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I 

 

Abstract (Arabic) 

 المستخلص

نتيجة للإثارة الناتجة من قوة الغازات المحترقة تحدث  لتوائية في محرك الإحتراق الداخلي ظاهرة مهمةالإهتزازات الإ

 حركة دورانية هذا التحويل يؤدي إلي العطالة من الإجزاء المترددة أثناء تحويل الحركة من حركة تردديةوالتغير في قوة 

ن هذه الظاهرة أجهادات قد توديإلي انكساره وتأتي أهمية الدراسة إلي إإلي  إنتاج عزم التواء علي العمود المرفقي مؤديا إلي

 منظومة .أن يحدث الفشل في ال إلي بسهولة الا يمكن كشفه

هنالك عدة أنواع من المخمدات تستخدم لخمد الإهتزاز الإلتوائي كالمخمد الإحتكاكي واللزج والمطاطي والديناميكي لكن 

 ر عمرها الإفتراضي.يقصتمعظمها تعمل علي إستهلاك نسبة من القدرة الناتجة من المحرك و 

الأنواع السابقة بقلة صرف القدرة وعدم وجود إحتكاك  إستخدام مخمد إلكترومغناطيسي حيث تتميز عن إلي تهدف الدراسة

 ستجابة للتغير في الإستثارة الناتجة من المحرك.لإمباشر مع المنظومة مع سرعة ا

إعنمدت منهجية الدراسة علي الجانب النظري حيث تم كتابة برنامج بإستخدام ماتلاب لدراسة تأثير معامل الخمد علي 

 هرة الرنين.علي قوة الإثارة عندحدوث ظا

نتائج وهو يتناسب مع   0.2,0.3,0.4ن قيمة معامل الخمد المثالي للمحرك قيد الدراسة تساوي أوجد من الدراسة 

 . الدراسات السابقة

. 



 

II 

 

Abstract (English) 

Torsional vibration in Internal Combustion Engines is an important phenomenon occurs  due to 

excitation loads, cycle-to-cycle variations results from the force the burnt gases and to change in 

inerita forces generated by reciprocating parts during  convertoin  of rotary motion to the linear 

one . This conversion leads to twist torque on the crankshaft which, in turn, leads to high stresses 

causing  its damage. The importance of the present study stem from the fact that this phenomenon 

cannot be detected till it leads eventually to system failure. There are several types of dampers to 

alleviate torsional vibration such as frictional, viscous, rubber and dynemic dampers but these 

types has the drawbacks of consumption of engine power and reduction of engine lifetime. The 

objective of this study is to use electromagnetic damper as this type of damper minimize power 

consumption, without getting in direct friction with the system in addition to quickness of 

response to engine excitation change. The methodology of our study is based on theortical 

treatement through writing a Matlab code to investigate the effect of damping coefficient on 

excitation during resonance condition. 

It was found, through this study, that the optimal damping coefficient value is 0.2,0.3and 0.4 .in 

concordance with previous studies. 
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CHAPTER I INTRODUCTION 

1.1  Background 

Internal combustion engines are most commonly used for mobile propulsion in vehicles and 

portable machinery these engines have appeared in transport in almost all vehicles such as 

automobiles, trucks, motorcycles, boats, and in a wide variety of aircraft and locomotives 

(Hudson, 1997).  

Crankshaft is one of the most expensive and important moving parts in the affecting engine 

operation and usually convert reciprocating motion of piston into rotational motion. Crankshaft 

vibration is one of the most important factors. The different vibrations affecting the crankshaft 

are lateral vibrations and torsional vibrations among which torsional vibration is usually the most 

important(Filipović and Aleksandar Milašinović, 2011). 

Torsional vibrations problem occur in reciprocating multi-cylinder internal combustion engines 

is the major reason for the failures of crankshaft. The torque applied to crankshaft is not constant 

in time, but it varies in a complex manner as a function of crankshaft position for each cylinder. 

The excitation that causes torsional vibrations of crankshaft is the pressure generated during the 

combustion process is not constant in the engine cylinders beside the alternating torques resulting 

from crankshaft’s slider-crank mechanism. Even if the pressure is constant, the slider-crank 

mechanism is incapable of producing smooth torque which is further compounded by the 

arrangement of the firing order of the crankshaft. 

The torque impulses of the engine output are not developed smoothly but has periodic torque 

pulsations or torsional vibrations These torque variations in turn, produce periodic velocity 

variations or accelerations result in torsional vibration in the crankshaft, which as a result starts 

twisting back and forth at a high frequency.  

These fluctuations can be very damaging to the crankshaft, putting great stress and strain on it. 

The speed changes associated with combustion events in an engine can cause the crankshaft to 

fatigue prematurely or break and leads to increased wear of the components that are being driven 

by it. Torsional vibration can also cause excessive wear and tear of bearings and gear parts. It can 

lead to broken accessory drives and the throwing/slapping of engine belts. 

When the shaft is turning at such a speed that the frequency of the impulses due to the torque 

variation coincides with the natural frequency of the shaft system, it is at a critical speed. Under 

these conditions the amplitude of vibration will build up to an extent determined by certain 

damping factors. The stresses due to this vibration may or may not be sufficiently great to fracture 
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the shaft. Any elastic system may thus be set into violent vibration by applying a series of 

impulses at properly timed intervals. 

 

Figure 1-1amplitude of torsional vibration 

 

 

Each crankshaft design has a natural torsional frequency. when frequencies get excited several 

times through the operating speed of engine by different components of firing pulse harmonics, 

called orders of an engine. The vibration amplitudes under these critical speeds of a shaft occurs 

when the shaft rotational speed coincides with the natural frequency of the system When this 

happens, the amplitude of vibration will increase and the effects can be devastating, resulting in 

fail of the crankshaft as well as any accessory coupled to the crankshaft(FRANK M . LEwls, 

1925). These damages are usually at the front of the engine, as the flywheel’s inertia cuts down 

motion at the rear end of the engine.  

torsional vibration analyses of the shafting system to ensure that the vibratory shaft stresses are 

below the allowable limits(Feese, T. and Hill, 2009). This is best achieved by designing the 

shafting system so its natural frequencies do not coincide with the excitation frequencies 
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Figure 1-2 Sample failed engine crankshaft (in 45° due to torsional vibration) [12] 

 

Figure 1-3: sample of faulire A) Motor Failure B) Damaged Coupling C) Fractured 

Shaft D) Melted Rubber Coupling 

It is possible to modify the system inertia and hence the natural frequency by adding additional 

rotating mass to the engine's free end, in order to move critical speeds away from a fixed running 

speed. A similar modification to natural frequencies can be imposed by introducing a flexible 

coupling drive between the engine and the machine it is driving. 

Torsional vibration is defined as inertia or rigid body oscillations about the central axis of the 

shaft line. or the cyclic motion corresponding to a shaft, where the shaft is twisted about its axis, 

alternating from one direction to the other(Lee, D.C., Lee, B.W., Park, Y.N. and Park, 

1992)(Eshleman, 1988). Each power stroke tends to slightly twist the shaft. When the power 

stroke subsides, the crankshaft untwists.  

Torsional vibrations of engine crankshaft (see Figure 1) have two parameters: frequency of 

vibrations and amplitude of twist angle α(see Figure2). It is desired to obtain minimal (ideally 

zero) twist angle α of shaft in steady-speed operation of an engine. For this purpose the engine is 

equipped by Torsional Vibration Damper which is installed in front part of crankshaft(George 

Nerubenko and Vitaliy Krupenin, 2008) 
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Figure 1-4: Basic principle of a twisted shaft. 

1.2 Motivation 

The last decade has seen a great expansion in the field of power electronics and magnetic 

materials that have directed to enormous enhancements in electromagnetic devices, which in 

turn, have led to growth of smart structures. The smart devices are now being efficiently 

installed as vibration dampers to enhance the ride luxury, road and safety 

1.3 Problem Definition  

All systems used for vibration damping are energy consuming, with short life span. They tend 

to dissipate energy in the form of heat necessitating cooling of these dampers in order to avoid 

overheating which might lead to failure. In addition, damping is not smooth. 

1.4 Significance of the Research 

All types of damping are continuously working which means high energy consumption beside 

the resolution of damping is not smooth. by using magnetic damper and control system we need 

to generate signal that equal the damping force. 

1.5 Research Methodology 

1. The mathematical model will be built upon the known equation governing vibration damping 

with inclusion of an expression for the proposed magnetic torsional damper. 

2. To elaborate a mathematical model to monitor various parameters affecting engine 

performance in presence of the proposed damper system. 

3. To propose a system of magnetic torsion damper to conserve engine power. 
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4. To find solution set of the model will be obtained using a suitable numerical technique.  

5. To dedicated suitable algorism will be implemented to solve the model.  

6. To validate the simulation results will be done by comparing them with the experimental 

work. 

1.6 Limitations and Assumptions 

To complete the study within the given time frame, a clear project must be defined with 

boundaries that are listed: 

1. Only torsional vibrations will be considered. 

2. The vibration analysis of power train will not be performed. 

3. The engine balancing will not be analyzed in this study. 

4. The study will be done mainly on numerical simulations using Matlab software. 

5. Experimentation work will not be included in this study. 

6. The effects of the variable inertia characteristics of reciprocating engines torsional 

vibration calculations will be ignored. 

1.7 Research Objectives 

The objectives of this thesis are: 

1. To develop a method of determining individual cylinder gas torques from development of 

computerized method to study the effect of torsional vibration of the crankshaft of reciprocating 

six-cylinder diesel engine.  

2. To Find a solution of the problem of vibration in internal combustion engines (ICE) by 

propose a system of magnetic torsion damper to conserve engine power.  

3. To develop a torsional vibration model of the crankshaft including components connected to 

it (i.e. connecting rods, pistons, flywheels, and external loads).  

4. To Validate the theoretical results will be comparing with the published work. 

1.8 Thesis Organization 

Thesis contains five chapters. In chapter one the importance of torsional vibration control to avoid 

the crankshaft failure has been discussed and the motivation for the use of eddy current damper 

for attenuating the vibration in reciprocating engines is presented.  

In chapter two literature review about torsional vibration has been covered. 

In chapter three, the approach for finding linear torsional vibration modeling of engines in the 

form of lumped inertia disks and shafts for different parts of the engines has been presented. The 
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equivalent torsional modeling has been formulated in order to extract the resonance frequencies 

and different mode shapes. Also, derivation of in-cylinder pressure harmonic excitation for the 

diesel engine using Matlab Code which uses the Fourier series to find the orders of the excitation. 

The final fluctuating torque due to combustion calculated. 

Chapter four presents and describes results acquired through simulations made with the model. 

Chapter five covers conclusions drawn from the results described in the previous chapter And 

Finally some topics for future improvements research and possible extensions to the model are 

suggested for controlling the torsional vibration. 
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CHAPTER II LITERATURE REVIEW 

2.1 Introduction 

Vibration an everyday life phenomenon which can be defined as oscillations of a system about 

an equilbrium position. All vibratory system in general containing three basic components, 

include a means for storing potential energy (spring or elasticity), a means for storing kinetic 

energy (mass or inertia), and a means by which energy is gradually lost (damping or 

resistance)(Rao, 2004). vibration is defined as oscillatory motions of bodies and the forces 

associated with them in vibration analysis, it is important to understand that the location of a 

vibrating body's surface varies with time. This motion of the body's surface is called a vibration 

or oscillation(Weaver Jr, William and Timoshenko, Stephen P and Young, no date). 

Vibration can be classified Free or Forced vibration depending on the type of(Drápal and 

Novotný, 2017).Free vibration is a condition with no external forces on the system,when a system 

is initially disturbed by a displacement, velocity or acceleration, the system starts to vibrate with 

a constant amplitude and frequency depend on its stiffness and mass. This frequency is called as 

natural frequency, and the form of the vibration is called as mode shapes. 

2.2  Crankshaft Vibrations Classification 

Crankshaft is the most significant part of the I.C. engine which converts linear motion into 

rotational motion. Any defect or failure in the crankshaft will lead to the failure of the I.C. engine. 

Periodic changes in gas pressure and inertial forces generate the following major three types of 

the crankshaft vibration such as buckling (flexural) bending, longitudinal (axial) and Torsional 

vibrations(Homik and Ph, 2011).The most types of  vibration are shown in figure 2.1  

 

 

Figure 2-1 types of torsional vibration 
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 Bending Vibration  

This vibration occurs due to cyclic forces employed by connecting rod at crankpin acting 

perpendicular to the axis of crankshaft rotation. Currently, every engine is built with main crank 

pin bearing after each crank throw. Therefore, distance between two adjacent journals is quite 

short resulting in high natural frequencies of bending vibration which do not interfere with 

operational revolutions of the engine. However, bending vibration is an issue by engines with a 

small number of cylinders, where mass of flywheel needs to be very high due to speed non-

uniformity(POLÁČEK, 2011). 

  Axial Vibration 

The torsional vibrations can cause axial vibration in the twisting and untwisting motion. Also 

radial forces at crankpin cause some axial movement of crank throw(Desavale and Patil, 2013).  

 Coupled Vibrations  

In general, however the various modes of vibration are usually appearing in a coupling of the 

torsional, bending and longitudinal vibrations. These are not troublesome if there is considerable 

spread between the natural frequencies of the modes of vibration involved; i.e. the modes get 

weakly coupled. The vibrations in a real crankshaft system are much more complicated (Okamura 

H, 1983).  

 Torsional Vibration 

The most dangerous type of vibration occurring in multi-cylinder engine crankshafts. The 

fluctuating torque at the crankpin causes the twisting and untwisting periodically. Hence the 

torsional vibrations are induced. 

Torsional vibrations of engines arise due to application of periodic combustion forces in the 

cylinder and associated inertial forces. the crankshaft torsional vibration occurs by expanding 

gases in cylinders at each power stroke which tends to twist the crank shaft throws. When the 

power stroke subsides, the crankshaft untwists. This rapid twisting of the crank throws is 

transmitted to main crank journals and causes non-uniformity in engine speed. One would think 

that something like crankshaft would not twist significantly, but any piece of metal always 

deflects a bit when force is applied, and in case of IC engines, where large amount of power is 

generated, these forces can become huge indeed(Montazersadgh. F. H., 2008)(Amitpal Singh 

Punewale, Tushar Khobragade, Amit Chaudhari, 2015).  

When a natural frequency coincides with an excitation frequency, a resonance occurs followed 

by increased noise and engine vibration. This is called a critical speed of crankshaft. If the 
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excitation forces are applied with this frequency, the amplitude of vibration increases until it 

can lead to destroys the crankshaft by a fatigue failure, or until speed moves away from its 

critical value(Eshleman, no date). 

Excessive torsional vibrations do not affect only crankshaft but can also can result in gear wear, 

gear tooth failures, key failures, shrink fit slippage, a valve timing mechanism and broken shafts 

in many cases(J.C. (Buddy) Wachel, 1993). 

Due to a wide speed range in which the engine needs to run, it is not possible to keep the system 

natural frequency from the range of critical speeds. This condition, known as resonance, is to be 

avoided to prevent failure of the system by increasing the shaft stiffness or reliving of 

oscillating parts(Rao, 2004).  

The phenomena can be explained by Observing the Figure [1]: RPM vs time curve of a 4-

cylinder engine run-up. We see While the overall rpm rises from 1000 RPM to 3500 RPM, it 

does not increase steadily. There is a fluctuation in the rotating speed within each rotational 

cycle (see zoomed image in Figure 2: There is a 100 RPM variation in rotating speed. 

 

 

Figure 2-2 rpm vs time curve of a 4- cylinder engine run-up. 
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Figure 2-3 : A 100 RPM fluctuation in rotational speed 

2.2.4.1 Torsional Vibration Definition 

Torsion in solid mechanics defined as the twisting of an object as a result of applied torque. 

Torsional vibration can be broadly described as the angular vibration of any object. It can be 

defined specifically as the periodic motion corresponding to a shaft, where the shaft is twisted 

about its axis, alternating from one direction to the other. Or the fluctuation in the rotational 

velocity of a rotating component. These fluctuations are superimposed on the steady running 

speed. These unsteady variations speed changes are called torsional vibration 

 

Figure 2-4:Forces on the crank shaft causes torsional vibration 
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2.2.4.2 Torsional Vibration Measuring 

The most common way to calculate torsional vibration is by using equidistant pulses over a single 

shaft revolution. Shaft encoders or gear tooth pick up transducers dedicated for this task generate 

these pulses. The resultant pulse train is converted into either a digital rpm reading or a voltage 

proportional to the rpm. Dual beam lasers are also used, this method calculates the difference in 

reflection frequency between two perfectly aligned beams pointing at different points of a shaft. 

The lower Pulses per revolution [PPR] rate (black) did not capture the torsional vibration. The 

highPPR (red) captured the fluctuation of rotational speed within the rotation cycle as shown in 

figure 2.5. 

  

 

Figure 2-5: The pulses per revolution [PPR] for capturing the fluctuation of rotational 

speed  

2.3 Internal Combustion Engines Torsional Vibration Theory 

An internal combustion engine produces power using the very rapid pressure pulse of burning air 

fuel mixture above the piston. These powerful pulses of energy cause the engine to vibrate in 

response. These forces cannot be canceled out to minimize or eliminate all vibrations in an engine. 

The perfect engine tends to produce a characteristic vibration spectrum signature. Vibration 

analysis of IC engines then must focus on variations from the normal vibration 

signature.Torsional vibration is common to internal combustion engine crankshafts for many 

reasons:  

1. The crankshaft’s slider-crank mechanism that connects the rod and piston results in 

alternating torques.  

2. The cylinder pressure generated during the combustion stroke is not constant throughout 

the internal combustion process. Even if the pressure is constant, the slider-crank 

mechanism is incapable of producing smooth torque.  
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Furthermore, engines that incorporate multiple cylinders usually have very flexible crankshafts 

because of their long length.  

2.4 Engine Firing Order  

The crankshaft is driven by cylinders that fire within each rotation of the crankshaft. Each time 

the cylinder fires, the crankshaft speeds up a little.  

The slower the engine is firing and the less cylinders an engine has the longer the time between 

combustion events, and the more the crankshaft slows between combustion events. Therefore, 

the lower the RPM, the greater the torsional vibration. 

The firing order is shown by the sequence of the number of cylinders in which cylinders generate 

power stroke. Each combustion pulse acts as a hammer blow, hitting the engine with an impulse 

of energy. is selected as part of engine design to obtain best engine performance (Nestorides, 

1958), (Challen, 1999).The vibration spectrum of these pulses are a sequence of vibration spectral 

lines. These spectral lines will be at integer multiples of the firing order of each piston. for a 4-

stroke the engine fires every tow rotation, therefore the  

fundamental order will be at halve the engine RPM, often called the 0.5 order vibration. The 

result will be a vibration signature that has spectral lines at the 1/2 order, 1P, 1-1/2P, 2P, 2-1/2P, 

3P ... etc. If the engine is a two-stroke, there will be one power pulse per revolution in each of its 

n cylinders(Norton and Worcester, 1999). 

 Major Order 

The engine excitation curve can be divided in to number of sinusoidal curves of different 

frequencies. These frequencies are multiples or submultiples of the engine speed. These multiples 

and submultiples define the order of the engine. A major order is the one which causes the largest 

excitation and the torsional oscillations can be induced at this order. In case of the engine, the 

major order is mostly the firing order which is obtained from following formulae [Martyr et.al, 

2007]. 

      Nc= (Number of cylinders)/2, 4- four stroke engine. 

  Nc= Number of cylinders, for a 2- stroke engine. 

                          Nc= (Number of cylinders)/4, for a Vee engine 4-stroke engine. 

It has been proved that, the major order resonance is of highest importance as compared to other 

orders. For example, an even-firing 8-cylinder, 4-stroke engine produces four torque pulses per 

revolution (a fourth order excitation). If an engine operating at 6000 RPM, then the frequency of 
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the 4th excitation is 4x6000/60 = 400 Hz. To get the first order of the engine in Hz you divide the 

running speed of the engine by 60, so for an engine running at 720 rpm the first order is 720/60 

= 12Hz. So if there is a peak at 24Hz (2x12 Hz), it is at the engine’s 2nd order. 

 Minor orders 

The torque impulses are being applied at various points of the crankshaft, and in a specific order 

based on the engine’s firing sequence. As a result, some harmonic orders partially cancel one 

another and are termed. 

 

Figure 2-6: Peaks on a diagram correspond to system resonances. (Magazinović, 1998) 

2.5 Phase And Resonance 

The phase relationship between the driving oscillation and the oscillation of the object being 

driven is different at different frequencies. Below resonance they are in phase with each other. At 

resonance the phase relationship is 90o or /2 rad. Above resonance the phase relationship is 

180o or  rad. 

2.6 Influence of Crankshaft Torsional Vibrations 

Unrestricted torsional vibrations cause the angular velocities of all the cranks to vary but in 

different magnitude. stresses of fluctuating intensity nature are produced in whole length of the 

crankshaft causing cracking, failure fatigue of crankshaft, reducing its life, or parts that the 

crankshaft drives. The stresses induced are dangerous at fillet or oil-hole locations. 
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Figure 2-7 Torsional Vibration with or without damper(Basshuysen and , Schäfer, 2004) 

2.7 Torsional Vibration Control 
In many practical situations, it is possible to reduce but not eliminate the dynamic forces that 

cause vibrations. damping may be introduced in a variety of ways are used to control vibrations. 

Among them, the following are important: 

Shifting the critical resonant vibrations regimes outside the ICE engine operating range(Piotr 

Deuszkiewicz, 2015). Introducing energy- dissipating devices to reduce the vibration amplitude 

in the resonant regimes. Modification the response of the system by the addition of an auxiliary 

mass neutralizer or vibration absorber (Rao, 2004).  

The first three solutions may be impossible to implement from point of view of construction 

requires increasing the crankshaft stiffness while reducing the moment of inertia of all masses of 

the entire piston and connecting rod assembly. Using various types of torsional dampers can move 

the critical speeds from the operational range. 

Torsional vibration dampers and absorbers are usually mounted on a crankshaft’s free end where 

highest angular deviations occur. They reduce vibration amplitudes by moving the critical speeds 

from the resonant frequency operational range thus limiting vibration stress, act to reduce wear 

and improve comfort(Klaus Mollenhauer and Helmut Tschoeke, 2010).The majority of the 

torsional dampers work on a principle of consuming and dissipating vibratory energy to 

heat(Klaus Mollenhauer and Helmut Tschoeke, 2010). Typically, it is not possible to remove all 

of the crankshaft's undesirable critical speeds from the engine's operating range. Thus, a vibration 

damper is needed to reduce the amplitudes of these resonances to acceptable levels.  

Torsional vibration dampers used in ICE engines differ in structure and working principles 

(Filipović, 2007) (Wilson, 1968). For road motor vehicles, viscous and rubber dampers were 

irreplaceable for a long period of time. They are more suitable because of their simplicity, cost 

and easier maintenance.  
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Recently, there has been a trend of replacing the TVD as a separate unit with different variants 

of the dynamic absorber built in into the existing engine parts. So, torsional vibration absorbers 

are today already extensively developed and used as incorporated into the engine flywheel or the 

crankshaft balance weights(Gerhardt et al., 2002)(Bibić and Pecar, 2012) (Lee, D.C., Lee, B.W., 

Park, Y.N. and Park, 1992)(Kroll, Kooy and Seebacher, 2010).  

There are two types of damping external and internal. External damping is energy dissipation that 

is dependent on the absolute velocity of a particular inertia and modelled as a dashpot between 

the inertia and ground which associated with disk element. internal damping is modelled as a 

dashpot in parallel with the torsional spring representing the appropriate shaft element. Shaft 

material hysteresis and damping in couplings are modelled as internal dampers. Both external 

and internal damping elements are modelled as linear dashpots, as is illustrated in Figure 2.8. 

 

Figure 2-8 Types of external and internal damping 

 Vibration damper 

Often, the vibration attenuating devices on the free end of an engine crankshaft are incorrectly 

referred to as "dampers". in most cases, they are absorbers. A damper is a device which dissipates 

energy, mainly in the form of heat. an absorber is a device which is designed to oscillate in direct 

opposition to a vibration at either a specific frequency or a specific order, depending on the 

design. Vibration dampers or absorbers can be classified du to operation in to tuned or untuned 

absorbers 

Two types of dampers exist: tuned and untuned. A tuned damper is designed to a specific 

frequency or engine speed. 

. 
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2.7.1.1 Tuned Dampers 

Tuned  Dampers. The  tuned  damper  is  essentially  a  single  degree-of-freedom mass-spring 

system having its resonance frequency close to the selected resonance frequency  of  the  system  

to  be  damped, i.e., tuned. As  the  structure  vibrates, the damper elastomeric element vibrates 

with much greater amplitude than the structure  at  the  point  of  attachment  and  dissipates  

significant  amounts  of  energy  per cycle, thereby introducing large damping forces back to the 

structure which tend to reduce the amplitude. The system also adds another degree of freedom, 

so two peaks arise in place of the single original resonance. Proper tuning is required to ensure 

that the two new peaks are both lower in amplitude than the original single peak. The damper 

mass should be as large as practicable in order to maximize the damper effectiveness, up to 

perhaps 5 or 10 percent of the weight of the structure at most, and the damping capability of the 

resilient element should be as high as possible. The weight  increase  needed  to  add  significant  

damping  in  a  single  mode  is  usually smaller than for a layered treatment, perhaps 5 percent 

or less. This type of dampener is referred to as untuned because it will dampen the vibration 

regardless of frequency, as can be seen in the plot of Figure 2.5(Dondlinge, 2015). 

 

Figure 2-9: tuned vibration damper 

A tuned mass damper (TMD) is a device consisting of a mass, a spring, and a damper that is 

attached to a system in order to reduce the dynamic response of the system. As the system 

vibrates, the damper element vibrates by amplitude greater than the system at the attachment 

point lead to disperses substantial quantities of energy, thereby introducing large damping forces 

back to the system which tend to reduce the amplitude. The system also adds additional degree 

of freedom, so two crests arise in place of the single original resonance. Proper tuning is required 
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to ensure that the two new peaks are both lower in amplitude than the original single peak.  The 

frequency of the damper is tuned to a particular structural frequency so that when that frequency 

is excited, the damper will resonate out of phase with the structural motion. Energy is dissipated 

by the damper inertia force acting on the structure. The TMD concept was first applied by Frahm 

(Frahm, 1911)to reduce the rolling motion of ships as well as ship hull vibrations.it should be 

pointed out that coulomb friction, which is independent of angular velocity, does not provide 

damping of torsional vibration(Corbo and Melanoski, 1996). 

2.7.1.2 Untuned Dampers 

More commonly used in automobiles is the tuned harmonic dampener shown in Figure 2.7. In 

this design the dampener hub is again rigidly mounted to the crankshaft nose, and a seismic mass 

is then mounted around the hub through a rubber isolator. The combination of the mass and the 

stiffness of the rubber isolator is tuned to dampen out vibration at a particular frequency, as shown 

in the figure. It should be noted that each order now has two resonant frequencies because the 

coupled mass acts as a second torsional system linked through the rubber isolator(Dondlinge, 

2015). 

 

Figure 2-10:Untuned vibration damper 

2.8 Dynamic Vibration Absorber (Tuned Damper) 

 A dynamic vibration absorber is an auxiliary mass-spring system which tends to neutralize 

vibration of a structure to which it is attached. The basic principle of operation is vibration out-

of-phase with the vibration of such structure, thereby applying a counteracting force. 

2.9 Vibration Absorbers 

An effective means of alleviating some torsional vibration problems involves the use of a 

vibration absorber or damper. One category of such devices is composed of an auxiliary mass, 
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referred as the seismic mass, that is coupled to the main system by some elastic and/or viscous 

medium as depicted in Figure 2.10(a). Such devices can include tuned and untuned absorbers as 

well as viscous damping devices sometimes referred to as Houdaille dampers. Tuned absorbers 

which have negligible damping are sometimes employed to shift the system’s natural frequencies 

or to provide an anti- resonance at a particular frequency. Untuned absorbers which have a 

significant amount of damping are often used to reduce amplitude levels over a wider range of 

frequencies than tuned absorbers. Houdaille dampers serve as devices for dissipating vibratory 

energy(Griffin, 1998). 

2.10 Frictional Dampers  

Convert vibratory energy in form of friction torque and dissipate it as a heat when relative motion 

takes place between adjacent members These forces are independent of amplitude and frequency; 

they always oppose the motion and their magnitude may. There are two types of the frictional or 

Coulomb (dry friction) dampers known as Lanchester damper In general, it is less effective than 

tuned vibration absorbers(Harris, 2002). a viscous type, where the friction occurs in fluid, silicone 

oil, captured between a light sheet cover mounted on the crankshaft and a heavy inertia mass disc. 

The second is a solid type, which basically acts as a dry clutch, where the dry friction originates 

between inertia discs pressed together by springs. Their disadvantage is a relatively low damping.  

 Viscous Dampers 

A simple type of dissipation mechanism typically considered in vibrations damping  

(William J. Bottega, 2011).A viscous damper has a sealed outer housing with a precision 

machined hub. Inside of the housing is an inertia ring with a viscous fluid (Fluidampr uses 

specialized silicone) filling the cavity. It is used to limit vibrations and crankshaft stresses and 

protect the engine and not necessarily the driven machinery. usually located near the front end of 

the engine(Spångberg, 2012). The viscous damping force is proportional to the first power of the 

velocity across the damper, and it always opposes the motion, so that the damping force is a linear 

continuous function of the velocity. Because of the mathematical treatment simplicity they used 

to approximate more complex types of damping approximated as the viscous type(C. E Beards, 

1983). it consists of a flywheel that rotates inside the housing, which consists of a fluid with high 

viscosity. A principal sketch of a viscous damper is seen in Figure 2.10. 

http://www.fluidampr.com/
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Figure 2-11:Principal sketch of a viscous damper. 

2.11 Untuned Viscous Damper (Houdaille Damper) :  

This type of damper is similar in principle to the Lanchester Damper except that instead of using 

friction plates for dry friction damping, this system uses friction damping. It consists of a freely 

rotating disc enclosed in the close-fitting case which is keyed to the shaft. Normally the disc 

rotates at the shaft speed owing to the viscous drag of the oil between the disc and the case. 

However, if the shaft vibrates torsionally, viscous action of the oil between the disc and casing 

gives a damping action. 

2.12 Dynamic Torsional Damper 

They sometimes called eliminator, or converter. It does not consume vibratory energy. The 

pendulum is linked to an oscillating shaft in means that a natural frequency of the pendulum 

matches a natural frequency of the torsional system. the benefit of these dampers acceleration 

from centrifugal force is much bigger than the gravity acceleration, so, only low inertia mass is 

favorite to compensate torsional vibration of the entire engine. An inaccuracy of the dynamic 

damper tuning can be a drawback. 

2.13  Resonant Dampers (Rubber) 

Also called tuned rubber torsional dampers. They consist of two parts, a flange, bolted to a pulley 

on front end of crankshaft, and a heavy inertia ring bonded together with the flange by a 

compound rubber band such as shown in figure 2.12. If the front end is accelerated, the mass ring 

tends to delay behind generating shear stress in the rubber band. The movement is damped by 

elastic hysteresis losses in the rubber and heat rejection to the surroundings. If needed an extra 

inertia ring can be added – dual mass torsional damper. 

Rubber torsional dampers are efficient and simple to fabricate but their characteristics depends 

on temperature and life time of the rubber. 
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Rubber stiffness decreases with high deformation while its damping ability remains constant or 

even decreases. Likewise, heat reduces both the stiffness and the damping ability. Rubber has the 

capacity to store huge amounts of energy and can release a large amount of this energy on 

retraction. The most important difference between a rubber and a viscous damper , viscous 

damper is untuned but is capable of dropping the amplitude and smoothing out main critical 

orders. as a result, the rubber damper has its own natural frequency, the value of which is chosen 

to detune major critical orders so that their vibrations occur at different speeds with much reduced 

amplitude. 

 

Figure 2-12:Rubber torsional damper bolt  

Most commonly used conventional dampers for engines for road vehicles are named viscoelastic 

dampers (dampers plus rubber), who have a number of merits (efficiency, durability, storage 

space, etc.). Method to define the basic features of damping and a way of modeling these dampers 

is given in(FILIPOVIC, DOLECEK and BIBIC, 2005) (Blažević et al., 2016). Rubber dampers 

are typically effective for engines with a total engine displacement of less than 7 liters (427 cubic 

inches). They are limited by their capacity to dissipate heat and rubber stress(V.R.Navale, 2015). 

It is the most weight-efficient design and the most economical to build beside it is effective, 

reliable, Properly designed, and long-lived. The biggest difference is that the inertia ring does not 

go resonant at any frequency and is thus not "tuned" like the rubber damper. 

2.14 Eddy current damping  

If a non-ferrous conducting object moves in a direction perpendicular lines of magnetic flux is 

produced by current is induced in the object. And proportional to velocity of the object. The 

current induced is called eddy current which set up its own magnetic field opposite to original 

magnetic field that has induced it. This provides resistance to motion object It forms magnetic 

field. This type of damping produced by eddy currents is called eddy current damping. it is used 

in vibrometers and in some vibration control systems. 
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2.15 Magnetic Damper  

The first design considered was the magnetic damper system. The basic idea behind the device 

was to have input and output shafts completely unconnected from one another with a transfer of 

the rotational movement through magnetic fields. The advantage of this design was the small 

amount of losses because there are no physical contact points where frictional losses could occur. 

Further, magnets, as opposed to springs, have a nearly infinite life where as springs exhibit fatigue 

over time and lose their strength.  

2.16 Combined Viscous And Coulomb Damping  

The free vibration of dynamic structures with viscous damping is characterized by an exponential 

decay of the oscillation, whereas structures with Coulomb damping possess a linear decay of 

oscillation. Many real structures have both forms of damping, so that their vibration decay is a 

combination of exponential and linear functions. 

2.17  Hysteretic Damping  

Experiments on the damping that occurs in solid materials and structures that have been subjected 

to cyclic stressing have shown the damping force to be independent of frequency. This internal, 

or material, damping is referred to as hysteretic damping. Since the viscous damping force is 

dependent upon the frequency of oscillation, it is not a suitable way of modelling the internal 

damping of solids and structures. The analysis of systems and structures with this form of 

damping therefore requires the damping force to be divided by the frequency of oscillation. 

2.18 Centrifugal Pendulum Vibration Absorber (CPVA)  

are a long-known device to reduce torsional vibration in rotating systems. They are used 

successfully in aircraft since the late thirties. To implement these devices into combustion engines 

of passenger cars, the design space and weight to effectiveness ratio have to be Optimized. There 

are different principal designs of CPVA patented by Kutzbach, Carter, Salomon and Sarazin 

(Mathias Pfabe and Christoph Woernle, 2009). 

 

Figure 2-13 Centrifugal Pendulum Vibration Absorber (CPVA) 
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2.19 Damper Problems 

A damper which is in poor condition or which is not operating will increase the torsional 

vibration, resulting in an increase in material stresses and can lead to undue strain on the 

crankshaft and transmission components. The lifetime of a damper depends on its thermal load 

and on the running conditions. The effective operation of the damper may reduce after some 

period. 

2.20 Literature Review 

 (Ivan Filipoviæ, 51(2005)12,) in heavy-duty diesel engines multi-cylinder, in-line, the 

conformity between calculated and experimental outcomes implies that the suggested procedure 

for parameters modeling and calculating of corresponding torsional systems can be manipulated 

in reality. 

(homik, 2011) show In practice the detrimental phenomenon makes that the damper, instead to 

damp vibrations, starts to excite them. 

The damper, if correctly designed, should operate reliably for 20000 - 30000 h in negative 

temperatures and first of all higher temperatures even as high as 120°C. Laboratory tests 

performed on viscous torsional vibration dampers demonstrated that events of seizing the 

dampers occurred when their working temperature values exceeded by 60°C the temperature for 

which they were designed. Satisfactory effects of damper operation are reached when it operates 

within the temperature range from 75° ÷ 90°C in continuous cycle of work. 

 (Wilson, 1956)established a torsional vibration model of a crankshaft with reciprocating 

mechanisms. his techniques were used to determine the inertia, stiffness, and damping between 

cylinder crank throws and the rest of the shaft. His methods are now used by industry to develop 

torsional vibration models of crankshafts. 

(Kabele, 1984) developed a torsional vibration model of a V-8 diesel engine crankshaft which 

included piston and ring friction, connecting rod, hysteretic damping in the crankshaft, and 

cylinder pressure as a forcing function. The model was resulting from Newtonian Mechanics and 

the governing differential equations were non-linear making a mathematical solution necessary. 

As soon as his model was developed, he compared measured and model anticipated vibration 

amplitudes for numerous harmonic orders and concluded that relationship between the two was 

outstanding.  

(Citron S. J., O’Higgins J. E., Chen L. Y., no date) prepared a computer model and created 

cylinder pressure torque by means of an flexible model of an engine, drivetrain system, and 

measured speed fluctuations. These speed variation data were delivered back through the model 
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to define the fluctuation waveform of both the entire engine torque being developed and the 

cylinder pressure waveform which gave rise to it. 

(Rizzoni, 1989)proposed passing crankshaft speed fluctuations through an equivalent electronic 

circuit representing engine dynamics to forecast cylinder misfires. He piloted investigational 

work on production spark ignited vehicles and confirmed that it is possible to apply this method 

with minimal hardware and computational overhead. 

 (Sobel J. R., Jeremiasson J., 1AD) described a technique for measuring immediate crankshaft 

torque utilizing a non-contact ferromagnetic material to predict torsional stress in the crankshaft. 

The instantaneous torque of an internal combustion, four-cylinder engine was measured at the 

flywheel and compared with pressure signals during workbench experiments. Excellent 

correlation between this non-contact measured torque and values of the mean effective pressure 

for each cylinder were obtained. 

(Brown T. S., 1992)presented a non- contact method for determining simultaneously the pressure 

in individual cylinder by using a pattern recognition method to compare crankshaft speed 

fluctuations to reference patterns in a knowledge base. The non-contact method utilized was an 

interval timer and a magnetic measuring device which timed the flywheel gear teeth as they 

passed. The experiment was conducted on a Detroit Diesel 6V-92TA engine. The investigational 

outcomes show that the method estimates the cylinder pressures with an RMS error not more than 

6%. But this needs widespread data bases for each situation. 

(Bell, 1996)concluded, employing the same Detroit Diesel 3-53 engine used in this study, that 

the deviation of shaft speed held information which could be used to guess cylinder firing 

pressures. He also recommended the improvement of a torsional vibration model of the engine 

and flywheel system along with a more rigid optical encoder mounting for further precise time 

resolved measurement. 

(Draminski, 1965)prove that certain systems undergo excessive torsional oscillations at specific 

engine speeds . 

Recently (Hestermann, D. C. and Stone, 1994) study the effect variation of inertia due the crank 

mechanism was shown to the cause unexpected large angular displacements. These secondary 

effects were verified and checked and were found to be responsible for many structural failures 

of crankshafts. 

The aforementioned secondary effects were inserted by (Pasricha, 2001) in earlier reported 

calculation. He concluded that, in at least some instances, they can lead to detrimental effects on 

crankshaft 
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(Johnston, P. R. and Shusto, 1987)used the modal superimposing method to develop and apply a 

method to predict the torsional performance in ICEs in transient and steady-state. The computed 

values of this modeling were validated with respect to the actual values in the usual manner  

(Brusa, Delprete and Genta, 1997)studied the introduction of functions taking into account the 

variation of inertia in the crankshaft’s angular position and the coupling of axial /flexural 

vibrations. These considerations substantially increased the number of equations to be solved and 

the computational cost, but the final results were more accurate for the cases reported in their 

article.  

(Song et al., 1991) The combined effect of torsional and axial vibration in the crankshaft was 

analyzed by Song and co-workers. They showed that when both the natural axial and torsional 

frequencies are equal, large displacements are ensued 

(Den Hartog, 1985)and (Wilson, 1956)erroneously estimated torsional damping coefficients of 

ICEs based on empirical determinations. Their estimation introduced-in most cases- considerable 

variation in the dynamic response in the studied systems. 

coefficients were proposed by (Iwamoto, S. and Wakabayashi, 1985), who considered analytical 

relations between the damping and other measurable engine parameters. 

(Wang, Y. and Lim, 2000) used a single cylinder powered by an electric motor to estimate 

absolute damping correctly. They only considered the first two modes of the system to arrive at 

the absolute damping coefficient as a function of the crank angle. 

(Honda, Y. and Saito, 1987)used the transition state matrix methodology to analyze the torsional 

vibration of six-cylinder diesel engine. They use a rubber TVD to found that the torsional rigidity 

of the rubber has a dominant influence in the system’s characteristics than the engine’s internal 

damping and even TVD damping. 

(Maragonis, 1992)The excitation torque is usually considered constant and equal in all cylinders. 

This holds true only for new engines and considerable variations in the shape of the cylinder’s 

internal pressure curves can be expected during the engine’s operational life. 

(Boysal and Rahnejat, 1997) shown that crankshaft experiences large number of load cycles 

subsequent from gas combustion and inertia forces, through its life time. These apply forces on 

the crankshaft resulting two kinds of cyclic loads on the crankshaft structure i.e. torsional and 

bending loads. Some systems can existing extreme torsional vibrations at specific engine speeds. 

 (Kushwaha et al., 2002).Non linearity within the engine arises from multitude of sources which 

could be traced down to crankshaft elasticity, assembly constraints, journal bearing 

hydrodynamics and combustion processes. 
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(Tomoanki Kodama, Katsuhiko Wakabayashi and Yasuhiro Honda, 2001) have made test to find 

the dynamic characteristics of the viscous friction damper by the method by adopting 

instantaneous vibration measurement method at two points. The experiment, the vibration shifts 

of the damper casing and the inertia ring can be simultaneously measured in this method he 

concluded the dynamic properties of the silicone fluid can be found by changing the clearances 

between the viscosities of fluid. The torsional vibration amplitudes at damper casing and the 

Inertia ring are calculated by using the pulse tapes & acrylic casing. Damper optimum internal 

clearance are decided by experimentation  

(Nestorides, 1958) gives the number of formulae to calculate the crankshaft stiffness for different 

configurations of crankshaft. The various damper design criteria’s for moment of inertia of 

seismic mass, m.i of casing and outward area for heat dissipation are suggested.  

(Wilson, 1956) has proposed the methods for calculation of the natural frequency of rotating 

multiple inertia system. he also gives the phase angle drawing and phase angle vector summation 

for several arrangements of the engines.  

(Wojciech Homik, 2011) described the causes of torsional vibrations in the engine crankshaft. 

Also proposed the method for damper design for specific application. also proposed that the 

maximum working temperature of viscous damper is 120 degree C.But the seizing of the viscous 

damper will happen when the damper surface temperature exceed by 60 deg. C from damper 

design temperature.  

(Malanoski, no date) proposed the method for encounter the torsional vibration problems in 

practical. He had proposed the method for obtaining the natural frequency in practical 

circumstance also stated stages to be taken once the natural frequencies are calculated to avoid 

the resonance condition also The Torsional vibration problem related to the startup motor is 

discussed.  

(Meirelles, 2007).The scope of this paper is the study of the crankshaft torsional vibration 

phenomenon in internal combustion engines. The analysis formulation, based on state equation 

solution with system steady state response calculation performed by transition state matrix and 

the convolution integral. The analysis considers a rubber and a viscous damper assembled to the 

crankshaft front-end. From the torsional vibrations analysis, it is possible to obtain the dynamic 

loading on each crankshaft section and these loads can be applied as boundary conditions in a 

finite element model to predict the safety factor of the component and compare the system 

behavior with rubber and viscous damping options. By this way, it is possible to emphasize the 

importance of the torsional vibration’s analysis on the structural dimensioning of the crankshafts.  



 

26 

 

(P. S. Meirelles, D. E. Zampieri, 2007) their study formulation, based on state equation solution 

with system steady state response calculation completed by transition state matrix and the 

convolution integral, will be applied to a six-cylinder Diesel engine. The analysis considers a 

rubber and a viscous damper bring together to the crankshaft front-end. From analysis, it is 

possible to obtain the dynamic loading on each crankshaft section and these loads can be applied 

as boundary conditions in a finite element model to predict the safety factor of the component 

and compare the system behavior with rubber and viscous damping options.  

(Meirelles, 2007)Authors has proposed the formulation for torsional vibration analysis of six 

cylinder diesel engine. Analysis consist of the comparison of outcomes of engine by means of 

the rubber and viscous damper. Vibration amplitude results compared with measured values for 

experimental validation.  

(Homik W., 2012)presented the sources of several forms of vibrations in multi cylinder engine, 

particular consideration was focused on torsional oscillation which is severe threat to engine 

crankshaft. Also presented damping technique, problems of damping efficiency, modification of 

viscosity, amplitude-frequency characteristics of numerous viscotic dampers  

(WLADYSLAW MITIANIEC, no date) author studied torsional vibration analysis of crankshaft 

in six cylinder inline heavy duty engine taking benefit of the crank train reduction to multi mass 

model. The outcomes Results of multi mass model compared with FEM results. The error 

between two methods is not important hence the multi mass model reflects the reality.  
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CHPTER III  

METHODOLOGY 

3.1  Introduction 

The aim of a torsional analysis is to predict the vibration behavior of the system.so that harmful 

vibrations do not appear under any operational conditions. A multi-cylinder reciprocating engine 

contains many reciprocating and rotating parts such as pistons, connecting rod, crankshaft, 

flywheel, damper and auxiliary drives. The system is so complex that it is difficult to do an exact 

analysis. Crankshaft plays the role of changing the reciprocating mechanism to rotational motion 

or vice versa Regardless of the number of cylinders in a reciprocating engine, we have 2-stroke 

and 4- stroke combustion mechanism for firing, which relates the firing torque cycle and 

rotational speed ().It can be modeled as a rotating shaft connected to the inertia disks. 

3.2 Engine Crankshaft Modeling Methods 

Crankshaft is the main component of internal combustion engine and shaft vibration is the most 

important factors affecting engine operation. So, crankshaft modeling is the base of crankshaft 

torsional vibration analysis. There are many shaft models used in modeling torsional vibration:  

1. Simple mass - spring model. 

2. Continuous mass model. 

3. Multi-segment concentrated mass model. 

4. Continuous mass model 

5. Multisegment concentrated mass model. 

6. Soft body dynamics model. 

 Simple Mass - Spring Model 

The simple mass - spring or lumped parameter model is the earliest mechanics model to 

analysis shaft vibration(Xingyu et al., 2011). 

3.3 Equivalent Crankshaft System 

number of variables influencing the oscillating torsional system, it is appropriate to replace the 

real system with a substitutional torsional system – the equivalent system consisting of inertia 

discs connected by straight shafts. By the reduction it is presumed that [2].Diameter of the 

substitution connecting shafts is usually set equal to diameter of the main crank journal. Thus, 

the equivalent crankshaft system should be energetically equal to the original torsional 
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system.The actual system is characterized by the presence of unpredictable effects such as 

variable inertia, internal damping, misalignment in the transmission units, uneven firing 

intervals . The system can then be reduced to a simple system with a series of rigid rotor 

(representing the inertias) connected by the massless flexible shafts. Simple procedures will be 

described to reduce reciprocating inertias to equivalent rotating inertias. Simple spring mass 

model schematic diagram as shown in Figure. 3.1. 

 

Figure 3-1:A typical reciprocating engine 

 

Figure 3-2:An equivalent rotor model with N-disc 

3.4 Engine Torsional Modeling  

The first step in determining the torsional response is to calculate the natural frequencies of the 

system, this requires the stiffness and mass inertia of the shaft and components.  
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 Torsional Stiffness 

Many equations are given in (Wilson, 1968) and (Nestorides, 1958) for calculating the torsional 

stiffness of a crankshaft. The basic dimensions of the journals, webs, and crankpins are needed, 

as well as the shear modulus of the shaft material. 

 

Figure 3-3: Typical Crankshaft Throw 

1.Carter’s Formula  
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 Polar Moment Of Inertia Of The Connecting Rod 

The moment of inertia at each crankshaft throw depends on the rotating inertia which is constant, 

but the inertia of the reciprocating parts varies with crankshaft rotation. The equivalent inertia, 

Jeqv, can be approximated by the relation. Thus, the inertia moment of the masses assumed to be 

constant i.e. independent of rotation angle. This assumption leads to satisfactory results for small 

reciprocated machines but it is also still used in conventional TVA calculations of large marine 

two stroke diesel engines too. A piston-conrod-crank mechanism of the engine Fig.3.4 usually is 

modelled by an equivalent lumped mass which is assumed to excite the same torsional vibration 

as the actual complicated crank mechanism.The simplest formula for crank inertia moment I is 

as follows (Den Hartog, 1985): 

20.5eqvt rot recJ J M R= +
.................................................           3-3                                                           
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rotJ  the moment of inertia of purely rotating parts 

recM  the sum of the mass of the piston and of a part of the connecting rod 

   Rcrankshaft throw radius  

The connecting rod is heavier at the crankpin end and lighter at the reciprocating end. If the 

weight distribution of the connecting rod is unknown, assume 2/3 of the weight is rotating and 

1/3 is reciprocating(Nestorides, 1958). The rotating mass of the connecting rod is multiplied by 

the throw radius squared and added to the crankshaft rotating inertia to obtain equivalent inertia, 

Irot. Ieqv,  

  

Figure 3-4: (a and b) An equivalent polar moment of inertia of the piston at two 

positions  

 

Figure 3-5 dynamically equivalent two-mass system of the connecting rod 

 

  
Figure 3-6 (a) Actual crank shaft (b) The equivalent length of the crank shaft 
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The inertia of connecting rod can be obtained by considering a two-mass equivalent dynamic 

system with mass one at piston, mcn rec and other mass at crank pin, mcn rev. With some 

approximation the mass of the connecting rod mcn can be considered as two mass one at the 

piston. From figure 3.6 we can find the total length of the connecting rod. 

 

L = a + c.......................................................................................................................(3-4) 

*rec
cmcn mcn

L
=

....................................................................................................(3-5) 

*rev
amcn mcn

L
=

.....................................................................................................(3-6) 

where L  Length of the connecting rod[m]. 

 c Distance from the piston pin to the center of gravity of the connecting rod[m]. 

 a Distance from the crank pin to the center of gravity of the connecting rod[m]. 

 mcn ≡ connecting rod total mass [kg].  

 mrev  mass of revolving part of the connecting rod at crank pin[kg]. 

 mcn rec≡ connecting rod oscillating mass at piston pin [kg]. 

 

 

igure 3-7: Dimensions considered for the division of con rod masses(Akbulut, 2018) 

The total connecting rod mass is  

 

                       cn rec revm mcn m= +
3-7 

The total revolving parts mass 

                       rev cr revM M mcn= +
3-8 

Mrev ≡The total revolving parts mass. 

Mcr = the mass of crank web 
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                       rec p recM M mcn= +
3-9 

Mrec ≡total oscillating masses [kg] 

Mp ≡Piston and pin masses [kg].  

20.5                       eqvt rev crJ M M r= +
3-10 

 Flywheel Polar Moment of Inertia  

The flywheel is a rotating mechanical device that is used to store rotational energy. It has large 

inertia so that it can help to reduce vibration by smoothing out the power stroke as each cylinder 

fires. It also can control the speed constant or stay in smooth rate. The flywheel inertia is usually 

lager than the crank shaft, by comparing different data from different type of engines we assume 

that it is about 5 times larger than the crankshaft. The most common types of flywheels used in 

commercial applications are single-mass flywheels, dual-mass flywheels. The following formula 

used to calculate the moment of inertia of the flywheel. 

2

f fJ M R=
3-11 

Mf ≡ the mass of the flywheel is (kg)  

R ≡ the radius of gyration (m). 

3.5 Torsional Vibration Calculations 

for torsional vibration calculation of n-degree-of-freedom system. Let we consider the model on 

the Fig.1. The equations of motion are possible to obtain by using of Newton equations. In such 

simple models it is possible to write directly for each mass as shown in equation (12). 

 Seven Degree Of Freedom System 
 
The method of generalized coordinates system is demonstrated in Figure 3.7.  

 

Figure 3-8: A free-body diagram 
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 Equation Of Motion of  8 Degree Of Freedom Derivation  

On the basis of the equivalent system, it is possible to create a mathematical model describing 

the movement of the crankshaft. In order to achieve matching between the dynamic models of 

the real system and equivalent system, it is necessary to define the parameters of the equivalent 

system precisely [3]. The mathematical model of the crankshaft motion as a rigid body is given 

by equation 

(3‎ ‎‎ ‎ ‎g i t kJ T T T T = + + +  

where is J the reduced mass moment of inertia of the crankshaft, 
gT  the gas torque, iT  the inertial 

torque being a result of the crank slider mechanism motion, tT  the friction torque and kT  the load 

torque . 

As you can see, equations involving the non-singular matrix have one and only one solution, 

but equation involving a singular matrix are more complicated We obtained n simultaneous 

differential equations of second order with constant coefficients.  
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For simplicity, the eight equations can be combined into one matrix equation form: 

Mass Matrix

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0 n

J

J

J

J
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 Spring Matrix 

1 2

2 2 3 3

3 3 4 4

4 4 5 5

5 5 6 6

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 n n

K K

K K K K
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Damping  Matrix
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................(3-13) 

When the number of degrees increases the solution is difficult and not providing an easy 

survey. Therefore we write the set of equation of motion in matrix 

J C K Mt  
•• ••

+ + =    (3-14) 

where 
•••

,,  displacement, velocity, acceleration, respectively. They are expressed by a column 

matrix ],...,,[ 21 n

T  = . ],...,,[)( 21 n

T MMMtM =  is the vector of time depending exciting 

forces. 

 [J] represents a diagonal mass matrix 

[K] a diagonal stiffness matrix. 

[C] a diagonal damping matrix. 

 Free Vibrations Of MDOF undamped System 

Consider the homogeneous form of equation (14) by assuming the Mn = 0 and C= in equation 

(13) we find  

 

0J K 
••

+ =                   (3-15)

 Seek a solution of the form(we assume the complex harmonic response) 

 

exp( )q j t =                   (3-16)

 The q vector is the generalized coordinate vector. 

Note that 

exp( )j q j t  
•

=                   (3-17) 

2 exp( )q j t  
••

= −                   (3-18)

 Substitute equations (3.18) and (3.16) into equation (3.15). 

2 exp( ) exp( ) 0J q j t K q j t  − + =                  (3-19)

 
 2 exp( ) 0J q K q j t − + =     (3-20)
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2 0J q K q− + =                   (3-21)

 
                             2 0J K q− + =                         (3-22)   

 
 2 0K J q− =                   (3-23)

 
Equation (23) is an example of a generalized eigenvalue problem. The eigenvalues can be found 

by setting the determinant equal to zero. 

 2det 0K J− =                   (3-24)

 
let λ = ω2 

 det 0K J− =                   (3-25)

 
The expansion of the above equation will lead to a polynomial of λ of order N. This polynomial 

equation will have N roots, λ1, λ2, . . . , λN, called eigenvalues, which relate to the natural 

frequency of the system by Eq. (3.23). 

The natural frequency is a very important characteristic of the systems carrying dynamic loads. 

It has been found that if a system is excited by a load with a frequency of one of the systems’ 

natural frequencies, the systems can undergo extremely violent vibration, which often leads to 

catastrophic failure of the structural system. Such a phenomenon is called resonance. Therefore, 

an eigenvalue analysis has to be performed in designing a system that is to be subjected to 

dynamic loadings. 

By substituting an eigenvalue λi back into the eigenvalue equation (23), we have 

  0K J q− =                   (3-26)

 
which is a set of algebraic equations. Solving the above equation for φ, a vector denoted by qi can 

then be obtained. This vector corresponding to the ith eigenvalue λi is called the i-th eigenvector 

that satisfies the following equation: 

  0i iK J q− =                   (3-27)

 
An eigenvector qi corresponds to a vibration mode that gives the shape of the vibrating systems 

of the i-th mode. Therefore, analysis of the eigenvalue equation also gives very important 

information on possible vibration modes experienced by the systems when it undergoes a 

vibration. Vibration modes of a systems are therefore another important characteristic of the 

systems. Mathematically, the eigenvectors can be used to construct the displacement fields. It has 

been found that using a few of the lowest modes can obtain very accurate results for many 

engineering problems. Modal analysis techniques have been developed to take advantage of these 

properties. 
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w=the eigenvalue, is the natural frequency of the system. , 

q=the eigenvector, is the mode shape of the system. also known as modal vectors, 

w, tells the frequency of oscillation while q dictates the displacement configuration. 

3.6 Campbell diagrams 
Provide an excellent overview of the system's torsional vibration situation, analogous to  

the function provided by critical speed maps in lateral systems. A Campbell diagram should always 

be generated as soon as the undamped analysis is completed. A representative diagram for a 

ungeared system is depicted in Figure 3.9. The natural frequencies are plotted as horizontal lines 

and the operating speed range is designated by vertical lines.  

3.7 Forced Vibrations of MDOF Damped System 
When we need only one natural frequency, we construct a mechanical simple model like in the Fig.6.1. 

which represents the properties with enough accuracy. Simpler model enables more easy mathematical 

calculation and many times gives a sufficient accuracy. If we need to know also the higher natural 

frequencies, the model must be more complicated.  

Usually we design more complicated mechanical model – so called linear discrete model. We obtain as 

many natural frequencies, and as many natural modes as they are degrees of freedom.Computational 

model for n-DOF system.Therefore we write the set of equation of motion in matrix notation 

J C K Mt  
•• ••

+ + =                   (3-28)

 

3.8 Torque Variations In A Reciprocating Machinery 

There are 3 methods to find the engine torque, needed to obtain the responses of the systems. 

1. Measure the torque on an engine by adding a torque sensor at the crankshaft. 

2. Obtain the torque data form literature. 

3. Use an algorithm to create torque curve. 

Measuring the engine torque requires test facilities and an engine which can deactivated 

cylinders. Measuring torque data for the entire speed and load range is time consuming. Data is 

also only applicable for similar engines, as the one used during the measurements. Torque data 

from literature is often not sufficient enough to model the entire engine operating range. Using 

algorithms makes it possible to change the shape of the torque curve rather easily and is therefore 

preferred. It also is an easy method to transform into a model. The engine torque is a combination 

of the gas pressure torque and inertia torque 



 

37 

 

 

Figure 3-9: Categories of main excitations 

 

Figure 3-10: Forces acting on crankshaft 

 Gas Pressure Force 

The gas pressure torque is a result of the gas pressure working on top of the piston, 

incorporating the combustion pressure, compression and gas exchange pressures.  

The gas force can be obtained by the equation 

2

4
g

d
F p=                   (3-29)

 
Where  

Fg ≡gas force [N] 
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d ≡ is the piston diameter [m]  

p ≡the cylinder pressure [bar] 

The gas pressure torque can be modeled by a Fourier algorithm, equation below) 

If multiple cylinders are being used equation B.7 can be changed into equation B.8, with α j 

being the firing distance. For a 4-cylinder 4 stroke engine the firing distance is evenly spaced 

with an interval of π and a firing order of 1342. 

3.8.1.1 Prediction Of Pressure Inside The Engine Cylinder 
There are many works concerned mainly with prediction of pressure inside the engine cylinder. 

But the pressure and volume are influenced by engine specifications during variation of crank 

angle. The pressure and displacement volume are needed to convert as functions of crank angle. 

(KUO., 1996) and (Colin.R.Ferguson, 2001) proposed the method that can calculate the 

pressure and volume at any crank angle. The calculations for this subchapter were done with Matlab 

code. The program code is shown in Appendix A. 

 Tangential Gas Force 

The tangential gas force is computed as 

sin( )

cos( )
tg gF F

 



+
=                   (3-30)

 

sin β = λ sin α 

α ≡crankshaft angle (degrees) 

β ≡connecting rod angle (degrees) 

 Inertial Force 

The reciprocating parts in an internal combustion engine generate a torque due to constantly 

acceleration and deceleration of the reciprocating engine masses. The reciprocating engine mass 

mrec consist of the piston mass m piston and roughly one third of the conrod mass mconrod. Because 

of the crank conrod mechanism, the reciprocating masses undergo both a primary and secondary 

motion, resulting in a odd looking sine wave, see figure B.1. 

mrec = m piston +(1/3) mconrod       (3-31) 

The inertia torque Ti can be modeled with the Fourier algorithm A periodic function is broken 

down and expressed in terms of sine and cosine terms. ( [4], [22] and [10]) from equation B.2, 

where Rcrank represents the crank radius. 

The inertial force can be determined as follows 
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3 5
2 9
(cos cos 2 cos 4 cos6

4 128
ia aF m r p

 
     = + + +                   (3-32)

 
 

λ = R/L connecting rod to crank radius ratio 

 Tangential Inertial Force 

The tangential inertial force is 

sin( )

cos( )
ta iaF F

 



+
=                   (3-33)

 

Fta ≡ tangential oscillating force (N) 

Fia oscillating inertial force (N) 

 Total Tangential Force  

t tg taF F F= +                   (3-34)

 
 

Where Ft ≡ total tangential force (N) 

 Ftg ≡ tangential gas force(N) 

 Total torque 

.t tM F r=                   (3-35)

 
 

Mt ≡ torque (Nm) 

Inertia torque for multi cylinder engine with phase angle 

 det 0K J− =                   (3-36)
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Gas torque for multi cylinder engine with phase angle 

 det 0K J− =                   (3-38)
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Fourier series 

0

1

( ) cos( ) sin( )k k

k

T t a a kwt b kwt


=

= + +                   (3-40)

 

The unknown Fourier coefficients ,0a  ka  and kb  can be computed as 

0

0

1
( )

T

a T t d
T


 

=  
 

                   (3-41)

 

0

2
cos( )

T

ka Tt kwt d
T


 

=  
 

                   (3-42)

 

0

2
sin( )

T

kb Tt kwt d
T


 

=  
 

                   (3-43)
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 Figure 3-11: Harmonic components analysis of torque of a cylinder unit in time domain 

∅1 = 0, ∅2 =  , ∅3 =  , ∅2 =  

periodic force can be represented as an infinite sum of harmonic forces using Fourier series. 

0

1 1

cos( ) sin( )g g j j

j j

T T a j b j 
 

= =

= + +                    (3-44)

 

1 1

cos( ) sin( )i j j

j j

j j
T c d

m m

  

= =

= +                    (3-45)
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jc =jth cosine harmonic components du to inertia =0 

jd = sine harmonic components du to inertia which is given 

 
jd =0 for half order n=j/m=0.5,1.5,2.5,...... 

3.9 Undamped Forced Vibration 

The majority of structures can be made to resonate, i.e. to vibrate with excessive oscillatory 

motion. Resonant vibration is mainly caused by an interaction between the inertial and elastic 

properties of the materials within a structure. Today, modal analysis has become a widespread 

means of finding the modes of vibration of a machine 

 General Solution of MDOF  

determine natural frequencies(ωi) and mode shapes {x}i from undamped free vibration. (eigen 

solution)use orthogonality of mode shapes to transform equations of motion into modal space. 

Solve n single degree of freedom problems. Use mode shapes to transform back to physical 

space .From the equation 4.10 and put damping coefficient [C] = 0 we obtain the following 

equation 

3.10 Modal Space or Analysis 

Original Equations of Motion: 

     [ ] [ ] [ ] tM u C u K u M+ + =                   (3-46)

 
 

Define a new coordinate system 

   [ ]u X q=                   (3-47)

 
Where  

{q} Modal Space principal coordinates (generalized coordinate vector) 

[ X] Twist Modal Matrix 

Substitute into equation of motion 

     [ ][ ] [ ][ ] [ ][ ] tJ X q C X q K X q M+ + =                   (3-48)

 
 

Pre-multiply by 

     [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ]T T T T

tX J X q X C X q X K X q X M+ + =                 (3-49)

 
 

Modal Mass 
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[ ] [ ][ ] [ ]TX J X J=                   (3-50)

                          

Modal Stiffness 

[ ] [ ][ ] [ ]TX K X K=                   (3-51)

 Global Modal Forces 

[ ]T

tX M Q=                   (3-52)

 
Proportional or Rayleigh Damping 

The damping can often be considered to be of the proportional or Rayleigh type. This exists 

when the damping matrix is of a form that can be diagonalized by the same real eigenvectors 

used to diagonalize the mass and stiffness matrices.  

if [C] has the form either[C ]= a[M] or b [K] then the real transformation that diagonalizes both 

[M] or [K] will also diagonalize[M] or  [K]. Therefore [C ] can be made diagonal by the real 

eigenvectors of the undamped system if it is of the form: 

[ ] [ ] [ ]C a K b J= +                   (3-53)

 where a and b are the constants 

Modal Damping   

[ ] [ ][ ] [ ]TX C X C=                   (3-54)

 where a and b are any constants. 

Then we can write the above equation 

If the matrix [C ] in Eq. (6.66) is written in the form of Eq. (6.67), the equations, when transformed 

into normal mode coordinates, become 

     [ ] [ ] [ ] 0J q C q K q+ + =                   (3-55)

 
 

and all three matrices are diagonal. If a single equation, say the one representing mode 

j, is taken from the set, Eq. (6.68): 

ii i ii i ii i 0j q c q k q+ + =                   (3-56)

 
 

then cii will be given by: 

ii ii ii c aj bk= +                   (3-57)

 
 

by using the relationship 
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2

ii ii ik j =                   (3-58)

 
 

is the undamped natural frequency of mode i. 

 the non-dimensional damping coefficient for that mode, ξi , will be 

ii

ii

 
2 2

i
i

i i

bc a

j




 
= = +                   (3-59)

 

 

the viscous damping coefficient ξi can be made inversely proportional to the mode frequency ξi, or 

proportional to it, or a combination of these. Since there are only two constants in Eq. (6.71), 

however, truly proportional damping can only be used to set the damping coefficients for two 

frequencies, i.e. for two modes. The method described in Section 6.4.3 is therefore more often used 

in practice. 

Response of multi-DOF systems by normal mode summation 

We have seen that the equations of motion of a damped system in global coordinates 

     [ ] [ ] [ ] tM u C u K u M+ + =                   (3-60)

 
can be transformed into normal mode coordinates using the real eigenvectors of the undamped 

system, provided that the damping is light, or if not light, of the proportional type, and that this 

covers the majority of structures, although there are some significant exceptions. The resulting 

equations, in modal coordinates, are then assumed to be of the form: 

       [ ] [ ] [ ]J q C q K q Q+ + =                   (3-61)

 
where [ ],[ ] [ ]J C and K  are diagonal, and the whole system consists of n completely 

separate single-DOF equations, each of which is of the form: 

ii i ii i ii i ( 1,2....... )ij q c q k q Q i n+ + = =                   (3-62)

 
Provided that the system is linear, any of the methods described in Chapters 3 and 4 for finding the 

response of single-DOF systems can be applied to each of the equations represented by Eq. (6.78), 

and the results summed to produce the response of the multi-DOF system, a process known as 

normal mode summation. 

This provides a simple, analytic method for finding the response of even quite large multi-DOF 

systems, to practically any input, and is therefore almost always the first method considered. It is 

usually found, in larger systems, that it is not necessary to use all n equations, since those having 

natural frequencies well above any frequencies present in the excitation will not respond, and can be 

omitted. 

i
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Assuming that the response of the multi-DOF system represented in global coordinates by Eq. 

(6.76), or in modal coordinates by Eq. (6.77), is required, the procedure is as follows: 

1.The applied external forces will be known in the form of F f g in Eq. (6.76), i.e. as individual 

force time histories applied at the nodes or ‘grid points’ of the global system. These must be 

converted to modal forces, {Q} , using the original transformation, from global to modal forces, Eq. 

(6.39): 

[ ]TX M Q=                   (3-63)                                              

 Since the transformation was to normal mode coordinates, [X] will be the modal matrix. 

(2) The modal responses  { },{ }{ }q q q are calculated from Eq. (6.78). This consists of applying the 

appropriate modal force to each single-DOF equation in the set represented by Eq. (6.78), using any 

of the methods discussed in Chapters 2 and 3. 

(3) The modal responses { },{ }{ }q q q are converted back to actual responses { }u ,{ }u { }u  as 

required, in the global system, using the same transformation, in the form of Eq. (6.26), say, that 

was used to form the modal equations: 

   [ ]u X q=                   (3-64)

 
If global velocity or acceleration responses are required, Eq. (6.26) can be used in differentiated 

form:  { } [ ]u X q=   and  { } [ ]u X q= . 

The following example illustrates the normal mode summation method applied to a 

simple 2-DOF system. 

The above equation will be solved by applying normal mode analysis method which lead to a 

new uncoupled equation from inertia [J] and stiffness [K] matrices of the system, the method is 

based on the orthogonality properties. The method utilizes the mode vectors {ʌ} as modal 

coordinates as one of the possible solutions for the response of the system among all other 

possible solutions for equation 

Substitute into equation of motion 4.14 in 4.13 and multiplying all the terms by the transpose 

[𝑋]𝑇 of the mode shape matrix, we have the orthogonality properties can be better visualized as 

a vector form than matrix form as in equation 4.15. For a given Eth modal vector {𝑋𝑐} and its 

transpose {𝑋𝑐}T and natural frequency n we show the vector form in equation bellow. Note 

that the excitation vector {M} is not affected by the sub index c 

8

ii i ii i ii i

1

 ( ) nm n

n

j q c q k q T t X M
=

+ + = =                   (3-65)
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     [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ]T T T T

tX J X q X C X q X K X q X M+ + =             (3-66)

 
Modal Mass 

[ ] [ ] [ ][ ]T

i i iJ X J X=                   (3-67)

 
Modal Stiffness 

2[ ] [ ] [ ][ ]T

i i i i fiK X K X J= =                   (3-68)

 
Modal Damping  

[ ] [ ] [ ][ ] 2T

i i i i fi iC X C X J  = =                   (3-69) 

i =damping ratio

 
8 30 8 8

i i i i i i

1 1

 . cos(0.5 ) . sin(0.5 )ni n ni kn ni kn

n k n n

j q c q k q X A X A kwt X B kwt
= = =

 
+ + = + + 

 
      

                (3-70)

 
 

8 30

i i i i i i

1 1

 cos(0.5 )ni n ki ki

n k

j q c q k q X A d k t 
= =

+ + = + −                    (3-71) 

8 30
(0.5 ) 1

i i i i i i

1 1

 Re . kik t

ni n ki

n k

j q c q k q X A d e
 − −

= =

 + + = +
                     (3-72)

 

considering the solution of equation 

8

30
(0.5 ) 11

i

1i

 Re . ki

n ni
k tn

ki

k

A X

q D e
k

 − −=

=

 = +
 


                   (3-73)

 

By differentiating twice, we find the following 

30
(0.5 )

i

1

 Re . .
2

kik t m

ki

k

k
q m D e

  −

=

 
=  

 
                   (3-74)

 
230

(0.5 )2

i

1

 Re . .
4

kik t m

ki

k

k
q D e

  −

=

 
= − 

 
                   (3-75)

 

By substitute 

230 30( ) ( ) ( )
(0.5 ) 12 2 2 2

1 1

Re . . . . . .
4 2

ki ki ki
ki

k k k
t m t m t m

k t

i ki i ki i ki ki

k k

k k
J D e C m D e K D e d e

     
  

− − −
− −

= =

 
 − + + =   

 
 

                  (3-76)

 230 30( ) ( ) ( )
(0.5 ) 12 2 2 2

1 1

Re . . . . . .
4 2

ki ki ki
ki

k k k
t m t m t m

k t

i ki i ki i ki ki

k k

k k
J D e C m D e K D e d e

     
  

− − −
− −

= =

 
 − + + =   

 
 

3-77 
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( )
2

2
2

.

4 2

ki

k
t m

ki
ni

i i i

d e
D

k k
J C m K

 

 

−

=

− + +

                  (3-78)

 

replacing niD and equation 4.23 in equation 4.25: 

8

( )
30 2

1
i 2

21i

.
Re

4 2

ki

k
t m

n ni

n ki

k

i i i

A X
d e

q
k kk

J C m K

 

 

−

=

=

 
 

= +  
 − + +
  


                   (3-79)

 

since we do not know the damping ratio for the system. The damping ratio could assume 

different values for the ith mode shape and natural frequency . This uncertain procedure could 

lead to many possible different responses for the modes and natural frequencies.  

Using the Caughey series (Caughey, 1960) in the established 8 by 8 damping matrix [C] and 

with the second term of equation 4.23: 

7
2. 2d

i d i fi i fi i

d

C a J J  = =                   (3-80)

 

Expanding the above equation for go, i , i= 1,,........,8 we get 

3 5 7 9 11 131
1 2 3 4 5 6 72 i fi fi fi fi fi fi fi

fi

a
a a a a a a a       


= + + + + + + +

 

Replacing equation 4.23 in equation 4.26 and rearranging, we obtain one similar to equation 

4.17: 

8

30
1

i

i

 cos(0.5 )
n ni

n
ki ki ki

k

A X

q Z H k t
k

 == + −


                   (3-81)

 

fi

i

 iJ

k
 =                   (3-82) 

2 2
8 8

2

ni kn ni kn

n n

ki

i fi

X A X B

H
J 

   
+   

   =

 
                  (3-83)
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ni kn

n
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ni kn

n
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X A

 −

 
 
 =
 
  




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2

1

1 0.5

ki

fi

Z

k




=
 

−   
 

                  (3-85)

 

This approach is known as a mode superposition method. The simplification is permissible also 

where damping is not really the Rayleigh damping but is low enough. In such cases we can avoid 

the need to form a damping matrix based on the physical properties of individual structure 

elements. It is enough to know mode damping ratios i  . 

[Any forced dynamic deflection of a structure can be represented as a weighted sum of its mode 

shapes. Each mode can be described by an Single Degree of Freedom (SDOF) model. 

There are mainly two approaches for the study of system vibrations, analytical and experimental. 

The analytical starts out with knowledge about the structure geometry, boundary conditions and 

material characteristics (mass, stiffness and damping)](Lundkvist, 2010). 

In real applications the engine dynamic twist amplitude does not reach infinity or large values 

because there is always some damping involved. The damping is introduced in the dynamic 

magnifier. Based on the research and on the experimental results, we are going to use the dynamic 

magnifier from equation (3.60) for our 7-DOFS: 

3.8

4
ki

ki

Z

H
=                   (3-86)

 

This infinity or large value for the dynamic twist amplitude happens once among the 30 

harmonics for each critical speed Wnc When the critical speed is replaced in equation 4.18, we 

have the dynamic magnifier W independent from its natural frequency 

2

1

1

kiZ
k

s

=
 

− 
 

                  (3-87)
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CHAPTER IV RESULT AND DUSCUTIONS 

 

4.1 Introduction  

In this section torsional vibration analysis as per (Gawande et al., 2010)(Nestorides, 1958) for 

given operating six cylinder diesel engine is carried out in details. Data required for analysis is 

collected from the company from available experimental set up. The following Information 

pertains to the four strokes, six-cylinder diesel engine. 

Table 4-1: Six-Cylinder Diesel Engine Data 

Engine Mass-Elastic System 

 

Mass 

pulley cylinder Flywheel  

1 2 3 4 5 6 

Inertia  Kg-m2*E6 0.09 18.64 18.64 18.64 18.64 18.64 18.64 19.21 

Stiffness  MNm/rad  - 19.21 19.21 19.21 19.21 19.21 19.21 2655 

Table 4-2 Engine basic data 

Engine basic data 

Engine type Deisel engine Inline six cylinder four stroke 

Number of cylinder                6 

Firing order                 1-5-3-6-4-2 

piston diameter               d = 76 mm 

journal or crank radius              R0 = 35 mm 

connecting rod length              L = 123 mm 

total piston mass Mp = 0.363 kg 

total connecting rod mass MC = 0.096 kg 
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4.2 NATURAL FREQUENCIES AND MODE SHAPES 

There is a mode shape or a modal vector associated with a natural frequency. The method to 

compute the natural frequencies and the mode shapes is discussed in section 3.3.5. Free Vibrations 

of MDOF undamped System. Computation of the natural frequencies and the mode shapes is 

carried out by MATLAB Code see appendix B the result of calculated natural frequencies values 

in Table 4-3. Normal modes shapes are given in Table 4-3. And Figure 3. for the given engine to 

analyze the minor and major critical harmonic orders in torsional vibration analysis. It is seen that 

the sixth orders are the major critical orders of excitation. The corresponding critical speeds of 

engine operation are multiplication of fundamental frequency rpm Since the sixth order excitation 

of 3-node vibration mode falls within the operating range of 750 to 2200 rpm, hence the forced 

vibration analysis is required for this excitation frequency only. 

Computation of the natural frequencies and mode shapes is performed by solving an eigenvalue 

problem. we solve for the eigenvalues (natural frequencies) and eigenvectors (mode shapes). 

Because damping is neglected in the analysis, the eigenvalues are real numbers. (The inclusion of 

damping makes the eigenvalues complex numbers. The solution for undamped natural frequencies 

and mode shapes is called real eigenvalue analysis or normal modes analysis. 

Reasons to Compute Normal Modes 

There are many reasons to compute the natural frequencies and mode shapes of a structure. One 

reason is to assess the dynamic interaction between a component and its supporting structure. 

The results of the eigenvalue analysis-the natural frequencies and mode shapes-can be used in 

modal frequency and modal transient response analyses. 

The results of the dynamic analyses are sometimes compared to the physical test results. A normal 

modes analysis can be used to guide the experiment. In the pretest planning stages, a normal mode 

analysis can be used to indicate the best location for the accelerometers. After the test, a normal 

modes analysis can be used as a means to correlate the test results to the analysis results. 

Design changes can also be evaluated by using natural frequencies and normal modes. Does a 

particular design modification cause an increase in dynamic response? Normal modes analysis can 

often provide an indication.The physical importance of the harmonic form of the solution means 

that all the degrees-of-freedom of the vibrating systems move in a synchronous manner. The 

structural configuration does not change its basic shape during motion; only its amplitude changes. 

Table 4-4 calculated natural frequencies results 

rpm 2602.0 2435.1 1987.0 1529.0 993.4 390.7 0.0000 
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4.3 Interpretation of the Results 

Once the natural frequencies are obtained from the above explained approaches, it is necessary to  

interpret the result and determine whether the driveline is safe from torsional resonance point of  

view. To avoid the torsional resonance, we must have a natural frequency of the system such that 

it  shifts the resonance condition outside the engine operating speed. Once the natural frequencies 

are  obtained from the above explained approaches, it is necessary to interpret the result and 

determine  whether  the  engines  is safe from  torsional  resonance  point  of  view.  This decision  

is  arrived  at  based on following:  

Table 4-5 Mode shape data for 7-DOFM data 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

1 -0.2476821 0.51882 - 0.24768 -1.19468 -2.10567 -2.76150 

1 -1.1863357 -0.21201 -1.18634 - 0.76742 1.32819 3.86439 

1 -0.6448196 0.84082 -0.64482 1.34408 0.63713 -4.04564 

1 0.7012263 - 1.06505 0.70123 0.50576 - 2.03265 3.26202 

1 1.1723647 -0.77679 1.17236 -1.44254 1.61032 -1.70041 

1 -0.0055797 0.00966 -0.00558 0.00389 - 0.00307 0.00268 

 

 

 

 

Figure 4-1:Mode Shapes 



 

52 

 

Fig.  4-1 the first mode or natural frequency contains one loop and one node. The second mode 

contains two loops and two nodes.  The third mode contains three loops and three nodes.  This 

pattern is repeatable at higher modes. 

This elastic system has one or more modes of normal free vibration. These modes of normal 

vibration are distinguished by the number of nodes associated with each, nodes being points 

which, with respect to any particular vibration, have no motion. We may have 1 noded normal 

vibration, 2 noded, 8 noded, etc. In general only the first two or three forms are of practical 

importance. Associated with each of these normal modes of vibration is a natural frequency; the 

greater the number cf nodes the higher the natural frequency. 

4.4 Numerical Analysis 

The numerical analysis of equation 3.54 when t= 0. Note that t=0(the engine is already 

running),and t=0 is a selected instant to visualize the behavior of the engine for study. See 

Appendix D for MATLAB program.  

The total engine twist amplitude q is composed of the engine static and dynamic twist. In this 

study, the static twist is neglected. dynamic magnifier kiZ ; and the critical speeds of the engine 

c . 

If we denote the above solution  of system's natural frequencies and associated modes are Clearly, 

there are many modes of vibration: mode one (φ1) represents rigid body mode where the centres 

of masses have no relative displacements, and fair enough to mention that this is of no importance; 

modees [X2, X3, X4, X5, X6, X7] represents the case where vibration amplitude is inversely 

proportional to inertia but opposite in phase.. Also, the point in the shaft where essentially no 

twisting occurs is called the node, and there is only one node or many associated with the 

fundamental mode. The graphical representation of mode shapes can be represented as shown in 

Fig. 4.3. 

Table 4-6 natural frequencies 

No / units rad/s Hz rpm 3 order(rpm) 

1 2148.6 341.9681 20517.63 6839.209 

2 1959.6 311.8786 18712.81 6237.603 

3 1656.8 263.6808 15821.28 5273.76 

4 1257.8 200.1881 12011.11 4003.703 

5 786.2 125.1336 7507.66 2502.553 

6 271.7 43.245 2494.545 864.8483 

7 0 0 0 0 
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Figure 4-2: Engine dynamic twist amplitude q2 vs engine speed   @ wn2=264.2 rad/s 

and mode {X1}. 

 

Figure 4-3 : Engine dynamic twist amplitude q2 vs engine speed


  @ wn2=264.2 rad/s 

and mode {X2}. 
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 Figure 4.2 shows the plot of equation 3.54, the engine dynamic twist amplitude q2 vs engine 

speed   for its natural speed 
fi = 264.2 rad / s and mode {X2}. The 30 peaks shown in figure 

4.1 correspond to the case when the dynamic magnifier M tends to infinity. This tendency 

happens when the engine speed  passes by the critical speed c =
fi where s = 1, 2, 3...30. This 

critical speed 1c −  is at the natural speed of the engine =
fi . Some of the critical speeds for 

fi = 

264.2 rad/ s are shown in table 4.2.  

              Table 4-7. Some of the critical speeds for natural speed of the engine fi
= 264.2 

rad/ s 

Order number 1 5 10 15 20 25 30 

Critical speed rad/s 528.3 105.7 52.8 35.2 26.4 21.1 17.6 

 

Figure 4.3 shows the plot of equation 4.17, the engine dynamic twist amplitude q3 vs engine 

speed  for its natural speed = 767.5 rad / s and mode {X3}. The 30 peaks shown in figure 4.13 

correspond also when the dynamic magnifier Mic tends to infinity. Some of the critical speeds 

 

Figure 4-4Engine dynamic twist amplitude q2 vs engine speed Ω @ wn2=264.2 rad/s and 

mode {X3}. 
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Table 4-8 Some of the critical speeds for natural speed of the engine Ωc3= 767.2 rad/ s 

Order number 1 5 10 15 20 25 30 

Critical speed rad/s 1535 307 153.5 35.2 76.8 61.4 51.2 

 

Figure 4.4 shows the plot of equation 4.17, the engine dynamic twist amplitude q4 vs Q engine 

speed for its natural speed wn,4= 1235.9 rad/ s and mode {X4}. The 30 peaks shown in figure 

4.4 correspond to the case when the dynamic magnifier Mis tends to infinity. Some of the 

critical speeds for Qn,,= 1235.9 rad/s  

Table 4-9 Some of the critical speeds for natural speed of the engine Ωc3= 1235.9 rad/ s 

N of order 1 5 10 15 20 25 30 

Critical speed rad/s 2471.8 494.4 247.2 164.8 123.6 89.9 82.4 

 

 

Figure 4-5: Engine dynamic twist amplitude vs engine speed for a 7-DOFS its for natural 

frequency w=2545 rad/s and X4 
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Figure 4-6: Engine dynamic twist amplitude q2 vs engine speed   @ wn2=264.2 rad/s 

and mode {X5}. 

 

Figure 4-7: Engine dynamic twist amplitude q2 vs engine speed   @ wn2=264.2 rad/s 

and mode {X6}. 
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Figure 4-8: Engine dynamic twist amplitude q2 vs engine speed   @ wn2=264.2 rad/s 

and mode {X7}. 

4.5 Vibration Calculation For 8-DOFS With Damping 

The 8-DOFS in this section is the 7-DOFS from section 4.4.1 with the addition of the damping 

device at the opposite end of the flywheel. For the damping matrix, we use the proportional 

damping 

 

Figure 4-9: 8-DOFS equivalent system showing moments of inertia, damping and 

stiffness Engine(Li Jianqiu, 2000) 
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Table 4-10calculated natural frequencies results 

0   135.05   286.43   1238.70   773.29 1640.55   1950.49 

 

Table 4-11Mode shape data for 8-DOFM data 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1 0.1597 - 2.7801  - 26.5517 - 69.6973  - 123.0073  -174.2892  - 211.2064 

1 0.1353 -2.6926  -14.3038 15.8060  144.1677  362.7336  577.7996 

1 0.1089 2.4248 4.9307 81.4993  94.4038  -227.4499  -806.8768 

1 0.0809 1.9945 21.7568 450475  -1628978$  -1108254          8439178 

1 0.0516 1.4305 27.9561 - 47.8633  - 062.0841  350.1927  - 680.1068 

1 0.0217  0.7706 20.5005 - 80.7860  175.2156  - 277.0242  354.4308 

1 -0.0142 0.0745 -0.2511  0.3827  0.4723   0.5278     -0.5576  

4.6 Forced Vibration {M}=0 

To solve the generalized equation 4.10, we continue with the modal coordinate’s method. After 

replacing the modal coordinate vector, equation 4.14, and multiplying the whole equation by the 

transpose [X]T of the mode shape matrix 
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Replacing equation 3.40 on the right end of the above equation, we have 

The orthogonality properties can be applied in equation 4.3 for the cth modal vector {X5}, its 

transpose {X}T and natural frequency w. Note that the excitation vector {T5} is not affected by 

the sub index i. 

The orthogonality property can also be applied to damping matrix [55] as it was »\4 f\-I applied 

to the stiffness [K5] and inertia [J5] matrices; in other words, the damping matrix is proportional 

to the stiffness and inertia matrices: 

 

Diag=[ 1 1 12 fJ  
; 2 2 22 fJ  

 ; 3 3 32 fJ  
 ; 4 4 42 fJ  

; 5 5 52 fJ  
  6 6 62 fJ  

 7 7 72 fJ  
]4-3 
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 Numerical Analysis 

Numerical evaluation of the components of equation 4.4 when t= 0 .note that r=0 is not the time 

when the engine starts running. The engine is already running and t=0 is a selected instant to 

visualize the behavior of the engine for study. Also note the similarity of equations 4.9 and 4.29. 

See appendix C for the corresponding Matlab program. The total engine twist amplitude qi is 

composed of the engine static and dynamic twist and in this study the static twist is not 

concidered. We focus our study on the dynamic twist: dynamic magnifier Mjc ,and the critical 

speeds of the engine c  

Figure 1.6 shows the plot of equation 4.4, showing the engine dynamic twist amplitude q2 (real) 

vs  engine speed for its natural speed fi= 135.1 rad/s and mode {X2}. There are 30 peaks in 

figure 1.6 corresponding to the dynamic magnifier  
kiZ tending to infinity when the damping 

ratio i = 0. This happens when the engine speed  passes the critical speed = c= ,where S 

=1,2, 3...28, 29, 30. This critical speed c =2*fi/S is excited by the natural speed of the engine 

, Some of the critical speeds for c are 

c 1 2 3 5 10 15 28 29 30 

rad/s 129.6 270.2 54.0 27.0 18.0   13.5 10.8 9.0 7.0 

  

The engine dynamic twist amplitude q2 (real+imaginary) vs engine speed   for its natural 

speed 
2f = 135.1 rad/s a nd mode {X2} is also plotted in the same figure 4.21. Note that the 

peaks for each critical speed have approximately the same dynamic twist amplitude for q2 (real) 

and q2 (real+imaginary).  

The effect of damping ratio = 0.01 on the systems 
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Figure 4-10 : Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.01 

Damping ratio 0.02                                                 

  

Figure 4-11:Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.02 
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Damping ratio =0.01 @ 1st mode
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Damping ratio 0.03 

 

Figure 4-12 : Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.03 

Damping ratio =0.04 

 

Figure 4-13Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.04 
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Damping ratio =0.03 @ 1st mode
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Damping ratio =0.04 @ 1st mode
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Damping ratio =0.05 

 

Figure 4-14 :Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.05 

Damping ratio =0.06 

 

Figure 4-15:Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.06 
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Damping ratio =0.05 @ 1st mode
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Damping ratio =0.06 @ 1st mode
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Damping ratio =0.07 

 

Figure 4.4-16Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.07 

Damping ratio =0.08 

 

Figure 4-17: Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.08 
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Damping ratio =0.07 @ 1st mode
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Damping ratio =0.08 @ 1st mode
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Damping ratio =0.09 

 

Figure 4-18: Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.09 

Damping ratio = 0.1 

 

Figure 4-19Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.1 
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Damping ratio =0.09 @ 1st mode
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Damping ratio =0.1 @ 1st mode
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Damping ratio = 0.2 

 

Figure 4-20Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.2 

Damping ratio = 0.3 

 

 

Figure 4-21Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.3 
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Damping ratio =0.2 @ 1st mode
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Damping ratio = 0.4 

 

Figure 4-22Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.4 

Damping ratio =0.5 

 

Figure 4-23Engine dynamic twist amplitude for an 8-DOFS (real and imganiary) 

damping ratio=0.5 for mode {X4}.  
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Damping ratio =0.4 @ 1st mode
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Damping ratio =0.5 @ 1st mode
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions 

1. From results we found the best value of damping ratio are 0.3 ,0.4,0.5  

2. It can be concluded that out of four types of vibrations like torsional, flexural, axial, 

coupled which affect the crankshaft, torsional vibrations are the most dangerous which 

can break the crankshaft. 

3. Modal analysis gives the relation of frequency and the vibration characteristics of the 

crankshaft. The results of modal analysis are extremely important as the resonance 

frequency or the frequency at which the effects of vibration are maximum is provided. 

The modal analysis also provides the starting point for harmonic and transient analysis.  

4. Critical locations on the crankshaft geometry are all located on the fillet areas because of 

high stress gradients in these locations which result in high stress concentration factors. 

5. The model is general can describe both diesel and petrol engines, and it can with slight 

changes describe the behavior of an engine with an arbitrary number of cylinders. 

6. The computer algorithm presented in the thesis for calculation of the frequency could be 

expected is proven to be useful for an arbitrary number of cylinders. 

5.2  Recommendations for Future Work 

Based on issues discussed in chapter four, the following Suggested future works are made for 

further improvement and additional studies can be done to extend the present analysis as listed in 

the following:  

1. The study of coupled vibrations can be done.  

2. The effect of the Nonlinear Torsional Vibration Analysis of Variable Inertia of the 

moving part in Reciprocating Engines can be included in the future study. 

3. Modelling of friction in the piston ring and skirt, valve train, auxiliary and the crankshaft 

bearing engine can be done. 

4. The estimation accuracy on the reconstructed in-cylinder pressure is evaluated by 

calculating the following errors. 

5. The analytical results could be validated through experimental tests.  
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Appendices 

Appendix A Matlab Code: Stiffness And Inertia Calculation 

%input('Enter G: '); %shear modulus of rigidity 

input('Enter L: ');  %the connecting rod length 

input('Enter a: ');  %the distances from the con-rod mass center to piston pin 

input('Enter mp: '); % piston mass 

input('Enter c: ');  %the distances from the con-rod mass center to crankpin geometric centers 

input('Enter R: ');  % crank radius(Crank throw) 

input('Enter r: ');  % fly wheel radius 

input('Enter Mfly: '); %fly wheel mass 

input('Enter n: ');  % no of cylinder 

input('Enter mcn: '); %connecting rod mass 

%input('Enter mpin: ');  %crank pin mass 

%input('Enter mweb: ');  %crank web mass 

mcnrot = mcn*c/L;  %rotary part mass of the connecting rod 

mcnrec = mcn* a/L;%reciprocating part mass of the connecting rod 

%Mcn = mcnrec + mcnrot; %total mass of connecting rod 

%Mrot = mpin+mweb+ mcnrot; %rotaing mass 

Mrec = mp + mcnrec; %total mass reciprocating parts 

for i=1:1:n; 

Jcyl(i)=Mrot*R^2+0.5*Mrec*R^2; %second polar moments of inertia 

end 

JF =Mfly* r^2; %second polar moments of inertia 

 

 

 

 

 

 

 



 

75 

 

Appendix B :Matlab Code For Calculation Of Mode Shape An Natural 

Frequencies 
v=[0.00551 0.00489  0.00602 0.00602 0.00489 0.00625 0.06753]; 

J=diag(v); 

K=1000*[392 -392 0 0 0 0 0  

-392 784 -392 0 0 0 0  

   0 -392 784 -392 0 0 0     

   0 0  -392 784 -392 0 0   

   0 0 0  -392 784 -392 0    

   0 0 0 0  -392 847 -455  

       0 0 0 0 0 -455 455]; 

ws = eig(K/J);; 

w = sqrt(ws); % (rad/sec) natura1 frequencies 

whz = w/(2*pi) % (Hz) natura1 frequencies 

for i = 1 :7;  

    kj = K-J*w(i)^2; 

    A(1,i) = 1; 

    A(2,i) = -A(1,i)*kj(1,1)/kj(1,2); 

A(3,i) = (-A(1,i)*kj(2,1)-A(2,i)*kj(2,2))/kj(2,3); 

A(4,i) = (-A(2,i)*kj(3,2)-A(3,i)*kj(3,3))/kj(3,4); 

A(5,i) = (-A(3,i)*kj(4,3)-A(4,i)*kj(4,4))/kj(4,5); 

A(6,i) = (-A(4,i)*kj(5,4)-A(5,i)*kj(5,5))/kj(5,6); 

A(7,i) = (-A(5,i)*kj(6,5)-A(6,i)*kj(6,6))/kj(6,7); 

% A(8,i) = (-A(6,i)*kj(7,6)-A(7,i)*kj(7,7))/kj(7,8); 

end 

[whz,I] = sort(abs(whz)); 

A; 

 figure (1) 

for i = 1:7 

subplot(7,1,i) 

plot(A(:,I(i)),'k');grid;hold on 

plot(A(:,I(i)),'ko') 

ylabel ([num2str(whz(i),4),'Hz']) 

end 

tit1e ([Mode num2str(i,7)]); 

% J= diag[0.09; 0.039; 0.038 0.038 0.038 0.039 0.611]; 

% K=[6545000 -6545000 0 0 0 0 0 0 

%  -6545000 7568000 -1203000 0 0 0 0 0 

% 0 -1203000 2406000 -1203000 0 0 0 0  

% 0 0 -1203000 3279000 -1356000 0 0 0  

% 0 0 0 -1356000 2750000 -1400000 0 0  

% 0 0 0 0 -1400000 2423000 -1023000 0 

% 0 0 0 0 0 -1023000 3486000 -2463000 

% 0 0 0 0 0 0 -2463000 2463000]; 

c12=0.01;  c23=0.01; c34=0.01;  c45=0.01; % c56=0.01;  c2=0.013; c3=0.013; c4=0.013;1b*in*sec/rad 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - — 
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ws = eig(K/J); 

w = sqrt(ws); % (rad/sec) natura1 frequencies 

whz = w/(2*pi) % (Hz) natura1 frequencies 

for i = 1 :13;  

 kj = K-J*w(i)^2; 

 A(1,i) = 1; 

 A(2,i) = -A(1,i)*kj(1,1)/kj(1,2); 

A(3,i) = (-A(1,i)*kj(2,1)-A(2,i)*kj(2,2))/kj(2,3); 

A(4,i) = (-A(2,i)*kj(3,2)-A(3,i)*kj(3,3))/kj(3,4); 

A(5,i) = (-A(3,i)*kj(4,3)-A(4,i)*kj(4,4))/kj(4,5); 

A(6,i) = (-A(4,i)*kj(5,4)-A(5,i)*kj(5,5))/kj(5,6); 

A(7,i) = (-A(5,i)*kj(6,5)-A(6,i)*kj(6,6))/kj(6,7); 

A(8,i) = (-A(6,i)*kj(7,6)-A(7,i)*kj(7,7))/kj(7,8); 

end 

[whz,I] = sort(abs(whz)); 

A; 

 figure (1) 

for i = 1:8 

% subplot(8,1,i) 

plot(A(:,I(1)),'k');grid; 

figure (2) 

plot(A(:,I(2)),'k');grid; 

figure (3) 

plot(A(:,I(3)),'k');grid; 

figure (4) 

plot(A(:,I(4)),'k');grid; 

figure (5) 

plot(A(:,I(5)),'k');grid; 

figure (6) 

plot(A(:,I(6)),'k');grid; 

figure (7) 

plot(A(:,I(7)),'k');grid; 

figure (8) 

plot(A(:,I(8)),'k');grid; 

% hold on 

% plot(A(:,I(i)),'ko') 

ylabel ([num2str(whz(i),4),'Hz']) 

end 

tit1e ([Mode num2str(i,8)]); 
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 Appendix C : Program For Pressure Vs Crank Angle ,Total Torque And 

Harmonic Coefficients 
Ti = 300; % inlet temperature, K 

Pi = 50; %P1=0.1 MPa inlet pressure, kPa 

Pe = 100; % exhaust pressure, kPa 

CR = 17.5; % compression ratio 

K1 = 1.4; % ideal gas specific heat ratio 

K2=1.3; 

% b=0.120; 

gam=(K1 -1)/K1; 

% s = 0.1207;% stroke (m) 

% a=s/2; 

% len= 0.150; %connecting rod length (m) 

s = 0.07;% stroke (m) 

len=0.123;% in mm, conrod length 

lamda=s/(2*len); 

w=800*(2*pi/60); %rps 

a=0.035;% in mm, crankshaft radius 

b=0.76;%in mm, piston diameter 

% A=pi*d^2/4;% in mm“2, piston area 

W=800; %rotating speed of engine in rad/sec 

% Mp=0.363; % kg, total piston mass 

% Mc=0.096; % kg, total connecting rod mass 

% a=(Ro/L)^2; 

% theta=-180:1:180; %crankangle theta vector  

A_piston = pi/4*b^2; % Crossectional Area of Piston  

Vd = s*A_piston; % Displacement Volume  

Vc = Vd/(CR-1); % Cylinder Clearence Volume 

Vt1=Vd+Vc; 

m4=.022; 

m3a=.02*.4; 

m3b=.02*.6; 

m2a=.3*.06; 

mb=m3b+m4; 

ma=m2a+m3a; 

% ak=0;bk=0;a0=0;ftm=0; 

% for m=1:1:720 

% for i=1:1:30 

for j= 1:1:720 

%  X=(theta*pi/180) 

%  V=Vc+A_piston(( l + a -a*cos(X)-(s^2-a^2*(sin(X))^2)^0.5)) 

% Piston displacement  

PD(j)= (1 + a - sqrt(1^2-a^2*(sind(j))^2) - (a*cosd(j)) );  

V(j) = (Vd/(CR-1))+ (A_piston * (PD(j))); % VOLUME  

if j<=180 

 P(j)=Pi; 

elseif j<=360 

 P(j)=Pi*(Vt1/V(j))^K1; 

elseif j<=410 

 P(j)=P(360); 

elseif j<=540 

 P(j)=P(360)*(V(410)/V(j))^K2; 

elseif j<=720 
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 P(j)=Pe; 

end 

%Gas torque 

Fg(j)=P(j)*A_piston; 

Tg(j)=(Fg(j)*a)*sind(j)*(1+(a/len)*cosd(j)); 

%Inertia Force 

xb=-a*w^2*(cosd(j)+(a/len)*cosd(2*j)); 

Aa=-a*w^2*cosd(j)-a*w^2*sind(j); 

Fi(j)=(-ma*Aa-mb*xb)+(-ma*Aa); 

Ti(j)=(0.5*mb*a^2*w^2)*((a/2*len)*sind(j)-sind(j)-((3*a)/(2*len)).*sind(3*j)); 

Tt(j)=Tg(j)+Ti(j); 

end 

ak=0;bk=0;a0=0;ftm=0;ph=360; 

for m=1:1:720 

for i=1:1:30 

for j=1:1:720 

akk(j)=2/(4*pi)*Tt(j)*cosd(i*j-ph); 

bkk(j)=2/(4*pi)*Tt(j)*sind(i*j-ph); 

a00(j)=2/(4*pi)*Tt(j); 

ak=ak+akk(j); 

bk=bk+bkk(j); 

a0=a0+a00(j); 

end 

akkk(i)=ak; 

bkkk(i)=bk; 

ftm=ftm+akkk(i)*cosd(i*m-ph)+bkkk(i)*sind(i*m-ph); 

ak=0;bk=0; 

end 

ft(m)=a0+ftm; 

end 

 figure(1) 

 for i=1:1:720; 

 plot(i,V(i),'-') 

 ylabel('PRESSURE (KPa)') 

  %  set(h'FontName','Times','FontSize',12) 

 hold on 

 end 

 figure(2) 

 for i=1:1:720; 

 plot(i,P(i),'-r') 

 hold on 

 end 

 figure(3) 

 for i=1:1:720; 

 plot(V(i),P(i),'-k') 

 hold on 

 end 

 figure(4) 

 for i=1:1:720; 

 plot(i,Tg(i),'-r') 

 hold on 

 end 

 figure(5) 

 for i=1:1:720; 
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 plot(i,Ti(i),'-k') 

 hold on 

 end 

 figure(6) 

 for i=1:1:720; 

 plot(i,Tt(i),'-r') 

 hold on 

 end 

 figure(7) 

  for i=1:1:720; 

  plot(i,ft(i),'--') 

%  set(h'FontName','Times','FontSize',12) 

  hold on 

 end 

% for i = 1 : 1 : 179  

% P1=Pi; 
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Appendix D : Program For 7-DOFS Engine Dynamic Twist 7 Vs Engine Speed 
coeficients=xlsread('harcoflast.xlsx'); %/N.m 

coeficients=coeficients*100; %N.m 

Aji2=coeficients(:,1); 

Bji2=coeficients(:,2); 

Aji3=coeficients(:,3); 

Bji3=coeficients(:,4); 

Aji4=coeficients(:,5); 

Bji4=coeficients(:,6); 

Aji5=coeficients(:,7); 

Bji5=coeficients(:,8); 

Aji6=coeficients(:,9); 

Bji6=coeficients(:,10); 

Aji7=coeficients(:,11); 

Bji7=coeficients(:,12); 

delta=[0,0,480,240,600,120,360,0]; 

Gic=[1.000000000, 

0.15966499569224, 

0.13529774698925, 

0.10891490329351, 

0.08090950239633, 

0.05169875409666, 

0.02171782482792, 

-0.01428155083981]; 

K1=5.9712e5;K2= 22.82e6; K3= 22.82e6; K4= 22.82e6; K5= 22.82e6; K6= 22.82e6; K7= 19.21e6;  

J1=27.5126;J2=18.64;J3=18.64;J4=18.64;J5=18.64;J6=18.64;J7=18.64;J8=2655; %kg.m”2 flywheel 

JE=diga[J1;0,J2;0,0,J3;J4;;J5;J6;J7;J8]; 

KE=[K1, -K1,0,0,0,0,0,0; 

-K1, K1+K2, -K2,0,0,0,0,0; 

0,-K2, K2+K3, -K3,0,0,0,0; 

0,0,-K3, K3+K4, -K4,0,0,0; 

0,0,0,-K4, K4+K5, -K5,0,0; 

0,0,0,0,-K5, K5+K6, -K6,0; 

0,0,0,0,0,-K6, K6+K7, -K7; 

0,0,0,0,0,0,-K7, K7]; 

Jpc=Gic'*JE*Gic; 
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Kpc=Gic'*KE*Gic; 

wnc=sqrt(Kpc/Jpc); 

damping_ratio=0.01; %.01;  

for damping_ratio=0.01:0.02:0.1 

Cpc=2*Jpc*wnc*damping_ratio; 

t=0; 

c_w=0; 

for w=0:1:300 

c_w=c_w+1; 

for j=1:1:30 

aji2(j)=(Aji2(j)*cosd(j*delta(2)/2)-Bji2(j)*sind(j*delta(2)/2)); 

bji2(j)=(Aji2(j)*sind(j*delta(2)/2)+Bji2(j)*cosd(j*delta(2)/2)); 

aji3(j)=(Aji3(j)*cosd(j*delta(3)/2)-Bji3(j)*sind(j*delta(3)/2)); 

bji3(j)=(Aji3(j)*sind(j*delta(3)/2)+Bji3(j)*cosd(j*delta(3)/2)); 

aji4(j)=(Aji4(j)*cosd(j*delta(4)/2)-Bji4(j)*sind(j*delta(4)/2)); 

bji4(j)=(Aji4(j)*sind(j*delta(4)/2)+Bji4(j)*cosd(j*delta(4)/2)); 

aji5(j)=(Aji5(j)*cosd(j*delta(5)/2)-Bji5(j)*sind(j*delta(5)/2)); 

bji5(j)=(Aji5(j)*sind(j*delta(5)/2)+Bji5(j)*cosd(j*delta(5)/2)); 

aji6(j)=(Aji6(j)*cosd(j*delta(6)/2)-Bji6(j)*sind(j*delta(6)/2)); 

bji6(j)=(Aji6(j)*sind(j*delta(6)/2)+Bji6(j)*cosd(j*delta(6)/2)); 

aji7(j)=(Aji7(j)*cosd(j*delta(7)/2)-Bji7(j)*sind(j*delta(7)/2)); 

bji7(j)=(Aji7(j)*sind(j*delta(7)/2)+Bji7(j)*cosd(j*delta(7)/2)); 

sumGic_aji(j)=Gic(2)*aji2(j)+Gic(3)*aji3(j)+Gic(4)*aji4(j)+Gic(5)*aji5(j)+Gic(6)*aji6(j)+Gic(7)*aji7(j) 

sumGic_bji(j)=Gic(2)*bji2(j)+Gic(3)*bji3(j)+Gic(4)*bji4(j)+Gic(5)*bji5(j)+Gic(6)*bji6(j)+Gic(7)*bji7(j) 

Qjc(j)=sqrt(sumGic_aji(j)^2+sumGic_bji(j)^2)/Jpc/wnc^2; 

eta_jc(j)=atan(sumGic_bji(j)/sumGic_aji(j)); 

Mjc(j)=1/((1-(j*w/2/wnc)^2)+(j*damping_ratio*w/wnc)*i); 

exponential(j)=exp((j*w*t/2-eta_jc(j))*i); 

end 

%sum_gamc=Ao; 

sum_gamc_real=0; 

sum_gamc_abs=0; 

for h=1:1:30 

sum_gamc_real=sum_gamc_real+real(Mjc(h)*Qjc(h)*exponential(h)); 

sum_gamc_abs=sum_gamc_abs+(Mjc(h)*Qjc(h)*exponential(h)); 

end 
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gamc_real(c_w)=sum_gamc_real;%in radians 

gamc_abs(c_w)=abs(sum_gamc_abs);%in radians 

omega(c_w)=w;%in rad/sec 

clear sum_gamc_real sum_gamc_abs 

end 

plot(omega,gamc_real,'-k'); 

hold on 

plot(omega,gamc_abs,'-r'); 

grid on 

% axis([5 1000 -0.001 10]) 

%legend('Gama_c real','Gama_c abs') 

gama_c_real(:,1)=omega'; 

gama_c_real(:,2)=gamc_real'; 

% xlswrite('points_gama_omega_eq_4_24~real_2.xls',gamc_real); 

gama_c_abs(:,1)=omega'; 

gama_c_abs(:,2)=gamc_abs'; 

% xlswrite('points_gama_omega_eq_4_24_abs_2.xls',gama_c_abs); 

end 

xlsxwrite('points_gama_omega_eq_4_24_abs_2.xlsx',gama_c_abs); 

% coeficients=xlsread('Harmonic_coeficients 400.xlsx'); %/N mm 
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Appendix E: matlab Code For 8-DOFS Engine Dynamic Twist X Vs Engine 

Speed  
coeficients=xlsread('harcoflast.xlsx'); %/N.m 

coeficients=coeficients*100; %N.m 

Aji2=coeficients(:,1); 

Bji2=coeficients(:,2); 

Aji3=coeficients(:,3); 

Bji3=coeficients(:,4); 

Aji4=coeficients(:,5); 

Bji4=coeficients(:,6); 

Aji5=coeficients(:,7); 

Bji5=coeficients(:,8); 

Aji6=coeficients(:,9); 

Bji6=coeficients(:,10); 

Aji7=coeficients(:,11); 

Bji7=coeficients(:,12); 

delta=[0,0,480,240,600,120,360,0]; 

Gic=[1.000000000, 

0.15966499569224, 

0.13529774698925, 

0.10891490329351, 

0.08090950239633, 

0.05169875409666, 

0.02171782482792, 

-0.01428155083981]; 

K1=5.9712e5; K2= 22.82e6; K3= 22.82e6;K4= 22.82e6; K5= 22.82e6;K6= 22.82e6;K7= 19.21e6;  

J1=27.5126;J2=18.64;J3=18.64;J4=18.64;J5=18.64;J6=18.64;J7=18.64;J8=2655; %kg.m”2 flywheel 

JE=[J1;J2; J3; J4; J5; J6; J7; J8]; 

KE=[K1, -K1,0,0,0,0,0,0; 

-K1, K1+K2, -K2,0,0,0,0,0; 

0,-K2, K2+K3, -K3,0,0,0,0; 

0,0,-K3, K3+K4, -K4,0,0,0; 

0,0,0,-K4, K4+K5, -K5,0,0; 

0,0,0,0,-K5, K5+K6, -K6,0; 

0,0,0,0,0,-K6, K6+K7, -K7; 

0,0,0,0,0,0,-K7, K7]; 

Jpc=Gic'*JE*Gic; 

Kpc=Gic'*KE*Gic; 

wnc=sqrt(Kpc/Jpc); 

damping_ratio=0.01; %.01;  

for damping_ratio=0.01:0.02:0.1 

Cpc=2*Jpc*wnc*damping_ratio; 

t=0; 

c_w=0; 

for w=0:1:300 

c_w=c_w+1; 

for j=1:1:30 

aji2(j)=(Aji2(j)*cosd(j*delta(2)/2)-Bji2(j)*sind(j*delta(2)/2)); 

bji2(j)=(Aji2(j)*sind(j*delta(2)/2)+Bji2(j)*cosd(j*delta(2)/2)); 

aji3(j)=(Aji3(j)*cosd(j*delta(3)/2)-Bji3(j)*sind(j*delta(3)/2)); 

bji3(j)=(Aji3(j)*sind(j*delta(3)/2)+Bji3(j)*cosd(j*delta(3)/2)); 

aji4(j)=(Aji4(j)*cosd(j*delta(4)/2)-Bji4(j)*sind(j*delta(4)/2)); 

bji4(j)=(Aji4(j)*sind(j*delta(4)/2)+Bji4(j)*cosd(j*delta(4)/2)); 
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aji5(j)=(Aji5(j)*cosd(j*delta(5)/2)-Bji5(j)*sind(j*delta(5)/2)); 

bji5(j)=(Aji5(j)*sind(j*delta(5)/2)+Bji5(j)*cosd(j*delta(5)/2)); 

aji6(j)=(Aji6(j)*cosd(j*delta(6)/2)-Bji6(j)*sind(j*delta(6)/2)); 

bji6(j)=(Aji6(j)*sind(j*delta(6)/2)+Bji6(j)*cosd(j*delta(6)/2)); 

aji7(j)=(Aji7(j)*cosd(j*delta(7)/2)-Bji7(j)*sind(j*delta(7)/2)); 

bji7(j)=(Aji7(j)*sind(j*delta(7)/2)+Bji7(j)*cosd(j*delta(7)/2)); 
sumGic_aji(j)=Gic(2)*aji2(j)+Gic(3)*aji3(j)+Gic(4)*aji4(j)+Gic(5)*aji5(j)+Gic(6)*aji6(j)+Gic(7)*aji7(j); 

sumGic_bji(j)=Gic(2)*bji2(j)+Gic(3)*bji3(j)+Gic(4)*bji4(j)+Gic(5)*bji5(j)+Gic(6)*bji6(j)+Gic(7)*bji7(j); 

Qjc(j)=sqrt(sumGic_aji(j)^2+sumGic_bji(j)^2)/Jpc/wnc^2; 

eta_jc(j)=atan(sumGic_bji(j)/sumGic_aji(j)); 

Mjc(j)=1/((1-(j*w/2/wnc)^2)+(j*damping_ratio*w/wnc)*i); 

exponential(j)=exp((j*w*t/2-eta_jc(j))*i); 

end 

%sum_gamc=Ao; 

sum_gamc_real=0; 

sum_gamc_abs=0; 

for h=1:1:30 

sum_gamc_real=sum_gamc_real+real(Mjc(h)*Qjc(h)*exponential(h)); 

sum_gamc_abs=sum_gamc_abs+(Mjc(h)*Qjc(h)*exponential(h)); 

end 

gamc_real(c_w)=sum_gamc_real;%in radians 

gamc_abs(c_w)=abs(sum_gamc_abs);%in radians 

omega(c_w)=w;%in rad/sec 

clear sum_gamc_real sum_gamc_abs 

end 

plot(omega,gamc_real,'-k'); 

hold on 

plot(omega,gamc_abs,'-r'); 

grid on 

% axis([5 1000 -0.001 10]) 

%legend('Gama_c real','Gama_c abs') 

gama_c_real(:,1)=omega'; 

gama_c_real(:,2)=gamc_real'; 

% xlswrite('points_gama_omega_eq_4_24~real_2.xls',gamc_real); 

gama_c_abs(:,1)=omega'; 

gama_c_abs(:,2)=gamc_abs'; 

% xlswrite('points_gama_omega_eq_4_24_abs_2.xls',gama_c_abs); 

end 

xlsxwrite('points_gama_omega_eq_4_24_abs_2.xlsx',gama_c_abs); 

% coeficients=xlsread('Harmonic_coeficients 400.xlsx'); %/N mm 
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