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ABSTRACT

This study has been focused on the development of an analytical method
for the determination of Paracetamol (PAR) and Chlorzoxazone (CZN)
in their combined pharmaceutical formulation using two stationary phases
(home-made columns) which were prepared by two developed methods,
one of which was in capillary column while the other was in conventional

column.

The first preparation method was achieved using a home-made capillary
column (0.10mm 1.d. x 200mm length), filled with porous cross-linked
hexyl polymethacrylate as monolithic stationary phase. The column
morphology was characterized by scanning electron microscopy (SEM).
The column showed perfect mechanical stability and permeability over
the investigated flow range with regression factor R? 0.9994. The
capillary column was used to separate PAR and CZN in their
pharmaceutical formulation. The method proved to be simple, fast,
sensitive, efficient, cost-effective and green approach owing is the
combination of the amazing properties of a monolithic material and a
miniaturized liquid chromatography, which reduces the analytical costs
and the effect on the environmental impact of chromatographic
applications. Both components were detected using a 3-nL nano-UV cell
fixed at 270nm wavelength. The optimized mobile phase was composed
of 1% aqueous formic acid solution and acetonitrile at 40:60 ratio,
1.0uL/min flow rate, 4.0nL injection volume and 50°C column
temperature. Under the optimized conditions, PAR and CZN were
separated in about 6.5min with chromatographic resolution of 2.37. Using
the prepared column, the developed method was fully validated and

compared with other reported works.



The second preparation method was achieved using also a home-made,
conventional column (3.2 1.d., 100 mm length) which was a glycidyl
polymethacrylate as monolithic stationary phase. The column
morphology was characterized by scanning electron microscopy (SEM).
The permeability was evaluated using acetonitrile and water as mobile
phases, and uracil as un retained substrate. A simple and economical
reverse phase high performance liquid chromatography (HPLC) method
has been developed for the simultaneous estimation of PAR and CZN in
their pharmaceutical formulations. Components were determined using a
UV detector at 270 nm. The mobile phase was composed of 1% formic
acid solution and acetonitrile (65:35 v/v), 0.7 mL/min flow rate and 5.0

uL injection volume. The resolution between ingredients peaks was 1.96.
All findings proved that the both validated method using the prepared

column is applicable for quality control and routine analysis of the two

drugs.
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