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Chapter 4 

 

Control of Mechanical and 

Nonholonomic Systems 

Analysis and synthesis of control strategies for nonlinear systems with nonholonomic 

constraints are the subject of extensive research. These systems are typical of 

mechanical applications such as wheeled mobile robots (rolling constraints), free-

space manipulators (conservation of angular momentum) and redundant manipulators 

subject to a given inverse kinematic control. From the theoretical point of view, the 

control of nonholonomic systems presents interesting aspects. First, the control 

problem is a true nonlinear one since a nonlinear nonholonomic system is not linearly 

controllable. Moreover, controllability in the nonlinear setting - which is strictly 

related to the nonholonomic nature of the system - does not imply stabilizability by 

smooth time-invariant feedback. As a consequence, a combination between 

feedforward (off-line planning) and feedback laws of a more general kind (e.g. 

discontinuous or periodic time-varying control is necessary. 

 

4.1 Background in Kinematic Nonholonomic Control Systems 

 

        We provide a summary of recent developments in control of nonholonomic 

systems. It is  is organized so as to give an introduction to nonholonomic control 

systems and where they arise in applications, classification of models of 

nonholonomic control systems, control problem formulations, motion planning 

results, stabilization results, and current and future research topics. 
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4.1.1 Nonholonomic Motion Planning 

 

In nonholonomic motion planning one’s goal is to use open-loop control to reach a 

desired point in phase space. Nonholonomic systems, by virtue of the nonintegrable 

nature of their constraints, are amenable to rather elegant path planning algorithms. 

The basic situation considered is usually that of kinematic control systems, where the 

vector fields defining the system velocities do not span the state space, but 

nonetheless one can move from any point of the space to any other. This is, as we 

have seen, a fundamental property of nonholonomic systems. 

We shall consider the class of completely controllable kinematic systems of the form 

                  𝑥 =   𝑢𝑖 𝑡 𝑔𝑖 𝑥 ,

𝑚

𝑖

                                                                                       (4.1.1) 

Where 𝑥 ∈  𝑅𝑛  for a suitable class of functions 𝑔𝑖  on 𝑅𝑛  and a suitable class of 

function 𝑢𝑖  on 𝑅+ . 

The motion planning problem is to find an efficient algorithm that gives for every 

pair of points  p and q an open loop control 𝑡 →  𝑢(𝑡) = (𝑢1(𝑡), . . . , 𝑢𝑛(𝑡)) that 

steers the system from p to q. 

 

4.1.1 Example (Generalized Heisenberg System). We consider first a 

generalization of the Heisenberg system. The system is the following: 

                                                                𝑥 = 𝑢                                                          (4.1.2) 

                                                                𝑌 = 𝑥 𝑢𝑇 −  𝑢 𝑥𝑇                                      (4.1.3) 

where 𝑥, 𝑢 ∈  𝑅𝑛  and  𝑌 ∈ 𝑠𝑜 𝑛 , 𝑛 ≥ 2. Here 𝑠𝑜 𝑛  is the Lie algebra of 𝑛 × 𝑛 

skew-symmetric matrices, and elements of 𝑅𝑛  are viewed as column vectors. 

In terms of components, the last equation reads 

                                          𝑌 𝑖𝑗 =  𝑥𝑖𝑢𝑗 − 𝑥𝑗𝑢𝑖  .                                                            (4.1.4) 

The importance of this system is that it is a canonical form for a class of controllable 

systems of the form 𝑥 =  𝐵(𝑥)𝑢, 𝑢 ∈  𝑅𝑛 , 𝑥 ∈  𝑅𝑛(𝑛+1)/2. 
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The class in question is as follows: Let 𝐸0 be the subbundle of the tangent bundle 

spanned by the control fields, and define the first derived algebra to be given by 𝐸1 = 

𝐸0 + [𝐸0, 𝐸0]. Then this system is a normal form for the controllable systems of this 

type, where the first derived algebra of control vector fields spans the tangent space 

𝑇𝑅𝑛(𝑛+1)/2 at any point. 

That is, Brockett showed that such a system can be transformed to the form (4.1.2)–

(4.1.3) up to a suitable order in a neighborhood of a given point such as the origin. 

The key to controlling this system is being able to change 𝑌 without changing 𝑥. 

Since 𝑥 is directly controlled, it is easily changed. We present here a method of 

changing 𝑌 using sinusoids, which is motivated by the optimal control problem.  

To solve the motion planning problem for this system, the idea is to proceed along 

loops in 𝑥- space, which gradually drives one through 𝑌- space. This is just a 

reflection of the holonomy in the system. Motivated by the fact that the optimal 

solution of the Heisenberg system gives a 𝑢 that consists of sinusoids, we choose the 

control law 

 

𝑢𝑖 =  𝑎𝑖𝑘
𝑘

sin 𝑘𝑡 +   𝑏𝑖𝑘 cos 𝑘𝑡,            𝑘 = 1,2, … . ,

𝑘

                           (4.1.5)  

where 𝑎𝑖𝑘  and 𝑏𝑖𝑘  are real numbers. Since 𝑥 𝑖 =  𝑢𝑖  , integration gives 

 

𝑥𝑖 = − 
𝑎𝑖𝑘
𝑘

𝑘

cos 𝑘𝑡 +   
𝑏𝑖𝑘
𝑘

sin 𝑘𝑡 +  𝐶𝑖
𝑘

,                                                           (4.1.6)  

where 𝐶𝑖  is a constant depending on the initial value of 𝑥. 

Substituting these equations for 𝑥𝑖(𝑡) and 𝑢𝑖(𝑡)  into equation (4.1.4) and integrating 

yields 

      𝑌𝑖𝑗  2𝜋 =   
2𝜋

𝑘
  𝑏𝑖𝑘  𝑎𝑗𝑘 − 𝑏𝑗𝑘  𝑎𝑖𝑘 +  𝑌𝑖𝑗  0 ,                                     (4.1.7)

𝑘
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since all integrals except those of the squares of cosine and sine vanish. Under this 

input, the 𝑥′𝑠 remain unchanged. 

Thus, this gives the following solution to the motion planning problem: 

First drive the 𝑥 to the desired final value; then use the control to drive 𝑌 to the 

desired final value.                                                                                                  ♦ 

 

Chained Systems. Similar algorithms may also be given for higher order systems. 

One such class that may be easily handled is the class of chained systems, which are 

systems of the form 

𝜉1
 =  𝑣1, 

𝜉2
 =  𝑣2 , 

𝜉3
 =  𝜉2𝑣1, 

. . . 

𝜉𝑛 =  𝜉𝑛−1𝑣1. 

 

(4.1.8) 

One can show that a large class of kinematic two-input systems may be put into this 

form. To make this specific, we state the following result and then illustrate the proof 

of the theorem for the Heisenberg system. 

 

4.1.2 Proposition. Consider a controllable system 

        𝑥  =  𝑢1𝑔1 𝑥 +  𝑢2𝑔2 𝑥 ,                                                                   (4.1.9) 

where 𝑔1  and 𝑔2 are linearly independent and smooth. Define the distributions 

𝛥0 ≡  𝑠𝑝𝑎𝑛   𝑔1 , 𝑔2 , 𝑎𝑑𝑔1 𝑔2 ,· · · , 𝑎𝑑𝑔1
𝑛−2  𝑔2  ,     

, 
𝛥1 ≡  𝑠𝑝𝑎𝑛   𝑔2 , 𝑎𝑑𝑔1 𝑔2 ,· · · , 𝑎𝑑𝑔1

𝑛−2  𝑔2  ,             

          
𝛥2 ≡  𝑠𝑝𝑎𝑛   𝑔2 , 𝑎𝑑𝑔1 𝑔2 ,· · · , 𝑎𝑑𝑔1

𝑛−3  𝑔2  .          

(4.1.10) 
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If there exists an open set U ∈ 𝑅𝑛  such that 𝛥0(𝑥)  =  𝑅𝑛  for all  ∈  𝑈, 𝛥1, and 𝛥2 

are involutive on U, and there exists a smooth function 𝑕1 ∶  𝑈 →  𝑅 such that 

𝑑𝑕1  ·  𝛥1  =  0 and £𝑔1𝑕1  =  1, then there exists a local feedback transformation 

 

𝜉 =  ∅ 𝑥 ,                   𝑢 =  𝛽 𝑥 𝑣                                         (4.1.11) 

such that the transformed system is in the chained form (4.1.8). 

 

4.1.3 Example. Consider now the Heisenberg system 

𝑥 =  𝑢1 , 

𝑦 =  𝑢2 , 

𝑧 =  𝑥𝑢2  −  𝑦𝑢1 . 

(4.1.12) 

In this case 𝛥0  =  𝑅3, since the system is controllable. Also, 

Δ1 =  𝑠𝑝𝑎𝑛  
 𝜕

𝜕𝑥2
+  𝑥1

 𝜕

𝜕𝑥3
 , 2

 𝜕

𝜕𝑥3
  , 

 Δ2 =  𝑠𝑝𝑎𝑛  
 𝜕

𝜕𝑥2
+  𝑥1

 𝜕

𝜕𝑥3
    .               

 (4.1.13) 

Now we choose 𝜉1 = 𝑕1 =  𝑥1. In the following the prescription, we construct a 

function 𝑕2 such that 𝑑𝑕2 ·Δ2 = 0 and 𝑑𝑕2. 𝑎𝑑𝑔1
𝑛−2  𝑔2 ≠ 0. This means that 

                                  
 𝜕𝑕2

𝜕𝑥2
+  𝑥1

 𝜕𝑕2

𝜕𝑥3
= 0,

 𝜕𝑕2

𝜕𝑥3
 ≠ 0,                                        4.1.14  

which is satisfied by the function  

𝑕2  =  𝑥3 − 𝑥1𝑥2 . 

Now set 

          𝜉2  =  £𝑔1𝑕2  =  −2𝑥2                                                    (4.1.15) 

and 

𝑣1  =  𝑢1 ,         𝑣2  =   £2𝑔
2  𝑕2  𝑢1  +   £𝑔2£𝑔1𝑕2 𝑢2   
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                      =  −2𝑢2 .                                                           (4.1.16) 

Then 

𝜉 1  = 𝑥 1  =  𝑢1  =  𝑣1, 

𝜉 2  =  −2𝑥 2  =  𝑣2 ,       

𝜉 3  =  𝑥 3  −  𝑥 1𝑥2  −  𝑥1𝑥 2  =  −2𝑥2𝑢1  =  𝜉2𝑣1 , 

(4.1.17) 

which puts the system into the chained form desired. 

 

Extended Systems. Aside from such special classes of systems it is possible to use 

rather general motion planning algorithms. One of the key ideas in this work is to use 

an extended system of the form 

𝑥 =  𝑣1𝑔1 𝑥 +  …+  𝑣𝑚𝑔𝑚 𝑥 +  𝑣𝑚+1𝑔𝑚+1 𝑥 +  …

+  𝑣𝑟𝑔𝑟 𝑥 ,                                                                                            (4.1.18) 

where 𝑔𝑚+1 𝑥 ,… , 𝑔𝑟 𝑥   are higher-order Lie brackets of the 𝑔𝑖  chosen so that 

𝑔1 𝑥 , … , 𝑔𝑟 𝑥  span all 𝑅𝑛 . The idea is then to compute a motion controller for the 

extended system (which is easy, since we have an independent control vector field for 

each independent direction in 𝑅𝑛 ) and then use that to construct one for the original 

system. [5] 

 

4.2  Stabilization of the Heisenberg System 

 

Here we are considering a discontinuous approach to the stabilization problem for the 

nonholonomic integrator or Heisenberg system. This is the prototypical example for 

which smooth feedback fails. The idea is to use the natural algebraic structure of the 

system together with ideas from sliding mode theory. Another interesting problem for 

such systems is the problem of tracking. 

𝑥 = 𝑢, (4.2.1) 
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𝑦 = 𝑣, (4.2.2) 

             𝑧 = 𝑥𝑣 − 𝑦𝑢, (4.2.3) 

The problem of stabilizing this system, even locally, is not a trivial task, since, as can 

be easily seen, the linearization in the vicinity of the origin gives the noncontrollable 

system 

𝑥 = 𝑢,  

𝑦 = 𝑣,  

𝑧 = 0,  

The main difficulty is the fact that stabilization of 𝑥 and 𝑦 leads to a zero right-hand 

side of (4.2.3), and therefore, the variable 𝑧 cannot be steered to zero. That simple 

observation implies that to stabilize the system one needs to make 𝑧 converge “faster” 

than 𝑥 and 𝑦. 

We consider the control law 

𝑢 =  −𝛼𝑥 +  𝛽𝑦 𝑠𝑖𝑔𝑛 𝑧 ,                                                                                             (4.2.4) 

𝑣 =  −𝛼𝑦 −  𝛽𝑥 𝑠𝑖𝑔𝑛 𝑧 ,                                                                                             (4.2.5) 

where 𝛼 and 𝛽 are positive constants. 

Let us show that there exists a set of initial conditions such that trajectories starting 

there converge to the origin. To do this, consider a Lyapunov function for the 

(𝑥, 𝑦) −subspace: 

V =  
1

2
 x2  +  y2 .                                                                                (4.2.6) 

 

The time derivative of V along the trajectories of the system (4.2.3) is negative: 

𝑉 =  −𝛼𝑥2  +  𝛽𝑥𝑦 sign 𝑧 −  𝛼𝑦2 −  𝛽𝑥𝑦 sign 𝑧 =  −𝛼 𝑥2  +  𝑦2  

                                                                                  =  −2𝛼𝑉. 

(4.2.7) 

Therefore, under the control 4.2.4, 4.2.5 the variables 𝑥 and 𝑦 are stabilized. 
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Now let us consider the variable 𝑧. Using 4.2.3, 4.2.4, and 4.2.5, we obtain 

𝑧  =  𝑥𝑣 −  𝑦𝑢 =  −𝛽 𝑥2  +  𝑦2 sign 𝑧   

 =  −2𝛽𝑉 sign 𝑧 .                                                                (4.2.8) 

 

Since 𝑉 does not depend on 𝑧 and is a positive function of time, the absolute value of 

the variable 𝑧 will decrease and will reach zero in finite time if the inequality 

2𝛽  𝑉 (𝜏 )𝑑𝜏 >  |𝑧(0)|
∞

0

                                                                    (4.2.9) 

 

holds. If z(0) is such that 

 

2𝛽  𝑉  𝜏  𝑑𝜏 =   𝑧 0  ,
∞

0

                                                              (4.2.10) 

 

then z(t) converges to the origin in infinite time (asymptotically). Otherwise, it 

converges to some constant nonzero value of the same sign as 𝑧(0). 

If the above inequality 4.2.9 holds, the system trajectories are directed to the 

surface 𝑧 =  0, and the variable 𝑧(𝑡) is stabilized at the origin in finite time. (The 

variables 𝑥 and 𝑦, as follows from 4.2.7, always converge to the origin while within 

that surface.) 

 

This phenomenon is known as sliding mode. The manifold 𝑧 =  0 is a stable integral 

manifold of the closed-loop system (4.2.1)–(4.2.3), (4.2.4), (4.2.5). Its characteristic 

feature is reachability in finite time. Using a smooth control, even a control satisfying 

a local Lipschitz condition (in the vicinity of {𝑧 =  0}) such fast convergence cannot 

be achieved. On the other hand, within the sliding manifold {𝑧 =  0} the system 

behavior is described in accordance with the definition for systems of differential 

equations with discontinuous right-hand sides. 

The version of this definition that we are using is as follows: We consider the system 

𝑥  =  𝑓 𝑥 ,                                                                                 (4.2.11) 

with 𝑓(𝑥) a discontinuous function composed of a finite number of functions 
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𝑓 𝑥 ≡  𝑓𝑘 𝑥 𝑓𝑜𝑟 𝑥 ∈ 𝑀𝑘 ,                                                          (4.2.12) 

where the open regions 𝑀𝑘  have piecewise smooth boundaries 𝜕𝑀𝑘 . Then we define 

the right-hand side of 4.2.11 within 𝜕𝑀𝑘  to be 

 

𝑥  =   𝜇𝑘𝑓𝑘(𝑥)

𝑘∈𝐼(𝑥)

.                                                                (4.2.13) 

The sum is taken over the set 𝐼(𝑥) of all 𝑘 such that 𝑥 ∈  𝜕𝑀𝑘  and the variables 𝜇𝑘  

satisfy   

 𝜇𝑘
𝑘∈𝐼(𝑥)

 =  1;                                                                                       (4.2.14) 

i.e., the right-hand side belongs to the convex closure co{𝑓𝑘(𝑥) ∶  𝑘 ∈  𝐼(𝑥)} of the 

vector fields 𝑓𝑘(𝑥)  for all 𝑘 ∈  𝐼(𝑥). Actually, the definition replaces the differential 

equation 4.2.11by a differential inclusion 

𝑥  ∈  co 𝑓𝑘 𝑥 : 𝑘 ∈  𝐼 𝑥                                                               (4.2.15) 

for the points 𝑥 belonging to the boundaries 𝜕𝑀𝑘 . If within the convex closure there 

exists a vector field tangent to all or some of the boundaries, then there is a solution 

of the differential inclusion belonging to 𝜕𝑀𝑘 that corresponds to the sliding mode. 

In the above relatively simple case, the definition provides a unique solution and 

implies that the system on the manifold is 

𝑥 =  −𝛼𝑥, 

𝑦 =  −𝛼𝑦. 

From 4.2.7 it follows that 

𝑉  𝑡 =  𝑉  0 𝑒2𝛼𝑡 =  
1

2
  𝑥2 0 +  𝑦2 0  𝑒2𝛼𝑡 .                              (4.2.16) 

Substituting this expression in (4.2.9) and integrating, we find that the condition for 

the system to be stabilized is 

𝛽

2𝛼
 𝑥2 0 +  𝑦2 0  ≥   𝑧 0  .                                                       (4.2.17) 
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The inequality 

𝛽

2𝛼
 𝑥2 +  𝑦2 ≥   𝑧 .                                                              (4.2.18) 

defines a parabolic region P in the state space. 

The above derivation can be summarized in the following theorem: 

Theorem 4.2.1. If the initial conditions for the system (4.2.1)–(4.2.3) belong to the 

complement 𝑃𝑐  of the region P defined by (4.2.18), then the control (4.2.4), (4.2.5) 

stabilizes the state. 

If the initial data are such that (4.2.18) is true, i.e., the state is inside the paraboloid, 

we can use any control law that steers it outside. In fact, any nonzero constant control 

can be applied. Namely, if 𝑢 ≡  𝑢0  =  𝑐𝑜𝑛𝑠𝑡, 𝑣 ≡  𝑣0  =  𝑐𝑜𝑛𝑠𝑡, then 

𝑥(𝑡)  =  𝑢0𝑡 +  𝑥0 , 

𝑦(𝑡)  =  𝑣0𝑡 +  𝑦0 , 

                        𝑧(𝑡)  =  𝑡(𝑥0𝑣0  −  𝑦0𝑢0)  +  𝑧0. 

With such 𝑥, 𝑦, and 𝑧, the left-hand side of (4.2.18) is quadratic with respect to time t, 

while the right-hand side is linear. Hence, as the time increases, the state inevitably 

will leave P. 

 

A global feedback control law in the form of the feedback (although discontinuous) 

can be described as follows: 

(𝑢, 𝑣)𝑇 =                                                  
(4.2.4),(4.2.5)𝑇                𝑖𝑓  (𝑥,𝑦,𝑧)𝑇 ∈ 𝑃𝑐 .

 𝑢0 ,𝑣0 
𝑇                               𝑖𝑓   𝑥,𝑦,𝑧 𝑇  ∈ 𝑃,

 (4.2.19) 

 

Theorem 4.2.2. The closed system (4.2.1) (4.2.3), (4.2.19) is globally asymptotically 

stable at the origin. 

Global asymptotic stability mans that. 

(i) For all initial conditions we have 𝑥 (t), y(t), z(t) →0.when t→ ∞; 

(ii) For all 𝜀 >0 there exists𝛿 > 0 such that 𝑥0
2 + y0

2 +  z0
2 > 𝛿2  implies 
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𝑥2  (t) +  y2 (t) + z2 (t)  𝜀2 for any t ≥0. 

We have already shown above that (i) is true, and (ii) follows from the fact that 

outside 𝑃 and on the surface of the paraboloid ð𝑃 the state monotonically approaches 

the origin in. For initial conditions inside 𝑃 we have 

𝑥2 (t) + y2 (t) + z2  (t) = (𝑢0 t + 𝑥0)
2
 += (𝑣0 t + y0)

2
 +[( 𝑥0 𝑣0 – y0 𝑢0)t + z0]

2
.         

(4.2.20)                   

The maximum of the expression (4.2.20) is achieved for t = 0 or 𝑡𝑓 , where 𝑡𝑓  is the 

first moment of time when the state reaches ð𝑝. This moment is defined by an 

equating. 

𝛽

2∝
 (𝑢0 𝑡𝑓  + 𝑥0)

2
 + ( 𝑣0 𝑡𝑓+ y0)

2
 = [𝑥0 𝑣.0 - y0 𝑢 0) 𝑡𝑓  + 0]          (4.2.21) 

As can be easily seen from (4.2.21), for fixed 𝑢0, 𝑣0, the solution of this equation 𝑡𝑓  

tends to zero if 𝑥0 , y0, 0 tend simultaneously to zero. That proves (ii). 

The parameters , 𝛽 define the size of the paraboloid. 

Simulations of the algorithm for two types of initial conditions are shown in 

figure 4.2.1. The figure shows the trajectories exiting from the set 𝑃 under constant 

control and then being driven to the origin under the feedback (4.2.4), (4.2.5). 

When 
𝛽

𝛼
 → ∞ the parabolic region P is limited to the z-axis. From that point of view, 

to stabilize the system(4.2.1 – 4.2.3), it is reasonable to increase 𝛽 as the state 

approaches the origin (if we decrease 𝛼, the convergence of 𝑥 and 𝑦 approach the 

origin: 

𝑢 =  −𝛼 𝑥 +  𝛽 
𝑦

𝑥2 +  𝑦2
 𝑠𝑖𝑔𝑛 𝑧 ,                                          (4.2.22) 

𝑣 =  −𝛼 𝑦 −  𝛽 
𝑥

𝑥2 +  𝑦2
 𝑠𝑖𝑔𝑛 𝑧 ,                                           (4.2.22) 



 

 

)88( 

 

 

Or even  

                                                          𝑢 =  𝛼 𝑥 +  𝛽 
𝑦

𝑥2+ 𝑦2
 𝑧,                                                   

(4.2.24) 

                                                         𝑣 =  −𝛼 𝑦 −  𝛽 
𝑥

𝑥2+ 𝑦2
 𝑧.                                                 

(4.2.25) 

Then from (4.2.3) we have 

= -𝛽 sign (z), 

for the controls (4.2.22),(4.2.23), or 

= -𝛽z, 

respectively, for the controls (4.2.24), (4.2.25). 

In both cases, the state converges to the origin form any initial conditions, except the 

ones belonging to the –axis. But in contrast to (4.2.4), (4.2.5), the control laws 

(4.2.22), (4.2.23).and (4.2.24), (4.2.25) are unbounded in a neighborhood of the –

axis (on the axis it is not defined). If the initial conditions belong to this set, again we 



 

 

)89( 

 

can apply any nonzero constant control for an arbitrarily small period of time and 

then switch to (4.2.22) or (4.2.24), (4.2.25). 

An 𝜀 – stabilizing control (to a neighborhood of the origin) may be obtained by 

switching . 

Let  be the following function of 𝑥 and 𝑦, 

= 0 sing (𝑥2 +y2  - 𝜀2 ),                                    (4.2.26) 

Where 0 > 0 , 𝛽 > 0 are constants, and let the control be 

𝓊 = -𝛼 𝑥 +  𝛽 y z,                                                 (4.2.27) 

𝓊 = -𝛼 y −  𝛽 𝑥 z.                                                 (4.2.28) 

(one deals with initial data on the z-axis as above.)  

Using (4.2.7) we find that from any initial conditions𝑥and y the state reaches an 

ε − sphere of the  x, y − space origin: 

                                         𝑥2 +y2 =const 𝜀2 .                                                           4.2.29  

After that, the equation for variable z is 

= -𝛽 𝜀2 z. (4.2.30) 

Therefore, z → 0 𝑎𝑠 t →  ∞, while the variables 𝑥 𝑎𝑛𝑑 y stay in an 𝜀- vicinity of the 

origin. Of course, in (4.2.27), (4.2.28) z can be replaced by any function g(z) that 

guarantees asymptotic stability of the equation 

= -𝛽 𝜀2 (z),                                                   (4.2.31) 

For example, (z) = sign(z). [24] 
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4.3 Stabilization of a Generalized Heisenberg System. 

We discuss here the stabilization of the canonical generalization of the Heisenberg 

system (4.1.2), (4.1.3) by discontinuous feedback. We also demonstrate a rather 

interesting connection with isospectral flows (flows that preserve eigenvalues). Such 

flows are fundamental to integrable systems theory.  

Lie– Algebraic Generalization. We consider here a system that generalizes (4.1.2) – 

(4.1.3) and can be described as follows. Let 𝔤 be a Lie algebra with a direct sum 

decomposition 𝔤 = m ⊕ 𝔥 such that 𝔥 is a Lie subalgebra, [𝔥, m]  m, and [m, m] = 𝔥. 

We will consider the following system in 𝔤: 

𝑥  = 𝑢,                                                                      (4.3.1) 

𝑌 = [𝑢, 𝑥],                                                                (4.3.2) 

Where 𝑥,𝑢 ∈ m, Y  𝔥. 

The 𝔰o (𝑛) system (4.1.2) – (4.1.3) is of the type (4.3.1) – (4.3.2), as we now show. 

Let 𝔥 = 𝔰o (𝑛) and let m = ℝ𝑛 . For 𝑥, 𝑢  m, define [𝑥, 𝑢]  𝑥 u𝑇   𝑥 u𝑇 ∈ 𝔥. Y For 

Y   𝔥, 𝑥 ∈ m, define [Y,𝑥] = – [𝑥,Y]  Y 𝑥. It is easy to see that the Lie algebra 𝔤 m 

 𝔥 is isomorphic to 𝔰o (𝑛 +1): Identify Y  𝔰o (𝑛) with the matrix 

  
 0  0  
 0 𝑌

  

And identify  𝑥 ∈  ℝ𝑛 with the matrix 

   0 −𝑥𝑇  

𝑥 𝑌
  

The adjoint action of 𝔥 on m agrees with standard action of 𝔰o (𝑛) on ℝ𝑛 , and it is 

straightforward to check that the desired commutation relations hold. 

Our goal is to find a stabilizing control for the system (4.3.1) – (4.3.2). 
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Since this system fails the necessary condition for the existence of a continuous 

feedback law, our goal here is to find a discontinuous law.  

The General System. Let 𝔤 be a real semi simple Lie algebra with Killing form B : 

𝔤×𝔤   ℝ.  Assume that 𝔤 has a decomposition 𝔤 = 𝔥 ⊕ m, where 𝔥 is a compactly 

embedded subalgebra that contains no ideals of 𝔤, and m is the orthogonal 

complement of 𝔥 relative to B . Then the commutation relations [𝔥, m] ⊆ m and [m, 

m] = 𝔥 hold, the restriction of B to 𝔥 is negative definite, and the representation of 𝔥 

on m is faithful. Note that if 𝔤 is a simple Lie algebra and 𝔤 = 𝔥 m is a Cartan 

decomposition, then our hypotheses are satisfied. 

We will consider stabilization of the system (4.3.1) – (4.3.2) in 𝔤, where 𝑥 , 𝑢  m , Y 

 𝔥 .We may assume without loss of generality that 𝔤 is either of noncompact type or 

of compact – type (under the given hypotheses, 𝔤 splits into a B- orthogonal direct 

sum of a compact – type ideal and one of noncom pact type. It is straightforward to 

show that (4.3.1) – (4.3.2) decouples into systems in each ideal, and stabilization of 

(4.3.1) – (4.3.2) follows from stabilization of each of the compact and noncompact 

cases separately.) It follows that the restriction of 𝐵 to m is positive definite if 𝔤 is of 

noncompact type and negative definite if 𝔤 is of compact type. 

Let 

  =  
         1   if 𝔤 is of noncompact type

−1   if 𝔤 is of compact type.
                       (4.3.3) 

We will use the inner product on   defined by the Killing form: 

<𝑥1 + Y1, 𝑥2  + Y2> ≡  𝜀B (𝑥1, 𝑥2) - B (Y1,Y2),                 (4.3.4) 

For 𝑥1, 𝑥2 ∈ m,Y1 ,Y2∈ 𝔥. The corresponding norm will be denoted by  ∙ . 
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For 𝑥 ∈ m, let. 

     𝑀(𝑥) = (ad𝑥 )2    
𝔥

                                      (4.3.5) 

If 𝔤  is noncompact , then ad𝑥   is 𝐵 – symmetric, while if 𝔤 is compact , then ad𝑥 is 

𝐵 – skew - symmetric. In either case, M (𝑥) =  (ad𝑥 )2
 is a nonnegative symmetric 

operator 𝔥. Next, for Y ∈ 𝔥, let 

𝑁(𝑌) = (ad𝑌 )2    
m

                                             (4.3.6) 

Since ad𝑌 is 𝐵- skew – symmetric, 𝑁 (𝑌) is a nonnegative symmetric operator on m. 

We will make frequent use of two identities relating the operators 𝑀(𝑥)and 𝑁(𝑌). 

First, the Jacobi identity implies 

[𝑌,𝑀(𝑥)𝑌] =  [𝑥,𝑁(𝑌)𝑥]                                     (4.3.7) 

For all 𝑥 ∈ m, 𝑌 ∈ 𝔥. Second, the invariance of the Killing form implies 

[𝑌,𝑀(𝑥)𝑌] = [𝑌, 𝑥] 2
 = <  𝑥, 𝑁(𝑌)𝑥>                                  (4.3.8) 

For all 𝑥 ∈ m, 𝑌 ∈ 𝔥. 

We also require two estimates arising from𝑀(𝑥) and 𝑁(𝑌). First, we have the 

inequality 

𝑡𝑟 (𝑀(𝑥))  ≤  𝑥 2
                                                        (4.3.9) 

 for all 𝑥 ∈m .Second , there exists a constant 0 𝜂 1 such that  

tr(𝑌,  𝑌 ) >𝜂 =   𝑌 2
                                     (4.3.10) 

for all 𝑌 ∈ 𝔥. 

Controls. We consider the following controls for system for the system(4.3.1)-

(4.3.2): 

𝑢 = - ∝ 𝑥 + 𝛽[𝑌, 𝑥] + 𝛾 𝑁(𝑌) 𝑥,                                          (4.3.11) 

Where  ∝,𝐵,𝛾 :𝔤 ℝ are real – valued functions, with , 𝛾 ≥ 0 and 𝛽ε ≤ 0.With the 

control (4.3.11) ( and using (4.3.7), the system (4.3.1) – (4.3.2) becomes 

𝑥  = - ∝ 𝑥 + 𝛽[𝑌, 𝑥] + 𝛾 𝑁(𝑌) 𝑥,                                    (4.3.12) 

𝑌 = - 𝛽ε𝑀 𝑥 𝑌 −  𝛾ε[𝑌,𝑀(𝑥), 𝑌  .                              (4.3.13) 
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Using (4.3.12) and the skew –symmetry of ad 𝛾, we easily compute  

𝑑

𝑑𝑡
 𝑥 2

 = 2∝  𝑥 2
 + 2 𝛾 <𝑥, 𝑁 (𝑌)𝑥 >.                              (4.3.14) 

Let * denote the largest eigenvalue of 𝑁(𝑌). Then <𝑥, 𝑁(𝑌) 𝑥 >  ≤ λ*  𝑥 
2
 for all  

𝑥 ∈ m, and thus the right-land side of (4.3.14) is nopositive if * 𝛾 ≥∝. In this case 

 𝑥 is nonincreasing, and if  ∝  = 𝛾 =0, then  𝑥  is constant. 

Using (4.3.13), we obtain 

𝑑

𝑑𝑡
 𝑌 2

 = 2 𝛽ε < 𝑌, 𝑀 𝑥 𝑌 >.                              (4.3.15) 

Since 𝛽ε ≤ 0 and 𝑀 𝑥  is a nonnegative operator, the right hand side of (4.3.15) is 

nonpositive. Thus  𝑌  is nonincreasing in general, and is constant if  𝛽 = 0. 

Our (necessarily discontinuous) stabilization algorithm will involve a witching the 

control ( 4.3.11) among the following three cases: ( i ) ∝> 0, 𝛽 = 𝛾 = 0; (ii) ∝ = 𝑘 λ* 

, 𝛾 = 𝑘, 𝑎𝑛𝑑 𝛽 = 0 , where, as above, λ* is the largest eigenvalue of N(Y) and where 

k is a positive function; (iii) ∝ = 𝛾 = 0, 𝛽ε < 0. We now discuss the dynamics of the 

system (4.3.12) – (4.3.13) in each of these cases. 

 

Case I: > 0, 𝛽= 𝛾 =0; 

In this case, the system (4.3.12) – (4.3.13)  

     𝑥  = -∝ 𝑥,                                                                                                         (4.3.16) 

          𝑌  = 0.                                                                                                        (4.3.17) 

Here  𝑥 is driven to 0 radially while Y remains fixed. If 𝑌 was not already 0, 

implementing (4.3.11) with these parameter values will render the system 

unstabilizable. Hence this case will be used only if 𝑌 ≡0. 

Case II: = 𝑘 λ*, 𝛾= 𝑘, 𝛽 =0; 

As noted above, κ > 0. In this case, the control (4.3.11) has the form 

     u = - κ (λ∗ 𝑥 – N(Y) 𝑥),              (4.3.18) 

while the system (4.3.12) – (4.3.13) is 

                                                    𝑥  = -κ (λ∗ 𝑥 – N(Y) 𝑥),                 (4.3.19) 

    𝑌   = - κ𝜀 [Y, M (𝑥) Y],                          (4.3.20) 
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In this case,  𝑌  is constant. In addition, (4.3.20) is a Lax equation in Y. It follows 

that the spectrum of adY is constant. Therefore, the spectrum of the operator N(Y) is 

constant, as are the dimensions of its eigenspaces. In particular, the eigenvalue λ∗, 

which occurs in (4.3.19), is constant. 

Let 0 ≤ λ0 < λ1 < ⋯ < λs = λ* denote those eigenvalues of N(Y) that are distinct (thus 

≤ dim m – 1). Let 𝑥 = 𝑥 0 + 𝑥 1 + ⋯ + 𝑥s be the unique decomposition of 𝑥 into the 

eigenspaces of N(Y), then the differential equation (4.3.19) decouples into the 

following system of equations in m: 

     𝑥 0 = -κ(λ∗ - λ0) 𝑥 0 

     𝑥 1 = -κ(λ∗ - λ1) 𝑥 1 

      ⋮      (4.3.21) 

𝑥 s-1 = - κ(λ∗  - λ s-1) 𝑥 s-1,  

𝑥  s = 0. 

Since κ(λ∗ - λj) > 0 for j = 0,1. . . , s – 1, it follows that 𝑥 j → 0 asymptotically. If we 

let  𝑥∗   denote the projection of 𝑥 onto the λ∗ -eigenspace of N(Y), that is, 𝑥∗  = 𝑥 s, 

then noting that  𝑥∗   ≡  𝑥∗     t=0 is constant, we conclude that  

𝑥 →  𝑥∗  

asymptotically. 

Note that (4.3.19) - (4.3.20) and (4.3.7) imply the following: 

     𝑌  = - κ[𝑥, N(Y) 𝑥] = [𝑥, 𝑥 ],                       (4.3.22) 

Since 𝑥 converges to a  λ∗ - eigenvector of N(Y), the right-hand side of (4.3.19) 

converges to 0 and thus 𝑥  converges to 0. Therefore, (4.3.22) implies that 𝑌  

converges to 0. 

Summarizing this case, we have that Y evolves isospectrally (with constant spectrum) 

and with constant norm and asymptotically vanishing velocity, while 𝑥 is driven 

to 𝑥∗ , the (constant) projection of 𝑥 onto the λ∗ - eigenspace of N(Y). 
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Case III: α = γ = 0, β𝜀 < 0: 

The system (4.3.12) – (4.3.13) for this case is 

     𝑥  = β[Y,𝑥],                (4.3.23) 

     𝑌  = β𝜀 M (𝑥) Y,     (4.3.24) 

In this case,  𝑥  is constant. In addition, (4.3.23) is a Lax equation in 𝑥, and thus adx 

has constant spectrum. Therefore, the spectrum of the operator M (𝑥) is constant, as 

are the dimensions of its eigenspaces. Let 0 ≤ μ0 < μ1 < ⋯ < μr denote those 

eigenvalues of M (𝑥) that are distinct (thus r ≤ dim 𝔥 - 1). For Y 𝔥, let Y = Yo + ⋯ + 

Yr denote the unique decomposition of Y into the eigenspaces of M (𝑥). Then the 

differential equation (4.3.24) decouples into the following system of equations in 𝔥: 

       

                                                              𝑌 0 = β𝜀μ0 Y0, 

      𝑌 1 = β𝜀μ1Y1, 

       ⋮     (4.3.25) 

      𝑌 r = β𝜀μrYr, 

Since β𝜀μj < 0 for j = 1, . . .,  r, we have that Yj → 0 asymptotically. If μ0 < 0, then tha 

sme applies to Y0. Otherwise, if M (𝑥) has μ0 = 0 as an eigenvalue, then Y0 remains 

constant. Thus we have Y → 0 or Y → Y0 asymptotically, where Y0 ≡ Y0 │t=0 is 

constant. In either case, if we let Y# denote the projection of Y onto the nullspace of 

M(𝑥), then noting that Y# ≡ Y# │t=0 is constant, we conclude that 

      Y → Y# 

asymptotically. 

Using system (4.3.23) – (4.3.24), we can derive the equation 

𝑑

𝑑𝑡
𝑀(𝑥)𝑛𝑌 =  𝛽𝜀  𝑌,𝑀 𝑥 𝑛𝑌 +  𝛽𝜀 𝑀 𝑥 𝑛+1𝑌       (4.3.26) 

for every nonnegative integer n. Indeed, the case n = 0 is just (4.3.24). Using the 

induction hypothesis, we have for n > 0, 
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𝑑

𝑑𝑡
𝑀 𝑥 𝑛𝑌 = 𝜀 𝑥,  𝑥,𝑀 𝑥 𝑛−1𝑌  + 𝜀[𝑥,  𝑥, 𝑀 𝑥 𝑛−1𝑌 ] 

+ M(𝑥)( β𝜀 [Y,𝑀 𝑥 𝑛−1𝑌]+ β𝜀 M(𝑥)
n
Y).               

(4.3.27) 

Now, 

  [𝑥 ,  𝑥, 𝑀 𝑥)𝑛−1  = 𝛽[ 𝑌, 𝑥 , [𝑥,𝑀 𝑥)𝑛−1𝑌 ]      

(4.3.28) 

and 

  [𝑥,  𝑥 ,𝑀 𝑥)𝑛−1  = 𝛽[𝑥, [ 𝑌, 𝑥 ,𝑀 𝑥)𝑛−1𝑌 ]      

(4.3.29) 

while applying the Jacobi identity repeatedly gives 

𝑀(𝑥)[𝑌,𝑀 𝑥)𝑛−1𝑌 =  𝑌,𝑀 𝑥 𝑛𝑌 + 𝜀  𝑥, 𝑌 ,  𝑥, 𝑀 𝑥 𝑛−1𝑌   

+𝜀[𝑥, [ 𝑥, 𝑌 , 𝑀 𝑥 𝑛−1𝑌]]         

 (4.3.30) 

Substituting (4.3.28), (4.3.29), and (4.3.30) into (4.3.27) and simplifying gives 

(4.3.26). 

Then from (4.3.26), 

𝑑

𝑑𝑡
𝑓 𝑀 𝑥  𝑌 = 𝛽𝜀 𝑌, 𝑓 𝑀 𝑥  𝑌 + 𝛽𝜀𝑓 𝑀 𝑥  𝑀 𝑥 𝑌   (4.3.31) 

follows immediately for every real analytic function f. As an interesting special case 

of this, let p(μ) be the minimal polynomial of M(x) and assume that μ0 = 0 is an 

eigenvalue of M(x) (so that Y does not converge to 0). 

Then p(μ) = μ q(μ) for some polynomial q. Taking f = q in (4.3.31) gives  

    
𝑑

𝑑𝑡
𝑞 𝑀 𝑥  𝑌 = 𝛽𝜀 𝑌, 𝑞 𝑀 𝑥  𝑌 .   (4.3.32) 

It follows the spectrum of q (M(x)) Y remains constant: that is, it evolves 

isospectrally. 

Summarizing this case, we have that x evolves isospectrally with constant norm. Y is 

driven to Y#, its (constant) projection onto the nullspace of M(x), and q (M(x)) Y 

evolves with constant spectrum. 
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Remark. 

        It is interesting to compare the system of equations of Case III with the double 

bracket equations discussed. The isospectral flow 𝐿 =  𝐿,  𝐿, 𝑁  , 𝐿, 𝑁 lying in a 

compact algebra, N fixed, was considered. This flow is the gradient flow of  𝐿,  𝑁   on 

an adjoint orbit of the corresponding Lie group with respect to the so-called normal 

metric. Equation (4.3.24) is, on the other hand, of the form 𝑌 = 𝛽 ∈ [𝑋,  𝑋, 𝑌 ], 

which is not isospectral (although it is coupled to the isospectral equation (4.3.23). 

Further, as we have seen, we have a different function, 𝑌,  𝑌  , decreasing along its 

flow, which is precisely what is needed. 

The Stabilization Algorithm.  

      We now describe our feedback strategy. As before, λ* denotes the largest 

eigenvalue of the operator N(Y), x* denotes the projection of x onto the λ*-eigenspace 

of N(Y), and Y# denotes the projection of Y onto the nullspace of M(x). Let δ > 0 be a 

prescribed error tolerance. In informal pseudocode, the algorithm can be described as 

follows: 

 

begin 

 while  𝑌  ≥ δ 

1. Let r =  𝑥 . Implement the control (4.3.11) with α = λ* k, γ = k, and β = 0. 

Then Y evolves isospectrally with constant norm, while x converges to the 

constant x*. If x* ≠ 0, then go to step 3.  

2. Let 𝑧∗ denote a fixed λ*-eigenvector of N(Y) with 

 𝑧∗ = 𝑟(1 − 1/ dim𝑚)1/2 

Let u = -α (x- 𝑧∗), where α > 0. The x converges to 𝑧∗while Y remains constant. 

3. Implement the control (4.3.11) with α = γ = 0, 𝛽𝜀 <0. Then x evolves 

isospectrally with constant norm, while Y converges to the constant Y#. 

end while 
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if  𝑥 ≥ 𝛿, then 

4. implement the control (4.3.11) with α > 0, β = γ = 0. Then x will converge to 0 

radially, while Y remains 0. 

end 

In Step 1, if α is a constant, then x will converge to x* in infinite time: if, for 

example, α = 1/ 𝑥 − 𝑥 ∗ , then x will converge in infinite time. Similarly, in Step 3, 

if β is a constant, then Y will converge to Y# in infinite time: if, for example, 

β=1/ 𝑌 − 𝑌# , then Y will converge in infinite time. To establish the convergence 

claim made in Step 2, we simply note that in this case x(t) has the form x(t)  = f(t)z*, 

where f(t) is a scalar-valued function satisfying 

𝑓 = −𝛼 𝑓 − 1 , 𝑓 0 = 0. 

(For instance, if α > 0 is constant, we have f(t) = 1 - 𝑒𝑎𝑡 . ) It follows from (4.3.2) that 

𝑌  = [u, x] = 0, so that Y is constant, as claimed. 

Step 2 is implemented if x converges to 0 in Step 1. One instance where this could 

happen occurs if the initial value of x is 0, in which case the first implementation of 

Step 1 is trivial. More generally, the case where the projection of x onto the λ*-

eigenspace of N(Y) is 0 seems to be the natural higher-dimensional analogue of the 

situation in the Heisenberg system where the initial value starts on the z-axis. As in 

Steps 1 and 3, Step 2 can also be implemented in finite time. 

The λ*-eigenspace of N(Y) will, in general, have dimension greater than 1 (since the 

nonzero eigenvalues of the B-skew-symmetric operator 𝑎𝑑𝑌  come in complex 

conjugate pairs). Thus there is no unique choice of eigenvector 𝑧∗ in Step 2. Any 

lexicographic ordering of the eigenvectors relative to a coordinate basis will suffice 

as a selection scheme. The rationale behind the particular normalization of 𝑧∗ will be 

explained below.  

We will now show that our algorithm successfully stabilizes the system 

(4.3.1)-(4.3.2) by showing that each of  𝑥  and  𝑌  can be brought to within the 

prescribed error tolerance, note that as soon as the test condition of the while loop 
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fails, that is, as soon as  𝑌 < 𝛿, then the system will be stabilized whether Step 4 

needs to be executed or not. Thus we may assume that the initial value of Y satisfies 

 𝑌 ≥ 𝛿 so that the while loop will be executed at least once. If Y ever converges to 

0 in Step 3 because Y# = 0, then the test condition of the while loop will eventually 

fail. As noted, this is enough to guarantee that the system is stabilizable. 

Assume that for every iteration of Step 3 we have Y# ≠ 0. We will show that 

after finitely many iterations of the while loop, the test condition will fail. In other 

words, the projection of Y onto the nullspace of M(x) is eventually arbitrarily small in 

norm. in fact, we will show a stronger result, for when this situation occurs, then it 

turns out that  𝑥  is simultaneously brought to within the error tolerance. Thus as 

soon as the while loop's test condition fails, the test condition of the if- then statement 

(Step 4) will also fail, and the system will already be stabilized. 

Assume first that Step 3 is about to be executed. Since Step 1 and possible Step 

2 have already been executed, the initial values x (0) = x* and Y (0) = Y* satisfy N(Y*) 

x* = λ*x*. As before, let Yj denote the projection of Y onto the 𝜇𝑗 -eigenspace of M(x). 

Recall that. 

Y# = Y0 Y0 (0) 

throughout Step 3, and that Y(t) → Y# asymptotically. Using the orthogonality of the 

eigenspace, we compute 

  𝑌#  2
 =  Y* 

2
 –    𝑌𝑗 (0) 𝑟

𝑗=1
2
 

≤   𝑌∗  2
 - 

1

 𝜇 𝑗
𝑟
𝑗=0

  𝜇𝑗
𝑟
𝑗=0  𝑌𝑗 (0) 2

   (4.3.33) 

Note that we are using 𝜇0 = 0. Now using the orthogonality once again, we compute 

 𝜇𝑗
𝑟
𝑗=0  𝑌𝑗 (0) 2

 =  𝑌 * 𝜇𝑗𝑌𝑗  (0) 𝑟
𝑗=0  =   𝑌∗  , M(x*) 𝑌∗     

    =   𝑥∗  , N( 𝑌∗ ) 𝑥∗         (4.3.34) 

    = λ*   𝑥∗  
2
.       (4.3.35) 

Here we have used (4.3.8) to obtain (4.3.34). In addition, using (4.3.9), we have 

    𝜇𝑗 ≤ 𝑡𝑟(𝑀(𝑥𝑟
𝑗=1 *))≤  𝑥∗  

2
..      (4.3.36) 
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Applying (4.3.35) and (4.3.36) to (4.3.33) yields 

  𝑌#  2
 ≤   𝑌∗  2

  – λ*.      (4.3.37) 

Now using (6.3.10), we have 

λ* ≥ 
1

dim 𝑚
 tr(N(Y*)) 

𝜂  

dim 𝑚
  𝑌∗  2

    

 (4.3.83) 

applying (4.3.38) to (4.3.37) gives our final estimate for Step 3: 

  𝑌#  2
 <  1 −

𝜂  

dim 𝑚
   𝑌∗  2

     (4.3.39) 

 Now assume that Step 3 has already been executed and that Step 1 is about to 

be executed again. Then the initial values x (0) = x# and Y (0) = Y# in Step 1 satisfy 

M(x#) Y# = 0. By (4.3.8), this implies  𝑥#, 𝑁(𝑌#) 𝑥#  = 0. As before, let 𝑥𝑗  denote the 

projection of x into the λj-eigenspace of N(Y). Recall that  𝑥∗  = xs ≡ xs(0) throughout 

Step 1, and that x(t) →  𝑥∗ asymptotically. Using the orthogonality of the 

eigenspaces, we compute 

  𝑥∗  
2
 =   𝑥#  2

 –    𝑥𝑗 (0) 𝑠−1
𝑗=0

2
 

                        ≤  𝑥∗  
2
  - 

1

 (𝜆𝑠−𝜆𝑗 )𝑠
𝑗=0

 ( 𝜆𝑠 −  𝜆𝑗 )  𝑥𝑗 (0) 𝑠
𝑗=0

2
.   (4.3.40) 

Using orthogonality again, we compute 

 ( 𝜆𝑠 −  𝜆𝑗 )  𝑥𝑗 (0) 𝑠
𝑗=0

2
 =  𝜆𝑠   𝑥#  2

 –   𝑥# ,   𝜆𝑠  𝑥𝑗 (0)𝑠
𝑗=0   

    =  𝜆𝑠   𝑥#  2
 –   𝑥# , 𝑁  𝑌#   𝑥#    

    =  𝜆𝑠   𝑥#  2
.                   (4.3.41) 

Also, 

   𝜆𝑠 −  𝜆𝑗  = 𝑠 𝜆𝑠 −  𝜆𝑗 .

𝑠−1

𝑗=0

𝑠

𝑗=0

 

  

(4.3.42) 
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Applying (4.3.41) and (4.3.42) to (4.3.40) gives 

  𝑥∗  
2
 ≤  1 −

𝜆𝑠

𝑠𝜆𝑠−  𝜆𝑗𝑠−1
𝑗=0

   𝑥#  2
.                  (4.3.43) 

Finally, 

 𝜆𝑠

𝑠 𝜆𝑠 −   𝜆𝑗
𝑠−1
𝑗=0

≥
1

𝑠
≥

1

dim𝑚
 

            (4.3.44) 

And applying (4.3.44) to (4.3.43) gives our final estimate for Step 1: 

  𝑥∗   ≤  1 −
1

dim 𝑚
   𝑥∗  

2
.    (4.3.45) 

 Now assume that Step 2 is executed because 𝑥 = 0 (that is,  𝑥∗  = 0 in Step 1). 

Rename  𝑥∗ =  𝑧∗ ,where 𝑧∗ is the chosen λ*-eigenvector. Then the normalization of 

𝑧∗  described in Step 2 immediately implied that (4.3.45) holds as an equality. 

 Define two sequences of real numbers as follows: Let 𝑎𝑗  and 𝑏𝑗  denote, 

respectively, the initial values of  x 2
 and  Y 2

 prior to the (j +1)st iteration of the 

while loop, where j = 0, 1, ….. Recall that  Y  remains constant during Steps 1 and 2 

and  Y  remains constant during Step 3. Our estimates (4.3.39) and (4.3.45) imply 

that the sequences  𝑎 𝑗   and  𝑏 𝑗   satisfy 

aj+1≤ 1 −
1

dim 𝑚
 𝑎𝑗,      (4.3.46) 

bj+1< 1 −
𝜂  

dim 𝑚
 𝑏𝑗,      (4.3.47) 

since 

0 < 1 - 
1

dim 𝑚
 < 1 - 

𝜂  

dim 𝑚
 < 1.     (4.3.48) 

It follows from (4.3.46)-(4.3.47) that the sequence  𝑎 𝑗   and  𝑏 𝑗   each converges to 0. 

In particular, it is immediate that each of  x and  Y  can be brought to within the 

prescribed error tolerance δ > 0 in finitely many iterations of the while loop. 

In summary, we have proven the following result. 
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4.3.1 Theorem. The algorithm given in Step 1-4 above globally stabilizes the system 

(4.3.1)-(4.3.2). 

We remark that while we have used the error tolerance δ above to indicate how the 

stabilization algorithm works in practice, the formal proof of stability follows from 

letting δ approaches zero. [25] 

 

4.4 Controllability, Accessibility and Stabilizability 

      We consider a class of nonholonomic dynamic control systems and various 

control and stabilizability properties. We consider the class of mechanical 

(Lagrangian) nonholonomic control systems described by the equations 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞𝑖 
−  

𝜕𝐿

𝜕𝑞𝑖
=  𝜆𝑗𝑎𝑖

𝑗

𝑚

𝑗=1

+   𝑏𝑖
𝑗
 𝑢𝑗

𝑟

𝑗=1

                                        (4.4.1) 

 𝑎𝑖
𝑗
𝑞𝑖 

𝑛

𝑖=1

 = 0                                     𝑗 = 1, … ,𝑚                             4.4.2   

These equations are a controlled version of the nonholonomic equations in Lagrange 

multiplier form.  We assume here that we have a Lagrangian on the tangent bundle to 

an arbitrary configuration space𝑄, given by 𝐿 ∶  𝑇𝑄 →  𝑅. In coordinates 𝑞𝑖 , 𝑖 =

 1, . . . , 𝑛, on 𝑄 with induced coordinates (𝑞𝑖 ,  𝑞 𝑖) for the tangent bundle, we have 

𝐿(𝑞𝑖 ,  𝑞 𝑖). All computations here will be local, however, and for the moment we will 

assume 𝑄 =  𝑅𝑛 . Here L is taken to be the mechanical Lagrangian 

𝐿 =  
1

2
  𝑔𝑖 𝑗  𝑞 

𝑛

𝑖,𝑗=1

𝑞 𝑖𝑞 𝑗 −  𝑉 𝑞 .                                                             (4.4.3) 

Hence equation (4.4.1) takes the explicit form 

𝑞 𝑖𝑞 𝑗 +  
𝜕𝑔𝑖  𝑗

𝜕𝑞𝑘
 𝑞 𝑘  𝑞 𝑗 − 

1

2
 
𝜕𝑔𝑗𝑘

𝜕𝑞𝑖
 𝑞 𝑗  𝑞 𝑘  +  

𝜕𝑉

𝜕𝑞𝑘

=  𝜆𝑗𝑎𝑖
𝑗

𝑚

𝑗=1

+   𝑏𝑖
𝑗
 𝑢𝑗

𝑟

𝑗=1

                                        (4.4.4) 
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For convenience below we shall sometimes rewrite equation (4.4.4) as 

𝑔𝑖𝑗 𝑞
𝑗 + 𝑓𝑖(𝑞 , 𝑞  )  =  𝜆𝑗𝑎𝑖

𝑗𝑚
𝑗=1 +   𝑏𝑖

𝑗
 𝑢𝑗

𝑟
𝑗=1                                                             (4.4.5) 

All functions are assumed to be smooth.  

 

Stabilization to an Equilibrium Manifold. We now study the problem of  

stabilization of equations (4.4.1), (4.4.2) to a smooth equilibrium submanifold of M 

defined by 

Ne =  {(𝑞, 𝑞 ) | 𝑞 =  0 , 𝑤(𝑞)  =  0} , 

where w(q) is a smooth (𝑛 −  𝑚)-vector function. We show that, with appropriate 

assumptions, there exists a smooth feedback such that the closed loop is locally 

asymptotically stable to Ne . 

The smooth stabilization problem is the problem of giving conditions such that there 

exists a smooth feedback function 𝑈 ∶  𝑀 →  𝑅𝑙  such that Ne  is locally 

asymptotically stable. Of course, we are interested not only in demonstrating that 

such a smooth feedback exists but also in indicating how such an asymptotically 

stabilizing smooth feedback can be constructed. 

We now assume that we have here nonholonomic control systems whose normal 

form equations satisfy the property that if 𝑟(𝑡) and 𝑟 (𝑡) are exponentially decaying 

functions, then the solution to 

𝑠  =  −𝐴(𝑟(𝑡), 𝑠)𝑟 (𝑡) 

is bounded (all the physical examples of nonholonomic systems, of which we are 

aware, satisfy this assumption). 

Note also that the first and second time derivatives of 𝑤(𝑞) are given by 

 

𝑤 =  
𝜕𝑤(𝑞)

𝜕𝑞
 𝐶 𝑞 𝑟  , 

𝑤  =  
𝜕

𝜕𝑞
( 
𝜕 𝑤 𝑞 

𝜕 𝑞
 𝐶 𝑞 𝑠  )𝐶 𝑞 𝑟  +  

𝜕 𝑤 𝑞 

𝜕 𝑞
 𝐶 𝑞 𝑣 . 
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Theorem 4.5.4. Assume that the above solution property holds. Then the 

nonholonomic control system defined by equations (4.4.1) and (4.4.2), is locally 

asymptotically stabilizable to 

𝑵𝒆  =  {(𝑞, 𝑞 ) | 𝑞 =  0 , 𝑤(𝑞)  =  0},                      (4.5.11) 

using smooth feedback, if the transversality condition 

det  
𝜕 𝑤 𝑞 

𝜕 𝑞
 det( 

𝜕 𝑤 𝑞 

𝜕 𝑞
 𝐶(𝑞))  ≠ 0                     (4.5.12) 

is satisfied. 

Proof. It is sufficient to analyze the system in the normal form (4.5.7), (4.5.8), 

(4.5.9). By the transversality condition, the change of coordinates from (𝑟, 𝑠, 𝑟 ) to 

(𝑤, 𝑠, 𝑤 ) is a diffeomorphism. 

 

Let 

𝑣 =  −( 
𝜕 𝑤 𝑞 

𝜕𝑞
 𝐶(𝑞))−1 [( 

𝜕 𝑤 𝑞 

𝜕𝑞
 𝐶(𝑞)𝑟  ) 𝐶(𝑞) 𝑟 +  𝐾1

𝜕 𝑤 𝑞 

𝜕𝑞
𝐶(𝑞)𝑟 

+  𝐾2𝑤(𝑞)], 

where 𝐾1 and 𝐾2 are symmetric positive definite (𝑛 − 𝑚) × (𝑛 − 𝑚) constant 

matrices. Then obviously, 

𝑤 +  𝐾1𝑤 +  𝐾2𝑤 =  0 

is asymptotically stable to the origin so that (𝑤, 𝑤 )  →  0 as 𝑡 → ∞. The remaining 

system variables satisfy equation (4.5.7) of the normal form equations (with 𝑥2 =  𝑠) 

and by our assumption on the constraint matrix A, these variables remain bounded for 

all time. Thus (𝑞(𝑡), 𝑞 (𝑡))  →  𝑁𝑒  as 𝑡 → ∞. [10] 

 

 

 

 


