Sudan University of Science and Technology
College of Postgraduate Studies

INVESTIGATION OF SOFTWARE DEFINED
NETWORK FOR VIRTUAL PRIVATE NETWORKS

dpuda) i8N dualil) ludll e iy 4B jal)) (ias

A research submitted in partial fulfillment for the requirements of the M.Sc.
Degree in Computer and Network Engineering.

By:
Asmaa Mubarak Altayeb Awad Alkareem
Supervisor:

Dr. Ibrahim khider

March, 2019

——
[EEN
| —

(Yol 1 gdell G2 ool)
(85) clyufl

——
N
| —

DEDICATION

To:

The spirit of my hero, Altayeb M.lbrahim,
My teacher Wayser S.koko,

My Extended family,

My small family,

My friends,

My little Angel...

——
w

'

ACKNOWLEDGMENTS

| wish to express my appreciation and gratitude to Dr. Ibrahim Khider who,
through his ideas, suggestions and advice improved this project. Thanks to him,
not only for his help in general but also for his trust and guidance during the
revision process. My deepest thanks to all the staff in electronic department at
Sudan University of Science and Technology, who, in many ways contributed in
making this project a memorable and an enriching experience. Finally, | thank
my family, Co-workers, friends for their patience and understanding during the
days of writing and revising this project.

——
N
| —

ABSTRACT

The traditional networks face so many problems including: time-
consuming, Multi-vendor environments require a high level of expertise and
complicate network segmentation, inconvenience and difficulty of learning to
manage such a huge systems and devices and more. Software-defined network
continues to be one of the most hyped technology evolutions in information and
communication technology that provide a centralized management of the network
controlled by one controller and it promise to offer an easy to manage, scalable
and high performance networks.
In this study, Mininet simulator and python programming language are used to
emulate a software defined network for an Internet service provider in two
different models and implement virtual private local area network service
networks for three customers-two sites per customer, then begin to scale the
network by double the number of sites per every customer using different
scenarios in every model in order to evaluate the connectivity and performance of
the software defined network controller by observing the number of flows in the
flow table that the controller used in data transfer and we observed that: as we
scale the network by double the flow table number be scale approximately by
three times as in the first model or one and half time as in the next model. Which
means that the scalability problem takes place also in SDN networks and it needs
more studies.

——
w1
| —

gadlical)
lede o LS ¢ Dlsha | iy Gyt Lol Leie CDISER (ho wpaall 4algs Gl clSull) o
&Y Al 5ly Lgaa K 5yl (e Jlo ggie llaiy Laa tailide Sl A dasd
lld (g STy dadall 836l alaill o3a JS 3y alaill dygmiay Aijaa ()5S
Ll i€ 8) b gl ol BT (e saaly Cilimasalls Adjaal) S8 iiad
pSadia e lgad aSadill ()5S0n Cun ASAIT A4S 5e 5y s (Ally CY Ly Gl sleal)
csle ehalis asll AL 5y Al lSad g Gllhy Ciae g S g 2l
A<l Jand(0l syl Aady(i e JlSlad) praliy aladin) 5 Auhal) o3a b
Alaall AS0tl) daod (Braday Gilide aad el (A il dedd g 3al daeyally A8jma
e dicliae ye 30al augiy Uy 2 el jidia JS) (ppnd sy (S jidie ADMA dpucal 58|
Ay Juass il gt zdsad S 8 Adliae la syl aladinly e JSI £l sal
@A Ganll Joon EBlAde 2e ddaadle Bayha e cdaa pll A8 jrall GISAN 8 aSanal)
ey A Camas i LalS il LY 85 ccliball Qe sl 49 gsa)ll aSaiall e g
b WS Caaigiye sl oY) zasaill 8 LS | i Cileaal A, 38 Jsam aos i Caxacall
Zhads | ol A il A yeal) lSal 3 Al AL g Al (o Jay Las ¢ B 2 3 sl
S bl)

LIST OF TABLES
Table 2.1 Difference between Traditional and Software Defined Networking

DY/ 0L T PR TPRP 25

Table 3.1 SIMUIAtioN ParametersS........ oo 30
Table 4.1 Model ONE RESUIS.........oooiieeieeeee e 34
Table 4.2 Model TWO RESUIS........ccooiieeeeeee et 37

LIST OF FIGURES

Figure 2.1 VPN Connection between Server and Client............cccccooevivieieennnnns 6
Figure 2.2 Functions of Network Management System...........c.cccocvvevveeiveeninenn, 8
Figure 2.3 MPLS AIChItECIUIE.........oivi i 11
Figure 2.4 MPLS Labeling.......cccooviiiiiieiiiee e 12
FIQUIE 2.5 IMPLS PrOCESS.ciiiieitie ettt siee et 13
Figure 2.6 Traditional ArchiteCture..........cccovviiiieiiie e 15
Figure 2.7 SDN ArChItECIUIe.......c.eeiie et 16
Figure 2.8 SDIN CONLIOIIET.......coiiiie et 18
Figure 2.9 Open FIowW INStruCtion Set..........cccveiieiiiiiiniie e 21
Figure 3.1 Model 1 SCENANIO L.....cccoiivieiieiiiecee e 27
Figure 3.2 Model 1 SCENANIO 2.....cccveeveeiieeiieeiie e 28
Figure 3.3 Model 1 SCENANIO 3.........ooieeiie et 28
Figure 3.4 Model 2 SCENANIO L.....ccociieiiieiiece e 29
Figure 3.5 Model 2 SCENANIO 2......c.eecveeiie et 29
Figure 3.6 Model 2 SCENANIO 3.........ocieiieie e 30
Figure 4.1 Model 1 Scenario 1 Implementation............cccccvvveeviniieeneesiieennn,s 32
Figure 4.2 Model 1 Scenario 1 PING TeSt......cccccvvviiviieiiiesie e 32
Figure 4.3 Model 1 Scenario 2 Implementation............cccocvevieeeieevivenieerieene 33
Figure 4.4 Model 1 Scenario 2 PING TeSt......cccccvviiviieiiie s 33
Figure 4.5 Model 1 Scenario 3 Implementation............ccoccevveevieeiieeneesnesnn, 34
Figure 4.6 Model 1 Scenario 3 PING TeSt.......ccovviiiriieiiienie e sie e 34
Figure 4.7 Model 2 Scenario 1 Implementation...........cccccevveevieeiiesnnesnesnn, 35
Figure 4.8 Model 2 Scenario 1 PING TeSt......c.ccccvevviiiieeiiesie e, 35
Figure 4.9 Model 2 Scenario 2 Implementation..............cccceeveevieeiieveecieeenes, 36
Figure 4.10 Model 2 Scenario 2 PING TeSt.......cccccveiiieiieiieiee e 36
Figure 4.11 Model 2 Scenario 3 Implementation..............cccccevevveeiieiie e, 37
Figure 4.12 Model 2 Scenario 3 PING TeSt.......cccccveiiieiieiieiee e 37

——
(o]
| —

GLOSSARY

Abbreviation

Definition:

SDN Software Defined Networks

API Application Programmer Interface

WAN Wide Area Network

VPN Virtual Private Network

IP Internet Protocol

MPLS Multi-Protocol Label Switching

VPLS Virtual Private Local Area Network
Service

ISP Internet Service Providers

ONOS Open Network Operating System

CLI Command Line Interface

VPDN Virtual Private Dial-up Network

LAN Local Area Network

ID Identity

IPsec Internet Protocol Security

L2TP Layer Two Tunneling Protocol

PPTP Point-to-Point Tunneling Protocol

SSL Secure Sockets Layer

TLS Transport Layer Security

SSH Secure Shell

SNMP Simple Network Management Protocol

L2 Layer Two

L2VPN Layer Two Virtual Private Network

L3VPN Layer Three Virtual Private Network

CE Customer Edge

PE Provider Edge

LSP Label Switched Path

AS Autonomous Systems

VE Virtual Private Local Area Network
Service Edge

STP Spanning Tree Protocol

IETF Internet Engineering Task Force

RSVP Resource Reservation Protocol

OSPF Open Shortest Path First

ATM Asynchronous Transfer Mode

LSR Label Switch Router

P Provider

BGP Border Gateway Protocol

ONF Open Network Foundation

QoS Quality of Service

NAT Network Address Translation

OSGi Open Services Gateway Initiative

(1
L ° J

SAL Service Abstraction Layer

1/0 Input/Output

ASIO Asynchronous Input/Output

OS Operating System

OPENSIG Open Signaling Working Group

GSMP General Switch Management Protocol

ForCES Forwarding and Control Element
Separation

TCP Transmission Control Protocol

VM Virtual Machine

10

——
| —

TABLE OF CONTENTS

LI L Lo o TSP [
DT [o= U1 o] o SRS P USRS ii
ACKNOWIBAGMENTS......ciieiieiie et ba e v
AN 1] 1 - SO PTR %
LISt OF TaADIES. ... Vil
] 0 o U= RSP R viii
(€] (0117 V2SR STR IX
CHAPTER ONE: INTRODUCTION......ccciiieiiiieseese e et sie e e se e 1
IO I o 1= - To - TSSO SRSUSRS 1
1.2 Problem Statement.. ..o 2
1.3 ODJECLIVES.vi ettt et et e e e sb e e rae e nbeeanteeanneas 2

1.4 MethodolOgycoouieiie e 3
1.5 THESIS OULIINES. ...c.viiiiiiieciieie s 3
CHAPTER TWO: BACKGROUND.......cociiiiitiie it 4
20 R 111 oo U od 1 o] PSPPSR 4

2.2 VPN ChNaraCteriStICS.coiuiiieriierieiie e siee et see et sre et ae e sneas 5

2.3 VPN TYPBS. ettt ettt ettt ettt et e et e e nbae e e b e 5
2.3. 1 Remote-Access also called a Virtual Private Dial-up Network

(2341) TSRS 5

A | (= (0 | (-SSR 5

2.4 VPN DESIGN...cuiiiiie ittt et rae e snaeenae e e e 6
O BT ToT U) /PSR 6

2.4.2 VPN Reliability.......ccooiiiiiiiii e 7

2.4.3 VPN SCalability......ccoiieiieiieiiciesie e 7

2.4.4 Network Management..........ccveiieeieeiie i cee et 8

2.4.5 Policy Management...........cccoeiiieiiec i 9

2.4.6 Virtual Private LAN Service (VPLS).....ccocoiiiieiiee e, 9

2.5 Multi-Protocol Label Switching MPLS.............ccocoiiiiieiiece e, 10
2.5.1 MPLS AIChITECTUIE.......eoivieiiiciiece e 11

2.5.2 Labels and Label Bindings...........ccoeiiiiiiinniieeneee e, 11

2.5.3 The MPLS PrOCESS......cccviiiiieiciee ettt e 12

2.5.4 MPLS L2VPN VS L3VPN......ooiiiiie et 13

2.6 SDIN NEIWOIK......oeeiiiiiciiie ettt nr e nes 13
2.6.1 SDN AICNITECIUIE.....cveeiciee ettt 14

2.6.2 SDN APPHCALIONS......oiiiiiiiiiiie e 17

2.6.3 SDN CONrOlIEr......ccvveiieiiccee e 18

2.6.3.1 0Open Daylight.........ccoooviieiiiie e 18

2.6.3.2 NOX-MT ..ottt 19

2.6.3.3 Floodlight controller...........cocooceviiiieiie i 20

2.6.3.4 Open Network Operating System Controller..................... 20

2.6.4 Open FIOW ProtoCol.........cccocvviiieiiiiie e 20
Xl

2.6.4.1 Activities around SDN/Open FIOW........c.cccevvviiiiiieninnn, 22

(1
L 1)

2.6.4.2 Open FIOW MESSAQES.......ccovvrrirrieiiieiieeniee st 23

2.7 Traditional Networking VS SDN.......cccooviiiiiiiiiiceceeee e 25
CHAPTER THREE: MODELLING VIRTUAL PRIVATE NETWORK...........
K O AV =T oV [26
3.2 MOAEIS™ SCENATIOS ceeeeeieee ettt et e e e e e et aaeeeeeeeeeeeaaas 27
K20 N\, [0 To (=] I Yot - U o 1 27
A \Y, [0 To (=] IR Yot - 1 (o 1R 27
G 31 1Y, [0 (=] I Yot - L (o 1 T 28
I 1Y, [To (=] I Yot - 1 (o 1 R 29
3.2.5 MOdEl 2 SCENAIIO 2...veeeeeieeireiee e 29
3.2.6 MOdEl 2 SCENAITO 3....oveeeeiieeieeeeee et 30

CHAPTER FOUR: SIMULATION AND RESULTS........cccooiiiiieeeeee

4.1 SIMUulation DESCHPLION.ccvieiie e 31
A2 RESUILS. ...ttt et e et e e nneenre e e e 31

CHAPTER FIVE: RESULTS AND DISCUSSION........ccooiiiiiiiieiiee e

D IS CUSSION. ..ottt e e e e e et e e e e e e e e e e e e e e eee et e eeeeeeeeennaas 38

CHAPTER SIX: CONCLUSION AND RECOMMENDATION.........cccccvenene.

8.1 CONCIUSION. ...ttt 39
6.2 RECOMMENUALION.o et e aeeaees 39

REFRENGCES...... .o

APPENDICES

A. Paython Script for Model 2 Scenario L........c.ccccevveiiiieiiecie e 41
B. Paython Script for Model 2 Scenario 2...........ccccceevvevieiiieiie e 42
C. Paython Script for Model 2 SCENArio 3.........cocveviviiiecece e 43
D. UDUNTU CLL..oeceee et 46
E. ONOS CLI ittt nnees 46
FoMININEE CLL..eeceee e ae e ree e 47

12

——
| —

1. Introduction

1.1 Preface:

Computer networks are typically built from a large number of network
devices such as routers, switches and firewalls with many complex protocols
implemented on them. Network operators are responsible for configuring policies
to respond to a wide range of network events and applications. They have to
manually transform these high-level policies into low-level configuration
commands while adapting to changing network conditions. The fact that network
devices are usually vertically integrated so network operators and administrators
have to make this task so many time and that the challenge they are always
facing.

Other challenge, the Internet practitioners and researchers facing is that the
Internet infrastructure have to evolve current and emerging services and
applications as well as its protocols and performance. Traditional networks have
various problems, it is very complex, difficult to manage and control; adding new
features means new protocols and new hardware (vender dependent) so
innovation costs a lot.

The limitations of traditional networking technologies make it harder to
determine where security devices such as firewalls should be deployed in the
network.

Programmable networks are proposed to resolve traditional network
approaches problems and adding new features. One of the programmable
networks is Software Defined Networks (SDN). SDN is currently attracting
significant attention from both academic and industrial field. SDN is a new
networking paradigm in which the forwarding hardware is decoupled from
control decisions it decouples the data plane from control plane and connect them
throw a protocol like open flow in Application Programmer Interface (API).

SDN can overcome the classic problem by implementing a central firewall in

the network, and thereby network administrators can route all traffic through a

13

——
| —

central firewall. With the help of SDN, a vendor independent control from a
single logical point can be obtained.

In SDN, the network intelligence is logically centralized in software-based
controllers (the control plane), and network devices become simple packet
forwarding devices (the data plane) that can be programmed via an open
interface. It promises to dramatically simplify network management and enable
innovation and evolution. A group of network operators, service providers, and
vendors have recently created the Open Network. Centralized the management in
a controller make it easy and flexible to manage but at the same time it have to
approve that it can add scalability to applied on the Wide Area Network (WAN)
[1].

Virtual Private Network (VPN) services are considered to be widely used in
Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) networks for
connecting customers’ remote sites. However, service providers struggle with
many challenges to provide these services. Management complexity, equipment
costs, and last but not least, scalability issues emerging as the customers increase
in number, are just some of these problems. SDN is an emerging paradigm that
can solve aforementioned issues using a logically centralized controller for

network devices [4].

1.2 Problem Statement:

Traditional networks, MPLS VPN and Virtual Private Local Area Network
Service (VPLYS) services impose some serious issues: The distributed architecture
of control plane causes complexity in configuration of the network done in
advice by device manner. For Internet Service Providers (I1SP) high-performance
routers are needed to meet the demands of vertically integrated, customers’

numerous IP prefixes which costs a lot.

1.3 Objectives:
The objectives of this thesis are to:
1. Verify the efficiency of SDN in scalability issue.

14

——
| —

2. Implement different SDN VPLS scenarios simulating to show challenges

face SDN networks in the term of scalability when it is used at WAN.

1.4 Methodology:
In this study we will implement two different models using Mininet simulator
and SDN Open Network Operating System (ONOS) controllers configured by

Command Line Interface (CLI).

1.5 Thesis Outlines:

This thesis contains a total of six chapters, the brief outline of these chapters is
as follows:
Chapter 1: presents the introduction and contains the problem which carries out
this thesis and the project goals. At the end of this chapter the methodology used
to work in this thesis is illustrated.
Chapter 2: gives a background about the virtual private networks.
Chapter 3: presents the modeling of the software defined network for a virtual
private network.
Chapter 4: explains the simulating software defined network for the virtual
private network.
Chapter 5: presents the obtained results and a brief discussion.

Chapter 6: includes the thesis conclusion and recommendations.

15

——
| —

2. Background

2.1 Introduction:

Simply, a Virtual Private Network, or VPN, is a group of computers (or
discrete networks) networked together over a public network—namely, the
internet VPN is a network that allow you to create a secure connection to another
network over the Internet. It provides inter-connectivity to exchange information
among various entities that belong to the VPN. It is private, so that it has all the
characteristics of a private network.

VPN is a generic term used to describe a communication network that uses
any combination of technologies to secure a connection tunneled through an
otherwise unsecured or untrusted network. Instead of using a dedicated
connection, such as leased line, a "virtual" connection is made between
geographically dispersed users and networks over a shared or public network,
like the Internet. Data is transmitted as if it were passing through private
connections [2].

There are a number of systems that enable you to create networks using the
Internet as the medium for transporting data. A VPN secures the private network,
using encryption and other security mechanisms to ensure that only authorized
users can access the network and that the data cannot be intercepted. The primary
reason for deploying VPN is cost savings. VPN technology provides a way of
protecting information being transmitted over the Internet, by allowing users to
establish a virtual private “tunnel” to securely enter an internal network,
accessing resources, data and communications via an insecure network such as
the Internet. There is an increasing demand nowadays to connect to internal
networks from distant locations. Employees often need to connect to internal
private networks over the Internet (which is by nature insecure) from home,
hotels, airports or from other external networks. Security becomes a major
consideration when staff or business partners have constant access to internal

networks from insecure external locations [4].

16

——
| —

2.2 VPN Characteristics:

1) Supports a closed community of authorized users, allowing them to access
various network related services and resources.

2) The traffic originating and terminating within a private network traverses
only those nodes that belong to the private network.

3) The traffic corresponding to this private network does not affect nor is it
affected by other traffic extraneous to the private network.

4) Virtual topology is built on an existing, shared physical network
infrastructure. However, the virtual topology and the physical network are

usually administered by different administrative bodies.

2.3 VPN Types:

There are two common types of VPNs:

2.3.1 Remote-Access also called a Virtual Private Dial-up Network
(VPDN):

This is a user-to-Local Area Network (LAN) connection used by a company
that has employees who need to connect to the private network from various
remote locations. Typically, a corporation that wishes to set up a large remote-
access VPN provides some form of Internet dial-up account to their users using
an ISP.

The telecommuters can then dial a 1-800 number to reach the Internet and
use their VPN client software to access the corporate network. A good example
of a company that needs a remote-access VPN would be a large firm with
hundreds of sales people in the field. Remote-access VPNs permit secure,
encrypted connections between a company's private network and remote users

through a third party service provider.

2.3.2 Site-to-Site:

Through the use of dedicated equipment and large scale encryption, a

company can connect multiple fixed sites over a public network such as the

17

——
| —

Internet. Each site needs only a local connection to the same public network,
thereby saving money on long private leased-lines.

Site-to-site VPNSs can be further categorized into intranets or extranets. A site-
to-site VPN built between offices of the same company is said to be an intranet
VPN, while a VPN built to connect the company to its partner or customer is

referred to as an extranet VPN [3].

2.4 VPN Design:

Features are needed in a well-designed VPN:
2.4.1 Security:

When using public network security techniques are needed, to be effective, a
VPN must address the following basic requirements: Data integrity, to verify that
the contents of a datagram were not changed in transit, either deliberately or due
to random errors. Data confidentiality, to conceal the clear text of a message by
using encryption. Replay protection, to ensure that an attacker cannot intercept a
datagram (containing, for example, an encrypted user Identity 1D and password)
and play it back at some other time. Key management to ensure that your VPN
policy can be implemented throughout the extended network with little or no
manual configuration. Interoperability, to ensure that VPN uses standard-based
technologies to maintain interoperability with other VPN vendors. Figure 2.1

illustrates a VPN connection between a server and a client [8].

(YPN Tunnel })

Internet

Figure 2.1: VPN Connection between Server and Client

18

——
| —

VPN technology is based on the idea of tunneling. VPN tunneling
involves establishing and maintaining a logical network connection. On
this connection, packets constructed in a specific VPN protocol format
are encapsulated within some other base or carrier protocol, then
transmitted between VPN client and server, and finally de-encapsulated
on the receiving side. There are six VPN tunneling protocols:

1) Internet Protocol Security (IPsec)

2) Layer Two Tunneling Protocol (L2TP)

3) Point-to-Point Tunneling Protocol (PPTP)

4) Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

5) OpenVPN.

6) Secure Shell (SSH)

2.4.2 VPN Reliability:

Reliability is a function of time. The way in which time is specified varies
considerably depending on the nature of the system under consideration. For
example, if a system is expected to complete its mission in a certain period of
time, like in case of a spacecraft, time is likely to be defined as a calendar time or
as a number of hours. For software, the time interval is often specified in so
called natural or time units. A natural unit is a unit related to the amount of
processing performed by a software-based product, such as pages of output,

transactions, telephone calls, jobs or queries [5].

2.4.3 VPN Scalability:

There are several different tunneling protocols that can be used to create VPN
connections: Point to Point Tunneling Protocol (PPTP), Layer 2 Tunneling
Protocol (L2TP), Internet Protocol Security (IPsec) and Secure Sockets Layer
(SSL). Some VPN solutions support more than one of these protocols others are
more limited. Scalability needs will affect which tunneling protocols are most

appropriate. Remote access users must have the proper client software to support

19

——
| —

the protocols you choose. For site-to-site VPNs, the VPN gateways at each end

must support a common protocol [9].

2.4.4 Network Management:

Network management as monitoring, testing, configuring, and troubleshooting
network components to meet a set of requirements defined by an organization.
These requirements include the smooth, efficient operation of the network that
provides the predefined quality of service for users. To accomplish this task, a
network management system uses hardware, software, and humans. In this
chapter, first we briefly discuss the functions of a network management system.
Then we concentrate on the most common management system, the Simple
Network Management Protocol (SNMP).

The functions performed by a network management system can be divided
into five broad categories: configuration management, fault management,

performance management, security management, and accounting management

[7].

Functions of a network management system

Functions of a network
management system

| | |

Configuration Fault Performance Accounting
management management management management

t&{m onfiguration l: Reactive Capacity
Documentation Proactive Traffic

Throughput

Response time

Figure 2.2: Functions of Network Management System

——

20

'

2.4.5 Policy Management:

The management of network infrastructure in an enterprise is a complex and
daunting affair. In an era of increasing technical complexity, it is becoming
difficult to find trained personnel who can manage the new features introduced
into the wvarious servers, routers, and switches. Policy-based network
management provides a means by which the administration process can be
simplified and largely automated. In this article we look at a general policy-based
architecture that can be used to simplify several new technologies emerging in

the context of IP networks.

2.4.6 Virtual Private LAN Service (VPLYS):
Virtual Private LAN Service (VPLS) is an SDN application that enables

operators to create Layer Two (L2) broadcast overlay networks on-demand, on
top of Open Flow infrastructures. The application connects into overlay broadcast
networks hosts connected to the Open Flow data plane.

VPLS, in its implementation and configuration, has much in common with a
Layer Two Virtual Private Network (L2VPN). In VPLS, a packet originating
within a service provider customer’s network is sent first to a Customer Edge
(CE) device (for example, a router or Ethernet switch). It is then sent to a
Provider Edge (PE) router within the service provider network. The packet
traverses the service provider network over an MPLS Label Switched Path
(LSP). It arrives at the egress PE router, which then forwards the traffic to the CE
device at the destination customer site. The difference is that, for VPLS, packets
can traverse the service provider networks in point-to-multipoint fashion,
meaning that a packet originating from a CE device can be broadcast to all the PE
routers participating in a VPLS routing instance.

In contrast, a L2VPN forwards packets in point-to-point fashion. The paths
carrying VPLS traffic between each PE router participating in a routing instance
are called pseudo wires. VPLS multi-homing enables you to connect a customer
site to multiple PE routers to provide redundant connectivity while preventing the
formation of L2 loops in the service provider network. A VVPLS site that is multi-

(1
L 2t)

homed to two or more PE routers provides redundant connectivity in the event of
a PE router-to-CE device link failure or the failure of a PE router. When multi-
homing a VVPLS site (potentially in different Autonomous Systems [ASs]), the PE
routers connected to the same site can either be configured with the same VPLS
Edge (VE) device identifier or with different VE device identifiers. If you are
using different VE device identifiers, you must run the Spanning Tree Protocol
(STP) on the CE device, and possibly on the PE routers, to construct a loop-free
VPLS topology [9].

2.5 Multi-Protocol Label Switching MPLS:

Software Defined Network SDN is a new network architecture that can be
implements at both WAN and LAN networks. In our research we are focusing on
WAN network so before we study SDN one must understand the current WAN
technology which will be work concurrently with SDN before complete
replacement.

MPLS is an Internet Engineering Task Force (IETF)-specified framework
that provides for the efficient designation, routing, forwarding, and switching of
traffic flows through the network. MPLS performs the following functions:

e Specifies mechanisms to manage traffic flows of various granularities,
such as flows between different hardware, machines, or even flows
between different applications.

e Remains independent of the Layer-2 and Layer-3 protocols.

e Provides a means to map IP addresses to simple, fixed-length labels used
by different packet-forwarding and packet-switching technologies.

e |Interfaces to existing routing protocols such as Resource Reservation
Protocol (RSVP) and Open Shortest Path First (OSPF)

e Supports the IP, Asynchronous Transfer Mode (ATM), and frame-relay

Layer-2 protocols.

22

——
| —

2.5.1 MPLS Architecture:

Customer Site

Provider Edge (PE) router —also known as an Ingress/Egress Label Switch
Router (LSR), is a router between one network service provider's area and
areas administered by other network providers/customers.

Provider (P) router —is a Label Switch Router (LSR) that functions as a
transit router of the core network. The P Router is typically connected to
one or more PE Routers.

Customer Edge (CE) router—The customer edge (CE) is the router at the
customer premises that is connected to the provider edge of a service
provider IP/MPLS network. CE peers with the Provider Edge (PE) and
exchanges routes with the corresponding VRF inside the PE. The routing
protocol used could be static or dynamic (an interior gateway protocol like
OSPF or an exterior gateway protocol like Border Gateway Protocol-
BGP).

IP-VPN MLS Architecture

P P

Customer Site

>

CE3

-

CE1l PE

- P P

CE2 CEZ2 IP MLS Network

Figure 2.3: MPLS Architecture

2.5.2 Labels and Label Bindings:

A label, in its simplest form, identifies the path a packet should traverse. A

label is carried or encapsulated in a Layer-2 header along with the packet. The

receiving router examines the packet for its label content to determine the next

hop.

Once a packet has been labeled, the rest of the journey of the packet through

23

——
| —

the backbone is based on label switching. The label values are of local

significance only, meaning that they pertain only to hops between LSRs.

Packet

I_L_ﬂ

Unlabeled MAC | MAC Type

\]
T

Frame

Label is inserted here! —l Packet

Labeled MAC | mac Type e FCS
Packet pa | sa |oxssa7 | 2P (CRC)
L

J
T
Frame

Figure 2.4: MPLS Labeling

2.5.3 The MPLS Process:
There are four scenarios detailing how LSRs forward packets:
1) An unlabeled IP packet is received, and is routed unlabeled to the next
hop.
2) An unlabeled IP packet is received, a label is inserted in the header, and is
switched to the next hop.
3) A labeled IP packet is received, the label is swapped, and is switched to the
next hop.
4) A labeled IP packet is received, the label is stripped off, and is routed to
the next hop or destination.
Frame-mode MPLS performs as follows:
1) An edge LSR receives a packet.
2) The edge LSR performs a routing table lookup to determine the next hop
(or exit interface).
3) If destined for the MPLS network, the edge router inserts the label between
the Layer-2 and Layer-3 headers.
4) The edge LSR forwards the labeled packet to the core LSR.
5) Core LSRs will route solely based on the label, and will not perform a

routing table lookup [10].

24

——
| —

next hop and initial label for each
packet (21 and 17).

LSR (Label Switched Router) A uses the |
destination IP address on each packet !
to select the LSP which determines the

D

LSR A LSRD

] Ingress @) s
S L] -

Host X when LSR B receives the packets, it
uses these labels to identify the LSPs,
from which it determines the next hops
(LSRs D and C) and labels (47 and 11).

The egress routers (LSRs D and C) strip
off the final label and route the packet
out of the network.

Figure 2.5: MPLS Process

2.5.4 MPLS L2VPN VS L3VPN:

e L3VPN uses IP routing, L2VPN uses circuit switching approach.

e In L3 MPLS VPN the customer traffic consist of IP frames, in L2 MPLS
VPN the customer traffic is tagged or untagged Ethernet frames.

e In L3 MPLS VPN the inner label is a label containing the final virtual
routing and forwarding table, in L2 MPLS VPN the inner label is virtual
circuit tag

e L3 MPLS VPN uses standard routing protocols such as BGP to create
route maps, L2 MPLS VPN resamples a virtual circuit type service.

2.6 SDN Network:

Software-defined networking (SDN) is a new networking architecture that
comes after MPLS Technology is proposed as a facilitating technology for
network evolution and network virtualization. It has attracted significant attention
from both academic researchers and industry.

One of the main organizations that contribute to the development of SDN is

the Open Network Foundation (ONF) which is a non-profit industry consortium

25

——
| —

of network operators, service providers and vendors that promotes the SDN
architecture and drives the standardization process of its major elements.

ONF defines SDN as a technology where “network control is decoupled from
forwarding and is directly programmable”. It concentrates the network
intelligence in software-based central controllers, which aims to bring better and
more efficient control, customizability and adaptability.

The main benefits that the SDN technology might offer are: Centralized
unified control of network devices from different vendors, better automation and
control, as an abstraction of the real network is created simplified and quicker
implementation of innovations, as the network control is centralized and there is
no need every individual device to be reconfigured. Improved network reliability
and security, because of fewer configuration errors and unified policy
enforcement, provided by the automated management and the centralized control
Ability to easily adapt the network operation to changing user needs, as

centralized network state information is available and can be exploited.

2.6.1 SDN Architecture:

Software-defined networking (SDN) has been primarily discussed as network
architecture where Layer2 technologies implemented. However, the network, like
the economy, is global and the enterprise wide area network (WAN) becomes an
essential component of that global network. SDN programmability within the
datacenter will only solve one aspect of the larger issue. That programmability
needs to extend all the way across the WAN to realize true benefits of software
defined networks. As they say, you are as good as your weakest link.

Let us first try and peel back the layers of SDN and how it impacts
networking. Networking typically involves a collection of switches and routers
that work in harmony to achieve end to end communication. The key functions of
these network elements can be segmented into layers of management, data plane
and control plane. The traditional way of making these nodes work with each
other is by implementing protocols running at each of these nodes to exchange

information. This creates a distributed architecture, where every node across the

26

——
| —

network needs to be at a similar state to get the desired end result. In addition,
these protocols are very rigid in what they can and cannot do. The result is a very
static network architecture that is not adaptive to change as presented in Figure
2.6

Traditional Architecture

Network Network Network Network
Node Node Node Node

s 3 w—
Y | T e

- - | -

| -

S “ | -~
~ | I F 4 ’
~ I a
s N v v &°

Control Plane _\ Network Network

D S ’ Node ~__Node

Data Plane

Figure 2.6: Traditional Architecture

Now consider what would happen if we remove the protocols and instead
open up a standard set of APIs. Then, build a centralized control plane that uses
these APIs to program the network elements. This control plane will have a
global view of the network and can make smart decisions. For example, how can
one carve out a dedicated path between 2 servers? If we had switches opening up
APIs indicating the flow to the output port mapping it is a matter of programming
all the elements with that information. Imagine trying to do that with the
spanning tree protocol instead! This is just a very high level concept, but the
fundamental idea is that network elements need to be programmable and cannot
be static within a fluid environment like the Cloud, where provisioning needs to

happen on demand and elasticity is a key requirements presented in Figure 2.7

27

——
| —

SDN Architecture
w\
=
g ':\ F N A A “ -~
- 1 ! >
- 1 1 -~
-] i ~
o -] 1 I 1 -
- 1 1 "L »
- 1 1 LY
P - . 1 1 - \\
-7 ! : : 1 .
L v ;¥ A

[Network Node] [Network Nodé] [Network Node] [Network Node]

1 1

1 1

1 [

1 1

1 I

1 1
Control Plane L]]
- —-————— = N

[Network Node J [Network Node]

Data Plane

Figure 2.7: SDN Architecture

Moving the same concept into enterprise networking, Firewalls, VPN, WAN
optimization solutions and Quality of Service (QoS) are some of the aspects of
WAN technologies built on a foundation of L3 routing. L3 routing is destination
based and is not flow aware. It does have significant benefits over L2 networks,
like support for multi-pathing, VPNs but is built on protocols running in a
distributed manner and lacking programmability.

SDN has been designed to simplify network configuration and facilitate
innovation. SDN paradigm decouples the control plane and the data plane and
concentrates the data forwarding decisions into a centralized software controller.
As a result, the underlying network devices’ functions are reduced to simple data
forwarding. Instead of programming thousands of devices the network
configuration is performed on simplified network abstraction. This allows the
implementation of various software modules that can exert dynamic control on
the network functions, also the centralized control function of the SDN
architecture allows consistent Policies to be enforced with ease. Common
networking functionalities can also be configured via the supported APIs. The
deployment of services, such as routing, security, access control, bandwidth
management, traffic engineering, quality of service, energy optimization can be
configured much easily. The goal of the SDN developers is to ensure multi-

vendor support.

28

——
| —

2.6.2 SDN Applications:

The SDN architecture is claimed to greatly simplify network management and
provide an immense number of new services via the programmable software
modules. A summary of the application scenario that will benefit from employing
the Open Flow architecture are described in and briefly summarized as following:

> Enterprise networks: the centralized control function of SDN can be
particularly beneficial for enterprise networks in different ways. For
example, network complexity can be reduced by removing middle boxes
and configuring their functionality within the network controller. Different
network functions implemented via SDN include Network Address
Translation (NAT), firewalls, load balancers and network access control.
An approach for realizing consistent network upgrade, using high-level
abstractions.

> Data centers: power consumption management is a major issue in data
centers, as they often operate below capacity in order to be able to meet
peak demands. A network power manager is described that turns off a
subset of switches in a way to minimize power consumption while
ensuring the required traffic conditions. A real life example of SDN
application in the context of data centers is presented. They describe SDN-
based network connecting Google data centers worldwide. The
deployment was motivated by the need of customized routing and traffic
engineering, as well as scalability, fault tolerance and control that could
not be achieved with traditional WAN networks.

> Infrastructure-based wireless access networks: an SDN solution for
enterprise wireless LAN networks is proposed. The solution builds an
abstraction of the access point infrastructure that separates the association
state from the physical access point. The purpose is to ensure proactive

mobility management and load balancing.

29

——
| —

2.6.3 SDN Controller:

The controller is the core of an SDN network. It lies between network devices
at one end and applications at the other end. Any communications between
applications and devices have to go through the controller [11]. SDN controllers
are based on protocols, such as Open Flow to configure network devices and
choose the optimal network path for application traffic and to allow servers to tell

switches where to send packets as presented in Figure 2.8.

Controller
LI L. . T
P I NN £
'," P L1 \‘
Control Plane - ' LAY ~
o ft A ™
- P LAY Y
i I, A *
- i v A ~

Forwarding Plane

Figure 2.8: SDN Controller

2.6.3.1 Open Daylight:

Open Daylight SDN Controller has several layers. The top layer consists of
business and network logic applications, the middle layer is the framework layer
and the bottom layer consists of physical and virtual devices. The middle layer is
the framework in which the SDN abstractions can manifest. This layer hosts
north-bound and southbound APIs. The controller exposes open northbound APIs
which are used by applications. Open Daylight supports the Open Services
Gateway Initiative (OSGi) framework and bidirectional REST for the
northbound API. The business logic resides in the applications above the middle

layer. These applications use the controller to gather network intelligence, run

30

——
| —

algorithms to perform analytics, and then use the controller to orchestrate the new
rules, if any throughout the network. Open daylight is created with an objective
of reducing vendor, locking therefore it supports protocols other than Open Flow.
The southbound interface is capable of supporting multiple protocols such as
Open Flow and BGP-Link State as separate plugins. The Service Abstraction
Layer (SAL) determines how to fulfill the requested service irrespective of the

underlying protocol used between the controller and the network devices [12].

2.6.3.2 NOX-MT:

NOX, whose measured performance motivated several recent proposals on
improving control plane efficiency has a very low flow setup throughput and
large flow setup latency. Fortunately, this is not an intrinsic limitation of the SDN
control plane: NOX is not optimized for performance and is single-threaded. We
present NOX-MT, a slightly modified multi-threaded successor of NOX, to show
that with simple tweaks we were able to significantly improve NOX’s throughput
and response time. The techniques we used to optimize NOX are quite well-
known including: Input/Output (1/0) batching to minimize the overhead of 1/0O,
porting the 1/0O handling harness to Boost Asynchronous 1/O (ASIO) library
(which simplifies multi-threaded operation), and using a fast multiprocessor-
aware malloc implementation that scales well in a multi-core machine. Despite
these modifications, NOX-MT is far from perfect. It does not address many of
NOX’s performance deficiencies, including but not limited to: heavy use of
dynamic memory allocation and redundant memory copies on a per request basis,
and using locking were robust wait-free alternatives exist. Addressing these
issues would significantly improve NOX’s performance. However, they require
fundamental changes to the NOX code base and we leave them to future work.
To the best of our knowledge, NOX-MT was the first effort in enhancing

controller performance and motivated other controllers to improve. [14]
2.6.3.3 Floodlight controller:

31

——
| —

Floodlight is not just an Open Flow controller. Floodlight is an Open Flow
controller (the "Floodlight Controller") and a collection of applications built on
top the Floodlight Controller.

The Floodlight Controller realizes a set of common functionalities to control
and inquire an Open Flow network, while applications on top of it realize
different features to solve different user needs over the network. The figures
below show the relationship among the Floodlight Controller, the applications
built as Java modules compiled with Floodlight, and the applications built over
the Floodlight REST API. When you run Floodlight, the controller and the set of
Java module applications (those loaded in the floodlight properties file, see
Module Applications for examples) start running. The REST APIs exposed by
all running modules are available via the specified REST port (8080 by default).
Any REST applications, written in any language, can now retrieve information
and invoke services by sending http REST commands to the controller REST
port 8080 [13].

2.6.3.4 Open Network Operating System Controller:

Open Network Operating System (ONOS) controller, is an SDN Operating
System (OS) proposed with many features: performance, scalability, and
availability requirements of large operator networks.

The evaluation of the first ONOS controller indicated that needs to design a
more efficient data model, reduce the number of expensive data store operations,
and provide fast notifications and messaging across nodes. Additionally, the API
needed to be simplified to represent the network view abstraction more clearly

without exposing unnecessary implementation details.

2.6.4 Open Flow Protocol:

Open Flow is currently the only open standard for implementing SDN and it
Is a standardized protocol that defines the communication between the control
and the data forwarding plane in the SDN architecture. It moves the control out

of the networking devices (routers, switches, etc.) into the centralized controller.

32

——
| —

The protocol uses the concept of flows that use match rules to determine how the
packets will be handled. The protocol is configured on both sides — the device
and the controller. The forwarding. Device in an Open Flow scenario is an Open
Flow switch that contains one or more flow tables and an abstraction layer that
communicates with the controller. The flow tables are filled with flow entries
which define how the packet will be forwarded, depending on the particular flow
they are part of.

In order to understand the role of Open Flow and its building blocks, and how
it can be used for Open Flow-based network application development, it is
Important to provide a brief introduction of Open Flow and how it works. This
chapter shapes the required knowledge prior to the actual setup of SDN/Open
Flow-enabled experimental and development environment. Open Flow can be
considered as one of the early implementations of the SDN concept. Therefore,
before going through Open Flow, it is worth giving a brief introduction to the
SDN and the related activities around it.

The flow entries have the following fields: Match fields, might contain
information from the packet headers, ingress port or metadata and matches the
packets to a certain flow. Counters collect statistic about the particular flow.
Actions, define how the incoming packets to be handle. An example of the Open

Flow instruction set is presented on Figure 2.12

33

——
| —

@‘\ :
¢ OpenFlow

OpenFlow-enabled Network Device

Flow Table comparable to an instruction set

MAC dst TCP dport

10:20:. port 1

port 2

drop

local

controller

Figure 2.12: Open Flow instruction set

SDN is possible without using the Open Flow standard, but proprietary
alternatives would lock an operator into vendor-defined solutions, capabilities
and pricing. This would greatly reduce the value of SDN as it would result in the
loss of both device interoperability and multi-network Interoperability. An Open
Flow switch essentially receives data packets, extracts the packet header and
matches the value to the entries in the flow table. If the value is found the packet
Is forwarded according to the instructions in the actions fields. In case the value
does not match any of the entries, the packet is handled according to the
instructions defined in the table-miss entry.

The packet can be either dropped, forwarded to the next flow table or send to
the Open Flow controller via the control channel. Another possibility, employed
In switches that have both Open Flow and non-Open Flow ports, is to forward the
packet using standard IP-forwarding schemes. The Open Flow switch
communicates with the controller over a secure channel. The controller adds,

removes or updates the entries in the flow table [6].

2.6.4.1 Activities around SDN/Open Flow:

While Open Flow has received a considerable amount of industry attention, it

Is worth mentioning that the idea of programmable networks and decoupled

34

——
| —

control plane (control logic) from data plane has been around for many years.
The Open Signaling Working Group (OPENSIG) initiated a series of workshops
in 1995 to make ATM, Internet, and mobile networks more open, extensible, and
programmable. Motivated by these ideas, an Internet Engineering Task Force
(IETF) working group came up with General Switch Management Protocol
(GSMP), to control a label switch. This group is officially concluded and
GSMPv3 was published in June, 2002. The Active Network initiative proposed
the idea of a network infrastructure that would be programmable for customized
services. However, Active Network never gathered critical mass, mainly due to
practical security and performance concerns. Starting in 2004, the 4D project
advocated a clean slate design that emphasized separation between the routing
decision logic and the protocols governing the interaction between network
elements. The ideas in the 4D project provided direct inspiration for later works
such as NOX, which proposed an operating system for networks in the context of
an Open Flow-enabled network. Later on in 2006, the IETF Network
Configuration Protocol working group proposed NETCONF as a management
protocol for modifying the configuration of network devices. The working group
is currently active and the latest proposed standard was published in June, 2011.
The IETF Forwarding and Control Element Separation (ForCES) working
group is leading a parallel approach to SDN. SDN and Open Networking
Foundation share some common goals with ForCES. With ForCES, the internal
network device architecture is redefined as the control element is separated from
the forwarding element, but the combined entity is still represented as a single
network element to the outside world. The immediate predecessor to Open Flow
was the Stanford's SANE/Ethane project which, in 2006, defined a new network
architecture for enterprise networks. Ethane's focus was on using a centralized

controller to manage policy and security in a network.

2.6.4.2 Open Flow Messages:

The communication between the controller and switch happens using

the Open Flow protocol, where a set of defined messages can be

35

——
| —

exchanged between these entities over a secure channel. The secure
channel is the interface that connects each Open Flow switch to a
controller. The Transport Layer Security (TLS) connection to the user-
defined (otherwise fixed) controller is initiated by the switch on its power
on. The controller's default TCP port is 6633. The switch and controller
mutually authenticate by exchanging certificates signed by a site-specific
private key. Each switch must be user-configurable with one certificate
for authenticating the controller (controller certificate) and the other for
authenticating to the controller (switch certificate).

Traffic to and from the secure channel is not checked against the flow table
and therefore the switch must identify incoming traffic as local before checking it
against the flow table. In the case that a switch loses contact with the controller,
as a result of an echo request timeout, TLS session timeout, or other
disconnection, it should attempt to contact one or more backup controllers. If
some number of attempts to contact a controller (zero or more) fail, the switch
must enter emergency mode and immediately reset the current TCP connection.
Then the matching process is dictated by the emergency flow table entries
(marked with the emergency bit set). Emergency flow modify messages must
have timeout value set to zero. Otherwise, the switch must refuse the addition and
respond with an error message. All normal entries are deleted when entering
emergency mode. Upon connecting to a controller again, the emergency flow
entries remain. The controller then has the option of deleting all the flow entries,
if desired.

The controller configures and manages the switch, receives events from the
switch, and sends packets out to the switch through this interface. Using the Open
Flow protocol, a remote controller can add, update, or delete flow entries from
the switch's flow table. That can happen reactively (in response to a packet
arrival) or proactively. The Open Flow protocol can be viewed as one possible
implementation of controller switch interactions (southbound interface), as it
defines the communication between the switching hardware and a network

controller. For security, Open Flow 1.3.x provides optional support for encrypted

(1
L 3%)

TLS communication and a certificate exchange between the
switches/controller(s); however, the exact implementation and certificate format
IS not currently specified. Also, fine-grained security options regarding scenarios
with multiple controllers are outside the scope of the current specification, as
there is no specific method to only grant partial access permissions to an

authorized controller [6].

2.7 Traditional Networking VS SDN:

Table 2.1: Difference between Traditional and Software Defined Networking
Types [12]

NM Traditional Networking Software Defined Networking
1 They are Static and Inflexible They are programmable networks
networks. They are not useful | during deployment time as well as at
for new business ventures. later stage based on change in the
They possess little agility and requirements. They help new
flexibility business ventures through flexibility,
agility and virtualization.
2 They are Hardware appliances. They are configured using open
software.
3 They have distributed control They have logically centralized
plane. control plane.
4 They use custom ASICs and They use merchant silicon.
FPGA:S.
5 They work using protocols. They use APIs to configure as per
need.

37

——
| —

3. Modelling Virtual Private Network

3.1 Overview:
Mininet simulator and SDN ONOS1.13.2 controller are used in the thesis

network models experiments. We will implement two different scenarios of SDN
VPLS, in the first one we will use one Open Flow switch connected to the
controller, configure 3 VPLS customers beginning with small number of sites per
customer (two sites) then begin to add new sites for every VPLS customer and
reed the total number of flow entries the controller use to forward data. In the
next model we will repeat the experiment we did at the first model but using two
Open Flow switches connecting to the controller.

In scenario one we use Mininet CLI to simulate the networks and use ONOS
CLI to configure VPLS. In scenario two we will use python scripts to implement
networks and use ONOS controller CLI to make VPLS configuration.

To implement the two network topologies scenarios and make the VPLS
configuration and test them we follow the next steps:

1) We download and install Oracle Virtual Machine (VM) VirtualBox.

2) We install SDN Hub tutorial VM 64-bit with Docker as a virtual machine

(Ubuntu 16.04 with Mininet and a default controller installed on it).

3) Download ONOS 1.13.2, use CLI to run it.

4) We implement the network topologies using CLI or python scripts and
connect it to ONOS remote controller.

5) Test the connectivity between Mininet and the controller by using PING
test (ONOS controller choose IP 127.0.0.1 and 6633 port number if it run
in other port number it should change because Mininet is only connect to
in this port, also the open flow feature must be activated on the controller).

6) Activate VPLS application on ONOS controller.

7) Use CLI to create VPLS, add interfaces to ONOS controller, and associate
interfaces to it is VPLS.

8) Use ONOS CLI to check the configuration.

9) Use Mininet PING tests to make sure the network is work probably.

(1
L 38)

3.2 Models’ Scenarios:

Models and their scenarios will be as flow:
3.2.1 Model 1 Scenario 1:

In this scenario we will use ONOS controller connecting to an Open Flow
switch, add three VPLS customer everyone has two sites one host per site as
shown in figure 3.1, make VPLS configuration and read the number of flows in

the controller.

h2 hl

Figure 3.1: Model 1 Scenario 1

3.2.2 Model 1 Scenario 2:

In this scenario we will use ONOS controller connecting to an Open Flow
switch, add three VPLS customer everyone has four sites one host per site as
shown in figure 3.2, make VPLS configuration and read the number of flows in

the controller.

39

——
| —

) "\l
h6 h5 ha h3 hz hl
A \ \
EEE E m
h1z h1l h10 ho ha -

Figure 3.2: Model 1 Scenario 2

3.2.3 Model 1 Scenario 3:
In this scenario we will use ONOS controller connecting to an Open Flow

switch, add three VPLS customer everyone has eight sites one host per site as
shown in figure 3.3, make VPLS configuration and read the number of flows in

the controller.

'

40

——

3

(B

‘u
n,
IEI
Tj
D
‘m

=
-~

|:]i|:l

h12 h11 h1o \ ho hs
'f] [1] [Y 1\\\\
h18 hl? h16 _ h15 | \ hi4 " h13

=
w0

h24 h23 B B
h22 h20 h

Figure 3.3: Model 1 Scenario 3

3.2.4 Model 2 Scenario 1:
In this scenario we will use ONOS controller connecting to an Open Flow

switch, add three VPLS customer everyone has two sites one host per site as
shown in figure 3.4, make VPLS configuration and read the number of flows in

the controller.

'

41

——

¥
i -
Py

-

n B
ZANNAN

. mE W
3 h3

it

Figure 3.4: Model 2 Scenario 1

3.2.5 Model 2 Scenario 2:

In this scenario we will use ONOS controller connecting to an Open Flow
switch, add three VPLS customer everyone has four sites one host per site as
shown in figure 3.5, make VPLS configuration and read the number of flows in

the controller.

42

——
| —

Figure 3.5: Model 2 Scenario 2
3.2.6 Model 2 Scenario 3:
In this scenario we will use ONOS controller connecting to an Open Flow
switch, add three VPLS customer everyone has eight sites one host per site as
shown in figure 3.6, make VPLS configuration and read the number of flows in

the controller.

43

——
| —

Figure 3.6: Model 2 Scenario 3

After implementing the three scenarios of each model the results will be
retested on the table below:

Table 3.1: Simulation Parameters

Model/Scenario Number of Number of Number of Flow
switches VPNs sites/VPN | table size
1 3 2
2 3 4
3 3 8

44

——
| —

4. Simulation & Results

4.1 Simulation Description:
In order to VPLS establish connectivity two or more hosts, different things
need to happen:
1) A VPLS needs to be defined.
2) At least two interfaces need to be configured in the ONOS interfaces
configuration.
3) At least two interfaces need to be associated to the same VPLS.
4) At least two hosts need to be connected to the Open Flow network Hosts
participating to the same VPLS can send in packets tagged with the same
VLAN lIds, different VLAN IDs, and no VLAN Ids at all.

When conditions 1, 2 and 3 are satisfied, hosts attached to the VPLS will be
able to send and receive broadcast traffic. This is needed to make sure that all
hosts get discovered properly, before establishing unicast communication. When
4 gets satisfied-meaning that ONOS discovers at least two hosts of the same
VPLS-unicast communication is established.

After implementing, configuring, testing the connectivity (by using PING
tests) of the VPLS different models, the results will registered on a table to be

analyzed and observed.

4.2 Results:

As we explained in the previous chapter we make our experiments on two
scenarios with three models. Now we will showing the implementation,
configuration, and the connectivity tests that we made for each model and finally

showing the results.

45

——
| —

port=of:
port=of:

Géﬂéﬂﬂﬂﬂﬂﬂﬂmmmalf
0 I N D]

port=of : 3008035306
port=of :E (aladclals
port=of: [aladalals)
port=of alelalals

wpls

200
ist

oo

1

wpls show
nams: 1
ciated interfaces:
apsulation: MNOMNE
ate: ADDED
names: 2
ciated interftaces:
apsulation: MNOMNE
ADDED

[h=, hal

name :
ciated interfaces:
MNOME

[hSs, h&l

Figure 4.1: Model 1 Scenario 1 Implementation

iininet> pingall
“*#% Ping: testing ping reachability

> h2 X
X

E.

L

4

Figure 4.2: Model 1 Scenario 1 PING Test

46

——
| —

interfaces

pﬂrt=ﬂf:EEHHHEEEEEHHHHGIE
pnrt=nf:EEEEEEEEEHHHHHGII
pﬂrt=ﬂf:EEEEEEEEEHHHHHGII
pﬂrt=ﬂf:Eﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlf
pﬂrt=ﬂf:Eﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlf
pﬂrt=ﬂf:Eﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlf
port=of:000000000000000 1/
port=of:0000000300000001,/8

port=of:0000008003033801 /9

pnrt=nf:EEEEEEEEHHHHHGGIIIG
pﬂrt=ﬂf:EEEEEEEEHHHHHGGIIII
pﬂrt=ﬂf:Eﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlﬁl?

o O e L) B e

vpls list

S how

interfaces:
NOME

JPLS name: 2

rnssociated interfaces: [he, h1e, h3, hal
ncapsulation: NONE

State: FAILED

name: 3
ciated interfaces: [h1l2, h1ll, hS, h&l
MOMNE

pingall

testing ping reachability
ha X X X]

WM X

. he hle X
hga hle X
h1l h

111 h

b

o

x

x
x
1
1
3

2
1
2

WO T WM W T

received)

Figure 4.4: Model 1 Scenario 2 PING Test

47

——
| —

port=of: 0000000000000001,/1
port=of:0000000000606001,/2 N
po rt=c|1: :00EEROEOEROEEBAL,3 : port=of:000000000008806 1L/
port=of: 0000000000000001/4 2: port=of 0006060 Jalalclelelcl iy
port=of:00000000000000881/5 3: port=of:0000000030000301,
port=of : 00AAEEEAAAEAGGAL,/E 4: port=of:0006800006888001/
port=of:9000000000000001/7 > port=of:
port=of:00000000000000E1/8 : E’E‘ :':‘E =E‘$:
N ' : O FL=0T : J
port=of: 6666656666606601/9 3: port—of:BEO00G0E00000B0L/
por t=c|1: . BEEOEOREEREEAEOL,10 port=o F : EOAEEOE0EEDEDEE L S
port=of:0000000000006801,/11 3: port—of :BBOE /18
port=of:0000000000000001,/12 : port=of:000C A1
port=of:0000000000000081,/13 *: port=of :000E o B
port=of:0000000000000001,/14 3: port=of:00000300000006081 13
port=of:0000000000000081,/15 : port=of:2000000000600000 1,14
port=of : 060000ROE0E0001/16 : port=of:000¢ #15
port=of : BB0EEE0EEEEEEEE1/17 L g 0000001 1
port=of : 060AEOROAORAOAAL/ 18 S g 1a
j o port=of:0000002000000381, 18
po rt=cn’(: BEABEAAAREAEEAEAL /19 port=of:20000000300303031,19
port=of:0000000000000001/20 2@ : port=of :000%¢ A20
port=of:0000000000000081,21 21: port=of:B000EC
port=of : 0000000000000001, port—of :006E !
po rt=of : GAOMAOACRAEARAEL /23 I po r"t=c:1: I EEEEBEEBAEEBEEOEEBED S
port=of: port=of:000000008008008 1,/

DO~ oW WK

mininet= pingall
*** ping: testing ping reac 1ability
hl -= h2 X X X X h7 h8 X X X X h13 h14 h15 h1l6 X X »
> (X h.« h (X hlﬁ h14 hl'ﬁ hl .". .Z
X h':l h1@ 1 1
h':l hl[l XX
X h1l h12 3
(h1l hlz_' : XXX XX
(X X hl 4 hl15 hle X X X
h13 hl'ﬁ hle X X X
¢ X X X X hl7 h18 h19 h20
h'l h4 g X) . X h17 h18 hl':l h28
(X hS ht- (X KX KX XA XXX Xh21 h22 h
4 h5s h6 x x . A A h21 h22 h23
hl h2 (X X .' (X X hl4 5 XX XXX
hl h2 X J ¥ h13 hl5 hl6 X }
(XXX .' (X ."-': h13 hl4 hl6s X X
hl h2 X h'.«‘ h ¥ h13 h1l4 h15 ;
(h3 hd X X X h':l h1e X XX XXX h18 hl':l h2e

W
h3 ha hg hle " h17 h19 h2e

h3 hd X X X X h9 hlo X X h17 h1l8 h20
X h3 hd ¥ X h9 hla ¥ h17 h18 h19 X

Figure 4.6: Model 1 Scenario 3 PING Test

48

——
| —

Table 4.1:

Model One Results

Scenario Number of Number of Number Flow table
switches VPNs of size
sites/VPN
1 1 3 2 16
2 1 3 4 52
3 1 3 8 150

interfaces
pPport=o0tT:0000000000000001L/1L
port=0ofT:0000000000000001/2
Port=ot:0000000000000001/3
port=0f:0000000000000002/1
port=o0fT:0000000000000002/2
port=0f:0000000000000002/3

vpls show

'VPLS name:

Associated interfaces
Encapsulation: NONE
State: ADDED

VPLS name:

Associated interfaces
Encapsulation: NONE
State: ADDED

IAssociated interfaces
Encapsulation: NONE
|IState: ADDED

Figure 4.7: Model 2 Scenario 1 Implementation

49

——
| —

mininet> pingall
*** Pping: testing ping reachability
hl -> X X X hS§ X h7 h8 X X X X
h2 -=> X h3 X X X X X X X hll hl2
h3 -> X h2 X X X X X X X hll hl2
h4 -> X X X X h6 X X h9 hle X X
1h5 -> hl X X X X h7 h8 X X X X
-> X XX h4d XX X h9 hle X X
-> hl X X X h5 X h8 X X X X
-> hL X X X h5§ X h7 X X X X
XXX h4d X h6 X X hle X X
-> X XX hd4d X hé6 X X h9 X X
-> X h2 h3 XX XXX X X hl2
=> X h2 h3 XX XX XXX hll
Results: 72% dropped (36/132 received)
mininet>

Figure 4.8: Model 2 Scenario 1 PING Test

50

——
| —

interfaces
port=0f:0000000000000001/1
port=07:0000000000000001/2
port=07f:0000000000000001/3
port=07f:0000000000000001/4
port=07:0000000000000001/5
port=07f:0000000000000001/6
port=07f:0000000000000002/1
port=07f:0000000000000002/2
port=0f:0000000000000002/3

port=0f:0000000000000002/4
port=0f:0000000000000002/5
port=0f:0000000000000002/6

vpls show

VPLS name: 1

Associated interfaces: [h8, hl, h5,
[Encapsulation: NONE

lState: ADDED

VPLS name: 2

Associated interfaces: [h9, hlO, h4,
Encapsulation: NONE

State: ADDED

VPLS name: 3

|[Associated interfaces: [h1l2, hll, h2,
Encapsulation: NONE

State: ADDED

Figure 4.9: Model 2 Scenario 2 Implementation

51

——
| —

mininet> pingall

*** Ping: testing ping reachability
hl -> X X X h5 X h7 h8 X X X X

h2 => X h3 X X X X X X X hll hl2

h3 -=> X h2 X X X X X X X hll hl2
‘h4 > X X X X he X X h9 hle X X

‘hS -=> h1 X X X X h7 h8 X X X X

hé -=> X X X h4 X X X h9 hle X X

h7 -=> h1 X X X h5S X h8 X X X X

h8 -> h1 X X X h5§ X h7 X X X X

h9 -> X X X h4d X hé X X hle X X

hl0 -> X X X h4 X h6 X X h9 X X

hll -> X h2 h3 X X X X X X X hl2

'hlZ > X h2 h3 XX XX X X X hll

*** Results: 72% dropped (36/132 received)
mininet>

Figure 4.10: Model 2 Scenario 2 PING Test

vpls show

|

!VPLS name: 1

Associated interfaces: [h8, hl, hl4, hl3, hl6, h5, hl5, h7]
Encapsulation: NONE

State: ADDED

!VPLS name: 2
Associated interfaces: [h9, h21l, hl1lO, h20, h4, hl1l8, h6, hl7]
!Encapsulation: NONE

: ADDED

VPLS name: 3

Associated interfaces: [h19, h12, h23, hll, h22, h2, h24, h3]
Encapsulation: NONE

State: ADDED

Figure 4.11: Model 2 Scenario 3 Implementation

52

——
| —

mininet> pingall
| *** Ping: testing ping reachability
i XX X h5 X h7 h8 X X X X hl3 hl4 hl5
Xh3 XX XXXXX hll
Xh2 XXX XXX X hll
XX XX he XX h9 hlo X X X X X X hl7 hl8 X
hl X X X X h7 h8 X X X X hl3 hl4 hl5
XXX h4d XX X h9
hl1 X X X h5 X h8 X X X X hl3 hl4 hl5
hl X X X h5 X h7 X X X X hl3 hl4 hl5
XX X h4d X he X X hlo X X X X X X hl7 hl8
X XX hd4 X ho 9 X X X X X X hl7 hl8 X
X h2 1 X X X hl9 X
X h2 1 X h1l9 X
hl X hle X X
hl X hlé X X
hl1 X X X h5 X hlé X X
hl1 X X X h5 X hl5 X X
X X h4 X h6
X X h4 X h6
h2 h3 X X X
X X h4 X h6
X X hd4 X h6
h2 h3 X X X
h2 h3 X X X
h2 h3 X X X

X
h3 X X XX
h3 X X X X
X X h5 X
X X h5 X

X
XXX
4 hl5
3
3
3

h7 h8
h7 h8
h7 h8
h9 hlo X X
h9 hle X X
X X hll h1l2 X X X X X X X X h22 h23 h24

h1l5
hl4
hl4

X
X
h7 h8 X
X
X
X

1
1
1
1
X X
X X

h9 hle X X
h9 hle X X
X X hll hl2
X X hll hl2
X X hll hl2

XX XX
XX XX

2K X X XX X X X X

XX XX XX
XX XX XX
XX XX XX
Figure 4.12: Model 2 Scenario 3 PING Test

Table 4.2: Model Two Results

X X hl8 X h20
X X hl7 X h20

hle X X X X X X X X
hl12 X X X X X X h1l9 X X h22 h23
h12 X X X X X X h1l9 X X h22 h23 h24
h20
hle6 X X X X X X X X
h10 X X X X X X hl7 h1l8 X h20
hle X X X X X
hle X X X X X
X h20
h20
X h22
X h22

h24
h2l X X X
h2l1 X X X
XXX

XXX

h2l1 X X X
h2l1 X X X

h23 h24
h23 h24

XX X
XX X
XXX
X X X

h2l1 X X X
h2l1 X X X

hl7 h18 X h21 X X X
hl7 h18 X h20 X X X
h1l9 X X h23 h24
h1l9 X X h22
h1l9 X X h22

h24
h23

Scenario Number of Number of | Number Flow table
switches VPNs of size
sites/VPN
1 2 3 2 27
2 2 3 4 74
3 2 3 8 192

53

——
| —

5. Results & Discussion

5.1 Discussion:

Althought we use in our study only one switch as in the first scenario and two
switches as in the second one, and only three VPLSs with maximum eight sites
per every one witch is very simple part of WAN network it seem to be an ISP
having two PEs routers,and the customer sites represented by only one host and
there is no Qos configured or even routing protocols or security polices like what
Is happened in reaility the site may be ahuge data center with large number of
servers with very complicated security polices Qos and more than one routing
protocol, we opsarved that from first scenario the total number of flowes increse
more than three times when the the sites scales to daboule.The flowes also
increse (about daboule)when the number of Open Flow switches dabouled.

The emerging paradigm of SDN promises to simplify network
management,and build reialable and scaleable network.in this study we opsarve
that network management is mutch eyseir because it centrlized in the
controller.but as we disscused the scalabilty is aserios issue for SDN because as
anetwork scale the controller must be deail with large amount of flowes
concurently witch need repotness at booth software and hardware of the

controllers.

54

——
| —

6. Conclusion & Recommendation

6.1 Conclusion:

In this study, we extended the observation of the reliability and scalability
issues to an SDN that is beyond the controllers. This calls for attention to such
issues of controller performance and controllers clustering and way that the
controllers must be connected when VPLS customers’ sites distributed among

more than one controller.

6.2 Recommendation:

The next steps would be developing the methods and metrics to evaluate SDN
controllers’ performance and SDN WAN design and SDN related frameworks,
and to seek and establish general guidelines in designing and implementing the

frameworks without jeopardizing the scalability in SDN.

55

——
| —

REFERENCES

[1] Behzad Mirkhanzadeh, Naeim Taheri, Siavash Khorsandi, “SDxVPN: A Software-Defined
Solution for VPN Service Providers” Network Operations and Management Symposium
(NOMS) February 2016.

[2] Shuhao Liu and Baochun Li “On Scaling Software-Defined Networking in Wide-Area
Networks” June 2015 TSINGHUA SCIENCE AND TECHNOLOGY.

[3] Barath Raghavan, Teemu Koponen, Ali Ghodsi, “Software-Defined Internet Architecture:

Decoupling Architecture from Infrastructure” Proceedings of the 11th ACM Workshop on
Hot Topics in Networks.

[4] Nick Feamster, Jennifer Rexford, Ellen Zegura, “The Road to SDN: An Intellectual
Historyof Programmable Networks” ACM SIGCOMM Computer Communication
Review April 2014.

[5] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, V. Maglaris, “ Combining
OpenFlow and sFlow for an effective and scalable Anomaly Detection and Mitigation
mechanism on SDN Environments” Computer Networks April 2014.

[6] Foundation, O.N.: Openflow switch specification version 1.3.1. Tech. rep., “Open
Networking Foundation” (September 2012)

[7] GR Wright, WR Stetevens”TCP IP",1995

[8] Z Fu,SF Wu,H Huang,K Loh,F Gong “IPSec/VPN Security Policy: Correctness, Conflict
Detection and Resolution”Springer,20017

[9] Understanding the virtual private LAN Service, Article available at :

https://www.juniper.net/documentation/en US/releaseindependent/nce/topics/concept/vpl

s-understanding.html
[10] LUC GHEIN “MPLS fundamentals” November 21, 2006.

[11] Muntaner, G.: Evaluation of OpenFlow Controllers. Master’s thesis (October 2012)
[12]. https://www.opendaylight.org/ecosystem-solutions

[13] Article available at : http://www.projectfloodlight.org/documentation/

[14] Y Zhao, “On Controller Performance in Software-Defined Networks” IEEEXplor,2015

56

——
| —

https://www.juniper.net/documentation/en_US/releaseindependent/nce/topics/concept/vpls-understanding.html
https://www.juniper.net/documentation/en_US/releaseindependent/nce/topics/concept/vpls-understanding.html
http://www.projectfloodlight.org/documentation/

APPENDICES

A. Paython Script for Model 2 Scenario 1:

from mininet.net import Mininet
from mininet.node import RemoteController
from mininet.cli import CLI
from mininet.log import setLogLevel, info
def treeTopo():
net = Mininet(controller=RemoteController)
info(*** Adding controller\n')
net.addController('c0")
info("*** Adding hosts\n')
h1 = net.addHost('h1")
h2 = net.addHost('h2")
h3 = net.addHost('h3")
h4 = net.addHost('h4")
h5 = net.addHost('h5")
h6 = net.addHost('h6")
info(*** Adding switches\n")
sl = net.addSwitch('s1")
s2 = net.addSwitch('s2")
info("*** Creating links\n")
net.addLink(hl, s1)
net.addLink(h2, s1)
net.addLink(h3, s1)
net.addLink(h4, s2)
net.addLink(h5, s2)
net.addLink(h6, s2)
net.addLink(s1, s2)

57

'

——

info(*** Starting network\n")

net.start()
info(*** Running CLI\n")
CLI(net)
info(*** Stopping network")
net.stop()
if _name_ ==' main__ "

setLogLevel('info')
treeTopo()

B. Paython Script for Model 2 Scenario 2:

from mininet.net import Mininet
from mininet.node import RemoteController
from mininet.cli import CLI
from mininet.log import setLogLevel, info
def treeTopo():
net = Mininet(controller=RemoteController)
info(*** Adding controller\n')
net.addController('c0’)
info("*** Adding hosts\n')
h1l = net.addHost('h1")
h2 = net.addHost('h2")
h3 = net.addHost('h3")
h4 = net.addHost('h4")
h5 = net.addHost('h5'
h6 = net.addHost('h6")
h7 = net.addHost('h7")
h8 = net.addHost('h8")
h9 = net.addHost('h9")
h10 = net.addHost('n10")
h1l = net.addHost('h11")

58

'

——

h12 = net.addHost('h12")
info(*** Adding switches\n")
sl = net.addSwitch('s1")

s2 = net.addSwitch('s2")
info(*** Creating links\n")
net.addLink(hl,sl)
net.addLink(h2, s1)
net.addLink(h3, s1)
net.addLink(h4, s2)
net.addLink(h5, s2)
net.addLink(h6, s2)
net.addLink(h7, s1)
net.addLink(h8, s1)
net.addLink(h9, s1)
net.addLink(h10, s2)
net.addLink(hl11, s2)
net.addLink(h12, s2)
net.addLink(s1, s2)

info(*** Starting network\n’)

net.start()
info(*** Running CLI\n")
CLI(net)
info("*** Stopping network')
net.stop()

if _name_ ==' main__"

setLogLevel('info")
treeTopo()

C. Paython Script for Model 2 Scenario 3:

from mininet.net import Mininet

from mininet.node import RemoteController

(1
L >°)

from mininet.cli import CLI
from mininet.log import setLogLevel, info
def treeTopo():
net = Mininet(controller=RemoteController)
info(*** Adding controller\n')
net.addController('c0")
info(*** Adding hosts\n")
h1 = net.addHost('h1")
h2 = net.addHost('h2")
h3 = net.addHost('h3")
h4 = net.addHost('h4")
h5 = net.addHost('h5")
h6 = net.addHost('h6")
h7 = net.addHost('h7")
h8 = net.addHost('h8")
h9 = net.addHost('h9")
h10 = net.addHost('nh10")
h1l = net.addHost('h11")
h12 = net.addHost('h12")
h13 = net.addHost('h13")
h14 = net.addHost('h14")
h15 = net.addHost('h15")
h16 = net.addHost('h16")
h17 = net.addHost('h17")
h18 = net.addHost('h18")
h19 = net.addHost('h19")
h20 = net.addHost('h20")
h21 = net.addHost('h21")
h22 = net.addHost('h22")
h23 = net.addHost('h23")
h24 = net.addHost('h24")

60

——
| —

info(*** Adding switches\n")
sl = net.addSwitch('s1")

s2 = net.addSwitch('s2")
info(*** Creating links\n")
net.addLink(hl,sl)
net.addLink(h2, s1)
net.addLink(h3, s1)
net.addLink(h4, s2)
net.addLink(h5, s2)
net.addLink(h6, s2)
net.addLink(h7,sl)
net.addLink(h8, s1)
net.addLink(h9, s1)
net.addLink(h10, s2)
net.addLink(hl11, s2)
net.addLink(h12, s2)
net.addLink(h13,sl1)
net.addLink(h14,sl)
net.addLink(h15, s1)
net.addLink(h16, s2)
net.addLink(h17,s2)
net.addLink(h18, s2)
net.addLink(h19, sl1)
net.addLink(h20, s1)
net.addLink(h21, s2)
net.addLink(h22, s2')
net.addLink(h23, s2)
net.addLink(h24, s2)
net.addLink(s1, s2)

info(*** Starting network\n’)

——
| —

net.start()

info(*** Running CLI\n")
CLI(net)
info(*** Stopping network")

net.stop()

__main__"

if _name_ ==

setLogLevel('info')
treeTopo()

D. Ubuntu CLI:

ubuntu CLI

Description

ubuntu@sdnhubvm:~[06:09]$ cd
Desktop/onos-1.13.2/bin

Go to directory: Desktop/onos-
1.13.2/bin

ubuntu@sdnhubvm:~/Desktop/onos-
1.13.2/bin[06:09]$ sudo su

running as root user

root@sdnhubvm:/home/ubuntu/Deskt

op/onos-1.13.2/bin# ./service-start

RUN ONOS controller

root@sdnhubvm:/home/ubuntu/Deskt
op/onos-1.13.2/bin# sudo mn --topo

single,6 --controller remote

open mininet immplement anetwork
topology with one switch and six
hosts connceted to acntrollet with
IP127.0.0.1 in port number 6633

——

62

'

E. ONOS CLI:

ONOS CLI

Description

onos> app activate

org.onosproject.openflow

activate open flow application

onos> cfg set
org.onosproject.openflow.controller.i
mpl.OpenFlowControllerimpl

openflowPorts 6633

change controller port to be 6633

onos> app activate

org.onosproject.vpls

activate VPLS application

onos> create vpls 1

create VPLS and name it 1

onos> interface-add
of:0000000000000001/1 h1

connect hl to port 1 in the controller

onos> vpls add-if 1 hl

associate hl to VPLS 1

onos> vpls list

list all configured VPLSs

onos> vpls show

Show all configured VVPLSs in details

F. Mininet CLI:
Mininet CLI Description
pingall ping test from every host to all other
hosts in the network

——

63

'

