

﴿ اللَّهُ نُورُ السَّمَاوَاتِ وَالْأَرْضِ مَثَلُ نُورِهِ كَمِشْكَاةٍ فِيهَا مِصْبَاحُ الْمِصْبَاحُ فِي زُجَاجَةٍ الزُّجَاجَةُ كَأَنَّهَا كَوْكَبُ دُرِّيٌّ يُوقَدُ مِن شَجَرَةٍ مُّبَارَكَةٍ زَيْتُونِةٍ لَّا شَرْقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِيءُ وَلَوْ لَمْ تَمْسَسْهُ نَارٌ نُّورٌ عَلَى نُورٍ يَهْدِي اللَّهُ لِنُورِهِ مَن يَشَاء وَيَضْرِبُ اللَّهُ الْأَمْثَالَ لِلنَّاسِ وَاللَّهُ بِكُلِّ شَيْءٍ عَلِيمٌ ﴾

الآية الخامسة والثلاثون من سُورَةِ النُّورِ

DEDICATION

To my mother

Father

Family

Friends

Partners at work

To all who helped me in success of this research

Mohammed

ACKNOWLEDGEMENT

First Thanks to God for guiding me to conduct this study, there are a number of people without whom this thesis might not have been written, and to whom I am greatly indebted.

I am heartily thankful to my supervisor, Dr. Wafaa Salih, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. To my parents, who continues to learn, grow and develop and who has been a source of encouragement and inspiration to me throughout my life.

Thanks extended to Dr. Khais and Dr.Kasim Alhity For their guidance and fruitful advise. My deep thanks to Dr. Faiz Mohammed for great help to me at work on the Raman spectrometer. I also thank very much the dialysis unit and the unit of Soba university hospital laboratories especially clinical chemistry laboratory. I cannot express my gratitude to those who taught me the spectroscopy science Prof. Dr. Nafie A. Almuslet

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

ABSTRACT

In this work uric acid of different blood serum was investigated using Raman spectroscopy as invasive technique. Different samples (15) from patients with renal failure in homo dialysis unit – Soba University Hospital were collected. The concentration of Uric Acid was measured with conventional technique, and then the blood serum samples stored less than 80 c°. Raman spectra of samples was obtained without any preparation using Raman spectrometer with diode laser as excitation source ($\lambda = 532$ nm, P = 40 mW) using software associated with the spectrometer system. The spectra were truncated and the peak intensities at the assigned wavenumber in cm⁻¹ were determined.

The result revels the presence of peaks from most of the samples at their position (in wavenumber) with slight shifts and it indicated the presence of Uric Acid compound and the peaks are 471.9, 582.1, 628.4, 785,997.9, 1041.3,1234.6, 1269.9, 1594.2, 1653.2 cm⁻¹.

From the result above were a linear relation between the measured concentration and the intensity of the peak at the each wavenumber from samples was found which leads to an indication of the applicability of this technique in quantitative analysis.

المستخلص

في هذا العمل ، تم التحقيق من حمض اليوريك في عينات مختلفة من بلازما الدم باستخدام مطيافية رامان كتقنية تحقق. جمعت عينات (15 عينة) ذات تراكيز مختلفة من المرضى المصابين بالفشل الكلوي من وحدة غسيل الكلى بمستشفى سوبا الجامعي، وقيس تركيز حامض اليوريك في هذه العينات ،و جمدت العينات الى 80 درجة مئوية للتخزين ، و حصلت أطياف رامان وذلك باستخدام مطياف رامان الذي يستخدم ليزر الديود ذو الطول الموجي 532 ناومتر, و الطاقة 40 ملي واط ، وتم تقطيع أطياف رامان وحساب شدة القمم المستهدفة في طيف رامان لحمض اليورك القياسي بواسطة البرنامج المصاحب لمطياف رامان.

اوضحت النتائج ظهور القمم المستهدفة في جميع العينات (في العدد الموجي) مع انتقال صغير لموضع اخر (في العدد الموجي) وهذا يشير الى وجود حمض اليوريك في الدم والقمم هي 471.9, 582.1, 628.4, 785,997.9, 1041.3, 1234.6, 1269.9, 1594.2, 1653.2 .cm⁻¹.

من النتائج اعلاه أوجدت العلاقة الخطية بين التركيز المقاس وشدة القمم المستهدفة لكل الاعداد الموجية في العينات وهذا دل على مؤشر لصلاحية إستخدام هذه التقنية في هذا النوع من القياسات

Article	Page
الآية	INO.
Dedication	II
Ashmanuladaamant	
Acknowledgement	111
Abstract	IV
المستخلص	V
Contents	VI
List of Figures	IX
List of Tables	Xi
CHAPTER ONE	
INTRODUCTION AND BASIC CONCEPTS	
1.1 Introduction	1
1.2 Light matter interaction	1
1.3 Absorption of light	2
1.4 History of Raman Spectroscopy	6
1.5 Basic Theory of Raman Spectroscopy	6
1.6 Basic Processes of Raman Spectroscopy	7
1.7 Electric Dipole Moments	10
1.8 Vibrational Spectroscopy	11
1.9 Normal Modes of Vibration	11
1.10 Vibrations of Polyatomic Molecules	15
1.11 Vibrational Selection Rules	20
1.12 Polarizability	21
1.13 Resonance Raman Scattering	26

1.14 Surface-Enhanced Raman Scattering	26
1.15 Raman Spectrometers	27
1.16. Generic Raman spectrometer	27
1.17 Dispersive and nondispersive Raman Spectrometers	28
1.17.1 Dispersive Raman Spectrometers	29
1.17.2 The monochromator	31
1.17.3 Single Grating Spectrographs	31
1.17.4 Double Monochromators	33
1.17.5 Triple Spectrographs	34
1.18 Nondispersive Raman Spectrometers FT-Raman Spectrometers	35
1.19 Dispersive Vs Nondispersive Spectrometers	37
1.20 Detectors	37
1.20.1 Photomultiplier Tubes (PMTs)	37
1.20.1.1 Description of PMT	37
1.20.2 Charge-coupled devices	39
1.21 Light Sources in Raman Spectroscopy	41
1.21.1 Ar+ and Kr+ Ion Lasers	43
1.21.1.1 Water-cooled Ion Lasers	43
1.21.1.2 Air-Cooled Ar+ and Kr+ Lasers	44
1.21.2 Helium-Neon Lasers	44
1.21.3 Neodyium-Yag (Nd:YAG)	45
1.21.4 Diode lasers	46
1.22 Application of Raman spectroscopy in blood	47
1.23 Uric acid	48
1.24 Aim of the work	50

CHAPTER TWO	
MATERIL AND METHOD	
2.1Materials	51
2.1.1 Blood Samples	51
2.2 Raman System	51
2.2.1 Specifications	52
2.2.2 Instrument Structure	52
2.2.3 PMT	54
2.2.4 Notch Filter	54
2.2.5 Environment	54
2.3 Procedure	55
2.4 Data analysis	55
CHAPTER THREE	57
RESULTS, DISCUSSION AND CONCLUSIONS	
3.1 Introduction	57
3.2 Raman Spectrum of blood serum samples	57
3.3 Sample assignment peaks	58
3.3 Evaluation of Uric Acid concentration in samples spectra	64
3.4 Conclusion	73
3.4 The recommendations	74
3.5 References	74
Appendix	76

List of Figures

Figure (1.1) Light matter interaction	1
Figure 1.2 Absorption and Emission in energy states	4
Figure (1.3) The excited states	4
Figure (1.4) The electromagnetic spectrum on the wavelength scale in	7
meters	
Figure (1.2) Diagrams of the Rayleigh and Raman scattering processes	8
Figure (1.3) Stokes and anti-Stokes scattering for cyclohexane	9
Figure (1.4) Stretching and contracting	12
Figure (1.5) Linear and non-linear triatomics are represented by H_2O	12
and CO ₂	
Figure (1.6) Stretching and bending	13
Figure (1.7) Symmetrical stretching and asymmetric stretching	13
Figure (1.8) Different types of bending vibrations.	13
Figure (1.9) Out-of-plane and in-plane bending vibrations.	14
Figure (1-10) Stretching and scissoring in CH ₃	15
Figure (1.11) Wagging rocking and twisting in CH ₃	15
Figure (1.12) Symmetric (in-phase) stretching vibration in CO ₂	16
Figure (1.13) Antisymmetric (out-of-phase) stretching vibration in CO_2	16
Figure (1.14) (symmetric) bending vibration In the CO ₂	17
Figure (1.15) Normal modes of vibration in CO ₂	18
Figure (1.16) Normal modes of vibrations in H ₂ O	18
Figure (1.20) Electron cloud model of water and carbon dioxide showing	19
an IR and a Raman active vibrations	
Figure (1.21) Polarization of Raman scattering	21

Figure (1.22) Polarization of a diatomic molecule in an electric field	21
Figure (1.23) Changes in polarizability ellipsoids during vibration of	23
CO ₂ molecule	
Figure (1.24) Changes in polarizability ellipsoid during normal vibration	23
of H ₂ O molecule	
Figure (1.25) The polarizability of Co_2 as a function of the three normal	25
coordinates Q ₁ , Q ₂ , And Q ₃	
Figure (1.26) Diagram of the basic process of resonance Raman scatterir	28
Figure (1.28) Schematic of the operation of a dispersive multichannel	29
Raman spectrometer.	
Figure (1.29) Schematic of a nondispersive, FT-Raman spectrometer.	29
Figure (1.30) Dispersion of light by a diffraction grating	30
Figure (1.31) Schematic of a single grating Czerny-Turner spectrograph	32
Figure (1.32) Schematic of a double monochromators	33
Figure (1.33) Schematic of a triple spectrograph	34
Figure (1.34) Basic diagram of a FT-Raman spectrometer	35
Figure (1.35)	36
Figure (1.36) Schematic of photon counting photomultiplier	38
Figure (1.37) Figure (1.38) And Figure (1.39) Charge-coupled devices	40
Figure (1.40) Comparing between PMT & CCD Spectrum	41
Figure (1.41) Wavelengths and available power ranges of commercial	43
lasers	
Figure (1.42) Schematic of argon ion laser, including a cylindrical magn	44
to confine the plasma.	
Figure (1.43) Schematic of semiconductor diode laser	47
Figure (1.44) Uric Acid molecular structure	49

Figure (2.1) LIRA-300 Laser Raman Spectrometer	51
Figure (17.2) Structure of LIRA-300 Laser Raman Spectrometer	52
Figure (2.3) Schematic of LIRA-300 Laser Raman Spectrometer	53
Figure (2.4) The optics structure of the monochromator	54
Figure (3.1) Complete Raman spectra of the blood serum sample	57
Figures (3.2-3.9) Raman spectra collected from blood serum sample	60-64
Figure (3.10-3.23) Polloting between intensity and concentration	66-72
Figure (A) CCL ₄ Spectrum	77
Figure (B) Raman spectrum of uric acid standard	77

List of Tables

Table (1-1) Degrees of freedom for polyatomic molecules	17
Table (1.2) Specification of PMT	39
Table (1.3) Lasers used with dispersive Raman instruments	42
Table (2.1) Specification of LIRA-300 laser Raman Spectrometer	52
Table (3.1) Order of the spectra according to their concentration.	58
Table (3.1) Appearance peaks in wavenumber (cm^{-1}) at assigning	59
Uric Acid	
Table (3.2) Intensity of assigning uric acid peaks in blood serum	65
samples peaks	