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ABSTRACT

This thesis provides solutions for nonlinear partial
differential equations, obtained from Concrete Beams Design
(CBD), by extracting three partial differential equations of the
beam model.

Including beam definition, types of beams, calculation of the
equation of the elastic curve, and extract the equations from
structure model by using Euler-Lagrange equation. The equations
are solved by using Adomian's decomposition method, homotopy
perturbation method, variational iteration method and finally it
solved numerically by using finite differences method and spectral
method, with design algorithms using MATLAB program.

The Adomian's decomposition method, homotopy
perturbation method and variational iteration method give the
solution in power series form, but the finite differences method
and spectral method give approximation solution, it gave
satisfactory results in agreement with the analytical solutions.
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INTRODUCTION

A beam is a bar-like structural member whose primary function is to
support transverse loading and carry it to the supports and are the most
common type of structural component, particularly in Civil Engineering.

The objective of a beam link the columns concrete, distribution the
loads from the slab to columns concrete and dividing the slabs to parts
section, so we obtain the best distribution moments.

One-dimensional mathematical models of structural beams are
constructed on the basis of beam theories. Because beams are actually
three-dimensional bodies, all models necessarily involve some form of
approximation to the underlying physics.

The previous study calculation the deflection curve by approximate
the bending to be small, SO that the first derivative of deflection curve is
equal to zero, but in this thesis we need to give the new solutions of bending
of elastic beam without approximate the first derivative of deflection curve
is equal to zero.

This study has been applied in three partial differential equations
(PDEs) obtained from Concrete Beams Design (CBD), the equations
solving by analytical methods and numerical methods. Comparison the
analytical methods with exact solution when we choose the second term
from series, which gave satisfied error.
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1 Introduction to Bending of Elastic Beams

1.1 Beams

A beam is a bar-like structural member whose primary function is to
support transverse loading and carry it to the supports and are the most
common type of structural component, particularly in Civil Engineering
and Mechanical Engineering [1].

The 1700’s and early 1800’s were a productive period in which the
mechanics of simple elastic structural elements were developed well before
the beginnings in the 1820’s of the general three-dimensional theory. The
development of beam theory by Euler, who generally modeled beams as
elastic lines which resist bending, and by several members of the Bernoulli
family and by Coulomb, remains among the most immediately useful
aspects of solid mechanics, in part for its simplicity and in part because of
the pervasiveness of beams and columns in structural technology. James
Bernoulli proposed in 1705 that the curvature of a beam was proportional
to bending moment. Euler in 1744 and John’s son, Daniel Bernoulli (1700-
1782) in 1751 used the theory to address the transverse vibrations of beams,
and Euler gave in 1757 his famous analysis of the buckling of an initially
straight beam subjected to a compressive loading; the beam is then
commonly called a column. Following a suggestion of Daniel Bernoulli in
1742, Euler in 1744 introduced the strain energy per unit length for a beam,
proportional to the square of its curvature, and regarded the total strain
energy as the quantity analogous to the potential energy of a discrete
mechanical system [2].

By adopting procedures that were becoming familiar in analytical
mechanics, and following from the principle of virtual work as introduced
by John Bernoulli for discrete systems such as pin-connected rigid bodies
in 1717, Euler rendered the energy stationary and in this way developed
the calculus of variations as an approach to the equations of equilibrium
and motion of elastic structures. That same variational approach played a
major role in the development by French mathematicians in the early
1800°s of a theory of small transverse displacements and vibrations of
elastic plates. This theory was developed in preliminary form by Sophie
Germain and partly improved upon by Simeon Denis Poisson in the early
1810’s; they considered a flat plate as an elastic plane which resists
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curvature. Navier gave a definitive development of the correct energy
expression and governing differential equation a few years later. An
uncertainty of some duration in the theory arose from the fact that the final
partial differential equation for the transverse displacement is such that it
Is impossible to prescribe, simultaneously, along an unsupported edge of
the plate, both the twisting moment per unit length of middle surface and
the transverse shear force per unit length. This was finally resolved in 1850
by German physicist Gustav Robert Kirchhoff in an application of virtual
work and variational calculus procedures, in the framework of simplifying
kinematic assumptions that fibers initially perpendicular to the plate middle
surface remain so after deformation of that surface. As first steps in the
theory of thin shells, in the 1770’s Euler addressed the deformation of an
initially curved beam, as an elastic line, and provided a simplified analysis
of vibration of an elastic bell as an array of annular beams. John’s
grandson, through a son and mathematician also named John, James
Bernoulli “the younger” (1759-1789) further developed this model in the
last year of his life as a two dimensional network of elastic lines, but could
not develop an acceptable treatment, Shell theory was not to attract
attention for a century after Euler’s work, as the outcome of many
researches following the first consideration of shells from a three
dimensional elastic viewpoint by H. Aron in 1873. Acceptable thin-shell
theories for general situations, appropriate for cases of small deformation,
were developed by English mathematician, mechanician and geophysicist
A. E. H. Love in 1888 and mathematician and physicist Horace Lamb in
1890 (there is no uniquely correct theory as the Dutch applied mechanician
and engineer W.T.Koiter and Russian mechanician V.V.Novozhilov were
to clarify in the 1950’s; the difference between predictions of acceptable
theories is small when the ratio of shell thickness to a typical length scale
is small). Shell theory remained of immense interest well beyond the mid-
1900’s in part because so many problems lay beyond the linear theory
(rather small transverse displacements often dramatically alter the way that
a shell supports load by a combination of bending and membrane action),
and in part because of the interest in such light-weight structural forms for
aeronautical technology [3].




Figure 1.1: Beam with slab

1.1.1 Types of Beams

i. T Beam Ii. L Beam
Figure 1.2: T beam Figure 1.3: L beam
ii. 1 Beam iv. H Beam

L

Figure 1.4: | beam

Figure 1.5: H beam




V. Box Beam

Figure 1.6: Box beam
1.1.2 The Uses of Beams

. Link the concrete columns

il Distribution the loads from the slab to concrete columns

iii.  Dividing the slabs to parts section, so we obtain the beast
distribution moments.

1.2 Strength of Materials (Elasticity)

Linear elasticity as a general three-dimensional theory was in hand in the
early 1820’s based on Cauchy’s work. Simultaneously, Navier had
developed an elasticity theory based on a simple corpuscular, or particle,
model of matter in which particles interacted with their neighbors by a
central-force attraction between particle pairs. As was gradually realized
following works by Navier, Cauchy and Poisson in the 1820’s and 1830’s
the particle model is too simple and makes predictions concerning relations
among elastic moduli which are not met by experiment. In the isotropic
case it predicts that there is only one elastic constant and that the Poisson
ratio has the universal value of 1/4.Most subsequent development of the
subject was in terms of the continuum theory. Controversies concerning
the maximum possible number of independent elastic moduli in the most
general anisotropic solid were settled by English mathematician George
Green in 1837, through pointing out that the existence of an elastic strain
energy required that of the 36 elastic constants, relating the six stress
components to the six strains, at most 21 could be independent. Scottish
physicist Lord Kelvin (William Thomson) put this consideration on
sounder ground in 1855 as part of his development of macroscopic
thermodynamics, in much the form as it is known today, showing that a




strain energy function must exist for reversible isothermal or adiabatic
(isentropic) response, and working out such results as the (very modest)
temperature changes associated with isentropic elastic deformation.
The middle and late 1800°s were a period in which many basic elastic
solutions were derived and applied to technology and to the explanation of
natural phenomena. French mathematician Barre de Saint-Venant derived
in the 1850’s solutions for the torsion of non-circular cylinders,
which explained the necessity of warping displacement of the cross section
in the direction parallel to the axis of twisting, and for flexure of beams due
to transverse loadings. The German physicist Heinrich Rudolph Hertz
developed solutions for the deformation of elastic solids as they are brought
into contact, and applied these to model details of impact collisions.
Solutions for stress and displacement due to concentrated forces acting at
an interior point of a full space were derived by Kelvin, and on the surface
of a half space by mathematicians J. V. Bousinesq (French) and V.
Cerruti(ltalian). The Prussian mathematician L. Pochhammer analyzed the
vibrations of an elastic cylinder and Lamb and the Prussian physicist P.
Jaerisch derived the equations of general vibration of an elastic sphere in
the 1880, an effort that was continued by many seismologists in the 1900’s
to describe the vibrations of the Earth. Kelvin derived in 1863 the basic
form of the solution of the static elasticity equations for a spherical solid,
and these were applied in following years to such problems as deformation
of the Earth due to rotation and to tidal forcing, and to effects of elastic
deformability on the motions of the Earth’s rotation axis.
The classical development of elasticity never fully confronted the problem
of finite elastic straining, in which material fibers change their lengths by
other than very small amounts. Possibly this was because the common
materials of construction would remain elastic only for very small strains
before exhibiting either plastic straining or brittle failure. However, natural
polymeric materials show elasticity over a far wider range (usually also
with enough time or rate effects that they would more accurately be
characterized as viscoelastic), and the widespread use of natural rubber and
like materials motivated the development of finite elasticity. While many
roots of the subject were laid in the classical theory, especially in the work
of Green, G. Piola and Kirchhoff in the mid-1800’s, the development of a
viable theory with forms of stress-strain relations for specific rubbery
elastic materials, and an understanding of the physical effects of the




nonlinearity in simple problems like torsion and bending, is mainly the
achievement of British American engineer and applied mathematician
Ronald S. Rivlin in the 1940’s and 1950’s [3, 4, 5].

1.2.1 Moduli of Elasticity

Material properties that indicates stiffness and rigidity, VValues of E for
many materials are readily available in table some common values are.

Table 1.1: Elasticity modulus for same materials

Material Modulus of Elasticity (E)
Steel 30 x 10°
Aluminum 10x 10°

Wood 2% 10°

1.3 Simple Bending Theory

The simple theory of elastic bending states that

M o E

I vy R

where M is the applied bending moment (B.M.) at a transverse section, | is
the second moment of area of the beam cross-section about the neutral axis
(N.A.), o is the stress at distance y from the N.A. of the beam cross-section,
E is the Young’s modulus of elasticity for the beam material, and R is the
radius of curvature of the N.A. at the section. In order for this to be
achieved it is necessary to make certain simplifying assumptions, and for
this reason the theory introduced below is often termed the simple

theory of bending. The assumptions are as follows:

1. The beam is initially straight and unstressed.

2. The material of the beam is perfectly homogeneous and isotropic,
I.e. of the same density and elastic properties throughout.

3. The elastic limit is nowhere exceeded

4. Young's modulus for the material is the same in tension and
compression.

5. Plane cross-sections remain plane before and after bending.




6. Every cross-section of the beam is symmetrical about the plane of
bending, i.e. about an axis perpendicular to the N.A.
7. There is no resultant force perpendicular to any cross-section.

If we now consider a beam initially unstressed and subjected to a constant
B.M. along its length, i.e. pure bending, as would be obtained by applying
equal couples at each end, it will bend to a radius R as shown in (Figure
1.7b). As a result of this bending the top fibres of the beam will be
subjected to tension and the bottom to compression. It is reasonable to
suppose, therefore, that somewhere between the two there are points at
which the stress is zero. The locus of all such points is termed the neutral
axis. The radius of curvature R is then measured to this axis. For
symmetrical sections the N.A. is the axis of symmetry, but whatever the
section the N.A. will always pass through the centre of area or centroid [6].

(‘)rb
™
]
]
|
|
|
|
I
i
o W
o
N
=
=

Fig (1.7): Beam subjected to pure bending (a) before, and (b) after, the
moment M has been applied.

Consider now two cross-sections of a beam, HE and GF, originally parallel
(Fig. 1.7a). When the beam is bent (Fig. 1.7b) it is assumed that these
sections remain plane; i.e. H E and GF', the final positions of the sections,
are still straight lines. They will then subtend some angle 6.

Consider now some fibre AB in the material, distance y from the N.A.
When the beam is bent this will stretch to A'B’.

extension A'B' — AB

original length - AB

strain fibre AB =

But A’B’ = CD and since the N.A is unstressed CD = C'D’

A'B'—C'D" (R+y)60—y8 vy

strain = D RO R
stress ’
But oam = young smoduls (E)
Than strain =%

Equating the two equations for strain

7



y o

Consider now cross section of the beam (Figure 1.7) for equation (1.1) the
stressis o = gy

T

R
N

Figure 1.8: Beam cross section

If the strip is of area, 6A the force on the strip is
F =06A = £ 6A
=0 = R y
This has a moment about the N.A. of

E
Fy = oyS6A = EyZSA

The total moment for the whole cross-section is therefore

M—ZE 25A—EZ 254
LRV AT RLY

Since E and R constants.

Theterm ), y28A is called the second moment of area of the cross-section
and given the symbol I

E
== (1.2)

M=—I
or R

E M
R T
Combining equations (1.1) and (1.2) we have the bending theory equations

M _E 13
I _R (')




From Eq. (1.2) it will be seen that if the beam is of uniform section, the
material of the beam is homogeneous and the applied moment is constant,
the values of I, E and M remain constant and hence the radius of curvature
of the bent beam will also be constant. Thus for pure bending of uniform
sections, beams will deflect into circular arcs and for this reason the term
circular bending is often used. From Eq. (1.2) the radius of curvature to
which any beam is bent by an applied moment M is given by:
El

M

Thus directly related to the value of the quantity El. Since the radius of
curvature is a direct indication of the degree of flexibility of the beam (the
larger the value of R, the smaller the deflection and the greater the rigidity)
the quantity EI is often termed the jexural rigidity or flexural stiflness of
the beam. The relative stiffnesses of beam sections can then easily be
compared by their El values. It should be observed here that the above
proof has involved the assumption of pure bending without any shear being
present. [6]

1.4 The Euler-Bernoulli Law of Linear and Nonlinear
Deformations for Structural Members

The first public work regarding the large deformation of flexible members
was given by L. Euler (1707-1783) in 1744, according to Euler, when a
member is subjected to bending, we cannot neglect, the slope of the
deflection curve in the expression of the curvature unless the deflections
are small. Euler has published about 75 substantial volumes, he was a
dominant figure during the 18th century, and his contributions to both pure
and applied mathematics made him worthy of inclusion in the short list of
giants of mathematics Archimedes, I. Newton (1642-1727), and C. Gauss
(1777-1855).

We should point out, however, that the development of this theory took
place in the 18th century, and the credits for this work should be given to
Jacob Bernoulli (1654-1705), his younger brother Johann Bernoulli
(1667-1748), and Leonhard Euler (1707-1783). Both Bernoulli brothers
have contributed heavily in the mathematical sciences and related areas.
They also worked on the mathematical treatment of the Greek problems of
isochrone, brahistochrone, isoperimetric figures, and geodesies, which led
to the development of the new calculus known as the calculus of variations.
Jacob also introduced the word integral in suggesting the name calculus




integrals. G.W. Leibniz (1646—-1716) used the name calculus summatorius
for the inverse of the calculus differential [5].

The Euler—Bernoulli law states that the bending moment M is proportional
to the change in the curvature produced by the action of the load. This law
may be written mathematically as follows:

1 do6 M

plrat (1.4)

where p is radius of curvature, 6 is the slope at any point x,, x, is
measured along the arc length of the member as shown in Fig: 1.1a, M the
bending moment, E the modulus of elasticity, and I the moment of inertia
of cross section about its neutral axis.

When a beam is subjected to a transverse loading, Eq. (1.4) remains valid
for any given transverse section, provided that saint-venant's principle
applies. However, both the bending moment and the curvature of the
neutral of the section from the left end of the beam, we write

1 M) 15

1.4.1 The Classical Model of Elastic Beam-Theory
gy, 4y 0<x< L 16
det Pz =1 x (1.6)

where El, y, P and g represent the flexural rigidity, the lateral deflection,
the axial compressive force, and the intensity of lateral load, respectively.
Equation (1.6) is usually studied with one of the following pairs of
boundary conditions, which depend on how the ends of the beam are

supported.
* Embedded at both ends
y(0)=y'"(0)=yL) =y (L) =0 (1.7a)
* Embedded at one end, free at the other (cantilever)
y(0) =y'(0) =y"(L)=y""(L) =0 (1.7b)
* Simply supported at both ends
y(0)=y"(0) =y(L)=y"(L)=0 (1.7¢)
* Periodic boundary conditions
y®(0) =yD(L), i=0123 (1.7d)

If P =0, Eq (1.6) is called the Euler-Bernoulli equation which usually desc-
-ribes the relationship between the deflection of the beam and applied load.

10



1.5 Equation of the Elastic Curve

We first recall from elementary calculus that the curvature of a plane curve
at a point Q(x, y) of the curve expressed as:
1 yll
- (1.8)
Pa+on:
where y" and y'’ are the first and second derivatives of the function y(x)
represented by that curve, but in the cases of the elastic curve of a beam

the slope y' is very small, and its square is negligible compared to unity.
We may write, therefore,

1 _d% Lo
Substituting for é from (1.8) into (1.9), we have

d’y M(x)

dx? EI (1.9)

The equation obtained is a second order linear differential equation, it is
the governing differential equation for the elastic curve.

The product ET is known as the flexural rigidity and, if it varies along the
beam, as in the case of a beam of varying depth, we must express it as a
function of x before proceeding to integration Eq. (1.9). However, in the
case of a prismatic beam, which is the case considered here, the flexural
rigidity is constant. We may thus multiply both members of Eq. (1.9). by
EI and integration in x. We write

dy r
Elaz jM(x)dx+cl (1.10)
0

where c; is constant of integration. Denoting by 6 (x) the angle, measured
in radians, that the tangent at Q to the elastic curve forms with the
horizontal Fig 1.13, and recalling that this angle is very small, we have

Y _ an(9) = 111
Y — tan(0) = 0(x) (111)
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Figure 1.9: Deflection beam

Thus, we may write Eq. (1.10) in the alternate form
X
Elf(x) = fM(x)dx +c (1.12)
0

Integration both members of Eq. (1.10) in x, we have

X X

Ely(x) = M(x)dx+c; |+c, (1.13)
I

where c, is second constant of integration, and where the first term in the
right hand side represents the function of x obtained by integration twice
in x the bending moment M (x). If it were not for the fact the constants
c,and c, are as yet undetermined, Eqg. (1.13) would define the deflection
of the beam at any given point Q, and Eq. (1.2) would similarly define the
slope of the beam at Q.

The constants c;and c, are determined from boundary conditions or more
precisely, from the conditions imposed on the beam by its supports.
Limiting our analysis in this section to statically determinate beams, i.e. to
beams supported in such a way that the reactions at the supports may be
obtained by the methods of statics, we note that only three types of beams
need to be considered here (Figure 1.10):

. The simply supported beam

Ii.  The overhanging beam

ii.  The cantilever beam
In the first two cases, the supports consist of a pin and bracket at A and of
aroller at B, and require that the deflection be zero at each of these points.

Letting first x =x, ,y =y, = 0in EqQ. (1.13), and then x = x5,

12



y = yp = 0 in the same equation, we obtain two equations which may be
solved for c;and c,in the case of the cantilever beam (Figure 1.10c), we
note that both the deflection and the slope at A must be zero. Letting x =
X4,y =y4=0InEq. (1.13),and x =x,,0 =6, =01in Eq. (1.11), we
obtain again two equations which may be solved for c;and c, [5].

b =

e == = o]

(@) Simply supported beam

{c) Cantilever beam

Figure 1.10 Boundary conditions for statically determinate beams.

1.6 Equation of Woinwsky-Krieger

Its nonlinear beam equation denoded by
L

2 0%u
s tasm—| B+ kj (ue@0) df |55=0 (114
0
where the constants « , 5 and k are positive. Equation (1.14) was proposed
by Woinwsky-Krieger as a model for the transverse deflection u(x, t) of
an extensible beam of natural length L whose ends are held a fixed distance
apart. The nonlinear term represents the change in the tension of the beam
due to its extensibility. The model has also beam discussed by Eisley.
Dickey recently considered the initial-boundary value problem for (1.14)
in the case when the ends of beam are hinged, so that
u(0,t) =u(L,t) = u,,(0,t) = u,,(L,t) =0
Example 1.1: the cantilever beam AB is of uniform cross section and
carries a load P at its free end A (Figure 1.11). Determine the equation of

the elastic curve, deflection and slope at A.
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Figure 1.11 Figure 1.12

Using the free body diagram of the portion AC of the beam (Figure 1.12),
where C 1s located at a distance x from end A, we find

M = —Px

Substituting for M into Eq. (1.4) and multiply both members by the EI,
we write

d?y
Integration in x, we obtain
1Y = _05px? +c (1.15)
dx . 1 .

We now observe that at the fixed end B we have x = L and 8 = Z—Z =0

[x=L,6=0]

Figure 1.13
Substituting theses values into Eq. (1.15), and solving for c,, we have
Cl == O.SPLZ

Then

14



dy
EIa = —0.5 * Px%? + 0.5PL? (1.16)

Integration both members, we write

El =—1P 3 1PL2 1.17
y(x) c Px +2 X+ cy (1.17)

But, at B we have x = L, y = 0. Substituting into Eq. (1.17) we have
1
=—-PI3
(85) 3

Substituting the value of ¢, in Eq. (1.17), we obtain the equation of
elastic curve

()—1 Lpys g Lpizy g 2pp?
@) =g (ghem + g P+ 3 PLY

y(x) = P (—x3 + 3L%x — 2L3) (1.18)
6E1 '

The deflection and slope at A are obtained by letting x = 0 in Eq. (1.18),
and (1.16). We find

PL3 B PIL?
~ 2EI
Example 1.2: the simply supported prismatic beam AB carries a uniformly

distributed load w per unit length (Fig: 1.14). Determine the equation of
elastic curve.

Figure 1.14 Figure 1.15

Drawing the free body diagram of the portion AD of the beam (Figure
1.15), and taking moments about D, we find that

15



M"—1 L 1P 2
= Swlx — = Pwx

Substituting for M into Eq. (1.4) and multiply by EI, we get

d’y 1 1
EIW = EWLX —EPWX

Integration twice in x, we have

d 1 1
Eld_ic] = ZWLXZ — ngx3 + ¢ (1.19)

We now observe that at the fixed end B we have x = L and 8 = % =0

Substituting theses values into Eq. (1.19), and solving for c,, we have

_ 3
Cq 12PWL
Then
dy 1 1 1
El—= = -wLx? — = Pwx3 — — Pwl3 1.20
dx a7t Tt Tt (1.20)

Integration both members, we write

1 1 1
Ely(x) = EwLx3 — ﬁwa‘* — EPWLBX + ¢, (1.21)

But, at B we have x = L, y = 0. Substituting into Eq. (1.21) we have

1 1
Cy, = §PWL4 —EWL4

Substituting the value of ¢, in Eq. (1.17), we obtain the equation of
elastic curve
1 1 1

y(x) = l(—WLx3 — —Pwx?* ——Pwl3x + leL4 — iwL“)
EI\12 24 12 3 7
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2 Model of Bending of Elastic Beams

Consider a straight beam on an elastic foundation with length L, a cross-
section A, a mass per unit length 4, moment of inertia I, p is radius of
curvature and modulus of elasticity E that subjected to an axial force of
magnitude F as shown in Fig. 2.1. We first recall from elementary calculus
that the curvature of a plane curve at a point Q(x, u) as shown in Fig. 2.1,
of the curve expressed as

1 Uy

P 1+ ()

where u, and u,, are the first and second derivatives of function
u represented by that curve but, in the case of the elastic curve of a beam

the slope u, is very small.

@:I IAI

)

Elastic ]

Figure 2.1: the elastic curve of a beam

2.1 Hamilton's Principle

H=det

17



where L is called Lagrange's function defined by
L=T-V

T is Kinetic Energy defined by

1
T=§ujwa%x

IV is Potential Energy defined by

2
——kf ()
(1+ (u)?)?

Substituting the Kinetic energy and potential energy in Hamilton
principle, we obtain.

1 K (U )?
== pu(u)? — dxdt
2y‘ T A+

2.1.1 First Case: Obtain the Linear Equation of Transvers Vibration
of Beam.

In this case, we assume the bending to be small so that the deflection
u(x, t) and its derivative are Small, i.e (u, )% = 0

Using the Euler - Lagrange equation. Suppose f = u(u)? — k(tyy,)?
Therefor the Euler — Lagrange equation
of d (6f> d(@f)_l_ d? ( 6f>+ d? (6}‘)_0
du dx\ou,) dt\ou,) dx2\ou,,/ dtz\ou,/
2

d d
_a (2 M(ut) - W (Zkuxx) =0

—2 fUgr — 2KUyynx = 0

0°u  ko*u

— =0
ot? +u6x4

u is arbitrary variable the transverse vibration of beam, and k = %

18



0%u N El 0*u B
otz Auox*

El
Letus a® =—

0*u 0%
F +a @ =0 (21)

2.1.2 Second Case: Obtain the Nonlinear Equation of Transvers
Vibration of Beam.

k(Uxy)?

In this case we assumption u'? <« 1. Suppose f = u(u.)? — 5.
(1+(uyx)?)2

Therefor the Euler — Lagrange equation
of d(éf) d(6f>+d2<6f)+d2(6f)_0
du dx\ou,) dt\ou,) dx2\ou,,/ dt2\ou,/

d d -
@) - — (k(uxx)Z(ux) (-3 + (ux)2)75)>

B d? 2k, =0

D\ (1 + (w)?)z

d
@) + 3k ((uxx)Zuxu +@))7)

Zki (1 + (uy)? )E(uxxx) 3w, ()2 (1 + (ux)z)%
o (1 + w)?)?

—2 HUge + 3k (_S(Ux)z(uxx)3(1 + (ux)z)_77 + (uxx)3(1 + (ux)z)%s
+ 20y (1 + (1)) 7 )

d 3
+ ZkE((uxxa(l + (w)?)?

- 3ux(uxx)2(1 + (ux)z)%s) =0
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—2 HUgt + 3k <_5(ux)2(uxx)3(1 + (ux)z)_77 + (uxx)3(1 + (ux)z)_Ts
+ 2yttt (1 + (1)) )
+ 2k <_3uxuxxuxxx(1 + (ux)z)%s + Uy (1 + (ux)z)%s>

1502 (we)® — 3(e)* (L + WD) 2

-5
— OU Uy U (1 + (ux)z) 2 =0
k

Uy = —

U

A+ @)?? 200+ @)?e A+ @) 2(1+ w)?)?

uxxxx 3 (uxx) 3 6uxuxxuxxx _ 45 (ux)z (uxx) 3“

When u'? « 1 all derivatives we obtain the Nonlinear Transverse
Vibrations of a beam equation

02u  k[o*u 3/0%u\’ 66u62u63u 45(6u)2 02u\’
0x 0x2 0x3 2

otz ulox* 2\ 9x2 dx) \0x2

k k k 5k

Letus a =-— ,b:—3— ) c=_% , d=—2k
% 2u % 2u

d0%u B d%u b a2u\’ N ou d?u d3u 4 <6u)2 a2u\> -
ocz ~ Lot ox2) T “ox 0x? 9x3 ax) \axz) @2

2.1.3 Third Case: Obtain the Nonlinear Equation of Transvers
Vibration of a Beam.

In this case we assumption without approximation u’? « 1.

2
XGe)”  The Euler — Lagrange equation

(1+(ux)?)2

L4500 ) () -

ou dx\du,/ dt\ou,) dx?\du,,/ dt?\ou.

Suppose f = u(u)? -

d d , )5
—— 2w - a(k(uxx) () (=301 + ()" ))

_ d? 2k, — 0

D\ (1 + w)?)z
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d
S @) + 3k ((uxx)zux(l +@))7)

2k d [ (1+ (ux) )z(uxxx) - 3ux(uxx)2(1 + (ux)z)%
T CEIORDE

—2 Huge + 3k (_S(ux)z(uxx)3(1 + (ux)z)_77 + (uxx)3(1 + (ux)z)%s
+ 20 tt (1F (1)) )

d -3
+ 2k — ((uxxx)(]- + ()7
dx

- 3ux(uxx)2(1 + (ux)z)%s> =0

—2 puy + 3k (_S(ux)z(uxx)3(1 + (uvx)z)_77 + (uxx)3(1 + (ux)z)%s
+ 2ttt (14 ))7 )
+ 2k (“Buteatt (1 4 @)) T + e (0 + @) )

150102 (te)? — 3 (1 + W)D) 2

-5
— OUy Uy U (1 + (ux)z) 2 =0

_ k uxxxx 3(uxx)3 6uxuxxuxxx 45(ux)2(uxx)3
Yoe =7 37 5T 5 7
1+ @)?? 21+ w)?z 1+ w2 2(1+ (ue)?)2
letusa=% , b=-2X | =_% o d=_%k
U 2u U 2u
3 2 3
utt =a uXXXX - + b (uxx) - + c uxuxxuxxxs + d (ux) (uxx) 7 (23)

1+ @)z A+@wo?d? A+ @wd? A+ @w)d?
2.2 Conclusions of this Chapter

1. Equation (1.1) is Called Linear Equation of Transverse Vibration of
a Beam, but Equations (1.2) and (1.3) are Called Nonlinear
Equations of Transverse Vibration of a Beam.
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2. E isthe modulus of elasticity, I is the moment of inertia of any
cross section about the x-axis, A is the area of cross section and u
mass per unit length.

3. If a = —a? and others constants are equal zeros in equation (1.2)
we obtain the equation (1.1)

4. The bending to be small, so that the deflection u(x, t) and its
derivative are smalli.e (u,)? « 1, so the equation (1.3) is became
equation (1.2)

Figure 2.2: Elastic beam
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3 Adomain's Decomposition Method

We discuss the Adomain's decomposition method for solving models of
bending of elastic beams.

3.1 Adomian's Decomposition Method (ADM)

George Adomian established the Adomian decomposition method (ADM)
in 1980s, the ADM has been paid much attention in the recent years in
applied mathematics, and in the field of series solution particularly.
Moreover, it is a fact that this method is powerful, effective, as well easily
solves many types of linear or nonlinear ordinary or partial differential
equations, and integral equations. The ADM solves the problems in direct
way and in an uncomplicated fashion without using linearization,
perturbation or any other assumptions that may change the physical
behavior of the model. The technique is based on a decomposition of a
solution of a nonlinear operator equation in series of function each term of
the series is obtained from a polynomial generated from an expansion of
an analytic function into a power series. The Adomian technique is very
simple in an abstract formulation but difficulty a rises in calculating the
polynomials and in proving the convergence of the series of function.
Convergence of the Adomian method when applied to some classes of
ordinary and partial differential equation is discussed by many authors for
example, K. Abbauoi and Y.Cherruault proved the convergence of the
Adomian method for differential and operator equations.

Lesnic investigated convergence of the ADM when applied to time
dependent heat wave and beam equations for both forward and backward
time evolution.

He should that the convergence was faster for forward problem than
backward problems. Al-khaled and Allan implemented the Adomian
method for variable —depth shallow water equations with source term and
illustrated the convergence numerically.

Adomian decomposition method introduces the solution of any equation in
a series form, where the components of the solution are elegantly computed
by a recursive manner. Further, the resulting series may converge to a
closed form solution if exact solution exists.
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In the case where a closed form solution is not obtainable, a truncated n-
term approximation is usually used for approximations and numerical
purposes. It was formally proved by many researchers that the method
provides the solution in a rapidly convergent power series.
An important point can be made here in that the method attacks the
problem, homogeneous or inhomogeneous, in a straightforward manner
without any need for transformation formulas [7, 8].

Lu+ Nu = g(x,t) (3.1)

where L and N are linear and nonlinear operators respectively, and g(x, t)
Is the source inhomogeneous term.

Lu=g(x,t) — Nu
L 'Lu=L"1(g(x,t) — Nu)

u(x, t) = @o — L7 (Nu)

where
( (x,0) L= I
o forl =75
62
®o =y ulx,0) + tu,(x,0) forL = pre
t? 03
ku(x, 0) + tu,(x,0) + ?utt(x, 0) forL = 53

The solution is given by:

oo}

u(x, t) = z u,(x,t)

n=0

If the equation is having nonlinear term f(u), the solution is given by:

e}

u(x, t) = Z U, (x,t) = @ + L‘l(i u, (x,t) + i A,)
n=0 n=0

n=0

where
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F(u) = z A, (Uug, uq, Uy, ...)
n=0

A, is called Adomian's polynomials, can be evaluated for all forms of
nonlinearity. Several schemes have been introduced in the literature by
researchers to calculate Adomian polynomials. Adomian introduced a
scheme for the calculation of Adomian polynomials that was formally
justified. A,, alternative reliable method that is based on algebraic and
trigonometric identities and on Taylor series has been developed and will
be examined later. The alternative method employs only elementary
operations and does not require specific formulas. The Adomian
polynomials A,, for the nonlinear term F(u) can be evaluated by using the
following expression

1 dn . ;
An—mﬁ F zﬂ. uj ,Tl—O,]_,Z,...
J=0 1=0
where
Ay = F(uy)
Ay = u i F'(uy)

1
Ay = uyF'(ug) + Eule”(uo)
! 124 1 3 124
Az = uzF'(ug) + ugu F'' (up) + gu1 F'"(uo)

1 1
A4_ = u4F,(u0) + (Euzz + u1u3> F”(uo) + EulzuzF,”(uo)

1
+ ﬁu43F,,,,(u0)
Other polynomials can be generated in a similar manner.
Two important observations can be made here. First, A, depends only on
ug, A; depends only on u, and u;, A, depends only on u,, u; and u,,
and so on. Second, substituting [7].
F(u)y=A4,+4, +A4, + -
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= F(ug) + (ug + uy + uz + - )F' @)

1
+ E(ulz + 2u1u2 + uzz + "‘)F”(uO)

! 3 2 2 mr(ug)
+ 5(“1 + 3uy“uy + 3u“uz + 6u Uy us L))

3.2 Adomian's Decomposition Transform Method (ADTM)
In this method, we using Laplace's transform of equation (3.1), we obtain

Ll(L(u)) + L(Nu) = L(g)
1w o*u(x,0) 1
) = 5 ), s ) L~ g)

Finally, we use Laplace's inverse

n-1
1 o*u(x,0) 1
— - k+n- ’
’U,(X,t) =L71 S_n;)S( tn DT—S—nL((Nu—g))
Put u(x,t) = Yoo Un(x, t)
[o'e] n-—-1 [¢%)
1 o*u(x,0) 1
— - k+n- !
P B I T (NZW%)

To illustrate this method we give some examples.
Example 3.1: Solving the Linear Equation of Transverse Vibration of
Beam.

0%u 2 0%u 0
— a —
ot?2 0x*
where a2 =5
Al

with initial conditions
u(x,0) =sin(x) & u.(x,0) = x?
Using the Adomian's Decomposition Method, we have
Lou(x,t) + a?Lu(x,t) =0
L, 'Lou(x, t) = —a?L, Lyu(x, t)

where
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62 04 £
— _ -1 —
Le=os o Li=o— & L7'() —fj(.)dtdt
00

u(x, t) = u(x,0) + tu,(x,0) — a?L,~ "L ou(x, t)
u(x, t) = sin(x) + x%t —a?L, " 'Lyu(x, t)

We next define the unknown function u(x, t) by a sum of components
defined by the series

(0]

u(x, t) = z u,(x,t)

n=0

(00]

Z u, (x,t) = sin(x) + x%t — ath_le(z U, (x, 1))
n=0

n=0

or equivalently

Ug + Uy + Uy + - =sin(x) + x%t — a?Ly  Le(ug +uq +uy + )

Let us uy = sin(x) + x?t

t ot " t2
_7 -1 2
u, =L L,(up) = —a _[fT (up)dtdt = —a sm(x)
00

t t
4
u, = —ath_lL (ul) =« f.[ 2 (sm(x) —)dtdt = Sin(x) (CZ,")
00

t ot
1 o ([0 (. .t (oct)6
u; =L L,(uy) = —«a _[f@ sin(x) — y dtdt = —sin(x)

00
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Uy = —aPL, Ly () = — j f w_dtdt
0
2k

. (oct
= (=¥ sin(x) 0!

(0]

u(x,t) = Z up(x,t) =uy +uy +uy, + -

n=0

2n

= x?t + sin(x)cos(at)

ulx,t) =x t+Z( 1)™ sin(x) ((2 )]

Using Adomian's Decomposition Transform Method (ADTM). By using
Laplace's transform of both sides

2u(x,5) - su(x,0) — s (x,0) = —a? L
s“u(x,s su(x, u(x,0) = —a (6x4

4
u(x,s) = u();, O + ut(SxZ, 0_ a? (Sizﬁ <%>>

Given u(x,0) =sin(x) & u(x,0)=0,s0

— o 2 L 1 L 64
u(x,t) = sin(x) + x“t — <6x4>

Put u =),_,u, and integration of both sides of t variable

nz:(:)un = sin(x) + x%t — a?L~ (sz L <6 Q= ;xlin(x tD))

Compare we obtain

Uy = sin(x) + x%t

u, = —a?L7t 1 o’ (uo)
1 52 Axt 0
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tZ
) = —a“sin(x) T

2r—-1 1 64
u, = —a“”L S—ZL m(ul)

u, = a*L~1 (Sn;gx)>  sin(x) (OZ!)4
v = et (%L (aa—,; (u2)>>

us = —atL™ (Slzgx)> = —sin(x) (“6?6
Uy = —a2L7? (Slzﬁ (aa_; (u3)>>

Uy = marL (Sir;gx)) = sin(x) ("g!)s




u(x, t) = x*t + sin(x)cos(at)

Example 3.2: Solving the Linear Equation of Transverse Vibration of
Beam.
o’u 1 x* 0*u

- — (- _)_:

ot? ( 120

With initial conditions

X5
u(x,0) =0 ,u(x,0) = <1 +FO>

Using the Adomian's Decomposition Method, we have

4
Liu(x, t) — (— + x—)Lxu(x, t)=0

120

-1 1 ox*

L: " Liu(x,t) = (—+ m)Lt Lyu(x,t)

where
02 0* 1
Lt:ﬁ ) Lx=w & Lt_ ()=jJ()dtdt
00
1 1 x*
u(x,t) =u(x,0) + tu(x,0) + L; { — 120 Lyu(x,t)}

B x> -1 1 x* .
u(x, t) = <1+m)t+ ¢ {( +HO> culx, t)}

We next define the unknown function u(x, t) by a sum of components
defined by the series

(0.0)

u(x, t) = z u,(x,t)

n=0

© 5

X 1.1
D unl, t)—(1+m)t+Lt {(— 120) x<zun<x 0))

n=0
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u0+u1+u2+"'

XS L 1 4-
<1+m>t+l¢ {( +m>L (u0+u1+u2+ )}

x5
Let us uo—(1+a)t
1 x* 0%ug(x,t
=JJ(—+ ol )dtdt
X x

t t
—jj L X eededr
= |G+ 30

00
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1 x* 0%u,_{(x,t)
Yn = f f(}J’ 1200 gxt At
0 0

x5 t2n+1
=1
tn ( * 120) 2n+ 1)!
We know that

(00]

u(x, t) = z u,(x,t)

n=0
> x5 £2n+1
) = ; (1 * 120) 2n+1)!
x5\ o p2ntl
u(x,t) = (1 + m) nzo(zn—_l_l)!

X5
u(x,t) = (1 + m) sinh(t)

Example 3.3: Solving the Nonlinear Equation of Transverse Vibration of
Beam.

d0%u B d0%u b a2u\> N ou 0%u d3u 4 (6u>2 2u\>
ocz ~ Y oxt ox2) T ox 0x? 0x3 ox) \ox?

with initial conditions
u(x,0) = -05x* & u(x,0)=0
a=1,b=-15,c=—-6 & d=-22.5
Using the Adomian's Decomposition Method, we have
Lou(x, t) = Lou(x, t)
L, Leu(x, t) = L, Lyu(x, t)

where
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62 64‘ t t
_ _ -1 _
Li=os o Li=o— & L (.)—ff(.)dtdt
00

u(x, t) = u(x,0) + tuy(x,0) + L, Lyu(x, t)
u(x, t) = —0.5x% + L, 'L ou(x, t)
We next define the unknown function u(x, t) by a sum of components

defined by the series

u(x, t) = u,(x,t)
Uy (x,t) = =0.5x2 + L, "L, () un,(x,t) =L, () 4,)

Z w,(x,£) = —0.5x2 + Lt_l(z L (w,) —A,)
n=0

n=0
or equivalently
uo +u1 +u2 +

= _O.sz + Lt_l((LxuO - Ao) + (Lxul - Al)
+ (Lyuz —A2) + )

1 dn =
Ap=—n P Y V|| n=012,.
J=0 1=0
where
o < 3 (2 3+66u62u63u+45(6u)2 9%u\’
u 2\ ox2 Ox 0x2 dx3 2 \Ox 0x?
So
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Jj=0
3
n
=3( 2V v,
j=0
n n n
Jqy. Jay. J
+6 z/l Uj z/l uj z Uy
Jj=0 j=0 j=0
n 2 n 3
45 J J
+7 2/1 Uj Z/l uj
j=0 j=0
whenn =0
uy = —0.5x2

3/0%u,\>  Qu, 0%u, 3u, 45 0un\? [92u,\"
A0=F(uo)=—<—0> + 66—+ <°)( °>

2\ 0x? dx 0x2 0x3 = 2 \ox dx?
B 45x% + 3
o~ 2

whenn =1
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j=0
1 1 1
Ty, Jqy. J
+6 ijx Zﬂjm z
j=0 j=0 J=0
1 2 1 3
45 yui 2
A DTN E DI
j=0 j=0
A=0

Ay = 5 (030 () + 60, () () + 6(t0,) (11 ()
+6(11,) (o) (o) + o (1) (301, (b0’

45 3
+ 7 (uoxx) (Zulxuox)

A = 405 25x% 4+ 1\ t?
1= 2 2!

whenn = 2

Uy = Lt_l((Lxu1 —A;))

t t
uz - Lt_l(Lxul - Al) - j j ( (ul) A )dtdt
00
t t
1 25x2 +1
uz = Lt (Lxul - Al) = ff (ul) + 4 5 T 2' dtdt
00

B 25x% 4+ 1\ t*
uy = 405 | ———— |
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2 3
_1d? |3 ;
42 =5a2 |2 ZA Y
j=0
2

2 2

Jj=0 Jj=0 Jj=0
2 2 3
45 Jj yu
+ > Z A Uj z uj
j=0 Jj=0
=0
2
1d 19 j
A, =573 zl U (u1,, +22u,, )
j=0
2 2
+6 Z M Uj Z M uj (ulxxx + ZAuzxxx)
=0 =0
2 2
+6 Z Yy Z Vu; (ug,, +22uy )
j=0 j=0
2 2
+6 M uj z A Uj (ulx + 2/1u2x)
=0 =0
2 2 2 2
135 j j
+—- z My 2 M (U1, +22u,, )
j=0 j=0
2 3 2
90 Jj J
+= ZA W (z Vg ) (ur, + 22uz,)
j=0 j=0
=0
B 4829625x% — 88695\ t*
2 2 4
whenn = 3

Uz = Lt_l(Lqu —A;)
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t t

Uy = L (Latty — Ap) = f f (Loty — Ap)dtdt
00

t t
1 4829625x2 — 88695 t*
U3 == Lt (Lqu - Az) == JJ 0 + 2 Z dtdt
00

B 4829625x% — 88695\ t°
Us = 2 6!

5 3
_14%|3 ;
A =319752 z* Y
j=0

X
j=0 j=0
2 2/
45 yui 2
A DX R DL
j=0 j=0

A=0

The solution is given by
(0e]
u=zun =Ug+ U +uU; +uz+--
n=0

The approximation solution is

B x? 45x2% + 3\ t? 25x% 4+ 1\ t*
u(,t) = ==+ — 5 | 5+ 405 (= —— | -

4829625x% — 88695 t°
2 6!
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Solution

Solution

9 2nd term

4 |nitial Guess % 10

X 10

Solution

t-axis 00 x-axis

X 1014 3rd term

Solution

Figure 3.1 Graphical Representation of Example 3.3
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4 Homotopy Perturbation Method

We discuss the homotopy perturbation method for solving models of
bending of elastic beams.

4.1 Homotopy Perturbation Method (HPM)

The homotopy perturbation method (HPM) was first proposed by He J.
Huan in 1999, where the solution of this method is considered as the sum
of an infinite series which is very rapidly converge to the accurate solution.
The homotopy perturbation method, presents some advantages: obtaining
exact solutions with higher accuracy, minimal calculations without loss of
physical verification. This method has found application in different fields
of nonlinear equations. Many authors and researchers studied the
homotopy perturbation method, say. He J. In 1999, used the homotopy
perturbation method for solving nonlinear ordinary differential equations
of the first and second orders. He J. in 2003, solved the Nonlinear ordinary
differential equations with nth order, He J. in 2004, solved the oscillators
equation with discontinuities via the homotopy perturbation method, He J.
in 2005, studied the homotopy perturbation method for solving one
dimensional nonlinear wave equation. Li-Na Z. and He J. in 2006, solved
the electrostatic potential differential equation. The homotopy perturbation
method gives the solution by using initial conditions only. The fact that the
proposed homotopy perturbation method solves nonlinear problems
without using Adomian's polynomials can be considered as a clear
advantage of this technique over the decomposition method. To explain the
homotopy perturbation method. We consider a general equation of type.
Lu+ Nu=g(xt) ,xeQ (4.1)

where L is linear operator, N is nonlinear operator and g is known
analytical function. We define a convex homotopy H (u, p)

H(u,p):Qx[0,1] > R
by
Hup)=A-pFuw +p(lu+Nu—-g)=0 (4.2)
where F(u) is a functional operator. We have
H(u,0) = F(u) & Hw,1)=Lu+Nu-—g (4.3)

The embedding parameter monotonically increases from zero to unity as
the trivial problem, F(u) = 0, continuously deforms the original problem
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Lu = 0, the embedding parameter p € [0,1], can be considered as
expanding parameter. The homotopy perturbation method use homotopy
parameter p as an expanding parameter to obtain [9, 10].

(00

u(x,t) = z p"u,(x,t) (4.4)

n=0

If p — 1, then equation (4.2) corresponds to equation (4.1) and became
the approximate solution of the form

(00]

u=})i_r32pnun(x,t) =zun(x,t) =Uy+u +u,+-- (4.5)
n=0 n=0

The coupling of the perturbation method and the homotopy method is

called the homotopy perturbation method (HPM), which has eliminated

limitations of the traditional perturbation methods. In the other hand, the

proposed technique can take full advantage of the traditional perturbation

techniques [9].

The series (4.5) is convergent for most cases; however, the convergent
rate depends upon the nonlinear operator.

I. The second derivative of N (&) with respect to & must be small,
because the parameter p may be relatively large, i.e. p — 1.

ii. The norm of L‘l(Z—I;) must be smaller than one, in order that the

series converges.
4.2 Homotopy Perturbation Transform Method (HPTM)

In this method, we using Laplace's transform of equation (4.2) and we
suppose F(u) is linear operator subset form original equation (4.1), we
obtain

L(L(u)) +pL((Nu—g))=0

k
u(x,s) = — Z (e+n= 1)%—plﬁ((w g))

Finally, we use Laplace s inverse

n-1
1 o*u(x,0 1
u(x,t) = L1 _"z sle+n— n 7%, 0)
s
k=0

Gk P —L((Nu—9))
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Put u(x, t) = Yo P un (, )

n—-1

1 o*u(x,0)
_ k+n— ’
Epun L= s_nz Y

k=

P L(Epun )

To illustrate this method we provide some examples.

Example 4.1: Solving the Linear Equation of Transverse Vibration of
Beam.

where a? =—

with initial conditions: u(x,0) = sin(x) & u.(x,0) = x?

Using the Homotopy Perturbation Method (HPM), we have

d0%u 0%u 64u
A-p) oy +7 (7 + a2 o | = 0

atZ ot2 0x*
d0%u , 0%u
37 P

Put u =),_,p"u, and integration of both sides of t variable

0% Xn=o P un(x,8)) _ 2, 0* (Xnzo P"un (%, 1))

z P Uy (x, 1)
n=0

at2 B dx*
=u(x,0) +u(x,0)t —a?p

dtdt

ffa (o or ()

[e%s) t t

o4 u,(x,t
Z p™u, (x,t) = sin(x) + x2t — azpf f (2= Op n( ) dtdt
n=0 00
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Compare the coefficients of power of p

0

p°: Uy = sin(x) + x?t
t t
64
pl: U = —aszT (up)dtdt
0 0
t t
0* t2
aszT (sin(x))dtdt = —a sm(x)—
00
t
2. N & i (@)
p<: =a jjﬂ(sm(x) Z)dtdt = sin(x) 2
0

o* [ | t* _ (at)®
E (sm(x) E) dtdt = —sin(x) ol

t
p3: Uz = —oc6j
0

O\’ﬁ

4

Q

2n

t ot
p™: un:—azjf
00

(ee)

© 2k
u(x, ) = ;uku, £ = x2t+ ;H)" sin(x) ({'Zﬁn

(at
(up—,)dtdt = (—1)" sin(x) )]

Q

x4

u(x,t) = x*t + sin(x)cos(at)

Using the Homotopy Perturbation Transform Method (HPTM), we have

a ) u 62u+ d%u — 0o
szt et om) =

d0%u ) 0*u
9tz ~  * Poxa

Using Laplace's Transform of both sides
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4

5 B ) J0*u
s“u(x,s) —su(x,0) —u.(x,0) = —a pﬁ(m

4
u(x,s) = u(a;, 0 + w(.0) a’p (lL (%))

52 52

Given u(x,0) =sin(x) & u.(x,0)=x2,5s0

1 [0*u
u(x,t) = sin(x) + x?t — a?pL™?! <—L< ))

s2 7\ dx*

Put u=),_,p"u, and integration of both sides of t variable

- 4 0 n
Z p™u, = sin(x) + x%t — a?*pL~? (Slzll (6 Qun=o P un (%, U)))

ox*
n=0

Compare the coefficients of power of p

p°: Uy = sin(x) + x?t
1 0*
pt: u, = —a?Lt 5_2L<@ (uo))
5 g (SIN(X) - t?
u, = —a“L (s—3> = —qa sm(x)a
2 u, = —a?L71 L a—4(u)
p 2 2 ax4 1
g (SINCO)Y (at)*
U, =a ( o5 sm(x)T
1 0*
p3 Uz = —a?L71 —2£<a y (u1)>
. /sin(x) _ (at)®
uz; = —a’”L 1( =7 ) = —sin(x) 2l
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n 2 -1 1 64
p": Up = —a’ L7 5L m(un—ﬂ

u, = (—1)"sin(x) (é?l)!n
) o - © . . (a,t)Zk
u(x,t) = ;uk(x» t) =x°t+ kzo(_ )*sin(x) (2k)!

u(x,t) = x%t + sin(x)cos(at)

Example 4.2: Solving the Linear Equation of Transverse Vibration of
Beam.

o’u 2 N x* 0'u 0

o~ Gzt 360090t -

With initial conditions

X6
u(x,0) =0 ,u/(x,0)= <2 +m>

Using the Homotopy Perturbation Method (HPM), we have

1 )62u+ 0%u 2 N x*\o*u\ 0
Praez TP 9z " \x2 7360 ) 0x%) ~
Put u =),_,p"u, and integration of both sides of t variable

d0%u 2 x* 0%u

ez - Pt 3600 9x%

0% (En=o P un(x, 1)) £+ x*\ 0*(Ep=o P un (x, 1))
ot?2 B Ox*

P\%z " 360

44



> (0
n=0

(x,0) + us(x,0)t

t t
0*Xn=o P"un(x, 1))
°p J f < 720) ox* }dtdt
00

_|_

1 x*\ 0* (o P un (x, 1))
{(P + 720> Py }dtdt

Compare the coefficients of power of p

0: 2+ sl
P 720

1 0*uy(x, t)
<x2 T 720) 0x* dtdt

1 x*)\[x%t x* 3
<x—z+ﬁ> <T) dede = (1+ 7500

1 x* ul(xt)
NI

x%t3 x* t°
720 <_ 12 )dtdt_(1+720 51

1 N x*\ 0%u,(x, t) drdt
x? 720 d0x*
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=2 1, KN et = (14 5 Y
jj x2 720/ \2 * 5! ( 720)
00

1 x*\o*u,_1(xt)
n. —
p": U, 2[[( 720) pp dtdt

x4 t2n+1

720 (2n + 1)!

=Zun=u0+u1+u2+---

n=0

x6 2, g2n+1
u(x,t) = 1+ (Zn—-l—l)'

u, = (1

6

u(x, t) = < 6') sinh(t)

Example 4.3: Solving the Nonlinear Equation of Transverse Vibration of
beam.

0%u _ 9t (0%u\'  dududdu +d(6u>2 0%\’
otz " ox* 0x2 dx 0x2 0x3 dx/ \0x2

with initial conditions

X3
u(x,0) = 3 & u(x,0)=0

Suppose a=1,b=1c=1&d=0

Using the Homotopy Perturbation Method (HPM), we have

a ) u 02u  9*u  [(0%u\’ ouoduddu
61:2 ot?2  dx* 9x2)  Ox 0x2 0x3
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02u otu  (0%u ° | Quotudu
9tz Plax* " \ox2z) T oxoxZ 0x3
Put u=),_,p"u, and integration of both sides of t variable

z p"u, = u(x,0) + u,(x,0)t
n=0

OO Pt (02 (5 p )\
j.f( n=0 n +< n=0 n)

+p Ox* dx?
0 0
03 (Cmzo P™un) 02 (Xm=o P y) 0(X=o P Uy)
+ dx3 0x?2 0x ydtat
D=3
n=0
t t D o 3
a (Zn Op un) a (Zn=0p un)
+p ( dx* d0x2
0 0
N 0°(Crmo P Up) 02 (X P Uy) 0o p"un))dtdt

dx3 O0x? 0x

Compare the coefficients of power of p

-5
fr (’)4u0 > Quy 02u, 03U,
- ff( dx* <6x2> T dx 0x? 0x3 ydtat
00
t x? 3x3\ t2
f <0 + ()3 + <7) (x)(l)) dtdt = (7>5
0

= f j((ul)xxxx + (Uo) xx (U1 xx + ((Uo) x (U1) xx (Uo) xxx

||
o— 0 _

+ (ul)x(uo)xx(uo)xxx + (ul)x(uo)xxx))dtdt
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B 3x3 + 2x?%\ t*

The approximation solution is

B x3 3x3\ t2 3x3 4 2x2\ t*
) =\ o)z o\ = )&

1 coefficient p1

7 coefficient pO % 10

x 10

Solution
Solution

400 400

200
t-axis 00 X-axis

200
t-axis 0o X-axis

. 2 . .
X 1014 coefficient p X 1dl\pproxmate Solution

Solution
Solution

400

t-axis 00 X-axis

Figure 4.1: Graphical Representation of Example 4.3

Example 4.4: Solving the Nonlinear Equation of Transverse Vibration of
Beam.
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0%u B d0*u b a2u\° N ou d%u d3u 4 (6u)2 a2u\>
ocz ~ L oxe ox2) T ox 0x? 0x3 ox) \ox?

with initial conditions
u(x,0) = —-05x2—-15 & u/(x,0)=0
a=1,b=-15,c=—-6 & d=-22.5

Using the Homotopy Perturbation Method (HPM), we have

1_ - _
A-P 3z P\ 3z 3 2 52 9% 0x2 93

45(6u>2 AT
2 \ox) \ox2) |

0%u _ (0t 3(0%u\"  0ud’uddu 45(6u>2 0%\’
otz "\ ox* 2\0x? 0x 0x2 0x3 2 \dx/ \0x?

Put u =),_,p"u, and integration of both sides of t variable

0%u (azu 0*u 3(62u>3 ou 0%ud3u

Z p™u, = u(x,0) + u,(x,0)t
n=0

dx* 2 O0x?2
00
0°(Em=oP™upn) 02 (Xn=o P upn) 0(Xnzo P )
ox3 O0x?2 0x

45 <a<z;°=opnun)> <02<z;°=op"un)> v

[ [ op ) 3 <62<z;°=op“un)>

-6

2 0x dx2
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t t
(X0 p™un) 3 (2N p un)\
tp ( Ox* 2 0x?
00
03 Lo P Un) 02 (X0 P Uy) 0 (Xm0 P Up)
0x3 0x? 0x
(0)e) (0)e) 3
45 (0P un)\” (92 o P ) et
2 0x 0x?2

—6

Compare the coefficients of power of p

0. _ [(x*+3
p' uO_ 2

t t
d*u, 3 [0%u,\° ougy 0%uy 03U,
e 6
p = (6x4 2\ 0x2 dx 0x2 0x3
00

t t
B 3 + 45x2 B 45x2 + 3\ t2
0 0

p% oy = f j () xrme — 45 (o) e () — 6((2to)x (b ) (1) e

+ (ul)x(uo)xx(uo)xxx + (ul)x(uo)xxx)
- 22-5(2(u0)x(u1)x(u0)xx + 3(uo)x2(uo)xx(ul)xx))dtdt

B 45x% + 3\ t*
u2—45 T E
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Solution

u=2un=u0+u1+u2+---

n=0

x% +3 45x?% + 3\ t2 45x% + 3
u@, ) =~ ——)+(—5— )7 +45(—5—

1

4 coefficient p0 x109 coefficient p

x 10

c

el
5
©
%)

200

taxis 0 0  x-axis taxis 0 0  x-axis

- 2 . .

x1013 coefficient p X10A®prOX|mate Solution
c c
02 2
5 5
© ©
) n

400
taxis 0 0  yaxis taxis 0 0  x-axis

Figure 4.2: Graphical Representation of Example 4.4

t4
y}

400

400
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5 Variational Iteration Method

We investigate the variational iteration method for solving modeling of
bending of elastic beams.

5.1 Variational Iteration Method (VPM)

It was stated before that Adomian decomposition method, with is modified
form and the noise terms phenomenon. The variational iteration method
(VIM), established by He J. Huan, it is thoroughly used by many
researchers to handle linear and nonlinear models. The method gives
rapidly convergent successive approximations of the exact solution if such
a solution exists. In what follows, we summarize the main steps of this
method. for the differential equation

Lu+ Nu = f(x,t)
where L and N are linear and nonlinear operators respectively, and f(x, t)
Is the source inhomogeneous term, variational iteration method admits the
use of the correction functional for equation which can be written as
t

Un+1(x, 1) = Uy (x,8) + fl(f)(L U (§) + Nuy(§) — f(x,§))dé
0

It is obvious that the successive approximations u,,n =0 can be
established by determining A(¢), a general Lagrange multiplier, which can
be identified optimally via the variational theory. The function u,, is a
restricted variation which means éu,,= 0. Using the obtained A(¢), and
selecting uy(x, t), the successive approximations u,,,,(x, t),n = 0, of the
solution u(x, t) will follow immediately.

In order to illustrate this method we give some examples.

Example 5.1: Solving the Linear Equation of Transverse Vibration of
Beam.

d0%u o 0*u — 0
otz % ox*
with initial conditions
u(x,0) =sin(x) , w(x0=0 & a?’=-1

Using the variational iteration method, we have
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o (P ) 2
s =+ [ 206) (2 - T ér)>alf
0

The stationary conditions give A(§) = & — t, substituting this value of the
Lagrange multiplier. We can select
uy = sin(x)

whenn =0

aZuO(x' SZ) _ a4u0(x, E)) d{?

u (o, t) = up(x, t) + J(f - t)< 9&2 Ox*
0

t
2 : 4
uy (x, £) = sin(x) + j -0 (a (Zlgz(x)) _9 (?;lfx))> dé
0

t2
u;, = sin(x) + sin(x) 51

whenn =1

azul(x' f) _ a4“1(-7(: f)) df

t
Uy (x, ) = uqg(x, 8) + f(f - t)< 9&2 0x*
0

2
up(x,t) = sin(x) + sin(x) 7

o
0

Ly <az(sin(x) (1 + ;—T)) ) d*(sin(x) (1 + g—?))) "

FIE dx*

t2 t*
u,(x,t) = sin(x) + sin(x) 51 + sin(x) o
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t2 t4 t2n
u, = sin(x) + sin(x) 51 + sin(x) T} + -+ + sin(x) 2]

u, = sin(x) <1 +§+Z+ v (Zn)!> = sin(x)kz 2]

=0

when n - o

t2k

(2k)!

u(x,t) = sin(x) Z
k=0

u(x,t) = sin(x)cosh(t)

Example 5.2: Solving the Linear Equation of Transverse Vibration of
Beam.

N x* 0*u B
1207 0x*

’u 1
X

Jat? 0

with initial conditions

X5
u(x,0)=0 ,u/(x,0)= <1 +EO>

Using the variational iteration method, we have

t
Uptr = Uy T+ f A(f)(

0

0%u,(x,&) 1 x*_ 0*u,(x,&)
oz G0 oxe )d*t

The stationary conditions give A(§) = & — t, substituting this value of the
Lagrange multiplier. We can select

=1+ XS t
to = 120
whenn =0

Uy = Uy + f(f - t) (—azuO(x, 6) - (% + x! >64u0(x, €)> df
0

&2 120)  ox*
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x4
<1+m>t+f(f—t)< —(—+m)xf> ag
5

1 1+ éd
( +m>t—f(€—t)< +m>f §

xs x5 t3
(”m) (”m)a

62 , 1 + 94 ’
U = Uy + j(f - t)< ualsg 2 B (;-I_ 1xZO) ugigf a) %

t 5 53
+j(€—t)(<1+m)(€)—(—+m)x(5+_)> ag

Joeo{b- -

0

x5 t3 ¢ XS 53
<1+m)<t+§)+f(€_t)<<1+m>(__))df
0
xs t3 x5 tS
(1+m>(t+3'>+<1+m>§
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whenn=k—1

azuk—l(x'f) 1 X4 a4uk—1(xr€)
oz G100 axt >d€

) x5 t3 t5 t2k+1
e _— t JR— JE— [ —
R ST ) A R TR T Y

1 xS t2n+1
e =\ 1Y 120 ) L Gnt 1)
n=0

Taking limitat k - o

uk=uk_1+j(€—t)<
0

xS © t2n+1
D=(1+2)) ——
ux6) ( +120> 2n+1)!
n=0
5

u(x,t) = (1 + 1’;—0) sinh(t)

Example 5.3: Solving the Nonlinear Equation of Transverse Vibration of
Beam.

62u_ 64u+b 0%u 3+ 6u62u63u+d o2 [92u\°
- a 9% 0x2 0x3 (ax> dx2

with initial conditions
u(x,0) = sin(x) & u(x,0)=0
a=1 b=-1.5, c=—-6 & d=-225

Using the variational iteration method, we have
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Un+1 (X, 8) = Up(x, 1)

) ftl@) (azunu, O _ 0w 3 (azun<x, $)>3

0¢&? ox* 2 0x?
0

e 0uy, (x, &) 0%u, (x, &) 03u, (x, &)
0x dx2 0x3

45 aun(x,f) 2 azun(x"s;) ’
(o)),

The stationary conditions give A(¢) = & — t, substituting this value of the
Lagrange multiplier. We can select

ug(x, t) = sin(x)
whenn =0

uy(x,t) = up(x, t)

o
0

s <a2u0<x, O _d'ud 3 (azu(,(x, €)>3

0&2 dx* 2 dx?2

6 Oug(x, &) 0%ug(x, &) 03uy(x, &)
ox 0x? 0x3

45 aun(x,f) ? azun(xif) ’
() (P0) o
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uy(x,t) = sin(x)

o
0

s (azuo(x, 0 _2tu) 3 (azu()(x, E)>3

982 ox* 0x?

16 auo(x &) 0%uy(x, &) 03uy(x, )
0x 0x? dx3

45 (duy(x, §) 0%ug(x, &)
(0 (240) )i
u(x, t) = sin(x)

j(f 9 (62 (sin(x)) 0* (sin(x)) N ;(62 (sin(x)))3

&2 Ox* 0x2

d (sin(x)) 82 (sin(x)) 93 (sin(x))
o ox 0x? 0x3

45 (9 (sin(x))\" (92 (sin(x))
(o) () o

u,(x,t) = sin(x)

3
+ f(f —t) (0 — sin(x) — Esin3 (x) + 6c0s?(x) sin(x)
0

45
-5 cos?(x)sin3 (x)) dé

. , ) 45 t?
uy (x, t) = sin(x) + (—5 sin(x) + 30sin3(x) — TSlnS(x)>?

when n =1
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. _ _ 45 t2
u,(x,t) = sin(x) + (—5 sin(x) + 30sin3(x) — 751n5(x)>?
+[e
0

2 4 2 3
s (a W) w3 (a u1<x,s)>

0&2 d0x* 2 0x?

s 6au1(x, §) 0%uy (x, &) 03u,y (x, §)
0x O0x? 0x3

45 (0u,(x, &) 2 0%u, (x,€) ’
(a0 (0] )

. . . 45
u,(x, t) = sin(x) + (—5 sin(x) + 30sin3(x) — 751n5(x)>

t2
2

+ f (€ - O{(sin(x)
0

_ _ 14625 &2
+ [ —=1805 sin(x) + 8280sin3(x) — sin®(x) o)
3 .
—3 —sin(x)

+ (551’ n(x) — 90sin3(x) + 180 sin(x) cos?(x)

3
+ Zzissinfs(x) — 450sin3 (x)cosz(x)) 52—2>
— 6(Cos(x) + (—5 cos(x) + 90 cos(x) sin?(x) —
2;—Ssin‘*(x) cos(x)) %2) (— sin(x) + (55i n(x) — 90sin3(x) +
180 sin(x) cos?(x) + 22—55in5 (x) —
450sin3 (x)cosz(x)) 52—2) (— cos(x) + (5 cos(x) —

660sin?(x) cos(x) + 180cos3(x) + %Sin‘*(x) cos(x) —
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1350sin? (x)cos3(x)> i—z) - — 42—5 (cos(x) + (—5 cos(x) +
90 cos(x) sin?(x) — 2i—ssin4 (%) cos(x)) %2)2 (— sin(x) + <5Si n(x) —

90sin3(x) + 180 sin(x) cos?(x) + 2z—ssin‘r’ (x) —
.3
450sin3 (x)cosz(x))%) Ydé

Algorithm 5.1

To obtain u, ,us, ....
Input: uy

Output: u

Step 1: for i=1,2,.....

u@@+1) =u@)+int((s—t) xdiff(u(i),4,x) — 1.5
* diff((u(i))”"3,2,x)) — 6 * diff(u(i), 1, x) * diff(u(i), 2,x)
* diff(u(i), 3,x) — 22.5 * diff((u(i))"2,1,x)
* diff((u(i))”"3,2,x)),’s’, 0,t)

Step 2: output
Stop

Initial Guess

Solution
Solution

400 400

200
t-axis 0 o x-axis

x 1dﬁpproximate Solution

Solution

400

Figure 5.1: Graphical Representation of Example 5.3
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Table 5.1: Comparison between two methods, of the transverse of vibration
beam equation when the time equal one, of Example 5.1

Approximation Solution Error

X EXACT ADM HPM  VIM ADM HPM VIM

0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000

0.1000 0.1541 0.1541 0.1541 0.1541 0.000 0.000 0.000
0.2000 0.3066 0.3066 0.3066 0.3066 0.000 0.000 0.000
0.3000 0.4560 0.4560 0.4560 0.4560 0.000 0.000 0.000
0.4000 0.6009 0.6009 0.6009 0.6009 0.000 0.000 0.000
0.5000 0.7398 0.7398 0.7398 0.7398 0.000 0.000 0.000
0.6000 0.8713 0.8713 0.8713 0.8713 0.000 0.000 0.000
0.7000 0.9941 0.9941 0.9941 0.9941 0.000 0.000 0.000
0.8000 1.1069 1.1069 1.1069 1.1069 0.000 0.000 0.000
0.9000 1.2087 1.2087 1.2087 1.2087 0.000 0.000 0.000

1.0000 1.2985 1.2985 1.2985 1.2985 0.000 0.000 0.000

*Error=Exact Solution - Approximation Solution.

1.4 F T T T T T T T T T
+ Exact @L
+ ADM
L & f
1.2 & heMm
VIM F
~
10 s .
//ﬁBF/
0.8} -
2
0.6 - & -
//QE:’-/
0.4} i
/,QH
e
0.2+ pd -
e
/
,,/
()a'f_ r r r r r r r r r
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1

Figure 5.2: Comparison between Exact Solution, ADM, HPM and VIM of Example
51
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Table 5.2: Comparison between two methods, of the transverse of vibration
beam equation when the time equal one, of Example 5.2

Approximation Solution Error

X EXACT ADM HPM VIM ADM HPM VIM

0.0000 1.1752 1.1752 1.1752 1.1752 0.000 0.000 0.000
0.1000 1.1752 1.1752 1.1752 1.1752 0.000 0.000 0.000
0.2000 1.1752 1.1752 1.1752 1.1752 0.000 0.000 0.000
0.3000 1.1752 1.1752 1.1752 1.1752 0.000 0.000 0.000
0.4000 1.1753 1.1753 1.1753 1.1753 0.000 0.000 0.000
0.5000 1.1755 1.1755 1.1755 1.1755 0.000 0.000 0.000
0.6000 1.1760 1.1760 1.1760 1.1760 0.000 0.000 0.000
0.7000 1.1768 1.1768 1.1768 1.1768 0.000 0.000 0.000
0.8000 1.1784 1.1784 1.1784 1.1784 0.000 0.000 0.000
0.9000 1.1810 1.1810 1.1810 1.1810 0.000 0.000 0.000

1.0000 1.1850 1.1850 1.1850 1.1850 0.000 0.000 0.000

*Error=Exact Solution - Approximation Solution.

1. 186 F 9 9 (9 (9 (9 (9 (9 (9 (9
= Exact ;
+~ ADM i
1.184 -~ O HPM /f
VIM /

1.182

1.18 /qg -

1.178

I
.

]
1

Figure 5.3: Comparison between Exact Solution, ADM, HPM and VIM of Example
5.2
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Table 5.3: Comparison between two methods, of the nonlinear transverse
of vibration beam equation when the time equal one and the initial
conditions are: u(x,0) = —0.5x% & u.(x,0) = 0, of Example 5.3

Approximation Solution Error

X EXACT ADM HPM  VIM ADM HPM  VIM

0.0000 0.0000 9.1875 3.5625 8.6875 9.1875 3.5625 8.6875000
0.1000 -0.0077 11.4044 4.0919 10.9044 11.4121 4.0996 10.9121000
0.2000 -0.0309 18.0550 5.6800 17.5550 18.0859 5.7109 17.5859000
0.3000 -0.0694 29.1394 8.3269 28.6394 29.2088 8.3963 28.708800
0.4000 -0.1234 44.6575 12.0325 44.1575 44.7809 12.1559 44.280900
0.5000 -0.1929 64.6094 16.7969 64.1094 64.8023 16.9898 64.302300
0.6000 -0.2778 88.9950 22.6200 88.4950 89.2728 22.8978 88.772800
0.7000 -0.3781 117.8144 29.5019 117.314 118.1924 29.8799 117.69240
0.8000 -0.4938 151.0675 37.4425 150.5675 151.5613 37.9363 151.0613
0.9000 -0.6249 188.7544 46.4419 188.2544 189.3793 47.0668 188.8793

1.0000 -0.7715 230.8750 56.5000 230.3750 231.6465 57.2715 231.1465

*Error=Exact Solution - Approximation Solution

Compare the Exact solution with ADM, HPM & VIM when N=2
250 ¢ T T T T T T T T T

b Exact
+ ADM
200 O HPM
VIM

150

100

50

-50 -
(0]

Figure 5.4: Comparison between Exact Solution, ADM, HPM and VIM of Example
5.3
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Conclusions of this Chapter

In this chapter we Comparison the three analytical methods, Adomian's
Decomposition Method (ADM), Homotopy Perturbation Method (HPM)
and Variational Iteration Method (VIM). We get the Homotopy
Perturbation Method is best method and fast to convergent for exact
solution.
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6 Numerical Solutions

There are a great many methods used for finding the solutions of
differential equations numerically. These methods usually depend on the
sort of discretization and transformation of the continuous equations into a
matrix problem. Then we can solve it by using the existing matrix solver.
The idea of the discretization method is to transform a differential equation
problem of infinite dimension to finite dimension; this is possible to solve
approximate solutions. The common known discretization methods for
obtaining the approximate solutions to differential equations are finite
difference method, finite element method, finite volumes method, and
spectral methods. These methods lead to linear or nonlinear systems of
polynomial equations according to the proposed problem. In general,
numerical discretization techniques use a method, which can discretize the
continuity of a proposed system into finite points. we discuss the finite
difference method (FDM) for solving modeling of bending of elastic beams
and design algorithms by using MATLAB Program [8].

6.1 The Finite Differences Approximations

The finite differences approximations for derivatives are one of the
simplest and of the oldest methods to solve differential equations. It was
already known by L. Euler 1768, in one dimension of space and was
probably extended to dimension two by C. Runge 1908. The advent of
finite difference techniques in numerical applications began in the early
1950s and their development was stimulated by the emergence of
computers that offered a convenient framework for dealing with complex
problems of science and technology. Theoretical results have been
obtained during the last five decades regarding the accuracy, stability and
convergence of the finite difference method for partial differential
equations. The principle of finite difference methods is close to the
numerical schemes used to solve ordinary differential equations. It consists
in approximating the differential operator by replacing the derivatives in
the equation using differential quotients. The domain is partitioned in space
and in time and approximations of the solution are computed at the space
or time points.

The error between the numerical solution and the exact solution is
determined by the error that is committed by going from a differential
operator to a difference operator. This error is called the discretization error

65



or truncation error. The term truncation error reflects the fact that a finite
part of a Taylor series is used in the approximation [8, 13, 14].

6.1.1 Taylor's Series

Suppose the function u is continuous in the neighborhood of x, for any
h > 0 we have

u(x +h) =ulx) + hu'(x) + h?u”(x + &)

where & is number between 0 and h. For the treatment of problems,
it is convenient to retain only the first two terms of the previous expression:

u(x + h) = ulx) + hu'(x) + 0(h?)

u(x + h) —u(x)
h

u'(x) = —0(h)

where the term O(h) indicates that the error of the approximation is

proportional to h.

6.1.2 Euler's Explicit Method (EEM)

The explicit method by using central difference operator to approximate
the derivatives

aU(Xi, t]) ~ U(XH_l, t]) - U(xi_l, t]) _ (AX)Z 63U(€i, t])
ox 2(Ax) 6 0x3

ou(x;, t;) N u(xl-, tj+1) - u(xi, tj_l) _ (At)? 3u(x;,n;)
ot 2(Ab) 6 ot3

aZU(xi, t]) _ U(Xi+1, t]) - ZU(Xl', t]) + U(xi_l, t]) _ (Ax)z a4U(Ei, tj)
ox? (Ax)? 12 ox*

aZU(Xi, t]) _ U(xi, tj+1) - Zu(xi; t]) + u(xi; tj—l) _ (At)z a4u(xi' T}])
T 0? 12 ot
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63u(xi, t]) _ u(xi+2, t]) - ZU(.XL'+1, t]) + Zu(xl-_l, tj) - u(xi_z, tj)

dx3 2(Ax)3
2(8x)% 0%u(é;, t))
6! 0x®
0*u(x;, t;) B u(xit2,t) — 4u(xipe, ;) + 6u(x;, tj) — 4u(x;—y, ;) + u(xi—2, t;)
dx* (Ax)*
20072 0°u(é, 1)
8! ox°

6.1.3 Euler's Implicit Method (EIM)

The implicit method by using central difference operator to approximate
the derivatives

ou(xytjv1) _ u(xip i) —u(xion 1) (@A0% 03Uy tj41)

0x 2(Ax) 6 0x3
ou(x;, t;) - u(x;, 1) — ulxi, 1) () 03u(x;,m;)
ot 2(Ab) 6 ot3
62u(xi, tj+1)
0x?
_ U(Xipro 1) — 2u(xs g ) + u(xioq, teq)
(Ax)?
B (ax)% 0*u(&;, tjv1)
12 Ox*
azu(xi, tj) B u(xi, tj+2) — Zu(xl-, tj) + u(xl-, tj_l) _ (an% 0*u(x;,n;)
atz (At)? 12 ot4
aSU(xi, tj+1)
0x3
_ U(Xiez 1) = 2u(Xip1, tia) + 2u(Ximq, Ggr) — u(Xi—z, tiss)
B 2(Ax)3
B 2(8x)% 0°u(&;, tiyq)
6! 0x®
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64u(xi, tj+1)

dox*
_ u(X42, tj+1) — 4u(x;11, tj+1) + 6u(x;, tj+1) — 4u(x;_q, tj+1) +u(xi_, tj+1)
- (Ax)*
_ 2002 9"u (S, i)

8! ox°

To design function by using MATLAB program, we consider
u@wm%):uww 'u@HpQ)=uHu’u@bQ)=uu;
u(xio1, ) = wimgj, u(xi—z, ) = ui_y
u(xi, tj+1) = ui’j+1 , u(xl-, tj—l) = ul-,j_l, Ax=h & At=k

Table 6.1: The derivatives by using Euler explicit method for central
differences operator

Method Formula Truncation
Error
Two Point au(xi, tj) Uipr)j — Ui 0(h?)
Central ox = oh
Difference
ou(xi,t;)  uijeq — Ui 0(k?)
ot 2k
; 2
Three Point azu(xi, tj) L Uiyq,j — 22U T U 0(h*)
Central 0x2? - h?
Difference
(')Zu(xi, t]) _ ui,j+1 - Zui,j + ui’j_l O(kz)
ot? k2
Four Point 63U(Xi, tj) ul-_,_z,j - 2ui+1,j + Zui_llj — ui_z_j O(hz)
Central 9x3 = TE
Difference
63u(xl-, t]) _ ui,j+2 - Zul-,j+1 + Zui,j_l - ul-,j_z O(kz)
ot3 2k3
Five Point 64u(xi, tj)
Central Ox?
2
Difference ui+2,j — 4ui+1’j + 6ui,j - 4ui_1’j — ui_zlj O(h )
= i
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64u(xi, t])

ot*
C Uggaz — AU T OU — AU — U
= =

0(k?)

Table 6.2: The derivatives by using Euler implicit method for central
difference operator

Method Formula Truncation
Error
- 2
Two Point ou(x;, t;) C Uipgje1 — Wis 0(h%)
Central x - 2h
Difference
ou(xi, t;)  uijeq — Ui 0(k?)
ot 2k
2
Three 0%u(xi t;)  Upprjer = 2Ugjan F Uimgjan 0(h%)
Point 9x2 - h2
Central
Difference O*ulxt))  ijen — 25 + Uiy 0(k?)
ot? k?
FourPoint | 33u(x;,t;) Witz a1 — 2Uisrjer + 21 je1 — Uiz jyr | OCR)
Central 0x3 - 2h3
Difference
63u(xl-, t]) _ ul-,j+2 - Zui,j+1 + Zul-,j_l - ui,j_z 0(’(2)
ot3 2k3
Five Point 64u(xi, tj)
Central 4
Diff o 4 6 4 _ 0(h?)
ifrerence | Ujppj41 — AUjpg i1 OUj 1 — dUiq 1 — WUi2 11
= 3
0*u(x; t;) _ Uiz ~ AU FOU; — AU — Uy o 0(k?)
at* k*
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Diagram of Steps for Solving BVPs by Using Finite Difference Methods

Yes Output

If the Error is Direct Methods or System of Linear

small Equations
Iterative Methods

BVP ° Applied Finite . .
Algebraic Equations

Difference

(Concrete Beam) Methods

Nogoto1l

If the Error is Iterative Methods System of Nonlinear
small Equations

Yes Output

6.2 Stability Analysis

Consider the transition equation is

. |
ul" = Ay
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where

F U1 ] [ UL+l ]
Uz, Uz,j+1
Uz U3 i+1
i | ja_ |
U = W = '
[ Un—1,/] [ Un—1,j+11

A € IR"1Xn=1 {5 g matrix.

when j =0
u; = Ay
when j =1
ul = Auj = AAu; = A%u}
when j =1
ui = Auf = AA%u) = A%w)
when j =k

uf = Au? = AAF ) = Ak

¥l < Al

. for the influence of the initial conditions and rounding errors in
the initial condition to decay with time, it must be the case that

Al <1

i, if ||A|| > 1, some eigenvalues of the matrix A can grow without
bound generating ridiculous results. In such cases the method is

said to be unstable.

ii.  Taking 4 = ||A|| = ||A]|, equal maximum eigenvalues of A for
symmetric A (the spectral norm), the maximum eigenvalues

describes the stability of the method.
6.3 Spectral Method (SM)

Spectral methods are approximation techniques for the computation of the
solutions to ordinary and partial differential equations. They are based on
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a polynomial expansion of the solution; the precision of these methods is
limited only by the finite difference method and the finite element method.
In this method, we use discrete Fourier transform and difference operator
to gather to solve partial differential equations. Spectral method
approximate the solution, as a linear combination of continuous functions
that are generally nonzero throughout the domain (Chebychev
polynomials) is global approach.

6.3.1 Discrete Fourier Transform (DFT)

The discrete Fourier transform of x[n] denoted by

2n—1

x[k] = z x[n]eJ¥ik

k=0
However, inverse of discrete Fourier transform denoted by

n
Z x[kle®k, i=01,..22 -1

k=—-n+1

1

x[n] = o

With this definition the spatial derivative are

n
ou 1 ]
== ). GRulkler
k=—n+1
2y 1 ~ , o
== z (k) 2ulk]e~
k=—n+1
n
o"u 1 .
T = 0, ulklert
k=—n+1

To clarify this procedure we provide some examples.

Example 6.1: Solving the Linear Equation of Transverse Vibration of
Beam.
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with conditions
u(0,t)=a , ull,t)=F ,u,(0,t)=0, u,(L,t) =0
ulx,0) = f(x) & u(x,0)=glx)
Firstly: by using Euler explicit method

62u _ ui’j+1 — Zui,]’ + ul‘,]‘_l k2 64u(xi,77j)
atz k2 12 ot*

64u _ ui+2,j - 4ui+1,]- + 6ul~,j — 4ui_1,j + ui_zlj _ 2h2 68U(€i, t])
dx* h* 8! dx8

Substituting in transverse vibration beam equation we get

Ui j—1 = 2Ujj + Ujjiq g (Wivz,j — Aigqj +6U; j — AU j + U
2 e T
= 0(k?) + 0(h?

The local truncation error for this differential equation is
o _kotuCxmy | ,2h7 0% 1)
JT127 ot “ T8 ox®

6.2.1 The Stability of Euler Explicit Method

= 0(k%) + 0(h%)

ui,j+1 = —T'ul-+2,j + 47"ui+1’j + 2(1 — 37")ui’j + 4rui_1,j — T'ui_z’j
—Ujj—1 (6.1)

c2k?

where r =
h4—

Letus: u;; = (—1)'V or u ;= 2 indxd
Applied in equation (6.1)

(DA = —r (=D + 4r(—1D) WV +2(1 = 3r) (DN
+4r(—1) IV —r (1) - (D)

Multiply both sides by, (—1)7tA~/, we obtain

A=—1r—4r+201-3r)—4r—-r—-2171
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22 +1

A+A1=2—-16r = 3

=2—16r

Suppose w=1—-8r = A2—-2wil+1=0

—r /11’2=WiVW2_1

Now since A, and A, are roots of this quadratic equation, we may
conclude that 2,4, = 1. However, for stability of solutions we require

|4;] < 1 and |1,| < 1. Given the constraint 1,4, = 1, the only
possibility if the solution to be stable is |A,| = |1,| = 1, thus A must fall
on the unit disk, which implies

1
lwl=1]1-8r|<1 = |8r—-1|<1 = r<Z
21,2 4
r=%<025 = k%< Then
h 4c
hZ
k< —
2c

The necessary condition implies k is small than h. the stability is
conditionally.

Now substituting i = 1,2, ....,n — 1 in below equation.

Ujj+1 = —TUj42 5 + 47"ul‘+1’j + 2(1 - 37")ui’j + 4rui_1,j —TUj_3;
—Ujj-1
wheni =1
Upjp1 = —TUzj + 41Uy j + 2(1 — 3r)uy j +41Upj —TU_
— Uy j-1 (6.2)
u(0,t) _ Ugj—U_q; ou(o,t;)
= . = . — *k =

But—- - then u_;; = ug; —h*—-—

Given u, ; = a then
Uy jy1 = —TUzj + 41Uy + 2(1 — 3r)uy; + 3ra —uy ;4 (6.3)

wheni = 2
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Upjp1 = —TUgj + 41Uz + 2(1 = 3r)uyj + 41Uy ; — TUg

—Uyj1 (6.4)
Upjp1 = —TUyj+ 41Uz + 2(1 = 3r)uyj + 41Uy ; —Ta — Uy j—q1 (6.5)
wheni = 3
Uz jr1 = —TUsj+ 41Uy + 2(1 — 3r)uz j + 41Uy j — TUy

— Uz jq (6.6)

wheni=n-—1

Up_1j41 = ~TUpip; T 41U, ; + 2(1 = 37Uy j + 47U, ; — TUR_3
— Un-1,j-1 (6.7)

Givenu, ; = f

ou(xp t;
then un+1,j=h*M+ Ui =P

ou(xp,t) _ Uny1,j—Unj

ox h

Up_1j41 = 3B+ 2(1 = 3r)up_yj + 41Uy j — TUL_3;
—Up-1,j-1 (6.8)

Now put the equations (6.3), (6.4), (6.5), (6.8) & (6.7) in matrix notation
Ujpr = AUj—uj1 +Db
Where

1 2(1—3r) 4r —r O 0 01
4r 21 —-3r) 4r r 0 0
—r 4r 2(01-3r) 4r —r 0 O

(0 0 0 0. —r 4r 2(1-3r)l
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 U1j ] - ULj+1 ] U117 r3ra
Uz, Uz,j+1 Uz,j-1 -ra
Uz Uz jt+1 Uz -1 0
uj = ) yUjr1 = ' yUj—1 = ' ’Q = 0
. . . —-rf
[ Un—1,). [ Un—1,j+1] [ Un—1,j—11 L 37 |
Algorithm 6.1

To obtain the numerical solution of Example 6.1.
Input: endpoint L; maximum time T; constants «, S, c; integers nand m
Output: approximations u(x;, t;), for each i=0,1,....,n and j=0,1,....,m
Step 1: h=L/n
k=Tmax/m
r=(c*k)"2/h"4
Step 2: for i=0,1,.....,n
for j=0,1,...... ,m
Do step 3 and step 4
Step3: u(xo,t;) =«a
u(xn t;) = B
Step4: u(xy, to) = f(x;)
Step 5: for i=1,.....,n-1

u(xi, tj+1) = —ru(xi+2, tj) + 4ru(xi+1, tj) +2(1 - 3r)u(xi, tj) +
4ru(xi_1, tj) - ru(xi_z, tj) - u(xl-, tj_l)

Step 6: output uyg, U1, Ugy, - - - Unm

Step 7: Stop (the producer is complete)
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Secondly: by using Euler implicit method

2 2 N4
0°u _ ui,j+1 — Zui,j + ui,j_l k=0 u(xl-,r]j)

otz k2 12 ot4
0% U Upypjer — Mgy +6U 1 — AU g g + U
Ox* h#
2h? 0%u(&;, tj4q)
8! 0x8

Substituting in transverse vibration beam equation we get

Upjo1 — 2U 5 + U jaq 5 (Uitzj+1 — Aipr; + 60U g — AUiog jo1 + U2 41
ic2 T x
= 0(k2)4-0(h2)

The local truncation error for this differential equation is
2 N4 2 N8
s _ k% 9% ulxi,m;) L2 2h* 0%u($; tj41)
12 ot* 8! dx8
6.2.2 The Stability of Euler Implicit Method

= 0(k*) + 0(h?)

TUptzj+1 — 4T Uipr 1 (1 + 67U jq — 47U g + TU2 11

= Zui'j —Ujj—1 (69)
c?k?
where r =
h4—
. _ .. i inAx6
Let us: ui’j = (—1)111 or uilj = )L]em x

Applied in equation (6.9)

r(—=1)2U+ — 4 (=D IVH + (1 + 6r)(—1)V T — 4 (1)1 /*T
+r(—1D)2AT = 2(- D)V — (1)

Multiply both sides by, (—=1)~*A~/, we obtain
TA+4rAi+ (A +6r)A+4rd+ri+A1 =2

2=0+16rA1+1"1 = 22-2wi+w=0

Sincew =
1+16r
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— 21’2=Wi WZ_W

Now since A, and A, are roots of this quadratic equation. However, for
stability of solutions we require |A;] <1 and |A,| < 1. The only
possibility, if the solution to be stable is |1;]| = |4,| = 1, thus A must fall
on the unit disk, which implies

1 1
= <1l = <1 = 1+16r>1
Iwl ‘1+16r| |1+16r +lor
c?k? h*
= r>0 = r= >0 = k¥P>—
h* c?

Then, the stability unconditionally.
Now substituting i = 1,2, ....,n — 1 in below equation.

2Ujj = TUjp 501 — AU e + (L4 61U — 47U j11q

T TU—2 41 T Ujj-1
wheni =1

Zul'j - TU3J‘+1 - 4ru2'j+1 + (1 + 6T)u1'j+1 - 4‘ru0'j+1 + ru_l'j+1

FUj-1 (6.10)
ou(0,t)  Ug,jr1—U—_1,j ou(0,tj41)
But = _ Uo,j+1 _ Ll tpon U_gjyg = Upj41 — h *a—x]H =
Given u, ; = a then
Zul’j = ru3’j+1 - 4‘rule+1 + (1 + 6T)u11j+1 —_— 3']"6{
+ U (6.11)

wheni = 2

Zuz’j - ru4’j+1 - 4TU3’]'+1 + (1 + 67‘)u2,j+1 - 4ru1’j+1 + Tuo’j+1
+ Uy (6.12)

2Upj = TUgjpq — 41Uz 51 + (1 67Uy joq — 47Uy j4q T
+ Uz (6.13)

wheni =3
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2U3j = TUsg j4q —4TUs 1 + (1 +67)Ug 511 — 47Uy jyq + TUL 1
+ug iy (6.14)

wheni=n—-—1

2Up_1j = TUny1je1 — AU jyr + (L + 67Uy j1g — 4T UL 5 41
+ run_g’j_i_l + +un_1’j_1 (615)

Givenu,; = f

ou(x,,t u it1—Un i
But (xp,t) — Un+1j+17Unj+1
ox h

au(xn,tj+1)

SO Upyq,j41 = R * t Unjr1 =B
2un—l,j = —3rp + 1+ 67.)un—l,j+1 - 4run—2,j+1 + TUp-3,j+1
+ un_l'j_l (616)

Now put the equations (6.11), (6.12), (6.13), (6.14) and (6.16) in matrix
notation

Aujp, =2u;j—uj_;+»b
where

(1+6r) —4r r 0 0 0]
—4r (1+6r) —4r r 0 O
r —4r (1+6r) —4r r 0 O

L0 0 0 0.. r —4r (1+6r).
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[ UL+ ] T UL [ ULj-1 ] F3ra
Uz,j+1 Uz, Uzi—1 —ra
U3 j+1 Uz, Uz j-1 0
Ujsr = ' W= % = ' b=
Un—2,j+1 Un—2, Un—2,j-1 —Tp
[(Un—1,j+1. [Un—1, | Up—1,j—1. |37
Algorithm 6.2

To obtain the numerical solution of Example 6.1
Input:  endpoint L; maximum time T; constants «, S, c; integers nand m
Output: approximations u(x;, t;), for each i=0,1,....,n and j=0,1,....,m
Step 1: h=L/n
k=Tmax/m
r=(c*k)"2/h"4
Step 2: for i=0,1,.....,n
for j=0,1,...... ,m
Do step 3 and step 4
Step3: u(xg,t;) =«a
u(xn ;) = B
Step 4: u(x;, to) = f(x;)
Step 5: for i=1,.....,n-1

2u(x;, tj) = ru(x;42, tj) — dru(xiyq, tj) + (1 + 6r)u(x;, tj) —
4ru(xi_1, t]) + TU(xl'_z, tj) + u(xi, tj—l)

Step 6: output ugg, Ug1, Ugzs -« - - Unm

Step 7: Stop (the producer is complete)

80



Thirdly: by using spectral method

We use finite difference of time and discrete Fourier transform of space
X, We obtain

Uijpr — 2U5 + U1 4 z N4 ik
= K)*ulk]e/ ik = 0
0?2 to (ik)*ulk]e

Algorithm 6.3

To obtain the numerical solution of Example 6.1.
Input:  endpoint L; maximum time T; constants «, S, c; integers nand m
Output: approximations u(x;, t,), for each i=0,1,....,2n-1 and r=0,1,.....m
Step 1. At =Tmax/m
Step 2: for r=0,1,.....,m
Do step 3.

Step 3: u(xy, t,) =«

uCxn, ty) =B
Step 4:  for i=0:2n-1

X; = cos(%ﬂ)

Step 5:  for i=1:2n-2

u(x;, to) = f(x)
Step 6: forr=1,.....,.m-1

4(A)*
2N

u(xy, tren) = 2u(x;, ty) —ulxg, tr—q) — Yh=—nt1() ulk]es*ik
Step 7: output ugg, Ug1, Ugy, - - - Unm

Step 8: Stop (the producer is complete)
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Example 6.2: Solving the Linear Equation of Transverse Vibration of

Beam.
N 1+ x* 0*u ~ 0o
(x 1207 9x%

aZ_u
ot?
with conditions
u0,t)=a , ulL,t) =8 ,u,(0,t) =0, u,(L,t) =0
ulx,0) =fx) & u(x0) =glx)
Firstly: by using Euler explicit method

62u _ ui’j_l — Zui,]’ + ul‘,]‘+1 k2 64u(xi,77j)
atz k2 12 ot*

64u _ ui+2,j — 4ui+1,]- + 6ul~,j - 4ui_1,j + ui_zlj _ 2h2 68U(€i, t])
dx*4 h# 8! 0x8

Substituting in transverse vibration beam equation we get

Upjq — 2U5 + U jaq
kZ
1. (ih)* (ui+2,j — Mgyt OU — AU ui—z,j)
th 120 h*

= 0(k*) + 0(h%)
The local truncation error for this differential equation is

k? 0*u(x;,n; 1 4\ 2h% 08u(é;, t;
——M+< + = ) ul¢ ’)=0(k2)+0(h2)

t:: =
Y12 ot x 120/ 8! 0x8
1 (ih)*
ujn =\ 7+ T30 (—TUizj + 47U — 67U+ ATU;
- Tui—z,j) +2u;; — U (6.17)
k2
where r = Py
wheni =1

h 120
+ Zul’j - ul’j_l (618)

1
U jr = | T+ (—ru3,j +4dru,; — 6ru, j +4ruy; — ru_l’j)
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ou(o,t Ug,j—U—1,j ou(0,t;
;x ) _ Uoj=U-1 then u_y; = ug; —h+ (o)) _

But J ox

Because u,; = a then

(h)*
upjer = o+ (—rus; + 4ru, j — 6ruy ; + 3ra) + 2uy ;

120
- ul'j_l (619)
(M*
Upjrq = <h +— 120 ( rus; +4ruy; + 3ra)
2(1-3r ( S 6.20
wheni = 2
(2h)*
Uzjr1 = |\ g + 120 (—ru4,j + 4rus; + 4ru, j — ra)
(Zh)4
+2(1—-3r Zh <20 Juzj — Uz -1 (6.21)

wheni=n-—1

1 ((n— 1)h)4
Up_1j41 = T M (—TUpyrj + 41U + 41Uy

1 ((n— D)
—TUy_3,) +2(1 —3r <(n T +—55 ))un_l,,-

— Un-1,j-1 (6.22)

Givenu,; = f

But du(xp,t) _ Up41,j=Un,j

ou(xntj)
-~ - then u,y,; = h*——%+ u,; = then

dx
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1 (n—1)h)*
Up_1j41 = <(n “Dh + 120 (3rﬁ +4dru,_,; — run_g,j)

1 (n—D*
+2(1—3r<(n_1)h+ 170 ))un_l,j
— Un-1,j-1 (6.23)

Now put the equations (6.20), (6.21) and (6.23) in matrix notation

Ujpr = AUj —U;1 +b

where
2(1-3rw(1)) 4r -7 0 0
4r 2(1-3rw(2)) 4 -—-r 0
A=
L0 0 0 0 —r 4 2(1-3rwin-1)) .
U1 ] F ULj+1 7 - U1-1 7
Uy j Uz,j+1 Uz,j-1
us Uzjt1 uz,j-1
Ej = ' 'Ej+1 = ) lﬂj—l = . ’
[ Un—1,/] [ Un—1,j+11 [ Un—1,j—11
3raw(1l) 7 r 1 h*
raw(2) "t 120
0 1 (2h)*
2h 120
b= and w = '
0 . .
—rBw(n — 2) 1 ((n—1)h)
| 3rfw(n — 1) [(n—1)h 120
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Algorithm 6.4
To obtain the numerical solution of Example 6.2
Input:  endpoint L; maximum time T; constants «, ; integersnand m
Output: approximations u(x;, t;), for each i=0,1,....,n and j=0,1,....,m
Step 1: h=L/n
k=Tmax/m
r=k"2/h"4
Step 2: for i=0,1,.....,n
for j=0,1,...... ,m
Do step 3 and step 4
Step 3: u(xo,tj) =«
u(x,, t;) =B
Step4: u(x;, ty) = f(x;)
Step 5: for i=1,.....,n-1

u(xi, tj+1) = (i + %) (ru(tz, tj) - 4ru(xi+1, tj) + 6u(xl-, tj) —
4ru(xi_1, t]) + TU(Xi_Z, tj)) + Zu(xi, t]) — U(Xi, tj—l)
Step 6: output wgyg, Ug1, Ugg, -« - Unm
Step 7: Stop (the producer is complete)

Secondly: by using Euler implicit method

62u _ ui,j_l — Zui,j + ui,j+1 kZ 64U(Xi,77j)
atz k2 12 odt*
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0%U  Wipg i1 — Mgy jer + 60U jp — AU U g 1
axt h*
2h? 0%u(;, tjr)
S8l ox8

Substituting in transverse vibration beam equation we get

Upj_1— 2U; + Uj g
12
1 N (ih)* (ui+2,j+1 — AUy T OU g — AU 4 T ui—z,j+1)
ih 120 h#

= 0(k*) + 0(h®)
The local truncation error for this differential equation is

K2 a*u(x,m)) N <1 N x4 )th o%u(é, t)

= 0(k*) + 0(h*)

by =1 s x 120/ 81  0xB8

ith 120
+ rui_z,j) = Zui,j — ui,j_l (624)

kZ
where r = —

h4

1 (ih)?
Wijer H o+ (PUisz ja1 = AT Upp jo1 + 67U g — 47U j4q

wheni =1

1 (W
U jyq Tt 7 + 120 (ru3,j+1 —AruUy jpq + 61U j — AT UG j4q

+ ru_11j+1) = Zul,j - ullj_l (6.25)

ou(0,t) _ Ug j—U-1,
0x h

ou(ot;)
ox

But

then u_;; = uy; — h*

Because u,; = a then

120
= Zul’j - ul’j_l (6.26)

1 (h)*
ul’j+1 + E + (TU3J’+1 - 4‘ru2,j+1 + 6T'u1'j+1 - 37'6()

wheni = 2
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1 (2h)*
Uzjrr 50+ 50 (TUgjoq — 47Uz juq + 67U jpq — 47Uy j4q

+ ra) = 2Uy; —Upj1q (6.27)

wheni=n—-—1

1 ((n—1Dh)?
Up—1,j+1 T (n—1)h + 120 (run+1,j+1 —4ruy e
+ 61Uy 11 — AT U3 41 T run—S,j+1)
= 2Up_1,j — Un-1,j-1 (6.28)

Givenu, ; = f

ou(xnt;)

But au(xn!t) — un+1,j_un,j ax

ox h

then up,q; = h* + u,; = B then

1 ((n—1)h)*
un—l,j+1 + (n _ 1)h + 120 (_3rﬁ - 4Tun—2,j+1

+6ruy_q 41t run—3,j+1) = 2Up-1,j —Up-1j-1 (6.29)

Now put the equations (6.25), (6.27) and (6.29) in matrix notation
Aujyg =2u; —uj1 +b
where

(1+6rw(1l)) —4r 1 0 0 0]
—4r (14+6rw) -4 r 0 0 0

L0 0 0 0 r —4r (14+6rwn-—1))4
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 U1j ] - ULj+1 ]  U1j-1 ]
Uy j Uz,j+1 Uzj-1
Uz U3z j+1 Uusj-1
E] = ' JEj+1 = ) 'Ej—l = . ’
[ Un—1,/] | Un—1,j+1 [ Un—1,j—11
3raw(1l) ] I 1 h?
raw(2) 7T 120
0 1 s (2h)*
' 2h 120
b= and w = '
0 . .
—rfw(n — 2) 1 + ((n—1)h)
[ 3rfw(n — 1) [((n—1)h 120
Algorithm 6.5

To obtain the numerical solution of Example 6.2
Input: endpoint L; maximum time T; constants «, ; integersnand m
Output: approximations u(x;, ¢;), for each i=0,1,....,n and j=0,1,....,m
Step 1: h=L/n
k=Tmax/m
r=k"2/h"4
Step 2: for i=0,1,.....,n
for j=0,1,...... ,m
Do step 3 and step 4
Step 3: u(xo,tj) =a

u(xn, tj) =p
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Step4: u(xy, to) = f(x;)
Step 5: for i=1,.....,n-1

ih)4
u(xi, tj+1) + (i + (;’;)o ) (ru(tz, tj) - 4ru(xl-+1, tj) + 6ru(xi, tj) -
4ru(xi_1, tj) + ru(xi_z, tj)) = Zu(xl-, tj) - u(xi, tj_l)

Step 6: output uyg, U1, Ugz, -

c Unm

Step 7: Stop (the producer is complete)

Example 6.3: Solving the Nonlinear Equation of Transverse Vibration of
Beam.

0%u 0*u 02u\’  dududdu ou\? (92u)
Fr “m”(m) +eararan +45) (W)
with conditions
u0,t)=a , ulL,t) = ,u(0,t)=0, u,(L,t) =0
ulx,0)=f(x) & ulx0)=gl)
Using EEM; let us a=1, b= —1.5, ¢= 6 and d= —22.5.

U _ Uiy~ h?P0%u(§ty)
ox 2h 6  9x3

azu _ ui’j+1 — Zui’j + ui’j_l k2 64U(xi,7]j)
a2 k2 12 at*

azu _ ui+1’j — Zui’j + ui_l’j hz 64U(€i, t])
ox2 h?2 12 ox*

0% U Uppr,j = 2Ujprj+ 2y —Umg;  2R20°u(Ey 1)
dx3 2h3 6! 0x®

64u . ui+2’j - 4ui+1,j + 6ui,j - 4ui_1,j + ui_z,j _ 2h2 68u(€i, t])
ox* h* 8! 0x8

Substituting in nonlinear transverse vibration beam equation we get
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(ui.j—l —2u,; + ui,j+1)

k2
Uy — AU HO6U; — AU U
— >
3

3 (wisr,j — 2uy; +uiy,j)

2 he

B(wipn; — Uimj)(Uirnj — 20+ wig ;) (Winnj — 2Uiprj + 2Uig j — Ui—pj)
_ =

45 ( ) (i — 2 )

U: c— Ui 4 : U: J— u+u_ .

_g 1+1,j 1—1,j ;:—81,] l,j 1-1,j + O(kz) + O(hz)

The local truncation error for this differential equation in order

t;; = 0(k*) + 0(h?)
Multiply by k#and transform the terms w; ;_; , u; ; to right side we get
Ui j+1

Uiyz,j — Aiyqj + 06U —dUiqj + Ui
h4

_k2

3 (i1 — 2uy; + ui—l,j)3

2 hé
3 (i1 = Wimr) (Wivn,j = 20 + wimg ) (Wina — 2Uipy ) + 20U — Uiy )
2 h®
2 3
45 (wiyrj = ti-17) (Wirrj = 2uij +Uinej) )
Y X AU = Ui

Put the above equation in matrix notation
Ujpr =0+ 2uj —Uj

where @ is nonlinear terms
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T Ul [ ULj+1 ] [ U1j-1 ]
Uy Uz,j+1 Uz,j-1
Uz Uz jt+1 Uz -1
E] = . 'Ej+1 = . 'Ej—l =
[ Un—1,/] | Un—1,j+1 [ Un—1,j—11
Algorithm 6.6

To obtain the numerical solution of Example 6.3
Input:  endpoint L; maximum time T, constants «, ; integersnand m
Output: approximations u(x;, t; ), for each i=0,1,....,n and j=0,1,....,m
Step 1: h=L/n
k=T/m
r=k"2/h"4
p=-3*k"2/2*h"6
q=-45*k"2/8*h"8
Step 2: for i=0,1,.....,n
for j=0,1,...... ,m
Do step 3 and step 4
Step 3: u(xo,tj) =a
u(xn t;) = B
Step4: u(xy, to) = f(x;)
Step 5: for i=1,.....,n-1

u(xi, tj+1) = ru(xi+2, tj) - 4ru(xi+1, tj) + 6ru(xi, tj) - 4ru(xi_1, tj) -
3
4ru(xi_2, tj) +p (u(xi+1, tj) - Zu(xi, tj) + u(xi_l, tj)) -p (u(xiﬂ, tj) -

u(xl-_l, tj)) (U(Xi+1, t]) - Zu(xi, tj) + u(xi_l, t])) (U(xi+2, tj) - 2u(xi+1, t]) +
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2u(xi-1, ) — u(xi—y, tj)) — qu(xis1, ) — u(xis1, )2 (u(xiﬂ, t)—

3
ZU(XL', t]) + 'U,(Xi_l, t])) + ZU(Xi, t]) — u(xi, tj—l)

Step 6: output uyg, U1, Ugz, -

c Unm

Step 7: Stop (the producer is complete)

Example 6.4: Solving the Nonlinear Equation of Transverse Vibration of
Beam.

3 2 3
u u Uy Uy U u u
Uy = a XXXX +b ( xx) x Yaxx Yxxx +d ( x) ( xx)

A+ @)?? A+ @)?? 1+ A+ W)z
with conditions

u0,t)=a , ull,t) = ,u(0,t)=0, u,(L,t) =0
u(x,0) =f(x) & ui(x,0)=g)
Using EEM; let us a=1, b= —1.5, ¢= 6 and d= —22.5.

U Uityj— Uiy h? 9%u(é;, 1))
0x 2h 6  0x3

azu _ ui’j+1 — Zui’j + ui’j_l k2 64U(xi,7]j)
a2 k2 12 at*

02u _ ui+1lj - Zuilj + ui_ljj hz 64U(€i, t])
ox? h? 12 ox*

d°u _ Wir1j T 2Uia Uiy~ Ui 2h* 0%u(§, 1)
dx3 2h3 6! 0x®

64u _ ui+2’j - 4ui+1’j + 6ui’j — 4ui_1’j + ul‘_z’j _ th aSU(Ei, tj)
dox* h* 8! 0x8

Substituting in nonlinear transverse vibration beam equation we get
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(ui,j—l —2u;; + ui,j+1)

k2
Uy — AUy T O6U — AU T U
- 3
U; . — U N2\2
4 i+1,j 1—1,])
h (1 + ( . )
3
3 (ui+1’j — 2ui’j + ui_l’j)
-2 —
ho (1 + (ui+1d'2_hui—1,j) )2
B 3w,y = Uim,) (Uirnj — 2 + wimg ) (Uinnj — 2Ujpaj + 201 ) — Uiy )
5
U; . — U N2\2
6 i+1,j 1—1,])
h (1 + ( - )

3
4 (i1, — ui—1,j)2(ui+1,j — 2u;; + Uy f)
7

h8 (1 n (ui+1’j2_hui_1'j)2)2

+ 0(k?) + 0(h?)

The local truncation error for this differential equation in order
t;; = 0(k*) + 0(h?)

Ui j+1

Uipzj — g + 06U ; — AU+ U5
3
U C— Ui 4 i 2\2
n4 (1+( l+1,]2h [ 1,]) )

3 (i1, — 2us; + ui—l,j)3

— k2

5

2 >
U = Ui 4 2\2
6 (1+( l+1,]2h i 1,]) )

B 3(wisr,j = Ui1,j) (Wisn,j — 20+ Uimq ;) (Uisaj — 2Uirrj + 2Ujmq ; — Uiy )
5

h6 (1 n (uu_l,jz_hui_l'j)Z)E

2 3
45 (Ujpr,j — Ui—1;) (Uigr,j — 2u5 5 + ui_q j)
3 7 +2U; 5 — Ujj

B8 (1 n (ui+1,j2—hui_1d-)2)§
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Put the above equation in matrix notation
Ujpr = D+ 2U; —Ujyq

where @ is nonlinear terms

[ U1, ] [ ULj+1 [ U1j-1 7
Uy, Uz,j+1 Uz,j-1
Uz Uz,j+1 Uzj—1
u; = ¥ yUj1 = ' yUj—1 =
[ Un—1,/] [ Un—1,j+11 [ Un—1,j—11
Algorithm 6.7

To obtain the numerical solution of Example 6.4
Input: endpoint L; maximum time T; constants «, ; integers n and m.
Output: approximations u(x;, t;), for each i=0,1,....,n and j=0,1,....,m
Step 1: h=L/n

k=T/m

r=k"2/h"4

p=-3*k"2/2*h"\6

q=-45*k"2/8*h"8
Step 2: for i=0,1,.....,n

Do step 3 and step 4
Step3: u(xg,t;) =«a
u(xn, tj) = B

Step 4:  u(x;, ty) = f(x;)
Step 5: fori=1,.....,n-1
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u(x;, tjv1) = ru(xisz t) — 4ru(xi, t) + 6ru(xg, tj) —
) N ) ) u(xipt)-u(xi_1t)) 2 A3 ) N

dru(x;_q, t;) — 4ru(x;_o, ) /(1 + ( - ) )M+ (u(xlﬂ, tj)
3 U X+ tj)— U Xi—1,tj 2

2u(xi, ) + ulxies, 7)) )/ (1 + (M G0 (u(x, ) -

u(xl-, t])) (U(xl'+1, t]) - Zu(xi, t]) + u(xi_l, t])) (u(xl-+2, t]) - Zu(xi_,_l, t]) +
. D—u(xi_q,ti 2

2u(xi1, ) — u(xi, 7)) /(1 + (RN 05 g (i, 1)
2 3

u(xl-_l, t])) ) (u(xl-+1, t]) - Zu(xi, t]) + u(xl-_l, tj)) )/(1 +

u(xjpq,ti)—ulxi_q,ti) 7
( 1 ]Zh ] )2)/\5 + ZU(Xi,tj) - u(xi, tj—l)

Step 6: output ugg, U1, Ugy, - - Unm
Step 7: Stop (the producer is complete)
6.4 Numerical Results

We input the initial conditions and boundary conditions in above
algorithms and using MATLAB program.

Table 6.3: approximation solution of example 6.1, by using Euler explicit
method, if the length of x-axis equal 10 and width equal 5. Let c=2, n=6,
m=6, a=1,8=7, f(x) =sin(x) and g(x) = x?

Approximation Solution of Example 6.1

X £=0.00 t=0.83 t=1.66 t=2.50 £t=3.33 t=4.16 £=5.00
0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2.00 0.9954 2.8106 5.2186 11.3745 -38.3144 249.5011 -388.6383
4.00 -0.1906 9.0534 19.3793 12.2539 175.9102 -166.4545 868.1506
6.00 -0.9589 20.7033 38.7948 138.8930 -0.9854 412.2724 -728.7675
8.00 0.3742 35.7298 107.2534 52.1533 191.9536 -180.0952 787.6867
10.0 0.8873 62.0214 40.7470 79.4979 -20.8075 208.1592 -412.6931
12.0 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000
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t=0.0000 t=0.8333

& 10 § 100 -
ER) 9—9*@—9%—6/0 ] 5 50r M
@] _10 L - - - L (@] 0 L Ja 2 -
? o 2 4 6 g8 Y o 2 4 6 8
X-axis X-axis
t=1.6667 t=2.5000
_5 200 _5 200
5 100+ 5 100+
s 0 3 0
0 2 4 6 8 0 2 4 6 8
X-axis X-axis
t=3.3333 t=4.1667
.5 200 .5 500
§ O L @\M § O L ®/®\®/é\®/®\®
[} _200 L - - - L [e] _500 L - - - L
@ 0 2 4 6 g © 0 2 4 6 8
X-axis X-axis
t=5.0000
§ 1000
5 o}
S -1000* -
@ 0 2 4 6 8
X-axis
(a)
r=0.3599(r > 0.25) r=0.0225(r < 0.25)
1000, 300,
500 200,
5 5 -
= 0, = 100,
= =
o o
n n
-500] 0
'10002 -1002
6 6
t-axis 0 o x-axis t-axis 0 0 x-axis
(b)

Figure 6.1: Graphical Representation is Unstable when r > 0.25, but Stable r < 0.25

96



Table 6.4: approximation solution of example 6.1, by using Euler implicit
method, if the length of x-axis equal 10 and width equal 5. Let c=2, n=6,
m=6, a =1, =7, f(x) =sin(x) and g(x) = x?

Approximation Solution of Example 6.1

x £=0.00 £=0.83 t=1.66 £=2.50 £=3.33 t=4.16 £=5.00

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2.00 0.9954 3.3173 7.6696 15.6856 26.4596 36.6238 42 .5445
4.00 -0.1906 9.8545 24.5782 43.8667 63.5681 78.3332 84.5051
6.00 -0.9589 22.4748 49.6547 74.1768 90.8535 98.2836 97.5407
8.00 0.3742 38.6758 67.8322 82.5691 85.6969 82.3423 76.1807
10.0 0.8873 41.5090 53.6372 52.3801 47.2719 42.0616 37.6572
12.0 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000
t=0.0000 t=0.8333
& 10 - § 50 .
5 of @—@\@@/@—e/@ 1 5 M
(@] L L o L L
-10 - - 0 = - -
? o 2 4 6 g8 o 2 4 6 8
X-axis X-axis
t=1.6667 t=2.5000
S 100 . S 100 -
Ssoo o [ Ss0 ~_ 1
3 0 = - - 3 0 - - -
0 2 4 6 8 0 2 4 6 8
X-axis X-axis
t=3.3333 t=4.1667
S 100 : 5 100 - :
5 50t M 5 50t %V\@\%
o L o L
0 - - - 0 - - -
? Yo 2 4 6 g8 ¥ o 2 4 6 8
X-axis X-axis
t=5.0000
5 100 :
S 50t
(@] L
O I
Yo 2 4 6 8
X-axis
(a)
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Solution

r=0.3599(r > 0.25)

100.

t-axis

0

Solution

X-axis

(b)

r=0.0225(r < 0.25)

250.
200,

150,

100

t-axis

X-axis

Figure 6.2: Graphical Representation is Stable for all valuesr.

Table 6.5: approximation solution of example 6.1, by using spectral
method, if the length of x-axis equal 10 and width equal 5. Let us ¢=0.005,
n=6,m=6, a=1,=7, f(x) =sin(x) and g(x) = x?

Approximation Solution of Example 6.1

1.0e+002 *

0.0100 0.8383 + 0.0000i
-0.0054 0.7972 - 0.0000i
-0.0036 0.7045 + 0.0000i
0.0022  0.5716 - 0.0000i
0.0091 0.4219 + 0.0000i
0.0071  0.2754 + 0.0000i
-0.0054  0.1505 - 0.0000i
-0.0091 0.0666 + 0.0000i
0.0022  0.0259 - 0.0000i
0.0099  0.0102 + 0.0000i
0.0071  0.0039 + 0.0000i
0.0700  0.0700

1.6662 + 0.0015i
1.6011 + 0.0008i
1.4136 - 0.0009i
1.1406 - 0.0010i
0.8339 + 0.0001i
0.5436 + 0.0005i
0.3068 + 0.0001i
0.1425 - 0.0001i
0.0496 - 0.0000i
0.0105 + 0.0000i
0.0007 + 0.0000i
0.0700

2.4932 + 0.0060i
2.4075 +0.0033i
2.1247 - 0.0034i
1.7088 - 0.0039i
1.2444 + 0.0004i
0.8117 +0.0020i
0.4635 + 0.0005i
0.2185 - 0.0004i
0.0733 - 0.0002i
0.0107 + 0.0000i

3.3189 + 0.0150i

3.2177 + 0.0082i
2.8389 - 0.0086i
2.2756 - 0.0098i
1.6526 + 0.0010i
1.0795 +0.0051i
0.6210 + 0.0012i
0.2948 - 0.0010i
0.0968 - 0.0004i
0.0110 + 0.0000i

4.1427 + 0.0300i
4.0329 +0.0164i
3.5571-0.0173i

2.8407 - 0.0195i

2.0577 +0.0021i
1.3470 + 0.0101i
0.7796 + 0.0025i
0.3714 - 0.0020i
0.1203 - 0.0008i
0.0112 + 0.0001i

-0.0025 + 0.0000i -0.0058 +0.0000i -0.0090 + 0.0000i

0.0700

0.0700

0.0700

4.9643 + 0.0524i
4.8545 +0.0287i
4.2803 - 0.0303i
3.4035-0.0341i
2.4589 + 0.0036i
1.6140 + 0.0176i
0.9395 + 0.0043i
0.4485 - 0.0035i
0.1437 - 0.0014i
0.0114 + 0.0001i
-0.0122 + 0.0000i
0.0700
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Figure 6.3: Graphical Representation of Example 6.1
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Table 6.6: approximation solution of Example 6.2 by using Euler explicit
method, if the length of x-axis equal 6 and width equal 5. n=4 , m=5,

a=1,8=5,f(x) =0 and g(x)=(1+x—5)

120

Approximation Solution of Example 6.2

X t=0.00 t=1.00 t=2.00 t=3.00 t=4.00 t=5.00
0.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.500 0.0000 2.5463 -56.6622 -117.6549 -128.7829 -159.2308
3.000 0.0000 8.5062 -46.3226 -104.5160 -114.4249 -145.2339
4.500 0.0000 21.7315 -=15.9214 -52.9882 -37.8200 -39.6011
5.000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

t=0.000 t=1.000
5 40 .
c c
§e] Xe]
5 5 20} ]
B b @
0 = 2 L 0(7 — - e £
1 2 3 5 1 2 3 4 5
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200 200 -

c c

° i)

5 0 5 Or

(@] ()

) ; )

-200 - -200 ¢ =
1 2 3 1 2 3 4 5
X-axis X-axis
(@)
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Figure 6.4: Graphical Representation of Example 6.2

Table 6.7: approximation solution of Example 6.2 by using Euler implicit
method, if the length of x-axis equal 6 and width equal 5. n=5 , m=5,

a=1,8=5,f(x)=0 and g(x)=(1+x—5)

120

Approximation Solution of Example 6.2

£=0.00 t=1.00 £=2.00 £=3.00 t=4.00 £=5.00

g w N O

.00
.00
.00
.00
.00
.00

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 -24.4444 -34.2530 -38.1550 -36.4719 -28.9064
0.0000 -30.0031 -57.4790 -69.7748 -66.3489 -51.7295
0.0000 -38.9636 -57.0771 -61.5682 -57.1792 -44.8195
0.0000 -34.8407 -29.0064 -26.6564 -24.5436 -19.0131
5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
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Figure 6.5: Graphical Representation of Example 6.2
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Table 6.8: approximation solution of Example 6.3 by using Euler explicit
method if the length of x-axis equal 10 and width equal 5. n=5, m=5,
a=1,f=t,

f(x) =sin(x) and g(x) =0

Approximation Solution of Example 6.3

X £=0.00 £t=1.00 £=2.00 £=3.00 t=4.00 £=5.00
1.0e+172 *

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.0 0.0000 0.0000 0.0000 0.0000 0.0000 1.4490

2.0 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -1.3557

3.0 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0705

4.0 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

5.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

t=0.000 t=1.000

Solution
o
Solution
o

Solution
o
|
|
|
|
J
Solution
o

X 1034 t=4.000 X 10172 t=5.000

Solution
o
|
Solution
o

(@)
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Solution
Solution

Solution
Solution

(b)

Figure 6.6: Graphical Representation of Example 6.3

Table 6.9: approximation solution of Example 6.4 by using Euler explicit
method if the length of x-axis equal 6 and width equal 5. n=2, m=5, a = 1,

B =t, g(x) =0and f(x) = sin(x).

Approximation Solution of Example 6.4

x £=0.00 £=1.00 £=2.00 £=3.00 t=4.00 £=5.00
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3.0 -3.0000 -3.3750 -5.4247 -7.8537 -10.3521 -12.8742
6.0 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000
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Figure 6.7: Graphical Representation of Example 6.4
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6.5 Conclusions of this Chapter

Comparing graphical results of the numerical solutions and analytical
solutions, we find that the agreement is almost complete.

Aanlytical Method Explicit Method

c c
R o
5 5
© ©
n n
5 5
taxis 0 O X-axis taxis 0 O x-axis
Implict Method Spectral Method
500
c c
2 S
= 0 5
© ©
n n
-500-
5

t-axis 0 O x-axis

Figure 6.8: the Analytical Solution and Numerical Solution of Linear Equation of
Transvers Vibration of Beam. If Initial Conditions u(x, 0) = sin(x) & u,(x,0) = x?
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7 Conclusions and Recommendations

7.1 The Conclusions

To design any building, Civil engineer need firstly calculate the moment,
reaction, loads, and elastic curve equation of building, then implement the
construction.

This study has been applied in three partial differential equations (PDES)
obtained from Concrete Beams Design (CBD), first and second partial
differential equations solving by analytical methods and numerical method
and then compare the iteration methods with exact solution, which gave
satisfied error, and then plot the solutions by using MATLAB program.

The third equation solving numerically by using finite difference method
and design algorithm using MATLAB program, because the third equation
required calculation in several steps, and difficult to apply analytical
solving method.

Future outlook engineers used to the transvers of vibration beams became
of its simplify. We tried to go about further by considering a non-unity first
derivative, which appears in the curvature equation. We hope that future
workers would follow the live.

7.2 The Recommendations

The recommendations: when applying the finite differences methods one
should use the implicit method because the stability of this method is
unconditional but the explicit method is conditional. If the BVP is
nonlinear, one should use the iterative method. For example, Homotopy
and Continuation methods give higher accuracy.
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APPENDIX
APPENDIX A
A: Derivation of Euler-Lagrange Equation

We derive Euler-Lagrange Equation for the simplest case, that in which
the functional I[u] has the form

I[u] = Jf f(t, x,u, Us, Uy, Upp, Uy ) dxdt
S

And in which u must satisfy the conditions n(s) = n,(s) = n,(s) =0,
we assume that f has continuous first partial derivatives with respect to
each of its variables.

Suppose that a minimizing (or maximizing) function does indeed exist,
and denote it by u (so that u are analogous to a critical point in calculus).

The functions 1 and & remain fixed, and ¢ is allowed to very small. The
new function 4 + U, or u + en(x) and u + en(t), also yields a value of
I, which is formed by substituting & + du = u + en for u, and
derivatives (i + §u)' = (i + €n)’. This procedure determines a real
function of ¢.

Of _0fdu_ Of du,  Of dux  Of duw  Of dum
ds  oOude Ou, de Ou, 0  Ou, O  Ouy, Oe

of __of  _ of of of of

ag _nau+nta_,ut+n3€a_,ux+nttautt+T’xx6uxx

d
a][u] = &.U f(t x, U, Up, Uy, Upp, Uy )dxdt
S

9 of  of of of of

_I - JE—— —_— [ —

ag [u] ff(n au + T’t aut + T’x aux + ntt autt + nxx auxx)dxdt
S

Now integral by parts of second, third, fourth and fifth terms.
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of . d of d of d of
f”ta_wdt_”Ea_W Nt = J"&a—tdt
f Of pondof (40  _ [, 240
"xaux ndxaux ndxaux ndxaux
of  daf _d of d? of
jntt OUyt dt‘"t%autt_"%autf "Wautt dt

f of d of daf+jd_26f

M Oy * = T dxdu,, 7 dx u, T ax2 Oy dx

af d? of
]nxx@dx— Jn— dx

dx? 0U,,

Substitute we get

a’“‘ﬂ of dof dof d* of
o "M ) \"ou " Tatou,  "dxow, | " dt? duy,
S

+ d” of dxdt
ndxzc')uxx x

du  dtou, dxou, dt?du, dx?ou,,

0 0 d o d o d? 0 d®> o0
—I[u]=jfn<f———f— f+ f + f)dxdt
de
S
From necessary condition %I[u] =0

(S8 Lot of o

ou  dtou, dxou, dt2ou, dx?ou.,

112



This condition must hold for all functions 7 that are continuously
differentiable and satisfy n(s) = 0 hence the factor inside the
parentheses in the integrand must equal zero. Thus, any minimizing (or
maximizing) function u must be a solution of the differential equation.

of d of d of d* of d? of

ou dtou, dxow, TdcZou, T dxtow. O

This is Euler — Lagrange Equation for the functional I[u].

APPENDIX B
B: MATLAB Programs
1. MATLAB program of figure 3.1

Clc; clear
[x,t]=meshgrid(0:40:400,0:5:50);
subplot(2,2,1)

u=-0.5*x."2;

surf (x,t,u);

xlabel ('x—-axis'")

ylabel ("t-axis')

zlabel ('Solution')
title('Initial Guess')
subplot(2,2,2)

u=0.5* (45*x.724+43) .*(t."2)/2;
surf (x,t,u);

xlabel ('x-axis'")

ylabel ("t-axis'")

zlabel ('Solution')

title ('2nd term')

subplot (2,2, 3)

u=202.5* (25*x.724+1) . * (t."4) /24;
surf (x,t,u);

xlabel ('x-axis'")

ylabel ("t-axis')

zlabel ('Solution'")

title ('3rd term')

subplot(2,2,4)

u=-

0.5*x.7240.5* (45*x.7243) .*(t.”2)/2+202.5* (25*x.72+1)
LK(t."4) /2440.5*% (4829625*%x.7°2-88695) .* (£."6)/720;
surf (x,t,u);

xlabel ('x—-axis'")
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ylabel ("t-axis')
zlabel ('Solution'")
title ('Approximation Solution')

MATLAB program of figure 4.1

clc; clear
[x,t]=meshgrid(0:40:400,0:5:50) ;
subplot(2,2,1)

u=(1/6)*x."73;

surf(x,t,u);

xlabel ('x—-axis')

ylabel ("t-axis')

zlabel ('Solution'")
title('coefficient p”0")
subplot (2,2, 2)

u=0.5*% (3*x.73) .*(t."2)/2;
surf (x,t,u);

xlabel ('x—-axis'")

ylabel ("t-axis')

zlabel ('Solution'")
title('coefficient p~1")
subplot (2,2, 3)

u=0.5* (3*x."342*x."2) .*(t."4) /24;
surf(x,t,u);

xlabel ('x—-axis'")

ylabel ("t-axis')

zlabel ('Solution')
title('coefficient p"2")
subplot (2,2,4)
u=(1/6)*x."34+40.5* (3*x.73) .*(£."2)/2+0.5* (3*x."34+2*x.
~2) R (t.n4) /24;

surf (x,t,u);

xlabel ('x-axis'")

ylabel ("t-axis')

zlabel ('Solution'")

title ('Approximate Solution')

MATLAB program of figure 4.2

Clc; clear

[x,t]=meshgrid (0:40:400,0:5:50);
subplot(2,2,1)

u=-0.5*x.72-1.5;

surf (x,t,u);

xlabel ('x-axis'")

ylabel ("t-axis')

zlabel ('Solution'")
title('coefficient p”0")

subplot (2,2,2)
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u=0.5*% (45*x.72+3) . *(t."2)/2;
surf (x,t,u);
xlabel ('x—-axis')
ylabel ("t-axis')
zlabel ('Solution'")
title('coefficient p~1")
subplot (2,2, 3)
u=22.5*% (45*x."2+3) .* (t."4) /24;
surf(x,t,u);
xlabel ('x—-axis'")
ylabel ("t-axis'")
zlabel ('Solution'")
title('coefficient p"2")
subplot (2,2, 4)

u=-0.5*x."2-
1.5+0.5*% (45*x.7243) . *(£."2)/2+22.5*% (45*x."2+3) .* (t."
4)/24;
surf (x,t,u);
xlabel ('x—-axis'")
ylabel ("t-axis')
zlabel ('Solution')
title ('Approximate Solution')

MATLAB program of figure 5.1

clc; clear
[x,t]=meshgrid(0:40:400,0:5:50) ;
subplot(2,2,1)
u=sin (x);
surf (x,t,u);
xlabel ('x-axis'")
ylabel ("t-axis')
zlabel ('Solution')
title('Initial Guess')
subplot (2,2,2)
u=sin(x)+ (-
5*sin(x)+30* (sin(x)) ."3+22.5* (sin(x)) ."5) .*t"2/2;
surf (x,t,u);
xlabel ('x-axis'")
ylabel ("t-axis')
zlabel ('Solution'")
title ('2nd Term')
subplot (2,2, 3)
u=sin (x)+sin(x)+ (-
5*sin(x)+30* (sin(x)) ."3+22.5* (sin(x)) ."5) .*t"2/2;
surf (x,t,u);
xlabel ('x—-axis'")
ylabel ('t-axis')
zlabel ('Solution')
title('Approximate Solution')
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5. MATLAB program of figure 5.2

clc

clear

x=0:0.1:1; t=1;

Exact=sin (x) *cosh (t) ;

HPM=sin (x) *cosh (t) ;

VIM=sin (x) *cosh (t);

ADM=sin (x) *cosh (t) ;
u=[x"',Exact',ADM',HPM',VPM', abs (Exact'-
ADM'") ,abs (Exact'-HPM') ,abs (Exact'-VPIM'") ]
plot (x,Exact, '*',x,ADM, '+',x,HPM, '0',x,VIM, "'r")
legend ('Exact', "ADM', "HPM', 'VIM', 2)

6. MATLAB program of figure 5.3

Clc; clear

x=0:0.1:1; t=1;

Exact=(1+x.75/120) *sinh (t) ;
HPM=(1+x.75/120) *sinh (t) ;

VIM= (14+x.75/120) *sinh (t) ;

ADM= (14+x.75/120) *sinh (t) ;
u=[x"',Exact',ADM',HPM',VIM', abs (Exact'-

ADM') ,abs (Exact'-HPM') , abs (Exact'-VIM'") ]

plot (x,Exact, '*',x,ADM, '+',x,HPM, '0',x,VIM, 'r")
legend('Exact', "ADM', "HPM', 'VIM', 2)

7. MATLAB program of figure 5.4

Clc; clear

x=0:0.01:1; t=1;

Exact=(-0.5*x.72) * (cosh (t));

HPM=-0.5*x.724+0.5* (45*x."2+3) *

t.M2/2422.5*% (45*%x."24+3)* t."4/24;
VIM=-0.5*x.72+0.5*% (45*x . "2+1) *

t.72/24202.5% (25*x.72+1)* (t."4/24);
ADM=-0.5*x."2+0.5* (45*x . "2+3) *

t.72/24202.5% (25*x."2+1) *(t."4/24);
u=[x"',Exact',ADM',HPM',VPM', abs (Exact'-

ADM') ,abs (Exact'-HPM') , abs (Exact'-VIM'") ]

plot (x,Exact, '*',x,ADM, '+',x,HPM, '0',x,VIM, 'r'")
legend('Exact', "ADM', "HPM', 'VIM', 2)
title('Compare the Exact solution with ADM, HPM &
VIM when N=2")

8. MATLAB Program by Using Explicit Method of Example 6.1
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function u=Expromé6l (c,L, Tmax,m,n)
L & Tmax are length of x and t axes
m is number of divided of x axis & n is number of
divided of t axis
alpha & beta are boundary conditions
% f(x) & g(x) are initial conditions
h=L/m;
k=Tmax/n;
r=c"2*k"2/h"2;
u=zeros (m+1,n+1);
for j=1l:n+1
u(l,j)=alpha;
u(m+l,j)=beta;
end
for i=2:m
u(i,1)=f£((i-1)*h); % u(x,0)=1f(x)
end
A=zeros (m-1,m-1);
b=zeros(m-1,1); b(l)=3*r*alpha; b(2)=-r*alpha; b (m-
2)=—-r*beta; b(m-1)=3*r*beta;
for j=1:m-1
for i=l:m-1
if i==j
A(i,]j)=2-6*r;
elseif abs(i-j)==
A(i,]j)=4*r;
elseif abs(i-j)==
A(i,3)=-xr;
end
end
end
d=zeros (m-1,1);
for i=l:m-1
d(i)=g(i*h); % u'(x,0)=g (x)

o\©°

o\©°

o\°

end
u(2:m,2)=0.5*(A*u(2:m, 1) +2*k*d+b) ;
for j=2:n
u(2:m,j+1)=A*u(2:m,J)-u(2:m,j-1)+b;
end

9. MATLAB Program by Using Implicit Method of Example 6.1

function u=Impromé6l (c,L, Tmax,m,n)

% L & Tmax are length of x and t axes

m is number of divided of x axis & n i1s number of
divided of t axis

alpha & beta are boundary conditions

% f(x) & g(x) are initial conditions

h=L/m;

k=Tmax/n;

r=c”"2*k"2/h"2;

o\°

o\
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u=zeros (m+1,n+1);
for j=1l:n+1
u(l,j)=alpha;
u(m+1, j)=beta;
end
for i=2:m
u(i,l)=£((i-1)*h); % u(x,0)=f(x)
end
A=zeros (m
b=zeros (m
for j=1l:m-1
for i=1l:m-1
if i==7
A(i,]j)=1+6*r;
B(i,j)=2+6*r;
elseif abs(i-j)==
A(i,3)=-3%r;
B(i,])=-3*r;
end
end
end
d=zeros(m-1,1);
for i=1l:m-1
d(i)=g(i*h); % u'(x,0)=g(x)

,m-1); B=zeros(m-1,m-1);

_1 —
-1,1); b(l)=3*r*alpha; b(m-1)=3*r*beta;

end

u(2:m,2)=inv (B) * (2*u(2:m, 1) +2*k*d+b) ;

for j=2:n

u(2:m,j+1)=inv(A)* (2*u(2:m,Jj)-u(2:m,j-1) +b);
end

10. MATLAB Program by Using Spectral Method of Example 6.1

function u=Spectral Beam(c,L,Tmax,n,m)
k=Tmax/m;
u=zeros(l:2*n,l:m+1);
[D,xx] = cheb(2*n-1);
x = L*(xx+1)/2;
for j=1l:m+l
u(l,3)=1; % u(0,t)=alpha
u(2*n,j)=7; % u(L,t)=beta
end
for i=2:2*n-1
u(i,l)=sin(x(i-1)); % u(x,0)=£f(x)
end
for i=1:2*n-1
for r=-n+l:n
u(i,2)=0.5*(u(i,l)+2*k*(x(1))"2-
((c*k) "2/ (2*n)) *sum( (sqgrt (-1) *r)~4*u(i, 1) *exp (sqrt (-
1) *L*i*r/(2*n))));
end
end
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for j=2:m
for i=1:2*n-1
for r=-n+l:n

u(i,3+1)=2*u(i,3)-u(i,j-1)-

' J)
((c*k) "2/ (2*n)) *sum( (sqrt (-1) *r)~4*u (i, j) *exp (sqrt (-
1)*L*i*r/ (2*n)) ) ;

11.

end

function [D,x] = cheb (N)
if N==0, D=0; x=1;
return

end

x = cos (pi*(0:N)/N)"

c = [2; ones(N-1,1); 2].*(-1).7(0:N)";

X = repmat(x,1,N+1);

dX = X-X';

D = (c*(1./c)")./ (dX+(eye (N+1)));

D = D - diag(sum(D')); % diagonal entries

MATLAB Program by Using Explicit Method of Example 6.2

function u=Expromé62 (L, Tmax,m,n)
L & Tmax are length of x and t axes
m is number of divided of x axis & n is number of
divided of t axis
alpha & beta are boundary conditions
% £(x) & g(x) are initial conditions
h=L/m;
k=Tmax/n;
r=k*2/h"4;
u=zeros (m+1,n+1);
for j=1l:n+l
u(l, j)=alpha;
u(m+l,j)=beta;
end
for i=2:m
u(i,l)=f((i-1)*h); % u(x,0)=f (x)
end
A=zeros (m-1,m-1);
b=zeros (m-1, 1)' b(1l ) =3*r*alpha; b(2)=-r*alpha;
b(m-2)=-r*beta; b(m-1)=3*r*beta;
for j=1:m-1
for i=l:m-1
if i==
A(i,]J)=-6*r;
elseif abs(i-j)==
A(i,]J)=4*r;
elseif abs(i-j)==

0\°

o\°

0\°
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A(i,3)=-x;
end

end
end
d=zeros(m-1,1); w=zeros(l,m-1);
for i=l:m-1

d(i)=g(i*h); % u'(x,0)=9(x)

w(i)=(1/(i*h)+(1*h)"~4/120);

end

u(2:m,2)=0.5* (w*A*u(2:m,1)+2*u(2:m,1)+2*k*d+b) ;
for j=2:n

u(2:m, j+1l)=w*A*u(2:m,j)+2*u(2:m,j)-u(2:m,j-1) +b;
end

12. MATLAB Program by Using Implicit Method of Example 6.2

function u=Improm62 (L, Tmax,m,n)
% L & Tmax are length of x and t axes
m is number of divided of x axis & n is number of
divided of t axis
alpha & beta are boundary conditions
% f(x) & g(x) are initial conditions
h=L/m;
k=Tmax/n;
r=k"2/h"4;
u=zeros (m+1,n+1);
alpha=1; beta=5;
for j=1l:n+l
u(l,j)=alpha;
u(m+l,j)=beta;
end
for i=2:m
u(i,l)=f((i-1)*h); % u(x,0)=f (x)
end
d=zeros (m-1,1); w=zeros(l,m-1);
for i=l:m-1
d(i)=g(i*h); % u'(x,0)=g(x)
w(1l)=(1/(i*h)+(1i*h)*4/120);
end

o\°

o\°

b=zeros(m-1,1); b(l)=3*r*alpha*w(l); b(2)=-
r*alpha*w(2); b(m-2)=-r*beta*w(m-2); b (m-
1)=3*r*beta*w (m-1) ;
A=zeros(m-1,m-1); B=zeros(m-1,m-1);
for j=1:m-1
for i=l:m-1
1f i==]
A(i,]J)=1+6*w (i) *r;
B(i,]j)=2++6*w (i) *r;
elseif abs(i-j)==
A(i,]J)=—-4*r*w(i);
B(i,j)=-4*r*w(i);
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elseif abs(i-j)==
A(i,J)=r*w(i);

B(i,Jj)=-4*r*w(i);

end
end
end
u(2:m,2)=inv(B) * (2*u(2:m, 1) +2*k*d+b) ;
for j=2:n
u(2:m,j+1)=inv(A) *(2*u(2:m,J)-u(2:m,j-1)+b);
end

13. MATLAB Program by Using Explicit Method of Example 6.3

function u=Exprom63 (L, Tmax,n,m)
% L & Tmax are length of x and t axes
% m is number of divided of x axis & n is number of
divided of t axis
% alpha & beta are boundary conditions
(x) & g(x) are initial conditions

u=zeros (n+l,m+1);

% f and g are initial conditions when t is equal to
zero

% alpha and beta are boundary conditions

for i=2:n

u(i,1)=£((i-1)*h);

end
for j=1:m+l

u(l, j)=alpha;

u(n+l,j)=beta;
end
for i=2:n

u(i,2)=0.5*((k"2/h™4)* (=3*u(i+1,J)+6*u(i, 1) -
3*u(i-1,1))-(3/2)*(k"2/h"6)* ((u(i+l,1)-2*u(i,1)+u(i-
1,1))73))-(6*k"2/ (4*h"5) ) * ((u(i+l,1)-u(i-
1,1))*(u(i+1l,1)-2*u(i,1)+u(i-1,1))*(-u(i+1,1)+u(i-
1,1)))-(22.5*k*2/(4*h"8) ) * ((u(i+1l,1)-u(i-
1,1))"2*(u(i+1,1)-2*u(i,1l)+u(i-
1,1))"3)+2*u(i,1)+g((i-1)*h);
end
for j=2:m

*(u(i+tl,j)-2*u(i,j)+tu(i-1,3))*(-u(i+l,j)+u(i-
)= (22.5*k"2/ (4*h"8) ) * ((u(i+l,J)-u(i-
j)) "2*x (u(i+l,J)-2*u(i,j)+u(i-1,3))"3)+2*u(i,j) -
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end

14. MATLAB Program by Using Explicit Method of Example 6.4

function u=Exprom64 (L, Tmax,n,m)
% L & Tmax are length of x and t axes

o\°

divided of t axis

% alpha & beta are boundary conditions

% £(x) & g(x) are initial conditions

h=L/n;

k=Tmax/m;

u=zeros (n+1,m+1);

% f and g are initial conditions when t is equal to

zZero
% alpha and beta are boundary conditions
for i=2:n

u(i,l)=f£((i-1)*h);
end
for j=1l:m+l

u(l,j)=alpha;

u(n+1l,j)=beta;
end
for i=2:n

u(i,2)=0.5*((k"2/h"4)* (=3*u(i+1,J)+6*u(i, 1) -
3*u(i-1, l))/( +((1/2*h)*(u(i+l,1)-u(i-
1,1)))"2)"(3/2)-(3/2)*(k*2/h"6) * ((u(i+l,1)-
2*u (1 ) u(i-1,1))"3)/(1+((1/2*nh) *(u(i+1,1)-u(i-
111))) 2)7(5/2)-(3*k"2/ (4*h"5)) * ((u(i+l, 1) -u(i-
1,1))*(u(i+1,1)-2*u(i,1)+u(i-1,1))*(-u(i+1,1)+u(i-
1,1)))/(1+((1/2*h) *(u(i+l,1)-u(i-1,1)))"2)"(5/2) -
(22.5*k"2/h"8) * ((u(i+l,1)-u(i,1))"2* (u(i+1,1)-
2*u (i, l)+u(i-1,1))"3)/(1+(1/h)*(u(i+l,1) -
u(i, 1))~ (7/2))+2*u(i,1))+g((i-1)*h);

end
for j=2:m
for i=2:n
u(i,j+1)=(k"2/h"4)* (=3*u(i+1,J)+6*u(i, 1) -
3* (i-1,3))/(1+((1/2*h) * (u(i+1,3J)-u(i-
3)))"2)7(3/2)-(3/2)* (k*2/h"6) * ((u(i+l,]) -
2*u(l,]) u(i-1,3))"3)/(1+((1/2*h)* (u(i+l,J)-u(i-
3)))"2)7(5/2)-(3*k"2/ (4*h"5) ) * ((u(i+1,J)-u(i-
J))*(u(i+l,3)-2*u(i,l)+u(i-1,3)) *(-u(i+l,J)+u(i-
3))) /(1+((1/2*h) * (u(i+1,3) -u(i-1,3))) "2)~(5/2) -
(22 5*kA2/(4*hA8))*((u(i+l,j)—u(i—l,j))AZ*(u(i+l,j)—
2*%u (1 ) u(i-1,3))"3)/(1+((1/2*h)* (u(i+l,J)-u(i-
llj))) (7/2 +2*u(llj)_u(llj_l);
end
end
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15. MATLAB Program of Figures 6.1

Clc; clear
x=linspace(0,12,7);
t=linspace (0,4,7);
u=Exprom6l (10,5, 6, 6)
subplot (4,2,1)
plot(u(:,1),'o-")
xlabel ('x—-axis")
ylabel ('Solution')
title ('t=0.0000")
subplot (4,2,2)
plOt(u(:IZ)l'o_')
xlabel ('x—-axis')
ylabel ('Solution')
title('t=0.8333")
subplot (4,2, 3)
plot(u(:,3),'b")
xlabel ("x—-axis")
ylabel ('Solution')
title('t=1.6667")
subplot (4,2,4)
plot(u(:,4),'c")
xlabel ("x—-axis")
ylabel ('Solution')
title ('t=2.5000")
subplot (4,2,5)
plot(u(:,5),'o-")
xlabel ("x—-axis")
ylabel ('Solution')
title ('t=3.3333")
subplot (4,2, 6)
plot(u(:,6),"':")
xlabel ('x-axis")
ylabel ('Solution')
title('t=4.1667")
subplot(4,2,7)
plot(u(:,7),"':")
xlabel ("x—-axis")
ylabel ('Solution')
title('t=5.0000")
figure
subplot(1,2,1)
surf(x,t,u');
xlabel ('x—-axis'")
ylabel ('t-axis")
zlabel ('Solution')
title('c=2 or r=0.3599")
subplot(1,2,2)
u=Exprom61(0.5,10,5,6,6);
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16.

surf(x,t,u');

xlabel ('"x—-axis')

ylabel ("t-axis'")

zlabel ('Solution'")
title('c=0.5 or r=0.0225")

MATLAB Program of Figures 6.2

Clc; clear
x=linspace (0,10,7);
t=linspace (0,5,7);
u=Impromé6l (2,10,5,6,6)
subplot (4,2,1)
plot(u(:,1), "o-"'
xlabel ('x—-axis')
ylabel ('Solution'")
title('t=0.0000")
subplot (4,2,2)
plot(u(:,2),'o-")
xlabel ('x—-axis'")
ylabel ('Solution')
title('t=0.8333")
subplot (4,2, 3)
plot(u(:,3),'r")
xlabel ('x—-axis'")
ylabel ('Solution')
title('t=1.6667")
subplot (4,2, 4)
plot(u(:,4),'c")
xlabel ('x-axis'")
ylabel ('Solution'")
title('t=2.5000")
subplot (4,2,5)
plot(u(:,5),'o-")
xlabel ('x—-axis'")
ylabel ('Solution')
title('t=3.3333")
subplot (4,2, 6)
plot(u(:,6),'o-")
xlabel ('x-axis'")
ylabel ('Solution')
title('t=4.1667")
subplot (4,2,7)
plot(u(:,7),"':")
xlabel ('x—-axis'")
ylabel ('Solution'")
title('t=5.0000")
figure
subplot(1,2,1)
surf(x,t,u');
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17.

xlabel ('x—-axis'")
ylabel ("t-axis'")
zlabel ('Solution'")
title('r=0.3599")
subplot(1,2,2)

u=Impromé6l (0.5,10,5,6,6);

surf(x,t,u'");
xlabel ('x—-axis')
ylabel ('t-axis")
zlabel ('Solution'")
title('r=0.0225")

MATLAB Program of Figures 6.3

Clc; clear
x=linspace(0,10,7);
t=linspace(0,5,7);

u=Spectral Beam(0.005,10,5,6,6)

subplot(4,2,1)
plot(u(:,1),'o-")
xlabel ("x-axis")
ylabel ('Solution')
title('t=0.0000")
subplot (4,2,2)
plot(u(:,2),'o-")
xlabel ('x—-axis'")
ylabel ('Solution'")
title('t=0.8333")
subplot (4,2, 3)
plot(u(:,3),'rc")
xlabel ('x-axis')
ylabel ('Solution')
title('t=1.6667")
subplot (4,2,4)
plot(u(:,4),'r")
xlabel ('x-axis')
ylabel ('Solution')
title('t=2.5000")
subplot (4,2,5)
plot(u(:,5),'o-")
xlabel ('x-axis')
ylabel ('Solution'")
title('t=3.3333")
subplot (4,2, 6)
plot(u(:,6),'o-")
xlabel ("x-axis")
ylabel ('Solution")
title('t=4.1667")
subplot (4,2,7)
plot(u(:,7),"':")
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xlabel ('x—-axis'")

ylabel ('Solution')
title('t=5.0000")

figure

surf(x(1:7),t, (real(u(l:7,:)))")
xlabel ('x axis'); ylabel ('t axis');
zlabel ('Solution'")

title ('Numerical Solution')

. MATLAB Program of Figures 6.4

Clc; clear
u=Exprom62 (6,5,5,5)
subplot(3,2,1)
plot(u(:,1),'o-")
title('t=0.000")
xlabel ('x—-axis'")
ylabel ('Solution')
subplot (3,2, 2)
plot(u(:,2),'o-")
title('t=1.000")
xlabel ('x—-axis'")
ylabel ('Solution'")
subplot (3,2, 3)
plot(u(:,3),'r")
title('t=2.000")
xlabel ('x—-axis'")
ylabel ('Solution'")
subplot (3,2,4)
plot(u(:,4),'r")
title('t=3.000")
xlabel ('x-axis'")
ylabel ('Solution')
subplot (3,2,5)
plot(u(:,5),"':")
title('t=4.000")
xlabel ('x-axis'")
ylabel ('Solution'")
subplot (3,2, 6)
plot(u(:,6),"':")
title('t=5.000")
xlabel ('x-axis'")
ylabel ('Solution")
figure
subplot(2,2,1)
x=linspace (0,6, 6);
t=linspace (0,5, 6);
u=ExProm62 (6,5,5,5)
surf(x,t,u');
xlabel ('x—-axis'")
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ylabel ('t-axis")
zlabel ('Solution'")
title('r=0.4823")
subplot (2,2, 2)
x=linspace (0, 6,5);
t=linspace(0,5,5);
u=ExProm62(6,5,4,8)
surf(x,t,u(:,1:5)");
xlabel ('x—-axis'")
ylabel ("t-axis')
zlabel ('Solution'")
title('r=0.1975")
subplot (2,2, 3)
x=linspace (0,6, 6);
t=1linspace(0,5,6);
u=ExProm62 (6,5,5,8)
surf(x,t,u(:,1:6)");
xlabel ('x—-axis'")
ylabel ("t-axis'")
zlabel ('Solution')
title('r=0.1884")
subplot (2,2,4)
x=linspace(0,6,6);
t=linspace (0,5, 6);
u=ExProm62 (6,5,5,18)
surf(x,t,u(:,1:6)");
xlabel ('x—-axis'")
ylabel ("t-axis'")
zlabel ('Solution')
title('r=0.0372")

. MATLAB Program of Figures 6.5

Clc; clear
u=Impromé62 (6,5,5,5)
subplot(3,2,1)
plot(u(:,1),'o-")
title('t=0.000")
xlabel ('x-axis'")
ylabel ('Solution'")
subplot (3,2,2)
plot(u(:,2),'o-")
title('t=1.000")
xlabel ("x-axis")
ylabel ('Solution')
subplot (3,2, 3)
plot(u(:,3),'b")
title('t=2.000")
xlabel ('x—-axis'")
ylabel ('Solution')
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subplot (3,2,4)
plot(u(:,4),'r")
title('t=3.000")
xlabel ('x—-axis'")
ylabel ('Solution')
subplot (3,2,5)
plot(u(:,5),'o-")
title('t=4.000")
xlabel ('x—-axis'")
ylabel ('Solution')
subplot (3,2, 6)
plot(u(:,6),"':")
title('t=5.000")
xlabel ('"x—-axis')
ylabel ('Solution'")
figure
x=linspace (0, 6, 6) ;
t=linspace(0,5,6);
subplot(2,2,1)
u=ImProm62(6,5,5,5)
surf(x,t,u');
xlabel ('x—-axis'")
ylabel ("t-axis')
zlabel ('Solution')
title('r=0.4823")
subplot (2,2, 2)
x=linspace (0, 6, 6) ;
t=linspace (0,5, 6);
u=ImProm62(6,5,5,8)
surf(x,t,u(:,1:6)")
xlabel ('x-axis'")
ylabel ('t-axis")
zlabel ('Solution')
title('r=0.1884")
subplot (2,2, 3)
x=linspace (0, 6,5);
t=linspace (0,5,5);
u=ImProm62 (6,5,4,8)
surf(x,t,u(:,1:5)");
xlabel ('x-axis'")
ylabel ("t-axis')
zlabel ('Solution')
title('r=0.0772")
subplot (2,2, 4)
x=linspace (0,6, 6);
t=linspace (0,5, 6);
u=ImProm62(6,5,5,18)
surf(x,t,u(:,1:6)");
xlabel ('x—-axis'")
ylabel ("t-axis')
zlabel ('Solution'")
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20.

title('r=0.0372")

MATLAB Program of Figures 6.6

Clc; clear
u=Exprom63(10,5,5,5)
subplot(3,2,1)
plot(u(:,1),'o-")
legend ('t=0.000", 3)
xlabel ('x—-axis'")
ylabel ('Solution'")
subplot (3,2,2)
plot(u(:,2),'o-")
legend ('t=1.000", 3)
xlabel ('x—-axis')
ylabel ('Solution')
subplot (3,2, 3)
plot(u(:,3),'b")
legend ('t=2.000",1)
xlabel ('x—-axis'")
ylabel ('Solution')
subplot (3,2,4)
plot(u(:,4),'r")
legend ('t=3.000",1)
xlabel ('x—-axis'")
ylabel ('Solution")
subplot (3,2,5)
plot(u(:,5),'o-")
legend ('t=4.000",1)
xlabel ('x-axis'")
ylabel ('Solution')
subplot (3,2, 6)
plot(u(:,6),"':")

legend ('t=5.000",1)
xlabel ('x-axis'")
ylabel ('Solution'")
figure

subplot(2,2,1)
x=1linspace (0,10,06);
t=linspace (0,5, 6);
u=ExProm63(10,5,5,5)
surf(x,t,u');

xlabel ('x—-axis'")
ylabel ('t-axis")
zlabel ('Solution')
title('n=5 & m=5")
subplot (2,2,2)
x=linspace (0,10,5);
t=linspace (0,5,5);
u=ExProm63 (10, 5,4, 8)
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surf(x,t,u(:,1:5)");
xlabel ('"x—-axis')
ylabel ("t-axis'")
zlabel ('Solution'")
title('n=4 & m=8")
subplot (2,2, 3)
x=linspace(0,10,06);
t=linspace (0,5, 6);
u=ExProm63(10,5,5, 8)
surf(x,t,u(:,1:6)");
xlabel ('x—-axis')
ylabel ("t-axis')
zlabel ('Solution'")
title('n=5 & m=8")
subplot(2,2,4)
x=linspace (0,10,6);
t=linspace (0,5, 6);
u=ExProm63(10,5,5,18)
surf(x,t,u(:,1:6)");
xlabel ('x—-axis'")
ylabel ("t-axis')
zlabel ('Solution')
title('n=5 & m=18")

MATLAB Program of Figures 6.7

Clc; clear
u=Expromé64 (6,5,2,5)
subplot(3,2,1)
plot(u(:,1),'o-")
legend ('t=0.000",1)
xlabel ('x-axis'")
ylabel ('Solution')
subplot (3,2,2)
plot(u(:,2),'o-")
legend('t=1.000",2)
xlabel ('x-axis'")
ylabel ('Solution')
subplot (3,2, 3)
plot(u(:,3),'b")
legend ('t=2.000",2)
xlabel ('x-axis'")
ylabel ('Solution'")
subplot (3,2, 4)
plot(u(:,4),'r")
legend ('t=3.000",1)
xlabel ("x-axis")
ylabel ('Solution")
subplot (3,2,5)
plot(u(:,5),'o-")
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legend ('t=4.000",1)
xlabel ('"x—-axis')
ylabel ('Solution')
subplot (3, 2, 6)
plot(u(:,6),"':")
legend(’t 5.000",1)
xlabel ('x-axis")
ylabel ('Solution')
figure

subplot (2, 2,
x=linspace
t=linspace
u=ExProm64
surf(x,t,u
xlabel ('x-axis'
ylabel ('t-axis'
zlabel ('Solution')
title('n=2 & m=5")
subplot(2,2,2)

x=linspace
t=linspace
u=ExProm64
surf(x,t,u
xlabel ('x—-axis'
ylabel ('t-axis'
zlabel ('Solution')
title('n=2 & m=7")
subplot (2,2, 3)

1)
(0,6,3)7
(0,5,3);
(6,5,2,5)
(:,1:3)");

)
)

(0,6,3);
(0,5,3)7
(6,5,2,7)
(:,1:3)")7
)
)

xlabel ('x—-axis'
ylabel ('t-axis'
zlabel ('Solution'")
title('n=2 & m=10")
subplot (2,2,4)

x=linspace(0,6,3);
t=linspace (0,5, 3);
u=ExProm64 (6,5,2,10)
surf(x,t,u(:,1:3)");
)
)

x=linspace (0,6, 3);

t=linspace (0,5,3);

u=ExProm64 (6,5,2,15)

surf (x,t,u(:,1:3)");
)

xlabel ('x—-axis'
ylabel ('t-axis")

zlabel ('Solution')
title('n=5 & m=15")

. MATLAB Program of Figure 6.7

Clc; clear
subplot(2,2,1)
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[x,t]=meshgrid(0:0.5:10,0:0.25:5);
u=sin(x) .*cos(0.05*t)+x.%2.*t;
surf (x, t,u)

xlabel ('x—-axis'")

ylabel ("t-axis'")

zlabel ('Solution'")
title('Aanlytical Method')
subplot (2,2,2)

x=linspace (0,10,21);
t=linspace(0,5,21);
u=Exprom61 (0.05,10,5,20,20);
surf(x,t,u');

xlabel ('x—-axis')

ylabel ("t-axis'")

zlabel ('Solution'")
title('Explicit Method')
subplot (2,2, 3)

x=linspace (0,10,21);
t=linspace (0,5,21);
u=Impromé6l (0.05,10,5,20,20);
surf(x,t,u');

xlabel ('x—-axis'")

ylabel ("t-axis')

zlabel ('Solution')
title('Implict Method")
subplot(2,2,4)

x=linspace (0,10,21);
t=linspace (0,5,21);
u=Spectral Beam(0.0005,10,5,20,20);
surf(x,t, (real(u(l:21,:)))")
xlabel ('x-axis'")

ylabel ('t-axis")

zlabel ('Solution')
title('Spectral Method')
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APPENDIX C

C: Some Images from Concrete Lab.

Figure: Crack pattern for de-bonding failure

Figure: Beam with Bridge
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