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Chapter 5 

 

Optimal Control 

     This chapter gives a selection of techniques and results in optimal control 

theory that are optimization problems for mechanical systems, including 

nonholonomic systems. 

      We consider a class of nonlinear optimal control problems, which can be called 

“optimal control problems in mechanics.” We deal with control systems whose 

dynamics can be described by a system of Euler-Lagrange or Hamilton equations. 

Using the variational structure of the solution of the corresponding boundary-value 

problems, we reduce the initial optimal control problem to an auxiliary problem of 

multiobjective programming. This technique makes it possible to apply some 

consistent numerical approximations of a multiobjective optimization problem to 

the initial optimal control problem. For solving the auxiliary problem, we propose 

an implementable numerical algorithm. 

 

5.1 Variational Nonholonomic Problems 

Suppose a submanifold of the tangent bundle is given as the zero set of a set of 

constraints on the bundle. Suppose also that we are given a Lagrangian or, more 

generally, an objective function that we wish to minimize or maximize. Then we 

can proceed in the following two ways: 

(1) We can consider the conditional variational problem of minimizing a functional 

subject to the trajectories lying in the given submanifold and obtain the Euler–

Lagrange equations via the Lagrange method of appending the constraints to the 

Lagrangian via Lagrange multipliers. 
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(2) We can project, via a suitable projection, the vector field of the unconditional 

problem on the whole tangent bundle at every point to the tangent space of a given 

submanifold. 

The vector fields arising from these two approaches will not, of course, coincide in 

general, even though both are tangent to the constraint submanifold. 

The two approaches were compared earlier where we compared the two types of 

dynamics for the vertical rolling disk. The first method gives us variational 

nonholonomic problems, while (real) nonholonomic mechanics are obtained by a 

procedure of the second type. In fact, this is implemented by the Lagrange –

d’Alembert principle, as we have seen in chapters 1. As we saw, nonholonomic 

mechanics is not variational, since while we allow all possible variations in taking 

the variations of the Lagrangian, the variations have to lie in the nonintegrable 

constraint distribution and are thus not independent of one another or reducible to 

constraints on the configuration variables. 

 

The Lagrange Problem.  

      Variational nonholonomic problems, on the other hand, are equivalent to the 

classical Lagrange problem of minimizing a functional over a class of curves with 

fixed extreme points and satisfying a given set of equalities. 

We have the following : 

Let Q be a smooth manifold and TQ its tangent bundle with coordinates (𝑞𝑖 , 𝑞 𝑖). 

Let 𝐿 ∶  𝑇𝑄 →  𝑅 be a given smooth Lagrangian and let 𝛷 ∶  𝑇𝑄 →  𝑅𝑛−𝑚  be a 

given smooth function. 

 

5.1.1 Definition. The Lagrange problem is given by 

𝑚𝑖𝑛𝑞(·)  𝐿 𝑞, 𝑞  𝑑𝑡                                                                                     (5.1.1)
𝑇

0
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subject to the fixed endpoint conditions q(0) = 0, q(T) = qT, and subject to the 

constraints 

𝛷(𝑞, 𝑞 )  =  0. 

5.1.2 Example (The Falling Cat Problem). The falling cat problem is an 

abstraction of the problem of how a falling cat should optimally (in some sense) 

move its body parts so that it achieves a 180◦ reorientation during its fall. 

In this case we begin with a Riemannian manifold Q (the configuration space of 

the problem) with a free and proper isometric action of a Lie group G on Q (the 

group SO(3) for the falling cat). Let A denote the mechanical connection; that is, it 

is the principal connection whose horizontal space is the metric orthogonal to the 

group orbits. The quotient space 𝑄/𝐺 =  𝑋 , the shape space, inherits a 

Riemannian metric from that on 𝑄. Given a curve 𝑐(𝑡) in 𝑄, we shall denote the 

corresponding curve in the shape space 𝑋 by 𝑟(𝑡). 

The problem under consideration is as follows: 

 

Isoholonomic Problem (Falling Cat problem). Fixing two points 𝑞1 , 𝑞2 ∈ 𝑄 , 

among all curves 𝑞(𝑡)  ∈  𝑄, 0 ≤  𝑡 ≤  1, such that 𝑞(0)  = 𝑞0 , 𝑞(1)  =  𝑞1, and 

𝑞 (𝑡)  ∈  𝑕𝑜𝑟𝑞(𝑡) (horizontal with respect to the mechanical connection A), find the 

curve or curves 𝑞(𝑡) such that the energy of the shape space curve, namely, 

1

2
   𝑟  2

1

0

 𝑑𝑡, 

is minimized. 

 
Local Solution. We can proceed to solve the Lagrange problem locally by 

forming the modified Lagrangian 

𝛬(𝑞, 𝑞 , 𝜆)  =  𝐿(𝑞, 𝑞 )  +  𝜆 ·  𝛷(𝑞, 𝑞 ),                                                                     (5.1.2) 

with 𝜆 ∈  𝑅𝑛−𝑚 . The Euler–Lagrange equations then take the form 



  )108(  

 

𝑑

𝑑𝑡
 
𝜕𝑞

𝜕𝑞 
 𝛬 𝑞, 𝑞  , 𝜆 −

 𝜕

𝜕𝑞
𝛬(𝑞, 𝑞  , 𝜆)  =  0,                                                              (5.1.3) 

                                                                                 𝛷 𝑞, 𝑞  =  0.                   (5.1.4) 
 
The case we are particularly interested in is the case of classical (linear in the 

velocity) nonholonomic constraints: 

𝜔𝑖 𝑞, 𝑞  =   𝑎𝑖𝑘  𝑞 𝑞 
𝑘

𝑛

𝑘=1

= 0,                           𝑖 = 1, … , 𝑛 − 𝑚.                    (5.1.5) 

In the case that these constraints are integrable (equivalent to functions of q only) 

and L is physical, i.e., it is a holonomic mechanical system, this system will 

represent physical dynamics. In the nonholonomic case, these equations will not be 

physical; one needs the Lagrange–d’Alembert principle. The following theorem 

gives the differential equations for the Lagrange problem. 

 

5.1.3 Theorem. A solution of the Lagrange problem Definition 5.1.1 with 

constraints of the form (5.5.5) satisfies the following equations: 

𝑑

𝑑𝑡
 
𝜕

𝜕𝑞 𝑖
 𝐿 − 

𝜕

𝜕𝑞𝑖
 𝐿 +   (

𝑑

𝑑𝑡

𝑛−𝑚

𝑗=1

 𝜆𝑗 )𝑎𝑗𝑖 +   𝜆𝑗

𝑛−𝑚

𝑗=1

  𝑎 𝑗𝑖 − 
𝜕𝑎𝑗𝑘

𝜕𝑞𝑖

𝑛

𝑘=1

 𝑞 𝑘 = 0   (5.1.6) 

with the constraints 

                                             𝑎𝑖𝑘  𝑞 𝑘
𝑛

𝑘=1

= 0                                                           (5.1.7) 

Contrast these equations of motion with the nonholonomic equations of motion 

with Lagrange multipliers obtained from the Lagrange–d’Alembert principle: 

𝑑

𝑑𝑡
 
𝜕

𝜕𝑞 𝑖
𝐿 − 

𝜕

𝜕𝑞𝑖
 𝐿 =   𝜆𝑗𝑎𝑗𝑖

𝑛−𝑚

𝑗=1

                                                                                 5.1.8  
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Observe that if we (formally) set 𝜆𝑗  =  0  and 𝜆𝑗  =  𝜆𝑗  in the variational 

nonholonomic equations, we recover the nonholonomic equations of motion. It is 

precisely the omission of the 𝜆𝑗   term that destroys the variational nature of the 

nonholonomic equations. 

 

Examples 5.1.4. Here we recall two examples that will be used to illustrate the 

theory above: the vertical rolling penny (or unicycle) and the rolling (homogeneous) 

ball. 

 

A. (Rolling Disk or Unicycle.) 

       We consider again the vertical disk this time without controls. The variational 

problems yielded the augmented Lagrangian 

𝐿 =  
1

2
𝑚 𝑥 2 + 𝑦 2 +  

1

2
 𝐼 𝜃 2 +

1

2
 𝐽 𝜑 2 + 𝜇1 𝑥 −  𝑅𝜃 cos𝜑 + 𝜇2 𝑦 −  𝑅𝜃 sin 𝜑 , 

giving the Lagrange equations 

𝑚 𝑥 +  𝜇 1 =  0, 

𝑚 𝑦 +  𝜇 2 =  0, 

𝐽𝜑  +  𝑅𝜇1𝜃  𝑠𝑖𝑛 𝜑 −  𝑅𝜇2 𝜃  𝑐𝑜𝑠 𝜑 =  0, 

       𝐼𝜃 −  𝑅
𝑑

𝑑𝑡
  𝜇1 𝑐𝑜𝑠 𝜑 +  𝜇2 𝑠𝑖𝑛 𝜑 =  0.                                        (5.1.9) 

As we saw previousely in chapter 1, we obtain 

𝜇1  =  −𝑚𝑅𝜃  𝑐𝑜𝑠 𝜑 +  𝐴, 

𝜇2  =  −𝑚𝑅𝜃  𝑠𝑖𝑛 𝜑 +  𝐵, 

where A and B are integration constants giving the equations 

𝐽𝜑  =  𝑅𝜃 (𝐴𝑠𝑖𝑛 𝜑 −  𝐵𝑐𝑜𝑠 𝜑), 

(𝐼 +  𝑚𝑅2)𝜃 =  𝑅𝜑  (−𝐴𝑠𝑖𝑛 𝜑 +  𝐵𝑐𝑜𝑠 𝜑). 



  )110(  

 

Note that we may obtain the nonholonomic equations of motion by setting the 

constants of integration for the multipliers A and B equal to zero. However, there 

is not always so simple a relationship between the variational and nonholonomic 

equations 

 

Moreover, setting 𝜇𝑗  =  0 and 𝜇𝑗 = 𝜇 𝑗  in equations (5.1.9) gives the equations 

𝑚𝑥  =  0, 

𝑚𝑦  =  0, 

𝐽 𝜑  =  0, 

                                            𝐼 𝜃  =  𝑅(𝜇1 𝑐𝑜𝑠 𝜑 +  𝜇2 𝑠𝑖𝑛 𝜑), 

which are precisely the nonholonomic mechanical equations for the vertical rolling 

disk (1.4.3), as the theory above indicated. 

 

B. (The Rolling Ball) 

      Here we treat the example of a controlled rolling ball on the plane as a 

variational nonholonomic problem. We will use the coordinates x, y for the linear 

horizontal displacement and P ∈ SO(3) for the angular displacement of the ball. 

Thus P gives the orientation of the ball with respect to inertial axes e1, e2, e3, where  

the 𝑒𝑖  are the standard basis vectors aligned with the x−, y −,  and z − axes , 

respectively. In particular, P maps the position of a fixed point in the ball measured 

in the inertial axes to a fixed reference position. This definition gives a right-

invariant description of the kinematics expressed in the body frame, which is 

useful from some points of view. 

 

Let 𝝎 ∈  𝑅3 denote the angular velocity of the ball with respect to inertial axes. In 

particular, the ball may spin freely about the z-axis and the z-component of angular 



  )111(  

 

momentum is conserved. If 𝐽 denotes the inertia tensor of the ball with respect to 

the body axes, then 𝐽 =  𝑃𝑇𝐽𝑃 denotes the inertia tensor of the ball with respect to 

the inertial axes, and 𝑱𝝎 is the angular momentum of the ball with respect to the 

inertial axes. The conservation law alluded to above is expressed as 

𝑒3
𝑇  𝑱𝝎 =  𝑐.                                                              (5.1.10) 

The nonholonomic constraints are expressed as 

𝑒3
𝑇  𝝎 + 𝑥 = 0, 

           𝑒3
𝑇  𝝎 − 𝑦 = 0,                                              (5.1.11) 

Note that these do not include constraints on the spin about the z-axis, which can 

be additionally imposed through applied torques. 

The kinematics of the rotating ball may be expressed as 𝑷  =  𝑺(𝝂)𝑷 , where 

𝝂 =  𝑷𝝎 is the angular velocity in the body frame and 𝑺(𝝂) is the skew-symmetric 

matrix satisfying 𝑎 ×  𝑏 =  𝑆(𝑏)𝑎  for all 𝑎, 𝑏 ∈  𝑅3  . Here we will explicitly 

derive the Euler–Lagrange equations for the variational nonholonomic problem, 

from which we may write down the mechanical nonholonomic system. 

To obtain the variational control system we first write down the Lagrangian in the 

following form, where 𝑚 denotes the mass of the ball: 

             𝐿 =
1

2
 𝜈𝑇  𝐽 𝜈 +  𝜇1 𝜈

𝑇  𝑷𝑒1 − 𝑦  +  𝜇2 𝜈
𝑇  𝑷𝑒2 − 𝑥   

                 +
1

2
 𝑚 𝑥 2 +  𝑦 2 + trac QT 𝑷 −  𝑺 𝝂 𝑷 .                                (5.1.12) 

 

Note that we have expressed the constraints (5.1.11) in terms of 𝜈, and we have 

treated the kinematic equations themselves as constraints, and have therefore 

introduced an extra Lagrange multiplier in the form of a matrix Q. (The inner 

product on the space of 3 × 3 matrices is just the trace form:  𝑄, 𝑃 =  𝑡𝑟𝑎𝑐𝑒 𝑄𝑇𝑃.) 

In order to manipulate the Lagrangian (5.1.12) it is convenient to use the identity 
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𝑎𝑇  𝑨𝑏 =  𝑡𝑟𝑎𝑐𝑒  𝑏𝑎𝑇𝑨 =  trace  𝑨𝑏𝑎𝑇 . 

The forced Euler–Lagrange equations corresponding to this Lagrangian can now 

be written as 

𝑞 𝑇 +  𝑄𝑇  𝑆(𝜈)  −  𝜇1𝑒1𝜈
𝑇 − 𝜇2𝑒2𝜈

𝑇  =  0,                                                  (5.1.13) 

𝑤𝑇  𝐽𝜈 +  𝜇1𝑃𝑒1 +  𝜇2𝑃𝑒2 −  𝑡𝑟𝑎𝑐𝑒𝑄𝑇  𝑆 𝜔 𝑃 =  0,         ∀𝜔 ∈  𝑅3,      (5.1.14) 

𝑚𝑥 +  𝜇2  =  𝑢1 , 

                                              𝑚𝑌 +  𝜇1  =  𝑢2 .                                         (5.1.15) 

Differentiating equation (5.1.14) yields 

𝜔𝑇(𝐽𝜈 +  𝜇 1𝑃𝑒1 +  𝜇 2𝑃𝑒2 +  𝜇1𝑆(𝜈)𝑃𝑒1 +  𝜇2𝑆(𝜈)𝑃𝑒2) 

− 𝑡𝑟𝑎𝑐𝑒 𝑞 𝑇  𝑆 𝜔 𝑃 −  𝑡𝑟𝑎𝑐𝑒𝑄𝑇  𝑆 𝜔  𝑆 𝑣 𝑃  =  0, 

and substituting from (5.1.13) gives 

𝜔𝑇(𝐽𝜈 +  𝜇 1𝑃𝑒1 +  𝜇 2𝑃𝑒2 +  𝜇1𝑆(𝜈)𝑃𝑒1 +  𝜇2𝑆(𝜈)𝑃𝑒2) 

+ trace QT  (S(ν)S(ω)  −  S(ω)S(ν))P 

 − μ
1
ν

T
 S(ω)𝑃𝑒1  −  𝜇2ν

T
 S(ω)𝑃𝑒2  =  0.                                 (5.1.16) 

But the Jacobi identity for the cross product yields 

 

𝑆(𝜈)𝑆(𝜔)  −  𝑆(𝜔)𝑆(𝜈)  =  𝑆(𝑆(𝜈)𝜔),                                                     (5.1.17) 

and from (5.1.9) we obtain 

trace 𝑄𝑇  𝑆(𝑆(𝜈)𝜔)𝑃 =  −𝜔𝑇𝑆(𝜈)( 𝐽𝜈 +  𝜇1𝑃𝑒1  +  𝜇2𝑃𝑒2), 

so (5.1.16) implies the following system of equations describing the variational 

controlled rolling ball: 

𝐽𝜈 =  𝑆 𝜈 𝐽𝜈 – 𝜇 1𝑃𝑒1 – 𝜇 2𝑃𝑒2 – 𝜇1𝑆 𝜈 𝑃𝑒1 +  𝜇2𝑆 𝜈 𝑃𝑒2                               

𝑃  =  𝑆(𝜈)𝑃, 

                             𝑚𝑥  =  − 𝜇 2  +  𝑢1,              𝑒2
𝑇  𝑃𝑇𝜈 +  𝑥  =  0, 

                                𝑚𝑦  =  − 𝜇 1  +  𝑢2 ,              𝑒1
𝑇  𝑃𝑇𝜈 − 𝑦  =  0, 

 (5.1.18) 
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Following the prescription described above, we can write down the equations 

describing the nonholonomic controlled rolling ball in the form 

𝐽𝜈 =  𝑆 𝜈 𝐽𝜈 +  𝜆1𝑃𝑒1  +  𝜆2𝑃𝑒2 , 

                                                     𝑃  =  𝑆(𝜈)𝑃, 

                                                         𝑚𝑥  =  − 𝜆2  +  𝑢1 ,              𝑒2
𝑇  𝑃𝑇𝜈 +  𝑥  =  0, 

                                                         𝑚𝑦  =  − 𝜆1  +  𝑢2 ,              𝑒1
𝑇  𝑃𝑇𝜈 − 𝑦  =  0, 

(5.1.19) 

Note that equations (5.1.18) and (5.1.19) can be rewritten in terms of the angular 

velocity ω; the variational equations become 

 𝑱𝝎  =  𝑆 𝝎 𝑱𝝎 – 𝜇 1𝑃𝑒1 – 𝜇 2𝑃𝑒2 – 𝜇1𝑆 𝜔 𝑃𝑒1 +  𝜇2𝑆 𝜔 𝑃𝑒2 , 

                                𝑃  =  𝑃𝑆(𝝎), 

                             𝑚𝑥  =  − 𝜇 2  +  𝑢1,              𝑒2
𝑇  𝑃𝑇𝝎 +  𝑥  =  0, 

                                𝑚𝑦  =  − 𝜇 1  +  𝑢2 ,                𝑒1
𝑇 𝑃𝑇𝝎− 𝑦  =  0, 

while the nonholonomic equations are simply obtained using the usual 

prescription.[1] 

 

5.2 Variational Nonholonomic Systems and Optimal Control 

Variational nonholonomic problems (i.e., constrained variational problems) are 

equivalent to optimal control problems under certain regularity conditions. We 

outline the simplest relationship. 

Consider a modified Lagrangian 

𝚲(𝑞, 𝑞 , 𝜆)  =  𝐿(𝑞, 𝑞 )  +  𝜆 ·  𝚽(𝑞, 𝑞 )                                                  (5.2.1) 

with Euler–Lagrange equations 

 
𝑑

𝑑𝑡
 
𝜕

𝜕𝑞 
𝚲 𝑞, 𝑞 , 𝜆 − 

𝜕

𝜕𝑞
𝚲 𝑞, 𝑞 , 𝜆 = 0, 

                                                           𝚽(𝑞, 𝑞 ) =  0.                                         (5.2.2) 
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We will rewrite this equation in Hamiltonian form and show that the resulting 

equations are equivalent to the equations of motion given by the maximum 

principle for a suitable optimal control problem. 

Set 

𝑃 =
𝜕

𝜕𝑞 
𝚲 𝑞, 𝑞 , 𝜆                                                               (5.2.3) 

and consider this equation together with the constraints 

        𝚽 𝑞, 𝑞  =  0.                                                                                 5.2.4  

We wish to solve (5.6.3) and (5.6.4) for (𝑞 , 𝜆). 

Now assume that on an open set U the matrix 

 
 
 
 
 
𝜕2

𝜕𝑞 2
𝚲 𝑞, 𝑞 , 𝜆  

𝜕

𝜕𝑞 
 𝚽 𝑞, 𝑞  T

𝜕

𝜕𝑞 
 𝚽 𝑞, 𝑞  0

 
 
 
 
 

                                                            (5.2.5) 

has full rank. (This generalizes the usual Legendre condition that  
𝜕2

𝜕𝑞 2
 L(q, q ) has 

full rank.) By the implicit function theorem, we can solve for q  and λ:      

                                           q =  ∅(𝑞, 𝑝), 

𝜆 =  𝜓(𝑞, 𝑝).                                                           (5.2.6) 

We now have the following theorem: 

Theorem 5.2.1 

Under the transformation ( 5.2.6 ), the Euler–Lagrange system ( 5.2.2 ) is 

transformed to the Hamiltonian system 

q =  
𝜕

𝜕𝑝
 𝐻(𝑞, 𝑝), 

  P =  − 
𝜕

𝜕𝑞
 𝐻(𝑞, 𝑝), 

 (5.2.7) 
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where 

𝐻(𝑞, 𝑝)  =  𝑝 ·  ∅(𝑞, 𝑝)  −  𝐿(𝑞, ∅(𝑞, 𝑝)).                                                 (5.2.8) 

Proof. 𝚽(𝑞, ∅(𝑞, 𝑝))  =  0 implies 

𝜕𝚽

𝜕𝑞
+  

𝜕𝚽

𝜕𝑞 
 
𝜕∅

𝜕𝑞
= 0  

            
𝜕𝚽

𝜕𝑞 
 
𝜕∅

𝜕𝑝
= 0 

Hence, using (5.2.3), we have 

 

𝜕𝐻

𝜕𝑝
=   ∅ +  𝑝 − 

𝜕𝐿

𝜕𝑞 
 ·  

𝜕∅

𝜕𝑝
= 𝑞 +  𝜆 ·  

𝜕𝚽

𝜕𝑞 
 
𝜕∅

𝜕𝑝
 = 𝑞 . 

Similarly, 

  

𝜕𝐻

𝜕𝑞
=  −

𝜕𝐿

𝜕𝑞
+    𝑝 − 

𝜕𝐿

𝜕𝑞 
   .  

𝜕∅

𝜕𝑞
=  − 

𝜕𝐿

𝜕𝑞
+  𝜆 . (

𝜕𝚽

𝜕𝑞 
 
𝜕∅

𝜕𝑞
)  

= −  
𝜕𝐿

𝜕𝑞
+  𝜆 .

𝜕𝚽

𝜕𝑞
  = − 

𝜕𝚲

𝜕𝑞
=  −𝑝 .                        

 

We now compare this to the optimal control setup. 

 

Definition 5.2.2.   Let the optimal control problem be given by 

 

𝑚𝑖𝑛𝑢(·)  𝑔(𝑞, 𝑢)𝑑𝑡  
𝑇

0

 

(5.2.9) 

subject to 𝑞(0)  =  0, 𝑞(𝑇)  =  𝑞𝑇 , 

𝑞 =  𝑓(𝑞, 𝑢), 

where 𝑞 ∈  𝑅𝑛 , 𝑢 ∈  𝑅𝑚 . 
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Then we have the following: 

 

Theorem 5.2.3. The Lagrange problem and optimal control problem generate the 

same (regular ) extremal trajectories, provided that: 

(i) 𝛷(𝑞, 𝑞 )  =  0 if and only if there exists a u such that 𝑞 =  𝑓(𝑞, 𝑢). 

(ii) 𝐿(𝑞, 𝑓(𝑞, 𝑢))  =  𝑔(𝑞, 𝑢). 

(iii) The optimal control 𝑢∗ is uniquely determined by the condition 

𝜕𝐻 

𝜕𝑢
  𝑞, 𝑝, 𝑢∗ =  0, 

 (5.2.10) 

where 

𝜕2𝐻 

𝜕𝑢2   𝑞, 𝑝, 𝑢∗  

is of full rank and 

𝐻 (𝑞, 𝑝, 𝑢)  =   𝑝, 𝑓 𝑞, 𝑢   −  𝑔(𝑞, 𝑢)                                               (5.2.11) 

 

is the Hamiltonian function given by the maximum principle. 

 

Proof. By (iii) we may use the equation 

𝑝 ·  
𝜕𝑓

𝜕𝑢
  𝑞, 𝑢∗ − 

𝜕𝑔

𝜕𝑢
  𝑞, 𝑢∗ = 0 

to deduce that there exists a function 𝑟 such that 𝑢∗ =  𝑟(𝑞, 𝑝). 

The extremal trajectories are now generated by the Hamiltonian 

𝐻  𝑞, 𝑝 =  𝐻   𝑞, 𝑝, 𝑟 𝑥, 𝑝  

=  𝑝 ·  𝑓 𝑞, 𝑟 𝑞, 𝑝  −  𝑔 𝑞, 𝑟 𝑞, 𝑝  .                                       (4.6.12) 

Then the result follows, and we have 

         𝐻 (𝑞, 𝑝)  =  𝐻(𝑞, 𝑝), 
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𝑓(𝑞, 𝑟(𝑞, 𝑝))  =  ∅(𝑞, 𝑝), 

            𝑔(𝑞, 𝑟(𝑞, 𝑝))  =  𝐿(𝑞, ∅(𝑞, 𝑝)).    [10]                          

 

5.3 Optimal Control of a Homogeneous Ball on a Rotating Plate 

Bloch, Krishnaprasad, Marsden and Murray also studies a well-known example, 

namely the model of a homogeneous ball on a rotating plate and writes down its 

equations of motion in a form that is suitable for the application of control theory. 

Fix coordinates in inertial space and let the plane rotate with constant angular 

velocity about the z-axis. The configuration space of the sphere is Q = ℝ2
 ×SO(3), 

parameterized by (x, y, g), g ∈  SO(3), all measured with respect to the inertial 

frame. Let ω = (ωx, ωy, ωz) be the angular velocity vector of the sphere measured 

also with respect to the inertial frame, let m be the mass of the sphere, mk
2
 its 

inertia about any axis, and let ɑ be its radius. 

The Lagrangian of the system is 

L = 
1

2
𝑚(𝑥 2 + ẏ

2
) +  

1

2
𝑚𝑘2(ωx

2
 + ωy

2
 + ωz

2
) 

with the affine nonholonomic constraints 

𝑥 - ɑωy = -Ωy 

ẏ + ɑωx = Ωx 

Note that the Lagrangian here is a metric on Q which is bi-invariant on SO(3) as 

the ball is homogeneous. Note also that ℝ2
 ×SO(3) is a principal bundle over ℝ2

 

with respect to the right SO(3) action on Q given by 

(x, y, g) ↦ (x, y, gh) 

for h ∈   SO(3). The action is on the right since the symmetry is a material 

symmetry. 

After some computations, it can be shown that the equations of motion are: 

ωx + 
1

ɑ
ẏ = 

Ωx

ɑ
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ωy -  
1

ɑ
𝑥  = 

Ωy

ɑ
 

ωz = c, 

 (where c is a constant), together with 

𝑥  + 
𝑘2Ω

ɑ2+𝑘2
𝑦 = 0 

𝑦  - 
𝑘2Ω

ɑ2+𝑘2
𝑥 = 0                                             (5.3.1) 

Notice that the first set of three equations has the form 

𝑔  𝑔−1 =  𝐴𝑙𝑜𝑐 (𝑟)𝑟  + Γ𝑙𝑜𝑐 (𝑟) 

where 

𝐴𝑙𝑜𝑐 =  
1

ɑ
𝑒1𝑑𝑦 − 

1

ɑ
𝑒2𝑑𝑥  

and 

Γ𝑙𝑜𝑐  = 
Ω

ɑ
𝑥𝑒1 +  

Ω

ɑ
𝑦𝑒2 + 𝑐𝑒3  .                             (5.3.2) 

Here, r
1
 = x, r

2
 = y and e1, e2, e3 is the standard basis of so(3). Also, Aloc is the 

expression of nonholonomic connection relative to the (global) trivialization and 

Γ𝑙𝑜𝑐  is the expression of the affine piece of the constraints with respect to the same 

trivialization. 

Now we are ready to apply reduced Lagrangian optimization to find the optimal 

trajectories for a homogeneous ball. Clearly the homogeneous ball on a rotating 

plate is a simple nonholonomic mechanical system with symmetry as defined 

earlier, which also has a trivial principal bundle structure (except that the constraint 

is affine which can be dealt with in the same way). Also we can assume that we 

have full control over the motion of the center of the ball, i.e., over the shape 

variables. Now let the cost function be C(𝑟  ) = 
1

2
 [(𝑥 )2

 +(ẏ2
)] and set ɑ = 1 for 
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simplicity, then we can use the method of Lagrange multipliers and Lagrangian 

reduction to find the necessary conditions for the optimal trajectories of the 

following optimal control problem: 

  

Plate Ball Problem 

       Given two points q0, q1 ∈  ℝ2
 × SO(3), find the optimal control curves (x(t), 

y(t)) ∈ ℝ2
 that steer the system from q0 to q1 and minimizes  

1

2
[(𝑥 )21

0
 + (𝑦) 2 ] dt, 

subject to the constraints 

𝑔 𝑔−1 = −𝑦  e1 + 𝑥 e2 + ce3 + Ω𝑥e1 + Ω𝑦e2,                (5.3.3) 

where, again, eɑ is the standard basis of so(3) . 

Following the reduced Lagrangian optimization method developed in the preceding 

section, we 

define a new Lagrangian ℒ by 

ℒ = 
1

2
 [(𝑥 )2+ (𝑦) 2 ] + λɑξɑ + λ1𝑦  – λ2𝑥   - λ3𝑐 – Ωλ1𝑥 – Ωλ2𝑦,      (5.3.4) 

 

where λ(t) ∈ so(3) . 

By the preceding Theorem, we know that any the reduced optimal curve (x(t), y(t), 

𝑥 (t), 𝑦 (t), ξɑ  (t)) must satisfy the reduced Euler Lagrangian equations. Simple 

computations show that 

∂ℒ

𝜕𝑥 
 = 𝑥  – λ2 = 𝜌1 

∂ℒ

𝜕𝑥
 = – Ωλ1 

∂ℒ

𝜕𝑦 
 = 𝑦  + λ1 = 𝜌2 

∂ℒ

𝜕𝑦
 = – Ωλ2 

∂ℒ

𝜕ξb
 = λb. 



  )120(  

 

Therefore 

                                 𝜌 1 = – Ωλ1 

                                 𝜌 2 = – Ωλ2,  

and  

                                 λ b = 𝐶𝑑𝑏
𝑎 λ𝑎ξ

d , 

that is:  

λ 1 = λ3ξ
2 – λ2ξ

3 = λ3(𝜌1 + λ2 + Ωy) - cλ2 

λ 2 = -λ3ξ
1 + λ1ξ

3 = λ3(𝜌2 – λ1 - Ωx) + cλ1 

λ 3 = λ2ξ
1 - λ1ξ

3 = -(λ3𝜌1 + λ2 𝜌2) + Ω(λ2x+ λ1y).             (5.3.5) 

In the special case where c = 0 (no drift) and Ω = 0 (no rotation), we have 

𝜌 1 = 0 

𝜌 2 = 0           

λ 1 = λ3(𝜌1 + λ2) 

λ 2 = λ3(𝜌2 – λ1) 

λ 3 = - (λ1𝜌1 + λ2𝜌2).                                     (5.3.6) 

which gives the same result. [2] 

 

5.4 Optimal Control of the Snakeboard 

The snakeboard is a modified version of a skateboard in which the front and back 

pairs of wheels are independently actuated. The extra degree of freedom enables 

the rider to generate forward motion by twisting their body back and forth, while 

simultaneously moving the wheels with the proper phase relationship.  

The snakeboard is modeled as a rigid body (the board) with two sets of 

independently actuated wheels, one on each end of the board. The human rider is 

modeled as a momentum wheel which sits in the middle of the board and is 

allowed to spin about the vertical axis. Spinning the momentum wheel causes a 
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counter-torque to be exerted on the board. The configuration of the board is given 

by the position and orientation of the board in the plane, the angle of the 

momentum wheel, and the angles of the back and front wheels. Thus the 

configuration space is Q = SE(2)×S
1
 ×S

1
 ×S

1
. Let (x, y, θ) represent the position 

and orientation of the center of the board, 𝜓 the angle of the momentum wheel 

relative to the board, and ϕ1 and ϕ2 the angles of the back and front wheels, also 

relative to the board. Take the distance between the center of the board and the 

wheels to be r. 

The Lagrangian for the snakeboard consists only of kinetic energy terms and can 

be written as 

L(q, 𝑞 ) = 
1

2
𝑚(𝑥 2 + ẏ

2
) + 

1

2
𝐽𝜃 2 + 

1

2
𝐽0(𝜃  + 𝜓 )2

 + 
1

2
𝐽1(𝜃  + 𝜙 1)

2
 + 

1

2
𝐽2(𝜃  + 𝜙 2)

2
,    (5.4.1) 

where m is the total mass of the board, J is the inertia of the board, J0 is the inertia 

of the rotor and Ji, i = 1, 2, is the inertia corresponding to 𝜙i. The Lagrangian is 

independent of the configuration of the board and hence it is invariant to all 

possible group actions. 

The rolling of the front and rear wheels of the snakeboard is modeled using 

nonholonomic constraints which allow the wheels to spin about the vertical axis 

and roll in the direction that they are pointing. The wheels are not allowed to slide 

in the sideways direction. This gives constraint one forms 

ω1(q) = -sin(𝜃 + 𝜙1)dx + cos(𝜃 + 𝜙1)dy -  r cos 𝜙1d𝜃 

ω2(q) = -sin(𝜃 + 𝜙2)dx + cos(𝜃 + 𝜙2)dy  +  r cos 𝜙2d𝜃.           (5.4.2) 

These constraints are invariant under the SE(2) action given by 

(x, y, 𝜃, 𝜓,𝜙1, 𝜙2) ↦ (xcosα – ysinα + ɑ, xsinα + ycosα + b, 𝜃 + α, , 𝜓, 𝜙1, 𝜙2), 

(5.4.3) 

 where (a, b, α) ∈ SE(2). The constraints determine the kinematic distribution Dq: 

Dq = span {
∂

∂𝜓
, 

∂

∂𝜙1
, 

∂

∂𝜙2
, ɑ

∂

∂𝑥
, 𝑏

∂

∂𝑦
, 𝑐

∂

∂𝜃
}, 
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where a, b, and c, are given by 

ɑ = -r(cos𝜙1cos(𝜃 + 𝜙2) + cos𝜙2cos(𝜃 + 𝜙1)) 

b = -r(cos𝜙1sin(𝜃 + 𝜙2) + cos𝜙2sin(𝜃 + 𝜙1)) 

c = sin(𝜙1−𝜙2).                                                   (5.4.4) 

The tangent space to the orbits of the SE(2) action is given by 

Tq(Orb(q)) = span{
∂

∂𝑥
, 
∂

∂𝑦
, 
∂

∂𝜃
} 

The intersection between the tangent space to the group orbits and the constraint 

distribution is 

thus given by 

Dq∩ Tq(Orb(q)) = ɑ
∂

∂𝑥
, 𝑏

∂

∂𝑦
, 𝑐

∂

∂𝜃
 .                               (5.4.5) 

The momentum can be constructed by choosing a section of D ∩ TOrb regarded as 

a bundle over Q. Since Dq ∩  TqOrb(q) is one-dimensional, the section can be 

chosen to be 

ξ𝑄
𝑞

 = ɑ
∂

∂𝑥
 + 𝑏

∂

∂𝑦
 + 𝑐

∂

∂𝜃
, 

which is invariant under the action of SE(2) on Q. The corresponding Lie algebra 

element in se(2), ξ𝑞 , is 

ξ𝑞  = (ɑ + yc)ex + (b - xc)ey + ce𝜃 

where ex is the basis element of the Lie algebra corresponding to translations in the 

x direction (and whose corresponding infinitesimal generator is ∂ ∂𝑥 ), etc. The 

nonholonomic momentum map is thus given by 

p = J
nh

(ξ𝑞 ) = 
∂L

∂𝑞 
i (ξ𝑄

𝑞
)
i 

= mɑ𝑥  + mb𝑦  + Jc𝜃  + J0c(𝜃  + 𝜓 ) + J1c(𝜃  + 𝜙 1) + J2c(𝜃  + 𝜙 2).             (5.4.6) 

Here a simplification is made in which we shall also assume, namely 𝜙1= − 𝜙2, J1 

= J2. The parameters are also chosen such that J + J0 + J1 + J2 = mr
2
 (which 
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eliminates some terms in the derivation but does not affect the essential geometry 

of the problem). Setting 𝜙 = 𝜙1= − 𝜙2, the constraints plus the momentum are 

0 = - sin(𝜃 + 𝜙)𝑥  + cos(𝜃 + 𝜙)𝑦  - rcos𝜙𝜃  

0 = - sin(𝜃 + 𝜙)𝑥  + cos(𝜃 + 𝜙)𝑦  - rcos𝜙𝜃  

        p = -2mr cos
2(𝜙)cos(𝜃)𝑥  - 2mr cos

2(𝜙)sin(𝜃)𝑦  

+ 2mr
2
cos(2𝜙)𝜃  + J0sin(2𝜙)𝜓 . 

Adding, subtracting, and scaling these equations, we can write (away from 𝜙 = 

𝜋/2), 

 

cos 𝜃 𝑥 +  sin(𝜃)𝑦 

−sin 𝜃 𝑥  +  cos(𝜃)𝑦 

𝜃 
  +  

𝐽𝑂

2𝑚𝑟
sin⁡(2𝜙)𝜓 

0
𝐽𝑂

2𝑚𝑟2
sin2⁡(2𝜙)𝜓 

  =  

−1

2𝑚𝑟
p

0
𝑡𝑎𝑛𝜙

2𝑚𝑟2
p

 .               (5.4.7) 

These equations have the form 

𝑔−1𝑔  +  𝐴𝑙𝑜𝑐 (𝑟)𝑟  = Γ(𝑟)𝑝 

where 

                       𝐴𝑙𝑜𝑐 =  
𝐽𝑂

2𝑚𝑟
sin⁡(2𝜙)𝑒𝑥𝑑𝜓 + 

𝐽𝑂

2𝑚𝑟2
sin2⁡(𝜙)𝑒𝜃𝑑𝜓 

Γ(𝑟) =  
−1

2𝑚𝑟
𝑒𝑥  + 

1

2𝑚𝑟2
tan⁡(𝜙)𝑒𝜃 . 

These are precisely the terms which appear in the nonholonomic connection 

relative to the 

𝑝   = 
∂L

∂𝑞 
i  

𝑑

𝑑𝑡
ξ𝑞  

𝑄

𝑖
 

= 4mr cos(𝜃) cos(𝜙) sin(𝜙)𝑥 𝜙  + 4mr sin(𝜃) cos(𝜙) sin(𝜙)𝑦 𝜙  

+ 2J0cos(2𝜙)𝜙 𝜓  + 2m𝑟2 cos(2𝜙) 𝜃 𝜙  

-2mr cos(𝜃) 𝑐𝑜𝑠2(𝜙) 𝑦 𝜃  + 2mr sin(𝜃) 𝑐𝑜𝑠2(𝜙) 𝑥 𝜃  

Solving for the group velocities 𝑥  , 𝑦 , 𝜃  from the equations which define the 

nonholonomic connection, the momentum equation can be rewritten as 
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𝑝  = 2J0𝑐𝑜𝑠
2(𝜙)𝜙 𝜓  - tan(𝜙) p𝜙  

This version of the momentum equation corresponds to the coordinate form in 

body representation but it contains no terms which are quadratic in p, due to the 

fact that g
q
 is one dimensional. 

These equations describe how paths in the base space, parameterized by r ∈ S
1
 × S

1
 

× S
1
 (in fact, the base space is S

1
 × S

1
 if we assume 𝜙1= − 𝜙2), are lifted to the fiber 

SE(2). The utility of these equations is that they greatly simplify the process of 

solving for the motion of the system given the base space trajectory. 

Now we are ready to apply the method of reduced Lagrangian optimization to find 

the optimal trajectories for the snakeboard. Clearly the snakeboard is a simple 

nonholonomic mechanical system with symmetry as defined earlier and which also 

has a trivial principal bundle structure. Moreover, the control forces are only 

applied to the shape variables which we have full control of. Let the cost function 

be 𝐶 (𝑟 ) = 
1

2
[(𝜓 )2

+(𝜙) 2
] for simplicity. We can use the method of Lagrange 

multipliers and Lagrangian reduction to find the necessary conditions for the 

optimal trajectories of the following optimal control problem: 

 

Optimal Control Problem for the Snakeboard 

     Given two points q0, q1 ∈ SE(2) × S
1
 × S

1
, find the optimal control curves (𝜓(t), 

𝜙 (t)) ∈ S
1
 × S

1
 that steer from q0 to q1 and minimize 

 
1

2
[(𝜓 )21

0
 + (𝜙) 2 ]dt, 

subject to the constraints 

                                         𝑔−1𝑔 +  𝐴𝑙𝑜𝑐 (𝑟)𝑟  = Γ(𝑟)𝑝 

𝑝  = 2J0𝑐𝑜𝑠
2(𝜙)𝜙 𝜓  - tan(𝜙) p𝜙  

where 

𝐴𝑙𝑜𝑐 =  
𝐽𝑂

2𝑚𝑟
sin⁡(2𝜙)𝑒𝑥𝑑𝜓 + 

𝐽𝑂

2𝑚𝑟2
sin2⁡(𝜙)𝑒𝜃𝑑𝜓 
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Γ(𝑟) =  
−1

2𝑚𝑟
𝑒𝑥  + 

1

2𝑚𝑟2
tan⁡(𝜙)𝑒𝜃 . 

Following the general procedures in the previous section, we define a new L by 

ℒ = 
1

2
 ((𝜓 )2+ (𝜙) 2 ) + λɑξ

ɑ - 
𝐽𝑂

2𝑚𝑟
λ1sin⁡(2𝜙)𝜓   + 

𝐽𝑂

2𝑚𝑟2
λ3sin2⁡(𝜙)𝜓  

+ 
𝐽𝑂

2𝑚𝑟
λ1𝑝 - 

𝐽𝑂

2𝑚𝑟2
λ3tan⁡(𝜙)𝑝 + 𝑘𝑝  - 2𝐽𝑂𝑘 cos2(𝜙)𝜙 𝜓  + 𝑘 tan⁡(𝜙)𝑝𝜙  

where ξ = 𝑔−1𝑔  ∈ g, λ(t) ∈ g* and k(t) ∈ ℝ1
 are Lagrange multipliers. Here ξɑ and 

λɑ  are the components of ξ  and λ  in the standard basis of se(2) and se(2)_ 

respectively. 

We know that the reduced optimal curves (𝜓(t), 𝜙(t), 𝜓  (t), 𝜙 (t), ξɑ(t)) must satisfy 

the reduced Euler Lagrangian equations for ℒ . After some computations, we find 

∂ℒ

𝜕𝜓 
 = 𝜓  - 

𝐽𝑂

2𝑚𝑟
λ1sin⁡(2𝜙) + 

𝐽𝑂

2𝑚𝑟2
λ3sin2⁡(𝜙) - 2𝐽𝑂𝑘 cos2(𝜙)𝜙  

∂ℒ

𝜕𝜓
 = 0 

∂ℒ

𝜕𝜙 
 = 𝜙  - 2𝐽𝑂𝑘 cos2(𝜙)𝜓  + 𝑘 tan⁡(𝜙)𝑝 

∂ℒ

𝜕𝜙
 = - 

𝐽𝑂

𝑚𝑟
λ1cos⁡(2𝜙)𝜓  + 

𝐽𝑂

𝑚𝑟2
λ3sin⁡(2𝜙)𝜓  - 

𝐽𝑂

2𝑚𝑟2
λ3sec2⁡(𝜙)𝑝 

          + 2𝐽𝑂𝑘 cos(2𝜙)𝜙 𝜓  + 𝑘 sec2⁡(𝜙)𝑝𝜙  

∂ℒ

𝜕𝑝 
 = 𝑘 

∂ℒ

𝜕𝑝
 = - 

𝐽𝑂

2𝑚𝑟
λ1 + 

𝐽𝑂

2𝑚𝑟2
λ3tan⁡(𝜙) - 𝑘⁡tan(𝜙)𝜙  

∂ℒ

𝜕ξb
 = λb . 

Substitute the above calculations into the reduced Euler Lagrangian equations and 

simplify, giving 

𝜓  - 
𝐽𝑂

2𝑚𝑟
λ1
 sin⁡(2𝜙) - 

𝐽𝑂

𝑚𝑟
λ1cos⁡(2𝜙)𝜙  + 

𝐽𝑂

𝑚𝑟2
λ3sin⁡(2𝜙)𝜙  

+ 
𝐽𝑂

𝑚𝑟2
λ3
 sin2⁡(𝜙) - 2𝐽𝑂𝑘 cos2 𝜙𝜙  + 2𝐽𝑂𝑘 sin(2𝜙)(𝜙)2  - 2𝐽𝑂𝑘 cos2(𝜙)𝜙  = 0 

𝜙  - 2𝐽𝑂𝑘 cos2(𝜙)𝜓  - 2𝐽𝑂𝑘 cos2(𝜙)𝜓  + 𝑘 tan⁡(𝜙)𝑝+ 𝑘tan⁡(𝜙)𝑝  
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= - 
𝐽𝑂

𝑚𝑟
λ1cos⁡(2𝜙)𝜓  + 

𝐽𝑂

𝑚𝑟2
λ3sin⁡(2𝜙)𝜓  - 

𝐽𝑂

2𝑚𝑟2
λ3 sec2 𝜙 𝑝. 

Also, we have 

𝑘  = 
𝐽𝑂

2𝑚𝑟
λ1 -  

𝐽𝑂

2𝑚𝑟2
λ3tan⁡(𝜙) + 𝑘⁡tan(𝜙)𝜙  

λ1
  = λ2ξ

3 = λ2 ( - 
𝐽𝑂

𝑚𝑟2
sin2⁡(𝜙)𝜓  + 

1

2𝑚𝑟2
tan⁡(𝜙)𝑝) 

λ2
  = −λ1ξ

3 = −λ1 ( - 
𝐽𝑂

𝑚𝑟2
sin2⁡(𝜙)𝜓  + 

1

2𝑚𝑟2
tan⁡(𝜙)𝑝) 

λ3
  = −λ2ξ

1 = −λ2 ( 
𝐽𝑂

2𝑚𝑟
sin⁡(2𝜙)𝜓  + 

1

2𝑚𝑟
𝑝) 

𝑝  = 2𝐽𝑂cos2⁡(𝜙)𝜙 𝜓  - tan 𝜙 𝑝𝜙 . 

After eliminating λ1
 , λ3

 , 𝑘  and 𝑝  from the first set of two equations, we finally 

obtain 

𝜓  - 
𝐽𝑂

2𝑚𝑟
λ1(1+3 cos⁡(2𝜙))𝜙  + 

3𝐽𝑂

2𝑚𝑟2
λ3sin⁡(2𝜙)𝜙  + 𝐽𝑂𝑘 sin(2𝜙)(𝜙)2  - 

2𝐽𝑂𝑘 cos2(𝜙)𝜙  = 0 

𝜙  - 
𝐽𝑂

𝑚𝑟
λ1sin2⁡𝜙𝜓  + 2

𝐽𝑂

𝑚𝑟
λ1tan⁡(𝜙)𝑝 + 

1

2𝑚𝑟2
λ3𝑝 - 

𝐽𝑂

2𝑚𝑟2
λ3sin⁡(2𝜙)𝜓  - 

2𝐽𝑂𝑘cos2⁡(𝜙)𝜓  = 0. 

(5.4.8) 

5.5 Optimal Control on a Lie Group 

Let us consider the following optimal control problem on a finite dimensional Lie 

group G which has been used to model various problems in several research areas 

(e.g. the plateball problem, and the landing tower problem). While it is possible to 

model this class of problems as a special case of the optimal control of 

nonholonomic system on a trivial principal bundle and apply reduced Lagrangian 

optimization, it may be useful to provide a more direct proof that uses simpler 

machinery. 
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Optimal Control Problem for a Lie Group Given a left invariant control system 

on G, 𝑔  = 𝑔 · 𝜉𝑢 , where 𝜉𝑢  = 𝑒0 +  𝑢𝑖𝑚
𝑖=1 (𝑡) 𝑒𝑖 , find the optimal controls u(·) that 

steer from 𝑔0 to 𝑔1 and  𝐿(𝑢)
1

0
dt  

Here {𝑒0, 𝑒1, . . . , 𝑒𝑚} spans an (m + 1)-dimensional subspace of the whole Lie 

algebra 𝔤 of G, m+1 ≤ n = dim (𝔤), u(·) is a vector valued control function with 𝑢𝑖  

(t) ∈ ℝ, L is a cost function on ℝ𝑚   which is the space of values of controls, and 

L(u) = 
1

2
 𝐼𝑖(𝑢

𝑖𝑚
𝑖=1 )2 with 𝐼𝑖  >  0. 

To apply the method of Lagrangian reduction, we recast the above optimal control 

problem as a constrained variational problem. For simplicity of exposition, we will 

deal with the vector space case first where there is no 𝑒0 term and will take up the 

affine case later. 

Let 𝐶 be the m-dimensional subspace of 𝔤 spanned by {𝑒0, 𝑒1, . . . , 𝑒𝑚}. We make 

the following points 

(i) 𝜉𝑢  =  𝑢𝑖𝑚
𝑖=1 (𝑡) 𝑒𝑖  lies in C; 

(ii) if we define 𝐿1  = 𝐿 𝑜  𝜙  where 𝐿  = 
1

2
 𝐼𝑖(𝑢

𝑖𝑚
𝑖=1 )2  with 𝐼𝑖  > 0 and 𝜙  = 

(𝑒1 , . . . , 𝑒𝑚) with {𝑒1, . . . , 𝑒𝑚} as the dual basis of  {𝑒1, . . . , 𝑒𝑚}, then 𝐿1: 

𝐶 → ℝ is nothing but 
1

2
 of the square of a metric on 𝐶 which is intrinsically 

defined and does not depend on the basis chosen; 

(iii) we can extend 𝐿1 to be half of the square of a metric 𝐿  on 𝔤 such that 𝐿  = 𝐿1 

on 𝐶. As we will see, the necessary conditions for an optimal control do not 

depend on how the extension is done. 

(iv) 𝜉𝑢  - 𝑒0 =  𝑢𝑖𝑚
𝑖=1 (𝑡) 𝑒𝑖 . 

Now it should be clear that the original problem is equivalent to the following 

constrained variational problem: 
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Constrained Variational Problem for Optimal Control on Lie Groups Given 

an m-dimensional subspace 𝐶 of  , find the optimal control curves 𝜉 - 𝑒0 ∈ 𝐶 such 

that 𝑔 (0) = 𝑔0, 𝑔 (1) = 𝑔1 and minimize  𝐿 (𝜉 −  𝑒0)
1

0
dt. 

Since we want to use the method of Langrangemultipliers to relax the constraint on 

the variations, we define a new Langrangian 

ℒ = 𝐿 (𝜉 −  𝑒0) + λ(t)(𝜉 −  𝑒0) = 𝐿 (𝜉) + λ  (t)(𝜉)      (5.5.1) 

where λ(t) lies in the annihilator 𝐶0 of 𝐶 furthermore 𝜏(𝜉) = 𝜉 − 𝑒0, 𝐿  = 𝐿  𝑜 𝜏. 

Theorem 5.5.1 Optimization Theorem for Nonholonomic Systems on Lie 

Groups. If 𝜉  is ɑ (regular) optimal control curve in 𝐶 + 𝑒0= {𝜉 ∈ 𝔤: 𝜉 = 𝜉𝑐  + 𝑒0, 𝜉𝑐  

∈  𝐶  }, then there exists ɑ λ(t)   ∈  𝔤∗  such that  𝜉  satisfies the Euler-Poincare 

equation:  

𝑑

dt
 
𝛿𝐿 

𝛿𝜉
+ λ   =  ad𝜉

∗  
𝛿𝐿 

𝛿𝜉
+ λ                      (5.5.2) 

Proof If 𝜉 (t) is an optimal control curve in 𝐶  + 𝑒0 , then by the Lagrangian 

reduction method, 𝜉 (t) is a solution of the following variational problem 

𝛿  ℒ(𝜉) 
1

0
dt = 𝛿  𝐿 (𝜉)  +  λ  (𝜉)

1

0
dt = 0 

for some λ ∈ 𝔤∗, where the variations take the form 𝛿𝜉 = Ω  + [𝜉, Ω] with  = 𝑔−1 · 

𝛿𝑔 arbitrary except vanishing at the endpoints. Since 

0 = 𝛿  𝐿 (𝜉)  +  λ  (𝜉)
1

0
dt 

=   
𝛿𝐿 

𝛿𝜉
𝛿𝜉 + λ(𝛿𝜉) 

1

0
 dt 

=   
𝛿𝐿 

𝛿𝜉
+ λ 

1

0
(Ω  +  [𝜉, Ω]) dt 

=   − 
𝑑

𝑑𝑡
 
𝛿𝐿 

𝛿𝜉
+ λ + ad𝜉

∗  
𝛿𝐿 

𝛿𝜉
+ λ   

1

0
Ωdt, 

ad𝜉
∗  

𝛿𝐿 

𝛿𝜉
+ λ   
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We conclude that 𝜉 (𝑡) satisfies  

𝑑

𝑑𝑡
 
𝛿𝐿 

𝛿𝜉
+ λ = ad𝜉

∗  
𝛿𝐿 

𝛿𝜉
+ λ   

Corollary 5.5.2 Given a left invariant control system on G, 𝑔  = g · 𝜉𝑢 , where 

𝜉𝑢  = 𝑒0 + 𝑢𝑖(𝑡) 𝑒𝑖
𝑚
𝑖=1 . 

If 𝜉 (·)  is an optimal control, then 

𝑢−𝑖(𝑡) = 
𝜇 𝑖

𝐼𝑖
 

where i = 1, . . . ,m, and μi, i = 1, . . . ,m is the solution of the following system of 

differential equations 

𝜇  = 𝐶𝑗𝑖
𝑘𝜇𝑘𝜉𝑢

𝑗
 

where i, j, k = 0, . . . , n − 1, and where 𝐶𝑗𝑖
𝑘  are the structure constants of 𝔤. 

Proof Extend {e0, e1, . . . , em } to a basis {e0, . . . , en−1} and let {e0, . . . , en−1} 

be its dual basis. 

(i) For i = 1, . . . ,m, and 𝜉𝑢  ∈ 𝑒0 + 𝐶, we have 

𝛿𝐿 

𝛿𝜉𝑢
𝑖  = 

𝜕𝐿

𝑢 𝑖
 = 𝐼𝑖𝑢

𝑖  

because 𝐿 (𝜉𝑢) = 𝐿 𝑜 𝜙 𝑜 𝜏 (𝜉𝑢) = 𝐿(𝑢) and 𝜉𝑢
𝑖  = 𝑢𝑖 ; furthermore,  

λ𝑖  = 0,  𝑖 = 1,… ,𝑚 

because λ lies in the annihilator 𝐶𝑜 . 

(ii) If we set 

𝜇𝑖  = 
𝛿𝐿 

𝛿𝜉𝑢
𝑖  , 𝑖 = 1,… ,𝑚, 

and  

𝜇𝑖  = 
𝛿𝐿 

𝛿𝜉𝑢
𝑖  +λ𝑖  , 𝑖 = 𝑚 + 1,… , 𝑛 − 1 0, 

and write out the Euler-Poincare equation using the above coordinates, we 

will get the desired system of differential equations.  [11] 
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Remarks 

1. From the above computations, we can see that the necessary conditions for an 

optimal control u  (·) depend only on L and have nothing to do with how the 

extension is done, because not only  

𝑢𝑖(𝑡) = 𝜇𝑖(𝑡)/𝐼𝑖 , but also 𝜇𝑖  = 𝐶𝑗𝑖
𝑘𝜇𝑘𝜉𝑢

𝑗
 do not depend on 𝐿 . 

2. The necessary conditions given in the above Corollary are the same as those 

in Krishnaprasad [1994]: 

𝑢𝑖  = 
𝜇 𝑖

𝐼𝑖
          𝑖 = 1,… ,𝑚, 

𝜇𝑖  = - 𝜇𝑘𝐶𝑖𝑗
𝑘 𝛿𝑕

𝛿𝜇 𝑖
 𝑖, 𝑗, 𝑘 = 0, … , 𝑛 − 1, 

where 

𝑕 = 𝜇0 + 
1

2
 

𝜇 𝑖
2

𝐼𝑖

𝑚
𝑖=1 . 

This is because 𝐶𝑗𝑖
𝑘  = - 𝐶𝑖𝑗

𝑘  and 

𝛿𝑕

𝛿𝜇 𝑖
 =  

1
𝜇 𝑗

𝐼𝑗

0

  = 𝑢𝑗     

𝑗 =   0
𝑗 = 1, … ,𝑚

𝑗 = 𝑚 + 1,… , 𝑛 − 1

   = 𝜉𝑢
𝑗
 


