

Sudan University of Science and Technology

Optimizing the Control of the Diesel Backwash

Filters Using Foxboro DCS

التحكم في منظومة مرشحات الديزل بطريقة مثلي باستخدام

نظام التحكم الموزع فوكس بورو

Submitted in Partial Fulfillment of Master's Degree in

Mechatronics Engineering

Prepared By:

Alaeldin Hassan Abuagla Abusin

Supervised By:

Dr. Mohamed Elnour Abdalla

December 2018

الاية

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

(قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ)

صَدَقَ اللهُ العَظيم

سورة البقرة

DEDICATION

To the memory of my father; the intellectual, the poet, and the Loving

father who inculcated the passion for knowledge in our souls and set us

on its path. May Allah, the almighty, set his soul in peace.

To my mother, a loving dedicated mother who loves her family and

gives without limits.

I dedicate this work to both of you, you both have strived to keep our

family as great, loving, and strong as it is now, and against all odds.

ACKNOWLEDGEMENT

This work wouldn't have been accomplished without the Care and support of esteemed individuals who were of Great assistance to me during the term of this research. It goes without saying that the care they've shown to me has helped bringing this work to existence.

First and foremost, my sincere thanks and gratitude go to **Dr. Mohmmed Elnour Abdallah**, for the relentless efforts he exerted in reading the chapters of this thesis and his generous comments and observations.

Further, I would like to thank my family for the loving atmosphere that they offered to me during the term of my study which was of great support. I am so grateful for this blessing.

Last but not least, for all those colleagues whether at work or at study, I would like to say that I benefited greatly from our discussions, and form the daily Experiences that we shared together. I would like to Thank you all hoping that this study will help shed light on one of the challenging areas in oil industry.

ABSTRACT

The first and most important stage of the Diesel quality and competency improvement in Diesel Hydro treated unit (DHT) is the backwashing process of the main filters, which is triggered periodically depending on pressure differential (DP) and automatically through the Pneumatic Control System (PCS). The (PCS) system described above represents the main weakness point in the filtration system. It is mainly influenced by many sub-issues related to the (PCS), and resulted in a bigger challenge maintaining and supervising the (PCS). The situation briefly described above eventually leads to low levels of diesel production and low quality. The main question this research is trying to answer is: whether it is possible to turn these systems from Pneumatic to electronic ones, using the existing Distributed Control System (Foxboro).

In this research the virtual Foxboro DCS machine packages (ICC, Fox draw, Fox select, Fox view, etc) were successfully used, and a new program is proposed to control the filters cleaning process with high constancy in monitoring and follow-up. In addition, the proposed program increase the chances for operators to define time frames for; filtering, maintenance, and the diesel quantity used in filtering process, and many other advantages that helps improve the quality, increase final product productively, and extend catalyst life time.

المستخلص

تمر عملية تحسين الديزل بوحدة انتاج الديزل بعدة مراحل أولها وأهمها عملية إزالة الشوائب -الترسبات والعوائق الموجودة في الديزل الخام بواسطة مجموعة من الفلاتر التي تتم عملية نظافتها أوتوماتيكيا عند اتساخها عن طريق نظام تحكم هوائي (Pneumatic Control System) يعمل عند بلوغ فرق جهد الفلتر قيمة معينة. ظلت اشكالية صيانة - متابعة ومراقبة عمل منظومة التحكم الهوائية بالكومبيوتر واحدة من الاشكاليات التي تقلل من كفاءة عملية الترشيح وهذا الأمر يؤثر بصورة مباشرة على جودة وكمية الديزل المنتج ، لذلك جاءت فكرة هذا البحث لتحويل هذه المنظومة الهوائية المتحكمة في الفلاتر الرئيسية الي منظومةالكترونية باستخدام مجموعة متنوعة من البرامج الموجودة بنظام التحكم الموزع (Foxboro) المستعمل لباقى الوحدة. وفي هذا البحث قام الباحث بتصميم برنامج للتحكم في نظافة الفلاتر بصورة مختلفة عن البرنامج التقليدي الذي يقوم على المنظومة الهوائية. ويعمل هذا البرنامج من خلال تصميم مرشحات مزودة بإشارات تحكمية تسمح للمشغل بمتابعة عمل الفلاتر بصورة دائمة مع اضافة العديد من الميزات للنظام مثل امكانية تحديد زمن عملية الفلترة (الترشيح) وزمن الصيانة ومعرفة الحالة العامة للمنظومة و كمية الديزل المستخدم في عملية الفلترة (الترشيح) وكذلك امكانية التشغيل لأي فلتر والعديد من الميزات التي تزيد من كفاءة وجودة المنتج النهائي.

TABLE OF CONTENTS

الاية	i
Dedication	ii
Acknowledgement	iii
Abstract	iv
المستخلص	V
Table of Contents	vi
List of Tables	xi
List of Figures	xiii
List of Abbreviations	XV

1. Chapter One – Introduction

1.1 Overview	1
1.2 Problem Statement	2
1.3 Proposed Solution	2
1.4 Objectives	3
1.5 Methodology	3
1.6 Research Layout	3

2. Chapter Two - Literature Review

2.1 Background of ZFG Backwash Filter	4
2.1.1 Pneumatic Control System Components of BWF	6
2.1.1.1 Pneumatic Quick stepper Controller	7
2.1.1.2 Time delay valve VZ-3-PK-3 Part number: 5755	8

2.1.1.3 Pneumatic valve J-3-PK-3 Part number: 10772	8
2.1.1.4 Pneumatic valve Part number: J-5-PK-3-4 4503	9
2.1.1.5 Short pulse valve- vlk-3-PK-3 - Part number: 9636	9
2.2 PC4000 Backwash filter controller	10
2.2.1 Features of PC4000 Filter controller	10
2.3 CS400 [™] Commercial Backwash Filter Controller	11
2.3.1 Features of CS400 [™] Controller	11
2.4 GB8 Electronic Backwash Filter Controller	12
2.4.1 Features of GB8 Electronic Controller	12
2.5 AUTO-EC-2-E Electric Backwash Filter Controller	13
2.5.1 Features of AUTO-EC-2-E Controller	13
2.6 Rain Bird Synergy Automatic Backwash Controller	14
2.6.1 Features of Rain Bird Synergy Automatic	14
2.7 Leopold [®] FilterWorx [™] Automatic Backwash Control System	15
2.7.1 Features of FilterWorx [™] Automatic Control System	15

3. Chapter Three - Foxboro DCS

3.1 Distributed Systems	16
3.2 Hardware Overview	17
3.2.1 Modules Types	17
3.2.2 Application Processor	18
3.2.3 Workstation Processor	18
3.2.4 Application Workstation	18
3.2 .5 Control Processor	19
3.2 .6 Field Bus Modules	20
3.3 Software Overview	22
3.3.1 Integrated Control Configurator (ICC)	23
3.3 .1.1 Continuous Control Domain	23

3.3 .1.2 Ladder Logic Control Domain	23
3.3.1.3 Sequence Logic Control Domain	24
3.3.2 Blocks and Compounds Concept	24
3.3.2.1 CALCA – Advanced Calculator Block	25
3.3.2.2 AIN – Analog Input Block	27
3.3.2.3 CIN – Contact Input Block	28
3.3.2.4 COUT – Contact Output Block	29
3.3.2.5 ACCUM – Accumulator Block	30
3.3.3 Human Machine Interface	32
3.3.3.1 Fox view	32
3.3 3.2 Fox Draw	33
3.3.3 Faceplates	34
3.3.3.4 Trends	35

4. Chapter Four - Control System Design

4.1 Purpose of the control system	36
4.1.1 Functions Blocks List used for the new control system	37
4.2 New control system Configuration	38
4.3.1 Controller 1 & Controller 2 Configuration	40
4.3.2 Timers Configuration	43
4.3.3 Flow Configuration	46
4.3.4 Washing and Dwell Time F.B. Configuration	47
4.3 New Control System Programming	47
4.4.1 Copies Washing & Delay Time to Controller1&2 Program	49
4.4.2 Start the Backwashing Sequence program	49
4.4.3 BANK 1, Solenoid 1 Activated, Output (BO01) Program	50
4.4.4 Dwell time between Bank 1 & 2 Washing Program	51

4.4.5 BANK 2, Solenoid 2 Activated, Output (BO02) Program	51
4.4.6 Dwell time between Bank 2 & 3 Washing Program	51
4.4.7 BANK 3, Solenoid 3 Activated, Output (BO03) Program	52
4.4.8 Dwell time between Bank 3 & 4 Washing Program	52
4.4.9 BANK 4, Solenoid 4 Activated, Output (BO04) Program	53
4.4.10 Dwell time between Bank 4 & 5 Washing Program	54
4.4.11 BANK 5, Solenoid 5 Activated, Output (BO05) Program	54
4.4.12 Dwell time between Bank 5 & 6 Washing Program	55
4.4.13 BANK 6, Solenoid 6 Activated, Output (BO06) Program	56
4.3.14 Total Washing Time counting Program	57
4.3.15 RESET_TIMER Program	57
	60
4.4 HMI (Human Machine Interface) Configuration & Description	
4.5.1 Setting Values	62
4.5.1.1 DP Set point	62
4.5.1.2 Washing and Dwell time setting	62
4.5.1.2.1 Washing Time	62
4.5.1.2.2 Dwell Time	62
4.5.2 Setting Buttons	63
4.5.2.1 Auto/Manual	63
4.5.2.2 Reset Control	64
4.5.2.3 Cut BWF	64

5.0 Simulation and Results

5.1 Testing of the control system	66	
5.1.1 Bank (A) Backwashing Test	67	
5.1.2 Bank (B) Backwashing Test	69	

5.1.3 Bank (C) Backwashing Test	71
5.1.4 Bank (D) Backwashing Test	73
5.1.5 BANK (E) Backwashing Test	75
5.1.6 BANK (F) Backwashing Test	77
5.1.7 Filters Elements Replacement Test	79
5.2 Result	81
5.2.1 Result No (1) Result	81
5.1.2 Result No (2) Result	82
6.0 Conclusion & Recommendations	
6.1 Conclusion	83
6.2 Recommendations	85

References	111
------------	-----

86

LIST OF TABLES

- Table 4-1Function block list.
- Table 4-2Controller 1 Software Connections.
- Table 4-3Controller 2 Software Connections.
- Table 4-4Start Output Block software Connections.
- Table 4-5Output Connection (XVF4101A_1 to 6)
- Table 4-6Washing timer Blocks for Element (1 to 3)
- Table 4-7Washing timer Blocks for Element (4 to 6)
- Table 4-8Total Washing Time block connection
- Table 4-9RESET_TIMER Internal Connection
- Table 4-10Flow Function Blocks Configuration
- Table 4-11Washing and Dwell Time F. B Configuration
- Table 4-12Washing and Delay Time Program.
- Table 4-13Start Sequence program
- Table 4-14BANK 1 washing program
- Table 5-15Dwell time program between Bank1 & Bank2
- Table 4-16BANK 2 washing program
- Table 4-17Dwell time program between Bank2 & Bank3
- Table 4-18BANK 3 washing program
- Table 4-19Dwell time program between Bank3 & Bank4
- Table 4-20BANK 4 washing program

- Table 4-21Dwell time program between Bank4 & Bank5
- Table 4-22 BANK 5 washing program
- Table 4-23Dwell time program between Bank5 & Bank6
- Table 4-24BANK 6 washing program
- Table 4-25Total washing time program
- Table 4-26
 Reset _ Timer Function Block program
- Table 5-1D. P. & Washing Time & Outputs Test Result
- Table 5-2D. P. & Washing Time & Outputs Test Result

LIST OF FIGURES

- Figure 2-1 DHT Unit Backwash Filter
- Figure 2-2 Pneumatic Control System Components
- Figure 2-3 Pneumatic Controller- Quick stepper –C
- Figure 2-4 Time delay valve VZ-3-PK-3
- Figure 2-5 Pneumatic valve J-3-PK-3 Part number
- Figure 2-6 Pneumatic valve Part number: J-5-PK-3-4
- Figure 2-7 Short pulse valve- vlk-3-PK-3
- Figure 2-8 The Chemtroltm PC4000 controller
- Figure 2-9 CS400TM Commercial Backwash Controller
- Figure 2-10 GB8 Electronic Controller
- Figure 2-11 AUTO-EC-2-E Electric Filter Controller
- Figure 2-12 Rain Bird Synergy Automatic Controller
- Figure 3-1 Distributed System
- Figure 3-2 Module Types
- Figure 3-3 Control Processor and FBM Connection
- Figure 3-4 Field Bus Module
- Figure 3-5 I/Series Control Domains/Blocks
- Figure 3-6 Compound Concept
- Figure 3-7 Advanced Calculator Block
- Figure 3-8 AIN Analog Input Block
- Figure 3-9 CIN Contact Input Block
- Figure 3-10 COUT Contact Output Block
- Figure 3-11 ACCUM Accumulator Block
- Figure 3-12 I/A Series FoxView Human Interface
- Figure 3-13 Fox Draw
- Figure 3-14 Faceplates

Figure 3-15	Trends
-------------	--------

- Figure 4-1 New Designed Control System Diagram
- Figure 4-2 Control System F.B. Configuration Diagram
- Figure 4-3 Proposed Logic / Program of BWF Control
- Figure 4-4 Backwash filter Human Machine Interface
- Figure 4-5 Setting Values
- Figure 4-6 Change to Manual Mode
- Figure 4-7 Change to Auto Mode
- Figure 4-8 Reset Control System
- Figure 4-9 Cut BWF
- Figure 5-1 Testing of the control system
- Figure 5-2 Setting Values
- Figure 5-3 Bank (A) Backwashing Test
- Figure 5-4 Bank (B) Backwashing Test
- Figure 5-5 Bank (C) Backwashing Test
- Figure 5-6 Bank (D) Backwashing Test
- Figure 5-7 BANK (E) Backwashing Test
- Figure 5-8 BANK (F) Backwashing Test
- Figure 5-9 Filters Elements Replacement Test
- Figure 5-10 Figure 5.10: Filters DP and Washing Time
- Figure 5-11 Figure 5.11: Filters DP and Washing Time

ABBREVIATION

F.B.	Function Block
ACUUM	Accumulator
AIN	Analog Input
AM	Manual/Auto
AP	Application Processor
CALCA	Advanced Calculator Block
CIN	Contact Input
COUT	Contact Output
DCS	Distributed Control System
DHT	Diesel Hydro treated Unit
EXC	Exception
FBM	Field Bus Module
HAI	High Alarm Indicator
HLBL	High-Level Batch Language
I/A	Intelligent Automation
IND	Independent
MON	Monitor
OIS	Open Industrial System
Par	Parameter
PCS	Pneumatic Control System
PLB	programmable Logic Block
PID	Proportional/Integral/Derivative
BWF	Backwash Filter
RI	Real Input
RO	Real Output

Timer
Workstation Processor
Differential pressure across the filter.
Filter Elements A ~ F
Inlet Input
Valve Open
Valve Close
Total Washing Time