الآيــه

قال تعالي:

بسم الله الرحمن الرحيم

(29) أَوَلَمْ يَرَ الَّذِينَ كَفَرُوا أَنَّ السَّمَاوَاتِ وَالْأَرْضَ كَانَتَا رَتْقًا فَفَتَقْنَاهُمَا اللهِ وَالْأَرْضَ كَانَتَا رَتْقًا فَفَتَقْنَاهُمَا اللهِ وَكَلَّ شَيْءٍ حَيِّ الْفَلَا يُؤْمِنُونَ (30)

صدق الله العظيم

سورة الانبياء

Dedication

This research is dedicated to:

My parents,

Brothers, sisters and friends,

Teacher,

Family of Sudan University of science & technology collage of civil engineering

& any person helps me to prepare the study

ABSTRACT

Water harvesting is ideal for access to water when other water sources are not available, especially in dry areas where there is no permanent water available this study deals with the construction and design of a water harvesting depot, which consists of constructing a water plant containing several means of storing water.

This study reached the diameter of the outlet from the water sources is 0.45m and 0.35m, which depends on the amount of discharge, as well as the water losses in the pipes due to friction and protection along the pipe path which reached 10.46m. As well as the design of the ground reservoir and the knowledge of the thickness of the appropriate for the walls and ceilings and rules are 0.35 m and 0.22 m and 0.600 m respectively, as well as the security design of the upper cabinets exposed to wind loads.

الخلاصة

يعتبر حصاد المياه من الوسائل المثلي للحصول علي المياه عندما لا تكون مصادر المياه الأخري متوفرة وخاصة في المناطق الجافة التي لا تتوفر فيها المياه الدائمة الجريان.

تناولت هذة الدراسة التصميم الإنشائي والهيدرولكي لمنشأة لحصاد المياه متمثلة في إنشاء محطة مياه تحتوي على عدة وسائل لتخزين المياه.

تم التوصيل إلي الأقطار المناسبة لمواسير المأخذ من مصادر المياه وهي 0.45م و 0.35 و 0.35 والتي تعتمد علي كمية التصريف وكذلك حساب فواقد المياه في المواسير نتيجة الإحتكاك والضفط علي طول مسار المواسير والتي بلغت 10.46mوذلك بإستعانة بالمواصفة المصرية.وتمت الإستعانة بالمواصفة البريطانية في تصميم الخزان الأرضي ومعرفة سمك المناسب للحوائط والسقوفات والقواعد وهي 0.35m و 0.22m و 0.60m علي التوالي وأيضاً التصميم الأمن للخزانات العلوية التي تتعرض لأحمال الرياح.

خرجت الدراسة بعدة توصيات أهمها حساب أقطار مواسير المأخذ عند السرعة القصوي للمياه في المواسير وتصميم الخزان الأرضي في حالة أن الخزان مغمور بالمياه وأيضا تصميم الخزان العلوي في حالة أن المنطقة تتعرض لأحمال رياح كبيرة

List of contents

I
.II
Ш
V
/II
III
ΧI
.1
6
6
6
6
7
.8
11
12
.16
18
23

2.7- Rested and underground water tank3	0
2.8-Tanks supported on ground surface are classified as3	1
2.9-Required checks for water tank	3
2.10-Steps of analysis of rested water tank3-	4
Chapter three: design of water harvesting	
3.1 – Design of pipe line	14
3.2-Design of rectangular water tank with to equal compartment4	19
3.3-Design of elevated steel water tank5	60
Chapter four: conclusion & recommendation	
4.1- Conclusion6	57
4.2- Recommendation6	57
Reference	8
1-moody diagram7	⁷ 0
2-basic conception	1
3-diameter of pipe7	12
4-soil safe bearing capacity	3
5-table 16 BS5950-1:20007	<i>'</i> 4
6-table 22 BS5950-1:20007	15
7-table 24 BS5950-1:2000	16

LIST OF TABLES

Table (2.1) Common Friction Factor Values of C hw Used for
design purposes are
Table (2.2) Minor loss coefficients for some of the most common
used components in pipe and tube systems27
Table (2.3) Minor Loss Coefficients (K is unit-less)29

LIST OF FIGURES

Figure 2.1: Typical Roof Top Harvesting Structure9
Figure 2.2: Roof Water Harvesting Scheme10
Figure 2.3: Roof Water Collection Structures11
Figure 2.4-Percentage of harvested water in some Arab countries
Figure 2.5 -Good potential of rain water harvesting due to good
distribution of wadis all over Sudan14
Figure 2.6 - Traditional ways of water harvesting15
Figure 2.7- Alaawag Dam – White Nile State15
Figure 2.8 - Alaawag Dam – White Nile State15
Figure 2.9 - Abu-Hadeed Dam – N.Kordofan State16
Figure 2.10 -Wadi Bulbul: Removal of siltation & Wadi Training
which protect Tulles town from flooding & Irrigate agricultural area
of 5,000 acres16
Figure 2.11: Basic principle of water harvesting
Slope
Figure 2.12: Shows the ideal distance between dams Horizontal
interval = (VI x 100)/%slope)21
Figure 2.13: The Azagarfa hafir in Darfur, Sudan22
Figure 2.14 rested water tank
Figure 2.15 underground water tank31

Figure 2.16 underground water tank31
Figure 2.17 tank on rigid foundation32
Figure 2.18 Tanks on elastic foundation or tanks on compressible
soil32
Figure 2.19 check bearing capacity for rested and underground34
Figure 2.20 uplift for underground water tank34
Figure 2.21 Figure 3.8: uplift check35
Figure 2.22 stress on soil in case of full tank35
Figure 2.23 uplift check
Figure 2.24 tank resting on firm soil (rock or coarse sand)37
Figure 2.25 tank resting on medium soil
Figure 2.26stress on soil for underground water tank40
Figure 2.27 toe in tank resting on medium soil40
Figure 2.28 deep foundations (piles) in tank resting on medium
soil40
Figure 2.29 soil replacement in tank resting on medium soil41
Figure 2.30 toe in tank resting on medium soil41
Figure 2.31 earth Pressure42

Figure 2.33: details of underground water tank	43
Figure 3.1Rectangular Water	49
Figure 3.2 Load factors	51
Figure 3.3 Load analysis	51
Figure 3.4 moment distributions	52
Figure 3.5 reaction analysis	52
Figure 3.6 Load distributions	53
Figure 3.7 N.F	55
Figure 3.8 tank details	56
Figure 3.9 detail (A) type connection between wall and foundation	56
Figure 3.10 detail (B) type connection between wall and slab	57
Figure 3.11 elevated water tank	60
Figure 3.12 elevated water tank details	65
Figure 3.13 details C part on cap of corner column	66
Figure 3.14 details A part side elevation @ head of tower.	66

List of symbol: -

 $Q = \text{the discharge (m}^3/\text{s)}.$ V= velocity in pipe (m/s). D= pipe diameter (m). hf = Friction losses (m). \mathbf{F} = friction factor. L = length of pipe (m). V = velocity in pipe (m/s).g = acceleration of gravity (9.81 m/s²) $h_{minor\ loss} = minor\ head\ loss\ (m)$ ξ = minor loss coefficient (m) v = flow velocity (m/s). $\mathbf{P} = (watt)$ $q = flow in m^3/sec$ g = density of the liquid in Kg/m3 = 1000 Kg/m3H = paizomitric height in metal of water assume (m). γ_{SOIL} = Soil unit weight (kN/m³). γ_W =Water unit weight (kN/m³).

 Φ =Coefficient of friction.

=Height of water (m). γ_c = Concrete unit weight (kN/m³). L= Where is the smaller length of the tank (m). *H*=height of tank (m). f_{gross} = The stress transferred to the soil without calculating water weight (kN/m^2) . $\sum W$ = weight of floor slab, walls cover slabs, beams and water (kN/m) A=area of the base of the tank (m^2) Fos = total upliftW= weight of tank (kN/m²). γ_{RC} =reinforced concrete unites weight (kN/m³). t_f =thickness of foundation (m). y_w = unites weight of water (kN/m³). *H*= height of tank (m). $\mathbf{W}_{tank} = total \text{ Weight of tank } (kN/m^2).$ \mathbf{W}_{floor} = Weight of floor (kN/ m^2). W_{wall} = Weight of wall (kN/m²). W_{roof} = Weight of roof (kN/m²). $\mathbf{f}_{gross} = \text{stresses on soil (KN/m}^2).$

Volume=volume of tank (m³).

 \mathbf{R} , $\mathbf{\beta}$, α = distributions factor.

e= water pressure (KN/m^2) .

 \mathbf{F} , \mathbf{R} = element force & reaction (kN)

 $M_{working} = working moment (kN.m).$

 M_{ull} = ultimate moment (kN.m).

 T_{ull} = ultimate shear (kN).

T= thickness of floor (mm).

b= width (mm).

 γ Stainless steel= unites weight of steel (kN).

Weight= weight (kg).

G=weight (kg).

L= length of member (m).

No= number 0f member.

 P_0 = Total load on heavily loaded column (kN).

 M_{br} =Bracing moment (kN.m)

 $\mathbf{M_c}$ = moment capacity (kN.m)

 P_y =design strength of steel

 $\mathbf{M_b}$ = buckling resistance moment (kN.m)

 $\mathbf{sx} = \text{plastic modulus about the major axis}$

S= Shear force on bracing (kN)

 A_c = area of concrete section (mm²)

L_E= effective length of column (m)

L= length of column (m)

 λ =slenderness

ry = radius of the gyration about the minor axis

P_c= peering capacity (N)

P_{cs}= Compression resistance (N)

W = weight (kg / m)

 $\mathbf{A} = \text{area } (\text{cm}^2)$

S =thickness (mm)