Dedication

I dedicate this work to my mother Haja Hawaa and my father Haj Ishag who had offered me their love, spared their unlimited effort to, and spent their valuable time to care for and educate me. In addition, I dedicate this work to my honest wife Khansa Ibrahim Suleiman, who has given me unlimited support to accomplish this work, and my sisters, my brothers and their families.

The same dedication is extended to my teachers, friends and for all the people who have stood by me and appreciate all needed they have given me, asking Allah to bless them.

Acknowledgements

First, I would like to express my feeling, emotions, and appreciation to Allah, for giving me the strength to complete this research.

I would like to thank my supervisor Dr. Huda Mohamed Kamal for her fruitful advice and guidance. She has spent a lot of effort to help me. Her encouragement, assistance and patience have inspired me to greater effort.

I would like to thank my co. supervisor Dr. Taj Elden Abd Elgawi Taj Elden (Bahri University) who helped me in collection of performing devices and the practical part of my work. My thanks are also due to all the members of physics department of my college especially Us. Mohamed Abd El hai Abd El Rahman.

In addition, I would like to thank the Sudan University of Sciences and Technology, which has carefully led me study.

Table of Contents

Content	page
Dedicate	Ι
Acknowledgements	II
Table of Contents	III
List of Figures	IX
List of Tables	XII
Abstract	XII
المستخلص	XIV
Chapter One: Introduction	
1.1 General	1
1.2 The Clay	1
1.3 The Brick	2
1.4 Heat	3
1.5 Temperature	4
1.6 Difference between Weather and Climate	4
1.7 The Effect on Human Life	5
1.7.1 Heat and Cold Effects on Human Life	5
1.7.2 Temperature Effects on Human Life	5
1.7.3 Climate Effect on Human Life	5
1.8 Humidity	6
1.9 Research Problem	7
1.10 Literature Review	7
1.11 The Objective of Thesis	8
1.12 Organization of the Thesis	8

Chapter Two: Theoretical Background

2.1 Heat		9
2.1.1	Heat Transfer	9
2.1.2	Heat Transfer by Conduction	10
2.1.3	Conduction rate equation	11
2.1.4	Partial Differential Equation of Heat Conduction	12
2.1.5	Heat Transfer by Convection	14
	2.1.5.1 Newton's law of cooling	15
2.1.6	Heat Transfer by Radiation	16
	2.1.6.1 Properties of Radiation	16
	2.1.6.2 Stefan-Boltzmann law of thermal radiation	17
	2.1.6.3 Radiation Energy Exchange	18
	2.1.6.3.1 Radiation Energy Exchange between blackbodies	18
	2.1.6.3.2 Radiation Energy Exchange between non-blackbodies	18
2.1.7	Temperature and Pressure	19
2.1.8	Specific Heat Capacity	20
2.2Clay		21
2.2.1	Soils of Sudan	21
2.2.2	Black Cotton Soil (Grarh)	21
2.2.3	Red Sand-Ironstone Soils (goz)	22
2.3Brick C	lay	24
2.3.1	Plasticity of Clays	25
	2.3.1.1 Plasticity of Clays is Affected Chiefly by	26
2.3.2	Fired Clay Brick	27
2.3.3	History of Clay Brick	28
2.3.4	Types of Brick	29
	2.3.4.1 Common Brick	29
	2.3.4.2 Face Brick	29

	2.3.4.3 Engineering brick	29
2.3.5	Properties of Bricks	29
2.4Humidity		29
2.4.1	Measurements of Humidity	30
2.4.2	Absolute humidity	32
2.4.3	Relative humidity	33
2.4.4	Specific humidity	37
2.4.5	Dew Point	37
2.4.6	The Relationship between Relative Humidity and the Dew point	40
Chapter T	hree: Experimental Techniques	
3.1 Measure	ement of Concentration	42
3.1.1	The Device of Series Canberra 35 Plus	42
3.1.2	Multi-Channel Analyzer (MCA)	43
3.1.3	Composition of the Measuring Path	46
3.1.4	Important Safety Considerations	48
	3.1.4.1 High Voltage	48
	3.1.4.2 Liquid Nitrogen	48
	3.1.4.3 Vacuum Failure – Over Pressurization	48
3.1.5	Cryostat Canberra	48
3.1.6	Temperature Range	50
3.1.7	Setup and Test	51
3.1.8	Equipment Required	51
3.1.9	Manufacturing Proses of Brick	52
	3.1.9.1 Type of Clay	52
	3.1.9.2 Fire Clays	52
	3.1.9.3 Manufacturing	53
	3.1.9.3.1 Manufacturing of Brick	53
	3.1.9.3.2 Mining and Storage	54

	3.1.9.3.3 Pre	eparation	55
	3.1.9.3.4 For	rming	55
	3.1.9.3.5 Sti	ff-Mud Process (Extrusion)	56
	3.1.9.3.6 So	ft-Mud Process (Forming)	58
	3.1.9.3.7 Dr	y-Press Process	58
	3.1.9.3.8 Dr	ying	59
	3.1.9.3.9 Fir	ing	59
	3.1.9.3.10	Fusing takes place in three stages	60
	3.1.9.3.11	Cooling	61
	3.1.9.3.12	Defects in Bricks	61
	3.1.9.3.13	Properties of Bricks	61
	3.1.9.3.14	Classification of Bricks	62
3.2Preparation of Sample		63	
3.3 Measurement of Specific Heat Capacity by the Method of Mixtures			63
3.3.1	Experiment Tools		64
3.3.2	Aim		65
3.3.3	Theory		65
3.3.4	Method		65
3.3.5	Notes		66
3.4Measur	ement of Thermal C	onductivity	66
3.4.1	Theory		67
3.4.2	Method		68
3.5Classica	al Humidity Measure	ement Methods	68
3.5.1	Hygrometer		69
3.5.2	Psychrometer		69
3.5.3	The Dew-Point Hy	grometer	70
3.5.4	Hygrometers Using	Hygroscopic Materials	72
3.6 Miniaturized Humidity Sensors		73	

3.6.1	DHT11 - Hu	midity and Temperature Sensor	73
	3.6.1.1	Features	75
	3.6.1.2	Details	76
	3.6.1.3	Communication Process: Serial Interface	78
	3.6.1.4	Communication Format	79
3.6.2	Resistive Hu	midity Sensors	79
3.6.3	Hygrometric	Humidity Sensors	80
3.6.4	Gravimetric	Humidity Sensors	81
3.6.5	Optical Hum	hidity Sensors	82
3.6.6	Thermal Hu	midity Sensors	83
Chapter F	our: Results,	Discussion and Conclusion	
4.1 Results	of Analysis o	f Concentration by Means of Canberra Device	85
4.2Results	and Discussion	on of Specific Heat Capacity of the Three Samples	89
4.3Results	of Thermal C	onductivity	89
4.4Discuss	ion of Therm	al Conductivity	94
4.5 Results	of Humidity		95
4.6Discuss	ion of Humid	ity	101
4.7 Discuss	ion and Com	parison with Previous Studies	103
4.8Conclus	sions		105
4.9Recom	nendation		106
Reference			107

List of Figures

Figure	page
2.1 Conduction Heat Transfer	10
2.2 Conduction Analysis in Cartesian Coordinates	13
2.3 Conduction Analysis in Cylindrical Coordinates	14
2.4 Conduction Analysis in Spherical Coordinates	14
2.5 Heat Transfer by Convection	15
2.6 Effects of Incident Radiation	16
2.7 Typical Types of Clay Brick	29
2.8 Maximum Possible Moisture by Temperature	34
2.9 Saturation Vapor Pressure Vs Temperature	35
2.10 Photo of Dew, or Condensation	38
2.11 Gives the Dew/Frost Point Temperatures for low Concentrations of	
Moisture in the Air	38
2.12 Relationship between Dew Point Temperature and Relative Humidity	41
3.1 Brick Clay Powder	42
3.2Canberra 35 Plus Device	43
3.3 The Multi-Inputs MCA and Collected Spectrum of 60Co and 137Cs Po	oint
Sources	44
3.4 The system used to Analyze the Concentration of Elements by Canberra	35+
Device	45
3.5 Flowchart of the System used to Analyze the Concentration of Elements	by
Canberra 35+ Device	46
3.6 Multichannel Analyzer «InSpector-2000»	47
3.7 Cryostat Canberra filled with Liquid Nitrogen (LN ₂)	50
3.8 Diagrammatic Representation of Manufacturing Process	54
3.9 The Clay Crushed and Transported to Storage Area	55

3.10	Clay is Thoroughly Mixed with Water in Pug Mill before Extrusion	56
3.11	Stiff-Mud Process	57
3.12	Extrusion Process	57
3.13	Soft-Mud Process	58
3.14	Brick Enter Furnace for Firing	60
3.15	Classification of Bricks	63
3.16	Experimental Setup for Determining the Specific Heat Capacity of the	
Bı	rick Clay	64
3.17	Thermal Conductivity Measurement Device	66
3.18	A sling Psychrometer for Outdoor Use	70
3.19	A hair Tension Dial Hygrometer with A nonlinear Scale	71
3.20	Apparatus for the Determination of the Hygroscopicity of Fertilizer, Fi	xed
Ni	itrogen	72
3.21	The Circuit of Humidity Device Collected by Researcher	74
3.22	Flow Chart Circuit of the Humidity Device Collected by Researcher	74
3.23	The Circuit of Humidity Device	75
3.24	Typical Application of DHT11 Sensor	78
3.25	Resistive Humidity Sensors	80
3.26	Hygrometer Humidity Sensors	81
3.27	Gravimetric Humidity Sensors	82
3.28	Optical Humidity Sensor	83
3.29	Thermal Humidity Sensor	84
4.1 Sł	nows the Relation between Times shown the x- axis versus Temperature	e on
th	e y- axis for the Three Samples are Decreasing for External Heat Trans	sfer.
Fi	g (a) shows sample 1, Fig (b) shows sample2, Fig (c) shows sample3.	91

4.2Shows the Relation between Temperature Versus Time for Heat Transfer Inside the Thermal Brick Clay Buildings 93

4.3 The Relation between Humidity Versus Time in the Three Samples,	which
was Measured in the Jazeera State.	98
4.4 The Relation between Humidity Versus Time in the Three Samples,	which
was Measured in the Khartoum State.	98
4.5 Reading of Humidity Performed in the Jazeera State by Psychrometer Device	99
4.6 Reading of Humidity Performed in the Khartoum State by Psychrometer Device	100

List of Tables

Table	Page
3.1 Test Sources of Detector	52
3.2 The Specifications of DHT11 Sensor of Humidity	77
3.3 Specifications of DHT11 Sensor	79
4.1 Analysis Results for Sample 1: (75% garirh, 25% kaolin), [EL (Elements),
E (Kinetic Energy), INT (Intensity), s (Standard Deviation), T (Tin	ne Waiting
), CONC (Concentrations)].	86
4.2 Analysis Results for Sample 2: (70% garirh, 30% kaolin)	87
4.3 Analysis Results for Sample 3: (80% garirh, 20% kaolin)	88
4.4 The Specific Heat Capacity of Three Types of Brick Clay,	at Room
Temperature 23C°	89
4.5 Values of Thermal Conductivity Coefficient (k) and Thermal Condu	uctivity (λ)
of the Brick Clay for the Three Samples	90
4.6 Represented the Value of Heat Transfer of Three Samples outside the	ne Thermal
Brick Clay Buildings	92
4.7 Represented the Value of Heat Transfer of Three Samples inside the	e Thermal
Brick Clay Buildings	94
4.8The Air and Room Humidity for the Three Samples which was M	easured in
the Jazeera State	96
4.9The Air and Room Humidity for the Three Samples which was M	easured in
the Khartoum State	97
4.10 Comparison of Air and Room Humidity for the Three Samples	Measured
in the Jazeera State	101
4.11 Compared to Air and Room Humidity for the Three Samples M	leasured in
the Khartoum state	102

Abstract

Three brick clay samples were prepared by mixing the garirh earth from Jazeera state and kaolin from North state with different percentages for three samples. The refractory bricks components, were for sample-1 (75% garirh, 25% kaolin), sample-2 (70% garirh, 30% kaolin), and sample-3 (80% garirh, 20% kaolin). The specific heat capacity of the three samples and the thermal conductivity were calculated. The three samples were analyzed using a Canberra 35+ device and the concentrations were obtained. The results of the thermal conductivities of the brick sample products were found to decrease from 0.0261 (W/m K) for the sample-1(75% garirh, 25% kaolin) to 0.01799(W/m K) for the sample-3 (i.e. ~32%), for the sample 80% garirh, 20% kaolin.

A device assembled by the researcher Mohamed Ishag measured the humidity ratio of the three samples. It is an electronic device consisting of a port connected to LCD water screen to display the reading of humidity inside and outside the room, and a microcontroller of 16L mega, which was programmed by the computer using the program Bas com AVR and the data was then transferred to the electronic port. Finally, two DHT11 sensors were used to measure the internal and external humidity. The reading were recorded every hour after performing measurements of the humidity of the three samples, a graph with the ratio of humidity versus the time of each sample was drawn from 6 am to 10 pm. The results of all three samples were obtained, all of which showed high humidity in the morning, and very low humidity at noon interval, then it rises and becomes very high at evening again.

The idea of a humidity Sensor was transferred to the humidity meter by an electronic circuit assembled by the researcher which consists of microcontrollers and the computer program as basic components.

XII

The researcher concluded that in the hot area, the best sample of the refractory bricks samples was sample-3, which consists of (70 % garirh, 30 % kaolin). While in the humid areas, the best sample was sample 1. It is made up of (75% garirh and 25% kaolin).

المستخلص

أعدت ثلاثة عينات من طوب الطين بواسطة خلط تراب القريرة من ولاية الجزيرة والكاولين من ولاية الشمالية بنسب مختلفة للعينات الثلاثة، وهي مكونات الطوب الحراري. العينة الاولي تتكون من (75% قريرة و25% كاولين)، العينة الثانية (70%قريرة و30% كاولين) والعينة الثالثة (80% قريرة و20% كاولين). حللت العينات الثلاثة وتم الحصول على التركيز بواسطة جهاز الكامبيرا 35+. ثم حسبت الحرارة النوعية والموصلية الحرارية للثلاثة عينات. وتم الحصول على يتائج الموصلية الحرارية لمنتجات عينات الطوب ووجد بانها تقل من 2001 وات لكل متر كلفن للعينة المكونة من (75% قريرة و20% كاولين) الي 2000 وات لكل متر كلفن للعينة المكونة من القريرة و20% المئة من القريرة و20% كاولين مينات الطوب ووجد بانها تقل من 2001 وات لكل متر كلفن للعينة المكونة من (75% قريرة و20%

حسبت نسبة الرطوبة للعينات الثلاث بواسطة جهاز تم تجميعه من قبل الباحث محمد اسحق مصطفي وهو جهاز إلكتروني يتكون من منفذ الكتروني متصل بشاشة مائية LCD وهي تستخدم لعرض قراءة الرطوبة داخل وخارج الغرفة, و متحكمة 16 ميقا والتي تم برمجتها بالكمبيوتر باستخدام برنامج باص كوم ومن ثم نقلت البيانات الي المنفذ, وأخيرا حساسين DHT11 لقياس الرطوبة الداخلية والخارجية . بعد تسجيل قراءات الرطوبة للعينات الثلاثة لكل ساعة، من الساعة 600 صباحا وحتى الساعة 000 مساءا، رسم رسماً بيانياً لنسبة الرطوبة مقابل الزمن. وقد تم الحصول على نتائج العينات الثلاثة، وكلها ذات رطوبة عالية عند الصباح، ومنخفضة جدا عند فترة الظهيرة، ثم ترتفع وتصبح عالية جدا عند المساء.

تم تحويل فكرة جهاز حساس الرطوبة الي جهاز قياس الرطوبة بواسطة دائرة الكترونية تم تجميعها بواسطة الباحث والتي تتكون من الميكروكنتروله وبرنامج الحاسوب كمكونات اساسية

يوصي الباحث في المناطق الحارة باستخدام العينة الثالثة، المكونة من (70% قريرة، 30% كاولين). أما في المناطق الرطبة، فالعينة الأفضل هي العينة الاولي المكونة من (75% قريرة و75% كاولين)