

Sudan University of Science and Technology

College of Graduate Studies

PID Controller tuning optimization for Computer

Numerical Control using particle Swarm Optimization

algorithm

ي تحسين تىليف الوتحكن التناسثي التكاهلي التفاضلي تغرض التحكن الرقوي ف

 الحاسة تأسٍتخدام خىارزهية سرب الجسيوات

A Research Submitted in Partial fulfillment for the Requirements of the

Degree of M.Sc. in Computer Engineering and network

Prepared by:

Tagwa Mukhtar Mohammed Doka

Supervised by:

Dr. Alaaeldin Awoda

December 2018

I

 الاستهلال

 الرحيم الرحمن الله بسم
 حعبنى: قبل

 (")وها اوتيتن هن العلن الا قليلا

 صدق الله العظين

II

DEDICATION

I dedicate this work to those who were very caring, helpful and

encouraging. To those who carried me for advancement and success.

To my Mother, my family who supported me and believed in my

capabilities, my friends and my students who were there for me.

III

ACKNOWLEDGEMENT

All praise due to Allah, the all mighty god, who spread his and

wisdom across the globe, all our thanks to our lord.

To the supervisor Dr. AlaEldin Awouda, the guider of my work, who

gave me his trust in the knowledge and work, being determined and

dedicated, helped and motivated me, to reach this form.

To my Mom, friends and families, those who pushed my goals till

clarity, supported me to the limit for it to be, sometimes over pushed it just

so i succeed.

IV

ABSTRACT

In this thesis, an artificial intelligence method Particle Swarm

Optimization (PSO) algorithm is presented for determining the optimal

proportional-integral-derivative (PID) controller parameters of a servo

motion system used in Computer Numerical Control (CNC). This thesis

demonstrates in detail on how to employ the PSO method to search

efficiently the optimal PID controller parameters of the servo motor. In

order to assist estimating the performance of the proposed PSO-PID

controller is modeled using MATLAB environment. The proposed

approach yields better solution in term of rise time, settling time, maximum

overshoot and steady state error condition of the system. Compared to

conventional Ziegler – Nichols method, the proposed method was indeed

more efficient and robust in improving the step response of the servo motor.

V

 الوستخلص

 انجشعت سشة حجسٍى خىاسصيٍت حقذٌى ٌخى الاصطنبعً انزكبء طشٌقتب ، الأطشودت هزه فً

(PSO)انًخسقت انًثهى انًخغٍشاث نخذذٌذ (PID)فً انًسخخذو انًؤاصس انذشكت ننظبو نهخذكى

 PSO طشٌقت اسخخذاو كٍفٍت ببنخفصٍم انشسبنت هزه حىضخ(. CNC) نهكًبٍىحش انعذدي انخذكى

. نهًسبعذة فً حقذٌش أداء ودذة انخذكى انًؤاصس نهًذشك انًثهى PID حذكى يعبٌٍش عن بكفبءة ثنهبذ

PSO-PID انًقخشدت ، ٌخى حصًٍى اننًىرج ببسخخذاو بٍئتMATLAB.انًقخشح اننهح عن وٌنخح

 فً انثببخت انخطأ ودبنت نهخطأ الأقصى وانذذ انخسىٌت ووقج الاسحفبع وقج دٍث ين أفضم دلً

 وقىة فبعهٍت أكثش انًقخشدت انطشٌقت كبنج ، Ziegler - Nichols انخقهٍذٌت ببنطشٌقت يقبسنت. بواننظ

 .انًؤاصس انًذشك خطىة اسخجببت حذسٍن فً

VI

TABEL OFCONTENTS

 I .. الاستهلال

Dedication ... II

Acknowledgement ... III

Abstract ... IV

 V .. المستخلص

tabel ofContents .. VI

List of figures .. IX

list of tables ... X

LIST OF ABBREVIATIONS ... XI

Chapter One ... I

Introduction ... I

1.1 Background: ... 2

1.2 Problem statement: ... 3

1.3 Proposed solution: ... 4

1.4 Objectives: ... 4

1.5 Methodology: ... 5

1.6 Scope of the work: ... 5

1.7 Theses Organization: .. 5

Chapter two .. 7

Literature Review .. 7

2.1 Previous studies: .. 8

2.2 Servo Motor: .. 10

2.3 PID controller: .. 11

2.3.1 P Controller: ... 12

2.3.2 PD Controller: ... 13

2.3.3 PI Controller: .. 14

2.4 PID Controller Design ... 15

VII

2.5 Effects of Coefficients: ... 16

2.6 Manual Tuning Method: .. 17

2.6.1 Ziegler-Nichols Tuning .. 17

2.6.2 Cohen-Coon tuning (Open-loop tuning) .. 19

2.7 Comparison between ZN and CC Tuning ... 20

2.8 Software Methods: .. 21

2.8.1 Ant Colony Optimization .. 21

2.8.2 Particle Swarm Optimization ... 21

2.8.3 Comparison between ACO and PSO: ... 23

Chapter Three ... 25

System Design ... 25

3.1 overview: .. 26

3.2 Servo Motor Modeling: .. 26

3.3 PID controller: .. 30

3.4 Particle Swarm Optimizations .. 32

3.5 Scheduling PSO for PID Controller Parameters:... 33

3.6 System flow chart: ... 35

Chapter four .. 37

Simulation Result .. 37

4.1 Overview: ... 37

4.2 Servo motor and PID with Manual Tuning: .. 39

4.3 Simulation result discussion: ... 42

4.4 Implementation of PSO-PID Controller .. 44

4.5 Comparison between Z_N and PSO PID: .. 47

Chapter Five .. 49

CONCLUTION AND RECOMMENDATIONS .. 49

5.1 Conclusions .. 49

5.2 Recommendations ... 50

References: .. 51

Appendix: ... 1

VIII

PSO-PID code ... 1

IX

LIST OF FIGURES

Figure 3.1: Servomotor system .. 27

Figure 3. 2Classical Controller .. 30

Figure 3. 3:block diagram of PID controller with servo motor 31

Figure 3. 4:PID controller with PSO algorithm ... 34

Figure 4.1 1The Simulink block diagram for servo motor………………..38

Figure 4. 2: the step response of DC servo motor without controller 38

Figure 4. 3: step response of PI controller ... 39

Figure 4. 4:step response of PD controller ... 40

Figure 4. 5: step response of PID controller .. 41

Figure 4. 6: the Simulink block diagram of PID controller 43

Figure 4. 7: the step response of DC servo motor with controller 44

Figure 4. 8:step response of PSO-PI controller ... 45

Figure 4. 9: step response of PSO-PD controller ... 45

Figure 4. 10:step response of PSO-PID controller 46

X

LIST OF TABLES

Table 2. 1:Ziegler-Nichols open-loop tuning parameter 18

Table 2. 2: Cohen Coon tuning formula ... 20

Table 4. 1comparison between, PI, PD and PID maximum rise time, settling

time and overshoot .. 42

Table 4. 2: comparison between, PSO-PI, PD and PID maximum rise time,

settling time and overshoot .. 46

Table 4. 3:comparison between, PSO- PID and Z-N maximum rise time,

settling time and overshoot .. 47

XI

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

FL Fuzzy Logic

GA Genetic Algorithm

ISE Integral Square of Error

IAE Integral Absolute of Error

PID Proportional Integral Derivative

PSO Particle Swarm Optimization

PWM Pulse Width Modulation

TF Transfer function

ZN Ziegler Nichols

CHAPTER ONE

INTRODUCTION

CHAPTER ONE

INTRODUCTION

1.1 Background:

Computer Numerical Control (CNC) is a computer assisted process

to control general-purpose machines according to the instructions generated

by a processor from numeric instructions. There are many different types of

CNC machine tools, which can be divided into two main groups: cutting

machines and non-cutting machines. Cutting machines perform removal

process to make a finished part. Examples of such machines are a milling

machine and a turning machine. Noncutting machines apply force to a blank

material to change the shape of the blank material. A good example of this

type of a machine is a press machine. Also welding, painting, and cutting

robot systems can be classified as CNC machine tools[1].

Servo driving mechanism is a system that transforms the commands

form NC to a linear machine motion. It can consist of a motor and a power

transmission device. Commands from the numerical control cause the motor

to rotate a ball screw. The rotation of the ball screw is transformed into a

linear movement of a nut, which is fixed to the table with the work piece. A

servo driving mechanism controls the velocity and torque of the table via

the servo driving device of each axis based on the velocity commands from

the NC.

Encoder is a device that detects the angular position and sends the

information to the control system. It is usually fixed into the shaft of the

power-transmission or integrated in the motor. In order to control the

velocity, it must be measured. Velocity can be measured by a sensor or

calculated with the position control data from an encoder Encoders can be

classified in two main categories: absolute- and incremental encoders.

Absolute encoders give the actual angular position and incremental

encoders detect changes in rotation[2].

Servo motor is an automatic device that uses error sensing feedback

to correct the performance of a mechanism. The term correctly applies only

to the systems where the feedback or error correction signals help to control

mechanical position or other parameters. A common type of servo provides

position control. Servos are commonly electrical or partially electronic in

nature, using an electric motor as the primary means of creating mechanical

force. Other types of servos use hydraulics, pneumatics, or magnetic

principles. Usually, servos operate on the principle of negative feedback,

where the control input is compared to the actual position of the mechanical

system as measured by some sort of transducer at the output. Any

difference between the actual and wanted values (error signal) I amplified

and used to drive the system in the direction necessary to reduce or

eliminate the error[3].

1.2 Problem statement:

PID controllers used in most applications to stabilize the system and

get the required closed loop responses. This is due to its robust nature and

wide operating range. In spite of this, When PID controller is used to

control servo motor used in CNC system some obstacles appears such as

behaviors in terms of nonlinearity , time response, adjusting parameters

based on online changes and lastly engineering goals such as cost and

reliability. Therefore, an optimization algorithm is needed to find the

optimal tuning parameters.

1.3 Proposed solution:

 Using particle Swarm Optimization algorithm which is can

automatically tune PID controller parameters during system run. Therefore,

it can improve the speed behavior of the servo motor used in CNC

machines. Moreover, it can enhance the characteristics of the engines, and

makes the system more robustness.

1.4 Objectives:

 Optimize PID controller behavior using intelligent tuning method

PSO.

 Improve time response parameters for the servo motor -used in

CNC machines- speed response (overshoot, settling time rise time,

and steady state error).

 Improve frequency response for the servo motor speed response.

Performance evaluation for the system by comparing proposed

tuning method with traditional methods.

1.5 Methodology:

PID controller will be used to control the servo motor speed. Firstly; PID

will be tunes using traditional method. The second step tuning using PSO

algorithm. The system will be tested under different condition and the result

will be carried out with different scenarios. To simulate the proposed

system MATLAB/SIMULINK will be used.

1.6 Scope of the work:

This thesis meanly focuses on PID controller. Different tuning

method will be covered, optimization method will be also covered and PSO

method will be highlighted. The system under study is servo motor for CNC

machines.

1.7 Theses Organization:

Chapter One: Introduction, which gives a brief background and

stated the problem along with the proposed solution?

Chapter Two: Literature Review, it gives a comprehensive

study for the components used in the design.

Chapter Three: System Design mainly discuses on the system

design of the project. Details on the progress of the project were explained

in this chapter.

Chapter Four: Simulation and Discussion result, it was

presented the results of the project .The discussion focused on the result

obtained from simulation.

Chapter Five: Conclusion and Recommendations‟ Concludes

overall about the project, Obstacle faced and future recommendation was

also discussed in this chapter.

CHAPTER TWO

 LITERATURE REVIEW

8

CHAPTER TWO

 LITERATURE REVIEW

2.1 Previous studies:

In the latest high-speed and high-acceleration NC machine tools, the

structural vibration is one of the most critical factors to deteriorate the

machine’s contouring performance. Particularly on such a machine, the

parameters in a CNC servo control system must be carefully tuned, since

too high response of the latest CNC units often causes severe structural

vibration. This paper presents a practical servo tuning method for high-

speed machine tools to optimize its contouring accuracies. In order to

reduce the structural vibration with the minimum sacrifice of control

bandwidth, the tuning is based on iterative measurement and simulation of

the machine’s contouring performance. A case study shows that a proper

tuning of servo parameters significantly reduces the structural vibration and

improves the machine’s overall contouring accuracy[4].

Based on the load torque ratio, load / rated speed ratio, the

temperature rise ratio and load / motor inertia ratio of servo motor’s

optimization matching principle, servo motor selection mathematical model

of transmission system in CNC machine tool is built, compared to

traditional selection algorithm, which is using the actual duty cycle

conditions to optimal matching and analyzing. Then motor models available

to meet the maximum utilization of the servo system, achieve the purpose

9

of improving motor performance and reduce costs. In this paper, by taking

servo motor selection of three-axis transmission system in a CNC machine

tools for example, horizontal, inclined and vertical transmission system’s

parameters selection and calculation are analyzed in detail. With the

engineering test and motor control software, measure data is achieved, the

reasonableness of the method in the paper is proved[5].

Servo systems affect the performances of machining in accuracy and

surface quality for high speed and precision machine tools. This study

introduces an efficient servo tuning technique for Computer Numerical

Control (CNC) feed drive systems using particle swarm optimization (PSO)

algorithm by virtual machine tool approach. The proposed approach

contained a system identification phase and a servo tuning phase based on

the same bandwidth for all axes feed drive systems. The PSO algorithm was

adopted to obtain the system parameters and maximize the corresponding

bandwidth. An efficient two-step servo tuning method based on gain and

phase margins was proposed for high speed and precision requirements. All

feed drive systems controller gains were optimized simultaneously for

synchronization. A remote system called Machine Dr. was established for

servo tuning and monitoring. Simulation and experimental results were

introduced to illustrate the effectiveness of the proposed approach[6].

In this study the basic idea is use the fuzzy logic controller with refer

to Proportional Integral Derivative (PID) method. The choice of the fuzzy

logic is based on its main feature; that its logic flow approaches real time

situations more than most of the other known algorithms. The idea of

perfection is to provide an even more smooth control to the AC servo motor

10

and to minimize deficiencies of the traditional Proportional Integral

Derivative (PID) method[7].

2.2 Servo Motor:

Servo motor is an automatic device that uses error sensing feedback

to correct the performance of a mechanism. The term correctly applies only

to the systems where the feedback or error correction signals help to control

mechanical position or other parameters. A common type of servo provides

position control. Servos are commonly electrical or partially electronic in

nature, using an electric motor as the primary means of creating mechanical

force. Other types of servos use hydraulics, pneumatics, or magnetic

principles. Usually, servos operate on the principle of negative feedback,

where the control input is compared to the actual position of the mechanical

system as measured by some sort of transducer at the output. Any

difference between the actual and wanted values (error signal) is amplified

and used to drive the system in the direction necessary to reduce or

eliminate the error. Servomotors are available as AC or DC motors. Today,

servo motor are used in automatic machine tools, satellite tracking antennas,

remote control airplanes, automatic navigation systems on boats and planes,

and antiaircraft gun control systems[8].

As the name suggests, a servo motor is a servomechanism. More

specifically, it is a closed –loop servomechanism that uses position

feedback to control its motion and final position. The input to its control is

some signal, either analogue or digital, representing the position

commanded for output shaft. The motor is paired with some type of encoder

to provide position and speed feedback. In the simplest case, only the

11

position is measured. The measured position of output is compared to the

command position, the external input to the controller. If the output position

that required, an error signal is generated which then causes the motor to

rotate in either direction, as needed to bring the output shaft to the

appropriate position. As the position approach, the error signal reduces to

zero and the motor stops. The very simplest servo motor use position-only

sensing via a potentiometer and bang-bang control of their motor, the motor

always rotates at full speed (or stopped).this motor not widely used in

industrial motion control, but they form the basis of simple and cheap

servos for radio-controlled models. More sophisticated servo motors

measure both the position and also the speed of the output shaft. They may

also control the speed of their motor, rather than always running at full

speed. Both of these enhancements, usually in combination with a PID

control algorithm, allow the servo motor to be brought to its commanded

position more quickly and more precisely, with less overshooting[9].

2.3 PID controller:

A proportional–integral–derivative controller (PID controller) is a

generic control of feedback mechanism (controller) widely used in

industrial control systems. A PID is the most commonly used feedback

controller. A PID controller calculates an "error" value as the difference

between a measured process variable and a desired set point. The controller

attempts to minimize the error by adjusting the process control inputs. The

PID controller calculation algorithm involves three separate constant

parameters, and is accordingly sometimes called three-term control: the

proportional, the integral and derivative values, denoted P, I, and D.

Simply, these values can be interpreted in terms of time: P depends on the

12

present error, I on the accumulation of past errors, and D is a prediction of

future errors, based on current rate of change. The weighted sum of these

three actions is used to adjust the process via a control element such as the

position of a control valve, a damper, or the power supplied to a heating

element. In the absence of knowledge of the underlying process, a PID

controller has historically been considered to be the best controller. By

tuning the three parameters in the PID controller algorithm, the controller

can provide control action designed for specific process requirements. The

response of the controller can be described in terms of the responsiveness of

the controller to an error, the degree to which the controller overshoots the

set point, and the degree of system oscillation. Note that the use of the PID

algorithm for control does not guarantee optimal control of the system or

system stability[10]. A PID controller is one of the most commonly used

controllers because it is simple and robust. This controller is extremely

popular because it can usually provide good closed loop response

characteristics, can be tuned using relatively simple rules and easy to

construct using either analogue or digital components. Figure (2.3) below

illustrates the block diagram of PID controller.

2.3.1 P Controller:

In general it can be said that P controller cannot stabilize higher order

processes. For the 1st order processes, meaning the processes with one -

energy storage, a large increase in gain can be tolerated. Proportional

controller can stabilize only 1st order unstable process. Changing controller

gain K can change closed loop dynamics. A large controller gain will result

in control system with:

13

a) Smaller steady state error, i.e. better reference following

b) Faster dynamics, i.e. broader signal frequency band of the closed

loop system and larger sensitivity with respect to measuring noise.

c) Smaller amplitude and phase margin.

When P controller is used, large gain is needed to improve steady

state error. Stable systems do not have problems when large gain is used.

Such systems are systems with one-energy storage (1st order capacitive

systems). If constant steady state error can be accepted with such processes,

than P controller can be used. Small steady state errors can be accepted if

sensor will give measured value with error or if importance of measured

value is not too great anyway[11].

2.3.2 PD Controller:

D mode is used when prediction of the error can improve control or

when it necessary to stabilize the system. From the frequency characteristic

of D element it can be seen that it has phase lead of 90°.

Often derivative is not taken from the error signal but from the

system output variable. This is done to avoid effects of the sudden change

of the reference input that will cause sudden change in the value of error

signal. Sudden change in error signal will cause sudden change in control

output. To avoid that it is suitable to design D mode to be proportional to

the change of the output variable.

PD controller is often used in control of moving objects such are

flying and underwater vehicles, ships, rockets etc. One of the reason is in

14

stabilizing effect of PD controller on sudden changes in heading variable

y(t). Often a "rate gyro" for velocity measurement is used as sensor of

heading change of moving object.

2.3.3 PI Controller:

PI controller will eliminate forced oscillations and steady state error

resulting in operation of on-off controller and P controller respectively.

However, introducing integral mode has a negative effect on speed of

the response and overall stability of the system.

Thus, PI controller will not increase the speed of response. It can be

expected since PI controller does not have means to predict what will

happen with the error in near future. This problem can be solved by

introducing derivative mode which has ability to predict what will happen

with the error in near future and thus to decrease a reaction time of the

controller.

PI controllers are very often used in industry, especially when speed

of the response is not an issue. A control without D mode is used when:

a) Fast response of the system is not required.

b) Large disturbances and noise are present during operation of the

process.

c) There is only one-energy storage in process (capacitive or

inductive).

d) There are large transport delays in the system.

15

2.4 PID Controller Design

A PID controller is one of the most commonly used controllers

because it is simple and robust. This controller is extremely popular because

it can usually provide good closed loop response characteristics that can be

tuned using relatively simple rules and easy to construct using either

analogue or digital components.

PID controller has all the necessary dynamics: fast reaction on

change of the controller input (D mode), increase in control signal to lead

error towards zero (I mode) and suitable action inside control error area to

eliminate oscillations (P mode).

Derivative mode improves stability of the system and enables

increase in gain K and decrease in integral time constant Ti, which

increases speed of the controller response.

PID controller is used when dealing with higher order capacitive

processes (processes with more than one energy storage) when their

dynamic is not similar to the dynamics of an integrator (like in many

thermal processes). PID controller is often used in industry, but also in the

control of mobile objects (course and trajectory following included) when

stability and precise reference following are required. Conventional

autopilot is for the most part PID type controllers[12]. The PID controller

can be defined as equation (3.13) by the following relationship between

controller input e(t) and the controller output V(t) that is applied to the

motor armature.

16

 () () ∫ ()

 () (3.13)

Where, Kp = proportional gain Ti = integral time Td= derivative time

The variable e(t) represents the tracking error which is the difference

between the desired input value and the actual output. This error signal will

be sent to the PID controller and the controller computes both the derivative

and the integral of this error signal. The signal U(t) from the controller is

now equal to the proportional gain (Kp) times the magnitude of the error

plus the integral gain (Ki) times the integral of the error plus the derivative

gain (Kd) times the derivative of the error.

2.5 Effects of Coefficients:

Table (2.1) shows the effects of coefficients and effects of

changing control parameters respectively. As we can there see is a

decrease in rise time, overshoot and settling time and there is no

change in steady state error PID Controller is better than P and PI

controller.

Table 2. 1: Comparison of gain response of P,Pi,PID controllers

Parameter Speed of response Stability Accuracy

Increasing Kp Increases deteriorate improves

Increasing Ki decreases deteriorate improves

Increasing Kd increases improves No impact

17

2.6 Manual Tuning Method:

Manual tuning is achieved by arranging the parameters according to

the system response. Until the desired system response is obtained Ki, Kp

and Kd are changed by observing system behavior. Example (for no system

oscillation): First lower the derivative and integral value to 0 and raise the

proportional value 100. Then increase the integral value to 100 and slowly

lower the integral value and observe the system’s response. Since the

system will be maintained around set point, change set point and verify if

system corrects in an acceptable amount of time. If not acceptable or for a

quick response, continue lowering the integral value. If the system begins to

oscillate again, record the integral value and raise value to 100. After

raising the integral value to 100, return to the proportional value and raise

this value until oscillation ceases. Finally, lower the proportional value back

to 100.0 and then lower the integral value slowly to a value that is 10% to

20% higher than the recorded value when oscillation started (recorded value

times 1.1 or 1.2).

2.6.1 Ziegler-Nichols Tuning

The earliest known and most popular tuning methodology was

proposed by Ziegler and Nichols (ZN) in 1942. They proposed the closed-

loop (or ultimate sensitivity) method and the open-loop (or process reaction

curve) method. The ZN tuning rules has a serious shortcoming in that it

uses insufficient process information to determine the tuning parameters.

This disadvantage leads to system performances that have poor robustness.

The Ziegler-Nichols tuning method is based on the determination of

processes inherent characteristics such as the process gain (Kp), process

18

time constant (PT) and process dead time (PL). These characteristics are

used to determine the controller tuning parameters. Although the Ziegler-

Nichols methods attempt to yield optimum settings, the only criterion stated

is that the response has a decay ratio of quarter (see Figure 4.1). This is

viewed as a shortcoming because a controller tuned with this criterion may

not be at its optimal setting[13].

The closed-loop tuning method proposed by ZN requires the

determination of the ultimate gain and ultimate period. The method can be

interpreted as a technique of positioning one point on the Nyquist curve.

This can be achieved by adjusting the controller gain (Kc) till the system

undergoes sustained oscillations (at the ultimate gain or critical gain), whilst

maintaining the integral time constant (iT) at infinity and the derivative

time constant (dT) at zero. Consider Figure 4.2: the closed loop response is

considered stable if there is no encirclement of the point (-1 + j0) by the

Nyquist plot (Figure 4.2a) of the system (Ogata, 1970). For a proportional

gain (Kc) = 2 the closed-loop response is stable and the Nyquist stability

criterion is met (Figure 4.2b). For = 8 c K , sustained oscillations are

produced since there is an encirclement of the point (-1 + j0) by the Nyquist

locus. In both simulations, i T and d T =0 is used with a change only in the

proportional gain c K to move the process closer to the ultimate point[14].

 By three parameters, namely the process static gain p K , the process

time constant p T and p L . These parameters are used to determine the

controller’s tuning parameters (see Table 2.1).

Table 2. 2:Ziegler-Nichols open-loop tuning parameter

19

2.6.2 Cohen-Coon tuning (Open-loop tuning)

The ZN method was designed for a process that cannot regulate

itself. To account for self-regulation, Cohen-Coon (CC) introduced the self-

regulation index or controllability ratio given by (4.3) (Cohen and Coon,

1953)

With regards to (4.3), p L refers to the process dead time and p T

denotes the process time constant. This method is based on a first-order-

plus-dead-time (FOPDT) process models.

A summary of the CC method is given in Table 2.2.

20

Table 2. 3: Cohen Coon tuning formula

2.7 Comparison between ZN and CC Tuning

A fundamental difference between the ZN and CC methods is as

follows: The ZN method associates the integral and derivative constants

completely with the process dead-time, whereas the CC method adjusts the

integral and derivative time constants according to the particular

relationship between the process dead time and the process time constant.

For both methods, the controller gain is a function of this relationship.

Since processes having different controllability ratios experience different

dynamic behaviors, the Cohen- Coon method may perform better than the

Ziegler-Nichols method. For example, for dead-time dominant processes

i.e. processes having a large controllability ratio, the derivative time

constant tends towards zero according to the Cohen-Coon tuning formulae.

This is reasonable since the derivative action should not be used when the

process contains large process time lag. The method does suffer from the

decay ratio being too small. This results in closed-loop systems that are

21

characterized by low damping and high sensitivity. Furthermore, the tuning

formula tends to produce a very oscillatory set-point change closed-loop

response because it was derived to give a quarter wave decay ratio

following a load disturbance response[15].

2.8 Software Methods:

In this section, the software methods means the optimization

algorithms that can be used to tune the PID controller.

2.8.1 Ant Colony Optimization

In ACO artificial ants build solutions by traversing a problem space.

Similar to real ants, they deposit artificial pheromone on the workspace in a

manner that makes it possible for future ants to build better solutions. In

real ant colonies the pheromone is used to find the shortest path to food.

Using ACO, finite size colonies of artificial ants communicate with each

other via artificial pheromones to find quality solutions to optimization

problems. ACO has been applied to a wide range of optimization problems

such as the traveling salesman problem, and routing and load balancing in

packet switched networks[16].

2.8.2 Particle Swarm Optimization

The PSO approach utilizes a population based stochastic optimization

algorithm proposed by Eberhart and Kennedy (1995). It was inspired from

the computer simulation of the social behavior of bird flocking by Reynolds

(1987). Reynolds used computer graphics to model complicated flocking

behaviour of birds. He was mainly interested in simulating the flight

22

patterns of birds for visual computer simulation purposes, observing that the

flock appears to be under central control. Reynolds proceeded to model his

flocks using three simple rules, namely collision avoidance, velocity

matching and flock centering.

Using these rules Reynolds showed how the behavior of each agent

inside the flock can be modeled with simple vectors. This characteristic is

one of the basic concepts of PSO. Boyd and Recharson (1985) examined

the decision making process of human beings and developed the concept of

individual learning and culture transmission. According to their

examination, people utilize two important kinds of information in decision-

making processes, namely:

Their own experience: They have tried the choices and know which

state has been better so far, and they know how good it was and Other

people’s experiences: They have knowledge of how the other agents around

them have performed. In other words, they know which choices their

neighbours have found positive so far and how positive the best pattern of

choice was. Each agent’s decisions is based upon his own experience and

other people’s experience. This characteristic is another basic concept of

PSO. Eberhart and Kennedy (1995) incorporated these ideas into the

development of their PSO method and invented simple velocity and

position algorithms that mimic natural swarm behaviour. In PSO, a set of

randomly generated agents propagate in the design space towards the

optimal solution over a number of iterations. Each agent has a memory of

its best position and the swarm’s best solution. PSO is similar to EC

techniques in a sense that both approaches are population-based and each

individual is evaluated according to a specified fitness function. The major

23

difference is that PSO is influenced by the simulation of social behaviour

rather than the survival of the fittest[17]. Added to this, each individual

benefits from its history and its interactions with its peers. PSO is also easy

to implement and the fact that no gradient information is required makes it a

good candidate for a wide variety of optimization problems. PSO has been

successfully applied to solve a broad range of optimization problems

ranging from Artificial Neural Network (ANN) training to reactive power

and voltage control. The PSO method is also computationally less

burdening in comparison to other EC techniques such as GA’s[18].

2.8.3 Comparison between ACO and PSO:

PSO is based on the intelligence. It can be applied into both scientific

research and engineering use, have no overlapping and mutation

calculation. The search can be carried out by the speed of the particle.

During the development of several generations, only the most optimist

particle can transmit information onto the other particles, and the speed of

the researching is very fast. The calculation in PSO is very simple,

Compared to the other developing calculations, it occupies the bigger

optimization ability and it can be completed easily. PSO adopts the real

number code, and it is decided directly by the solution. The number of the

dimension is equal to the constant of the solution.

In ACO the theoretical analysis is difficult and Sequences of random

decisions (not independent). Probability distribution changes by iteration,

Research is experimental rather than theoretical and Time to convergence

uncertain.

24

CHAPTER THREE

SYSTEM DESIGN

26

CHAPTER THREE

SYSTEM DESIGN

3.1 overview:

A servomotor is a packaged combination of several components: a

motor, a gear train to reduce the many rotations of the motor to a higher

torque rotation, a position encoder that identifies the position of the output

shaft and an inbuilt control system. The input control signal to the servo

indicates the desired output position. Any difference between the position

commanded and the position of the encoder gives rise to an error signal that

causes the motor and gear train to rotate until the encoder reflects a position

matching that commanded. A simple low-cost servo of this type is widely

used for radio-controlled model.

3.2 Servo Motor Modeling:

Servomotor is used for position or speed control in closed loop

control systems.

The equivalent circuit diagram of servomotor is presented in Figure

3.1. The armature is modeled as a circuit with resistance Ra connected in

series with an inductance ,La and a voltages source Vb(t) representing the

back emf in the armature when the rotor rotates.

27

Figure 3.1: Servomotor system

Kirchhoff’s voltage law is used to map the armature circuitry

dynamic of the motor. Thus, assume the inductance La can be ignored,

which in the case for servomotor. the supply voltage Ea(t) will be:

Ea(t)=Ia(t)Ra+ Vb(t) (3,1)

28

Since the current carrying armature is rotating in a magnetic field, its

back electromotive force is proportional to speed. Vb(t) is the velocity of

the conductor normal to the magnetic field.

Vb(t)=KB ω (t) (3.2)

The typical equivalent mechanical loading on a motor, that connected

to the motor shaft including total moment of inertia jm and total viscous

friction.

Assume that T(t) is the torque developed by the motor.

T(t)=Jmα(t)+Bα(t) (3.3)

The developed motor output torque for the servo motor can be given

by:

T(t)=KTIa(t) (3.4)

By using Laplace transforms on the equation (3.1), (3.2), (3.3) and

(3.4) and

neglecting initial condition we have:

Ea(s)=RaIa(s)+Vb(s) (3.5)

Vb(s)=KBS θm(s) (3.6)

T(s)=JmS2 θm (s)+BS θm (s) (3.7)

T(s)=KTIa(s) (3.8)

Substitute Equation (3.8) into Equation (3.7), we have:

29

KTIa(s)=Jms2 θm (s)+Bs θm (s) (3.9)

Equation (3.5) is rearranged to obtain:

Ia(s)= () (s)/Ra

Substitute equation (3.10) into Equation (3.9), we get:

KT () (s)/Ra]= Jms2 θm (s)+Bs θm (s)

From equation (3.11), the transfer function between the input voltage

Ea(s) and the output θm (s) can be obtained as:

 ()

 ()

 ()

The parameters for used servo motor are:

KT (N.m/A) = 0.121

KB [V/(rad/s)] = 0.121

Ra (Ω) = 2.23

B [N.m/(rad/s)] = 0.0000708

Jm (kg.m2) = 0.00006286

B [N.m/(rad/s)] = 0.0000708

30

Substitute there parameters in Equation (3.12), the transfer function

becomes as follow:

 ()

 ()

3.3 PID controller:

A proportional-integral-derivative controller (PID controller) is

basically a generic control loop feedback mechanism widely used in

industrial control systems. A PID controller calculates an "error" value as

the difference between a measured plant variable and a desired set-point.

The controller attempts to minimize the error by adjusting the process

control inputs. Fig.3.2 shows a basic structure of a closed loop controller.

Figure 3. 2Classical Controller

The differential equation of a PID controller is given by:

U(t) = Kp e(t) + 1 Ti∫e(t)dt +Td × de(t) dt+P0

And the transfer function is given by:

31

Where:

Kp = proportional gain Ti = integral time Td= derivative time The

variable e(t) represents the tracking error which is the difference between

the desired input value and the actual output. This error signal will be sent

to the PID controller and the controller computes both the derivative and the

integral of this error signal. The signal U(t) from the controller is now equal

to the proportional gain (Kp) times the magnitude of the error plus the

integral gain (Ki) times the integral of the error plus the derivative gain (Kd)

times the derivative of the error.

Figure 3. 3:block diagram of PID controller with servo motor

In this thesis the PID controller is tuned using MATLAB software.

Firstly, the PID tuned using Z_N to find the step response of P, PI, PD and

PID. The tuning is done using a comparator found in the program which can

generate the step response of each controller.

The output of each controller tuned using Z_N is compared the result

of the PSO output in chapter four.

32

3.4 Particle Swarm Optimizations

The algorithm proposed by Eberhart and Kennedy (1995) uses a 1-D

approach for searching within the solution space. For this study the PSO

algorithm will be applied to a 2-D or 3-D solution space in search of

optimal tuning parameters for PI, PD and PID control[19]. Consider

position i s ,n. of the i-the particle as it traverses a n-dimensional search

space:

The previous best position for this i-th particle is recorded and

represented as pbesti,n .

The best performing particle among the swarm population is denoted

as gbesti,n and the velocity of each particle within the n-th dimension is

represented as i n v , . The new velocity and position for each particle can

be calculated from its current velocity and distance with (6.1) and (6.2),

respectively:

()

 ⌊
 (

) (
)⌋

()

()

With regards to (6.2) and (6.3):

i = number of agents 1,2,….,p;

n = dimension 1,2,3;

33

(1),k+i n v = velocity of agent ‘ i ’ at iteration (k + 1) for n-

dimension;

c = constriction factor;

V
k
i,n= velocity of agent iat current iteration k for n dimension;

C1 = cognitive acceleration constants (self confidence);

C2 = social acceleration constant (swarm confidence);

Rand1,2 = random number between 0 and 1;

pbest I,n= personal best of agent i for n dimension;

gbest I,n = global best of the population for n dimension;

Si,n
k
 = current position of agent iat iteration k for n dimension;

Si,n
(k+1)

 = position of agent i at iteration (k + 1) for n dimension and;

p = number of particles in the population.

For PI, PD and PID control n = 2, 3 respectively. All other variables

have the same meanings[20].

3.5 Scheduling PSO for PID Controller Parameters:

 In this work, the PSO is used to find the optimal PID

parameter’s values that is used to control the servo motor. The structure of

the PID controller with PSO algorithms is shown in Fig. .

34

Figure 3. 4:PID controller with PSO algorithm

The main steps in the particle swarm optimization and selection

process are described as follows:

(a) Initialize a population of particles with random positions and

velocities in d dimensions of the problem space and fly them.

(b) Evaluate the fitness of each particle in the swarm.

(c) For every iteration, compare each particle’s fitness with its

previous best fitness () obtained. If the current value is better than

 , then set equal to the current value and the location

equal to the current location in the d-dimensional space.

(d) Compare of particles with each other and update the swarm

global best location with the greatest fitness ().

(e) Change the velocity and position of the particle According to

equations (11) and (12) respectively.

35

(f) Repeat steps (a) to (e) until convergence is reached based on some

desired single or multiple criteria.

3.6 System flow chart:

36

CHAPTER FOUR

 SIMULATION RESULT

37

CHAPTER FOUR

 SIMULATION RESULT

4.1 Overview:

 MATLAB is a widely used in all areas of applied mathematics

, in education and research at universities and in the industry. MATLAB

stand for MATrixLABoratory and the software particularly useful for linear

algebra but MATLAB is also a great tool for solving algebraic and

differential equations and for numerical integration. MATLAB has power

full graphic tools and can produce nice pictures in both 2D and 3D. It is also

a programming languages for writing mathematical programs. MATLAB

also has some tools boxes useful for signal processing, image processing,

optimization, Simulink , etc . In Simulink it is very straightforward to

represent and then simulate a mathematical model representing a physical

system. Models are represented graphically in Simulink as block diagrams.

A wide array of blocks are available to the user in provided libraries for

representing various phenomena and models in a range of formats. One of

the primary advantages of employing Simulink (and simulation in general)

for the analysis of dynamic systems that it allows us to quickly analyze the

response of complicated systems that may be prohibitively difficult to

analyze analytically. figure (4.1) shows the SIMULINK block diagram of

servo motor without controller.

38

Figure 4. 1The Simulink block diagram for servo motor

The step response of servo motor without controller is shown in

figure(4.2). Where the step response is less than one, there for a controller is

needed.

Figure 4. 2: the step response of DC servo motor without controller

39

4.2 Servo motor and PID with Manual Tuning:

The following figures shows the effect of PI, PD and PID using

zeglar-Necolas manual tuning.

Figure 4. 3: step response of PI controller

In the above figure the value of Kp=11.622 and Ki=409.03439

calculated using Z-N, as noticed the step response has a good rise time, but

the value of settling time and overshoot are not good compared to the PID

response.

40

Figure 4. 4:step response of PD controller

In the above figure, the value of Kp=27.9380 and Kd=0.16194

calculated using Z-N in MATLAB, as noticed the step response of PD

controller has better settling time and overshoot compared to PI and PID

controllers.

41

Figure 4. 5: step response of PID controller

In the above figure, the value of Kp=15.4966 Ki=818.0687 and

Kd=0.07338 calculated using Z-N in MATLAB, as noticed the step

response of PID has the best rise time value compared to other two

controllers.

 Table (4.1) shows the effects of coefficients and effects of changing

control parameters respectively. As we can there see is a decrease in rise

time, overshoot and settling time and there is no change in steady state error

PID Controller is better than P and PI controller.

42

Table 4. 1comparison between, PI, PD and PID maximum rise time, settling time

and overshoot

 Rising

time(Sec)

Settling

time(Sec)

Overshoot

(%)

Overshoot

time (sec)

PI 0.0138 0.204 59% 0.0392

PD 0.024 0.0788 11.2% 0.0518

PID 0.0122 0.155 43.4% 0.115

4.3 Simulation result discussion:

The model of servo motor and the optimal control of speed were

numerically simulated using a state space model and Matlab/Simulink

software for a separated exited servo motor with the following parameters

KT (N.m/A) = 0.121

KB [V/(rad/s)] = 0.121

Ra (Ω) = 2.23

B [N.m/(rad/s)] = 0.0000708

Jm (kg.m2) = 0.00006286

43

B [N.m/(rad/s)] = 0.0000708

Substitute there parameters in Equation (3.12), the transfer function

becomes as follow:

 ()

 ()

The simulation procedure may be summarized as follows: • First

input the servo motor data, • Write the differential equations for the model

then get the state space representation • Get the closed loop step response •

Finally performing the performance of PID controller by Ziegler Nichols

method and PID controller by using PSO

Figure (4.3) shows the SIMULINK block diagram of position control

of servo motor using PID controller .the PID controller gain which was the

output of the PSO algorithm as Kp= 79.1195 ,Ki= 43.1362 ,Kd= 43.6804.

Figure 4.4 shows the step response of PID controller.

Figure 4. 6: the Simulink block diagram of PID controller

44

Figure 4. 7: the step response of servo motor with controller

By using the PID controller the step response of the servo motor has

improved, the system works with rise time almost zero and the step

response is equal to one.

4.4 Implementation of PSO-PID Controller

 In this work, a PID controller using the PSO algorithm is developed

to improve the results of speed control of servo motor. The PSO algorithm

is mainly utilized to determine three optimal controller parameters kp, ki,

and kd, such that the controlled system could obtain a desired step response

output

45

Figure 4. 8:step response of PSO-PI controller

Figure 4. 9: step response of PSO-PD controller

46

Figure 4. 10:step response of PSO-PID controller

The results of the algorithm on the PI, PD and PID controllers has

shown a very good effect on the overall outputs , the comparison between

the out but is shown in table (4.2) states that the PID controller has the best

result.

Table 4. 2: comparison between, PSO-PI, PD and PID maximum rise time, settling

time and overshoot

 Rise

time(Sec)

Settling

time(sec)

Overshoot

(%)

Overshoot

time (sec)

PI 0.00428 0.0941 60.5% 0.012

PD 0.000521 0.0414 87.2% 0.00152

PID 0.000522 0.0428 86.6% 0.00152

47

4.5 Comparison between Z_N and PSO PID:

Table 4. 3:comparison between, PSO- PID and Z-N maximum rise time, settling

time and overshoot

PID

parameters

Rise

time(sec)

Settling

time(sec)

Overshoot(%) Overshoot time

(sec)

Z-N 0.0122 0.155 43.4 0.0326

PSO 0.00522 0.0428 86.6 0.00152

 PID controllers are a widespread control solution due to their

simple architecture, generally acceptable control performance and ease of

use. In this work PID controller has been tuned using Ziegler-Nichols

method and Particle Swarm Optimization (PSO) through simulation of

servo motor speed control system. The performance of the PSO algorithm

method of tuning a PID controller has been proved to be better than

traditional method Ziegler-Nichols method, in terms of the system settling

time and rise time. Although the overshoot of the PSO seems to have larger

percentage than Z-N, but the overshoot time is very small that can be

neglected. So PSO has proved a better result in term of overshoot as well.

48

CHAPTER FIVE

 CONCLUTION AND RECOMMENDATIONS

49

CHAPTER FIVE

 CONCLUTION AND RECOMMENDATIONS

5.1 Conclusions

 In this work, a PSO method is used to determine PID controller

parameters automatically through simulation of servo motor speed control

system. The results show that the proposed controller can perform an

efficient search for the optimal PID controller by comparing with the

conventional controller methods, it shows that this method have exhibited

relatively good performance and the output response full tracking with

speed reference for all time response and their typical characteristics show a

faster and smoother response. The advantage of using PSO tuning PID is

the computational efficiency, because it is very easy of the implementation

and the computation processes is very fast, comparing with conventional

methods. The PSO-PID technique gives better response than PID controller

in terms of trajectory tracking. The results show that the proposed controller

can perform an efficient search for the optimal PID controller’s parameters.

By comparison with ZgNc-PSO controller, it shows that this method can

improve the dynamic performance of the system in a better way. The PID-

PSO controller is the best which presented satisfactory performances and

possesses good robustness (no overshoot, minimal rise time, Steady state

error approximately = 0). Finally, the proposed automatic tuning is

intelligent method to control a nonlinear input an actuator and to regulate

the speed of the motor.

50

5.2 Recommendations

 Although, this thesis has tried to find the suitable topology for PID-

PSO designed according some conditions it may be difficult to

apply in all practical fields. So we recommend the following.

 Increase the number of iterations of the algorithm for more optimal

values.

 Applying another optimization techniques and observe the

difference.

 Applying real CNC parameters for better observation.

51

References:

[1] C.-Y. L. a. C.-H. Lee, "Remote Servo Tuning System for Multi-

Axis CNC Machine Tools Using a Virtual Machine Tool

Approach," Applied Sciences, vol. 7, p. 776, 2017.

[2] R. Ranjan, "Automatic metal sheet cutting machine,"

International Journal of Advanced Engineering Applications,

August 2013.

[3] M. Sahakangas, "Planning of an electric system for a small CNC

machine," SEINÄJOKI UNIVERSITY OF APPLIED SCIENCES,

Spring 2015.

[4] S. I. K. Lee1, A. Matsubara1, Y. Kakino1, Y. Suzuki2, and S. A.

J. Braasch4, "A servo parameter tuning method for high-speed

NC machine tools based on contouring error measurement,"

Journal of the Japan Society for Precision Engineering, Jun,2010.

[5] Y. C. Wang, X. X. Yu, and L. Wu, "Selection and Analysis of

Servomotor for Three-Axis Transmission System in CNC

Machine Tool," Advanced Materials Research, vol. 760-762, pp.

1148-1153, 2013.

[6] R.-J. Wai, "Real-Time PID Control Strategy for Maglev

Transportation System via Particle Swarm Optimization," IEEE,

2, FEBRUARY 2011.

[7] K.-Y. Cheng, "Fuzzy Optimization Techniques Applied to the

Design of a Digital PMSM Servo Drive," IEEE TRANSACTIONS

ON POWER ELECTRONICS, NOV 2011.

[8] H. J. Fredrik Roos, Jan Wikander, "Optimal selection of motor

and gearhead in mechatronic applications[J],"], Mechatronics,

vol.16, pp.63–72, 2006.

[9] I. I. Hubinski P., Jurisica L, " Elimination of residual oscillation

in electromechanical systems containing pendulum," on

Electrical Drives and Power Electronics, october 2001.

[10] D. H. C. KIM, J. H, "Retraction of A Biologically Inspired

Intelligent PID Controller Tuning for AVR Systems," Int. J.

Control Autom. Syst. International Journal of Control, Automation

and Systems,, 2001.

52

[11] N. EL YAKINE KOUBA, MENAA, M., HASNI, M., BOUDOUR,

M, "Optimal control of frequency and voltage variations using

PID controller based on Particle Swarm Optimization," TH

INTERNATIONAL CONFERENCE ON, S. & CONTROL, 2015.

[12] J. T. Z. a. T. Y. A. C. W. Wang, "Survey of Advanced PID

Parameter Tuning Methods," Acta Auto-matica, Vol. 26, No. 3,

2000.

[13] B. a. L. Kristiansson, B, "Robust and optimal tuning of PID

controllers," IEE Proc. Control theory and application, V 149,

2002.

[14] A. A. Aly, "odeling and Control of an Elec-tro-Hydraulic Servo

Motor Applying Velocity Feedback Control Strategy,"

International Mechanical Engineering Conference, 2004.

[15] M. H. Moradi, "New Techniques for PID Controller De-sign,"

IEEE Conference on Control Applications, Vol. 2, 2003.

[16] H. L. FREIRE, MOURA OLIVEIRA, P. B. & SOLTEIRO

PIRES, E, "From single to many-objective PID controller design

using particle swarm optimization," INTERNATIONAL

JOURNAL OF CONTROL AUTOMATION AND SYSTEMS,

2017.

[17] X. LI, WANG, Y., LI, N., HAN, M., TANG, Y. & LIU, F,

"Optimal fractional order PID controller design for automatic

voltage regulator system based on reference model using particle

swarm optimization.," nt. J. Mach. Learn. & Cyber. International

Journal of Machine Learning and Cybernetics, 8, 1595- 1605,

20011.

[18] J. KENNEDY, SPEARS, , "Matching algorithms to problems: an

experimental test of the particle swarm and some genetic

algorithms on the multimodal problem generator," W. M. &

INTELLIGENCE, I. I. C. O. E. C. P. I. W. C. O. C. , 1998.

[19] A. Myrtellari, Marango, P. and Gjonaj, M., "Analysis and

Performance of Linear Quadratic Regulator and PSO algorithm

in optimal control of DC motor," International Journal of Latest

Research in Engineering and Technology,, 2016.

[20] S. M. GIRIRAJKUMAR, KUMAR, A. A. &

ANANTHARAMAN, N, " Tuning of a PID Controller for a Real

Time Industrial Process using Particle Swarm Optimization,"

IJCA International Journal of Computer Application, 2010.

53

1

Appendix: MATLAB Code

PSO-PID code

tic

clc

clear all

close all

rng default

LB=[0 0 0]; %lower bounds of variables

UB=[100 100 100]; %upper bounds of variables

% pso parameters values

m=3; % number of variables

%n=100; % population size

wmax=0.8; % inertia weight

wmin=0.3; % inertia weight

c1=1.5; % acceleration factor

c2=1.5; % acceleration factor

desired = 1; % desired output, or reference point

desired1 = 1; % desired output, or reference point

feed1 =0.001 ; % can be replaced with damping coefficient B or (B/Mass)

feed2 = 0.001; % can be replaced with spring coefficient K or (K/Mass)

B = feed1;K = feed2;

Kp = 1; % proportional term Kp

Ki = 0.01; % Integral term Ki

Kd = 0.01; % derivative term Kd

dt = 0.01; % sampling time % total simulation time in seconds

Time = 10; % total simulation time in seconds

n = round(Time/dt);

% pso main program--start

maxite=1000; % set maximum number of iteration

for run=1:100

run

% pso initialization--start

for i=1:n

for j=1:m

x0(i,j)=LB(j)+rand()*(UB(j)-LB(j));

end

end

x=x0; % initial population

v=0.1*x0; % initial velocity

%%for i=1:n

2

%f0(i,1)=ofun(x0(i,:));

%end

% pre-assign all the arrays to optimize simulation time

Prop1(n+1,3) = 0; Der1(n+1,3) = 0; Int1(n+1,3) = 0; I1(n+1,3) = 0;

PID1(n+1,3) = 0;

FeedBack1(n+1,3) = 0;

Output1(n+1,3) = 0;

Error1(n+1,3) = 0;

state12(n+1,3) = 0; STATE12(n+1,3) = 0;

state22(n+1,3) = 0; STATE22(n+1,3) = 0;

for i = 1:n

 Error1(i+1,3) = desired1 - FeedBack1(i,3); % error entering the PID controller

 Prop1(i+1,3) = Error1(i+1,3);% error of proportional term

 Der1(i+1,3) = (Error1(i+1,3) - Error1(i,3))/dt; % derivative of the error

 Int1(i+1,3) = (Error1(i+1,3) + Error1(i,3))*dt/2; % integration of the error

 I1(i+1,3) = sum(Int1(:,3)); % the sum of the integration of the error

 PID1(i+1,3) = Kp*Prop1(i,3) + Ki*I1(i+1,3)+ Kd*Der1(i,3); % the three PID terms

end

[fmin0,index0]=min(PID1);

pbest=x0; % initial pbest

gbest=x0(index0,:); % initial gbest

% pso initialization--end

% pso algorithm---start

ite=1;

tolerance=1;

%while ite<=maxite && tolerance>10^-12

w=wmax-(wmax-wmin)*ite/maxite; % update inertial weight

% pso velocity updates

for i=1:n

for j=1:m

v(i,j)=w*v(i,j)+c1*rand()*(pbest(i,j)-x(i,j))...

+c2*rand()*(gbest(1,j)-x(i,j));

end

end

% pso position update

for i=1:n

for j=1:m

x(i,j)=x(i,j)+v(i,j);

end

end

% handling boundary violations

for i=1:n

3

for j=1:m

if x(i,j)<LB(j)

x(i,j)=LB(j);

elseif x(i,j)>UB(j)

x(i,j)=UB(j);

end

end

end

% evaluating fitness

Prop(n+1,3) = 0; Der(n+1,3) = 0; Int(n+1,3) = 0; I(n+1,3) = 0;

PID(n+1,3) = 0;

FeedBack(n+1,3) = 0;

Output(n+1,3) = 0;

Error(n+1,3) = 0;

state1(n+1,3) = 0; STATE1(n+1,3) = 0;

state2(n+1,3) = 0; STATE2(n+1,3) = 0;

for i=1:n

 Error(i+1,3) = desired - FeedBack(i,3); % error entering the PID controller

 Prop(i+1,3) = Error(i+1,3);% error of proportional term

 Der(i+1,3) = (Error(i+1,3) - Error(i,3))/dt; % derivative of the error

 Int(i+1,3) = (Error(i+1,3) + Error(i,3))*dt/2; % integration of the error

 I(i+1,3) = sum(Int(:,3)); % the sum of the integration of the error

 PID(i+1,3) = Kp*Prop(i,3) + Ki*I(i+1,3)+ Kd*Der(i,3); % the three PID terms

end

% updating pbest and fitness

for i=1:n

if PID(i,:)<PID1(i,:)

 pbest(i,:)=x(i,:);

PID1(i,:)=PID(i,:);

end

end

[fmin,index]=min(PID1(:,1)); % finding out the best particle

ffmin(ite,run)=fmin; % storing best fitness

ffite(run)=ite; % storing iteration count

% updating gbest and best fitness

if fmin<fmin0

gbest=pbest(index,:);

fmin0=fmin;

end

% calculating tolerance

if ite>100;

tolerance=abs(ffmin(ite-100,run)-fmin0);

end

% displaying iterative results

4

if ite==1

disp(sprintf('Iteration Best particle Objective fun'));

end

disp(sprintf('%8g %8g %8.4f',ite,index,fmin0));

ite=ite+1;

end

% pso algorithm---end

gbest;

 % start timer to calculate CPU time

Prop(n+1,3) = 0; Der(n+1,3) = 0; Int(n+1,3) = 0; I(n+1,3) = 0;

PID1(n+1,3) = 0;

FeedBack(n+1,3) = 0;

Output(n+1,3) = 0;

Error(n+1,3) = 0;

state1(n+1,3) = 0; STATE1(n+1,3) = 0;

state2(n+1,3) = 0; STATE2(n+1,3) = 0;

for i = 1:n

 Error(i+1,3) = desired - FeedBack(i,3); % error entering the PID controller

 Prop(i+1,3) = Error(i+1,3);% error of proportional term

 Der(i+1,3) = (Error(i+1,3) - Error(i,3))/dt; % derivative of the error

 Int(i+1,3) = (Error(i+1,3) + Error(i,3))*dt/2; % integration of the error

 I(i+1,3) = sum(Int(:,3)); % the sum of the integration of the error

 PID(i+1,3) = Kp*Prop(i,3) + Ki*I(i+1,3)+ Kd*Der(i,3); % the three PID terms

 %% You can replace the follwoing five lines with your system/hardware/model

end

fff(run)=PID(run);

rgbest=gbest;

disp(sprintf('--------------------------------------'));

%end

% pso main program--end

disp(sprintf('\n'));

disp(sprintf('***'));

disp(sprintf('Final Results-----------------------------'));

[bestfun,bestrun]=min(fff)

best_variables=rgbest(bestrun,:)

disp(sprintf('***'));

% PSO convergence characteristic

