

Sudan University of Science and Technology

College of Graduate Studies

Preparation, Characterization and Complexationof some HydroxamicAcidswith Iron (III), Vanadium (V), Cobalt (II) and Copper (II), Cations.

تحضير وتشخيص وتعقيد بعض الأحماض الهيدر وكسيميةمع كاتيونات

الحديد(III) والفانديوم(V)والكوبالت(II) والنحاس (II)

A thesis submitted in fulfillment for requirements of the Degree of Doctor of Philosophy in Chemistry

By:

Rehab Abdelgadir Ibrahim Abdelwahab

B.Sc. Lab. Tech., Chem., 1999(SUST)

Post Grad.Dip., Chem.2003 (SUST)

M.Sc. Chem.2011 (SUST)

Supervisor:

Prof.DrElmugdad Ahmed Ali

Co-Supervisor:

Dr. Mohamed ElMukhtarAbdelaziz

December, 2018

Dedication

This effort is dedicated to

The soul of my mother,

Dear father,

Lovely husband, littlelovely daughters

Brotherand sisters.

R ehab

Acknowledgements

Thanks Allah, the most gracious, the most compassionate, for giving me strength and health to complete this work.

My deepest gratitude is to my supervisor, **Prof. DrElmugdad Ahmed Ali** and co-supervisor**Dr.MohamedElmuktarAbdelaziz**, for their continuous advice, assistances, support and patience for the completion of this thesis.

I am grateful to them for having taught me how to do research.

Thanks went to SUST for the scholarship, and DAAD their financial support.

Also, I must acknowledge the support I received from my colleagues in department of chemistry and scientific laboratory department.

Abstract

Five hydroxamic acids were preparedthrough the esterification route. The prepared esterswere reacted with free hydroxylamineunder cold ether process. This method was found to be more applicable than the aqueous process. They were benzohydroxamic acid (BHA),cinnamohydroxamic (CHA) and salicylohydroxamicacid(SHA). β -phenylbenzohydroxamic acid,(β .PBHA) and β -phenylcinnamohydroxamicacid (β .PCHA),were preparedby the partial reduction of nitrobenzene with zinc dust and ammonium chloride to give β -phenyl hydroxyl amine, which was coupled first with methyl benzoate to give β -phenylbenzohydroxamic and

thesecond with methylcinnamate to give β -phenylcinnamohydroxamic.The five synthesized ligands were recrystallized by hot water/acetic acid.Thehydroxamic acids were characterized by their standard color test with vanadium (V)and iron (III), melting pointsfor (BHA) (lit131°Cfound127°C), (β .PBHA)(lit125°C

found 121°C),(CHA)(lit.114°C found 114°C), (β .PCHA)(lit 144-146°C,found 146°C),(SHA)(lit.168-170°C, found 170°C). I.R. spectra were show the most characteristic bands associated with hydroxamic acids functional group that is due to -OH (BHA 3067, β .PBHA 3082.2,

CHA 3260.2,β.PCHA 3266.4,SHA 3288.09)C=O (BHA 1687.38,β.PBHA 1667,CHA1663,β.PCHA1631.67,SHA

1613.64),C-N (BHA 1289,β. PBHA 1289, CHA1350, β.PCHA1348.1, SHA 135.7) N-O (BHA 931,β.PBHA 932,CHA966,β.PCHA 943.1, SHA 907.2) cm⁻¹.

The ¹H NMR spectra of the hydroxamic acids under investigation show δ (ppm) for (BHA8.0, 7.52 ,7.66.7.97,β.PBHA7.37,7.57,CHA 7.37,7.57,β.PCHA7.38,7.56, 7.66,SHA7.33,7.71) due to (Ar-H's), for (BHA 3.777,β.PBHA3.77,CHA4.93,β.PCHA 3.33, SHA3.78) attributed to NH ,(BHA 6.1,β.PBHA5.74,CHA4.945,β.PCHA 5.00, SHA6.9) assigned to –OH.

The ¹³C NMR spectra exhibit absorption signal due to carbonyl (C=O) nearly (BHA 167.4, β .PBHA 167.4, CHA 169.7, β .PCHA 163, SHA 166) ppm. The peak at (BHA 134, β .PBHA 132, CHA 134, β .PCHA 134, SHA 133) ppm assigned to two carbon atoms 2and 6 of the benzene ring, the peak at (BHA 129, β .PBHA 128, CHA 128, β .PCHA 128, SHA 127) ppm assigned to two carbon atoms 3and 5of the benzene ring.

The prepared hydroxamic acids were complexed with Fe (III) to obtain colored complex for (BHA violet, β .PBHA red,CHAbrown, β .PCHAredbrown,SHAdark brown), with V(V) toobtain colored complex for (BHA violet, β .PBHA violet,CHA dark violet, β .PCHAviolet,SHA

dark violet), with Co(II) to obtain colored complex for (BHA pink, β .PBHA pale violet,CHA pink, β .PCHA paleviolet,SHA pink) and with Cu(II)to obtain colored complex for (BHA blue, β .PBHA blue,CHA

green, β.PCHAblue, SHAgreen). They were recrystallized with ethanol and then, characterized by I.R. spectra, ¹H NMR, ¹³C NMR.

Stoichiometric measurements were carried for (SHA) with the metals Fe (III), V(V),Co (II) and Cu(II) (using continuous variation method (Job's method), the stoichiometric ratio of Fe-salicylhydroxamate,V-salicylhydroxamate, Co-salicylhydroxamate and Cu-salicylhydroxamate, complexes were determined by modified Job's method of continuous variation. The mole ratio of complexes were determined, in different chemical environments, and found to be in ratio of 1:3 forFe-salicylhydroxamate, V-salicylhydroxamate, Co-salicylhydroxamate, and 1:1 forCu-salicylhydroxamate (M:L).

المستخلص

تم تحضير خمسة أحماض هيدروكسيمية عن طريق الأسترة. حيث تفاعل الأستر المحضرمع الهيادر وكسايل أمين الحر في وسط بارد من الأبثر ووجد أن هذه الطريقة أجدى تطبيقاً ً من الوسط المائي. والأحماض هي حمضبنزوهايدروكسيميك، حمض سيناموهايدروكسميك وحمض ساليسايل هيدروكسميك. أما حمض فينايل بنزوهايدروكسميك وحمض فينايل سيناموهيدروكسميك فتم تحضير هما بالإختزال الجزئي للنيتر وبنزين بواسطة غبار الخارصين مع كلوريدالامونيوم لتعطى فنايل هيدروكسيل أمين ليفاعل أولاً مع ميثيل البنزوات ليعطى حمض فينايل بنزوهايدروكسيميك وثانياً مع ميثيل السينامات ليعطى حمض فينايل سينامو هايدروكسميك. تمت تنقية الأحماض الهيدر وكسيمية الخمس المحضرة بإعادة بلورتها بحمض الخل المخفف /الماء الساخن تم تشخيص الأحماض الهيدر وكسيمية الخمس المحضرة بإظهار الألوان المميزة مع الفانيديوم (V)ومع الحديد (III)وأيضاً عن طريق نقاط الانصهار فحمض البنزو هيدروكسيميك اعطى ℃127 وحمض بيتا-فنيل- بنزو هيدروكسميك أعطى C°121وحمض سينامو هيدروكسميك اعطى C°114وحمض بيتا-فنيل سينامو هيدر وكسميك أعطى ℃146 وحمض السالسيلو هيدر وكسميك أعطى ℃170وجميع درجات الانصبهار كانت قريبة من القيمة النظرية وأيضا تم التعرف على الاحماض الهيدروكسيمية. المحضرة عن طريق اطياف الأشعة تحت الحمراء التي تشير الي أن الحزم المميزة للاحماض الهيدروكسيمية هي من المجموعات الوظيفة المطلوبة (3067, 3082.2,3260.2,3266.4, 3067) C=O(1613.64,1631.67,1663,1667,1687.38)OH (3288.0

N-O(907.2,943.1,966,932,931) (1348.1 C-N,1350,1289,135.7,1289) لحمض البنزو هيدروكسيميك وحمض بيتا-فنيل- بنزو هيدروكسميك وحمض سينامو هيدروكسميك وحمض بيتا- فنيل سينامو هيدروكسميك وحمض السالسيلو هيدروكسميك علي التوالي. طيف الرنين النووي المغناطيسي (هيدروجين⁻ (ppm)⁸ أعطي القيم 7.57,766.7,97 لحمض بيتا فنيل بنزو هيدروكسيميك الأروماتي لحمض البنزو هيدروكسيميك والقيم 7.37,7.57 لحمض بيتا فنيل بنزو هيدروكسيميك والقيم 7.37,7.57 لحمض سيتا- فنيل

والقيم NH والقيم 3.33,4.93,3.77,3.777 في كل من حمض البنزو هيدروحين NH والقيم 6.9,5.00,4.945,5.74,6.1 في كل من حمض البنزو هيدروكسيميك

V

وحمض بيتا-فنيل- بنزو هيدروكسميك وحمض سينامو هيدروكسميك وحمض بيتا- فنيل سينامو هيدروكسميك وحمض السالسيلو هيدروكسميك علي التوالي.

طيف إمتصاص كربون ¹³يشير الي كربون مجموعة الكاربونيل (C=O),167.4,167.4 166,163,169.7والقيم 166,163,134,134,134,132,134 يشير الي الكربون رقم 2,6 في حلقة البنزين في كل البنزين والقيم 127,128,128,128,129 يشير الي الكربون رقم 3,5 في حلقة البنزين في كل من حمض البنزو هيدروكسيميك وحمض بيتا-فنيل- بنزو هيدروكسميك وحمض سينامو هيدروكسميك وحمض بيتام هيدروكسميك وحمض السالسيلو هيدروكسميك على التوالى.

تمت مفاعلة اللواقط المحضرة مع الحديد(III) لإنتاج معقدات ملونة (حمض بنزو هيدر وكسميك -بنفسجي, حمضبيتا-فنيل - بنزو هيدر وكسميك - أحمر, حمض سينامو هيدر وكسميك بني , حمض بيتا -فنيل سينامو هيدر وكسميك - بني محمر, حمض السالسيلو هيدر وكسميك بني غامق) ومع الفانيديوم(V) أعطت معقدات بنفسجية مع كل الأحماض الهيدر وكسيمية ومع الكوبالت (II) أعطت (حمض بنزو هيدر وكسميك –ز هري, حمض بيتا-فنيل - بنزو هيدر وكسميك بني فاتح , رحمض سينامو هيدر وكسميك –ز هري , حمض بيتا-فنيل - بنزو هيدر وكسميك بني فاتح , محمض سينامو هيدر وكسميك –ز هري , بيتا - فنيل سينامو هيدر وكسميك بنفسجي فاتح , حمض سينامو هيدر وكسميك –ز هري , بيتا - فنيل سينامو هيدر وكسميك بنفسج فاتح , وحمض , بنزو هيدر وكسميك –ز هري) ومع النحاس (II) أعطت لون أرزق مع كل من حمض بنزو هيدر وكسميك , حمض بيتا - فنيل سينامو هيدر وكسميك بنفسج فاتح , وحمض أخصر مع كل من حمض سينامو هيدر وكسميك , محض السالسيلو هيدر وكسميك بينون في ظروف التبريد.وتمت إعادة بلورتها بالايثانول وتشخيصها بطيف الأشعة تحت الحمراء في ظروف التبريد.وتمت إعادة بلورتها بالايثانول وتشخيصها بطيف الأسعة تحت الحمراء

ولمتابعة العلاقات الحسابية الكمية (الإستكيومترية) لحمض سالسيلو هيدروكسيمايك مع الفانيديوم (V) الحديد(III) والكوبالت (II) والنحاس (II) كما تم تحديد النسبة المولية لكل معقد,بطريقة الإختلافات المستمرة(طريقة جوب) ووجد أنها تساوي 1:3لمعقدات الحديد, الفانديوم, الكوبالت, 1:1لمعقد النحاس.

vi

CONTENTS

Table of Contents

contents	Page No	
Acknowledgments	i	
Abstract in English	ii	
Abstract in Arabic	v	
Table of Content	vii	
List of Tables	xii	
List of Figures	xiiii	
Abbreviations	xvii	
Chapter One		
Introduction and Litterateur Review		
1.1General	1	
1.2Hydroxamic acids	4	
1.2.1 Structure of hydroxamic acids	7	
1.2.2 Preparation of hydroxamic acids	9	
1.2.3 Physical Properties of hydroxamic acids	11	
1.2.4 Chemical properties	11	
1.2.5Detection of hydroxamic acids	12	
1.2.5.1 Spot test	12	
1.2.5.2 Qualitative Analysis	12	
1.2.5.3 Elemental analysis	12	

1.2.5.4 Infrared spectroscopy	13
1.2.5.5Electronic spectroscopy	14
1.2.5.6 Nuclear Magnetic Resonance	14
1.2.5.7 Mass Spectra	14

vii

1.2.5.8 Thermal Analysis	14
1.2.5.9 X-ray Analysis	14
1.2.5.10 Polarographic investigations	14
1.2.6 Nomenclature of hydroxamic acids	15
1.2.7 Ionization of hydroxamic acids	15
1.2.8 Biological activity	17
1.2.9 Reactions of hydroxamic acids	22
1.2.9.1Nucleophilic reactions	22
1.2.9.2 Oxidation reaction	23
1.2.9.3 Alkylation reactions	24
1.2.9.4 Acetylation reactions	24
1.2.9.5 The Lossen's rearrangement reaction	24
1.2.9.6 Hydrolysis	25
1.2.10.1 Benzohydroxamic acid	26
1.2.10.2 Salicylhydroxamic acid	27
1.3 Complexation reaction	29
1.3.1 Complexationability of metal	30
1.3.2Complexation ability of ligand	31
1.3.3 Interference	31
1.3.4 Masking and demasking of chemical reaction	32
1.3.5 Stability constant	35
1.3.5.1 Factors influencing the formation and stability of complexes	37
1.3.5.2 Metal complexation of hydroxamic acids	41

1.4 Hydroxamic acid chelating exchange resins	42
1.5Methods of stoichiometric determination	42
1.5.1Mole ratio method	42
1.5.2Slope-ratio method	43

•	٠	٠	
V1	1	1	

1.5.3Continuous variation method	43
1.6 chemistry of metal used in the study	43
1.6.1Vanadium $(3d^3 4S^2)$	43
$1.6.2$ Iron $(3d^64S^2)$	44
$1.6.3$ Cobalt $(3d^{7}4S^{2})$	45
$1.6.4$ Copper $(3d^{10}4S^1)$	46
Objective	48

Chapter Two

Materials and Methods

2.1 Materials	49
2.1.1 Chemicals	49
2.1.2 Instruments	49
2.2 Methods	50
2.2.1 Preparations of hydroxamic acids	50
2.2.1.1 Preparation of benzohydroxamic acid	50
2.2.1.2. Preparation of β -phenyl benzohydroxamic acid	52
2.2.1.3 Preparation of cinnamohydroxamic acid	53
2.2.1.4 Preparation of β –phenylcinnamohydroxamic acid	55
2.2.1.5 Preparation of salicylohydroxamic acid	55
2.2.1.6Characterization of the hydroxamic acids	57
2.2.2 Preparation and characterization of metal hydroxamate complexes	58
2.2.2.1 Preparation of iron (III) hydroxamate complexes	58
2.2.2.2 Preparation of vanadium (V) hydroxamate complexes	59

2.2.2.3 Preparation of copper (II) hydroxamate complexes	60
2.2.2.4 Preparation of Cobalt (II) hydroxamate complexes	61
2.2.2.5Characterization of the metals hydroxamate complexes	62
2.2.3 Stoichiometric study of salicylohydroxamate complexes using	64
continuous variation methods	

viiii

2.2.3.1Stoichiometry of iron salicylohydroxamate complexes	64
2.2.3.2 Stoichiometry of vanadium salicylohydroxamate complexes	64
2.2.3.3Stoichiometry of cobalt salicylohydroxamate complex	65
2.2.3.4 Stoichiometry of copper- salicylhydroxamate complexes	65
Chapter Three	
3. Results and Discussions	
3.1Results	68
3.1.1 Results of synthesized hydroxamic acids	68
3.1.2 Metal hydroxamate complexes	73
3.1.2.1 Metal benzohydroxamate complexes	74
3.1.2.2 Metal- β -phenyl benzohydroxamate complexes	75
3.1.2.3 Metal-cinnamohydroxamate complexes	77
3.1.2.4 metal-β-phenyl cinnamohydroxamate complexes	79
3.1.2.5 Metal salicylohydroxamate complexes	81
3.1.3 Results of absorbance of metals- hydroxamate complexes of	83
hydroxamate complexes of salicylohydroxamic acids	
3.1.4 Results of stoichiometric of metals salicylhydroxamate complexes	87
3.1.4.1 Results of stoichiometric of iron salicylohydroxamate, vanadium	87
salicylohydroxamate complexes	
3.1.4.1 Results of stoichiometric of cobalt salicylohydroxamate, copper	90
salicylohydroxamate complexes	
3.2 Discussion	92

ł	3.3Conclusion and suggestions for further work	96
	References	97

Х

List of Tables

Table 3.1 percentage yields of synthesized hydroxamic acid	68
Table 3.2 Colors of synthesized metals hydroxamate complexes	69
Table 3.3Melting points of synthesized hydroxamic acids	70
Table 3.4 Infrared absorption frequencies (cm ⁻¹) of synthesized	71
hydroxamic acids	
Table 3.5 Structure and color of the metal benzohydroxamate	73
complexes.	
Table 3.6 Structure and color of metal- β -phenyl benzohydroxamate	75
Table 3.7Structure and color of metal- cinnamohydroxamate	77
complexes.	
Table 3.8Structure and color of the metal- β –phenyl	79
cinnamohydroxamate complexes.	0.1
Table 3.9Structureandcolorof the precipitate of metal-	81
salicylhydroxamate complexes.	
Table3.10 Correlation of concentration of iron (ppm) versus	83
absorption of iron complexes of salicylohydroxamic acid	
Table 3.11 Correlation of concentration of vanadium (ppm) versus	84
absorption of vanadium complexes of salicylohydroxamic acid	
Table 3.12 Correlation of concentration of cobalt (ppm) versus	85
absorption of cobalt complexes of salicylohydroxamic acid	
Table 3.13 Correlation of concentration of copper (ppm) versus	86

absorption of copper complexes of salicylohydroxamic acid	
Table 3.14 the results of mole fraction of complexes vs absorption of	87
Fe salicylohydroxamate complex to determined stoichiometry (mole	
ratio) of complexes	

xi

Table 3.15the results of mole fraction of complexes vs absorption of	88
V salicylohydroxamate complex to determined stoichiometry (mole	
ratio) of complexes	
Table 3.16 the results of mole fraction of complexes vs absorption of	90
Co salicylohydroxamate complex to determined stoichiometry	
(mole ratio) of complexes	
Table 3.17the results of mole fraction of complexes vs absorption of	91
Cu salicylohydroxamate complex to determined stoichiometry	
(mole ratio) of complexes	

List of Figure

Figure 1.1: Keto and enol forms of hydroxamic acid	4
Figure 1.2: Keto and enol forms of hydroxamic acid	7
Figure 1.3: N-acyl from and O-acyl from	8
Figure 1.4: Z-and E-isomers of hydroxamic acid	8
Figure 3.1 the absorbance of Fe (III) complexes of salicylohydroxamic acid at	83
wavelength 480 nm versus concentration	
Figure 3.2the Absorbance of complexes of V(V) salicylohydroxamic acid at	84
wavelength 520nm versus concentration of V(V)	
Figure 3.3(a) and 71(b): Shows the Absorbance of Co(II), Cu(II) complexes of	85
salicylohydroxamic acid at wavelength 510, 385nm and concentration of	
Co(II), Cu(II)	
Figure 3.4 shows the stoichiometry (mole ratio) of Fe(III)complexes with	88
salicylohydroxamic acid	
Figure 3.5 shows the stoichiometry (mole ratio) of V(V)complexes with	89
salicylohydroxamic acid	
Figure 3.6shows the stoichiometry (mole ratio) of Co (II) and Cu(II)	91
complexes with salicylohydroxamic acid	

xii

List of appendix

Appex.3.1 Infrared of benzohydroxamic acid	108
Appex.3.2Infrared of β –phenylbenzohydroxamic acid	108
Appex.3.3Infrared of cinnamohydroxamic acid	109
Appex.3.4Infraredβ–phenylcinnamohydroxamic acid	109
Appex.3.51 Infrared of salicylohydroxamic acid	110
Appex.3.6 ¹ H NMR spectral data of benzohydroxamic acid	110
Appex.3.7 ¹ H NMR spectral data of β -phenylbenzohydroxamic acid	111
Appex.3.8 ¹ H NMR spectral data of cinnamohydroxamic acid	111
Appex.3.9 ¹ H NMR spectral data of β -phenylcinnamohydroxamic acid	112
Appex.3.10 ¹ H NMR spectral data of salicylohydroxamic acid	112
Appex.3.11 ¹³ C NMR spectral data of benzohydroxamic acid	113
Appex.3.12 ¹³ C NMR spectral data of β –phenylbenzohydroxamic acid	113
Appex.3.13 ¹³ C NMR spectral data of cinnamohydroxamic acid	114
Appex.3.14 ¹³ C NMR spectral data of β –phenylcinnamohydroxamic acid	114
Appex.3.15 ¹³ C NMR spectral data of salicylohydroxamic acid	115
Appex. 3.16 infrared absorption of iron benzohydroxamate complex	115
Appex. 3.17 infrared absorption of vanadium benzohydroxamate complex	116
Appex 3.18 infrared absorption of cobalt benzohydroxamate complex	116
Appex 3.19infrared absorption of copper benzohydroxamate complex	117
Appex 3.20 ¹ H NMR spectral data of iron benzohydroxamate complex	117
Appex 3.21 ¹ H NMR spectral data of vanadium benzohydroxamatecomplex	118

xiii

Appex 3.221H NMR spectral data of cobalt benzohydroxamate complex	118
Appex 3.23 ¹ H NMR spectral data of copper benzohydroxamate complex	119
Appex 3.24 the ¹³ CNMR spectral data of iron benzohydroxamate complex	119
Appex. 3.25 the ¹³ CNMR spectral data of vanadium benzohydroxamate	120
complexes	

xiiii

Appex. 3.26 the ¹³ CNMR spectral data of cobalt benzohydroxamate	120
complexes	
Appex. 3.27 the ¹³ CNMR spectral data of copper	121
benzohydroxamatecomplexes	
Appex .3.28 infrared spectrum of cobalt β -phenyl benzohydroxamate	121
complexes	
Appex .3.29 infrared spectrum of copper β -phenyl benzohydroxamate	122
complexes	
Appex. 3.30 ¹ H NMR spectral data of vanadium β -phenyl	122
benzohydroxamatecomplexe	
Appex. 3.31 ¹ H NMR spectral data of cobalt β –phenylbenzohydroxam-ate	123
complex	
Appex. 3.32 ¹ H NMR spectral data of copper β -phenyl benzohydroxam -ate	123
complex	
Appex .3.33 ¹³ CNMR spectral data of cobalt β -phenyl benzohydroxamate	124
complex	
Appex $.3.34^{13}$ CNMR spectral data of copper β -phenyl benzohydroxamate	124
complex	
Appex.3.35 Infrared spectrum of iron cinnamohydroxamate complex	125
Appex 3.36 Infrared spectrum of vanadium cinnamohydroxamate complex	125
Appex 3.37 Infrared spectrum of cobalt cinnamohydroxamate complex	126
Appex. 3.38 Infrared spectrum of copper cinnamohydroxamate complex	126

Appex. 3.39 H NMR spectral data of iron- cinnamohydroxamate complex [12]
--

Γ

XV

Appex .3.40 ¹ H NMR spectral data of vanadium – cinnamohydroxamate	127
complex	
Appex. 3.41 ¹ H NMR spectral data of cobalt cinnamohydroxamate complex	128
Appex. 3.42 ¹ H NMR spectral data of copper cinnamohydroxamate complex	128
Appex .3.43 ¹³ CNMR spectral data of iron cinnamohydroxamate complex	129
Appex .3.44 ¹³ CNMR spectral data of vanadium- cinnamohydroxamate complex	129
Appex. 3.45 ¹³ CNMR spectral data of cobalt -cinnamohydroxamate complex	130
Appex. 3.46 ¹³ CNMR spectral data of copper -cinnamohydroxamate complex	130
Appex.3.47 Infrared spectrum of iron - β –phenyl cinnamohydroxamate complex	131
Appex.3.48 Infrared spectrum of vanadium - β -phenyl cinnamohydroxamate	131
complex	
Appex.3.49 Infrared spectrum of cobalt- β –phenyl cinnamohydroxamate	132
complex	
Appex.3.50 Infrared spectrum of copper- β –phenyl cinnamohydroxamate	132
Complex	
Appex 3.51^{1} HNMR spectral data of iron β -phenyl cinnamohydroxamate complex	133
Appex. 3.52^{1} HNMR spectral data of copper β -phenyl cinnamohydroxamate	133
complex	
Appex. 3.53 ¹³ CNMR spectral data of iron β -phenyl cinnamohydroxamate	134
complex	
Appex. 3.54 ¹³ CNMR spectral data of cobalt- β-phenyl cinnamohydroxa- mate	134

$A = 2.55^{13}$ (NR) (D = 4.114 C = 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	105
Appex. 3.55 CNMR spectral data of copper- β-phenyl cinnamohydroxamate	135
complex	
Appex.3.56 Infrared spectrum iron salicylohydroxamate complex	135
Appex.3.57 Infrared spectrum of vanadium salicylohydroxamate complex	136
Appex.3.58 Infrared spectrum of cobalt salicylohydroxamate complex	136
Appex.3.59Infrared spectrum of copper salicylhydroxamate complex	137
Appex. 3. 60 ¹ H NMR spectral data of iron salicylohydroxamate complex	137
Appex 3, 61 ¹ H NMR spectral data of vanadium salicylhydroxamate complex	138
rippon of or infinite opportal data or valuatatil suitegnigatorialitate compten	100
Appex. 3, 62 ¹ H NMR spectral data of cobalt salicylhydroxamate complex	138
rippont of 02 ministropoolal auta of occur suno jungaronalitate compten	150
Appex 3 63 ¹ H NMR spectral data of copper salicylohydroxamate complex	139
rippex. 5.05 Trading spectral data of copper suncytonyaroxumate complex	137
Appex 3.64 ¹³ CNMR spectral data of iron salicylhydroxamate complex	139
repex. 5.04 Craine speetral data of non sancy mydroxamate complex	157
Appex 3.65 13 CNMR spectral data of vanadium – salicylhydrovamate complex	1/10
Appex. 5.05 Cryinix spectral data of variadium – sancymyutoxamate complex	140
Appex 3 66 ¹³ CNMR spectral data of cobalt salicylhydrovamate complex	140
Appex. 5.00 Crywix spectral data of cobalt safeyinydroxamate complex	140
Appay 2 67 ¹³ CNMP spectral data of coppor solicylhydrovamate complex	1/1
Appex. 5.07 Criving spectral data of copper sancy inyutoxamate complex	141

xvi

xvii