)

 𝑑𝜉, 

again see [112] and [238]. The expressions for 𝛾𝜇(𝑑𝜉) given above are slightly different 

than in [112], [238], so we provide a short justification. By Lemma (5.3.30) and the identity 

ℒ𝐺𝜇(𝜉) =  
𝜇 𝑐𝑜𝑠𝜗𝜇  +  𝜉 𝑠𝑖𝑛𝜗𝜇

𝜇2 + 𝜉2
 − ℒ𝐹𝜇(𝜉), 

we have 
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𝛾𝜇(𝑑𝜉) =
1

𝜋
lim
𝜀→0+

  𝐼𝑚 (ℒ𝐺𝜇(𝑒
−𝑖𝜀𝜉))𝑑𝜉 =  −

1

𝜋
lim
𝜀→0+

  𝐼𝑚(ℒ𝐹𝜇(𝑒
−𝑖𝜀𝜉))𝑑𝜉. 

The expression for ℒ𝐹𝜇(𝜉) and the Wiener–Hopf identity 𝜓𝜇
†(𝜉)𝜓𝜇

†(−𝜉) = 𝜓𝜇(−𝜉
2) give 

𝛾𝜇(𝑑𝜉) =
1

𝜋
lim
𝜀→0+

  𝐼𝑚 (
𝜇

𝜇2 + 𝑒−2𝑖𝜀𝜉2
  

𝜓𝜇(−𝑒−2𝑖𝜀𝜉2)

√𝜓𝜇(𝜇
2)𝜓𝜇

†(𝑒−𝑖𝜀𝜉)
)  𝑑𝜉

=
1

𝜋
lim
𝜀→0+

 
𝜇

𝜇2  +  𝜉2
 
𝐼𝑚 𝜓𝜇(−𝑒

−𝑖𝜀𝜉2)

√𝜓𝜇(𝜇
2)𝜓𝜇

†(𝜉)
 𝑑𝜉, 

as desired; here we used Lemma (5.3.30) again. 

We extend the definition of 𝐹𝜇 and 𝐺𝜇 to 𝑅 so that 𝐹𝜇(𝑥)  =  𝐺𝜇(𝑥)  =  0 for 𝑥 ≤  0. The 

functions 𝐹𝜇  (𝜇 >  0) are 𝐿∞ eigenfunctions of 𝐴𝐷 and play a similar role for 𝐴𝐷 as the 

Fourier kernel 𝑒𝑖𝜉𝑥(𝜉 ∈  𝑅) for 𝐴. This is formally stated in the following result. 

Theorem (5.3.6)[225]: (See [112] and [238].) The functions 𝐹𝜇 are 𝐿∞ eigenfunctions of 

𝐴(0,∞); the corresponding eigenvalues are 𝜓(𝜇2). The operator 𝐴(0,∞) takes a diagonal form 

under the integral transform with kernel 𝐹𝜇(𝑥). More precisely, let 

𝛱𝑓(𝜇)  = ∫  
∞

0

 𝑓(𝑥)𝐹𝜇(𝑥)𝑑𝑥 

for 𝑓 ∈ 𝐿2((0,∞)) ∩  𝐿1((0,∞)). Then (
2

𝜋
 )
1/2

𝛱 extends to a unitary mapping on 

𝐿2((0,∞)), such that for 𝑓 ∈ 𝐿2((0,∞)), 
𝑓 ∈ 𝒟(𝐴(0,∞)) ⟺ (1 +  𝜓(𝜇2))𝛱𝑓(𝜇)  ∈  𝐿2((0,∞)), 

and if 𝑓 ∈ 𝒟(𝐴(0,∞)), then 

𝛱(𝐴(0,∞)𝑓)(𝜇) =  𝜓(𝜇
2)𝛱𝑓(𝜇),       𝛱(𝑇𝐷(𝑡)𝑓)  =  𝑒

−𝑡𝜓(𝜇2) 𝛱𝑓(𝜇). 

We only use the first part of the above result, namely, that 𝐹𝜇 are the 𝐿∞((0,∞)) 

eigenfunctions of 𝐴(0,∞). We remark that a similar eigenfunction expansion is available for 

𝐷 =  𝑅 \ {0}, see [235], [237], and there are no other known explicit expressions for the 

eigenfunctions of 𝐴𝐷 unless 𝐷 =  𝑅 or 𝜓(𝜉)  =  𝑐𝜉 +  �̃�. 

Recall that according to (61), Definition (5.3.5) and [112], 

𝜗𝜇 =
1

𝜋
 ∫  

∞

0

𝜇

𝑠2  −  𝜇2
 𝑙𝑜𝑔

𝜓′(𝜇2)(𝜇2 − 𝑠2)

𝜓(𝜇2) −  𝜓(𝑠2)
 𝑑𝑠                             (70) 

=
1

𝜋
 ∫  

1

0

1

1 − 𝓏2
 𝑙𝑜𝑔 

𝜓(𝜇2) − 𝜓(𝜇2𝓏2)

𝓏2(𝜓(𝜇2/𝑧2) − 𝜓(𝜇2))
 𝑑𝓏.                    (71) 

We remark that if 𝜓 is regularly varying at infinity with index 𝛼 ∈  (0, 2], then, by 

dominated convergence, 

lim
𝜇→∞

  𝜗𝜇 =
1

𝜋
lim
𝜇→∞

  ∫  
1

0

1

1 − 𝓏2
log  

1 − 𝜓(𝜇2𝓏2)/𝜓(𝜇2)

𝓏2(𝜓(𝜇2/𝓏2)/𝜓(𝜇2) −  1)
 𝑑𝓏 

 =
1

𝜋
∫  
1

0

1

1 − 𝓏2
 𝑙𝑜𝑔 

1 − 𝓏𝛼

𝓏2(𝓏−𝛼  −  1)
𝑑𝓏 =

2 − 𝛼

𝜋
 ∫  

1

0

− log  𝓏

1 − 𝓏2
 𝑑𝓏 

=
(2 − 𝛼)𝜋

8
 ,                                                                                                         (72) 
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see [112]. By [112], dominated convergence can be used to differentiate the right-hand side 

of (70) in 𝜇 >  0 under the integral sign. This yields 

𝑑𝜗𝜇
𝑑𝜇

 =
2

𝜋𝜇
 ∫  

1

0

1

1 − 𝓏2
( 
𝜇2𝜓′(𝜇2) − 𝜇2𝓏2𝜓′(𝜇2𝓏2)

𝜓(𝜇2) − 𝜓(𝜇2𝓏2)
 

− 
(𝜇2/𝓏2)𝜓′(𝜇2/𝓏2) − 𝜇2𝜓′(𝜇2)

𝜓(𝜇2/𝓏2) − 𝜓(𝜇2)
)  𝑑𝓏                                                           (73) 

for all 𝜇 >  0. We prove two properties of 𝜗𝜇 that are needed in the remaining part of the 

article. First, we find estimates of 𝜗𝜇 that imply that the lower limits of 𝜗𝜇 as 𝜇 → 0+ or 

𝜇 →  ∞ do not exceed 
3𝜋

8
 (Lemma (5.3.10)). Next, a simple estimate of 

𝑑

𝑑𝜇
𝜗𝜇 is found 

(Lemma (5.3.11)). 

By [238], we have the following general estimate of 𝜗𝜇:  

(inf
𝜉>0

  −
𝜉𝜓′′(𝜉)

𝜓′(𝜉)
) 
𝜋

4
 ≤  𝜗𝜇  ≤  (sup

𝜉>0
  −

𝜉𝜓′′(𝜉)

𝜓′(𝜉)
) 
𝜋

4
 

for all 𝜇 >  0. Furthermore, the supremum in the upper bound is always not greater than 2. 

If 𝜓 is a Thorin–Bernstein function (see [239]), then one easily checks that the supremum 

is in fact not greater than 1, and therefore 𝜗𝜇 ≤
𝜋

4
 . Below we find more refined bounds for 

𝜗𝜇. By [238], 

1

𝜋
(arcsin2  √𝑄 + arcsin2  √

𝑄

1 −  𝑃
− arcsin2  √

𝑃𝑄

1 −  𝑃
) ≤ 𝜗𝜇  ≤

𝜋

2
− 𝑎𝑟𝑐𝑠𝑖𝑛 √𝑃 (74) 

With 

𝑃 =
𝜇2𝜓′(𝜇2)

𝜓(𝜇2)
 , 𝑄 =  

−𝜇2𝜓′′(𝜇2)

2𝜓′(𝜇2)
 

(note that the factor 
1

𝜋
 is missing in the lower bound in the original statement). By the same 

argument as in the proof of the lower bound of [238] (using the lower bound for 𝜓𝜆(𝜆
2𝜁2) 

and the upper bound for 𝜓𝜆(𝜆
2/𝜁2)), one easily shows that, with the same 𝑃 and 𝑄, 

𝜗𝜇 ≤
𝜋

4
−

1

𝜋
(arcsin2   √1 −  𝑄 + arcsin2   √1 −

𝑄

 1 − 𝑃
 − arcsin2  √1 −

𝑃𝑄

1 − 𝑃
 ) .    (18) 

One can also verify that this bound is always at least as good as the upper bound of (74), 

with equality when 𝑃 +  𝑄 =  1. 

The following technical result states that 𝑃 + 𝑄 ≤  1. This in fact follows indirectly from 

the proof of [238] (note that the right-hand side of (75) is not well-defined when 𝑃 +  𝑄 >
 1), but we choose to give a simple, direct argument. 

Lemma (5.3.7)[225]: If 𝜓 is a non-constant complete Bernstein function, then 

−
𝜉𝜓′′(𝜉)

𝜓′(𝜉)
 ≤  2 

−2𝜉𝜓′(𝜉)

𝜓(𝜉)
 . 

Proof: The lemma is equivalent to the inequality 

−𝜉𝜓(𝜉)𝜓′′(𝜉)  ≤  2𝜓′(𝜉)(𝜓(𝜉) − 𝜉𝜓′(𝜉)). 
Assuming ψ has the representation (64), we need to prove 
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𝜉 (𝑐𝜉 +  �̃� +
1

𝜋
 ∫  
(0,∞)

𝜉

𝜉 + 𝑠

𝜇(𝑑𝑠)

𝑠
) (

1

𝜋
  ∫  
(0,∞)

𝑠

(𝜉 +  𝑠)3
𝜇(𝑑𝑠)

𝑠
)  

≤  (𝑐 +
1

𝜋
 ∫  
(0,∞)

𝑠

(𝜉 +  𝑠)2
𝜇(𝑑𝑠)

𝑠
)(�̃� +

1

𝜋
 ∫  
(0,∞)

𝜉2

(𝜉 +  𝑠)2
𝜇(𝑑𝑠)

𝑠
) . 

This follows by simple integration from the following bounds: 0 ≤ 𝑐�̃�, 

𝜉(𝑐𝜉 + �̃�)
𝑠

(𝜉 + 𝑠)3
 ≤  𝑐

𝜉2

(𝜉 +  𝑠)2
 +  �̃�

𝑠

(𝜉 +  𝑠)2
 , 

And 

𝜉 (
𝜉

𝜉 + 𝑠1

𝑠2
(𝜉 + 𝑠2)

3
 +

𝜉

𝜉 + 𝑠2

𝑠1
(𝜉 + 𝑠1)

3
)

≤
𝑠1

(𝜉 +  𝑠1)
2
 

𝜉2

(𝜉 + 𝑠2)
2

 

 +
𝑠2

(𝜉 + 𝑠2)
2

𝜉2

(𝜉 + 𝑠1)
2
 ; 

the last two inequalities are easily proved by direct calculations. 

Lemma (5.3.8)[225]: The left-hand side of (74) is decreasing in 𝑃 ∈  [0, 1 − 𝑄]. The right-

hand side of (75) is increasing in 𝑃 ∈  [0, 1 −  𝑄]. 

Proof: Let 𝑃 = 1 −
𝑄

𝑠+𝑄
=

𝑠

𝑠+𝑄
 , 𝑠 ∈  [0, 1 −  𝑄]. Note that 𝑃 increases with increasing 𝑠, 

and the left-hand side of (74) is equal to 
1

𝜋
(arcsin2   √𝑄  + arcsin2  √𝑠 +  𝑄  − arcsin2   √𝑠 ). 

Since arcsin2   √𝑠 is convex, the above expression is increasing in 𝑠. In a similar way, with 

𝑃 =  1 −
𝑄

1−𝑠
  =

1−𝑠−𝑄

1−𝑠
 , 𝑠 ∈  [0, 1 −  𝑄], the right-hand side of (75) is equal to 

𝜋

4
 −
1

𝜋
 (arcsin2  √1 −  𝑄 + arcsin2   √𝑠  − arcsin2  √𝑠 +  𝑄), 

which is again an increasing function of 𝑠, but now 𝑃 decreases with increasing 𝑠. 
Substituting 𝑃 =  0, we obtain immediately the following elegant result. 

Corollary (5.3.9)[225]: If 𝜓 is a non-constant complete Bernstein function such that 

𝜓(0)  =  0, then 

2

𝜋
arcsin2  √

−𝜇2𝜓′′(𝜇2)

2𝜓′(𝜇2)
 ≤  𝜗𝜇 ≤

𝜋

2
−
2

𝜋
arcsin2   √1 + 

𝜇2𝜓′′(𝜇2)

2𝜓′(𝜇2)
 . 

Lemma (5.3.10)[225]: If 𝜓 is a non-constant complete Bernstein function such that 𝜓(0)  =
 0, then 

lim inf
𝜇→0+

 𝜗𝜇 ≤
3𝜋

8
 . 

If 𝜓 is unbounded, then also 

lim inf
𝜇→∞

  𝜗𝜇  ≤
3𝜋

8
 . 

Proof: Suppose that lim inf
𝜇→0+

  𝜗𝜇 >
3𝜋

8
 . Then there are 𝜇0 > 0 and 𝑞 ∈  (0, 1) such that 𝜗𝜇 ≥

𝜋

2
−
𝑞𝜋

8
 for 𝜇 ∈ (0, 𝜇0). By Corollary (5.3.9), 
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arcsin2   √1 +
𝜇2𝜓′′(𝜇2)

2𝜓′(𝜇2)
 ≤

𝑞𝜋2

16
 

for 𝜇 ∈ (0, 𝜇0), and hence 

−𝜇2𝜓′′(𝜇2)

𝜓′(𝜇2)
 ≥  2 −  2  (𝑠𝑖𝑛 

𝜋√𝑞

4
 )

2

 

for 𝜇 ∈ (0, 𝜇0). If 𝛼 denotes the right-hand side, then 𝛼 >  1. By integration (see [235]), we 

have 𝜓′(𝜇2)/𝜓′(𝜇0
2)  ≥  (𝜇0

2/𝜇2)𝛼 for all 𝜇 ∈ (0, 𝜇0), which contradicts integrability of 𝜓′ 
at 0. This proves the first statement of the lemma. 

In a similar manner, if lim inf
 𝜇→∞

  𝜗𝜇  >
3𝜋

8
 , then there are 𝜇0  >  0 and 𝑞 ∈  (0, 1) such that 

𝜗𝜇 ≥
𝜋

2
−
𝑞𝜋

8
 for 𝜇 ∈ (𝜇0, ∞). Again this implies 

−𝜇2𝜓′′(𝜇2)

𝜓′(𝜇2)
 ≥  2 −  2  (𝑠𝑖𝑛 

𝜋 √𝑞

4
 )

2

 

for 𝜇 ∈  (𝜇0, ∞). If 𝛼 denotes the right-hand side, then 𝛼 >  1, and by integration, 𝜓′(𝜇2)/
𝜓′(𝜇0

2) ≤ (𝜇0
2/𝜇2)𝛼 for all 𝜇 ∈  (𝜇0, ∞). This implies integrability of 𝜓′ at ∞. 

We conjecture that the above lemma holds with 
3𝜋

8
 replaced with 

𝜋

4
 . An example of a 

complete Bernstein function 𝜓 for which the set of partial limits of 𝜗𝜇 as 𝜇 → 0+ is equal to 

[0,
𝜋

2
 ] is given in [238]. 

Lemma (5.3.11)[225]: If 𝜓 is a non-constant complete Bernstein function such that 𝜓(0)  =
 0, then for all 𝜇 >  0, 

|
𝑑𝜗𝜇
𝑑𝜇

| <
3

𝜇
 . 

Proof: By (73) and the Cauchy’s mean value theorem, for some 𝜉𝓏 ∈ (𝜇
2𝓏2, 𝜇2) and 𝜉1/𝓏 ∈

(𝜇2, 𝜇2/𝓏2) (where 𝓏 ∈ (0, 1)), 
𝑑𝜗𝜇
𝑑𝜇

=
2

𝜋𝜇
 ∫  

1

0

1

1 − 𝓏2
 (
𝜉𝓏𝜓′′(𝜉𝓏) + 𝜓

′(𝜉𝓏)

𝜓′(𝜉𝓏)
 −
 𝜉1𝓏𝜓

′′(𝜉1𝓏) + 𝜓
′(𝜉1𝓏)

𝜓′(𝜉1𝓏)
)  𝑑𝓏 

=
2

𝜋𝜇
 ∫  

1

0

1

1 − 𝓏2
( 
𝜉𝓏𝜓

′′(𝜉𝓏)

𝜓(𝜉𝓏)
 −
𝜉1/𝓏𝜓

′′(𝜉1/𝓏)

𝜓′(𝜉1/𝓏)
)  𝑑𝓏. 

By (64), 0 ≤ −𝜉𝜓′′(𝜉)  ≤  2𝜓′(𝜉) and 0 ≤ 𝜉2𝜓(3)(𝜉) ≤ 6𝜓′(𝜉). Hence, 

𝜉
𝑑

𝑑𝜉
(
𝜉𝜓′′(𝜉)

𝜓′(𝜉)
 ) =

𝜉2𝜓(3)(𝜉)

𝜓′(𝜉)
 −
−𝜉𝜓′′(𝜉)

𝜓′(𝜉)
 −
(−𝜉𝜓′′(𝜉))

2

(𝜓′(𝜉))
2  ∈  [−6, 6]. 

Furthermore, 𝜉𝓏𝜓′′(𝜉𝓏)/𝜓′(𝜉𝓏)  − 𝜉1/𝓏𝜓′′(𝜉1/𝓏)/𝜓′(𝜉1/𝓏)  ∈  [−2, 2]. It follows that 

|
𝑑𝜗𝜇
𝑑𝜇

|  ≤
2

𝜋𝜇
 ∫  

1

0

1

1 − 𝓏2
 𝑚𝑖𝑛 (2,∫  

𝜉𝓏

𝜉1/𝓏

  |
𝑑

𝑑𝑟
 (
𝑟𝜓′′(𝑟)

𝜓′(𝑟)
) | 𝑑𝑟)𝑑𝓏 

≤
2

𝜋𝜇
 ∫  

1

0

1

1 − 𝓏2
 𝑚𝑖𝑛 (2, 6 𝑙𝑜𝑔

𝜉1/𝓏

𝜉𝓏
)𝑑𝓏. 

Recall that 𝜉1/𝓏/𝜉𝓏  ≤ 𝓏
−4. Hence, 
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|
𝑑𝜗𝜇
𝑑𝜇

| ≤
2

𝜋𝜇
 ∫  

1

0

𝑚𝑖𝑛(2,−24 𝑙𝑜𝑔 𝓏)

 1 − 𝓏2
 𝑑𝓏. 

Since − 𝑙𝑜𝑔 𝓏 ≤
1

𝓏
− 1,we have 

|
𝑑𝜗𝜇
𝑑𝜇

|  ≤
2

𝜋𝜇
 ∫  

1

0

𝑚𝑖𝑛(2, 24(1𝓏 −  1))

1 − 𝓏2
 𝑑𝓏 =

100 𝑙𝑜𝑔 5 −  48 𝑙𝑜𝑔24

𝜋𝜇
 <

3

𝜇
 . 

We conjecture that in fact − 
1

𝜇
 <

𝑑

𝑑𝜇
𝜗𝜇  ≤

1

2𝜇
. We with the following simple example. 

Example (5.3.12)[225]: Let 𝜓(𝜉)  =  𝜉
𝛼

2  +  𝜉𝛽/2, where 0 < 𝛽 <  𝛼  By a short calculation 

𝜓(𝜇2) − 𝜓(𝜇2𝓏2)

𝓏2(𝜓(𝜇2/𝓏2) − 𝜓(𝜇2))
 =

1

𝓏2−𝛼
( 
1 − 𝓏𝛼

1 − 𝓏𝛽
+

1

𝜇𝛼−𝛽
) (
1 − 𝓏𝛼

1 − 𝓏𝛽
+
𝓏𝛼−𝛽

𝜇𝛼−𝛽
)

−1

 . 

If we denote 𝑤 =  (1 − 𝓏𝛼)/(1 − 𝓏𝛽), then 

𝜓(𝜇2) − 𝜓(𝜇2𝓏2)

𝓏2(𝜓(𝜇2/𝓏2) − 𝜓(𝜇2))
 =

1

𝓏2−𝛼
 
𝜇𝛼−𝛽𝑤 + 1

𝜇𝛼−𝛽𝑤 + 𝓏𝛼−𝛽
 =

1

𝓏2−𝛼
  (1 +

1 − 𝓏𝛼−𝛽

𝜇𝛼−𝛽𝑤 + 𝓏𝛼−𝛽
)  . 

As in the last equality of (72), we obtain 

𝜗𝜇 =
(2 −  𝛼)𝜋

8
 +
1

𝜋
 ∫  

1

0

1

1 − 𝓏2
 𝑙𝑜𝑔 (1 +

1 − 𝓏𝛼−𝛽

𝜇𝛼−𝛽𝑤 + 𝓏𝛼−𝛽
)  𝑑𝓏. 

Clearly, the integrand is nonnegative. Since 𝑙𝑜𝑔(1 +  𝑠)  ≤  𝑠, 𝓏𝛼−𝛽  ≥ 𝓏2 and 𝑤 ≥  1, 

∫  
1

0

1

1 − 𝓏2
 𝑙𝑜𝑔 (1 +

1 − 𝓏𝛼−𝛽

𝜇𝛼−𝛽𝑤 +  1
)  𝑑𝓏 ≤ ∫  

1

0

1

1 − 𝓏2
1 − 𝓏𝛼−𝛽

𝜇𝛼−𝛽𝑤 + 𝓏𝛼−𝛽
 𝑑𝓏 

≤ ∫  
1

0

1

1 − 𝓏2
1 − 𝓏2

𝜇𝛼−𝛽
𝑑𝓏 =

1

𝜇𝛼−𝛽
 . 

Therefore, 
(2 −  𝛼)𝜋

8
 ≤  𝜗𝜇  ≤

(2 −  𝛼)𝜋

8
 +

1

𝜋𝜇𝛼−𝛽
 . 

The remaining part of the article we will need the following simple estimate of ℒ𝐹𝜇 and a 

more refined estimate of 𝐺𝜇. 

Lemma (5.3.13)[225]: If 𝜓 is a non-constant complete Bernstein function such that 𝜓(0)  =
 0, then for all 𝜇 >  0 and 𝜉 such that 𝑅𝑒 𝜉 >  0 

|ℒ𝐹𝜇(𝜉)| ≤  2 √2
𝜇

|𝜇2  +  𝜉2|
 √
𝜓′(𝜇2)(𝜇2 − |𝜉|2)

𝜓(𝜇2) − 𝜓(|𝜉|2)
 . 

Proof: Recall that (𝜇2  +  𝜉2)ℒ𝐹𝜇(𝜉)  =  𝜇 (𝜓𝜇(𝜇
2))

−1/2
𝜓𝜇
†(𝜉) is a complete Bernstein 

function of 𝜉, and hence by [112] and [238], 

|𝜇2 + 𝜉2||ℒ𝐹𝜇(𝜉)| ≤  √2 (𝜇
2 + |𝜉|2)ℒ𝐹𝜇(|𝜉|) ≤  2 √2𝜇 √

𝜓′(𝜇2)(𝜇2 − |𝜉|2)

𝜓(𝜇2) −  𝜓(|𝜉|2)
 

for all 𝜉 such that 𝑅𝑒 𝜉 >  0. 
Lemma (5.3.14)[225]: If 𝜓 is a non-constant complete Bernstein function such that 𝜓(0)  =
 0, then for all 𝜇, 𝑥 >  0 such that 𝜇𝑥 ≠ 1, 
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𝐺𝜇(𝑥) ≤
1

𝜋𝑥

𝜓(1/𝑥2)

𝜓(𝜇2)
 √
𝜓′(𝜇2)

𝜓(𝜇2)
  
1 −  𝜓(𝜇2)/(𝜇2𝑥2𝜓(1/𝑥2))

1 −  𝜓(1/𝑥2)/𝜓(𝜇2)
 .  

In particular, if 𝜓 is unbounded, then 

lim sup
𝜇→∞

 (𝜇𝜓(𝜇2)𝐺𝜇(𝑥)) ≤
𝜓(1/𝑥2)

𝜋𝑥
 . 

Proof: Recall that 𝜓𝜇
†(𝜉)  ≥  𝜓𝜇

†(0)  =  𝜓𝜇(0)  =  1. Hence, 

𝛾𝜇(𝑑𝜉) ≤
1

𝜋𝜇√𝜓𝜇(𝜇
2)
lim
𝜀→0+

  𝐼𝑚 𝜓𝜇(−𝑒
−𝑖𝜀𝜉2)𝑑𝜉. 

After a substitution 𝜉 =  √𝑠 it follows that 

𝐺𝜇(𝑥) = ∫  
∞

0

 𝑒−𝜉𝑥𝛾𝜇(𝑑𝜉) ≤
1

2𝜋𝜇√𝜓𝜇(𝜇
2)
lim
𝜀→0+

 ∫  
∞

0

 √𝑠 𝑒−𝑥√𝑠   
𝐼𝑚 𝜓𝜇(−𝑒

−𝑖𝜀𝑠)𝑑𝑠

𝑠
 .  

Since 𝑥 √𝑠 𝑒−𝑥√𝑠   ≤  2/(1 + 𝑥2𝑠), we have 

𝐺𝜇(𝑥) ≤
1

𝜋𝜇𝑥√𝜓𝜇(𝜇
2)
 lim
𝜀→0+

 ∫  
∞

0

1

1 + 𝑥2𝑠
 
𝐼𝑚 𝜓𝜇(−𝑒

−𝑖𝜀𝑠)𝑑𝑠

𝑠
 ≤

𝜓𝜇(1/𝑥
2) − 1

𝜋𝜇𝑥√𝜓𝜇(𝜇
2)
 ; 

for the last inequality note that the integral converges to the integral term in the 

representation (64) for the complete Bernstein function 𝜓𝜇, and we have 𝜓𝜇(0)  =  1 

(therefore the inequality becomes equality if 𝜓𝜇 contains no linear term, that is, if 𝜓 is 

unbounded). To prove the first statement, it remains to use the definition of 𝜓𝜇. The other 

statement of the lemma follows from the first one by the inequality 𝜉𝜓′(𝜉)  ≤  𝜓(𝜉). 
We implicitly assume that 𝜓 is a non-constant complete Bernstein function such that 

𝜓(0)  =  0, that is, �̃�  =  0 in the representation (64) for 𝜓. By c and ν we denote the constant 

and the measure in the representation (64) for 𝜓. Finally, we let 𝐷 =  (−𝑎, 𝑎) for some 𝑎 >
 0. 

Recall that 𝐴 =  𝜓(−𝑑2/𝑑𝑥2), and for 𝑓 ∈  𝐶𝑐
∞(𝑅) we have, as in (68), 

𝐴𝑓(𝑥)  =  −𝑐𝑓′′(𝑥)  +  𝑝𝑣∫  
∞

−∞

 (𝑓(𝑥)  −  𝑓(𝑦))𝜈(𝑥 −  𝑦)𝑑𝑦 

=  −𝑐𝑓′′(𝑥)  + ∫  
∞

0

(2𝑓(𝑥)  −  𝑓(𝑥 +  𝑧)  −  𝑓(𝑥 −  𝑧))𝜈(𝑧)𝑑𝑧.              (76) 

We denote the right-hand side by 𝒜𝑓(𝑥) (with a calligraphic letter 𝒜) whenever the integral 

converges and, if 𝑐 >  0, 𝑓′′ is well-defined. The following estimates of 𝒜𝑓(𝑥) are proved 

in [236] in the special case 𝜓(𝜉)  =  (𝜉 +  1)1/2  −  1, but their proofs rely only on the 

symmetry, unimodality and positivity of the kernel function 𝜈. Note that in [236] the 

notation 𝒜0 is used for 𝒜. 

Lemma (5.3.15)[225]: (See [236].) Let 𝑥 ∈  𝑅, 𝑏 >  0, and let 𝑔 have an absolutely 

continuous derivative in (𝑥 −  𝑏, 𝑥 +  𝑏). Then 

|𝒜𝑔(𝑥)| ≤  𝑐|𝑔′′(𝑥)| + ( sup
𝑦∈(𝑥−𝑏,𝑥+𝑏)

  |𝑔′′(𝑦)|)∫  
𝑏

0

 

= 𝓏2𝜈(𝓏)𝑑𝓏 + ∫  
𝑅\(𝑥−𝑏,𝑥+𝑏)

 (|𝑔(𝑥)|  +  |𝑔(𝑦)|)𝜈(𝑦 −  𝑥)𝑑𝑦. 

As in [236], [49], [97],for 𝑏 >  0 we define an auxiliary function: 
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𝑞(𝑥)  =

{
 

 
0                                               𝑓𝑜𝑟 𝑥 ∈  (−∞,−𝑏],

(1/2)(𝑥/𝑏 +  1)2                       𝑓𝑜𝑟 𝑥 ∈  [−𝑏, 0],

1 − (1/2)(𝑥/𝑏 −  1)2               𝑓𝑜𝑟 𝑥 ∈  [0, 𝑏],

1                                                      𝑓𝑜𝑟 𝑥 ∈  [𝑏,∞),

                           (77) 

Note that 𝑞 is 𝐶1, 𝑞′ is absolutely continuous, 0 ≤  𝑞′′(𝑥)  ≤  1/𝑏2 (for 𝑥 ∈

 𝑅 \ {−𝑏, 0, 𝑏}), the distributional derivative 𝑞(3) is a finite signed measure, and 𝑞(𝑥)  +
 𝑞(−𝑥)  =  1. 

Lemma (5.3.16)[225]: (See [236].) Let 𝑏 >  0, let 𝑓 ∈  𝐿1(𝑅), and suppose that the second 

derivative 𝑓′′(𝑥) exists for 𝑥 ∈  [−𝑏, 𝑏] and it is continuous in [−𝑏, 𝑏]. Define 

𝑀−1  = ∫  
∞

0

 |𝑓(𝑥)|𝑑𝑥,                                    𝑀0 = sup
𝑥∈[−𝑏,𝑏]

  |𝑓(𝑥)|, 

𝑀1 = sup
𝑥∈[−𝑏,𝑏]

  |𝑓′(𝑥)|,                                    𝑀2 = sup
𝑥∈[−𝑏,𝑏]

  |𝑓′′(𝑥)|. 

Let 𝑞(𝑥) be given by (77), and define 𝑔(𝑥)  =  𝑞(𝑥)𝑓(𝑥). For 𝑥 ∈  (−∞, 0), we have 

|𝒜𝑔(𝑥)|  ≤  𝐶(𝑏, 𝜓)(𝑀−1 +𝑀0 +𝑀1 +𝑀2). 
More precisely, for 𝑥 ∈  (−∞,−𝑏] we have 

|𝒜𝑔(𝑥)| ≤
𝑀0

2𝑏2
 ∫  

2𝑏

0

 𝓏2𝜈(𝓏)𝑑𝓏 +  𝜈(2𝑏)𝑀−1 

and for 𝑥 ∈  (−𝑏, 0), 

|𝒜𝑔(𝑥)|  ≤  𝑀2𝑐 + (
𝑀0

𝑏2
+
2𝑀1
𝑏

+𝑀2) ∫  
𝑏

0

 𝓏2𝜈(𝓏)𝑑𝓏 + 2𝑀0  ∫  
∞

𝑏

 𝜈(𝓏)𝑑𝓏 + 𝜈(𝑏)𝑀−1. 

Recall that 𝐷 =  (−𝑎, 𝑎). Following [236], [49], [97], for 𝑛 ≥  1, let μ˜n be the largest 

solution of 

𝑎�̃�𝑛 + 𝜗�̃�𝑛  =
𝑛𝜋

2
 ,                                                     (78) 

with 𝜗𝜇 defined in (61); this agrees with the definition of 𝜇𝑛 in (62), but we choose to use 

the notation �̃�𝑛, so that all approximations are clearly distinguished from true values by the 

presence of a tilde. Although we are interested in large n only, note that by Lemma (5.3.10), 

the equation 𝑎𝜇 + 𝜗𝜇 =
𝑛𝜋

2
 has a solution for all 𝑛 ≥  1, and every such solution satisfies 

(𝑛 − 1)𝜋

2𝑎
≤ �̃�𝑛  ≤

𝑛𝜋

2𝑎
 . 

We remark that (78) may fail to have a unique solution for 𝑛 =  1 (for example, when 𝑎 =

 1 and 𝜓(𝜉)  =  𝜉/(104 + 𝜉) + 𝜉/107). Nevertheless, if 𝑛 ≥  3 and 𝜇 ≥
(𝑛−1)𝜋

2𝑎
 =

𝜋

𝑎
 , then, 

by Lemma (5.3.11), 
𝑑

𝑑𝜇
 (𝑎𝜇 + 𝜗𝜇) >  𝑎 −

3

𝜇
 ≥  𝑎 −

3𝑎

𝜋
 >  0, 

and so the solution �̃�𝑛 is in fact unique. 

We let 

�̃�𝑛  =  𝜓(�̃�𝑛
2). 

In order to show that �̃�𝑛 is close to some eigenvalue of 𝐴𝐷, we construct an approximate 

eigenfunction �̃�𝑛 of 𝐴𝐷, using the eigenfunctions 𝐹�̃�𝑛 (𝑎 − 𝑥), 𝐹�̃�𝑛  (𝑎 + 𝑥) for the one-sided 

problems corresponding to 𝐴(−∞,𝑎) and 𝐴(−𝑎,∞). As in [236], [49], [97], we define 
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�̃�𝑛(𝑥)  =  𝑞(−𝑥)𝐹�̃�𝑛  (𝑎 +  𝑥)  − (−1)
𝑛𝑞(𝑥)𝐹�̃�𝑛  (𝑎 −  𝑥),              (79) 

with the auxiliary function 𝑞 defined by (77). Here 𝑥 ∈  𝑅, but we have �̃�𝑛(𝑥)  =  0 for 𝑥 ∉
𝐷, so that �̃�′𝑛 is equal to zero in the complement of 𝐷. Clearly, �̃�𝑛 is continuously 

differentiable in 𝐷, �̃�𝑛
′  is absolutely continuous in 𝐷, �̃�𝑛

′′ exists in 𝐷 \{−𝑏, 𝑏}, and �̃�𝑛
′′ is 

locally bounded in 𝐷. Note that �̃�𝑛 depends on 𝑎 and 𝑛, while �̃�𝑛(𝑥) depends also on 𝑏. We 

could fix 𝑏 in order to optimise the constants (in many cases 𝑏 =
1

3
𝑎 seems to be a 

reasonable choice), but since we do not track the exact value of the constants, we will simply 

indicate their dependence on 𝑏. Note also that �̃�𝑛 is not normed in 𝐿2(𝐷), its norm is 

approximately equal to √𝑎 (see Lemma (5.3.19)). 

The following result is intuitively clear, although its formal proof is rather long and 

technical. 

Lemma (5.3.17)[225]: (See [236].) We have �̃�𝑛  ∈ 𝒟(𝐴𝐷) and 𝐴𝐷�̃�𝑛(𝑥)  = 𝒜�̃�𝑛(𝑥) for 

almost all 𝑥 ∈  𝐷. 

Proof: For brevity, in this proof we write �̃� = �̃�𝑛 and �̃�  = �̃�𝑛. The domain of 𝐴𝐷 is 

described in Definition (5.3.3): we need to prove that �̃� ∈ 𝒟(ℰ) and that 〈�̃�,𝒜𝑔〉 =
〈𝒜�̃�, 𝑔〉 for all 𝑔 ∈ 𝐶𝑐

∞(𝐷). We first verify the latter condition. 

Note that 𝒜�̃�(𝑥) is well-defined for all 𝑥 ∈  𝐷 \ {−𝑏, 𝑏}, since �̃� is smooth in 𝐷 \ {−𝑏, 𝑏} 
and bounded on 𝑅. Let 𝑔 ∈  𝐶𝑐

∞(𝐷). Since �̃�′ is absolutely continuous in (−𝑎, 𝑎), 
integration by parts gives 

∫  
𝑎

−𝑎

(−𝑐�̃�′′(𝑥))𝑔(𝑥)𝑑𝑥 = ∫  
𝑎

−𝑎

 �̃�(𝑥)(−𝑐𝑔′′(𝑥))𝑑𝑥. 

Furthermore, by the definition of 𝒜 (see (76)), 

∫  
𝑎

−𝑎

 𝒜�̃�(𝑥)𝑔(𝑥)𝑑𝑥 − ∫  
𝑎

−𝑎

 �̃�(𝑥)𝐴𝑔(𝑥)𝑑𝑥 

= ∫  
𝑎

−𝑎

(∫  
∞

0

(𝑔(𝑥 + 𝓏)�̃�(𝑥) + 𝑔(𝑥 − 𝑧)�̃�(𝑥) − 𝑔(𝑥)�̃�(𝑥 + 𝓏)

− 𝑔(𝑥)�̃�(𝑥 − 𝓏))𝜈(𝓏)𝑑𝓏)𝑑𝑥. 

We claim that the double integral exists. Then, by Fubini, it is equal to 0, and so 〈�̃�,𝒜𝑔〉 =
〈𝒜�̃�, 𝑔〉, as desired. 

Denote the integrand by 𝐼(𝑥, 𝓏)𝜈(𝓏), and let 𝜀 =
1

3
 dist(𝑠𝑢𝑝𝑝 𝑔, 𝑅 \ 𝐷), so that supp 𝑔 ⊆

 (−𝑎 + 3𝜀, 𝑎 − 3𝜀). When 𝓏 ≥  𝜀, then |𝐼(𝑥, 𝓏)| ≤  4 ‖�̃�‖𝐿∞(𝑅) ‖𝑔‖𝐿∞(𝑅). Suppose that 

𝓏 ∈ (0, 𝜀). If 𝑥 ∉ (−𝑎 +  2𝜀, 𝑎 −  2𝜀), then 𝐼(𝑥, 𝓏)  =  0. Otherwise, by first-order 

Taylor’s expansion of 𝐼(𝑥, 𝓏) around 𝓏 = 0 (note that 𝐼(𝑥, 0) =
𝜕

𝜕𝓏
 𝐼(𝑥, 0)  =  0) with the 

remainder in the integral form, we obtain that 

|𝐼(𝑥, 𝓏)| ≤ ∫  
𝓏

0

(𝓏 − 𝑠)
𝜕2

𝜕𝑠2
    𝐼(𝑥, 𝑠)𝑑𝑠 

≤ 𝓏2( ‖�̃�‖𝐿∞(𝑅) ‖𝑔
′′‖𝐿∞(𝑅)  + ‖�̃�

′′‖𝐿∞((−𝑎+𝜀,𝑎−𝜀)) ‖𝑔‖𝐿∞(𝑅)) 

(recall that �̃�′′ is bounded in (−𝑎 +  𝜀, 𝑎 −  𝜀)). We conclude that |𝐼(𝑥, 𝓏)𝜈(𝓏)|  ≤
 𝐶1( �̃�, 𝑔) 𝑚𝑖𝑛(1, 𝓏

2)𝜈(𝓏), which implies joint integrability of 𝐼(𝑥, 𝓏)𝜈(𝓏). Our claim is 

proved. 
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It remains to verify that �̃� ∈ 𝒟(ℰ), that is, (1 +  𝜓(𝜉2))|ℱ�̃�(𝜉)|2 is integrable. Let 𝑓(𝑥)  =

 𝑞(𝑎 −  𝑥)𝐹�̃�(𝑥), so that �̃�(𝑥)  =  𝑓(𝑎 +  𝑥)  − (−1)𝑛𝑓(𝑎 −  𝑥) (see (79)). It suffices to 

prove integrability of (1 +  𝜓(𝜉2))|ℱ𝑓(𝜉)|2. 

Fix 𝜀 >  0 and let �̃�(𝑥)  =  𝑞(𝑎 −  𝑥)𝑒𝜀𝑥. Since the distributional derivatives 𝑞, 𝑞′ and 𝑞′′ 
are integrable functions, and the third distributional derivative of 𝑞(𝑥) is a finite signed 

measure on 𝑅, the function �̃�(𝑥) has the same property. Therefore, ℱ𝑞(𝜉) and ℱ𝑞(3)(𝜉)  =
 −𝑖𝜉3ℱ𝑞(𝜉) are bounded functions, and so |ℱ�̃�(𝜉)|  ≤  𝐶2(𝜀, 𝑎, 𝑏)/(1 + |𝜉|)

3. The Fourier 

transform of 𝑒−𝜀𝑥𝐹�̃�(𝑥) is equal to ℒ𝐹�̃�(𝜀 + 𝑖𝜉), and the Fourier transform of 𝑓(𝑥)  =

 𝑞(𝑎 −  𝑥)𝐹�̃�(𝑥)  =  �̃�(𝑥)𝑒
−𝜀𝑥𝐹�̃�(𝑥) is given by the convolution 

ℱ𝑓(𝜉) =
1

2𝜋
∫  
∞

−∞

 ℱ�̃�(𝜉 −  𝑠)ℒ𝐹�̃�(𝜀 +  𝑖𝑠)𝑑𝑠. 

Suppose that 𝜉 >  0. To estimate |ℱ𝑓(𝜉)|, we write 

ℱ𝑓(𝜉) =
1

2𝜋
∫  
∞

𝜉/2

 ℱ�̃�(𝜉 − 𝑠)ℒ𝐹�̃�(𝜀 + 𝑖𝑠)𝑑𝑠 +
1

2𝜋
 ∫  

∞

𝜉/2

 ℱ�̃�(𝑠)ℒ𝐹�̃�(𝜀 + 𝑖(𝜉 − 𝑠))𝑑𝑠. (80) 

By Lemma (5.3.13), we have 

|ℒ𝐹�̃�(𝜀 + 𝑖𝑠)| ≤  2 √2
�̃�

|�̃�2 + (𝜀 + 𝑖𝑠)2|
√
𝜓′(�̃�2)(�̃�2 − |𝜀 + 𝑖𝑠|2)

𝜓(�̃�2) − 𝜓(|𝜀 + 𝑖𝑠|2)
 

≤  𝐶3(𝜀, �̃�, 𝜓 )  
1

1 + 𝑠
  √

1

1 + 𝜓(𝑠2)
 

(for the second inequality observe that the expression under the square root is bounded by a 

constant when 𝑠 ≤  2�̃� and by 𝜓′(�̃�2)(1 + 𝑠2)/(𝜓(𝑠2) − 𝜓(�̃�2)) when 𝑠 > 2�̃�). The right-

hand side decreases with 𝑠 >  0. Hence, 

|∫  
∞

𝜉/2

 ℱ�̃�(𝜉 −  𝑠)ℒ𝐹�̃�(𝜀 + 𝑖𝑠)𝑑𝑠|   ≤
𝐶3(𝜀, �̃�, 𝜓)

(1 + 𝜉/2)(1 + 𝜓(𝜉2/4))
1/2
 ∫  

∞

𝜉/2

 |ℱ�̃�(𝜉 − 𝑠)|𝑑𝑠 

≤
𝐶3(𝜀, �̃�, 𝜓)𝐶2(𝜀, 𝑎, 𝑏)

(1 + 𝜉/2)(1 + 𝜓(𝜉2/4))
1/2

∫  
∞

𝜉/2

1

(1 + |𝜉 − 𝑠|)3
 𝑑𝑠 

≤
8𝐶3(𝜀, �̃�, 𝜓)𝐶2(𝜀, 𝑎, 𝑏)

(1 + 𝜉)(1 + 𝜓(𝜉2))
1/2
 ; 

in the last inequality we used the fact that 4𝜓(𝜉2/4)  ≥  𝜓(𝜉2) and that the integral is 

bounded by 1. The estimate of the other integral in (80) is simpler: |ℒ𝐹�̃�(𝜀 +  𝑖𝑠)|  ≤

 𝐶4(𝜀, �̃�) for all 𝑠 ∈  𝑅, and hence 

|∫  
∞

𝜉/2

 ℱ�̃�(𝑠)ℒ𝐹�̃�(𝜀 + 𝑖(𝜉 − 𝑠))𝑑𝑠| ≤  𝐶4(𝜀, �̃�)∫  
∞

𝜉/2

 |ℱ�̃�(𝑠)|𝑑𝑠 ≤
𝐶4(𝜀, �̃�)𝐶2(𝜀, 𝑎, 𝑏)

2(1 + 𝜉/2)2
 . 

Therefore, for 𝜉 >  0, 

|ℱ𝑓(𝜉)| ≤ 𝐶5(𝜀, 𝑎, 𝑏, �̃�) (
1

(1 + |𝜉|)(1 + 𝜓(𝜉2))
1/2
 +

1

(1 + |𝜉|)2
)  . 

Since ℱ𝑓(−𝜉)  = ℱ𝑓(𝜉)̅̅ ̅̅ ̅̅ ̅̅ , the above estimate extends to all 𝜉 ∈  𝑅. We conclude that for all 

𝜉 ∈  𝑅, 
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(1 + 𝜓(𝜉2))|ℱ𝑓(𝜉)|2  ≤ 2(𝐶5(𝜀, 𝑎, 𝑏, �̃�))
2
(

1

(1 + |𝜉|)2
 +
1 + 𝜓(𝜉2)

(1 + |𝜉|)4
 ) , 

and the right-hand side is integrable because (1 + |𝜉|)−2(1 +  𝜓(𝜉2)) is bounded. 

Following [236], we introduce the following notation: 

𝜈0(𝑥) = 𝑐 + ∫  
𝑥

0

 𝓏2𝜈(𝓏)𝑑𝓏,                            𝜈∞(𝑥) = ∫  
∞

𝑥

𝜈(𝓏)𝑑𝓏, 

𝐼𝜇 = ∫  
∞

0

 𝐺𝜇(𝑥)𝑑𝑥,                                   𝐺𝜇,𝑏(𝑥) = 𝐺𝜇(𝑥 − 𝑏) + 𝐺𝜇(𝑥 + 𝑏). 

We recall two fundamental estimates, which were proved in [236] for 𝜓(𝜉) = (𝜉 + 1)1/2  −
 1, but their proofs work for general non-constant complete Bernstein functions 𝜓 such that 

𝜓(0)  =  0. One minor change is required in the proof of Lemma (5.3.18): an extra term 

𝑀2𝑐 appears when Lemma (5.3.16) is applied (as compared to the application of [236] in 

the proof of [236]). This extra term is absorbed into 𝑀2𝜈0(𝑏). Also, note two typos in the 

first displayed formula in the original statement of [236]: the norm in the left-hand side 

should not be squared, and the term �̃�𝑛𝐺�̃�𝑛,𝑏(𝑎) is missing in the right-hand side. (These 

typos did not appear in the other displayed formula in the original statement, which was the 

one used later in the proof of the main result.) 

Lemma (5.3.18)[225]: (See [236].) We have 

‖𝐴𝐷�̃�𝑛 − �̃�𝑛�̃�𝑛‖𝐿2(𝐷)  

≤ 𝐶(𝑎, 𝑏, 𝜓)((1 + �̃�𝑛)𝐺�̃�𝑛,𝑏(𝑎) − 𝐺�̃�𝑛,𝑏
′ (𝑎) + 𝐺�̃�𝑛,𝑏

′′ (𝑎) + 𝐼�̃�𝑛 +
1

�̃�𝑛
 ). 

More precisely, we have 

‖𝐴𝐷�̃�𝑛 − �̃�𝑛�̃�𝑛‖𝐿2(𝐷)
2

 ≤ 2(𝑎 −  𝑏) (
𝐺�̃�𝑛,𝑏(𝑎)𝜈0(2𝑏)

2𝑏2
 +  𝜈(2𝑏)𝐼�̃�𝑛 +

2𝜈(𝑎)

�̃�𝑛
)

2

 

+ 2𝑏(
(𝐺�̃�𝑛,𝑏(𝑎) − 2𝑏𝐺�̃�𝑛,𝑏

′ (𝑎) + 𝑏2𝐺�̃�𝑛,𝑏
′′ (𝑎)) 𝜈0(𝑏)

𝑏2
) 

+ 2𝐺�̃�𝑛,𝑏(𝑎)𝜈∞(𝑏) + 𝜈(𝑏)𝐼�̃�𝑛  +
�̃�𝑛𝐺�̃�𝑛,𝑏(𝑎)

2
 +
2𝜈(𝑎)

�̃�𝑛
)

2

 . 

Lemma (5.3.19)[225]: (See [236].) We have 

  ‖�̃�𝑛‖𝐿2(𝐷)
2  −  𝑎|≤  8(𝐼�̃�𝑛 + 1/�̃�𝑛). 

More precisely, 

𝑎 −
𝑠𝑖𝑛(𝜗�̃�𝑛 )

�̃�𝑛
 −  4𝐼�̃�𝑛  ≤ ‖�̃�𝑛‖𝐿2(𝐷)

2  ≤  𝑎 +
𝑠𝑖𝑛(𝜗�̃�𝑛)

�̃�𝑛
 +  4𝐼�̃�𝑛  (1 +  𝑠𝑖𝑛 𝜗�̃�𝑛 ). 

Lemma (5.3.20)[225]: If 𝜓 is unbounded, then for 𝑛 ≥  2, 

‖𝐴𝐷�̃�𝑛 − �̃�𝑛�̃�𝑛‖𝐿2(𝐷)  ≤
𝐶(𝑎, 𝑏, 𝜓)

𝑛
 

And 

𝑎 −
20𝑎

𝑛𝜋
 ≤ ‖�̃�𝑛‖𝐿2(𝐷)

2  ≤  𝑎 +
36𝑎

𝑛𝜋
 . 

Proof: By [112], 
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𝐼𝜇 = ℒ𝐺𝜇(0) =
cos  𝜗𝜇
𝜇

 − ℒ𝐹𝜇(0
+) =

𝑐𝑜𝑠 𝜗𝜇
𝜇

 − √
𝜓′(𝜇2)

𝜓(𝜇2)
 ≤

1

𝜇
 .                (81) 

Furthermore, by complete monotonicity, 

𝐼𝜇 ≥ ∫  
𝑥

0

 𝐺𝜇(𝓏)𝑑𝓏 ≥ ∫  
𝑥

0

(𝐺𝜇(𝑥) − 𝐺𝜇
′(𝑥)(𝑥 − 𝓏) +

1

2
𝐺𝜇
′(𝑥)(𝑥 − 𝓏)2) 𝑑𝓏 

= 𝑥𝐺𝜇(𝑥) −
1

2
𝑥2𝐺𝜇

′(𝑥) +
1

6
𝑥3𝐺𝜇

′(𝑥), 

so that 

𝐺𝜇(𝑥) ≤
1

𝜇𝑥
 ,              𝐺𝜇

′(𝑥) ≤
2

𝜇𝑥2
 ,          𝐺𝜇

′′(𝑥) ≤
6

𝜇𝑥3
 . 

By Lemma (5.3.14), for 𝜇 ≥  �̃�2 

 𝜓(𝜇2)𝐺𝜇(𝑥) ≤
𝐶(𝜓, 𝑥)

𝜇
 . 

Finally, �̃�𝑛  ≥
(𝑛−1)𝜋

2𝑎
 ≥

𝑛𝜋

4𝑎
 for 𝑛 ≥  2. The result follows from Lemmas (5.3.18) and 

(5.3.19).  

Let 𝜎(𝐴𝐷) denote the spectrum of 𝐴𝐷. Recall that the spectrum of 𝐴𝐷 is purely 

discrete, and the eigenvalues of 𝐴𝐷 are denoted by 𝜆𝑛. The following result was given in 

[236] for 𝜓(𝜉)  =  (𝜉 +  1)1/2  −  1 only, but the proof extends to arbitrary self-adjoint 

operators 𝐴𝐷 that preserve the spaces of even and odd functions. 

Lemma (5.3.21)[225]: (See [236].) We have 

𝑑𝑖𝑠𝑡 (�̃�𝑛, 𝜎(𝐴𝐷)) ≤
‖𝐴𝐷�̃�𝑛  −  �̃�𝑛�̃�𝑛‖𝐿2(𝐷)

‖�̃�𝑛‖𝐿2(𝐷)
 .                   (82) 

In fact, if 𝐴𝐷
𝑒𝑣𝑒𝑛 and 𝐴𝐷

𝑜𝑑𝑑 are the restrictions of 𝐴𝐷 to the (invariant) subspaces of 𝐿2(𝐷) 
consisting of even and odd functions, respectively, then (82) holds with 𝜎(𝐴𝐷) replaced by 

𝜎(𝐴𝐷
𝑒𝑣𝑒𝑛) when n is odd, and by 𝜎(𝐴𝐷

𝑜𝑑𝑑) when 𝑛 is even. 

The following result is an immediate consequence of Lemmas (5.3.20) and (5.3.21). 

Corollary (5.3.22)[225]: If 𝜓 is unbounded, for all 𝑛 ≥  7 there is a positive integer 𝑘(𝑛) 
such that 

|�̃�𝑛  −  𝜆𝑘(𝑛)| ≤
𝐶(𝑎, 𝑏, 𝜓)

𝑛
 . 

Lemma (5.3.23)[225]: Suppose that lim
𝜉→∞

  𝜉𝜓′(𝜉)  =  ∞. For 𝑛 larger than some (integer) 

constant 𝐶(𝑎, 𝑏, 𝜓) the numbers 𝑘(𝑛) are distinct. Moreover, for any 𝜀 >  0, for 𝑛 larger 

than some (integer) constant 𝐶(𝑎, 𝑏, 𝜓, 𝜀), 
𝜓((�̃�𝑛  −  𝜀)

2)  <  𝜆𝑘(𝑛)  <  𝜓((�̃�𝑛  +  𝜀)
2).                               (83) 

Proof: Let 𝜀 ∈  (0,
𝜋

4𝑎
). For some 𝜉𝑛 ∈ (�̃�𝑛, �̃�𝑛  +  𝜀), 

𝜓((�̃�𝑛  +  𝜀)
2)  −  𝜓(�̃�𝑛

2) = 2𝜀𝜉𝑛𝜓′(𝜉𝑛
2). 

Since 𝜉𝑛  ≤
𝑛𝜋

2𝑎
 +  𝜀 ≤

𝑛𝜋

𝑎
 , it follows that 

𝜓((�̃�𝑛  +  𝜀)
2) −  𝜓(�̃�𝑛

2) ≥
2𝑎𝜀𝜉𝑛

2𝜓′(𝜉𝑛
2)

𝑛𝜋
 . 
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Since 𝜉𝑛 ≥
(𝑛−1)𝜋

2𝑎
 , we have lim

𝑛→∞
  𝜉𝑛

2𝜓′(𝜉𝑛
2) = ∞, and so, by Corollary (5.3.22), for 𝑛 

greater than some constant 𝐶(𝑎, 𝑏, 𝜓, 𝜀), 

𝜓((�̃�𝑛  +  𝜀)
2)  −  𝜓(�̃�𝑛

2)  >  |�̃�𝑛  −  𝜆𝑘(𝑛)|. 

Since 𝜓 is concave, 

𝜓(�̃�𝑛
2)  −  𝜓((�̃�𝑛  −  𝜀)

2)  ≥  𝜓((�̃�𝑛  +  𝜀)
2)  −  𝜓(�̃�𝑛

2). 
Finally, �̃�𝑛 = 𝜓(�̃�𝑛

2). This proves (83). 

Observe that, by Lemma (5.3.11), 

𝑎�̃�𝑛+1  −  𝑎�̃�𝑛 =
𝜋

2
+ 𝜗�̃�𝑛  −  𝜗�̃�𝑛+1  ≥

𝜋

2
 −

3

�̃�𝑛
 (�̃�𝑛+1  −  �̃�𝑛)  

≥
𝜋

2
−

6𝑎

(𝑛 −  1)𝜋
 (�̃�𝑛+1  −  �̃�𝑛), 

so that �̃�𝑛+1  −  �̃�𝑛  ≥
𝜋

2𝑎
 (1 +

6

(𝑛−1)𝜋
)
−1
 ≥

𝜋

4𝑎
 for 𝑛 ≥  3. The first statement of the 

lemma follows hence from (83) with 𝜀 =
𝜋

8𝑎
 . 

Lemma (5.3.24)[225]: Suppose that lim
𝜉→∞

  𝜉𝜓′(𝜉)  =  ∞. Then 𝑘(𝑛)  ≥  𝑛 for infinitely 

many 𝑛.  

Proof: By Lemma (5.3.23), 

𝜆𝑘(𝑛)  ≥  𝜓((�̃�𝑛  −
𝜋

16𝑎
 )
2

) 

for 𝑛 large enough. On the other hand, by (69), 

𝜆𝑛−1  ≤  𝜓((
(𝑛 − 1)𝜋

2𝑎
 )

2

) 

for all 𝑛 ≥  1. Finally, by Lemma (5.3.10) and Lemma (5.3.11), 𝜗�̃�𝑛  <
3𝜋

8
+

𝜋

16
 for 

infinitely many 𝑛, and hence 

�̃�𝑛  −
𝜋

16𝑎
=
𝑛𝜋

2𝑎
 −
1

𝑎
 𝜗�̃�𝑛  −

𝜋

16𝑎
 >

𝑛𝜋

2𝑎
− (

3𝜋

8𝑎
+

𝜋

16𝑎
) −

𝜋

16𝑎
=
(𝑛 − 1)𝜋

2𝑎
 

for infinitely many 𝑛. 

Recall that the kernel functions of the operators 𝑒𝑥𝑝(−𝑡𝐴) and 𝑒𝑥𝑝(−𝑡𝐴𝐷) are 

denoted by 𝑇(𝑡;  𝑥 −  𝑦) and 𝑇𝐷(𝑡;  𝑥, 𝑦), respectively. Furthermore, 0 ≤ 𝑇𝐷(𝑡;  𝑥, 𝑦)  ≤
 𝑇(𝑡;  𝑥 −  𝑦) for all 𝑡 >  0 and 𝑥, 𝑦 ∈  𝐷 =  (−𝑎, 𝑎), and the Fourier transform of 𝑇(𝑡;  𝑥) 
is 𝑒𝑥𝑝(−𝑡𝜓(𝜉2)). In order to estimate the number of eigenvalues 𝜆𝑛 not counted as 𝜆𝑘(𝑛) 

for 𝑛 large enough, we use the trace estimate method, applied previously in [49], [97] and 

[236], see also [52], [82]. 

Lemma (5.3.25)[225]: Suppose that lim
𝜉→∞

  𝜉𝜓′(𝜉)  =  ∞. For 𝑛 greater than some constant 

𝐶(𝑎, 𝑏, 𝜓) we have 𝑘(𝑛)  =  𝑛. 

Proof: Let 𝜀 =
𝜋

6𝑎
 and let 𝑁 be the constant 𝐶(𝑎, 𝑏, 𝜓, 𝜀) in Lemma (5.3.23). Define 𝐽 =

 {𝑘(𝑛) ∶  𝑛 >  𝑁} and let 𝐽′ =  {𝑗 ≥  1 ∶  𝑗 ∉ 𝐽}. We claim that it suffices to show that 

|𝐽′|  ≤  𝑁. Indeed, there is 𝑛0 > 𝑁 such that 𝑘(𝑛0) = 1 +  𝑚𝑎𝑥 𝐽′ , and 𝑘(𝑛) is strictly 

increasing for 𝑛 >  𝑁. It follows that 𝑘(𝑛)  =  𝑘(𝑛0)  +  𝑛 − 𝑛0 for 𝑛 ≥  𝑛0. If |𝐽′|  ≤  𝑁, 

then 𝑘(𝑛0)  =  |𝐽′|  + (𝑛0  − 𝑁)  ≤  𝑛0, so that 𝑘(𝑛)  ≤  𝑛 for 𝑛 ≥  𝑛0. Since 𝑘(𝑛)  ≥  𝑛 

infinitely many times by Lemma (5.3.24), necessarily 𝑘(𝑛)  =  𝑛 for 𝑛 ≥  𝑛0, as desired.  
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Let 𝑡 >  0. By the assumption, 𝜓(𝜉) ≥
1

𝑡
 𝑙𝑜𝑔 𝜉 − 𝐶(𝑡) for some constant 𝐶(𝑡), and 

therefore 𝑒𝑥𝑝(−𝑡𝜓(𝜉2)) is integrable. Therefore, 𝑇(𝑡;  𝑥) is bounded in 𝑥 ∈  𝑅. In 

particular, 𝑇𝐷(𝑡;  𝑥,·) is in 𝐿2(𝐷), and so, by Parseval’s identity, 

∫  
𝑎

−𝑎

 ∫  
𝑎

−𝑎

 (𝑇𝐷(𝑡;  𝑥, 𝑦))
2
𝑑𝑦𝑑𝑥 = ∫  

𝑎

−𝑎

 ∑  

∞

𝑛=1

(∫  
𝑎

−𝑎

 𝑇𝐷(𝑡;  𝑥, 𝑦)𝜑𝑗  (𝑦)𝑑𝑦)

2

 𝑑𝑥 

= ∫  
𝑎

−𝑎

 ∑  

∞

𝑗=1

 𝑒−2𝜆𝑗𝑡  (𝜑𝑗  (𝑥))
2
𝑑𝑥 =∑ 

∞

𝑗=1

 𝑒−2𝜆𝑗𝑡  . 

On the other hand, by Plancherel’s identity, 

∫  
𝑎

−𝑎

 ∫  
𝑎

−𝑎

 (𝑇𝐷(𝑡;  𝑥, 𝑦))
2
𝑑𝑦𝑑𝑥 ≤  2𝑎 ∫  

∞

−∞

 (𝑇(𝑡;  𝑥 −  𝑦))
2
𝑑𝑦 =

2𝑎

𝜋
 ∫  

∞

0

 𝑒−2𝑡𝜓(𝜉
2) 𝑑𝜉. 

It follows that for all 𝑡 >  0, 

∑ 

∞

𝑗=1

 𝑒−𝜆𝑗𝑡  ≤
2𝑎

𝜋
 ∫  

∞

0

 𝑒−𝑡𝜓(𝜉
2) 𝑑𝜉.                         (84) 

Observe that 

∑ 

𝑗∈𝐽

 𝑒−𝜆𝑗𝑡  = ∑  

∞

𝑛=𝑁

 𝑒−𝜆𝑘(𝑛)𝑡  ≥ ∑  

∞

𝑛=𝑁+1

 𝑒−𝜓((�̃�𝑛+𝜀)
2)𝑡  ≥ ∑  

∞

𝑛=𝑁

𝑒−𝜓((𝑛𝜋/(2𝑎)+𝜀)
2)𝑡 . 

Denote 𝜉𝑛 = 𝑛𝜋/(2𝑎)  +  𝜀 =  (𝑛 +
1

3
)𝜋/(2𝑎). Since 𝑒−𝑡𝜓(𝓏) is concave in 𝓏 > 0, 

∫  
𝜉𝑛+1

𝜉𝑛

 𝑒−𝑡𝜓(𝜉
2) 𝑑𝜉 ≤ ∫  

𝜉𝑛+1

𝜉𝑛

 (
𝜉𝑛+1
2  − 𝜉2

𝜉𝑛+1
2 − 𝜉𝑛

2
 𝑒−𝑡𝜓(𝜉𝑛

2)  +
𝜉2  −  𝜉𝑛

2

𝜉𝑛+1
2  − 𝜉𝑛

2
 𝑒−𝑡𝜓(𝜉𝑛+1

2 ))𝑑𝜉 

=
2𝜉𝑛+1

2  −  𝜉𝑛𝜉𝑛+1  −  𝜉𝑛
2

3(𝜉𝑛 + 𝜉𝑛+1)
 𝑒−𝑡𝜓(𝜉𝑛

2)  +
𝜉𝑛+1
2  +  𝜉𝑛𝜉𝑛+1  −  2𝜉𝑛

2

3(𝜉𝑛  +  𝜉𝑛+1)
 𝑒−𝑡𝜓(𝜉𝑛+1

2 )  

=
𝜋

2𝑎
 (
3𝑛 +  3

6𝑛 +  5
 𝑒−𝑡𝜓(𝜉𝑛

2)  +
3𝑛 +  2

6𝑛 +  5
 𝑒−𝑡𝜓(𝜉𝑛+1

2 )). 

Hence, 

2𝑎

𝜋
 ∫  

∞

𝜉𝑁

 𝑒−𝑡𝜓(𝜉
2) 𝑑𝜉 ≤ ∑  

∞

𝑛=𝑁

(
3𝑛 +  3

6𝑛 +  5
 𝑒−𝑡𝜓(𝜉𝑛

2)  +
3𝑛 +  2

6𝑛 +  5
 𝑒−𝑡𝜓(𝜉𝑛+1

2 ))  

≤
3𝑁 +  3

6𝑁 +  5
 𝑒−𝑡𝜓(𝜉𝑁

2 )  + ∑  

∞

𝑛=𝑁+1

 𝑒−𝑡𝜓(𝜉𝑛
2)  ≤

3𝑁 +  3

6𝑁 +  5
 𝑒−𝑡𝜓(𝜉𝑁

2 )  +∑  

𝑗∈𝐽

 𝑒−𝑡𝜆𝑗  

(the second inequality is a consequence of 
3𝑛+2

6𝑛+5
+
3(𝑛+1)+3

6(𝑛+1)+5
 ≤  1, while the last one follows 

from 𝜆𝑘(𝑛)  ≤  𝜓((�̃�𝑛  +  𝜀)
2)  ≤  𝜓(𝜉𝑛

2) for 𝑛 >  𝑁). By (84), 

∑ 

𝑗∈𝐽′

 𝑒−𝜆𝑗𝑡  ≤
2𝑎

𝜋
 ∫  

∞

0

 𝑒−𝑡𝜓(𝜉
2) 𝑑𝜉 −∑ 

𝑗∈𝐽

 𝑒−𝜆𝑗𝑡  

≤
2𝑎

𝜋
 ∫  

𝜉𝑁

0

 𝑒−𝑡𝜓(𝜉
2)𝑑𝜉 +

3𝑁 +  3

6𝑁 +  5
 𝑒−𝑡𝜓(𝜉𝑁

2 ) . 

Passing to a limit as 𝑡 →  0+, we obtain 
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|𝐽′| ≤
2𝑎

𝜋
 𝜉𝑁  +

3𝑁 +  3

6𝑁 +  5
 =  𝑁 +

1

3
 +
3𝑁 +  3

6𝑁 +  5
 <  𝑁 +  1. 

This shows that |𝐽′|  ≤  𝑁, as desired. 

Theorem (5.3.26)[225]: If 𝜓 is a complete Bernstein function and lim
𝜉→∞

 𝜉𝜓′(𝜉)  = ∞, then 

 𝜆𝑛 = 𝜓(𝜇𝑛
2) +  𝑂 (

1

𝑛
)     𝑎𝑠     𝑛 → ∞.                                                      (85) 

In many cases, 𝜇𝑛 can be approximated with more explicit expressions, at the price of a 

weaker estimate of the error term. We provide two examples. 

Proof: By Lemma (5.3.25), 𝑘(𝑛)  =  𝑛 for 𝑛 large enough. Hence, by Corollary (5.3.22), 

𝜆𝑛  =  �̃�𝑛  +  𝑂(
1

𝑛
) = 𝜓(�̃�𝑛

2)  +  𝑂(
1

𝑛
 ). 

As in [236], [49], [97], the intermediate results in the proof of Theorem (5.3.26) 

provide some approximation results for the eigenfunctions. The details of the argument 

differ slightly from that of [236], [49], [97], so we sketch the proofs. 

Proposition (5.3.27)[225]: (See [97] and [236].) Suppose that lim
𝜉→∞

  𝜉𝜓′(𝜉)  =  ∞. With the 

appropriate choice of the signs of 𝜑𝑛 and with 

𝛽𝑛 = ‖�̃�𝑛‖𝐿2(𝐷) 

we have 𝛽𝑛  =  √𝑎  +  𝑂(
1

𝑛
 ) as 𝑛 →  ∞, and 

‖�̃�𝑛  −  𝛽𝑛 𝜑𝑛‖𝐿2(𝐷)  =  𝑂 (
1

(
𝑛𝜋
2𝑎)

2
𝜓′ ((

𝑛𝜋
2𝑎)

2

)
)                               as 𝑛 →  ∞. 

Proof: By Lemma (5.3.20), indeed 𝛽𝑛  =  √𝑎  +  𝑂(
1

𝑛
). Let 𝛼𝑛,𝑗 = 〈�̃�𝑛, 𝜑𝑗〉𝐿2(𝐷), so that 

�̃�𝑛  = ∑  ∞
𝑗=1  𝛼𝑛,𝑗𝜑𝑗 in 𝐿2(𝐷). We choose the sign of 𝜑𝑛 so that 𝛼𝑛,𝑛  ≥  0. We have 

‖�̃�𝑛  − 𝛽𝑛𝜑𝑛‖𝐿2(𝐷)  ≤ ‖�̃�𝑛 − 𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷)  +  |𝛼𝑛,𝑛 − 𝛽𝑛|  

= ‖�̃�𝑛 − 𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷)  +  |‖𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷)  −
‖�̃�𝑛‖𝐿2(𝐷)|  

≤  2 ‖�̃�𝑛 − 𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷). 

As in the proof of Lemma (5.3.23), for 𝑛 larger than some constant, if 𝑗 ≠ 𝑛 and 𝜀 =
𝜋

8𝑎
 , 

then 

|𝜆𝑗 − �̃�𝑛| ≥  𝑚𝑎𝑥(𝜓((�̃�𝑛+1 − 𝜀)
2) − 𝜓((�̃�𝑛 + 𝜀)

2), 𝜓((�̃�𝑛 − 𝜀)
2) − 𝜓((�̃�𝑛−1 + 𝜀)

2)  

≥ 2
(𝑛 − 1)𝜋

2𝑎
 𝜓′ ((

(𝑛 + 1)𝜋

2𝑎
)

2

) ·  (
𝜋

2𝑎
− 2𝜀) ≥

1

𝐶1

𝑛𝜋

2𝑎
 𝜓′((

𝑛𝜋

2𝑎
)
2

). 

Therefore, 

‖�̃�𝑛 − 𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷)
2

 = ∑  

𝑗≠𝑛

 |𝛼𝑛,𝑗|
2
 ≤

𝐶1
𝑛𝜋
2𝑎
 𝜓′ ((

𝑛𝜋
2𝑎)

2

)
  ∑  

𝑗≠𝑛

 (𝜆𝑗 − �̃�𝑛)
2
|𝛼𝑛,𝑗|

2
 

≤
𝐶1

𝑛𝜋
2𝑎
 𝜓

′((
𝑛𝜋
2𝑎
 )
2
)
 ‖𝐴𝐷�̃�𝑛  − �̃�𝑛�̃�𝑛‖𝐿2(𝐷)

2
 ≤

𝐶2(𝑎, 𝑏, 𝜓)

(
𝑛𝜋
2𝑎
 )
2
𝜓′ ((

𝑛𝜋
2𝑎)

2

)
 , 

again by Lemma (5.3.20). 
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Proposition (5.3.28)[225]: (See [97] and [236].) Suppose that lim
𝜉→∞

  𝜉𝜓′(𝜉)  =  ∞. With the 

appropriate choice of the signs of 𝜑𝑛 and with 

𝑓𝑛(𝑥)  =

{
 

 (−1)(𝑛−1)/2
1

√𝑎
 𝑐𝑜𝑠(�̃�𝑛𝑥)                    𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑,

(−1)𝑛/2
1

√𝑎
 𝑠𝑖𝑛(�̃�𝑛𝑥)                          𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

  

we have 

‖𝑓𝑛 − 𝜑𝑛‖𝐿2(𝐷)  =  𝑂 (
1

√𝑛
 +

1

(
𝑛𝜋
2𝑎)

2
𝜓′ ((

𝑛𝜋
2𝑎)

2

)
)                         𝑎𝑠 𝑛 →  ∞. 

Proof: Clearly, 

‖𝑓𝑛 − 𝜑𝑛‖𝐿2(𝐷)  ≤ ‖𝑓𝑛 −
1

√𝑎
�̃�𝑛‖

𝐿2(𝐷)

 +
1

√𝑎
 ‖�̃�𝑛  − 𝛽𝑛𝜑𝑛‖𝐿2(𝐷) + |

𝛽𝑛

√𝑎
 −  1| ‖𝜑𝑛‖𝐿2(𝐷).  

The middle summand is 𝑂(1/((
𝑛𝜋

2𝑎
)
2
𝜓′((

𝑛𝜋

2𝑎
)
2
))), while the last one is 𝑂(

1

𝑛
). Finally, by 

the definition (79) of �̃�𝑛 and the properties of 𝑞(𝑥) and 𝐹𝜇(𝑥), 

‖√𝑎 𝑓𝑛 − �̃�𝑛‖𝐿2(𝐷)
2

 = ∫  
𝑎

−𝑎

(𝑞(−𝑥)𝐺�̃�𝑛(𝑎 +  𝑥) − (−1)
𝑛𝑞(𝑥)𝐺�̃�𝑛(𝑎 −  𝑥))

2
𝑑𝑥 

≤ 4∫  
∞

0

(𝐺�̃�𝑛(𝑠))
2
𝑑𝑠 ≤ 4𝐺�̃�𝑛(0)∫  

∞

0

𝐺�̃�𝑛(𝑠)𝑑𝑠 = 4𝐺�̃�𝑛 (0)ℒ𝐺�̃�𝑛 (0). 

Since 𝐺𝜇(0) = 𝑐𝑜𝑠 𝜗𝜆 ≤ 1 and ℒ𝐺𝜇(0) = 𝐼𝜇 ≤
1

𝜇
  (see (81)), we have 

‖√𝑎 𝑓𝑛 − �̃�𝑛‖𝐿2(𝐷)  =  𝑂(
1

√𝑛
). 

Proposition (5.3.29)[225]: (See [97] and [236].) Suppose that if 𝜉2  >  𝜉1  >  1, then 

𝜓(𝜉2
 )

𝜓(𝜉1)
 ≥  𝑀 (

𝜉2
𝜉1
)
𝜀

                                                (86) 

for some 𝑀, 𝜀 >  0. Suppose in addition that 

lim inf
𝜉→∞

 𝜉3/4𝜓′(𝜉) >  0.                                                                   (87) 

Then 𝜑𝑛(𝑥) are bounded uniformly in 𝑛 ≥  1 and 𝑥 ∈  (−𝑎, 𝑎). 
Condition (86) is known under various names, including weak lower scaling condition and 

subregularity; such a function 𝜓 is also said to have positive lower Matuszewska index. We 

remark that although (87) does not imply (86), examples of complete Bernstein functions 

which satisfy (87), but not (86), are rather artificial. 

Proof: Observe that 𝜉𝜓′(𝜉) diverges to ∞ as 𝜉 →  ∞, and therefore main results of the 

present article apply. Furthermore, by (86), we have 𝑇(𝑡, 0) ≤  𝐶1(𝜓)√𝜓
−1(1/𝑡) for 𝑡 ≤

 1, see, for example, [206]. We have 

‖𝜑𝑛‖𝐿∞(𝐷)  =  𝑒
𝜆𝑛𝑡‖𝑇𝐷(𝑡)𝜑𝑛‖𝐿∞(𝐷)  

≤ 𝑒𝜆𝑛𝑡 ‖𝑇𝐷(𝑡) (𝜑𝑛 −
1

𝛽𝑛
 �̃�𝑛)‖

𝐿∞(𝐷)

 +  𝑒𝜆𝑛𝑡
1

𝛽𝑛
 ‖𝑇𝐷(𝑡)𝜑𝑛‖𝐿∞(𝐷). 



 

200 
 

Since |𝜑𝑛(𝑥)|  ≤  2, the latter term in the right-hand side does not exceed 
2

𝛽𝑛
 𝑒𝜆𝑛𝑡 . For the 

former one, observe that |𝑇𝐷(𝑡)𝑓(𝑥)|  ≤  ‖𝑇𝐷(𝑡, 𝑥,·)‖𝐿2(𝐷) ‖𝑓‖𝐿2(𝐷), 𝑇𝐷(𝑡, 𝑥, 𝑦)  ≤

 𝑇(𝑡, 𝑥 −  𝑦), and, by Plancherel’s theorem, 

‖𝑇(𝑡,·)‖𝐿2(𝑅)
2  =

1

2𝜋
∫  
∞

−∞

(𝑒−𝑡𝜓(𝜉
2) )

2
𝑑𝜉 =  𝑇(2𝑡, 0). 

Finally, 𝑇(2𝑡, 0)  ≤  𝐶1(𝜓)√𝜓
−1(1/(2𝑡))  ≤  𝐶1(𝜓)√𝜓

−1(1/𝑡) when 𝑡 ≤  1. Therefore, 

with 𝑡 =
1

𝜆𝑛
 , 

‖𝜑𝑛‖𝐿∞(𝐷)  ≤
𝑒

𝛽𝑛
 (𝐶1(𝜓))

1/2
(𝜓−1(𝜆𝑛))

1/4
 ‖𝛽𝑛𝜑𝑛  − �̃�𝑛‖𝐿2(𝐷)  +

2𝑒

𝛽𝑛
 . 

In the right-hand side, 𝛽𝑛  =  𝑂(1),𝜓
−1(𝜆𝑛)  ≤  (

𝑛𝜋

2𝑎
)
2
 (by (69)), and, by Lemma (5.3.20), 

‖𝛽𝑛𝜑𝑛 − �̃�𝑛‖𝐿2(𝐷)  =  𝑂 (
1

(
𝑛𝜋
2𝑎)

2
𝜓′((

𝑛𝜋
2𝑎
 )
2
)
). 

Lemma (5.3.30)[225]: Let 𝑓 is a complete Bernstein function with representation (64). Let 

𝑔 be a holomorphic function in {𝑤 ∈  𝐶 ∶  | 𝐴𝑟𝑔 𝑤|  <  𝐶1} (with 0 <  𝐶1  <
𝜋

2
 ) such that 

𝑔(𝑥) is real for 𝑥 >  0, and let ℎ be a continuous function on (0,∞). Denote 

𝐺(𝑦) = sup
𝑦/4≤|𝓏|≤4𝑦
| 𝐴𝑟𝑔 𝓏|<𝐶1

|𝑔(𝓏)|          𝐻(𝑦) = sup
𝑦/4≤𝑥≤4𝑦

|ℎ(𝑥)|  

and suppose that 

𝐺(𝑥)𝐻(𝑥) ≤  𝐶2 𝑚𝑖𝑛(𝑥
−1, 𝑥−2),        𝐶3 = ∫  

∞

0

 (1 +  𝑦)𝐺(𝑦)𝐻(𝑦)𝑑𝑦 <  ∞ 

for 𝑥 >  0. Then 

∫  
(0,∞)

 𝑔(𝑥)ℎ(𝑥)𝑚(𝑑𝑥) = lim
𝜀→0+

 
1

𝜋
 ∫  

∞

0

 𝐼𝑚 (𝑓(−𝑒−𝑖𝜀𝑥)𝑔(𝑒−𝑖𝜀𝑥)) ℎ(𝑥)𝑑𝑥      (88) 

= lim
𝜀→0+

 
1

𝜋
 ∫  

∞

0

 𝐼𝑚 (𝑓(−𝑒−𝑖𝜀𝑥))𝑔(𝑥)ℎ(𝑥)𝑑𝑥.                                 (89) 

Following [112], [238], if 𝜓 is a non-constant complete Bernstein function such that 

𝜓(0)  =  0, and 𝜇 >  0, we denote 

𝜓𝜇(𝜉) =  
1 − 𝜉/𝜇2

1 − 𝜓(𝜉)/𝜓(𝜇2)
 

for 𝜉 ∈  𝐶 \ ((−∞, 0]  ∪ {𝜇2}), and 𝜓𝜇(𝜇
2) = 𝜓(𝜇2)/(𝜇2𝜓′(𝜇2)). We also let 

𝜓†(𝜉) =  𝑒𝑥𝑝 (
1

𝜋
 ∫  

∞

0

𝜉

𝜉2  +  𝑟
 𝑙𝑜𝑔 𝜓(𝑟2)𝑑𝑟) 

for 𝜉 ∈  𝐶 with 𝑅𝑒 𝜉 >  0. Then 𝜓𝜇 is a complete Bernstein function, 𝜓† extends to a 

complete Bernstein function, and we have the Wiener–Hopf identity 𝜓†(𝜉)𝜓†(−𝜉)  =

 𝜓(−𝜉2) for 𝜉 ∈  𝐶 \ 𝑅, see, for example, [112]. Finally, we denote 𝜓𝜇
†   =  (𝜓𝜇)

†
. 

In principle we could extend the definition of 𝜓𝜇 to general non-constant complete 

Bernstein functions 𝜓, so that 𝜓𝜇(𝜉)  =  (1 − 𝜉
2/𝜇2)/(1 − (𝜓(𝜉)  −  𝜓(0))/(𝜓(𝜇2)  −
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 𝜓(0))). All results proved below hold true with this definition. We will typically assume 

that 𝜓(0)  =  0. For brevity, we also denote 𝜓(∞) = lim
𝜉→∞

 𝜓(𝜉)  ∈  [0,∞]. 

We assume that 𝜓(𝜉) is a non-constant complete Bernstein function which satisfies 

𝜓(0)  =  0, that is, �̃�  =  0 in representation (64) for 𝜓.  

Proof: Let 𝑥 >  0, 0 <  𝜀 <
1

2
𝐶1 and 𝑦 >  0, and denote for simplicity 𝜉 =  −𝑒−𝑖𝜀𝑥 . By 

the representation (64) of the complete Bernstein function 𝑓 and Fubini, we have 

∫  
∞

0

𝐼𝑚(𝑓(𝜉)𝑔(−𝜉))ℎ(𝑥)𝑑𝑥

= 𝑐∫  
∞

0

𝐼𝑚(𝜉𝑔(−𝜉))ℎ(𝑥)𝑑𝑥 + �̃�  ∫  
∞

0

𝐼𝑚(𝑔(−𝜉))ℎ(𝑥)𝑑𝑥

+
1

𝜋
∫  
(0,∞)

∫  
∞

0

𝐼𝑚
𝜉𝑔(−𝜉)

𝜉 + 𝓏
 ℎ(𝑥)𝑑𝑥

𝑚(𝑑𝓏)

𝓏
                                                   (90) 

We provide estimates for the integrands and find their pointwise limits as 𝜀 →  0+ in order 

to apply dominated convergence. 

For the first integral in the right-hand side of (90), we simply use |𝜉𝑔(−𝜉)ℎ(𝑥)|  ≤
 𝑥𝐺(𝑥)𝐻(𝑥), integrability of 𝑥𝐺(𝑥)𝐻(𝑥) and 𝐼𝑚(𝜉𝑔(−𝜉))  →  0 as 𝜀 →  0+. By dominated 

convergence, the limit as 𝜀 →  0+ of the first integral in the right-hand side of (90) is zero. 

Similarly, |𝑔(−𝜉)ℎ(𝜉)|  ≤  𝐺(𝑥)𝐻(𝑥), 𝐺(𝑥)𝐻(𝑥) is integrable and 𝐼𝑚(𝑔(−𝜉))  →  0 as 

𝜀 →  0+, and so also the second integral in the right-hand side of (90) converges to zero as 

𝜀 →  0+. 

To estimate the last integral in the right-hand side of (90), we consider separately two cases. 

When 𝑥 ≤
𝑦

2
 or 𝑥 ≥  2𝑦, we have 

|−
𝜉

𝜉 + 𝑦
 𝑔(−𝜉)|  ≤

1

|𝑥 −  𝑦|
 𝑥𝐺(𝑥) ≤

3

𝑥 +  𝑦
 𝑥𝐺(𝑥) ≤  3 𝑚𝑖𝑛(1, 𝑥𝑦−1)𝐺(𝑥)  

≤  3 𝑚𝑖𝑛(1, 𝑦−1)(1 +  𝑥)𝐺(𝑥), 
so that by dominated convergence, 

(∫  
𝑦/2

0

 + ∫  
∞

2𝑦

) |𝐼𝑚(
𝜉

𝜉 +  𝑦
 𝑔(−𝜉))  ℎ(𝑥)| 𝑑𝑥 ≤  3𝐶3min(1, 𝑦

−1), 

lim
𝜀→0+

 (∫  
𝑦/2

0

 + ∫  
∞

2𝑦

) 𝐼𝑚 (
𝜉

𝜉 +  𝑦
 𝑔(−𝜉))  ℎ(𝑥)𝑑𝑥 =  0.                                (91) 

When 
𝑦

2
<  𝑥 <  2𝑦, we need a more careful estimate. Observe that 

𝜉𝑔(−𝜉)

𝜉 +  𝑦
 =

𝑦𝑔(𝑦) − (−𝜉)𝑔(−𝜉)

𝑦 − (−𝜉)
 −
𝑦𝑔(𝑦)

𝜉 +  𝑦
 . 

The estimate for 𝑔 and Cauchy’s integral formula for 𝑔′ easily give 

|𝑔′(𝓏)|  ≤  𝐶4𝑦
−1𝐺(𝑦) 

in {𝓏 ∈  𝐶 ∶  | 𝐴𝑟𝑔 𝓏|  <
1

2
𝐶1, 𝑦/2 ≤  |𝓏|  ≤  2𝑦}, with 𝐶4  =  4𝐶1

−1 . By the mean value 

theorem, 

|
𝑦𝑔(𝑦) − (−𝜉)𝑔(−𝜉)

𝑦 − (−𝜉)
|  ≤  𝐶4𝑦

−1𝐺(𝑦) 
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when 
𝑦

2
 ≤  𝑥 ≤  2𝑦, and therefore, by dominated convergence, 

∫  
2𝑦

𝑦/2

|𝐼𝑚 (
𝑦𝑔(𝑦) − (−𝜉)𝑔(−𝜉)

𝑦 − (−𝜉)
)  ℎ(𝑥)| 𝑑𝑥 ≤

3

2
𝐶4𝑦

−1𝐺(𝑦)𝐻(𝑦) ≤
3

2
𝐶2𝐶4min(1, 𝑦

−1), 

lim
𝜀→0+

  ∫  
2𝑦

𝑦/2

 𝐼𝑚 (
𝑦𝑔(𝑦) − (−𝜉)𝑔(−𝜉)

𝑦 − (−𝜉)
)  ℎ(𝑥)𝑑𝑥 =  0.                           (92) 

Finally, if 𝑃𝑡(𝑠) and 𝑄𝑡(𝑠) denote the (classical) Poisson and conjugate Poisson kernels for 

the half-plane, then 

𝐼𝑚 (−
1

𝜉 +  𝑦
)   =  𝜋 𝑐𝑜𝑠(𝜀)𝑃𝑦 𝑠𝑖𝑛 𝜀(𝑥 −  𝑦 𝑐𝑜𝑠 𝜀)  +  𝜋 𝑠𝑖𝑛(𝜀)𝑄𝑦 𝑠𝑖𝑛 𝜀(𝑥 −  𝑦 𝑐𝑜𝑠 𝜀). 

Clearly, 𝑃𝑦 𝑠𝑖𝑛 𝜀(𝑥 −  𝑦 𝑐𝑜𝑠 𝜀)1(𝑦/2,2𝑦)(𝑥)𝑑𝑥 converges weakly to 𝛿𝑦(𝑥), and therefore 

∫  
2𝑦

𝑦/2

 |𝜋 𝑐𝑜𝑠(𝜀)𝑃𝑦 𝑠𝑖𝑛 𝜀(𝑥 − 𝑦 cos 𝜀)𝑦𝑔(𝑦)ℎ(𝑥)|𝑑𝑥 ≤  𝜋𝑦𝑔(𝑦)𝐻(𝑦) ≤  𝐶2𝜋min(1, 𝑦
−1), 

lim
𝜀→0+

 ∫  
2𝑦

𝑦/2

𝜋 𝑐𝑜𝑠(𝜀)𝑃𝑦 𝑠𝑖𝑛 𝜀(𝑥 −  𝑦 𝑐𝑜𝑠 𝜀)𝑦𝑔(𝑦)ℎ(𝑥)𝑑𝑥 = 𝜋𝑦𝑔(𝑦)ℎ(𝑦). 

Furthermore, |𝑡𝑄𝑡(𝑠)| ≤
1

𝜋
 and 𝑡𝑄𝑡(𝑠)  →  0 as 𝑡 → 0+, and hence, by dominated 

convergence, 

∫  
2𝑦

𝑦/2

 |𝜋 𝑠𝑖𝑛(𝜀)𝑄𝑦 𝑠𝑖𝑛 𝜀(𝑥 − 𝑦 𝑐𝑜𝑠 𝜀)𝑦𝑔(𝑦)ℎ(𝑥)|𝑑𝑥 ≤
3

2
 𝑦𝑔(𝑦)𝐻(𝑦) ≤

3

2
𝐶2min(1, 𝑦

−1), 

lim
𝜀→0+

  ∫  
2𝑦

𝑦/2

 𝜋 𝑠𝑖𝑛(𝜀)𝑄𝑦 𝑠𝑖𝑛 𝜀(𝑥 −  𝑦 𝑐𝑜𝑠 𝜀)𝑦𝑔(𝑦)ℎ(𝑥)𝑑𝑥 =  0. 

We have thus proved that 

∫  
2𝑦

𝑦2

|𝐼𝑚  (−
𝑦𝑔(𝑦)

𝜉 +  𝑦
)   ℎ(𝑥)| 𝑑𝑥 ≤ 𝐶2 (𝜋 +

3

2
 )min(1, 𝑦−1), 

lim
𝜀→0+

 ∫  
2𝑦

𝑦/2

 𝐼𝑚 (−
𝑦𝑔(𝑦)

𝜉 +  𝑦
)   ℎ(𝑥)𝑑𝑥 =  𝜋𝑦𝑔(𝑦)ℎ(𝑦).                            (93) 

Due to estimates (91), (92) and (93), as well as the integrability condition on 𝑚, indeed we 

could use Fubini in (90). The same estimates allow us to use dominated convergence in the 

limit as 𝜀 →  0+. We conclude that 

lim
𝜀→0+

  ∫  
∞

0

 𝐼𝑚(𝑓(𝜉)𝑔(−𝜉))ℎ(𝑥)𝑑𝑥 =  𝜋∫  
(0,∞)

 ∫  
∞

0

 𝑔(𝑦)ℎ(𝑦)𝑚(𝑑𝑦). 

This proves the first equality in (88). The other one follows by replacing the pair 𝑔(𝓏), ℎ(𝑥) 
with 1 and 𝑔(𝑥)ℎ(𝑥). 
Corollary (5.3.31)[274]: (See [236].) If 𝐷 is a bounded interval, then 𝑓 ∈ 𝒟(ℰ𝐷) if and 

only if 𝑓 ∈ 𝒟(ℰ) and 𝑓 =  0 almost everywhere in 𝑅 \ 𝐷. 

Proof. By definition, if 𝑓 ∈ 𝒟(ℰ𝐷), then 𝑓 ∈ 𝒟(ℰ) and 𝑓 =  0 almost everywhere in 

𝑅 \ 𝐷. Let 𝑓 ∈ 𝒟(ℰ) and 𝑓 =  0 almost everywhere in 𝑅 \ 𝐷. The result follows from the 

following claim: there is a sequence 𝑓𝑛 ∈ 𝐶𝑐
∞(𝐷) such that 
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ℰ1(𝑓𝑛  −  𝑓, 𝑓𝑛  −  𝑓)

=
1

2𝜋
 ∫  

∞

−∞

 (1 +  𝜓((𝜉 + 𝜖)2))|ℱ𝑓𝑛(𝜉 + 𝜖) − ℱ𝑓(𝜉 + 𝜖)|
2𝑑(𝜉 + 𝜖) 

converges to 0 as 𝑛 →  ∞. 

Let ℎ𝑛 ∈ 𝐶𝑐
∞(𝑅𝐷) be an approximation to the identity such that ℎ𝑛(𝑥)  =  𝑛ℎ(𝑛𝑥), ℎ(𝑥)  ≥

 0, ∫  
𝑅
 ℎ(𝑥)𝑑𝑥 =  1 and ℎ(𝑥)  =  0 for 𝑥 ∉ (−1, 1). Note that ℎ𝑛 is zero outside (−

1

𝑛
 ,
1

𝑛
). 

Let 

𝑔𝑛(𝑥) =  ℎ𝑛 ∗ 𝑓(𝑥),          𝑓𝑛(𝑥) = 𝑔𝑛((𝑥 −  𝑏𝑛)/𝑎𝑛), 

where (𝑥 − 𝑏𝑛)/𝑎𝑛 maps the 
2

𝑛
 -neighbourhood of 𝐼 into 𝐼, with 𝑎𝑛  ≥  1, lim

𝑛→∞
  𝑎𝑛  =  1 

and lim
𝑛→∞

  𝑏𝑛 = 0. Observe that 𝑓𝑛 ∈ 𝐶𝑐
∞(𝐷) and 

ℱ𝑓𝑛(𝜉 + 𝜖)  =  𝑎𝑛𝑒
−𝑖𝑏𝑛(𝜉+𝜖)ℱ𝑔𝑛(𝑎𝑛(𝜉 + 𝜖))  

=  𝑎𝑛𝑒
−𝑖𝑏𝑛(𝜉+𝜖)ℱℎ(

1

𝑛
(𝑎𝑛(𝜉 + 𝜖)))ℱ𝑓(𝑎𝑛(𝜉 + 𝜖)). 

Since 𝑓, 𝑔 ∈  𝐿1(𝑅),ℱ𝑓 and ℱℎ are continuous. Furthermore, ℱℎ(0)  =  1 and |ℱℎ(𝜉 +
𝜖)|  ≤  1 for (𝜉 + 𝜖)  ∈  𝑅. It follows that ℱ𝑓𝑛 converges pointwise to ℱ𝑓, and for 𝑛 large 

enough 

 |ℱ𝑓𝑛(𝜉 + 𝜖)|  ≤  2|ℱ𝑓(𝑎𝑛(𝜉 + 𝜖))| 

for all (𝜉 + 𝜖) ∈  𝑅. Hence, if 𝑢(𝜉 + 𝜖)  =  (1 +  𝜓((𝜉 + 𝜖)2))|ℱ𝑓(𝜉 + 𝜖)|2, then for 𝑛 

large enough, 

(1 +  𝜓((𝜉 + 𝜖)2))|ℱ𝑓𝑛(𝜉 + 𝜖) − ℱ𝑓(𝜉 + 𝜖)|
2  

≤  2(1 +  𝜓((𝜉 + 𝜖)2))(|ℱ𝑓𝑛(𝜉 + 𝜖)|
2  +  |ℱ𝑓(𝜉 + 𝜖)|2)  

≤  4𝑢(𝑎𝑛(𝜉 + 𝜖)) + 2𝑢(𝜉 + 𝜖) 
for all (𝜉 + 𝜖). By the assumption, 𝑢(𝜉 + 𝜖) is integrable. Therefore, the family of functions 

(1 + 𝜓((𝜉 + 𝜖)2))|ℱ𝑓𝑛(𝜉 + 𝜖) − ℱ𝑓(𝜉 + 𝜖)|
2 is tight and uniformly integrable. By the 

Vitali’s convergence theorem, ℰ1(𝑓𝑛  −  𝑓, 𝑓𝑛  −  𝑓) converges to 0 as 𝑛 →  ∞, as desired. 

Corollary (5.3.32)[274]: If 𝜓 is a non-constant complete Bernstein function, then 

−
(𝜉 + 𝜖)𝜓′′(𝜉 + 𝜖)

𝜓′(𝜉 + 𝜖)
 ≤  2 −

2(𝜉 + 𝜖)𝜓′(𝜉 + 𝜖)

𝜓(𝜉 + 𝜖)
 . 

Proof. The lemma is equivalent to the inequality 

−(𝜉 + 𝜖)𝜓(𝜉 + 𝜖)𝜓′′(𝜉 + 𝜖)  ≤  2𝜓′(𝜉 + 𝜖)(𝜓(𝜉 + 𝜖) − (𝜉 + 𝜖)𝜓′(𝜉 + 𝜖)). 
Assuming 𝜓 has the representation (64), we need to prove 

(𝜉 + 𝜖) (𝑐(𝜉 + 𝜖)  + �̃� +
1

𝜋
 ∫  
(0,∞)

(𝜉 + 𝜖)

(𝜉 + 𝜖 + 𝑠)

(𝜇 + 𝜖)(𝑑𝑠)

𝑠
) (

1

𝜋
  ∫  
(0,∞)

1

(𝜉 + 𝜖 +  𝑠)3
(𝜇 + 𝜖)(𝑑𝑠))  

≤  (𝑐 +
1

𝜋
 ∫  
(0,∞)

1

(𝜉 + 𝜖 +  𝑠)2
(𝜇 + 𝜖)(𝑑𝑠))(�̃� +

1

𝜋
 ∫  
(0,∞)

(𝜉 + 𝜖)2

(𝜉 + 𝜖 +  𝑠)2
(𝜇 + 𝜖)(𝑑𝑠)

𝑠
) . 

This follows by simple integration from the following bounds: 0 ≤ 𝑐�̃�, 

(𝜉 + 𝜖)(𝑐(𝜉 + 𝜖) + �̃�)
𝑠

(𝜉 + 𝜖 + 𝑠)3
 ≤  𝑐

(𝜉 + 𝜖)2

(𝜉 + 𝜖 +  𝑠)2
 +  �̃�

𝑠

(𝜉 + 𝜖 +  𝑠)2
 , 

and 
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(𝜉 + 𝜖) (
(𝜉 + 𝜖)

(𝜉 + 𝜖 + 𝑠1)

𝑠2
(𝜉 + 𝜖 + 𝑠2)

3
 +

(𝜉 + 𝜖)

(𝜉 + 𝜖 + 𝑠2)

𝑠1
(𝜉 + 𝜖 + 𝑠1)

3
)

≤
𝑠1

(𝜉 + 𝜖 + 𝑠1)
2
 
(𝜉 + 𝜖)2

(𝜉 + 𝜖 + 𝑠2)
2

 

 +
𝑠2

(𝜉 + 𝜖 + 𝑠2)
2

(𝜉 + 𝜖)2

(𝜉 + 𝜖 + 𝑠1)
2
 ; 

the last two inequalities are easily proved by direct calculations. 

Corollary (5.3.33)[274]: The left-hand side of (74) is decreasing in 𝑃 ∈  [0, 1 − 𝑄]. The 

right-hand side of (75) is increasing in 𝑃 ∈  [0, 1 −  𝑄]. 

Proof. Let 𝑃 = 1 −
𝑄

𝑠+𝑄
=

𝑠

𝑠+𝑄
 , 𝑠 ∈  [0, 1 −  𝑄]. Note that 𝑃 increases with increasing 𝑠, 

and the left-hand side of (74) is equal to 
1

𝜋
(arc sin2√𝑄 + arc sin2√𝑠 +  𝑄  − arc sin2√𝑠 ). 

Since arc sin2   √𝑠 is convex, the above expression is increasing in 𝑠. In a similar way, with 

𝑃 =  1 −
𝑄

1−𝑠
  =

1−𝑠−𝑄

1−𝑠
 , 𝑠 ∈  [0, 1 −  𝑄], the right-hand side of (75) is equal to 

𝜋

4
 −
1

𝜋
 (arc sin2√1 −  𝑄 + arc sin2 √𝑠  − arc sin2√𝑠 +  𝑄), 

which is again an increasing function of 𝑠, but now 𝑃 decreases with increasing 𝑠. 
Substituting 𝑃 =  0, we obtain immediately the following elegant result (see [225]). 

Corollary (5.3.34)[274]: If 𝜓 is a non-constant complete Bernstein function such that 

𝜓(0)  =  0, then 

lim inf
𝜇+𝜖→0+

𝜗𝜇+𝜖 ≤
3𝜋

8
 . 

If 𝜓 is unbounded, then also 

lim inf
𝜇+𝜖→∞

𝜗𝜇+𝜖  ≤
3𝜋

8
 . 

Proof. Suppose that lim inf
𝜇+𝜖→0+

  𝜗𝜇+𝜖 >
3𝜋

8
 . Then there are (𝜇 + 𝜖)0 > 0 and 0 < 𝜖 <  1 such 

that 𝜗𝜇+𝜖 ≥
𝜋

2
−
(1−𝜖)𝜋

8
 for (𝜇 + 𝜖) ∈ (0, (𝜇 + 𝜖)0). By Corollary (5.3.9), 

arc sin2√1 +
(𝜇 + 𝜖)2𝜓′′((𝜇 + 𝜖)2)

2𝜓′((𝜇 + 𝜖)2)
 ≤

(1 − 𝜖)𝜋2

16
 

for (𝜇 + 𝜖) ∈ (0, (𝜇 + 𝜖)0), and hence 

−(𝜇 + 𝜖)2𝜓′′((𝜇 + 𝜖)2)

𝜓′((𝜇 + 𝜖)2)
 ≥  2 −  2  (sin

𝜋√1 − 𝜖

4
 )

2

 

for (𝜇 + 𝜖) ∈ (0, (𝜇 + 𝜖)0). If (1 + 𝜖) denotes the right-hand side, then 𝜖 > 0. By 

integration (see [235]), we have 𝜓′((𝜇 + 𝜖)2)/𝜓′((𝜇 + 𝜖)0
2)  ≥  ((𝜇 + 𝜖)0

2/(𝜇 + 𝜖)2)1+𝜖 
for all (𝜇 + 𝜖) ∈ (0, (𝜇 + 𝜖)0), which contradicts integrability of 𝜓′ at 0. This proves the 

first statement of the corollary. 

In a similar manner, if lim inf
 𝜇+𝜖→∞

  𝜗𝜇+𝜖  >
3𝜋

8
 , then there are (𝜇 + 𝜖)0  >  0 and 0 <

𝜖 <  1 such that 𝜗𝜇+𝜖 ≥
𝜋

2
(
3+𝜖

4
) for (𝜇 + 𝜖) ∈ ((𝜇 + 𝜖)0, ∞). Again this implies 
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−(𝜇 + 𝜖)2𝜓′′((𝜇 + 𝜖)2)

𝜓′((𝜇 + 𝜖)2)
 ≥  2 (1 − (𝑠𝑖𝑛 

𝜋 √1 − 𝜖

4
 )

2

) 

for (𝜇 + 𝜖)  ∈  ((𝜇 + 𝜖)0, ∞). If (1 + 𝜖) denotes the right-hand side, then 𝜖 > 0, and by 

integration, 𝜓′((𝜇 + 𝜖)2)/𝜓′((𝜇 + 𝜖)0
2) ≤ ((𝜇 + 𝜖)0

2/(𝜇 + 𝜖)2)1+𝜖 for all (𝜇 + 𝜖)  ∈
 ((𝜇 + 𝜖)0,∞). This implies integrability of 𝜓′ at ∞. 

Corollary (5.3.35)[274]: If 𝜓 is a non-constant complete Bernstein function such that 

𝜓(0)  =  0, then for all 𝜇 + 𝜖 >  0, 

|
𝑑𝜗𝜇+𝜖
𝑑(𝜇 + 𝜖)

| <
3

𝜇 + 𝜖
 . 

Proof. By (73) and the Cauchy’s mean value theorem, for some (𝜉 + 𝜖)𝓏 ∈
((𝜇 + 𝜖)2𝓏2, (𝜇 + 𝜖)2) and (𝜉 + 𝜖)1

𝓏

∈ ((𝜇 + 𝜖)2, (𝜇 + 𝜖)2/𝓏2) (where 𝓏 ∈ (0, 1)), 

𝑑𝜗𝜇+𝜖

𝑑(𝜇 + 𝜖)
=

2

𝜋(𝜇 + 𝜖)
 ∫  

1

0

1

1 − 𝓏2
 (
(𝜉 + 𝜖)𝓏𝜓′′((𝜉 + 𝜖)𝓏) + 𝜓

′((𝜉 + 𝜖)𝓏)

𝜓′((𝜉 + 𝜖)𝓏)
 

−

 (𝜉 + 𝜖)1
𝓏
𝜓′′ ((𝜉 + 𝜖)1

𝓏
) + 𝜓′ ((𝜉 + 𝜖)1

𝓏
)

𝜓′ ((𝜉 + 𝜖)1
𝓏
)

)  𝑑𝓏 

=
2

𝜋(𝜇 + 𝜖)
 ∫  

1

0

1

1 − 𝓏2
( 
(𝜉 + 𝜖)𝓏𝜓

′′((𝜉 + 𝜖)𝓏)

𝜓((𝜉 + 𝜖)𝓏)
 −

(𝜉 + 𝜖)1
𝓏
𝜓′′ ((𝜉 + 𝜖)1

𝓏
)

𝜓′ ((𝜉 + 𝜖)1
𝓏
)

)  𝑑𝓏. 

By (64), 0 ≤ −(𝜉 + 𝜖)𝜓′′(𝜉 + 𝜖)  ≤  2𝜓′(𝜉 + 𝜖) and 0 ≤ (𝜉 + 𝜖)2𝜓(3)(𝜉 + 𝜖) ≤ 6𝜓′(𝜉 +
𝜖). Hence, 

(𝜉 + 𝜖)
𝑑

𝑑(𝜉 + 𝜖)
(
(𝜉 + 𝜖)𝜓′′(𝜉 + 𝜖)

𝜓′(𝜉 + 𝜖)
 )

=
(𝜉 + 𝜖)2𝜓(3)(𝜉 + 𝜖)

𝜓′(𝜉 + 𝜖)
 −
−(𝜉 + 𝜖)𝜓′′(𝜉 + 𝜖)

𝜓′(𝜉 + 𝜖)
 −
(−(𝜉 + 𝜖)𝜓′′(𝜉 + 𝜖))

2

(𝜓′(𝜉 + 𝜖))
2  

∈ [−6, 6]. 
Furthermore, (𝜉 + 𝜖)𝓏𝜓′′((𝜉 + 𝜖)𝓏)/𝜓′((𝜉 + 𝜖)𝓏)  − (𝜉 + 𝜖)1

𝓏

𝜓′′((𝜉 + 𝜖)1
𝓏

)/𝜓′((𝜉 +

𝜖)1
𝓏

)  ∈  [−2, 2]. It follows that 

|
𝑑𝜗𝜇+𝜖
𝑑(𝜇 + 𝜖)

|  ≤
2

𝜋(𝜇 + 𝜖)
 ∫  

1

0

1

1 − 𝓏2
 𝑚𝑖𝑛 (2,∫  

(𝜉+𝜖)𝓏

(𝜉+𝜖)1
𝓏

  |
𝑑

𝑑𝑟
 (
𝑟𝜓′′(𝑟)

𝜓′(𝑟)
) | 𝑑𝑟)𝑑𝓏 

≤
2

𝜋(𝜇 + 𝜖)
 ∫  

1

0

1

1 − 𝓏2
 𝑚𝑖𝑛 (2, 6 𝑙𝑜𝑔

(𝜉 + 𝜖)1
𝓏

(𝜉 + 𝜖)𝓏
)𝑑𝓏. 

Recall that 

(𝜉+𝜖)1
𝓏

(𝜉+𝜖)𝓏
≤ 𝓏−4. Hence, 
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|
𝑑𝜗𝜇+𝜖
𝑑(𝜇 + 𝜖)

| ≤
2

𝜋(𝜇 + 𝜖)
 ∫  

1

0

𝑚𝑖𝑛(2,−24 𝑙𝑜𝑔 𝓏)

 1 − 𝓏2
 𝑑𝓏. 

Since − 𝑙𝑜𝑔 𝓏 ≤
1

𝓏
− 1,we have 

|
𝑑𝜗𝜇+𝜖
𝑑(𝜇 + 𝜖)

|  ≤
2

𝜋(𝜇 + 𝜖)
 ∫  

1

0

𝑚𝑖𝑛(2, 24(1𝓏 −  1))

1 − 𝓏2
 𝑑𝓏 =

100 𝑙𝑜𝑔 5 −  48 𝑙𝑜𝑔24

𝜋(𝜇 + 𝜖)
 

<
3

𝜇 + 𝜖
 . 

We conjecture that in fact − 
1

𝜇+𝜖
 <

𝑑

𝑑(𝜇+𝜖)
𝜗𝜇+𝜖  ≤

1

2(𝜇+𝜖)
. We close this section with the 

following simple example(see [225]). 

Corollary (5.3.36)[274]: If 𝜓 is a non-constant complete Bernstein function such that 

𝜓(0)  =  0, then for all 𝜇 + 𝜖 >  0 and (𝜉 + 𝜖) such that 𝑅𝑒 (𝜉 + 𝜖)  >  0 

|ℒ𝐹𝜇+𝜖(𝜉 + 𝜖)| ≤  2 √2
𝜇 + 𝜖

|(𝜇 + 𝜖)2  +  (𝜉 + 𝜖)2|
 √
𝜓′((𝜇 + 𝜖)2)((𝜇 + 𝜖)2 − |𝜉 + 𝜖|2)

𝜓((𝜇 + 𝜖)2) − 𝜓(|𝜉 + 𝜖|2)
 . 

Proof. Recall that ((𝜇 + 𝜖)2  +  (𝜉 + 𝜖)2)ℒ𝐹𝜇+𝜖(𝜉 + 𝜖)  =  (𝜇 + 𝜖) (𝜓𝜇+𝜖((𝜇 +

𝜖)2))
−1/2

𝜓𝜇+𝜖
† (𝜉 + 𝜖) is a complete Bernstein function of (𝜉 + 𝜖), and hence by [112] and 

[238], 

|(𝜇 + 𝜖)2 + (𝜉 + 𝜖)2||ℒ𝐹𝜇+𝜖(𝜉 + 𝜖)| ≤  √2 ((𝜇 + 𝜖)
2 + |𝜉 + 𝜖|2)ℒ𝐹𝜇+𝜖(|𝜉 + 𝜖|)

≤  2 √2(𝜇 + 𝜖) √
𝜓′((𝜇 + 𝜖)2)((𝜇 + 𝜖)2 − |𝜉 + 𝜖|2)

𝜓((𝜇 + 𝜖)2) −  𝜓(|𝜉 + 𝜖|2)
 

for all (𝜉 + 𝜖) such that 𝑅𝑒 (𝜉 + 𝜖)  >  0. 
Corollary (5.3.37)[274]: If 𝜓 is a non-constant complete Bernstein function such that 

𝜓(0)  =  0, then for all (𝜇 + 𝜖), 𝑥 >  0 such that (𝜇 + 𝜖)𝑥 ≠ 1, 

𝐺𝜇+𝜖(𝑥) ≤
1

𝜋𝑥

𝜓(1/𝑥2)

𝜓((𝜇 + 𝜖)2)
 √
𝜓′((𝜇 + 𝜖)2)

𝜓((𝜇 + 𝜖)2)
  
1 −  𝜓((𝜇 + 𝜖)2)/((𝜇 + 𝜖)2𝑥2𝜓(1/𝑥2))

1 −  𝜓(1/𝑥2)/𝜓((𝜇 + 𝜖)2)
  .   

In particular, if 𝜓 is unbounded, then 

lim sup
𝜇+𝜖→∞

 ((𝜇 + 𝜖)𝜓((𝜇 + 𝜖)2)𝐺𝜇+𝜖(𝑥)) ≤
𝜓 (

1
𝑥2
)

𝜋𝑥
 . 

Proof. Recall that 𝜓𝜇+𝜖
† (𝜉 + 𝜖)  ≥  𝜓𝜇+𝜖

† (0)  =  𝜓𝜇+𝜖(0)  =  1. Hence, 

𝛾𝜇+𝜖(𝑑(𝜉 + 𝜖)) ≤
1

𝜋(𝜇 + 𝜖)√𝜓𝜇+𝜖((𝜇 + 𝜖)
2)
lim
𝜖→0+

  𝐼𝑚 𝜓𝜇+𝜖(−𝑒
−𝑖𝜖(𝜉 + 𝜖)2)𝑑(𝜉 + 𝜖). 

After a substitution (𝜉 + 𝜖)  =  √𝑠 it follows that 

𝐺𝜇+𝜖(𝑥) = ∫  
∞

0

 𝑒−(𝜉+𝜖)𝑥𝛾𝜇+𝜖(𝑑(𝜉 + 𝜖))

≤
1

2𝜋(𝜇 + 𝜖)√𝜓𝜇+𝜖((𝜇 + 𝜖)
2)
lim
𝜖→0+

 ∫  
∞

0

 √𝑠 𝑒−𝑥√𝑠   
𝐼𝑚 𝜓𝜇+𝜖(−𝑒

−𝑖𝜖𝑠)𝑑𝑠

𝑠
 .  
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Since 𝑥 √𝑠 𝑒−𝑥√𝑠   ≤  2/(1 + 𝑥2𝑠), we have 

𝐺𝜇+𝜖(𝑥) ≤
1

𝜋(𝜇 + 𝜖)𝑥√𝜓𝜇+𝜖((𝜇 + 𝜖)
2)
 lim
𝜖→0+

 ∫  
∞

0

1

1 + 𝑥2𝑠
 
𝐼𝑚 𝜓𝜇+𝜖(−𝑒

−𝑖𝜖𝑠)𝑑𝑠

𝑠
 

≤
𝜓𝜇+𝜖(1/𝑥

2) − 1

𝜋(𝜇 + 𝜖)𝑥√𝜓𝜇+𝜖((𝜇 + 𝜖)
2)
 ; 

for the last inequality note that the integral converges to the integral term in the 

representation (64) for the complete Bernstein function 𝜓𝜇+𝜖, and we have 𝜓𝜇+𝜖(0)  =  1 

(therefore the inequality becomes equality if 𝜓𝜇+𝜖 contains no linear term, that is, if 𝜓 is 

unbounded). To prove the first statement, it remains to use the definition of 𝜓𝜇+𝜖. The other 

statement of the lemma follows from the first one by the inequality (𝜉 + 𝜖)𝜓′(𝜉 + 𝜖)  ≤
 𝜓(𝜉 + 𝜖). 
Corollary (5.3.38)[274]: (See [236].) We have �̃�𝑛  ∈ 𝒟(𝐴𝐷) and 𝐴𝐷�̃�𝑛(𝑥)  = 𝒜�̃�𝑛(𝑥) for 

almost all 𝑥 ∈  𝐷. 

Proof. For brevity, in this proof we write (𝜇 + 𝜖)̃ = (𝜇 + 𝜖)̃
𝑛 and �̃�  = �̃�𝑛. The domain of 

𝐴𝐷 is described in Definition (5.3.3): we need to prove that �̃� ∈ 𝒟(ℰ) and that 〈�̃�,𝒜𝑔〉 =
〈𝒜�̃�, 𝑔〉 for all 𝑔 ∈ 𝐶𝑐

∞(𝐷). We first verify the latter condition. 

Note that 𝒜�̃�(𝑥) is well-defined for all 𝑥 ∈  𝐷 \ {−(𝑏 − 𝜖), 𝑏 − 𝜖}, since �̃� is smooth in 

𝐷 \ {−(𝑏 − 𝜖), 𝑏 − 𝜖} and bounded on 𝑅. Let 𝑔 ∈  𝐶𝑐
∞(𝐷). Since �̃�′ is absolutely 

continuous in (−(𝑎 − 𝜖), (𝑎 − 𝜖)), integration by parts gives 

∫  
𝑎−𝜖

−(𝑎−𝜖)

(−𝑐�̃�′′(𝑥))𝑔(𝑥)𝑑𝑥 = ∫  
𝑎−𝜖

−(𝑎−𝜖)

 �̃�(𝑥)(−𝑐𝑔′′(𝑥))𝑑𝑥. 

Furthermore, by the definition of 𝒜 (see (76)), 

∫  
𝑎−𝜖

−(𝑎−𝜖)

 𝒜�̃�(𝑥)𝑔(𝑥)𝑑𝑥 − ∫  
𝑎−𝜖

−(𝑎−𝜖)

 �̃�(𝑥)𝐴𝑔(𝑥)𝑑𝑥 

= ∫  
𝑎−𝜖

−(𝑎−𝜖)

(∫  
∞

0

(𝑔(𝑥 + 𝓏)�̃�(𝑥) + 𝑔(𝑥 − 𝑧)�̃�(𝑥) − 𝑔(𝑥)�̃�(𝑥 + 𝓏)

− 𝑔(𝑥)�̃�(𝑥 − 𝓏))𝜈(𝓏)𝑑𝓏)𝑑𝑥. 

We claim that the double integral exists. Then, by Fubini, it is equal to 0, and so 〈�̃�,𝒜𝑔〉 =
〈𝒜�̃�, 𝑔〉, as desired. 

Denote the integrand by 𝐼(𝑥, 𝓏)𝜈(𝓏), and let 𝜖 =
1

3
 dist(supp 𝑔, 𝑅 \ 𝐷), so that supp 

𝑔 ⊆  (−𝑎 + 4𝜖, 𝑎 − 4𝜖). When 𝓏 ≥  𝜖, then |𝐼(𝑥, 𝓏)| ≤  4 ‖�̃�‖𝐿∞(𝑅) ‖𝑔‖𝐿∞(𝑅). Suppose 

that 𝓏 ∈ (0, 𝜖). If 𝑥 ∉ (−𝑎 + 3𝜖, 𝑎 − 3𝜖), then 𝐼(𝑥, 𝓏)  =  0. Otherwise, by first-order 

Taylor’s expansion of 𝐼(𝑥, 𝓏) around 𝓏 = 0 (note that 𝐼(𝑥, 0) =
𝜕

𝜕𝓏
 𝐼(𝑥, 0)  =  0) with the 

remainder in the integral form, we obtain that 

|𝐼(𝑥, 𝓏)| ≤ ∫  
𝓏

0

(𝓏 − 𝑠)
𝜕2

𝜕𝑠2
    𝐼(𝑥, 𝑠)𝑑𝑠 

≤ 𝓏2( ‖�̃�‖𝐿∞(𝑅) ‖𝑔
′′‖𝐿∞(𝑅)  + ‖�̃�

′′‖𝐿∞((−𝑎+2𝜖,𝑎−2𝜖)) ‖𝑔‖𝐿∞(𝑅)) 
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(recall that �̃�′′ is bounded in (−𝑎 + 2 𝜖, 𝑎 − 2𝜖)). We conclude that |𝐼(𝑥, 𝓏)𝜈(𝓏)|  ≤
 𝐶1( �̃�, 𝑔) 𝑚𝑖𝑛(1, 𝓏

2)𝜈(𝓏), which implies joint integrability of 𝐼(𝑥, 𝓏)𝜈(𝓏). Our claim is 

proved. 

It remains to verify that �̃� ∈ 𝒟(ℰ), that is, (1 +  𝜓((𝜉 + 𝜖)2))|ℱ�̃�(𝜉 + 𝜖)|2 is 

integrable. Let 𝑓(𝑥)  =  𝑞(𝑎 − 𝜖 −  𝑥)𝐹(𝜇+𝜖)̃ (𝑥), so that �̃�(𝑥)  =  𝑓(𝑎 − 𝜖 +  𝑥)  −

 (−1)𝑛𝑓(𝑎 − 𝜖 −  𝑥) (see (79)). It suffices to prove integrability of (1 +  𝜓((𝜉 +

𝜖)2))|ℱ𝑓(𝜉 + 𝜖)|2. 

Fix 𝜖 >  0 and let �̃�(𝑥)  =  𝑞(𝑎 − 𝜖 −  𝑥)𝑒𝜖𝑥. Since the distributional derivatives 

𝑞, 𝑞′ and 𝑞′′ are integrable functions, and the third distributional derivative of 𝑞(𝑥) is a finite 

signed measure on 𝑅, the function �̃�(𝑥) has the same property. Therefore, ℱ𝑞(𝜉 + 𝜖) and 

ℱ𝑞(3)(𝜉 + 𝜖)  =  −𝑖(𝜉 + 𝜖)3ℱ𝑞(𝜉 + 𝜖) are bounded functions, and so |ℱ�̃�(𝜉 + 𝜖)| ≤
𝐶2(𝜖,𝑎−𝜖,𝑏−𝜖)

(1+|𝜉+𝜖|)3
. The Fourier transform of 𝑒−𝜖𝑥𝐹(𝜇+𝜖)̃ (𝑥) is equal to ℒ𝐹(𝜇+𝜖)̃ (𝜖 + 𝑖(𝜉 + 𝜖)), 

and the Fourier transform of 𝑓(𝑥)  =  𝑞(𝑎 − 𝜖 −  𝑥)𝐹(𝜇+𝜖)̃ (𝑥)  =  �̃�(𝑥)𝑒−𝜖𝑥𝐹(𝜇+𝜖)̃ (𝑥) is 

given by the convolution 

ℱ𝑓(𝜉 + 𝜖) =
1

2𝜋
∫  
∞

−∞

 ℱ�̃�(𝜉 + 𝜖 −  𝑠)ℒ𝐹(𝜇+𝜖)̃ (𝜖 +  𝑖𝑠)𝑑𝑠. 

Suppose that (𝜉 + 𝜖)  >  0. To estimate |ℱ𝑓(𝜉 + 𝜖)|, we write 

ℱ𝑓(𝜉 + 𝜖) =
1

2𝜋
∫  
∞

𝜉+𝜖
2

 ℱ�̃�(𝜉 + 𝜖 − 𝑠)ℒ𝐹(𝜇+𝜖)̃ (𝜖 + 𝑖𝑠)𝑑𝑠

+
1

2𝜋
 ∫  

∞

𝜉+𝜖
2

 ℱ�̃�(𝑠)ℒ𝐹(𝜇+𝜖)̃ (𝜖 + 𝑖(𝜉 + 𝜖 − 𝑠))𝑑𝑠.                                (94) 

By Corollary (5.3.36), we have 

|ℒ𝐹(𝜇+𝜖)̃ (𝜖 + 𝑖𝑠)| ≤  2 √2
(𝜇 + 𝜖)̃

|(𝜇 + 𝜖)̃ 2 + (𝜖 + 𝑖𝑠)2|
√
𝜓′((𝜇 + 𝜖)̃ 2)((𝜇 + 𝜖)̃ 2 − |𝜖 + 𝑖𝑠|2)

𝜓((𝜇 + 𝜖)̃ 2) − 𝜓(|𝜖 + 𝑖𝑠|2)
 

≤  𝐶3(𝜖, (𝜇 + 𝜖)̃ ,𝜓 ) (
1

1 + 𝑠
) √

1

1 + 𝜓(𝑠2)
 

(for the second inequality observe that the expression under the square root is bounded by a 

constant when 𝑠 ≤  2(𝜇 + 𝜖)̃  and by 𝜓′((𝜇 + 𝜖)̃ 2)(1 + 𝑠2)/(𝜓(𝑠2) − 𝜓((𝜇 + 𝜖)̃ 2)) when 

𝑠 > 2(𝜇 + 𝜖)̃ ). The right-hand side decreases with 𝑠 >  0. Hence, 



 

209 
 

|∫  
∞

𝜉+𝜖
2

 ℱ�̃�(𝜉 + 𝜖 −  𝑠)ℒ𝐹(𝜇+𝜖)̃ (𝜖 + 𝑖𝑠)𝑑𝑠|   

≤
𝐶3(𝜖, (𝜇 + 𝜖)̃ ,𝜓)

(1 +
𝜉 + 𝜖
2 ) (1 + 𝜓 (

(𝜉 + 𝜖)2

4 ))

1
2

 ∫  
∞

𝜉+𝜖
2

 |ℱ�̃�(𝜉 + 𝜖 − 𝑠)|𝑑𝑠 

≤
𝐶3(𝜖, (𝜇 + 𝜖)̃ ,𝜓)𝐶2(𝜖, 𝑎 − 𝜖, 𝑏 − 𝜖)

(1 +
𝜉 + 𝜖
2 )(1 + 𝜓 (

(𝜉 + 𝜖)2

4 ))

1
2

∫  
∞

𝜉+𝜖
2

1

(1 + |𝜉 + 𝜖 − 𝑠|)3
 𝑑𝑠 

≤
8𝐶3(𝜖, (𝜇 + 𝜖)̃ ,𝜓)𝐶2(𝜖, 𝑎 − 𝜖, 𝑏 − 𝜖)

(1 + 𝜉 + 𝜖)(1 + 𝜓((𝜉 + 𝜖)2))
1
2

 ; 

in the last inequality we used the fact that 4𝜓(
(𝜉+𝜖)2

4
)  ≥  𝜓((𝜉 + 𝜖)2) and that the integral 

is bounded by 1. The estimate of the other integral in (94) is simpler: |ℒ𝐹(𝜇+𝜖)̃ (𝜖 +  𝑖𝑠)|  ≤

 𝐶4(𝜖, (𝜇 + 𝜖)̃ ) for all 𝑠 ∈  𝑅, and hence 

|∫  
∞

𝜉+𝜖
2

 ℱ�̃�(𝑠)ℒ𝐹(𝜇+𝜖)̃ (𝜖 + 𝑖(𝜉 + 𝜖 − 𝑠))𝑑𝑠| ≤  𝐶4(𝜖, (𝜇 + 𝜖)̃ )∫  
∞

𝜉+𝜖
2

 |ℱ�̃�(𝑠)|𝑑𝑠 

≤
𝐶4(𝜖, (𝜇 + 𝜖)̃ )𝐶2(𝜖, 𝑎 − 𝜖, 𝑏 − 𝜖)

2 (1 +
𝜉 + 𝜖
2 )

2  . 

Therefore, for 𝜉 + 𝜖 >  0, 

|ℱ𝑓(𝜉 + 𝜖)| ≤ 𝐶5(𝜖, 𝑎 − 𝜖, 𝑏 − 𝜖, (𝜇 + 𝜖)̃ )(
1

(1 + |𝜉 + 𝜖|)(1 + 𝜓((𝜉 + 𝜖)2))
1/2
 

+
1

(1 + |𝜉 + 𝜖|)2
)  . 

Since ℱ𝑓(−(𝜉 + 𝜖))  = ℱ𝑓(𝜉 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, the above estimate extends to all (𝜉 + 𝜖) ∈ 𝑅. We 

conclude that for all (𝜉 + 𝜖) ∈ 𝑅, 

(1 + 𝜓((𝜉 + 𝜖)2))|ℱ𝑓(𝜉 + 𝜖)|2  

≤ 2 (𝐶5(𝜖, 𝑎 − 𝜖, 𝑏 − 𝜖, (𝜇 + 𝜖)̃ ))
2

(
1

(1 + |𝜉 + 𝜖|)2
 +
1 + 𝜓((𝜉 + 𝜖)2)

(1 + |𝜉 + 𝜖|)4
 ) , 

and the right-hand side is integrable because (1 + |𝜉 + 𝜖|)−2(1 +  𝜓((𝜉 + 𝜖)2)) is 

bounded. 

Corollary (5.3.39)[274]: If 𝜓 is unbounded, then for 𝑛 ≥  2, 

‖𝐴𝐷�̃�𝑛 − (𝜆 + 𝜖)̃
𝑛�̃�𝑛‖𝐿2(𝐷)  ≤

𝐶(𝑎 − 𝜖, 𝑏 − 𝜖, 𝜓)

𝑛
, 

and 

(𝑎 − 𝜖)  −
20(𝑎 − 𝜖)

𝑛𝜋
 ≤ ‖�̃�𝑛‖𝐿2(𝐷)

2  ≤ (𝑎 − 𝜖)  +
36(𝑎 − 𝜖)

𝑛𝜋
 . 
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Proof. By [112], 

𝐼𝜇+𝜖 = ℒ𝐺𝜇+𝜖(0) =
cos  𝜗𝜇+𝜖

𝜇 + 𝜖
 − ℒ𝐹𝜇+𝜖(0

+) =
𝑐𝑜𝑠 𝜗𝜇+𝜖

𝜇 + 𝜖
 − √

𝜓′((𝜇 + 𝜖)2)

𝜓((𝜇 + 𝜖)2)
 ≤

1

𝜇 + 𝜖
 .  (95) 

Furthermore, by complete monotonicity, 

𝐼𝜇+𝜖 ≥ ∫  
𝑥

0

 𝐺𝜇+𝜖(𝓏)𝑑𝓏 ≥ ∫  
𝑥

0

(𝐺𝜇+𝜖(𝑥) − 𝐺𝜇+𝜖
′ (𝑥)(𝑥 − 𝓏) +

1

2
𝐺𝜇+𝜖
′ (𝑥)(𝑥 − 𝓏)2) 𝑑𝓏 

= 𝑥𝐺𝜇+𝜖(𝑥) −
1

2
𝑥2𝐺𝜇+𝜖

′ (𝑥) +
1

6
𝑥3𝐺𝜇+𝜖

′ (𝑥), 

so that 

𝐺𝜇+𝜖(𝑥) ≤
1

(𝜇 + 𝜖)𝑥
 ,              𝐺𝜇+𝜖

′ (𝑥) ≤
2

(𝜇 + 𝜖)𝑥2
 ,          𝐺𝜇+𝜖

′′ (𝑥) ≤
6

(𝜇 + 𝜖)𝑥3
 . 

By Corollary (5.3.37), for 𝜇 + 𝜖 ≥  (𝜇 + 𝜖)̃
2 

 𝜓((𝜇 + 𝜖)2)𝐺𝜇+𝜖(𝑥) ≤
𝐶(𝜓, 𝑥)

𝜇 + 𝜖
 . 

Finally, (𝜇 + 𝜖)̃
𝑛  ≥

(𝑛−1)𝜋

2(𝑎−𝜖)
 ≥

𝑛𝜋

4(𝑎−𝜖)
 for 𝑛 ≥  2. The result follows from Lemmas (5.3.18) 

and (5.3.19).  

Corollary (5.3.40)[274]: Suppose that lim
𝜉+𝜖→∞

  (𝜉 + 𝜖)𝜓′(𝜉 + 𝜖)  =  ∞. For 𝑛 larger than 

some (integer) constant 𝐶(𝑎 − 𝜖, 𝑏 − 𝜖, 𝜓) the numbers 𝑘(𝑛) are distinct. Moreover, for any 

𝜖 >  0, for 𝑛 larger than some (integer) constant 𝐶(𝑎 − 𝜖, 𝑏 − 𝜖, 𝜓, 𝜖), 

𝜓(((𝜇 + 𝜖)̃
𝑛  −  𝜖)

2
) <  (𝜆 + 𝜖)𝑘(𝑛)  <  𝜓 (((𝜇 + 𝜖)̃

𝑛  +  𝜖)
2
).                                     (96) 

Proof. Let 𝜖 ∈  (0,
𝜋

4(𝑎−𝜖)
). For some (𝜉 + 𝜖)𝑛 ∈ ((𝜇 + 𝜖)̃

𝑛, (𝜇 + 𝜖)̃
𝑛  +  𝜖), 

𝜓(((𝜇 + 𝜖)̃
𝑛  +  𝜖)

2
) −  𝜓((𝜇 + 𝜖)̃

𝑛
2) = 2𝜖(𝜉 + 𝜖)𝑛𝜓

′((𝜉 + 𝜖)𝑛
2). 

Since (𝜉 + 𝜖)𝑛  ≤
𝑛𝜋

2(𝑎−𝜖)
 +  𝜖 ≤

𝑛𝜋

𝑎−𝜖
 , it follows that 

𝜓(((𝜇 + 𝜖)̃
𝑛  +  𝜖)

2
) −  𝜓((𝜇 + 𝜖)̃

𝑛
2) ≥

2(𝑎 − 𝜖)𝜖(𝜉 + 𝜖)𝑛
2𝜓′((𝜉 + 𝜖)𝑛

2)

𝑛𝜋
 . 

Since (𝜉 + 𝜖)𝑛 ≥
(𝑛−1)𝜋

2(𝑎−𝜖)
 , we have lim

𝑛→∞
  (𝜉 + 𝜖)𝑛

2𝜓′((𝜉 + 𝜖)𝑛
2) = ∞, and so, by Corollary 

(5.3.22), for 𝑛 greater than some constant 𝐶(𝑎 − 𝜖, 𝑏 − 𝜖, 𝜓, 𝜖), 

𝜓(((𝜇 + 𝜖)̃
𝑛  +  𝜖)

2
)  −  𝜓((𝜇 + 𝜖)̃

𝑛
2)  >  |(𝜆 + 𝜖)̃

𝑛  −  (𝜆 + 𝜖)𝑘(𝑛)|. 

Since 𝜓 is concave, 

𝜓((𝜇 + 𝜖)̃
𝑛
2) −  𝜓 (((𝜇 + 𝜖)̃

𝑛  −  𝜖)
2
) ≥  𝜓 (((𝜇 + 𝜖)̃

𝑛  +  𝜖)
2
) −  𝜓((𝜇 + 𝜖)̃

𝑛
2). 

Finally, (𝜆 + 𝜖)̃
𝑛 = 𝜓((𝜇 + 𝜖)̃

𝑛
2). This proves (96). 

Observe that, by Corollary (5.3.35), 

(𝑎 − 𝜖)(𝜇 + 𝜖)̃
𝑛+1  − (𝑎 − 𝜖)(𝜇 + 𝜖)̃

𝑛 =
𝜋

2
+ 𝜗(𝜇+𝜖)̃

𝑛
 −  𝜗(𝜇+𝜖)̃

𝑛+1
 

≥
𝜋

2
 −

3

(𝜇 + 𝜖)̃
𝑛

 ((𝜇 + 𝜖)̃
𝑛+1  −  (𝜇 + 𝜖)̃

𝑛)  

≥
𝜋

2
−
6(𝑎 − 𝜖)

(𝑛 −  1)𝜋
 ((𝜇 + 𝜖)̃

𝑛+1  −  (𝜇 + 𝜖)̃
𝑛), 
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so that (𝜇 + 𝜖)̃
𝑛+1  −  (𝜇 + 𝜖)̃

𝑛  ≥
𝜋

2(𝑎−𝜖)
 (1 +

6

(𝑛−1)𝜋
)
−1
 ≥

𝜋

4(𝑎−𝜖)
 for 𝑛 ≥  3. The first 

statement of the lemma follows hence from (96) with 𝜖 =
𝜋

8(𝑎−𝜖)
 . 

Corollary (5.3.41)[274]: Suppose that lim
𝜉+𝜖→∞

  (𝜉 + 𝜖)𝜓′(𝜉 + 𝜖)  =  ∞. Then 𝑘(𝑛)  ≥  𝑛 

for infinitely many 𝑛.  

Proof. By Corollary (5.3.40), 

(𝜆 + 𝜖)𝑘(𝑛)  ≥  𝜓 (((𝜇 + 𝜖)̃
𝑛  −

𝜋

16(𝑎 − 𝜖)
 )
2

) 

for 𝑛 large enough. On the other hand, by (69), 

(𝜆 + 𝜖)𝑛−1  ≤  𝜓((
(𝑛 − 1)𝜋

2(𝑎 − 𝜖)
 )

2

) 

for all 𝑛 ≥  1. Finally, by Corollary (5.3.34) and Corollary (5.3.35), 𝜗(𝜇+𝜖)̃
𝑛
 <

3𝜋

8
+

𝜋

16
 for 

infinitely many 𝑛, and hence 

(𝜇 + 𝜖)̃
𝑛  −

𝜋

16(𝑎 − 𝜖)
=

𝑛𝜋

2(𝑎 − 𝜖)
 −

1

𝑎 − 𝜖
 𝜗(𝜇+𝜖)̃

𝑛
 −

𝜋

16(𝑎 − 𝜖)
 

>
𝑛𝜋

2(𝑎 − 𝜖)
− (

3𝜋

8(𝑎 − 𝜖)
+

𝜋

16(𝑎 − 𝜖)
) −

𝜋

16(𝑎 − 𝜖)
=
(𝑛 − 1)𝜋

2(𝑎 − 𝜖)
 

for infinitely many 𝑛. 

Corollary (5.3.42)[274]: Suppose that lim
𝜉+𝜖→∞

  (𝜉 + 𝜖)𝜓′(𝜉 + 𝜖)  =  ∞. For 𝑛 greater than 

some constant 𝐶(𝑎 − 𝜖, 𝑏 − 𝜖, 𝜓) we have 𝑘(𝑛)  =  𝑛. 

Proof. Let 𝜖 =
𝜋

6(𝑎−𝜖)
 and let 𝑁 be the constant 𝐶(𝑎 − 𝜖, 𝑏 − 𝜖, 𝜓, 𝜖) in Corollary (5.3.40). 

Define 𝐽 =  {𝑘(𝑛) ∶  𝑛 >  𝑁} and let 𝐽′ =  {𝑗 ≥  1 ∶  𝑗 ∉ 𝐽}. We claim that it suffices to 

show that |𝐽′|  ≤  𝑁. Indeed, there is 𝑛0 > 𝑁 such that (𝑛0) = 1 +  max 𝐽′ , and 𝑘(𝑛) is 

strictly increasing for 𝑛 >  𝑁. It follows that 𝑘(𝑛)  =  𝑘(𝑛0)  +  𝑛 − 𝑛0 for 𝑛 ≥  𝑛0. If 

|𝐽′|  ≤  𝑁, then 𝑘(𝑛0)  =  |𝐽′|  + (𝑛0  − 𝑁)  ≤  𝑛0, so that 𝑘(𝑛)  ≤  𝑛 for 𝑛 ≥  𝑛0. Since 

𝑘(𝑛)  ≥  𝑛 infinitely many times by Corollary (5.3.41), necessarily 𝑘(𝑛)  =  𝑛 for 𝑛 ≥  𝑛0, 

as desired.  

Let 𝜖 > −1. By the assumption, 𝜓(𝜉 + 𝜖) ≥
1

1+𝜖
 𝑙𝑜𝑔 𝜉 + 𝜖 − 𝐶(1 + 𝜖) for some 

constant 𝐶(1 + 𝜖), and therefore 𝑒𝑥𝑝(−(1 + 𝜖)𝜓((𝜉 + 𝜖)2)) is integrable. Therefore, 

𝑇(1 + 𝜖;  𝑥) is bounded in 𝑥 ∈  𝑅. In particular, 𝑇𝐷(1 + 𝜖;  𝑥,·) is in 𝐿2(𝐷), and so, by 

Parseval’s identity, 

∫  
𝑎−𝜖

−(𝑎−𝜖)

 ∫  
𝑎−𝜖

−(𝑎−𝜖)

 (𝑇𝐷(1 + 𝜖;  𝑥, 𝑦))
2
𝑑𝑦𝑑𝑥 

= ∫  
𝑎−𝜖

−(𝑎−𝜖)

 ∑  

∞

𝑛=1

(∫  
𝑎−𝜖

−(𝑎−𝜖)

 𝑇𝐷(1 + 𝜖;  𝑥, 𝑦)𝜑𝑗  (𝑦)𝑑𝑦)

2

 𝑑𝑥 

= ∫  
𝑎−𝜖

−(𝑎−𝜖)

 ∑  

∞

𝑗=1

 𝑒−2(𝜆+𝜖)𝑗(1+𝜖)  (𝜑𝑗  (𝑥))
2
𝑑𝑥 =∑ 

∞

𝑗=1

 𝑒−2(𝜆+𝜖)𝑗(1+𝜖) . 

On the other hand, by Plancherel’s identity, 
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∫  
𝑎−𝜖

−(𝑎−𝜖)

 ∫  
𝑎−𝜖

−(𝑎−𝜖)

 (𝑇𝐷(1 + 𝜖;  𝑥, 𝑦))
2
𝑑𝑦𝑑𝑥 ≤  2(𝑎 − 𝜖) ∫  

∞

−∞

 (𝑇(1 + 𝜖;  𝑥 −  𝑦))
2
𝑑𝑦 

=
2(𝑎 − 𝜖)

𝜋
 ∫  

∞

0

 𝑒−2(1+𝜖)𝜓((𝜉+𝜖)
2) 𝑑(𝜉 + 𝜖). 

It follows that for all 𝜖 > −1, 

∑ 

∞

𝑗=1

 𝑒−(𝜆+𝜖)𝑗(1+𝜖)  ≤
2(𝑎 − 𝜖)

𝜋
 ∫  

∞

0

 𝑒−(1+𝜖)𝜓((𝜉+𝜖)
2) 𝑑(𝜉 + 𝜖).                         (97) 

Observe that 

∑ 

𝑗∈𝐽

 𝑒−(𝜆+𝜖)𝑗(1+𝜖)  = ∑  

∞

𝑛=𝑁

 𝑒−(𝜆+𝜖)𝑘(𝑛)(1+𝜖)  ≥ ∑  

∞

𝑛=𝑁+1

 𝑒
−𝜓(((𝜇+𝜖)̃

𝑛+𝜖)
2
)(1+𝜖)

 

≥ ∑  

∞

𝑛=𝑁

𝑒
−𝜓((

𝑛𝜋
2(𝑎−𝜖)

+𝜖)
2

)(1+𝜖)
. 

Denote (𝜉 + 𝜖)𝑛 =
𝑛𝜋

2(𝑎−𝜖)
+  𝜖 =

(𝑛 +
1

3
)𝜋

2(𝑎−𝜖)
. Since 𝑒−(1+𝜖)𝜓(𝓏) is concave in 𝓏 > 0, 

∫  
(𝜉+𝜖)𝑛+1

(𝜉+𝜖)𝑛

 𝑒−(1+𝜖)𝜓((𝜉+𝜖)
2) 𝑑(𝜉 + 𝜖)  

≤ ∫  
(𝜉+𝜖)𝑛+1

(𝜉+𝜖)𝑛

 (
(𝜉 + 𝜖)𝑛+1

2  − (𝜉 + 𝜖)2

(𝜉 + 𝜖)𝑛+1
2 − (𝜉 + 𝜖)𝑛

2
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛

2 )  

+
(𝜉 + 𝜖)2  −  (𝜉 + 𝜖)𝑛

2

(𝜉 + 𝜖)𝑛+1
2  − (𝜉 + 𝜖)𝑛

2
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛+1

2 ))𝑑(𝜉 + 𝜖)  

=
2(𝜉 + 𝜖)𝑛+1

2  −  (𝜉 + 𝜖)𝑛(𝜉 + 𝜖)𝑛+1  −  (𝜉 + 𝜖)𝑛
2

3((𝜉 + 𝜖)𝑛 + (𝜉 + 𝜖)𝑛+1)
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛

2 )  

+
(𝜉 + 𝜖)𝑛+1

2  +  (𝜉 + 𝜖)𝑛(𝜉 + 𝜖)𝑛+1  −  2(𝜉 + 𝜖)𝑛
2

3((𝜉 + 𝜖)𝑛  +  (𝜉 + 𝜖)𝑛+1)
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛+1

2 )  

=
𝜋

2(𝑎 − 𝜖)
 (
3𝑛 +  3

6𝑛 +  5
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛

2)  +
3𝑛 +  2

6𝑛 +  5
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛+1

2 )). 

Hence, 
2(𝑎 − 𝜖)

𝜋
 ∫  

∞

(𝜉+𝜖)𝑁

 𝑒−(1+𝜖)𝜓((𝜉+𝜖)
2) 𝑑(𝜉 + 𝜖)  

≤ ∑  

∞

𝑛=𝑁

(
3𝑛 +  3

6𝑛 +  5
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛

2 )  +
3𝑛 +  2

6𝑛 +  5
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛+1

2 ))  

≤
3𝑁 +  3

6𝑁 +  5
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑁

2 )  + ∑  

∞

𝑛=𝑁+1

 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑛
2)  

≤
3𝑁 +  3

6𝑁 +  5
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑁

2 )  +∑  

𝑗∈𝐽

 𝑒−(1+𝜖)(𝜆+𝜖)𝑗 
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(the second inequality is a consequence of 
3𝑛+2

6𝑛+5
+
3(𝑛+1)+3

6(𝑛+1)+5
 ≤  1, while the last one follows 

from (𝜆 + 𝜖)𝑘(𝑛)  ≤  𝜓(((𝜇 + 𝜖)̃
𝑛  +  𝜖)

2
)  ≤  𝜓((𝜉 + 𝜖)𝑛

2) for 𝑛 >  𝑁). By (97), 

∑ 

𝑗∈𝐽′

 𝑒−(𝜆+𝜖)𝑗(1+𝜖)  ≤
2(𝑎 − 𝜖)

𝜋
 ∫  

∞

0

 𝑒−(1+𝜖)𝜓((𝜉+𝜖)
2) 𝑑(𝜉 + 𝜖)  −∑ 

𝑗∈𝐽

 𝑒−(𝜆+𝜖)𝑗(1+𝜖)  

≤
2(𝑎 − 𝜖)

𝜋
 ∫  

(𝜉+𝜖)𝑁

0

 𝑒−(1+𝜖)𝜓((𝜉+𝜖)
2)𝑑(𝜉 + 𝜖)  

+
3𝑁 +  3

6𝑁 +  5
 𝑒−(1+𝜖)𝜓((𝜉+𝜖)𝑁

2 ) . 

Passing to a limit as 𝜖 → −1, we obtain 

|𝐽′| ≤
2(𝑎 − 𝜖)

𝜋
 (𝜉 + 𝜖)𝑁  +

3𝑁 +  3

6𝑁 +  5
 =  𝑁 +

1

3
 +
3𝑁 +  3

6𝑁 +  5
 <  𝑁 +  1. 

This shows that |𝐽′|  ≤  𝑁, as desired. 

Corollary (5.3.43)[274]: If 𝜓 is a complete Bernstein function and lim
𝜉+𝜖→∞

 (𝜉 + 𝜖)𝜓′(𝜉 +

𝜖)  = ∞, then 

 (𝜆 + 𝜖)𝑛 = 𝜓((𝜇 + 𝜖)𝑛
2) +  𝑂 (

1

𝑛
)     as     𝑛 → ∞.                                (98) 

In many cases, (𝜇 + 𝜖)𝑛 can be approximated with more explicit expressions, at the 

price of a weaker estimate of the error term. We provide two examples [225]. 

Proof. By Corollary (5.3.42), 𝑘(𝑛)  =  𝑛 for 𝑛 large enough. Hence, by Corollary (5.3.22), 

(𝜆 + 𝜖)𝑛  =  (𝜆 + 𝜖)̃
𝑛  +  𝑂 (

1

𝑛
) = 𝜓((𝜇 + 𝜖)̃

𝑛
2)  +  𝑂 (

1

𝑛
 ). 

Corollary (5.3.44)[274]: (See [97] and [236].) Suppose that lim
𝜉+𝜖→∞

(𝜉 + 𝜖)𝜓′(𝜉 + 𝜖) = ∞. 

With the appropriate choice of the signs of 𝜑𝑛 and with 

𝛽𝑛 = ‖�̃�𝑛‖𝐿2(𝐷) 

we have 𝛽𝑛  =  √𝑎 − 𝜖  +  𝑂 (
1

𝑛
) as 𝑛 →  ∞, and 

‖�̃�𝑛  −  𝛽𝑛 𝜑𝑛‖𝐿2(𝐷)  =  𝑂 

(

 
 1

(
𝑛𝜋

2(𝑎 − 𝜖)
)
2

𝜓′ ((
𝑛𝜋

2(𝑎 − 𝜖)
)
2

)
)

 
 
         as 𝑛 →  ∞. 

Proof. By Corollary (5.3.39), indeed 𝛽𝑛  =  √𝑎 − 𝜖  +  𝑂 (
1

𝑛
). Let 𝛼𝑛,𝑗 = 〈�̃�𝑛, 𝜑𝑗〉𝐿2(𝐷), so 

that �̃�𝑛  = ∑ 𝛼𝑛,𝑗𝜑𝑗
∞
𝑗=1  in 𝐿2(𝐷). We choose the sign of 𝜑𝑛 so that 𝛼𝑛,𝑛  ≥  0. We have 

‖�̃�𝑛  − 𝛽𝑛𝜑𝑛‖𝐿2(𝐷)  ≤ ‖�̃�𝑛 − 𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷)  +  |𝛼𝑛,𝑛 − 𝛽𝑛|  

= ‖�̃�𝑛 − 𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷)  +  |‖𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷)  −
‖�̃�𝑛‖𝐿2(𝐷)|  

≤  2 ‖�̃�𝑛 − 𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷). 

As in the proof of Corollary (5.3.40), for 𝑛 larger than some constant, if 𝑗 ≠ 𝑛 and =
𝜋

8(𝑎−𝜖)
 

, then 
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|(𝜆 + 𝜖)𝑗 − (𝜆 + 𝜖)̃
𝑛|

≥  max (𝜓(((𝜇 + 𝜖)̃
𝑛+1 − 𝜖)

2
) − 𝜓(((𝜇 + 𝜖)̃

𝑛 + 𝜖)
2
), 𝜓(((𝜇 + 𝜖)̃

𝑛 − 𝜖)
2
)

− 𝜓(((𝜇 + 𝜖)̃
𝑛−1 + 𝜖)

2
)  

≥ 2
(𝑛 − 1)𝜋

2(𝑎 − 𝜖)
 𝜓′ ((

(𝑛 + 1)𝜋

2(𝑎 − 𝜖)
)

2

) ·  (
𝜋

2(𝑎 − 𝜖)
− 2𝜖)

≥
1

𝐶1

𝑛𝜋

2(𝑎 − 𝜖)
 𝜓′((

𝑛𝜋

2(𝑎 − 𝜖)
)
2

). 

Therefore, 

‖�̃�𝑛 − 𝛼𝑛,𝑛𝜑𝑛‖𝐿2(𝐷)
2

 = ∑  

𝑗≠𝑛

 |𝛼𝑛,𝑗|
2
 

≤
𝐶1

𝑛𝜋
2(𝑎 − 𝜖)

 𝜓′ ((
𝑛𝜋

2(𝑎 − 𝜖)
)
2

)

  ∑  

𝑗≠𝑛

 ((𝜆 + 𝜖)𝑗 − (𝜆 + 𝜖)̃
𝑛)
2
|𝛼𝑛,𝑗|

2
 

≤
𝐶1

𝑛𝜋
2(𝑎 − 𝜖)

 𝜓
′((

𝑛𝜋
2(𝑎−𝜖)

 )
2

)

 ‖𝐴𝐷�̃�𝑛  − (𝜆 + 𝜖)̃
𝑛�̃�𝑛‖𝐿2(𝐷)

2
 

≤
𝐶2(𝑎 − 𝜖, 𝑏 − 𝜖, 𝜓)

(
𝑛𝜋

2(𝑎 − 𝜖)
 )
2

𝜓′ ((
𝑛𝜋

2(𝑎 − 𝜖)
)
2

)

 , 

again by Corollary (5.3.39). 

Corollary (5.3.45)[274]: (See [97] and [236].) Suppose that lim
𝜉+𝜖→∞

  (𝜉 + 𝜖)𝜓′(𝜉 + 𝜖)  =

 ∞. With the appropriate choice of the signs of 𝜑𝑛 and with 

𝑓𝑛(𝑥)  =

{
 

 (−1)(𝑛−1)/2
1

√𝑎 − 𝜖
 𝑐𝑜𝑠((𝜇 + 𝜖)̃

𝑛𝑥)                   when 𝑛 is odd,

(−1)𝑛/2
1

√𝑎 − 𝜖
 𝑠𝑖𝑛((𝜇 + 𝜖)̃

𝑛𝑥)                           when 𝑛 is even,

  

we have 

‖𝑓𝑛 − 𝜑𝑛‖𝐿2(𝐷)  =  𝑂

(

 
 1

√𝑛
 +

1

(
𝑛𝜋

2(𝑎 − 𝜖)
)
2

𝜓′ ((
𝑛𝜋

2(𝑎 − 𝜖)
)
2

)
)

 
 
                        as 𝑛 →  ∞. 

Proof. Clearly, 

‖𝑓𝑛 − 𝜑𝑛‖𝐿2(𝐷)  

≤ ‖𝑓𝑛 −
1

√𝑎 − 𝜖
�̃�𝑛‖

𝐿2(𝐷)

 +
1

√𝑎 − 𝜖
 ‖�̃�𝑛  − 𝛽𝑛𝜑𝑛‖𝐿2(𝐷)

+ |
𝛽𝑛

√𝑎 − 𝜖
 −  1| ‖𝜑𝑛‖𝐿2(𝐷).  
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The middle summand is 𝑂(
1

(
𝑛𝜋

2(𝑎−𝜖)
)
2
𝜓′((

𝑛𝜋

2(𝑎−𝜖)
)
2
)
), while the last one is 𝑂 (

1

𝑛
). Finally, by the 

definition (79) of �̃�𝑛 and the properties of 𝑞(𝑥) and 𝐹𝜇+𝜖(𝑥), 

‖√𝑎 − 𝜖 𝑓𝑛 − �̃�𝑛‖𝐿2(𝐷)
2

 

= ∫  
𝑎−𝜖

−(𝑎−𝜖)

(𝑞(−𝑥)𝐺(𝜇+𝜖)̃
𝑛
(𝑎 − 𝜖 +  𝑥)

− (−1)𝑛𝑞(𝑥)𝐺(𝜇+𝜖)̃
𝑛
(𝑎 − 𝜖 −  𝑥))

2
𝑑𝑥 ≤ 4∫  

∞

0

(𝐺(𝜇+𝜖)̃
𝑛
(𝑠))

2
𝑑𝑠

≤ 4𝐺(𝜇+𝜖)̃
𝑛
(0)∫  

∞

0

𝐺(𝜇+𝜖)̃
𝑛
(𝑠)𝑑𝑠 = 4𝐺(𝜇+𝜖)̃

𝑛
 (0)ℒ𝐺(𝜇+𝜖)̃

𝑛
 (0). 

Since 𝐺𝜇+𝜖(0) = 𝑐𝑜𝑠 𝜗𝜆+𝜖 ≤ 1 and ℒ𝐺𝜇+𝜖(0) = 𝐼𝜇+𝜖 ≤
1

𝜇+𝜖
  (see (95)), we have 

‖√𝑎 − 𝜖 𝑓𝑛 − �̃�𝑛‖𝐿2(𝐷)  =  𝑂 (
1

√𝑛
). 

Corollary (5.3.46)[274]: (See [97] and [236].) Suppose that if (𝜉 + 𝜖)2  >  (𝜉 + 𝜖)1  >  1, 

then 

𝜓((𝜉 + 𝜖)2
 )

𝜓((𝜉 + 𝜖)1)
 ≥  𝑀 (

(𝜉 + 𝜖)2
(𝜉 + 𝜖)1

)

𝜖

                                                       (99) 

for some 𝑀, 𝜖 >  0. Suppose in addition that 

lim inf
𝜉+𝜖→∞

 (𝜉 + 𝜖)
3
4𝜓′(𝜉 + 𝜖) >  0.                                                                   (100) 

Then 𝜑𝑛(𝑥) are bounded uniformly in 𝑛 ≥  1 and 𝑥 ∈  (−(𝑎 − 𝜖), (𝑎 − 𝜖)). 
Condition (99) is known under various names, including weak lower scaling 

condition and subregularity; such a function 𝜓 is also said to have positive lower 

Matuszewska index. We remark that although (100) does not imply (99), examples of 

complete Bernstein functions which satisfy (100), but not (99), are rather artificial [225]. 

Proof. Observe that (𝜉 + 𝜖)𝜓′(𝜉 + 𝜖) diverges to ∞ as 𝜉 + 𝜖 →  ∞, and therefore main 

results of the present article apply. Furthermore, by (99), we have 𝑇(1 − 𝜖, 0) ≤

 𝐶1(𝜓)√𝜓
−1 (

1

1−𝜖
) for 𝜖 ≥ 0, see, for example, [206]. We have 

‖𝜑𝑛‖𝐿∞(𝐷)  =  𝑒
(𝜆+𝜖)𝑛(1−𝜖)‖𝑇𝐷(1 − 𝜖)𝜑𝑛‖𝐿∞(𝐷)  

≤ 𝑒(𝜆+𝜖)𝑛(1−𝜖) ‖𝑇𝐷(1 − 𝜖) (𝜑𝑛 −
1

𝛽𝑛
 �̃�𝑛)‖

𝐿∞(𝐷)

 

+  𝑒(𝜆+𝜖)𝑛(1−𝜖)
1

𝛽𝑛
 ‖𝑇𝐷(1 − 𝜖)𝜑𝑛‖𝐿∞(𝐷). 

Since |𝜑𝑛(𝑥)|  ≤  2, the latter term in the right-hand side does not exceed 
2

𝛽𝑛
 𝑒(𝜆+𝜖)𝑛(1−𝜖) . 

For the former one, observe that |𝑇𝐷(1 − 𝜖)𝑓(𝑥)|  ≤  ‖𝑇𝐷(1 −
𝜖, 𝑥,·)‖𝐿2(𝐷) ‖𝑓‖𝐿2(𝐷), 𝑇𝐷(1 − 𝜖, 𝑥, 𝑦)  ≤  𝑇(1 − 𝜖, 𝑥 −  𝑦), and, by Plancherel’s theorem, 

‖𝑇(1 − 𝜖,·)‖𝐿2(𝑅)
2  =

1

2𝜋
∫  
∞

−∞

(𝑒−(1−𝜖)𝜓((𝜉+𝜖)
2) )

2
𝑑(𝜉 + 𝜖)  =  𝑇(2(1 − 𝜖), 0). 
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Finally, 𝑇(2(1 − 𝜖), 0)  ≤  𝐶1(𝜓)√𝜓
−1(1/(2(1 − 𝜖)))  ≤  𝐶1(𝜓)√𝜓

−1 (
1

1−𝜖
) when 𝜖 ≥

0. Therefore, with 1 − 𝜖 =
1

(𝜆+𝜖)𝑛
 , 

‖𝜑𝑛‖𝐿∞(𝐷)  ≤
𝑒

𝛽𝑛
 (𝐶1(𝜓))

1/2
(𝜓−1((𝜆 + 𝜖)𝑛))

1/4
 ‖𝛽𝑛𝜑𝑛  − �̃�𝑛‖𝐿2(𝐷)  +

2𝑒

𝛽𝑛
 . 

In the right-hand side, 𝛽𝑛  =  𝑂(1),𝜓
−1((𝜆 + 𝜖)𝑛)  ≤  (

𝑛𝜋

2(𝑎−𝜖)
)
2
 (by (69)), and, by 

Corollary (5.3.39), 

‖𝛽𝑛𝜑𝑛 − �̃�𝑛‖𝐿2(𝐷)  =  𝑂

(

 
 1

(
𝑛𝜋

2(𝑎 − 𝜖)
)
2

𝜓′ ((
𝑛𝜋

2(𝑎 − 𝜖)
 )
2

)
)

 
 
. 

Corollary (5.3.47)[274]: Let 𝑓 be a complete Bernstein function with representation (64). 

Let 𝑔 be a holomorphic function in {𝑤 ∈  𝐶 ∶  | 𝐴𝑟𝑔 𝑤|  <  𝐶1} (with 0 <  𝐶1  <
𝜋

2
 ) such 

that 𝑔(𝑥) is real for 𝑥 >  0, and let ℎ be a continuous function on (0,∞). Denote 

𝐺(𝑦) = sup
𝑦/4≤|𝓏|≤4𝑦
| 𝐴𝑟𝑔 𝓏|<𝐶1

|𝑔(𝓏)|          𝐻(𝑦) = sup
𝑦/4≤𝑥≤4𝑦

|ℎ(𝑥)|  

and suppose that 

𝐺(𝑥)𝐻(𝑥) ≤  𝐶2 𝑚𝑖𝑛(𝑥
−1, 𝑥−2),        𝐶3 = ∫  

∞

0

 (1 +  𝑦)𝐺(𝑦)𝐻(𝑦)𝑑𝑦 <  ∞ 

for 𝑥 >  0. Then 

∫  
(0,∞)

 𝑔(𝑥)ℎ(𝑥)𝑚(𝑑𝑥) = lim
𝜖→0+

 
1

𝜋
 ∫  

∞

0

 𝐼𝑚 (𝑓(−𝑒−𝑖𝜖𝑥)𝑔(𝑒−𝑖𝜖𝑥)) ℎ(𝑥)𝑑𝑥              (101) 

= lim
𝜖→0+

 
1

𝜋
 ∫  

∞

0

 𝐼𝑚 (𝑓(−𝑒−𝑖𝜖𝑥))𝑔(𝑥)ℎ(𝑥)𝑑𝑥.                      (102) 

Proof. Let 𝑥 >  0, 0 <  𝜖 <
1

2
𝐶1 and 𝑦 >  0, and denote for simplicity 𝜉 + 𝜖 =  −𝑒−𝑖𝜖𝑥 . 

By the representation (64) of the complete Bernstein function 𝑓 and Fubini, we have 

∫  
∞

0

𝐼𝑚(𝑓(𝜉 + 𝜖)𝑔(−(𝜉 + 𝜖)))ℎ(𝑥)𝑑𝑥

= 𝑐∫  
∞

0

𝐼𝑚((𝜉 + 𝜖)𝑔(−(𝜉 + 𝜖)))ℎ(𝑥)𝑑𝑥

+ �̃�  ∫  
∞

0

𝐼𝑚(𝑔(−(𝜉 + 𝜖)))ℎ(𝑥)𝑑𝑥

+
1

𝜋
∫  
(0,∞)

∫  
∞

0

𝐼𝑚
(𝜉 + 𝜖)𝑔(−(𝜉 + 𝜖))

𝜉 + 𝜖 + 𝓏
 ℎ(𝑥)𝑑𝑥

𝑚(𝑑𝓏)

𝓏
    (103) 

(an estimate which allows us to use Fubini is shown below). Our goal is to provide estimates 

for the integrands and find their pointwise limits as 𝜖 →  0+ in order to apply dominated 

convergence. 

For the first integral in the right-hand side of (103), we simply use |(𝜉 + 𝜖)𝑔(−(𝜉 +
𝜖))ℎ(𝑥)|  ≤  𝑥𝐺(𝑥)𝐻(𝑥), integrability of 𝑥𝐺(𝑥)𝐻(𝑥) and 𝐼𝑚((𝜉 + 𝜖)𝑔(−(𝜉 + 𝜖)))  →  0 
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as 𝜖 →  0+. By dominated convergence, the limit as 𝜖 →  0+ of the first integral in the right-

hand side of (103) is zero. Similarly, |𝑔(−(𝜉 + 𝜖))ℎ(𝜉 + 𝜖)|  ≤  𝐺(𝑥)𝐻(𝑥), 𝐺(𝑥)𝐻(𝑥) is 

integrable and 𝐼𝑚(𝑔(−(𝜉 + 𝜖)))  →  0 as 𝜖 →  0+, and so also the second integral in the 

right-hand side of (103) converges to zero as 𝜖 →  0+ [225]. 

To estimate the last integral in the right-hand side of (103), we consider separately 

two cases. When 𝑥 ≤
𝑦

2
 or 𝑥 ≥  2𝑦, we have 

|−
𝜉 + 𝜖

𝜉 + 𝜖 + 𝑦
 𝑔(−(𝜉 + 𝜖))|  ≤

1

|𝑥 −  𝑦|
 𝑥𝐺(𝑥) ≤

3

𝑥 +  𝑦
 𝑥𝐺(𝑥)

≤  3 𝑚𝑖𝑛(1, 𝑥𝑦−1)𝐺(𝑥)  ≤  3 𝑚𝑖𝑛(1, 𝑦−1)(1 +  𝑥)𝐺(𝑥), 
so that by dominated convergence, 

(∫  
𝑦/2

0

 + ∫  
∞

2𝑦

) |𝐼𝑚 (
𝜉 + 𝜖

𝜉 + 𝜖 +  𝑦
 𝑔(−(𝜉 + 𝜖)))  ℎ(𝑥)| 𝑑𝑥 ≤  3𝐶3min(1, 𝑦

−1), 

lim
𝜖→0+

 (∫  
𝑦/2

0

 + ∫  
∞

2𝑦

) 𝐼𝑚 (
𝜉 + 𝜖

𝜉 + 𝜖 +  𝑦
 𝑔(−(𝜉 + 𝜖)))  ℎ(𝑥)𝑑𝑥 =  0.           (104) 

When 
𝑦

2
<  𝑥 <  2𝑦, we need a more careful estimate. Observe that 

(𝜉 + 𝜖)𝑔(−(𝜉 + 𝜖))

𝜉 + 𝜖 +  𝑦
 =

𝑦𝑔(𝑦) − (−(𝜉 + 𝜖))𝑔(−(𝜉 + 𝜖))

𝑦 − (−(𝜉 + 𝜖))
 −

𝑦𝑔(𝑦)

𝜉 + 𝜖 +  𝑦
 . 

The estimate for 𝑔 and Cauchy’s integral formula for 𝑔′ easily give 

|𝑔′(𝓏)|  ≤  𝐶4𝑦
−1𝐺(𝑦) 

in {𝓏 ∈  𝐶 ∶  | 𝐴𝑟𝑔 𝓏|  <
1

2
𝐶1, 𝑦/2 ≤  |𝓏|  ≤  2𝑦}, with 𝐶4  =  4𝐶1

−1 . By the mean value 

theorem, 

|
𝑦𝑔(𝑦) − (−(𝜉 + 𝜖))𝑔(−(𝜉 + 𝜖))

𝑦 − (−(𝜉 + 𝜖))
|  ≤  𝐶4𝑦

−1𝐺(𝑦) 

when 
𝑦

2
 ≤  𝑥 ≤  2𝑦, and therefore, by dominated convergence, 

∫  
2𝑦

𝑦/2

|𝐼𝑚 (
𝑦𝑔(𝑦) − (−(𝜉 + 𝜖))𝑔(−(𝜉 + 𝜖))

𝑦 − (−(𝜉 + 𝜖))
)  ℎ(𝑥)| 𝑑𝑥 ≤

3

2
𝐶4𝑦

−1𝐺(𝑦)𝐻(𝑦)

≤
3

2
𝐶2𝐶4min(1, 𝑦

−1), 

lim
𝜖→0+

  ∫  
2𝑦

𝑦/2

 𝐼𝑚 (
𝑦𝑔(𝑦) − (−(𝜉 + 𝜖))𝑔(−(𝜉 + 𝜖))

𝑦 − (−(𝜉 + 𝜖))
)  ℎ(𝑥)𝑑𝑥 =  0.                           (105) 

Finally, if 𝑃1+𝜖(𝑠) and 𝑄1+𝜖(𝑠) denote the (classical) Poisson and conjugate Poisson kernels 

for the half-plane, then 

𝐼𝑚 (−
1

𝜉 + 𝜖 +  𝑦
)   

=  𝜋 𝑐𝑜𝑠(𝜖)𝑃𝑦 𝑠𝑖𝑛 𝜖(𝑥 −  𝑦 𝑐𝑜𝑠 𝜖)  +  𝜋 𝑠𝑖𝑛(𝜖)𝑄𝑦 𝑠𝑖𝑛 𝜖(𝑥 −  𝑦 𝑐𝑜𝑠 𝜖). 

Clearly, 𝑃𝑦 𝑠𝑖𝑛 𝜖(𝑥 −  𝑦 𝑐𝑜𝑠 𝜖)1(𝑦/2,2𝑦)(𝑥)𝑑𝑥 converges weakly to 𝛿𝑦(𝑥), and therefore 

∫  
2𝑦

𝑦/2

 |𝜋 𝑐𝑜𝑠(𝜖)𝑃𝑦 𝑠𝑖𝑛 𝜖(𝑥 − 𝑦 cos 𝜖)𝑦𝑔(𝑦)ℎ(𝑥)|𝑑𝑥 ≤  𝜋𝑦𝑔(𝑦)𝐻(𝑦) ≤  𝐶2𝜋min(1, 𝑦
−1), 
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lim
𝜖→0+

 ∫  
2𝑦

𝑦/2

𝜋 𝑐𝑜𝑠(𝜖)𝑃𝑦 𝑠𝑖𝑛 𝜖(𝑥 −  𝑦 𝑐𝑜𝑠 𝜖)𝑦𝑔(𝑦)ℎ(𝑥)𝑑𝑥 = 𝜋𝑦𝑔(𝑦)ℎ(𝑦). 

Furthermore, |(1 + 𝜖)𝑄1+𝜖(𝑠)| ≤
1

𝜋
 and (1 + 𝜖)𝑄1+𝜖(𝑠)  →  0 as 𝜖 → −1, and hence, by 

dominated convergence, 

∫  
2𝑦

𝑦/2

 |𝜋 𝑠𝑖𝑛(𝜖)𝑄𝑦 𝑠𝑖𝑛 𝜖(𝑥 − 𝑦 𝑐𝑜𝑠 𝜖)𝑦𝑔(𝑦)ℎ(𝑥)|𝑑𝑥 ≤
3

2
 𝑦𝑔(𝑦)𝐻(𝑦) ≤

3

2
𝐶2min(1, 𝑦

−1), 

lim
𝜖→0+

  ∫  
2𝑦

𝑦/2

 𝜋 𝑠𝑖𝑛(𝜖)𝑄𝑦 𝑠𝑖𝑛 𝜖(𝑥 −  𝑦 𝑐𝑜𝑠 𝜖)𝑦𝑔(𝑦)ℎ(𝑥)𝑑𝑥 =  0. 

We have thus proved that 

∫  
2𝑦

𝑦2

|𝐼𝑚  (−
𝑦𝑔(𝑦)

𝜉 + 𝜖 +  𝑦
)   ℎ(𝑥)| 𝑑𝑥 ≤ 𝐶2 (𝜋 +

3

2
 )min(1, 𝑦−1), 

lim
𝜖→0+

 ∫  
2𝑦

𝑦/2

 𝐼𝑚 (−
𝑦𝑔(𝑦)

𝜉 + 𝜖 +  𝑦
)   ℎ(𝑥)𝑑𝑥 =  𝜋𝑦𝑔(𝑦)ℎ(𝑦).                            (106) 

Due to estimates (104), (105) and (106), as well as the integrability condition on 𝑚, indeed 

we could use Fubini in (103). The same estimates allow us to use dominated convergence 

in the limit as 𝜖 →  0+. We conclude that 

lim
𝜖→0+

  ∫  
∞

0

 𝐼𝑚(𝑓(𝜉 + 𝜖)𝑔(−(𝜉 + 𝜖)))ℎ(𝑥)𝑑𝑥 =  𝜋∫  
(0,∞)

 ∫  
∞

0

 𝑔(𝑦)ℎ(𝑦)𝑚(𝑑𝑦). 

This proves the first equality in (101). The other one follows by replacing the pair 𝑔(𝓏), ℎ(𝑥) 
with 1 and 𝑔(𝑥)ℎ(𝑥).  
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Chapter 6 

Normalized Incidence Energy and Coulson-Type Integral Formulas 

 

We find some upper and lower bounds and determine the Coulson integral formula 

for NIE(G). Based on the integral formula, we give a way to compare the normalized 

incidence energies. We show a relation between normalized incidence energy and Randi´c 

energy. We give a Coulson-type integral formula for the general Laplacian-energy-like 

invariant for 𝛼 =
1

𝑝
 with 𝑝 ∈ ℤ+\{1}. This implies integral formulas for the Laplacian-

energy-like invariant, the normalized incidence energy and the Laplacian incidence energy 

of graphs. We further give some Coulson-type integral formulas for the general energy and 

general Laplacian energy of graphs in the case that α is a rational number. We also show 

that our formulas hold when 𝛼 is an irrational number with 0 < |𝛼| < 1 and do not hold 

with |𝛼| >  1. 

Section (6.1): Incidence Energy of a Graph 

Let 𝐺 be a simple graph on 𝑛 vertices and let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be its vertices. The 

eigenvalues of 𝐺 are the eigenvalues of its adjacency matrix 𝐴(𝐺) [124]. These eigenvalues, 

arranged in a non-increasing order, are denoted as 𝜆1(𝐺), 𝜆2(𝐺), . . . , 𝜆𝑛(𝐺). Then the energy 

of the graph G is defined as 

𝐸(𝐺)  = ∑  

𝑛

𝑘=1

 |𝜆𝑘(𝐺)|. 

This concept was proposed by Gutman [125]. Research on graph energy is nowadays very 

active in mathematical chemistry, as seen from [243], [249]–[251], [253], and [254]. 

We use 𝑑𝑘
𝐺 to denote the degree of a vertex 𝑣𝑘 in 𝐺, and 𝐷(𝐺) to denote the diagonal matrix 

of order 𝑛 whose (𝑘, 𝑘)-entry is 𝑑𝑘
𝐺 . If there is only one graph in question, we simply write 

𝑑𝑘 and 𝐷. The normalized Laplacian matrix of a graph 𝐺, denoted by �̂�(𝐺) or �̂�, is defined 

to be the matrix with entries 

�̂�(𝑖, 𝑗)  =

{
 
 

 
 1                        if 𝑖 =  𝑗 and 𝑑𝑗 ≠ 0;

−
1

√𝑑𝑖𝑑𝑗
            if 𝑣𝑖  and 𝑣𝑗  are adjacent in 𝐺;

0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

It is well known that 0 is an eigenvalue of �̂� and that the remaining eigenvalues lie in the 

interval [0,2] (see [245]). 

Let 𝐴 be the adjacency matrix of 𝐺. The Randi´c matrix of 𝐺, denoted by �̂�(𝐺) or �̂�, 

is the square matrix of order n whose (𝑖, 𝑗)-entry is equal to 
1

√𝑑𝑖𝑑𝑗
 if 𝑣𝑖 and 𝑣𝑗 are adjacent 

in 𝐺, and zero otherwise. 

Let 𝐷−1/2 is the matrix with entries 

𝐷−1/2(𝑖, 𝑗)  = {
𝐷(𝑖, 𝑗)−1/2                   if 𝑖 =  𝑗 and 𝑑𝑗  =  0;

0                                otherwise.
  

Then �̂�  =  𝐷−1/2𝐴𝐷−1/2. The Randic matrix appeared in [242], [259]. 
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Let �̂� be the square matrix of order 𝑛 where (𝑖, 𝑗)-entry is equal to 1 if 𝑖 =  𝑗 and 𝑑𝑗 ≠ 0, 

and is equal to 0 otherwise. Then it follows that �̂�  =  �̂�  − �̂�. We unit matrix of order 𝑛 is 

denoted by 𝐼 or 𝐼𝑛. If 𝐺 has no isolated vertices, then 

�̂�  =  𝐼 − �̂�.                                                        (1) 
If 𝑀 is a real symmetric matrix of order 𝑛, we denote the eigenvalues of 𝑀 (or 𝑀-

eigenvalues) by 𝜆1(𝑀), 𝜆2(𝑀), . . . , 𝜆𝑛(𝑀). If 𝐺 is a graph of order 𝑛 and 𝑀 is a real 

symmetric matrix associated with 𝐺, then the 𝑀-energy of 𝐺 is 

𝐸𝑀(𝐺) = ∑  

𝑛

𝑘=1

      |𝜆𝑘(𝑀) −
𝑡𝑟(𝑀)

𝑛
|      ,             (2) 

where 𝑡𝑟(𝑀) is the trace of 𝑀 (see [246]). 

Let 𝐺 be a graph of order 𝑛. The Randi´c energy 𝑅𝐸(𝐺) of 𝐺, is defined as 𝑅𝐸(𝐺)  =
∑  𝑛
𝑘=1  |𝜆𝑘(�̂�)|. 

For a graph 𝐺 of order 𝑛 with no isolated vertices, Caversetal. [244] introduced the 

normalized Laplacian energy 𝐸�̂�(𝐺) of 𝐺 by (2), i.e.,  

𝐸�̂�(𝐺)  = ∑  

𝑛

𝑘=1

 |𝜆𝑘(�̂�(𝐺)) −  1|. 

Then it can be verified that 𝐸�̂�(𝐺)  =  𝑅𝐸(𝐺) for a graph 𝐺 with no isolated vertices. 

The normalized signless Laplacian matrix of a graph 𝐺, denoted by �̂� + (𝐺) or �̂�+, is defined 

to be the matrix with entries 

�̂�+(𝑖, 𝑗)  =

{
 
 

 
 1                        if 𝑖 =  𝑗 and 𝑑𝑗 ≠ 0;

1

√𝑑𝑖𝑑𝑗
           if 𝑣𝑖  and 𝑣𝑗 are adjacent in 𝐺;

0                                   otherwise.

  

Then 

�̂�+  =  �̂�  + �̂�. 

Specially for a graph with no isolated vertices, we have 

�̂�+  =  𝐼 + �̂�.                                                                                                   (3) 
Let 𝐺 be a graph of order 𝑛 with no isolated vertices. With 𝑀 taken to be �̂�+ in (2), the 

normalized signless Laplacian energy 𝑁𝑆𝐸(𝐺) of 𝐺 is defined as 

𝑁𝑆𝐸(𝐺)  = ∑  

𝑛

𝑘=1

 |𝜆𝑘(�̂�
+(𝐺))  −  1|. 

By (1) and (3), we have 𝑅𝐸(𝐺)  =  𝐸�̂�(𝐺)  =  𝑁𝑆𝐸(𝐺) if G has no isolated vertices. 

The concept of graph energy was extended to any matrix by Nikiforov in the following 

manner. The singular values of a real 𝑛 ×  𝑚 matrix 𝑀, denoted by 

𝜎1(𝑀), 𝜎2(𝑀), . . . , 𝜎𝑛(𝑀), are the square roots of the eigenvalues of the square matrix 𝑀𝑀𝑡 

, where 𝑀𝑡 denotes the transpose of 𝑀. The energy ℰ(𝑀) of the matrix 𝑀 is then defined as 

the sum of its singular values [257] 

ℰ(𝑀)  = ∑  

𝑛

𝑘=1

 𝜎𝑘(𝑀). 

Obviously, 𝐸(𝐺)  = ℰ(𝐴(𝐺)). 



 

221 
 

For a graph 𝐺 with vertex set {𝑣1, 𝑣2, . . . , 𝑣𝑛} and edge set {𝑒1, 𝑒2, . . . , 𝑒𝑚}, the (vertex-edge) 

incidence matrix of 𝐺, denoted by 𝐼(𝐺), is defined to be the 𝑛 ×  𝑚 matrix with entries 

𝐼(𝐺)(𝑖, 𝑗)  = {
    1                if 𝑣𝑖  is incident with 𝑒𝑗;

 0                                    otherwise.
  

The incidence matrix should not be confused with the unit matrix of order 𝑝, which is 

denoted by 𝐼 or 𝐼𝑝. The normalized incidence matrix of 𝐺 is  𝐼(𝐺)  =  𝐷−1/2𝐼(𝐺). Then 

 𝐼(𝐺)𝐼(𝐺)𝑡 = �̂� + �̂� = �̂�+. 

The energy for the incidence matrix was introduced by [248], [252]. Now we discuss the 

energy for the normalized incidence matrix. 

For a graph 𝐺 of order 𝑛, the normalized incidence energy 𝑁𝐼𝐸(𝐺) is defined as 𝑁𝐼𝐸(𝐺)  =
ℰ(𝐼(𝐺)). If 𝐺 is an empty graph, i.e., 𝐺 contains no edges, then we define 𝑁𝐼𝐸(𝐺)  =  0. 

Therefore we have 𝑁𝐼𝐸(𝐺)  = ∑  𝑛
𝑘=1  𝜎𝑘(𝐼(𝐺))  = ∑  𝑛

𝑘=1  √𝜆𝑘(�̂�
+(𝐺)).  

𝐸(𝐺) has the following basic properties. 

(a) 𝐸(𝐺) ≥ 0; equality is attained if and only if 𝐺 is an empty graph. 

(b) If the graph 𝐺 consists of connected components 𝐺1 and 𝐺2, then 𝐸(𝐺)  =  𝐸(𝐺1)  +
 𝐸(𝐺2). 
(c) If one connected component of the graph 𝐺 is 𝐺1 and all other connected components 

are isolated vertices, then 𝐸(𝐺)  =  𝐸(𝐺1). 
We will discuss some properties of 𝑁𝐼𝐸(𝐺) and give some bounds for 𝑁𝐼𝐸(𝐺). We 

will determine the Coulson integral formula for 𝑁𝐼𝐸(𝐺). A relation between 𝑁𝐼𝐸(𝐺) and 

Randi´c energy will be shown. 

We first present some properties of 𝑁𝐼𝐸(𝐺) which are analogous to the properties (a), 

(b) and (c) of 𝐸(𝐺). 
(a) 𝑁𝐼𝐸(𝐺) ≥ 0; equality is attained if and only if 𝐺 is an empty graph.  

(b) If the graph 𝐺 consists of connected components 𝐺1 and 𝐺2, then 𝑁𝐼𝐸(𝐺)  =
 𝑁𝐼𝐸(𝐺1)  +  𝑁𝐼𝐸(𝐺2). 
(c) If one component of the graph 𝐺 is 𝐺1 and all other components are isolated vertices, 

then 𝑁𝐼𝐸(𝐺)  =  𝑁𝐼𝐸(𝐺1). 
If a connected component of the graph 𝐺 contains at least one edge, then the connected 

component is said to be nontrivial. We denote by 𝑑(𝐺) the diameter of a connected graph 

𝐺. If 𝐺 contains only one vertex, then we define 𝑑(𝐺)  =  0. We use 𝐾𝑛 for the complete 

graph on 𝑛 vertices. For a graph 𝐺, �̅� denotes the complement of 𝐺. 

From (1) and (3), if 𝐺 has no isolated vertices, then 

�̂�+  +  �̂�  =  2𝐼.                                                                                     (4) 
From some properties for the normalized Laplacian matrix in [245], we obtain their 

corresponding results for the normalized signless Laplacian matrix by (4). We state them as 

follows. 

Lemma (6.1.1)[240]: Suppose the n-vertex graph 𝐺 has no isolated vertices and 𝑝 connected 

components. If the eigenvalues of �̂�+(𝐺) are ordered and denoted by 𝜇1
+ ≥ 𝜇2

+ ≥···  𝜇𝑛
+ , 

then 𝜇1
+  = ··· =  𝜇𝑝

+  =  2 and 𝜇𝑝+1
+  <  2.  

Lemma (6.1.2)[240]: Suppose 𝐺 is a graph. If 𝜇+ is an eigenvalues of �̂�+(𝐺), then 𝜇+ ≥  0. 

Lemma (6.1.3)[240]: Suppose the 𝑛-vertex connected graph 𝐺 is not a complete graph. If 

the eigenvalues of �̂�+(𝐺) are ordered and denoted by 𝜇1
+ ≥ 𝜇2

+ ≥ ··· ≥ 𝜇𝑛
+ , then 𝜇2

+ ≥  1. 
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Lemma (6.1.4)[240]: Let 𝐺 be a connected graph with diameter 𝑑 and 𝑠 distinct �̂�+-

eigenvalues. Then 𝑑 ≤  𝑠 −  1. 

Thus by Lemma (6.1.1), we have 

Lemma (6.1.5)[240]: Suppose the 𝑛-vertex graph 𝐺 has p nontrivial connected components 

where 𝑝 ≥ 1. If the eigenvalues of �̂�+(𝐺) are ordered and denoted by 𝜇1
+ ≥ 𝜇2

+ ≥ · · · ≥ 𝜇𝑛
+ 

, then 𝜇1
+  = · · ·  =  𝜇𝑝

+  =  2 and 𝜇𝑝+1
+  <  2. 

Lemma (6.1.6)[240]: Let 𝐺 be a graph with 𝑠 distinct �̂�+-eigenvalues. Then 𝑑 ≤ 𝑠 − 1, 

where 𝑑 =  𝑚𝑎𝑥{𝑑(𝐺∗) ∶  𝐺∗ is a connected component of 𝐺}.  

Proof. Suppose 𝐺1 is a connected component of 𝐺 such that 𝑑(𝐺1)  =  𝑑. Let 𝑠1 be the 

number of the distinct eigenvalues of �̂�+(𝐺1). Then 𝑑 ≤ 𝑠1  −  1 by Lemma (6.1.4). Since 

𝑠1 ≤ 𝑠, the result follows. 

The following result is immediate. 

Lemma (6.1.7)[240]: If the connected graph 𝐺 has exactly two distinct �̂�+-eigenvalues, then 

the diameter of 𝐺 is 1, i.e., G is complete. 

We present an upper bound for 𝑁𝐼𝐸(𝐺). 
Theorem (6.1.8)[240]: Suppose 𝐺 has 𝑛 vertices, 𝑝 nontrivial connected components, and 

t isolated vertices where 𝑝 ≥ 1. Then 

𝑁𝐼𝐸(𝐺) ≤ √2𝑝 + √(𝑛 −  𝑡 −  𝑝)(𝑛 −  𝑡 −  2𝑝) 

with equality holding if and only if 𝐺 is 𝑝𝐾𝑟  ∪  𝐾𝑡̅̅ ̅ where 𝑟 =  
𝑛−𝑡

𝑝
 .  

Proof. Suppose the eigenvalues of �̂�+(𝐺) are ordered and denoted by 𝜇1
+ ≥ 𝜇2

+ ≥ ··· ≥ 𝜇𝑛
+ . 

Then 𝜇𝑛−𝑡+1
+  = ··· =  𝜇𝑛

+  =  0 by the fact that 𝐺 has 𝑡 isolated vertices. By Lemma (6.1.5), 

we have 𝑁𝐼𝐸(𝐺)  =  √2𝑝 + ∑  𝑛−𝑡
𝑘=𝑝+1  √𝜇𝑘

+ . By the Cauchy–Schwarz inequality, 

𝑁𝐼𝐸(𝐺) ≤ √2𝑝 + √(𝑛 − 𝑡 − 𝑝) ∑  

𝑛 −𝑡

𝑘=𝑝+1

𝜇𝑘
+ = √2𝑝 + √(𝑛 − 𝑡 − 𝑝)(𝑡𝑟(�̂�+) − 2𝑝)  

=  √2𝑝 + √(𝑛 −  𝑡 −  𝑝)(𝑛 −  𝑡 −  2𝑝) 

with equality holding if and only if 𝜇1  =  𝜇2  = ··· =  𝜇𝑝  =  2, 𝜇𝑝+1  = ··· =  𝜇𝑛−𝑡 and 

𝜇𝑛−𝑡+1  = ···=  𝜇𝑛  =  0. 
Suppose 𝜇1  =  𝜇2  =···=  𝜇𝑝  =  2, 𝜇𝑝+1  =···=  𝜇𝑛−𝑡 and 𝜇𝑛−𝑡+1  =···=  𝜇𝑛  =  0. Then 

for every nontrivial connected component 𝐺′, �̂�+(𝐺′) has exactly two distinct eigenvalues. 

A connected graph has exactly two distinct normalized signless Laplacian eigenvalues if 

and only if its diameter is equal to unity, i.e., it is a complete graph. Therefore the graph 𝐺 

must consist of connected components that are mutually isomorphic complete graphs (say, 

of order 𝑟) and 𝑡 isolated vertices. Thus 𝑟𝑝 + 𝑡 =  𝑛 and then  =
𝑛−𝑡

𝑝
 . Therefore 𝐺 is 𝑝𝐾𝑟  ∪

 𝐾𝑡̅̅ ̅ where  =
𝑛−𝑡

𝑝
 . 

Corollary (6.1.9)[240]: If the connected graph 𝐺 has 𝑛 vertices where 𝑛 ≥ 2, then 

𝑁𝐼𝐸(𝐺) ≤  √2 + √(𝑛 −  1)(𝑛 −  2) with equality holding if and only if 𝐺 is the complete 

graph 𝐾𝑛. 
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Theorem (6.1.10)[240]: Let 𝐺 be a connected graph on 𝑛 vertices where 𝑛 ≥ 2. If 𝐺 is not 

a complete graph, then 𝑁𝐼𝐸(𝐺) ≤ 1 + √2 + √(𝑛 −  2)(𝑛 −  3) with equality holding if 

and only if 𝐺 is a graph with �̂�+-eigenvalues 2, 1,
𝑛−3

𝑛−2
 , . . . ,

𝑛−3 

𝑛−2
 (𝑛 −  2’𝑠

𝑛−3

𝑛−2 
). 

Proof: Suppose the eigenvalues of �̂�+(𝐺), arranged in a non-increasing order, are 

𝜇1
+ , 𝜇2

+ , . . . , 𝜇𝑛
+ . Then 𝜇1

+  =  2 from Lemma (6.1.5). By the Cauchy–Schwarz inequality, 

∑ 

𝑛

𝑘=3

 √𝜇𝑘
+ ≤ √(𝑛 −  2)∑  

𝑛

𝑘=3

 𝜇𝑘
+  =  √(𝑛 −  2)(𝑛 −  2 −  𝜇2

+ ) 

with equality holding if and only if 𝜇3
+  =···=  𝜇𝑛

+ . 

Let 𝑓(𝑥)  =  √𝑥  + √(𝑛 −  2)(𝑛 −  2 −  𝑥). Then 𝑓′(𝑥) =
1

2√𝑥
 −

√𝑛−2

2√𝑛−2−𝑥
 and thus 𝑓(𝑥) 

decreases with 𝑥 ≥ 1. 

By Lemma (6.1.3), we have 

𝑁𝐼𝐸(𝐺) =  √𝜇1
+  +  √𝜇2

+  +∑  

𝑛

𝑘=3

 √𝜇𝑘
+ ≤ √2 + 𝜇2

+ +√(𝑛 −  2)(𝑛 −  2 − 𝜇2
+ )

≤ √2 +  1 + √(𝑛 −  2)(𝑛 −  3), 
with equality holding if and only if 𝜇2

+  =  1 and 𝜇3
+  =···=  𝜇𝑛

+ . Then the equality holds if 

and only if the �̂�+-eigenvalues of 𝐺 are 2, 1,
𝑛−3

𝑛−2
 , . . . ,

𝑛−3

𝑛−2
 (𝑛 −  2’𝑠

𝑛−3

𝑛−2 
). 

Next we give some lower bounds for 𝑁𝐼𝐸(𝐺). 

Theorem (6.1.11)[240]: Let 𝐺 be a graph on 𝑛 vertices. Then 𝑁𝐼𝐸(𝐺)√𝑛 −  𝑡  where 𝑡 is 

the number of isolated vertices in 𝐺, and equality holds if and only if 𝐺 is 𝐾𝑛̅̅̅̅  or 𝐾2 ∪ 𝐾𝑛−2̅̅ ̅̅ ̅̅ . 

Proof: Let the eigenvalues of �̂�+(𝐺) be 𝜇1
+ , 𝜇2

+ , . . . , 𝜇𝑛
+ . Then 

𝑁𝐼𝐸(𝐺) = ∑  

𝑛

𝑘=1

 √𝜇𝑘
+ ≥ √∑ 

𝑛

𝑘=1

 𝜇𝑘
+  =  √𝑛 −  𝑡, 

and equality holds if and only if 𝐺 has at most one positive �̂�+-eigenvalue if and only if 𝐺 

is 𝐾𝑛̅̅̅̅  or 𝐾2  ∪  𝐾𝑛−2̅̅ ̅̅ ̅̅ . 
As a corollary, we have 

Corollary (6.1.12)[240]: Let 𝐺 be a graph of order 𝑛 with no isolated vertices. Then 

𝑁𝐼𝐸(𝐺) ≥ √𝑛, with equality if and only if 𝐺 is 𝐾2. 

Let 𝑎1, 𝑎2, . . . , 𝑎𝑠 be positive integers. By Hölder’s inequality, we obtain 

∑ 

𝑠

𝑖=1

 𝑎𝑖  = ∑ 

𝑠

𝑖=1

 𝑎𝑖
2/3
 𝑎𝑖
1/3

≤ (∑ 

𝑠

𝑖=1

 𝑎𝑖
2 )

1/3

 (∑ 

𝑠

𝑖=1

 𝑎𝑖
1/2
)

2/3

 , 

and hence 

∑ 

𝑠

𝑖=1

 𝑎𝑖
1/2

≥ √
(∑  𝑠

𝑖=1  𝑎𝑖)
3

∑  𝑠
𝑖=1 𝑎𝑖

2  ,                                                                  (5) 

with equality if and only if 𝑎1  =  𝑎2  =···=  𝑎𝑠. 
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Let 𝐺 be a graph of order 𝑛 with no isolated vertices. The general Randi´c index 𝑅𝛼(𝐺) is 

defined as 

𝑅𝛼(𝐺)  = ∑  

𝑣𝑖∼𝑣𝑗

 (𝑑𝑖𝑑𝑗)
𝛼
,                                                                  (6) 

where the summation is over all (unordered) edges 𝑣𝑖𝑣𝑗 in 𝐺, and 𝛼 ≠ 0 is a fixed real 

number. In 1975, Randi´c [258] introduced a topological index 𝑅 (with  =  −
1

2
 ) under the 

name ‘branching index’. In 1998, BollobKas and ErdRos [241] generalized this index by 

replacing the 
1

2
 with any real number 𝑅𝛼(𝐺) (as defined in (6)). 

The following result is from [255]. 

Lemma (6.1.13)[240]: [255]. Let 𝐺 be a graph of order 𝑛 with no isolated vertices. Then 

𝑅−1(𝐺) ≤ ⌊
𝑛

2
⌋ , with equality if and only if either (i) 𝑛 is even and 𝐺 is the disjoint union of 

𝑛

2
 paths of length 1, or (ii) 𝑛 is odd and 𝐺 is the disjoint union of 

𝑛−3

2
 paths of length 1 and 

one path of length 2. 

Now we improve Corollary (6.1.12). 

Theorem (6.1.14)[240]: Let 𝐺 be a graph of order 𝑛 with no isolated vertices. Then 

𝑁𝐼𝐸(𝐺) ≥ √
2𝑛3

4𝑛−1+(−1)𝑛
 with equality if and only if 𝑛 is even and 𝐺 is the disjoint union of 

𝑛

2
 paths of length 1. 

Proof: Let the eigenvalues of �̂�+(𝐺) be 𝜇1
+ , 𝜇2

+ , . . . , 𝜇𝑛
+ . By (5), we see that 

𝑁𝐼𝐸(𝐺) =∑ 

𝑛

𝑖=1

 √𝜇𝑖
+ ≥ √

( ∑  𝑛
𝑖=1  𝜇𝑖

+ )
3

∑  𝑛
𝑖=1 (𝜇𝑖

+ )
2  , 

with equality if and only if all nonzero �̂�+ -eigenvalues are equal, i.e., 𝑛 is even and 𝐺 is the 

disjoint union of 
𝑛

2
 paths of length 1. 

Since 𝐺 contains no isolated vertices, it follows that ∑  𝑛
𝑖=1  𝜇𝑖

+  =  𝑛  and ∑  𝑛
𝑖=1 (𝜇𝑖

+)2 =

 𝑡𝑟 ((�̂�+)
2
) = 𝑛 + 2𝑅−1 ≤ 𝑛 +  2 ⌊

𝑛

2
⌋ by Lemma (6.1.13).  

Therefore (𝐺) ≥ √
𝑛3

𝑛+2⌊
𝑛

2
⌋
 = √

2𝑛3

4𝑛−1+(−1)𝑛
 , with equality if and only if 𝑛 is even and 𝐺 is 

the disjoint union of 
𝑛

2
 paths of length 1. 

Corollary (6.1.15)[240]: Let 𝐺 be a graph of order n with no isolated vertices. Then (𝐺) ≥
𝑛

√2
 , with equality if and only if 𝑛 is even and 𝐺 is the disjoint union of 

𝑛

2
 paths of length 1. 

The graph-energy concept has been extended to polynomials in [256]. Let 𝜓 =  𝜓(𝜆) 
be a (complex or real) monic polynomial of degree 𝑛, written in the form 𝜓(𝜆)  =  𝜆𝑛  +
∑  𝑛
𝑘=1  𝑎𝑘𝜆

𝑛−𝑘 , and let 𝑧1, 𝑧2, . . . , 𝑧𝑛 be its zeros. Set ∏  + = {𝑧𝑘 ∶  𝑅𝑒 𝑧𝑘  >  0 and 1 ≤ 𝑘 ≤
𝑛} and ∏  −  =  {𝑧𝑘 ∶  𝑅𝑒 𝑧𝑘  <  0 and 1 ≤ 𝑘 ≤ 𝑛}. Let 𝑠+ (respectively 𝑠−) be the sum of 

zeros of 𝜓 in ∏  +  (respectively ∏  − ), counting multiplicities. The energy 𝐸(𝜓) of the 

polynomial 𝜓, is defined as 

𝐸(𝜓)  =  𝑠+  −  𝑠−. 



 

225 
 

For a matrix 𝑀,𝜙(𝑀, 𝜆) denotes its characteristic polynomial, i.e., 𝜙(𝑀, 𝜆)  =  𝑑𝑒𝑡(𝜆𝐼 −
 𝑀). As early as in 1940, Charles Coulson [247] obtained a formula in which 𝐸(𝐺) was 

expressed in terms of the characteristic polynomial 𝜙(𝐴(𝐺), 𝜆): 

𝐸(𝐺) =
1

𝜋
 𝑣. 𝑝.∫  

+∞

−∞

 [𝑛 −  𝑖𝑥
𝜙′(𝐴(𝐺), 𝑖𝑥)

𝜙(𝐴(𝐺), 𝑖𝑥)
] 𝑑𝑥, 

where 𝑛 is the order of 𝐺. In this formula 𝑣. 𝑝. ∫  
+∞

−∞
 𝐹(𝑥) dx stands for the principle value 

of the respective integral, i.e., lim
𝑡→+∞

  ∫  
𝑡

−𝑡
  𝐹(𝑥) 𝑑𝑥. This result has been generalized in 

[256]. 

Theorem (6.1.16)[240]: [256]. Let 𝑓 be a polynomial of degree 𝑛 with leading coefficient 

1. Then 

𝐸(𝑓) =
1

𝜋
 𝑣. 𝑝. ∫  

+∞

−∞

 [𝑛 −  𝑖𝑥 (
𝑓′(𝑖𝑥)

𝑓(𝑖𝑥)
] 𝑑𝑥. 

For the normalized incidence energy of a graph 𝐺, we have 

Theorem (6.1.17)[240]: Let 𝐺 be a graph of order 𝑛. Then 

𝑁𝐼𝐸(𝐺) =
1

2𝜋
 𝑣. 𝑝.∫  

+∞

−∞

 [2𝑛 −  𝑖𝑥 (
𝑓′(𝑖𝑥)

𝑓(𝑖𝑥)
] 𝑑𝑥, 

where 𝑓(𝑥)  = 𝜙(�̂�+(𝐺), 𝑥2). 
Proof: Let 𝜇1

+ , 𝜇2
+ , . . . , 𝜇𝑛

+ be the eigenvalues of �̂�+(𝐺). Then the zeros of 𝑓(𝑥) are 

± √𝜇1
+ , ± √𝜇2

+ , . . . , ± √𝜇𝑛
+ . Hence 𝐸(𝑓)  =  2 ∑  𝑛

𝑘=1  √𝜇𝑘
+  =  2𝑁𝐼𝐸(𝐺), and thus 

𝑁𝐼𝐸(𝐺) =
1

2
 𝐸(𝑓). The result follows from Theorem (6.1.16). 

Corollary (6.1.18)[240]: Let 𝐺 be a graph of order 𝑛. Then 

𝑁𝐼𝐸(𝐺) =
1

𝜋
 ∫  

+∞

0

 [2𝑛 −  𝑖𝑥 
𝑓′(𝑖𝑥)

𝑓(𝑖𝑥)
]   𝑑𝑥,                   (7) 

where 𝑓(𝑥)  = 𝜙(�̂�+(𝐺), 𝑥2). 

Proof: It follows from the fact that 𝑔(𝑥) =  2𝑛 −  𝑖𝑥
𝑓′(𝑖𝑥)

𝑓(𝑖𝑥)
 is an even function. 

The Coulson integral formula gives us a new way to obtain the normalized incidence energy 

of a graph 𝐺. For example, take 𝐺 =  𝐾1,𝑛−1, a tree on 𝑛 vertices with one vertex having 

degree 𝑛 −  1. 

Then 𝜙(�̂�+(𝐾1,𝑛−1), 𝑥)  =  𝑥(𝑥 −  1)
𝑛−2(𝑥 −  2). Therefore 𝑓(𝑥)  =  𝑥2(𝑥2  −

 1)𝑛−2(𝑥2  −  2), and thus 2𝑛 −  𝑖𝑥
𝑓′(𝑖𝑥)

𝑓(𝑖𝑥)
 =

2𝑛−4

𝑥2+1
 +

4

𝑥2+2
 . So 𝑁𝐼𝐸(𝐾1,𝑛−1)  =  𝑛 −  2 +

 √2. 
Now we present another way to write the Coulson integral formula and use it to compare 

the normalized incidence energies. 

The characteristic polynomial of �̂�+(𝐺) can be written in the coefficient form as 

𝜙(�̂�+(𝐺), 𝜆)  = ∑  𝑛
𝑘=0 (−1)

𝑘𝑏𝑘(𝐺)𝜆
𝑛−𝑘 , or 𝜙(�̂�+(𝐺), 𝜆)  = ∑  𝑛

𝑘=0 (−1)
𝑘𝑏𝑘𝜆

𝑛−𝑘. We see 

that 𝑏0  =  1. By Lemma (6.1.2), 𝑏𝑘 ≥ 0.  
Theorem (6.1.19)[240]: Let 𝐺 be a graph of order 𝑛 and let the characteristic polynomial 

of �̂�+ (𝐺) be of the form ∑  𝑛
𝑘=0 (−1)

𝑘𝑏𝑘𝜆
𝑛−𝑘. Then 
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𝑁𝐼𝐸(𝐺) =
1

𝜋
 ∫  

+∞

0

 𝑙𝑛 (∑  

𝑛

𝑘=0

 𝑏𝑘𝑥
2𝑘) 

𝑑𝑥

𝑥2
  . 

Proof: Set 𝑥 =
1

𝑦
 in (7), and it follows that 

𝑁𝐼𝐸(𝐺) =
1

𝜋
 ∫  

+∞

0

 [2𝑛 −
𝑖

𝑦

𝑓′ (
𝑖
𝑦)
 

𝑓 (
𝑖
𝑦)
 ]
𝑑𝑦

𝑦2
 , 

where 𝑓(𝑥)  = 𝜙(�̂�+(𝐺), 𝑥2). 
Integrating by parts and considering 

𝑢 =
1

𝑦
 and 𝑑𝑣 =  [

2𝑛

𝑦
 −

𝑖

𝑦2
  
𝑓′ (

𝑖
𝑦)

𝑓 (
𝑖
𝑦)
]  𝑑𝑦, 

one can obtain that 

𝑁𝐼𝐸(𝐺) =
1

𝜋
 (
1

𝑦
 𝑙𝑛 |𝑦2𝑛𝑓 (

𝑖

𝑦
)|)

0

+∞

 +
1

𝜋
  ∫  

+∞

0

1

𝑦2
 𝑙𝑛 |𝑦2𝑛𝑓 (

𝑖

𝑦
)| 𝑑𝑦 

=
1

𝜋
 ∫  

+∞

0

 𝑙𝑛 (∑  

𝑛

𝑘=0

 𝑏𝑘𝑦
2𝑘)

𝑑𝑦

𝑦2
 . 

We introduce a quasi-order relation here. For two n-vertex graphs 𝐺1 and 𝐺2, if 

𝑏𝑘(𝐺1) ≤ 𝑏𝑘(𝐺2)                                                                                      (8) 
holds for 0 ≤ 𝑘 ≤ 𝑛, then we write 𝐺1 ≼ 𝐺2. Moreover, if at least one of the inequalities in 

(8) is strict, then we write 𝐺1  ≺  𝐺2. 

From Theorem (6.1.19), we have 

Corollary (6.1.20)[240]: If 𝐺1 ≼ 𝐺2, then 𝑁𝐼𝐸(𝐺1) ≤ 𝑁𝐼𝐸(𝐺2). If 𝐺1 ≺ 𝐺2, then 

𝑁𝐼𝐸(𝐺1) < 𝑁𝐼𝐸(𝐺2). 
We give a connection between the eigenvalues of Randi´c matrix and �̂�+(𝐺) using a 

method from Zhou and Gutman [158]. The subdivision graph �̃� of a graph 𝐺, is obtained by 

inserting an additional vertex into each edge of 𝐺. If 𝐺 is a graph with 𝑛 vertices and 𝑚 

edges, then �̃� has 𝑛 +  𝑚 vertices and 2𝑚 edges. 

Theorem (6.1.21)[240]: Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges, and let �̃� be its 

subdivision graph. Then  𝜙(�̂�(�̃�), 𝜆)  =  2−𝑛𝜆𝑚−𝑛𝜙(�̂�+(𝐺), 2𝜆2).  

Proof: We have 𝜙(�̂�(�̃�), 𝜆)  =  𝑑𝑒𝑡[𝜆𝐼𝑛+𝑚  −  �̂�(�̃�)]  = 𝑑𝑒𝑡 (
𝜆𝐼𝑛    −𝑀 

−𝑀𝑡      𝜆𝐼𝑚
) , where 𝑀 =

1

√2
 𝐷−1/2𝐼(𝐺). 

It follows that 

𝜙(�̂�(�̃�), 𝜆)  =  𝜆𝑚−𝑛𝑑𝑒𝑡[𝜆2𝐼𝑛 −𝑀𝑀
𝑡 ]  =  𝜆𝑚−𝑛𝑑𝑒𝑡 [𝜆2𝐼𝑛  −

1

2
  𝐼(𝐺)𝐼(𝐺)𝑡 ]  

=  2−𝑛𝜆𝑚−𝑛𝑑𝑒𝑡[2𝜆2𝐼𝑛 − �̂�
+(𝐺)]  =  2−𝑛𝜆𝑚−𝑛𝜙(�̂�+(𝐺), 2𝜆2).  

Corollary (6.1.22)[240]: Let 𝐺 a graph with 𝑛 vertices and 𝑚 edges, �̃� its subdivision graph. 

If  𝜇𝑘
+ are the non-zero eigenvalues of the normalized signless Laplacian matrix of 𝐺, then 

the spectrum of the Randi´c matrix of �̃� consists of the number ± √𝜇𝑘
+ /2, 𝑘 =  1, . . . , ℎ, 

and of 𝑛 +  𝑚 −  2ℎ zeros. 
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By Corollary (6.1.22), we have 

𝑁𝐼𝐸(𝐺) = ∑  

ℎ

𝑘=1

 √𝑢𝑘
+  =

√2

2
 (2∑  

ℎ

𝑘=1

 √𝑢𝑘
+/2) =

√2

2
 𝑅𝐸(�̃�).  

Corollary (6.1.23)[240]: Let 𝐺 be a graph. Then 𝑁𝐼𝐸(𝐺) =
√2

2
 𝑅𝐸(�̃�). 

 

Section (6.2): General Laplacian-Energy-Like Invariant of Graphs 

 

All graphs considered are finite and simple. See to Cvetković et al. [124]. 

Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges. The eigenvalues of the adjacency 

matrix 𝐴(𝐺) of 𝐺 are said to be the eigenvalues of 𝐺 and form the spectrum of 𝐺. We denote 

the eigenvalues of 𝐺 by 𝜆1 ≥ 𝜆2⋯ ≥ 𝜆𝑛 in non-increasing order. The matrix 𝐿(𝐺)  =
 𝐷(𝐺)  −  𝐴(𝐺) is called the Laplacian matrix of 𝐺, where 𝐷(𝐺)  =  𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, . . . , 𝑑𝑛) is 

the diagonal matrix of vertex degrees of 𝐺. It is well known that 𝐿(𝐺) is a positive semi-

definite symmetric matrix, and moreover 0 is the smallest eigenvalue of 𝐿(𝐺). We denote 

the eigenvalues of 𝐿(𝐺) by 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛  =  0, which are called the Laplacian 

eigenvalues of 𝐺. 

The energy of a graph 𝐺 is defined as 𝐸(𝐺) = ∑ |𝜆𝑘|
𝑛
𝑘=1 , which is derived from the 

total 𝜋-electron energy [267]. Graph energy has been studied extensively by many 

mathematicians and chemists, and there have been many results obtained on this invariant 

of graphs (see [264]). In the theory of graph energy there is an important result called the 

Coulson integral formula which makes it possible to calculate the energy of a graph without 

knowing its spectrum. For a graph 𝐺, its Coulson integral formula is 

𝐸(𝐺)  =
1

𝜋
∫ [𝑛 −

𝑖𝑥𝜙𝐴
′ (𝐺, 𝑖𝑥)

𝜙𝐴(𝐺, 𝑖𝑥)
]

+∞

−∞

𝑑𝑥, 

where  𝜙𝐴(𝐺, 𝑥)  is  the  characteristic  polynomial  of 𝐴(𝐺)  (called the  characteristic  

polynomial  of  𝐺).  

This formula was obtained by Coulson [247], and has many applications in the theory of 

graph energy (see [264]). 

For a graph 𝐺, since 𝜇𝑘 ≥ 0 for 𝑘  =  1, 2, . . . , 𝑛, it would be trivial to define its Laplacian 

energy as ∑ |𝜇𝑘|
𝑛
𝑘=1 = ∑ 𝜇𝑘

𝑛
𝑘=1 = 2𝑚. Gutman and Zhou [129] defined the Laplacian 

energy of a graph 𝐺 as  

𝐿𝐸(𝐺)  = ∑ |𝜇𝑘 −
2𝑚

𝑛
|

𝑛

𝑘=1

 

Later, Liu and Liu [121] introduced the Laplacian-energy-like invariant of 𝐺, which is 

similar to the definition of the graph energy, as 

𝐿𝐸𝐿(𝐺)  = ∑√𝜇𝑘

𝑛

𝑘=1

. 

This invariant has many similar properties as the energy of a graph. For more results on the 

Laplacian-energy-like invariant, we refer the reader to the references [263], [121], [266], 

[268]. 
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In [147], Zhou studied the sum of powers of the Laplacian eigenvalues of graphs, which can 

be regarded as a generalization of the Laplacian-energy-like invariant. Here we call this 

invariant the general Laplacian-energy-like invariant of graphs. 

Definition (6.2.1)[260]: Let 𝐺 be a graph of order 𝑛, 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛 = 0the Laplacian 

eigenvalues of 𝐺 and 𝛼 a real number. The general Laplacian-energy-like invariant of 𝐺, 

denoted by 𝐿𝐸𝐿𝛼(𝐺), is defined as ∑ 𝜇𝑘
𝛼

𝜇𝑘≠0   when 𝜇1 ≠ 0, and 0 when 𝜇1 ≠ 0. 

Obviously, 𝐿𝐸𝐿(𝐺)  =  𝐿𝐸𝐿1
2

(𝐺). 

We obtain a Coulson-type integral formula for the general Laplacian-energy-like 

invariant of graphs. We present a Coulson-type integral formula for the general energy of 

polynomials, which is an extension of the general Laplacian- energy-like invariant of 

graphs, and show that it implies two known integral formulas for the normalized incidence 

energy and the Laplacian incidence energy. 

We first introduce some basic concepts and results from complex analysis which will 

be used later. Let 𝐷 be a bounded domain. The boundary of 𝐷 is denoted by 𝜕𝐷. 

The following two results in complex analysis are well known (see [262]). 

Lemma (6.2.2)[260]: (Cauchy’s theorem). Let 𝐷 be a bounded domain with piecewise 

smooth boundary. If 𝑓(𝑧) is analytic on 𝐷, and extends smoothly to 𝜕𝐷, then 

∫𝑓(𝑧)𝑑𝑧

 

𝜕𝐷

 =  0. 

Lemma (6.2.3)[260]: (Cauchy integral formula). Let 𝐷 be a bounded domain with 

piecewise smooth boundary. If 𝑓(𝑧) is analytic on 𝐷, and extends smoothly to 𝜕𝐷, then 

𝑓(𝑧) =
1

2𝜋𝑖
∫
𝑓(𝜁 )

𝜁 −  𝑧

 

𝜕𝐷

𝑑𝜁 , 𝑧 ∈  𝐷. 

We also need the following simple lemmas. The proofs are omitted here. 

Lemma (6.2.4)[260]: Let 𝑆𝑟 be the arc 𝑧(𝜃)  =  𝑎0  +  𝑟𝑒
𝑖𝜃 , 𝜃1  ≤  𝜃 ≤  𝜃2, where 𝑟 >  0 

is a real number. If 𝑓(𝑧) is a continuous function on the arc 𝑆𝑟 for all small 𝑟 such that 

lim
𝑟→0+

max
𝜃∈[𝜃1 ,𝜃2 ]

|𝑟𝑒𝑖𝜃𝑓(𝑎0 + 𝑟𝑒
𝑖𝜃) − 𝜆| =  0, 

then 

lim
𝑟→0+

∫𝑓(𝑧)𝑑𝑧

𝑆𝑟

= 𝑖(𝜃2 − 𝜃1)𝜆. 

Lemma (6.2.5)[260]: Suppose that 𝛤 is a piecewise smooth curve. If𝑓(𝑧)is a continuous 

function on  𝛤,  then |∫ 𝑓(𝑧)𝑑𝑧
 

𝛤
| ≤ ∫ |𝑓(𝑧)|

 

𝛤
∙ |𝑑𝑧|. Further, if 𝛤 has length 𝐿, and |𝑓(𝑧)|  ≤

 𝑀  on 𝛤, then  

|∫𝑓(𝑧)𝑑𝑧
 

𝛤

| ≤  𝑀 𝐿. 

Setting 𝑓 (𝑧)  =  1 in Lemmas (6.2.2) and (6.2.3), we get 

𝑓(𝑧0) =
1

2𝜋𝑖
∫

𝑑𝜁

𝜁 − 𝑧0

 

𝜕𝐷

= {
1, 𝑖𝑓 𝑧0 ∈  int(𝜕𝐷) ;
0, 𝑖𝑓 𝑧0 ∈  ext(𝜕𝐷),

 

where 𝑧0 ∈  int(𝜕𝐷) and 𝑧0 ∈  ext(𝜕𝐷) mean that 𝑧0 lies in the interior of 𝜕𝐷 and in the 

exterior of 𝜕𝐷, respectively.  
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Let 𝜙(𝑧)  = ∑ 𝑎𝑘𝑧
𝑛−𝑘𝑛

𝑘=0 = 𝑎0∏ (𝑧 − 𝑧𝑘)
𝑛
𝑘=1  be a complex polynomial of degree 𝑛. By 

direct computing, we get  

𝑧𝜙′(𝑧)

𝜙(𝑧)
= ∑

𝑧

𝑧 − 𝑧𝑘

𝑛

𝑘=1

= 𝑛 +∑
𝑧𝑘

𝑧 − 𝑧𝑘

𝑛

𝑘=1

 

That is 

𝑧𝜙′(𝑧)

𝜙(𝑧)
− 𝑛 = ∑

𝑧𝑘
𝑧 − 𝑧𝑘

𝑛

𝑘=1

. 

If 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ int(𝜕𝐷), then we have 

1

2𝜋𝑖
∫(

𝑧𝜙′(𝑧)

𝜙(𝑧)
− 𝑛)𝑑𝑧

𝜕𝐷

=
1

2𝜋𝑖
∫∑

𝑧𝑘
𝑧 − 𝑧𝑘

𝑛

𝑘=1

𝑑𝑧

𝜕𝐷

=∑𝑧𝑘

𝑛

𝑘=1

. 

Coulson-type integral formula for the general Laplacian-energy-like invariant of graphs 

Theorem (6.2.6)[260]: Let 𝐺 be a graph of order 𝑛, 𝜙𝐿(𝐺, 𝑥) the characteristic polynomial 

of the Laplacian matrix 𝐿(𝐺), and 𝛼 =  1/𝑝 a number with 𝑝 ∈ ℤ+\{1}. Then the general 

Laplacian-energy-like invariant of 𝐺 can be given by the following integral formula 

𝐿𝐸𝐿𝛼(𝐺) =
1

𝜋
∫ (

𝑝𝑥𝑝𝜙𝐿
′ (𝐺,−𝑥𝑝)

𝜙𝐿(𝐺, −𝑥
𝑝)

+ 𝑝𝑛)

+∞

0

∙ 𝑠𝑖𝑛
𝜋

𝑝
𝑑𝑥. 

Proof:  Let 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛 = 0 be the roots of 𝜙𝐿(𝐺, 𝑥). It is well known that if 𝐺 has 

𝑐 (<   𝑛) components, then the multiplicity of 𝜇𝑛   =  0 is 𝑐, which means that 𝜇1 ≥ 𝜇2 ≥
⋯ ≥ 𝜇𝑛−𝑐 > 𝜇𝑛−𝑐+1 = ⋯ = 𝜇𝑛 = 0. Let 𝜑𝐿(𝐺, 𝑧)  =  𝜙𝐿(𝐺, 𝑧

𝑝). Then we have 

𝜑𝐿(𝐺, 𝑧)  =  (𝑧
𝑝)𝑐 ∙∏(𝑧𝑝 − 𝜇𝑘)

𝑛−𝑐

𝑘=1

 =  𝑧𝑐𝑝 ∙∏[∏(𝑧 − 𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝 )

𝑝−1

𝑡=0

]

𝑛−𝑐

𝑘=1

 

and 

𝑧𝜑𝐿
′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
= 𝑧 [

𝑐𝑝

𝑧
+∑(∑

1

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

)

𝑛−𝑐

𝑘=1

] = 𝑐𝑝 +∑∑
𝑧

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

= 𝑐𝑝 +∑∑(
𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

+ 1)

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

= 𝑐𝑝 + (𝑛 − 𝑐)𝑝 +∑∑
𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

 

Therefore,  

𝑧𝜑𝐿
′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛 =∑∑

𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

 

Let 𝛤 =  𝛤𝑅 ∪ 𝐿1 ∪ 𝑆𝑟 ∪ 𝐿2 be the positively (i.e., counterclockwise) oriented 

piecewise smooth Jordan curve (see Fig. (1)), where 𝑅 > max {𝜇1, 𝜇1

1

𝑝} , 0 <  𝑟 <
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min {𝜇𝑛−𝑐

1

𝑝 , 𝜇𝑛−𝑐} , 𝛤𝑅  is the contour {𝑧(𝜃) =  𝑅𝑒𝑖𝜃 , −
𝜋

𝑝
≤ 𝜃 ≤

𝜋

𝑝
}, 𝐿1is the line 

{𝑧(𝜃) = 𝜌𝑒𝑖𝜃 , 𝑟 ≤ 𝜌 ≤ 𝑅, 𝜃 =
𝜋

𝑝
} , 𝑆𝑟 is the curve {𝑧(𝜃) = 𝑟𝑒𝑖𝜃 , −

𝜋

𝑝
≤ 𝜃 ≤

𝜋

𝑝
} , and 𝐿2 

is the line {𝑧(𝜃) = 𝜌𝑒𝑖𝜃 , 𝑟 ≤ 𝜌 ≤ 𝑅, 𝜃 = −
𝜋

𝑝
}. Then the points 𝜇1

1

𝑝, 𝜇2

1

𝑝, . . . , 𝜇𝑛−𝑐

1

𝑝
 are all in 

the interior of the contour 𝛤, and the points 0, 𝜇1

1

𝑝𝑒
𝑖
2𝑡𝜋

𝑝 , 𝜇2

1

𝑝𝑒
𝑖
2𝑡𝜋

𝑝 , . . . , 𝜇𝑛−𝑐

1

𝑝 𝑒
𝑖
2𝑡𝜋

𝑝 , 𝑡 =

 1, 2, . . . , 𝑝 − 1, are all in the exterior of the contour 𝛤. It follows from Lemmas (6.2.2) and 

(6.2.3) that 

 
Fig. (1)[260]: The contour 𝛤 in Theorem (6.2.6). 

 

1

2𝜋𝑖
∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛] 𝑑𝑧

𝛤

=
1

2𝜋𝑖
∫∑∑

𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

𝑑𝑧

𝛤

=
1

2𝜋𝑖
∫∑

𝜇
𝑘

1
𝑝

𝑧 − 𝜇𝑘

1
𝑝

𝑛−𝑐

𝑘=1

𝑑𝑧

𝛤

=∑
1

2𝜋𝑖
∫

𝜇
𝑘

1
𝑝

𝑧 − 𝜇𝑘

1
𝑝𝛤

𝑛−𝑐

𝑘=1

𝑑𝑧 = ∑𝜇
𝑘

1
𝑝

𝑛−𝑐

𝑘=1

=  𝐿𝐸𝐿1
𝑝
(𝐺). 

Since the value of the integral 

1

2𝜋𝑖
∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛] 𝑑𝑧

𝛤

 

is independent of 𝑟 and 𝑅, we obtain that  
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𝐿𝐸𝐿𝛼(𝐺) =
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

∫[
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛] 𝑑𝑧

𝛤

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝛤𝑅

+ ∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝐿1

+ ∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝑆𝑟
−

+ ∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝐿2

] 

where 𝑆𝑟
− is the same curve as 𝑆𝑟 but has clockwise orientation. Suppose that 𝑧 =

𝜌(𝑐𝑜𝑠 𝜃 +  𝑖 𝑠𝑖𝑛 𝜃), where 𝜌 >  0. Then 

|1 −
𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧
| =

|𝑧 − 𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝 |

|𝑧|
=
|𝜌(𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑖𝑛 𝜃) − 𝜇

𝑘

1
𝑝
(𝑐𝑜𝑠

2𝑡𝜋
𝑝
+ 𝑖 𝑠𝑖𝑛

2𝑡𝜋
𝑝
)|

𝜌

=

√𝜌2 + 𝜇
𝑘

2
𝑝
− 2 cos (𝜃 −

2𝑡𝜋
𝑝 )𝜌𝜇𝑘

1
𝑝

𝜌
≥

√𝜌2 + 𝜇
𝑘

2
𝑝
− 2𝜌𝜇

𝑘

1
𝑝

𝜌
=
|𝜌 − 𝜇

𝑘

1
𝑝
|

𝜌
 

Thus, 

|𝑧 [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛]| ≤ ∑∑|

𝑧𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

|

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

=∑∑

|𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝 |

|1 −
𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧
|

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

≤∑∑
𝜌𝜇

𝑘

1
𝑝

|𝜌 − 𝜇𝑘

1
𝑝
|

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

 

Since 

∑∑
𝜌𝜇

𝑘

1
𝑝

|𝜌 − 𝜇𝑘

1
𝑝
|

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

→ 0,    for 𝜌 → 0, 

by Lemma (6.2.4) we have 

∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

 

𝑆𝑟
−

→  0, 𝑓𝑜𝑟 𝜌 →  0. 

Suppose that 𝜔𝑘𝑡 = 𝜇𝑘

1

𝑝𝑒
𝑖
2𝑡𝜋

𝑝 . Then |𝜔𝑘0|  =  |𝜔𝑘1|  =  ⋯  =  |𝜔𝑘(𝑝−1)|  = 𝜇𝑘

1

𝑝  . Thus, 
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|𝑧∑
𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

|

= |𝑧∑
𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝 (𝑧𝑝−1 + 𝑧𝑝−2𝜇

𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝 + ⋯ + 𝑧(𝜇

𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝 )𝑝−2 + (𝜇

𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝 )𝑝−1)

𝑧𝑝 − 𝜇𝑘

𝑝−1

𝑡=0

|

= |𝑧∑
𝜔𝑘𝑡(𝑧

𝑝−1 + 𝑧𝑝−2𝜔𝑘𝑡 + ⋯ +  𝑧𝜔𝑘𝑡
𝑝−2

+ 𝜔𝑘𝑡
𝑝−1

)

𝑧𝑝 − 𝜇𝑘

𝑝−1

𝑡=0

|

= ||∑
𝜔𝑘𝑡 +

𝜔𝑘𝑡
2

𝑧
+ ⋯ +

𝜔𝑘𝑡
𝑝−1

𝑧𝑝−2
+
𝜔𝑘𝑡
𝑝

𝑧𝑝−1

1 −
𝜇𝑘
𝑧𝑝

𝑝−1

𝑡=0

||. 

Obviously, there exists 𝑁𝑘 > 0, for 𝑘 ∈  {1, 2, . . . , 𝑛 −  𝑐}, such that |1 −
𝜇𝑘

𝑧𝑝
| ≥

1

2
 for |𝑧|  >

 𝑁𝑘 . For any 𝜀 >  0, there exists 𝑀𝑘 > 0, for 𝑘 ∈  {1, 2, . . . , 𝑛 −  𝑐}, such that 

|∑(
𝜔𝑘𝑡
2

𝑧
+ ⋯ +

𝜔𝑘𝑡
𝑝−1

𝑧𝑝−2
+
𝜔𝑘𝑡
𝑝

𝑧𝑝−1
)

𝑝−1

𝑡=0

| <
𝜀

2𝑛
 

for |𝑧| > 𝑀𝑘. Noting  that ∑ 𝜔𝑘𝑡
𝑟𝑝−1

𝑡=0 = 0  unless 𝑟  =   𝑝. Therefore, for any 𝜀 > 0,  there 

exists  𝑁  = max{𝑁1, 𝑁2 , . . . , 𝑁𝑛−𝑐  , 𝑀1, 𝑀2, . . . , 𝑀𝑛−𝑐} such that 

|𝑧 [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛]| = |∑𝑧∑

𝜇
𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

|

= ||∑∑
𝜔𝑘𝑡 +

𝜔𝑘𝑡
2

𝑧
+ ⋯ +

𝜔𝑘𝑡
𝑝−1

𝑧𝑝−2
+
𝜔𝑘𝑡
𝑝

𝑧𝑝−1

1 −
𝜇𝑘
𝑧𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

||

≤ 2 |∑∑𝜔𝑘𝑡

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

| + 2∑ |∑(
𝜔𝑘𝑡
2

𝑧
+ ⋯ +

𝜔𝑘𝑡
𝑝−1

𝑧𝑝−2
+
𝜔𝑘𝑡
𝑝

𝑧𝑝−1
)

𝑝−1

𝑡=0

|

𝑛−𝑐

𝑘=1

<  0 +  2∑
𝜀

2𝑛

𝑛−𝑐

𝑘=1

<  𝜀 

for |𝑧|  >  𝑁 . By Lemma (6.2.5), it can be obtained that for any 𝜀 >  0 there exists 𝑁 =
max{𝑁1, 𝑁2, . . . , 𝑁𝑛−𝑐  ,𝑀1, 𝑀2, . . . , 𝑀𝑛−𝑐} such that 

∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

 

𝛤𝑅

≤
2𝜋𝑅

𝑝
max
𝑧∈𝛤𝑅

|
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛| =

2𝜋

𝑝
max
𝑧∈𝛤𝑅

|𝑧 [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛]|

<
2𝜋

𝑝
𝜀 
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for |𝑧|  >  𝑁 . In other words, 

∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

 

𝛤𝑅

→  0, for|𝑧|  →  +∞. 

Consequently, we have 

𝐿𝐸𝐿𝛼(𝐺)  =
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝛤𝑅

+ ∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝐿1

+ ∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝑆𝑟
−

+ ∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝐿2

]

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝐿1

+ ∫(
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝𝑛)𝑑𝑧

𝐿2

] 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫(
𝑝(𝜌𝑒

𝑖
𝜋
𝑝)𝑝𝜙𝐿

′ (𝐺, (𝜌𝑒
𝑖
𝜋
𝑝)𝑝)

𝜙𝐿(𝐺, (𝜌𝑒
𝑖
𝜋
𝑝)𝑝)

− 𝑝𝑛)𝑑(𝜌𝑒
𝑖
𝜋
𝑝)

𝑟

𝑅

+∫(
𝑝(𝜌𝑒

−𝑖
𝜋
𝑝)𝑝𝜙𝐿

′ (𝐺, (𝜌𝑒
−𝑖
𝜋
𝑝)𝑝)

𝜙𝐿(𝐺, (𝜌𝑒
−𝑖
𝜋
𝑝)𝑝)

− 𝑝𝑛)𝑑(𝜌𝑒
−𝑖
𝜋
𝑝)

𝑅

𝑟

]

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫(−
𝑝𝜌𝑝𝜙𝐿

′ (𝐺,− 𝜌𝑝)

𝜙𝐿(𝐺, −𝜌
𝑝)

− 𝑝𝑛) 𝑒
𝑖
𝜋
𝑝𝑑𝜌

𝑟

𝑅

+∫(−
𝑝𝜌𝑝𝜙𝐿

′ (𝐺,−𝜌𝑝)

𝜙𝐿(𝐺, −𝜌
𝑝)

− 𝑝𝑛) 𝑒
−𝑖
𝜋
𝑝𝑑𝜌

𝑅

𝑟

]

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫ (
𝑝𝜌𝑝𝜙𝐿

′ (𝐺,−𝜌𝑝)

𝜙𝐿(𝐺,−𝜌
𝑝)

− 𝑝𝑛) (𝑐𝑜𝑠
𝜋

𝑝
+ 𝑖𝑠𝑖𝑛

𝜋

𝑝
)𝑑𝜌

𝑅

𝑟

−∫(
𝑝𝜌𝑝𝜙𝐿

′ (𝐺, − 𝜌𝑝)

𝜙𝐿(𝐺,− 𝜌
𝑝)

− 𝑝𝑛) (𝑐𝑜𝑠(−
𝜋

𝑝
) + 𝑖𝑠𝑖𝑛(−

𝜋

𝑝
))𝑑𝜌

𝑅

𝑟

] 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

∫(
𝑝𝜌𝑝𝜙𝐿

′ (𝐺,−𝜌𝑝)

𝜙𝐿(𝐺,−𝜌
𝑝)

+ 𝑝𝑛) · 2𝑖𝑠𝑖𝑛
𝜋

𝑝
𝑑𝜌

𝑅

𝑟

 

=
1

𝜋
∫ (

𝑝𝑥𝑝𝜙𝐿
′ (𝐺,−𝑥𝑝)

𝜙𝐿(𝐺, −𝑥
𝑝)

+ 𝑝𝑛) · 𝑠𝑖𝑛
𝜋

𝑝
𝑑𝑥

+∞

0

. 

If 𝐺 has 𝑛 components, which means that 𝜇1 = ⋯ = 𝜇𝑛 = 0, then 𝜙(𝐺, 𝑥) = 𝑥𝑛 . Thus, we 

have 

𝑝𝑥𝑝𝜙𝐿
′ (𝐺,−𝑥𝑝)

𝜙𝐿(𝐺, −𝑥
𝑝)

+ 𝑝𝑛 =
𝑝𝑥𝑝𝑛(−𝑥𝑝)𝑛−1

(−𝑥𝑝)𝑛
+  𝑝𝑛 =  0 
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and 𝐿𝐸𝐿1
𝑝

(𝐺) = ∑ 𝜇
𝑘

1

𝑝𝑛
𝑘=1 = 0. Therefore, 

𝐿𝐸𝐿𝛼(𝐺) =
1

𝜋
∫ (

𝑝𝑥𝑝𝜙𝐿
′ (𝐺,−𝑥𝑝)

𝜙𝐿(𝐺, −𝑥
𝑝)

+ 𝑝𝑛) · 𝑠𝑖𝑛
𝜋

𝑝
𝑑𝑥

+∞

0

. 

This completes the proof.  

Clearly, it is easy to obtain the following result from Theorem (6.2.6). 

Corollary (6.2.7)[260]:  Let  𝐺  be  a  graph  of  order  𝑛,  and  𝜙𝐿(𝐺, 𝑥) the  

characteristic  polynomial  of  the  Laplacian matrix 𝐿(𝐺). Then the Laplacian-energy-like 

invariant of 𝐺 can be given by the following integral formula 

𝐿𝐸𝐿(𝐺) =
1

𝜋
∫ (

𝑥2𝜙𝐿
′ (𝐺, −𝑥2)

𝜙𝐿(𝐺, −𝑥
2)

+ 𝑛)𝑑𝑥

+∞

−∞

. 

Proof:  By Theorem (6.2.6), it can be obtained that 

𝐿𝐸𝐿(𝐺) = 𝐿𝐸𝐿1
2

(𝐺) =
1

𝜋
∫ (

2𝑥2𝜙𝐿
′ (𝐺, −𝑥2)

𝜙𝐿(𝐺, −𝑥
2)

+ 2𝑛) 𝑠𝑖𝑛
𝜋

2
𝑑𝑥

+∞

0

=
2

𝜋
∫ (

𝑥2𝜙𝐿
′ (𝐺,−𝑥2)

𝜙𝐿(𝐺,−𝑥
2)

+ 𝑛)𝑑𝑥

+∞

0

=
1

𝜋
∫ (

𝑥2𝜙𝐿
′ (𝐺,−𝑥2)

𝜙𝐿(𝐺,−𝑥
2)

+ 𝑛)𝑑𝑥

+∞

−∞

, 

which completes the proof. 

Let 𝐺1 and 𝐺2 be two graphs of same order. The Coulson–Jacobs formula (see [261], [264]) 

gives the difference of their energies, that is 

𝐸(𝐺1)  −  𝐸(𝐺2)  =
1

𝜋
∫ ln |

𝜙(𝐺1, 𝑖𝑥)

𝜙(𝐺2, 𝑖𝑥)
| 𝑑𝑥

+∞

−∞

 

where 𝜙(𝐺, 𝑥) is the characteristic polynomial of the matrix 𝐴(𝐺). Similar to this, we obtain 

the following theorem on the difference of the general Laplacian-energy-like invariant of 

two graphs. 

Theorem (6.2.8)[260]: Let 𝐺1 and 𝐺2 be two graphs of equal order. Then 

𝐿𝐸𝐿1
𝑝

(𝐺1) − 𝐿𝐸𝐿1
𝑝

(𝐺2)  =
1

𝜋
∫ ln |

𝜙𝐿(𝐺1, 𝑥
𝑝)

𝜙𝐿(𝐺2, 𝑥
𝑝)
| · 𝑠𝑖𝑛

𝜋

𝑝
𝑑𝑥

+∞

0

, 𝑝 ∈ ℤ+\{1}, 

where 𝜙𝐿(𝐺, 𝑥) is the characteristic polynomial of the Laplacian matrix 𝐿(𝐺). 
Proof.  By Theorem (6.2.6), it can be obtained that 

𝐿𝐸𝐿1
𝑝

(𝐺1) − 𝐿𝐸𝐿1
𝑝

(𝐺2)  =
1

𝜋
∫ (

𝑝𝑥𝑝𝜙𝐿
′ (𝐺1, −𝑥

𝑝)

𝜙𝐿(𝐺1, −𝑥
𝑝)

−
𝑝𝑥𝑝𝜙𝐿

′ (𝐺2, −𝑥
𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)

) · 𝑠𝑖𝑛
𝜋

𝑝
𝑑𝑥

+∞

0

= −
1

𝜋
∫ 𝑥 (

𝜙𝐿
′ (𝐺1, −𝑥

𝑝)

𝜙𝐿(𝐺1, −𝑥
𝑝)
−
𝜙𝐿
′ (𝐺2, −𝑥

𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)
) · 𝑠𝑖𝑛

𝜋

𝑝
𝑑(−𝑥𝑝)

+∞

0

= −
1

𝜋
∫ 𝑥𝑠𝑖𝑛

𝜋

𝑝
𝑑 ln

𝜙𝐿(𝐺1, −𝑥
𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)

+∞

0
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= −
𝑠𝑖𝑛

𝜋
𝑝

𝜋
(𝑥 ln |

𝜙𝐿(𝐺1, −𝑥
𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)
||
0

+∞

−∫ ln |
𝜙𝐿(𝐺1, −𝑥

𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)
| 𝑑𝑥

+∞

0

) 

and 

lim
𝑥→+∞

(
𝜙𝐿(𝐺1, −𝑥

𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)
)

𝑥

= lim
𝑥→+∞

(1 +
𝜙𝐿(𝐺1, −𝑥

𝑝) − 𝜙𝐿(𝐺2, −𝑥
𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)

)

𝑥

= lim
𝑥→+∞

(1 +
𝜙𝐿(𝐺1, −𝑥

𝑝) − 𝜙𝐿(𝐺2, −𝑥
𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)

)

𝜙𝐿(𝐺2,−𝑥
𝑝)[𝜙𝐿(𝐺1,−𝑥

𝑝)−𝜙𝐿(𝐺2,−𝑥
𝑝)]𝑥

[𝜙𝐿(𝐺1,−𝑥
𝑝)−𝜙𝐿(𝐺2,−𝑥

𝑝)]𝜙𝐿(𝐺2,−𝑥
𝑝)

= 𝑒0 = 1, 
since the degree of [𝜙𝐿(𝐺1, −𝑥

𝑝) − 𝜙𝐿(𝐺2, −𝑥
𝑝)]𝑥 is less than the degree of 𝜙𝐿 (𝐺2, −𝑥

𝑝). 
Thus, 

lim
𝑥→+∞

𝑥 ln |
𝜙𝐿(𝐺1, −𝑥

𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)
| = 0 

Suppose that 

𝜙𝐿(𝐺𝑗 , 𝑥) = 𝑥∏(𝑥 − 𝜇𝑘(𝐺𝑗))

𝑛−1

𝑘=1

,   𝑗 =  1, 2, 

where 𝜇1(𝐺𝑗), . . . , 𝜇𝑛(𝐺𝑗) are the Laplacian eigenvalues of 𝐺𝑗  (𝑗 = 1, 2). Then 

𝜙𝐿(𝐺1, −𝑥
𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)
=∏

−𝑥𝑝 − 𝜇𝑘(𝐺1)

−𝑥𝑝 − 𝜇𝑘(𝐺2)

𝑛−1

𝑘=1

 

Since lim
x→0

𝑥 ln 𝑥 = 0, we have 

lim
𝑥→0

𝑥 ln |
𝜙𝐿(𝐺1, −𝑥

𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)
| = lim

𝑥→0
𝑥 ln∏

−𝑥𝑝 − 𝜇𝑘(𝐺1)

−𝑥𝑝 − 𝜇𝑘(𝐺2)

𝑛−1

𝑘=1

= 0 

Therefore, 

𝐿𝐸𝐿1
𝑝

(𝐺1) − 𝐿𝐸𝐿1
𝑝

(𝐺2)  =
1

𝜋
∫ ln |

𝜙𝐿(𝐺1, −𝑥
𝑝)

𝜙𝐿(𝐺2, −𝑥
𝑝)
| · 𝑠𝑖𝑛

𝜋

𝑝
𝑑𝑥

+∞

0

 

This completes the proof.          

Corollary (6.2.9)[260]: Let 𝐺 be a simple graph of order 𝑛, and 𝜙𝐿(𝐺, 𝑥) = ∑ 𝑎𝑘𝑥
𝑛−𝑘𝑛

𝑘=0  

. Then  

𝐿𝐸𝐿1
𝑝

(𝐺) =
1

2𝜋
∫ 𝑥−2 ln (∑(−1)𝑘𝑎𝑘𝑥

𝑝𝑘

𝑛

𝑘=0

)

2

· 𝑠𝑖𝑛
𝜋

𝑝
𝑑𝑥

+∞

0

, 𝑝 ∈ ℤ+\{1}. 

Proof:  Noting that (𝐾𝑛, 𝑥)  =  𝑥
𝑛 , by Theorem (6.2.8) we have 

𝐿𝐸𝐿1
𝑝

(𝐺) =
1

𝜋
∫ ln |∑𝑎𝑘(−𝑥

−𝑝)−𝑘
𝑛

𝑘=0

| · 𝑠𝑖𝑛
𝜋

𝑝
𝑑𝑥

+∞

0

=
1

𝜋
∫ ln |∑𝑎𝑘(−𝑥

−𝑝)−𝑘
𝑛

𝑘=0

| · 𝑠𝑖𝑛
𝜋

𝑝
𝑑(𝑥−1)

0

+∞

=
1

𝜋
∫ 𝑥−2 ln |∑(−1)𝑘𝑎𝑘𝑥

𝑝𝑘

𝑛

𝑘=0

| · 𝑠𝑖𝑛
𝜋

𝑝
𝑑𝑥

+∞

0
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=
1

2𝜋
∫ 𝑥−2 ln (∑(−1)𝑘𝑎𝑘𝑥

𝑝𝑘

𝑛

𝑘=0

)

2

· 𝑠𝑖𝑛
𝜋

𝑝
𝑑𝑥

+∞

0

                                     

Thus, the proof is complete. 

 We first extend the concept of the general Laplacian-energy-like invariant of graphs 

to complex polynomials. 

Definition (6.2.10)[260]: Let 

𝜙(𝑧)  = ∑𝑎𝑘𝑧
𝑛−𝑘

𝑛

𝑘=0

  =  𝑎0∏(𝑧 − 𝑧𝑘)

𝑛

𝑘=1

 

be a complex polynomial of degree 𝑛 and 𝛼 a real number. The general energy of 𝜙(𝑧), 
denoted by 𝐸𝛼(𝜙(𝑧)), is defined as  ∑ |𝑧𝑘|

𝛼
𝑧𝑘≠0  when there exists 𝑖0 ∈  {1, 2, . . . , 𝑛} such 

that 𝑧𝑖0 ≠ 0, and 0 when 𝑧1  = ⋯ = 𝑧𝑛  =  0. 

By an analogous argument in the proof of Theorem (6.2.6), we can obtain the following 

result on the general energy of polynomials for 𝛼 =  1/𝑝 with 𝑝 ∈ ℤ+\{1}. 
Theorem (6.2.11)[260]: Let 𝜙(𝑧) be a monic polynomial of degree 𝑛, whose roots are all 

non-negative real numbers, and 𝛼 =  1/𝑝 a number with 𝑝 ∈ ℤ+\{1}. Then the general 

energy of 𝜙(𝑧) can be given by the following integral formula 

𝐿𝐸𝐿𝛼(𝐺) =
1

𝜋
∫ (

𝑝𝑥𝑝𝜙′(−𝑥𝑝)

𝜙(−𝑥𝑝)
+ 𝑝𝑛) · 𝑠𝑖𝑛

𝜋

𝑝
𝑑𝑥

+∞

0

 

As an extension of the concept of graph energy, the energy 𝐸(𝑀 ) of a real 𝑛 ×  𝑚 matrix 

𝑀 is defined by Nikiforov [257] as the sum of its singular values, which are the square roots 

of the eigenvalues of the square matrix  𝑀𝑇 , where 𝑀𝑇 is the transpose of 𝑀 . Let 

𝜎1(𝑀 ), 𝜎𝑛(𝑀 ), . . . , 𝜎𝑛(𝑀 ) be the singular values of  . Then 

𝐸(𝑀 )  = ∑𝜎𝑘(𝑀)

𝑛

𝑘=1

. 

The normalized incidence energy 𝑁𝐼𝐸(𝐺) of 𝐺, introduced by Cheng and Liu in [240], is 

the energy of the matrix 𝐼(𝐺)  =  𝐷−
1

2(𝐺)𝐼 (𝐺), where 𝐼(𝐺) is the incidence matrix of 

𝐺,𝐷−
1

2 (𝐺) is the diagonal matrix with entries 𝐷−
1

2(𝐺)(𝑘, 𝑘) = 1/√𝑑𝑘 if 𝑑𝑘 ≠ 0 and 

𝐷−
1

2(𝐺)(𝑘, 𝑘)  =  0 otherwise. Then 

𝑁𝐼𝐸 (𝐺) = ∑𝜎𝑘(𝐼(𝐺))

𝑛

𝑘=1

=∑√𝜆𝑘(𝐼(𝐺)𝐼(𝐺)
𝑇)

𝑛

𝑘=1

, 

where 𝜆𝑘(𝐼(𝐺)𝐼(𝐺)
𝑇)(𝑘 =  1, . . . , 𝑛) are the eigenvalues of the matrix 𝐼(𝐺)𝐼(𝐺)𝑇. 

Obviously, 𝐼(𝐺)𝐼(𝐺)𝑇 is a positive semi-definite matrix. 

Cheng and Liu [240] gave an integral formula for the normalized incidence energy of 

graphs. We find that their result is an immediate consequence of Theorem (6.2.11). 

Corollary (6.2.12)[260]: (See Cheng and Liu [240].) Let 𝐺 be a graph of order 𝑛, and 𝜙(𝑥) 
the characteristic polynomial of the matrix 𝐼(𝐺)𝐼(𝐺)𝑇. Then the normalized incidence 

energy of 𝐺 can be given by the following integral formula 
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𝑁𝐼𝐸(𝐺) =
1

2𝜋
∫ [2𝑛 −  𝑖𝑥

𝑓′(𝑖𝑥)

𝑓(𝑖𝑥)
]

+∞

−∞

𝑑𝑥, 

where 𝑓(𝑥)  =  𝜙(𝑥2). 
Proof: Clearly 𝐼(𝐺)𝐼(𝐺)𝑇 is a positive semi-definite matrix, and all the roots of 𝜙(𝑥) are 

nonnegative. Note that 

𝑓′(𝑖𝑥)  =  2 · (𝑖𝑥)𝜙′((𝑖𝑥)2)  =  2𝑖𝑥𝜙′(−𝑥2) 
and 

2𝑛 − 𝑖𝑥
𝑓′(𝑖𝑥)

𝑓(𝑖𝑥)
=  2𝑛 − 𝑖𝑥

2𝑖𝑥𝜙′(−𝑥2)

𝜙(−𝑥2)
=  2[𝑛 +

𝑥2𝜙′(−𝑥2)

𝜙(−𝑥2)
]. 

By Theorem (6.2.11), it can be obtained that 

𝑁𝐼𝐸(𝐺)  = 𝐸1
2
(𝜙(𝑥)) =

1

𝜋
∫ [

2𝑥2𝜙′(−𝑥2)

𝜙(−𝑥2)
+ 2𝑛]

+∞

0

sin
𝜋

2
𝑑𝑥 =

2

𝜋
∫ [

𝑥2𝜙′(−𝑥2)

𝜙(−𝑥2)
+ 𝑛]

+∞

0

𝑑𝑥

=
1

𝜋
∫ [

𝑥2𝜙′(−𝑥2)

𝜙(−𝑥2)
+ 𝑛]

+∞

−∞

𝑑𝑥 =
1

2𝜋
∫ 2 [

𝑥2𝜙′(−𝑥2)

𝜙(−𝑥2)
+ 𝑛]

+∞

−∞

𝑑𝑥

=
1

2𝜋
∫ [2𝑛 − 𝑖𝑥

𝑓′(𝑖𝑥)

𝑓(𝑖𝑥)
]

+∞

−∞

𝑑𝑥 

Thus, the proof is complete. 

By assigning an arbitrary orientation to the edges of 𝐺 with vertex set 𝑉(𝐺) = {𝑣1, . . . , 𝑣𝑛}, 

the vertex-arc incidence matrix 𝑆(𝐺 )  =  (𝑠𝑖𝑒) of 𝐺  is defined as  

𝑠𝑖𝑒 = {
1,       if 𝑣𝑖   is the head of 𝑒;
−1,       if 𝑣𝑖   is the tail of 𝑒;

0, otherwise.                        
 

The normalized oriented incidence matrix of 𝐺 , denoted by 𝑆′(𝐺 ), is defined as 𝑆′(𝐺 )  =

𝐷−
1

2 − (𝐺)𝑆(𝐺 ). The normalized Laplacian matrix of 𝐺, denoted by 𝑁𝐿(𝐺)  =  (𝑙𝑖𝑗), is the 

matrix with entries 

𝑙𝑖𝑗 =

{
 
 

 
 1, if 𝑖 =  𝑗 and 𝑑𝑖 ≠ 0;

−
1

√𝑑𝑖𝑑𝑗
, if 𝑣𝑖  and 𝑣𝑗  are adjacent in 𝐺;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Clearly, 𝑁𝐿(𝐺)  =  𝑆′(𝐺 )𝑆′(𝐺 )
𝑇
, where 𝐺  is an arbitrary oriented graph of 𝐺. The 

Laplacian incidence energy 𝐿𝐼𝐸(𝐺) of 𝐺, introduced by Shi and Wang in [265], is defined 

as 

𝐿𝐼𝐸(𝐺)  = ∑𝜎𝑘(𝑆′(𝐺 ))

𝑛

𝑘=1

 = ∑√𝜆𝑘(𝑁𝐿(𝐺))

𝑛

𝑘=1

, 

where 𝜆𝑘 (𝑁𝐿(𝐺)) (𝑘 =  1, . . . , 𝑛) are the eigenvalues of 𝑁𝐿(𝐺). 
Shi and Wang [265] gave an integral formula for Laplacian incidence energy of graphs. 

Their result is also an immediate consequence of Theorem (6.2.11). 
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Corollary (6.2.13)[260]: (See Shi and Wang [265].) Let 𝐺 be a graph of order 𝑛, and 𝜙(𝑥) 
the characteristic polynomial of the normalized Laplacian matrix 𝑁𝐿(𝐺) of 𝐺. Then the 

Laplacian incidence energy of 𝐺 can be given by the following integral formula 

𝐿𝐼𝐸 (𝐺)  =
1

𝜋
∫ [𝑛 +

𝑥2𝜙′(−𝑥2)

𝜙(−𝑥2)
]

+∞

−∞

𝑑𝑥 

We omit the proof of this corollary here. 

Section (6.3): General Laplacian-Energy-Like Invariant of Graphs  

We only consider simple graphs. See [124]. 

Let G be a graph of order 𝑛. The spectrum of 𝐺 consists of the eigenvalues 𝜆1 ≥ 𝜆1 ≥ ⋯ ≥
𝜆𝑛 of the adjacency matrix 𝐴(𝐺) of 𝐺, which are called the eigenvalues of G. It is well 

known that 𝜆1 = max{|𝜆1|,⋯ , |𝜆𝑛|} The Laplacian matrix of G is the matrix 𝐿(𝐺) =
𝐷(𝐺) − 𝐴(𝐺), where 𝐷(𝐺) = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, ⋯ , 𝑑𝑛) is the diagonal matrix of vertex degrees 

of G. The Laplacian eigenvalues of G are the eigenvalues of 𝐿(𝐺), denoted by 𝜇1 ≥ 𝜇2 ≥
⋯ ≥ 𝜇𝑛. As we all know, 𝐿(𝐺) is a positive semi-definite symmetric matrix and 𝜇𝑛 =  0. 
The energy E(G) of G is defined as the sum of the absolute values of the eigenvalues of G, 

which is an invariant related to total π-electron energy [267]. Many mathematicians and 

chemists have done lots of work in the field of the theory of graph energy (see [273]). In 

1940, Coulson [247] obtained an important integral formula which makes it possible to 

calculate the energy of a graph without knowing its spectrum. For a graph G on n vertices, 

its energy is 

𝐸(𝐺) =
1

𝜋
∫ [𝑛 −

𝑖𝑥𝜙𝐴
′ (𝐺. 𝑖𝑥)

𝜙𝐴(𝐺, 𝑖𝑥)
] 𝑑𝑥

∞

−∞

 

where 𝜙𝐴(𝐺, 𝑥) is the characteristic polynomial of 𝐴(𝐺) (the characteristic polynomial of 

G). This formula is called the Coulson integral formula, and has many applications in the 

theory of graph energy (see [273]).  

Moreover, Gutman and Zhou [129] defined the Laplacian energy of G as 

𝐿𝐸(𝐺) = ∑ |𝜇𝑘 −
2𝑚

𝑛
|

𝑛

𝑘=1

, 

where 𝑛 and m are the number of vertices and edges of 𝐺, respectively. At the same time, 

Liu and Liu [121] defined the Laplacian-energy-like invariant of 𝐺 as 

𝐿𝐸𝐿(𝐺) = ∑√𝜇𝑘

𝑛

𝑘=1

 

This invariant has many similar properties as the energy of graphs. For results and problems 

on these two invariants, see [272], [273]. 

In [147], Zhou studied the sum of powers of the Laplacian eigenvalues of graphs, which can 

be regarded as a generalization of the Laplacian-energy-like invariant and is called the 

general Laplacian-energy-like invariant of graphs in [260]. 

Definition (6.3.1)[269]: Let G be a graph of order 𝑛, 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛 = 0 the Laplacian 

eigenvalues of 𝐺 and 𝛼 a real number. The general Laplacian-energy-like invariant of 𝐺, 
denoted by 𝐿𝐸𝐿𝛼(𝐺), is defined as ∑ 𝜇𝑘

𝛼 
𝜇𝑘≠0

 when 𝜇1 ≠ 0, and 0 when 𝜇1 = 0 Qiao et al. 

[260] obtained an integral formula for general Laplacian-energy-like invariant in the case 
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that 𝛼 = 1/𝑝, 𝑝 ∈ ℤ+{1}, gave an extension of the general Laplacian-energylike invariant 

of graphs to complex polynomials and obtained an integral formula for it. 

Theorem (6.3.2)[269]: ([260]). Let G be a graph of order 𝑛, 𝜙𝐿(𝐺, 𝑥) the characteristic 

polynomial of the Laplacian matrix 𝐿(𝐺) of 𝐺, and 𝛼 = 1/𝑝 with 𝑝 ∈ ℤ+\{1}.  
Then the general Laplacian-energy-like invariant of G can be given by the following integral 

formula 

𝐿𝐸𝐿𝛼(𝐺) =
𝑝

𝜋
∫ (

𝑥𝑝𝜙𝐿
′ (𝐺, 𝑥𝑝)

𝜙𝐿(𝐺 − 𝑥
𝑝𝑝)
) . sin

𝜋

𝑝
𝑑𝑥

+∞

0

 

 

Definition (6.3.3)[269]: ([260]). Let  

𝜙(𝑧) = ∑𝑎𝑘𝑧
𝑛−𝑘

𝑛

𝑘=0

= 𝑎0  ∏(𝑧 − 𝑧𝑘)

𝑛

𝑘=1

 

Be a complex polynomial of degree 𝑛 and 𝛼 a real number. The general energy of 𝜙(𝑧), 

denoted by 𝐸𝛼(𝜙(𝑧)),  is defined as ∑ |𝑧𝑘|
𝛼 

𝑧𝑘≠0
 when there exist 𝑖0 ∈ {1,2,⋯ , 𝑛} that 𝑧𝑖0 ≠

0, and 0 when 𝑧1 = ⋯ = 𝑧𝑛 = 0 

Theorem (6.3.4)[269]: ([260]). Let 𝜙(𝑧) be a monic polynomial of degree n, whose roots 

are all nonnegative real numbers, and 𝛼 = 1/𝑝 with 𝑝 ∈ ℤ+\{1}. Then the general energy 

of 𝜙(𝑧) can be given by the following integral formula 

𝐸𝛼(𝜙(𝑧)) =
𝑝

𝜋
∫ (

𝑥𝑝𝜙′(−𝑥𝑝)

𝜙(−𝑥𝑝)
+ 𝑛) . sin

𝜋

𝑝
𝑑𝑥

+∞

0

 

The two following concepts are regarded as generalizations of graph energy and Laplacian 

graph energy, respectively.  

Definition (6.3.5)[269]: Let G be a graph of order 𝑛, 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 the eigenvalues of 

G and 𝛼 a real number. The general energy of G, denoted by 𝐸𝛼(𝐺), is defined as ∑ |𝜆𝑘|
𝛼 

𝜆𝑘≠0
 

when 𝜆1 ≠ 0, and 0 when 𝜆1 = 0. 
Definition (6.3.6)[269]: Let G be a graph, 𝜇1  ≥  𝜇2  ≥ ··· ≥  𝜇𝑛  =  0 the Laplacian 

eigenvalues of G and 𝛼 a real number. The general Laplacian energy of G is defined as  

𝐿𝐸𝛼(𝐺) = ∑ |𝜇𝑘 −
2𝑚

𝑛
|
𝛼 

𝜇𝑘≠
2𝑚
𝑛

 

We obtain some Coulson-type integral formulas for the general Laplacian energy- 

like invariant of graphs and the general energy of polynomials with 𝛼 ∈ ℚ. We present 

Coulson-type integral formulas for the general energy and general Laplacian energy of 

graphs with 𝛼 ∈ ℚ, respectively. We also show that our formulas in Theorem (6.3.10) (i) 

and (iv), Theorem (6.3.11) (i) and (iv) and Theorem (6.3.12) (i) and (iv) hold when α is an 

irrational number with 0 < |𝛼|  < 1 and do not hold with |𝛼| > 1. 

We first introduce some basic concepts and results in complex analysis which will be 

used later. 

Let D be a bounded domain. The boundary of 𝐷 is denoted by 𝜕𝐷. We need the following 

simple lemma. The proofs are omitted here. 

Lemma (6.3.7)[269]: Let 𝑆𝑟 be the are 𝑧(𝜃) = 𝑎0𝑟𝑒
𝑖𝜃 , 𝜃1 ≤ 𝜃 ≤ 𝜃2 where 𝑎0 and 𝑟 >

 0 are two real numbers. If 𝑓(𝑧) is a continuous function on the arc 𝑆𝑟 for all small r such 

that 
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lim
𝑟→0+

max
𝜃∈|𝜃1,𝜃2|

|𝑟𝑒𝑖𝜃 𝑓(𝑎0 + 𝑟𝑒
𝑖𝜃) − 𝜆| = 0 

Then  

lim
𝑟→0+

∫ 𝑓(𝑧)𝑑𝑧
 

𝑆𝑟

= 𝑖(𝜃2 − 𝜃1)𝜆. 

Suppose 𝑓(𝑧)  =  1. By Cauchy’s Theorem and Integral Formula, we get 

𝑓(𝑧0) =
1

2𝜋𝑖
∫

𝑑𝜁

𝜁 − 𝑧0

 

𝜕𝐷

{
1,                   𝑖𝑓       𝑧0 ∈ 𝑖𝑛𝑡 (𝜕)

0,                    𝑖𝑓    𝑧0 ∈ 𝑒𝑥𝑡 (𝜕𝐷)
 

Where 𝑧0 ∈ 𝑖𝑛𝑡 (𝜕𝐷) mean that 𝑧0 lies in the interior of 𝜕𝐷 and in the exterior of 𝜕𝐷, 

respectively. 

Let 𝜙(𝑧) = ∑ 𝑎𝑘𝑧
𝑛−𝑘𝑛

𝑘=0 = 𝑎0∏ (𝑧 − 𝑧𝑘)
𝑛
𝑘=1  be a complex polynomial of degree 𝑛. By 

direct computing, we get  

𝑧𝜙′(𝑧)

𝜙(𝑧)
= ∑

𝑧

𝑧 − 𝑧𝑘

𝑛

𝑘=1

= 𝑛 +∑
𝑧𝑘

𝑧 − 𝑧𝑘

𝑛

𝑘=1

 

That is  

𝑧𝜙′(𝑧)

𝜙(𝑧)
− 𝑛 = ∑

𝑧𝑘
𝑧 − 𝑧𝑘

𝑛

𝑘=1

 

If 𝑧1, 𝑧2, ⋯ , 𝑧𝑛 ∈ 𝑖𝑛𝑡 (𝜕𝐷), then we have  

1

𝜋𝑖
∫ (

𝑧𝜙′(𝑧)

𝜙(𝑧)
− 𝑛)𝑑𝑧

 

𝜕𝐷

=
1

2𝜋𝑖
∫ ∑

𝑧𝑘
𝑧 − 𝑧𝑘

𝑑𝑧

𝑛

𝑘=1

=∑𝑧𝑘

𝑛

𝑘=1

 

𝜕𝐷

 

Suppose that 𝜙(𝑧) = (𝑧 − 𝑧1)(𝑧 − 𝑧2)⋯ (𝑧 − 𝑧𝑛). Then  

𝜙(√𝑧)𝜙(−√−𝑧) =∏(√𝑧 − 𝑧𝑘)(−√𝑧 − 𝑧𝑘)

𝑛

𝑘=1

 

=∏(𝑧 − 𝑧𝑘
2)(−1)𝑛

𝑛

𝑘=1

= (−1)𝑛∏(𝑧 − 𝑧𝑘
2)

𝑛

𝑘=1

 

Therefore, we have   

𝜑(𝑧) = (−1)𝑛𝜙(√𝑧)𝜙(−√𝑧) =∏(𝑧 − 𝑧𝑘
2)

𝑛

𝑘=1

. 

Thus, by Theorem (6.3.4) it is easy to get the following theorem. 

Theorem (6.3.8)[269]: Let 𝜙(𝑧) be a monic polynomial of degree n, whose roots are all 

non-negative real numbers, and 𝛼 = 1. Then 𝐸1(𝜙(𝑧)) can be given by the following 

integral formula  

𝐸1(𝜙(𝑧)) =
2

𝜋
∫ (

𝑥2𝜑′(−𝑥2)

𝜑(−𝑥2)
+ 𝑛)𝑑𝑥

+∞

0

 

Where 𝜑(𝑧) = (−1)𝑛𝜙(√𝑧)𝜙(−√𝑧). 

Theorem (6.3.9)[269]: Let 𝐺 be a graph of order n with 𝑐 (<  𝑛) components, 𝜙𝐿(𝐺, 𝑥) the 

characteristic polynomial of the Laplacian matrix 𝐿(𝐺) of 𝐺, and 𝛼 ∈ ℚ. Suppose that 
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𝜑𝐿(𝐺, 𝑧) = 𝑒
𝑖(𝑞−1)𝑛𝜋𝜙𝐿 (𝐺, 𝑧

1

𝑞𝑒
−𝑖
2𝜋

𝑞 )⋯𝜙𝐿 (𝐺, 𝑧
1

𝑞𝑒
−𝑖

2(𝑞−1)𝜋

𝑞  ). then the general Laplacing – 

energy - like invariant of 𝐺 can be given as follows 

(i) If 𝛼 =
1

𝑝
, 𝑝 ∈ ℤ+\{1}, then  

𝐿𝐸𝐿𝛼(𝐺) =
𝑝

𝜋
∫ (

𝑥𝑝𝜙𝐿
′ (𝐺, −𝑥𝑝)

𝜙𝐿(𝐺,−𝑥
𝑝)

+ 𝑛) . sin
𝜋

𝑝
𝑑𝑥

+∞

0

 

(ii) if 𝛼 = 𝑞, 𝑞 ∈ ℤ+, then  

𝐿𝐸𝐿𝐸𝛼(𝐺) =
2

𝜋
∫ (

𝑥2𝜑′(−𝑥2)

𝜑(−𝑥2)
+ 𝑛)𝑑𝑥

+∞

0

 

Where 𝜑(𝑧) = (−1)𝑛𝜑𝐿(𝐺, √𝑧)𝜑𝐿(𝐺,−√𝑧). 

(iii) if 𝛼 =
𝑞

𝑝
, 𝑝, 𝑞 ∈ ℤ+\{1}, then  

𝐿𝐸𝐿𝛼(𝐺) =
𝑝

𝜋
∫ (

𝑥𝑝𝜑𝐿
′ (𝐺,−𝑥𝑝)

𝜑𝐿(𝐺,−𝑥
𝑝)

) . sin
𝜋

𝑝
𝑑𝑥

+∞

0

 

(iv) If 𝛼 = −
1

𝑝
, 𝑝 ∈ ℤ+\{1}, then  

𝐿𝐸𝐿𝛼(𝐺) =
𝑝

𝜋
∫ (

−𝑥−2𝜑′(−𝑥−2)

𝜑′(−𝑥−2)
− 𝑐)𝑑𝑥,

+∞

0

 

Where 𝜑(𝑧) = (−1)𝑛𝜑𝐿(𝐺, √𝑧)𝜑𝐿(𝐺,−√𝑧) 

(vi) if 𝛼 = −
𝑞

𝑝
, 𝑞 ∈ ℤ+\{1}, then  

𝐿𝐸𝐿𝛼(𝐺) =
𝑝

𝜋
∫ (

−𝑥−𝑝𝜑𝐿
′ (𝐺,−𝑥−𝑝)

𝜑𝐿(𝐺, −𝑥
−𝑝)

) . sin
𝜋

𝑝
𝑑𝑥

+∞

0

 

Proof: (i) this is just the result of Theorem (6.3.2)  

Let 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛 = 0 be the roots of 𝜙𝐿(𝐺, 𝑥). Then 𝜙𝐿(𝐺, 𝑥) = (𝑥 − 𝜇1)⋯ (𝑥 −
𝜇2). Therefore, we have  

𝜑𝐿(𝐺, 𝑧) = 𝑒𝑖(𝑞−1)𝑛𝜋𝜙𝐿 (𝐺, 𝑧
1
𝑞)𝜙𝐿 (𝐺, 𝑧

1
𝑞𝑒

−𝑖
2𝜋
𝑞 )⋯𝜙𝐿 (𝐺, 𝑧

1
𝑞𝑒

−𝑖
2(𝑞−1)𝜋

𝑞 )

= 𝑒𝑖(𝑞−1)𝑛𝜋∏(𝑧
1
𝑞 − 𝜇𝑘)

𝑛

𝑘=1

(𝑧
1
𝑞𝑒

−𝑖
2𝜋
𝑞 − 𝜇𝑘)⋯(𝑧

1
𝑞𝑒

−𝑖
2(𝑞−1)𝜋

𝑞 − 𝜇𝑘)

= 𝑒𝑖(𝑞−1)𝑛𝜋∏(𝑧
1
𝑞 − 𝜇𝑘)

𝑛

𝑘=1

(𝑧
1
𝑞 − 𝜇𝑘𝑒

𝑖
2𝜋
𝑞 )⋯(𝑧

1
𝑞𝜇𝑘𝑒

𝑖
2(𝑞−1)𝜋

𝑞 )𝑒−𝑖(𝑞−1)𝜋

=∏(𝑧 − 𝜇𝑘
𝑞).

𝑛

𝑘=1

 

By Theorem (6.3.8) we obtain that  

𝐿𝐸𝐿𝛼(𝐺) = ∑𝜇𝑘
𝑞
= 𝐸1(𝜑𝐿(𝐺, 𝑧))

𝑛

𝑘=1

=
2

𝜋
∫ (

𝑥2𝜑′(−𝑥2)

𝜑(−𝑥2)
+ 𝑛)𝑑𝑥

+∞

0

 

Where 𝜑(𝑧) = (−1)𝑛𝜑𝐿(𝐺, √𝑧)𝜑𝐿(𝐺,−√𝑧) 
(iii) By Theorem (6.3.4), it is easy to obtain that 
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𝐿𝐸𝐿𝛼(𝐺) = ∑𝜇
𝑘

𝑞
𝑝

𝑛

𝑘=1

=∑(𝜇𝑘
𝑞
)
1
𝑝

𝑛

𝑘=1

= 𝐸1
𝑝
(𝜑𝐿(𝐺, 𝑧))

=
𝑝

𝜋
∫ (

𝑥𝑝𝜑𝐿
′ (𝐺,−𝑥𝑝)

𝜑𝐿(𝐺,−𝑥
𝑝)

+ 𝑛) . sin
𝜋

𝑝

+∞

0

𝑑𝑥 

(iv) Suppose that 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛−𝑐 > 𝜇𝑛−(𝑐+1) = ⋯ = 𝜇𝑛 = 0 are the roots of 

𝜙𝐿(𝐺, 𝑥). Thus we can write 𝜙𝐿(𝐺, 𝑥) as 𝜙𝐿(𝐺, 𝑥) = 𝑥
𝑐∏ (𝑥 − 𝜇𝑘)

𝑛−𝑐
𝑘=1 . Therefore, we 

obtain that  

𝜑𝐿(𝐺, 𝑧) = 𝑧
𝑝𝑛𝜙𝐿 (𝐺,

1

𝑧𝑝
) = 𝑧𝑝𝑛|. (

1

𝑧𝑝
)
𝑐

∏(
1

𝑧𝑝
− 𝜇𝑘)

𝑛−𝑐

𝑘=1

= (−1)𝑛−𝑐∏(𝑧𝑝𝜇𝑘 − 1)

𝑛−𝑐

𝑘=1

 

= (−1)𝑛−𝑐∏𝜇𝑘 (𝑧
𝑝 −

1

𝜇𝑘
)

𝑛−𝑐

𝑘=1

= (−1)𝑛−𝑐∏𝜇𝑘

𝑛−𝑐

𝑘=1

∏(𝑧 − 𝜇𝑘
−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝 )

𝑝−1

𝑘=1

= (−1)𝑛−𝑐∏[(−1)𝑝−1∏(𝑧𝜇𝑘

1
𝑝
𝑒
𝑖
2𝑡𝜋
𝑝 − 1)

𝑝−1

𝑡=0

]

𝑛−𝑐

𝑘=1

 

Then  

𝜑𝐿
′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
= ∑∑

𝑧

𝑧 − 𝜇𝑘
−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

=∑∑(1+
𝜇
𝑘

1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘
−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

)

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

= 𝑝(𝑛 − 𝑐) +∑∑
𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘
−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

 

Suppose that Γ = Γ𝑅 ∪ 𝐿1 ∪ 𝑆𝑟 ∪ 𝐿2 see Figure (1) is a positively (i.e., counter clockwisely) 

oriented piecewise smooth Jordan curve, where 𝑅 > max {𝜇1, 𝜇𝑛−𝑐
−1 , 𝜇𝑛−𝑐

−
1

𝑝 }, 0 < 𝑟 <

min {𝜇𝑛−𝑐 , 𝜇1
−1, 𝜇1

−
1

𝑝} , Γ𝑅 is the curve {𝑧(𝜃) = 𝑅𝑒𝑖𝜃 ,   −
𝜋

𝑝
≤ 𝜃 ≤

𝜋

𝑝
} , 𝐿1 is the line 

{𝑧(𝜃) = 𝑝𝑒𝑖𝜃 , 𝑟 ≤ 𝜌 ≤ 𝑅, 𝜃 =
𝜋

𝑝
}. Then the point 𝜇1

−
1

𝑝, 𝜇2
−
1

𝑝, ⋯ , 𝜇𝑛−𝑐
−
1

𝑝
 are 𝑡 = 1,2,… , 𝑝 − 1, 

are all in the exterior of the curve Γ. By Cauchy’s Theorem and Integral Formula, we get 
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Figure (1): The curve 𝛤 in Corollary (6.3.13) (iv). 

1

2𝜋𝑖
∫ [

𝑧𝜑𝐿
′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)]

 

Γ

𝑑𝑧 =
1

2𝜋𝑖
∫ ∑∑

𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘
−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑑𝑧

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

 

Γ

=
1

2𝜋𝑖
∫ ∑

𝜇
𝑘

−
1
𝑝

𝑧 − 𝜇𝑘
−
1
𝑝

𝑑𝑧

𝑛−𝑐

𝑘=1

 

Γ

=∑
1

2𝜋𝑖
∫
𝜇
𝑘

−
1
𝑝

𝑧𝑘
−
1
𝑝

 

Γ

𝑛−𝑐

𝑘=1

𝑑𝑧 = ∑𝜇
𝑘

−
1
𝑝

𝑛−𝑐

𝑘=1

= 𝐿𝐸𝐿
−
1
𝑝

(𝐺) 

Since the value of the integral  

1

2𝜋𝑖
∫ [

𝑧𝜑𝐿
′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)]

 

Γ

𝑑𝑧 

Is independent of the actual values of 𝑅 and 𝑟, it can be gotten that 

𝐿𝐸𝐿𝛼(𝐺) =
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)]

 

Γ

𝑑𝑧 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)

 

Γ𝑅

] 𝑑𝑧 + ∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧

 

Γ1

 

+∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧

 

𝑆𝑟
−

+∫ [[
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧]

 

𝐿2

 

When 𝑆𝑟
− is the same curve as 𝑆𝑟 but has clockwise orientation  

Suppose that 𝑧 = 𝜌(cos 𝜃 + 𝑖 𝑠𝑖𝑛𝜃), where 𝜌 > 0. Then  

|1 −
𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑧
| = |

𝑧 − 𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

|𝑧|
| =

|𝜌(cos 𝜃 + 𝑖 sin 𝜃 ) − 𝜇
𝑘

−
1
𝑝 (cos

2𝑡𝜋
𝑝
− 𝑖 sin

2𝑡𝜋
𝑝
)|

𝜌

≥

√𝜌2 + 𝜇
𝑘

2
𝑝 − 2𝜌𝜇

𝑘

−
1
𝑝

𝜌
=

|𝜌 − 𝜇
𝑘

−
1
𝑝
|

𝜌
 

Thus we have  
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|𝑧 [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)]| ≤ ∑∑|

𝑧𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘
−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

|

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

=∑∑

|𝜇𝑘
−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝 |

|1 −
𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝜋𝑡
𝑝

𝑧
|

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

≤∑∑
𝜌𝜇

𝑘

−
1
𝑝

|𝜌 − 𝜇𝑘
−
1
𝑝
|

.

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

 

Obviously, 

∑∑
𝜌𝜇

𝑘

1
𝑝

|𝜌 − 𝜇𝑘

1
𝑝
|

→ 0,   𝑓𝑜𝑟 𝜌 → 0

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

 

Then by Lemma (6.3.7) we get that  

∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧

 

𝑆𝑟
−

→ 0,    𝑓𝑜𝑟 𝑟 → 0. 

Suppose that 𝜔𝑘𝑡 = 𝜇𝑘
−
1

𝑝𝑒
−𝑖
2𝑡𝜋

𝑝 . Then |𝜔𝑘1| = |𝜔𝑘1| = ⋯ = |𝜔𝑘(𝑝−1)| = 𝜇𝑘
−
1

𝑝
. We have  

|𝑧∑
𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

|

=

|𝑧 ∑ 𝜇
𝑘

−
1
𝑝𝑒

−𝑖
2𝑡𝜋
𝑝 (𝑧𝑝−1 + 𝑧𝑝−2𝜇

𝑘

−
1
𝑝𝑒

−𝑖
2𝑡𝜋
𝑝 +⋯𝑧 (𝜇

𝑘

−
1
𝑝𝑒

−𝑖
2𝑡𝜋
𝑝 )

𝑝−2

+ (𝜇
𝑘

−
1
𝑝𝑒

−𝑖
2𝑡𝜋
𝑝 )

𝑝−1

)𝑝−1
𝑡=0 |

𝑧𝑝 − 𝜇𝑘
−1  

= |𝑧∑
𝜔𝑘𝑡(𝑧

𝑝−1 + 𝑧𝑝−2𝜔𝑘𝑡 +⋯+ 𝜔𝑘𝑡
𝑝−2

+ 𝜔𝑘𝑡
𝑝−1)

𝑧𝑝 − 𝜇𝑘
−1

𝑝−1

𝑡=0

| = |∑
𝜔𝑘𝑡 + 𝜔𝑘𝑡

2 +⋯+
𝜔𝑘𝑡
𝑝−1

𝑧𝑝−2
+
𝜔𝑘𝑡
𝑝

𝑧𝑝−1

1 − 𝜇𝑧𝑝
−1

𝑝−1

𝑡=0

| 

It is easy to get that there exists 𝑁𝑘 > 0, for 𝑘 ∈ {1,2,⋯ , 𝑛 − 𝑐}, such that |1 −
𝜇𝑘
−1

𝑧𝑝
| ≥

1

2
 for 

|𝑧| > 𝑁𝑘. For any 𝜀 > 0, there exists 𝑀𝑘 > 0, for 𝑘 ∈ {1,2,⋯ , 𝑛 − 𝑐}, such that  

|∑(
𝜔𝑘𝑡
2

𝑧
+⋯+

𝜔𝑘𝑡
𝑝−1

𝑧𝑝−2
+
𝜔𝑘𝑡
𝑝

𝑧𝑝−1
)

𝑝−1

𝑡=0

| <
𝜀

2𝑛
 

For |𝑧| > 𝑀𝑘. Note that ∑ 𝜔𝑘𝑡
𝑟𝑝−1

𝑡=0 = 0 unless 𝑟 = 𝑝. Therefore, for any 𝜀 > 0, there exists 

𝑁 = max{𝑁1, 𝑁2, ⋯𝑁𝑛−𝑐 , 𝑀1, 𝑀2, ⋯ ,𝑀𝑛−𝑐} such that  
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|𝑧 [
𝜑𝐿
′𝐺, 𝑧

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)]| = |∑∑

𝜇
𝑘

−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑧 − 𝜇𝑘
−
1
𝑝
𝑒
−𝑖
2𝑡𝜋
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

|

= ||∑∑
𝜔𝑘𝑡 +

𝜔𝑘𝑡
2

𝑧
+⋯+

𝜔𝑘𝑡
𝑝−1

𝑧𝑝−2
+
𝜔𝑘𝑡
𝑝

𝑧𝑝−1

1 − 𝜇𝑘
−
1
𝑝

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

||

≤ 2 |∑∑𝜔𝑘𝑡

𝑝−1

𝑡=0

𝑛−𝑐

𝑘=1

| + 2∑(|∑(
𝜔𝑘𝑡
2

𝑧
+⋯+

𝜔𝑘𝑡
𝑝−1

𝑧𝑝−2
+
𝜔𝑘𝑡
𝑝

𝑧𝑝−1
)

𝑝−1

𝑡=0

|)

𝑛−𝑐

𝑘=1

< 0 + 2∑
𝜀

2𝑛
< 𝜀,

𝑛−𝑐

𝑘=1

 

For |𝑧| > 𝑁. By stander estimate, we obtain that, for any 𝜀 > 0, there exists 𝑁 =
max{𝑁1, 𝑁2, 𝑁𝑛−𝑐 , 𝑀1, 𝑀2, ⋯𝑀𝑛−𝑐} such the integral  

∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧 ≤

2𝜋𝑅

𝑝
max
𝑧∈Γ𝑅

|
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)|

 

Γ𝑅

=
2𝜋

𝑝
max
𝑧∈Γ𝑅

|𝑧 [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)]| <

2𝜋

𝑝
𝜀, 

For |𝑧| > 𝑁. This implies  

∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)]

 

Γ𝑅

𝑑𝑧 → 0, 𝑓𝑜𝑟 |𝑧| → +∞. 

Therefore, we obtain that  

𝐿𝐸𝐿𝛼(𝐺) =
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧 + ∫ [

𝑧𝜑𝐿
′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧

 

𝐿1

+∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧

 

𝐿2

+∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)]

 

𝐿2

𝑑𝑧

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧

 

𝐿1

+∫ [
𝑧𝜑𝐿

′ (𝐺, 𝑧)

𝜑𝐿(𝐺, 𝑧)
− 𝑝(𝑛 − 𝑐)] 𝑑𝑧

 

𝐿2

] 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[𝑝𝑐 −
𝜙𝐿
′ (𝐺, 𝑧)

𝜙𝐿(𝑧
−𝑝)

𝑝𝑧−𝑝] 𝑑𝑧 + ∫ [𝑝𝑐 −
𝜙𝐿
′ (𝐺, 𝑧−𝑝)

𝜙𝐿(, 𝑧
−𝑝)

𝑝𝑧−𝑝]
 

𝐿2

𝑑𝑧

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫ [𝑝𝑐 −
𝜙𝐿
′ (𝐺, 𝑧−𝑝)

𝜙𝐿(𝐺, 𝑧
−𝑝)

𝑝𝑧−𝑝] 𝑑𝑧
 

𝐿1

+∫ [𝑝𝑐 −
𝜙𝐿
′ (𝐺, 𝑧−𝑝)

𝜙𝐿(𝐺, 𝑧
−𝑝)

𝑝𝑧−𝑝]
 

𝐿2

𝑑𝑧] 
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=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[
 
 
 
 

𝑝𝑐 −

𝜙𝐿
′ (𝐺, (𝜌𝑒

−𝑖
𝜋
𝑝)

𝑝

)

𝜙𝐿 (𝐺, (𝜌𝑒
−𝑖
𝜋
𝑝)

−𝑝

)

𝑝 (𝜌𝑒
−𝑖
𝜋
𝑝)

]
 
 
 
 

𝑑 (𝜌𝑒
−𝑖
𝜋
𝑝) 

+∫

[
 
 
 
 

𝑝𝑐 −

𝜙𝐿
′ (𝐺, (𝜌𝑒

−𝑖
𝜋
𝑝)

𝑝

)

𝜙𝐿 (𝐺, (𝜌𝑒
−𝑖
𝜋
𝑝)

−𝑝

)

𝑝 (𝜌𝑒
−𝑖
𝜋
𝑝)

−𝑝

]
 
 
 
 

𝑑 (𝜌𝑒
−𝑖
𝜋
𝑝)

𝑅

𝑟

 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[𝑝𝑐 −
𝜙𝐿
′ (𝐺,−𝜌−𝑝)

𝜙𝐿(𝐺,−𝜌
−𝑝)

(−𝑝)𝜌−𝑝] 𝑒
𝑖
𝜋
𝑝 𝑑𝜌 

+∫

[
 
 
 
 

𝑝𝑐 −

𝜙𝐿
′ (𝐺, (𝜌𝑒

−𝑖
𝜋
𝑝)

−𝑝

)

𝜙𝐿 (𝐺, (𝜌𝑒
−𝑖
𝜋
𝑝)

−𝑝

)

𝑝 (𝜌𝑒
−𝑖
𝜋
𝑝)

−𝑝

]
 
 
 
 

𝑑 (𝜌𝑒
−𝑖
𝜋
𝑝)

𝑅

𝑟

 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫ 𝑝𝑐 −
𝜙𝐿
′ (𝐺, −𝜌−𝑝)

𝜙𝐿(𝐺, −𝜌
−𝑝)

(−𝑝)𝜌−𝑝
𝑟

𝑅

] 𝑒
𝑖
𝜋
𝑝𝑑𝜌

+ ∫ [𝑝𝑐 −
𝜙𝐿
′ (𝐺, −𝜌−𝑝)

𝜙𝐿(𝐺, −𝜌
−𝑝)

(−𝑝)𝜌−𝑝]
𝑅

𝑟

𝑒
−𝑖
𝜋
𝑝𝑑𝜌

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[𝑝𝑐 +
𝜙𝐿
′ (𝐺,−𝜌−𝑝)

𝜙𝐿(𝐺,−𝜌
−𝑝)

𝑝𝜌−𝑝] (cos
𝜋

𝑝
+ 𝑖 sin

𝜋

𝑝
)𝑑𝜌

= −
𝑝

𝜋
lim
𝑅→+∞
𝑟→0+

(𝑐 +
𝜙𝐿
′ (𝐺,−𝜌−𝑝)

𝜙𝐿(𝐺,−𝜌
−𝑝)

) . sin
𝜋

𝑝
𝑑𝜌

=
𝑝

𝜋
∫ (

−𝑥−𝑝𝜙𝐿
′ (𝐺, −𝜌𝑝)

𝜙𝐿(𝐺,−𝑥
−𝑝)

− 𝑐) .
+∞

0

sin
𝜋

𝑝
 𝑑𝑥 

Note that the formula above also holds for the general energy 𝐸𝛼(𝜙(𝑧)) of 𝜙(𝑧) whose roots 

are all nonnegative (here c is the multiplicity of 0 as root of 𝜑(𝑧)). 
(v) Clearly, we have that 

𝐿𝐸𝐿−𝑞(𝐺) = 𝐸−1
2
(𝜑(𝑧)) =

2

𝜋
∫ (

−𝑥−2𝜑′(−𝑥−2)

𝜑(−𝑥−2)
)𝑑𝑥

+∞

0

 

Where 𝜑(𝑧) = (−1)𝑛𝜑𝐿(𝐺, √𝑧)(𝐺, −√𝑧) 
(vi) it can be easy to get that  

𝐿𝐸𝐿
−
𝑞
𝑝
(𝐺) = ∑𝜇

𝑘

−
𝑞
𝑝

𝑛

𝑘=1

=∑(𝜇𝑘
𝑞
)
−
1
𝑝

𝑛

𝑘=1

= 𝐸𝐿𝐸
−
1
𝑝
(𝜑

−
1
𝑝

(𝐺, 𝑥))

=
𝑝

𝜋
∫ (

−𝑥−𝑝𝜑𝐿
′ (𝐺, −𝑥−𝑝)

𝜑𝐿(𝐺,−𝑥
−𝑝)

− 𝑐) . sin
𝜋

𝑝
 𝑑𝑥

+∞

0

 

The proof is complete  
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Suppose that 𝜙(𝑧) is a monic polynomial whose roots are all non-negative real numbers 

Similar to the proof of the above theorem, we can get the integral formulas for the general 

energy of 𝜙(𝑥) as follows. 

Theorem (6.3.10)[269]: Let 𝜙(𝑧) be a monic complex polynomial, 𝑐 ∈  {0, 1, . . . , 𝑛 −  1} 
the multiplicity of 0 as root of 𝜙(𝑧) and 𝛼 ∈ ℚ. Suppose that 𝜑(𝑧) =

𝑒𝑖(𝑞−1)𝑛𝜋𝜙 (𝑧
1

𝑞𝑒
−𝑖
2𝜋

𝑞 )⋯𝜙 (𝑧
1

𝑞𝑒
−𝑖

2(𝑞−1)𝜋

𝑞 ). Then the general energy of 𝜙(𝑧) can be given as 

follows 

(i) if 𝛼 =
1

𝑝
, 𝑝 ∈ ℤ+\{1} , then  

𝐸𝛼(𝜙(𝑧)) =
𝑝

𝜋
∫ (

𝑥𝑝𝜙′(−𝑥𝑝)

𝜙(−𝑥𝑝)
) . sin

𝜋

𝑝
𝑑𝑥

+∞

0

 

(ii) if 𝛼 = 𝑞, 𝑞 ∈ ℤ+, then  

𝐸𝛼(𝜙(𝑧)) =
2

𝜋
∫ (

𝑥2𝑃′(−𝑥2)

𝑃(−𝑥2)
+ 𝑛)𝑑𝑥.

+∞

0

 

Where 𝑃(𝑧) = (−1)𝑛𝜑(√𝑧𝜑)𝜑(−√𝑧). 

(iii) if 𝛼 =
𝑞

𝑝
, , 𝑝, 𝑞 ∈ ℤ+\{1}, then  

𝐸𝛼(𝜙(𝑧)) =
𝑝

𝜋
∫ (

𝑥𝑝𝜑′(−𝑥𝑝)

𝜑(−𝑥𝑝)
+ 𝑛) . sin

𝜋

𝑝
𝑑𝑥

+∞

0

 

(iv) if 𝛼 = −
1

𝑝
, 𝑝 ∈ ℤ+\{1}, then  

𝐸𝛼(𝜙(𝑧)) =
𝑝

𝜋
∫ (

−𝑥−𝑝𝜙′(−𝑥−𝑝)

𝜙(−𝑥−𝑝)
− 𝑐) . sin

𝜋

𝑝
𝑑𝑥

+∞

0

 

(v) if 𝛼 = −𝑞, 𝑞 ∈ ℤ+, then  

𝐸𝛼(𝜙(𝑧)) =
2

𝜋
∫ (

−𝑥−2𝑃′(−𝑥−2)

𝑃(−𝑥−2)
− 𝑐)𝑑𝑥,

+∞

0

 

Where 𝑃(𝑧) = (−1)𝑛𝜑𝐿(𝐺, √𝑧)𝜑𝐿(𝐺, √𝑧).  

(vi) if 𝛼 = −
𝑞

𝑝
, 𝑞 ∈ ℤ+\{1}, then  

𝐸𝛼(𝜙(𝑧)) =
𝑝

𝜋
∫ (

−𝑥−𝑝𝜑′(−𝑥−𝑝)

𝜑(−𝑥−𝑝)
− 𝑐) . sin

𝜋

𝑝
𝑑𝑥

+∞

0

 

We define a new polynomial 𝜑𝐴(𝐺, 𝑧) = (−1)
𝑛𝜙𝐴(𝐺, √𝑧)𝜙𝐴(𝐺,−√𝑧). Then the roots of 

𝜑𝐴(𝐺, 𝑧) are 𝜆1
2, 𝜆2

2, ⋯ , 𝜆𝑛
2 . Note that  

𝐸𝛼(𝐺) =∑|𝜆𝑘|
𝛼

 

𝜆≠0

= ∑ |𝜆𝑘
2|
𝛼
2

 

𝜆𝑘≠0

= 𝐸𝛼
2
(𝜑𝐴(𝐺, 𝑧)) 

Thus, by Theorems (6.3.4) and (6.3.8) we have the following results. 

Theorem (6.3.11)[269]: Let G be a graph of order 𝑛, 𝜙𝐴(𝐺, 𝑥) the characteristic polynomial 

of the adjacency matrix A(G) of G, and 𝑐 ∈ {0,1,⋯𝑛 − 1} is multiplicity of 0 as root of 

𝜙𝐴(𝐺, 𝑧). Suppose that 𝜑𝐴(𝐺, 𝑧) = (−1)
𝑛𝜙𝐴(𝐺, √𝑧)𝜙𝐴(𝐺, −√𝑧). Then the general energy 

of 𝐺 can be given as follows   

(i) if 𝛼 =
1

𝑝
, 𝑝 ∈ ℤ+, then  
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𝐸𝛼(𝐺) =
2𝑝

𝜋
∫ (

𝑥2𝑝𝜑𝐴
′ (𝐺, −𝑥2𝑝)

𝜑𝐴(𝐺,−𝑥
2𝑝)

+ 𝑛) . sin
𝜋

2𝑝
𝑑𝑥

+∞

0

 

(ii) if 𝛼 =
𝑝

𝑞
, 𝑝, 𝑞 ∈ ℤ+, then  

𝐸𝛼(𝐺) =
2𝑝

𝜋
∫ (

𝑥2𝑝𝜑𝐴
′ (𝐺,−𝑥2𝑝)

𝜑𝐴(𝐺, −𝑥
2𝑝)

+ 𝑛) . sin
𝜋

2𝑝
𝑑𝑥

+∞

0

 

Where 𝜑𝐴(𝑧) = 𝑒
𝑖(𝑞−1)𝑛𝜋𝜑𝐴 (𝐺, 𝑧

1

𝑞𝑒
−𝑖

2𝜋

𝑞 )⋯𝜑𝐴 (𝐺, 𝑧
1

𝑞𝑒
−𝑖
2(𝑞−1)𝑥

𝑞 ). 

(iii) If 𝛼 = −
1

𝑝
, 𝑝 ∈ ℤ+, then  

𝐸𝛼(𝐺) =
2𝑝

𝜋
∫ (

−𝑥2𝑝𝜑𝐴
′ (𝐺, −𝑥−2𝑝)

𝜑𝐴(𝐺, −𝑥
−2𝑝)

− 𝑐) . sin
𝜋

2𝑝
𝑑𝑥

+∞

0

 

(iv) If 𝛼 = −
𝑞

𝑝
, 𝑝, 𝑞 ∈ ℤ+, then  

𝐸𝛼(𝐺) =
2𝑝

𝜋
∫ (

−𝑥2𝑝𝜑𝐴
′ (𝐺, −𝑥−2𝑝)

𝜑𝐴(𝐺, −𝑥
−2𝑝)

− 𝑐) . sin
𝜋

2𝑝
𝑑𝑥

+∞

0

 

Where 𝜑𝐴(𝑧) = 𝑒
𝑖(𝑞−1)𝑛𝜋𝜑𝐴 (𝐺, 𝑧

1

𝑝)𝜑𝐴 (𝐺, 𝑧
1

𝑞𝑒
−𝑖

2𝜋

𝑞 )⋯𝜑𝐴 (𝐺, 𝑧
1

𝑞𝑒
−𝑖
2(𝑞−1)𝜋

𝑞 ) 

Let G be a graph of order n and size m. Suppose that 𝜑𝐿(𝐺, 𝑧) = (−1)
𝑛𝜙𝐿 (𝐺, √𝑧 +

2𝑚

𝑛
)𝜙𝐿 (𝐺,−√𝑧 +

2𝑚

𝑛
). Then the roots of 𝜑𝐿(𝐺, 𝑧) are (𝜇1 −

2𝑚

𝑛
)
2
, (𝜇2 −

2𝑚

𝑛
)
2
, ⋯ , (𝜇𝑛 −

2𝑚

𝑛
)
2
. Thus  get that  

𝐿𝐸𝛼(𝐺) = ∑ |𝜇𝑘 −
2𝑚

𝑛
|
𝛼

= ∑ [(𝜇𝑘 −
2𝑚

𝑛
)
2

]

𝛼
2

 

𝜇𝑘≠
2𝑚
𝑛

 

𝜇𝑘≠
2𝑚
𝑛

= 𝐸𝛼
2
(𝜑𝐿(𝐺, 𝑧)) 

By Theorem (6.3.4) and (6.3.8), we can get the following results. 

Theorem (6.3.12)[269]: Let 𝐺 be a graph of order n and size m, 𝜙𝐿(𝐺, 𝑥) the characteristic 

polynomial of the Laplacian matrix 𝐿(𝐺) of 𝐺, and 𝑐 ∈ {0,1,…𝑛 − 1} the multiplicity of 
2𝑚

𝑛
 

as roots of 𝜙𝐿(𝐺, 𝑧) = (−1)
𝑛𝜙𝐿 (𝐺, √𝑧 +

2𝑚

𝑛
)𝜙𝐿 (𝐺,−√𝑧 +

2𝑚

𝑛
). 

Then the general Laplacing energy of 𝐺 can be given as follows   

(i) if 𝛼 =
1

𝑝
, 𝑝 ∈ ℤ+, the  

𝐿𝐸𝛼(𝐺) =
2𝑝

𝜋
∫ (

𝑥2𝑝𝜑𝐿
′ (𝐺,−𝑥2𝑝)

𝜑𝐿(𝐺, −𝑥
2𝑝)

+ 𝑛) . sin
𝜋

2𝑝
𝑑𝑥

+∞

0

 

(ii) If 𝛼 =
𝑞

𝑝
, 𝑝, 𝑞 ∈ ℤ+, then  

𝐿𝐸𝛼(𝐺) =
2𝑝

𝜋
∫ (

𝑥2𝑝𝜑𝐿
′ (𝐺,−𝑥2𝑝)

𝜑𝐿(𝐺, −𝑥
2𝑝)

+ 𝑛) . sin
𝜋

2𝑝
𝑑𝑥

+∞

0

 

Where 𝜑𝐿(𝑧) = 𝑒
𝑖(𝑞−1)𝑛𝜋𝜑𝐿 (𝐺, 𝑧

1

𝑞)𝜑𝐿 (𝐺, 𝑧
1

𝑞𝑒
−𝑖
2𝜋

𝑞 )⋯𝜑𝐿 (𝐺𝑧
1

𝑞𝑒
−𝑖

2(𝑞−1)𝜋

𝑞 ) 

(iii) If 𝛼 = −
1

𝑝
, 𝑝 ∈ 𝑝 ∈ ℤ+, then  
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𝐿𝐸𝛼(𝐺) =
2𝑝

𝜋
∫ (

−𝑥−2𝑝𝜑𝐿
′ (𝐺, −𝑥−2𝑝)

𝜑𝐿(𝐺,−𝑥
−2𝑝)

+ 𝑛) . sin
𝜋

2𝑝
𝑑𝑥

+∞

0

 

(iv) If 𝛼 = −
𝑞

𝑝
, 𝑝, 𝑞 ∈ ℤ+, then  

𝐿𝐸𝛼(𝐺) =
2𝑝

𝜋
∫ (

−𝑥−2𝑝𝜑𝐿
′ (𝐺, −𝑥−2𝑝)

𝜑𝐿(𝐺,−𝑥
−2𝑝)

− 𝑐) . sin
𝜋

2𝑝
𝑑𝑥

+∞

0

 

Where 𝜑𝐿(𝑧) = 𝑒
𝑖9(𝑞−1)𝑛𝜋𝜑𝐿 (𝐺, 𝑧

1

𝑞𝑒
−𝑖

2𝜋

𝑞 )⋯𝜑𝐿 (𝐺, 𝑧
1

𝑞𝑒
−𝑖

2(𝑞−1)𝜋

𝑞 ) 

It is natural to ask that whether the formulas obtained above hold for the case that 𝛼 

is an irrational number. Now we consider this problem. 

Let 0 < 𝛼 = 1/𝑝 < 1 be an irrational number. Then 1 < 𝑝 ∈ ℝ\ℚ. For a graph 𝐺, 

𝐿𝐸𝐿𝛼(𝐺) = ∑ 𝜇𝑘
1/𝑝 

𝜇𝑘≠0
. The integral in Theorem (6.3.9) (i) is  

𝑝

𝜋
∫ (

𝑥𝑝𝜙𝐿
′ (𝐺,−𝑥𝑝)

𝜙𝐿(𝐺,−𝑥
𝑝)

+ 𝑛) . sin
𝜋

𝑝
𝑑𝑥

+∞

0

 

=
𝑝

𝜋
sin

𝜋

𝑝
∫ (

𝑥𝑝

−𝑥𝑝 − 𝜇𝑘
+ 𝑛)𝑑𝑥

+∞

0

 

=
𝑝

𝜋
sin

𝜋

𝑝
∫ ∑

𝜇𝑘
𝑥𝑝 + 𝜇𝑘

𝑛

𝑘=1

𝑑𝑥
+∞

0

 

= ∑
𝜇𝑘𝑝

𝜋

 

𝜇𝑘≠0

sin
𝜋

𝑝
∫

1

𝑥𝑝 + 𝜇𝑘

+∞

0

𝑑𝑥 

By using the software mathematica, we have  

∫
1

𝑥𝛼 + 𝑏
𝑑𝑥 =

𝑥

𝑏
𝐹12
 (1,

1

𝑎
; 1 +

1

𝑎
;
𝑥𝑎

𝑏
), 

Where 𝐹12
 (𝑎0, 𝑎1; 𝑏0; 𝑥) = ∑

(𝑎0)𝑘(𝑎1)𝑘𝑥
𝑘

(𝑏0)𝑘

∞
𝑘=0  

𝑥𝑘

𝑘!
 is a hypergeometric function with 𝑎 >

1, 𝑏 > 0 and (𝑧)𝑘 = 𝑧(𝑧 + 1)(𝑧 + 2)⋯ (𝑧 + 𝑘 − 1) (see |1|)Again, using the software 

Mathematica, we get  

lim
𝑥→+∞

𝑥 𝐹12
 (1,

1

𝑎
; 1 +

1

𝑎
;
𝑥𝑎

𝑏
) = 𝑏

1
𝑎Γ (1 +

1

𝑎
) Γ (1 −

1

𝑎
) 

and  

lim
𝑥→0

𝑥 𝐹12
 (1,

1

𝑎
; 1 +

1

𝑎
;
𝑥𝑎

𝑏
) = 0 

Where Γ(𝑥) is the Gamma function, since  

Γ(1 − 𝑥)Γ(𝑥) =
𝜋

sin 𝜋𝑥
 

For 0 < 𝑥 < 1 and  

Γ(1 + 𝑥) = 𝑥𝑧𝐺 (𝑥) 
We have  

𝑝𝜇𝑘
𝜋
𝑠𝑖𝑖𝑛

𝜋

𝑝
∫

1

𝑥𝑝 + 𝜇𝑘
𝑑𝑥

+∞

0

=
𝑝𝜇𝑘
𝜋
sin

𝜋

𝑝
.
𝑥

𝜇𝑘 
𝐹12
 (,

1

𝑝
; 1 +

1

𝑝
;
𝑥𝑎

𝜇𝑘
)|
0

+∞

=
𝑝

𝜋
sin

𝜋

𝑝
. 𝜇
𝑘

1
𝑝
Γ (
1

𝑝
) Γ (1 −

1

𝑝
) 
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𝜇
𝑘

1
𝑝 𝑝

𝜋
sin

𝜋

𝑝
.
1

𝑝
Γ (
1

𝑝
) Γ (1 −

1

𝑝
) = 𝜇𝑘

1
𝑝 1

𝜋
sin

𝜋

𝑝
.
𝜋

sin
𝜋
𝑝

= 𝜇
𝑘

1
𝑝
 

Therefore, 

𝑝

𝜋
∫ (

𝑥𝑝𝜙𝐿
′ (𝐺,−𝑥𝑝)

𝜙𝐿(𝐺, −𝑥
𝑝)

) . sin
𝜋

𝑝
𝑑𝑥

+∞

0

= ∑
𝜇𝑘𝑝

𝜋
sin

𝜋

𝑝

 

𝜇𝑘≠0

∫
1

𝑥𝑝 + 𝜇𝑘
𝑑𝑥

+∞

0

= ∑ 𝜇
𝑘

1
𝑝

 

𝜇𝑘≠0

= 𝐿𝐸𝐿𝛼(𝐺) 
Let −1 < 𝛼 = −1/𝑝 < 0 be an irrational number. Then 1 < 𝑝 ∈ ℝ\ℚ a graph 

With 𝑐 components, 𝐿𝐸𝐿𝛼(𝐺) = ∑ 𝜇𝑘
−1/𝑝

. 
𝜇𝑘≠0

 The integral in Theorem (6.3.9) (iv) is  

𝑝

𝜋
∫ (

−𝑥−𝑝𝜙𝐿
′ (𝐺,−𝑥−𝑝)

𝜙𝐿(𝐺, −𝑥
−𝑝)

− 𝑐) . sin
𝜋

𝑝

+∞

0

𝑑𝑥 =
𝑝

𝜋
sin

𝜋

𝑝
∫ (

−𝑥−𝑝

−𝑥−𝑝 − 𝜇𝑘
− 𝑐)𝑑𝑥

+∞

0

=
p

𝜋
sin

𝜋

𝑝
∫ ∑

1

1 + 𝜇𝑘
−1

𝑛−𝑐

𝑘=1

𝑑𝑥
+∞

0

=
𝑝

𝜋
sin

𝜋

𝑝
∑∫

𝜇𝑘
−1

𝑥𝑝 + 𝜇𝑘
−1

+∞

0

𝑑𝑥

𝑛−𝑐

𝑘=1

=∑𝑝𝜇𝑘
−1

𝑛−𝑐

𝑘=1

= 𝐿𝐸𝐿𝛼(𝐺). 
Different from the case that α is an irrational number with 0 <  |𝛼|  <  1, the integral 

formulas in Theorem (6.3.9) for the case |𝛼|  >  1 do not hold when α is irrational. Note that 

𝑝

𝜋
∫ (

𝑥𝑝𝜙𝐿
′ (𝐺,−𝑥𝑝)

𝜙𝐿(𝐺,−𝑥
𝑝)

+ 𝑛) . sin
𝜋

𝑝
𝑑𝑥

+∞

0

=∑
𝜇𝑘𝑝

𝜋
sin

𝜋

𝑝
∫

1

𝑥𝑝 + 𝜇𝑘
𝑑𝑥

+∞

0

 

𝜇𝑘

. 

Then it follows from that the important integral 

∫
1

𝑥𝑝 + 𝑎
𝑑𝑥

+∞

0

, (0 < 𝑝 < 1, 𝑎 > 0) 

Diverges that the integral  

𝑝

𝜋
∫ (

𝑥𝑝𝜙𝐿
′ (𝐺,−𝑥𝑝)

𝜙𝐿(𝐺,−𝑥
𝑝)

+ 𝑛) . sin
𝜋

𝑝
𝑑𝑥

+∞

0

 

Diverges. 

It can also be shown that the formulas in Theorem (6.3.10) (i) and (iv), Theorem (6.3.11) (i) 

and (iv) and Theorem (6.3.12) (i) and (iv) hold when 𝛼 is an irrational number with 0 <
|𝛼| < 1 and do not hold with |𝛼|  >  1.  
Corollary (6.3.13)[274]: Let 𝐺 be a graph of order 𝑛 + 𝑟 − 1 with 𝑐 (<  𝑛 + 𝑟 − 1) 
components, 𝜙𝐿(𝐺, 𝑥) the characteristic polynomial of the Laplacian matrix 𝐿(𝐺) of 𝐺, and 

𝛼2 ∈ ℚ. Suppose that 

𝜑𝐿(𝐺, 𝑧𝑟−2) = 𝑒
𝑖(𝑞2−1)(𝑛+𝑟−1)𝜋𝜙𝐿 (𝐺, 𝑧𝑟−2

1
𝑞2
𝑒
−𝑖
2𝜋
𝑞2)⋯𝜙𝐿 (𝐺, 𝑧𝑟−2

1
𝑞2
𝑒
−𝑖
2(𝑞2−1)𝜋

𝑞2  ). 

Then the general Laplacing - energy - like invariant of 𝐺 can be given as follows 

(i) If 𝛼 =
1

𝑝
, 𝑝2 ∈ ℤ+\{1}, then  

𝐿𝐸𝐿𝛼2(𝐺) =
𝑝2

𝜋
∫ (

𝑥𝑝
2
𝜙𝐿
′ (𝐺,−𝑥𝑝

2
)

𝜙𝐿(𝐺,−𝑥
𝑝2)

+ 𝑛 + 𝑟 − 1) . sin
𝜋

𝑝2
𝑑𝑥

+∞

0

 

(ii) if 𝛼 = 𝑞, 𝑞2 ∈ ℤ+, then  
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𝐿𝐸𝐿𝐸𝛼2(𝐺) =
2

𝜋
∫ (

𝑥2𝜑′(−𝑥2)

𝜑(−𝑥2)
+ 𝑛 + 𝑟 − 1)𝑑𝑥

+∞

0

 

Where 𝜑(𝑧𝑟−2) = (−1)
𝑛+𝑟−1𝜑𝐿(𝐺, √𝑧𝑟−2)𝜑𝐿(𝐺, −√𝑧𝑟−2). 

(iii) if 𝛼 =
𝑞

𝑝
, 𝑝2, 𝑞2 ∈ ℤ+\{1}, then  

𝐿𝐸𝐿𝛼2(𝐺) =
𝑝2

𝜋
∫ (

𝑥𝑝
2
𝜑𝐿
′ (𝐺,−𝑥𝑝

2
)

𝜑𝐿(𝐺,−𝑥
𝑝2)

) . sin
𝜋

𝑝2
𝑑𝑥

+∞

0

 

(iv) If 𝛼2 = −
1

𝑝2
, 𝑝2 ∈ ℤ+\{1}, then  

𝐿𝐸𝐿𝛼2(𝐺) =
𝑝2

𝜋
∫ (

−𝑥−2𝜑′(−𝑥−2)

𝜑′(−𝑥−2)
− 𝑐)𝑑𝑥,

+∞

0

 

Where 𝜑(𝑧𝑟−2) = (−1)
𝑛+𝑟−1𝜑𝐿(𝐺, √𝑧𝑟−2)𝜑𝐿(𝐺, −√𝑧𝑟−2) 

(vi) if 𝛼2 = −
𝑞2

𝑝2
, 𝑞2 ∈ ℤ+\{1}, then  

𝐿𝐸𝐿𝛼2(𝐺) =
𝑝2

𝜋
∫ (

−𝑥−𝑝
2
𝜑𝐿
′ (𝐺, −𝑥−𝑝

2
)

𝜑𝐿(𝐺, −𝑥
−𝑝2)

) . sin
𝜋

𝑝2
𝑑𝑥

+∞

0

 

Proof. (i) This is just the result of  Theorem (6.3.2). Let 𝜇𝑟 ≥ 𝜇𝑟+1 ≥ ⋯ ≥ 𝜇𝑛+𝑟−1 = 0 be 

the roots of 𝜙𝐿(𝐺, 𝑥). Then 𝜙𝐿(𝐺, 𝑥) = (𝑥 − 𝜇𝑟)⋯ (𝑥 − 𝜇𝑟+1). Therefore, we have  

𝜑𝐿(𝐺, 𝑧𝑟−2)

= 𝑒𝑖(𝑞
2−1)(𝑛+𝑟−1)𝜋𝜙𝐿 (𝐺, 𝑧𝑟−2

1
𝑞2
)𝜙𝐿 (𝐺, 𝑧𝑟−2

1
𝑞2
𝑒
−𝑖
2𝜋
𝑞2)⋯𝜙𝐿 (𝐺, 𝑧𝑟−2

1
𝑞2
𝑒
−𝑖
2(𝑞2−1)𝜋

𝑞2 )

= 𝑒𝑖(𝑞
2−1)(𝑛+𝑟−1)𝜋 ∏ (𝑧𝑟−2

1
𝑞2

− 𝜇𝑘)

𝑛+𝑟−1

𝑘=𝑟

(𝑧𝑟−2

1
𝑞2
𝑒
−𝑖
2𝜋
𝑞2 − 𝜇𝑘)⋯(𝑧𝑟−2

1
𝑞2
𝑒
−𝑖
2(𝑞2−1)𝜋

𝑞2 − 𝜇𝑘)

= 𝑒𝑖(𝑞
2−1)(𝑛+𝑟−1)𝜋 ∏ (𝑧𝑟−2

1
𝑞2

− 𝜇𝑘)

𝑛+𝑟−1

𝑘=𝑟

(𝑧𝑟−2

1
𝑞2

− 𝜇𝑘𝑒
𝑖
2𝜋
𝑞2)⋯(𝑧𝑟−2

1
𝑞2
𝜇𝑘𝑒

𝑖
2(𝑞2−1)𝜋

𝑞2 )𝑒−𝑖(𝑞
2−1)𝜋 = ∏ (𝑧𝑟−2 − 𝜇𝑘

𝑞2
) .

𝑛+𝑟−1

𝑘=𝑟

 

By Theorem (6.3.8) we obtain that  

𝐿𝐸𝐿𝛼2(𝐺) = ∑ 𝜇𝑘
𝑞2
= 𝐸1(𝜑𝐿(𝐺, 𝑧𝑟−2))

𝑛+𝑟−1

𝑘=𝑟

=
2

𝜋
∫ (

𝑥2𝜑′(−𝑥2)

𝜑(−𝑥2)
+ 𝑛 + 𝑟 − 1)𝑑𝑥

+∞

0

 

Where 𝜑(𝑧𝑟−2) = (−1)
𝑛+𝑟−1𝜑𝐿(𝐺, √𝑧𝑟−2)𝜑𝐿(𝐺, −√𝑧𝑟−2) 

(iii) By Theorem (6.3.4), it is easy to obtain that 

𝐿𝐸𝐿𝛼2(𝐺) = ∑ 𝜇
𝑘

𝑞2

𝑝2
𝑛+𝑟−1

𝑘=𝑟

= ∑ (𝜇𝑘
𝑞2
)

1
𝑝2

𝑛+𝑟−1

𝑘=𝑟

= 𝐸 1
𝑝2
(𝜑𝐿(𝐺, 𝑧𝑟−2))

=
𝑝2

𝜋
∫ (

𝑥𝑝
2
𝜑𝐿
′ (𝐺,−𝑥𝑝

2
)

𝜑𝐿(𝐺,−𝑥
𝑝2)

+ 𝑛 + 𝑟 − 1) . sin
𝜋

𝑝2

+∞

0

𝑑𝑥 
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(iv) Suppose that 𝜇𝑟 ≥ 𝜇𝑟+1 ≥ ⋯ ≥ 𝜇𝑛−𝑐+𝑟−1 > 𝜇𝑛−𝑐+𝑟−2 = ⋯ = 𝜇𝑛+𝑟−1 = 0 are the 

roots of 𝜙𝐿(𝐺, 𝑥). Thus we can write 𝜙𝐿(𝐺, 𝑥) as 𝜙𝐿(𝐺, 𝑥) = 𝑥𝑐∏ (𝑥 − 𝜇𝑘)
𝑛−𝑐+𝑟−1
𝑘=𝑟 . 

Therefore, we obtain that  

𝜑𝐿(𝐺, 𝑧𝑟−2) = 𝑧𝑟−2
𝑝2(𝑛+𝑟−1)

𝜙𝐿 (𝐺,
1

𝑧𝑟−2
𝑝2
) = 𝑧𝑟−2

𝑝2(𝑛+𝑟−1)
| . (

1

𝑧𝑟−2
𝑝2
)

𝑐

∏ (
1

𝑧𝑟−2
𝑝2

− 𝜇𝑘)

𝑛−𝑐+𝑟−1

𝑘=𝑟

= (−1)𝑛+𝑟−1−𝑐 ∏ (𝑧𝑟−2
𝑝2
𝜇𝑘 − 1)

𝑛−𝑐+𝑟−1

𝑘=𝑟

= (−1)𝑛+𝑟−1−𝑐 ∏ 𝜇𝑘 (𝑧𝑟−2
𝑝2

𝑛−𝑐+𝑟−1

𝑘=𝑟

−
1

𝜇𝑘
) (−1)𝑛+𝑟−1−𝑐 ∏ 𝜇𝑘

𝑛−𝑐+𝑟−1

𝑘=𝑟

∏ (𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2 )

𝑝2+𝑟−2

𝑘=𝑟

= (−1)𝑛+𝑟−1−𝑐 ∏ [(−1)𝑝
2−1 ∏(𝑧𝑟−2𝜇𝑘

1
𝑝2
𝑒
𝑖
2𝑡𝜋
𝑝2 − 1)

𝑝2−1

𝑡=0

]

𝑛−𝑐+𝑟−1

𝑘=𝑟

 

Then  

𝜑𝐿
′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
= ∑ ∑

𝑧𝑟−2

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

= ∑ ∑ (1+
𝜇
𝑘

1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

)

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

= 𝑝2(𝑛 + 𝑟 − 1 − 𝑐) + ∑ ∑
𝜇
𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

 

Suppose that Γ = Γ𝑅 ∪ 𝐿1 ∪ 𝑆𝑟 ∪ 𝐿2 see Figure (2) is a positively (i.e., counter clockwisely) 

oriented piecewise smooth Jordan curve, where 𝑅 > max {𝜇𝑟 , 𝜇𝑛−𝑐+𝑟−1
−1 , 𝜇𝑛−𝑐+𝑟−1

−
1

𝑝2 }, 0 <

𝑟 < min {𝜇𝑛−𝑐+𝑟−1, 𝜇𝑟
−1, 𝜇𝑟

−
1

𝑝2} , Γ𝑅 is the curve {𝑧(𝜃𝑟−2) = 𝑅𝑒
𝑖𝜃𝑟−2 ,   −

𝜋

𝑝2
≤ 𝜃𝑟−2 ≤

𝜋

𝑝2
} , 𝐿1 is the line {𝑧(𝜃𝑟−2) = 𝑝

2𝑒𝑖𝜃𝑟−2, 𝑟 ≤ 𝜌𝑟−2 ≤ 𝑅, 𝜃𝑟−2 =
𝜋

𝑝2
}. Then the point 

𝜇𝑟
−
1

𝑝2, 𝜇𝑟+1
−
1

𝑝2 , ⋯ , 𝜇𝑛−𝑐+𝑟−1
−
1

𝑝2
 are 𝑡 = 1,2,… , 𝑝2 − 1, are all in the exterior of the curve 𝛤. By 

Cauchy's Theorem and Integral Formula, we get 
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Figure (2): The curve 𝛤 in Corollary (6.3.13) (iv). 

1

2𝜋𝑖
∫ [

𝑧𝜑𝐿
′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)]

 

Γ

𝑑𝑧𝑟−2

=
1

2𝜋𝑖
∫ ∑ ∑

𝜇
𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑑𝑧𝑟−2

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

 

Γ

=
1

2𝜋𝑖
∫ ∑

𝜇
𝑘

−
1
𝑝2

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2

𝑑𝑧

𝑛−𝑐+𝑟−1

𝑘=𝑟

 

Γ

= ∑
1

2𝜋𝑖
∫
𝜇
𝑘

−
1
𝑝2

𝑧
𝑘

−
1
𝑝2

 

Γ

𝑛−𝑐+𝑟−1

𝑘=𝑟

𝑑𝑧𝑟−2

= ∑ 𝜇
𝑘

−
1
𝑝2

𝑛+𝑟−1−𝑐

𝑘=𝑟

= 𝐿𝐸𝐿
−
1
𝑝2
(𝐺) 

Since the value of the integral  

1

2𝜋𝑖
∫ [

𝑧𝑟−2𝜑𝐿
′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)]

 

Γ

𝑑𝑧𝑟−2 

Is independent of the actual values of 𝑅 and 𝑟, it can be gotten that 

𝐿𝐸𝐿𝛼2(𝐺) =
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)]

 

Γ

𝑑𝑧𝑟−2

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)

 

Γ𝑅

] 𝑑𝑧𝑟−2

+∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

 

Γ1

+∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

 

𝑆𝑟
−

+∫ [[
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2]

 

𝐿2
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When 𝑆𝑟
− is the same curve as 𝑆𝑟 but has clockwise orientation suppose that 𝑧𝑟−2 =

𝜌𝑟−2(cos 𝜃𝑟−2 + 𝑖 𝑠𝑖𝑛𝜃𝑟−2), where 𝜌𝑟−2 > 0. Then  

|1 −
𝜇
𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑧𝑟−2
| = |

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

|𝑧𝑟−2|
|

=

|𝜌𝑟−2(cos 𝜃𝑟−2 + 𝑖 sin 𝜃𝑟−2 ) − 𝜇𝑘

−
1
𝑝2
(cos

2𝑡𝜋
𝑝2

− 𝑖 sin
2𝑡𝜋
𝑝2
)|

𝜌𝑟−2

≥

√𝜌𝑟−2
2 + 𝜇

𝑘

2
𝑝2
− 2𝜌𝑟−2𝜇𝑘

−
1
𝑝2

𝜌𝑟−2
=

|𝜌𝑟−2 − 𝜇𝑘

−
1
𝑝2
|

𝜌𝑟−2
 

Thus we have  

|𝑧𝑟−2 [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)]| ≤ ∑ ∑ |

𝑧𝑟−2𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

|

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

= ∑ ∑

|𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2 |

|1 −
𝜇
𝑘

−
1
𝑝2
𝑒
−𝑖
2𝜋𝑡
𝑝2

𝑧𝑟−2
|

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

≤ ∑ ∑
𝜌𝑟−2𝜇𝑘

−
1
𝑝2

|𝜌𝑟−2 − 𝜇𝑘

−
1
𝑝2
|

.

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

 

Obviously, 

∑ ∑
𝜌𝑟−2𝜇𝑘

1
𝑝2

|𝜌𝑟−2 − 𝜇𝑘

1
𝑝2
|

→ 0,   for 𝜌𝑟−2 → 0

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

 

Then by Lemma (6.3.7) we get that  

∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

 

𝑆𝑟
−

→ 0,    for 𝑟 → 0. 

Suppose that 𝜔𝑘𝑡 = 𝜇𝑘
−
1

𝑝2𝑒
−𝑖

2𝑡𝜋

𝑝2 . Then |𝜔𝑘1| = |𝜔𝑘1| = ⋯ = |𝜔𝑘(𝑝2−1)| = 𝜇𝑘
−
1

𝑝2
. We have  
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|𝑧𝑟−2 ∑
𝜇𝑘

−
1
𝑝2𝑒

−𝑖
2𝑡𝜋
𝑝2

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2𝑒

−𝑖
2𝑡𝜋
𝑝2

𝑝2−1

𝑡=0

|

=

|𝑧𝑟−2∑ 𝜇𝑘

−
1
𝑝2𝑒

−𝑖
2𝑡𝜋
𝑝2 (𝑧𝑟−2

𝑝2−1 + 𝑧𝑟−2
𝑝2−2𝜇𝑘

−
1
𝑝2𝑒

−𝑖
2𝑡𝜋
𝑝2 +⋯𝑧𝑟−2 (𝜇𝑘

−
1
𝑝2𝑒

−𝑖
2𝑡𝜋
𝑝2 )

𝑝2−2

+ (𝜇𝑘

−
1
𝑝2𝑒

−𝑖
2𝑡𝜋
𝑝2 )

𝑝2−1

)𝑝2−1
𝑡=0 |

𝑧𝑟−2
𝑝2 − 𝜇𝑘

−1

= |𝑧𝑟−2 ∑
𝜔𝑘𝑡 (𝑧𝑟−2

𝑝2−1 + 𝑧𝑟−2
𝑝2−2𝜔𝑘𝑡 +⋯+𝜔𝑘𝑡

𝑝2−2 + 𝜔𝑘𝑡
𝑝2−1)

𝑧𝑟−2
𝑝2 − 𝜇𝑘

−1

𝑝2−1

𝑡=0

|

=
|

|
∑

𝜔𝑘𝑡 + 𝜔𝑘𝑡
2 +⋯+

𝜔𝑘𝑡
𝑝2−1

𝑧𝑟−2
𝑝2−2

+
𝜔𝑘𝑡
𝑝2

𝑧𝑟−2
𝑝2−1

1 − 𝜇
𝑧𝑟−2
𝑝2
−1

𝑝2−1

𝑡=0
|

|
 

It is easy to get that there exists 𝑁𝑘 > 0, for 𝑘 ∈ {1,2,⋯ , 𝑛 + 𝑟 − 1 − 𝑐}, such that 

|1 −
𝜇𝑘
−1

𝑧𝑟−2
𝑝2
| ≥

1

2
 for |𝑧𝑟−2| > 𝑁𝑘. For any 𝜀 > 0, there exists 𝑀𝑘 > 0, for 𝑘 ∈ {1,2,⋯ , 𝑛 +

𝑟 − 1 − 𝑐}, such that  

|∑ (
𝜔𝑘𝑡
2

𝑧𝑟−2
+⋯+

𝜔𝑘𝑡
𝑝2−1

𝑧𝑟−2
𝑝2−2

+
𝜔𝑘𝑡
𝑝2

𝑧𝑟−2
𝑝2−1

)

𝑝2−1

𝑡=0

| <
𝜀

2(𝑛 + 𝑟 − 1)
 

For |𝑧𝑟−2| > 𝑀𝑘. Note that ∑ 𝜔𝑘𝑡
𝑟𝑝2−1

𝑡=0 = 0 unless 𝑟 = 𝑝. Therefore, for any 𝜀 > 0, there 

exists 𝑁 = max{𝑁𝑟 , 𝑁𝑟+1, ⋯𝑁𝑛+𝑟−1−𝑐 , 𝑀𝑟 ,𝑀𝑟+1, ⋯ ,𝑀𝑛+𝑟−1−𝑐} such that  

|𝑧𝑟−2 [
𝜑𝐿
′𝐺, 𝑧𝑟−2

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)]| = | ∑ ∑

𝜇
𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑧𝑟−2 − 𝜇𝑘

−
1
𝑝2
𝑒
−𝑖
2𝑡𝜋
𝑝2

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟

|

=
|

|
∑ ∑

𝜔𝑘𝑡 +
𝜔𝑘𝑡
2

𝑧𝑟−2
+⋯+

𝜔𝑘𝑡
𝑝2−1

𝑧𝑟−2
𝑝2−2

+
𝜔𝑘𝑡
𝑝2

𝑧𝑟−2
𝑝2−1

1 − 𝜇
𝑘

−
1
𝑝2

𝑝2−1

𝑡=0

𝑛−𝑐+𝑟−1

𝑘=𝑟
|

|

≤ 2 | ∑ ∑ 𝜔𝑘𝑡

𝑝2−1

𝑡=0

𝑛+𝑟−1−𝑐

𝑘=𝑟

| + 2 ∑ (|∑ (
𝜔𝑘𝑡
2

𝑧𝑟−2
+⋯+

𝜔𝑘𝑡
𝑝2−1

𝑧𝑟−2
𝑝2−2

+
𝜔𝑘𝑡
𝑝2

𝑧𝑟−2
𝑝2−1

)

𝑝2−1

𝑡=0

|)

𝑛+𝑟−1−𝑐

𝑘=1

< 0 + 2 ∑
𝜀

2(𝑛 + 𝑟 − 1)
< 𝜀,

𝑛+𝑟−1−𝑐

𝑘=1

 

For |𝑧𝑟−2| > 𝑁. By standard estimate, we obtain that, for any 𝜀 > 0, there exists 𝑁 =
max{𝑁𝑟 , 𝑁𝑟+1, ⋯𝑁𝑛+𝑟−1−𝑐 , 𝑀𝑟 , 𝑀𝑟+1, ⋯ ,𝑀𝑛+𝑟−1−𝑐} such the integral  
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∫ [
𝜑𝐿
′𝐺, 𝑧𝑟−2

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

 

Γ𝑅

≤
2𝜋𝑅

𝑝2
max

𝑧𝑟−2∈Γ𝑅
|
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)|

=
2𝜋

𝑝2
max

𝑧𝑟−2∈Γ𝑅
|𝑧𝑟−2 [

𝑧𝑟−2𝜑𝐿
′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)]| <

2𝜋

𝑝2
𝜀, 

For |𝑧𝑟−2| > 𝑁. This implies  

∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)]

 

Γ𝑅

𝑑𝑧𝑟−2 → 0, for |𝑧𝑟−2| → +∞. 

Therefore, we obtain that  

𝐿𝐸𝐿𝛼2(𝐺) =
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

+∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

 

𝐿1

+∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

 

𝐿2

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

 

𝐿1

+∫ [
𝑧𝑟−2𝜑𝐿

′ (𝐺, 𝑧𝑟−2)

𝜑𝐿(𝐺, 𝑧𝑟−2)
− 𝑝2(𝑛 + 𝑟 − 1 − 𝑐)] 𝑑𝑧𝑟−2

 

𝐿2

]

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[𝑝2𝑐 −
𝜙𝐿
′ (𝐺, 𝑧𝑟−2)

𝜙𝐿 (𝑧𝑟−2
−𝑝2)

𝑝2𝑧𝑟−2
−𝑝2] 𝑑𝑧𝑟−2

+∫ [𝑝2𝑐 −
𝜙𝐿
′ (𝐺, 𝑧𝑟−2

−𝑝2)

𝜙𝐿 (, 𝑧𝑟−2
−𝑝2)

𝑝2𝑧𝑟−2
−𝑝2]

 

𝐿2

𝑑𝑧𝑟−2

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫ [𝑝2𝑐 −
𝜙𝐿
′ (𝐺, 𝑧𝑟−2

−𝑝2
)

𝜙𝐿 (𝐺, 𝑧𝑟−2
−𝑝2)

𝑝2𝑧𝑟−2
−𝑝2] 𝑑𝑧𝑟−2

 

𝐿1

+∫ [𝑝2𝑐 −
𝜙𝐿
′ (𝐺, 𝑧𝑟−2

−𝑝2)

𝜙𝐿 (𝐺, 𝑧𝑟−2
−𝑝2)

𝑝2𝑧𝑟−2
−𝑝2]

 

𝐿2

𝑑𝑧𝑟−2] 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[
 
 
 
 
 

𝑝2𝑐 −

𝜙𝐿
′ (𝐺, (𝜌𝑟−2𝑒

−𝑖
𝜋
𝑝2)

𝑝2

)

𝜙𝐿 (𝐺, (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

−𝑝2

)

𝑝2 (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

]
 
 
 
 
 

𝑑 (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

+ ∫

[
 
 
 
 
 

𝑝2𝑐 −

𝜙𝐿
′ (𝐺, (𝜌𝑟−2𝑒

−𝑖
𝜋
𝑝2)

𝑝2

)

𝜙𝐿 (𝐺, (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

−𝑝2

)

𝑝2 (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

−𝑝2

]
 
 
 
 
 

𝑑 (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

𝑅

𝑟
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=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[𝑝2𝑐 −
𝜙𝐿
′ (𝐺,−𝜌𝑟−2

−𝑝2
)

𝜙𝐿 (𝐺,−𝜌𝑟−2
−𝑝2

)
(−𝑝2)𝜌𝑟−2

−𝑝2
] 𝑒

𝑖
𝜋
𝑝2 𝑑𝜌𝑟−2 

+∫

[
 
 
 
 
 

𝑝2𝑐 −

𝜙𝐿
′ (𝐺, (𝜌𝑟−2𝑒

−𝑖
𝜋
𝑝2)

−𝑝2

)

𝜙𝐿 (𝐺, (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

−𝑝2

)

𝑝2 (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

−𝑝2

]
 
 
 
 
 

𝑑 (𝜌𝑟−2𝑒
−𝑖
𝜋
𝑝2)

𝑅

𝑟

 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[∫ 𝑝2𝑐 −
𝜙𝐿
′ (𝐺,−𝜌𝑟−2

−𝑝2
)

𝜙𝐿 (𝐺,−𝜌𝑟−2
−𝑝2

)
(−𝑝2)𝜌𝑟−2

−𝑝2
𝑟

𝑅

] 𝑒
𝑖
𝜋
𝑝2𝑑𝜌𝑟−2 

+∫ [𝑝2𝑐 −
𝜙𝐿
′ (𝐺,−𝜌𝑟−2

−𝑝2
)

𝜙𝐿 (𝐺,−𝜌𝑟−2
−𝑝2

)
(−𝑝2)𝜌𝑟−2

−𝑝2
]

𝑅

𝑟

𝑒
−𝑖
𝜋
𝑝2𝑑𝜌𝑟−2 

=
1

2𝜋𝑖
lim
𝑅→+∞
𝑟→0+

[𝑝2𝑐 +
𝜙𝐿
′ (𝐺,−𝜌𝑟−2

−𝑝2
)

𝜙𝐿 (𝐺,−𝜌𝑟−2
−𝑝2

)
𝑝2𝜌𝑟−2

−𝑝2
] (cos

𝜋

𝑝2
+ 𝑖 sin

𝜋

𝑝2
) 𝑑𝜌𝑟−2 

= −
𝑝2

𝜋
lim
𝑅→+∞
𝑟→0+

(𝑐 +
𝜙𝐿
′ (𝐺, −𝜌𝑟−2

−𝑝2
)

𝜙𝐿 (𝐺, −𝜌𝑟−2
−𝑝2

)
) . sin

𝜋

𝑝2
𝑑𝜌𝑟−2 

=
𝑝2

𝜋
∫ (

−𝑥−𝑝
2
𝜙𝐿
′ (𝐺,−𝜌𝑟−2

𝑝2
)

𝜙𝐿(𝐺,−𝑥
−𝑝2)

− 𝑐) .
+∞

0

sin
𝜋

𝑝2
 𝑑𝑥 

Note that the formula above also holds for the general energy 𝐸𝛼2(𝜙(𝑧𝑟−2)) of 𝜙(𝑧𝑟−2) 
whose roots are all nonnegative (here c is the multiplicity of 0 as root of 𝜑(𝑧𝑟−2)). 
(v) Clearly, we have that 

𝐿𝐸𝐿−𝑞2(𝐺) = 𝐸−1
2
(𝜑(𝑧𝑟−2)) =

2

𝜋
∫ (

−𝑥−2𝜑′(−𝑥−2)

𝜑(−𝑥−2)
)𝑑𝑥

+∞

0

 

Where 𝜑(𝑧𝑟−2) = (−1)
𝑛+𝑟−1𝜑𝐿(𝐺, √𝑧𝑟−2)(𝐺,−√𝑧𝑟−2) 

(vi) it can be easy to get that  

𝐿𝐸𝐿
−
𝑞2

𝑝2

(𝐺) = ∑ 𝜇
𝑘

−
𝑞2

𝑝2
𝑛+𝑟−1

𝑘=1

= ∑ (𝜇𝑘
𝑞2
)
−
1
𝑝2

𝑛+𝑟−1

𝑘=1

= 𝐸𝐿𝐸
−
1
𝑝2
(𝜑

−
1
𝑝2
(𝐺, 𝑥))

=
𝑝2

𝜋
∫ (

−𝑥−𝑝
2
𝜑𝐿
′ (𝐺,−𝑥−𝑝

2
)

𝜑𝐿(𝐺,−𝑥
−𝑝2)

− 𝑐) . sin
𝜋

𝑝2
 𝑑𝑥

+∞

0

 

The proof is complete.  
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List of Symbols 
Symbol  Page 

inf: infimum 1 

dens: dense 1 

dist: distante 1 

max: maximum 1 

𝐿𝑝: Lebesgue space 1 

sup: supremum 2 

Re: Real 2 

arg: argument 2 

Exp: exponential 3 

conv: convex 3 

Im: Imaginary 13 

orb: orbit 13 

𝑆𝑂𝑇: Strong operator topology 14 

min: minimum 15 

deg: degree 16 

ℓ2: Hilbert space 23 

sph: sphere 23 

𝐿2: Hilbert space 25 

𝐿∞: essential Lebesgue space 25 

𝑃𝑉: principle value 28 

𝐿1: Lebesgue space on the real line 29 

𝐻𝑝: Hardy space 30 

dim: dimension 70 

LB: lower bound 73 

UB: upper bound 73 

loc: local  80 

Tr: Trace 81 

⨁: Direct sum 84 

supp: support 91 

ker: kernel 97 

LEL: Laplacian-Energy-Like 107 

diag: diagonal 107 

LE: Laplacian Energy 108 

WLSC: Weak lower Scaling conditions 152 

WUSC: Weak upper Scaling conditions 152 

a. s: almost sure 165 

RE: Randi’c energy 216 

NSE: normalized signless energy 216 

det: determinant 222 

int: interior 236 
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