Dedications

To my parents

To my husband

To my brothers, my sisters

And To my sons

Acknowledgements

My deepest and sincere appreciations go my advisor **Prof. Mohammed Adam Abbo** for his guidance, helped me tremendously at the initial stages of planning and the preparation of the proposal and special thanks go to my Cosupervise **Dr. Essa Esmaiel** for his guidance, understanding and patience.

I would like to gratefully and sincerely thank **Mrs**: **Salha Al gahtani**, King Khalid University in Abha.

My thanks also to my friends for moral support during the course of this research.

Finally, I would like to thank my husband and my family for their understanding, constant encouragement, and continuous support during these years.

Abbreviations

AgNPs Silver nanoparticles

CLZ Clotrimazole

UV-Vis Ultra – violet – Visible Spectrophotometer

FTIR Fourier Transform Infrared

TEM Transmission electron microscopy

DMSO Dimethyl sulfoxide

MIC Minimum inhibitory concentration

M. D. I. Z Mean diameter of growth inhibition zone

B.s Bacillus subtilis

S.a Staphylococccus aureus

E.c Escherichia coli

P.a Pseudomonas aeruginosa

ATCC American Type Culture Collection

LSPR Localized surface Plasmon resonance

ROS Reactive oxygen species

FICI Fractional inhibitory concentration index

SPR Surface Plasmon resonance

Abstract

The objective of the present study was to prepare, characterize silver nanoparticles /antibiotics complexes and examine their antibacterial activities. Silver nanoparticles were prepared using chemical reduction method (sodium citrate) and characterized by UV/Vis, FTIR and TEM. The results have shown the characteristic UV absorption at 415 nm. Furthermore, TEM analysis demonstrated the presence of spherical, rod and hexagonal of silver nanoparticles.

The infrared spectrum of Clotrimazole exhibited a characteristic peak of C= N at 1594 cm⁻¹, which showed significant shifts to 1585 cm⁻¹ in the infrared spectra of the Clotrimazole+AgNPs complexes, which confirmed the participation of the C= N group in the complexation process

The infrared spectrum of Tinidazole exhibited a characteristic peak of C=N at 1760 cm⁻¹, which showed significant shifts to 1621 cm⁻¹ in the infrared spectra of the Tinidazole+Ag NPs complexes, which confirmed the participation of the C= N group in the complexation process.

A comparison of the relevant IR spectral bands of clotrimazole and tindiazole with the silver nanoparticle indicated shifts in the frequencies as well as reductions in the band intensities, which proved the formation of charge transfer complexes. These shifts were due to changes in the electronic structures and molecular symmetries of reactants upon complex formation.

The Antibacterial activity of Ag nanoparticles alone and in combination with the antibiotics such as clotrimazole and tindiazole against *Staph. aureus*, *Bacillus subtilis, Escherichia coli* and *Pseudomonas aeruginosa*, showed a significant increase in antibacterial activity of antibiotics in the presence of

silver nanoparticles, a high synergistic activity of nanoparticles with clotrimazole against *Staph. Aureus* was observed.

المستخلص:

الهدف من هذه الدراسة تحضير معقدات الفضة النانونية مع المضاد الحيوي ثم اختبار فعاليتها تجاه البكتريا تم تحضير الفضة النانونية بطريقة الاختزال الكيميائي في وجود سترات الصوديوم، وبعد تعريض العينة الي جهاز مطيافية الاشعة البنفسجية دلت النتائج علي تكون جسيمات الفضة النانونية حيث كانت اعلي قمة 415 نانوميتر

وعند تحليل العينة في جهاز المجهر الالكتروني النافز لمعرفة شكل الجسيمات وحجمها وجد ان جحم الجسيمات في شكل قضيب و سداسي مضلع.

مطيافية الاشعة الحمراء لمركب الكلوتريمازول اظهر وجود امتصاصية للرابطه C=N عند الطول الموجي 1594 سم $^{-1}$ ووجود ازاحة واضحة لنفس الرابطة عند 1585 سم لمعقد الكلوترومازول مع الفضة النانونية مما يدل علي تكون المعقد عند هذه الرابطة.

مطيافية الاشعة الحمراء لمركب التينديزول اظهر ايضا امتصاصية للرابطة C=N عند 1760 سم-1 ووجود ازاحة واضحة لنفس الرابطة عند الطول الموجي 1621 سم-1 لمعقد التنديزول مع الفضة النانونية مما يدل على تكون المعقد عند هذه الرابطة.

تم اختبار نشاط البكتريا تجاة محلول الفضة النانونية ووجد ان لها نشاط ملحوظ تجاة اربع انواع من Staphylococus aureus, Bacillus subtilis, Escherichia coli and البكتريا وهي Pseudomonas) (aeruginosa

تم اضافة نوعين من المضاد الحيوي (كلوتريمازول، تيندازول) الي عينة الفضة النانونية لزيادة فعالية المضاد الحيوي تجاه البكتريا ووجدت زيادة ملحوظه في فعالية المضاد تجاة البكتريا.

Table of Contents

Contents	Page
Dedications	I
Acknowledgements	II
Abbreviations	III
Abstract	IV
المستخلص	VI
Table of Contents	VII
List of Tables	X
List of Figures	XI
CHAPTER ONE	
1.1 Introduction	1
1.2. Objectives and scope of this study	4
CHAPTER TWO	
Literature review	
2.1 Nanotechnology	5
2.1.1 Classification of Nanomaterials	6
2.1.2 Properties of nanomaterials	7
2.1.3 Applications of Nanotechnology	7
2.1.4 Background of Ag nanoparticle	8
2.2. Synthesis of silver nanoparticles	8
2.2.1 Physical approaches	8
2.2.2 Chemical approaches	10
2.2.3 Biological approaches	15
2.2.3.1 Synthesis of silver nanoparticles by bacteria	15

2.2.3.2 Synthesis of silver nanoparticles by fungi	16
2.2.3.3 Synthesis of silver nanoparticles by plants	16
2.3 Characterization of silver nanoparticles	17
2.4 Properties of Ag nanoparticle:	18
2.5 Silver Nanoparticle Applications	18
2.5.1 Antibacterial applications	19
2.5.2 Medical applications	19
2.5.3 Catalysis applications	19
2.5.4 Optical applications	20
2.5.5 Electrochemical applications	20
2.6 Silver nanoparticles and their incorporation into antibiotics	21
2.7 Mechanisms of antibacterial effects of silver nanoparticles	23
2.8 Toxicity of Ag nanoparticles	25
2.9 Antibiotic Nanoparticle Complex (Nanoplex)	27
CHAPTER THREE	
3-Materials and methods	32
3.1 Materials	32
3.2 Methods	32
3.2.1 Synthesis of Ag nanoparticle by chemical reduction	32
3.3. Characterization of silver nanoparticle	32
3.3.1. Ultra violet- visible spectroscopy (UV)	33
3.3.2. Transmission electron microscopy (TEM)	34
3.3.3. Fourier transforms infrared spectroscopy (FTIR)	34
3.4. Assay for antibacterial activity	35
3.4.1Test organisms	35

3.4.2Culture media	36
3.4.2.1 Nutrient broth	36
3.4.2.2 Nutrient agar	36
3.4.2.3 Muller hinton agar	36
3.4.3. Disc diffusion method	36
3.5. Combination of Tindiazole and clotrimazole with Silver	37
nanoparticle	
CHPTER FOUR	
4. Results and discussion	38
4.1 Synthesis and characterization of Ag nanoparticle	38
4.2. Fourier transforms infrared spectroscopy (FTIR)	40
4.3. Assay for antibacterial activity	47
4.3.1. Antibacterial activity of silver nanoparticles	47
4.3.2. Antibacterial activity of Clotrimazol and Tindiazole	52
4.3.3. Synergistic Effect of Antibiotics combined with Silver	
Nanoparticles	55
4.4. Conclusions	63
4.5. Recommendations and future work	65
4.6. References:	66

List of Tables

Table	Page
Table (2.1): Mechanisms of antibacterial effects of silver	25
nanoparticles.	
Table (3.1): References strains of bacteria.	35
Table (4.1): Characteristic FTIR peaks of the clotrimazole and	
Tindiazole.	42
Table (4.2):Anti-bacterial activity of Ag NPs, antibiotics and	49
complexes against four bacterial strains.	

List of Figures

Figure Figure.2.1 Classification of Nanomaterials	Page 6
Figure.2.2 Nucleation and growth mechanisms for AgNPs	11
Figure.2.3 Clotrimazole chemical structure	22
Figure.2.4 Tinidazole chemical structure	22
Figure .3.1: UV-visible spectroscopy	33
Figure .3.2 : Transmission electron microscopy (TEM)	34
Figure.3.3. Fourier transforms infrared spectroscopy FTIR	35
Figure. 4.1 Uv- absorption spectra of silver nanoparticles	39
Figure.4.2. TEM micrographs of Ag NPS	39
Figure 4.3 Expected Clotrimazole/Ag NPs complexes	41
Figure .4.4 Infrared spectrum of Clotrimazole	43
Figure.4.5. Infrared spectrum of CLZ-Ag nanoparticles complexes	44
Figure. 4.6. Infrared spectrum of Tindiazole	45
Figure. 4.7. Infrared spectrum of Tindiazole- Ag NPs complexes	46
Figure .4.8 Anti-bacterial activity of Ag nanoparticle against (S.a , B.s,	
P.a)	50
Figure .4.9: growth inhibition zone curve of Ag nanoparticle	51
Figure 4.10 Anti-bacterial activity of Clotrimazole against Bacillus	
subtilis	52
Figure 4.11 Anti-bacterial activity of Tindazole against Escherichia	
coli	52
Figure.4.12: growth inhibition zone curve of Clotrimazole	53
Figure.4.13: growth inhibition zone curve of Tindiazole	53
Figure.4.14: growth inhibition zone curve of Ag NPs, Tindiazole and	54
Clotrimazole	

Figure 4.15.Anti-bacterial activity of Clotrimazol /Ag NPs complexes	
(2mg/ml) against(B.s,S.a,)	57
Figure 4.16: Anti-bacterial activity of Clotrimazol -Ag nanoparticle	
complexes (1mg/ml) against(E.s, S.a)	58
Figure 4.17: Anti-bacterial activity of Clotrimazol -Ag nanoparticle	
complexes (0.5mg/ml) against(S.a, B.s, E.s)	59
Figure 4.18: Anti-bacterial activity of Tindazole -Ag nanoparticle	59
complexes (1mg/ml) against Bacillus subtilis	
Figure 4.19: Anti-bacterial activity of Tindazole -Ag nanoparticle	
complexes (2mg/ml) against(P.a, B.s)	60
Figure 4.20: Anti-bacterial activity of Tindazole -Ag nanoparticle	
complexes (0.5mg/ml) against (E.s, P.a,S.a)	61
Figure 4.21: growth inhibition zone curve of (Tindiazole +AgNPs) and	
(Clotrimazole +AgNPs) complexes	62