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Chapter 1 

Introduction to the Integral Equation(IE) and Construction of 
the IE. 

1.1. Introduction: 

         Integral  Equation began to appear since the mid-seventeenth century , when 
some scientists were not able to solve the differential equation . 

           The integral equation developed with appear Abel kernel after that Volterra   
integral equation lastly Fredholm integral equation. 

         In this time we find numerical method played a great role to solve integral 
equation. 

Therefore of great progressing in basic science whether physical or engineering 
has played essential role. 

         Topics on integral equations has grown and evolved to its direct association 
lists the large branches of mathematics, such as account differential and 
integrative and questions of boundary conditions. 

During the twenty-five last year, there is a marked increase in the use of 
integral equations and formulations for finding scientific solutions to 
engineering problems and solving differential equations that are difficult to 
solve by normal methods. In the recent period found that the integral 
equations give a better solution than give differential equations. 

         The explosive growth in industry and technology requires constructive 
adjustments in mathematics text researches. 

The integral equation it equation that appear in the unknown function under 
signal or more, from the signals of integrity. 

There more types of integral equation from it linear and nonlinear integral 
equation. 

The general formula linear integral equation it is: 
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(ݔ)ݕ = (ݔ)݂ + ߣ න ,ݔ)݇ (ݐ)ݕ(ݐ
௕

௔
1)     ݐ݀ − 1) 

        Where (ݔ)ݕ unknown function, ݂(ݔ)  known function and ݇(ݔ,  known(ݐ
function are called kernel integral equation. 

         We say that integral equation it is linear if that which operations on unknown 
function in equation it linear operations. 

 And the general formula nonlinear integral equation it is : 

(ݔ)ݕ = (ݔ)݂ + ߣ න ,ݔ)݇ ଶ((ݐ)ݕ)(ݐ
௕

௔
1)         ݐ݀ − 2) 

Where unknown function it is nonlinear . 

         Can be solve of integral equatin by differential , Laplace transformation , 
progression the converging, and the eigenvalue. 

The most standared type of integral equation in  (ݔ)ݑ is the form : 

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ (ݐ)ݑ(ݐ
௛(௫)

௚(௫)
1)       ݐ݀ − 3) 

        Where ݃(ݔ) and  ℎ(ݔ) are the limits of the integration, ߣ is a constant 
parameter, and ݇(ݔ,  called ,  ݐ and ݔ is a known function, of two variables (ݐ
the kernel or the nucleus of the integral equation. The unknown function (ݔ)ݑ 
that will be determined appears inside the integral sign. In many other cases , 
the unknown function (ݔ)ݑ  appears inside and outside the integral sign. The 
function ݂(ݔ) and ݔ)ܭ,  are given in advance. It is to be noted that the limits (ݐ
of integration ݃(ݔ) and ℎ(ݔ) may be both variables, constants or mixed. 

         Integral equation appear in many forms . Two distinct ways that depend on the 
limits of integration are used to characterize integral equations , namely : 

1. If the limits of the integration are fixed , the integral equation is called a 
Fredholm integral equation given in the form : 

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ (ݐ)ݑ(ݐ
௕

௔
1)                     ݐ݀ − 4) 

Where ܽ and ܾ are constants . 
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2. If at least one limit is a variable , the equation is called a Volterra integral 
equation given the form : 

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ (ݐ)ݑ(ݐ
௫

௔
1)             ݐ݀ − 5) 

 

         Moreover, two other distinct kinds, that depend on the appearance of the 
unknown function  (ݔ)ݑ , are defiend as follows: 

1. If the unknown function (ݔ)ݑ appears only under the integral sing of 
Fredholm or Volterra equation , the integral equation is called a first kind 
Fredholm or Volterra  integral equation respectively . 
2. If the unknown function (ݔ)ݑ appears both inside and outside the integral 

sing of Fredholm or Volterra equation, the integral equation is called a 
second kind Fredholm or Volterra integral equation respectively. 

 In the all Fredholm or Volterra integral equations presented above , if ݂(ݔ) is 
identically zero the resulting equation: 

(ݔ)ݑ = ߣ න ,ݔ)݇ (ݐ)ݑ(ݐ
௕

௔
1)                ݐ݀ − 6) 

(ݔ)ݑ = ߣ න ,ݔ)݇ (ݐ)ݑ(ݐ
௫

௔
1)                 ݐ݀ − 7) 

 

Is called homogenous Fredholm or homogenous Volterra integral equation 
respectively : 

 It is interesting to point out that any equation that includes both integrals and 
derivatives of the unknown function (ݔ)ݑ is called integro−differential 
equation. The Fredholm integro−differential equation is of the form: 

(ݔ)௞ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ , ݐ݀(ݐ)ݑ(ݐ
௕

௔
௞ݑ  =

݀௞ݑ
௞ݔ݀             (1 − 8)) 

 
 
 

However , the Volterra integro−differential equation is of the form : 
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(ݔ)௞ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ , ݐ݀(ݐ)ݑ(ݐ
௫

௔
௞ݑ  =

݀௞ݑ
௞ݔ݀            (1 − 9) 

1.2. Classification of Integral Equation :      

        Integral equations appear in many types. The types depend mainaly on the 
limits of integration and the kernel of the equation. We will be concerned on 
the following types of integral equations . 

1.2.1. Fredholm Integral Equations : 

       For Fredholm integral equations, the limits of the integration are fixed . 
moreover , the unknown function (ݔ)ݑ  may appear only inside integral 
equation in the form : 

(ݔ)݂ = න ,ݔ)݇ (ݐ)ݑ(ݐ
௕

௔
1)              ݐ݀ − 10) 

This is called Fredholm integral equations , of the first kind .however , for the 
Fredholm integral equations of the second kind , the unknown function 
u(x)appear inside and outside the integral sign. The second kind is represented 
by the form: 

u(x) = f(x) + ߣ න ,ݔ)݇ (ݐ)ݑ(ݐ
௕

௔
1)         ݐ݀ − 11) 

Example of the two kinds are given by 

ݔ݊݅ݏ − ݔݏ݋ܿ ݔ
ଶݔ = න sin(ݐݔ) (ݐ)ݑ

ଵ

଴
 ,ݐ݀

And 

(ݔ)ݑ = ݔ +
1
2

න ݔ) −  ݐ݀(ݐ)ݑ(ݐ
ଵ

ିଵ
, 

Respectively . 
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1.2.2 Volterra Integral Equations : 
     In Volterra integral equations, at the least one of the limits of integration is a 
variable. For the firest kind Volterra integral equations, the unknown 
function (ݔ)ݑ appears only inside integral sign in the form: 
 

(ݔ)݂ = න ,ݔ)݇ (ݐ)ݑ(ݐ
௫

଴
1)               ݐ݀ − 12) 

However, Volterra integral equations of the second kind, the unknown 
function (ݔ)ݑ appears  inside and outside the integral sign in the form : 

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ (ݐ)ݑ(ݐ
௫

଴
1)           ݐ݀ − 13) 

Examples of the Volterra integral equation of the first kind are 

௫ି݁ݔ = න ݁௧ି௫
௫

଴
1)            ݐ݀(ݐ)ݑ − 14) 

ܽ݊݀ 

ଶݔ5 + ଷݔ = න (5 + ݔ3 − (ݐ3
௫

଴
1)      ݐ݀(ݐ)ݑ − 15) 

However, examples of the Volterra integral equations of the second kind are 

(ݔ)ݑ = 1 − න (ݐ)ݑ
௫

଴
 , ݐ݀

ܽ݊݀ 

(ݔ)ݑ = ݔ + න ݔ) − (ݐ
௫

଴
 . ݐ݀

1.2.3 Volterra – Fredhplm Integral Equations : 
    The Volterra – Fredhplm integral equations arise from parabolic boundary 
value problems, from the mathematical modeling of the spatio- temporal 
development of an epidemic, and from various physical and biological models. 
The Volterra – Fredhplm integral equations appear in the literature in two 
forms, namely 

(ݔ)ݑ = (ݔ)݂ + ଵߣ න ,ݔ)ଵܭ (ݐ
௫

௔
ݐ݀(ݐ)ݑ + ଶߣ න ,ݔ)ଶܭ (ݐ

௕

௔
1)        ݐ݀(ݐ)ݑ − 16) 

And 
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,ݔ)ݑ (ݐ = ,ݔ)݂ (ݐ + ߣ න න ,ݔ൫ܨ ,ݐ ,ߦ ߬, ,ߦ)ݑ ߬)൯݀߬݀ߦ,
ஐ

௧

଴
,ݔ)  Ω߳(ݐ × [0, T]   (1

− 17) 

Where ݂(ݔ, ,ݔ൫ܨ and (ݐ ,ݐ ,ߦ ߬, ,ߦ)ݑ ߬)൯ are analytic function on  ܦ = Ω × [0, T] 
and Ω is a closed subset of ܴ௡, ݊ = 1,2,3 . it  is interesting to note that (1-17) 
contains disjoint Volterra and Fredholm integral equations. Moreover, the 
unknown functions ݔ)ݑ ݀݊ܽ (ݔ)ݑ,  appear inside and outside the integral (ݐ
signs . 

Examples of the two types are given by  

(ݔ)ݑ = ݔ6 + ଶݔ3 + 2 − න ݔ
ଵ

଴
ݐ݀(ݐ)ݑ − න ݐ

ଵ

଴
 ݐ݀(ݐ)ݑ

And  

,ݔ)ݑ (ݐ = ݔ + ଷݐ +
1
2

ଶݐ −
1
2

ݐ − න න (߬ − (ߦ
ଵ

଴

௧

଴
 ߬݀ߦ݀

1.2.3 Singular Integral Equations: 
Volterra integral equation of the first kind  

(ݔ)݂ = ߣ න ,ݔ)݇ (ݐ
௛(௫)

௚(௫)
          ݐ݀(ݐ)ݑ

Or of the second kind 
  

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ (ݐ
௛(௫)

௚(௫)
          ݐ݀(ݐ)ݑ

 
Are called singular if one of the limits of integration ݃(ݔ), ℎ(ݔ) or both are 
infinite .  Moreover, the previous two equations are called singular if the kernel 
,ݔ)݇  .become unbounded at one or more points in the interval of integration (ݐ
We will focus our concern on equations of the form: 

(ݔ)݂ = න
1

ݔ) − ఈ(ݐ

௫

଴
0     , ݐ݀(ݐ)ݑ < ߙ < 1   

Or of the second kind: 

(ݔ)ݑ = (ݔ)݂ + න
1

ݔ) − ఈ(ݐ

௫

଴
0     , ݐ݀(ݐ)ݑ < ߙ < 1   
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The last two standard forms are called generalized Abel's integral equation and 

weakly singular integral equation respectively .For ߙ = ଵ
ଶ
 ,the equation: 

 

f(x) = න
1

√x − t

୶

଴
u(t)dt 

Is called the Abel's singular integral equation. It is to be noted that the kernel in 
each equation, generalized Abel's integral equation, and the weakly singular 
integral equation are given by 

ݔ√ = න
1

ݔ√ − ݐ

௫

଴
  ݐ݀(ݐ)ݑ

ଷݔ = න
1

ݔ) − (ݐ
ଵ
ଷ

௫

଴
  ݐ݀(ݐ)ݑ

and 

(ݔ)ݑ = 1 + ݔ√ + න
1

ݔ) − (ݐ
ଵ
ଷ

௫

଴
 ݐ݀(ݐ)ݑ

respectively. 

1.3 Classification of Integro – Differential Equations : 
      Integro-differential equations appear in many scientific applications, 
especially when we convert initial value problems or boundary value problems 
to integral equations. The integro-differential equations contain both integral 
and differential operators. The derivatives of the unknown functions may 
appear to any order . in classifying integro-differential equations , we will 
follow the same category used before . 
1.3.1   Fredholm Integro- Differential Equations : 

Fredholm integro- differential equations appear when we convert 
differential equations to integral equations. The Fredholm integro- differential 
equations contains the unknown function (ݔ)ݑ and one of its derivatives 
, (ݔ)௡ݑ ݊ ≥ 1 inside and outside the integral sign respectively. The limits of 
integration in the case are fixed as in the Fredholm integral equations. The 
equation is  labeled as Integro- differential because it contains differential and 
integral operators in the same equation.  
The Fredholm integro- differential equations appears in the form: 

(ݔ)௡ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ , ݐ݀(ݐ)ݑ(ݐ
௕

௔
              (1 − 18) 
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Where ݑ௡ indicates the nth derivative of (ݔ). Other derivatives of less order 
may appear with ݑ௡ at the left side. Example of the Fredholm integro- 
differential equations are given by: 
 

(ݔ)ᇱݑ  = 1 − ଵ
ଷ

ݔ + ∫ ଵ, ݐ݀(ݐ)ݑݔ
଴ (0)ݑ     = 0 

And  

(ݔ)ᇱᇱݑ + (ݔ)ᇱݑ = ݔ − ݔ݊݅ݏ − න , ݐ݀(ݐ)ݑݔ
గ
ଶ

଴
(0)ݑ     = 0 , ᇱ(0)ݑ = 1 

1.3.2     Volterra Integro- Differential Equations : 
          Volterra integro- differential equations appear when we convert initial 
value problems to integral equations. The Volterra integro - differential 
equation contains the unknown function (ݔ)ݑ and one of its derivatives  
, (ݔ)௡ݑ ݊ ≥ 1 inside and outside the integral sign. At least one of the limits of 
integration in this case is a variable as in the Volterea integral equations. The 
equation is called integro – differential because differential and integral 
operations are involved in the same equation .  The Volterra integro - 
differential equation appear in the form: 

(ݔ)௡ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ , ݐ݀(ݐ)ݑ(ݐ
௫

଴
               (1 − 19) 

Where ݑ௡ indicates the nth derivative of (ݔ). Other derivative of less order 
may appear with ݑ௡ at the left side. Example of the Volterra integro – 
differential equations are given by 

(ݔ)ᇱݑ = −1 +
1
2

ଶݔ − ௫݁ݔ − න , ݐ݀(ݐ)ݑݐ
௫

଴
(0)ݑ     = 0 

And  
 

(ݔ)ᇱᇱݑ + (ݔ)ᇱݑ = 1 − ݔ݊݅ݏ)ݔ + (ݔݏ݋ܿ − න ݐ
௫

଴
(0)ݑ   ݐ݀(ݐ)ݑ = −1 , ᇱ(0)ݑ = 1 

1.3.3  Volterra – Fredholm Integro – Differential Equations : 

The Volterra – Fredholm integro-differential equations arise in the same 
manner as Volterra–Fredholm integral equations with one or more of ordinary 
derivatives in addition to the integral operations. The Volterra—Fredholm 
integro-differential equations appear in the literature in two forms, namely 
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(ݔ)௡ݑ = (ݔ)݂ + ଵߣ න ݇ଵ

௫

௔
,ݔ) ݐ݀(ݐ)ݑ(ݐ + ଶߣ න ݇ଶ

௕

௔
,ݔ) 1)   , ݐ݀(ݐ)ݑ(ݐ − 20) 

And 

,ݔ)௡ݑ (ݐ = ,ݔ)݂ (ݐ + ߣ න න ,ݔ)ܨ ,ݐ ,ߦ ߬, ,ߦ)ݑ ,߬݀ߦ݀(߬
ஐ

   
௧

଴
,ݔ)  (ݐ

∈ Ω × [0, T]                                                        (1 − 21) 
Where ݂(ݔ, ,ݔ)ܨ and (ݐ ,ݐ ,ߦ ߬, ,ߦ)ݑ ߬)) are analytical functions on D = Ω ×
[0, T] , and Ω is a closed subset of ܴ௡ , ݊ = 1,2,3 . It is interesting to note that 
(1-20) contains disjoint Volterra and Fredholm integral equations, where as  (1-
21) contains mixed integrals. Other derivatives of less order may appear as 
well. 
Moreover, the unknown functions  ݔ)ݑ ݀݊ܽ(ݔ)ݑ,  appear inside and outside (ݐ
the integral sings. This is a characteristic feature of a second kind integral 
equation. If the unknown functions appear only inside the integral sings , the 
resulting equation are of the first kind . Initial conditions should be given to 
determine the particular solution. Examples of the two types are given by 
  

(ݔ)ᇱݑ = ݔ24 + ସݔ + 3 − න ݔ) − (ݐ
௫

଴
ݐ݀(ݐ)ݑ − න ݐ

ଵ

଴
(0)ݑ   , ݐ݀(ݐ)ݑ = 0 

And 

,ݔ)ᇱݑ (ݐ = 1 + ଷݐ +
1
2

ଶݐ −
1
2

ݐ − න න (߬ − , ߬݀ߦ݀(ߦ
ଵ

଴

௧

଴
,0)ݑ  (ݐ =  .ଷݐ

1.4 Linearity and Homogeneity : 
integral equations and integro—differential equations fall into other types of 
classifications according to linearity and homogeneity concepts. These two 
concepts play amajor role in the structure of the solutions. In what highlight 
the definitions of these concepts. 

1.4.1   Linearity Concept . 

If the exponent of the unknown function (ݔ)ݑ inside the integral sign is one , 
the integral equations or the integro--differential equation  is called linear. If  
the unknown function  (ݔ)ݑ has exponent other than one , or  if the equation 
contains nonlinear functions of  (ݔ)ݑ , such as ݁௨, sinh ݑ  , cos ݑ  , ln(1 +  , (ݑ
the integral equation or the integro—differeential equation is called nonlinear. 
To explain this concept , we consider the equation : 
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(ݔ)ݑ = 1 − න ݔ) − (ݐ
௫

଴
 , ݐ݀(ݐ)ݑ

(ݔ)ݑ = 1 − න ݔ) − (ݐ
ଵ

଴
 , ݐ݀(ݐ)ݑ

(ݔ)ݑ = 1 − න (1 + ݔ − (ݐ
௫

଴
 ,  ݐ݀ (ݐ)ସݑ

and 

(ݔ)ᇱݑ = 1 + න ௨(௧)݁ݐݔ
ଵ

଴
, ݐ݀ (0)ݑ = 1 . 

The first two examples are linear Volterra and Fredholm integral equations 
respectively, whereas the last two are nonlinear Volterra and Fredholm integral 
equations respectively. 
The important to point out that linear equations, except Fredholm integral 
equation of the first kind, give a unique solution exists. However, solution of 
nonlinear equation may not be unique. Nonlinear equations usually give more 
than one solution and it is not usually easy to handle. 
Both linear and nonlinear integral equations of any kind will be investigated by 
using traditional and new methods . 

1.4.2  Homogeneity Concept : 

  Integral equations and integro—differential equations of the second kind are 
classified as homogeneous or inhomogeneous, if the function ݂(ݔ) in the 
second kind of Volterra or Fredholm integral equations or the integro—
differential equations is identically zero , the equation is called homogeneous. 
Otherwise it is called inhomogeneous. Notice that this property holds for 
equations of the second kind only. To clarify this concept we consider the 
following equations : 

(ݔ)ݑ = sin ݔ + න (ݐݔ)
௫

଴
 , ݐ݀(ݐ)ݑ

(ݔ)ݑ = ݔ + න ݔ) − ଶ(ݐ
ଵ

଴
 , ݐ݀(ݐ)ݑ
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(ݔ)ݑ = න (1 + ݔ − (ݐ
௫

଴
 ,  ݐ݀ (ݐ)ସݑ

And 

(ݔ)ᇱᇱݑ = න (ݐ)ݑݐݔ
ଵ

଴
, ݐ݀ (0)ݑ = ᇱ(0)ݑ    1 = 0 . 

The first two equations are inhomogeneous because ݂(ݔ) = sin ݔ (ݔ)݂ ݀݊ܽ  =
(ݔ)݂ where the last two equations are homogenous because ,ݔ = 0 for each 
equation. 

1.5 Converting IVP to Volterra Integral Equation : 

 We will study the technique that will convert an initial value problem(IVP) to 
an equivalent Volterra integral equation and Volterra integro-differential 
equation .For the simplicity reasons , we will apply this process to second order 
initial value problem given by  

ᇱᇱ(x)ݕ + p(x)yᇱ(x) + q(x)y(x) = g(x)        (1 − 22) 

Subject to the initial conditions: 

(0)ݕ = ᇱ(0)ݕ    ,    ߙ = 1)                  ߚ − 23) 

Where ߙ and ߚ are constants. The function p(x) and q(x)  are analytic 
functions , and g(x) is continuous through the interval of discussion. The 
achieve our goal we first set 

(ݔ)ᇱᇱݕ = 1)           ,(ݔ)ݑ − 24) 

Where u(x) is continuous function. Integrating both sides of (2-24) from 0 to ݔ 
yields 

(ݔ)ᇱݕ − ᇱ(0)ݕ = න ݐ݀(ݔ)ݑ
௫

଴
          (1 − 25) 

Or equivalently 

(ݔ)ᇱݕ = ߚ + න . ݐ݀(ݐ)ݑ
௫

଴
             (1 − 26) 

Integrating both sides of (1-26) from 0 to ݔ yields 
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(ݔ)ݕ − (0)ݕ = ݔߚ + න න ݐ݀(ݐ)ݑ
௫

଴

௫

଴
1)        , ݐ݀ − 27) 

Or equivalently 

(ݔ)ݕ = ߙ + ݔߚ + න ݔ) − (ݐ)ݑ(ݐ
௫

଴
1)           ݐ݀ − 28) 

Substituting (1-23) ,(1-26) and (1-28) into the initial value problem (1-22) yields 
the Volterra integral equation: 

(ݔ)ݑ + ߚൣ(ݔ)݌ + ∫ ௫ݐ݀(ݐ)ݑ
଴ ൧ + ߙൣ(ݔ)ݍ + ݔߚ + ∫ ݔ) − ௫ݐ݀(ݐ)ݑ(ݐ

଴ ൧ =
1)                                                                              (ݔ)݃ − 29)                                                                             

 The last equation can be written in the standard Volterra integral equation 
form : 

(ݔ)ݑ = (ݔ)݂ − න ,ݔ)݇ (ݐ
௫

଴
1)        , ݐ݀(ݐ)ݑ − 30) 

where  

,ݔ)݇  (ݐ = (ݔ)݌ + ݔ)(ݔ)ݍ −  (ݐ

And 

(ݔ)݂ = (ݔ)݃ − (ݔ)݌ߚ] + (ݔ)ݍߙ +                    [(ݔ)ݍݔߚ

It is interesting to point out that by differentiating Volterra equation (1-30) 
with respect to, using Leibnitz rule , we obtain and equivalent Volterra integro 
–differential equation in the form: 

(ݔ)ᇱݑ + ,ݔ)݇ (ݔ)ݑ(ݔ = ݂ᇱ(ݔ) − න
,ݔ)߲݇ (ݐ

ݔ߲

௫

଴
(0)ݑ  ݐ݀(ݐ)ݑ = ݂(0)    1 − 31) 

The technique presented above to convert initial value proplems to equivalent 
Volterra integral equations can be generalized be considering the general initial 
value problem: 

௡ݕ + ܽଵ(ݔ)ݕ(௡ିଵ) + ⋯ + ܽ௡ିଵݕᇱ + ܽ௡(ݔ)ݕ = 1)       (ݔ)݃ − 32) 

Subject to the initial conditions 

(0)ݕ = ܿ଴  , ᇱ(0)ݕ = ܿଵ  , ᇱᇱ(0)ݕ = ܿଶ , … , (0)(௡ିଵ)ݕ = ܿ௡ିଵ   
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We assume that the functions ܽ௜(ݔ), 1 ≤ ݅ ≤ ݊ are analytic at the origin, and 
the function ݃(ݔ) is the continuous through the interval of the discussion. And 
we then consider the transformation: 

(ݔ)௡ݕ = 1)                 (ݔ)ݑ − 33) 

Integrating both sides with respect to ݔ gives  

(ݔ)(௡ିଵ)ݕ = ܿ௡ିଵ + න (ݐ)ݑ
௫

଴
1)              ݐ݀ − 34)    

Integrating again both sides  with respect to ݔ yields 

(ݔ)(௡ିଶ)ݕ = ܿ௡ିଶ + ܿ௡ିଵݔ + න න (ݐ)ݑ
௫

଴

௫

଴
ݐ݀ݐ݀

= ܿ௡ିଶ + ܿ௡ିଵݔ + න ݔ) − (ݐ
௫

଴
1)   ݐ݀(ݐ)ݑ − 35) 

Obtained by reducing the double integral to a single integral. Proceeding as 
before we find  

(ݔ)(௡ିଷ)ݕ = ܿ௡ିଷ + ܿ௡ିଶݔ +
1
2

ܿ௡ିଵݔଶ + න න න (ݐ)ݑ
௫

଴
ݐ݀ݐ݀ݐ݀

௫

଴

௫

଴

= ܿ௡ିଷ + ܿ௡ିଶݔ +
1
2

ܿ௡ିଵݔଶ +
1
2

 න ݔ) − ଶ(ݐ
௫

଴
1) ݐ݀(ݐ)ݑ − 36)    

Continuing the integration process leads to  

(ݔ)ݕ = ෍
௞ܥ

݇!

௡ିଵ

௞ୀ଴

௞ݔ +
1

(݊ − 1)!
න ݔ) − ௡ିଵ(ݐ

௫

଴
1)     ݐ݀(ݐ)ݑ − 37) 

Substituting (1-33)—(1-37) into (1-32) gives 

(ݔ)ݑ = (ݔ)݂ − න ,ݔ)ܭ (ݐ
௫

଴
1)       ݐ݀(ݐ)ݑ − 38) 

Where 

,ݔ)ܭ (ݐ = ෍
ܽ௡

(݇ − 1)!

௡

௞ୀଵ

ݔ) − ௞ିଵ     (1(ݐ − 39) 

And 
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(ݔ)݂ = (ݔ)݃ − ෍ ௝ܽ

௡

௝ୀଵ

ቌ෍
ܿ௡ି௞

(݆ − ݇)!

௝

௞ୀଵ

௝ି௞ ቍ   (1(ݔ) − 40) 

The following examples will highlight the process to convert initial value 
problem to an equivalent Volterra integral equation. 

Example ( 1.1): Convert  the following initial value problem to an equivalent 
Volterra integral equation: 

(ݔ)ᇱݕ − (ݔ)ݕݔ2 = ݁௫మ (0)ݕ    ,   = 1         (1 − 41) 

We first set  

(ݔ)ᇱݕ = 1)                   (ݔ)ݑ − 42) 

Integrating both side of (1-42) , using the initial condition  (0)ݕ = 1  gives  

(ݔ)ݕ − (0)ݕ = න , ݐ݀(ݐ)ݑ
௫

଴
             (1 − 43) 

or equivalently  

(ݔ)ݕ = 1 + න (ݐ)ݑ
௫

଴
1)            , ݐ݀ − 44) 

substituting (1-42) and (1-44) into (1-41) gives the equivalent Volterra integral 
equation: 

(ݔ)ݑ = ݔ2 + ݁௫మ + ݔ2 න (ݐ)ݑ
௫

଴
1)           .ݐ݀ − 45) 

Example (1.2): Convert the following initial value problem to an equivalent 
Volterra integral equation: 

ᇱᇱᇱݕ − ᇱᇱݕ − ᇱݕ + ݕ = 0, (0)ݕ = 1 , ᇱ(0)ݕ = 2, ᇱᇱ(0)ݕ = 3     (1 − 46)    

We first let 

ᇱᇱᇱݕ =  (ݔ)ݑ

Integration both side 
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න ݀(
௫

଴
((ݔ)′′ݕ = න ݐ݀(ݐ)ݑ

௫

଴
 

 

ᇱᇱݕ  = ∫ ௫ݐ݀(ݐ)ݑ
଴  

Using the initial condition ݕᇱᇱ(0) = 3 we obtain  

ᇱᇱݕ = 3 + න ݐ݀(ݐ)ݑ
௫

଴
 

The integration again  

න ݀൫ݕᇱ(ݔ)൯ = න ݔ݀ 3
௫

଴
+ න න ݐ݀ݐ݀(ݐ)ݑ

௫

଴
 

௫

଴
 

Using the condition ݕᇱ(0) = 2 

(ݔ)ᇱݕ = 2 + ݔ3 + න න ݐ݀(ݐ)ݑ
௫

଴

௫

଴
 ݐ݀

Integration again  

න ((ݔ)ݕ)݀
௫

଴
= න (2 + ݔ݀(ݔ3

௫

଴
+ න න න ݐ݀(ݐ)ݑ

௫

଴

௫

଴
ݐ݀

௫

଴
 ݐ݀

Using initial condition (0)ݕ = 1 obtain  

(ݔ)ݕ = 1 + ݔ2 +
3
2

ଶݔ + න න න ݐ݀(ݐ)ݑ
௫

଴

௫

଴
ݐ݀

௫

଴
 ݐ݀

= 1 + ݔ2 +
3
2

ଶݔ +
1
2

න ݔ) − ݐ݀(ݐ)ݑଶ(ݐ
௫

଴
 

1.6  Converting Volterra Integral Equation to IVP 

 We  will present a method that will convert a Volterra integral equation to 
equivalent  IVP. The mothed is achieved simply by differentiating both sides of 
the Volterra equations with respect to ݔ as many times as we need to get rid of 
the integral sign and come out a differential equation. The conversing of the 
Volterra equations requires the ues of Leibnitz rule for differentiating the 
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integral at the right hand side. The initial conditions can be obtained by 
substituting ݔ = 0 into (ݔ)ݑ andits derivatives. 

Example (1.3): Find the initial value problem equivalent to the Volterra 
integral equation : 

(ݔ)ݑ = ଶݔ + න ݔ) − ݐ݀(ݐ)ݑ(ݐ
௫

଴
                (1 − 47)      

Differentiating both side of (1-47) 

(ݔ)ᇱݑ = ݔ2 + න ݐ݀(ݐ)ݑ
௫

଴
         (1 − 48) 

The get rid of the integral sing we should differentiate (1-48) and by using 
Leibnitz rule we obtain the second order ODE : 

(ݔ)ᇱᇱݑ = 2 + 1)        (ݔ)ݑ − 49) 

To determine the initial conditions , we substitute ݔ = 0 into both sides of (1-
47) and (1-48) to find (0)ݑ = 0 and ݑᇱ(0) = 0 respectively. This is turn gives 
the initial value problem : 

(ݔ)ᇱᇱݑ − (ݔ)ݑ = 2 , (0)ݑ = 0 , ᇱ(0)ݑ = 0 . 

Example (1.4): Find the initial value problem equivalent to the Volterra 
integral equation: 

(ݔ)ݑ = sin ݔ −
1
2

න ݔ) − (ݐ)ݑଶ(ݐ
௫

଴
1)         ݐ݀ − 50) 

Differentiating both sides of the integral equation three times to get rid of the 
integral sign to find  

(ݔ)ᇱݑ = cos ݔ − න ݔ) − (ݐ
௫

଴
 , ݐ݀(ݐ)ݑ

(ݔ)ᇱᇱݑ = − sin ݔ − න (ݐ)ݑ
௫

଴
   , ݐ݀

(ݔ)ᇱᇱᇱݑ = − cos ݔ − 1)                   (ݔ)ݑ − 51) 
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Substituting ݔ = 0  into  (1-50) and into the first two integro—differential 
equation in (1-51) gives the initial conditions: 

(0)ݑ = 0  , ᇱ(0)ݑ = ᇱᇱ(0)ݑ   , 1 = 0    (1 − 52) 

In view of the last results , the initial value problem equivalent to Volterra 
integral equation (1-50) is the third order inhomogeneous ODE given by  

(ݔ)ᇱᇱᇱݑ + (ݔ)ݑ = , ݔݏ݋ܿ− , (0)ݑ = 0 , ᇱ(0)ݑ = 1 , ᇱᇱ(0)ݑ = 0   

1.7 Converting BVP to Fredholm Integral Equation 

We will present a method that will convert a boundary value problem to an 
equivalent Fredholm integral equation. The method is similar previous 
converting Volterra equation to IVB, with the exception that boundary 
conditions will be used instead of ignition values. In this case we will determine 
another initial condition that is not given in the problem. The technique 
requires more work if compared with the initial value problems when 
converted to Volterra integral equations .For this reason , the technique that 
will be presented is rarely used. We will present two specific distinct boundary 
value problems (BVPs) to derive two distinct formulas that can be used for 
converting BVP to an equivalent Fredholm integral equation . 

Type  1  

We first consider the following boundary value problem: 

(ݔ)ᇱᇱݕ + (ݔ)ݕ(ݔ)݃ = ℎ(ݔ),       0 < ݔ < 1 ,       (1 − 53)    

With the boundary conditions : 

(0)ݕ = ,  ߙ (1)ݕ = 1)          ߚ − 54) 

We first set  

(ݔ)ᇱᇱݕ = 1)             .(ݔ)ݑ − 55) 

Integrating both sides of (1-55) from 0 to ݔ we obtain 

න ݐ݀(ݔ)ᇱᇱݕ =
௫

଴
න (ݐ)ݑ

௫

଴
1)                   ݐ݀ − 56) 

That gives  
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(ݔ)ᇱݕ = ᇱ(0)ݕ + න (ݐ)ݑ
௫

଴
1)               , ݐ݀ − 57) 

Where the initial condition ݕᇱ(0) is not given in a boundary value problem. The 
condition ݕᇱ(0) will be determined later by using the boundary condition at 
ݔ = 1. Integrating both sides of (1-57) from 0 ݔ ݋ݐ gives  

(ݔ)ݕ = (0)ݕ + ᇱ(0)ݕݔ + න න (ݐ)ݑ
௫

଴

௫

଴
1)        ݐ݀ − 58) 

Or equivalently  

(ݔ)ݕ = ߙ + ᇱ(0)ݕݔ + න ݔ) − (ݐ
௫

଴
1)       , ݐ݀(ݐ)ݑ − 59) 

Obtained upon using the condition (0)ݕ =  and by reducing double integral ߙ
to asingle integral. To determine ݕᇱ(1) =   we find ߚ

(1)ݕ = ߙ + ᇱ(0)ݕ + න (1 − (ݐ
ଵ

଴
1)           , ݐ݀(ݐ)ݑ − 60) 

That gives 

ߚ = ᇱ(0)ݕߙ + න (1 − (ݐ)ݑ(ݐ
ଵ

଴
1)             ݐ݀ − 61) 

This in turn gives 

ᇱ(0)ݕ = ߚ) − (ߙ − න (1 − (ݐ)ݑ(ݐ
ଵ

଴
1)       ݐ݀ − 62) 

Substituting (1-62) into (1-59) gives 

(ݔ)ݕ = ߙ + ߚ) − ݔ(ߙ − න 1)ݔ − ݐ݀(ݐ)ݑ(ݐ + න ݔ) − (ݐ)ݑ(ݐ
௫

଴

ଵ

଴
1)   . ݐ݀ − 63) 

Substituting (1-55)and (1-63) into (1-53) gives 

(ݔ)ݑ + (ݔ)݃ߙ + ߚ) − (ݔ)݃ݔ(ߙ − න 1)(ݔ)݃ݔ − (ݐ)ݑ(ݐ
ଵ

଴
ݐ݀

+ න (ݔ)݃
௫

଴
ݔ) − ݐ݀(ݐ)ݑ(ݐ

= ℎ(ݔ)                                                    (1 − 66) 



١٩ 
 

To carry Equation (1-64) to 

(ݔ)ݑ = ℎ(ݔ) − (ݔ)݃ߙ − ߚ) − (ݔ)݃ݔ(ߙ

− (ݔ)݃ න ݔ) − ݐ݀(ݐ)ݑ(ݐ
௫

଴

+ න](ݔ)݃ݔ (1 − ݐ݀(ݐ)ݑ(ݐ + න (1 − , [ݐ݀(ݐ)ݑ(ݐ
ଵ

௫

௫

଴
    (1 − 65) 

That gives 

(ݔ)ݑ = (ݔ)݂ + න 1)ݐ − ݐ݀(ݐ)ݑ(ݔ)݃(ݔ
௫

଴
+ න 1)ݔ − (ݐ

ଵ

௫
1)   ݐ݀(ݐ)ݑ(ݔ)݃ − 66) 

That leads to the Fredholm integral equation : 

(ݔ)ݑ = (ݔ)݂ + න ,ݔ)ܭ (ݐ
௫

଴
1)          ݐ݀(ݐ)ݑ − 67) 

Where 

(ݔ)݂ = ℎ(ݔ) − (ݔ)݃ߙ − ߚ) − 1)         ,(ݔ)݃ݔ(ߙ − 68) 

And the kernel ݔ)ܭ,   is given by (ݐ

,ݔ)ܭ (ݐ = ൜
1)ݐ − 0 ݎ݋݂      ,(ݔ)݃(ݔ ≤ ݐ ≤ ݔ

1)ݔ − ݔ   ݎ݋݂      , (ݔ)݃(ݐ ≤ ݐ ≤ 1
�                  (1 − 69) 

Example (1.4) Convert the following BVP to an equivalent Fredholm integral 
equation : 

(ݔ)ᇱᇱݕ + (ݔ)ݕ9 = cos ݔ (0)ݕ    ,  = (1)ݕ = 0             (1 − 70) 

We can easily observe that ߙ = ߚ = 0 , (ݔ)݃ = 9 and ℎ(ݔ) =  This  in .ݔݏ݋ܿ
turn gives  

(ݔ)݂ = cos ݔ               (1 − 71) 

Substituting this into (1-67) gives the Fredholm integral equation  

(ݔ)ݑ = ଶݔ2− + න ,ݔ)ܭ (ݐ
ଵ

଴
1)    , ݐ݀(ݐ)ݑ − 72) 

Where the kernel ݇(ݔ,  is given by (ݐ
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,ݔ)݇ (ݐ = ൜
1)ݔݐ − 0 ݎ݋݂   ,(ݔ ≤ ݐ ≤ ݔ

ଶ(1ݔ − ݔ  ݎ݋݂     ,(ݐ ≤ ݐ ≤ 1
�                      (1 − 73) 

Type 2 

 We next consider the following boundary value problem: 

(ݔ)ᇱᇱݕ + (ݔ)ݕ(ݔ)݃ = ℎ(ݔ)   ,   0 < ݔ < 1              (1 − 74) 

With the boundary conditions: 

(0)ݕ = ,  ଵߙ ᇱ(1)ݕ = ଵ          (1ߚ − 75) 

We again set  

(ݔ)ᇱᇱݕ = 1)                (ݔ)ݑ − 76) 

Integration both sides of (1-76) from 0 ݔ ݋ݐwe obtain 

න (ݔ)ᇱᇱݕ
௫

଴
ݐ݀ = න (ݐ)ݑ

௫

଴
1)                ݐ݀ − 77) 

That gives 

(ݔ)ᇱݕ = ᇱ(0)ݕ + න (ݐ)ݑ
௫

଴
1)            ݐ݀ − 78) 

Where the initial condition ݕᇱ(0) is not given. The condition ݕᇱ(0) will be 
derived later by using the boundary condition at ݕᇱ(1) =  ଵ . Integrating bothߚ
sides of (1-78) from 0 ݔ ݋ݐ gives 

(ݔ)ݕ = (0)ݕ + ᇱ(0)ݕݔ + න න (ݐ)ݑ
௫

଴
ݐ݀ ݐ݀

௫

଴
            (1 − 79) 

Or equivalently  

(ݔ)ݕ = ଵߙ + ᇱ(0)ݕݔ + න ݔ) − (ݐ
௫

଴
1)              ݐ݀(ݐ)ݑ − 80) 

Obtained upon using the condition (0)ݕ =  ଵ  and by reducing  double integralߙ
to a single integral. To determine ݕᇱ(0), we first differentiate (1-80) with 
respect to ݔ this get  

(ݔ)ᇱݕ = ᇱ(0)ݕ + න (ݔ)ݑ
௫

଴
1)                         ݐ݀ − 81) 
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Where by substituting ݔ = 1 into both sides of (1-81) and using the boundary 
condition at ݕᇱ(1) =  ଵ we findߚ

ᇱ(1)ݕ = ᇱ(0)ݕ + න 1)         ݐ݀(ݐ)ݑ − 82)
ଵ

଴
 

That gives 

ᇱ(0)ݕ = ଵߚ − න (ݐ)ݑ
ଵ

଴
1)             .ݐ݀ − 83) 

Using (1-83) into (1-80) gives  

(ݔ)ݕ = ଵߙ + ଵߚ]ݔ − න ݐ݀(ݐ)ݑ
ଵ

଴
+ න ݔ) − (ݐ

௫

଴
1)           ݐ݀(ݐ)ݑ − 84) 

Substituting (1-76) and (1-84) into (1-74) yields 

(ݔ)ݑ + (ݔ)ଵ݃ߙ + (ݔ)݃ݔଵߚ − න (ݔ)݃ݔ
ଵ

଴
ݐ݀(ݐ)ݑ + න (ݔ)݃

௫

଴
ݔ) − ݐ݀(ݐ)ݑ(ݐ

= ℎ(ݔ).              (1 − 85) 

To carry equation (1-85) to 

(ݔ)ݑ = ℎ(ݔ) − ଵߙ) + (ݔ)݃(ݔଵߚ + (ݔ)݃ݔ ቈන ݐ݀(ݐ)ݑ
௫

଴
+ න ݐ݀(ݐ)ݑ

ଵ

௫
቉

− (ݔ)݃ න ݔ) − (ݐ
௫

଴
1)           ݐ݀(ݐ)ݑ − 86) 

That last equation can be written as 

(ݔ)ݑ = (ݔ)݂ + න ݐ
௫

଴
ݐ݀(ݔ)ݑ(ݔ)݃ + න (ݐ)ݑ(ݔ)݃ݔ

ଵ

௫
1)   ݐ݀ − 87) 

That leads to the Fredholm integral equation: 

(ݔ)ݑ = (ݔ)݂ + න ,ݔ)݇ (ݐ
ଵ

଴
1)               ݐ݀(ݐ)ݑ − 88) 

where                  ݂(ݔ) = ℎ(ݔ) − ଵߙ) + 1)           ,(ݔ)݃(ݔଵߚ − 89) 

and the kernel ݔ)ܭ,  is given by (ݐ
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,ݔ)݇ (ݐ = ൜
0 ݎ݋݂      ,(ݔ)݃ݐ ≤ ݐ ≤ ݔ
ݔ  ݎ݋݂     ,(ݔ)݃ݔ ≤ ݐ ≤ 1

�                       (1 − 90) 
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Chapter2 

Existence of Solution of Linear Integral Equations 

2.1 Fredholm Integral Equations 
It was stated in chapter 1 that Fredholm Integral Equation  arise in 
many scientific applications. It was also shown that Fredholm integral 
equation  can by derived from boundary value problems. 

At stated before, in Fredholm  integral  equation , the integral 
containing the unknown function (ݔ)ݑ is characterized by fixed limits 
of the integration in the form 

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ ݐ݀(ݐ)ݑ(ݐ
௕

௔
               (2 − 1) 

Where ܽ ܽ݊݀ ܾ are constants. For the first kind Fredholm integral 
equation  the unknown function (ݔ)ݑ occurs only under the integral 
sign in the form  

(ݔ)݂ = න ,ݔ)݇ ݐ݀(ݐ)ݑ(ݐ
௕

௔
        (2 − 2) 

However , Fredholm integral equation of the second kind ,the 
unknown function (ݔ)ݑ occurs inside and outside the integral sign. 
The second kind is represented by the form 

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ ݐ݀(ݐ)ݑ(ݐ
௕

௔
 

The kernel ݇(ݔ,  are given real valued (ݔ)݂ and the function (ݐ
function and ߣ is a parameter. When ݂(ݔ) = 0, the equation is said to 
be homogeneous. 

In this chapter , we will mostly use degenerate or separable kernels. 
degenerate or separable kernel is a function that can be expressed as 
the sum of the product of two functions each depends only on one 
variable. Such a kernel can be expressed in the form 

,ݔ)݇ (ݐ = ෍ ௜݂(ݔ) ௜݃(ݐ)
௡

௜ୀଵ

.        (2 − 3) 
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examples of separable kernels are ݔ − ,ݐ ݔ) − ,ଶ(ݐ  .ܿݐ݁   ,ݐݔ4

Theorem(2-1):(Fredholm Alternative Theorem)  

If the homogeneous Fredholm Integral Equation   

(ݔ)ݑ = ߣ න ,ݔ)݇ ݐ݀(ݐ)ݑ(ݐ
௕

௔
         (2 − 4) 

Has only the trivial solution (ݔ)ݑ = 0,then the corresponding 
nonhomogeneous Fredholm equation 

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ ݐ݀(ݐ)ݑ(ݐ
௕

௔
      (2 − 5) 

Has always a unique solution. This theorem is known by the Fredholm 
alternative theorem[1]. 

Theorem(2-2):(unique solution) 

If the kernel ݇(ݔ,  in Fredholm integral equation (2-1) is the (ݐ
continuous ,real valued function, then anecessary condition for the 
existence of a unique solution for Fredholm integral equation (2-1) is 
given by 

ܾ)ܯ|ߣ| − ܽ) < 1           (2 − 6) 

Where  

,ݔ)݇| |(ݐ ≤ ܯ ∈ ܴ        (2 − 7) 

On the contrary, if the necessary condition (2-6) does not hold, then a 
continuous solution may exist for FIE. To illustrate this, we consider 
the FIE  

(ݔ)ݑ = 2 − ݔ3 + න ݔ3) + (ݐ
ଵ

଴
2)       ݐ݀(ݐ)ݑ − 8) 

It is clear that ߣ = 1, ,ݔ)݇| |(ݐ ≤ 4 ܽ݊݀ (ܾ − ܽ) = 1. this gives 

ܾ)ܯ|ߣ| − ܽ) = 4 > 1           (2 − 9) 

However, the Fredholm equation (2-8) has an exact solution given by 

(ݔ)ݑ = 2)             ݔ6 − 10) 
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A variety of analytic and numerical methods have been used to handle 
FIE. The direct computation method, the successive approximations 
method, and converting FIE to an equivalent BVP are among many 
traditional methods that were commonly used. However, we will 
apply the recently developed methods, namely, the Adomian 
decomposition method (ADM), the modified Adomian decomposition 
method (MADM), and the variation iteration method (VIM) to handly 
the FIE some of the traditional methods. 

In what follows we will present the methods , new and traditional,that 
will be used to handle the FIE (2-1) 

2.2 Adomian Decomposition Method: 
The Adomian Decomposition Method  consist of decomposing the 
unknown function (ݔ)ݑ of any equation into a sum of an infinite 
number of components defined by the decomposition series 

(ݔ)ݑ = ෍ (ݔ)௡ݑ
ஶ

௡ୀ଴

               (2 − 11) 

Or equivalently 

(ݔ)ݑ = (ݔ)଴ݑ + (ݔ)ଵݑ + (ݔ)ଶݑ + (ݔ)ଷݑ + ⋯    (2 − 12) 

Where the components  ݑ௡(ݔ), ݊ ≥ 0  will be determined recurrently. 
The ADM concerns itself with finding the components 
,(ݔ)଴ݑ ,(ݔ)ଵݑ ,(ݔ)ଶݑ … individually. As we have seen before the 
determination of these components can be achieved in an easy way 
through a recurrence relation that usually involves simple integrals 
that can be easily evaluated. 

To establish the recurrence relation , we substitute (2 − 11) into the 
FIE(2 − 1) to obtain  

෍ (ݔ)௡ݑ
ஶ

௡ୀଵ

= (ݔ)݂ + ߣ න ,ݔ)݇ ෍)(ݐ (ݐ)௡ݑ
ஶ

௡ୀ଴

ݐ݀(
௕

௔
   (2 − 13) 

Or equivalently  
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(ݔ)଴ݑ + (ݔ)ଵݑ + (ݔ)ଶݑ + ⋯

= ߣ න ,ݔ)݇ (ݐ)଴ݑ൫(ݐ + (ݐ)ଵݑ + ݐ൯݀(ݐ)ଶݑ
௕

௔
  (2 − 14) 

The zeroth component ݑ଴(ݔ) is identified by all terms that are not 
included under the integral sing.This means that the components 
, (ݔ)௝ݑ ݆ ≥ 0 of the unknown function (ݔ)ݑ are completely 
determined by setting the recurrence relation  

(ݔ)଴ݑ = .(ݔ)݂ (ݔ)௡ାଵݑ = ߣ න ,ݔ)݇ ݐ൯݀(ݐ)௡ݑ൫(ݐ
௕

௔
 , ݊

≥ 0          (2 − 15) 

Or equivalently  

(ݔ)଴ݑ =                               ,(ݔ)݂

(ݔ)ଵݑ = ߣ න ,ݔ)݇ ,ݐ൯݀(ݐ)଴ݑ൫(ݐ
௕

௔

(ݔ)ଶݑ = ߣ න ,ݔ)݇ ,ݐ൯݀(ݐ)ଵݑ൫(ݐ
௕

௔

(ݔ)ଷݑ = ߣ න ,ݔ)݇ ,ݐ൯݀(ݐ)ଶݑ൫(ݐ
௕

௔

                (2 − 16) 

And so on other components. 

In view of (2 − 16) the components ݑ଴(ݔ), ,(ݔ)ଵݑ , (ݔ)ଶݑ … are 
completely determined .As a result , the solution (ݔ)ݑ of the FIE is 
readily obtained in series form by using series as sumption in (2 −
12). 

Example (2-1): Solve the following FIE  

u(x) = e୶ − x + x න tu(t)
ଵ

଴
dt              (2 − 17) 

The ADM assumes that the solution (ݔ)ݑ has a series form given in 
(2 − 11). Substituting the decomposition series (2 − 11) into both 
sides of (2 − 17) gives  

෍ u୬(x)
ஶ

୬ୀ଴

= e୶ − x + x න t ෍ u୬(t)
ஶ

୬ୀ଴

ଵ

଴
dt              (2 − 18) 
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Or equivalently  

u଴(x) + uଵ(x) + uଶ(x) + ⋯
= e୶ − x

+ x න t(u଴(t) + uଵ(t) + uଶ(t) + ⋯ )dt
ୠ

ୟ
 (2 − 19) 

We identify the zeroth component by all terms that are not included 
under the integral sing. Therefore , we obtain the following recurrence 
relation 

(ݔ)଴ݑ  = ݁௫ − , ݔ (ݔ)௞ାଵݑ = ݔ ∫ ଵݐ൯݀(ݐ)௞ݑ൫ݐ
଴  , ݇ ≥ 0              (2 −

20) 

Consequently, we obtain 

(ݔ)଴ݑ = ݁௫ − ݔ

(ݔ)ଵݑ = ݔ න ݐ൯݀(ݐ)଴ݑ൫ݐ = ݔ න ௧݁)ݐ − ݐ݀(ݐ
ଵ

଴
=

2
3

, ݔ
ଵ

଴

(ݔ)ଶݑ = ݔ න ݐ൯݀(ݐ)ଵݑ൫ݐ = ݔ න
2
3

ݐଶ݀ݐ
ଵ

଴
=

2
9

, ݔ
ଵ

଴

(ݔ)ଷݑ = ݔ න ݐ൯݀(ݐ)ଶݑ൫ݐ = ݔ න
2
9

ݐଶ݀ݐ
ଵ

଴
=

2
27

, ݔ
ଵ

଴

(ݔ)ସݑ = ݔ න ݐ൯݀(ݐ)ଷݑ൫ݐ = ݔ න
2

27
ݐଶ݀ݐ

ଵ

଴
=

2
81

, ݔ
ଵ

଴

       (2 − 21) 

And so on. Using (2-11) gives the series solution  

(ݔ)ݑ = ݁௫ − ݔ +
2
3

ݔ ൬1 +
1
3

+
1
9

+
1

27
+

1
81

+ ⋯ ൰         (2 − 22) 

Notice that the infinite geometric series at the right side has ܽଵ = 1,  

and the ratio ݎ = ଵ
ଷ
. The sum of the infinite series is therefore given by  

ݏ =
1

1 − 1
3

=
3
2

                   (2 − 23) 

The series solution (2--22) converges to the closed form solution  

(ݔ)ݑ = ݁௫                (2 − 24). 
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Example (2-2): Consider the Fredholm integral equation of second 
kind  

(ݔ)ݕ =
1
2

cos ݔ + න cos ݔ sin ݐ . ݐ݀(ݐ)ݕ 
గ
ଶ

଴
 

Applying the ADM  we find 

෍ (ݔ)௡ݕ =
ஶ

௡ୀ଴

1
2

cos ݔ + න cos ݔ sin ݐ  ෍ (ݐ)௡ݕ
ஶ

௡ୀ଴

. ݐ݀
గ
ଶ

଴
 

To determine the components of (ݔ)ݕ, we use the recurrence relation 

(ݔ)଴ݕ =
1
2

cos ,    ݔ (ݔ)௡ାଵݕ = න cos ݔ sin ݐ . ݐ݀(ݐ)௡ݕ 
గ
ଶ

଴
    ݊ ≥ 0. 

This in turn gives  
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(ݔ)଴ݕ =
1
2

cos     ݔ

(ݔ)ଵݕ = න cos ݔ sin ݐ ݐ݀(ݐ)଴ݕ  =
1
4

cos ݔ .
గ
ଶ

଴

(ݔ)ଶݕ = න cos ݔ sin ݐ ݐ݀(ݐ)ଵݕ  =
1
8

cos ݔ .
గ
ଶ

଴

(ݔ)ଷݕ = න cos ݔ sin ݐ ݐ݀(ݐ)ଶݕ  =
1

16
cos ݔ .

గ
ଶ

଴

(ݔ)ସݕ = න cos ݔ sin ݐ ݐ݀(ݐ)ଷݕ  =
1

32
cos ݔ .

గ
ଶ

଴

(ݔ)ହݕ = න cos ݔ sin ݐ ݐ݀(ݐ)ସݕ  =
1

64
cos ݔ .

గ
ଶ

଴

(ݔ)଺ݕ = න cos ݔ sin ݐ ݐ݀(ݐ)ହݕ  =
1

128
cos ݔ .

గ
ଶ

଴

 

 

And so on. Using (2-11) gives the series solution 

(ݔ)ݕ =
1
4

cos ݔ +
1
8

cos ݔ +
1

16
cos ݔ +

1
32

cos ݔ +
1

64
cos ݔ

+
1

128
cos ݔ + ⋯ 

Then the gives the exact solution 

(ݔ)ݕ =
8191
8192

cos  ݔ

2.1.2. Modified Decomposition Method 

The Adomain decomposition method (ADM) provides the solutions in 
an infinite series of components. The components ݑ௝ , ݆ ≥ 0 are essily 
computed if the inhomogeneous term ݂(ݔ)in the FIE  

(ݔ)ݑ = (ݔ)݂ + ߣ න ,ݔ)݇ (ݐ
௕

௔
2)       , ݐ݀(ݐ)ݑ − 25) 

Consists of a polynomial of one or two terms. However ,if the 
function ݂(ݔ) consists of a combination of two or more of 
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polynomials, trigonometric function, hyperbolic functions, and other, 
the evaluation of the components ݑ௝ , ݆ ≥ 0 requires more work. A 
relation modification of the ADMs presented and used in before 
chapter, and it was shown that this modification facilitates the 
computational work and accelerates the convergence of the series 
solution. As presented before, the modified decomposition 
method(MDM) depends mainly on splitting the function ݂(ݔ)consists 
of only term. the MDM will be briefly outlined here. The standard 
ADM employs the recurrence relation 

(ݔ)଴ݑ =   .(ݔ)݂

(ݔ)௞ାଵݑ = ߣ න ,ݔ)݇ ݐ൯݀(ݐ)௞ݑ൫(ݐ
௕

௔
 , ݇ ≥ 0       (2 − 26) 

Where the solution (ݔ)ݑ is expressed by an infinite sum of 
components defined by 

(ݔ)ݑ = ෍ (ݔ)௡ݑ
ஶ

௡ୀ଴

          (2 − 27) 

In view of (2-26), the components  ݑ௡(ݔ), ݊ ≥ 0 are readily obtained. 

The MDM presents a slight variation to the recurrence relation (2-26) 
to determine the components of (ݔ)ݑin an easier and faster manner. 
For many cases, the function ݂(ݔ) can be set as the sum of two partial 
functions, namely ଵ݂(ݔ)ܽ݊݀ ଶ݂(ݔ). In other words, we can set 

(ݔ)݂ = ଵ݂(ݔ) + ଶ݂(ݔ)            (2 − 28) 

In view of (2-28), we introduce a qualitative change in the formation 
of the recurrence relation (2-26). The MDM identifies the zeroth 
component ݑ଴ by one part of ݂(ݔ),namely  ଵ݂(ݔ) ݎ݋ ଶ݂(ݔ). The other 
part of ݂(ݔ)can be added to the component ݑଵ(ݔ) that exists in the 
standard recurrence relation. The MDM admits the use of the 
modified recurrence relation: 

(ݔ)଴ݑ = ଵ݂(ݔ), 

(ݔ)ଵݑ = ଶ݂(ݔ) + ߣ න ,ݔ)݇ (ݐ
௕

௔
 ,ݐ݀(ݐ)଴ݑ
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(ݔ)௞ାଵݑ = ߣ න ,ݔ)݇ (ݐ
௕

௔
,ݐ݀(ݐ)௞ݑ ݇ ≥ 1           (2 − 29) 

It is obvious that the difference between the standared recurrence 
relation(2-26) and  the modified recurrence relation (2-29)rests only in 
the formation of the first two components ݑ଴(ݔ) ܽ݊݀ ݑଵ(ݔ)only. The 
other components ݑ௝ , ݆ ≥ 2remain the same in the two recurrence 
relations. Although this variation in the formation of  
 is slight, however it has been shown that it (ݔ)ଵݑ ݀݊ܽ (ݔ)଴ݑ
accelerates the convergence of the solution and minimizes the size of 
calculations. Moreover , reducing the number of terms in ଵ݂(ݔ)  
affects not only the component ݑଵ(ݔ), but also the other components 
as well. 

We here emphasize on the two important remarks made in chapter 1. 
First,by proper selection of the functions ଵ݂(ݔ)ܽ݊݀ ଶ݂(ݔ) ,the exact 
solution (ݔ)ݑ may be obtained by using very few iterations,and 
sometimes by evaluating only two components. The success of this 
can be made through trials only. A rule that may help for proper 
choice of ଵ݂(ݔ)ܽ݊݀ ଶ݂(ݔ) could not be found yet. Second, if 
  .consists of one term only, the MDM cannot be used in this case(ݔ)݂

Example 2.3: Solve the Fredholm integral equation by using the 
MDM  

(ݔ)ݑ = ݔ3 + ݁ସ௫ −
1

16
(17 + 3݁ସ) + න ݐ

ଵ

଴
2)      .ݐ݀(ݐ)ݑ − 30) 

We first decompose ݂(ݔ) given by 

(ݔ)݂ = ݔ3 + ݁ସ௫ −
1

16
(17 + 3݁ସ)      

Into two parts, namely 

ଵ݂(ݔ) = ݔ3 + ݁ସ௫ , ଶ݂(ݔ) = −
1

16
(17 + 3݁ସ) 

We next use the modified recurrence formula (2-29) to obtain 

(ݔ)଴ݑ = ଵ݂(ݔ) = ݔ3 + ݁ସ௫, 
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(ݔ)ଵݑ = −
1

16
(17 + 3݁ସ) + න ݐ

ଵ

଴
ݐ݀(ݔ)଴ݑ = 0 

(ݔ)௞ାଵݑ =  න ,ݔ)݇ (ݐ
ଵ

଴
ݐ݀(ݔ)௞ݑ = 0 , ݇ ≥ 1 

 It is obvious that each component of ݑ௝  , ݆ ≥ 1 is zero. This in turn 
gives the exact solution by 

(ݔ)ݑ = ݔ3 + ݁ସ௫ 

Example 2.4: Solve the Fredholm integral equation by using the 
MDM  

(ݔ)ݑ = secଶ ݔ + ଶݔ + ݔ − න ቆ
4
ߨ

ଶݔ + ቇ(ݐ)ݑ ݔ ݐ݀
గ
ସ

଴
        (2 − 31) 

We first decompose ݂(ݔ) given by 

(ݔ)݂ = secଶ ݔ + ଶݔ +  ݔ

into two parts  

ଵ݂(ݔ) = secଶ (ݔ)ଶ݂    ݔ = ଶݔ +    ݔ

We next use the modified recurrence formula (2-29) gives 

(ݔ)଴ݑ = ଵ݂(ݔ) = secଶ  ,ݔ

(ݔ)ଵݑ = ଶݔ + ݔ − න ቆ
4
ߨ

ଶݔ + ቇ(ݐ)଴ݑ ݔ ݐ݀
గ
ସ

଴
= 0 , 

(ݔ)௞ାଵݑ =  න ,ݔ)݇ (ݐ
గ
ସ

଴
ݐ݀(ݔ)௞ݑ = 0 , ݇ ≥ 1 

As result , the exact solution is given by 

(ݔ)ݑ = secଶ  .ݔ

2.1.3  Noise Terms Phenomenon: 

The noice terms are the identical terms with opposite sins that may 
appear between components. By canceling the noice terms between  
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 contains further terms, the (ݔ)ଵݑ even though,(ݔ)ଵݑ ݀݊ܽ (ݔ)଴ݑ
remaining non-concled terms of ݑ଴(ݔ) may give the exact solution of 
the integral equation. The appearance of the noice terms between 
 is not always sufficient to obtain the exact solution(ݔ)ଵݑ ݀݊ܽ (ݔ)଴ݑ
by canceling these noise terms. Therefore, it necessary to show that 
the non-canceled terms of ݑ଴(ݔ)  satisfy the given integral equation. 

The phenomenon of the useful noise terms will be explained by the 
following illustrative examples. 

Example 2.5: Solve the Fredholm integral equation by using the 
noice terms phenomenon: 

(ݔ)ݑ = ݔ ݊݅ݏݔ − ݔ + න .ݐ݀(ݐ)ݑݔ
గ
ଶ

଴
             (2 − 32)  

Following the standard Adomian method we set the recurrence 
relation  

(ݔ)଴ݑ = ݔ sin ݔ −  , ݔ

(ݔ)௞ାଵݑ = න .ݐ݀(ݐ)௞ݑݔ
గ
ଶ

଴
         ݇ ≥ 0       (2 − 33) 

This gives 

(ݔ)଴ݑ = ݔ sin ݔ −  ݔ

(ݔ)ଵݑ = න ݐ݀(ݐ)଴ݑݔ = ݔ −
ଶߨ

8
.ݔ

గ
ଶ

଴
          (2 − 34) 

The noise terms ±ݔ appear in ݑ଴(ݔ) ܽ݊݀ ݑଵ(ݔ).canceling this term 
from the zeroth component  ݑ଴(ݔ) gives the exact solution 

(ݔ)ݑ = ݔ sin  ,ݔ

That justifies the integral equation. The other terms of ݑଵ(ݔ) vanish in 
the limit with other terms of the other components. 

Example 2.6: Solve the Fredholm integral equation by using the 
noise terms phenomenon 
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(ݔ)ݑ = ଶݔ +
sin ݔ

1 + cos ݔ
+

ଶߨ

24
ݔ + ݔ ln 2 − න .ݐ݀(ݐ)ݑݔ

గ
ଶ

଴
 

 The standard Adomian method gives the recurrence relation: 

(ݔ)଴ݑ   = ଶݔ + ୱ୧୬ ௫
ଵାୡ୭ୱ ௫

+ గమ

ଶସ
ݔ + ݔ ln 2 

(ݔ)௞ାଵݑ = ݔ− න .ݐ݀(ݐ)௞ݑ
గ
ଶ

଴
         ݇ ≥ 0       (2 − 35) 

This give 

(ݔ)଴ݑ = ଶݔ +
sin ݔ

1 + cos ݔ
+

ଶߨ

24
ݔ + ݔ ln 2 

(ݔ)ଵݑ = − න ݐ݀(ݐ)଴ݑݔ
గ
ଶ

଴

= −
ଷߨ

24
ݔ − ݔ ln 2 −

ଶߨ ln 2
8

ݔ −
ହߨ

192
2)     .ݔ − 36) 

The noise terms ± గయ

ଶସ
,ݔ ݔ± ln 2 appear in ݑ଴(ݔ) ܽ݊݀ ݑଵ(ݔ).canceling 

this term from the zeroth component  ݑ଴(ݔ) gives the exact solution 

(ݔ)ݑ = ଶݔ +
sin ݔ

1 + cos ݔ
 , 

That justifies the integral equation. The other terms of ݑଵ(ݔ) vanish in 
the limit with other terms of the other components. 

2.1.4 Fuzzy Integral Equations 

The  most  basic notations used in the fuzzy calculus are introduced. 

Definition1 . A fuzzy number is a fuzzy set u:ܴ′ → [0,1]which 
satisfies 

i. ݑ is upper semicontinuous. 
ii. (ݔ)ݑ = 0 outside some interval [ܿ , ݀] ,and 
iii. There are real number ܽ ܽ݊݀ ܾ , ܿ ≤ ܽ ≤ ܾ ≤ ݀, for which 

 (ݔ)ݑ is monotonic increasing on [ܿ , ݀], 
 (ݔ)ݑ is monotonic decreasing on [ܿ , ݀], 
 (ݔ)ݑ = ܽ ݎ݋݂ 1 ≤  .ܾݔ
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The set of all fuzzy numbers,as given by Definition 1, is denoted by 
 An alternative definition or parametric form of a fuzzy number .′ܧ
which yields the same ܧ′ is given kaleva. 

Definition 2. A fuzzy number ݑ is a pair (ݑ,  (ݎ)ݑ ത) of functionsݑ
and ݑത(ݎ), 0 ≤ ݎ ≤ 1, satisfying requirements 

i. (ݎ)ݑ is a bounded monotonic increasing left continuous 
function, 

ii. (ݎ)ݑ is a bounded monotonic decreasing left continuous 
function, and 

iii. (ݎ)ݑ ≤ ,(ݎ)ݑ 0 ≤ ݎ ≤ 1.  

For arbitrary ݑ = ൫ݑ, ,ത൯ݑ ݒ = ൫ݒ, ݇ ൯ܽ݊݀ݒ̅ > 0 we define addition 
ݑ) +  and multiplication by ݇ as(ݒ

൫ݑ + ൯ݒ = (ݎ)ݑ +   (ݎ)ݒ

൫ݑ + ൯ݒ = (ݎ)തݑ +   (ݎ)ݒ̅

(ݎ)(ݑ݇) =  (ݎ)ݑ݇

൫݇ݑ൯(ݎ) = 2)                                                                      (ݎ)ݑ݇ − 37) 

The collection of all the fuzzy numbers with addition and 
multiplication as defined by Eqs above is denoted by  ܧ′ and is a 
convex cone. It can be shown that Eqs above are equivalent to the 
addition and multiplication as defined by using the ߙ −  approach ݐݑܿ
and the extension principles. We will next define the fuzzy function 
notation and metric ܦ in ܧᇱ. 

Definition3. For arbitrary fuzzy numbers ݑ = ൫ݑ, ݒ ത൯ܽ݊݀ݑ =
൫ݒ,  ൯the quantityݒ̅

,ݑ)ܦ (ݒ = max ቄ sub
଴ஸ௥ஸଵ

(ݎ)തݑ| − , |(ݎ)ݒ̅ sub
଴ஸ௥ஸଵ

 ห(ݎ)ݑ − ห  ቅ  (2(ݎ)ݒ

− 38) 

Is the distance between ݒ ݀݊ܽ ݑ. 

The metric is equivalent to the one used by puri and ralescu , 
and kaleva. It is shown that (ܧᇱ,  .is a complete metric space(ܦ
Goteschel and voxman defined the integral of a fuzzy function using 
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the Riemann integral concept. If the fuzzy function ݂(ݐ) is continuous 
in the metric ܦ, its definite integral exists. Furthermore, 

൭න ,ݐ)݂ ݐ݀(ݎ
௕

௔
൱ = න ,ݐ)݂ ݐ݀(ݎ

௕

௔
 

൭න ,ݐ)݂ ݐ݀(ݎ
௕

௔
൱ = න ,ݐ)݂ ݐ݀(ݎ

௕

௔
                                   (2 − 39)        

The Fredholm integral equation of the second kind is 

(ݐ)ܨ = (ݐ)݂ + ߣ න ,ݏ)݇ (ݐ
௕

௔
2)         ݏ݀(ݏ)ܨ − 40) 

Wher ߣ > 0 , ,ݏ)݇  is an arbitrary kernel function over the square (ݐ
ܽ ≤ , ݏ ݐ ≤ ܽ ,ݐ is a function of (ݐ)݂ ݀݊ܽ ܾ ≤ ݐ ≤ ܾ. If ݂(ݐ)is a crisp 
function then the solutios of Eqs (2-40) are crisp as well. However , if 
 is a fuzzy function these equations may only possess fuzzy (ݐ)݂
solutions. Sufficient conditions for the existence of a unique solution 
to the fuzzy FIE of the second kind, i.e. to (2-40) where ݂(ݐ)is afuzzy 
function. 

Now we introduce the parametric form of an FFIE-2 withh respect to 
Definition2. Let ݂(ݐ, ,(ݎ ,ݐ)݂ ,ݐ)ݑand ൫ (ݎ ,(ݎ ,ݐ)ݑ ൯ ,0(ݎ ≤ ݎ ≤
ݐ ݀݊ܽ 1 ∈ [ܽ, ܾ], be parametric form of ݂(ݐ)ܽ݊݀ (ݐ)ݑ, respectively; 
then the parametric form of  FFIE-2 is as follows 

,ݐ)ݑ (ݎ = ,ݐ)݂ (ݎ + ߣ න ଵݒ ቀݏ, ,ݐ ,ݏ)ݑ ,(ݎ ,ݏ)ݑ ቁ(ݎ  ݏ݀
௕

௔
 

,ݐ)ݑ (ݎ = ,ݐ)݂ (ݎ + ߣ න ଶݒ ቀݏ, ,ݐ ,ݏ)ݑ ,(ݎ ,ݏ)ݑ ቁ(ݎ  ݏ݀
௕

௔
,       (2 − 41) 

Where  

ଵݒ ቀݏ, ,ݐ ,ݏ)ݑ ,(ݎ ,ݏ)ݑ ቁ(ݎ = ൜
,ݏ)݇ ,ݏ)ݑ(ݐ ,ݏ)݇    ,(ݎ (ݐ ≥ 0,
,ݏ)݇ ,ݏ)ݑ(ݐ ,ݏ)݇    ,(ݎ (ݐ < 0,

� 

And  
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ଶݒ ቀݏ, ,ݐ ,ݏ)ݑ ,(ݎ ,ݏ)ݑ ቁ(ݎ = ൜
,ݏ)݇ ,ݏ)ݑ(ݐ ,ݏ)݇    ,(ݎ (ݐ ≥ 0,
,ݏ)݇ ,ݏ)ݑ(ݐ ,ݏ)݇    ,(ݎ (ݐ < 0,

� 

For each 0 ≤ ݎ ≤ ݐ ݀݊ܽ 1 ∈ [ܽ, ܾ]. We can see that is the system of 
linear FIE in the crisp case for each 0 ≤ ݎ ≤ ݐ ݀݊ܽ 1 ∈ [ܽ, ܾ]. We 
define the homotopy analysis method(HAM) as an analytical 
algorithm for approximating the solution of the system linear integral 
equation in the crisp case. Then we find the approximate solutions for 
,ݐ)ݑ ,ݐ)ݑ ݀݊ܽ(ݎ for each 0 (ݎ ≤ ݎ ≤ ݐ ݀݊ܽ 1 ∈ [ܽ, ܾ]. 

The following theorem provides sufficient conditions for the existence 
of unique solution to Eq(2-40) where ݂(ݔ) is a fuzzy function , and 
the rate of convergence of error. 

Theorem(2-3). Let ݇(ݏ, ܽ be continuous for (ݐ ≤ ,ݏ ݐ ≤ ܾ, ߣ >
ܽ a fuzzy continuous function of (ݐ)݂ ݀݊ܽ 0 ≤ ݐ ≤ ܾ. If  

ߣ <
1

݉(ܾ − ܽ)
, 

Where ܯ = ,ݏ)ܭ|௔ஸ௦,௧ஸ௕ݔܽܯ  then the iterative procedure ,|(ݐ

(ݐ)଴ܨ =  (ݐ)݂

(ݐ)௞ܨ = (ݐ)݂ + ߣ න ,ݏ)݇ (ݐ
௕

௔
݇ ݏ݀(ݏ)௞ିଵܨ ≥ 1 

Converges to the unique solution of (2-40).specifically, 

sup
 ௔ஸ௧ஸ௕

,(ݐ)ܨ൫ܦ ൯(ݐ)௞ܨ ≤
௞ܮ

1 − ܮ
sup

 ௔ஸ௧ஸ௕
,(ݐ)ܨ൫ܦ  ,൯(ݐ)ଵܨ

Where ܮ = ܾ)ܯߣ − ܽ). This infers that ܨ௞(ݐ) converges uniformly in 
<∋ I,e. given arbitrary,(ݐ)ܨ ݋ݐ ݐ 0 we can find N such that  

,(ݐ)ܨ൫ܦ ൯(ݐ)௞ܨ <∈, ܽ ≤ ݐ ≤ ܾ, ݇ > ܰ.  

2.4.1  Homotopy Analysis Method Solution for Linear 
System of Fredholm Integral Equations: 

Consider the system of linear Fredholm integral equations of the form 
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(ݐ)ܷ = (ݐ)ܨ + න ,ݏ)݇ ݏ݀(ݏ)ܷ(ݐ
௕

௔
      (2 − 42) 

Where 

(ݐ)ܷ = ൫ݑଵ(ݐ), … , ൯(ݐ)௡ݑ
்

, 

(ݐ)ܨ = ൫ ଵ݂(ݐ), … , ௡݂(ݐ)൯
்

 

,ݏ)݇ (ݐ = ൣ݇௜௝(ݏ, ,൧(ݐ ݅ = 1,2, … , ݊, ݆ = 1,2, … , ݊. 

For the purpose, we first give the following definition. 

Definition4. Let ߶ be a function of the homotopy –parameter ݍ then 

(߶)௠ܦ = ଵ
௠!

�డ೘∅
డ௤೘ቚ

௤ୀ଴
, 

Is called the mth-order homotopy-derivative of ∅, where ݉ ≥ 0is an 
integer. 

From Eq.(2-42),the nonlinear operator is defined as follows 

;ݐ)ܰ (ݍ = ;ݐ)ܷ (ݍ − (ݐ)ܨ − න ,ݏ)ܭ ;ݏ)ܷ(ݐ ,ݏ݀(ݍ
௕

௔
      (2 − 43) 

And we choose the auxiliary linear operator as follows 

;ݐ)∅]ܮ [(ݍ = ;ݐ)∅ 2)    .(ݍ − 44) 

We consider the so-called zero-order deformation equation 

(1 − ;ݐ)∅]ܮ(ݍ (ݍ − ߰଴(ݐ)] = ;ݐ)∅]ܰ(ݐ)ܪℎݍ 2)       [ݍ − 45), 

Where ݍ ∈ [0,1] is the embedding parameter, ℎ is a diagonal matrix of 
nonzero convergence –parameters, (ݐ)ܪis a diagonal matrix of 
auxiliary functions, ߰଴(ݐ) is an initial guess of the exact solution ߰(ݐ) 
and ߶(ݐ;  is an unknown function which depends also on (ݍ
convergence-parameters and auxiliary functions. Expanding ߶(ݐ;  in(ݍ
Taylor series with respect to ݍ, we have 

;ݐ)߶ (ݍ = ߰଴(ݐ) + ෍ ߰௠(ݐ)ݍ௠
ାஶ

௠ୀଵ

,   (2 − 46) 
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Where 

߰௠(ݐ) = ;ݐ)߶]  .[(ݍ

Operating on both sides of Eq.(2-45) with ܦ௠,we have the so-called 
mth-order deformation equation 

(ݐ)௠߰]ܮ − ߯௠߰௠ିଵ(ݐ)] = ℎ(ݐ)ܪܴ௠൫ ሬ߰⃗ ௠ିଵ, ൯,   (2ݐ − 47) 

Where 

ܴ௠൫ ሬ߰⃗ ௠ିଵ, ൯ݐ = ;ݐ)߶]ܰ)௠ିଵܦ 2)      ,([(ݍ − 48) 

And 

߯௠ = ቄ0,      ݉ ≤ 1
1,     ݉ ≥ 2

� 

For Eqs. (2-43) and (2-48), we have 

ܴ௠൫ ሬ߰⃗ ௠ିଵ, ൯ݐ = ߰௠ିଵ(ݐ) − න ,ݏ)ܭ (ݐ
௕

௔
߰௠ିଵ(ݏ)݀ݏ − (1 − ߯௠)(ݐ)ܨ. 

Test example 2-7: 

To show the efficiency of the HAM described in the previous section, 
we present some examples. For all examples, we choose (ݐ)ܪ =
1 , ,ݐ)଴ݑ (ݎ = ,ݐ)݂ ,ݐ)଴ݑ ݀݊ܽ(ݎ (ݎ = ,ݐ)݂ ݊ we use .(ݎ + 1 terms in 
evaluating the approximate solution ݑ௔௣௣௥௢௫[௡](ݐ, ;ݎ ℎ) =
∑ ,ݐ)௠ݑ ;ݎ ℎ)௡

௠ୀ଴ . 

Example1. Consider the Fuzzy Fredholm integral equation  

,ݐ)݂ (ݎ =
1

15
ଶݎ)13) + (ݎ + 2(4 − ଷݎ − (ݎ sin ൬

ݐ
2

൰, 

,ݐ)݂ (ݎ =
1

15
ଶݎ)2) + (ݎ + 13(4 − ଷݎ − (ݎ sin ൬

ݐ
2

൰ 

And  

,ݏ)݇ (ݐ = 0.1 sin(ݏ) sin ൭ݐ
2ൗ ൱ ,     0 ≤ ,ݏ ݐ ≤  ,ߨ2
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And ܽ = 0, ܾ =   the exact solution in this case is given by .ߨ2

,ݐ)ݑ (ݎ = ଶݎ) + (ݎ sin ൬
ݐ
2

൰, 

,ݐ)ݑ (ݎ = (4 − ଷݎ − (ݎ sin ൬
ݐ
2

൰. 

Resulte are shown in Figs.1-4 
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2.3 Volterra Integral Equation of the First and the 
Second Kind: 
It was stated in chapter1 that Volterra integral equations arise in many 
scientific applications such as population dynamics, spread of epidemics, 
and semi-conductor devices. It was also shown that VIE can be derived 
from initial value problems.  
Volterra integral equations of the first kind or the second kind, are 
characterized by a variable upper limit of integration. For (ݔ)ݑoccurs 
only under the integral sign in the form: 

(ݔ)݂ = න ,ݔ)݇ ݐ݀(ݐ)ݑ(ݐ
௫

௔
           (2 − 49)  

However, VIEs of th second kind, the unknown function (ݔ)ݑ occurs 
inside and outside the integral sign. The second kind is represented in the 
form: 
 

(ݔ)ݑ  = (ݔ)݂ + ߣ ∫ ,ݔ)݇ ௫ݐ݀(ݐ)ݑ(ݐ
௔                    (2 − 50) 
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The kernel ݇(ݔ,  ,are given real-valued functions (ݔ)݂ and the function (ݐ
and ߣ is a parameter. In what follows we will present the methods,new 
and traditional, that will be used. 

2.3.1  Adomian Decomposition Method: 

The Adomian Decomposition Method (ADM) consists of 
decomposing the unknown function (ݔ)ݑ of any equation into a sum 
of an infinite number of components defined by the decomposition 
series 

(ݔ)ݑ = ෍ (ݔ)௡ݑ
ஶ

௡ୀ଴

               (2 − 51) 

Or equivalently 

(ݔ)ݑ = (ݔ)଴ݑ + (ݔ)ଵݑ + (ݔ)ଶݑ + (ݔ)ଷݑ + ⋯    (2 − 52) 

Where the components  ݑ௡(ݔ), ݊ ≥ 0  will be determined recurrently. 
The ADM concerns itself with finding the components 
,(ݔ)଴ݑ ,(ݔ)ଵݑ ,(ݔ)ଶݑ … individually. As will be seen, the determination 
of these components can be achieved in an easy way through a 
recurrence relation that usually involves simple integrals that can be 
easily evaluated. 

To establish the recurrence relation , we substitute (2 − 51) into the 
VIE(2 − 50) to obtain  

෍ (ݔ)௡ݑ
ஶ

௡ୀଵ

= (ݔ)݂ + ߣ න ,ݔ)݇ ෍)(ݐ (ݐ)௡ݑ
ஶ

௡ୀ଴

ݐ݀(
௫

଴
   (2 − 53) 

Or equivalently  

(ݔ)଴ݑ + (ݔ)ଵݑ + (ݔ)ଶݑ + ⋯
= (ݔ)݂

+ ߣ න ,ݔ)݇ (ݐ)଴ݑ൫(ݐ + (ݐ)ଵݑ + ݐ൯݀(ݐ)ଶݑ
௫

଴
  (2 − 54) 

The zeroth component ݑ଴(ݔ) is identified by all terms that are not 
included under the integral sing. Consequently, the components 
, (ݔ)௝ݑ ݆ ≥ 0 of the unknown function (ݔ)ݑ are completely 
determined by setting the recurrence relation  
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(ݔ)଴ݑ = ,     (ݔ)݂

(ݔ)௡ାଵݑ = ߣ න ,ݔ)݇ ݐ൯݀(ݐ)௡ݑ൫(ݐ
௫

଴
 , ݊ ≥ 0       (2 − 55) 

Or equivalently  

(ݔ)଴ݑ =                               ,(ݔ)݂

(ݔ)ଵݑ = ߣ න ,ݔ)݇ ,ݐ൯݀(ݐ)଴ݑ൫(ݐ
௫

଴

(ݔ)ଶݑ = ߣ න ,ݔ)݇ ,ݐ൯݀(ݐ)ଵݑ൫(ݐ
௫

଴

(ݔ)ଷݑ = ߣ න ,ݔ)݇ ,ݐ൯݀(ݐ)ଶݑ൫(ݐ
௫

଴

                (2 − 56) 

And so on other components. 

In view of (2 − 56) the components ݑ଴(ݔ), ,(ݔ)ଵݑ , (ݔ)ଶݑ … are 
completely determined. As a result, the solution (ݔ)ݑ of the VIEs (2-
50) is readily obtained in series form by using series assumption in 
(2 − 51). 

Example(2-8):  Solve  the Volterra integral equation: 

(ݔ)ݑ = 1 − න .ݐ݀(ݐ)ݑ
௫

଴
                             (2 − 57) 

We notice that ݂(ݔ) = 1 , ߣ = ,ݔ)݇ 1− (ݐ = 1. Recall  that the 
solution (ݔ)ݑ is assumed to have a series form given in (2-
51).substituting the decomposition series (2-51) into both sides of (2-
57) gives  

෍ (ݔ)௡ݑ =
ஶ

௡ୀ଴

1 − න ෍ (ݔ)௡ݑ
ஶ

௡ୀ଴

௫

଴
2)         ,ݐ݀ − 58) 

Or equivalently  

(ݔ)଴ݑ + (ݔ)ଵݑ + (ݔ)ଶݑ + ⋯

= 1 − න (ݔ)଴ݑ] + (ݔ)ଵݑ + (ݔ)ଶݑ + ⋯ ݐ݀[
௫

଴
(2 − 59) 
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We identify the zeroth component by all terms that are not included 
under the integral sign. Therefor, we obtain the following recurrence 
relatin: 

(ݔ)଴ݑ = 1, 

(ݔ)௞ାଵݑ = − න ,ݐ݀(ݐ)௞ݑ ݇ ≥ 0,
௫

଴
          (2 − 60) 

So that 

 

(ݔ)⟧଴ݑ = 1,� 

(ݔ)ଵݑ = − න (ݐ)଴ݑ
௫

଴
ݐ݀ = − න ݐ݀ 1

௫

଴
=  ,ݔ−

(ݔ)ଶݑ = − න (ݐ)ଵݑ
௫

଴
ݐ݀ = − න ݐ݀ ݐ−

௫

଴
=

1
2!

       ,ଶݔ

(ݔ)ଷݑ = − න (ݔ)ଶݑ
௫

଴
ݐ݀ = − න

1
2!

ݐଶ݀ݐ
௫

଴
= −

1
3!

 ,ଷݔ

(ݔ)ଵݑ = − න (ݔ)଴ݑ
௫

଴
ݐ݀ = − න −

1
3!

ݐ݀ ଷݔ
௫

଴
=

1
4!

 ,ସݔ

And so on. Using (2-51) gives the series solution: 

(ݔ)ݑ = 1 − ݔ +
1
2!

ଶݔ −
1
3!

ଷݔ +
1
4!

ସݔ + ⋯,   (2 − 61) 

That converges to the closed form solution: 

(ݔ)ݑ = ݁ି௫ 

Example (2-9): Solve  the Volterra integral equation: 

(ݔ)ݑ = 1 − ݔ −
1
2

ଶݔ − න ݐ) − .ݐ݀(ݐ)ݑ(ݔ
௫

଴
      (2 − 62) 

Notice that ݂(ݔ) = 1 − ݔ − ଵ
ଶ

,  ଶݔ ߣ = −1 , ,ݔ)݇ (ݐ = ݐ −  .ݔ
Substituting the decomposition series (2-51) into  both sides of (2-62) 
gives  
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෍ (ݔ)௡ݑ =
ஶ

௡ୀ଴

1 − ݔ −
1
2

ଶݔ − න ෍(ݐ − (ݔ)௡ݑ(ݔ
ஶ

௡ୀ଴

௫

଴
2)         ,ݐ݀ − 63) 

Or equivalently  

࢛૙(࢞) + ࢛૚(࢞) + ࢛૛(࢞) + ⋯

= ૚ − ࢞ −
૚
૛

࢞૛

− න (࢚ − ࢞)[࢛૙(࢞) + ࢛૚(࢞) + ࢛૛(࢞) + ⋯ ࢚ࢊ[
࢞

૙
 

This allows us to set the following recurrence relation: 

(ݔ)଴ݑ = 1 − ࢞ −
૚
૛

࢞૛,

(ݔ)௞ାଵݑ = − න ෍(ݐ − (ݔ)௞ݑ(ݔ
ஶ

௡ୀ଴

௫

଴
, ݐ݀ ݇ ≥ 0

 

That gives  

u଴(x) = 1 − ܠ −
૚
૛ ,૛ܠ

uଵ(x) = − න ܜ) − (ܜ)૙ܝ(ܠ
ܠ

૙
dt =

1
2! xଶ −

1
3! xଷ −

1
4! xସ

uଶ(x) = − න ܜ) − (ܜ)૚ܝ(ܠ
ܠ

૙
dt =

1
4! xସ −

1
5! xହ −

1
6! x଺,

uଷ(x) = − න ܜ) − (ܜ)૛ܝ(ܠ
ܠ

૙
dt =

1
6! x଺ −

1
7! x଻ −

1
8! x଼

      (2 − 64) 

And so on. The solution in a series form is given by  

(ݔ)ݑ = 1 − ൬ݔ +
1
3!

ଷݔ +
1
5!

ହݔ +
1
7!

଻ݔ + ⋯ ൰, 

And in closed form by 

(ݔ)ݑ = 1 − sinh  ,ݔ

Obtained upon using the Taylor expansion for sinh  .ݔ
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Chapter 3 

Existence of Solution of Nonlinear Integral Equations 

3.1Introduction: 
In this chapter to study the nonlinear integral equations. The nonlinear 
Volterra integral equations are characterized by a least one variable limits 
of integration. In the nonlinear Volterra integral equation of the second 
kind, the unknown function (ݔ)ݑ appears inside and outside the integral 
singn. The nonlinear VIEs of the second kind is represented by the form 

(ݔ)ݑ = (ݔ)݂ + න ,ݔ)݇ (ݐ
௫

଴
3)       ,ݐ൯݀(ݐ)ݑ൫ܨ − 1) 

However, the nonlinear VIES of the first kind contains the nonlinear 
function ((ݐ)ݑ)ܨinside the integral sign. The nonlinear VIEs of the first 
kind is expressed in the form 

(ݔ)݂ = න ,ݔ)ܭ (ݐ
௫

଴
3)          .ݐ൯݀(ݐ)ݑ൫ܨ − 2) 

 For these two kinds of equations, the kernel ݔ)ܭ,  and the function (ݐ
 is a nonlinear function ((ݐ)ݑ)ܨ are given real-valued functions, and (ݔ)݂
of (ݔ)ݑ such as ݑଶ(ݔ), sin൫(ݔ)ݑ൯ , ܽ݊݀ ݁௨(௫). 

3.2  Existence of the Solution for Nonlinear Volterra Integral 
Equations: 

 We will present and existence theorem for the solution of nonlinear VIEs. 
In what follows, we present a brief summary of the conditions under 
which a solution exists for equation. 
We first rewrite the nonlinear VIEs of the second kind by  

(ݔ)ݑ = (ݔ)݂ + න ,ݔ൫ܩ ,ݐ ൯(ݐ)ݑ
௫

଴
3)        .ݐ݀ − 3) 

The specific conditions under which a solution exists for the nonlinear VIE 
are: 

i.  The function ݂(ݔ) is integrable and bounded in ܽ ≤ ݔ ≤ ܾ. 
ii. The function ݂(ݔ) must satisfy the Lipschitz condition in the 

interval (ܽ, ܾ). This means that 
(ݔ)݂| − |(ݕ)݂ < ݔ|݇ − 3)            |ݕ − 4) 

iii. The function ݔ)ܩ, ,ݐ  is integrable and bounded ((ݐ)ݑ
,ݔ)ܩ| ,ݐ |((ݐ)ݑ < ݇ ݅݊ ܽ ≤ ,ݔ ݐ ≤ ܾ. 
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iv. The function ݔ)ܩ, ,ݐ  must satisfy the Lipschitz condition (ݐ)ݑ
,ݔ)ܩ| ,ݐ (ݖ − ,ݔ)ܩ ,ݐ |(ᇱݖ < ݖ|ܯ − 3)          .|′ݖ − 5) 

3.3 Nonlinear Volterra Integral Equation of the Second Kind 
We being our study on nonlinear VIEs of the second kind given by  

(ݔ)ݑ = (ݔ)݂ + න ,ݔ)݇ (ݐ
௫

଴
dt         (3((ݐ)ݑ)ܨ − 6) 

Where the kernel ݇(ݔ,  are given real-valued (ݔ)݂ and the function (ݐ
function, and ((ݐ)ݑ)ܨ is a nonlinear function of (ݔ)ݑ such as 
,(ݔ)ଷݑ cos (൫(ݔ)ݑ൯, ܽ݊݀ ݁௨(௫). The unknown function ݂(ݔ), that will 
be determined, occurs inside and outside the integral sign. 

The nonlinear VIE (3 − 6) will be solving by Adomain Decomposition 
Method,(ADM). 

3.3.1 Successive Approximations Method(SAM) 
The successive approximation method, or the Picard iteration 

method was used before in chapter2. This method solves any problem 
by finding successive approximations to the solution by starting with 
an initial guess, called the zeroth approximation. As will be used in a 
recurrence relation to determine the other approximations. 

Given the nonlinear VIE of the second kind 

(ݔ)ݑ = (ݔ)݂ + න ,ݔ)݇ (ݐ
௫

଴
dt         (3((ݐ)ݑ)ܨ − 7) 

Where (ݔ)ݑ is unknown function to be determind and ݇(ݔ,  is the (ݐ
kernel. The successive approximations methed introduces the 
recurrence relation 

(ݔ)௡ାଵݑ = (ݔ)݂ + න ,ݔ)ܭ (ݐ
௫

଴
݊     ,ݐ൯݀(ݐ)௡ݑ൫ܨ ≥ 0      (3 − 8)    

Where the zeroth approximation ݑ଴(ݔ) can be any selective real 
valued function. We always start with an initial guess for ݑ଴(ݔ) 
,mostly we select 0,1,  (ݔ)଴ݑ using the selection of .(ݔ)଴ݑ ݎ݋݂ ݔ ݎ݋
into (3-8), several successive approximations ݑ௞ , ݇ ≥ 1 will be 
determined as 
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(ݔ)ଵݑ = (ݔ)݂ + න ,ݔ)ܭ (ݐ
௫

଴
,ݐ൯݀(ݐ)଴ݑ൫ܨ

(ݔ)ଶݑ = (ݔ)݂ + න ,ݔ)ܭ (ݐ
௫

଴
,ݐ൯݀(ݐ)ଵݑ൫ܨ

(ݔ)ଷݑ = (ݔ)݂ + න ,ݔ)ܭ (ݐ
௫

଴
ݐ൯݀(ݐ)ଶݑ൫ܨ

        (3 − 9)       

⋮

(ݔ)௡ାଵݑ = (ݔ)݂ + න ,ݔ)ܭ (ݐ
௫

଴
                        ,ݐ൯݀(ݐ)௡ݑ൫ܨ

 

Consequently, the solution (ݔ)ݑis obtained by using 
(ݔ)ݑ = lim

௡→ஶ
3)              .(ݔ)௡ାଵݑ − 10) 

Example 3.1: Use the successive approximations method to solve 
the nonlinear Volterra integral equation 

(ݔ)ݑ = ݁௫ +
1
3

1)ݔ − ݁ଷ௫) + න ݔ
௫

଴
3)        ݐ݀(ݐ)ଷݑ − 11) 

For the zeroth approximation (ݔ)ݑ, we can select  
(ݔ)ݑ = 1.        (3 − 12) 

           The method of successive approximations admits the use of 
the iteration formula 

(ݔ)௡ାଵݑ = ݁௫ +
1
3

1)ݔ − ݁ଷ௫) + න ݔ
௫

଴
௡ݑ

ଷ(ݐ)݀ݐ  ݊ ≥ 0     (3 − 13) 

SubsƟtuƟng (3-12) into (3-13) we obtain the approximaƟons 
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(ݔ)଴ݑ = 1,

(ݔ)ଵݑ = ݁௫ +
1
3

1)ݔ − ݁ଷ௫) + න ݔ
௫

଴
଴ݑ

ଷ(ݐ)݀ݐ

= 1 + ݔ +
1
2!

ଶݔ −
4
3

ଷݔ −
35
24

ସݔ −
67
60

ହݔ + ⋯

(ݔ)ଶݑ = ݁௫ +
1
3

1)ݔ − ݁ଷ௫) + න ݔ
௫

଴
ଵݑ

ଷ(ݐ)݀ݐ

= 1 + ݔ +
1
2!

ଶݔ +
1
3!

ଷݔ +
1
4!

ସݔ −
67
60

ହݔ + ⋯

(ݔ)ଵݑ = ݁௫ +
1
3

1)ݔ − ݁ଷ௫) + න ݔ
௫

଴
଴ݑ

ଷ(ݐ)݀ݐ

= 1 + ݔ +
1
2!

ଶݔ +
1
3!

ଷݔ +
1
4!

ସݔ +
1
5!

ହݔ + ⋯

       (3 − 14) 

And so on. Consequently, the solution (ݔ)ݑ of (3-13) is given by 

(ݔ)ݑ = lim
௡→ஶ

(ݔ)௡ݑ = ݁௫         (3 − 15 

          Example 3.2: Use the successive approximations method to solve 
the nonlinear Volterra integral equation 

࢛(࢞) = (࢞)ܛܗ܋ +
૚
ૡ

(૛࢞)࢙࢕ࢉ −
૚
૝

࢞૛ −
૚
ૡ

+ න (࢞ − ࢚)
࢞

૙
࢛૛(࢚)࢚ࢊ        (૜ − ૚૟) 

For the zeroth approximation ݑ଴(ݔ), we can select  
(ݔ)଴ݑ = 1.        (3 − 17) 

           The method of successive approximations admits the use of 
the iteration formula 

(ݔ)௡ାଵݑ = cos(ݔ) +
1
8

(ݔ2)ݏ݋ܿ −
1
4

ଶݔ −
1
8

+ න ݔ) − (ݐ
௫

଴
௡ݑ

ଶ(ݐ)݀ݐ  

 ݊ ≥ 0     (3 − 18) 

SubsƟtuƟng (3-17) into (3-18) we obtain the approximaƟons 
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(ݔ)଴ݑ = 1,

(ݔ)ଵݑ = 1 −
1
2!

ଶݔ +
1
8

ସݔ −
1

80
଺ݔ + ⋯ ,

(ݔ)ଶݑ = 1 −
1
2!

ଶݔ +
1
4!

ସݔ +
1

240
଺ݔ + ⋯

(ݔ)ଷݑ = 1 −
1
2!

ଶݔ +
1
4!

ସݔ +
1
6

଺ݔ + ⋯

       (3 − 19) 

And so on. Consequently, the solution (ݔ)ݑ of (3-16) is given by 

(ݔ)ݑ = lim
௡→ஶ

(ݔ)௡ݑ = 3)         ݔݏ݋ܿ − 20) 

3.3.2 Adomian Decomposition Method 
The Adomain Decomposition Method has been outlined before in 
provious chapters and has been applied to a wide class of linear 
Volterra and Fredholm integral equations. The method usually 
decomposes the unknown function (ݔ)ݑ into infinite sum of 
components that will be determined recursively through iterations as 
discussed before. The ADM will be applied in this chapter and in the 
coming chapters handle nonlinear integral equations. 

Although the linear term (ݔ)ݑ is represented by an infinite sum of 
components, the nonlinear terms such as ݑଶ, ,ଷݑ ,ସݑ sin ݑ , ݁௨ ,  .ܿݐ݁
that appear in the equation, should be expressed by a special 
representation, called the Adomain polynomials ܣ௡ , ݊ ≥ 0. Adomain 
introduced a formal algorithm to establish a reliable representation 
for all forms of nonlinear terms. Other technique remains the 
commomonly used one. We will use the Adomain algorithm to 
evaluate Adomain polynomials. The representation of the nonlinear 
terms by Adomain polynomials is necessary to handle the nonlinear 
integral equations in a reliable way. 

In the following, the Adomain algorithm for calculating the so-called 
Adomain polynomials for representing nonlinear terms will be 
introduced in details. The algorithm will be explaind by illustrative 
example that will cover a wide variety of nonlinear forms. 
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Calculation of Adomain polynomials  

The Adomain decompostion methed assumes that the unknown 
linear function (ݔ)ݑ may be represented by the infinite 
decomposition series 

(ݔ)ݑ = ෍ (ݔ)௡ݑ
ஶ

௡ୀ଴

,              (3 − 21)       

             Where the components ݑ௡(ݔ), ݊ ≥ 0 will be computed in a 
recursive way. However, the nonlinear term ܨ൫(ݔ)ݑ൯, such as 
,ଶݑ ,ଷݑ ,ସݑ sin ݑ , ݁௨ ,  can be expressed by an infinite series of .ܿݐ݁
the so-called Adomain polynomials ܣ௡ gven by  

௡ܣ =
1
݊!

݀௡

௡ߣ݀ ൥ܨ ൭෍ ௜ݑ௜ߣ

௡

௜ୀ଴

൱൩
ఒୀ଴

, ݊ = 0,1,2, … , (3 − 22) 

 Where the so-called Adomain polynomial  ܣ௡ can be evaluated for 
all forms of nonlinearity. The general formula (3-22) can be easily 
used as follows. Assuming that the nonlinear function is 
therefor by using (3,((ݔ)ݑ)ܨ − 22), Adomain polynomials are given 
by 

଴ܣ =  ,(଴ݑ)ܨ
ଵܣ =  ,(଴ݑ)′ܨଵݑ

ଶܣ = ᇱ(௨బ)ܨଶݑ +
1
2!

ଶݑ
ଵܨᇱᇱ(ݑ଴) +

1
3!

 

ଷܣ = (଴ݑ)ᇱܨଷݑ + (଴ݑ)ᇱᇱܨଶݑଵݑ +
1
3!

ଷݑ
ଵܨᇱᇱᇱ(ݑ଴), 

ସܣ = (଴ݑ)ᇱܨସݑ + ൬
1
2!

ଶݑ
ଶ + ଷ൰ݑଵݑ (଴ݑ)ᇱᇱܨ +

1
2!

ଶݑ
ଵܨᇱᇱᇱ(ݑ଴)

+
1
4!

ସݑ
ଵܨ௜௩(ݑ଴)                   (3 − .23) 

Two important observations can be made here. First, ܣ଴ depends 
only on ݑ଴, ܣଵdepends only on ݑ଴and ݑଵ, ܣଶdepends only on  ݑ଴, 
,ଵݑ  ଶ and so on. Second subsƟtuƟng (3-23) into (3-24) givesݑ ݀݊ܽ

(ݑ)ܨ = ଴ܣ + ଵܣ + ଶܣ + ଷܣ + ସܣ + ⋯ 



٥٢ 
 

= F(u଴) + (uଵ + uଶ + uଷ + uସ + ⋯ )Fᇱ(u଴)

+
1
2!

(uଶ
ଵ + 2uଵuଶ + 2uଵuଷ + uଶ

ଶ + ⋯ )Fᇱᇱ(u଴) + ⋯

+
1
3!

(uଷ
ଵ + 3uଶ

ଵuଶ + 3uଶ
ଵuଷ + 6uଵuଶuଷ

+ ⋯ )Fᇱᇱᇱ(u଴) + ⋯

= F(u଴) + (u − u଴)Fᇱ(u଴) +
1
2!

(u − u଴)ଶFᇱᇱ(u଴)  

+ ⋯   (3 − 24) 
The last expansion confirms a fact that the series in ܣ௡ 
polynomials is a Taylor series about a function  ࢛૙ and not about a 
point as in the standard Taylor series. The few Adomain 
polynomials given above in (3-23) clearly show that the sum of the 
subscripts of the components of (ݔ)ݑ of each term of ܣ௡ is equal 
to ݊. 
In the following. We will calculate Adomian polynomials for 
several nonlinear terms that may arise in nonlinear integral 
equations. 

Case 1. 

The first four Adomain polynomials for (ݑ)ܨ =  ଶ are given byݑ

଴ܣ = (଴ݑ)ܨ = ଴ݑ
ଶ 

ଵܣ = (଴ݑ)′ܨଵݑ =  ଵݑ଴ݑ2

ଶܣ = (଴ݑ)′ܨଶݑ +
1
2!

ଵݑ
ଶܨᇱᇱ(ݑ଴) = ଶݑ଴ݑ2 + ଵݑ

ଶ 

ଷܣ = (଴ݑ)ᇱܨଷݑ + (଴ݑ)ᇱᇱܨଶݑଵݑ +
1
3!

ଵݑ
ଷܨᇱᇱᇱ(ݑ଴) = ଷݑ଴ݑ2 +  ,ଶݑଵݑ2

Case 2. 

The first four Adomain polynomials for (ݑ)ܨ =  ଷ are given byݑ

 
଴ܣ = (଴ݑ)ܨ = ଴ݑ

ଷ 
ଵܣ = (଴ݑ)′ܨଵݑ = ଴ݑ3

ଶݑଵ 

ଶܣ = (଴ݑ)′ܨଶݑ +
1
2!

ଵݑ
ଶܨᇱᇱ(ݑ଴) = ଴ݑ3

ଶݑଵ + ଶݑ଴ݑ3
ଵ, 


