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Abstract

Human-computer interaction (HCI) has become one of the most challenging areas of re-

search in the field of artificial intelligent (AI) at the present time. Speech emotion recog-

nition (SER) introduces a new means of communication between humans and machines.

Enabling a machine to understand human emotion renders it more capable of understand-

ing the speech process. Despite the great progress and intensive research performed in

this area, there is still a lack of naturalness in identifying emotions. There is a need to fill

the gap between commercial interest and current performances. The key is to find signifi-

cant speech emotion features that can map emotion correctly and efficiently. The previous

works of SER extracted and selected different sets of acoustic features. However, the most

significant features have not yet been found. These problem is addressed in this research

by proposing a speech emotion recognition framework that provide an enhancement of

features extraction technique and hybrid feature selection method respectively. The voice

quality prosodic spectral-based feature extraction (VQPS) is implemented using prosodic

and spectral features extraction technique in addition to new and traditional voice quality

features extraction technique. At the same time, the balanced hybrid filter-based feature

selection (BHFFS) consists of two layers: the balancing layer; and the hybrid filter-based

layer. The proposed features extraction technique and selection method was successfully

experimented through the use of EMO-DB dataset. The experimental results proved that us-

ing VQPS leads to performance improvement upon previous works. In addition, it demon-

strates that the voice quality features are important in developing the SER system. In the

same manner, BHFFS performance outperforms the previous work performance.
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 المستخلص

 
( واحد من اكثر مجالات البحوث تحديا في مجال الذكاء HCIأصبح التفاعل بين الإنسان والحاسوب )

تمكين الآلة من فهم العاطفة البشرية يجعلها أكثر إن وبما ر. ( في الوقت الحاضAIالاصطناعي )

اتصال  وسيلةتقدم ( SERأنظمة التعرف على العاطفة من الكلام )فإن  قدرة على فهم عملية الكلام

على الرغم من التقدم الكبير والأبحاث المكثفة التي أجريت في هذا المجال،  جديدة بين البشر والآلات.

هناك حاجة لملء الفجوة بين الرغبة التجارية ، و لازال لا يزال هناك نقص في عملية تحديد العواطف

العثور على ميزات عاطفة الكلام الهامة التي يمكن يكمن في لهذه المشكلة مفتاح الحل والأداء الحالي. 

الأعمال السابقة في هذا المجال  واختارت العاطفة بشكل صحيح وكفء. استخرجت تحددأن 

الميزات حتى  تلك الصوتية. ومع ذلك، لم يتم العثور على أهم العاطفة مجموعات مختلفة من ميزات

تقنية استخلاص إطار يساعد على تحسين خلال اقتراح  الآن. يتم تناول هذه المشكلة في هذا البحث من

باستخدام  (VQPS) تطبيق تقنية استخلاص الميزاتتم الميزات وطريقة اختيار الميزات على التوالي. 

لميزات الكلامية والطيفية بالإضافة إلى ميزات جودة الصوت الجديدة : اثلاثة انواع من الميزات

وطبقة  ( من طبقتين: طبقة التوازنBHFFSتتألف طريقة اختيار الميزة )والتقليدية. في نفس الوقت، 

استخراج الميزات المقترح وطريقة الاختيار من خلال  تقنية. تم بنجاح تجربة التصفية المختلطة

يؤدي  (VQPS). أثبتت النتائج التجريبية أن استخدام (EMO-DB) الالمانية استخدام قاعدة البيانات

ء اكثر من الأعمال السابقة. بالإضافة إلى ذلك ، فإنه يوضح أن ميزات جودة الصوت إلى تحسين الأدا

تفوق أداء  . بنفس الطريقة،(SER)أنظمة التعرف على العاطفة من الكلام مهمة في تطوير 

(BHFFS) ل السابق.االاعمطرق اختيار الميزة المستخدمة في  على أداء 
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CHAPTER 1

Introduction

1.1 Introduction

The field of Human-Computer Interaction (HCI) is a challenging one considering the major

differences between the manner in which humans and machines understand speech. The

difference between the human and the machine is that the human not only communicates

using speech, but also by using text; facial expressions (Pao et al., 2005a; Koolagudi et al.,

2018); heart rate; skin temperature; body gestures (such as hand waving and eye move-

ments)(Swain et al., 2018) as well as emotions. The emotion of speech plays an important

role in explaining the words uttered by the speaker by focusing on how the words were

expressed rather than what was said. Sometimes, the same sentences expressed through

different emotions have different meanings. This field of research in HCI is known as

Speech Emotion Recognition (SER).

SER is an interesting subject and has attracted many researchers at the present time be-

cause it introduces a new means of communication between humans and machines. This

is important in many applications, including: education (Schuller et al., 2004; Tickle et al.,

2013); security systems (Saste and Jagdale, 2017); healthcare (San-Segundo et al., 2009;

1



Lopez-de Ipiña et al., 2015); call centers and mobile communications (Vidrascu and Dev-

illers, 2005; Tarng et al., 2010); and robotics (Alonso-Martı́n et al., 2013).

SER, in general, seeks to resolve pattern recognition problems. It starts by taking speech

samples and extracting a suitable feature set, prior to classifying the emotion. The speech

signal has many sets of features that can be extracted. These speech features are an im-

portant factor in SER systems because they affect the classification performance (Lanjewar

and Chaudhari, 2013b). Three types of acoustic emotional features are used to determine

the emotional state of a speaker, namely, voice quality, as well as prosodic and spectral fea-

tures(Luengo et al., 2010; Pérez-Espinosa et al., 2012; Henrı́quez et al., 2014; Chen et al.,

2014; Valstar et al., 2016; Sudhkar and Anil, 2016). Prosodic and spectral features are used

in the recognition of emotion in speech because both of these features contain emotional

information (Joshi and Kaur, 2013).

Prosodic features are the most frequently-used features in SER because they provide a

reliable indication of emotions state (El Ayadi et al., 2011). It is also referred to as the

fundamental indication of the speakers emotion (Ingale and Chaudhari, 2012). Prosodic

features such as pitch, energy, and speaking rate have been examined widely in previous

works, and they are the most common type used in SER research (Wu et al., 2011; Sun

et al., 2009).

Spectral features are extracted from the vocal tract system. They describe the speech sig-

nal in the frequency domain by using Fourier Transform to convert the time signal into

the frequency domain. Examples of such features are mel frequency cepstral coefficients

(MFCC) and linear prediction coefficients (LPC) respectively. These features have been

found to be successful in various speech tasks such as speaker recognition and automatic

speech recognition (ASR). These features are also among the most common feature types

in the SER specially MFCC feature.
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Further, voice quality features are used as a complement to spectral and prosodic features,

and are rarely used alone. Voice quality features are also considered to be an important

feature (Hassan and Damper, 2012; Lugger and Yang, 2008) since many speakers express

their emotional state by altering their voice quality (Lugger and Yang, 2008). However, its

use is a significant challenge because there are many different measures of voice quality

(Lugger and Yang, 2008; Batliner et al., 2011; Schuller et al., 2011), and it is mostly used

for evaluating constant vowels only. Most SER researchers use three types of voice qual-

ity features, namely: pitch irregularity (jitter); amplitude irregularity (shimmer); and the

harmonics-to-noise ratio (HNR).

Implementing all these feature extraction techniques results in large numbers of extracted

emotional features from speech. However, not all of these extracted features are useful and

important for SER. Therefore, the implementation of an accurate SER system depends on

the selection of these sets of features. In order to improve SER, previous researchers have

tended to be concerned with finding the best feature set. However, until now, the optimum

feature set has not been found.

1.2 Problem Statement and Significance

In spite of efforts that were carried out to improve the SER system, there is still a gap among

the SER current performance (recognition accuracy) and commercial needs (Schuller et al.,

2007). The key element in improving SER recognition accuracy is selecting the appropriate

reduced emotional feature set. However, up until now, there has been no proof of what is the

most appropriate speech emotion feature set that can assist in classifying different emotions

(Sezgin et al., 2012). The difficulty involved in defining the features that affect the SER

makes it a challenging task (Sezgin et al., 2012).
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Features extraction and selection techniques in previous works conducted several limita-

tions. First, there are no standard or a specific combination of features to be developed

and used in SER. Every researcher extracted different acoustic feature subsets (single or

combination) based on their own experience and knowledge which has led to a low recog-

nition accuracy. This because most of the researchers concentrate on using some features

extraction techniques like prosodic and spectral features and neglecting some other tech-

niques such as voice quality features extraction technique. Even more, some types of voice

quality feature are extensively used while other feature are ignored.

The second problem arise from using the different combination of features extraction tech-

niques that result in large extracted feature set that can number up to many thousands. For

Example: (Esmaileyan and Marvi, 2014; Manolov et al., 2017). This number of features led

in many cases to cures of dimensionality. This problem could be solved by using features

selecting techniques. However, most of this technique implements a single features selec-

tion method instead of implementing a hybrid selection method in spite of its advantage.

Also, the focusing is on wrapper method implementation connects features to a specific

classification algorithm. Which mean that the selected subset features that perform well

with specific classifier may not perform as well on other classifiers. Filter methods, on the

other hand, do not depend on the classification algorithm which makes it a much proper

choice. Another issue in features selection that some of the selection algorithms do not

perform well in unbalanced datasets which is the case of most emotional datasets.

1.3 Research Methodology

This section introduces the research methodology adopted in this research. The details are

presented in Chapter 3. Two research methodology have been conducted the constrictive
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and action research methodology. The constrictive research has been used to create the

theoretical model of SER features that represent the relation between features and SER

performance. While action research has been used to create the research framework. The

proposed SER framework was developed in five phases that address the research aims and

objectives.

Phase 1 investigate the performance of the existing single features extraction techniques to

discover its importance in representing the emotions. In Phase 2, investigate the existing

hybrid features extraction technique to identify the combination that helps in the improve-

ment of recognition accuracy. Phase 3, introduces an enhancement to the existing features

combination depending on new and brute force traditional voice quality features. Phase

4, introduce an enhanced selection method that combines data balancing to hybrid filter

selection. Finally, Phase 5 compares the result achieved by the proposed framework with

other researcher results.

1.4 Research Questions

The main research question is: How to extract and select a compact set of features that

improve SER performance?

Based on this question, the sup questions are:

1. What is the impact of features in SER recognition accuracy?

2. What consideration should be given in designing features extraction techniques and

selection methods?

3. What is the impact of the different type of features in emotion recognition?
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4. What is the best feature extraction technique combination that is appropriate for emo-

tion recognition?

5. How to enhance the feature extraction technique that obtains a better representation

of emotion?

6. How to design a selection method that selects a significant set of features that improve

recognition accuracy?

1.5 Research Hypothesis

The research hypothesis is:

The recognition accuracy of a speech emotion recognition system could be improved by

enhancing the features extraction technique and selection method to identify the most sig-

nificant features set that can be recognize emotion effectively.

1.6 Research Objectives

This study aims to identify minimum significant features set for SER that represent the

emotion of the speech signal efficiently with high recognition accuracy.

The objectives of the research are as follows:

1. Investigate SER existing features extraction techniques and the capability of the ex-

tracted features.

2. Identify the best feature extraction technique combination which increases the recog-

nition accuracy.
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3. Enhance the feature extraction technique based on prosodic, spectral and a combina-

tion of new and traditional voice quality features that provide a better representation

of emotion and improve the recognition accuracy.

4. Reduce the features dimensionality using enhanced hybrid filter-based feature selec-

tion method to remove irrelevant and redundancy features.

5. Identify the most significant features set.

1.7 Research Scope

The study is limited to the following:

1. Speaker-dependent system.

2. Acoustic Static features.

3. Berlin emotional speech dataset(EMO-DB). This is used to evaluate the recognition

model and involves 535 records and seven emotions.

1.8 Research Structure

This thesis consists of six chapters. This chapter provides an introduction to this research.

Chapter 2 provides a brief survey of a selection of previous work performed in the area of

SER. It also includes the architecture of the SER system. Chapter 3 presents an overview of

the methodology which has been used by the researcher to address SER problem. Chapter 4

presents the development and evaluation of proposed SER framework. Chapter 5 concludes

the thesis by presenting the highlighting features of the work. It also discusses future

directions for extending the research work.
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CHAPTER 2

Literature Review

2.1 Introduction

This chapter starts with a general view of the speech emotion recognition (SER) system,

as illustrated in Figure 2.1 below. It then presents a detailed overview of SER features

extraction and selection. In addition, this chapter discusses the issues and problems facing

SER features. A comprehensive review of SER features extraction techniques as well as

selection methods and their limitations are also described. Finally, the possible techniques

for SER are presented.
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2.2 Emotion

Emotions play an important role in human-human communication as they provide impor-

tant information regarding the speakers and their responses to the outside world. As a

result of this, identifying emotions that are to be recognized by machines became a critical

issue in developing an SER system. However, since there are about 300 different emotional

states in real life, identifying and recognizing all these emotions make the recognition pro-

cess complicated (Utane and Nalbalwar, 2013; El Ayadi et al., 2011; Ingale and Chaudhari,

2012). In the last decades, all the research on emotion recognition has generally followed

one or two emotion theories, namely, the discrete and continuous emotion theories (Pérez-

Espinosa et al., 2012).

2.2.1 Discrete Emotion

This is also called the palette theory as it assumes that any emotion can be represented by a

combination of a number of basic emotions (Lugger and Yang, 2008; Pérez-Espinosa et al.,

2012). This theory is similar to the theory of the seven colours of light that can be combined

to generate any colour (Ingale and Chaudhari, 2012). A variety of basic emotion numbers

were adopted by previous researchers. The most commonly adopted are the set of six basic

emotions: anger, disgust, fear, joy, sadness, and surprise (Razak et al., 2005; El Ayadi

et al., 2011; Ingale and Chaudhari, 2012; Ram and Ponnusamy, 2014; Ooi et al., 2014) and

a further set of five basic emotions: anger, disgust, fear, happiness, and sadness (Murray

and Arnott, 2008). The discrete theory is more suitable in recognizing a pre-defined set

of emotions e.g. for the acted dataset. Most of the existing emotional speech datasets are

based on the six basic emotions (Mustafa et al., 2018). However, this approach does not

cover the entirety of the human emotions (Pérez-Espinosa et al., 2012).
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2.2.2 Continuous Emotion

This theory assumes that any emotion can be represented by a combination of numbers

of low dimensional space (Lugger and Yang, 2008; Pérez-Espinosa et al., 2012) which

usually comprise two to three dimensions (Lugger and Yang, 2008; Hassan and Damper,

2012). The most widely-used is the one representing two basic dimensions: arousal and

valence (Pérez-Espinosa et al., 2012). Arousal (activation) refers to the excitement and

activeness of the speaker while expressing a certain emotion (Pérez-Espinosa et al., 2012;

Hassan and Damper, 2012; Mustafa et al., 2018). Therefore, angry and happy should have

high arousal while sad, bored and relaxed have low arousal. On the other hand, valence

represents both positive and negative emotions of the speaker (Pérez-Espinosa et al., 2012;

Hassan and Damper, 2012; Mustafa et al., 2018). This dimension is used to separate angry

emotions from happy ones. The two-dimensional approach is widely applied in cross-

corpus emotion recognition (Mustafa et al., 2018). From the viewpoints of psychologists,

dimensional space can be mapped to the three dimensions of arousal, valence and domi-

nance (power)(Rao and Koolagudi, 2011; Koolagudi and Rao, 2012). The dimension of

dominance describes the degree of control with which the individual intends to take on the

situation (Pérez-Espinosa et al., 2012).

2.3 Emotion Recognition

Researchers name a different resource that can be used for emoting recognition. For in-

stance, emotion recognition can evolve from speech signals, text and facial expressions

(Pao et al., 2005a; Koolagudi et al., 2018). Gestures, heart rate and skin temperature are

also conceded as being a source for emotion recognition (Swain et al., 2018). From litera-

ture studies, it can be noted that speech, text and facial expression represent the most-used
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emotion source in SER. Among the entire three sources, speech signals were considered the

more efficient source for emotion recognition compared to text and image. Text emotion

recognition is a challenge due to the lack of clarity at the level of syntactic and semantic.

Facial expressions alone cannot identify all the emotions required for emotion recognition

(Koolagudi et al., 2018). In addition, detecting a particular emotion from facial expressions

requires a high quality camera for capturing face images; thereby rendering it difficult and

expensive (Tomar et al., 2014).

Speech is considered to be the most natural, primary, and fast method in human commu-

nication (El Ayadi et al., 2011; Ingale and Chaudhari, 2012; Basharirad and Moradhaseli,

2017; Kurpukdee et al., 2017; Manolov et al., 2017; Liu et al., 2018). This has inspired

many researchers to use it in human-machine interaction implementation (El Ayadi et al.,

2011; Ingale and Chaudhari, 2012; Basharirad and Moradhaseli, 2017). As a result, an ex-

treme study has been conducted to analyze emotion from speech (Basharirad and Morad-

haseli, 2017).

2.4 Speech Emotion Recognition

Speech emotion recognition (SER) is a technology that aims to recognize emotions from

speech signals (Ververidis and Kotropoulos, 2006; Altun and Polat, 2009; El Ayadi et al.,

2011; Shen et al., 2011; Ingale and Chaudhari, 2012; Pan et al., 2012; ?; Alonso et al.,

2015; Samantaray et al., 2015; Wang et al., 2015; Yogesh et al., 2017; Kurpukdee et al.,

2017; Koolagudi et al., 2018). Most pattern recognition systems generally contain three

main components: feature extraction, feature selection and classification (You et al., 2006;

Pao et al., 2006; Altun and Polat, 2009; Gharavian et al., 2013; Sun and Wen, 2015; Liu

et al., 2018) as illustrated in Figure 2.2 below.
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The first component is features extraction, which aims to transfer the speech signal from

emotional dataset to a sequence of features vector that is considered an important factor

in emotion recognition performance (Ingale and Chaudhari, 2012; Waghmare et al., 2014;

Muthusamy et al., 2015). Emotions represent a large number of features and any variation

in emotions will result in a change in these features (Shen et al., 2011; Ingale and Chaud-

hari, 2012). The second component is features selection. This aims to select the significant

features from the extracted features in order to improve the classifier performance in terms

of accuracy and time by eliminating irrelevant and redundant features. Finally, the last

component is the classification process. The goal of classifier algorithms is to classify the

emotion (Kuchibhotla et al., 2014; Zhao et al., 2014) derived from the extracted speech fea-

tures (Zheng et al., 2014). Popular classifiers for SER include: k-nearest neighbor (kNN);

support vector machine (SVM); artificial neural network (ANN); random forst (RF); hid-

den Markova models (HMM); Gaussian mixtures model (GMM); and deep belief network

(DBN).

Different researchers have been working on different components separately and indepen-

dently (Hassan and Damper, 2012; Mustafa et al., 2018). According to Hendy and Farag

(Hendy and Farag, 2013), some researchers worked on extracting and selecting suitable fea-

tures from the speech signal that gave the best representation for emotions as in (Borchert

and Dusterhoft, 2005; Saste and Jagdale, 2017; Renjith and Manju, 2017; Manolov et al.,

2017). Others, meanwhile, worked on the classification algorithms that can recognize and
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identify emotions, for example (Razak et al., 2005; Lanjewar et al., 2015; Trabelsi et al.,

2016; Wang et al., 2017; Kurpukdee et al., 2017; Anoop et al., 2018; Koolagudi et al.,

2018). In addition, some researchers have devised a contraption for studying or creating

a dataset which contains emotional speech that is used by the classification algorithm to

recognize the emotion as in (Burkhardt et al., 2005).

It has been noted that the majority of modern research concentrates on the concept of fea-

ture extraction and selection to identify emotions and improve SER performance (Swain

et al., 2018). Determining the most efficient features may be more critical to SER perfor-

mance than the classifier itself (Hendy and Farag, 2013). Therefore our research focuses

only on emotion features. This chapter reviews the relevant literature related only to emo-

tion features.

2.5 Speech Emotion Recognition Features

In any classification system, the first processes are usually the extraction of features from

the raw data. These features are then reduced in a feature selection process before being

presented to a classification algorithm. Feature extraction is the imperative process for

generating and producing essential emotional features (Schuller et al., 2011; Ingale and

Chaudhari, 2012; Reddy and Vijayarajan, 2017). Furthermore, the feature selection process

has been used commonly in literature to select significant subset features that represent

emotions accurately.

In SER, two groups of features were used, namely, the acoustic and the linguistic features

(Schuller et al., 2011; Batliner et al., 2011; Kamaruddin et al., 2012; Ramakrishnan and

El Emary, 2013). The linguistic techniques focus on explicit linguistic messages (dialogue

related features) while the acoustic techniques focus on implicit messages (Gharavian et al.,
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2013; Henrı́quez et al., 2014). Performance compression between acoustic and linguistic

features shows that their impacts on SER depend on the type of dataset used. For instance,

linguistic features perform well with a spontaneous dataset and are worthless with an acted

dataset (Schuller et al., 2011; Batliner et al., 2011). This is in contrast to acoustic features

that work well with the acted dataset with writing scripts. Furthermore, its reported form

works to adopt linguistic features. SER has not yet reached the level required to work well

with spontaneous datasets (Anagnostopoulos et al., 2015). As a result of this, and since the

dataset used is the acted dataset, only the acoustic features extraction will be discussed in

this research.

2.5.1 Features Extraction

Feature extraction aims to represent speech signals by a sequence of speech features (Lan-

jewar and Chaudhari, 2013a). Extraction of these speech features is an important factor in

the SER system (El Ayadi et al., 2011; Lanjewar and Chaudhari, 2013a). Different speech

features have been analyzed; however, until now there has been no agreement on a fixed

set of features (Shirani and Nilchi, 2016). The most commonly-used features in SER are

acoustic features (Vogt and André, 2005; Neiberg et al., 2006; Fu et al., 2008; San-Segundo

et al., 2009; Yang and Lugger, 2010; Lee et al., 2011; Pérez-Espinosa et al., 2012; Hassan

and Damper, 2012; Sun and Wen, 2015; Jassim et al., 2017; Ding et al., 2018). They

are also it conceded as being the most effective features in emotion recognition derived

from speech (Klaylat et al., 2018). The acoustic features can be categorized as, namely,

voice quality, prosodic, and spectral. This categorized follows (Luengo et al., 2010; Pérez-

Espinosa et al., 2012; Henrı́quez et al., 2014; Chen et al., 2014; Valstar et al., 2016; Sudhkar

and Anil, 2016).
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Voice Quality Features

Voice quality features (VQ) are known as such because they depend on the human voice

(Borchert and Dusterhoft, 2005). It is considered as one of the most important features

in emotion representation (Hassan and Damper, 2012; Lugger and Yang, 2008). Often it

is called the 4th dimension of prosody because any change in voice quality results in a

different emotional state (Lugger and Yang, 2008). However, its usability is a significant

challenge because it has many different measures (Lugger and Yang, 2008; Batliner et al.,

2011; Schuller et al., 2011). The most popular voice quality features are jitter, shimmer,

and the harmonics-to-noise ratio (HNR) (Tahon et al., 2012).

Prosodic Features

Prosodic Features are known as the primary indicator of the speakers emotional state (You

et al., 2006; Chen et al., 2006; Ingale and Chaudhari, 2012; Lanjewar and Chaudhari,

2013a). According to many researchers (Kuchibhotla et al., 2014; Zhao et al., 2014; Ah-

mad, 2016) they are conceded as being among the most widely-used features in SER re-

search since they provide a reliable indication of an emotion (El Ayadi et al., 2011). In

addition, they are easier to use (Borchert and Dusterhoft, 2005). The prosodic features can

be classified into pitch, intensity, energy, loudness, zero crossing rate (ZCR), formant and

duration respectively.

Spectral Features

These features are successfully used in speech and speaker recognition systems (Milton

et al., 2013). Furthermore, it has also been able to successfully classify emotion due to its
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ability to estimate the shape of the vocal tract which is unique for different emotions (Bitouk

et al., 2010; Kuchibhotla et al., 2014). As a result, spectral features have been widely used

in speech emotion recognition (Zhou et al., 2009). Spectral features extracted from spec-

tral content of the speech signal (Kuchibhotla et al., 2014) indicate the use of different

extraction techniques (Koolagudi et al., 2018). The most popular techniques include: mel

frequency cepstral coefficients (MFCC); linear prediction coefficients (LPC); linear pre-

diction cepstral coefficients (LPCC); perceptual linear predictive coefficients (PLP); linear

frequency cepstral coefficient (LFCC); log frequency power coefficients (LFPC); and Rel-

ative Spectral Transform Perceptual Linear Prediction (Rasta-PLP).

2.5.2 Features Selection

Selecting the significant features is an important stage in building real-time systems (Hendy

and Farag, 2013; Reddy and Vijayarajan, 2017) because it simplifies the hardware imple-

mentation of the classifier in terms of processing speed and memory requirements (Hendy

and Farag, 2013). In addition, it helps in saving the time needed for training and classifica-

tion, which often takes quite a while when using the whole features set. Moreover, it assists

in avoiding over-fitting which is caused by high dimensionality features. Features selection

approaches are divided into four categories, namely: filter, wrapper, embedded and hybrid

approach. Figure 2.3 below illustrates the taxonomy for art selection approaches that are

used in SER.

Filter Approach

In this approach, the features are evaluated independently from the classifier based on their

relation to class label. The algorithms in this approach can be categorized into two groups,

16



 

Se
le

ct
io

n 
A

pp
ro

ch

Filter

Ranking - based

Subset - based

Wrapper

Embeded

Hybired

Ensemble

Filter - Wrapper

Filter - Embedded

Embedded - Embedded

Sequantial

Filter - Filter

Wrapper – Wrapper

Filter – Wrapper

Filter – Embedded

Figure 2.3: Features Selection Taxonomy

specifically:

1. Filter Ranking-Based: ranks the features individually based on their relevance to

the class labels. Some of the algorithms that are used in SER include: relief algorithm

(RF); information gain ratio (IGR); gain ratio (GR); rough set theory (RS); fisher

discriminant ratio (FDR); and orthogonal-linear discriminant analysis (OLDA).

2. Filter Subset-Based: searches through the possible number of combinations of the

feature subsets guided by a certain evaluation measure that captures the goodness

of each subset. An optimal subset is selected when the search stops. Some of the

algorithms that are used in SER include: correlation-based feature selection (CFS);

fast correlation-based filter, (FCBF); and minimum redundancy maximum relevance

(mRMR).
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Ranking-based filter helps in eliminating irrelevant features. These represent the features

that did not affect class identification in any way. Conversely, subset-based filter helps in

eliminating redundant features which represent the features that did not add anything new

to the class identification.

Wrapper Approach

The wrapper approach selects the feature subsets using search techniques then evaluates

these subsets using a classification algorithm with a selected criterion. The criterion used

in selection could include the classification error (Schuller et al., 2007; Sun et al., 2009)

or accuracy (Lin and Wei, 2005; Schuller and Rigoll, 2006; Ververidis and Kotropoulos,

2008; Bitouk et al., 2010). The selection of features stopped when adding or removing

new ones failed to increase or decrease the chosen criterion. A stopping rule also could

be set by selecting the preset features number when this number of features reached the

selection stops and no more features would be added or removed. Examples of wrapper

features selection algorithms include: forward feature selection (FS); sequential forward

selection algorithm (SFS); sequential floating forward selection algorithm (SFFS); linear

floating forward selection (LFFS); and ensemble random forest to trees (ERFTrees).

Embedded Approach

Embedded approaches propose a combination of the advantages of both previous approaches.

They often provide a good trade-off between performance and computational cost. The

classification algorithm implements feature selection and classification simultaneously. For

features selection embedded approach, it is necessary to use internal information of the

classification algorithm to perform feature selection (e.g. use of the weight vector in SVM).
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Hybrid Approach

The hybrid features selection approach combines two of the previous feature selection ap-

proaches. This is generally done to combine the desired characteristics of each. This

approach is categorized as follows:

1. Ensemble Features Selection: can be described as a group of selection algorithms

which implement together to obtain the final selected features in a combine. It can

be categorized further to filter-wrapper, filter-embedded or embedded-embedded ac-

cording to the type of combined approaches used in SER implementation.

2. Sequential Features Selection: can be described as a group of selection algorithms

that were implemented sequentially in two or more steps to obtain the final se-

lected features. It can be categorized further according to the type of selection

approach used in SER, namely: filter-filter; wrapper-wrapper; filter-wrapper; and

filter-embedded.

2.6 Research Issues and Problems in Speech Emotion Recognition

The research issues in SER related to features extraction can be categorized into four main

categories, specifically: speech processing diversity; analysis unit variety; disagreement on

the efficient features; and curse of dimensionality. In each category, the research problems

are identified and highlighted in the following subsections.
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2.6.1 Speech Processing Diversity

Despite the importance of the processing phase before and after extracting features, there

is a lack of standardization of processing methods in SER research. Moreover, there is

no agreement between previous works in the use of these methods. This has resulted in

the adoption of different methods by various researchers. There are two major methods of

speech processing that can be named according to when it performs, before or after features

extraction. This is: the pre-processing and the post-processing.

Pre-processing

This refers to processes that are required to be performed on the speech signal before fea-

tures have been extracted (El Ayadi et al., 2011). Its importance comes from its ability

to enhance the efficiency of the extracted features (Kuchibhotla et al., 2014) thereby im-

proving classification performance of the SER system (Hendy and Farag, 2013). These

processes include: noise reduction; pre-emphasis; framing; windowing; and silence re-

moving.

1. Noise Reduction: noise can be defined as undesired signals that are normally pre-

sented by recording hardware or recording environment (Kuchibhotla et al., 2014).

This signal has a great impact on the quality of speech signals and, as a result, im-

pact on SER system performance. An increase in the level of noise in speech signals

causes a decrease in the accuracy of SER (Schuller et al., 2006). Consequently, a

noise reduction processor is required before extraction of features can be performed

(Basu et al., 2017; Reddy and Vijayarajan, 2017) since it does not change the original

signal. This is considered a difficult task in SER because it can differ depending on

data (Basu et al., 2017). For the dataset that is recorded in a noise condition such
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as the speech under simulated and actual stress dataset (SUSAS), noise reduction is

necessary (Basu et al., 2017; Reddy and Vijayarajan, 2017). However, for standard

datasets that were recorded in an isolated environment with high-quality equipment

such as EMO-DB dataset and Danish emotional speech dataset (DES), there is no

need for this step. In fact, to study the impact of noise in SER for this dataset noise

was added as described in (Schuller et al., 2006). Noise reduction can be carried

out by applying filtering techniques, for instance: high pass filter (Kuchibhotla et al.,

2014); or wiener filter; and spectral subtraction (Basu et al., 2017).

2. Pre-emphasis: a pre-emphasis filter is used to process a speech signal before the

features extraction process (El Ayadi et al., 2011; Chen et al., 2012a). The filter

increments the signal energy level to provide more information (Basu et al., 2017).

In addition, it balances the impact of the transmission of speech signal through air

(Chen et al., 2012a). Transmission of speech signals having low amplitude through

the air result in more sensitivity to noise effect.

3. Framing and Windowing: before features can be extracted, each of the speech

signals is divided into a small unit called frame (Lanjewar and Chaudhari, 2013a;

Kuchibhotla et al., 2014). The feature vector is then created form each frame. This

process is necessary to solve the variation of human speech length problem (Basu

et al., 2017) and render it stationary (Swain et al., 2018). A process called windowing

is performed after the framing process. This maintains the speech sample continuity

(El Ayadi et al., 2011; Kuchibhotla et al., 2014; Basu et al., 2017) while most of the

researchers agree to use a Hamming window (Kockmann et al., 2011; Koolagudi and

Rao, 2012; Hendy and Farag, 2013; Kuchibhotla et al., 2014; Verma et al., 2016; Jalili

et al., 2018). The controversy is related to frame size. According to Anagnostopoulos

et al. (Anagnostopoulos et al., 2015) the frame size is typically 25-50 msec. A
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review of previous works confirms this claim. For instance: (Kockmann et al., 2011;

Koolagudi and Rao, 2012; Verma et al., 2016) chose 20 msec frame; (Waghmare

et al., 2014) chose 25 msec frame; and (Hendy and Farag, 2013) chose 30 msec

frame. However, there are also different sizes such as 55 msec size frame (Henrı́quez

et al., 2014) and 60 msec frame size (Yang et al., 2012) respectively.

4. Silence Removing: the process of removing the non-speech signal. Usually, in

speech signal processing, the silence region is removed. However, in SER there

are conflicting opinions about it. The first opinion considers that the silence region

should be kept because it carries important information about the emotion (El Ayadi

et al., 2011). The second opinion does not believe that the silence and unvoiced

frames contain any useful information (Milton et al., 2013) and hence should be re-

moved (Hendy and Farag, 2013; Milton et al., 2013). This was detailed as in (Shami

and Verhelst, 2007; Kockmann et al., 2011; Yang et al., 2012; Milton et al., 2013;

Hendy and Farag, 2013; Henrı́quez et al., 2014; Alonso et al., 2015).

Post-processing

Post-processing refers to the process that is required to be performed after features extrac-

tion and before the features feed to the classifier (El Ayadi et al., 2011). It usually includes

missing data handling and features normalization.

1. Missing Data Handling: some researchers have suggested that if the missing data

in certain features is larger than 2% of the total data the features should be discarded

(Ververidis and Kotropoulos, 2005a; Kotti and Paternò, 2012; Hendy and Farag,

2013). However, most of them do not describe what happens if the missing data

is less than that. Ververidis et al. (Ververidis and Kotropoulos, 2005a) proposed that
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if the missing data is small then 1% can be replaced with the sample mean.

2. Features Normalization: denotes the approach that is used to scale the range of

the features to ensure that the classification is not made based on one feature that

varies significantly more than the other features. However, in SER it not always

defined. Moreover, there are different approaches that can be used to normalize fea-

tures such as z-score (Yang et al., 2012; Alonso et al., 2015) and min-max (Henrı́quez

et al., 2014) normalization. In some papers, features were normalized before selec-

tion stage as in (Ververidis and Kotropoulos, 2005a; Kamaruddin et al., 2012; Kotti

and Paternò, 2012); while in many others, this step was not mentioned as in (Razak

et al., 2005; Khanchandani and Hussain, 2009; Hendy and Farag, 2013).

2.6.2 Analysis Units Variety

Determining the proper analysis unit for speech signals so as to prepare it for the feature

extraction stage is an important issue in SER research (El Ayadi et al., 2011; Ingale and

Chaudhari, 2012; Joshi, 2013; Lanjewar and Chaudhari, 2013a). However, it has not re-

ceived much attention in the SER system. Few efforts have been made to compare various

types of analysis units (Vogt et al., 2008). The analysis unit of the speech signal can be

categorized to frame (supra-segmental) and utterance (segmental) (El Ayadi et al., 2011;

Ingale and Chaudhari, 2012; Anagnostopoulos et al., 2015; Ingale and Chaudhari, 2012).

There is no agreement as to which is better; the supra-segmental or segmental features

(El Ayadi et al., 2011).
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Supra-segmental Features

Also called the local dynamic or short time features. This features calculate from ev-

ery frame (El Ayadi et al., 2011; Anagnostopoulos et al., 2015) which results in different

numbers of features for each sample in the emotional dataset (Henrı́quez et al., 2014).

Supra-segmental features achieve a higher performance than the segmental features with

the complex classifiers that need a large number of features such as HMM and SVM clas-

sifiers (El Ayadi et al., 2011). A few years ago low-level descriptor (LLD) features were

presented (El Ayadi et al., 2011) which were extracted from each short-time frame. The

LLD and functional are becoming the standardized features for the SER system (Mustafa

et al., 2018).

Segmental Features

These features are assessed from the entire utterance length (El Ayadi et al., 2011; Anag-

nostopoulos et al., 2015) by calculated statistics of all speech features extracted from the

whole utterance. They are also called global static or long-time features. The most common

approaches on SER rely on segmental features (Shami and Verhelst, 2007).

Some researchers argue that segmental features contain rich information about emotion and

suggest that these are more appropriate to identify emotion than the supra-segmental fea-

tures (Koolagudi and Rao, 2012; Lupu, 2011). They claim that segmental features outper-

form the supra-segmental features in terms of classification accuracy (Schuller and Rigoll,

2006) and time (El Ayadi et al., 2011). In addition, they are less sensitive to linguistic

information (Ververidis and Kotropoulos, 2008; Sun et al., 2015).
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Since the segmental features calculate the statistical function from the whole utterance,

there are much fewer numbers of features than for the local features (El Ayadi et al., 2011).

However, this is also a disadvantage for the segmental features because it will render them

unreliable to be used with complex classifiers that need a large number of features such

as HMM and SVM classifiers. Another disadvantage of segmental features is that the

temporal information present in speech signals is completely lost. It is also claimed that

the segmental features cannot classify emotions with similar arousal e.g. anger versus joy

(El Ayadi et al., 2011) and it can only distinguish between high-arousal emotions versus

low-arousal emotions respectively.

2.6.3 Disagreement on Efficient Features

Over the years, various features have been explored in SER. However, determination of the

most useful features for emotion recognition is still an open issue (Hendy and Farag, 2013).

Researchers have not yet identified the best speech features for this task (El Ayadi et al.,

2011). This problem has two aspects: the first one is the disagreement between researchers

in determining whether the acoustic features only are enough for SER or other types of

features need to be included in the feature set.

The majority of researchers believe that the acoustic features alone are enough for emotion

classification; hence they make use of acoustic features only in their SER implementation.

Recently different types of emotional features have been combined with acoustic features in

order to improve performance (Chen et al., 2006; Zhao et al., 2014); for instance: linguistic

(lexical); discourse, facial (visual); and gender information.

Linguistic information needs a language model that can describe constraints on possible

word sequences in a certain language so as to recognize the word sequence of the speech.
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A system that makes use of lexical features has the assumption that certain words can

be correlated with emotion state (Chen et al., 2006). However, the relationship between

words and emotions is ambiguous in that a single word may convey a different number

of emotions. In addition, lexical information always needs manual transcription for each

utterance, which is difficult to be realized automatically (Chen et al., 2006). Schuller et al.

(Schuller et al., 2005) combine acoustic and linguistic features which reduce the classifi-

cation error rates up to 8.0%. However, they reported that acoustics features outperform

linguistic features when conducted alone.

Discourse markers are linguistic expressions that convey explicit information about the

structure of the discourse. It was reported that it can improve performance when combined

with acoustic features (Chen et al., 2006; Lee and Narayanan, 2005). Chen et al. (Chen

et al., 2006) present an enhanced SER system based on discourse information between hu-

mans. The enhanced method makes improvements at almost all of the emotional states.

Lee et al. (Lee and Narayanan, 2005) combined acoustic, lexical, and discourse infor-

mation to improve the performance of the SER system. The results show that significant

improvements can be made by combining this information.

Facial features were used before speech features became the favored method for emotion

recognition. However, the combination of facial and speech features has had less attention

[99] implementing SER systems using both facial and acoustic features. The results reveal

that the combination of facial and speech features lead to performance improvements. In

addition, the facial features alone outperform the performance of speech features alone.

However, speech features contain emotional information that cannot be extracted from vi-

sual information.

Gender information can help to improve SER performance (Vogt and André, 2006; Verma

et al., 2016). However, the gender of a speaker must be a priori given (Vogt and André,
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2006). This can be done only in an offline system or in an academic experience (Vogt and

André, 2006). Vogt et al. (Vogt and André, 2006) propose a solution which depends on the

use of automatic gender detection before the SER system by using acted and spontaneous

datasets. The results illustrated that gender-dependent emotion recognizers perform better

than gender independent ones. However, the problem of finding significant features for

emotion recognition will still not be solved even with gender separation. Furthermore,

they reported that this method could have a negative effect upon the overall classification

accuracy if the automatic gender detection was not 100% correct.

The second aspect is the absence of uniformity in acoustic features classification. Overview

and studding for these features and its feature extraction techniques require a taxonomy that

provides a unique and preferred distribution of features into categories. However, no such

taxonomy currently exists.

Different researchers gave different classifications for acoustics features. For example,

(Kuchibhotla et al., 2014; Cao et al., 2015; Ahmad, 2016; Reddy and Vijayarajan, 2017;

Jalili et al., 2018) classify the acoustic features into only two categories; prosodic and spec-

tral features; while (Koolagudi et al., 2018) add the combination of prosodic and spectral

features as the third category. In (Koolagudi and Rao, 2012; Milton et al., 2013; Zhao et al.,

2014; Vydana et al., 2015; Swain et al., 2018; Klaylat et al., 2018) three categories were

found: prosodic; spectral (vocal tract); and excitation source features. (Luengo et al., 2010;

Pérez-Espinosa et al., 2012; Henrı́quez et al., 2014; Chen et al., 2014; Valstar et al., 2016;

Sudhkar and Anil, 2016) name three categories, namely: voice quality; prosodic; and spec-

tral features while (El Ayadi et al., 2011; Henrı́quez et al., 2014; Muthusamy et al., 2015;

Manolov et al., 2017) categorize them into continuous, qualitative (voice quality), spectral

and teager energy operator-based features (TEO).
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Even inside the category, there is no agreement on the type of each feature. For in-

stance, (Ververidis and Kotropoulos, 2005a; Esmaileyan and Marvi, 2014; Ahmad, 2016;

Koolagudi et al., 2018; Klaylat et al., 2018) classify formants as spectral features; while

(Borchert and Dusterhoft, 2005; Zhao et al., 2014; Xiaoqing et al., 2017; Samantaray et al.,

2015) classify it as a voice quality feature. Another example is the classification of HNR

feature as a prosodic feature by (Partila et al., 2015); in the same manner as jitter (Koolagudi

et al., 2018; Mariooryad and Busso, 2014), shimmer (Koolagudi et al., 2018), probability of

voicing (Mariooryad and Busso, 2014) and voiced-unvoiced ratio (Altun and Polat, 2009).

In SER, it is important to identify important features that have the ability to recognize differ-

ent emotions (Basharirad and Moradhaseli, 2017). However, due to the lack of unification

in emotional speech features classification, evaluation of the features can be confusing.

2.6.4 Curse of Dimensionality

Emotion recognition from speech signals has a huge amount of extracted features; in some

researches, it can number up to many thousands of extracted features. For example: Es-

maileyan et al. (Esmaileyan and Marvi, 2014) extracted over 2000 features; Schuller et al.

(Schuller et al., 2006, 2007) extracted over 4000 features; and Manolov et al. (Manolov

et al., 2017) extracted over 6000 features. This number of features led in many cases to

what researchers called the curse of dimensionality (Batliner et al., 2011; Kotti and Paternò,

2012; Hendy and Farag, 2013) which causes the degradation of classification performance

even if the number of features increases. The curse of dimensionality problem can be

avoided by minimizing the features space using features reduction technique or by search-

ing for significant features using features selection techniques (Vogt et al., 2008; Batliner

et al., 2011).
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Features reduction is used to generate new features containing most of the valuable speech

information (Zhao et al., 2014). This is done by finding a suitable linear or nonlinear map-

ping from the original feature space to another space with reduced dimensionality while

preserving as much relevant classification information as possible. Common reduction

techniques used in SER comprise: principal component analysis (PCA) and linear discrim-

inant analysis (LDA) respectively. Feature reduction does not retain the original features

after the transformation (Batliner et al., 2011). That is needed to determine the most sig-

nificant feature set.

Features selection represents techniques that aim to find the feature subset that achieves the

best possible classification between classes. Many researchers claimed that searching for

and selection of the right features selection (Schuller et al., 2006; Schuller and Rigoll, 2006;

Schuller et al., 2005) is a mandatory step in SER. Others, however, consider the selection

of suitable features as a key problem for SER because it directly affects the performance

of SER (Zhou et al., 2006). However, most of the SER research according to (Rong et al.,

2009) has focused on improving SER accuracy by building a better classification model.

Little effort has been made to search which feature subset will be the most effective for

this classification model. Moreover, Hendy and Farag (Hendy and Farag, 2013) argued that

significant efforts were spent in literature to extract more features from speech in order to

enhance classification accuracy. This was done at the same time ignoring other factors that

have been proven to be equally important in achieving good classification results. They

prove this by showing it is possible with a reduced number of features to obtain a good

classification when ANN is used.
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2.7 Existing Approaches and Techniques in Features Extraction and Selection

This section concentrates on the existing SER previous works. It provides a detailed review

on feature extraction and selection techniques.

2.7.1 Features Extraction

Much of the existing literature recommends the use of a combination of a variety of acoustic

features rather than merely using individual features to achieve an improvement in the

accuracy of emotion recognition. They justify that by stating that the use of combined

features will correct the errors that occur at different points when using individual features

(Pao et al., 2005a, 2006). Several studies suggest that a better performance can be obtained

in emotion recognition with a combination of features rather than individual features (Pao

et al., 2005a, 2006; Zhou et al., 2009; Koolagudi and Rao, 2012; Kuchibhotla et al., 2014;

Koolagudi et al., 2018; Kuchibhotla et al., 2014). The following sections provide a brief

review of the combined features sets that are derived from voice quality, prosodic, and

spectral features for SER.

Prosodic and Spectral Feature Set

In existing SER literature, there are many different combinations of acoustic features; the

most often considered is the combination of prosodic and spectral features. Since both of

them are the most commonly used acoustic features in SER (Ververidis and Kotropoulos,

2006; Zhou et al., 2009; Zhang et al., 2013; Kuchibhotla et al., 2014) their combination is

also widely used in SER research. It is believed that it is more effective to use prosodic and

spectral features in combination rather than merely using them individually. Not only do the
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literature studies agree that the combination of prosodic and spectral features will improve

the performance of SER (Zhou et al., 2009; Ooi et al., 2014; Koolagudi et al., 2018), but

some literature also suggests that using them individually will substantially degrade the

system performance (Kuchibhotla et al., 2014).

Intensive work studies can be found in literature using different combinations for prosodic

and spectral features. For example, Cao et al. (Cao et al., 2015) used 988 prosodic and

spectral features extracted from the German EMO-DB and the English LDC datasets bay

implementing ranking SVM classifier. The results indicate different classification accura-

cies for the two datasets: 83.5% for EMO-DB; and 50.4% for LDC. Similarly, Padmaja

and Rao (Padmaja and Rao, 2017) have proposed their work on SER using spectral and

prosodic features. PCA was used to reduce the dimensionality of the features before clas-

sification. The results show that the accuracy of SER has increased significantly with the

usage of PCA with Simulated Emotion Hindi Speech Corpus (IITKGP-SEHSC) emotional

dataset and GMM classifier.

MFCC is a well-known acoustic feature and considered as one of the best features used

in SER (Pao et al., 2005a). Many researchers have explored the combination of MFCC

spectral features with different prosodic feature sets. One of these combinations is to blend

MFCC with pitch (F0); that is conceded to be the most important parameter in differentiat-

ing among basic emotions.

In (San-Segundo et al., 2009), a combination of F0 and MFCC related features was used to

classify anger, happiness, neutral, sadness and surprise respectively. The recognition rate

was 81.5% for the Spanish Emotional Speech dataset.

In a similar way, Neiberg et al. (Neiberg et al., 2006) combined standard MFCC (300-

3400 Hz) and MFCC-low (20-300Hz) with pitch and its first derivation on the frame level.
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This was in order to implement GMM with two Spontaneous dataset: the Swedish voice-

controlled telephone services (Swedish VP) and the English meetings (ISL meeting). The

results show that MFCC-low outperforms the pitch features. However, the two MFCC

features have the same performance.

The combination of MFCC with energy can be found in (Ghai et al., 2017) that implements

the SER system with EMO-DB using energy and MFCC, together with three classifiers,

namely: SVM; Random Decision Forest; and Gradient Boosting. The results show that the

highest accuracy was obtained when using the Random Decision Forest of 81.05%.

Kuchibhotla et al. (Kuchibhotla et al., 2014) proposed a combination of energy, pitch

prosodic features and MFCC spectral features respectively. The prosodic and spectral fea-

tures were classified individually and in combination using LDA, regularized discriminant

analysis (RDA), SVM and KNN classifiers. The results are validated over EMO-DB and

Spanish emotional speech dataset and show that the use of prosodic and spectral features in

combination can lead to performance improvement of 20% for each classifier compared to

the performance with the features individually. RDA and SVM classifiers provide the best

classification accuracy.

The same features combination is found in the works of Vogt and Andr (Vogt and André,

2005) and (Vogt and André, 2006) that combine 1289 features related to pitch energy and

MFCC features. In (Vogt and André, 2005) Naive Bayes classifier with EMO-DB was im-

plemented. The recognition accuracy achieved was about 69.1%. In addition they found af-

ter selection that the pitch-related features are the most important feature for acted dataset.

Conversely.

In (Vogt and André, 2006) Naive Bayes classifier was implemented with two different

datasets, specifically: EMO-DB acted dataset; and SmartKom mobile spontaneous dataset.
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A very small subset of relevant features was then selected with the best-first search using

the classification accuracy of a Nave. They reported that using the reduced features set

(69.1%) outperformed the use of the full feature set (77.4%).

The above works discuss the combination of MFCC with pitch and energy which are

prosodic features within a low frequency domain. In contrast, ZCR and formants are high

frequency features. Different works present a combination of such features with MFCC.

Ramakrishnan and El Emary (Ramakrishnan and El Emary, 2013) compare the perfor-

mances of spectral (MFCC) and prosodic (F0 and formants) features using HMM and SVM

classifiers with EMO-DB and DES. They reported that both pitch an MFCC which can be

used to distinguish high-arousal emotions (anger, fear and joy) from low-arousal ones (e.g.

sadness). In addition, they are efficient in the classification of emotions that have similar

arousal (anger versus joy). In (Shaw et al., 2016) a recognition rate of 86.87% was obtained

for pitch, energy, formant and MFCC features extracted from their recorded speech dataset

that has four emotions (neutral, happy, angry and sad) using ANN classifier.

Chen et al. (Chen et al., 2012a) use energy, ZCR, pitch, and formants with MFCC to

identify six emotions (anger, fear, happiness, sadness, surprise, disgust) from Beihang Uni-

versity Database of Emotional Speech (BHUDES) using SVM classifier. The recognition

accuracy was 50.3%. (Manolov et al., 2017) used EMO-DB to extract 6669 features re-

lated to energy, ZCR, pitch and MFCC. The feature set was then reduced using different

feature selection algorithms before implementing ANN classifier. The result shows that an

accuracy of 85% was achieved using 200 features.

Finally, a combination of duration and intensity prosodic features together with MFCC

can be found in the work of Rao and Koolagudi (Rao and Koolagudi, 2011). This work

identifies six emotions, namely, anger, disgust, fear, happiness, neutrality and sadness

from IITKGP-SEHSC dataset. Prosodic and spectral features were extracted from speech
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(MFCC, durations, pitch and energy). The recognition performance was found to be 81%

for Auto associative neural network (AANN) and 78% for SVM. (Xiaoqing et al., 2017)

used SVM with 45 spectral and prosodic features (including pitch, energy, duration, for-

mant, MFCC) extracted from EMODB. The recognition accuracy was 74.26%.

SER system can be found in (Verma et al., 2016) with three different classification algo-

rithms, namely, KNN, multi-layer perceptron (MLP) and SVM with IITKGP-SEHSC that

has five basic emotions (happiness, sadness, anger, fear and neutrality). Pitch, intensity,

speech rate and MFCC were extracted. SVM classifier shows the highest accuracy of 78%

as compared to MLP 75% and KNN 68%.

However, there exists another set of spectral features that were previously combined with

prosodic features. For example, LPC, LPCC, LFPC, PLP, Rasta-PLP and wavelet are

widely known spectral features used in literature.

Esmaileyan and Marvi (Esmaileyan and Marvi, 2014) investigated the impact of prosodic

(pitch, energy, ZCR and formats) and spectral (MFCC, LPC, PLP) feature sets. These were

extracted from the proposed Persian Drama Radio Emotional Speech Corpus (PDREC)

and EMO-DB datasets of five emotions (anger, fear, joy, sadness and neutrality). The two

feature sets were tested individually and in combination using LDA classifier. The result

illustrates that for females, spectral features are more effective than prosodic features in

terms of performance using both EMODB and PDREC. However, the best performance is

attainable when a combination of prosodic and spectral features is used.

Liqin Fu et al. (Fu et al., 2008) used a Mandarin dataset with five emotions, specifically,

anger, happiness, surprise, sadness and disgust to implement speaker-independent emotion

classification. A combination of prosodic (pitch, energy and formant) and spectral (LPCC

and MFCC) features were extracted in frame level. HMM and SVM classifier was used for
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emotional classification. An accuracy rating of 76.1% was obtained using a fusion system

instead of using HMM only.

Pao et al. (Pao et al., 2006) applied an experiment with different combinations of features

in order to find the best features combination. This was carried out by using SVM and

ANN classifiers together with a Mandarin emotion dataset. The features related to pitch,

formants, LPC, LPCC, MFCC, LFPC, PLP and Rasta-PLP respectively. An accuracy rate

of 84.2% was obtained with LPC, MFCC, LPCC and LFPC features using SVM classifier;

while accuracy of 80.8% was achieved with LPC, LFPC, Rasta-PLP, LPCC, and MFCC

feature using ANN.

Lanjewar et al. (Lanjewar et al., 2015) focuses on the detection of six emotions (happiness,

anger, neutrality, surprise, fear and sadness) from the extracted speech features related to

MFCC, wavelet and pitch. GMM and KNN were used as a classifier with EMO-DB dataset

as the GMM classifier provides the best accuracy.

Tarng et al. (Tarng et al., 2010) use a combination of spectral (MFCC and wavelet) and

prosodic (F0 and ZCR) features extracted from EMO-DB dataset. An accuracy rate of

90.9% could be obtained using SVM classifier with all emotions.

Kumar et al. (Samantaray et al., 2015) proposed a novel approach that uses a combination

of 196 features related to pitch, ZCR, energy, entropy, formant, MFCC, LPCC and mel-

energy spectrum dynamic coefficients (MEDC). The SVM used for classification emotion

is derived from the Multilingual Emotional Speech Database of North East India (MESD-

NEI). The features provide 82.26% classification accuracy for speaker independent emotion

recognition.

Pan et al. (Pan et al., 2012) extracted pitch, energy, LPCC, MFCC, and MEDC. They

then used SVM to recognize three emotional states: happiness, sadness and neutrality.
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They also used different combinations of features from EMO-DB and their collected Chi-

nese datasets. The results indicate that the performance of spectral features is higher than

prosodic features. In addition, using both spectral and prosodic features is better in than

only spectral or prosodic features are used. The combination of MFCC, MEDC and energy

has the highest accuracy rate for both Chinese emotional (91.3%) and EMO-DB (95.1%)

datasets.

Albornoz et al. (Albornoz et al., 2011) implemented experiments using a combination

of two spectral features, specifically: the mean of the log-spectrum (MLS), MFCC; as

well as two prosodic features (energy and F0) using EMO-DB and hierarchical classifier.

The result shows that the combination of the two types of features improved results in the

emotion recognition process.

Kurpukdee et al. (Kurpukdee et al., 2017) implemented the SER system using the Inter-

active Emotional Dyadic Motion Capture (IEMOCAP) dataset with SVM classifier. They

examined different combinations of features relating to energy, MFCC, PLP, pitch and filter

bank (FBANK) respectively. The best accuracy rating was achieved for SVM of 58.40%.

In addition, they reported that the combination of energy with FBANK and pitch features

is the most suitable feature.

Voice Quality and Prosodic Feature Set

Since it is conceded that voice quality features are important for the process of emotion

recognition, combining it with prosodic features can improve SER performance (Yang and

Lugger, 2010; Monzo et al., 2014). Lugger and Yang (Yang and Lugger, 2010) proposed

a novel set of harmony-based voice quality features which were compared in terms of the

classification rate with pitch, duration, formant, and ZCR prosodic features. The compar-
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ison was done for prosodic features only, for voice quality features only and for both of

them in combination using the Bayesian classifier and EMO-DB. They reported that the

combination of both feature types led to improved recognition performance.

Lalitha, et al. (Lalitha et al., 2014) proposed an approach that combines the same voice

quality features set (jitter, shimmer, HNR and autocorrelation) with a different prosodic

feature set (pitch, entropy, energy and ZCR). Seven emotions were investigated through

this study from EMO-DB. A recognition accuracy rating of 81.13% was obtained using

SVM classifier.

Joshi et al. (Joshi, 2013) proposed a hybrid classifier using HMM and SVM classifiers.

Fourteen features related to prosodic (pitch, intensity, entropy and ZCR) and voice quality

(jitter, shimmer, HNR, autocorrelation and noise-to-harmonic ratio (NHR)) were extracted

from a collected dataset. The result shows that the proposed hybrid classifier provides an

accuracy rating of 98.1%.

Marpaung and Gonzalez (Marpaung and Gonzalez, 2014) designed SER by combining five

different features: jitter; shimmer; HNR; NHR; and pitch. Four emotions were investigated

in this study: anger; joy; fear; and sadness. The overall recognition rate achieved was

62% by using KNN classifier with the French Geneva Multimodal Emotional Portrayal

(GEMEP) dataset.

Borchert and Dusterhoft (Borchert and Dusterhoft, 2005) extracted 63 features related to:

jitter; shimmer; voiced to unvoiced frames ratio; spectral energy; pitch; intensity; and

formant. This was in addition to new proposed HNR (using different frequency bands). The

best recognition rate of 76.06% was obtained using the the sequential minimal optimization

(SMO) classifier and EMO-DB. The experiments with new HNR features show that there

is little improvement if using different frequency bands for these features.
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Monzo et al. (Monzo et al., 2014) used a Spanish expressive speech dataset with five

emotions (neutral, happy, sensual, aggressive, and sad) to extract features related to voice

quality (jitter, shimmer, HNR, Hammarberg index (HammI) and pe1000) and prosodic (F0,

duration and energy) features. After classification, the result shows that the combination

of prosodic and voice quality features improve the performance compared with using only

prosodic or voice quality features.

Voice Quality and Spectral Feature Set

It is rare to find a combination of spectral and voice quality features. Pao et al. (Pao et al.,

2005b) used LDA, K-NN and HMMs classifiers to classify five emotions namely: anger;

boredom; happiness; neutrality and sadness. Jitter, shimmer, MFCC, LPC, LPCC, LFPC,

and PLP were extracted from two Mandarin datasets. The results obtained show that the

proposed system yielded top recognition rates of 88.3% - 88.7% for both datasets.

Voice Quality, Prosodic and Spectral Feature Set

Four voice quality features, namely, HNR, jitter, shimmer, and the probability of voicing are

the features that are most combined with both prosodic and spectral features. For instance,

Lee et al. (Lee et al., 2011) extracted 384 features related to HNR, F0, energy, ZCR, and

MFCC from IEMOCAP and Artificial Intelligence Robot (AIBO) datasets. The features

set has been reduced using binary logistic regression in standard statistics software (SPSS)

used with a step-wise forward selection. The result obtained showed inspiring accuracy for

their proposed hierarchical decision tree.

Vstruc et al. (Štruc et al., 2010) extracted a combination of voice quality (HNR), prosodic

(pitch, energy and ZRC) and spectral (MFCC) features from the audio-visual emotion
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dataset (eNTERFACE) dataset together with six emotions (anger, disgust, fear, happiness,

sadness and surprise). An accuracy rating of 62.9% was obtained using SVM classifier.

Research by Schuller et al. (Schuller et al., 2005) compare the performance of acoustic and

linguistic features using different classifiers and both the EMO-DB and EMO-AL datasets.

A set of 276 acoustic features have been extracted based on the HNR, pitch, energy, dura-

tion, formant, ZCR, MFCC and fast Fourier transform (FFT) respectively. The feature set

was than reduced to only 75 features using SVM-SFFS. The results showed that acoustics

features give a better performance when used alone rather than with the use of only lin-

guistic information. However, the overall performance increases by 3.51% by combining

them in one vector. The best result of acoustic features was with SVM with EMO-DB of

87.50%. In addition, using IGR to rank the top 30 selected features shows that HNR ranked

as 21 features and MFCC-based features are the top-ranked.

Zhou et al. (Zhou et al., 2010) proposed a hybrid emotion recognition system that com-

bines a GMM-based subsystem and an SVM-based one through the use of F0, loudness,

harmonic and MFCC features. An average recognition rate of 91% was achieved for five

emotions (anger, happiness, neutrality, sadness and surprise). In addition, the result illus-

trates that the proposed hybrid system improves performance for all emotions except for

the emotion of anger.

Wang et al. (Wang et al., 2015) proposed new Fourier parameter (FP) (harmonically-

related) features to improve SER performance. FP features are combined and compare with

MFCC spectral features and F0, energy and ZCR prosodic features respectively. EMO-DB,

the Institute of Automation Chinese Academy of Sciences (CASIA) and the Chinese elderly

emotion (EESDB) datasets were used to validate speaker-independent emotion recognition

by using SVM. The study showed that FP features achieved higher average recognition

rates than MFCC and prosodic features specific to the EMODB dataset. Moreover, the
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prosodic features led to the worst performance while the proposed FP and FP+MFCC fea-

tures improved SER performance.

Zhao et al. (Zhao et al., 2014) used Praat toolkit to extract 204 features related to voice

quality (HNR, jitter, shimmer, and spectral energy), prosodic (pitch, intensity, duration and

formant) and spectral (MFCC) features from EMO-DB. An accuracy rating of 78.75% was

obtained using SVM classifier.

Razak et al. (Razak et al., 2005) use the Voice Driven Emotion Recognizer Mobile Phone

(VDERM) dataset that has Malay and English emotions to evaluate emotion features com-

binations. They used a set of 18 features related to jitter, pitch, energy, duration and LPC.

MLP and fuzzy model were used as a classifier. They reported that LPC and jitter are very

important features in emotion recognition. In addition, jitter improved the recognition rate

achieved by both classification methods.

Chen et al. (Chen et al., 2014) compared SVM and DBN classifiers using 988 features

related to the probability of voicing, pitch, intensity, loudness, ZCR, and MFCC respec-

tively. All features were extracted from CASIA. DBN obtained the best accuracy rating

with 92.5% while SVM obtained an accuracy rating of 87.5%. Klaylat et al. (Klaylat et al.,

2018) used the same features used by Chen with an addition of Line spectral pairs (LSP)

features. These features were extracted from an Arabic speech corpus. By compression

of different classification models, the SVM classifier obtained the best result with 95.52%

accuracy.

Mariooryad and Busso (Mariooryad and Busso, 2014) used voice quality (jitter and prob-

ability of voicing), prosodic (F0, energy, and loudness) and spectral (RASTA-filtered au-

ditory, MFCC and Spectral energy) features. They were extracted from the IEMOCAP

dataset using only four emotions (neutral, happiness, anger, and sadness). An accuracy
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rating of 55.32% was obtained using the SVM classifier.

Shirani and Nilchi (Shirani and Nilchi, 2016) extracted 68 features relating to HNR, jitter,

shimmer, pitch, intensity, energy, power, ZCR, duration, formants, amplitude, and MFCC

respectively. This was followed by SER implements using ANN and SVM classifier with

the Persian emotional speech database (Persian ESD) and EMODB dataset. For the ESD

and speaker-dependent process, the use of ANN achieved a recognition rate of 98.33%;

while a recognition rate of 98.89% was obtained using SVM. However, EMO-DB and

speaker-dependent using ANN achieved a recognition rate of 84.70%; while a recognition

rate of 86.53% was obtained using SVM.

Ahmad et al. (Ahmad, 2016) used SFS to select 3000 features out of 7956 features related

to HNR, jitter, shimmer, the probability of voicing, pitch, energy, ZCR, formant as well

as MFCC extracted from EMO-DB dataset. The result obtained using ANN and SVM

showed that ANN outperforms SVM in accuracy. The accuracy ratings were as follows:

ANN provided 91.2%, while SVM gave 86.3%. Huang et al. (Huang et al., 2013) extracted

HNR, jitter, shimmer, the probability of voicing, F0, energy, ZCR, speech rate, duration,

formant, and MFCC from collected dataset. An accuracy rating of 63.3% was obtained

using four emotions: anger, happiness, neutrality and sadness with GMM classifier.

Oflazoglu and Yildirim (Oflazoglu and Yildirim, 2013) provided a total of 1,532 features

related to: voice quality (jitter, shimmer and voicing probability); prosodic (F0 and loud-

ness); and spectral (MFCC, log Mel Freq. Band, LSP) features. These were extracted

from Turkish Emotional Speech database (TURES) with neutral, sad, happy, and angry

emotions.

Ding et al. (Ding et al., 2018) extracted 1582 features related to: voice quality (HNR,

Jitter, shimmer, voicing probability); prosodic (Pitch, loudness); and spectral (Log Mel
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freq. band, LSP and MFCC) features. OpenSMILE toolkit was used to extract a 1582

INTERSPEECH 2010 features. Only 40 audio files for each kind of emotion were selected

from EMO-DB. A recognition rate of 74.29% was obtained using SVM.

The same features set were extracted by Sun and Wen (Sun and Wen, 2015) from three

emotional datasets the SAVEE, EMO-DB and CASIA. In addition, they proposed a new

normalization method (SSMCFS). The proposed normalization method contains two steps:

firstly all the features are normalized to the mean and standard deviation; and second, all

features are shifted by means of unlabeled data. They performed the experiment ten (10)

times using SVM with polynomial kernel. After rebating the experiment ten (10) times,

mean accuracy of 84.58% was obtained for EMO-DB, 71.83% for SAVEE and 75.42% for

CASIA. After normalization mean accuracy rating of 86.63% was obtained for EMO-DB,

73.33% for SAVEE and 78.56% for CASIA datasets.

2.7.2 Limitation of Existing Features Extraction Techniques

The detailed survey offered by previous sections demonstrated several limitations of the

existing features extraction works that had been conducted in past researches. These limi-

tations will be discussed in this section.

Based on the above discussions, there are no standards or a specific combination of features

to be developed and used in SER systems. Every researcher extracts a different number of

feature subsets based on their own experience and knowledge. Some SER features were

extensively used like spectral and prosodic features; while other features like voice quality

were less used, as illustrated in Figure 2.4 below.

Even in combining a feature set it can be observed that the combination of prosodic and

spectral features is the most-used combination. Little effort has been done to investigate
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Voice Quality Prosodic Spectral

Figure 2.4: Summary of Acoustic Features in Previous Works

the combination of voice quality and spectral features. Table 2.1 following summarizes the

different combinations used by different researchers

Furthermore, some voice quality features were totally ignored. The discussion thus far is

illustrated in Table 2.1. As shown in Table 2.2 there are some features represented in bold

that are commonly used among many authors, especially in EMO-DB.

The table shows that the most popular types of voice quality features used by researchers

in SER are the HNR, harmonic, jitter, shimmer, and voice probability features. However,

features such as NHR, HammI and autocorrelation are not often used. Furthermore, the

glottal-to-noise excitation ratio (GNE) feature has not been used before in SER.
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Table 2.1: Summary of Acoustic Feature Combinations in Previous Works

Feature Set Reference

Prosodic and Spectral (Cao et al., 2015; Padmaja and Rao, 2017; San-Segundo et al., 2009;
Neiberg et al., 2006; Ghai et al., 2017; Kuchibhotla et al., 2014;
Vogt and André, 2005, 2006; Ramakrishnan and El Emary, 2013;
Shaw et al., 2016; Chen et al., 2012a; Manolov et al., 2017; Rao and
Koolagudi, 2011; Xiaoqing et al., 2017; Verma et al., 2016; Esmai-
leyan and Marvi, 2014; Fu et al., 2008; Pao et al., 2006; Lanjewar
et al., 2015; Tarng et al., 2010; Samantaray et al., 2015; Pan et al.,
2012; Albornoz et al., 2011; Kurpukdee et al., 2017)

Voice Quality and Prosodic (Yang and Lugger, 2010; Lalitha et al., 2014; Joshi, 2013; Marpaung
and Gonzalez, 2014; Borchert and Dusterhoft, 2005; Monzo et al.,
2014)

Voice Quality and Spectral (Pao et al., 2005b)
Voice Quality, Prosodic and Spectral (Lee et al., 2011; Štruc et al., 2010; Schuller et al., 2005; Zhou et al.,

2010; Wang et al., 2015; Zhao et al., 2014; Razak et al., 2005; Chen
et al., 2014; Klaylat et al., 2018; Mariooryad and Busso, 2014; Shi-
rani and Nilchi, 2016; Ahmad, 2016; Huang et al., 2013; Oflazoglu
and Yildirim, 2013; Ding et al., 2018; Sun and Wen, 2015)

2.7.3 Feature Selection

This section reviews works that have used features selection algorithms to reduce the fea-

tures for SER.

Filter Approach

The filter approach was one of the earliest used approaches implemented using either

ranking-based or subset-based filter methods. The simplest form was the ranking-based

filter methods. Different researchers worked with ranking-based filter methods in their

SER implementation.

Schuller et al. (Schuller et al., 2006) used IGR to reduce the feature dimensionality; the re-

sults were obtained applying SVM with DES, EMO-DB, and SUSAS datasets. For EMO-
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Table 2.2: Summary of Voice Quality Features in Previous Works

Voice Quality Feature Reference Dataset

HNR
(Lee et al., 2011) AIBO
(Štruc et al., 2010) eNTERFACE
(Schuller et al., 2005) EMO-DB, EMO-AL

Harmonic
(Yang and Lugger, 2010) EMO-DB
(Zhou et al., 2010) CASIA
(Wang et al., 2015) EMO-DB, CASIA, EESDB

Jitter (Razak et al., 2005) VDERM

Voicing probability (Chen et al., 2014) CASIA
(Klaylat et al., 2018) Arabic datasets

Jitter, Shimmer (Pao et al., 2005b) Mandarin datasets
Jitter, Voicing probability (Mariooryad and Busso, 2014) IEMOCAP
HNR, Jitter, Shimmer (Shirani and Nilchi, 2016) EMO-DB
Jitter, Shimmer, Voicing probability (Oflazoglu and Yildirim, 2013) TURES

HNR, Jitter, Shimmer, Voicing probability
(Ahmad, 2016; Ding et al., 2018) EMO-DB
(Sun and Wen, 2015) EMO-DB, SAVEE, CASIA
(Huang et al., 2013) Collected dataset

HNR, Jitter, Shimmer, spectral energy (Zhao et al., 2014) EMO-DB
HNR, Jitter, Shimmer, Autocorrelation (Lalitha et al., 2014) EMO-DB
HNR, Jitter, Shimmer, NHR (Marpaung and Gonzalez, 2014) GEMEP
HNR, Jitter, Shimmer, Autocorrelation,
NHR

(Joshi, 2013) Collected dataset

HNR, Jitter; Shimmer, Voiced-unvoiced
ratio, Spectral energy

(Borchert and Dusterhoft, 2005) EMO-DB

HNR, Jitter, Shimmer, HammI, pe1000 (Monzo et al., 2014) Spanish datasets

DB the correct recognition rate after IGR improves from 86.7% to 86.9%. The correct

recognition rate for DES increased from 68.7% to 74.5%. Finally, SUSAS achieved 77.8%

correct recognition rate using the full feature set. By using IGR reduction accuracy im-

proved to 84.9%. Another implementation of IGR was found in a study by (Borchert and

Dusterhoft, 2005) Borchert and Dusterhoft implementing SVM algorithm and EMO-DB

dataset with IGR to rank the top 25 prosodic (pitch, intensity, and formant) and voice qual-

ity (HNR, jitter, shimmer, ratio of voiced to unvoiced frames and spectral energy) features

from 63 features for SER. The ranking parameter shows that spectral energy ranked first

(1st), shimmer ranked 8th, HNR ranked 15th, and jitter ranked 24th. This indicated that
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HNR is not more of an important voice quality feature than spectral energy distribution

and shimmer. They conclude that voice quality features as well as prosodic features are

important for emotion recognition. In addition, it shows that pitch and intensity are the

most important features of emotional speech.

A novel filter approach based on RS and SVM was proposed by Zhou et al. (Zhou et al.,

2006) in an attempt to reduce the calculation cost while keeping a high recognition rate.

Prosodic features related to pitch, energy, formant, and speaking rate were extracted from

the Chinese Linguistic Data Consortium (CLDC) dataset. A comparison of recognition

performance with and without the feature selection process was done. An accuracy rating

of 74.75% with selected 13 features obtained. An accuracy rating of 77.91% with the 37

full feature set obtained. These are considered a good result because the features space was

reduced by 64.86%, while the performance decreased by only 3.16%.

Chen et al. (Chen et al., 2012b) proved that FDR is superior to PCA in comparative ex-

perimental processes using SVM, in addition to ANN classifiers with BHUDES Mandarin

dataset. This experimental test consisted of four models: FDR + SVM, PCA + SVM,

FDR + ANN, and PCA + ANN. They found that combining FDR + SVM resulted in a

better performance than the three other combinations. Zheng et al. (Zheng et al., 2014)

also applied FDR in combination with three classifiers (SVM, the Nearest Neighbor (NN),

and sparse representation classifier (SRC)), together with two emotional speech datasets:

eNTERFACE, and AIBO. The result shows that the best performance was for NN+FDR

combination with an increase of 0.37% when decreasing the features set from 1582 to

1500 features.

The ranking-based filter does not meet the need for feature selection for high dimensional

features very well because it selects features relevant to the class label even if they are

highly correlated with each other. Accordingly, it helps in eliminating only the relevant
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features and does not help in the elimination of redundant features. However, redundant

features also affect the speed and accuracy of classification algorithms and should be re-

moved.

Therefore, a better selection would be the subset-based filter. This filter has the capability

to remove both irrelevant and redundant features. Different researchers tend to rely on

subset-based methods. For example, Vogt and Andre (Vogt and André, 2005) search for

the most relevant features for EMO-DB dataset using CFS with best-first search. With

Nave Bayes classifier, the original 1280 features derived from pitch, energy and MFCC

reduced to about 90-160. The accuracy rating increased from 69.1% using the full feature

set to 77.4% for selected features.

Shirani and Nilchi (Shirani and Nilchi, 2016) compared CFS using best-first search method

with SVM features selection using ANN and SVM classifiers. They performed their eval-

uation on a Persian ESD, German and EMO-DB dataset. A total of 68 features related to

duration, pitch, intensity, formants, amplitude, HNR, jitter, shimmer, energy, power, ZCR

and MFCC were extracted. The result shows that the proposed SVM feature selection

method provides better performance compared to CFS and baseline feature set. The recog-

nition rate achieved using the proposed method was 99.44% for ESD and of 87.21% for

EMO-DB for SVM with speaker-dependent classification; while for ANN with speaker de-

pendent classification the recognition rate was 98.89% for ESD and 85.16% for EMO-DB.

Zhao et al. (Zhao et al., 2014) applied FCBF to reduce 204 acoustic features (including

HNR, jitter, pitch, intensity, duration, formants, spectral energy, MFCC) using a threshold

of 0.001 with six different classifiers. Firstly, FCBF was used to reduce features set to

90 features for EMO-DB and 70 for the polish dataset. The selected features were then

tested to identify the best number of features that would provide the highest recognition

accuracy. For the polish dataset, 64 features gave the best accuracy with 87 features for the
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EMO-DB dataset. The result indicates that applying FCBF improves emotion recognition

performance; hence, all used classification methods obtain better recognition performance

after feature selection.

Sun and Wen (Sun and Wen, 2015) compare mRMR, PCA, and LDA with a proposed

semi-supervised feature selection method (SMCFS). SMCFS method can handle unlabeled

data. Three emotional datasets were used, namely, the SAVEE, EMO-DB and CASIA. The

experiment was repeated ten (10) times using SVM with polynomial kernel. The mean of

the ten (10) results was adopted as a final performance. The accuracy ratings obtained were,

specifically: 88.85% for EMO-DB; 77.44% for SAVEE; and 78.10% for CASIA datasets.

Jassim et al. (Jassim et al., 2017) proposed emotion classification under clean and noisy

environments based on a combination of traditional and proposed features. The traditional

features were presented by INTERSPEECH 2010 paralinguistic emotion challenge fea-

tures; while the proposed features were neural-responses based. The system was evaluated

using LIBSVM (Matlab implementation) with RBF kernel for two well-known datasets:

EMO-DB and eNTERFACE. The traditional features were extracted using openSMILE

toolkit, utilizing the configuration file IS10-paraling:conf. After the extraction, the fea-

tures vector was normalized between [0-1]. The mRMR algorithm was then employed to

remove the irrelevant features and reduce the features dimensionality from 1582 to 946.

An accuracy rating of 89.45% was obtained for the traditional features in a clean environ-

ment with EMO-DB using seven emotions (neutrality, anger, fear, joy, sadness, disgust,

and boredom).

Huang et al. (Huang et al., 2013) proposed the Maximal information coefficient (MIC)

filter based upon features selection. MIC is a new statistic tool that measures linear and

nonlinear relationships between paired variables. With features set included: HNR; jitter;

shimmer; voiced frames; unvoiced frames; unvoiced to voiced frame ratio; voiced to total
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frame ratio; pitch; energy; duration; speech rate; formant; ZCR and MFCC features that

extracted from a collected dataset. The result that obtained using GMM indicated that MIC

is a powerful algorithm.

Wrapper Approach

The previous section describes the related work using filter approaches. However, since

the wrapper approach uses a classification performance to evaluate the features it usually

provides a more improved feature than filter approaches.

Pao et al. (Pao et al., 2006) used FFS algorithm with SVM and NN classifiers to classify

five (5) emotions from Mandarin emotional speech. The experimental result shows that

among a selection of ten (10) best selected features LPC is considered to be the best feature

and pitch is the worst one. Kotti and Paterno (Kotti and Paternò, 2012) also applied FFS

algorithm followed by PCA using EMO-DB for a total number of 2327 extracted features.

Several numbers of features ranging from 50 to 100 were tested, with an accuracy rating

of 97.0% accuracy being obtained for the linear SVM. In (Arias et al., 2014) FFS was also

applied by Arias et al. to reduce the number of features for the EMA and EMO-DB dataset

to 20.

Hendy and Farag (Hendy and Farag, 2013) used FFS to reduce 175 extracted features re-

lated to pitch, duration, formants, energy, ZCR, jitter, shimmer, MFCC, and LPC features in

an attempt to find a robust and fast ANN classifier suitable for use in a real-life application.

An accuracy rating of 85% was obtained using 129 reduced features set.

You et al. (You et al., 2006) compared SFS with the enhanced Lipschitz embedding method.

SVM was used to evaluate the performance of the SER system. A total of 64 features

were extracted relating to pitch, energy and formant from the Mandarin dataset. The pro-
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posed method obtained improvements of 9%-26% in speaker-independent and 5%-20% in

speaker-dependent classification.

Ververidis and Kotropoulos (Ververidis and Kotropoulos, 2005a) performed a comparison

between SFFS and SFS algorithms. A set of 65 features related to pitch, energy, and

formants were extracted from the DES dataset. The results showed accuracy improvement

of the Bayes classifier by an increment of 3%. Moreover, they reported that the SFFS

algorithm is more powerful for feature selection than the SFS with regard to emotional

speech. The same features were also used in another study (Ververidis and Kotropoulos,

2005b). They reported that the simple SFS algorithm was subjected to nesting problems;

accordingly, they implemented SFFS (which is considered to be an improved version of

the SFS algorithm). The results show that Bayes classifier obtained a correct classification

rating equal to 55% compared to the human classification score which is 67%.

Schuller et al. in (Schuller et al., 2005) used SFFS to select the best 75 feature from a

276 feature set related to voice quality, prosodic and spectral features. Using different

classifiers the best result was SVM of 87.50% for the selected features. The recognition

accuracy for the full features was 84.84%. In addition, they reported that the performance

could be improved by acoustic features selection. Furthermore, the extraction effort could

be saved.

Schuller et al. (Schuller and Rigoll, 2006) used the FSSF with SVM in order to find the op-

timal classifier such as: instance-based nearest neighbor (1NN and kNN); MLP; a decision

tree (C4.5); Naive Bayes (NB) and Bayesian Networks (BN); as well as ensemble classifi-

cation construction. The final result shows that not all classifiers show better performance

with the reduced set, but that SVM gave the best result. This is an accepted result since the

feature set is optimized by SVM-SFFS.

50



Another comparative study was carried out by Lugger and Yang in (Lugger and Yang, 2007)

for SFFS and fisher transform to attempt to reduce the feature numbers from 208 to eight

(8) for speaker independent emotion classification. They concluded that no significant

changes could be observed for either of the algorithms. The fisher transform generally

performs better than SFFS for the same number of final features.

Wang et al. (Wang et al., 2014) used SFFS to compare both linear SVM (LSVM) and radial

basis function kernel SVM (RSVM) classifiers with German and Chinese datasets. When

SFFS was used with RSVM an improvement of the recognition rate by 14.9% and 4.3%

respectively was detected on the German and Chinese datasets. In addition, an improve-

ment of the recognition rate by 17.4% and 10.1% were detected on German and Chinese

datasets when SFFS used LSVM.

Gharavian et al. (Gharavian et al., 2013) used a collected Farsi emotional dataset to extract:

F0; energy; formant; and MFCC. GMM was used to classify three emotions namely anger,

happiness, and neutrality. FCBF and ANOVA feature selection methods have been used

to select various combinations of the features. The results indicated that energy and pitch

features are important features for SER. In addition, MFCC features are generally discarded

when using FCBF and ANOVA methods.

Yogesh et al. (Yogesh et al., 2017) proposed PSOBBO (a wrapper feature selection tech-

nique) in addition to OSBSBCF higher order spectral features. PSOBBO is a new particle

swarm optimization assisted by Biogeography-based algorithm. OSBSBCF (1632 features)

was extracted using openSMILE toolbox; this feature is a combination of 50 BSBCFs

proposed features and 1582 features used in Inter-speech 2010. Different experiments

were conducted using extreme learning machine (ELM) classifier with three emotional

datasets namely: EMODB, SAVEE, and SUSAS. The results showed that the proposed se-

lection technique provides the best accuracy with the minimum number of features for the
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three datasets. For EMO-DB the accuracy rating was 88.36% for speaker independent and

97.54% for speaker dependent with only 177 features respectively. For SAVEE, the accu-

racy rating was 59.63% for speaker independent and 69.75% for speaker dependent with

only 336 features. SUSAS obtained an accuracy rating of 84.12% with only 258 features.

Muthusamy, et al. (Muthusamy et al., 2015) proposed a new feature enhancement method

based on GMM model. To validate the proposed methods SAVEE, EMD-DB and Sahand

Emotional Speech database (SES) datasets were used by implementing KNN and ELM

classifiers. The stepwise linear discriminant analysis (SWLDA) was used to reduce the en-

hanced wavelet packet, energy and entropy features. For speaker-dependent ELM obtained

an accuracy rating of 98.98% with EMO-DB, 97.60% with SAVEE and 92.79% with SES.

KNN obtained an accuracy rating of 59.14% with EMO-DB and 94.27% with SAVEE.

For speaker-independent ELM achieved an accuracy rating of 97.24% with EMO-DB and

77.92% with SAVEE. With KNN obtained an accuracy rating of 49.12% together with

EMO-DB, 69.17% with SAVEE and 84.58% with SES.

Ding et al. (Ding et al., 2018) proposed an optimization method based on the biogeography

optimization algorithm (BBO) which attempted to solve the problem of high features di-

mensionality in SER. Features related to voice quality, prosodic and spectral features were

extracted. Only 40 audio files for each kind of emotion ware selected from EMO-DB. Af-

ter the selection, the result showed that BBO-SVM can filter a lot of redundant features.

In addition, it provided a better performance compared to GA under the same parameter

setting. BB-SVM resulted in 90.13% average recognition rate while GA-SVM resulted in

81.26% average recognition rate.
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Embedded Approach

Embedded methods have been proposed to combine the advantages of both filter and wrap-

per approaches. Not much research can be found for the single embedded approach in SER.

More work on embedded algorithms can be found in hybrid approaches. In (Altun and Po-

lat, 2009), Altun and Polat compared four feature selection algorithms: SFS wrapper; Least

Squared Bound (LSBOUND) filter; and two embedded algorithms, namely, the Mutual In-

formation Based Feature Selection (MUTINF) and W2R2. Using EMO-DB dataset 58

features related to voiced-unvoiced ratio, F0, sub-band energy, MFCC, and LPC were ex-

tracted. The results showed that LSBOUND outperformed the other algorithms in reducing

average CV error. With regard to the features, it was reported that for all algorithms the

most frequently selected ones were the prosodic and sub-band energy features. In addition,

MFCC features are more informative than LPC features.

Hybrid Approach

In addition to the previously-mentioned categories, some researchers elected to work with

a hybrid method by combining two or more approaches to overcome some method limita-

tions. In some instances, the first approach (which is regularly filtered) can be used as a

pre-process step before using the main method. The hybrid features selection approach can

direct categories to ensemble or sequential methods depending on the method approaches

implemented. In SER literature three types of an ensemble method were noticed. The first

one combines the filter-wrapper approach while the second combines a filter- embedded

approach. The final approach combines two embedded approaches.

An example of filter-wrapper approach can be found in (Tickle et al., 2013) Tickle et al.

This study selected a 71 hybrid features set by implementing both IGR and classify Subset
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Eval algorithms. Firstly, the Subset Eval algorithm (which is WEKA wrapper algorithm

with best-first search) was used to select 11 out of 998 features. However, the performance

of these features alone was very poor; hence, IGR was implemented to obtain the ranking

of all features. Further, the top 63 features were combined with the previous 11 features.

The final 71 hybrid set of features was used with MLP classifier and EMO-DB.

The filter-embedded approach was used by Mencattini et al. (Mencattini et al., 2014) who

performed a comparison between three hybrid models. This was carried out by employing

the embedded stepwise regression (SWR) with ranking-based filter Relief algorithm and

two subset-based filter algorithms (namely, Pearson correlation coefficient (PCC), and Mu-

tual Information maximization Criterion (MIM)) using EMOVO Italian dataset. The results

show that the Relief-SWR approach does not provide widely acceptable results. The author

explained that it was probably due to the Relief not being able to deal with the redundancy

features. Further, it was reported that the PCC-SWR approach outperforms MIM-SWR

approach in performance.

The embedded-embedded approach was used by Rong et al. (Rong et al., 2009) to select

the most effective acoustic features that improve the performance of the SER system. A

total of 84 features were extracted from Chinese (Mandarin) dataset. These features are

related to pitch, intensity, ZCR and MFCC. Ensemble Random Forest to Trees (ERFTrees)

has been proposed as a selection method that involves two components of feature selection

and voting strategy. The feature selection uses two algorithms, namely, C4.5 Decision Tree

and RF. The voting strategy uses a voting-by-majority method to combine these two sub-

sets of candidate features. A total of 16 acoustic features were selected from the original 84

feature set. The result shows that the selected 16 feature subset provides higher recognition

accuracy than the original feature set.
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In SER literature, four types of a sequential method were noticed. The first one combines

more than one filter approach while the second method combines more than one wrapper

approach. The third method combines the filter-wrapper approach; while the final one

combines a filter-embedded approach.

The filter-filter approach is applied by Clavel et al. (Clavel et al., 2008) who used FDR to

reduce the feature space. This was carried out by selecting the 40 most relevant features

from the English Situation Analysis in a Fictional and Emotional (SAFE) dataset. The

selection was performed in two steps. Firstly, 100 features were selected from voice quality,

prosodic, and spectral features separately. Then a second selection step with the same

algorithm was applied to the selected features. This strategy was adopted in order to avoid

having strong redundancies between the selected features.

Liu et al. (Liu et al., 2018) used two filter feature selection methods, specifically: the

correlation analysis and the Fisher criterion with CASIA Chinese dataset as well as two

classifiers, ELM and SVM classifiers. A total of 34 spectral and prosodic features were

extracted then analyzed by correlation analysis to dispose of the redundant features. The

Fisher criterion was then implemented to select 20 features. The best accuracy rating for

ELM was 88.25% before selection and 90.43% after selection. In the case of SVM, the

best accuracy rating was 87.63% before selection and 87.73% after selection.

The wrapper-wrapper approach implemented by Mariooryad et al. (Mariooryad et al.,

2014) uses SVM with a two-level wrapper feature selection approach to reduce the di-

mension of the 4368 feature vector of SEMAINE database. These features are related to

prosodic, spectral and voice quality features. Firstly, FFS selection used them to reduce the

number of features to 500. Following this, 100 features were selected from them using the

same algorithm.
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The filter-wrapper approach in (Schuller et al., 2007) was used to save computation time

prior to using SFFS wrapper. Schuller et al. applied the GR ranking-based filter to reduce

features sets extracted from DES and EMO-DB. The result was obtained using RF classi-

fiers. It stated that the reduction helped to increase performance. For DES, the accuracy

rating increased from 53.5% to 57.1%; while for EMO-DB the accuracy rating increased

from 72.3% to 72.5%.

Wang et al. (Wang et al., 2017) used IGR with a threshold of 0.0032 in order to select 2535

features from 5760 Wavelet features. SFS with SVM was then used to select the best 1279

features. SVM, AdaBoost and RF classifiers were used to implement SER using Chinese

elderly emotion (EESDB) dataset. The use of AdaBoost resulted in accuracy ratings of

93.9%, RF of 92.8% and SVM of 94.2% respectively.

Wu and Liang (Wu and Liang, 2011) proposed a two-stage feature selection scheme to

reduce the number of features. The first stage calculates the FDR and ranks each feature

individually to remove irrelevant features using a threshold of 0.15, as they noticed no

improvement in performance results when increasing the threshold. In the second stage,

the SFS were compared to the multi-class linear discriminant analysis (LDA) to select

features with SVM classification. The result shows that using six LDA selected features

delivered higher accuracy than using 50 SFS selected features.

Tomar et al. (Tomar et al., 2014) used the combination of two feature selection techniques,

namely, the ranking-based filter F-score and the wrapper SFS to select 24 significant fea-

tures using Multi least squares twin support vector machine (MLSTSVM) classifier. Firstly,

the F-score for each feature was calculated, and the SFS was then used for obtaining 24

feature subsets or models. The features inside every model were ordered by the F-score.

The result shows that model 16 gave the highest accuracy rating of 87.28% for linear ML-

STSVM, 92.89% for Gaussian MLSTSVM, and 88.87% for the polynomial respectively.
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The filter-embedded approach used by Esmaileyan and Marvi (Esmaileyan and Marvi,

2014) used a two-stage filter and embedded feature selection algorithm to reduce 2461

extracted prosodic and spectral features. Firstly, features are ranked by FDR and features

with a low FDR score are eliminated. Then, the features which are selected by the FDR

filtering are reduced in dimensions using LDA feature selection algorithm. PDREC and

EMO-DB with five emotions (anger, fear, joy, sadness and neutrality) were then used. An

accuracy rate of 55.74% for females and 47.28% for males was achieved using the PDREC

dataset. Also, accuracy ratings of 78.64% and 73.40% were obtained for Berlin database

for females and males, respectively.

2.7.4 Limitation of Existing Features Selection Approaches

The comprehensive review given by previous sections explains various limitations of exist-

ing features selection works that have been conducted in past researches. These limitations

will be discussed in this section. According to the above discussions, feature selection

techniques were used to reduce the enormous number of extracted features and select sig-

nificant features that represent emotional accurately. However, the best significant set of

emotional SER features that increase the classification accuracy has not yet been found.

In the reported works above, the features selection approaches can be split into two groups.

In the first group, a single feature selection algorithm was employed to find the most in-

formative features. Table 2.3 summarizes the single selection methods used in previous

works.

However, the quality of the selected features is dependent on the ability of the used algo-

rithm to rank or select the set of features. Consequently, each feature selection algorithm

will end up with a different subset of features as the best feature set. Therefore, an obvious
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Table 2.3: Summary of Single Selection Approaches in Previous Works

Selection Approach Reference

Ranking based filters (Schuller et al., 2006; Borchert and Dusterhoft, 2005; Zhou et al.,
2006; Chen et al., 2012b; Zheng et al., 2014)

Subset-based filter (Vogt and André, 2005; Shirani and Nilchi, 2016; Zhao et al., 2014;
Sun and Wen, 2015; Jassim et al., 2017; Huang et al., 2013)

Wrapper (Pao et al., 2006; Kotti and Paternò, 2012; Hendy and Farag, 2013;
You et al., 2006; Ververidis and Kotropoulos, 2005a,b; Schuller
et al., 2005; Schuller and Rigoll, 2006; Lugger and Yang, 2007;
Wang et al., 2014; Gharavian et al., 2013; Yogesh et al., 2017;
Muthusamy et al., 2015; Ding et al., 2018)

Embedded (Altun and Polat, 2009)

need to define a framework which it is more likely to obtain a reliable subset of features.

In the second group, a hybrid features selection algorithm was employed to select the best

representative features that give higher accuracy. Table 2.4 summarizes the hybrid selection

methods that were used in previous works.

In the second group, a hybrid features selection algorithm was employed to select the best

representative features that give a higher accuracy. Table 2.4 summarizes the hybrid selec-

tion methods that used in previous works.

Table 2.4: Summary of Hybrid Selection Approaches in Previous Works

Selection Approach Reference

Ensemble
filter-wrapper (Tickle et al., 2013)
filter-embedded (Mencattini et al., 2014)
embedded-embedded (Rong et al., 2009)
Sequential
filter-filter (Clavel et al., 2008; ?)
wrapper-wrapper (Mariooryad et al., 2014)
filter-wrapper (Schuller et al., 2007; Wang et al., 2017;

Wu and Liang, 2011; Tomar et al., 2014)
filter-embedded (Esmaileyan and Marvi, 2014)
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As can be seen from Tables 2.3 and 2.4, most of the work done by single selection methods

rely on wrapper algorithms. Even for the hybrid selection methods a considerable amount

of work has done using wrapper algorithms. Even though wrapper methods often achieve

better classification accuracy than filter methods, they tend to be much slower than filter

methods because they must repeatedly call the induction algorithm. Filter methods are

generally much faster than the wrapper and embedded methods and are more practical for

use on data of high dimensionality.

In addition, wrapper methods depend on classification algorithms which connect the fea-

tures to a specific classifier. For instance, in (Schuller and Rigoll, 2006) SFFS was used

with SVM to select features in order to find the optimal classifier. However, the result in-

dicates that not all classifiers show better performance with the reduced set, but that SVM

gave the best result. On the other hand, the results achieved using filter feature selection

methods are independent of classifiers and yield a much more general conclusion,

The implementation of a hybrid filter-filter approach appears to be the most suitable choice.

A few number of studies have been performed using this approach. Only one research could

be found that made use of a two-layer sequential ranking-based filter. The ranking-based

filter approach has much less complexity and low-cost computation compared to the subset-

based filter approach. However, the subset-based filter approach can eliminate irrelevant

and redundant features. In contrast, the ranking-based filter approach can eliminate irrel-

evant features only. A hybrid approach that can combine the advantages of the two filter

approaches could be promising.
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2.8 Reviews on Possible Techniques for Speech Emotion Recognition

This section reviews the techniques required for further improvements.

2.8.1 Features Extraction

This section concentrates on describing different voice quality, prosodic and spectral fea-

tures extraction techniques.

Loudness

A measurement of the sound level. It is closely linked to the frequency and the duration

of the sound. This scale has been built from psychoacoustics measurement methods called

direct measures (Stevens, 1956). It is obtained by first calculating 1000Hz voice pressure

ratios under different intensities and then takes 1/10 of the logarithm of the result.

Pitch and Autocorrelation

Pitch represents periodicity candidates as a function of time that may refer to acoustics,

perception or vocal fold vibrations. There are many types of Pitch Detection Algorithms

(PDA) in the literature. Time domain, frequency domain, and time-frequency domain re-

lated. The time domain method includes: the short-time average magnitude difference

function (AMDF); short-term autocorrelation function (ACF); the frequency domain method

which includes harmonics enhancement based on instantaneous frequency and Subhar-

monic Summation algorithm (SHS) methods. Finally, the time-frequency domain method

includes pitch detection based on Hilbert-Huang transform. In the context of this research,

only ACF and SHS functions will be discussed.
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ACF-based algorithms are simpler to implement and are quite robust against noise. In

addition, it is the most frequently used F0 estimators. ACF (f) for a discrete time domain

signal x(t) is expressed in Equation 2.1 below.

ACF (f) =
1

S

S−K−1∑
m=0

x(t)x(t+ k) (2.1)

Where:

x(t) = is signal in time domain
S = is total number of samples in a window
f = is the lag index

SHS pitch estimation is the value of f = 2s for which H(f) is maximum. H(f) is the

function that represents the sub-harmonic sum spectrum. This is illustrated in Equation 2.2

below.

H(f) =
N∑
n−1

hnP (nf) (2.2)

Where:

n = is the compression factor
hn = is a decreasing sequence implying that higher harmonic contribute less to the

pitch than lower harmonics do (0.84n−1)
N = is the number of harmonic that are taken into account (equal to 15)

Harmonic

Harmonic frequency is a signal or wave whose frequency is a multiple of fundamental fre-

quency. Fundamental frequency itself is considered as the first harmonic. HNR provides an
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indication of the overall period of the voice signal by measuring the ratio between the peri-

odic (harmonic part) and aperiodic (noise) components. NHR is a measure that quantifies

the amount of additive noise in the voice signal.

This can be found from the relative height of the maximum of the autocorrelation function.

The autocorrelation function (ACF ) is described in equation 2.1. The function has a global

maximum at the lag x = 0. The signal is said to have at least a periodic part if the highest

local maximum is at lag xmax and its height ACF (xmax) is large enough. The harmonic

strength R0 = ACF (xmax) is a number between 0 and 1 and results from normalized

autocorrelation function ACF .

ACFf (x) =
ACFf (x)

ACFf (0)
(2.3)

At lag xmax. If noise nn is added to a periodic signal hn of period T0 and nn and hn are

uncorrelated, the autocorrelation function of the resulting signal fn at zero lag is:

ACFf = ACFh(0) + ACFn(0) (2.4)

If white noise is added a local maximum can be found at lag xmax = T0 with height

ACFf(xmax) = ACFh(T0)ACFh(0). The autocorrelation function at zero lag equals

the power of the signal. Hence, the normalized autocorrelation at lag xmax represents the

relative power of the periodic (harmonic) component of the signal where its complement

represents the relative power of the noise component:
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ACFf (xmax) =
ACFh(0)

ACFf (0)
(2.5)

1− ACFf (xmax) =
ACFn(0)

ACFf (0)
(2.6)

HNR is presented in Equation 2.7 as shown below:

HNR(dB) = −10 1

m

m∑
j=1

log(1− 1

ACFf (xmax)
) (2.7)

NHR is presented by Equation 2.8 as shown below:

NHR(/) = 100
1

m

m∑
j=1

[1− 1

ACFf (xmax)]
(2.8)

Jitter and Shimmer

Jitter refers to the cycle to cycle variations of the fundamental frequency (f0) and is calcu-

lated as shown in Equation 2.9:

Jitter(i) =
|f0(i+ 1)− f0(i)|

(f0(i)
(2.9)

Shimmer indicates cycle to cycle variation in the energy (E) and is calculated as shown in

Equation 2.10:

Shimmer(i) =
|E(i+ 1)− E(i)|

(E(i)
(2.10)
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Jitter is a measure of frequency instability, while shimmer is a measure of amplitude insta-

bility.

Period

It is time for one cycle. This is measured by calculating the length of time for a known

number of cycles and then dividing it by the number of cycles. For N cycles and t length

of time, the period is given as shown in Equation 2.11:

Period =
t

N
(2.11)

Voice Break

The number of voice breaks denotes the number of distances between consecutive pulses

that are longer than 1.25 divided by the pitch floor. Similarly, the degree of voice breaks

indicates the total duration of the breaks between the voiced parts of the signal, divided by

the total duration of the analyzed part of the signal. The silences at the beginning and the

end of the signal are not considered as breaks.

Pulses

A model of the excitation of the vocal tract where each pulse represents a new excitation of

the vocal tract. The distance between pulses corresponds to the inverse of the local pitch.

For instance, if the local pitch in an interval is 100 Hz, the assigned pulses in the interval

are 0.01.
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Voice to Unvoiced Frame Ratio

The outline of the voice frame over the unvoiced frame is given in Equation 2.12.

voice− unvoiceframe− ratio = numberofvoicedframes

numberofunvoiceframes
(2.12)

Unvoiced to Total Frame Ratio

The outline of the voice frame over the total frame is given in Equation 2.13.

unvoiced− totalframe− ratio = numberofunvoicedframes

numberoftotalframes
(2.13)

Voice to Total Frame Ratio

The outline of the voice frame over total frame ratio is given in Equation 2.14.

voice− totalframe− ratio = numberofvoicedframes

numberoftotalframes
(2.14)

Probability of Voicing

This is conceded to be one of the judging emotion classes, since it uses short-time average

magnitude to detect voice. This is shown in Equation 2.15.

Mn =
+∞∑
∞

|x(m)|w(n−m) (2.15)
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Where:

Mn = is short-time average magnitude
x(n) = is speech signal
w(n) = is window function

Hammarberg index

HammI is the difference between the maximum energy in the 0-2000 Hz and 2000-5000

Hz frequency bands. Equation 2.16 describes HammI.

Hamml =
max(E0−2000Hz)

max(E2000Hz−5000Hz)
(2.16)

Where:

E0−2000Hz = the energy between 0–2000 Hz frequency bands
E2000Hz−5000Hz = the energy between 2000–5000 Hz frequency bands

Drop-off energy above 1000Hz

Drop-1000 denotes the relative amount of energy above 1000 Hz versus the low frequency

range. See Equation 2.17.

Drop1000 = 10log

∑ fs
2
f−1000Hz Ef∑1000Hz
f=0 Ef

(2.17)
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Where:

fs = the sampling rate
Ef = the energy in the frequency band

Glottal to Noise Excitation Ratio

GNE calculates the glottal to noise excitation ratio which was first introduced by Michael et

al. (?) in 1997. It is based on the correlation for Hibert which envelopes different frequency

channels. GNE determines whether the voice signal was caused by a produced noise in the

vocal tract or from vibrations of the vocal folds. Figure 2.5 following presents the steps for

extraction of mean and standard deviation of GNE features.

For each speech signal, the following steps should be performed:

 

Speech Signals
Downsampling the signal 

to 10 KHz
Inverse filtering 

Calculate Hibert 
envelopes.

Evalute cross correlation 
of each pairs  envelopes 

Calculate max correlation 
Calculate max evaluated 

correlation 
Calculate mean and Std

Figure 2.5: GNE Procedure

1. Down- sampling the signal to 10 KHz.

2. Inverse filtering of the speech signal to detect glottal pulses.

3. Calculate the Hibert envelope bands.

4. Evaluate the cross correlation function between such envelopes where the central

frequencies of the band are greater than half of the bandwidth.
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5. Pick the maximum value of each correlation between pairs of the frequency bands.

6. Pick the maximum from step 5 (which is the GNE for the time window).

7. Compute the mean and the standard deviation of resulting vector.

Mel-frequency Cepstral Coefficients

MFCC is based on the human auditory perception system that does not follow a linear scale

of frequency. MFCC is one of the most widely-used features in speech recognition because

of its superior performance over other features (Caballero-Morales, 2013). The MFCCs

are robust, contain much information about the vocal tract configuration regardless of the

source of excitation, and can be used to represent all classes of speech sounds (Pao et al.,

2005a).

Extracting features using MFCC techniques are presented through six processes, namely:

Pre-emphasizing; Framing and Windowing; Fast Fourier Transform; Mel-Frequency Filter

Bank; Logarithm; and Discrete Cosine Transform. The whole processes involved in the

MFCC technique are shown in Figure 2.6 following.

 Speech Signal Pre-emphasis
Framing and 
Windowing

Fast Fourier 
Transform

Mel Filter Bank Logarithm
Discrete Cosine

Transform (DCT)
MFCC

Figure 2.6: MFCC Feature Extraction Technique
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In the first process, the speech signal is pre-emphasized using a high-pass finite impulse

response (FIR) filter of order 1. In the framing and windowing process, the length of the

frame was set to 25 ms and the frame was shifted by 10 ms. For windowing, Hamming

window function is used. Following that, Fast Fourier Transform converts each frame of the

input speech signal from time domain into frequency domain. The result after this process

is often referred to as spectrum or period gram and to obtain a good frequency resolution,

a 512 point Fast Fourier Transform (FFT) is used. In Mel Frequency Filter Bank process, a

filter bank is created by calculating a number of peaks, uniformly spaced in the Mel-scale.

It is then transformed back to normal frequency scale. These are used as peaks for the

filter banks. Next, in the Logarithm process, the logs of the powers at each of the Mel

frequencies are calculated. Following this, Discrete Cosine Transform (DCT) process is

used to achieve the Mel- cepstral coefficients.

Log Mel Frequency Band

Mel frequency is a description of the short-term power of a sound by taking the logs of the

powers at each of the Mel frequencies. A frequency in Mel is a logarithmic function of the

frequency in Hertz. This is described in Equation 2.18.

mels = 2595log(1 +
hertz

700
= 1127ln(1 +

hertz

700
) (2.18)

Line Spectral Pairs Frequency

Line spectral pairs (LSP) (Kabal and Ramachandran, 1986) are derived from linear predic-

tion coefficients (LPC) for transmission over a channel. Since LSP has less sensitivity to

quantization noise, that makes it superior to LPC. LSP is obtained by decomposition of the
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LPC coefficient polynomial into a symmetrical and asymmetrical part. Figure 2.7 below

shows the decomposition procedure.

 
LPC Analysis

Decomposition 

Symmetrical

P(z)

Asymmetrical 

Q(z)

Figure 2.7: LSP Decomposition Procedure

In the z-domain H(z) the two polynomials P (z) and Q(z) are illustrated by the following

Equations:

P (z) = H(z) + z−(p+1)H(z−1) (2.19)

Q(z) = H(z)− z−(p+1)H(z−1) (2.20)

Where P (z) and Q(z) represent the vocal tract system with the glottis closed and opened,

respectively.

2.8.2 Feature Selection

The IGR and CFS-PSO features selection algorithms are described in the following sec-

tions.
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Information Gain Ratio

Information gain ratio(IGR) measures its importance and relevance to the class label. Com-

puting the information gain for a feature involves computing the entropy of the class label

for the entire dataset and subtracting the conditional entropies for each possible value of

that feature. The entropy calculation requires a frequency count of the class label by feature

value. All instances are selected with some feature value e and then the number of occur-

rences of each class within those instances can be counted. Following this, the entropy for

e is computed. This step is repeated for each possible value e of the feature. The entropy

of a subset can actually be computed more easily by constructing a count matrix, which

tallies the class membership of the training examples by feature value. After calculating

the information gain values of all features, the threshold of (0) was implemented. If the

information gain values of the features are higher than the threshold, the features were se-

lected; if not, the feature was not selected. Algorithm 1 below presents the algorithm of

IGR implementation in more detail.

Correlation Selection Based Particle Swarm Optimization Search

Correlation-based feature selection (CFS) (Hall, 1999) is a subset-based filter feature selec-

tion algorithm. CFS selects features according to correlation-based function. It eliminates

the irrelevant features that have low correlation with the class. In addition, it eliminates the

redundant features that are highly correlated with one or more of the remaining features.

The CFS feature-subset function is illustrated in Equation 19:

Particle swarm optimization (PSO) (Shi et al., 2001) is a population-based evolutionary

computation technique inspired by social behavior simulation. The PSO system is ini-

tialized with a population of random solutions. This population searches for an optimal
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Algorithm 1 Information Gain Ratio Algorithm
1: function IGR(F,E)
2: return Ranked Features
3: Input: Extracted Features (fi) and Emotions Label (ei)
4: F : domain of emotions
5: E : domain of features
6: p : Probability
7: H : Entropy
8: S = 0; // counter variable
9: for each ei do:

10: Calculate p(ei); // calculate the probability for each class
11: He = S + p(ei)log2(p(ei));
12: S = He;
13: end for
14: for each fj do:
15: Calculate p(fj); // calculate the probability of value j for feature f
16: Hf = S + p(fj)log2(p(fj));
17: S = Hf ;
18: end for
19: for each ei do:
20: for each fj do:
21: Calculate p(ei, fj);
22: Hef = S+p(ei, fj)log2p(ei, fj); // calculate the relative entropy ei given fj
23: S = Hef ;
24: end for
25: end for
26: H(E,F ) = (−1) ∗Hf ∗ (−1) ∗Hef ;
27: IGR = He −H(E,F )
28: end function
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solution by updating generations. In PSO, a potential solution is called a particle. Each

particle makes use of its own memory and knowledge gained by the swarm as a whole

to find the best (optimal) solution in a d-dimensional search space. The particles have a

positional value and velocities which direct their movement.

CFS-PSO feature technique is used to form the fitness functions and evaluation of goodness

of the reduced feature subset. For a feature subset X with m features, x = (x1, x2, x3...xm),

CFS first calculates a matrix of feature-class and feature-feature correlations from the train-

ing data using Equation 19 and then searches for feature subset space using PSO search. In

PSO, each candidate solution of the problem is represented as a particle, which is encoded

by a vector or an array. Particles move in the search space to search for the optimal solu-

tions. During the movement each particle can recall its best experience. The entire swarm

scans for the ideal (optimal) arrangement by refreshing the position of every particle based

on their best understanding and its neighbouring particles. Algorithm 2 below shows the

algorithm for CFS-PSO.

2.8.3 Classification

only the support vector machine classifier will discuss her.

Support Vector Machine

Support vector machine (SVM) is a supervised machine learning algorithm that can be em-

ployed for classification and regression purposes. It goal is to create a separating line (hy-

perplane) which separates the data classes. However, there are many possible hyperplanes

that could be chosen. The best hyperplane is one that maximizes the margin between the

separating lines.
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Algorithm 2 CFS-PSO Feature Selection
1: function CFS-PSO(F)
2: return Selected Features
3: Input: Full Features set(fi)
4: x : position of each particle;
5: v : velocity of each particle ;
6: p : particle;
7: s : stop criteria;
8: xp : personal best position;
9: xg : global best position;

10: w : inertia weight;
11: c1, c2 : acceleration constants or learning parameters;
12: r1, r2 : random values between (0,1);
13: d : direction;
14: k : features in subset;
15: fc : mean of features-class correlation;
16: ff : average of feature-features inter-correlation;
17: for each pi do:
18: initialize xiandvi
19: end for
20: while s not met do:
21: Ms = kfc/

2
√
k + (k(k − 1)ff

22: for each pi do:
23: get xp;
24: get xg;
25: end for
26: for each pi do:
27: for each di do:
28: vi(t + 1) = ∗ vi(t) + c1 ∗ r1(xg(t)xi(t)) + c2 ∗ r2(xp(t)xi(t));

// update velocity
29: xi(t+1) = xi(t)+vi(t+1) ; // update position
30: end for
31: end for
32: end while
33: Calculate the accuracy of the selected features subset;
34: Return the selected features subset;
35: end function
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A Library for Support Vector Machines (LIBSVM) is part of the open source machine

learning libraries, developed at the National Taiwan University. LIBSVM implements the

sequential minimal optimization (SMO) algorithm for kernelized SVM.

SMO was proposed in 1998 as a new algorithm for training SVM by Platt (Platt, 1998). It

breaks the large numerical quadratic programming (QP) used by the previous SVM learning

algorithms into a series of smallest possible QP problems. These are then solved analyti-

cally.

Assuming that a training set (x1, y1),..., (xn, yn), where xi is the input vector yi and yi ∈

-1, +1 is a binary label corresponding to it. The QP problem to train an SVM is shown in

Equation 2.21 below:

n∑
αi

αi −
1

2

n∑
i=1

n∑
j=1

yiyjK(xi, xj)αiαj (2.21)

That subject to 0 ≤ αi ≤ C, for i = 1, 2, , n:

n∑
i=1

yiαi = 0 (2.22)

Both hyperparameter and kernel functions are supplied by the user while the variables i are

Lagrange multipliers.

As mentioned above, SMO breaks the QP problem into a series of smallest possible sub-

problems. Because of the linear equality constraint involving the Lagrange multipliers αi,

the smallest possible problem involves two such multipliers. Then, for any two multipliers

α1 and α2, the constraints are reduced as described below:
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This reduced problem can be solved analytically: one needs to find a minimum of a one-

dimensional quadratic function. The letter k indicates the negative of the sum over the rest

of terms in the equality constraint, which is fixed for each iteration. The algorithm proceeds

as follows:

1. Find a Lagrange multiplier 1 that violates the KarushKuhnTucker (KKT) conditions

for the optimization problem.

2. Pick a second multiplier α2 and optimize the pair (α1, α2).

3. Repeat steps 1 and 2 until convergence occurs.

When all the Lagrange multipliers satisfy the KKT conditions (within a user-defined tol-

erance), the problem is considered to be solved. Although this algorithm is guaranteed to

converge, heuristics are used to choose the pair of multipliers so as to accelerate the rate of

convergence. This is critical for large data sets since there are n(n-1)/2 possible choices for

αi and αj .

2.9 Summary

This chapter presents the issues that faced SER features-based researchers. Some of the

important existing works conducted by researches in features extraction and selection have

been outlined. It was observed that the existing features extraction technique and selection

methods were not sufficient to obtain the optimal set of feature; hence, a better model for

features extraction and selection was required. The next chapter describes the research

methodology.
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CHAPTER 3

Research Methodology

3.1 Introduction

This chapter describes and discusses the research methodology for the proposed SER

framework. It begins with an overview of the theoretical model. Secondly, an overview

of the research framework is provided. Following this, the speech emotional datasets used

in this study are discussed. Finally, the experiment environment is described along with the

performance measurements.

The main research question is:

• How to extract and select a compact set of features that improve the SER perfor-

mance?

The thesis project is divided into five phases with their own sub research questions. The

answers to these questions will lead to a conclusion to the main research question. The

research methodology is based upon constructive research and action research.
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3.2 Overview of the Theoretical Model

Firstly the research questions solution will be built using constructive research. This solu-

tion is built in form of a model from the existing theories which collected by performing a

comprehensive survey of a diverse source. Then the model should be tested for its practical

relevance and its theoretical contribution. Figure 3.1 illustrates the constructive research

process.

 

Solution

Model Constrction

Practical Relevance

Theoretical 
Contribution

Research Questions 

Theoretical body of 

knowledge 

Figure 3.1: Overview of the constructive research methodology process

A theoretical body of knowledge is created using a literature survey from peer-reviewed

research and published literature. The literature survey is presented in Chapter Two. The

developed theoretical model seeks to be the solution to the main research question. The

goal is to identify the relation between features and SER performance. Therefore, the

questions of this phase are:

• Question (1): What is the impact of features in SER recognition accuracy?

• Question (2): What consideration should be given in designing features extraction

techniques and selection methods?
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3.3 Overview of the Research Framework

The action research methodology which combines theory and practice used to construct

the proposed framework and practical evaluation. Figure 3.2 illustrates the action research

process.

 

 

 

 

 

Diagnosis

Proplem identification

Action

Planning

Action
implementation

Results

Evaualtion

Figure 3.2: Overview of the action research methodology process

The existing features sets are diagnosed to identify problems and the current situation.

Actions then are taken to construct the framework. Finally, the results are evaluated. This

process is done iteratively and the phases provide feedback to each other.

3.3.1 Phase (1): Investigated SER Existing Features Extraction Techniques Capa-

bility

In this phase three acoustic features extraction techniques examine, to investigate its capa-

bility to recognize emotions. The research question is:

• Question (3): What is the impact of the different types of features in emotion recog-

nition?
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Selective features extraction approach has been used for voice quality, prosodic and spectral

features. This approach will be discussed in Section 1.6.2.

3.3.2 Phase (2): Identify the Best Features Extraction Technique Combination

This phase investigates different features combination to determine the best features com-

bination. The research question is:

• Question (4): What is the best feature extraction technique combination that is ap-

propriate for emotion recognition?

3.3.3 Phase (3): Enhance the Features Extraction Technique

An enhanced features extraction technique has been proposed and examine in this phase.

This enhanced technique named voice quality prosodic spectral technique (VQPS). The

research question is:

• Question (5): How to enhance the feature extraction technique that obtains a better

representation of emotion?

The VQPS use the features combination that proves successful in the last phase and tries

to enhance the recognition accuracy by using traditional and new voice quality features.

the traditional features extracted using a brute force approach which will be discussed in

section 1.6.2.
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3.3.4 Phase (4): Reduced Features Dimensionality and Identify the Significant Fea-

tures

In this phase, a hybrid selection method has been designed to reduce the features space and

select the final set of features. The research question is:

• Question (6): How can a better feature selection method be designed?

The hybrid selection method named hybrid filter-based feature selection method (BHFFS).

3.3.5 Phase (5): Comparison and Benchmark

In this phase, the propose SER framework performance is compared with the previous

model.

3.4 Emotional Speech Dataset

The first step in developing the SER system is the selection or collection of an emo-

tional speech dataset. In recent years, many emotional speech datasets have been built

for speech emotion research; some of these datasets are standard and publicly available for

researchers. While many of them used personal datasets collected by some researchers to

fulfil their needs in developing SER. Three different types of datasets have been used in

SER studies, namely: acted; spontaneous; and elicited datasets.

The acted (simulated) datasets were recorded with the help of professional actors. The

actors were asked to act or simulate pre-defined emotions using ready-made scripts. The

most popular acted datasets are the Danish emotional speech dataset (DES) (Engberg et al.,

1997) and the Berlin emotional speech dataset (EMO-DB) (Burkhardt et al., 2005).
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The spontaneous (natural or real) datasets convey a real emotion that is recorded in the real

world usually without the knowledge of the speakers. They can be collected by recording

conversations from public places such as: call centers; aircraft cockpits; TV talk shows;

oral job interviews; and doctor-patient conversations, etc. The best example of the spon-

taneous dataset is the speech under simulated and actual stress (SUSAS) dataset (Hansen

and Bou-Ghazale, 1997).

The elicited datasets were recorded form speakers who made to react in an artificial situa-

tion without their knowledge. Emotional elicitation procedures can include verbal labels,

scenarios or photographs shown to a speaker. This is a tedious kind of datasets; hence,

until today, there have been only a very few elicited emotional speech datasets. Examples

of datasets collected in this way are the German SmartKom dataset (Schiel et al., 2002) and

the German FAU Aibo Emotion Corpus (Batliner et al., 2008).

The three types of datasets mentioned above serve different purposes. The first type is suit-

able for theoretical researches while the second and third types can be helpful in creating

real-life applications. However, the collection of spontaneous and elicited datasets is not

that easy. On the other hand, the acted dataset is easy to collect and control and does not

face ethical issues.

In recent years, a new type of dataset was shown which contained audio and visual emo-

tions. The English Surrey audio-visual expressed emotion (SAVEE) (Jackson and Haq,

2014) and the SEMAINE dataset (McKeown et al., 2010) are examples of this type of

dataset.

For this research, three acted datasets, namely, the Danish (DES), the German (EMO-DB)

and the English (SEVAA) datasets were initially selected. Both EMO-DB and SEVAA

are publicly available so they could be directly downloaded. DES is publicly available
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under an agreement. Many emails seeking permission to access the dataset were sent,

with no response received. In the case of SEVAA, no benchmark works were found for

compression. In addition, it showed a poor result; hence, EMO-DB dataset is the only

dataset that was utilized in this research.

3.4.1 Berlin Dataset of Emotional Speech

This section provides details about the EMO-DB dataset which contains utterances spoken

in German. This dataset is freely and publicly available and can be directly downloaded

without a request. It has been used by many researches in SER, (Alonso et al., 2015).

EMO-DB recorded at the Department of Acoustic Technology of Technical University of

Berlin in Germany and funded by the German Research Community. It was recorded using

a Sennheiser microphone at a sampling frequency of 16 kHz, with the help of ten profes-

sional actors (five male and five female) who were asked to simulate seven emotions. These

emotions were, namely: anger; anxiety; boredom; disgust; happiness; sadness; and neu-

trality. They did so using ten utterances as shown in Table 3.1 and Table 3.1; specifically,

five short and five longer sentences that can be used in daily communication and can also

be said with all the emotions. About 800 such utterances were recorded.

After recording the dataset, twenty judges were asked to listen to the utterances in a random

order, in front of a computer monitor. They listened to each sample only once, before

they decided which emotional state the speaker had been in. After selection, the dataset

contained a total of 535 speech files.

As shown in Table 3.2, EMO-DB is an imbalanced dataset. This means that not all the

emotions have the same number of recorded samples; the highest number of samples being

for the emotion of anger (127), and the lowest being for the emotion of disgust (46). All
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Table 3.1: EMO-DB Dataset Sentences

Code Sentences in German Sentences in English

a01 Der Lappen liegt auf dem Eisschrank. The tablecloth is lying on the frigde.
a02 Das will sie am Mittwoch abgeben. She will hand it in on Wednesday.
a04 Heute abend knnte ich es ihm sagen. Tonight I could tell him.
a05 Das schwarze Stck Papier befindet sich da oben neben

dem Holzstck.
The black sheet of paper is located up there besides the
piece of timber.

a07 In sieben Stunden wird es soweit sein. In seven hours it will be.
b01 Was sind denn das fr Tten, die da unter dem Tisch stehen? What about the bags standing there under the table?
b02 Sie haben es gerade hochgetragen und jetzt gehen sie

wieder runter.
They just carried it upstairs and now they are going down
again.

b03 An den Wochenenden bin ich jetzt immer nach Hause
gefahren und habe Agnes besucht.

Currently at the weekends I always went home and saw
Agnes.

b09 Ich will das eben wegbringen und dann mit Karl was
trinken gehen.

I will just discard this and then go for a drink with Karl

b09 Ich will das eben wegbringen und dann mit Karl was
trinken gehen.

I will just discard this and then go for a drink with Karl

b10 Die wird auf dem Platz sein, wo wir sie immer hinlegen. It will be in the place where we always store it.

the available information regarding the speech dataset can be accessed via the internet.

Table 3.2: Number of Emotions in the EMO-DB Dataset

Emotion Anger Anxiety Boredom Disgust Happiness Sadness Neutral

Records 127 69 81 46 71 62 79

3.4.2 Dataset Preparation

EMO-DB can be downloaded directly from the internet (http://emodb.bilderbar.info/index-

1024.html). The 535 wav file was downloaded into one folder that has been separated into

seven folders according to the emotion classes to facilitate labeling after the features ex-

traction process. Every file in the dataset is named according to the same scheme. Every

file name is seven (7) digits long where digits 1-2 indicate the speakers name. Digits 3-5

indicate the text code (see Table 3.1). Digit 6 indicates the emotion named by the German

word for emotion. Finally, digit 7 signifies whether there is more than one version of the
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sentence. Figure 3.3 illustrates an example of a naming scheme for 03a01Fa.wav.

 
 

     0            3                      a         0        1                          F                        a  

 

                               Speaker                          Text Code                     Emotion           Version 

Figure 3.3: File naming scheme for (03a01Fa.wav)

After arrangement of the dataset files, the second step in dataset preparation should be

noise cancellation. However, EMO-DB conceder has a standard dataset that records in a

studio with high-quality equipment so it does not need that step. In fact, the researchers

who wanted to test the SER system under noise conditions were required to add noise to

the dataset.

3.5 Experimental Tools

For this research, a number of tools were used in developing SER as summarized in Table

3.3. The Praat tool (5.3.84)(Boersma et al., 2002) and openSMILE toolkit (2.3.0) (Eyben

et al., 2013) were used to preprocess and extract the features from the speech samples;

while WEKA (3.7.12) (Hall et al., 2009) was used to implement the classification and se-

lection algorithms. In addition, it was used for dataset balancing and features normalization

Table 3.3: The Tools used in this Research

Tools Description of usage

Praat 5.3.84 Implement the features extraction algorithms
openSMILE 2.3.0 Implement the features extraction algorithms
WEKA 3.7.12 Implement the section and classification algorithms
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As mentioned above, two tools have been used for extracting acoustic features from the

speech signal; the openSMILE and the Praat tool respectively. The next sections will dis-

cuss the limitations and the need for this selection. However, the literature also present

works that use more than one extraction tool; for instance, (Ramakrishnan and El Emary,

2013) use Praat and openSMILE for features extraction.

3.5.1 OpenSMILE Toolkit

Open Speech and Music Interpretation by Large Space Extraction (openSMILE) is a com-

mand line tool written in C++ for signal processing and machine learning applications. It

can be used with various platforms such as Linux, Windows, and MacOS; openSMILE

also supports various data formats commonly used in the field of data mining and machine

learning. However, regarding to this research it has a limitation on the extraction of voice

quality features. According to openSMILE documentation, probability of voicing, jitter,

and shimmer are the voice quality features that can be computed by openSMILE. Different

works in SER make use of the openSMILE toolkit in their research; for example (Chen

et al., 2012b; Tickle et al., 2013; Mariooryad et al., 2014; Cao et al., 2015; Yogesh et al.,

2017; Klaylat et al., 2018).

3.5.2 Praat Toolkit

The Praat toolkit is a free graphical user interface package that is used for the recording

and analysis of speech signals. Different voice quality, prosodic and spectral features can

be extracted using this tool. As with openSMILE, Praat also supports various platforms

including Linux, Windows and MAC. Some of the researchers who use Praat in there re-

search studies include (Zhao et al., 2014; Tomar et al., 2014; Verma et al., 2016; Shirani
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and Nilchi, 2016; Liu et al., 2018). The main strength of Praat is that it has an extensive

help function that is updated constantly. Praat also offers its own scripting languages which

are small programs that compensate for missing functions. Different Praat scripts were de-

veloped for this research. Figure 6 following shows an example of a script used to read all

audio files from a specific folder.

3.5.3 WEKA Toolkit

Waikato Environment for Knowledge Analysis (WEKA) Toolkit is an open source machine

learning toolkit implemented in the Java language that contains a collection of machine

learning algorithms and tools for data pre-processing. It is powerful software that contains

a variety of tools for data processing and a machine learning algorithm. Various researchers

use WEKA in implementing and testing their SER system; notably, the works of (Tickle

et al., 2013; Oflazoglu and Yildirim, 2013; Mariooryad and Busso, 2014; Verma et al.,

2016). For classification purposes, the A Library for Support Vector Machines (LIBSVM)

(Chang and Lin, 2011) from WEKA was implemented.

3.6 Features Preparation

In this section, the preparation process for audio files will be present. This involves features

pre-processing, features extraction approach, the features file format and features post-

processing.
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3.6.1 Features Pre-processing

Features pre-processing is an important step that formulates the speech signal before fea-

tures extraction; it usually involves framing, windowing and removing noise from the

speech signal. However, as mentioned before in Section 3.4.2, EMO-DB does not has

noise.

Framing

The speech signal is segmented into several frames before extracting the features 100

frames per second ware used.

Windowing

After framing a window applied to each individual frame to minimize the signal disconti-

nuities at the beginning and end of each frame. Hamming window of 25 ms size was used

for all features except for pitch Gaussian window of 60 ms size was used.

3.6.2 Features Extraction Approach

The features extraction approach taken in this study is a mixed approach based on selective

and brute force approaches respectively. The selective approach is based on choosing the

features that have been used in related work and have proved effective; while the brute force

approach is based on extracting a large number of features in the assumption that some of

them will be found valuable.
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The Selective Approach

The selective features are chosen from INTERSPEECH features sets. Schuller et al. in-

troduced five (5) different acoustic feature sets for SER, namely: INTERSPEECH 2009

(Schuller et al., 2009); INTERSPEECH 2010 (Schuller et al., 2010); INTERSPEECH 2011

(Schuller et al., 2013). These feature sets were used in literature studies by several re-

searchers in SER. For the purpose of benchmarking and comparison of the result obtained

from other researchers results (especially for the features selection) the INTERSPEECH

2010 feature set was used. Many researchers adopted INTERSPEECH 2010 in their work

(Chen et al., 2012b; Oflazoglu and Yildirim, 2013; Mariooryad et al., 2014; Sun and Wen,

2015; Sun et al., 2015; Yogesh et al., 2017).

The feature set covers the three feature categories: voice quality (jitter, shimmer and voic-

ing); prosodic (F0 and loudness); as well as spectral (MFCC, LSP, and log Mel freq. band)

features. It uses 21 statistics functions applied to 76 LLD (38 LLD with 38 corresponding

deltas). The number of pitch onsets and the total duration of the input are then appended

(two (2) features). A set of 1582 acoustic features are subsequently the results. Table 1

following shows the features and the feature statistics functions.

The emobase2010.conf configuration file has been used to extract all features in ARFF

format.

The Brute Force Approach

The brute force feature set was extracted using the Praat and openSmile toolkit. A to-

tal of 181 voice quality features have been extracted including: harmonic; voicing; jitter;
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Table 3.4: The Selective Approach Features Set

Feature Descriptors Functions

Voice Quality
Voicing probability Lin.regression error Q/A
JitterLocal, jitterDDP Percentile range (99-1)
ShimmerLocal Up-level time75/90

Prosodic
PCM loudness MaxPos, minPos, mean,
F0 envelop Lin.regression coeff.1/2
F0final percentile 1/99

Spectral
MFCC[0-14] Stddev, skewness, kurtosis,
Log Mel freq. band[0-7] Quartile1/2/3
LSP frequency[0-7] Quartile range (2-1)/(3-1)/(3-1)

shimmer; autocorrelation. Table 3.5 following shows features extracted by a brute force

approach.

The New Approach

The brute force feature set was extracted using the Praat toolkit. A total of 6 voice qual-

ity features have been extracted including: Hamml; GNE; voice to total frame ratio and

Do1000. Table 3.6 following shows features extracted by a brute force approach.

3.6.3 Features File Format

After features extraction, the features set were required to be saved in an appropriate file

format. WEKA tool primary file format is the Attribute-Relation File Format (ARFF)

which is encoded using the American Standard Code for Information Interchange (ASCII)
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Table 3.5: The Brute Force Approach Features Set

Description Function

Harmony min, max, range, mean, std
HNR mean
NHR mean
Voice break number, degree
Period number, mean, std
Pulses number
Voicedunvoiced frames ratio
Unvoicedtotal frames ratio
Jitter local, ddp, local absolute, rap, ppq5,, mean, std
Shimmer Local, local dB, apq3, apq5, apq11, ddp
Autocorrelation mean
Voicing probability Lin.regression error Q/A

Table 3.6: The New Approach Features Set

Description Function

GNE mean, std
Pulses number
Voicedtotal frames ratio
Do1000 slope, offset
Hmmel Hmmel

and defines a list of instances along with the individual attributes that those instances share.

The openSMILE tool has the ability to save the extracted features to ARFF file format

directly. However, this is not the case for the Praat tool that saves the extracted features

in a text file format which has to transfer to Excel format and subsequently to a comma-

separated values (CSV) format. Finally, the file is transferred to ARFF format using WEKA

tool. Figure 3.4 gives a sample of ARFF file denoting five attributes.
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@relation VQPS 

 

@attribute gneMean numeric 

@attribute gneStd numeric 

@attribute Do1000(slope) numeric 

@attribute Do1000(offset) numeric 

@attribute Hmm numeric 

@attribute Emotion 

@data 

0.27686,0,0.395669,0.65849,0.259121,0.451885,0.360866,0.521552,0.4694

57,0.182686,0.392789,0.301189 

Figure 3.4: ARFF File Sample)

3.6.4 Features Post-processing

Before the extracted features can be inputted as set to the classifier, they must undergo

post-processing so as to be in a better format for classification. Post-processing in the form

of features scaling or normalization was used.

Missing Data Handling

After the end of the extraction process it was notes that a big number of features have many

missing data. It has been handling in two way. first the features that have missing data

larger than 20% it have been discarded. second for the features that have missing data less

than 20% ReplaceMissingValue filter in Weka tool has been used.

Features Normalization

Some of the extracted features may vary more widely than other features. This renders the

classification less effective because the decision may be made based on one feature alone.

To avoid this normalization, [0-1] was applied in order to have similar distance between all

features and ensure that every feature contributes as equitably as possible.
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3.7 Validation

K-fold cross-validation was used in this experiment for validation purposes. This validation

method has been used in many other works regarding EMO-DB (Schuller et al., 2005; ?;

?; Ahmad, 2016; ?; Manolov et al., 2017). In this process, the dataset is divided into k

subsets. Each time, one of the k subsets is used as the test set, and the other k-1 subsets

form the training set. Error statistics are calculated across all k trials, specifically k=10

being widely used.

3.8 Evaluation Metrics

To evaluate the improvement of SER, several methods have been used to evaluate the per-

formance in the area of emotion recognition. Two methods were used here, specifically: the

confusion matrix which gave accuracy to the individual classes; and the overall accuracy.

These methods are commonly used in SER evaluation.

3.8.1 Confusion Matrix

The confusion matrix is a visualization of the performance of supervised learning algo-

rithms. It is used to show the relationships between actual and predicted classes. This

is performed by presenting the number of correct and incorrect classes predicted by the

model, compared with the actual classes in the test data. The confusion matrix is n-by-n,

where n is the number of classes, with the rows of the matrix representing the instances in

an actual class, and the column of the matrix representing the instances in a predicted class.

Table 3.6 following shows an example of the confusion matrix for the classification model,

which has been used to classify two classes, specifically yes and no.
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Table 3.7: Example of the confusion matrix

Predicted Classes
Yes No

Actual Classes Yes a b
No c d

For this example, the entries in the confusion matrix have the following meaning:

• a is the number of correct predictions where an instance is yes.

• b is the number of incorrect predictions where an instance is no.

• c is the number of incorrect predictions where an instance is yes.

• d is the number of correct predictions where an instance is no.

All correct predictions are located on the diagonal of the table, so it is easy to visually

inspect the table for errors. These will be represented by values outside the diagonal.

3.8.2 Classification Accuracy

The classification accuracy is the percentage of correctly classified instances over the total

number of instances. It is determined using equation 3.1.

Accuracy =
CorrectPredictedInstance

TotalInstance
(3.1)

Two accuracy measurements were used, including individual class accuracy, which was

calculated for every emotion, and overall accuracy respectively.
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3.9 Summary

This chapter outlines the theoretical model and the research framework adopted in this

study and provides a guideline for detailed investigations provided in Chapters 4. Further-

more, in this chapter, the background to the datasets used in the research was described,

including the tools used and how they were used. Finally, the evaluation metrics which will

be used in Chapters 4 were mentioned.
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CHAPTER 4

Results and Discussions

4.1 Introduction

In this chapter the results achieved by following the research methodology which described

in Chapter 3 are presented. The following sections describe the output from research in

each phases and seek to answer the research questions.

4.2 Creation of the SER Features model

This section presents the theoretical model to the research questions of phase 1, described

in the research methodology. The model was named the SER features model and it is based

on the theoretical body of knowledge gained in Chapter 2. The purpose of this model

is to describe the consideration in designing features extraction techniques and selection

methods that result in improving the SER recognition accuracy.

Figure 4.1 illustrates the proposed SER features model. The model blocks are built ac-

cording to the theoretical knowledge to illustrate the necessary elements needed for a good

foundation in SER features.
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Figure 4.1: The SER Features Model

The main contribution of the model is its structuring of existing theories and concepts. The

following is a description of each blocks role in the model.

1. Features: Features processes in recognition, mainly categorizes into two the features

extraction and selection process. Therefore, this block is located at the bottom of the

model to symbolize the needs to be considered in all decision made in SER develop-

ments.

(a) Feature Extraction: The first process in any speech recognition system that

aims to transfer the audio file to a vector of features.

• Feature Extraction Technique Type: This block is for the types of fea-

tures that should be used in SER. This features types affect directly the

recognition accuracy. The feature extraction technique types are found in

Section 2.5.1
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• Feature Extraction Technique Combination: This block is for the com-

bination that made from different types of features that either to be from

one single type or from hybrid type. This combination affect also the

recognition accuracy directly or throw affecting features dimensional. The

different feature extraction technique combination in SER are found in Sec-

tion 2.7.1.

(b) Features Selection: Came after features has been extracted. Feature selection

aims to select significant features and reduce search space which improves the

accuracy of SER.

• Selection Methods Combination: Implementing single or hybrid selec-

tion method affects the final compact feature set and the dimensional of

this set. The selection methods taxonomy is found in Section 2.5.2.

• Selection Methods Approach: Different selection approaches have been

used for SER each of them has advantage and disadvantages that could af-

fect the final compact features set. The selection methods used in SER is

found in Section 2.7.3.

2. Features Effect:

• Compact Features: Since not all features contribute equally to emotion recog-

nition, it is desirable to identify a compact feature set that is necessary to be

analyzed. This feature set affected by the combination of the selection method
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single or hybrid, and it also affected by the type of the approaches that used in

features selection. in the other hand, this feature set affects the features Dimen-

sionality directly.

• Features Dimensional: Features Dimensional: reducing features dimension-

ality is always a big concern in recognition systems. the growing of the fea-

tures sets size or dimensional help in improving recognition accuracies in many

cases. Unfortunately, the big growth of the feature set could lead at many cases

to harming the classifier performance which leads to decries the recognition ac-

curacy. in addition to the effect of the high dimensionality in the recognition

accuracy, it also wastes memory and complicates the system design.

• Recognition Accuracy: The accuracy is a major performance evaluation method

in SER. Although some researchers use addition evaluation methods. The indi-

vidual and overall emotion recognition accuracy were Remains the most impor-

tant evaluation methods SER. The details about recognition accuracy are found

in Section 3.5.

4.3 Creation of the SER Framework

Using the theoretical model an SER framework proposed. As illustrated in Figure 4.2.

EMO-DB dataset is the input of the framework and its details is provided in Section 3.4.

The SER framework content of eleven tasks: (A) Pre-processing, (B) Features Extraction,

(C) selective approach, (D) brute force approach, (E) New approach, (F) Combination, (G)

Post-processing, (H) Features selection, (I) Classification, (J) Evaluation, and (K) Compar-
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Figure 4.2: The SER Framework

ison and Benchmark. The description and explanation on each task is given below:

(A) Pre-processing: The features pre-processing involve framing and windowing as de-

scribed in Section 3.6.1.

(B) Features extraction: Extracting three acoustic features namely: voice quality, prosodic

and spectral features. The detail of this features types is reported in Section 2.5.1.

(C) Selective approach: A selective voice quality, prosodic and spectral features were

extracted using the same method in INTERSPEECH 2010. The details about this approach

and the features description are found in Section 3.6.2.1.

(D) Brute force approach: Used only for voice quality features by extraction all tradi-

tional features that prove success in previous work. The details about this approach and the

features description are found in Section 3.6.2.2.

(E) New approach: Introduce six voice quality features three of them not used before in

developing SER while the other not used with EMO-DB dataset. The details about this

approach and the features description are found in Section 3.6.2.3.
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(F) Combination: Four combination sets will examining

(G) Post-processing: The features post-processing involve normalization and missing

value handling as described in Section 3.6.4.1.

(H) Features selection: Implement enhanced selection method that balances the dataset

before the selection.

(I) Classification: Classify the emotion into the respective class using LIBSVM. The de-

tails about LIBSVM are found in Section 2.8.3.

(J) Evaluation: Two types of evaluation, the confusion matrix that provides the individ-

ual emotion recognition accuracy, and the classification accuracy that provides the overall

recognition accuracy. The details about individual and overall recognition accuracy are

found in Section 3.8.

(K) Comparison and Benchmark: A comparison with previously reported work that use

different extraction technique and selection method..

Figure 4.3 show the tasks involved in first, second,third, forth and fifth phase respectively.
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Figure 4.3: SER framework task Detail
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4.3.1 Phase (1): Investigated SER Existing Features Extraction Techniques Capa-

bility

The purpose of this phase is to investigate different acoustic features extraction technique

capability in recognize emotions. The phase tasks are given in Figure 4.2. Selective ap-

proach used to evaluate voice quality (V QS) prosodic (PS) and spectral features (SS) indi-

vidually.

After pre-processing EMO-DB dataset audio signal as mentioned in Section 3.8, a total

of 151 selective voice quality features, 114 selective prosodic features, and 1302 selective

spectral features were extracted using openSMILE toolkit as shown in Table 4.1 , 4.2 and

4.3.

Table 4.1: Description of Extracted Selective Voice Quality Features

Feature Sequence Description

31-104 Jitter (local, ddp)
105-141 Shimmer (local)
142-181 Voicing

Table 4.2: Distribution of Extracted Selective Prosodic Features

Feature Sequence Description

182-222 loudness
223-295 Pitch(F0)

The extracted features then post-process as mentioned in Section 3.6.4 before classifica-

tion. Finally, the recognition accuracy of the individual features type was evaluated by

comparing the results obtained.
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Table 4.3: Distribution of Extracted Selective Spectral Features

Feature Sequence Description

296-925 MFCC
926-1261 Log Mel freq. Band
1262- 1597 LSP frequency

From the results obtained, it can be observed that the accuracy obtained using S set was

found to be much higher than that of the V QS and P set. An overall accuracy of 87.10%

could be achieved with S set; while an overall recognition of 64.11% and 69.91% could

be achieved with V QS and P respectively. Table 4.4 below summarizes the comparison

of results based on the number of features and recognition accuracy obtained from the two

feature sets.

Table 4.4: Comparison of Results obtained with V QS , P and S Sets

Features Set No. of Features Accuracy (%)

V QS 151 64.11
P 114 69.91
S 1302 87.10

The results indicated that spectral features are more useful in improving recognition accu-

racy. This result is compatible with some reports in the literature that claim that spectral

features technique is more useful in emotion recognition. However, given the size (dimen-

sionality) of the extracted spectral features, it can be noted that the size of the spectral

features is much larger than the other type features size. This could be the reason for the

improvement progress. It also indicated that voice quality features result in the worst recog-

nition accuracy and this also confirm the reported results in literature even with a bigger
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size of features than prosodic features it gives a lower result than prosodic features. How-

ever, in contrasts with some reports in literature the different between voice quality feature

accuracy and prosodic features accuracy is not huge.

Amongst V QS emotions, sadness achieved a maximum recognition of 91.94% and the

emotion of happiness achieved a minimum recognition of 26.76%. The confusion matrix

of results obtained is illustrated in Table 4.5 following.

Table 4.5: Confusion Matrix obtained with V QS Set

Emotion Anxiety Anger Disgust Boredom Sadness Natural Happiness

Anxiety 40 11 3 3 3 3 6
Anger 7 98 5 1 0 1 15
Disgust 1 5 21 3 1 10 5
Boredom 0 2 2 60 5 9 3
Sadness 1 0 0 3 57 1 0
Natural 6 1 3 12 6 48 3
Happiness 6 36 4 5 0 1 19

In relation to P , the emotion of sadness achieved a maximum recognition of 88.71% while

the emotion of disgust achieved a minimum recognition of 43.48%. The confusion matrix

of results obtained is shown in Table 4.6 following.

Table 4.6: Confusion Matrix obtained with P Set

Emotion Anxiety Anger Disgust Boredom Sadness Natural Happiness

Anxiety 44 9 6 1 1 6 2
Anger 8 95 4 0 0 1 19
Disgust 4 6 20 3 1 10 2
Boredom 0 0 2 67 4 7 1
Sadness 1 0 1 3 55 2 0
Natural 1 0 3 6 3 62 4
Happiness 6 29 2 1 0 2 31

104



In relation to SS , the emotion of sadness achieved a maximum recognition of 91.94% while

the emotion of happiness achieved a minimum recognition of 73.24%. The confusion ma-

trix of results obtained is shown in Table 4.7 following.

Table 4.7: Confusion Matrix obtained with S Set

Emotion Anxiety Anger Disgust Boredom Sadness Natural Happiness

Anxiety 59 2 1 1 0 2 4
Anger 1 117 0 0 0 0 9
Disgust 2 1 39 1 1 1 1
Boredom 0 0 1 73 4 3 0
Sadness 0 0 0 5 57 0 0
Natural 4 0 0 4 0 69 2
Happiness 5 12 1 0 0 1 52

As can be seen from Figure 4.4 below, S set give the best recognition accuracy for all

emotions. Expect for sadness emotion it gave the same results as V QS set. P set show also

a good results In comparison with to V QS set. Expect for disgust where S set gave a better

recognition accuracy.
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As a conclusion for this phase, spectral features are better in both overall and individ-

ual emotion recognition accuracy. Followed by prosodic features. However, the prosodic

feature came after voice quality feature in disgust emotion recognition. Although voice

quality features give the worth overall accuracy. It proves that it can be more useful then

prosodic features on sadness and disgust emotion recognition. In addition, it shows the

same capability on recognition of sadness as spectral features.

4.3.2 Phase (2): Identify the Best Features Extraction Technique Combination

The goal of this phase is to identify the best feather extraction combination. Thus the

same task as phase 1 were implements in addition to task (F) Combination. Four selective

features sets were examined and evaluated:

1. V QSP : combine voice quality features with prosodic features.

2. V QSS: combine voice quality features with spectral features.

3. PS: combine prosodic features with spectral features. -

4. V QSPS: combine voice quality features with prosodic features and spectral fea-

tures.

From the results obtained, it can be observed that the accuracy obtained using V QSPS

set was found to be much higher than that of the V QSP , V QSS and PS set. An overall

accuracy of 88.04% could be achieved with V QSPS set; while an overall recognition of

71.40%, 87.66% and 87.48% could be achieved with V QSP , V QSS and PS respectively.

Table 4.8 below summarizes the comparison of results based on the number of features and

recognition accuracy obtained from the four feature sets.
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Table 4.8: Comparison of Results obtained with V QSP , V QSS, PS and V QSPS Sets

Features Set No. of Features Accuracy (%)

V QSP 265 71.40
V QSS 1453 87.66
PS 1416 87.48
V QSPS 1567 88.04

The results indicated that the combination of the three acoustic features yields to more

accuracy improvement than using a combination of two types of acoustic features. This

result is compatible with literature reports that claim that it is better to use a combination

of acoustic features than using one type. It is also indicated that voice quality features can

improve prosodic and spectral features recognition accuracy. It even proves that voice qual-

ity features more useful when combining with spectral features than combining prosodic

features with spectral features.

4.3.3 Phase (3): Enhance the Features Extraction Technique

To improve the performance of SER, this phase aims to enhance the feature extraction tech-

nique using the voice quality prosodic spectral-based feature extraction technique (VQPS).

The same task as phase 2 were implements, the different will the addition of (C) Brute

force and (E) New tasks. The features extraction in this phase use three features extraction

approaches the selective approach which used for prosodic and spectral features. While the

brute force and new approach used for voice quality features.

As a result, 181 voice quality features were extracted. Containing six new features, of

which three have not been used before in SER, while the other three have not been used

before with EMO-DB. In addition to 175 brute force voice quality features that have been
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used before in literature with EMO-DB, 151 of them are the selective voice quality features

that used in phase 1 and 2. Table 4.10 following shows the description of the new and brute

force voice quality set.

Table 4.9: Description of Extracted New Voice Quality Features

Feature Sequence Description

1 voice to total frames ratio
2-3 GNE
4-5 Do-1000
6 Hamml

Table 4.10: Description of Extracted Brute Force Voice Quality Features

Feature Sequence Description

7 HNR
8-12 Harmonic
13 NHR
14 Autocorrelation
15-17 Jitter (local absolute, rap, ppq5)
18- 22 Shimmer (local dB, apq3, apq5, apq11, ddp)
23-25 Period
26-27 voice break
28 pulses
29 voicedunvoiced frames ratio
30 unvoicedtotal frames ratio
31-104 Jitter (local, ddp)
105-141 Shimmer (local)
142-181 Voicing

Firstly the traditional voice quality features (V QT ) set that extracted using the brute force

approach was comberd to the proposed voice quality features (V QT ) set that combine the

extracted brute force and the new voice quality features.

108



From the results obtained, it can be observed that the accuracy obtained using V QP set was

found to be slightly higher than that of the V QT set. An overall accuracy of 73.83% could

be achieved with V QT set; while an overall recognition of 75.14% could be achieved with

V QP . Table 4.11.6 below summarizes the comparison of results based on the number of

features and recognition accuracy obtained from the two feature sets.

Table 4.11: Comparison of Results obtained with V QT and V QP Sets

Features Set No. of Features Accuracy (%)

V QT 175 73.83
V QP 181 75.14

The results indicated that the combining of the new and traditional V Q features is an effec-

tive way to improve the performance of SER. In addition, it proves that V Q features can

be used alone for emotion recognition; this contrasts with some reports in literature.

Amongst V QT emotions, sadness achieved a maximum recognition of 90.32% and the

emotion of happiness achieved a minimum recognition of 50.70%. The confusion matrix

of results obtained is illustrated in Table 4.12 following.

Table 4.12: Confusion Matrix obtained with V QT Set

Emotion Anxiety Anger Disgust Boredom Sadness Natural Happiness

Anxiety 46 5 4 1 0 7 6
Anger 3 104 3 0 0 0 17
Disgust 3 2 28 2 2 6 3
Boredom 0 0 2 66 3 9 1
Sadness 0 0 1 2 56 3 0
Natural 4 1 4 7 3 59 1
Happiness 7 20 6 2 0 0 36
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In relation to V QP , the emotion of sadness achieved a maximum recognition of 90.32%

while the emotion of happiness achieved a minimum recognition of 49.30%. The confusion

matrix of results obtained is shown in Table 4.13 following.

Table 4.13: Confusion Matrix obtained with V QP Set

Emotion Anxiety Anger Disgust Boredom Sadness Natural Happiness

Anxiety 48 3 5 0 3 1 9
Anger 1 109 4 0 0 0 13
Disgust 2 1 28 1 2 8 4
Boredom 0 0 1 68 1 10 1
Sadness 1 0 2 2 56 1 0
Natural 3 1 4 9 3 58 1
Happiness 9 20 4 2 0 1 35

As can be seen from Figure 4.5 below, V QP set enhance anxiety, anger and boredom emo-

tion recognition compares to V QT set. However, for disgust and sadness, no improvement

at all was show. Unfortunately the emotion recognition for natural and happiness emotion

decrease.
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Another observation from the result that for both features set sadness emotion was the best

emotion to recognize while happens was the worst.

The proposed technique (V QPS) combines all the extracted features as shown in Sections

4.3.1, 4.3.2 and 4.3.3 respectively. A feature vector size of 1591 is used for classification.

An overall recognition of 88.79% could be achieved with V QPST set; while an overall

recognition of 88.97% could be achieved with V QPSP set. Table 4.14 following summa-

rizes the comparison of results based on the number of features and recognition accuracy

obtained from the two feature sets.

Table 4.14: Comparison of Results obtained with V QPST and V QPSP Sets

Features Set No. of Features Accuracy (%)

V QPST 1591 88.79
V QPSP 1597 88.97

In relation to V QPST , the emotion of anger achieved a maximum recognition of 94.49%

while the emotion of happiness achieved a minimum recognition of 77.46%. The confusion

matrix for the results obtained is illustrated in Table 4.15 following.

Table 4.15: Confusion Matrix obtained with V QPST Set

Emotion Anxiety Anger Disgust Boredom Sadness Natural Happiness

Anxiety 59 2 0 0 1 4 3
Anger 1 120 0 0 0 0 6
Disgust 3 1 38 1 1 2 0
Boredom 0 0 1 76 2 2 0
Sadness 0 0 0 5 57 0 0
Natural 2 1 0 5 1 70 0
Happiness 4 11 1 0 0 0 55
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In relation to V QPSP , the emotion of anger achieved a maximum recognition of 94.49%

while the emotion of happiness achieved a minimum recognition of 77.46%. The confusion

matrix for the results obtained is shown in Table 4.16 following.

Table 4.16: Confusion Matrix obtained with V QPSP Set

Emotion Anxiety Anger Disgust Boredom Sadness Natural Happiness

Anxiety 61 2 0 0 1 2 3
Anger 1 120 0 0 0 0 6
Disgust 3 1 37 1 2 2 0
Boredom 0 0 1 76 2 2 0
Sadness 0 0 0 5 57 0 0
Natural 2 1 0 5 1 70 0
Happiness 4 11 1 0 0 0 55

Figure 4.6 following shows a comparison of results obtained using V QPSP and V QPST .

No enhancement was shown between the two sets except for the emotion of anxiety which

showed an improvement from 85.51% to 88.41%. Unfortunately the emotion recognition

for disgust emotion decrease

4.3.4 Phase (4): Reduced Features Dimensionality and Identify the Significant Fea-

tures

As can be seen from the previous phase, SER feature extraction techniques can produced

a huge amount of features. However, most of these features are irrelevant and redundant

which resulted in decreasing the recognition accuracy. Therefore, this phase focuses on de-

creasing the features set and identify the significant features that can improve SER recog-

nition accuracy.
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Figure 4.6: Emotion Recognitione Compressions between V QPST and V QPSP Sets

The same task as phase 3 were implements, the different will the addition of task (H) Fea-

tures selection. A two layers feature selection method is proposed to obtain the significant

features. the propose method named balanced hybrid filter-based feature selection method

(BHFFS).

The proposed selection method BHFFS consists of two main layers, namely: balancing

layer and hybrid filter-based layer. The first layer (class balancing) implements a resem-

bling technique which produces a random subsample of a dataset and is aimed at balancing

the dataset. Meanwhile, the second layer (hybrid filter-based) aims to select significant

features using hybrid filtering feature selection algorithm. A detailed description and justi-

fication of these layers are provided in the following sections.

Figure 4.7 shows the proposed approach feature selection that is used in this research. The

effectiveness of the reduced feature subsets was evaluated using LIBSVM algorithms clas-

sification performance.
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Class Balancing

The dataset is classified as imbalanced if one or more of the classes have more samples

than others. Due to this problem, the classification algorithms obtained good accuracy for

the majority classes and poor accuracy for the minority classes. In this research, the EMO-

DB is an imbalanced dataset (as mentioned in Section 5.3.1) thus, this section presents the

result of the balancing process. The Resample technique was used in this research to gain

a uniform distribution of the classes. Figure 4.8 following shows the dataset distribution

before and after balancing.
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Hybrid Filter-Based Feature Selection

Feature selection aims to select significant features and reduce search space which improves

the accuracy of SER. This section describes the two layers feature selection approach which

is known as hybrid filter-based. Hybrid filter-based layer consists of two filter-based algo-

rithms, namely, a feature filter with a ranking algorithm and features filter with search

algorithm. These algorithms must be carried out in a sequential order which means that the

second algorithm is dependent upon the first algorithm. The first layer (feature filter with

ranking method) implements IGR algorithm which is aimed at ranking features based on

high information gain entropy. The second layer (feature filter with search method) imple-

ments CFS algorithm which seeks to find features that are highly correlated with the class

rather than the features that are correlated with each other using PSO as a search algorithm.

Detailed descriptions of these layers are provided in the next section.
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Feature Filter with Ranking

The basic premise of feature ranking is to eliminate irrelevant features, and is normally

used to enable greater simplicity. A suitable ranking criterion is used to score the variables

and a threshold is used to remove variables below the threshold. As mentioned earlier, fea-

ture ranking was implemented using IGR. For feature-ranking purposes, IGR was applied

in all features described in Chapter 4. Table 4.17 following summarizes the IGR parame-

ters values used.

Table 4.17: The Parameters Values used in IGR Algorithm

Description Value

Number of Emotions 7
Number of Features 1597
Threshold (based on the experiment as explained in Section 4.5.1) 0

The features are ranked in decreasing order based on their relevance to class labels as

shown in Appendix A. The high score rank of the feature indicates that this feature has

high relevance to the class label (emotion); while a low score shows the independence of

the feature from the class label. The rank score measures how much this feature relates to

and contributes to class labels. Therefore, all features below the threshold (0) are removed

because they have a low ranking score and could lead to poor classification accuracy.

Feature Filter with Search

Feature filter with search was implemented using CFS with PSO as a search method. IGR

computed the correlation between the class label and the features individually but ignored

the correlation among features. CFS looks for features that are highly correlated with the
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classes which have the minimum correlation between the features themselves. Table 4.18

below summarized the use of CFS-PSO parameters values.

Table 4.18: The Parameters Values used in CfS-PSO Algorithm

Description Value

CFS Search PSO
Population 35
Iteration 20

The result of selected features using CFS-PSO is shown in Appendix B. The result in-

dicates that (736) number of features are the most significant, with most of these being

spectral features. Table 4.19 below shows the distribution of voice quality, prosodic, and

spectral features in the final selected features set.

Table 4.19: Distribution of Different Features in the Selected Features Set

Features Type Number of Features

Voice Quality 89
Prosodic 50
Spectral 597

In addition, as noted from the results, voice quality features has a higher contribution in the

selected features than prosodic features.A total of 15 Burt force traditional voice quality

features were involved in the most significant features set. Furthermore, the six (6) new

voice quality extracted features proposed in Section 4 were involved in the most significant

features set as presented in Table 4.26 following
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Table 4.20: Distribution of Different Features in the Selected Features Set

Feature Order Features

154 Do1000(offset)
155 Hamml
162 voiced to total frames ratio
175 GNE(mean)
191 GNE(std)
194 Do1000(slope)

To evaluate the significance of these features on classification accuracy, LIBSVM algo-

rithms have been applied with final selected features. With LIBSVM, an overall recogni-

tion of 94.74% was achieved. Table 4.26 following shows the comparison of the number

of features and accuracy obtained before and after features selection.

Table 4.21: Compression of Result Before and After Feature Selection

No. of Features Accuracy(%)

Before features selection 1597 88.97
After features selection 736 94.74

The emotion of sadness achieved a maximum recognition rating of 100% while the emo-

tion of happiness achieved a minimum recognition rating of 88.16%. The confusion matrix

after performing the selection is shown in Table 4.22 following.

The emotion of sadness achieved a maximum recognition rating of 100% while the emo-

tion of happiness achieved a minimum recognition rating of 88.16%. The confusion matrix

after performing the selection is shown in Table 4.22 following. The emotion of sadness

achieved a maximum recognition rating of 100% while the emotion of happiness achieved
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Table 4.22: Confusion Matrix obtained with Selected Features

Emotion Anxiety Anger Disgust Boredom Sadness Natural Happiness

Anxiety 71 1 1 0 0 2 1
Anger 1 72 0 0 0 0 3
Disgust 0 1 75 0 0 0 0
Boredom 0 0 1 71 2 2 0
Sadness 0 0 0 0 76 0 0
Natural 1 0 0 3 1 72 0
Happiness 0 8 0 0 0 1 67

a minimum recognition rating of 88.16%. The confusion matrix after performing the se-

lection is shown in Table 4.22 following.
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Figure 4.9: Emotion Recognition Compression Before and After Features Selection

4.3.5 Phase (5): Comparison and Benchmark

In order to improve the SER systems recognition rate, various feature extraction techniques

were used in previous works. This feature extraction technique generated different combi-
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nations of voice quality, prosodic and spectral features respectively. Some of these works

are provided for comparison and benchmarking. The features used by Zaho et al. (2014),

Sun et al. (2015) and Shirani and Nilchi (2016) were compared. The evaluation matrix

used for comparison was the LIBSVM classification accuracy based on EMO-DB dataset.

Performance comparison with previous works is given in Table 4.23 following.

Table 4.23: Performance Comparison with Previous Works

Reference Extraction Tool Features No. Normalization Emotion No. Accuracy(%)

(Zhao et al., 2014) Praat 204 No 7 78.75
(Sun and Wen, 2015) openSMILE 1582 SSMCFS 7 82.64
(Shirani and Nilchi, 2016) Praat 68 No 6 86.53
VQPS Praat,openSMILE 1597 [0-1] 7 88.97

Zaho et al. used Praat toolkit by which to extract 204 features including: HNR; jitter;

shimmer; pitch; intensity; duration; formant; spectral energy and MFCC features from

EMO-DB with seven emotions. An accuracy rate of 78.75% was obtained using LIBSVM.

Sun et al. extracted 1582 features including: HNR; jitter; shimmer; voicing probability;

pitch; loudness; log Mel freq. band; as well as LSP and MFCC using an openSMILE

toolkit. Using SSMCFS proposed normalization method before LIBSVM with seven emo-

tions from EMO-DB yielded an accuracy rate of 82.64%.

Shirani and Nilchi extracted 68 features using Praat tool. These features related to: dura-

tion; pitch; intensity; formants; amplitude; energy; power; ZCR; HNR; jitter; shimmer and

MFCC from EMO-DB with six emotions (anger, disgust, fear, joy, sadness, and neutral).

The recognition rate of 86.53% was achieved using SVM. Table 4.24 below shows feature

comparisons with previous works.
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Table 4.24: Features Comparison with the Previous Works

Reference Voice Quality Prosodic Spectral

(Zhao
et al.,
2014)

HNR, jitter and shimmer pitch, intensity, duration,
formant

spectral energy, MFCC

(Sun and
Wen,
2015)

HNR, Jitter, shimmer,
voicing probability

pitch, loudness Log Mel freq. band, LSP,
MFCC

(Shirani
and
Nilchi,
2016)

HNR, jitter, shimmer pitch, duration, , intensity,
formants, amplitude, en-
ergy, power, ZCR

MFCC

VQPS HNR, jitter, shimmer,
Voicing, Harmonic, Au-
tocorrelation, Do-1000,
Hammel, GNE

pitch, loudness Log Mel freq. band, LSP,
MFCC

It can be seen from all the above and from Table 4.24, that the feature extraction technique

adopted in this research gave better classification accuracy compared to previous works.

In the recent past, a variety of works on SER have been reported using different selection

methods. Some of these works from literature sources are given here for comparison. The

selection methods results used by Sun and Wen (2015), Jassim et al. (2017) and Ding

et al. (2108) respectively were compared. The evaluation metric used for comparison

was the LIBSVM classification accuracy based on EMO-DB dataset with seven emotions

(neutrality, anger, fear, joy, sadness, disgust, and boredom).

Two selected feature sets were used for compression, namely, the selected features form

V QPSP and V QPS2010 sets. V QPS2010 is described in Section 4 and is used to ensure

having the most similar compression parameter setting as possible. Table 4.25 following

illustrates the performance comparison with reported works.

121



Table 4.25: Performance Comparison with Reported Works

Reference Normalization Method Selection Features No. Accuracy (%) Selected Features No. Accuracy (%)

(Sun and Wen, 2015) SSMCFS SMCFS 1582 - 86.63 88.85
(Jassim et al., 2017) [0-1] mRMR 1582 946 - 89.45
(Ding et al., 2018) No BBO 1582 - 74.29 90.13
VQPS2010 [0-1] BHFFS 1567 588 88.04 95.11
VQPS [0-1] BHFFS 1597 736 88.97 94.74

Sun and Wen. obtained an accuracy rating of 88.85% when using a proposed selection

method (SMCFS) with proposed normalization (SSMCFS) method. To evaluate their pro-

posed method, a comparison with some selection methods that have been used in SER was

performed. Table 4.26 following summarizes the performance results of these methods.

Table 4.26: performance of different selection method presented by Sun and Wen (2015)

Selection Algorithm Accuracy (%)

MCFS 88.62
PCA 86.89
LDA 71.39
mRMR 87.27
LS 87.76
DISR 85.76

Jassim et al. obtained an accuracy rating of 89.45% when using the mRMR algorithm

to remove irrelevant features and reduce the features dimensionality from 1582 to 946

features. Ding et al. obtained an accuracy of 90.13% when using proposed BBO with only

40 audio files for each kind of emotion from EMO-DB. The result obtained by BBO was

compared to GA results. An accuracy rating of 81.26% was obtained using GA.

From all the above, and as shown in Table 4.25, the feature selection method adopted in

this research successfully presented the best classification accuracy.
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4.4 Summary

in development SER system there are two important issue that have to be concedred. The

suitable feature extraction technique ans selecting a reduced feature set that can signifi-

cantly represent emotions by eliminating irrelevant and redundant features since they di-

rectly affects the classification performance. Thus this chapter focuses on constecting a

theoretical model that answer the features related research question and help to create an

SER framework.This framework implement different tasks that help in investigating the

impact of type and combination of the features on recognition accuracy. it also introduce

enhanced a feature extraction technique based on prosodic spectral and a new combina-

tion of voice quality features. and proposing balancing hybrid filter base feature selection

method (BHFFS). The extracted and selected features are evaluated in terms of individual

and overall recognition accuracy. The empirical results prove that the extracted and selected

feature sets outperform the feature sets detailed in previous works. In addition, it proves

that voice quality features are considerably important in developing the SER system.
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CHAPTER 5

Conclusion and Future Work

5.1 Introduction

Speech emotion recognition plays an important role in HCI implementations. Unfortu-

nately, until now, the performance of SER has not reached the maximum performance that

can help the machine to understand humans completely. This thesis has proposed an SER

framework which enhanced the existing features extraction technique and selection meth-

ods. Also, it has described the related literature review as well as detail methodology on

designing the SER framework. After conducting the literature review we found that the

performance of an SER system relies on the feature extraction technique adopted, as well

as the size of the final features vectors. However, both existing extraction techniques and

selection methods are having some limitations.

5.2 Summary of the Research Work

The present work created an SER features model that help in understanding the relation

between features and SER recognition accuracy. This model used to create an SER frame-

work that has five phases. The first phase is concerned with investigating the SER existing

single features extraction techniques capability in recognize emotions. The results show

that the spectral features are better in both overall and individual emotion recognition accu-
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racy. While voice quality features give the worth overall accuracy. However, it shows the

same capability on recognition of sadness as spectral features. In addition, it proves that it

can be more useful then prosodic features on sadness and disgust emotion recognition.

The second phase is concerned with identifying the best features extraction technique com-

bination. From the results obtained, it can be observed that the combination of the three

acoustic features namely voice quality, prosodic and spectral features yields to more recog-

nition accuracy improvement than using a combination of two types of acoustic features.

It is also indicated that the voice quality features can improve both prosodic and spectral

features recognition accuracy. It even proves that voice quality features more useful when

combining with spectral features than combining prosodic features with spectral features.

The third phase is concerned with enhancing the features extraction technique which aims

to improve the recognition accuracy. The proposed voice quality prosodic spectral-based

features extraction (VQPS) technique combined new and traditional voice quality features

with traditional prosodic and spectral features. The results prove that the proposed VQPS

technique can improve the recognition accuracy. it also indicated that voice quality features

can be used alone for emotion recognition and it is can improve the performance of SER

when combined with prosodic and spectral features.

The fours phase is concerned with reducing features dimensionality and identifying the

most significant features. A developed features selection method has been proposed known

as balanced hybrid filter-based features selection (BHFFS) method. As a result, the fea-

tures dimensionality was reduced to only (736) significant features. The spectral features

constitute the majority in significant feature set followed by voice quality features. The

results indicated that voice quality features have a higher contribution to the selected fea-

tures than prosodic features. In addition, a total of 15 Burt force traditional voice quality

features were involved in the most significant features set. Furthermore, the six (6) new

voice quality extracted features were involved in the most significant features.

The final phase is concerned with comparing the results obtained using the proposed SER

framework with the results obtained by previous researchers. The results indicated that the

proposed framework adopted in this research gave better classification accuracy compared

to previous works in extraction and selection.
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5.3 Thesis Contribution

This section presents a list of contributions that are proposed in this research. These are as

detailed below:

1. Creates of SER features theoretical model that presents the relation between features

and SER performance (recognition accuracy).

2. Create SER framework that seeks to solve some of extraction and selection limita-

tions.

3. The performance of three feature extraction techniques namely voice quality, prosodic

and spectral in extracting the relevant features from the speech samples is evaluated

in term of recognition accuracy. the evaluation is done for single and combined fea-

tures set.

4. Development of an enhanced feature extraction technique called voice quality prosodic

spectral based features extraction (VQPS) for improving the performance of SER.

Traditional prosodic and spectral techniques were combined with new and traditional

voice quality techniques to create a new extraction technique.

5. Development of an enhanced feature selection method called balanced hybrid filter-

based feature selection (BHFFS). The method starts by solving the problem of im-

balanced data before implementing two filter-based feature selection algorithms.

5.4 Recommendation and Future Works

1. Different classifiers: Different classifiers and structure can be used to evaluate the

recognition accuracy in this thesis. such as using the classifier fusion method.

2. Speaker Independent: This work concentrates only on the speaker-dependent emo-

tion recognition. The newly-proposed extraction technique and selection method can

also be extended to speaker-independent emotion recognition.
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3. Different Dataset: This work is designed using EMO-DB with the German lan-

guage. It is envisaged that it can also be extended to different datasets with different

languages, for instance, an Arabic dataset.

4. New Voice Quality Features: These works introduce only six voice quality features

and have obtained good results. More voice quality features can also be tried in order

to better improve SER performance.

5. Linguistic Features: This work concentrates only on acoustic features. A linguistic

features technique can also be combined with the newly-proposed extraction tech-

nique to investigate their effect on SER performance.

6. More Filter-based Feature Selection Algorithms: This work concentrates only on

two filter selection algorithms. Different filter algorithms can also be evaluated for

the newly-proposed selection technique.
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APPENDIX A

Results on Feature Filter with Ranking

Ranking Feature Ranking Feature

0.9646 F0finEnv-sma-de-skewness 0.2504 mfcc-sma[3]-maxPos
0.8914 logMelFreqBand-sma-de[2]-iqr1-3 0.2501 F0finEnv-sma-de-maxPos
0.8733 logMelFreqBand-sma-de[4]-quartile1 0.2501 mfcc-sma-de[11]-Percentile99.0
0.8514 logMelFreqBand-sma-de[4]-linregerrA 0.2501 LSPFreq-sma-de[3]-iqr1-3
0.8512 logMelFreqBand-sma-de[3]-iqr1-3 0.2499 jitterDDP-sma-kurtosis
0.8461 mfcc-sma-de[2]-linregerrA 0.2483 jitterDDP-sma-de-iqr1-2
0.8403 logMelFreqBand-sma-de[5]-quartile1 0.2482 mfcc-sma[3]-iqr1-2
0.8254 F0final-sma-Percentile99.0 0.2475 mfcc-sma[13]-iqr1-2
0.8224 logMelFreqBand-sma-de[5]-iqr1-3 0.2459 mfcc-sma[6]-quartile1
0.8181 mfcc-sma-de[0]-iqr1-3 0.2455 shimmer(localdB)
0.814 mfcc-sma-de[0]-linregerrA 0.2454 mfcc-sma-de[7]-quartile3
0.8127 logMelFreqBand-sma-de[4]-iqr1-3 0.2454 mfcc-sma[8]-linregerrA
0.8078 logMelFreqBand-sma-de[2]-linregerrA 0.2453 logMelFreqBand-sma[0]-upleveltime75
0.8058 logMelFreqBand-sma[2]-pctlrange0-1 0.2452 logMelFreqBand-sma[7]-pctlrange0-1
0.7996 logMelFreqBand-sma-de[5]-linregerrA 0.245 voicingFinalUnclipped-sma-iqr1-3
0.7963 mfcc-sma-de[12]-linregerrQ 0.2447 mfcc-sma[8]-linregc2
0.7962 logMelFreqBand-sma-de[4]-stddev 0.2441 logMelFreqBand-sma[6]-linregerrA
0.7933 F0final-sma-de-linregerrA 0.244 mfcc-sma-de[10]-linregc2
0.7907 logMelFreqBand-sma-de[4]-iqr1-2 0.2438 LSPFreq-sma-de[5]-quartile1
0.7855 F0finEnv-sma-de-kurtosis 0.2435 logMelFreqBand-sma[2]-linregc1
0.7832 logMelFreqBand-sma-de[3]-quartile1 0.2435 mfcc-sma[12]-quartile3
0.783 logMelFreqBand-sma-de[3]-linregerrQ 0.2434 logMelFreqBand-sma[0]-amean
0.781 logMelFreqBand-sma-de[5]-quartile3 0.2429 F0final-sma-de-skewness
0.7804 F0final-sma-linregerrQ 0.2424 pcm-loudness-sma-maxPos
0.7738 mfcc-sma-de[12]-stddev 0.2422 LSPFreq-sma[1]-linregc2
0.7672 F0final-sma-linregerrA 0.2421 mfcc-sma[14]-iqr1-3
0.7672 logMelFreqBand-sma-de[3]-stddev 0.2419 logMelFreqBand-sma[2]-amean
0.7669 logMelFreqBand-sma-de[2]-iqr1-2 0.2417 mfcc-sma[12]-linregc1
0.765 mfcc-sma-de[0]-quartile3 0.2414 mfcc-sma[4]-iqr1-3
0.7645 logMelFreqBand-sma-de[4]-quartile3 0.2412 logMelFreqBand-sma[7]-quartile1
0.7645 logMelFreqBand-sma-de[2]-quartile1 0.2403 LSPFreq-sma[7]-minPos
0.7644 F0final-sma-de-linregerrQ 0.24 logMelFreqBand-sma-de[3]-quartile2
0.7632 logMelFreqBand-sma-de[2]-linregerrQ 0.2397 logMelFreqBand-sma[5]-skewness
0.7486 voicingFinalUnclipped-sma-Percentile99.0 0.2393 jitterDDP-sma-skewness
0.742 logMelFreqBand-sma-de[2]-stddev 0.2379 mfcc-sma-de[7]-linregerrA
0.7414 F0final-sma-stddev 0.2379 LSPFreq-sma-de[7]-linregerrQ
0.7377 logMelFreqBand-sma[4]-pctlrange0-1 0.2379 LSPFreq-sma-de[7]-stddev
0.7345 F0finEnv-sma-quartile3 0.2379 logMelFreqBand-sma[5]-linregc1
0.7326 mfcc-sma-de[2]-stddev 0.2377 logMelFreqBand-sma-de[5]-skewness
0.7311 logMelFreqBand-sma[3]-pctlrange0-1 0.2373 LSPFreq-sma[2]-stddev
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Ranking Feature Ranking Feature

0.7284 voicingFinalUnclipped-sma-pctlrange0-1 0.2372 logMelFreqBand-sma[6]-kurtosis
0.7255 logMelFreqBand-sma-de[3]-linregerrA 0.2364 H(mean)
0.7217 mfcc-sma-de[12]-linregerrA 0.2355 jitterDDP-sma-de-kurtosis
0.7201 logMelFreqBand-sma-de[4]-iqr2-3 0.2353 mfcc-sma[11]-linregerrA
0.7188 Period(mean) 0.2351 mfcc-sma[0]-linregerrA
0.717 F0finEnv-sma-de-linregerrA 0.2349 logMelFreqBand-sma[4]-quartile2
0.7166 F0finEnv-sma-de-pctlrange0-1 0.234 mfcc-sma-de[5]-maxPos
0.7128 mfcc-sma-de[14]-linregerrQ 0.2334 logMelFreqBand-sma-de[3]-upleveltime75
0.7114 logMelFreqBand-sma-de[4]-linregerrQ 0.2332 mfcc-sma[13]-linregc2
0.7047 F0final-sma-de-stddev 0.2331 mfcc-sma[0]-quartile2
0.7044 mfcc-sma-de[0]-iqr1-2 0.2329 F0final-sma-de-linregc1
0.6992 F0finEnv-sma-Percentile99.0 0.2328 F0finEnv-sma-kurtosis
0.6985 F0finEnv-sma-quartile2 0.2322 LSPFreq-sma-de[0]-linregerrA
0.6974 logMelFreqBand-sma-de[5]-iqr2-3 0.2316 mfcc-sma-de[2]-kurtosis
0.6968 mfcc-sma-de[2]-linregerrQ 0.2312 logMelFreqBand-sma-de[1]-maxPos
0.6935 LSPFreq-sma[0]-quartile1 0.2309 mfcc-sma-de[11]-pctlrange0-1
0.6933 mfcc-sma[0]-pctlrange0-1 0.2304 jitterLocal-sma-upleveltime90
0.6921 LSPFreq-sma[0]-quartile3 0.23 mfcc-sma[6]-quartile3
0.689 mfcc-sma-de[5]-iqr1-2 0.23 Autocorrelation(mean)
0.6876 logMelFreqBand-sma-de[2]-quartile3 0.2298 jitterLocal-sma-de-linregc2
0.6828 mfcc-sma-de[0]-quartile1 0.2296 mfcc-sma[9]-pctlrange0-1
0.6825 mfcc-sma[2]-quartile1 0.2291 mfcc-sma-de[6]-pctlrange0-1
0.6807 logMelFreqBand-sma-de[3]-quartile3 0.2291 mfcc-sma-de[7]-Percentile99.0
0.6807 logMelFreqBand-sma[2]-Percentile1.0 0.229 mfcc-sma[1]-iqr1-3
0.6753 logMelFreqBand-sma-de[5]-linregerrQ 0.2283 LSPFreq-sma[1]-iqr1-2
0.675 voicingFinalUnclipped-sma-quartile3 0.2282 mfcc-sma[2]-Percentile99.0
0.6748 logMelFreqBand-sma-de[3]-iqr1-2 0.2277 LSPFreq-sma-de[0]-linregc1
0.6681 mfcc-sma-de[2]-quartile3 0.2274 mfcc-sma[6]-quartile2
0.6654 logMelFreqBand-sma-de[2]-iqr2-3 0.2272 LSPFreq-sma[3]-amean
0.6631 logMelFreqBand-sma[7]-Percentile1.0 0.2272 logMelFreqBand-sma[4]-amean
0.663 mfcc-sma-de[0]-iqr2-3 0.2271 LSPFreq-sma-de[6]-linregerrA
0.6595 logMelFreqBand-sma[6]-Percentile1.0 0.2269 logMelFreqBand-sma[4]-quartile1
0.6584 F0finEnv-sma-de-Percentile1.0 0.2268 logMelFreqBand-sma[3]-quartile3
0.6574 mfcc-sma[2]-quartile2 0.2267 mfcc-sma[14]-Percentile99.0
0.6558 logMelFreqBand-sma-de[2]-linregc2 0.2266 LSPFreq-sma-de[6]-minPos
0.6531 F0finEnv-sma-de-stddev 0.2265 logMelFreqBand-sma-de[0]-quartile3
0.653 LSPFreq-sma[0]-quartile2 0.2263 mfcc-sma-de[4]-linregc1
0.6508 shimmerLocal-sma-quartile3 0.2261 mfcc-sma-de[3]-quartile1
0.6476 LSPFreq-sma[0]-amean 0.226 mfcc-sma[2]-upleveltime90
0.645 mfcc-sma-de[8]-linregerrA 0.2254 logMelFreqBand-sma[2]-upleveltime75
0.6437 F0final-sma-quartile2 0.2247 shimmer(apq5)
0.6427 mfcc-sma[2]-quartile3 0.224 mfcc-sma-de[3]-minPos
0.6408 mfcc-sma-de[5]-stddev 0.2238 voicingFinalUnclipped-sma-de-quartile2
0.6393 mfcc-sma-de[5]-linregerrQ 0.2226 LSPFreq-sma-de[6]-quartile1
0.6386 logMelFreqBand-sma-de[5]-stddev 0.2226 mfcc-sma-de[1]-iqr2-3
0.6358 F0final-sma-quartile3 0.2221 mfcc-sma[8]-quartile3
0.6357 jitterLocal-sma-de-quartile1 0.222 mfcc-sma-de[2]-minPos
0.6334 F0finEnv-sma-de-linregc2 0.2216 voicingFinalUnclipped-sma-linregerrA
0.633 logMelFreqBand-sma-de[3]-iqr2-3 0.2214 logMelFreqBand-sma[1]-upleveltime75
0.6327 F0final-sma-amean 0.2203 mfcc-sma-de[12]-linregc1
0.6313 mfcc-sma-de[5]-linregerrA 0.22 mfcc-sma[4]-Percentile1.0
0.6257 F0finEnv-sma-pctlrange0-1 0.2197 LSPFreq-sma[2]-iqr2-3
0.6245 logMelFreqBand-sma[5]-pctlrange0-1 0.2192 mfcc-sma[8]-pctlrange0-1
0.624 mfcc-sma-de[2]-iqr1-3 0.2192 mfcc-sma[1]-pctlrange0-1
0.6227 shimmerLocal-sma-de-linregerrA 0.2192 jitterLocal-sma-de-linregc1
0.6218 mfcc-sma-de[12]-iqr1-2 0.2184 logMelFreqBand-sma[6]-iqr2-3
0.6215 logMelFreqBand-sma-de[6]-iqr1-3 0.2184 LSPFreq-sma-de[5]-linregc1
0.6213 mfcc-sma-de[14]-stddev 0.2183 logMelFreqBand-sma[7]-Percentile99.0
0.6203 F0final-sma-de-Percentile99.0 0.2173 pcm-loudness-sma-de-maxPos
0.6201 mfcc-sma-de[12]-iqr1-3 0.217 pcm-loudness-sma-iqr2-3
0.6196 F0finEnv-sma-amean 0.2169 logMelFreqBand-sma-de[7]-Percentile99.0
0.6147 logMelFreqBand-sma-de[5]-iqr1-2 0.2167 GNEmean
0.6145 shimmerLocal-sma-de-quartile1 0.2165 GNEstd
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0.6136 voicingFinalUnclipped-sma-skewness 0.2164 LSPFreq-sma[6]-linregerrA
0.6133 mfcc-sma[2]-amean 0.2159 mfcc-sma[2]-kurtosis
0.6133 mfcc-sma[1]-upleveltime75 0.2159 logMelFreqBand-sma[3]-kurtosis
0.6128 mfcc-sma-de[11]-iqr1-3 0.2159 mfcc-sma-de[10]-Percentile1.0
0.6126 mfcc-sma-de[12]-pctlrange0-1 0.2156 LSPFreq-sma-de[6]-iqr2-3
0.6118 mfcc-sma[0]-Percentile1.0 0.2152 F0final-sma-upleveltime75
0.6104 voicingFinalUnclipped-sma-iqr2-3 0.2151 shimmerLocal-sma-de-upleveltime75
0.6095 mfcc-sma[5]-quartile1 0.2148 LSPFreq-sma[1]-linregerrA
0.6081 mfcc-sma-de[9]-linregerrA 0.2141 logMelFreqBand-sma-de[6]-minPos
0.6066 jitterLocal-sma-amean 0.214 mfcc-sma[8]-iqr1-3
0.6064 mfcc-sma[1]-quartile3 0.2137 logMelFreqBand-sma[0]-linregc1
0.6055 mfcc-sma-de[11]-quartile3 0.2134 logMelFreqBand-sma[2]-iqr1-3
0.6051 mfcc-sma-de[9]-iqr1-3 0.2125 logMelFreqBand-sma[4]-skewness
0.6032 F0final-sma-iqr1-3 0.212 LSPFreq-sma[0]-maxPos
0.6024 F0finEnv-sma-de-Percentile99.0 0.2118 mfcc-sma-de[7]-iqr1-2
0.6022 voicingFinalUnclipped-sma-quartile2 0.2117 mfcc-sma[1]-maxPos
0.6006 jitter(LocalA) 0.2115 pulses
0.5988 mfcc-sma[1]-quartile2 0.2114 jitterDDP-sma-quartile1
0.5976 mfcc-sma-de[12]-Percentile99.0 0.2102 jitterDDP-sma-iqr1-2
0.597 logMelFreqBand-sma[7]-skewness 0.2101 LSPFreq-sma[3]-quartile1
0.5965 mfcc-sma-de[0]-stddev 0.2098 mfcc-sma-de[0]-skewness
0.595 voicingFinalUnclipped-sma-amean 0.2098 LSPFreq-sma-de[3]-iqr1-2
0.5938 mfcc-sma[1]-amean 0.2096 shimmerLocal-sma-de-linregc1
0.593 logMelFreqBand-sma-de[7]-linregc1 0.2087 LSPFreq-sma-de[3]-quartile1
0.5916 mfcc-sma-de[4]-quartile3 0.2084 LSPFreq-sma[2]-linregerrQ
0.5914 mfcc-sma-de[8]-stddev 0.2082 mfcc-sma-de[4]-linregc2
0.591 mfcc-sma-de[8]-linregerrQ 0.2077 LSPFreq-sma-de[6]-maxPos
0.5881 logMelFreqBand-sma-de[4]-pctlrange0-1 0.2076 LSPFreq-sma-de[5]-iqr1-3
0.5878 F0finEnv-sma-de-linregerrQ 0.2076 mfcc-sma[6]-linregc2
0.5869 logMelFreqBand-sma-de[6]-quartile3 0.2069 logMelFreqBand-sma[5]-upleveltime75
0.5867 mfcc-sma-de[12]-quartile1 0.2064 mfcc-sma[4]-kurtosis
0.5866 F0finEnv-sma-iqr1-3 0.2062 mfcc-sma-de[1]-Percentile1.0
0.5866 logMelFreqBand-sma[4]-Percentile1.0 0.2062 mfcc-sma[14]-quartile1
0.5855 mfcc-sma-de[5]-quartile3 0.2056 LSPFreq-sma[4]-minPos
0.5853 mfcc-sma-de[2]-pctlrange0-1 0.2052 mfcc-sma[12]-quartile1
0.5849 mfcc-sma[2]-iqr1-3 0.2051 mfcc-sma-de[7]-pctlrange0-1
0.5849 mfcc-sma-de[5]-iqr1-3 0.205 LSPFreq-sma-de[7]-minPos
0.5838 mfcc-sma[2]-linregerrQ 0.205 jitterLocal-sma-de-upleveltime75
0.5838 F0finEnv-sma-de-amean 0.2048 mfcc-sma[5]-maxPos
0.5822 voicingFinalUnclipped-sma-quartile1 0.2048 LSPFreq-sma[4]-kurtosis
0.5817 F0finEnv-sma-iqr2-3 0.2042 LSPFreq-sma[1]-stddev
0.5814 logMelFreqBand-sma[3]-stddev 0.204 LSPFreq-sma-de[2]-kurtosis
0.5814 mfcc-sma[2]-Percentile1.0 0.204 mfcc-sma-de[9]-quartile2
0.5808 logMelFreqBand-sma-de[4]-Percentile99.0 0.2037 mfcc-sma-de[4]-upleveltime90
0.5807 F0finEnv-sma-stddev 0.2034 LSPFreq-sma[5]-amean
0.5784 shimmerLocal-sma-amean 0.2031 mfcc-sma[9]-maxPos
0.5776 jitterLocal-sma-quartile2 0.203 mfcc-sma-de[10]-minPos
0.5742 mfcc-sma-de[8]-quartile1 0.2029 jitterDDP-sma-upleveltime90
0.5736 logMelFreqBand-sma-de[5]-linregc2 0.2028 mfcc-sma-de[6]-Percentile99.0
0.5735 shimmerLocal-sma-de-quartile3 0.2025 logMelFreqBand-sma-de[0]-iqr2-3
0.5717 mfcc-sma[5]-quartile2 0.2025 shimmer(apq11)
0.5703 mfcc-sma-de[13]-stddev 0.2025 logMelFreqBand-sma[1]-Percentile99.0
0.5702 logMelFreqBand-sma-de[6]-quartile1 0.202 logMelFreqBand-sma[7]-quartile3
0.5666 mfcc-sma-de[11]-iqr1-2 0.2016 logMelFreqBand-sma[1]-skewness
0.5643 logMelFreqBand-sma-de[7]-iqr1-2 0.2012 mfcc-sma-de[9]-minPos
0.5637 logMelFreqBand-sma-de[4]-kurtosis 0.2012 mfcc-sma[12]-iqr2-3
0.5636 mfcc-sma-de[13]-linregerrQ 0.201 logMelFreqBand-sma-de[6]-quartile2
0.5631 logMelFreqBand-sma[4]-Percentile99.0 0.2009 mfcc-sma[14]-linregc1
0.5627 mfcc-sma-de[0]-linregerrQ 0.2 logMelFreqBand-sma[7]-stddev
0.5624 F0finEnv-sma-upleveltime75 0.1997 mfcc-sma[5]-kurtosis
0.5624 logMelFreqBand-sma-de[0]-linregc1 0.1994 mfcc-sma[6]-minPos
0.5612 mfcc-sma-de[5]-quartile1 0.1983 mfcc-sma-de[9]-Percentile99.0
0.5608 logMelFreqBand-sma-de[6]-iqr2-3 0.1983 mfcc-sma-de[14]-minPos
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0.5592 voicingFinalUnclipped-sma-upleveltime75 0.198 logMelFreqBand-sma[3]-iqr1-3
0.557 mfcc-sma-de[0]-linregc1 0.198 LSPFreq-sma[2]-amean
0.5549 shimmerLocal-sma-quartile2 0.1979 mfcc-sma[14]-iqr1-2
0.5529 jitterDDP-sma-de-linregerrA 0.1964 logMelFreqBand-sma[3]-upleveltime90
0.5529 logMelFreqBand-sma[3]-linregerrA 0.1964 LSPFreq-sma[2]-quartile1
0.5527 mfcc-sma[5]-linregerrA 0.1952 logMelFreqBand-sma[4]-upleveltime90
0.5504 logMelFreqBand-sma-de[2]-pctlrange0-1 0.1939 LSPFreq-sma[3]-linregerrQ
0.5504 mfcc-sma-de[2]-iqr2-3 0.1935 mfcc-sma[0]-linregc2
0.5502 mfcc-sma-de[14]-linregerrA 0.1933 logMelFreqBand-sma[4]-iqr1-2
0.5492 logMelFreqBand-sma-de[3]-kurtosis 0.1929 mfcc-sma[11]-maxPos
0.5482 shimmerLocal-sma-de-iqr2-3 0.1925 mfcc-sma[10]-Percentile1.0
0.5481 mfcc-sma-de[2]-quartile1 0.1923 mfcc-sma[12]-iqr1-3
0.5481 mfcc-sma[5]-linregerrQ 0.1918 pcm-loudness-sma-iqr1-2
0.5467 logMelFreqBand-sma[5]-Percentile1.0 0.1916 logMelFreqBand-sma[7]-linregerrQ
0.5466 logMelFreqBand-sma-de[7]-iqr1-3 0.1916 mfcc-sma-de[13]-minPos
0.5461 F0finEnv-sma-linregerrQ 0.1913 mfcc-sma-de[1]-pctlrange0-1
0.5425 mfcc-sma-de[2]-iqr1-2 0.19 LSPFreq-sma[4]-linregerrQ
0.5424 mfcc-sma-de[14]-iqr1-3 0.19 LSPFreq-sma-de[6]-amean
0.5419 mfcc-sma-de[9]-stddev 0.1899 LSPFreq-sma-de[5]-iqr2-3
0.5408 logMelFreqBand-sma-de[6]-iqr1-2 0.1892 mfcc-sma[7]-iqr1-3
0.5405 mfcc-sma-de[13]-linregerrA 0.1887 LSPFreq-sma[2]-linregerrA
0.5403 mfcc-sma-de[11]-linregerrA 0.1887 mfcc-sma[10]-Percentile99.0
0.5402 logMelFreqBand-sma[4]-linregerrQ 0.1884 mfcc-sma-de[1]-maxPos
0.5394 mfcc-sma-de[9]-linregerrQ 0.1881 LSPFreq-sma[3]-quartile2
0.539 shimmerLocal-sma-de-stddev 0.1878 logMelFreqBand-sma-de[3]-maxPos
0.5386 logMelFreqBand-sma-de[7]-linregc2 0.1875 pcm-loudness-sma-iqr1-3
0.5384 mfcc-sma-de[9]-linregc1 0.1873 mfcc-sma[1]-linregerrA
0.5381 mfcc-sma[2]-linregerrA 0.1871 mfcc-sma-de[5]-minPos
0.5378 Do1000(offset) 0.1862 mfcc-sma-de[2]-amean
0.5364 mfcc-sma[2]-stddev 0.1862 mfcc-sma-de[1]-linregerrQ
0.5346 shimmerLocal-sma-de-iqr1-3 0.1862 mfcc-sma-de[1]-stddev
0.5299 logMelFreqBand-sma-de[7]-iqr2-3 0.1859 mfcc-sma[6]-skewness
0.5297 logMelFreqBand-sma-de[1]-linregerrQ 0.1856 LSPFreq-sma-de[2]-amean
0.5285 mfcc-sma[3]-quartile1 0.1854 logMelFreqBand-sma[6]-quartile3
0.5272 mfcc-sma-de[8]-iqr1-3 0.1853 mfcc-sma[5]-Percentile99.0
0.5269 shimmerLocal-sma-iqr1-3 0.185 mfcc-sma-de[6]-Percentile1.0
0.5265 logMelFreqBand-sma[3]-linregerrQ 0.1848 voice break(number)
0.5259 F0finEnv-sma-quartile1 0.1846 mfcc-sma[10]-linregerrA
0.5222 mfcc-sma[5]-stddev 0.1845 LSPFreq-sma[3]-pctlrange0-1
0.5213 logMelFreqBand-sma-de[6]-linregerrA 0.1839 mfcc-sma[6]-linregerrA
0.5209 mfcc-sma-de[11]-iqr2-3 0.1834 logMelFreqBand-sma-de[0]-upleveltime75
0.5208 mfcc-sma-de[14]-quartile3 0.1827 mfcc-sma-de[8]-maxPos
0.5196 mfcc-sma[5]-Percentile1.0 0.1822 mfcc-sma[13]-linregc1
0.5186 mfcc-sma-de[9]-linregc2 0.1817 LSPFreq-sma[3]-minPos
0.5183 logMelFreqBand-sma-de[3]-linregc2 0.1816 jitterDDP-sma-de-maxPos
0.5177 logMelFreqBand-sma-de[5]-kurtosis 0.1813 LSPFreq-sma[2]-quartile2
0.5173 voice break(degree) 0.1812 LSPFreq-sma-de[3]-iqr2-3
0.5167 mfcc-sma-de[2]-linregc1 0.1811 shimmerLocal-sma-de-kurtosis
0.5167 logMelFreqBand-sma[3]-Percentile1.0 0.181 voicingFinalUnclipped-sma-de-upleveltime75
0.5166 logMelFreqBand-sma-de[6]-linregerrQ 0.1808 mfcc-sma-de[1]-quartile2
0.5149 mfcc-sma-de[12]-quartile3 0.1806 logMelFreqBand-sma-de[7]-upleveltime90
0.5143 mfcc-sma-de[0]-linregc2 0.1803 LSPFreq-sma-de[4]-minPos
0.5138 logMelFreqBand-sma[3]-Percentile99.0 0.1797 mfcc-sma[10]-quartile3
0.513 logMelFreqBand-sma-de[7]-quartile3 0.1791 logMelFreqBand-sma[3]-minPos
0.5123 logMelFreqBand-sma-de[0]-linregc2 0.1788 logMelFreqBand-sma-de[2]-quartile2
0.5107 mfcc-sma[5]-iqr1-3 0.1785 F0final-sma-minPos
0.5105 mfcc-sma-de[9]-quartile3 0.1781 jitterDDP-sma-de-linregc1
0.5082 LSPFreq-sma-de[1]-iqr1-3 0.1781 mfcc-sma-de[1]-Percentile99.0
0.508 logMelFreqBand-sma-de[5]-linregc1 0.1779 mfcc-sma[12]-Percentile1.0
0.5074 logMelFreqBand-sma-de[6]-stddev 0.1778 mfcc-sma[6]-linregerrQ
0.5072 shimmerLocal-sma-linregerrA 0.1776 logMelFreqBand-sma[0]-stddev
0.5062 logMelFreqBand-sma[4]-stddev 0.1775 mfcc-sma-de[0]-maxPos
0.5061 mfcc-sma-de[8]-quartile3 0.1774 logMelFreqBand-sma-de[2]-maxPos
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0.5057 logMelFreqBand-sma-de[7]-linregerrA 0.1769 mfcc-sma-de[13]-maxPos
0.5055 F0finEnv-sma-linregerrA 0.1769 LSPFreq-sma-de[5]-kurtosis
0.5055 LSPFreq-sma-de[2]-iqr2-3 0.1761 mfcc-sma-de[7]-Percentile1.0
0.5043 mfcc-sma-de[6]-iqr2-3 0.1758 mfcc-sma[4]-pctlrange0-1
0.5041 mfcc-sma[13]-linregerrQ 0.1758 jitterDDP-sma-de-upleveltime75
0.5038 logMelFreqBand-sma-de[7]-quartile1 0.1756 mfcc-sma[1]-Percentile1.0
0.5038 mfcc-sma-de[12]-Percentile1.0 0.1751 mfcc-sma[6]-linregc1
0.5027 logMelFreqBand-sma-de[1]-linregerrA 0.1749 LSPFreq-sma[6]-stddev
0.5019 mfcc-sma[1]-quartile1 0.1747 logMelFreqBand-sma[5]-iqr1-2
0.5013 mfcc-sma-de[8]-iqr2-3 0.1744 LSPFreq-sma[2]-minPos
0.5001 F0finEnv-sma-iqr1-2 0.1744 LSPFreq-sma[6]-minPos
0.5 F0final-sma-iqr1-2 0.1742 logMelFreqBand-sma-de[4]-minPos
0.495 logMelFreqBand-sma-de[6]-linregc2 0.174 pcm-loudness-sma-quartile3
0.4949 mfcc-sma-de[9]-quartile1 0.1734 LSPFreq-sma-de[6]-iqr1-2
0.4928 jitter(rap) 0.1723 jitterDDP-sma-de-minPos
0.4925 Hamml 0.172 mfcc-sma-de[1]-linregerrA
0.4912 mfcc-sma-de[5]-Percentile1.0 0.1719 LSPFreq-sma-de[2]-quartile2
0.4911 logMelFreqBand-sma[1]-Percentile1.0 0.1718 voicingFinalUnclipped-sma-de-kurtosis
0.4892 F0finEnv-sma-de-linregc1 0.1715 logMelFreqBand-sma-de[7]-Percentile1.0
0.4885 logMelFreqBand-sma-de[1]-linregc2 0.1714 LSPFreq-sma[6]-quartile1
0.4866 logMelFreqBand-sma-de[1]-stddev 0.1712 logMelFreqBand-sma[3]-upleveltime75
0.4856 jitterDDP-sma-linregerrQ 0.1701 LSPFreq-sma-de[1]-linregc1
0.4843 pcm-loudness-sma-Percentile1.0 0.1695 mfcc-sma-de[9]-maxPos
0.4832 mfcc-sma-de[14]-pctlrange0-1 0.1692 jitterDDP-sma-de-quartile2
0.4831 LSPFreq-sma-de[2]-quartile3 0.1692 logMelFreqBand-sma-de[4]-quartile2
0.4831 logMelFreqBand-sma[2]-Percentile99.0 0.1688 logMelFreqBand-sma-de[2]-upleveltime75
0.4813 F0final-sma-quartile1 0.1686 mfcc-sma-de[3]-iqr1-2
0.4787 logMelFreqBand-sma-de[3]-pctlrange0-1 0.1686 mfcc-sma[1]-stddev
0.4775 jitterDDP-sma-stddev 0.1679 logMelFreqBand-sma-de[1]-Percentile1.0
0.4767 logMelFreqBand-sma-de[6]-linregc1 0.1677 mfcc-sma-de[4]-maxPos
0.4755 mfcc-sma-de[13]-iqr1-3 0.1676 LSPFreq-sma-de[7]-maxPos
0.4732 jitterDDP-sma-linregerrA 0.1676 logMelFreqBand-sma[0]-linregerrA
0.4726 logMelFreqBand-sma-de[2]-linregc1 0.1674 LSPFreq-sma-de[5]-linregc2
0.472 LSPFreq-sma-de[2]-iqr1-3 0.1673 LSPFreq-sma-de[4]-iqr1-3
0.472 mfcc-sma[4]-quartile1 0.1672 LSPFreq-sma-de[1]-quartile2
0.4697 logMelFreqBand-sma[5]-linregerrQ 0.1668 logMelFreqBand-sma[2]-skewness
0.4696 mfcc-sma-de[12]-iqr2-3 0.1665 logMelFreqBand-sma-de[4]-skewness
0.4685 mfcc-sma-de[13]-iqr2-3 0.1664 LSPFreq-sma-de[4]-linregc2
0.4683 mfcc-sma-de[11]-linregerrQ 0.1663 LSPFreq-sma-de[6]-stddev
0.4675 logMelFreqBand-sma[2]-linregerrA 0.1659 LSPFreq-sma[2]-upleveltime75
0.4667 logMelFreqBand-sma[7]-upleveltime75 0.1658 shimmerLocal-sma-de-linregc2
0.4663 logMelFreqBand-sma-de[1]-iqr1-3 0.1657 Do1000(slope)
0.4663 mfcc-sma-de[4]-linregerrQ 0.1657 LSPFreq-sma[1]-linregerrQ
0.4662 mfcc-sma-de[14]-iqr1-2 0.1652 mfcc-sma-de[4]-Percentile99.0
0.4658 mfcc-sma[2]-iqr1-2 0.1645 LSPFreq-sma-de[6]-linregerrQ
0.4654 mfcc-sma-de[11]-stddev 0.1638 LSPFreq-sma[4]-stddev
0.4639 mfcc-sma-de[11]-quartile1 0.1637 mfcc-sma[6]-stddev
0.4638 F0finEnv-sma-upleveltime90 0.1632 LSPFreq-sma-de[4]-quartile1
0.4632 mfcc-sma[10]-quartile1 0.162 mfcc-sma[0]-minPos
0.4627 mfcc-sma[4]-amean 0.1619 logMelFreqBand-sma[3]-linregc2
0.4627 mfcc-sma-de[14]-iqr2-3 0.1619 LSPFreq-sma-de[1]-maxPos
0.4627 F0final-sma-de-quartile1 0.1605 LSPFreq-sma-de[3]-kurtosis
0.4625 mfcc-sma[0]-stddev 0.1602 LSPFreq-sma-de[7]-amean
0.4624 voicingFinalUnclipped-sma-kurtosis 0.1597 logMelFreqBand-sma[6]-maxPos
0.4622 mfcc-sma-de[4]-quartile1 0.1596 mfcc-sma[14]-linregc2
0.462 logMelFreqBand-sma[0]-quartile3 0.1593 logMelFreqBand-sma-de[5]-quartile2
0.4618 logMelFreqBand-sma[0]-Percentile1.0 0.1592 logMelFreqBand-sma[3]-iqr2-3
0.4615 logMelFreqBand-sma-de[1]-quartile1 0.1591 mfcc-sma[13]-quartile3
0.4615 jitterLocal-sma-quartile3 0.1591 logMelFreqBand-sma-de[6]-skewness
0.4594 mfcc-sma[5]-amean 0.159 LSPFreq-sma[3]-Percentile1.0
0.4591 logMelFreqBand-sma-de[4]-Percentile1.0 0.1582 logMelFreqBand-sma-de[5]-amean
0.4588 mfcc-sma-de[5]-iqr2-3 0.1581 LSPFreq-sma-de[5]-minPos
0.4587 F0final-sma-linregc2 0.158 mfcc-sma[14]-maxPos
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0.4586 jitterLocal-sma-de-quartile3 0.1573 LSPFreq-sma[3]-quartile3
0.4566 logMelFreqBand-sma-de[1]-linregc1 0.1573 mfcc-sma-de[12]-maxPos
0.4566 mfcc-sma-de[10]-linregerrA 0.1568 logMelFreqBand-sma[6]-linregc1
0.4561 logMelFreqBand-sma[0]-linregc2 0.1566 mfcc-sma[7]-quartile2
0.4555 mfcc-sma[2]-iqr2-3 0.1562 mfcc-sma[6]-iqr1-3
0.455 shimmerLocal-sma-de-Percentile99.0 0.1554 mfcc-sma[3]-Percentile99.0
0.4544 jitterDDP-sma-de-Percentile99.0 0.1553 logMelFreqBand-sma[2]-linregc2
0.4517 logMelFreqBand-sma-de[4]-linregc2 0.1551 mfcc-sma-de[9]-upleveltime90
0.4488 logMelFreqBand-sma[1]-pctlrange0-1 0.1549 LSPFreq-sma-de[7]-Percentile1.0
0.4485 mfcc-sma-de[14]-quartile1 0.1541 mfcc-sma-de[6]-upleveltime90
0.4473 logMelFreqBand-sma-de[2]-Percentile99.0 0.154 LSPFreq-sma[5]-minPos
0.4467 F0final-sma-de-iqr1-2 0.1538 jitterLocal-sma-maxPos
0.4466 mfcc-sma-de[10]-stddev 0.1538 mfcc-sma[10]-minPos
0.445 mfcc-sma-de[0]-kurtosis 0.1537 shimmerLocal-sma-de-minPos
0.4438 mfcc-sma-de[6]-linregerrQ 0.1535 mfcc-sma[7]-linregerrQ
0.4434 mfcc-sma-de[13]-pctlrange0-1 0.1528 mfcc-sma[13]-quartile2
0.4431 mfcc-sma-de[6]-stddev 0.1526 mfcc-sma-de[5]-amean
0.4429 jitterLocal-sma-de-iqr1-3 0.1525 mfcc-sma-de[11]-maxPos
0.4427 mfcc-sma-de[10]-linregerrQ 0.1525 pcm-loudness-sma-upleveltime75
0.4418 mfcc-sma-de[14]-Percentile99.0 0.1524 LSPFreq-sma[6]-linregerrQ
0.4418 logMelFreqBand-sma[2]-linregerrQ 0.1523 mfcc-sma-de[1]-quartile1
0.4412 mfcc-sma-de[10]-iqr1-2 0.1522 LSPFreq-sma-de[1]-linregc2
0.441 voicingFinalUnclipped-sma-linregc2 0.152 mfcc-sma[7]-linregerrA
0.4406 logMelFreqBand-sma[2]-stddev 0.1518 shimmerLocal-sma-de-maxPos
0.4388 mfcc-sma-de[8]-Percentile99.0 0.1517 jitterDDP-sma-maxPos
0.4385 logMelFreqBand-sma-de[2]-kurtosis 0.1515 logMelFreqBand-sma[0]-linregerrQ
0.4382 F0final-sma-de-quartile3 0.1515 logMelFreqBand-sma-de[0]-amean
0.4378 voicingFinalUnclipped-sma-de-linregc2 0.1513 mfcc-sma[2]-skewness
0.4376 mfcc-sma-de[5]-pctlrange0-1 0.1509 LSPFreq-sma[1]-kurtosis
0.4373 logMelFreqBand-sma-de[0]-Percentile99.0 0.1508 mfcc-sma[7]-amean
0.4371 logMelFreqBand-sma-de[3]-linregc1 0.1505 mfcc-sma[10]-maxPos
0.4349 mfcc-sma[5]-iqr1-2 0.1504 mfcc-sma[10]-iqr1-2
0.434 voicingFinalUnclipped-sma-de-linregc1 0.1503 LSPFreq-sma[4]-pctlrange0-1
0.4328 logMelFreqBand-sma[0]-kurtosis 0.15 LSPFreq-sma[5]-kurtosis
0.432 logMelFreqBand-sma-de[4]-linregc1 0.1499 mfcc-sma[13]-iqr2-3
0.4314 mfcc-sma-de[2]-Percentile99.0 0.1494 logMelFreqBand-sma-de[0]-maxPos
0.4311 shimmerLocal-sma-stddev 0.1489 logMelFreqBand-sma-de[2]-skewness
0.4305 mfcc-sma[13]-pctlrange0-1 0.1488 logMelFreqBand-sma-de[6]-amean
0.4302 mfcc-sma[0]-linregerrQ 0.1487 mfcc-sma[11]-amean
0.4282 mfcc-sma[13]-stddev 0.148 mfcc-sma-de[10]-maxPos
0.4273 logMelFreqBand-sma[6]-upleveltime90 0.1477 mfcc-sma[13]-Percentile99.0
0.4258 LSPFreq-sma-de[1]-quartile1 0.1467 mfcc-sma[7]-Percentile1.0
0.4254 mfcc-sma[3]-amean 0.1466 logMelFreqBand-sma[2]-upleveltime90
0.4245 jitterLocal-sma-de-iqr1-2 0.1466 LSPFreq-sma[6]-skewness
0.4234 shimmerLocal-sma-iqr2-3 0.1465 mfcc-sma[7]-maxPos
0.422 mfcc-sma[8]-amean 0.1463 F0final-sma-skewness
0.4215 logMelFreqBand-sma[4]-quartile3 0.1461 H(std)
0.42 pcm-loudness-sma-de-linregc1 0.1457 pcm-loudness-sma-de-minPos
0.4196 F0final-sma-de-iqr1-3 0.1457 mfcc-sma-de[14]-maxPos
0.4191 jitterDDP-sma-amean 0.1454 mfcc-sma[5]-minPos
0.419 mfcc-sma-de[4]-linregerrA 0.1453 mfcc-sma-de[5]-upleveltime90
0.4185 logMelFreqBand-sma-de[5]-Percentile1.0 0.1452 mfcc-sma[9]-minPos
0.4182 mfcc-sma-de[0]-Percentile99.0 0.1451 mfcc-sma-de[12]-amean
0.4178 LSPFreq-sma-de[0]-quartile1 0.145 LSPFreq-sma[5]-quartile2
0.4177 mfcc-sma-de[8]-iqr1-2 0.145 mfcc-sma-de[13]-linregc1
0.4165 logMelFreqBand-sma[4]-linregerrA 0.1448 mfcc-sma[12]-minPos
0.4162 mfcc-sma-de[10]-linregc1 0.144 mfcc-sma[9]-linregc1
0.416 mfcc-sma-de[4]-stddev 0.1438 LSPFreq-sma-de[0]-minPos
0.4159 F0final–Turn-duration 0.1432 LSPFreq-sma-de[4]-quartile3
0.4158 mfcc-sma-de[10]-quartile1 0.143 mfcc-sma[7]-stddev
0.4157 logMelFreqBand-sma[5]-linregerrA 0.1425 pcm-loudness-sma-skewness
0.4154 jitterLocal-sma-de-linregerrA 0.1424 logMelFreqBand-sma-de[3]-skewness
0.4152 mfcc-sma-de[6]-linregerrA 0.1413 LSPFreq-sma[1]-iqr1-3
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0.4146 logMelFreqBand-sma-de[0]-stddev 0.1412 logMelFreqBand-sma-de[6]-upleveltime75
0.4134 jitterLocal-sma-de-upleveltime90 0.141 voicingFinalUnclipped-sma-linregc1
0.4129 logMelFreqBand-sma-de[7]-stddev 0.1405 jitterLocal-sma-linregc2
0.4103 jitterLocal-sma-de-iqr2-3 0.1404 F0final-sma-linregc1
0.4089 mfcc-sma[1]-linregc2 0.14 logMelFreqBand-sma-de[0]-kurtosis
0.4088 mfcc-sma[13]-linregerrA 0.1398 LSPFreq-sma-de[5]-maxPos
0.4083 F0finEnv-sma-de-upleveltime75 0.1397 logMelFreqBand-sma[6]-iqr1-3
0.4081 F0finEnv-sma-linregc2 0.1396 mfcc-sma[13]-amean
0.4046 logMelFreqBand-sma-de[1]-iqr1-2 0.139 jitterDDP-sma-de-linregc2
0.4042 mfcc-sma[0]-kurtosis 0.1389 logMelFreqBand-sma[2]-iqr1-2
0.404 LSPFreq-sma-de[1]-iqr2-3 0.1388 logMelFreqBand-sma[6]-iqr1-2
0.4038 logMelFreqBand-sma[0]-skewness 0.1385 LSPFreq-sma-de[6]-Percentile1.0
0.4022 F0finEnv-sma-linregc1 0.1381 mfcc-sma[6]-iqr2-3
0.4019 mfcc-sma[4]-quartile2 0.138 LSPFreq-sma-de[4]-iqr1-2
0.4017 LSPFreq-sma-de[0]-iqr1-3 0.137 LSPFreq-sma[6]-iqr1-3
0.4008 jitterLocal-sma-linregerrA 0.1369 mfcc-sma[1]-linregerrQ
0.4007 jitterDDP-sma-Percentile99.0 0.1368 mfcc-sma[4]-minPos
0.4002 logMelFreqBand-sma[6]-upleveltime75 0.1363 LSPFreq-sma-de[5]-linregerrA
0.3999 logMelFreqBand-sma-de[1]-iqr2-3 0.136 mfcc-sma[2]-minPos
0.3998 logMelFreqBand-sma-de[0]-linregerrA 0.1358 logMelFreqBand-sma[7]-linregerrA
0.3998 mfcc-sma-de[0]-pctlrange0-1 0.1356 LSPFreq-sma-de[4]-Percentile1.0
0.3994 shimmerLocal-sma-iqr1-2 0.1356 LSPFreq-sma[3]-iqr1-3
0.398 logMelFreqBand-sma-de[0]-pctlrange0-1 0.1356 LSPFreq-sma-de[6]-pctlrange0-1
0.3975 logMelFreqBand-sma-de[6]-kurtosis 0.1354 mfcc-sma[11]-iqr2-3
0.3965 shimmerLocal-sma-de-quartile2 0.1354 mfcc-sma-de[4]-minPos
0.3959 logMelFreqBand-sma[4]-iqr1-3 0.1353 mfcc-sma-de[8]-quartile2
0.3948 F0final-sma-de-kurtosis 0.1351 logMelFreqBand-sma[5]-maxPos
0.3943 mfcc-sma[3]-quartile2 0.1347 mfcc-sma-de[11]-linregc1
0.3941 jitterLocal-sma-iqr1-2 0.1342 LSPFreq-sma[4]-linregerrA
0.3926 jitterLocal-sma-de-linregerrQ 0.1338 LSPFreq-sma[6]-Percentile1.0
0.392 LSPFreq-sma-de[0]-iqr1-2 0.1333 LSPFreq-sma-de[4]-Percentile99.0
0.3919 mfcc-sma-de[4]-iqr1-3 0.1333 LSPFreq-sma[5]-iqr2-3
0.3919 logMelFreqBand-sma-de[1]-quartile3 0.1332 mfcc-sma-de[3]-kurtosis
0.3918 shimmerLocal-sma-Percentile99.0 0.1323 pcm-loudness-sma-de-iqr1-2
0.3911 mfcc-sma-de[9]-iqr2-3 0.1323 voicingFinalUnclipped-sma-de-linregerrA
0.3904 LSPFreq-sma[0]-linregc2 0.1322 LSPFreq-sma-de[2]-maxPos
0.3904 logMelFreqBand-sma[6]-pctlrange0-1 0.132 mfcc-sma-de[6]-maxPos
0.39 F0finEnv-sma-de-upleveltime90 0.132 jitterDDP-sma-linregc2
0.3893 mfcc-sma[14]-pctlrange0-1 0.1317 mfcc-sma[14]-quartile2
0.3888 mfcc-sma-de[8]-pctlrange0-1 0.1312 LSPFreq-sma[6]-kurtosis
0.3887 mfcc-sma-de[4]-iqr2-3 0.1308 jitterLocal-sma-de-minPos
0.3877 mfcc-sma-de[2]-Percentile1.0 0.1307 logMelFreqBand-sma[4]-upleveltime75
0.3873 LSPFreq-sma[0]-Percentile1.0 0.1301 LSPFreq-sma[3]-upleveltime75
0.3871 mfcc-sma[12]-linregerrA 0.1296 logMelFreqBand-sma-de[5]-upleveltime90
0.387 voicedunvoiced ratio 0.1294 LSPFreq-sma-de[4]-kurtosis
0.387 voicedtotal frames ratio 0.1293 logMelFreqBand-sma[2]-minPos
0.3861 mfcc-sma-de[6]-iqr1-3 0.129 LSPFreq-sma[3]-iqr2-3
0.3859 unvoicedtotal frames ratio 0.1287 LSPFreq-sma-de[5]-amean
0.3859 mfcc-sma-de[13]-quartile1 0.1286 shimmerLocal-sma-skewness
0.3832 jitterLocal-sma-iqr1-3 0.1285 logMelFreqBand-sma[5]-linregc2
0.383 F0final-sma-de-upleveltime75 0.1283 logMelFreqBand-sma-de[0]-Percentile1.0
0.3828 jitterDDP-sma-de-linregerrQ 0.1282 mfcc-sma[3]-skewness
0.3824 logMelFreqBand-sma-de[3]-Percentile99.0 0.1274 LSPFreq-sma-de[5]-quartile3
0.3821 mfcc-sma-de[7]-stddev 0.1274 LSPFreq-sma-de[4]-iqr2-3
0.3819 mfcc-sma-de[3]-linregc1 0.1268 pcm-loudness-sma-de-iqr1-3
0.3812 mfcc-sma[12]-pctlrange0-1 0.1267 mfcc-sma[4]-maxPos
0.3812 logMelFreqBand-sma-de[2]-Percentile1.0 0.1263 jitterDDP-sma-de-skewness
0.3809 logMelFreqBand-sma-de[0]-linregerrQ 0.126 LSPFreq-sma-de[1]-minPos
0.3808 mfcc-sma-de[13]-quartile3 0.1255 logMelFreqBand-sma-de[7]-minPos
0.3799 logMelFreqBand-sma-de[1]-Percentile99.0 0.1248 mfcc-sma[12]-linregc2
0.3797 mfcc-sma-de[3]-linregerrA 0.1246 logMelFreqBand-sma[7]-maxPos
0.3796 logMelFreqBand-sma-de[7]-linregerrQ 0.1243 logMelFreqBand-sma[3]-iqr1-2
0.379 logMelFreqBand-sma-de[0]-iqr1-3 0.1242 mfcc-sma[5]-skewness
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0.3774 mfcc-sma-de[2]-linregc2 0.1241 mfcc-sma[9]-linregc2
0.3773 mfcc-sma[0]-quartile1 0.124 LSPFreq-sma[5]-quartile1
0.3772 mfcc-sma[3]-Percentile1.0 0.1239 mfcc-sma-de[6]-kurtosis
0.3747 jitterDDP-sma-de-stddev 0.1235 mfcc-sma-de[1]-minPos
0.3747 shimmerLocal-sma-quartile1 0.1235 mfcc-sma[9]-Percentile99.0
0.3738 LSPFreq-sma-de[2]-linregerrA 0.1232 logMelFreqBand-sma[2]-quartile2
0.3721 mfcc-sma[2]-linregc2 0.1231 LSPFreq-sma[7]-kurtosis
0.3716 mfcc-sma[8]-quartile2 0.1224 logMelFreqBand-sma[4]-maxPos
0.3716 F0final-sma-iqr2-3 0.122 logMelFreqBand-sma[5]-minPos
0.3708 mfcc-sma-de[8]-linregc1 0.1217 LSPFreq-sma[1]-minPos
0.3704 LSPFreq-sma[1]-iqr2-3 0.1217 mfcc-sma[0]-quartile3
0.3701 logMelFreqBand-sma[0]-pctlrange0-1 0.1214 LSPFreq-sma-de[1]-stddev
0.3695 jitterLocal-sma-quartile1 0.1214 mfcc-sma-de[0]-quartile2
0.3694 mfcc-sma[10]-quartile2 0.1211 mfcc-sma[12]-iqr1-2
0.3688 mfcc-sma-de[10]-iqr2-3 0.1211 logMelFreqBand-sma[3]-amean
0.3688 jitterDDP-sma-de-quartile3 0.1203 logMelFreqBand-sma[4]-linregc2
0.3682 shimmerLocal-sma-upleveltime75 0.1197 mfcc-sma[3]-minPos
0.3681 mfcc-sma-de[7]-iqr1-3 0.1196 mfcc-sma-de[3]-maxPos
0.3678 mfcc-sma-de[10]-iqr1-3 0.1196 LSPFreq-sma-de[2]-Percentile99.0
0.3667 mfcc-sma-de[14]-Percentile1.0 0.1194 LSPFreq-sma[6]-maxPos
0.3661 jitter(ppq5) 0.1192 mfcc-sma[4]-iqr1-2
0.365 mfcc-sma-de[8]-Percentile1.0 0.1191 LSPFreq-sma-de[0]-maxPos
0.3645 mfcc-sma[0]-upleveltime75 0.119 jitterLocal-sma-de-maxPos
0.3633 Period(std) 0.1188 voicingFinalUnclipped-sma-stddev
0.3633 mfcc-sma-de[4]-iqr1-2 0.1187 LSPFreq-sma[0]-linregerrQ
0.3622 logMelFreqBand-sma[2]-quartile3 0.1187 LSPFreq-sma-de[1]-linregerrQ
0.3622 jitterLocal-sma-de-stddev 0.1185 mfcc-sma-de[2]-maxPos
0.3617 mfcc-sma[1]-iqr1-2 0.1184 logMelFreqBand-sma[0]-quartile1
0.3611 logMelFreqBand-sma[5]-stddev 0.1177 mfcc-sma[12]-maxPos
0.3608 mfcc-sma-de[13]-Percentile99.0 0.1176 mfcc-sma[6]-Percentile99.0
0.3607 logMelFreqBand-sma[1]-linregc1 0.1175 logMelFreqBand-sma-de[4]-maxPos
0.3606 mfcc-sma-de[7]-linregerrQ 0.1173 mfcc-sma[6]-pctlrange0-1
0.36 shimmerLocal-sma-de-iqr1-2 0.1172 mfcc-sma[11]-quartile1
0.359 logMelFreqBand-sma[1]-linregc2 0.1171 mfcc-sma-de[0]-upleveltime75
0.359 mfcc-sma-de[3]-quartile3 0.117 voicingFinalUnclipped-sma-de-minPos
0.3584 LSPFreq-sma-de[2]-quartile1 0.1169 shimmerLocal-sma-de-skewness
0.3581 jitterDDP-sma-quartile3 0.1161 mfcc-sma[11]-Percentile1.0
0.3572 mfcc-sma-de[7]-linregc1 0.1159 mfcc-sma-de[14]-linregc1
0.3568 LSPFreq-sma-de[0]-quartile3 0.1159 LSPFreq-sma-de[6]-Percentile99.0
0.3565 mfcc-sma-de[6]-iqr1-2 0.1155 mfcc-sma[14]-iqr2-3
0.3549 mfcc-sma[9]-quartile2 0.1154 logMelFreqBand-sma[4]-minPos
0.3546 mfcc-sma[4]-quartile3 0.1152 mfcc-sma-de[6]-minPos
0.353 mfcc-sma-de[9]-pctlrange0-1 0.1148 LSPFreq-sma[6]-upleveltime75
0.3525 mfcc-sma-de[1]-iqr1-2 0.1147 mfcc-sma[8]-iqr1-2
0.3523 mfcc-sma[9]-amean 0.1146 logMelFreqBand-sma[1]-upleveltime90
0.3516 LSPFreq-sma[1]-skewness 0.1143 LSPFreq-sma-de[7]-linregerrA
0.3515 jitterDDP-sma-iqr1-3 0.1141 mfcc-sma-de[13]-upleveltime90
0.3515 mfcc-sma-de[8]-linregc2 0.1137 logMelFreqBand-sma[7]-iqr1-2
0.3514 mfcc-sma-de[3]-iqr1-3 0.1137 mfcc-sma[6]-iqr1-2
0.3513 LSPFreq-sma-de[1]-iqr1-2 0.1134 logMelFreqBand-sma-de[0]-skewness
0.3507 mfcc-sma[0]-maxPos 0.1133 pcm-loudness-sma-de-quartile1
0.3505 logMelFreqBand-sma[3]-quartile1 0.1132 mfcc-sma[4]-Percentile99.0
0.3499 F0final-sma-de-upleveltime90 0.113 LSPFreq-sma[0]-linregerrA
0.3497 logMelFreqBand-sma[4]-linregc1 0.1125 jitterLocal-sma-de-quartile2
0.3485 mfcc-sma[9]-linregerrA 0.1124 LSPFreq-sma[3]-maxPos
0.3473 LSPFreq-sma-de[1]-kurtosis 0.1119 LSPFreq-sma[2]-maxPos
0.3471 mfcc-sma[14]-Percentile1.0 0.1119 mfcc-sma-de[11]-linregc2
0.3467 mfcc-sma-de[6]-quartile3 0.1116 mfcc-sma-de[7]-kurtosis
0.344 mfcc-sma-de[1]-iqr1-3 0.111 LSPFreq-sma-de[7]-Percentile99.0
0.3433 F0final-sma-kurtosis 0.1109 logMelFreqBand-sma[3]-skewness
0.3428 mfcc-sma-de[9]-iqr1-2 0.1109 LSPFreq-sma-de[7]-iqr1-3
0.3418 mfcc-sma-de[10]-quartile3 0.1105 logMelFreqBand-sma-de[4]-upleveltime90
0.3406 jitterLocal-sma-Percentile99.0 0.1104 LSPFreq-sma[7]-upleveltime75
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0.3404 mfcc-sma[12]-linregerrQ 0.1104 logMelFreqBand-sma-de[7]-upleveltime75
0.3402 jitterDDP-sma-iqr2-3 0.1102 mfcc-sma[13]-maxPos
0.3398 pcm-loudness-sma-linregc1 0.11 logMelFreqBand-sma[1]-iqr2-3
0.3394 logMelFreqBand-sma-de[5]-Percentile99.0 0.1098 mfcc-sma-de[5]-kurtosis
0.3393 voicingFinalUnclipped-sma-de-iqr1-2 0.1098 LSPFreq-sma-de[6]-linregc1
0.339 logMelFreqBand-sma-de[1]-pctlrange0-1 0.1098 LSPFreq-sma[2]-linregc2
0.339 mfcc-sma[10]-amean 0.1092 shimmerLocal-sma-maxPos
0.3387 mfcc-sma-de[10]-pctlrange0-1 0.1092 LSPFreq-sma-de[6]-linregc2
0.3375 mfcc-sma[1]-Percentile99.0 0.1089 mfcc-sma-de[7]-minPos
0.3358 logMelFreqBand-sma[0]-quartile2 0.1088 voicingFinalUnclipped-sma-linregerrQ
0.3355 mfcc-sma-de[1]-linregc2 0.1088 pcm-loudness-sma-de-linregerrA
0.3343 LSPFreq-sma[0]-iqr2-3 0.1083 mfcc-sma[11]-iqr1-2
0.3342 mfcc-sma[8]-quartile1 0.1082 logMelFreqBand-sma[2]-kurtosis
0.3336 mfcc-sma-de[3]-linregc2 0.1081 LSPFreq-sma[2]-kurtosis
0.3313 logMelFreqBand-sma[6]-skewness 0.1076 pcm-loudness-sma-de-amean
0.3309 jitterLocal-sma-de-Percentile99.0 0.1075 LSPFreq-sma-de[7]-kurtosis
0.3305 mfcc-sma[9]-linregerrQ 0.1074 logMelFreqBand-sma[7]-iqr1-3
0.3285 pcm-loudness-sma-linregc2 0.1062 mfcc-sma[7]-minPos
0.328 logMelFreqBand-sma[6]-quartile2 0.1059 logMelFreqBand-sma[0]-minPos
0.3267 mfcc-sma[0]-iqr1-3 0.1058 LSPFreq-sma[4]-maxPos
0.3266 pcm-loudness-sma-amean 0.1057 LSPFreq-sma[3]-linregc2
0.3264 jitterLocal-sma-linregerrQ 0.1057 mfcc-sma-de[7]-maxPos
0.3262 mfcc-sma[9]-quartile1 0.1057 mfcc-sma[1]-minPos
0.3259 LSPFreq-sma[0]-iqr1-2 0.1055 LSPFreq-sma[1]-maxPos
0.3257 jitterLocal-sma-stddev 0.1054 logMelFreqBand-sma[7]-amean
0.3254 voicingFinalUnclipped-sma-de-iqr1-3 0.1053 voicingFinalUnclipped-sma-de-stddev
0.3248 voicingFinalUnclipped-sma-de-quartile1 0.1053 voicingFinalUnclipped-sma-de-linregerrQ
0.3246 mfcc-sma[4]-stddev 0.1052 LSPFreq-sma-de[4]-linregerrA
0.324 logMelFreqBand-sma[5]-kurtosis 0.1052 logMelFreqBand-sma-de[2]-upleveltime90
0.3238 LSPFreq-sma-de[0]-kurtosis 0.1051 mfcc-sma-de[5]-quartile2
0.3234 mfcc-sma[12]-stddev 0.105 LSPFreq-sma[5]-quartile3
0.3233 mfcc-sma-de[13]-Percentile1.0 0.1046 LSPFreq-sma[7]-maxPos
0.3222 mfcc-sma[5]-iqr2-3 0.1044 LSPFreq-sma-de[7]-quartile1
0.3202 mfcc-sma[5]-pctlrange0-1 0.104 mfcc-sma-de[4]-kurtosis
0.3199 LSPFreq-sma[2]-quartile3 0.1037 pcm-loudness-sma-de-iqr2-3
0.3198 mfcc-sma[14]-linregerrA 0.1035 pcm-loudness-sma-de-quartile3
0.3193 F0final-sma-maxPos 0.1033 mfcc-sma[2]-maxPos
0.3174 logMelFreqBand-sma-de[4]-upleveltime75 0.103 logMelFreqBand-sma[6]-linregc2
0.3169 jitterLocal-sma-kurtosis 0.103 mfcc-sma-de[4]-upleveltime75
0.3168 mfcc-sma[14]-stddev 0.1027 LSPFreq-sma-de[1]-skewness
0.3165 mfcc-sma[5]-linregc2 0.1025 logMelFreqBand-sma-de[7]-amean
0.3165 logMelFreqBand-sma-de[6]-Percentile99.0 0.1021 mfcc-sma-de[3]-pctlrange0-1
0.3164 logMelFreqBand-sma[3]-linregc1 0.1021 jitterLocal-sma-minPos
0.3152 logMelFreqBand-sma[1]-linregerrQ 0.1016 mfcc-sma[13]-minPos
0.3148 logMelFreqBand-sma[1]-maxPos 0.1015 logMelFreqBand-sma-de[5]-minPos
0.3144 logMelFreqBand-sma[4]-iqr2-3 0.1012 mfcc-sma[8]-maxPos
0.3144 shimmerLocal-sma-de-upleveltime90 0.101 mfcc-sma[10]-pctlrange0-1
0.3138 logMelFreqBand-sma[6]-linregerrQ 0.1008 mfcc-sma[10]-upleveltime75
0.3131 logMelFreqBand-sma-de[1]-kurtosis 0.1006 LSPFreq-sma-de[7]-iqr1-2
0.3124 mfcc-sma-de[1]-quartile3 0.0998 logMelFreqBand-sma-de[5]-maxPos
0.3121 mfcc-sma[4]-linregerrQ 0.0996 LSPFreq-sma-de[6]-kurtosis
0.3113 mfcc-sma[14]-linregerrQ 0.0993 pcm-loudness-sma-upleveltime90
0.3106 mfcc-sma-de[13]-iqr1-2 0.0992 mfcc-sma-de[5]-upleveltime75
0.3103 mfcc-sma[13]-iqr1-3 0.0991 LSPFreq-sma[0]-minPos
0.3098 LSPFreq-sma-de[2]-linregerrQ 0.0988 pcm-loudness-sma-de-kurtosis
0.3098 LSPFreq-sma-de[2]-stddev 0.0986 logMelFreqBand-sma[3]-quartile2
0.3084 mfcc-sma-de[4]-Percentile1.0 0.098 mfcc-sma[11]-quartile2
0.3082 mfcc-sma[9]-stddev 0.098 logMelFreqBand-sma[1]-minPos
0.3081 logMelFreqBand-sma-de[0]-quartile1 0.0978 LSPFreq-sma-de[7]-quartile3
0.3081 F0final-sma-de-maxPos 0.0974 LSPFreq-sma-de[3]-linregerrQ
0.3078 logMelFreqBand-sma[1]-quartile3 0.0974 LSPFreq-sma-de[3]-stddev
0.3077 F0finEnv-sma-skewness 0.0973 mfcc-sma[2]-upleveltime75
0.307 mfcc-sma-de[1]-linregc1 0.0971 mfcc-sma-de[1]-upleveltime90
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0.3068 logMelFreqBand-sma[5]-Percentile99.0 0.0965 LSPFreq-sma[4]-upleveltime75
0.3068 mfcc-sma[6]-amean 0.0962 LSPFreq-sma-de[2]-upleveltime75
0.306 jitterDDP-sma-de-iqr1-3 0.096 mfcc-sma[9]-kurtosis
0.3049 logMelFreqBand-sma[6]-quartile1 0.0959 mfcc-sma-de[7]-skewness
0.3044 mfcc-sma[0]-amean 0.0959 logMelFreqBand-sma-de[0]-upleveltime90
0.3044 mfcc-sma-de[10]-Percentile99.0 0.0954 jitterDDP-sma-minPos
0.3038 mfcc-sma-de[6]-quartile1 0.0949 LSPFreq-sma-de[0]-linregc2
0.3038 logMelFreqBand-sma[0]-Percentile99.0 0.0946 LSPFreq-sma-de[3]-minPos
0.3034 mfcc-sma[11]-iqr1-3 0.0945 mfcc-sma-de[8]-minPos
0.3033 LSPFreq-sma[2]-iqr1-3 0.0945 LSPFreq-sma-de[4]-maxPos
0.3033 mfcc-sma[10]-stddev 0.0944 mfcc-sma[12]-skewness
0.3032 logMelFreqBand-sma[5]-upleveltime90 0.0944 mfcc-sma-de[12]-minPos
0.3024 logMelFreqBand-sma[5]-iqr1-3 0.0944 LSPFreq-sma[3]-stddev
0.3021 shimmerLocal-sma-linregc2 0.0943 LSPFreq-sma-de[7]-iqr2-3
0.3013 mfcc-sma[1]-upleveltime90 0.0942 mfcc-sma[11]-Percentile99.0
0.3013 LSPFreq-sma[0]-kurtosis 0.0941 pcm-loudness-sma-kurtosis
0.3001 jitterDDP-sma-de-iqr2-3 0.094 mfcc-sma[11]-minPos
0.2996 mfcc-sma[4]-iqr2-3 0.0939 logMelFreqBand-sma-de[7]-maxPos
0.2996 mfcc-sma[9]-quartile3 0.0937 LSPFreq-sma[5]-upleveltime75
0.2994 mfcc-sma[1]-iqr2-3 0.0932 mfcc-sma[5]-upleveltime90
0.2988 LSPFreq-sma-de[1]-linregerrA 0.093 LSPFreq-sma-de[4]-upleveltime90
0.298 mfcc-sma[2]-pctlrange0-1 0.0927 shimmerLocal-sma-minPos
0.2976 mfcc-sma[12]-Percentile99.0 0.0922 LSPFreq-sma[4]-quartile2
0.2973 mfcc-sma[8]-Percentile1.0 0.0916 mfcc-sma[6]-upleveltime75
0.297 LSPFreq-sma-de[2]-iqr1-2 0.0913 mfcc-sma-de[2]-upleveltime90
0.2959 logMelFreqBand-sma[0]-maxPos 0.0912 LSPFreq-sma[0]-upleveltime75
0.2958 LSPFreq-sma-de[6]-iqr1-3 0.0909 LSPFreq-sma[6]-iqr2-3
0.2956 mfcc-sma-de[7]-iqr2-3 0.0908 LSPFreq-sma[7]-skewness
0.2954 mfcc-sma[7]-quartile1 0.0906 LSPFreq-sma[4]-iqr2-3
0.2945 logMelFreqBand-sma[5]-quartile3 0.0905 LSPFreq-sma-de[2]-pctlrange0-1
0.2945 mfcc-sma[6]-Percentile1.0 0.0904 jitterLocal-sma-de-skewness
0.2942 logMelFreqBand-sma[1]-amean 0.0903 voicingFinalUnclipped-sma-de-Percentile99.0
0.2942 mfcc-sma-de[7]-linregc2 0.0903 mfcc-sma[8]-minPos
0.2937 LSPFreq-sma[1]-quartile3 0.0902 LSPFreq-sma-de[3]-pctlrange0-1
0.2922 logMelFreqBand-sma-de[3]-Percentile1.0 0.0889 logMelFreqBand-sma-de[6]-maxPos
0.292 LSPFreq-sma[1]-quartile2 0.0889 logMelFreqBand-sma-de[1]-upleveltime75
0.292 F0final-sma-upleveltime90 0.0887 mfcc-sma-de[3]-amean
0.2916 mfcc-sma[11]-linregc1 0.0886 LSPFreq-sma-de[7]-linregc1
0.2914 LSPFreq-sma-de[3]-linregerrA 0.0883 mfcc-sma[14]-amean
0.2914 mfcc-sma[13]-quartile1 0.0882 mfcc-sma[9]-iqr1-2
0.2914 mfcc-sma-de[9]-Percentile1.0 0.0881 LSPFreq-sma[4]-amean
0.2898 voicingFinalUnclipped-sma-iqr1-2 0.0879 pcm-loudness-sma-linregerrA
0.2895 logMelFreqBand-sma[1]-linregerrA 0.0879 logMelFreqBand-sma-de[1]-minPos
0.2894 voicingFinalUnclipped-sma-upleveltime90 0.0876 mfcc-sma[10]-upleveltime90
0.2892 mfcc-sma[12]-quartile2 0.0873 logMelFreqBand-sma-de[3]-upleveltime90
0.2891 pcm-loudness-sma-de-linregc2 0.0871 logMelFreqBand-sma[0]-iqr1-2
0.2884 mfcc-sma[0]-iqr2-3 0.0869 mfcc-sma[7]-linregc2
0.2883 logMelFreqBand-sma-de[6]-pctlrange0-1 0.0864 mfcc-sma-de[7]-upleveltime90
0.2882 mfcc-sma-de[11]-Percentile1.0 0.0862 mfcc-sma-de[11]-minPos
0.288 jitterLocal-sma-upleveltime75 0.0854 LSPFreq-sma-de[5]-stddev
0.2879 LSPFreq-sma-de[1]-quartile3 0.0854 LSPFreq-sma-de[5]-linregerrQ
0.2875 logMelFreqBand-sma-de[6]-Percentile1.0 0.0853 mfcc-sma[11]-linregc2
0.2866 LSPFreq-sma-de[3]-linregc1 0.0853 LSPFreq-sma-de[3]-Percentile99.0
0.2865 logMelFreqBand-sma[7]-linregc1 0.0852 LSPFreq-sma-de[5]-skewness
0.2862 F0finEnv-sma-maxPos 0.0852 logMelFreqBand-sma[7]-linregc2
0.286 logMelFreqBand-sma[5]-amean 0.085 LSPFreq-sma-de[1]-upleveltime75
0.286 F0final-sma-de-linregc2 0.0849 logMelFreqBand-sma-de[6]-upleveltime90
0.2857 LSPFreq-sma[1]-Percentile1.0 0.0846 mfcc-sma-de[9]-amean
0.2853 jitterLocal-sma-iqr2-3 0.0842 LSPFreq-sma[6]-linregc1
0.2853 mfcc-sma-de[1]-kurtosis 0.0839 mfcc-sma-de[3]-Percentile1.0
0.2851 logMelFreqBand-sma[6]-stddev 0.0836 mfcc-sma[3]-iqr2-3
0.285 mfcc-sma[10]-linregc2 0.0834 LSPFreq-sma-de[7]-upleveltime90
0.2842 jitterDDP-sma-de-upleveltime90 0.0833 LSPFreq-sma[0]-Percentile99.0
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Ranking Feature Ranking Feature

0.2837 logMelFreqBand-sma[2]-maxPos 0.0829 mfcc-sma-de[7]-amean
0.2827 mfcc-sma[13]-Percentile1.0 0.0825 mfcc-sma[5]-linregc1
0.2827 logMelFreqBand-sma[2]-quartile1 0.0823 LSPFreq-sma-de[0]-amean
0.2826 logMelFreqBand-sma-de[7]-pctlrange0-1 0.0821 mfcc-sma[9]-upleveltime90
0.2822 mfcc-sma[11]-pctlrange0-1 0.0818 LSPFreq-sma-de[1]-amean
0.2822 jitterDDP-sma-quartile2 0.0816 LSPFreq-sma[4]-iqr1-3
0.282 LSPFreq-sma-de[5]-iqr1-2 0.0816 mfcc-sma[6]-kurtosis
0.2818 LSPFreq-sma[1]-amean 0.0815 logMelFreqBand-sma-de[0]-minPos
0.2814 mfcc-sma[12]-amean 0.0815 mfcc-sma-de[14]-upleveltime90
0.2811 logMelFreqBand-sma[7]-upleveltime90 0.0813 voicingFinalUnclipped-sma-de-maxPos
0.2806 logMelFreqBand-sma[5]-quartile1 0.0812 logMelFreqBand-sma-de[0]-quartile2
0.2805 mfcc-sma-de[3]-iqr2-3 0.0808 mfcc-sma-de[3]-upleveltime90
0.2805 logMelFreqBand-sma[5]-quartile2 0.0807 LSPFreq-sma[3]-linregerrA
0.2803 mfcc-sma[0]-skewness 0.0805 LSPFreq-sma[5]-linregc2
0.2803 voicingFinalUnclipped-sma-maxPos 0.0803 logMelFreqBand-sma-de[2]-minPos
0.2797 logMelFreqBand-sma-de[0]-iqr1-2 0.08 mfcc-sma-de[11]-upleveltime90
0.2796 mfcc-sma-de[3]-linregerrQ 0.0799 mfcc-sma-de[1]-upleveltime75
0.2796 LSPFreq-sma[0]-iqr1-3 0.0798 mfcc-sma[11]-skewness
0.2795 mfcc-sma-de[3]-stddev 0.0797 LSPFreq-sma[4]-Percentile1.0
0.2787 logMelFreqBand-sma[1]-stddev 0.0797 LSPFreq-sma-de[7]-upleveltime75
0.2786 mfcc-sma-de[6]-linregc1 0.0796 LSPFreq-sma-de[0]-upleveltime75
0.2785 mfcc-sma[9]-iqr2-3 0.0793 LSPFreq-sma-de[4]-linregc1
0.2782 logMelFreqBand-sma[2]-iqr2-3 0.0792 mfcc-sma-de[6]-upleveltime75
0.2779 F0final-sma-de-iqr2-3 0.0789 mfcc-sma[9]-upleveltime75
0.2771 LSPFreq-sma-de[3]-maxPos 0.0789 mfcc-sma[1]-kurtosis
0.2763 mfcc-sma-de[7]-quartile1 0.0782 mfcc-sma-de[12]-quartile2
0.2761 mfcc-sma-de[5]-linregc2 0.078 LSPFreq-sma[6]-iqr1-2
0.2754 mfcc-sma[3]-quartile3 0.0779 logMelFreqBand-sma-de[1]-skewness
0.2754 mfcc-sma[10]-linregerrQ 0.0779 logMelFreqBand-sma[6]-Percentile99.0
0.2742 LSPFreq-sma-de[3]-linregc2 0.0778 LSPFreq-sma[7]-quartile3
0.2742 mfcc-sma-de[4]-pctlrange0-1 0.0777 logMelFreqBand-sma-de[1]-quartile2
0.274 mfcc-sma[8]-linregerrQ 0.0777 LSPFreq-sma[2]-upleveltime90
0.2734 F0finEnv-sma-de-minPos 0.0775 voicingFinalUnclipped-sma-de-amean
0.2733 mfcc-sma[8]-stddev 0.0775 LSPFreq-sma[7]-iqr2-3
0.2733 logMelFreqBand-sma[5]-iqr2-3 0.0774 H(max)
0.2732 logMelFreqBand-sma-de[5]-pctlrange0-1 0.0774 logMelFreqBand-sma[6]-minPos
0.2728 jitterDDP-sma-upleveltime75 0.0774 LSPFreq-sma[4]-quartile1
0.2728 mfcc-sma-de[6]-linregc2 0.0771 logMelFreqBand-sma[1]-iqr1-2
0.2727 logMelFreqBand-sma[1]-quartile1 0.0769 LSPFreq-sma-de[7]-linregc2
0.2727 LSPFreq-sma[1]-quartile1 0.0767 mfcc-sma[14]-upleveltime75
0.2722 mfcc-sma[4]-linregerrA 0.0765 LSPFreq-sma-de[4]-stddev
0.272 mfcc-sma[0]-iqr1-2 0.0764 LSPFreq-sma-de[4]-linregerrQ
0.2719 mfcc-sma-de[5]-linregc1 0.0763 logMelFreqBand-sma-de[3]-minPos
0.2718 logMelFreqBand-sma[0]-iqr2-3 0.0762 H(min)
0.2716 logMelFreqBand-sma[1]-kurtosis 0.076 LSPFreq-sma[3]-iqr1-2
0.2711 mfcc-sma[6]-maxPos 0.076 pcm-loudness-sma-Percentile99.0
0.2708 mfcc-sma[9]-Percentile1.0 0.0759 mfcc-sma-de[11]-kurtosis
0.2707 mfcc-sma[0]-Percentile99.0 0.0759 mfcc-sma[3]-linregc1
0.2695 mfcc-sma[0]-upleveltime90 0.0759 mfcc-sma[8]-upleveltime90
0.2693 mfcc-sma[3]-linregc2 0.0753 LSPFreq-sma[5]-Percentile99.0
0.2692 mfcc-sma[8]-iqr2-3 0.075 LSPFreq-sma[6]-linregc2
0.2692 shimmerLocal-sma-upleveltime90 0.075 voicingFinalUnclipped-sma-de-upleveltime90
0.269 LSPFreq-sma-de[0]-iqr2-3 0.075 pcm-loudness-sma-de-stddev
0.269 HNR(mean) 0.075 pcm-loudness-sma-de-linregerrQ
0.2681 logMelFreqBand-sma[3]-maxPos 0.0747 LSPFreq-sma[6]-quartile2
0.2681 mfcc-sma[9]-iqr1-3 0.0747 mfcc-sma-de[0]-amean
0.2678 mfcc-sma[5]-quartile3 0.0746 mfcc-sma[14]-quartile3
0.2669 voicingFinalUnclipped-sma-de-iqr2-3 0.0745 mfcc-sma[7]-iqr2-3
0.2667 LSPFreq-sma-de[6]-quartile3 0.0738 LSPFreq-sma[4]-upleveltime90
0.2665 F0final–Turn-numOnsets 0.0736 LSPFreq-sma-de[4]-pctlrange0-1
0.2662 logMelFreqBand-sma[0]-iqr1-3 0.0735 mfcc-sma-de[5]-skewness
0.2655 jitterDDP-sma-de-quartile1 0.0735 LSPFreq-sma-de[5]-Percentile99.0
0.2642 LSPFreq-sma-de[2]-linregc1 0.0733 LSPFreq-sma[0]-stddev
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Ranking Feature Ranking Feature

0.264 LSPFreq-sma[0]-skewness 0.0732 mfcc-sma[8]-skewness
0.2639 logMelFreqBand-sma-de[7]-kurtosis 0.073 LSPFreq-sma[7]-linregc2
0.2627 mfcc-sma-de[0]-Percentile1.0 0.073 pcm-loudness-sma-de-quartile2
0.2625 mfcc-sma-de[12]-linregc2 0.0728 mfcc-sma-de[3]-Percentile99.0
0.2621 logMelFreqBand-sma[4]-kurtosis 0.0726 LSPFreq-sma[2]-pctlrange0-1
0.262 pcm-loudness-sma-quartile1 0.0724 LSPFreq-sma-de[3]-upleveltime90
0.2616 jitterLocal-sma-skewness 0.0723 mfcc-sma[14]-skewness
0.2616 LSPFreq-sma-de[3]-quartile3 0.0721 LSPFreq-sma[1]-upleveltime75
0.2606 shimmerLocal-sma-kurtosis 0.0717 mfcc-sma[2]-linregc1
0.2596 mfcc-sma[1]-skewness 0.0709 mfcc-sma-de[9]-upleveltime75
0.2595 mfcc-sma[10]-iqr2-3 0.0707 LSPFreq-sma[0]-pctlrange0-1
0.2595 Period(number) 0.0702 LSPFreq-sma[6]-amean
0.2585 mfcc-sma[11]-stddev 0.0702 LSPFreq-sma[3]-Percentile99.0
0.2584 mfcc-sma[10]-iqr1-3 0.07 LSPFreq-sma[1]-Percentile99.0
0.2584 mfcc-sma[0]-linregc1 0.07 mfcc-sma-de[8]-upleveltime90
0.2584 LSPFreq-sma-de[2]-minPos 0.0689 mfcc-sma[10]-kurtosis
0.2579 mfcc-sma[4]-linregc2 0.0687 mfcc-sma-de[4]-quartile2
0.2574 mfcc-sma-de[5]-Percentile99.0 0.0684 LSPFreq-sma[7]-quartile2
0.257 mfcc-sma[7]-quartile3 0.0683 LSPFreq-sma[5]-linregerrQ
0.2565 logMelFreqBand-sma[7]-kurtosis 0.0681 pcm-loudness-sma-stddev
0.2564 voicingFinalUnclipped-sma-de-quartile3 0.0678 LSPFreq-sma-de[5]-upleveltime90
0.2558 logMelFreqBand-sma[7]-quartile2 0.0674 LSPFreq-sma-de[0]-upleveltime90
0.2556 mfcc-sma[10]-linregc1 0.0671 logMelFreqBand-sma[7]-minPos
0.2549 NHR(mean) 0.067 LSPFreq-sma[5]-pctlrange0-1
0.2544 jitterLocal-sma-de-kurtosis 0.0657 mfcc-sma-de[1]-skewness
0.2538 F0final-sma-de-minPos 0.0643 mfcc-sma-de[14]-linregc2
0.2536 logMelFreqBand-sma[1]-quartile2 0.0634 mfcc-sma[3]-upleveltime75
0.2531 pcm-loudness-sma-quartile2 0.0626 LSPFreq-sma[5]-linregerrA
0.2529 logMelFreqBand-sma-de[5]-upleveltime75 0.0603 LSPFreq-sma[5]-iqr1-3
0.2527 mfcc-sma[11]-linregerrQ 0.0597 logMelFreqBand-sma-de[2]-amean
0.2519 shimmer(ddp) 0.0589 mfcc-sma-de[4]-skewness
0.2519 shimmer(apq3) 0.0573 LSPFreq-sma[6]-quartile3
0.2512 logMelFreqBand-sma[6]-amean 0.0568 logMelFreqBand-sma-de[1]-amean
0.251 LSPFreq-sma-de[7]-pctlrange0-1 0.0534 LSPFreq-sma[5]-maxPos
0.2509 LSPFreq-sma-de[2]-linregc2
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APPENDIX B

The Selected Features using CFS-PSO

Feature Feature Feature

F0finEnv-sma-de-skewness mfcc-sma[0]-quartile1 mfcc-sma[12]-iqr1-3
logMelFreqBand-sma-de[2]-iqr1-3 shimmerLocal-sma-quartile1 logMelFreqBand-sma[7]-linregerrQ
logMelFreqBand-sma-de[4]-quartile1 lspFreq-sma-de[2]-linregerrA mfcc-sma-de[13]-minPos
logMelFreqBand-sma-de[4]-linregerrA mfcc-sma-de[8]-linregc1 mfcc-sma-de[1]-pctlrange0-1
mfcc-sma-de[2]-linregerrA lspFreq-sma[1]-iqr2-3 lspFreq-sma-de[6]-amean
logMelFreqBand-sma-de[5]-quartile1 logMelFreqBand-sma[0]-pctlrange0-1 lspFreq-sma-de[5]-iqr2-3
F0final-sma-percentile99.0 mfcc-sma[10]-quartile2 mfcc-sma[7]-iqr1-3
logMelFreqBand-sma-de[5]-iqr1-3 shimmerLocal-sma-upleveltime75 mfcc-sma[10]-percentile99.0
mfcc-sma-de[0]-iqr1-3 mfcc-sma-de[7]-iqr1-3 mfcc-sma-de[1]-maxPos
logMelFreqBand-sma-de[4]-iqr1-3 jitter(ppq5) logMelFreqBand-sma-de[3]-maxPos
logMelFreqBand-sma-de[2]-linregerrA Period(std) mfcc-sma-de[2]-amean
logMelFreqBand-sma[2]-pctlrange0-1 mfcc-sma-de[4]-iqr1-2 mfcc-sma-de[1]-linregerrQ
mfcc-sma-de[12]-linregerrQ logMelFreqBand-sma[2]-quartile3 mfcc-sma-de[1]-stddev
logMelFreqBand-sma-de[4]-stddev jitterLocal-sma-de-stddev logMelFreqBand-sma[6]-quartile3
logMelFreqBand-sma-de[3]-quartile1 mfcc-sma[1]-iqr1-2 mfcc-sma[5]-percentile99.0
logMelFreqBand-sma-de[5]-quartile3 logMelFreqBand-sma[5]-stddev mfcc-sma[10]-linregerrA
F0final-sma-linregerrQ logMelFreqBand-sma[1]-linregc1 logMelFreqBand-sma-de[0]-upleveltime75
mfcc-sma-de[12]-stddev shimmerLocal-sma-de-iqr1-2 mfcc-sma-de[8]-maxPos
F0final-sma-linregerrA logMelFreqBand-sma[1]-linregc2 mfcc-sma[13]-linregc1
logMelFreqBand-sma-de[3]-stddev mfcc-sma-de[3]-quartile3 lspFreq-sma[2]-quartile2
logMelFreqBand-sma-de[2]-iqr1-2 lspFreq-sma-de[2]-quartile1 shimmerLocal-sma-de-kurtosis
mfcc-sma-de[0]-quartile3 jitterDDP-sma-quartile3 logMelFreqBand-sma-de[7]-upleveltime90
logMelFreqBand-sma-de[4]-quartile3 mfcc-sma-de[7]-linregc1 logMelFreqBand-sma-de[2]-quartile2
logMelFreqBand-sma-de[2]-quartile1 lspFreq-sma-de[0]-quartile3 jitterDDP-sma-de-linregc1
logMelFreqBand-sma-de[2]-linregerrQ mfcc-sma-de[6]-iqr1-2 mfcc-sma-de[1]-percentile99.0
voicingFinalUnclipped-sma-percentile99.0 mfcc-sma[9]-quartile2 logMelFreqBand-sma[0]-stddev
F0final-sma-stddev mfcc-sma-de[1]-iqr1-2 mfcc-sma-de[0]-maxPos
logMelFreqBand-sma[4]-pctlrange0-1 mfcc-sma[9]-amean mfcc-sma-de[13]-maxPos
F0finEnv-sma-quartile3 lspFreq-sma[1]-skewness mfcc-sma-de[7]-percentile1.0
logMelFreqBand-sma-de[3]-linregerrA mfcc-sma-de[8]-linregc2 lspFreq-sma[2]-minPos
Period(mean) mfcc-sma-de[3]-iqr1-3 logMelFreqBand-sma-de[4]-minPos
F0finEnv-sma-de-linregerrA mfcc-sma[0]-maxPos lspFreq-sma-de[6]-iqr1-2
mfcc-sma-de[14]-linregerrQ F0final-sma-de-upleveltime90 jitterDDP-sma-de-minPos
F0final-sma-de-stddev logMelFreqBand-sma[4]-linregc1 mfcc-sma-de[1]-linregerrA
mfcc-sma-de[0]-iqr1-2 mfcc-sma[9]-linregerrA voicingFinalUnclipped-sma-de-kurtosis
F0finEnv-sma-quartile2 mfcc-sma-de[6]-quartile3 lspFreq-sma[6]-quartile1
logMelFreqBand-sma-de[5]-iqr2-3 mfcc-sma-de[1]-iqr1-3 mfcc-sma-de[9]-maxPos
lspFreq-sma[0]-quartile1 F0final-sma-kurtosis jitterDDP-sma-de-quartile2
mfcc-sma[0]-pctlrange0-1 mfcc-sma-de[9]-iqr1-2 logMelFreqBand-sma-de[2]-upleveltime75
lspFreq-sma[0]-quartile3 mfcc-sma-de[10]-quartile3 mfcc-sma[1]-stddev
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mfcc-sma-de[5]-iqr1-2 mfcc-sma[12]-linregerrQ lspFreq-sma-de[7]-maxPos
logMelFreqBand-sma-de[2]-quartile3 pcm-loudness-sma-linregc1 lspFreq-sma-de[5]-linregc2
mfcc-sma-de[0]-quartile1 logMelFreqBand-sma-de[5]-percentile99.0 logMelFreqBand-sma-de[4]-skewness
mfcc-sma[2]-quartile1 mfcc-sma-de[10]-pctlrange0-1 lspFreq-sma-de[4]-linregc2
logMelFreqBand-sma-de[3]-quartile3 mfcc-sma[1]-percentile99.0 lspFreq-sma-de[6]-stddev
logMelFreqBand-sma[2]-percentile1.0 mfcc-sma-de[1]-linregc2 shimmerLocal-sma-de-linregc2
logMelFreqBand-sma-de[3]-iqr1-2 lspFreq-sma[0]-iqr2-3 Do1000(slope)
logMelFreqBand-sma-de[2]-iqr2-3 mfcc-sma[8]-quartile1 lspFreq-sma-de[6]-linregerrQ
logMelFreqBand-sma[7]-percentile1.0 mfcc-sma-de[3]-linregc2 mfcc-sma[0]-minPos
logMelFreqBand-sma[6]-percentile1.0 mfcc-sma[9]-linregerrQ lspFreq-sma-de[7]-amean
F0finEnv-sma-de-percentile1.0 pcm-loudness-sma-linregc2 logMelFreqBand-sma-de[5]-quartile2
lspFreq-sma[0]-quartile2 logMelFreqBand-sma[6]-quartile2 mfcc-sma[13]-quartile3
lspFreq-sma[0]-amean mfcc-sma[0]-iqr1-3 lspFreq-sma[3]-percentile1.0
mfcc-sma-de[8]-linregerrA pcm-loudness-sma-amean logMelFreqBand-sma-de[5]-amean
F0final-sma-quartile2 lspFreq-sma[0]-iqr1-2 lspFreq-sma-de[5]-minPos
mfcc-sma-de[5]-stddev voicingFinalUnclipped-sma-de-iqr1-3 mfcc-sma-de[12]-maxPos
mfcc-sma-de[5]-linregerrQ voicingFinalUnclipped-sma-de-quartile1 logMelFreqBand-sma[2]-linregc2
logMelFreqBand-sma-de[5]-stddev mfcc-sma[12]-stddev lspFreq-sma-de[7]-percentile1.0
jitterLocal-sma-de-quartile1 mfcc-sma-de[13]-percentile1.0 mfcc-sma-de[6]-upleveltime90
F0final-sma-amean mfcc-sma[14]-linregerrA jitterLocal-sma-maxPos
mfcc-sma-de[5]-linregerrA F0final-sma-maxPos mfcc-sma[10]-minPos
logMelFreqBand-sma[5]-pctlrange0-1 logMelFreqBand-sma-de[4]-upleveltime75 mfcc-sma-de[5]-amean
mfcc-sma-de[2]-iqr1-3 jitterLocal-sma-kurtosis mfcc-sma-de[1]-quartile1
shimmerLocal-sma-de-linregerrA mfcc-sma[14]-stddev jitterDDP-sma-maxPos
mfcc-sma-de[12]-iqr1-2 logMelFreqBand-sma[1]-linregerrQ logMelFreqBand-sma[0]-linregerrQ
logMelFreqBand-sma-de[6]-iqr1-3 logMelFreqBand-sma[1]-maxPos mfcc-sma[7]-amean
mfcc-sma-de[14]-stddev logMelFreqBand-sma[4]-iqr2-3 lspFreq-sma[5]-kurtosis
mfcc-sma-de[12]-iqr1-3 shimmerLocal-sma-de-upleveltime90 logMelFreqBand-sma-de[6]-amean
logMelFreqBand-sma-de[5]-iqr1-2 logMelFreqBand-sma-de[1]-kurtosis mfcc-sma-de[10]-maxPos
shimmerLocal-sma-de-quartile1 mfcc-sma-de[1]-quartile3 mfcc-sma[13]-percentile99.0
voicingFinalUnclipped-sma-skewness mfcc-sma-de[13]-iqr1-2 mfcc-sma[7]-percentile1.0
mfcc-sma-de[11]-iqr1-3 mfcc-sma[13]-iqr1-3 lspFreq-sma[6]-skewness
mfcc-sma-de[12]-pctlrange0-1 lspFreq-sma-de[2]-linregerrQ pcm-loudness-sma-de-minPos
voicingFinalUnclipped-sma-iqr2-3 lspFreq-sma-de[2]-stddev mfcc-sma[5]-minPos
jitterLocal-sma-amean mfcc-sma-de[4]-percentile1.0 mfcc-sma-de[5]-upleveltime90
F0final-sma-iqr1-3 mfcc-sma[9]-stddev mfcc-sma[9]-minPos
F0finEnv-sma-de-percentile99.0 logMelFreqBand-sma-de[0]-quartile1 mfcc-sma-de[12]-amean
mfcc-sma[1]-quartile2 logMelFreqBand-sma[5]-percentile99.0 lspFreq-sma[5]-quartile2
mfcc-sma-de[12]-percentile99.0 mfcc-sma[6]-amean mfcc-sma[9]-linregc1
mfcc-sma-de[0]-stddev mfcc-sma[0]-amean pcm-loudness-sma-skewness
voicingFinalUnclipped-sma-amean mfcc-sma-de[10]-percentile99.0 logMelFreqBand-sma-de[3]-skewness
mfcc-sma[1]-amean mfcc-sma-de[6]-quartile1 logMelFreqBand-sma-de[6]-upleveltime75
logMelFreqBand-sma-de[7]-linregc1 logMelFreqBand-sma[0]-percentile99.0 voicingFinalUnclipped-sma-linregc1
mfcc-sma-de[8]-stddev lspFreq-sma[2]-iqr1-3 jitterLocal-sma-linregc2
mfcc-sma-de[8]-linregerrQ logMelFreqBand-sma[5]-upleveltime90 F0final-sma-linregc1
logMelFreqBand-sma-de[4]-pctlrange0-1 logMelFreqBand-sma[5]-iqr1-3 logMelFreqBand-sma-de[0]-kurtosis
logMelFreqBand-sma-de[6]-quartile3 shimmerLocal-sma-linregc2 logMelFreqBand-sma[6]-iqr1-3
F0finEnv-sma-iqr1-3 mfcc-sma[1]-upleveltime90 mfcc-sma[13]-amean
logMelFreqBand-sma[4]-percentile1.0 lspFreq-sma[0]-kurtosis logMelFreqBand-sma[2]-iqr1-2
mfcc-sma-de[5]-quartile3 jitterDDP-sma-de-iqr2-3 lspFreq-sma-de[6]-percentile1.0
mfcc-sma-de[2]-pctlrange0-1 mfcc-sma[4]-iqr2-3 mfcc-sma[6]-iqr2-3
mfcc-sma-de[5]-iqr1-3 mfcc-sma[9]-quartile3 mfcc-sma[1]-linregerrQ
mfcc-sma[2]-linregerrQ mfcc-sma[1]-iqr2-3 mfcc-sma[4]-minPos
F0finEnv-sma-de-amean lspFreq-sma-de[1]-linregerrA lspFreq-sma-de[4]-percentile1.0
voicingFinalUnclipped-sma-quartile1 mfcc-sma[2]-pctlrange0-1 lspFreq-sma[3]-iqr1-3
F0finEnv-sma-iqr2-3 mfcc-sma[8]-percentile1.0 mfcc-sma-de[4]-minPos
logMelFreqBand-sma[3]-stddev lspFreq-sma-de[2]-iqr1-2 mfcc-sma-de[8]-quartile2
mfcc-sma[2]-percentile1.0 logMelFreqBand-sma[5]-quartile3 logMelFreqBand-sma[5]-maxPos
shimmerLocal-sma-amean mfcc-sma-de[7]-linregc2 mfcc-sma-de[11]-linregc1
jitterLocal-sma-quartile2 lspFreq-sma[1]-quartile3 lspFreq-sma[4]-linregerrA
mfcc-sma-de[8]-quartile1 lspFreq-sma[1]-quartile2 lspFreq-sma-de[4]-percentile99.0
logMelFreqBand-sma-de[5]-linregc2 mfcc-sma[11]-linregc1 lspFreq-sma[5]-iqr2-3
mfcc-sma[5]-quartile2 mfcc-sma-de[9]-percentile1.0 pcm-loudness-sma-de-iqr1-2
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Feature Feature Feature

logMelFreqBand-sma-de[6]-quartile1 logMelFreqBand-sma[1]-linregerrA voicingFinalUnclipped-sma-de-linregerrA
mfcc-sma-de[11]-iqr1-2 voicingFinalUnclipped-sma-upleveltime90 jitterDDP-sma-linregc2
logMelFreqBand-sma-de[4]-kurtosis mfcc-sma[12]-quartile2 mfcc-sma[14]-quartile2
logMelFreqBand-sma[4]-percentile99.0 logMelFreqBand-sma-de[6]-pctlrange0-1 lspFreq-sma[6]-kurtosis
F0finEnv-sma-upleveltime75 mfcc-sma-de[11]-percentile1.0 logMelFreqBand-sma[4]-upleveltime75
logMelFreqBand-sma-de[6]-iqr2-3 lspFreq-sma-de[1]-quartile3 logMelFreqBand-sma-de[5]-upleveltime90
mfcc-sma-de[0]-linregc1 logMelFreqBand-sma-de[6]-percentile1.0 lspFreq-sma-de[5]-amean
logMelFreqBand-sma[3]-linregerrA logMelFreqBand-sma[5]-amean mfcc-sma[3]-skewness
logMelFreqBand-sma-de[2]-pctlrange0-1 lspFreq-sma[1]-percentile1.0 lspFreq-sma-de[5]-quartile3
mfcc-sma-de[14]-linregerrA jitterLocal-sma-iqr2-3 lspFreq-sma-de[4]-iqr2-3
logMelFreqBand-sma-de[3]-kurtosis mfcc-sma-de[1]-kurtosis pcm-loudness-sma-de-iqr1-3
shimmerLocal-sma-de-iqr2-3 logMelFreqBand-sma[6]-stddev lspFreq-sma-de[1]-minPos
mfcc-sma-de[2]-quartile1 mfcc-sma[10]-linregc2 logMelFreqBand-sma[3]-iqr1-2
mfcc-sma[5]-linregerrQ jitterDDP-sma-de-upleveltime90 logMelFreqBand-sma[2]-quartile2
logMelFreqBand-sma-de[7]-iqr1-3 mfcc-sma[13]-percentile1.0 lspFreq-sma[7]-kurtosis
mfcc-sma-de[2]-iqr1-2 logMelFreqBand-sma[2]-quartile1 mfcc-sma[0]-quartile3
mfcc-sma-de[13]-linregerrA jitterDDP-sma-quartile2 lspFreq-sma-de[1]-stddev
mfcc-sma-de[9]-linregerrQ lspFreq-sma-de[5]-iqr1-2 mfcc-sma[3]-minPos
logMelFreqBand-sma-de[7]-linregc2 lspFreq-sma[1]-amean lspFreq-sma-de[2]-percentile99.0
mfcc-sma-de[9]-linregc1 logMelFreqBand-sma[7]-upleveltime90 voicingFinalUnclipped-sma-stddev
mfcc-sma[2]-linregerrA logMelFreqBand-sma[5]-quartile2 mfcc-sma[6]-pctlrange0-1
Do1000(offset) mfcc-sma-de[3]-linregerrQ voicingFinalUnclipped-sma-de-minPos
shimmerLocal-sma-de-iqr1-3 lspFreq-sma[0]-iqr1-3 lspFreq-sma-de[6]-percentile99.0
logMelFreqBand-sma-de[7]-iqr2-3 logMelFreqBand-sma[1]-stddev logMelFreqBand-sma[4]-minPos
mfcc-sma[3]-quartile1 mfcc-sma[9]-iqr2-3 mfcc-sma[8]-iqr1-2
logMelFreqBand-sma[3]-linregerrQ logMelFreqBand-sma[2]-iqr2-3 mfcc-sma[4]-percentile99.0
F0finEnv-sma-quartile1 F0final-sma-de-iqr2-3 lspFreq-sma[0]-linregerrA
mfcc-sma[5]-stddev mfcc-sma-de[5]-linregc2 mfcc-sma-de[11]-linregc2
logMelFreqBand-sma-de[6]-linregerrA mfcc-sma[3]-quartile3 logMelFreqBand-sma[3]-skewness
mfcc-sma-de[14]-quartile3 lspFreq-sma-de[3]-linregc2 logMelFreqBand-sma-de[4]-upleveltime90
mfcc-sma[5]-percentile1.0 F0finEnv-sma-de-minPos logMelFreqBand-sma-de[7]-upleveltime75
mfcc-sma-de[9]-linregc2 logMelFreqBand-sma[5]-iqr2-3 lspFreq-sma[2]-linregc2
logMelFreqBand-sma-de[3]-linregc2 logMelFreqBand-sma-de[5]-pctlrange0-1 shimmerLocal-sma-maxPos
logMelFreqBand-sma-de[5]-kurtosis mfcc-sma-de[6]-linregc2 lspFreq-sma-de[6]-linregc2
mfcc-sma-de[2]-linregc1 mfcc-sma[0]-iqr1-2 mfcc-sma-de[7]-minPos
logMelFreqBand-sma[3]-percentile1.0 mfcc-sma[9]-percentile1.0 voicingFinalUnclipped-sma-linregerrQ
logMelFreqBand-sma-de[6]-linregerrQ mfcc-sma[3]-linregc2 mfcc-sma[11]-iqr1-2
mfcc-sma-de[0]-linregc2 shimmerLocal-sma-upleveltime90 logMelFreqBand-sma[2]-kurtosis
logMelFreqBand-sma-de[0]-linregc2 HNR(mean) lspFreq-sma[2]-kurtosis
mfcc-sma-de[9]-quartile3 logMelFreqBand-sma[3]-maxPos lspFreq-sma[3]-linregc2
logMelFreqBand-sma-de[6]-stddev lspFreq-sma-de[2]-linregc1 mfcc-sma-de[7]-maxPos
logMelFreqBand-sma[4]-stddev logMelFreqBand-sma-de[7]-kurtosis logMelFreqBand-sma-de[2]-upleveltime90
mfcc-sma-de[8]-quartile3 mfcc-sma-de[0]-percentile1.0 lspFreq-sma[5]-quartile3
lspFreq-sma-de[2]-iqr2-3 logMelFreqBand-sma[4]-kurtosis lspFreq-sma[7]-maxPos
mfcc-sma-de[6]-iqr2-3 pcm-loudness-sma-quartile1 pcm-loudness-sma-de-iqr2-3
mfcc-sma[13]-linregerrQ lspFreq-sma-de[3]-quartile3 mfcc-sma-de[4]-upleveltime75
logMelFreqBand-sma-de[7]-quartile1 mfcc-sma[1]-skewness lspFreq-sma-de[1]-skewness
mfcc-sma[1]-quartile1 mfcc-sma[10]-iqr2-3 mfcc-sma[13]-minPos
F0final-sma-iqr1-2 mfcc-sma[11]-stddev logMelFreqBand-sma-de[5]-minPos
mfcc-sma-de[9]-quartile1 mfcc-sma[0]-linregc1 mfcc-sma[8]-maxPos
jitter(rap) lspFreq-sma-de[2]-minPos mfcc-sma[10]-pctlrange0-1
Hmm mfcc-sma[4]-linregc2 mfcc-sma[10]-upleveltime75
mfcc-sma-de[5]-percentile1.0 voicingFinalUnclipped-sma-de-quartile3 lspFreq-sma-de[7]-iqr1-2
logMelFreqBand-sma[1]-percentile1.0 mfcc-sma[10]-linregc1 logMelFreqBand-sma-de[5]-maxPos
mfcc-sma-de[14]-pctlrange0-1 NHR(mean) pcm-loudness-sma-upleveltime90
lspFreq-sma-de[2]-quartile3 jitterLocal-sma-de-kurtosis mfcc-sma-de[5]-upleveltime75
F0final-sma-quartile1 F0final-sma-de-minPos logMelFreqBand-sma[3]-quartile2
logMelFreqBand-sma-de[3]-pctlrange0-1 pcm-loudness-sma-quartile2 logMelFreqBand-sma[1]-minPos
jitterDDP-sma-stddev logMelFreqBand-sma-de[5]-upleveltime75 mfcc-sma[2]-upleveltime75
logMelFreqBand-sma-de[6]-linregc1 shimmer(ddp) mfcc-sma-de[1]-upleveltime90
mfcc-sma-de[13]-iqr1-3 lspFreq-sma-de[7]-pctlrange0-1 mfcc-sma[9]-kurtosis
lspFreq-sma-de[2]-iqr1-3 mfcc-sma-de[11]-percentile99.0 mfcc-sma-de[7]-skewness
logMelFreqBand-sma[5]-linregerrQ lspFreq-sma-de[3]-iqr1-3 logMelFreqBand-sma-de[0]-upleveltime90
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Feature Feature Feature

logMelFreqBand-sma[7]-upleveltime75 mfcc-sma[3]-iqr1-2 jitterDDP-sma-minPos
logMelFreqBand-sma-de[1]-iqr1-3 shimmer(localdB) lspFreq-sma-de[3]-minPos
mfcc-sma-de[14]-iqr1-2 mfcc-sma-de[7]-quartile3 mfcc-sma-de[8]-minPos
mfcc-sma[4]-amean mfcc-sma[8]-linregerrA lspFreq-sma-de[4]-maxPos
F0final-sma-de-quartile1 logMelFreqBand-sma[0]-upleveltime75 mfcc-sma[12]-skewness
mfcc-sma-de[4]-quartile1 voicingFinalUnclipped-sma-iqr1-3 mfcc-sma-de[12]-minPos
logMelFreqBand-sma[0]-quartile3 mfcc-sma[8]-linregc2 pcm-loudness-sma-kurtosis
logMelFreqBand-sma-de[1]-quartile1 logMelFreqBand-sma[6]-linregerrA mfcc-sma[5]-upleveltime90
jitterLocal-sma-quartile3 lspFreq-sma-de[5]-quartile1 lspFreq-sma-de[4]-upleveltime90
logMelFreqBand-sma-de[4]-percentile1.0 logMelFreqBand-sma[2]-linregc1 shimmerLocal-sma-minPos
mfcc-sma-de[5]-iqr2-3 logMelFreqBand-sma[0]-amean mfcc-sma[6]-upleveltime75
F0final-sma-linregc2 F0final-sma-de-skewness mfcc-sma-de[2]-upleveltime90
logMelFreqBand-sma-de[1]-linregc1 lspFreq-sma[1]-linregc2 lspFreq-sma[0]-upleveltime75
mfcc-sma-de[10]-linregerrA logMelFreqBand-sma[2]-amean lspFreq-sma[6]-iqr2-3
logMelFreqBand-sma[0]-linregc2 mfcc-sma[4]-iqr1-3 lspFreq-sma[7]-skewness
logMelFreqBand-sma[1]-pctlrange0-1 logMelFreqBand-sma[7]-quartile1 lspFreq-sma-de[2]-pctlrange0-1
mfcc-sma-de[14]-quartile1 lspFreq-sma[7]-minPos mfcc-sma[8]-minPos
logMelFreqBand-sma-de[2]-percentile99.0 logMelFreqBand-sma[5]-linregc1 mfcc-sma-de[3]-amean
mfcc-sma-de[0]-kurtosis lspFreq-sma[2]-stddev mfcc-sma[14]-amean
mfcc-sma-de[6]-linregerrQ logMelFreqBand-sma[6]-kurtosis lspFreq-sma[4]-amean
mfcc-sma-de[6]-stddev H(mean) pcm-loudness-sma-linregerrA
mfcc-sma-de[10]-linregerrQ logMelFreqBand-sma-de[3]-upleveltime75 mfcc-sma[10]-upleveltime90
logMelFreqBand-sma[2]-linregerrQ mfcc-sma[0]-quartile2 logMelFreqBand-sma-de[3]-upleveltime90
mfcc-sma-de[10]-iqr1-2 F0finEnv-sma-kurtosis mfcc-sma[7]-linregc2
voicingFinalUnclipped-sma-linregc2 mfcc-sma-de[11]-pctlrange0-1 mfcc-sma-de[11]-minPos
logMelFreqBand-sma[2]-stddev Autocorre-
lation(mean)

lspFreq-sma-de[5]-stddev

logMelFreqBand-sma-de[2]-kurtosis mfcc-sma[9]-pctlrange0-1 lspFreq-sma-de[5]-linregerrQ
voicingFinalUnclipped-sma-de-linregc2 mfcc-sma-de[7]-percentile99.0 mfcc-sma[11]-linregc2
mfcc-sma-de[5]-pctlrange0-1 mfcc-sma[1]-iqr1-3 lspFreq-sma-de[5]-skewness
mfcc-sma[5]-iqr1-2 lspFreq-sma[1]-iqr1-2 mfcc-sma-de[9]-amean
voicingFinalUnclipped-sma-de-linregc1 lspFreq-sma-de[0]-linregc1 lspFreq-sma[6]-linregc1
logMelFreqBand-sma[0]-kurtosis lspFreq-sma-de[6]-linregerrA mfcc-sma-de[3]-percentile1.0
mfcc-sma-de[2]-percentile99.0 logMelFreqBand-sma[4]-quartile1 mfcc-sma[3]-iqr2-3
shimmerLocal-sma-stddev mfcc-sma[14]-percentile99.0 lspFreq-sma-de[7]-upleveltime90
logMelFreqBand-sma[6]-upleveltime90 mfcc-sma-de[4]-linregc1 mfcc-sma[5]-linregc1
mfcc-sma[3]-amean mfcc-sma-de[3]-quartile1 lspFreq-sma-de[1]-amean
shimmerLocal-sma-iqr2-3 logMelFreqBand-sma[2]-upleveltime75 lspFreq-sma[4]-iqr1-3
mfcc-sma[8]-amean voicingFinalUnclipped-sma-de-quartile2 mfcc-sma-de[14]-upleveltime90
jitterDDP-sma-amean mfcc-sma-de[1]-iqr2-3 voicingFinalUnclipped-sma-de-maxPos
mfcc-sma-de[4]-linregerrA mfcc-sma[8]-quartile3 logMelFreqBand-sma-de[0]-quartile2
logMelFreqBand-sma-de[5]-percentile1.0 mfcc-sma-de[12]-linregc1 lspFreq-sma[3]-linregerrA
mfcc-sma-de[0]-percentile99.0 mfcc-sma[4]-percentile1.0 lspFreq-sma[5]-linregc2
mfcc-sma-de[8]-iqr1-2 mfcc-sma[1]-pctlrange0-1 logMelFreqBand-sma-de[2]-minPos
logMelFreqBand-sma[4]-linregerrA logMelFreqBand-sma[6]-iqr2-3 mfcc-sma-de[1]-upleveltime75
mfcc-sma-de[10]-linregc1 GNEmean mfcc-sma[11]-skewness
mfcc-sma-de[4]-stddev GNEstd lspFreq-sma[4]-percentile1.0
F0final–Turn-duration lspFreq-sma[6]-linregerrA lspFreq-sma-de[7]-upleveltime75
mfcc-sma-de[10]-quartile1 logMelFreqBand-sma-de[6]-minPos mfcc-sma-de[6]-upleveltime75
logMelFreqBand-sma[5]-linregerrA mfcc-sma[8]-iqr1-3 logMelFreqBand-sma-de[1]-skewness
mfcc-sma-de[6]-linregerrA logMelFreqBand-sma[0]-linregc1 logMelFreqBand-sma[6]-percentile99.0
jitterLocal-sma-de-iqr2-3 logMelFreqBand-sma[4]-skewness voicingFinalUnclipped-sma-de-amean
mfcc-sma[0]-kurtosis mfcc-sma-de[7]-iqr1-2 H(max)
lspFreq-sma-de[1]-iqr2-3 mfcc-sma[1]-maxPos lspFreq-sma-de[7]-linregc2
logMelFreqBand-sma[0]-skewness Pulses lspFreq-sma-de[4]-linregerrQ
F0finEnv-sma-linregc1 jitterDDP-sma-quartile1 logMelFreqBand-sma-de[3]-minPos
jitterLocal-sma-linregerrA lspFreq-sma[3]-quartile1 lspFreq-sma[3]-iqr1-2
jitterDDP-sma-percentile99.0 mfcc-sma-de[0]-skewness mfcc-sma-de[11]-kurtosis
logMelFreqBand-sma[6]-upleveltime75 lspFreq-sma-de[3]-iqr1-2 pcm-loudness-sma-de-stddev
logMelFreqBand-sma-de[0]-linregerrA lspFreq-sma[2]-linregerrQ lspFreq-sma[6]-quartile2
mfcc-sma-de[0]-pctlrange0-1 lspFreq-sma-de[6]-maxPos mfcc-sma-de[0]-amean
shimmerLocal-sma-iqr1-2 lspFreq-sma[4]-minPos lspFreq-sma-de[4]-pctlrange0-1
shimmerLocal-sma-de-quartile2 mfcc-sma-de[7]-pctlrange0-1 mfcc-sma-de[5]-skewness
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Feature Feature Feature

logMelFreqBand-sma[4]-iqr1-3 lspFreq-sma-de[7]-minPos mfcc-sma-de[3]-percentile99.0
mfcc-sma[3]-quartile2 lspFreq-sma[1]-stddev lspFreq-sma-de[3]-upleveltime90
jitterLocal-sma-de-linregerrQ lspFreq-sma-de[2]-kurtosis mfcc-sma[2]-linregc1
mfcc-sma-de[4]-iqr1-3 mfcc-sma-de[4]-upleveltime90 lspFreq-sma[1]-percentile99.0
logMelFreqBand-sma-de[1]-quartile3 lspFreq-sma[5]-amean mfcc-sma[10]-kurtosis
logMelFreqBand-sma[6]-pctlrange0-1 mfcc-sma-de[10]-minPos mfcc-sma-de[4]-quartile2
mfcc-sma-de[8]-pctlrange0-1 mfcc-sma-de[6]-percentile99.0 lspFreq-sma[5]-linregerrQ
mfcc-sma-de[4]-iqr2-3 shimmer(apq11) pcm-loudness-sma-stddev
mfcc-sma-de[2]-percentile1.0 logMelFreqBand-sma[1]-percentile99.0 lspFreq-sma[5]-pctlrange0-1
mfcc-sma[12]-linregerrA logMelFreqBand-sma[7]-quartile3 mfcc-sma-de[1]-skewness
Voicedunvoiced ratio mfcc-sma[12]-iqr2-3 mfcc-sma[3]-upleveltime75
Voicedtotal frames ratio logMelFreqBand-sma-de[6]-quartile2 lspFreq-sma[5]-linregerrA
unvoicedtotal frames ratio logMelFreqBand-sma[7]-stddev lspFreq-sma[5]-iqr1-3
F0final-sma-de-upleveltime75 mfcc-sma-de[14]-minPos mfcc-sma-de[4]-skewness
logMelFreqBand-sma-de[3]-percentile99.0 logMelFreqBand-sma[3]-upleveltime90 lspFreq-sma[6]-quartile3
logMelFreqBand-sma-de[0]-linregerrQ lspFreq-sma[2]-quartile1 logMelFreqBand-sma-de[1]-amean
logMelFreqBand-sma-de[0]-iqr1-3 lspFreq-sma[3]-linregerrQ
mfcc-sma-de[2]-linregc2 mfcc-sma[11]-maxPos
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