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Abstract 

 

We show the decompositions of Besov-Hausdorff and Triebel-

Lizorkin-Hausdorff spaces. We also show the characterizations of Besov-

Lipschitz, Besov-Morrey and Triebel-Lizorkin-Morrey spaces by 

maximal functions, local mean and including 𝒬  spaces. The function 

spaces, Besov-type spaces and atomic decomposition with variable 

smoothness and integrability are studied. 
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Introduction 

We consider the Besov-Hausdorff spaces and the Triebel-Lizorkin 

spaces. We complete earlier results. We find the dual spaces. Many 

function or distribution spaces have been found to admit decomposition. 

We study certain spaces of distribution. They are intimately related 

to certain spaces studied by Triebel and Lizorkin. We discuss some basic 

properties of Morrey type Besov-Triebel spaces. 

We introduce Triebel-Lizorkin spaces with variable smoothness 

and integrability. Our new scale covers spaces with variable exponent as 

well as spaces of variable smoothness that have been studied in recent 

years. Vector-valued maximal inequalities do not work in the generality 

which we pursue, and an alternate approach is thus developed. We 

introduce Besov spaces with variable smoothness and integrability 

indices. We show independence of the choice of basic functions, as well 

as several other basic properties. 

Also we introduce Besov-type spaces Ḃp,q
s,τ (ℝ𝑛) for p ∈ (0,∞] and 

Triebel-Lizorkin-type spaces Ḟp,q
s,τ (ℝ𝑛)  for p ∈ (0,∞]  where s, τ ∈ ℝ , 

which unify and generalize the Besov spaces, Triebel-Lizorkin spaces and 

𝒬  spaces. We then establish the φ-transform characterization of these 

new spaces in the sense of Frazier and Jawerth. Using the φ -transform 

characterization of Ḃp,q
s,τ (ℝ𝑛) and Ḟp,q

s,τ (ℝ𝑛), we obtain their embedding 

and lifting properties; moreover, for appropriate τ , we also establish the 

smooth atomic and molecular decomposition characterizations of 

Ḃp,q
s,τ (ℝ𝑛)  and  Ḟp,q

s,τ (ℝ𝑛) . For p ∈ (1,∞), q ∈ [1,∞),  s ∈ ℝ  and τ ∈

[0, 1 −
1

max{p,q}
 ] . We establish the φ -transform characterizations of 

Besov-Hausdorff spaces BḢp,q
s,τ (ℝ𝑛) , and Triebel-Lizorkin-Hausdorff 

spaces FḢp,q
s,τ (ℝ𝑛)  (q > 1) ; as applications, then we establish their 

embedding properties (which on BḢp,q
s,τ (ℝ𝑛) is also sharp), smooth atomic 

and molecular decomposition characterizations for suitable τ. 

We obtain three independent results on the Besov-Morrey spaces 

and the Triebel-Lizorkin-Morrey spaces. We establish the maximal 

function characterizations of the Besov-type space Ḃp,q
s,τ (ℝ𝑛) with p, q ∈

(0,∞]and τ ∈ [0,∞),the Triebel-Lizorkin-type space Ḟp,q
s,τ (ℝ𝑛) with p ∈

(0,∞), q ∈ (0,∞]and τ ∈ [0,∞), the Besov-Hausdorff space BḢp,q
s,τ (ℝ𝑛) 

with p ∈ (1,∞), q ∈ [1,∞) and τ ∈ [0,
1

(max{p,q})′
]  and the Triebel-
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Lizorkin-Hausdorff space FḢp,q
s,τ (ℝ𝑛)  with p, q ∈ (1,∞) and τ ∈

[0,
1

(max{p,q})′
], where t′ denotes the conjugate index of t ∈ [1,∞]. 

Finally we introduce Besov-type spaces with variable smoothness 

and integrability. We establish their characterizations, respectively, in 

terms of φ-transforms in the sense of Frazier and Jawerth, smooth atoms 

or Peetre maximal functions, as well as a Sobolev-type embedding.  
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Chapter 1 

Some Observations and Decompositions 

We determine the trace of Lizorkin-Triebel spaces. We give an extension of Hardy’s 

inequality. We also obtain two types of decompositions for distributions in the 

homogeneous Besov spaces. 

Section (1.1): Besov and Lizorkin-Triebel Spaces 

We consider the Besov spaces Ḃp
sq

 and the Lizorkin-Triebel spaces Ḟp
sq

. We 

complete earlier results. We find the dual spaces when 0 < p < 1. For Ḃp
sq

 the dual was 

previously only known when 0 < q ≤ 1 (see [6]). We also determine the trace of Ḟp
sq

, 

obtaining in this way a result analogous to the ne in [7] for Ḃp
sq

. We give an extension of 

Hardy’s inequality to Ḟp
0q

. In oure treatment, based on Szasz’ theorem and an imbedding 

theorem, this becomes almost a triviality even in special case q = 2 corresponding to the 

Hardy space Hp.  

Definition (1.1.1) [17] (Definition of the spaces): To define the spaces to be studied we 

choose a sequence {φ𝑣}𝑣∈ℤ of test functions such that 

{
 
 

 
 φ𝑣 ∈ 𝒮0                                                                                         

supp φ̂𝑣 = {1.5
−1 ∙ 2𝑣 ≤ |ξ| ≤ 1.5 ∙ 2𝑣}                               

|φ̂𝑣(ξ)| ≥ Cε > 0     if 2
𝑣(1.5 − ε)−1 ≤ |ξ| ≤ 2𝑣(1.5 − ε)

|Dαφ̂𝑣(ξ)| ≤ Cα|ξ|
−|α|    for every multiindex α.                 

                       (1) 

Here and in what follows 𝒮0  is space of rapidly decreasing whose Fourier transforms 

vanish together with all their derivatives at the origin. 𝒮0
′  is its dual space. It is easy to see 

that 𝒮0
′  in fact can be identified to the space of tempered distributions 𝒮′  modulo 

polynomials. 

Definition (1.1.2) [17]: Let s be real, 0 < p, q ≤ ∞. The Besov space Ḃp
sq

 is the space of 

all 𝑓 ∈ 𝒮0
′  such that 

‖𝑓‖Ḃp
sq ≡ (∑(2𝑣s‖φ𝑣 ∗ 𝑓‖Lp)

q

𝑣

)

1 q⁄

< ∞. 

Definition (1.1.3) [17]: Let s be real, 0 < p ≤ ∞, 0 <  q ≤ ∞. The Lizorkin-Triebel space 

Ḟp
sq

 is the space of all 𝑓 ∈ 𝒮0
′  such that 

‖𝑓‖Ḟp
sq ≡ ‖(∑2𝑣s|φ𝑣 ∗ 𝑓|

q

𝑣

)

1 q⁄

‖

Lp

< ∞. 

From the definitions we at once get the embeddings 

 
Ḃp
sq
→ Ḟp

sq
→ Ḃp

sp
          if   q ≤ p

Ḃp
sp
→ Ḟp

sq
→ Ḃp

sq
          if   q ≥ p

                                                       (2) 
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and especially  

Ḃp
sp
= Ḟp

sp
  if  0 < p ≤ ∞.                                                         (3) 

Furthermore, using Littlewood-Paley theory it is possible to prove (see [8]) 

Ḟp
02 ≈ Hp                                                                            (4) 

where Hp is the hardy space on ℝ𝑛. 

Let us list some other known properties of the space (cf. [9], [15]): the embeddings 

from 𝒮0 and in to 𝒮0
′  are continuous: 

𝒮0 → Ḃp
sq
, Ḟp

sq
→ 𝒮0

′ .                                                            (5) 

if 0 < p, q < ∞ then 𝒮0 is dense in Ḃp
sq
 and Ḟp

sq
.                                       (6) 

Ḃp
sq
 and Ḟp

sq
 are complete.                                                         (7) 

The Riesz potential Is = (−∆)s 2⁄  is an isomorphism from Ḃp
s0q onto Ḃp

s0−s,q and from Ḟp
s0q 

onto Ḟp
s0−s,q.                                                                                                                (8) 

Theorem (1.1.4) [17]: Let s0 > s1, 0 < p0 < p1 < ∞, 0 < q, r ≤ ∞. If 

s0 − 𝑛 p0⁄ = s1 − 𝑛 p1⁄  

Then 

(i) Ḃp0
s0q → Ḃp1

s1p 

(ii) Ḟp0
s0q → Ḟp1

s1r 

(iii) Ḟp0
s0q → Ḟp1

s1p0 

Proof: We may assume s0 = 0 (cf. (8)). 

(i) From the easily verified inequality 

‖φ𝑣 ∗ 𝑓‖L∞ ≤ C2
𝑣𝑛 p⁄ ‖φ𝑣 ∗ 𝑓‖Lp                                                  (9) 

We get by Hölder’s inequality  

‖φ𝑣 ∗ 𝑓‖Lp1 ≤ C2
𝑣𝑛(1 p0⁄ −1 p1⁄ )‖φ𝑣 ∗ 𝑓‖Lp0 . 

This readily gives (i). 

(ii) It suffices to take q = ∞ and ‖𝑓‖Ḟp0
s0∞ = 1. By (9) 

‖φ𝑣 ∗ 𝑓‖L∞ ≤ C2
𝑣𝑛 p0⁄ ‖𝑓‖Ḟp0

s0∞ = C2𝑣𝑛 p0⁄ . 

Therefore for any fixed integer N 

(∑|2𝑣s1φ𝑣 ∗ 𝑓|
r

N

−∞

)

1 r⁄

≤ C2𝑛N p1⁄ ≤ t                                           (10) 

If t ≈ C2𝑛N p1⁄  On the other hand, since s1 < 0 

(∑|2𝑣s1φ𝑣 ∗ 𝑓|
r

∞

N

)

1 r⁄

≤ C2s1N sup
𝑣

|φ𝑣 ∗ 𝑓| ≤ Ct
1−p1 p0⁄ sup

𝑣

|φ𝑣 ∗ 𝑓|.              (11) 
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Combining (10) and (11) we get 

‖𝑓‖
Ḟp1
s1r
p1 = p1∫ t

p1−1 |{(∑|2𝑣s1φ𝑣 ∗ 𝑓|
r

∞

−∞

)

1 r⁄

> 𝑡}| dt

∞

0

≤ p1∫ t
p1−1 |{sup

𝑣

|φ𝑣 ∗ 𝑓| > 𝐶t
p1 p0⁄ }| dt

∞

0

≤ C∫ tp1−1 |{sup
𝑣

|φ𝑣 ∗ 𝑓| > 𝑡}| dt

∞

0

= ‖𝑓‖
Ḟp0
0∞
p1 . 

This proves (ii). 

(iii) By (9) it follows that  

Ḟp′

s0∞ → Ḃp1
s′,∞

 

if s′ − 𝑛 p1⁄ = s0 − 𝑛 p′⁄ . Hence by interpolation 

(Ḟp′

s0∞, Ḟp′′

s0∞)
θp0

→ (Ḃp1
s′,∞, Ḃp1

s′′,∞)
θp0

 

or by the lemma below 

Ḟp0
s0∞ → Ḃp1

s1p0 

if 1 p0⁄ = (1 − θ) p′⁄ + θ p′′⁄ , s1 = (1 − θ)s
′ + θs′′(0 < θ < 1). 

Lemma (1.1.5) [17]: Let 0 < p, q ≤ ∞. Concerning real interpolation we have 

(i) (Ḃp
s′,q′
, Ḃp
s′′,q′′

)
θq
= Ḃp

sq
, if s = (1 − θ)s′ + θs′(0 < θ < 1;  𝑠′ ≠ s′′) 

(ii) (Ḟp′
s∞, Ḟp′′

s∞)
θp
= Ḟp

s∞, if 1 p⁄ = (1 − θ) p′⁄ + θ p′′⁄ (0 < θ < 1). 

Proof: (i) is well-known; see [9]. We do not detail the proof of (iii). Roughly speaking, 

one first shows that Ḟp
s∞ is a retract of Hp(𝑙∞). Then it is just to invoke a vector valued 

version of the Fefferman-Riviere-Sagher theorem [4] on interpolation of Hardy spaces. 

Now we consider an application of Theorem (1.1.4). Recall the 𝑛 -dimensional 

version of Szasz’ theorem (cf. [9]): 

Lemma (1.1.6) [17]: Let 𝑓 denote the Fourier transform of 𝑓. Then 

‖𝑓‖
Lp
≤ C‖𝑓‖

Ḃ2
𝑛(1 p⁄ −1 2⁄ ),p   if  0 < p ≤ 2. 

Theorem (1.1.7) [17]: Let 0 < p < 2 and 0 < q ≤ ∞.Then 

(∫ |𝑓(ξ)|
p
|ξ|𝑛(2−p)⁄ dξ)

1 p⁄

≤ C‖𝑓‖
Ḟp
0q .                                              (12) 

Proof: Let g = I−𝑛(2−p) p⁄ 𝑓. By Theorem (1.1.4) :( iii) and (8) we have 

‖g‖
Ḃ2
𝑛(1 p⁄ −1 2⁄ ),p ≤ C‖𝑓‖Ḟp

0q . 

Hence, using the Lemma, we get 

‖ĝ‖Lp ≤ C‖𝑓‖Ḟp
0q . 

which is the desired inequality. 
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The duals of Ḃp
sq

 and Ḟp
sq

 may be considered as sudspaces of 𝒮0
′  because of (5) and 

(6). It turns out that to characterize them exactly if 0 < p < 1 is to a large extent just 

another application of Theorem (1.1.4). 

Theorem (1.1.8) [17]: Let s be real and 0 < p < 1. Then 

(i) (Ḃp
sq
)
′
≈ Ḃ∞

−s+𝑛(1 p⁄ −1),∞
    if  0 < q ≤ 1 

(ii) (Ḃp
sq
)
′
≈ Ḃ∞

−s+𝑛(1 p⁄ −1),q′
    if  1 < q < ∞ 

where 1 q⁄ + 1 q′⁄ = 1. 

Proof: For simplicity we take s = 0. By Theorem (1.1.4): (i) we have 

Ḃp
0q
→ Ḃ1

−𝑛(1 p⁄ −1),1
    if  0 < q ≤ 1  

Ḃp
0q
→ Ḃ1

−𝑛(1 p⁄ −1),q
    if  1 < q < ∞ 

If we use the well-known fact (cf. [9]) 

(Ḃ1
sq
)
′
≈ Ḃ∞

−s,q
    if  1 ≤ q < ∞ 

we therefore find 

(i') Ḃ∞
𝑛(1 p⁄ −1),∞

→ (Ḃp
0q
)
′
    if  0 < q ≤ 1 

(ii') Ḃ∞
𝑛(1 p⁄ −1),q

→ (Ḃp
0q
)
′
    if  0 < q < ∞. 

In order to prove the converse inclusions we fix a 𝑓 ∈ (Ḃp
0q
)
′
 with ‖𝑓‖

(Ḃp
0q
)
′ = 1. 

(i) Is a consequence of (i′) and 

‖𝑓‖
Ḃ∞
𝑛(1 p⁄ −1),∞ = sup

𝑣
sup
h
|〈𝑓, 2𝑣𝑛(1 p⁄ −1)φ𝑣(∙ −h)〉| ≤ C ∙ 1. 

Thus there only remains to verify the second half of (ii). Let {φ𝑣} be a sequence of 

testfunctions satisfying in addition to (1) also ∑ φ𝑣𝑣 = δ (which is on restriction). Then 

we obviously have  

𝑓 =∑φ𝑣 ∗ 𝑓

𝑣

≡∑𝑎𝑣
𝑣

. 

Assume with no loss of generality that supp 𝑎̂𝑣  and suppφμ  disjoint if 𝑣 ≠ μ . (Just 

multiply 𝑓  by a suitable function.) For a fixed integer N > 0  we define the sequence 

{b𝑣}𝑣=−N
N  by 

b𝑣(𝑥) = ε𝑣2
𝑣𝑛(1 p⁄ −1)‖𝑎𝑣‖

Ḃ∞
𝑛(1 p⁄ −1),∞

q′−1
φ𝑣(𝑥 − h𝑣), |ε𝑣| = 1 

where {h𝑣} and the argument of {ε𝑣} are at our disposal. (That indeed ‖𝑎𝑣‖Ḃ∞
𝑛(1 p⁄ −1),∞ < ∞ 

can be seen in the same way as for (i)). Clearly, in view of our assumption on the supports, 
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𝑓 (∑b𝑣

N

−N

) =∑𝑓(b𝑣)

N

−N

≥∑‖𝑎𝑣‖
Ḃ∞
𝑛(1 p⁄ −1),∞

q′−1 〈𝑎𝑣 , ε𝑣2
𝑣𝑛(1 p⁄ −1)φ𝑣(∙ −h𝑣)〉

N

−N

≥ C∑‖𝑎𝑣‖
Ḃ∞
𝑛(1 p⁄ −1),∞

q′
N

−N

=∑(2𝑣𝑛(1 p⁄ −1)‖𝑎𝑣‖L∞)
q′

N

−N

 

If {h𝑣} and the arguments of {ε𝑣} are chosen properly. But on other hand 

𝑓 (∑b𝑣

N

−N

) ≤ 1 ∙ ‖∑b𝑣

N

−N

‖

Ḃp
0q

≤ (∑(2𝑣𝑛(1 p⁄ −1)‖𝑎𝑣‖L∞)
q′

N

−N

)

1 q⁄

. 

Hence, 

(∑(2𝑣𝑛(1 p⁄ −1)‖𝑎𝑣‖L∞)
q′

N

−N

)

1 q′⁄

≤ C 

and the proof is complete if we let N → ∞. 

We turn our attention to Ḟp
sq

. To determine its dual almost becomes a triviality when 

knowing both Theorem (1.1.4) and Theorem (1.1.8): 

Theorem (1.1.9) [17]: Let s be real and 0 < p < 1. Then 

(Ḟp
sq
)
′
≈ Ḃ∞

−s+𝑛(1 p⁄ −1),∞
        if  0 < 𝑞 < ∞. 

Proof: From (2) we deduce that 

(Ḟp
sq
)
′
→ (Ḃp

sq
)
′
    if q ≤ p  

(Ḟp
sq
)
′
→ (Ḃp

sp
)
′
    if q ≥ p. 

Conversely, Theorem (1.1.4) (ii) or (iii) yields 

(Ḃ1
s−𝑛(1 p⁄ −1),1

)
′

→ (Ḟp
sq
)
′
 

Invoking Theorem (1.1.8) we see that the Besov spaces have the same dual and thus also 

Ḟp
sq

: 

(Ḟp
sq
)
′
≈ Ḃ∞

−s+𝑛(1 p⁄ −1),∞
. 

Let us denote a point 𝑥 ∈ ℝ𝑛  by 𝑥 = (𝑥′, 𝑥𝑛) , where  𝑥′ ∈ ℝ𝑛−1  and 𝑥𝑛 ∈ ℝ
1 . 

Identify ℝ𝑛−1 with the hyperplance 𝑥𝑛 = 0 in ℝ𝑛 and consider the trace operator 

Tr ∶ 𝒮0(ℝ
𝑛) → 𝒮(ℝ𝑛−1) 

Defined by 

Tr 𝑓(𝑥′) = 𝑓(𝑥′, 0). 
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Theorem (1.1.10) [17]: Let 0 < p < ∞ , 0 < q ≤ ∞  and s > 1 p⁄ + max(0, (𝑛 − 1)(1 p⁄ −

1)). Then the trace operator can be extended so that 

Tr ∶ Ḟp
sq(ℝ𝑛) → Ḃp

s−1 p⁄ ,p(ℝ𝑛−1).                                                  (13) 

Conversely, there is an operator Sr 

Sr ∶ Ḃp
s−1 p⁄ ,p(ℝ𝑛−1) → Ḟp

sq(ℝ𝑛)                                                  (14) 

so that Tr ∘ Sr = Id. 

Proof: In proving (13) we shall for convenience assume 0 < p ≤ 1  (with minor 

modifications the same proof also works for p > 1). It also suffices to take q = ∞. 

Let 𝑓 ∈ Ḟp
sq(ℝ𝑛). If q < ∞ we can extend Tr by continuity, since 𝒮0 is then dense 

in Ḟp
sq(ℝ𝑛). For q = ∞ this is no longer applicable. However, for all q we can define Tr by 

Tr 𝑓(𝑥′) = ∑φ𝑣 ∗ 𝑓(𝑥
′, 0)

𝑣∈ℤ

≡∑𝑎𝑣
𝑣∈ℤ

 

where {φ𝑣}𝑣∈ℤ  is a sequence of testfunctions on ℝ𝑛  satisfying (1) and ∑ φ𝑣𝑣 = δ . 

Obviously, it is an extension of our original Tr. That the sum has a limit and thus that Tr is 

well-defined. 

Lemma (1.1.11) [17]: If 𝑓, g ∈ 𝒮0
′  and supp𝑓 , supp ĝ ⊂ {|ξ| ≤ r} then 

‖𝑓 ∗ g‖Lp ≤ Cr
𝑛(1 p⁄ −1)‖𝑓‖Lp‖g‖Lp                 if  0 < p ≤ 1       

‖𝑓 ∗ g‖Lp ≤ ‖𝑓‖L1‖g‖Lp                                     if  0 < p ≤ ∞.    

For a proof we refer the reader to [9]. The second lemma is also a result by Peetre 

[10] (we shall only need it for q = ∞): 

Set 

φ𝑣
𝑎𝑓(𝑥) = sup

|𝑥−y|≤2−𝑣𝑎

|φ𝑣 ∗ 𝑓(y)| 

For a fixed 𝑎 ≥ 0. 

Lemma (1.1.12) [17]: Let s be real and 0 < p < ∞, 0 < q ≤ ∞. Then 

‖𝑓‖Ḟp
sq ≈ ‖(∑|2𝑣sφ𝑣

𝑎𝑓|q

𝑣

)

1 q⁄

‖

Lp

. 

Now the proof of (13) is easily accomplished. If {φ𝑣
′ }𝑣∈ℤ  is sequence of 

testfunctions on ℝ𝑛−1 satisfying (1), then 

Tr 𝑓 ∗ φ𝑣
′ =∑𝑎μ ∗ φ𝑣

′

𝑣∈ℤ

. 

Consequently, 
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‖Tr 𝑓 ∗ φ𝑣
′ ‖
Lp(ℝ

𝑛−1)

p
≤ ∑ ‖𝑎μ ∗ φ𝑣

′ ‖
Lp(ℝ

𝑛−1)

p

μ≥𝑣−1

 

Since 

(𝑥 + y)p ≤ 𝑥p + yp 

when 𝑥, y ≥ 0 and 0 < p ≤ 1. By Lemma (1.1.11) we have 

‖𝑎μ ∗ φ𝑣
′ ‖
Lp(ℝ

𝑛−1)
≤ C2μ(t−1 p⁄ )‖𝑎μ‖Lp(ℝ𝑛−1)

‖φ𝑣
′ ‖Lp(ℝ𝑛−1) 

with t = 1 p⁄ + (𝑛 − 1)(1 p⁄ − 1). But 

‖φ𝑣
′ ‖Lp(ℝ𝑛−1) ≈ 2

−𝑣(t−1 p⁄ ). 

Hence, 

2𝑣(s−1 p⁄ )p‖φ𝑣
′ ∗ Tr 𝑓‖

Lp(ℝ
𝑛−1)

p
≤ C ∑ 2(𝑣−μ)(s−t)p2−μ‖2μs𝑎μ‖Lp(ℝ𝑛−1)

p

μ≥𝑣−1

 

Inserting this in to the definition of Besov spaces (Definition (1.1.1)) and using 

Minkowski’s inequality for sums we find 

‖𝑓‖
Ḃp
s−1 p⁄ ,p

(ℝ𝑛−1)

p
≤ C∑2𝑣(s−t)p∑2−μ‖2μs𝑎μ‖Lp(ℝ𝑛−1)

p

μ𝑣≤1

≤ C∑2−μ‖2μs𝑎μ‖Lp(ℝ𝑛−1)
p

μ

 

Since s > t. However, 

∑2−μ‖2μs𝑎μ‖Lp(ℝ𝑛−1)
p

μ

≤∑ ∫ ‖2μsφμ
2𝑓(∙, 𝑥𝑛)‖Lp(ℝ𝑛−1)

p
d𝑥𝑛

2−μ+1

2−μμ

≤ C‖sup
μ
|2μsφμ

2𝑓|‖
Lp(ℝ

𝑛)

p

. 

Thus by Lemma (1.1.12) 

‖𝑓‖
Ḃp
s−1 p⁄ ,p

(ℝ𝑛−1)
≤ C‖𝑓‖Ḟps∞(ℝ𝑛).                                                   (15) 

This concludes the proof of (13). 

We turn to (14). Now we can take q very small, at least q ≤ p. Let {φ𝑣
′ }𝑣∈ℤ and 

{ψ𝑣}𝑣∈ℤ be testfunctions on ℝ𝑛−1 and respectively, satisfying (1) as well as 

∑φ𝑣
′

𝑣

= δ, ψ𝑣(𝑥𝑛) = 2
𝑣ψ0(2

𝑣𝑥𝑛), ψ0(0) = 1. 

Again in order to avoid some trivial technical nuisances we assume that  

φ𝑣
′ ∗ φμ

′ ∗ 𝑓 = 0                   if 𝑣 ≠ μ

         ψ𝑣 ∗ ψμ = 0                       if 𝑣 ≠ μ      
                                                 (16) 

However, without any loss of generality we may assume that the testfunctions 

{φ𝑣}𝑣∈ℤ on ℝ𝑛 are of the form 
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φ𝑣 = φ𝑣
′ ⊗∑ψμ

μ≤𝑣

+∑φμ
′ ⊗ψ𝑣

μ≤𝑣

.                                                    (17) 

Put 

Sr 𝑓(𝑥′, 𝑥𝑛) =∑2−μφμ
′ ∗ 𝑓(𝑥′) ⊗ ψμ(𝑥𝑛)

μ

. 

Clearly, 

Sr 𝑓(𝑥′, 0) = 𝑓(𝑥′). 

That is, Tr ∘ Sr = Id. Because of (16) and (17) we see that 

Sr 𝑓 ∗ φ𝑣 = 2
−𝑣+1φ𝑣

′ ∗ φ𝑣
′ ∗ 𝑓 ⊗ ψ𝑣 ∗ ψ𝑣. 

Hence, 

‖Sr 𝑓‖
Ḟp
sq(ℝ𝑛)

p
≤ C‖(∑|2𝑣(s−1)φ𝑣

′ ∗ φ𝑣
′ ∗ 𝑓 ⊗ ψ𝑣 ∗ ψ𝑣|

q

𝑣

)

1 q⁄

‖

Lp(ℝ
𝑛)

p

≤ C ∫ |∑(2𝑣(1 p⁄ −1)𝑎𝑣ψ𝑣 ∗ ψ𝑣(𝑥𝑛))
q

𝑣

|

p q⁄

d𝑥𝑛

∞

−∞

 

with 

𝑎𝑣 = 2
𝑣(s−1 p⁄ )‖φ𝑣

′ ∗ φ𝑣
′ ∗ 𝑓‖Lp(ℝ𝑛−1). 

Inserting the trivial estimate 

|ψ𝑣 ∗ ψ𝑣(𝑥𝑛)| ≤ C2
𝑣min(1, (2𝑣|𝑥𝑛|)

−j) 

for an arbitrarily large j, gives with r = p q⁄  

‖Sr 𝑓‖
Ḟp
sq(ℝ𝑛)

p
≤ C ∫ |∑(2𝑣 p⁄ 𝑎𝑣min(1, (2

𝑣|𝑥𝑛|)
−j))

q

𝑣

|

p q⁄

d𝑥𝑛

∞

−∞

≤ C∑(∑(2𝑣−μ𝑎𝑣
p
min(1, (2𝑣−μ)−jp))

1 r⁄

𝑣

)

r

μ

 

If we use Minkowski again, we see that 

‖Sr 𝑓‖
Ḟp
sq(ℝ𝑛)

p
≤ C∑𝑎𝑣

p

𝑣

≤ C‖𝑓‖
Ḃp
s−1 p⁄ ,p

(ℝ𝑛−1)

p
. 

This is the desired inequality and thus the proof of the theorem is complete. 

Section (1.2): Besov Spaces and Decompositions 

Many functions or distribution spaces have been found to admit decomposition, in 

the sense that every member of the space is a linear combination of basic functions of a 

particularly elementary form. Such decompositions simplify the analysis of the spaces and 
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the operators acting on mogeneous Besov spaces Ḃp
𝛼q

, −∞ < 𝛼 < +∞, 0 < p, q ≤ +∞, 

and present some applications of these results. 

Defining the Fourier transform by 𝑓(ξ) = ∫𝑓(𝑥)e−𝑖𝑥∙ξd𝑥, let {φ𝑣}𝑣∈ℤ be a family 

of functions on ℝ𝑛 satisfying 

φ𝑣 ∈ 𝒮                                                                              (18) 

supp φ̂𝑣 ⊆ {ξ ∈ ℝ
𝑛 ∶
1

2
≤ 2−𝑣|ξ| ≤ 2},                                              (19) 

|φ̂𝑣(ξ)| ≥ c > 0  if   
3

5
≤ 2−𝑣|ξ| ≤

5

3
,                                               (20) 

and 

|∂γφ̂𝑣(ξ)| ≥ cγ2
−𝑣|γ|, for every multi‐ index  γ.                               (21) 

The Besov space Ḃp
𝛼q

, −∞ < 𝛼 < +∞, 0 < p, q ≤ +∞, is the collection of all 𝑓 ∈

𝒮′ 𝒮⁄  (tempered distributions modulo polynomials) such that 

‖𝑓‖Ḃp
𝛼q = (∑(2𝑣𝛼‖φ𝑣 ∗ 𝑓‖Lp)

q

𝑣∈ℤ

)

1 q⁄

< +∞, 

with the usual interpretation if q = +∞. This definition is independent of the family {φ𝑣} 
satisfying (18, 19, 20 and 21); see [26]. 

We show that each 𝑓 ∈ Ḃp
𝛼q

 can be decomposed into a sum of simple building 

blocks. The building blocks in our first decomposition are similar to the atoms in the 

atomic decomposition of Hardy spaces Hp(ℝ𝑛) , 0 < p ≤ 1 ([27, 33, 23, 43]). We define 

an (𝛼, p)-atom 𝑎(𝑥) (−∞ < 𝛼 < +∞, 0 < p ≤ +∞) to be a function satisfying, for some 

cube 𝒬 ⊆ ℝ𝑛, 

supp 𝑎 ⊆ 3𝒬,                                                              (22) 

|∂γ𝑎(𝑥)| ≤ |𝒬|−𝛼 𝑛⁄ −1 p⁄ −|γ| 𝑛⁄      if |γ| ≤ K,                                     (23) 

and 

∫𝑥γ𝑎(𝑥)d𝑥 = 0    if   |γ| ≤ N,                                            (24) 

where K ≥ ([𝛼] + 1)+  and N ≥ max([𝑛(1 p⁄ − 1)+ − 𝛼],−1)  are fixed integers. Here 

𝑥+ = max(𝑥, 0) , [𝑥] is the greatest integer in 𝑥, and 3𝒬 is the cube in ℝ𝑛concentric with 

𝒬 but with side length three times the side length ℓ(𝒬) of 𝒬. In (24), N = −1 means that 

𝑎(𝑥) is not required to have any vanishing moments. 

We write 𝑎𝒬 for an atom satisfying (22, 23 and 24) for a given cube 𝒬, and adopt 

the convention hereafter that whenever 𝒬 appears as a summation index, the sum runs only 

over dyadic cubes. Our result is the quasi-norm equivalence 
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‖𝑓‖Ḃp
𝛼q ≈ inf {(∑( ∑ |s𝒬|

p

ℓ(𝒬)=2−𝑣

)

q p⁄

𝑣∈ℤ

)

1 q⁄

∶ 𝑓 = lim
j→∞

∑ ∑ s𝒬𝑎𝒬
ℓ(𝒬)=2−𝑣

j

𝑣=−j

,

(in 𝒮′ 𝒮⁄ ) and each 𝑎𝒬  is an (𝛼, p)‐ atom}.                                                             (25) 

In our other decomposition of Ḃp
𝛼q

, the building blocks, although not of compact 

support, are taken from a fixed, explicitly given family of functions which have simple 

properties. Fixed ψ ∈ 𝒮  satisfying supp ψ̂(ξ) ⊆ {ξ ∈ ℝ𝑛 ∶ |ξ| ≤ π} , ∫𝑥γ𝑎(𝑥)d𝑥 = 0  if 

|γ| ≤ N, and ψ̂(ξ) ≥ c > 0 if 1 2⁄ ≤ |ξ| ≤ 2 (N is the fixed integer above). For each 𝑣 ∈ ℤ 

and k = (k1, ⋯ , k𝑛) ∈ ℤ
𝑛, set 

𝒬𝑣k = {𝑥 = (𝑥1, ⋯ , 𝑥𝑛) ∈ ℝ
𝑛 ∶  k𝑖2

−𝑣 ≤ 𝑥𝑖 < (k𝑖 + 1)2
−𝑣, 𝑖 = 1,⋯ , 𝑛},         (26) 

and define 

ψ𝒬(𝑥) = |𝒬|
α 𝑛⁄ −1 p⁄ ψ(2𝑣𝑥 − k)      if 𝒬 = 𝒬𝑣k                                        (27) 

We will show that 

‖𝑓‖Ḃp
𝛼q ≈ inf {(∑( ∑ |s𝒬|

p

ℓ(𝒬)=2−𝑣

)

q p⁄

𝑣∈ℤ

)

1 q⁄

∶  𝑓 = lim
j→∞

∑ ∑ s𝒬ψ𝒬
ℓ(𝒬)=2−𝑣

j

𝑣=−j

(in 𝒮′ 𝒮⁄ ) }         (28) 

In fact, in our representation 𝑓 = ∑ s𝒬ψ𝒬𝒬 , each s𝒬  for 𝒬 = 𝒬𝑣k , is a multiple of the 

“sample value” φ𝒬 ∗ 𝑓(𝑥𝒬) for appropriate {φ𝒬} satisfying (18, 19, 20 and 21), where 

𝑥𝒬 = 2
−𝑣k. 

After completing the proofs of (25) and (28), we consider the space of functions of 

bounded mean oscillation (BMO). Our decomposition (25) of Ḃp
𝛼q

 corresponds to the 

decomposition of BMO given by Uchiyama [42]. We show the analogue of (28) for BMO. 

Both of our decomposition methods utilize a discrete version of Calderón’s 

reproducing formula ([24, 26]), and a classical result of Plancherel-Pólya [36]. The 

primary difference between these methods is the manner in which a certain convolution is 

written as a discrete sum. In (28) this is done on the Fourier transform, or frequency, side 

using a Fourier series, while in (25) it is done directly on the time side. 

Each decomposition has advantages. For example, we see that the fact that the 
(α, p)-atoms in (25) have compact support is convenient for the consideration of “trace” 

problems. The well-known result that 

TrḂp
𝛼q(ℝ𝑛) = Ḃp

𝛼−1 p⁄ ,q(ℝ𝑛−1), if  α − 1 p⁄ > (𝑛 − 1)(1 p⁄ − 1)+ 

is immediate, and the result that 

TrḂp
1 p⁄ ,1(ℝ𝑛) = Lp(ℝ𝑛−1), if  1 ≤ p < +∞ 
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([22, 31, 35]) is extended to show that TrḂp
1 p⁄ ,1(ℝ𝑛) = Lp(ℝ𝑛−1) whenever 0 < p < +∞, 

q ≤ max(1, p). 

One advantage of (28) is the simplicity of the building blocks ψ𝒬 on the frequency 

side. This is exploited to give a very simple proof that Ḃp
αq

 has the lower majorant property 

if 0 < p ≤ 1. 

Calderón’s formula plays a key role in many decomposition results; it is crucial to 

the simplest known proofs of the atomic decomposition of Hp(ℝ𝑛), 0 < p ≤ 1 ([23, 43]). 

Uchiyama [42], following Chang-Fefferman [25], used a similar formula to show the 

BMO decomposition mentioned above. Our application of Calderón’s formula to Ḃp
αq

 in 

general was prompted by recent work of Wilson [44], who used it to obtain (25) for the 

case of the “special atoms” space Ḃ1
01(ℝ1). Another application was made by Cohen [26], 

who decomposed the spaces H(p,q), which are similar to the Besov spaces. Methods not 

relying on Calderón’s formula have been used by de Souza et al. [29] to obtain (25) for 

Ḃ1
𝛼1, 0 < 𝛼 < 1, on the circle. 

A motivation for our second decomposition is the work of Coifman-Rochberg [28], 

where Bergman spaces are decomposed into building blocks obtained from the Bergman 

kernel. Rochberg-Semmes [39] obtain similar results for BMO. Ricci-Taibleson [37] 

employ related ideas to show (25) in ℝ1 for 𝛼 < 0; their work is extended to ℝ𝑛 by Bui 

[21]. 

Lemma (1.2.1) [45]: Suppose 𝑓 ∈ 𝒮′ 𝒮⁄  and that φ and ψ are functions satisfying 

φ,ψ ∈ 𝒮                                                                      (29) 

supp φ̂ ⊆ {ξ ∶ |ξ| < 𝜋}, supp ψ̂ ⊆ {ξ ∶ |ξ| ≤ π},                          (30) 

and  

∑φ̂(2𝑣ξ)ψ̂(2𝑣ξ)

𝑣∈ℤ

= 1 if   ξ ∈ ℝ𝑛\{0}.                                    (31) 

If φ𝑣(𝑥) = 2
𝑣𝑛φ(2𝑣𝑥) and ψ𝑣(𝑥) = 2

𝑣𝑛ψ(2𝑣𝑥), then 

𝑓(∙) =∑2−𝑣𝑛 ∑ φ𝑣 ∗ 𝑓(2
−𝑣k)ψ𝑣(∙ −2

−𝑣k)

k∈ℤ𝑛𝑣∈ℤ

                             (32) 

In (32), the convergence of the right-hand side, as well as the equality, is in 𝒮′ 𝒮⁄ . 

Proof: By (31), we have 

𝑓 =∑ψ𝑣 ∗ φ𝑣 ∗ 𝑓

𝑣∈ℤ

                                                              (33) 

Hence, (32) will follow from 

ψ𝑣 ∗ φ𝑣 ∗ 𝑓(𝑥) = 2
−𝑣𝑛 ∑ φ𝑣 ∗ 𝑓(2

−𝑣k)ψ𝑣(𝑥 − 2
−𝑣k)

k∈ℤ𝑛

                          (34) 

To prove (34), we note that φ𝑣 ∗ 𝑓 is slowly increasing, and hence, 
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𝑓𝑣,δ(𝑥) = φ𝑣 ∗ 𝑓(𝑥)∏(
sin(δ𝑥𝑖)

δ𝑥𝑖
)

j𝑛

𝑖=1

∈ L2 

If j is large enough. Also, by (30) and the fact that 

supp[(sin δ𝑥) δ𝑥⁄ ]∧ ⊆ [−δ, δ], supp 𝑓𝑣,δ(ξ) ⊆ {ξ ∶ |ξ| ≤ 2
𝑣π} 

If δ is sufficiently small. We have 

𝑓𝑣,δ(𝑥) ∗ ψ𝑣 = (2π)
−𝑛∫𝑓𝑣,δ(ξ)ψ̂𝑣(ξ)e

𝑖𝑥∙ξdξ.                                           (35) 

Extending ψ̂𝑣(ξ)e
𝑖𝑥∙ξ  periodically with period 2𝑣+1π  in each variable and representing 

ψ̂𝑣(ξ)e
𝑖𝑥∙ξ by its Fourier series, we obtain, by Fourier inversion, 

ψ̂𝑣(ξ)e
𝑖𝑥∙ξ = 2−𝑣𝑛 ∑ ψ𝑣(𝑥 − 2

−𝑣k)e𝑖2
−𝑣k∙ξ

k∈ℤ𝑛

                                    (36) 

If |ξ| ≤ 2𝑣π. Inserting (36) in (35) and using Fourier inversion again yields 

𝑓𝑣,δ ∗ ψ𝑣(𝑥) = 2
−𝑣𝑛 ∑ ψ𝑣(𝑥 − 2

−𝑣k)𝑓𝑣,δ(2
−𝑣k)

k∈ℤ𝑛

.                                     (37) 

Letting δ → 0  in (37) and applying the dominated convergence theorem, (34) 

follows. 

Lemma (1.2.2) [45]: Let 0 < p ≤ +∞  and 𝑣 ∈ ℤ . Suppose g ∈ 𝒮′  and supp ĝ ⊆
{ξ ∶ |ξ| ≤ 2𝑣+1}. If 𝒬𝑣k is defined by (26), then 

(∑ sup
z∈𝒬𝑣k

|g(z)|p

k∈ℤ𝑛

)

1 p⁄

≤ c𝑛,p2
𝑣(𝑛 p⁄ )‖g‖Lp .                                           (38) 

Proof: By the Paley-Wiener theorem, g is a function of exponential type 2𝑣+1. Also, g is 

slowly increasing. Let ψ ∈ 𝒮  satisfy supp ψ̂ ⊆ {ξ ∶ |ξ| ≤ π}  and ψ̂(ξ) = 1  if |ξ| ≤ 2 . If 

ψ𝑣(𝑥) = 2
𝑣𝑛ψ(2𝑣𝑥), and g(𝑥 + y) = gy(𝑥), then, exactly as in the proof of (34), 

g(𝑥 + y) = ψ𝑣 ∗ g
y(𝑥) = 2−𝑣𝑛 ∑ g(2−𝑣ℓ + y)ψ𝑣(𝑥 − 2

−𝑣ℓ)

ℓ∈ℤ𝑛

. 

Therefore, for any y ∈ 𝒬𝑣k, 

sup
z∈𝒬𝑣k

|g(z)| ≤ sup
|𝑥|≤2−𝑣√𝑛

|g(𝑥 + y)| ≤ 2−𝑣𝑛 ∑ g(2−𝑣ℓ + y) sup
|𝑥|≤2−𝑣√𝑛

|ψ𝑣(𝑥 − 2
−𝑣ℓ)|

ℓ∈ℤ𝑛

. 

Since ψ ∈ 𝒮, 

sup
|𝑥|≤2−𝑣√𝑛

|ψ𝑣(𝑥 − 2
−𝑣ℓ)| ≤ cM2

𝑣𝑛(1 + |ℓ|)−M, 

for any M. Taking M sufficiently large and applying the p-triangle inequality |𝑎 + b|p ≤
|𝑎|p + |b|p if 0 < p ≤ 1 or Hölder’s inequality if p > 1, we obtain 



13 

sup
z∈𝒬𝑣k

|g(z)|p ≤ cp ∑ g(2−𝑣ℓ + y)(1 + |ℓ|)−𝑛−1

ℓ∈ℤ𝑛

 

for any y ∈ 𝒬𝑣k. Integrating with respect to y over 𝒬𝑣k yields 

2−𝑣𝑛 sup
z∈𝒬𝑣k

|g(z)|p ≤ cp ∑(1 + |ℓ|)−𝑛−1

ℓ∈ℤ𝑛

∫ |g(𝑥)|pd𝑥

𝒬𝑣,k+ℓ

.                            (39) 

Summing over k ∈ ℤ𝑛, we obtain 

2−𝑣𝑛 ∑ sup
z∈𝒬𝑣k

|g(z)|p

k∈ℤ𝑛

≤ cp‖g‖Lp
p
∑(1 + |ℓ|)−𝑛−1

ℓ∈ℤ𝑛

≤ cp,𝑛‖g‖Lp
p
, 

which proves (38). 

Remark (1.2.3) [45]: An alternate way of proving Lemma (1.2.2), which has the 

advantage of making the connection with Hardy spaces more obvious, is to observe that 

sup
y∈𝒬𝑣k

|g(y)| ≤ inf
z∈𝒬𝑣k

N𝑣(g)(z), 

where N𝑣(g)(z) = sup
|z−y|<2−𝑣√𝑛

|g(y)|. Hence 

(∑ sup
y∈𝒬𝑣k

|g(y)|p

k∈ℤ𝑛

)

1 p⁄

≤ 2𝑣(𝑛 p⁄ )‖N𝑣(g)‖Lp . 

Since supp ĝ ⊆ {ξ ∶ |ξ| ≤ 2𝑣+1} , (37) follows from the well-known inequality 

‖N𝑣(g)‖Lp ≤ c‖g‖Lp  ([5, 27, 32, 41]); if in addition ĝ(ξ) = 0  for |ξ| < 2𝑣−1 , this is 

essentially a restatement of the fact that ‖g‖Lp ≈ ‖g‖Hp. 

In addition to (38), Plancherel-Pólya [36] that the inequality 

‖g‖Lp ≤ cp,𝑛2
−𝑣𝑛 p⁄ (∑ inf

z∈𝒬𝑣k
|g(z)|p

k∈ℤ𝑛

)

1 p⁄

                                        (40) 

holds as well if supp ĝ ⊆ {ξ ∶ |ξ| ≤ ε2𝑣+1} for ε sufficiently small. A proof of this can be 

given, using Lemma (1.2.1) in a manner similar to our proof of Lemma (1.2.2). A more 

precise statement can be obtained from an interpolation formula in Boas, [20]. 

Our main decomposition theorem for Ḃp
αq

  now follows readily from Lemmas 

(1.2.1) and (1.2.2). 

Theorem (1.2.4) [45]: Let −∞ < 𝛼 < +∞, 0 < p, q ≤ +∞. Then each 𝑓 ∈ Ḃp
αq

 can be 

decomposed as follows: 

(i) 𝑓 = ∑ ∑ s𝒬ψ𝒬ℓ(𝒬)=2−𝑣𝑣∈ℤ , 

where the ψ𝒬’s are defined by (37), and 

(ii) 𝑓 = ∑ ∑ s𝒬𝑎𝒬ℓ(𝒬)=2−𝑣𝑣∈ℤ  

where the 𝑎𝒬’s are (α, p)-atoms. 
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In both cases the convergence is in 𝒮′ 𝒮⁄  and the numbers s𝒬 satisfy 

(∑( ∑ |s𝒬|
p

ℓ(𝒬)=2−𝑣

)

q p⁄

𝑣∈ℤ

)

1 p⁄

≤ c‖𝑓‖Ḃp
αq                                                (41) 

for some constant c independent of 𝑓. 

Proof: 

(i) Our assumption on ψ imply that there is a function φ satisfying (18, 19, 20, 21) for 𝑣 =
0, and such that (31) holds. By Lemma (1.2.1), 

𝑓(∙) =∑ ∑ φ𝑣 ∗ 𝑓(2
−𝑣k)2𝑣𝑛(𝛼 𝑛⁄ −1 p⁄ )ψ𝒬𝑣k(∙)

k∈ℤ𝑛𝑣∈ℤ

 

For 𝒬 = 𝒬𝑣k, define 

s𝒬 = 2
𝑣𝑛(𝛼 𝑛⁄ −1 p⁄ )φ𝑣 ∗ 𝑓(2

−𝑣k).                                                 (42) 

Clearly 𝑓 = ∑ s𝒬ψ𝒬𝒬 , and (40) follows easily by applying (37) to φ𝑣 ∗ 𝑓. 

(ii) Select a function θ ∈ 𝒮 satisfying suppθ ⊆ {𝑥 ∶ |𝑥| ≤ 1}, ∫𝑥γθ(𝑥)d𝑥 = 0 if |γ| ≤ N, 

and θ̂(ξ) ≥ c > 0 if 1 2⁄ ≤ |ξ| ≤ 2. (Such a θ is easy to construct: let Θ ∈ 𝒮 be a real-

valued radial function satisfying suppΘ ⊆ {𝑥 ∶ |𝑥| ≤ 1} and Θ̂(0) = 1. Then for some 

ε > 0, Θ̂(ξ) = 1 2⁄  for all ξ satisfying |ξ| < 2ε < 1. Then θ(𝑥) = (−∆)N(ε−𝑛Θ(𝑥 ε⁄ )) 
satisfies all of the requirements.) Our conditions on θ guarantee that a function φ exists 

which satisfies (18, 19, 20, 21) for 𝑣 = 0 and so that (31) holds. Therefore, if θ𝑣(𝑥) =
2𝑣𝑛θ(2𝑣𝑥), 

𝑓 =∑θ𝑣 ∗ φ𝑣 ∗ 𝑓

𝑣∈ℤ

=∑ ∑ ∫θ𝑣(𝑥 − y)

𝒬ℓ(𝒬)=2−𝑣𝑣∈ℤ

φ𝑣 ∗ 𝑓(y)dy. 

Define, for 𝒬 = 𝒬𝑣k, 

s𝒬 = C2
𝑣𝑛(𝛼 𝑛⁄ −1 p⁄ ) sup

y∈𝒬

|φ𝑣 ∗ 𝑓(y)|                                                   (43) 

     and  

𝑎𝒬(𝑥) =
1

s𝒬
∫θ𝑣(𝑥 − y)φ𝑣 ∗ 𝑓(y)dy

𝒬

 

Where C is a constant, picked large enough so that every 𝑎𝒬 satisfy (23). The 𝑎𝒬’s 

are (𝛼, p)-atoms, since (22) and (24) are consequences of our requirements on θ. Finally, 

(41) follows from Lemma (1.2.2) exactly as in (i). 

Remark (1.2.5): There is a simpler proof for p ≥ 1 of Theorem (1.2.4) (ii), which does 

not depend on Lemma (1.2.2). Replace (43) by 

s𝒬 = C|𝒬|
−𝛼 𝑛⁄ (∫|φ𝑣 ∗ 𝑓(y)|

pdy

𝒬

)

1 p⁄

                                         (44) 
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(cf. [42]), and continue with 𝑎𝒬(𝑥) = (1 s𝒬⁄ ) ∫ θ𝑣(𝑥 − y)φ𝑣 ∗ 𝑓(y)dy𝒬
 as above. Then (23) 

follows by Hölder’s inequality if C is a large enough constant, and (22) and (24) follow as 

above. With this definition of s𝒬, (41) is trivial. 

In each of our decompositions, s𝒬, for 𝒬 = 𝒬𝑣k, is determined by the values of φ𝑣 ∗

𝑓 on 𝒬𝑣k. Up to multiple factors, s𝒬 in (43) is the sup of |φ𝑣 ∗ 𝑓| on 𝒬𝑣k, s𝒬 in (44) is the 

Lp -average of φ𝑣 ∗ 𝑓  on 𝒬𝑣k . And in (42) s𝒬  is the sample value φ𝑣 ∗ 𝑓(2
−𝑣k) . By 

Plancherel-Pólya, (38) and (40), these values are roughly interchangeable. 

   We call a function m an (𝛼, p)-molecule if there exist μ ∈ ℤ and a point 𝑥0 ∈ ℝ
𝑛 such 

that 

|∂γm(𝑥)| ≤ 2μ(𝑛 p⁄ −𝛼+|γ|)(1 + 2μ|𝑥 − 𝑥0|)
−M−|γ|         if  |γ| ≤ K                      (45) 

and 

∫𝑥γm(𝑥)d𝑥 = 0            if  |γ| ≤ N,                                              (46) 

Where M is a large, fixed number; M ≥ N+ 10𝑛max(1 p⁄ , 1) is certainly enough. We 

recall that K ≥ ([𝛼] + 1)+ and N ≥ max(𝑛[(1 p⁄ −  1)+ − 𝛼],−1) are fixed integers. 

For each μ ∈ ℤ, let {𝑥μ,j}j
 be an arbitrary sequence of point in ℝ𝑛. We will write 

m = mμ,j if m satisfies (45, 46) for 𝑥0 = 𝑥μ,j. 

We will use the notation m𝒬 for an (𝛼, p)-molecule which is in fact concentrated on 

the dyadic cube 𝒬 = 𝒬μ,ℓ (defined by (26)); i.e. m𝒬 satisfies (45, 46) with ℓ(𝒬) = 2−μ and 

𝑥0 = 𝑥𝒬 = 2
−μℓ. 

This distinction in notation is adopted to emphasize the fact that our estimates 

require the (𝛼, p)-molecules to be in correspondence with the dyadic cubes only if 1 <
p ≤ +∞. 

Theorem (1.2.8) [45]: Let −∞ < 𝛼 < +∞, 0 < q ≤ +∞. 

(a) Let 0 < p ≤ 1. Suppose 𝑓 = ∑ ∑ sμ,jmμ,jjμ∈ℤ , where the mμ,j’s are (𝛼, p)-molecules, 

indexed as above. Then 

‖𝑓‖Ḃp
αq ≤ c(∑(∑|sμ,j|

p

j

)

q p⁄

μ∈ℤ

)

1 q⁄

. 

(b) Let 1 < p ≤ +∞ . Suppose 𝑓 = ∑ ∑ s𝒬m𝒬ℓ(𝒬)=2−μμ∈ℤ , where each m𝒬  is an (𝛼, p) -

molecule concentrated on 𝒬. Then 

‖𝑓‖Ḃp
αq ≤ c(∑( ∑ |s𝒬|

p

ℓ(𝒬)=2−μ

)

q p⁄

μ∈ℤ

)

1 q⁄

. 

In both cases the constant c is independent of 𝑓. 

Proof: To prove (i), we write 
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φ𝑣 ∗∑∑sμ,jmμ,j

jμ∈ℤ

= φ𝑣 ∗ ( ∑

𝑣

μ=−∞

+ ∑

+∞

μ=𝑣+1

)∑sμ,jmμ,j

j

 

and use Lemma (1.2.7) below and the p-triangle inequality |𝑎 + b|p ≤ |𝑎|p + |b|p to see 

that 

‖𝑓‖
Ḃp
𝛼q
q

≤ c∑( ∑ 2−(𝑣−μ)(K−𝛼)p
𝑣

μ=−∞

∑|sμ,j|
p

j

)

q p⁄

𝑣∈ℤ

+ c∑( ∑ 2−(μ−𝑣)(N+1+𝑛−𝑛 p⁄ +𝛼)p

+∞

μ=𝑣+1

∑|sμ,j|
p

j

)

q p⁄

𝑣∈ℤ

. 

The proof of (ii) is similar. If μ > 𝑣 we apply (47) and Lemma (1.2.8) with μ = 𝑣, 

and if μ ≤ 𝑣 we apply (48) and Lemma (1.2.8) with η = μ, to obtain 

‖𝑓‖
Ḃp
𝛼q
q

≤ c∑( ∑ 2−(𝑣−μ)(K−𝛼)
𝑣

μ=−∞

( ∑ |s𝒬|
p

ℓ(𝒬)=2−μ

)

1 p⁄

)

q

𝑣∈ℤ

+ c∑( ∑ 2−(μ−𝑣)(N+1+𝛼)
∞

μ=𝑣+1

( ∑ |s𝒬|
p

ℓ(𝒬)=2−μ

)

1 p⁄

)

q

𝑣∈ℤ

. 

Now K − 𝛼 > 0  and N + 1 + 𝛼 > 0  by definition, so (ii) follows by considering 

q ≥ 1 and q < 1 separately, similarly to the proof of (i). 

Lemma (1.2.7) [45]: Let mμ,j be an (𝛼, p)-molecule. Then 

|φ𝑣 ∗ mμ,j(𝑥)| ≤ 2
μ(𝑛 p⁄ −𝛼)2−(μ−𝑣)(N+1+𝑛)(1 + 2𝑣|𝑥 − 𝑥μ,j|)

N+1+𝑛−M
                (47) 

if 𝑣 ≤ μ, and 

|φ𝑣 ∗ mμ,j(𝑥)| ≤ 2
μ(𝑛 p⁄ −𝛼)2−(𝑣−μ)K(1 + 2μ|𝑥 − 𝑥μ,j|)

N+1+𝑛−M
                   (48) 

if μ ≤ 𝑣. 

Proof: Consider (47) first. By translation and dilation invariance, we may assume 𝑣 = 0 

and 𝑥μ,j = 0. Put m = mμ,j and φ = φ0. By (46), 

φ ∗ m(𝑥) = ∫m(𝑥 − y) (φ(y) − ∑ ∂βφ(𝑥) (y − 𝑥)β β!⁄

|β|≤N

)dy. 

Hence, 

|φ ∗ m(𝑥)| ≤ ( ∫ + ∫

|𝑥−y|>|𝑥| 2⁄|𝑥−y|≤|𝑥| 2⁄

) |m(𝑥 − y)||𝑥 − y|N+1Φ(𝑥, y)dy = I + II 
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where Φ(𝑥, y) = sup
|β|=N+1

sup
0<𝜀<1

|∂βφ(𝑥 + ε(y − 𝑥))| β!⁄ . Since φ ∈ 𝒮 , Φ(𝑥, y) =

c(1 + |𝑥|)N+1+𝑛−M if |𝑥 − y| ≤ |𝑥| 2⁄ . Using this and (44), 

I ≤ c∫|m(𝑥 − y)||𝑥 − y|N+1dy (1 + |𝑥|)N+1+𝑛−M

≤ c2μ(𝑛 p⁄ −𝛼)∫(1 + 2μ|y|)−M|y|N+1dy (1 + |𝑥|)N+1+𝑛−M

≤ c2μ(𝑛 p⁄ −𝛼)2−μ(N+1+𝑛)(1 + |𝑥|)N+1+𝑛−M 

Since Φ is bounded, 

II ≤ ∫ |m(𝑥 − y)||𝑥 − y|N+1dy

|𝑥−y|>|𝑥| 2⁄

≤ c2μ(𝑛 p⁄ −𝛼) ∫ (1 + 2μ|𝑥 − y|)−M|𝑥 − y|N+1dy

|𝑥−y|>|𝑥| 2⁄

≤ c2μ(𝑛 p⁄ −𝛼)2−μ(N+1+𝑛)(1 + |𝑥|)N+1+𝑛−M 

by (45). This proves (47). 

Now (48) follows similarly by reversing the role of φ and m in the above proof. By 

(19), φ has moments of arbitrary order; we subtract a Taylor polynomial of degree K − 1 

from m in the convolution φ ∗ m(𝑥) and use (45) with |γ| = K. 

Lemma (1.2.8) [45]: Let 1 ≤ p ≤ +∞  and μ, η ∈ ℤ , η ≤ μ . Suppose F(𝑥) =
∑ s𝒬𝑓𝒬(𝑥)ℓ(𝒬)=2−μ , where 

|𝑓𝒬(𝑥)| ≤ 2
μ(𝑛 p⁄ −𝛼)(1 + 2η|𝑥 − 𝑥𝒬|)

−𝑛−1
 

Then 

‖F‖Lp ≤ c2
−μα ( ∑ |s𝒬|

p

ℓ(𝒬)=2−μ

)

1 p⁄

2(μ−η)𝑛 

Proof: By our assumption on the 𝑓𝒬’s, 

‖F‖Lp
p
≤ c ∑ 2−μ𝑛 (2μ(𝑛 p⁄ −𝛼) ∑ |s𝒬|(1 + 2

η|𝑥S − 𝑥𝒬|)
−𝑛−1

ℓ(𝒬)=2−μ

)

p

ℓ(S)=2−μ

 

where {S} are the dyadic cubes of side length 2−μ . Determine k, ℓ ∈ ℤ𝑛  such that 𝑥𝒬 =

2−μk and 𝑥S = 2
−μℓ, and s𝒬 = sk in this case. Then by Young’s inequality, 

‖F‖Lp
p
≤ c2−μαp ∑ (∑|sk|(1 + 2

η−μ|k − ℓ|)−𝑛−1

k∈ℤ𝑛

)

p

ℓ∈ℤ𝑛

≤ c2−μαp (∑|sk|
p

k∈ℤ𝑛

)(∑(1 + 2η−μ|ℓ|)−𝑛−1

ℓ∈ℤ𝑛

)

p

≤ c2−μαp ( ∑ |sk|
p

ℓ(S)=2−μ

)2−(η−μ)𝑛p, 

which prove the lemma. 
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We should perhaps note that an immediate consequence of Theorem (1.2.6) is that if 

q < ∞, our representations of 𝑓 ∈ Ḃp
𝛼q

 in Theorem (1.2.4) converge to 𝑓 in Ḃp
𝛼q

 (quasi-

norm). This may also be seen directly from the proof of the decomposition. 

The functions ψ𝒬  and 𝑎𝒬  in Theorem (1.2.4) may be taken to have any fixed 

number of vanishing moments (or infinitely many, in the case of ψ𝒬). Conversely, though, 

in Theorem (1.2.6) the assumption that mμ,j , or  m𝒬 , has at least N = max([𝑛(1 p⁄ −

1)+ − α],−1) vanishing moments cannot be improved. For 0 < p ≤ 1, this follows from 

the general fact that any 𝑓 ∈ Ḃp
𝛼q

 satisfies |𝑓(ξ)| ≤ c|ξ|𝑛(1 p⁄ −1)α; the same holds with α =

0 for 𝑓 ∈ Hp. 

A consideration of (45) leads to a remark about the atomic decomposition of 

Hp(ℝ𝑛) , 0 < p ≤ 1 . A distribution 𝑓 ∈ Hp(ℝ𝑛)  satisfies 𝑓 = ∑ λ𝑖𝑎𝑖𝑖  where ∑ |λ𝑖|
p

𝑖 ≤

c‖𝑓‖Hp
p

 and each “p-atom” 𝑎𝑖  satisfies ∫𝑥γ𝑎𝑖(𝑥)d𝑥 = 0  if |γ| ≤ [𝑛(1 p⁄ − 1)] , 

supp𝑎𝑖 ⊆ 𝒬𝑖 and ‖𝑎𝑖‖L ≤ |𝒬𝑖|
−1 p⁄ , for some associated cube 𝒬𝑖 ⊆ ℝ

𝑛. Clearly, if 𝑎𝑖 also 

satisfies 

|𝑥γ𝑎𝑖(𝑥)| ≤ |𝒬𝑖|
−1 p⁄ −|γ| 𝑛⁄                                                    (49) 

for |γ| = 1 , then 𝑎𝑖  is a (0, p) -atom. The condition ∑ |λ𝑖|
p

𝑖 < ∞  is precisely the 

summation condition on the coefficients {sμ,j} in our decomposition of Ḃp
0p

. Since Ḃp
0q
⊊

Hp  for 0 < p ≤ 1, we see that it is not possible in general to obtain the smoothness 

estimate (49) for |γ| = 1 in the atomic decomposition of Hp(ℝ𝑛). In our decompositions 

of Ḃp
𝛼q

. however, our building blocks are C∞  and may be taken to satisfy (45) for an 

arbitrarily large K. In particular, then, for 0 < p ≤ 1, the space 

{∑λ𝑖𝑎𝑖
𝑖

∶ ∑|λ𝑖|
p

𝑖

< ∞, each  𝑎𝑖 is a p‐ atom satisfying (49)for |γ| ≤ J} 

is either Hp, if J = 0, or Ḃp
0p

, if J ≥ 1. 

The space of functions of bounded mean oscillation is defined by 

BMO = {𝑓 ∈ Lloc
1 ℂ⁄ ∶ ‖𝑓‖BMO = sup

I

1

|I|
∫|𝑓 − 𝑓I|

I

< +∞} 

where the sup is taken over all cubes I ⊆ ℝ𝑛  (not necessarily dyadic), and 𝑓I =
(1 |I|⁄ ) ∫ 𝑓

I
. 

For a sequence {s𝒬}𝒬, indexed by the dyadic cubes, define 

‖{s𝒬}‖℘ = sup
J dyadic

(
1

|I|
∑|s𝒬|

2
|𝒬|

𝒬⊆J

)

1 2⁄

 

‖{s𝒬}‖℘
2

 is equivalent to the Carleson norm of the measure ∑ |s𝒬|
2
δ
(𝑥𝒬 ,ℓ(𝒬))

𝒬 , where δ(𝑥,t) 

is the point mass at (𝑥, t) ∈ ℝ+
𝑛+1. 
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Uchiyama’s decomposition of BMO  functions into (0,∞)-atoms [42] shows the 

close relation between the ℘- and BMO-norms. Recall that a (0,∞)-atoms 𝑎𝒬 , for some 

cube 𝒬 , is a function satisfying supp𝑎𝒬 ⊆ 3𝒬 , |∂γ𝑎𝒬(𝑥)| ≤ ℓ(𝒬)
−|γ|  for |γ| ≤ K , and 

∫ 𝑥γ𝑎𝒬(𝑥)d𝑥 = 0  for |γ| ≤ N , where K ≥ 1  and N ≥ 0  are fixed integers. Uchiyama’s 

result that 

‖𝑓‖BMO = inf {‖{s𝒬}‖℘ ∶ 𝑓 =∑s𝒬𝑎𝒬
𝒬

(in 𝒮′ ℂ⁄ ), where each 𝑎𝒬  is (0,∞)‐ atoms}    (50) 

(In [42], it is in fact the L2‐, rather than the (𝒮′ ℂ⁄ )‐, version of (50) that is stated.) Clearly, 

(50) is the BMO-analogue of Theorem (1.2.4) ii). 

The following theorem gives a decomposition of BMO corresponding to Theorem 

(1.2.4) (i). 

Theorem (1.2.9) [45]: 

a) If 𝑓 ∈ BMO(ℝ𝑛), then there exists a sequence {s𝒬}𝒬  satisfying ‖{s𝒬}‖℘ ≤ c
‖𝑓‖BMO 

such that 𝑓 = ∑ s𝒬ψ𝒬𝒬 (in 𝒮′ ℂ⁄ ), where ψ𝒬 is defined by (27) with α = 0 and p = ∞. 

b) Conversely, suppose m𝒬 satisfies ∫m𝒬(𝑥)d𝑥 = 0 and 

|∂γm𝒬(𝑥)| ≤ ℓ(𝒬)
−|γ|(1 + ℓ(𝒬)−1|𝑥 − 𝑥𝒬|)

−𝑛−1−|γ|
 

if |γ| ≤ 1, for each cube 𝒬 ⊆ ℝ𝑛 . If ‖{s𝒬}‖℘ < ∞, then ∑ s𝒬ψ𝒬𝒬  converges in 𝒮′ ℂ⁄  

and weak-* in BMO (regarded as (H1)∗), with ‖∑ s𝒬ψ𝒬𝒬 ‖
BMO

≤ c‖{s𝒬}‖℘. 

Proof: The proof of a) is a direct application of the methods above. By Lemma (1.2.1), 

𝑓 = ∑ ∑ φ𝑣 ∗ 𝑓(2
−𝑣k)ψ𝒬𝑣k(𝑥)k∈ℤ𝑛𝑣∈ℤ (in 𝒮′ ℂ⁄ ) . Set s𝒬 = φ𝑣 ∗ 𝑓(2

−𝑣k)  if 𝒬 = 𝒬𝑣k . It is 

enough to prove that 

∑ 2−𝑣𝑛|φ𝑣 ∗ 𝑓(2
−𝑣k)|2

𝑣,k∶𝒬𝑣k⊆J

≤ c|J|‖𝑓‖BMO
2                                         (51) 

for every dyadic cube J. 

In (51), we may clearly assume J = [0, 1]𝑛. We apply the estimate (39) of Lemma 

(1.2.2) to φ𝑣 ∗ 𝑓. (This is appropriate here because (39) is a nearly localized version of 

Lemma (1.2.2).) This gives 

∑2−𝑣𝑛 ∑ |φ𝑣 ∗ 𝑓(2
−𝑣k)|2

k∈[0,2𝑣)𝑛

∞

𝑣=0

≤ c∑ ∑ ∑(1 + |ℓ|)−𝑛−1 ∫ |φ𝑣 ∗ 𝑓|
2

𝒬𝑣,k+ℓℓ∈ℤ𝑛k∈[0,2𝑣)𝑛

∞

𝑣=0

= c∑ ∑ ∑(1 + |k − r|)−𝑛−1 ∫|φ𝑣 ∗ 𝑓|
2

𝒬𝑣rr∈ℤ𝑛k∈[0,2𝑣)𝑛

∞

𝑣=0

= c∑ ∑ ∑ ∑ (1 + |k − r|)−𝑛−1 ∫|φ𝑣 ∗ 𝑓|
2

𝒬𝑣rr∶𝒬𝑣r⊆𝒬0mm∈ℤ𝑛k∈[0,2𝑣)𝑛

∞

𝑣=0

. 

We claim it if 𝒬𝑣r ⊆ 𝒬0m , then ∑ (1 + |k − r|)−𝑛−1k∈[0,2𝑣)𝑛 ≤ c(1 + |m|)−𝑛−1 . For |m| 

small, say |m| ≤ 10√𝑛, this trivial; if |m| > 10√𝑛, then 
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|r| > 2𝑣−1|m| ≥ 5 ∙ 2𝑣√𝑛 > 5|k|, 

so that 

∑ (1 + |k − r|)−𝑛−1

k∈[0,2𝑣)𝑛

≤ c2𝑣𝑛(2𝑣|m|)−𝑛−1 ≤ c(1 + |m|)−𝑛−1. 

Hence, using this in the inequality above, 

∑2−𝑣𝑛 ∑ |φ𝑣 ∗ 𝑓(2
−𝑣k)|2

k∈[0,2𝑣)𝑛

∞

𝑣=0

≤ c∑ ∑ ∑ (1 + |m|)−𝑛−1 ∫|φ𝑣 ∗ 𝑓|
2

𝒬𝑣rr∶𝒬𝑣r⊆𝒬0mm∈ℤ𝑛

∞

𝑣=0

≤ c∑ ∑ (1 + |m|)−𝑛−1 ∫|φ𝑣 ∗ 𝑓|
2

𝒬0mm∈ℤ𝑛

∞

𝑣=0

. 

Therefore (51) is reduced to 

∑∫|φ𝑣 ∗ 𝑓|
2

𝒬

∞

𝑣=0

≤ c‖𝑓‖BMO
2 , for 𝒬 = 𝒬0m, m ∈ ℤ𝑛                              (52) 

The proof of (52) is standard (see [5]). Writing 

𝑓 = 𝑓3𝒬 + (𝑓 − 𝑓3𝒬)χ3𝒬 + (𝑓 − 𝑓3𝒬)χℝ𝑛\3𝒬 = 𝑓1 + 𝑓2 + 𝑓3, 

𝑓1 contributes nothing to (52), while 

∑∫|φ𝑣 ∗ 𝑓2|
2

𝒬

∞

𝑣=0

≤ ∫∑|φ̂𝑣|
2|𝑓2|

2
∞

𝑣=0ℝ𝑛

≤ c‖𝑓2‖L2
2 ≤ c‖𝑓‖BMO

2 . 

For 𝑥 ∈ 𝒬, we have the pointwise estimate 

|φ𝑣 ∗ 𝑓3(𝑥)| ≤ ∫ 2𝑣𝑛|𝑓 − 𝑓3𝒬|(1 + 2
𝑣|𝑥 − y|)−𝑛−1dy

ℝ𝑛\3𝒬

≤ c2−𝑣‖𝑓‖BMO 

[5]. Altogether, this implies (52) and completes the proof of (i). 

In (ii), the convergence of 𝑓m = ∑ s𝒬m𝒬ℓ(𝒬)≤2m  in 𝒮′ ℂ⁄ , to some 𝑓 (see [45]). If 

sup
m
‖𝑓m‖BMO = A < +∞, then |∫ 𝑓mh| ≤ cA‖h‖H1 for any h ∈ H1 ∩ 𝒮 such that ĥ = 0 in 

neighborhood of the origin. It follows that |∫ 𝑓h| ≤ c‖h‖H1 for these h, so that ‖𝑓‖BMO ≤
cA and 𝑓m converges to 𝑓 weak-* in BMO, by the H1‐ BMO duality theorem [5]. Therefore 

we need only to prove ‖𝑓m‖BMO ≤ c‖{s𝒬}‖℘. 

The proof of this is contained in Uchiyama’s work in [42]. By Lemma 3.5 of [42], 

each m𝒬 may be written m𝒬 = ∑ 2−j(𝑛+1)m𝒬,j
∞
j=0 , where 

suppm𝒬,j ⊆ 2
j𝒬, ‖m𝒬,j‖Lip 1

≤ c2−jℓ(𝒬)−1, and ∫m𝒬,j(𝑥)d𝑥 = 0. 

Then Lemma 3.4 of [42] implies that ‖∑ s𝒬m𝒬,jℓ(𝒬)≤2m ‖
BMO

≤ c2j𝑛‖{s𝒬}‖℘. Therefore 
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‖ ∑ s𝒬m𝒬

ℓ(𝒬)≤2m

‖

BMO

≤∑2−j(𝑛+1) ‖∑s𝒬m𝒬,j

𝒬

‖

BMO

∞

j=0

≤ c∑2−j‖{s𝒬}‖℘

∞

j=0

= c‖{s𝒬}‖℘. 

We may note that the proof of Theorem (1.2.9) shows that 

‖𝑓‖BMO ≈ sup
S dyadic

(
1

|S|
∑ 2−𝑣𝑛 sup

𝒬𝑣k

|φ𝑣 ∗ 𝑓|
2

𝒬𝑣k⊆S

)

1
2

≈ sup
S dyadic

(
1

|S|
∑ ∫|φ𝑣 ∗ 𝑓|

2

S𝑣=− log2 ℓ(S)

)

1
2

(53) 

This should be compared with (38), with Theorem 3 (iii) of [5], and with the definition of 

the Ḃp
𝛼q

 norm. 

Now let 𝑓 ∈ Ḃp
𝛼q

. In Theorem (1.2.4) ii) we obtained s𝒬  and 𝑎𝒬  such that 𝑓 =

∑ s𝒬𝑎𝒬𝒬  where supp𝑎𝒬 ⊆ 3𝒬 , |∂γ𝑎𝒬(𝑥)| ≤ |𝒬|
α 𝑛⁄ −1 p⁄ −|γ| 𝑛⁄  if |γ| ≤ K, ∫𝑥γ𝑎𝒬(𝑥)d𝑥 =

0 if |γ| ≤ N, and 

(∑( ∑ |s𝒬|
p

ℓ(𝒬)=2−𝑣

)

q p⁄

𝑣∈ℤ

)

1 p⁄

< 𝑐‖𝑓‖Ḃp
𝛼q . 

Write 𝑥 ∈ ℝ𝑛 as 𝑥 = (𝑥′, 𝑥𝑛), 𝑥
′ ∈ ℝ𝑛−1, 𝑥𝑛 ∈ ℝ, and let π ∶ ℝ𝑛 → ℝ𝑛−1  be the natural 

projection π(𝑥) = 𝑥′. For each dyadic cube j in ℝ𝑛−1 we set 

tJ = ∑ |s𝒬|

𝒬∶π(𝒬)=J
3𝒬∩J≠∅

    and    hJ(𝑥
′) = ∑ s𝒬𝑎𝒬 (𝑥

′, 0) tJ⁄

𝒬∶π(𝒬)=J
3𝒬∩J≠∅

. 

The restriction, or trace, of 𝑓 to ℝ𝑛−1  is now 

Tr 𝑓(𝑥′) =∑ ∑ tJhJ(𝑥
′)

ℓ(J)=2−μμ∈ℤ

                                                  (54) 

Whenever the sum converges in 𝒮′ 𝒫⁄ . Clearly, 

(∑( ∑ |tJ|
p

ℓ(J)=2−μ

)

q p⁄

μ∈ℤ

)

1 q⁄

≤ c‖𝑓‖Ḃp
𝛼q                                            (55) 

supp hJ ⊆ 3J                                                                            (56) 

and 

|∂γhJ(𝑥
′)| ≤ |J|(α−1 p (𝑛−1)⁄⁄ )−1 p⁄ −|γ| (𝑛−1)⁄       if |γ| ≤ K                                 (57) 

since |𝒬| = |J|𝑛 (𝑛−1)⁄  if π(𝒬) = J. In other words, each hJ satisfies all the requirements 

for an (𝛼 − 1 p⁄ , p)-atom except possibly the moment condition (24). However, for 𝛼 −
1 p⁄ > (𝑛 − 1)(1 p⁄ − 1)+, an (𝛼 − 1 p⁄ , p)-atoms in ℝ𝑛−1 is not required to have any 

vanishing moments. In these cases, then, by Theorem (1.2.6) and (55), 
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‖Tr 𝑓‖
Ḃp
𝛼−1 p⁄ ,q

(ℝ𝑛−1)
≤ c‖𝑓‖Ḃp

𝛼q(ℝ𝑛)                                                    (58) 

Although Tr 𝑓 in (54) is expressed in terms of the decomposition of 𝑓 ∈ Ḃp
𝛼q(ℝ𝑛) 

given in Theorem (1.2.4) ii), it is clear that Tr 𝑓(𝑥′) = 𝑓(𝑥′, 0) if that decomposition 

converges absolutely and uniformly. This is the case, for instance, if 𝑓 ∈ Ḃ∞
01 . In 

particular, if 𝑓 is any function of the form 𝑓 = ∑ ∑ λ𝒬b𝒬ℓ(𝒬)=2−𝑣
N
𝑣=−M , where sup

𝒬
|λ𝒬| <

+∞ and b𝒬’s are (𝛼, p)-atoms satisfying ∫b𝒬(𝑥)d𝑥 = 0 and |∂γb(𝑥)| ≤ ℓ(𝒬)(𝛼−𝑛 p⁄ −|γ|), 

|γ| ≤ 1, for some 𝛼, p,M, N then 𝑓 ∈ Ḃ∞
01 and hence Tr 𝑓(𝑥′) = 𝑓(𝑥′, 0). Since such sums 

are dense in Ḃp
𝛼q

 for q < +∞, by (58) the map Tr ∶ Ḃp
𝛼q(ℝ𝑛) → Ḃp

𝛼−1 p⁄ ,q(ℝ𝑛−1) is the 

unique continuous linear extension to Ḃp
𝛼q

 of pointwise restriction operator if 𝛼 − 1 p⁄ >

(𝑛 − 1)(1 p⁄ − 1)+. Moreover, Tr extends the restriction operator for Ḃp
𝛼∞ as well, since 

the inclusion Ḃp
𝛼∞ ⊆ Ḃp

𝛼01 + Ḃp
𝛼11 holds whenever 𝛼0 < 𝛼 < 𝛼1. 

It is easy to see that the trace map Tr above is onto Ḃp
𝛼−1 p⁄ ,q(ℝ𝑛−1), since any 

hJ(𝑥
′) satisfying (56, 57) can be obtained as the restriction of an (𝛼, p)-atom 𝑎𝛼(𝑥). 

Hence, we obtain the known fact (which is classical if p ≥ 1 ) that Tr Ḃp
𝛼q(ℝ𝑛) =

Ḃp
𝛼−1 p⁄ ,q(ℝ𝑛−1) when 𝛼 − 1 p⁄ > (𝑛 − 1)(1 p⁄ − 1)+  (cf. [17, 41]). The failure of this 

result for 𝛼 − 1 p⁄ ≤ (𝑛 − 1)(1 p⁄ − 1)+ is clearly due to the failure of the hJ’s to have 

vanishing moments, which is first necessary at this critical index. 

The existence, or non-existence, of the trace of Ḃp
𝛼q

 is equivalent to the question 

whether we can make sense of the sums in (54) whenever (55, 56, 57) holds, since any 

such expression can arise from a suitable 𝑓 ∈ Ḃp
𝛼q(ℝ𝑛). It is not difficult to see that the 

sums in (54) always converge, and thus the trace exists, in 𝒮′ 𝒮⁄ , if and only if 𝛼 − 1 p⁄ >
(𝑛 − 1)(1 p⁄ − 1)+  or 𝛼 − 1 p⁄ = (𝑛 − 1)(1 p⁄ − 1)+  and 0 < q ≤ 1 . This is also 

previously known ([35], [41]). 

Suppose now 0 < p < 1 . When 0 < 𝛼 − 1 p⁄ < (𝑛 − 1)(1 p⁄ − 1) , 𝛼 − 1 p⁄ =
(𝑛 − 1)(1 p⁄ − 1) and q > 1, or 𝛼 = 1 p⁄ , q ≤ p, (54) does not necessarily converge in 

𝒮′ 𝒮⁄ , but does not converge in Lp + L∞(ℝ𝑛−1). This was observed in [17], and me be 

seen readily from (54, 55, 56, 57). This is best possible in the sense that the sums (54) do 

not necessarily converge in Lp + L∞ when 𝛼 − 1 p⁄ < 0 or 𝛼 = 1 p⁄ , q > p. Let us show 

this, for example, in the case 𝛼 = 1 p⁄ , q > p. 

Pick a sequence {tμ}μ=2
∞

∈ ℓq\ℓp (since this is not our usual convention, in c0\ℓ
p if 

q = +∞) and a collection {Jμ}μ=2
∞

 of dyadic cubes satisfying Jμ ⊆ [0, 1]
𝑛−1, ℓ(Jμ) = 2

−μ, 

and 3Jμ ∩ 3J𝑣 = ∅ if μ ≠ 𝑣. Set tJ = tμ if J = Jμ and tJ = 0 for any J ∉ {Jμ}μ=2
∞

. Let {hJ}J 

be functions satisfying (56, 57) and, in addition, hJ(𝑥
′) ≥ c|J|−1 p⁄  if 𝑥′ ∈ J , for some 

small constant c. Then 

(∑( ∑ |tJ|
p

ℓ(J)=2−μ

)

q p⁄

μ∈ℤ

)

1 q⁄

= (∑|tμ|
q

∞

μ=2

)

1 q⁄

< +∞, 
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and it is clear that ∑ ∑ tJhJℓ(J)=2−μμ∈ℤ  would arise as the trace of a suitable 𝑓 ∈

Ḃp
(1 p⁄ )q(ℝ𝑛) if the trace operator were continuous. But if we let hN = ∑ ∑ tJhJℓ(J)=2−μ

N
μ=2  

for large N , then supp hN ⊂ [0, 1]
𝑛−1 . Hence, ‖h𝑛‖Lp+L∞ ≥ c‖hN‖Lp ≥ c(∑ |tμ|

pN
μ=2 )

1 p⁄
, 

which can be made arbitrarily large. Therefore the sum ∑ tJhJJ  cannot converge in Lp +

L∞. 

We know from above that the trace of Ḃp
𝛼q(ℝ𝑛) in the limiting case 𝛼 = 1 p⁄  exists 

in Lp + L∞(ℝ𝑛−1) only if 0 < q ≤ min(1, p). In fact, we then have the following result. 

Theorem (1.2.10) [45]: Let 0 < p < +∞, 0 < q ≤ min(1, p). Then 

Tr Ḃp
(1 p⁄ )q(ℝ𝑛) = Lp(ℝ𝑛−1). 

Proof: It is easy to verify that the sums in (54) converge in Lp(ℝ𝑛−1)  if 𝑓 ∈

Ḃp
(1 p⁄ )q(ℝ𝑛),0 < q ≤ min(1, p), and that Tr is bounded from Ḃp

(1 p⁄ )q(ℝ𝑛) to Lp(ℝ𝑛−1). 

To show that Tr is onto Lp, it is sufficient to show that each h ∈ Lp(ℝ𝑛−1) has a 

decomposition 

h(𝑥′) = ∑ ∑ tJhJ(𝑥
′)

ℓ(J)=2−μμ∈ℤ

 

where the hJ’s satisfy (56, 57) with 𝛼 = 1 p⁄ , and 

(∑( ∑ |tJ|
p

ℓ(J)=2−μ

)

q p⁄

μ∈ℤ

)

1 q⁄

≤ c‖h‖Lp(ℝ𝑛−1) 

To prove such a decomposition, start by picking a Φ ∈ C0
∞ satisfying suppΦ ⊆ [0, 1]𝑛−1, 

0 ≤ Φ ≤ 1, and ‖1 − Φ‖Lp([0,1]𝑛−1) ≤ min(1 5⁄ , (1 5⁄ )p). If 

J = {𝑥 ∶ k𝑖2
−μ ≤ 𝑥𝑖 < (k𝑖 + 1)2

−μ, 𝑖 = 1,⋯ , 𝑛 − 1} 

put 

hJ(𝑥
′) = CΦ(2μ𝑥′ − k)2μ(𝑛−1) p⁄                                                    (59) 

where k = (k1, ⋯ , k𝑛−1) and C is chosen small enough for hJ to satisfy (57). 

Fix a non-negative h ∈ Lp(ℝ𝑛−1); it is enough to prove the decomposition for such 

functions.  

By choosing the side length 2−μ1 small enough, it is possible to find that a simple function 

e1(𝑥
′) = ∑ rJχJ(𝑥

′)

ℓ(J)=2−μ1

 

such that e1 ≥ 0  and ‖h − e1‖Lp ≤ min(1 4⁄ , (1 4⁄ )1 p⁄ )‖h‖Lp . we define the smooth 

version 
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ẽ1(𝑥
′) = ∑ tJhJ(𝑥

′)

ℓ(J)=2−μ1

, 

where the hJ’s are given by (59) and tJ = rJ2
−μ1(𝑛−1) p⁄ C⁄  with the same constant C. If we 

set D = max(5 4⁄ , (5 4⁄ )1 p⁄ ), then 

( ∑ |tJ|
p

ℓ(J)=2
−μJ

)

1 p⁄

= ‖e1‖Lp C⁄ ≤ ‖h‖Lp D⁄                                          (60) 

and we picked Φ so that ‖e1 − ê1‖Lp ≤ min(1 5⁄ , (1 5⁄ )1 p⁄ )‖e1‖Lp. Hence, 

‖h − ê1‖Lp ≤ ‖h‖Lp 2⁄                                                           (61) 

If this process is repeated with h replaced by h − ê1, we obtain ẽ2 = ∑ tJhJℓ(J)=2−μ2  such 

that 

( ∑ |tJ|
p

ℓ(J)=2−μ2

)

1 p⁄

≤ ‖h − ê1‖Lp D⁄ ≤ ‖h‖Lp 2D⁄  

and 

‖h − ê1 − ê2‖Lp ≤ ‖h − ê1‖Lp 2⁄ ≤ ‖h‖Lp 4⁄  

by (60). We can also arrange so that μ2 > μ1. Continuing this process inductively, we 

obtain the functions ẽ𝑖 = ∑ tJhJℓ(J)=2−μ𝑖 , 𝑖 = 1, 2,⋯, satisfying 

( ∑ |tJ|
p

ℓ(J)=2−μ𝑖

)

1 p⁄

≤ ‖h‖Lp 2
𝑖−1D⁄                                                  (62) 

‖h −∑ẽ𝑖

m

𝑖=1

‖

Lp

≤ 2−m‖h‖Lp , m = 1, 2,⋯                                       (63) 

and μ𝑖+1 > μ𝑖  for every 𝑖 . The required decomposition of h is h(𝑥′) = ∑ ẽ𝑖(𝑥
′)∞

𝑖=1 . By 

(63) this sum converges in Lp and by (62), 

(∑( ∑ |tJ|
p

ℓ(J)=2−μ𝑖

)

q p⁄
∞

𝑖=1

)

1 q⁄

≤ c‖h‖Lp . 

Theorem (1.2.10) was previously known when 1 ≤ p < +∞  and q = 1 ; see [33, 35, 

31,22]. 

A space X  of tempered distributions on ℝ𝑛  is said to have the lower majorant 

property if, for each 𝑓 ∈ X, there is a g ∈ X such that 

|𝑓(ξ)| ≤ ĝ(ξ), if ξ ∈ ℝ𝑛                                                          (64) 
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and 

‖g‖X ≤ c‖𝑓‖X 

with c independent of 𝑓. For instance, the Hardy spaces Hp(ℝ𝑛), 0 < p ≤ 1 are known to 

have this property; Lp(ℝ𝑛)(p ≥ 1) has the lower majorant property if and only if p = 1 or 

p = 2k (2k − 1)⁄ , k = 1, 2, 3,⋯ References can be found in [34] and [19]. 

For a space X ⊆ 𝒮′ 𝒮⁄ , the definition of the lower majorant property is as above, 

except that the origin is excluded in (64). For Ḃp
𝛼q(ℝ𝑛), the following theorem is an 

immediate consequence of Theorem (1.2.4) i) and Theorem (1.2.6) i). 

Theorem (1.2.11) [45]: Let −∞ < 𝛼 < +∞, 0 < q ≤ +∞. If 0 < p ≤ 1, then Ḃp
𝛼q

 has the 

lower majorant property. 

Proof: By Theorem (1.2.6) i), each 𝑓 ∈ Ḃp
𝛼q

 has a representation 𝑓 = ∑ s𝒬ψ𝒬𝒬  where 

(∑( ∑ |s𝒬|
p

ℓ(𝒬)=2−𝑣

)

q p⁄

𝑣∈ℤ

)

1 q⁄

≤ c‖𝑓‖Ḃp
𝛼q 

The ψ𝒬’s are defined by (27); up to a multiple, the are obtained by translating the dilates 

of a fixed ψ by 𝑥𝒬 = 2
−𝑣k. We choose, as we may, ψ so that 0 ≤ ψ̂ ≤ 1. If we put g(𝑥) =

∑ ∑ |s𝒬|ψ𝒬(𝑥 + 𝑥𝒬)ℓ(𝒬)=2−𝑣𝑣∈ℤ  we then have |𝑓(ξ)| ≤ ĝ(ξ). 

Now since 0 < p ≤ 1, it does not matter that the building blocks ψ𝒬(𝑥 + 𝑥𝒬) are 

not evenly scattered. Indeed, by Theorem (1.2.4) i), we obtain 

‖g‖Ḃp
𝛼q ≤ c(∑( ∑ |s𝒬|

p

ℓ(𝒬)=2−𝑣

)

q p⁄

𝑣∈ℤ

)

1 q⁄

≤ c‖𝑓‖Ḃp
𝛼q 

It is not difficult to prove analogues of Theorems (1.2.4) and (1.2.6) for the 

inhomogeneous Besov spaces Bp
𝛼q(ℝ𝑛), −∞ < 𝛼 < +∞, 0 < p, q ≤ +∞. To define these 

spaces, let {φ𝑣}𝑣=0
∞  satisfy (18, 19, 20, 21) and let Φ ∈ 𝒮 satisfy 

supp Φ̂ ⊆ {ξ ∶ |ξ| ≤ 1}        and         Φ̂(ξ) ≥ c  if  |ξ| ≤ 5 6⁄                                 (65) 

Then Bp
𝛼q

 is the set of 𝑓 ∈ 𝒮′(ℝ𝑛) such that 

‖𝑓‖Bp
𝛼q = ‖Φ ∗ 𝑓‖Lp + (∑(2𝑣𝛼‖φ𝑣 ∗ 𝑓‖Lp)

q

∞

𝑣=0

)

1 q⁄

< +∞ 

This definition is independent of the choice if Φ and {φ𝑣}𝑣=0
∞  (see [26]). 

Suppose Ψ ∈ 𝒮  satisfies supp Ψ̂ ⊆ {ξ ∶ |ξ| ≤ π}  and Ψ̂(ξ) ≥ c > 0  if |ξ| ≤ 1 . We 

have then the following decomposition results. 

Theorem (1.2.12) [45]: Let −∞ < 𝛼 < +∞ and 0 < p, q ≤ +∞. 
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a) Each 𝑓 ∈ Bp
𝛼q

 can be decomposed as follows; 

i) 𝑓(∙) = ∑ skΨ(∙ −k)k∈ℤ𝑛 + ∑ ∑ s𝒬ψ𝒬(∙)ℓ(𝒬)=2−𝑣
∞
𝑣=0 , 

Where the ψ𝒬’s are defined by (26), or 

ii) 𝑓 = ∑ skbkk∈ℤ𝑛 + ∑ ∑ s𝒬𝑎𝒬ℓ(𝒬)=2−𝑣
∞
𝑣=0 , 

Where the 𝑎𝒬’s are (α, p)-atoms, and the bk’s satisfy suppbk ⊆ 3𝒬0k and |∂γbk(𝑥)| ≤

1 if |γ| ≤ K. In both cases the convergence is in 𝒮′, and 

(∑|sk|
p

k∈ℤ𝑛

)

1 p⁄

+ (∑( ∑ |s𝒬|
p

ℓ(𝒬)=2−𝑣

)

q p⁄∞

𝑣=0

)

1 q⁄

≤ c‖𝑓‖Bp
𝛼q , 

with c independent of 𝑓. 

b) Conversely, suppose 𝑓 = ∑ skmkk∈ℤ𝑛 + ∑ ∑ s𝒬m𝒬ℓ(𝒬)=2−𝑣
∞
𝑣=0 , where each m𝒬  is an 

(𝛼, p)-molecule concentrated on 𝒬, and each mk satisfies 

|∂γbk(𝑥)| ≤ (1 + |𝑥 − k|)
−M−|γ|                   if  |γ| ≤ K, 

for some sufficiently large M. Then 

‖𝑓‖Bp
𝛼q ≤ c(∑|sk|

p

k∈ℤ𝑛

)

1 p⁄

+ c(∑( ∑ |s𝒬|
p

ℓ(𝒬)=2−𝑣

)

q p⁄∞

𝑣=0

)

1 q⁄

 

For 0 < p ≤ 1, the conclusion of b) holds even if the mk’s and m𝒬’s are not centered 

near k and 𝒬, respectively. 

To prove (i), one obtains Φ ∈ 𝒮 satisfying (65) and φ satisfying (18, 19, 20, 21) for 𝑣 = 0 

such that 

Φ̂(ξ)Ψ̂(ξ) +∑Φ̂(2𝑣ξ)Ψ̂(2𝑣ξ)

∞

𝑣=0

= 1          for all ξ ∈ ℝ𝑛 

and proceeds as in Lemma (1.2.1) and Theorem (1.2.4). The proof of (ii) uses the 

inequalities above and similar estimates, not requiring the assumption of vanishing 

moments, however, for Φ and mk. 

The results above also have analogues for Bp
𝛼q

. The standard result that 

Tr Bp
𝛼q(ℝ𝑛) = Bp

𝛼−1 p⁄ ,q(ℝ𝑛−1)  if 𝛼 − 1 p⁄ > (𝑛 − 1)(1 p⁄ − 1)+ , and the analogue of 

Theorem (1.2.10) that Tr Bp
(1 p⁄ )q(ℝ𝑛) = Lp(ℝ𝑛−1) if 0 < p < +∞ and 0 < q ≤ min(1, p), 

follow from Theorem (1.2.12). Also, remarks about the non-existence of the trace in 𝒮′ or 

in Lp are analogous. Further, Bp
𝛼q

 is proved to have the lower majorant property if 0 <

p ≤ 1. 

The decompositions in Theorem (1.2.4) provide a natural approach to many of the 

well-known properties of the Besov spaces, including the standard embedding and 

interpolation results. Also, they yield a way of comparing the Besov spaces to other spaces 

known to have a decomposition, such as Hp, 0 < p ≤ 1, or Lp. On the other hand, the 

main distinction between the building blocks obtained in the decomposition of Lp 
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(Theorem (1.2.10)) and the p-atoms for Hp , or the (0, p) -atoms for Ḃp
0p

, is that no 

vanishing moments are assumed in the case of Lp. It would be interesting to clarify the 

relation between Ḃp
0p

 and Lp, Hp and Lp, and Ḃp
0p

 and Hp, by determining the interpolation 

spaces between each of these couples. 

There are a number of directions could possibly be extended. It is straightforward to 

obtain decompositions similar to (25) and (28) for Besov spaces defined with respect to a 

measure satisfying the doubling property. In the case of the polydisk, as well, the results 

generalize in an obvious way. Since the machinery necessary of Calderón’s representation 

formula has been developed by Folland-Stein in [30] for appropriate homogenous groups, 

it should be possible to extend our approach to this setting. In the case of more general 

domains in ℝ𝑛 , it may be natural to define Besov spaces for 𝛼 > 0  via the atomic 

decomposition. This point of view might be useful in the study of differential equations on 

these domains (cf. [41]), especially since trace Theorems are easy in the atomic context. In 

the proof of Theorem (1.2.4) (i), it would be interesting to replace the Fourier series 

expansion with a representation in terms of other bases in L2, for example certain sets 

{e𝑖λk𝑥}
k

, or the eigenfunctions of some differential operator other than the Laplacian. 

Similarly, it may be possible to replace Fourier series by appropriate group representations 

in more abstract settings. 

Now, After a normalization and reindexing, we obtain an expansion of the form 𝑓 =
∑ 〈𝑓, ψ𝑖〉ψ𝑖𝑖 , with ‖ψ𝑖‖L2 ≤ c. The key aspect of this decomposition in our treatment of 

Besov spaces is that the norm of 𝑓 is equivalent to the appropriate sequence space norm of 

the coefficients 〈𝑓, ψ𝑖〉. Although the expansion is not orthonormal, it has many of the 

advantages of an orthonormal expansion. It follows directly from the identity 𝑓 =

∑ 〈𝑓, ψ𝑖〉ψ𝑖𝑖  that ‖𝑓‖L2 = (∑ |〈𝑓, ψ𝑖〉|
2

𝑖 )1 2⁄ . Applying this to ψj gives sup
j
∑ |〈ψj, ψ𝑖〉|

2
𝑖 ≤

c, which is an almost orthogonality property. Writing an operator T in the form 

T𝑓 =∑〈T𝑓,ψ𝑖〉ψ𝑖
𝑖

=∑〈𝑓, ψj〉〈Tψj, ψ𝑖〉ψ𝑖
𝑖,j

 

effectively reduces the study of T to the study of the matrix {〈Tψj, ψ𝑖〉}. 

Suppose {ψ𝑖}𝑖 is a quasi-orthogonal family, or that the matrix {〈ψ𝑖 , ψj〉} is bounded 

on ℓ2 , and in addition that ψj = ∑ 〈ψj, ψ𝑖〉ψ𝑖𝑖,j , for each j. Then clearly the operator P 

defined by P𝑓 = ∑ 〈𝑓, ψ𝑖〉ψ𝑖𝑖  is a bounded projection onto ℋ, the closure of the span of 

{ψ𝑖}𝑖. Also we can write 

T𝑓(𝑥) =∑∫𝑓(y) ψ𝑖(y)̅̅ ̅̅ ̅̅ ̅dy ψ𝑖(𝑥)

𝑖

= ∫K(𝑥, y)𝑓(y)dy 

for K(𝑥, y) = ∑ ψ𝑖(y)̅̅ ̅̅ ̅̅ ̅ ψ𝑖(𝑥)𝑖 . This is reminiscent of the Bergman and Szegö kernels 

except that ψ𝑖’s are not necessarily orthonormal. If the ψ𝑖’s are sufficiently localized, as in 

Lemma (1.2.2), then for 𝑓 ∈ ℋ  the identity 𝑓 = ∑ 〈𝑓,ψ𝑖〉ψ𝑖𝑖  can be used to prove an 

analogue of Plancherel-Pólya.  
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Chapter 2 

Characterization of the Besov-Lipschitz with Some Properties 

We show a multiplier theorem of the Mikhlin type, extending the one by Triebel and 

Lizorkin. We complete the characterization of the weighted Besov-Lipschitz and Triebel-

Lizorkin spaces. We give the boundedness of some operators which including pseudo-

differential operators of the Hörmander class. 

Section (2.1): Spaces of Triebel-Lizorkin Type 

We study certain spaces of distributions Fp
sq
= Fp

sq(ℝ𝑛) where s real, 0 < p, q ≤ ∞. 

They are intimately related to certain spaces studied by Triebel [15] and Lizorkin [63] 

which says that the spaces do not depend on the special sequence of test functions 
{φ𝑣}𝑣∈ℤ. This extends Triebel’s corresponding result. But we have to give an entirely new 

proof, relying on two deep results by Fefferman & Stein: 1∘  their real variable 

characterization of the Hardy classes Hp[5], 2∘ their sequence valued version of the Hardy 

& Littewood maximal theorem [60]. (Incidentally it follows from [5] that Fp
02 = Hp if 0 <

p < ∞ while as F∞
02 = B.M. O. !) As an application we prove a multiplier theorem of the 

Milkhlin type, extending the one by Triebel and Lizorkin. We also give an application to 

approximation theory related to a theorem of Freud’s [61]. Finally we briefly indicate how 

the result might be extended to the case or a Riemannian manifold. 

 By Lp  where 0 < p ≤ ∞ we denote the space of measurable functions 𝑓 = 𝑓(𝑥) 
(𝑥 ∈ ℝ𝑛) such that 

‖𝑓‖Lp = (∫|𝑓(𝑥)|
Pd𝑥)

1 p⁄

< ∞, 

By ℓq where 0 < 𝑞 ≤ ∞ we denote the space of sequences t = {t𝑣}𝑣∈ℤ such that 

‖t‖ℓq = (∑|t𝑣|
q

𝑣∈ℤ

)

1 q⁄

< ∞. 

We consider also spaces of sequence valued measurable functions Lp(ℓ
q )  and 

ℓq(Lp ), defined in the obvious way. If 1 ≤ p, q ≤ ∞ these are all Banach spaces, in the 

general case only quasi-Banach space. 

By 𝒮 we denote the space of rabidly decreasing functions in ℝ𝑛 and by 𝒮′ the dual space 

of tempered distributions. 

We denote a sequence of test functions {φ𝑣}𝑣∈ℤ, with φ𝑣(𝑥) = 2
𝑣𝑛φ(2𝑣𝑥), where 

φ ∈ 𝒮 with supp φ̂ = {2−1 ≤ |ξ| ≤ 2}. For convenience let us also assume that {φ𝑣}𝑣∈ℤ is 

normalized in the sense that 

∑(φ̂𝑣(ξ))
2

𝑣∈ℤ

= 1        (or  ∑φ𝑣 ∗ φ𝑣
𝑣∈ℤ

= δ ) 

We can now define the principal spaces. 

Definition (2.1.1) [66]: Let s real, 1 < p, q ≤ ∞. Then we set (poised spaces of Besov 

type) 

Bp
sq(𝑎) = {𝑓|𝑓 ∈ 𝒮′ & {2𝑣s(1 + 2𝑣|𝑥|)𝑎φ𝑣 ∗ 𝑓}𝑣∈ℤ ∈ ℓ

q(Lp )}. 

We quip Bp
sq(𝑎) with the quasi-norm 

‖𝑓‖Bp
sq(𝑎) = ‖{2

𝑣s(1 + 2𝑣|𝑥|)𝑎φ𝑣 ∗ 𝑓}𝑣∈ℤ‖ℓq(Lp ). 

If 𝑎 = 0 we simply write Bp
sq(0) = Bp

sq(Besov space). 

Let us now rapidly state some properties of these spaces which can be proven in a 

more or less standard way (cf. [15]). 
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(i) The space Fp
sq

 and Bp
sq(𝑎)  are complete. The embedding from 𝒮  and into 𝒮′  are 

continuous. They are thus quasi-Banach (Banach if 1 ≤ p, q ≤ ∞) spaces of tempered 

distributions. 

(ii) 𝒮 is a dense subspace of Fp
sq

 and Bp
sq(𝑎) if 0 < p, q < ∞. 

(iii) We have embedding theorem, e.g. the embedding Bp
sq(𝑎) → Bp1

s1q(𝑎) if s − 𝑛 p⁄ =

s1 − 𝑛 p1⁄ , s ≥ s1, q ≤ q1. 

(iv) We have duality theorems, e.g. the duality (Fp
sq
)
′
≈ F

p′
−sq′

 if 1 ≤ p, q ≤ ∞. 

We have the following elementary result. 

Lemma (2.1.3) [66]: Let u be any C1 function on ℝ𝑛 and let 0 < r ≤ ∞. Then we have 

the inequality 

u∗∗ ≤ C{δ−𝑛 r⁄ (Mur)1 r⁄ + δ(∇u)∗∗}, δ ≤ 1 

Where M denotes the Hardy & Littlewood maximal operator and where we have defied 

u∗∗ by 

u∗∗(𝑥) = sup
y∈ℝ𝑛

|u(𝑥 − y)| (1 + |y|)𝑛 r⁄⁄  

and (∇u)∗∗ in a similar fashion. 

Proof: By the mean value theorem we have for any 𝑥, z ∈ ℝ𝑛 

|u(𝑥 − z)| ≤ C {δ−𝑛 r⁄ (∫ |u(y)|rdy
|𝑥−y−z|<𝛿

)

1 r⁄

+ δ sup
|𝑥−y−z|<𝛿

|∇u(y)|}. 

By definition of M and (∇u)∗∗ follows 

|u(𝑥 − y)| ≤ C {δ−𝑛 r⁄ (Mur(𝑥))
1 r⁄
+ δ(∇u)∗∗(𝑥)} (1 + δ + |z|)𝑛 r⁄ . 

If δ ≤ 1 we clearly get the desired inequality. 

Lemma (2.1.4) [66]: Let 𝑓 be any measurable function in ℝ𝑛 and let b > 𝑛. Then holds 

∫|𝑓(y)| (1 + |𝑥 − y|)b⁄ dy ≤ CM𝑓(𝑥). 

Lemma (2.1.5) [66]: Let f = {𝑓𝑣}𝑣∈ℤ be a sequence of measurable functions in ℝ𝑛 and let 

1 < p, q ≤ ∞. Then holds 
‖Mf‖Lp(ℓq ) ≤ C‖f‖Lp(ℓq ) 

where Mf = {M𝑓𝑣}𝑣∈ℤ. 

If 𝑓 ∈ Fp
sq

 and if {φ𝑣}𝑣∈ℤ is the sequence of test functions we set 

φ∗∗𝑓(𝑥) = ‖{φ𝑣
∗∗𝑓(𝑥)}𝑣∈ℤ‖ℓq , 

φ𝑣
∗∗𝑓(𝑥) = sup

y∈ℝ𝑛
2𝑣s |φ𝑣 ∗ 𝑓(𝑥 − y)| (1 + 2

𝑣|y|)𝑎⁄ . 

We also set 
φ+𝑓(𝑥) = ‖{φ𝑣

+𝑓(𝑥)}𝑣∈ℤ‖ℓq 

φ𝑣
+𝑓(𝑥) = 2𝑣sφ𝑣 ∗ 𝑓(𝑥). 

Clearly φ+𝑓 ∈ LP. Below we show that also φ∗∗𝑓 ∈ LP, at least if 𝑎 is sufficiently 

large. More generally, let {σ𝑣}𝑣∈ℤ be a general sequence of test functions, with σ𝑣(𝑥) =
2𝑣𝑛σ(2𝑣𝑥) (but with no restriction on supp σ̂) and define σ∗∗𝑓, σ𝑣

∗∗𝑓, σ𝑣
+𝑓 as above. Then 

we have the following 

Theorem (2.1.6) [66]: Assume that σ ∈ B1
−sq1(𝑎) ∩ B1

−s+𝑎,q1(𝑎)  with 𝑎 > 𝑛 min(p, q)⁄ , 

q1 = min(1, q). Then holds: 

𝑓 ∈ Fp
sq
⇒ σ∗∗𝑓 ∈ LP.                                                                (1) 

In particular (1) holds with σ = φ. 

Proof: (Cf. Fefferman & Stein [5]) Let us start with the identity 
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σμ ∗ 𝑓 =∑ (σμ ∗ φ𝑣) ∗ (φ𝑣 ∗ 𝑓)
𝑣∈ℤ

. 

We then get 

2μs|σμ ∗ 𝑓(𝑥 − z)| ≤∑2μs∫|(σμ ∗ φ𝑣)(y)||φ𝑣 ∗ 𝑓(𝑥 − y − z)|dy

≤∑2μ𝑛∫|(σ ∗ φ𝑣−μ)(2
μy)|(1 + 2𝑣|y|)𝑎dyφ𝑣

∗∗𝑓(𝑥)(1 + 2𝑣|z|)𝑎

≤∑2(μ−𝑣)s∫|(σ ∗ φ𝑣−μ)(y)|(1 + 2
𝑣−μ|y|)𝑎dyφ𝑣

∗∗𝑓(𝑥)(1 + 2𝑣−μ)𝑎(1 + 2μ|z|)𝑎 

where we have used the elementary inequality: 
max(1 + u + 𝑣, 1 + u𝑣) ≤ (1 + u)(1 + 𝑣), u ≥ 0, 𝑣 ≥ 0 

In other words we have 

σμ
∗∗𝑓(𝑥) ≤∑t𝑣−μφ𝑣

∗∗𝑓(𝑥)                                                              (2) 

with t𝑣 = ∑2
−𝑣s(1 + 2𝑣)𝑎 ∫(1 + 2𝑣|y|)𝑎|σ ∗ φ𝑣(y)|dy. Here by hypothesis 

(∑|t𝑣|
q1)

1 q1⁄

≤ C 

Therefore follows 
σ∗∗𝑓 ≤ Cφ∗∗𝑓                                                                        (3) 

Thus we have reduced ourselves to proving (1) with σ = φ. To this end we first note that 

(3) in particular entails 
(∇φ)∗∗𝑓 ≤ Cφ∗∗𝑓. 

On the other hand Lemma (2.1.3) implies (with r = 𝑛 𝑎⁄ ) 

φ𝑣
∗∗𝑓 ≤ C{δ−𝑛 r⁄ (M(φ𝑣

+𝑓)r)1 r⁄ + δ(∇φ)𝑣
∗∗𝑓}, δ ≤ 1 

Thus we get 

‖φ∗∗𝑓‖Lp ≤ C {δ
−𝑛 r⁄ ‖(M(φ𝑣

+𝑓)r)1 r⁄ ‖
Lp(ℓ

q )
+ δ‖φ∗∗𝑓‖Lp} 

By Lemma (2.1.5) we have (since r < min(p, q)) 

‖(M(φ𝑣
+𝑓)r)1 r⁄ ‖

Lp(ℓ
q )
= ‖M(φ𝑣

+𝑓)r‖
Lp r⁄ (ℓ

q r⁄  )

1 r⁄ ≤ C‖(φ𝑣
+𝑓)r‖

Lp r⁄ (ℓ
q r⁄  )

1 r⁄ = C‖φ𝑣
+𝑓‖Lp(ℓq )

= C‖𝑓‖Fp
sq 

Thus we have 

‖φ∗∗𝑓‖Lp ≤ C {δ
−𝑛 r⁄ ‖𝑓‖Fp

sq + δ‖φ∗∗𝑓‖Lp} ,   δ ≤ 1. 

If we knew already that ‖φ∗∗𝑓‖Lp < ∞ we could, taking δ sufficiently small, conclude 

that 
‖φ∗∗𝑓‖Lp ≤ C‖𝑓‖Fp

sq                                                                      (4) 

But if ‖φ∗∗𝑓‖Lp = ∞ this argument does not apply. To circumvent this difficulty we use 

an approximation argument. The above proof at least shows that (4) is valid if 𝑓 ∈ 𝒮. For a 

general  𝑓 ∈ Fp
sq

 we find a sequence {𝑓𝑖}𝑖=1
∞  in 𝒮  such that 𝑓𝑖 → 𝑓  in 𝒮′  as 𝑖 → ∞, with 

sup
𝑖

‖𝑓𝑖‖Fp
sq < ∞. It is easily seen that 

‖φ∗∗𝑓‖Lp ≤ lim𝑖→∞
‖φ∗∗𝑓𝑖‖Lp 

So an application of (3) to 𝑓𝑖 effectively yields ‖φ∗∗𝑓‖Lp < ∞. The proof is complete. 

Corollary (2.1.7) [66]: The space Fp
sq

 is independent of the particular sequence of test 

functions  {φ𝑣}𝑣∈ℤ chosen. 

Theorem (2.1.8) [66]: Assume that σ ∈ Bp
−sq1(𝑎)  with 𝑎 > 𝑛 min(p, q)⁄ , q1 = min(1, q) . 

Then holds: 

𝑓 ∈ Fp
sq
⇒ σ+𝑓 ∈ Lp                                                                (5) 
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Proof: The proof of Theorem (2.1.6) clearly also gives in place of (2) 

σμ
+𝑓(𝑥) ≤∑t𝑣−μ

′ φ𝑣
∗∗𝑓(𝑥) 

with t𝑣
′ = 2−𝑣s ∫(1 = 2𝑣|y|)𝑎|σ ∗ φ𝑣(y)|dy. This gives in place of (3): 

σ+𝑓 ≤ Cφ∗∗𝑓. 
Since we know already that φ∗∗𝑓 ∈ Lp it follows that σ+𝑓 ∈ Lp. 

Theorem (2.1.9) [66]: Assume that σ ∈ B∞
−s−𝑛,q1(𝑎)  where 𝑎 > 𝑛 min(1, p, q)⁄ , q1 =

min(1, q). Then holds again (5). 

Proof: From Lemma (2.1.4) and Lemma (2.1.5) follows readily that 

𝑓 ∈ Fp
sq
⇒ {2𝑣s (2𝑣𝑛∫ |φ𝑣 ∗ 𝑓(𝑥 − y)|

r (1 + 2𝑣|y|)b⁄ dy)
1 r⁄

} ∈ Lp(ℓ
q) 

where r < min(p, q), b > 𝑛. From this follows again readily 

𝑓 ∈ Fp
sq
⇒ {2𝑣(s+𝑛)∫ |φ𝑣 ∗ 𝑓(𝑥 − y)| (1 + 2

𝑣|y|)𝑎⁄ dy} ∈ Lp(ℓ
q) 

with 𝑎 as in the hypothesis of the theorem. The proof of Theorem (2.1.9) now yields 

σμ
+𝑓(𝑥) ≤∑t𝑣−μ

′′ 2𝑣(s+𝑛)∫|φ𝑣 ∗ 𝑓(𝑥 − y)| (1 + 2
𝑣|y|)𝑎⁄ d𝑣 

with t𝑣
′′ = 2−𝑣(s+𝑛) ∫(1 + 2𝑣|y|)𝑎|σ ∗ φ𝑣(y)|dy. The rest of the proof is the same. 

Theorem (2.1.10) [66]: Assume that m ∈ B1
0∞(𝑎)  where 𝑎 > 𝑛 min( p, q)⁄ . Then 𝑓 ∈

Fp
sq
⇒ m ∗ 𝑓 ∈ Fp

sq
. 

Proof: Let us set g = m ∗ 𝑓. We want to estimate φ+g. Choose σ in such a way that 

Theorem (2.1.6) is applicable and that in addition σ̂𝑣(ξ) = 1 in supp σ̂𝑣. Then we have 
φ𝑣 ∗ g = (φ𝑣 ∗ m) ∗ (σ𝑣 ∗ 𝑓) 

and we get 

2𝑣s|φ𝑣 ∗ g(𝑥)| ≤ ∫|φ𝑣 ∗ m(y)|(1 + 2
𝑣|y|)𝑎dyσ𝑣

∗∗𝑓(𝑥) ≤ Cσ𝑣
∗∗𝑓(𝑥) 

or  
φ+g ≤ Cσ∗∗𝑓. 

Since  σ∗∗𝑓 ∈ Lp we get φ+g ∈ Lp and g ∈ Fp
sq

. 

In order to get a true multiplier theorem we have to express the condition on m in 

terms of m. 

Corollary (2.1.11) [66]: The conclusion of Theorem (2.1.10) is valid in particular if 

|D𝛼m̂(ξ)| ≤ C|ξ|−|𝛼| for all multi-indices α with |𝛼| ≤ T where T is an integer > 𝑛 2⁄ + 𝑎. 

We start by recalling the following known result (in the periodic case with 𝑛 = 1) 

Theorem (2.1.12) [61]: Let 𝑓 belong to the closure of 𝒮 in B∞
1∞(T1). Then 𝑓′(𝑥) exists at 

a point 𝑥 ∈ T iff Φ𝑛𝑓
′(𝑥) tend to a limit as 𝑛 → ∞. Here Φ𝑛𝑓 denote the Fejer sums of 𝑓. 

We can now show the following analogue of Theorem (2.1.12). 

Theorem (2.1.13) [66]: Let 𝑓 be in the closure of 𝒮 in Fp
0∞ = Fp

0∞(ℝ𝑛) where 1 < p ≤

∞. Assume that, for some σ, σ𝑣 ∗ 𝑓(𝑥) converges as 𝑣 → ∞ a.e. for 𝑥 in set of positive 

measure. Then the same is true for any other kernel such that the difference with the first 

one belongs to B∞
−𝑛1(𝑎) where 𝑎 > 𝑛 min(1, p)⁄ . 

Proof: It suffices of course to prove that σ𝑣 ∗ 𝑓 tend to 0 a.e. throughout ℝ𝑛, for every σ ∈
B∞
−𝑛1(𝑎). Since σ̂(0) = 0 this certainly is true if 𝑓 ∈ 𝒮. On the other hand by Theorem 

(2.1.9) sup|σ𝑣 ∗ 𝑓(𝑥)| < ∞ a.e. for a general 𝑓. Thus it suffices to apply the usual density 

argument. 

In retrospect we notice that in the preceding treatment only very little of the 

structure of underlying space ℝ𝑛  has been utilized. This indicates that there exist 
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generalizations. In the place of ℝ𝑛 we may indeed consider any (complete) Riemannian 

manifold Ω. The spaces Fp
sq
= Fp

sq(Ω) are then defined by a condition of the type 

{2𝑣sφ(√−∆ 2𝑣⁄ )𝑓}
𝑣∈ℤ

∈ Lp(ℓ
q) 

where ∆ is the Laplace-Beltrami operator on Ω. (In particular we can thus define Hardy-

classes Hp = Hp(Ω)). We plan to return to this topic in a forthcoming publication. 

Section (2.2): Triebel-Lizorkin Spaces the Case 𝐪 < 1 

We complete the characterization of the weighted Besov-Lipschitz and Triebel-

Lizorkin spaces, which was started in [68]. Let us recall the following theorem: 

Theorem (2.2.1) [68]: Let 0 < p, q ≤ ∞, p < ∞ . Suppose ω  is an A∞  weight, μ ∈ 𝒮 

satisfies a moment condition of appropriately high order, and 𝑣 ∈ 𝒮 satisfies the Tauberian 

condition. Then, there exist a constant C such that 

‖(∫ (t−𝛼μt
∗𝑓)q

dt

t

∞

0

)

1 q⁄

‖

p,ω

≤ C‖𝑓‖Ḟp,q
𝛼,ω 

and  

‖𝑓‖Ḟp,q
𝛼,ω ≤ C‖(∫ (t−𝛼𝑣t

∗𝑓)q
dt

t

∞

0

)

1 q⁄

‖

p,ω

 

for all 𝑓 ∈ 𝒮′ 𝒫⁄ , tempered distributions modulo polynomials. 

Let us recall briefly that 

μt
∗𝑓(𝑥) = μt,λ

∗ 𝑓(𝑥) = sup
y∈ℝ𝑛

|μt ∗ 𝑓(𝑥 − y)|

(1 + |y| t⁄ )λ
, μt(𝑥) = t

−𝑛μ(𝑥 t⁄ ) 

is the Peetre maximal function, with λ , in the case of the above theorem, large and 

dependent on p, q,ω, and the dimension 𝑛. The norm ‖∙‖p,ω is the weighted Lebesgue Lp 

norm with the weighted ω. A similar theorem holds for the Besov-Lipschitz spaces Ḃp,q
𝛼,ω

. 

It has been shown in [68] that under additional assumptions (q ≥ 1 for Ḟp,q
𝛼,ω

 and p, q ≥ 1 

for Ḃp,q
𝛼,ω

, for example) the second inequality can be the improved: 

‖𝑓‖Ḟp,q
𝛼,ω ≤ C‖(∫ |t−𝛼𝑣t ∗ 𝑓|

q
dt

t

∞

0

)

1 q⁄

‖

p,ω

 

We will show that the improved estimate holds without any addition hypotheses i.e., 

for 0 < p, q ≤ ∞, p < ∞. In effect, if 𝑣 satisfies the conditions of the theorem, then the 

right-hand side in the above inequality begin finite is necessary and sufficient condition 

for 𝑓 to be in Ḟp,q
𝛼,ω

, with equivalent norms. 

The problem of characterizing these function spaces in terms of the Littlewood-

Paley g-functions, when 𝑣̂ is not compact support, has been an open problem since the 

appearance of [66] by Peetre in 1975. The interest in this problem partially stems from the 

historical fact that, classically, the study of function spaces was usually done via the 

Poisson kernel or the Gaussian kernel, both of which do not have compactly supported 

Fourier transforms. For the Hardy spaces Hp  of Fefferman and Stien, 0 < p < ∞ , 

Uchiyama [72] proved a general theorem which implies that if 𝑣 ∈ 𝒮 satisfies the standard 

Tauberian condition, then there are positive constants c and C such that 

c ‖(∫ |𝑣t ∗ 𝑓|
2
dt

t

∞

0

)

1 2⁄

‖

p

≤ ‖𝑓‖Hp ≤ C‖(∫ |𝑣t ∗ 𝑓|
2
dt

t

∞

0

)

1 2⁄

‖

p

                     (6) 
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for all 𝑓 ∈ Hp. The method used by Uchiyama involves the full machinery of the Hp-

theory, including the atomic decomposition and duality. Moreover, the prove of the right-

hand side inequality in (6) was done under the assumption that 𝑓 ∈ Hp, and hence the 

result does not give a complete characterization of Hp . One would get a complete 

characterization of Hp from (6) by showing that the space of all 𝑓 ∈ 𝒮′ for which the norm 

‖(∫ |𝑣t ∗ 𝑓|
2
dt

t

∞

0

)

1 2⁄

‖

p

 

is finite, complete and contains a nice dense subspace (which is also dense in Hp ). 

However, the proof of such a density result would use the independence of the function 

space on the defining function 𝑣, which is more or less the characterization one would 

want to establish in the first place; we note that the proof  of the density result for Hp is 

rather non-trivial (see, e.g., [67] or [71]). Since Hp = Ḟp,2
0 , our result in [68] seems new 

even for the unweighted Hardy spaces, see [68]. 

Let us recall some of the notation from [68]. Choose ψ ∈ 𝒮 such that 

supp ψ̂ ⊂ {1 2⁄ ≤ |ξ| ≤ 2}    and     ∑ ψ̂(2jξ)

j∈ℤ

= 1     for   ξ ≠ 0. 

For each integer j we let ψj(𝑥) = ψ2−j(𝑥) = 2
j𝑛ψ(2j𝑥). Let α ∈ ℝ, 0 < p, q ≤ ∞, and in 

the case of Ḟp,q
𝛼,ω

 suppose additionally that p < ∞. For 𝑓 ∈ 𝒮′ we let 

‖𝑓‖Ḃp,q
𝛼,ω = (∑ (2j𝛼‖ψj ∗ 𝑓‖p,ω

)
q

∞

j=−∞

)

1 q⁄

,    

‖𝑓‖Ḟp,q
𝛼,ω = ‖(∑ (2j𝛼|ψj ∗ 𝑓|)

q
∞

j=−∞

)

1 q⁄

‖

p,ω

. 

Let ψ ∈ 𝒮  be defined by ψ̂(ξ) + ∑ ψ̂j(ξ)j≥1 = 1. The following are the inhomogeneous 

versions of the above norms: 

‖𝑓‖Bp,q
𝛼,ω = ‖ψ ∗ 𝑓‖p,ω + (∑(2j𝛼‖ψj ∗ 𝑓‖p,ω

)
q

∞

j=1

)

1 q⁄

,    

‖𝑓‖Fp,q
𝛼,ω = ‖ψ ∗ 𝑓‖p,ω + ‖(∑(2j𝛼|ψj ∗ 𝑓|)

q
∞

j=1

)

1 q⁄

‖

p,ω

. 

Suppose that 𝑣 ∈ 𝒮  satisfies the Tauberian condition, that if for each ξ ≠ 0 there 

exista a t > 0  such that 𝑣̂(tξ) ≠ 0 . Suppose −∞ < 𝛼 < ∞ , 0 < p , q ≤ ∞ . and 

additionally, in the case of Ḟp,q
𝛼,ω

, p < ∞ . Let ω  be an A∞  weight. We then have the 

following: 

Theorem (2.2.2) [73]: Under the above assumptions there exists a constant C independent 

of 𝑓 ∈ 𝒮′ such that 

‖𝑓‖Ḟp,q
𝛼,ω ≤ C‖(∫|t−𝛼(𝑣t ∗ 𝑓)|

q
dt

t

∞

0

)

1 q⁄

‖

p,ω

, 
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‖𝑓‖Ḃp,q
𝛼,ω ≤ (∫(t−𝛼‖𝑣t ∗ 𝑓‖p,ω)

q dt

t

∞

0

)

1 q⁄

. 

Proof: We will follow the argument from [68]. We use a version of the Calderón’s 

reproducing formula, which is due to Janson and Taibleson [69]. There exists an η ∈ 𝒮 

with η̂ supported on an annulus centered at the origin, such that for 𝑓 ∈ 𝒮′ 

𝑓 = ∫ 𝑓 ∗ 𝑣t ∗ ηt
dt

t

∞

0

 

with the integral converging in 𝒮′ 𝒫m⁄ , the tempered distributions modulo polynomials of 

degree up to m, depending on 𝑓. In our setting this implies the pointwise representation 

(ψj ∗ 𝑓)(𝑥) = ∫𝑣t ∗ ηt ∗ ψj ∗ 𝑓(𝑥)
dt

t
Ij

                                              (7) 

where Ij is such that ηt ∗ ψj ≡ 0 unless t ∈ Ij. If supp η̂ ⊂ {2
−A+1 ≤ |ξ| ≤ 2A−1} for some 

A > 1, then we can take Ij = {2
−j−A, 2−j+A}. Pick λ, r > 0 and let t ∈ Ij. By a version of 

the result of Strömberg and Torchinsky [68], we obtain 

|𝑣t ∗ ηt ∗ ψj ∗ 𝑓(𝑥)|
r

≤ C∫ ∫|𝑣s ∗ ηs ∗ ψj ∗ 𝑓(y)|
r
(1 +

|𝑥 − y|

s
)

−λr

(1 +
|𝑥 − y|

s
)

−𝑛−1

dy

ℝ𝑛

s−𝑛
ds

s
Ij

 

Moreover, since s, t ∈ Ij, then by [68] the inner integral can be estimated by 𝑣s
∗𝑓(𝑥)r, and 

thus 

|(ψj ∗ 𝑓)(𝑥)|
r
≤ C∫𝑣s

∗𝑓(𝑥)r
ds

s
Ij

                                                   (8) 

for every j and 𝑥. The following lemma is special case of the result by Strömberg and 

Torchinsky [71]. 

Lemma (2.2.3) [73]: Let 𝑣 ∈ 𝒮 satisfy Tauberian condition, r, λ > 0. Then there exists a 

constant C such that 

|𝑣t ∗ 𝑓(𝑥)|
r ≤ C∫ ∫|(𝑣s ∗ 𝑓)(z)|

r (1 +
|𝑥 − z|

s
)

−λr

(
s

t
)
λr

dz

ℝ𝑛

s−𝑛
ds

s

t

0

+ C ∫|(𝑣t ∗ 𝑓)(z)|
r (1 +

|𝑥 − z|

t
)

−λr

t−𝑛dz

ℝ𝑛

 

for all 𝑓 ∈ 𝒮′, 𝑥 ∈ ℝ𝑛 and t > 0. 

Let us observe the following inequality, which holds for s ≤ t 

(1 +
|𝑥 − y − z|

s
)

−λr

(
s

t
)
λr

≤ (1 +
|𝑥 − y − z|

t
)

−λr

(
s

t
)
λr

≤ (1 +
|y|

t
)

λr

(1 +
|𝑥 − z|

t
)

−λr

(
s

t
)
λr

≤ (1 +
|y|

t
)

λr

(1 +
|𝑥 − z|

s
)

−λr 2⁄

(
s

t
)
λr 2⁄

. 

It follows that 
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|𝑣t ∗ 𝑓(𝑥 − y)|
r

≤ C(1 +
|y|

t
)

λr

(∫ ∫|(𝑣s ∗ 𝑓)(z)|
r (1 +

|𝑥 − z|

s
)

−λr 2⁄

(
s

t
)
λr 2⁄

dz

ℝ𝑛

s−𝑛
ds

s

t

0

+ ∫|(𝑣t ∗ 𝑓)(z)|
r (1 +

|𝑥 − z|

t
)

−λr

t−𝑛dz

ℝ𝑛

)

≤ C(1 +
|y|

t
)

λr

(∫M(|𝑣s ∗ 𝑓|
r)(𝑥) (

s

t
)
λr 2⁄ ds

s

t

0

+M(|𝑣t ∗ 𝑓|
r)(𝑥)) 

where M denotes the Hardy-Littlewood maximal operator. The last inequality follows, 

provided λr > 2𝑛 , by a standard argument involving decomposing ℝ𝑛  into a sum of 

concentric annuli: 

ℝ𝑛 = {z ∶  |𝑥 − z| ≤ s} ∪⋃{z ∶  2k−1s < |𝑥 − z| ≤ 2ks}

∞

k=1

, 

with s replaced by t for the second integral. We have thus proved the following lemma, 

which serves as replacement for the well-known pointwise estimate, due to Peetre [66], 

which holds for functions of exponential type. 

Lemma (2.2.4) [73]: For 𝑣 ∈ 𝒮 satisfying the Tauberian condition and λ, r such that λr >
2𝑛 we have 

(𝑣t
∗𝑓(𝑥))

r
≤ C(∫M(|𝑣s ∗ 𝑓|

r)(𝑥) (
s

t
)
λr 2⁄ ds

s

t

0

+M(|𝑣t ∗ 𝑓|
r)(𝑥)) 

Thus, combining the above with (8), we obtain 

|ψj ∗ 𝑓(𝑥)| ≤ C(∫∫M(|𝑣s ∗ 𝑓|
r)(𝑥) (

s

t
)
λr 2⁄ ds

s

t

0

dt

t
Ij

)

1 r⁄

+ C(∫M(|𝑣t ∗ 𝑓|
r)(𝑥)

dt

t
Ij

)

1 r⁄

= Jj
1(𝑥) + Jj

2(𝑥).                                                                                                       (9) 

Choose 0 < r < min(p r0⁄ , q) , where r0 = inf{s ∶ ω ∈ As} , so that, in particular, ω ∈
Ap r⁄ . Choose λ  such that λ + 2α > 0 . Using Hölder’s inequality, and then Hardy’s 

inequality, we obtain 

‖( ∑ (2j𝛼Jj
1)
q

∞

j=−∞

)

1 q⁄

‖

p,ω

≤ C‖‖( ∑ ∫(∫M(|𝑣s ∗ 𝑓|
r) (
s

t
)
λr 2⁄ ds

s

t

0

)

q r⁄

2−𝛼q
dt

t
Ij

∞

j=−∞

)

1 q⁄

‖‖

p,ω

≤ C‖‖(∫ (∫M(|𝑣s ∗ 𝑓|
r)sλr 2⁄

ds

s

t

0

)

q r⁄

t−(𝛼+λ 2⁄ )q
dt

t

∞

0

)

1 q⁄

‖‖

p,ω

≤ C‖(∫(t−𝛼rM(|𝑣t ∗ 𝑓|
r))

q r⁄ dt

t

∞

0

)

1 q⁄

‖

p,ω

. 

We can now use the vector valued maximal inequality [70] to conclude 
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‖(∑ (2j𝛼Jj
1(𝑥))

q
∞

j=−∞

)

1 q⁄

‖

p,ω

≤ C‖(∫(t−𝛼|𝑣t ∗ 𝑓|)
q
dt

t

∞

0

)

1 q⁄

‖

p,ω

 

A similar, but simpler argument gives us the second inequality 

‖(∑ (2j𝛼Jj
2(𝑥))

q
∞

j=−∞

)

1 q⁄

‖

p,ω

≤ C‖(∫(t−𝛼|𝑣t ∗ 𝑓|)
q
dt

t

∞

0

)

1 q⁄

‖

p,ω

 

The second inequality of Theorem (2.2.2), concerning the space Ḃp,q
α,ω

, can be obtained 

similarly from (9). Applying weighted Lp norm to both side of (9) we obtain 

‖ψj ∗ 𝑓‖p,ω
≤ C(‖Jj

1‖
p,ω
+ ‖Jj

2‖
p,ω
) 

Consider the first component. Applying Minkowski’s inequality twice for the weighted 

Lp r⁄  norm, and the inequality for the Hardy-Littlewood maximal operator, we obtain 

‖Jj
1‖
p,ω

= ‖(∫∫M(|𝑣s ∗ 𝑓|
r)(∙) (

s

t
)
λr 2⁄ ds

s

t

0

dt

t
Ij

)

1 r⁄

‖

p,ω

≤ (∫∫‖M(|𝑣s ∗ 𝑓|
r)‖p r⁄ ,ω (

s

t
)
λr 2⁄ ds

s

t

0

dt

t
Ij

)

1 r⁄

≤ C(∫∫‖𝑣s ∗ 𝑓‖p,ω
r (

s

t
)
λr 2⁄ ds

s

t

0

dt

t
Ij

)

1 r⁄

 

We can now, as in the Triebel-Lizorkin case, multiply both sides by 2j𝛼 , apply 

discrete ℓq norm, and use Hardy’s inequality. The same argument, without the Hardy’s 

inequality, is used to handle Jj
2. Observe that in this case we only need to use the scalar 

valued inequality for the Hardy-Littlewood maximal operator rather than the vector valued 

one, so we can allow the case p = ∞. The proof of Theorem (2.2.2) is complete. 

Theorem (2.2.5) [73]: Under the assumptions of Theorem (2.2.2) there exists a γ > 1 and 

a constant C, independent of 𝑓 ∈ 𝒮′ such that 

‖𝑓‖Ḟp,q
𝛼,ω ≤ C‖(∑ (γj𝛼|𝑣j ∗ 𝑓|)

q
∞

j=−∞

)

1 q⁄

‖

p,ω

 

‖𝑓‖Ḃp,q
𝛼,ω ≤ C(∑ (γj𝛼‖𝑣j ∗ 𝑓‖p,ω

)
q

∞

j=−∞

)

1 q⁄

.   

Proof: The starting point for this case is the discrete version of the Calderón’s reproducing 

formula, which can be obtained in the same way as the continuous from [69]. For 𝑣 as in 

the theorem, there exist γ > 1, and  η ∈ 𝒮, with  η̂ supported in annulus such that 

𝑓 =∑𝑓 ∗ 𝑣k ∗ ηk
k∈ℤ

   in  𝒮′ 𝒫⁄  

where 𝑣k = 𝑣γ−k, and ηk = ηγ−k. Then  
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(𝑓 ∗ ψj)(𝑥) = ∑ 𝑣k ∗ ηk ∗ 𝑓 ∗ ψj(𝑥)

γk∈I−j

 

Point wise (ψj = ψ2−j). The summation is over a finite set of ks, since both ψ̂ and η̂ are 

supported in annuli centered at the origin, and I−j  is the interval, defined previously, 

depending on the support of η̂ . We will use the discrete versions of the Strömberg-

Torchinsky type estimates that were used in the proof of Theorem (2.2.2): 

|𝑣k ∗ ηk ∗ ψj ∗ 𝑓(𝑥)|
r

≤ C ∑ ∫|𝑣𝑙 ∗ η𝑙 ∗ ψj ∗ 𝑓(y)|
r
(1 + γ𝑙|𝑥 − y|)−λr(1 + γ𝑙|𝑥 − y|)−𝑛−1dy

ℝ𝑛

γ𝑙𝑛

γ𝑙∈I−j

 

and 

|(𝑣k ∗ 𝑓)(𝑥)|
r ≤ C∑ ∫|(𝑣𝑙 ∗ 𝑓)(z)|

r(1 + γ𝑙|𝑥 − z|)−λrγ−(k−𝑙)λrdz

ℝ𝑛

γ𝑙𝑛

𝑙≥k

. 

Both of these estimates hold in the setting they were used in the continuous case, and their 

proof is the same. From the reproducing formula and the first estimate we obtain 

|(ψj ∗ 𝑓)(𝑥)|
r
≤ C ∑ (𝑣

γ−𝑙
∗ 𝑓(𝑥))

r

γ𝑙∈I−j

 

and, subsequently, from the second estimate 

(𝑣
γ−𝑙
∗ 𝑓(𝑥))

r

≤ C∑M(𝑣k ∗ 𝑓)(𝑥)γ
(𝑙−k)λr 2⁄

k≥𝑙

 

We, combine these two inequalities, and then use Hölder’s inequality, the discrete version 

of the Hardy’s inequality, and the discrete vector valued maximal inequality to obtain 

‖𝑓‖Ḟp,q
α,ω ≤ C‖(∑ (2j𝛼|𝑛uj ∗ 𝑓|)

q
∞

j=−∞

)

1 q⁄

‖

p,ω

 

The corresponding result for the Ḃp,q
α,ω

 space follows similarly. 

The following theorem is the inhomogeneous counterpart of Theorem (2.2.2). 

Together with Theorem 5.1 from [68] it provides the characterization of the 

inhomogeneous spaces Ḟp,q
α,ω

 and Ḃp,q
α,ω

 in terms of convolutions with general defining 

functions. 

Theorem (2.2.6) [73]: Let −∞ < 𝛼 < ∞, 0 < p, q ≤ ∞, with p < ∞ in the case of Ḟp,q
α,ω

. 

Suppose ω ∈ A∞ . Let 𝑣 ∈ 𝒮  satisfy the Tauberian condition and let Φ ∈ 𝒮  satisfy the 

strong Tauberian condition Φ̂(0) ≠ 0. Then, for b sufficiently large (see the proof) there 

exists a positive constant C such that 

‖𝑓‖Fp,q
α,ω ≤ C

(

 ‖Φ ∗ 𝑓‖p,ω + ‖(∫|t
−𝛼(𝑣t ∗ 𝑓)|

q
dt

t

b

0

)

1 q⁄

‖

p,ω)

 , 

‖𝑓‖Bp,q
α,ω ≤ C(‖Φ ∗ 𝑓‖p,ω + (∫(t

−𝛼‖𝑣t ∗ 𝑓‖p,ω)
q dt

t

b

0

)

1 q⁄

). 

for every 𝑓 ∈ 𝒮′. 
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Proof: As before, we will follow the line of argument from [68]. Let us recall [69] that 

there exist η and γ in 𝒮, with η̂ supported on an annulus, and γ̂ compactly supported such 

that 

𝑓 = γ ∗ 𝑓 + ∫ηt ∗ 𝑣t ∗ 𝑓
dt

t

b

0

 

for arbitrary b > 0, with γ depending on b. Moreover, taking b large we can make the 

support of γ̂ small. The integral in the above formula converge in 𝒮′. Pick j ≥ 1 and we 

obtain 

ψj ∗ 𝑓 = ∫ψj ∗ ηt ∗ 𝑣t ∗ 𝑓
dt

t
Ij

 

if b is sufficiently large, so that the supports of  ψ̂j and γ̂ are disjoint, and that 2A−1 ≤ b. 

The intervals Ij are the same as those in the previous. This representation is the same as 

(7), so we can apply the same argument as we did in the homogeneous case. Doing so, we 

arrive at the estimate 

‖(∑(2j𝛼|ψj ∗ 𝑓|)
q

∞

j=1

)

1 q⁄

‖

p,ω

≤ C‖(∫(t−𝛼|𝑣t ∗ 𝑓|)
q
dt

t

b

0

)

1 q⁄

‖

p,ω

                  (10) 

Again, analogous argument yields the corresponding estimate for the Besov-Lipschitz 

spaces, without the p < ∞ restriction: 

(∑(2j𝛼‖ψj ∗ 𝑓‖p,ω
)
q

∞

j=1

)

1 q⁄

≤ C(∫(t−𝛼‖𝑣t ∗ 𝑓‖p,ω)
q dt

t

b

0

)

1 q⁄

 

We now consider ψ ∗ 𝑓 

Ψ ∗ 𝑓 = Ψ ∗ γ ∗ 𝑓 + ∫Ψ ∗ ηt ∗ 𝑣t ∗ 𝑓
dt

t

b

𝑎

 

for some 0 < 𝑎 < 𝑏 . Recall that supp Ψ̂ ⊂ {2−A+1 ≤ |ξ| ≤ 2A−1} , and supp Ψ̂ ⊂
{|ξ| ≤ 2}, so can take 𝑎 = 2−A. The second part is handled exactly as previously. Indeed, 

even though Ψ̂ does not vanish around 0, η̂ does, so for the purpose of this integral we may 

multiply Ψ̂ by a suitable cutoff function. Observe, however, that the b will have to be 

increased 22A−2 times. For the first part, observe that if we choose b large enough, so that 

supp γ̂ ⊂ {ξ ∶ Φ̂(ξ) ≠ 0}, then we can write 

Ψ ∗ γ ∗ 𝑓 = u ∗ Φ ∗ 𝑓 

with u ∈ 𝒮. It follows that for each λ > 0 there is a constant C, independent of 𝑓, such that 

(Ψ ∗ γ)1
∗𝑓(𝑥) ≤ CΦ1

∗𝑓(𝑥) 
Let 𝑓1 be 𝑓 multiplied, on the Fourier transform side, by a smooth cutoff function, equal to 

around the origin, and 0 outside some ball. Then 

Φ1
∗𝑓(𝑥) ≤ Φ1

∗𝑓1(𝑥) + Φ1
∗𝑓2(𝑥) 

Since Φ ∗ 𝑓1 is of exponential type, so we may apply Peetre’s estimate to obtain 

‖Φ1
∗𝑓1‖p,ω ≤ C‖Φ ∗ 𝑓1‖p,ω 

provided λ in the definition of Φ1
∗𝑓1 is large enough (see, [67]). To estimate Φ1

∗𝑓2(𝑥) we 

use the left-hand inequality from [68] (actually only a part of it) 

‖Φ1
∗𝑓2‖p,ω ≤ C‖𝑓2‖Fp,q

α,ω 
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Choose the cutoff function, which defines 𝑓1 and 𝑓2 such that the supports of 𝑓2 and ψ̂ are 

disjoint. Then 

‖𝑓2‖Fp,q
α,ω ≤ C‖(∑(2j𝛼|ψj ∗ 𝑓|)

q
∞

j=1

)

1 q⁄

‖

p,ω

 

and this has already been estimated in (10). Finally, 

‖Φ1
∗𝑓1‖p,ω ≤ C‖Φ ∗ 𝑓1‖p,ω ≤ C‖Φ ∗ 𝑓‖p,ω + ‖Φ ∗ 𝑓2‖p,ω 

Since we already have the estimate for ‖Φ ∗ 𝑓2‖p,ω ≤ ‖Φ1
∗𝑓2‖p,ω, we obtain 

‖𝑓‖Fp,q
α,ω = ‖Ψ ∗ 𝑓‖p,ω + ‖(∑(2j𝛼|ψj ∗ 𝑓|)

q
∞

j=1

)

1 q⁄

‖

p,ω

≤ C

(

 ‖Φ ∗ 𝑓‖p,ω + ‖(∫(t
−𝛼|𝑣t ∗ 𝑓|)

q

b

0

dt

t
)

1 q⁄

‖

p,ω)

 . 

The proof of the Besov-Lipschitz case follows similarly. 

Theorem (2.2.7) [73]: Let α, p, q, ω, 𝑣, and Φ be as in Theorem (2.2.5). Then, for any 

𝑎, b, r, N > 0, there is a positive constant C such that 

‖𝑓‖Fp,q
α,ω ≤ C

(

 (∫(tN‖Φt ∗ 𝑓‖p,ω)
r

𝑎

0

dt

t
)

1 r⁄

+ ‖(∫(t−𝛼|𝑣t ∗ 𝑓|)
q

b

0

dt

t
)

1 q⁄

‖

p,ω)

  

‖𝑓‖Bp,q
α,ω ≤ C((∫(tN‖Φt ∗ 𝑓‖p,ω)

r

𝑎

0

dt

t
)

1 r⁄

+ (∫(t−𝛼‖𝑣t ∗ 𝑓‖p,ω)
q

b

0

dt

t
)

1 q⁄

) 

for every 𝑓 ∈ 𝒮′. 
Proof: We first show that for any φ ∈ 𝒮, 

‖Φ ∗ 𝑓‖p,ω ≤ C(∫(t
N‖Φt ∗ 𝑓‖p,ω)

r

𝑎

0

dt

t
)

1 r⁄

                                       (11) 

for all 𝑓 ∈ 𝒮′ . Choose 0 < s ≤ r such that ω ∈ Ap s⁄ . Let N′  be such that sN′ > 𝑛 . By 

using [6] and decomposing ℝ𝑛 into concentric annuli, we obtain 

|φ ∗ 𝑓(𝑥)|s ≤ C∫ ∫|Φt ∗ 𝑓(y)|
s (1 +

|𝑥 − y|

t
)

sN′

tsN
′
t−𝑛dy

ℝ𝑛

dt

t

𝑎

0

≤ C∫M(|Φt ∗ 𝑓|
s)(𝑥)tsN

′ dt

t

𝑎

0

 

for every 𝑥 ∈ ℝ𝑛 . Hence, it follows from Minkowski’s inequality and the weighted 

estimate for the Hardy-Littlewood maximal function that 

‖φ ∗ 𝑓‖p,ω ≤ C(∫(t
N′‖Φt ∗ 𝑓‖p,ω)

s dt

t

𝑎

0

)

1 s⁄

 

The above and Hölder’s inequality imply (11). 

We shall show the theorem only for the Triebel-Lizorkin spaces since the proof for 

the Besov-Lipschitz spaces is similar. As in the proof of Theorem (2.2.6), we start with the 

representation 
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𝑓 = γ ∗ 𝑓 + ∫ηt ∗ 𝑣t ∗ 𝑓
dt

t

b

0

                                                         (12) 

where γ̂ ∈ 𝒮 has compact support. There is a finite set 𝒮1 such that γ ∗ ψj = 0 for all j ∉

𝒮1, and there is a finite set 𝒮2 such that 

Ij = {2
−j−A, 2−j+A} ⊆ [0, b] 

for all j ∉ 𝒮2. Let 𝒮 = 𝒮1 ∪ 𝒮2. Then by (11), 

‖(∑(2j𝛼|ψj ∗ 𝑓|)
q

j∈𝒮

)

1 q⁄

‖

p,ω

≤ C∑‖ψj ∗ 𝑓‖p,ω
j∈𝒮

≤ C|𝒮| (∫(tN‖Φt ∗ 𝑓‖p,ω)
r dt

t

𝑎

0

)

1 r⁄

 

and 

‖Ψ ∗ 𝑓‖p,ω ≤ C(∫ (t
N‖Φt ∗ 𝑓‖p,ω)

r dt

t

𝑘𝑎

0

)

1 r⁄

 

where |𝒮| denotes the number of elements in 𝒮. For j ∉ 𝒮, the representation (12) gives 

ψj ∗ 𝑓 = ∫ηt ∗ 𝑣t ∗ ψj ∗ 𝑓
dt

t

b

0

= ∫ηt ∗ 𝑣t ∗ ψj ∗ 𝑓
dt

t
Ij

 

As observed in the proof of Theorem (2.2.6), the above and the method in the proof 

of Theorem (2.2.2) imply that 

‖(∑(2j𝛼|ψj ∗ 𝑓|)
q

j∉𝒮

)

1 q⁄

‖

p,ω

≤ C‖(∫(t−α|𝑣t ∗ 𝑓|)
q
dt

t

b

0

)‖

p,ω

 

Combining all the above estimates, we obtain the desired inequality for the Triebel-

Lizorkin spaces. The proof of Theorem (2.2.7) is hence complete. 

Section (2.3): Morrey Type Besov-Triebel Spaces 

Many people have been considered problems of partial differential equation based 

on Morrey space and Morrey type Besov space, (see [78, 79, 81, 82, 83, 84]). It is well-

known that Besov spaces Bp,q
s (ℝ𝑛)  and Triebel-Lizokin spaces Fp,q

s (ℝ𝑛)  contain as 

special cases many classical spaces, for example, the Hölder spaces, the Sobolev spaces, 

the Bessel-potential spaces, the Zygmund spaces, the local Hardy spaces and the space 

BMO(ℝ𝑛). All the above-mentioned classical spaces have been proved to be useful tools 

in the study of ordinary and partial differential equations. For detail one can see Triebel’s 

books [41, 56, 57, 58]. 

We study some properties, such as lifting properties, Fourier multiplier theorem, 

and discrete characterization of Morrey type Besov-Triebel spaces. We consider the 

boundedness of a class pseudo-differential operators on these spaces. 

As usual, the 𝑛-dimensional real Euclidean space and its points are dented by ℝ𝑛 

and 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) respectively. We purpose that 𝑛 > 1 holds. 𝒮(ℝ𝑛) is the Schwartz 

space of all rapidly decreasing infinitely differential complex-valued functions on ℝ𝑛 and 

𝒮′(ℝ𝑛) is the space of all complex-valued tempered distributions on ℝ𝑛. Let 
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(ℱϕ) = (2π)−𝑛 2⁄ ∫ϕ(𝑥)e−𝑖𝑥∙ξd𝑥

ℝ𝑛

 

and let ℱ−1 denote the Fourier transform and its inverse on 𝒮′(ℝ𝑛), respectively. 

Definition (2.3.1) [55]: If 0 < q ≤ p < ∞  and 𝑓 ∈ Lloc
q (ℝ𝑛) , we say 𝑓 ∈ Mq

p(ℝ𝑛) 

provided that, for any ball BR(𝑥) of center at 𝑥 and radius R, 

‖𝑓‖Mq
p ≔ sup

𝑥∈ℝ𝑛,R>0
R𝑛(1 p⁄ −1 q⁄ ) ( ∫ |𝑓(y)|qdy

BR(𝑥)

)

1 q⁄

< ∞ 

Definition (2.3.2) [55]: Let ϕ(ℝ𝑛) be the collection of all systems ϕ = {ϕj}j=0
∞
⊂ 𝒮(ℝ𝑛) of 

real-valued even function with respect to the origin, such that ϕj(𝑥) = ϕj(−𝑥)  if 𝑥 ∈

suppϕj where 

suppϕ0 ⊂ {𝑥, |𝑥| ≤ 2} 

and 

suppϕj ⊂ {𝑥, 2
j−1 ≤ |𝑥| ≤ 2j+1}   for  j = 0,1,⋯, 

for every multi-index 𝛼 there exists a positive number C𝛼 such that 

2j|𝛼||D𝛼ϕj(𝑥)| ≤ C𝛼   for all  j = 0,1,⋯ , and all 𝑥 ∈ ℝ𝑛, 

and 

∑ϕj(𝑥)

∞

j=0

= 1  for every   𝑥 ∈ ℝ𝑛 

We introduce Morrey type Besov-Triebel spaces. 

Definition (2.3.3) [55]: Let −∞ < s < ∞, 0 < q ≤ p < ∞, 0 < β ≤ ∞, and ϕ = {ϕj}j=0
∞
∈

Φ(ℝ𝑛), then we define: 

(i) MBp,q
s,β 
= {𝑓 ∈ 𝒮′(ℝ𝑛) ∶ ‖𝑓‖

MBp,q
s,β 

ϕ
= {∑ 2ksβ‖ℱ−1ϕjℱ𝑓‖Mq

p

β∞
k=0 }

1 β⁄

< ∞} 

(ii) MFp,q
s,β 
= {𝑓 ∈ 𝒮′(ℝ𝑛) ∶ ‖𝑓‖

MFp,q
s,β 

ϕ
= {∑ 2ksβ‖ℱ−1ϕjℱ𝑓‖Mq

p

β∞
k=0 }

1 β⁄

< ∞} 

Obviously, for s ∈ ℝ , 0 < p = q < ∞ , and 0 < β ≤ ∞ , then MBp,q
s,β 
= Bp,β

s  and 

MFp,q
s,β 
= Fp,β

s , standard Besov and Triebel-Lizorkin spaces respectively; see [41]. 

If s ∈ ℝ, we write 

H2
s(ℝ𝑛) = {𝑓 ∈ 𝒮′(ℝ𝑛) ∶ ‖𝑓‖H2s = ‖(1 + |𝑥|

2)s 2⁄ (ℱ)(𝑥)‖
L2
< ∞} 

If Ω is a compact set of ℝ𝑛 we write 

Lq,Ω = {𝑓 ∈ 𝒮′(ℝ𝑛) ∶ suppℱ𝑓 ⊂ Ω, ‖𝑓‖Lq < ∞} 
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Let 0 < β ≤ ∞. If {𝑓j}j=0
∞

 is a sequence of complex-valued Lebesgue measurable function 

on ℝ𝑛, then we write 

‖𝑓j‖Mp,q
β = ‖(∑|𝑓j(∙)|

β
∞

j=0

)

1 β⁄

‖

Mq
p

 

If ‖𝑓j‖Mp,q
β < ∞, we call the sequence {𝑓j}j=0

∞
∈ Mp,q

β 
. Furthermore, assume 0 < q ≤ p <

∞, 0 < β ≤ ∞, and that Ω = {Ωj}j=0
∞

 is a sequence of compact sets on ℝ𝑛. If 𝑓j ∈ L
q,Ωj for 

j ∈ ℕ ∪ {0}, and {𝑓j}j=0
∞
∈ Mp,q

β 
, then we call the sequence {𝑓j}j=0

∞
∈ Mp,q

β,Ω 
. From then, we let 

ℕ0 denote ℕ ∪ {0}. 

Lemma (2.3.4) [55]: Let 0 < β < ∞, 1 < q ≤ p < ∞. If {𝑓j}j=0
∞

 is a sequence of local 

integral function on ℝ𝑛, then 

‖(∑|ℳ𝑓j|
β

∞

j=0

)

1 β⁄

‖

ℳq
p

≤ C‖(∑|𝑓j|
β

∞

j=0

)

1 β⁄

‖

ℳq
p

 

where the constant C is independent of {𝑓j}j=0
∞

 and ℳ denotes Standard Hardy-Littlewood 

maximal function. 

Proof:  In fact, the conclusion can be deduced from the weighted version of the 

Fefferman-Stein vector maximal inequalities [74] and Theorem 3.1 in [75]. 

It is also interesting to give a direct proof. Let (∑ |𝑓j|
β∞

j=0 )
1 β⁄

∈ Mq
p 

. Pick any 𝑥0 ∈ ℝ
𝑛, and 

write 

𝑓j(𝑥) = 𝑓j
0(𝑥) +∑𝑓j

𝑖(𝑥)

∞

𝑖=0

 

where 𝑓j
0 = χB2r(𝑥0)𝑓j , 𝑓j

𝑖 = χB
2𝑖+1r

(𝑥0)\B2𝑖r
(𝑥0)𝑓j  for 𝑖 ≥ 1 . We want to estimate 

(∑ |ℳ𝑓j
0(𝑥)|

β∞
j=0 )

1 β⁄

 on Br(𝑥0). By Fefferman-Stein maximal inequality [80] we have 

‖(∑|ℳ𝑓j
0|
β

∞

j=0

)

1 β⁄

‖

Lq

≤ C‖(∑|𝑓j
0|
β

∞

j=0

)

1 β⁄

‖

Lq

≤ Cr
𝑛(
1
q
−
1
p
)
‖(∑|𝑓j|

β
∞

j=0

)

1 β⁄

‖

Mq
p

 

Thus, 
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[ ∫ (∑|ℳβ(𝑓j
0)(𝑥)|

β
∞

j=0

)

q β⁄

d𝑥

Br(𝑥0)

]

1 q⁄

≤ ‖(∑|ℳ𝑓j
0|
β

∞

j=0

)

1 β⁄

‖

Lq

≤ Cr
𝑛(
1
q
−
1
p
)
‖(∑|𝑓j|

β
∞

j=0

)

1 β⁄

‖

Mq
p

 

Hence, we obtain 

‖(∑|ℳ𝑓j
0|
β

∞

j=0

)

1 β⁄

‖

Mq
p

≤ C‖(∑|𝑓j|
β

∞

j=0

)

1 β⁄

‖

Mq
p

 

It remains to estimate (∑ |ℳ𝑓j
𝑖(𝑥)|

β∞
j=0 )

1 β⁄

 on Br(𝑥0). For 𝑖 ≥ 1 and 𝑥 ∈ Br(𝑥0), by the 

generalized Minkowski inequality, we have 

(∑|ℳ𝑓j
𝑖(𝑥)|

β
∞

j=0

)

1 β⁄

≤ C [∑((2𝑖r)−𝑛 ∫|𝑓j
𝑖(y)|dy

ℝ𝑛

)

β∞

j=0

]

1 β⁄

≤ C(2𝑖r)−𝑛 ∫(∑|𝑓j
𝑖(y)|

β
∞

j=0

)

1 β⁄

dy

ℝ𝑛

 

Then, 

[ ∫ (∑ℳβ (∑𝑓j
𝑖(𝑥)

∞

𝑖=1

)

∞

j=0

)

q β⁄

d𝑥

Br(𝑥0)

]

1 q⁄

≤ [ ∫ (∑(∑ℳ𝑓j
𝑖(𝑥)

∞

𝑖=1

)

β∞

j=0

)

q β⁄

d𝑥

Br(𝑥0)

]

1 q⁄

≤ [ ∫ (∑(∑ℳβ𝑓j
𝑖(𝑥)

∞

j=0

)

1 β⁄
∞

𝑖=1

)

q

d𝑥

Br(𝑥0)

]

1 q⁄

≤∑[ ∫ (∑ℳβ𝑓j
𝑖(𝑥)

∞

j=0

)

q β⁄

d𝑥

Br(𝑥0)

]

1 q⁄
∞

𝑖=1

≤∑(2𝑖)−𝑛 q⁄ [ ∫ (∑|𝑓j(𝑥)|
β

∞

j=0

)

q β⁄

d𝑥

B
2𝑖+1r

(𝑥0)

]

1 q⁄
∞

𝑖=1

≤ C∑(2𝑖)
−
𝑛
pr
(
1
q
−
1
p
)𝑛
‖(∑|𝑓j|

β
∞

j=0

)

1 β⁄

‖

Mq
p

∞

𝑖=1

 

Thus, we obtain 
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‖∑(ℳβ (∑𝑓j
𝑖

∞

𝑖=1

))

1 β⁄
∞

j=0

‖

Mq
p

≤ C‖(∑|𝑓j|
β

∞

j=0

)

1 β⁄

‖

Mq
p

. 

Lemma (2.3.4) is proved. 

Theorem (2.3.5) [55]: Let 0 < q ≤ p < ∞, 0 < β ≤ ∞, and Ω = {Ωj}j=0
∞

 be a sequence of 

compact sets 𝑓j ∈ L
q,Ωj, j ∈ ℕ0. Let dj > 0 be the radius of Ωj. If 0 < r < min{q, β}, then 

exists a constant C such that 

(i) ‖sup
𝑥∈ℝ𝑛

|𝑓j(∙−z)|

1+|djz|
𝑛
r

‖

Mp,q
β 

≤ C‖𝑓j‖Mp,q
β  

(ii) ‖(∑ |sup
𝑥∈ℝ𝑛

|𝑓j(∙−z)|

1+|djz|
𝑛
r

|

β

∞
j=0 )

1 β⁄

‖

Mq
p 

≤ C‖(∑ |𝑓j|
β∞

j=0 )
1 β⁄

‖
Mq
p
 

Proof: We only prove for the case of MFp,q
s,β 

 space. The result for MBp,q
s,β 

 can be obtained 

by interchanging ‖∙|𝑙q‖ and ‖∙‖Mq
p in the proof presented below. 

First, let {𝑓j}j=0
∞

∈ Mp,q
β,Ω 

, yj ∈ Ω satisfying (i), then {hj}j
 also do, where Ω is replaced by 

{Ωj − y
j}
j=0

∞
, and the converse also holds. Thus we may let 0 ∈ Ωj , it is sufficient to 

consider the case Ωj = Dj = {y ∶  |y| ≤ dj}. 

Second, we have to prove that (ii) holds when Ωj = dj = {y ∶  |y| ≤ dj} and dj > 0. If 

{𝑓j}j=0
∞

∈ Mp,q
β,Ω 

, yj ∈ Ω , then 𝑓j ∈ L
q,Ωj . If 𝑔j(𝑥) = 𝑓j(d

−1𝑥) , then (ℱ𝑔j)(𝑥) =

dj
𝑛(ℱ𝑓j)(dj𝑥) and suppℱ𝑔j ⊂ {y ∶  |y| ≤ 1}. 

For 𝑥, z ∈ ℝ𝑛, we have 

|𝑔j(𝑥 − z)|

1 + |z|
𝑛
r

≤ C[ℳ(|𝑔j|
r
)(𝑥)]

1 r⁄
                                                       (13) 

see [41]. 

From (13), we obtain 

|𝑓j(𝑥 − z)|

1 + |djz|
𝑛
r

≤ C[ℳ(|𝑓j|
r
)(𝑥)]

1 r⁄
, for all 𝑥, z ∈ ℝ𝑛                                      (14) 

where the constant C independent of 𝑥, z, j. 

If 0 < β < ∞, then by (14), 
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‖sup
z∈ℝ𝑛

|𝑓j(∙ −z)|

1 + |djz|
𝑛
r

‖

Mp,q
β 

≤ C‖[ℳ(|𝑓j|
r
)]
1 r⁄
‖
Mp,q
β 
= C‖ℳ(|𝑓j|

r
)‖
Mp r⁄ ,q r⁄
β r⁄  

1 r⁄
 

Since 0 < r < min{q, β}, we have p r⁄ ≥ q r⁄ > 1, β r⁄ > 1. By Lemma (2.3.4), 

‖sup
z∈ℝ𝑛

|𝑓j(∙ −z)|

1 + |djz|
𝑛
r

‖

Mp,q
β 

≤ C‖ℳ(|𝑓j|
r
)‖
Mp r⁄ ,q r⁄
β r⁄  

1 r⁄
≤ C‖𝑓j‖Mp,q

β  

If β = ∞, by (14), we have 

sup
j∈ℕ0

sup
z∈ℝ𝑛

|𝑓j(𝑥 − z)|

1 + |djz|
𝑛
r

≤ C sup
j
[ℳ(|𝑓j|

r
)(𝑥)]

1 r⁄
≤ C [ℳ (sup

j
|𝑓j|

r
) (𝑥)]

1 r⁄

. 

Thus, 

‖sup
j∈ℕ0

sup
z∈ℝ𝑛

|𝑓j(∙ −z)|

1 + |djz|
𝑛
r

‖

Mq
p

≤ C‖sup
j
[ℳ(|𝑓j|

r
)(∙)]

1 r⁄
‖
Mq
p

≤ C‖ℳ(sup
j
|𝑓j|

r
) (∙)‖

Mq r⁄
p r⁄

1 r⁄

. 

Using Lemma (2.3.4), then we obtain 

‖sup
j∈ℕ0

sup
z∈ℝ𝑛

|𝑓j(∙ −z)|

1 + |djz|
𝑛
r

‖

Mq
p

≤ C‖sup
j
|𝑓j|‖

Mq
p

 

Thus (ii) holds when β = ∞. 

Theorem (2.3.6) [55]: Let 0 < q ≤ p < ∞, 0 < β ≤ ∞, let Ω = {Ωj}j=0
∞

 be a sequence of 

compact sets on ℝ𝑛and 𝑓j ∈ L
q,Ωj , j ∈ ℕ0 . Let dj > 0 be the radius of Ωj . If 𝑣 > 𝑛 2⁄ +

𝑛 min{q, β}⁄ , then exists a constant C such that 

‖ℱ−1ℳjℱ𝑓j‖Mp,q
β ≤ C sup

j
‖ℳj(dj ∙)‖H2𝑣

‖𝑓j‖Mp,q
β  

and 

(∑‖ℱ−1ℳjℱ𝑓j‖Mq
p

β
∞

j=0

)

1 β⁄

≤ C sup
j
‖ℳj(dj ∙)‖H2𝑣

(∑‖𝑓j‖Mq
p

β
∞

j=0

)

1 β⁄

 

for any sequence {Mj}j=0
∞

∈ H2
𝑣(ℝ𝑛). 

Theorem (2.3.7) [55]:  Let ϕ = {ϕj(𝑥)}j=0
∞
∈ Φ(ℝ𝑛) and φ = {φj(𝑥)}j=0

∞
∈ Φ(ℝ𝑛). 

(i) If −∞ < s < ∞ , 0 < q ≤ p < ∞  and 0 < β ≤ ∞ , then ‖𝑓‖
MFp,q

s,β 
ϕ

 and ‖𝑓‖
MFp,q

s,β 
φ

 are 

equivalent quasi-norms on MFp,q
s,β 

. 
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(ii) If −∞ < s < ∞ , 0 < q ≤ p < ∞  and 0 < β ≤ ∞ , then ‖𝑓‖
MBp,q

s,β 
ϕ

 and ‖𝑓‖
MBp,q

s,β 
φ

 are 

equivalent quasi-norms on MBp,q
s,β 

. 

Proof:  We first prove (i). 

If ϕ0 = 0, then we have ϕj = ϕj∑ φj+r
1
r=−1   for j ∈ ℕ0. Therefore, 

ℱ−1ϕjℱ𝑓 = ∑ ℱ−1ϕjℱℱ
−1φj+rℱ𝑓

1

j=−1

 

Now we choose 0 < 𝑣 < min{q, β} and u > 𝑛 2⁄ + 𝑛 𝑣⁄ . If we replace 𝑓j and Mj in 

Theorem (2.3.6) by ℱ−1φj+rℱ𝑓 and ϕj respectively, then we obtain 

‖ℱ−1ϕjℱℱ
−1φj+rℱ𝑓‖MFp,q

 β ≤ C sup
k
‖ϕk(2

k ∙)‖
H2
𝑣 ‖ℱ

−1φj+rℱ𝑓‖MFp,q
 β  

where C is independent of j. 

By Definition (2.3.3), existing a constant C for r = −1, 0,1, we have 

‖ℱ−1ϕjφj+rℱ𝑓‖Mp,q
 β ≤ C‖ℱ−1φj+rℱ𝑓‖Mp,q

 β . 

Thus, 

‖ℱ−1ϕjℱ𝑓‖Mp,q
 β ≤ C‖ℱ

−1φjℱ𝑓‖Mp,q
 β . 

Thus, (i) is proved. The proof of (ii) is similar. 

Definition (2.3.8) [55]: Let L ∈ ℕ, and AL(ℝ
𝑛) be the collection of all functions with 

compact and satisfying 

L(ϕ) = sup
𝑥∈ℝ𝑛

|𝑥|L ∑|Dγϕ0(𝑥)|

|γ|≤L

+ sup
𝑥∈ℝ𝑛\{0},j∈ℕ

(|𝑥|L + |𝑥|−L) ∑ |Dγϕj(2
j𝑥)|

|γ|≤L

< ∞. 

Definition (2.3.9) [55]: Let L ∈ ℕ, ϕ = {ϕj}j=0
∞

∈ AL(ℝ
𝑛), 𝑓 ∈ 𝒮′(ℝ𝑛) and 𝑎 > 0, then 

we define the maximal function 

(ϕj
∗(𝑥)𝑓)(𝑥) = sup

y∈ℝ𝑛

|(ℱ−1ϕjℱ𝑓)(𝑥 − y)|

1 + |2jy|𝑎
, 𝑥 ∈ ℝ𝑛 

where j ∈ ℕ0. 

By Theorem (2.3.4) and [41], we have 

Proposition (2.3.10) [55]: Let s ∈ ℝ, 0 < q ≤ p < ∞, 0 < β ≤ ∞, 𝑎 > 𝑛 min{q, β}⁄ . If 

the maximal number L > |s| + 3𝑎 + 𝑛 + 2, then exists a positive constant C such that 

‖2js sup
0<𝜏<1

(ϕj
τ∗𝑓)‖

Mp,q
 β 
≤ C sup

0<𝜏<1
L(ϕτ) ‖𝑓‖

MFp,q
 s,β 

ϕ
                                    (15) 

and 
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(∑2js ‖ sup
0<𝜏<1

(ϕj
τ∗𝑓)‖

Mq
p

β
∞

j=0

)

1 β⁄

≤ C sup
0<𝜏<1

L(ϕτ) ‖𝑓‖
MBp,q

 s,β 
ϕ

                            (16) 

for all ϕ = {ϕk}k=0
∞ ∈ Φ(ℝ𝑛) and ϕτ = {ϕk

τ}k=0
∞ ∈ AL(ℝ

𝑛), 0 < 𝜏 < 1. 

We consider Fourier multiplier. 

Definition (2.3.11) [55]: Let m be in C∞(ℝ𝑛), then M is called a Fourier multiplier on 

MFp,q
 s,β 

 if there exists a constant C such that 

‖ℱ−1mℱ𝑓‖
MFp,q

 s,β ≤ C‖𝑓‖
MFp,q

 s,β  

for all 𝑓 ∈ MFp,q
 s,β 

. 

Similarly, we can define the Fourier multiplier on MBp,q
 s,β 

. 

Let N ∈ ℕ, we write 

‖m‖N = sup
|γ|≤N

sup
𝑥∈ℝ𝑛

(1 + |𝑥|2)N 2⁄ |Dγm(𝑥)|. 

Proposition (2.3.12) [55]: Let s ∈ ℝ , 0 < q ≤ p < ∞, 0 < β ≤ ∞. If N  is sufficiently 

large, then there exists a constant C such that for all m ∈ C∞(ℝ𝑛), 𝑓 ∈ MFp,q
 s,β 

 and MBp,q
 s,β 

 

we have 

‖ℱ−1mℱ𝑓‖
MFp,q

 s,β ≤ C‖m‖N‖𝑓‖MFp,q
 s,β                                                  (17) 

and 

‖ℱ−1mℱ𝑓‖
MBp,q

 s,β ≤ C‖m‖N‖𝑓‖MBp,q
 s,β                                                 (18) 

Proof:  For MFp,q
 s,β 

 space, since ϕ = {ϕk}k=0
∞ ∈ Φ(ℝ𝑛), we have 

ℱ−1ϕkℱ[ℱ
−1mℱ𝑓] = ℱ−1ϕkℱ𝑓. 

By (15), ϕk
τ = mϕk and the following fact 

|(ℱ−1ϕτℱ𝑓)(𝑥)| ≤ (ϕτ∗𝑓)(𝑥). 

When N > |s| + 3𝑛 min{q, β}⁄ + 𝑛 + 2, then (17) holds. The proof of (18) is similar to 

that of (17). Thus Proposition (2.3.12) is proved. 

Now, we consider the lifting properties. If σ ∈ ℝ, then operator Iσ is defined by 

Iσ𝑓 = ℱ
−1(1 + |𝑥|2)

σ
2ℱ𝑓, 𝑓 ∈ 𝒮′(ℝ𝑛). 

It is well-known that Iσ  is an one to one mapping on 𝒮′(ℝ𝑛) and 𝒮(ℝ𝑛) respectively. 

Obviously, IσI𝑥 = Iσ+𝑥. 

Theorem (2.3.13) [55]: Let s, σ ∈ ℝ, m ∈ ℕ, 0 < β ≤ ∞, 0 < q ≤ p < ∞. Then 
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(i) Iσ is an isomorphic mapping from MFp,q
 s,β 

 to MFp,q
 s−σ,β 

. Moreover, 

∑ ‖Dγ𝑓‖
MFp,q

 s−m,β 

|γ|≤m

  and ‖𝑓‖
MFp,q

 s−m,β +∑‖
∂m𝑓

∂𝑥j
m‖

MFp,q
 s−m,β 

𝑛

j=1

                      (19) 

are equivalent quasi-norms on MFp,q
 s,β 

. 

(ii) Iσ is an isomorphic mapping from MBp,q
 s,β 

 to MBp,q
 s−σ,β 

. Moreover, 

∑ ‖Dγ𝑓‖
MBp,q

 s−m,β 

|γ|≤m

  and ‖𝑓‖
MBp,q

 s−m,β +∑‖
∂m𝑓

∂𝑥j
m‖

MBp,q
 s−m,β 

𝑛

j=1

                     (20) 

are equivalent quasi-norms on MBp,q
 s,β 

. 

Proof: We only prove (i), the proof of (ii) is similar. First, if ϕ ∈ {ϕk}k=0
∞ ∈ Φ(ℝ𝑛), then 

ϕ = {ϕk}k=0
∞ ∈ AL(ℝ

𝑛), where L may be arbitrary large maximal number and ϕk(𝑥) =

2−kσ(1 + |𝑥|2)
𝑛

2ϕk(𝑥). 

If 𝑓 ∈ MFp,q
 s,β 

, by Proposition (2.3.10) and the estimate |(ℱ−1ϕkℱ𝑓)(𝑥)| ≤ ϕk
∗(𝑥), we 

have 

‖Iσ𝑓‖MFp,q
 s−σ,β = ‖2−(s−σ)kℱ−1(1 + |∙|)σ 2⁄ ϕkℱ𝑓‖MFp,q

 β = ‖2ksℱ−1ϕkℱ𝑓‖MFp,q
 β 

≤ C‖𝑓‖
MFp,q

 s,β (21) 

where C is independent of 𝑓. Thus, Iσ maps continuously MFp,q
 s,β 

 into MFp,q
 s−σ,β 

. 

If 𝑔 ∈ MFp,q
 s,β 

 and 

‖𝑓‖
MFp,q

 s,β ≤ C‖𝑔‖
MFp,q

 s−m,β = C‖Iσ𝑓‖MFp,q
 s−σ,β                                          (22) 

Since Iσ is an one to one mapping on 𝒮′(ℝ𝑛). So it is also an one to one mapping from 

MFp,q
 s,β 

 into MFp,q
 s−σ,β 

. By (21) and (22), ‖Iσ𝑓‖MFp,q
 s−σ,β  is an equivalent quasi-norm on 

MFp,q
 s,β 

. 

Next, we prove that the quasi-norm in (19) is an equivalent quasi-norm on MFp,q
 s,β 

. If 

𝑥 = (𝑥1, ⋯ , 𝑥𝑛) ∈ ℝ
𝑛, let 𝑥σ = ∏ 𝑥

j

γj𝑛
j=1 , where γ = (γ1, ⋯ γ𝑛). By Proposition (2.3.12), 

we have that 𝑥γ(1 + |𝑥|2)−m 2⁄  is a Fourier-multiplier on MFp,q
 s,β 

. If |γ| ≤ m , m ∈

MFp,q
 s,β (ℝ𝑛), then we have 

∑ ‖Dγ𝑓‖
MFp,q

 s,β 

|γ|≤m

= ∑ ‖ℱ−1𝑥γℱ𝑓‖
MFp,q

 s−m,β 

|γ|≤m

= ∑ ‖ℱ−1𝑥γ(1 + |𝑥|2)−m 2⁄ ℱℱ−1(1 + |𝑥|2)m 2⁄ ℱ𝑓‖
MFp,q

 s−m,β 

|γ|≤m

≤ C‖Im𝑓‖MFp,q
 s−m,β 

≤ C‖𝑓‖
MFp,q

 s,β ,                                                                                                                      (23) 

where the last inequality is obtained by (21). 
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We assume that m ∈ MFp,q
 s−m,β 

 and 
∂m

∂𝑥j
m 𝑓 ∈ MFp,q

 s−m,β 
 for j = 1,⋯𝑛 , we hope to 

prove that 𝑓 ∈ MFp,q
 s,β 

. We claim that there exist Fourier multipliers ρ1(𝑥),⋯ , ρ𝑛(𝑥) on 

MFp,q
 s−m,β 

, and a positive constant C such that 1 + ∑ ρj(𝑥)𝑥j
m𝑛

j=1 ≥ C(1 + |𝑥|2)m 2⁄ , for all 

𝑥 ∈ ℝ𝑛; see [41]. By Proposition (2.3.12), we know that 

M(𝑥) = (1 + |𝑥|2)m 2⁄ [1 +∑ρj(𝑥)𝑥j
m

𝑛

j=1

]

−1

 

is also a Fourier-multiplier on MFp,q
 s−m,β 

. Then 

‖𝑓‖
MFp,q

 s−m,β ≤ C‖ℱ−1(1 + |𝑥|)m 2⁄ ℱ𝑓‖
MFp,q

 s−m,β 

≤ C‖ℱ−1M(𝑥)ℱℱ−1 [1 +∑ρj(𝑥)𝑥j
m

𝑛

j=1

]

m 2⁄

ℱ𝑓‖

MFp,q
 s−m,β 

≤ C‖𝑓‖
MFp,q

 s−m,β + C∑‖ℱ−1ρj(𝑥)𝑥j
mℱ𝑓‖

MFp,q
 s−m,β 

𝑛

j=1

. 

However, 𝑥j
mℱ𝑓 = ℱ

∂m𝑓

∂𝑥j
m. By Fourier multiplier properties of ρj(𝑥), we obtain 

‖𝑓‖
MFp,q

 s,β ≤ C‖𝑓‖
MFp,q

 s−m,β + C∑‖
∂m𝑓

∂𝑥j
m‖

MFp,q
 s−m,β 

𝑛

j=1

.                                   (24) 

By (23) and (24), we prove that the quasi-norms in (21) are equivalent quasi-norms on 

MFp,q
 s,β 

. This proved Theorem (2.3.13). 

We give the discrete characterization of Morrey type Besov-Triebel spaces and we 

generalize the discrete characterization of standard Besov-Triebel spaces [76]. Next, we 

will use the idea of [76]. 

With MFp,q
 s,β 

 we associate the space M𝑓p,q
 s,β 

 of complex sequences 𝛼 = 〈𝛼k
j 〉
k∈ℤ𝑛
j∈ℕ0  for 

which the quasi-norm 

‖α‖
M𝑓p,q

 s,β ≔ ‖‖〈2js ∑|αk
j
|χk
j

k∈ℤ𝑛

〉j∈ℕ0‖

𝑙β

‖

Mq
p

 

is finite. Here χk
j
 is the characteristic of the parallelepiped 

∆k
j
≔ 2−j[k + [−1 2⁄ , 1 2⁄ ]𝑛], j ∈ ℕ0, k ∈ ℤ𝑛. 

The set ∆k
j
 from a disjoint decomposition of ℝ𝑛 for fixed j. 



50 

To give a discrete characterization of MBp,q
 s,β 

 we need the sequence space Mbp,q
 s,β 

 of 

the complex sequences 𝛼 = 〈𝛼k
j 〉
k∈ℤ𝑛
j∈ℕ0  for which the quasi-norm 

‖α‖
Mbp,q

 s,β ≔ ‖‖〈2js ∑|αk
j
|χk
j

k∈ℤ𝑛

〉j∈ℕ0‖

Mq
p

‖

𝑙β

 

is finite. 

For ϕ0, ϕ1 defined as in Definition (2.3.2), we write 

ψ0(𝑥) ≔
ϕ0(𝑥)

ϕ0
2(𝑥) + ϕ1(𝑥)

, |𝑥| ≤ 2, 

ψ1(𝑥) ≔
ϕ1(2𝑥)

ϕ1
2(𝑥) + ϕ1

2(2𝑥) + ϕ1
2(4𝑥)

, 1 2⁄ ≤ |𝑥| ≤ 2. 

which are extended by 0 to ℝ𝑛. These are C∞-functions with properties 

suppψ0 ⊂ {ξ ∈ ℝ
𝑛 ∶  |ξ| ≤ 2}, 

suppψ1 ⊂ {ξ ∈ ℝ
𝑛 ∶  1 2⁄ ≤ |ξ| ≤ 2}. 

Lemma (2.3.14) [55]: Let −∞ < s < ∞ ,  0 < q ≤ p < ∞ , 0 < β ≤ ∞ . If d >
𝑛 min{q, β}⁄ , then there exists a positive constant C such that 

‖‖2js sup
y∈ℝ𝑛

(ℱ−1[ϕjℱ𝑓](∙ −y))

[1 + 2j|y|]d
‖

𝑙β

‖

Mq
p

≤ C‖𝑓‖
MFp,q

 s,β                              (25) 

‖‖2js sup
y∈ℝ𝑛

(ℱ−1[ϕjℱ𝑓](∙ −y))

[1 + 2j|y|]d
‖

Mq
p

‖

𝑙β

≤ C‖𝑓‖
MBp,q

 s,β                               (26) 

hold, where ϕj defined as in Definition (2.3.2). 

Lemma (2.3.15) [55]: For 𝛼 = 〈𝛼k
j 〉
k∈ℤ𝑛
j∈ℕ0 , let 

𝑓j,σ(𝑥) ≔ ∑ ∑|σk
j+r
| [1 + ‖2j+r𝑥 − k‖

𝑙∞
]
−L

k∈ℤ𝑛

1

r=−1

, 𝑥 ∈ ℝ𝑛 

when L > 𝑛 min{1, q, β}⁄ , then 

‖‖2js𝑓j,σ‖𝑙β
‖
Mq
p
≤ C‖σ‖

MFp,q
 s,β   

and 
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‖‖2js𝑓j,σ‖Mq
p‖

𝑙β

≤ C‖σ‖
MBp,q

 s,β  

for −∞ < s < ∞,  0 < q ≤ p < ∞, 0 < β < ∞, where the constant C is independent of σ. 

Proof: Let 𝑥 ∈ ∆k0
j

 and write 

K𝑙 ≔ {k ∈ ℤ𝑛 ∶ 2𝑙 ≤ ‖k − k0‖𝑙∞ < 2
𝑙+1}, 𝑙 ∈ ℕ0. 

If k ∈ K𝑙, then ‖2j − k‖
𝑙∞
≥ 2𝑙−1. By 𝑙1 ↪ 𝑙t, 0 < t < 1, we obtain 

𝑔jσ(𝑥) ≔ ∑|σk
j
| [1 + ‖2j𝑥 − k‖

𝑙∞
]
−L

k∈ℤ𝑛

≤ |σk
j
| +∑∑|σk

j
|2−𝑙L

k∈K𝑙

∞

𝑙=0

≤ (|σk
j
|
t
)
1 t⁄

+∑(∑|σk
j
|t

k∈K𝑙

)

1 t⁄

2−𝑙L
∞

𝑙=0

= (2j𝑛 ∫[|σk
j
|χk0
j (y)]

t

dy

ℝ𝑛

)

1 t⁄

+∑2−𝑙L (2j𝑛 ∫[∑|σk
j
|χk
j (y)

k∈K𝑙

]

t

dy

ℝ𝑛

)

1 t⁄
∞

𝑙=0

.     (27) 

Since the ∆k
j
’s are disjoint to each other and the measure is 2−j𝑛. If y ∈ ∆k

j
, k ∈ K𝑙, we 

have 

|𝑥 − y| ≤ |𝑥 − 2−jk0| + |2
−jk0 − 2

−jk| + |2−jk − y| ≤ C2−j + C2−j2𝑙 + C2−j

≤ C2−j+𝑙         (28) 

Therefore, 

∫[∑ |σk
j
|χk
j

k∈KL

]

t

dy

ℝ𝑛

≤ C2(−j+𝑙)𝑛ℳ[∑|σk
j
|χk
j

k∈ℤ𝑛

]

t

(𝑥). 

Since L > 𝑛 min{1, q, β}⁄ , we take t such that 0 < t < min{1, q, β} and L > 𝑛 t⁄ . Thus, 

𝑔jσ(𝑥) ≤ C

(

 ℳ [∑ |σk
j
|χk
j (𝑥)

k∈KL

]

t

(𝑥)

)

 

1 t⁄

. 

By the maximal inequality in Lemma (2.3.4), we obtain 

‖‖2js𝑓j,σ‖𝑙β
‖
Mq
p
≤ C‖‖2js𝑔j,σ‖𝑙β

‖
Mq
p
≤ C‖‖ℳ [∑|σk

j
|χk
j

k∈ℤ𝑛

]

t

‖

𝑙β t⁄

‖

Mq t⁄
p t⁄

1 t⁄

≤ C‖‖[∑ |σk
j
|χk
j

k∈ℤ𝑛

]

t

‖

𝑙β t⁄

‖

Mq t⁄
p t⁄

1 t⁄

= C‖σ‖
M𝑓p,q

 s,β .                                                            (29) 
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For Mbp,q
 s,β 

 the proof is simpler. 

Theorem (2.3.16) [55]: Let s ∈ ℝ𝑛, 0 < β < ∞, 0 < q ≤ p < ∞. The operators 

se ∶  MFp,q
 s,β 

→ M𝑓p,q
 s,β 

 

and 

fu ∶  M𝑓p,q
 s,β 

→ MFp,q
 s,β 

 

(these are abbreviations for sequence and function, respectively), defined by 

se 𝑓 =: 〈(2π)−
𝑛
2ℱ−1[ϕjℱ𝑓](2

−jk)〉k∈ℤ𝑛
j∈ℕ0                                             (30) 

fu σ =: ∑ σk
0(ℱ−1ψ0(∙ −k))

k∈ℤ𝑛

+∑ ∑ σk
j
(ℱ−1ψ1(2

j ∙ −k))

k∈ℤ𝑛

∞

j=1

                    (31) 

are bounded. Furthermore, fu ∙ se = 𝑖d and ‖se ∙‖
M𝑓p,q

 s,β  is an equivalent quasi-norm on 

M𝑓p,q
 s,β 

. the same result holds on Besov spaces when replacing MFp,q
 s,β 

 by MBp,q
 s,β 

 and 

M𝑓p,q
 s,β 

 by Mbp,q
 s,β 

. 

Proof: We only consider MFp,q
 s,β 

. For MBp,q
 s,β 

 the proof is similar. 

First, we prove that se is bounded. Let 𝑥 ∈ ∆k
j
, then |𝑥 − 2−jk0| ≤ C2

−j and we have 

2js ∑(se𝑓)k
j
χk
j (𝑥)

k∈ℤ𝑛

≤ (2π)−𝑛 2⁄ sup
|γ|≤C2−j

2js|ℱ−1[ϕjℱ𝑓](𝑥 − z)|

≤ C sup
z∈ℝ𝑛

2js|ℱ−1[ϕjℱ𝑓](𝑥 − z)|

[1 + 2j|z|]N
.                                                                                  (32) 

By Lemma (2.3.14), 

‖‖2js ∑(se𝑓)k
j
χk
j (∙)

k∈ℤ𝑛

‖

𝑙β

‖

Mq
p

≤ ‖‖sup
z∈ℝ𝑛

2js|ℱ−1[ϕjℱ𝑓](∙ −z)|

[1 + 2j|z|]N
‖
𝑙β

‖

Mq
p

≤ ‖𝑓‖
MFp,q

 s,β         (33) 

Thus, se is bounded. 

Second, let 

‖fuσ‖
M𝑓p,q

 s,β = ‖‖2jsIj‖𝑙β
‖
Mq
p
, Ij(𝑥) ≔ |ℱ−1[ϕjℱ𝑓uσ](𝑥)| 

We have the fact that Ij(𝑥) ≤ C𝑓jσ(𝑥); see [76]. By the fact above and Lemma 

(2.3.15), we know that fu is bounded. 

Third, the proof of the rest is similar to that in [76]. Theorem (2.3.16) is proved. 
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Corollary (2.3.17) [55]: Assume 0 < q ≤ p < ∞, 0 < β < ∞ , and s0, s1 ∈ ℝ . Then a 

linear operator T ∶ MFp,q
 s0,β → MFp,q

 s1,β  is bounded, iff the operator seTfu ∶ M𝑓p,q
 s0,β →

M𝑓p,q
 s1,β  is bounded. The respective quasi-norms of the operators are equivalent. 

The operators sefu are given by matrices. Assume that T ∶ 𝒮 → 𝒮′ is bounded. Then  

(seTfuσ)m
𝑙 =∑ ∑ βk,m

j,𝑙
αk
j

k∈ℤ𝑛

∞

j=0

 

where 

βk,m
j,𝑙

≤ {
(se(T[(ℱΦ0)(− ∙ k)]))M

𝑙
, j = 0.

(se(T[(ℱΦJ)(− ∙ k)]))
M

𝑙

, j ≥ 1.
 

The matrix associated with the pseudo-deferential operator A corresponding to the 

symbol 𝑎 is defined by β(𝑎). The boundedness of this matrix between sequence spaces 

depends on the relative size of its coefficient. 

The Hörmander class S1,δ
𝑣  with 𝑣 ∈ ℝ and 0 ≤ δ < 1 consists of all functions 𝑎 ∈

C∞(ℝ𝑛 × ℝ𝑛) which satisfy 

|Dξ
αD𝑥

β
𝑎(𝑥, ξ)| ≤ Cα,β(1 + |ξ|)

𝑣−|α|+δ|β|, 𝑥, ξ ∈ ℝ𝑛 

for all multi-indices α and β with 𝑎 ∈ S1,β
𝑣 . 

We associate the pseudo-deferential operator T defined by 

T𝑓(𝑥) ≔ ℱ−1[𝑎(𝑥,∙)ℱ𝑓](𝑥), 𝑓 ∈ 𝒮, 𝑥 ∈ ℝ𝑛. 

The function 𝑎 is called the symbol of T and the class of operators arising in this 

way from S1,δ
𝑣  is denoted by ψ1,δ

𝑣 . If δ = 1 one calls ψ1,1
0  the exotic class. 

Lemma (2.3.18) [55]: Assume 0 ≤ δ < 1 , 𝑣 ∈ ℝ  and 𝑎 ∈ S1,δ
𝑣 . Then for N ∈ ℕ  there 

exists a constant C > 0 such that 

|β(𝑎)k,m
j,𝑙
| ≔ C {

2j𝑣2(j−𝑙)N(1 + |2j−𝑙m− k|)
−(N+𝑛)

, j < 𝑙.

2j𝑣2(𝑙−j)N(1 + |2𝑙−jk − m|)
−(N+𝑛)

, j ≥ 𝑙.
 

holds for all j, 𝑙 ∈ ℕ0 and k,m ∈ ℤ𝑛. 

Lemma (2.3.19) [55]: Assume s, 𝑣 ∈ ℝ, 0 < β < ∞, 0 < q ≤ p < ∞ and L > 𝑛 min{1, q, β}⁄ . 

(i) If k > 𝑠, then 

‖〈∑ ∑|σk
j
|2j𝑣2(j−𝑙)k(1 + |2j−𝑙m− k|)

−L

k∈ℤ𝑛

𝑙−1

j=0

〉
m∈ℤ𝑛
𝑙∈ℕ0 ‖

M𝑓p,q
 s,β 

≤ C‖σ‖
M𝑓p,q

 s+𝑣,β             (34) 

holds, where C is independent of σ. 

(ii) If λ > 𝑛 min{1, q, β}⁄ − s, then 
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‖〈∑ ∑|σk
j
|2j𝑣2(𝑙−j)λ(1 + |2𝑙−jk − m|)

−L

k∈ℤ𝑛

∞

j=𝑙

〉
m∈ℤ𝑛
𝑙∈ℕ0 ‖

M𝑓p,q
 s,β 

≤ C‖σ‖
M𝑓p,q

 s+𝑣,β             (35) 

holds, where C is independent of σ. 

Proof: Step 1. We prove (34). Let 𝑥 ∈ ∆m
𝑙 , put Kr ≔ {k ∈ ℤ𝑛 ∶ 2r − 1 ≤ |2j−𝑙m− k| <

2r+1 − 1}, r ∈ ℕ0 with 0 < t < 1. Then it follows 

rm
𝑙 ≔∑∑|σk

j
|2j−𝑙2(j−𝑙)k(1 + |2j−𝑙m− k|)

−L

k∈ℤ𝑛

∞

j=0

≤∑2j𝑣2(j−k)k∑2−Lr(∑|σk
j
|
t

k∈Kr

)

1 t⁄
∞

r=0

𝑙−1

j=0

. 

If y ∈ ∆k
j
, then |𝑥 − y| ≤ C2−j+r. Since j < 𝑙, thus 

∑|σk
j
|
t

k∈Kr

= 2j𝑛 ∫[∑|σk
j
|χk
j (y)

k∈Kr

]

t

dy

ℝ𝑛

≤ C2r𝑛ℳ[∑|σk
j
|χk
j (y)

k∈Kr

]

t

(𝑥). 

If we write ℳj(𝑥) = ℳ[∑ |σk
j
|χk
j (y)k∈Kr

]
t
(𝑥), then 

2js ∑ rm
𝑙 χm

𝑙 (𝑥)

m∈ℤ𝑛

≤ C∑2(𝑙−1)(k−s)2j(s+𝑣)ℳj
1 t⁄ (𝑥)

𝑙−1

j=0

. 

Since L > 𝑛 min{1, q, β}⁄ , so we can take t such that 0 < t < min{1, q, β} and L > 𝑛 t⁄ . 

thus 

Left side of (34) ≤ ‖‖〈2𝑙s ∑ rm
𝑙 χm

𝑙 (𝑥)

k∈ℤ𝑛

〉𝑙∈ℕ0‖

𝑙β

‖

Mq
p

≤ C‖‖〈(∑2(j−𝑙)(k−s)t2j(s+𝑣)t
𝑙−1

j=0

ℳj)〉𝑙∈ℕ0‖

𝑙β t⁄

‖

Mq t⁄
p t⁄

≤ C‖‖〈(2j(s+𝑣)tℳj)〉𝑙∈ℕ0‖𝑙β t⁄
‖
Mq t⁄
p t⁄
≤ C‖σ‖

M𝑓p,q
 s+𝑣,β .                                                (36) 

In the third inequality in (36), we use the following fact 

‖〈∑2(j−𝑙)ϵ𝑎j

𝑙−1

j=0

〉𝑙∈ℕ0‖

𝑙β

≤ C‖〈𝑎j〉j∈ℕ0‖𝑙β
, 1 ≤ β < ∞, ϵ > 0 

where 𝑎j  is a complex-sequence. In the last inequality in (36), we use the maximal 

inequality in Lemma (2.3.4). 

Step 2. To prove (35),we decompose ℝ𝑛 into subsets 

K̅r ≔ {k ∈ ℤ𝑛 ∶  2r − 1 ≤ |m − 2𝑙−jk| < 2r+1 − 2}, r ∈ ℕ0. 
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The rest is similar to step 1 and by the following fact 

‖〈∑2(𝑙−j)ϵ𝑎j

∞

j=𝑙

〉𝑙∈ℕ0‖

𝑙β

≤ C‖〈𝑎j〉j∈ℕ0‖𝑙β
, 1 ≤ β < ∞, ϵ > 0, 

where 𝑎j is a complex-sequence. 

Theorem (2.3.20) [55]: Assume −∞ < s < ∞, 0 < q ≤ p < ∞, 0 < β < ∞. Let T ∈ ψ1,δ
𝑣  

with 𝑣 ∈ ℝ. 

(i) T ≔ MFp,q
 s+𝑣,β 

→ MFp,q
 s,β 

 is bounded, if 0 ≤ δ < 1. 

T ≔ MBp,q
 s+𝑣,β 

→ MBp,q
 s,β 

 is bounded, if 0 ≤ δ < 1. 

(ii) T ≔ MFp,q
 s+𝑣,β 

→ MFp,q
 s,β 

 is bounded, if s < 𝑛(1 min{1, q, β}⁄ − 1), δ = 1. 

T ≔ MBp,q
 s+𝑣,β 

→ MBp,q
 s,β 

 is bounded, if s < 𝑛(1 min{1, q, β}⁄ − 1), δ = 1. 

Proof : By Lemma (2.3.18), we have 

‖seTfuσ‖
M𝑓p,q

 s,β ≤ ‖〈∑ ∑|βk,m
j,𝑙
|σk
j

k∈ℤ𝑛

∞

j=0

〉
k∈ℤ𝑛
𝑙∈ℕ0 ‖

M𝑓p,q
 s,β 

≤ C‖〈∑ ∑|σk
j
|2j𝑣2(𝑙−j)N(1 + |2j−𝑙m− k|)

−(N+𝑛)

k∈ℤ𝑛

𝑙−1

j=0

〉
k∈ℤ𝑛
𝑙∈ℕ0 ‖

M𝑓p,q
 s,β 

+ C‖〈∑ ∑|σk
j
|2j𝑣2(j−𝑙)N(1 + |2j−𝑙k − m|)

−(N+𝑛)

k∈ℤ𝑛

∞

j=𝑙

〉
k∈ℤ𝑛
𝑙∈ℕ0 ‖

M𝑓p,q
 s,β 

. 

By Lemma (2.3.19), we obtain 

‖seTfuσ‖
M𝑓p,q

 s,β ≤ C‖σ‖
M𝑓p,q

 s+𝑣,β . 

If s > Iq,β ≔ 𝑛(1 min{1, q, β}⁄ − 1) and N is sufficient large, by Corollary (2.3.17), the 

operator T ∶ MFp,q
 s+𝑣,β 

→ MFp,q
 s,β 

 is bounded. 

When s ≤ Iq,β, by lifting properties, we have that 

Iτ ≔ ℱ−1[(1 + |∙|2)τ 2⁄ ℱ] ∈ ψ1,δ
τ ∶ MFp,q

 s+𝑣,β 
→ MFp,q

 s,β 
 

is bounded for s, τ ∈ ℝ. By the fact that ψ1,δ
𝑣1 ∙ ψ1,δ

𝑣2 ⊂ ψ1,δ
𝑣1+𝑣2 , 0 ≤ δ < 1, then the operator 

Tτ ≔ IτTI−τ ∈ ψ1,δ
𝑣 ∶ MFp,q

Iq,β+1+𝑣,β → MFp,q
 Iq,β+1,β

 

is bounded. 

Therefore, 

T = I−τT
τIτ ∈ ψ1,δ

𝑣 ∶ MFp,q
Iq,β+1+𝑣+τ,β 

→ MFp,q
 Iq,β+1+τ,β
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is bounded for τ ∈ ℝ. 

From MBp,q
 s,β 

 is similar, we omit the details here. 

Thus, Theorem (2.3.20) is proved.  
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Chapter 3 

Variable Smoothness and Integrability 

We give molecular and atomic decomposition results and show that the 

space is well-defined, i.e., independent of the choice of basic functions. As in the 

classical case, a unified scale of spaces permits clearer results in cases where 

smoothness and integrability interact, such as Sobolev embedding and trace 

theorems. As an application of the decomposition we show optimal trace 

theorems in the variable indices case. We give Sobolev-type embeddings, and 

show that the scale contains variable order Hölder-Zygmund spaces as special 

cases. We provide an alternative characterization of the Besov space using 

approximations by analytic functions.  

Section (3.1): Function Spaces 

From a vast array of different function spaces a well ordered superstructure 

appeared in the 1960’s and 70’s based on two three-index spaces: the Besov 

space Bp,q
α  and the Triebel–Lizorkin space  Fp,q

α  . There has been a growing 

interest in generalizing classical spaces such as Lebesgue and Sobolev spaces to 

the case with either variable integrability (e.g.,W1,p(∙) ) or variable smoothness 

(e.g., Wm(∙),2 ). These generalized spaces are obviously not covered by the 

superstructures with fixed indices. 

It is well-known from the classical case that smoothness and integrability 

often interact, for instance, in trace and embedding theorems. There has so far 

been no attempt to treat spaces with variable integrability and smoothness in one 

scale. We address this issue by introducing Triebel–Lizorkin spaces with variable 

indices, denoted Fp(∙),q(∙)
𝛼(∙)

 . 

Spaces of variable integrability can be traced back to 1931 and W. Orlicz 

[124], but the modern development started with [113] of Kováčik and Rákosník 

in 1991. Apart from interesting theoretical considerations, the motivation to study 

such function spaces comes from applications to fluid dynamics, image 

processing, PDE and the calculus of variation. 

The first concrete application arose from a model of electrorheological 

fluids in [128] (cf. [85, 86, 130, 131] for mathematical treatments of the model). 

We mention that an electrorheological fluid is a so-called smart material in which 

the viscosity depends on the external electric field. This dependence is expressed 

through the variable exponent p; specifically, the motion of the fluid is described 

by a Navier–Stokes-type equation where the Laplacian 4u is replaced by the 

p(𝑥)-Laplacian div(|∇𝑢|p(𝑥)−2∇𝑢). By standard arguments, this means that the 

natural energy space of the problem is W1,p(∙), the Sobolev space of variable 

integrability. 

An application to image restoration was proposed by Chen, Levine & Rao 

[94, 123]. Their model combines isotropic and total variation smoothing. And, 

their model requires the minimization over u of the energy 

 ∫ |∇𝑢(𝑥)|p(𝑥) + λ|𝑢(𝑥) − I(𝑥)|2 d𝑥
Ω

 

where I is given input. Recall that in the constant exponent case, the power p ≡ 2 

corresponds to isotropic smoothing, whereas p ≡ 1 gives total variation 

smoothing. Hence the exponent varies between these two extremes in the variable 
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exponent model. This variational problem has an Euler-Lagrange equation, and 

the solution can be found by solving a corresponding evolutionary PDE. 

Partial differential equations have also been studied from a more abstract 

and general point of view in the variable exponent setting. We can approach 

boundary value problems through a suitable trace space, which, by definition, is a 

space consisting of restrictions of functions to the boundary. For the Sobolev 

spaceW1,p(∙), the trace space was first characterized by an intrinsic norm, see 

[100]. In analogy with the classical case, this trace space can be formally denoted 

FP(∙),P(∙)
1−1 p(∙)⁄

, so it is an example of a space with variable smoothness and 

integrability, albeit on with a very special relationship between the two 

exponents. Already somewhat earlier Almeida & Samko [88] and Gurka, 

Harjulehto & Nekvinda [109] had extended variable integrability Sobolev spaces 

to Bessel potential spaces W1,p(∙) for constant but non-integer 𝛼1. 

Along a different line of study, Leopold [117, 118, 119, 120] and Leopold 

& Schrohe [121] studied pseudo-differential operators with symbols of the 

type〈ξ𝑚(𝑥)〉, and defined related function spaces of Besov-type with variable 

smoothness, formally Bp,q
𝑚(∙)

. In the case p = 2, this corresponds to the Sobolev 

space H𝑚(∙) = W𝑚(𝑥),2. Function spaces of variable smoothness have been 

studied by Besov [89, 90, 91, 91]. He generalized Leopold’s work by considering 

both Triebel-Lizorkin spaces Fp,q
𝛼(∙)

 and Besov spaces Bp,q
𝛼(∙)

 in ℝ𝑛. Schneider and 

Schwab [135] used H𝑚(∙)(ℝ) in the analysis of certain Black-Scholes equations. 

The variable smoothness corresponds to the volatility of the market, which surely 

should change with time. 

We define and study a generalized scale of Triebel-Lizorkin type spaces 

with variable smoothness 𝛼(𝑥), and variable primary and secondary indices of 

integrability, p(𝑥) and q(𝑥). By setting some of the indices to appropriate values 

we recover all previously mentioned spaces as special cases, except the Besov 

spaces (which, like in the classical case, form a separate scale). 

Apart from the value added through unification, our new space allows 

treating traces and embeddings in a uniform and comprehensive manner, rather 

than doing them case by case. 

When generalizing Triebel-Lizorkin spaces, we have several obstacles to 

overcome. The main difficulty is the absence of the vector-valued maximal 

function inequalities. It turns out that the inequalities are not only missing, rather, 

they do not even hold in the variable indices case. As a consequence of this, the 

Hörmander-Mikhlin multiplier theorem does not apply in the case of variable 

indices. The solution is to work in closer connection with the actual structure of 

the space with what we call η-functions and to derive suitable estimates directly 

for these functions. 

We state the main results: atomic and molecular decomposition of Triebel-

Lizorkin spaces, a trace theorem, and a multiplier theorem. We show that the new 

scale is indeed a unification of previous spaces, in that it includes them all as 

special cases with appropriate choices of the indices. We formulate and prove an 

appropriate version of the multiplier theorem. We give the proofs of the main 

decompositions theorems, and we discuss the trace theorem.  
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For 𝑥 ∈ ℝ𝑛 and r > 0 we denote by B𝑛(𝑥, r) the open ball in ℝ𝑛 with 

center 𝑥 and radius r. By B𝑛 we denote the unit ball B𝑛(0,1). We use 𝑐 as a 

generic constant, i.e., a constant whose values may change from appearance to 

appearance. The inequality 𝑓 ≈ g means that 
1

c
g ≤ 𝑓 ≤ c g for some suitably 

independent constant c. By  χA we denote the characteristic function of the set A. 

If 𝑎 ∈ ℝ𝑛, then we use the notation 𝑎+ for the positive part of 𝑎, i.e., 𝑎+ =
max {0, 𝑎}. By ℕ and  ℕ0 we denote the sets of positive and non-negative 

integers. For 𝑥 ∈ ℝ we denote by ⌊𝑥⌋ the largest integer less than or equal to 𝑥. 

We denote the mean-value of the integrable function 𝑓, defined on a set A 

of finite, non-zero measure, by 

⨏
A
𝑓(𝑥)d𝑥 =

1

|A|
∫𝑓(𝑥)d𝑥
A

. 

The Hardy-Littlewood maximal operator M is defined on Lloc
1 (ℝ𝑛) 

M𝑓(𝑥) = sup
r>0

⨏
B𝑛(𝑥,𝑟)

|𝑓(y)|dy 

By supp 𝑓 we denote the support of the function 𝑓, i.e., the closure of its zero set. 

By Ω ⊂ ℝ𝑛 we always denote an open set. By a variable exponent we 

mean a measurable bounded function p ∶ Ω → (0,∞) which is bounded away 

from zero. For A⊂ Ω we denote PA
+ = ess supAp(𝑥) and PA

− = ess infAp(𝑥); we 

abbreviate p+ = pΩ
+  and p− = pΩ

−. We define the modular of a measurable 

function 𝑓 to be 

ϱLp(∙)(Ω)(𝑓)∫ |𝑓(𝑥)|
p(𝑥) d𝑥

Ω

 

The variable exponent Lebesgue space Lp(∙)(Ω) consists of all measurable 

functions 𝑓 ∶ Ω → ℝ𝑛 for whichϱLp(∙)(Ω)(𝑓) < ∞. We define the Luxemburg 

norm on this space by 

‖𝑓‖Lp(∙)(𝛺) = inf{λ > 0 ∶ ϱLp(∙)(Ω)(𝑓 λ⁄ ) ≤ 1}, 

which is the Minkowski functional of the absolutely convex set{𝑓 ∶ ϱLp(∙)(Ω)(𝑓) ≤

1}. In the case when Ω = ℝ𝑛 we replace the Lp(·)(ℝn) in subscripts simply by 

p(·). The variable exponent Sobolev space W1,p(∙)(Ω) is the subspace of 

L1,p(.)(Ω) of functions 𝑓 whose distributional gradient exists and satisfies |∇𝑓| ∈

Lp(∙)(Ω). The norm 
‖𝑓‖W1,p(∙)(Ω) = ‖𝑓‖Lp(∙)(Ω) + ‖∇𝑓‖Lp(∙)(Ω) 

makes  W1,p(∙)(Ω) a Banach space. 

For fixed exponent spaces we have a very simple relationship between the 

norm and the modular. In the variable exponent case this is not so. However, we 

have the following useful property: ϱLp(∙)(𝑓) ≤ 1 if and only if ‖𝑓 ‖p(·) ≤ 1. This 

and many other basic results were proven in [113]. 

Definition (3.1.1) [140]: Le g ∈ C(ℝ𝑛). We say that g is locally log-Hölder 

continuous, abbreviated g ∈ Cloc
log
(ℝn), if there exists Clog > 0 such that 

|g(𝑥) − g(y)| ≤
Clog

log (e + 1 |𝑥 − y|)⁄
 

for all 𝑥, y ∈ ℝ𝑛. 

      We say that g is globally log-Hölder continuous, abbreviated g ∈
Clog(ℝn), if it is locally log-Hölder continuous and there exists g∞ ∈ ℝ such that 



60 

|g(𝑥) − g∞| ≤
Clog

log (e + 1 |𝑥|)⁄
 

Note that g is globally log-Hölder continuous if and only if 

|g(𝑥) − g(y)| ≤
c

|log 
1
2
q(𝑥, y)|

 

for all 𝑥, y ∈ ℝ𝑛̅̅ ̅̅ , where q denotes the spherical-chordal metric (the metric 

inherited from a projection to the Riemann sphere), hence the name, global log-

Hölder continuity. 

Building on [96] and [97] it is shown in [99] that 

M ∶ Lp(∙)(ℝ𝑛) ↪ Lp(∙)(ℝ𝑛) 
is bounded if p ∈ Clog(ℝ𝑛) and 1 < p− ≤ p+ ≤ ∞. Global log-Hölder continuity 

is the best possible modulus of continuity to imply the boundedness of the 

maximal operator, see [96]. However, if one moves beyond assumptions based on 

continuity moduli, it is possible to derive results also under weaker assumptions, 

see [98, 122, 126]. 

Definition (3.1.2) [140]: We say a pair (φ,Φ) is admissible if φ,Φ ∈ 𝒮(ℝ𝑛) 
satisfy 

(i) supφ̂ ⊆ {ξ ∈ ℝ𝑛 ∶
1

2
≤ |ξ| ≤ 2} and |φ̂(ξ)| ≥ c > 0 when 

3

5
≤ |ξ| ≤

5

3
 

(ii) supΦ̂ ⊆ {ξ ∈ ℝn ∶ |ξ| ≤ 2} and  |Φ̂(ξ)| ≥ c > 0 when |ξ| ≤
5

3
. 

We set φ𝒱(𝑥) = 2
𝑣𝑛φ(2𝑣𝑥) for 𝑣 ∈ ℕ and φ0(𝑥) = Φ(X). For 𝒬 ∈ 𝒟𝑣 we set 

φ𝒬(𝑥) = {
|𝒬|1 2⁄ φv(𝑥 − 𝑥𝒬)     if 𝑣 ≥ 1

|𝒬|1 2⁄ Φ(𝑥 − 𝑥𝒬)      if 𝑣 = 0
 

We define ψ𝑣 and ψ𝒬 analogously. 

Following [106], given an admissible pair (φ,Φ) we can select another 

admissible pair (ψ,Ψ) such that 

Φ̂̃(ξ) ⋅ Ψ̂(ξ) +∑φ̂̃

v≥1

(2−𝑣ξ) ⋅ ψ̂(2−𝑣ξ) = 1   for all  ξ. 

Here, Φ̂(𝑥) = Φ(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ and similarly for φ̃. 

For each 𝑓 ∈ 𝒮̀(ℝ𝑛) we define the (inhomogeneous) φ-transform 𝒮φ as the 

map taking 𝑓 to the sequence (𝒮φ𝑓)𝒬∈𝒟+ by setting (𝒮φ𝑓)𝒬 = 〈𝑓,φ𝒬〉.  Here, 

〈⋅,⋅〉 denotes the usual inner product on L2(ℝn; ℂ). For later purposes note that 

(𝒮φ𝑓)𝒬 = |𝒬|
1 2⁄ 𝜑̃𝑣 ∗ 𝑓(2

−𝑣k) for 𝑙(𝒬) = 2−𝑣 < 1 and (𝒮φ𝑓)𝒬 = |𝒬|
1 2⁄ Φ̃ ∗

𝑓(2−𝑣k) for 𝑙(𝒬) = 1. 

The inverse (inhomogeneous) φ-transform Tψ is the map taking a sequence 

s = {𝑠𝒬}𝑙(𝒬)≤1 to Tψ𝑠 = ∑ 𝑠𝒬Ψ𝒬𝑙(𝒬)=1 + ∑ s𝒬ψ𝒬𝑙(𝒬)<1 . We have the following 

identity for 𝑓 ∈ 𝒮̀(ℝ𝑛): 

𝑓 = ∑ 〈𝑓,Φ𝒬〉

𝒬∈𝒟0

Ψ𝒬 +∑ ∑〈𝑓,φ𝒬〉

𝒬∈𝒟𝑣

∞

𝑣=1

ψ𝒬                                                      (1) 

We consider all distributions in 𝒮̀(ℝ𝑛) (rather than 𝒮̀ 𝒫⁄  as in the 

homogeneous case), since Φ̂(0) ≠ 0. 
Using the admissible functions (φ,Φ) we can define the norms 

‖𝑓‖Fp,qα = ‖‖2𝑣αφv ∗ 𝑓‖𝑙q‖Lp    and   ‖𝑓‖Bp,qα = ‖‖2𝑣αφ𝑣 ∗ 𝑓‖Lp‖𝑙q , 
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for constants p, q ∈ (0,∞) and 𝛼 ∈ ℝ. The Triebel-Lizorkin space Fp,q
α  and the 

Besov Bp,q
α  consists of distributions 𝑓 ∈ 𝒮̀ for which ‖𝑓‖Fp,qα < ∞   and 

‖𝑓‖Bp,qα < ∞, respectively. The classical theory of these spaces is in Triebel [41, 

56, 136]. The discrete representation as sequence spaces through the φ-transform 

is due to Frazier and Jawerth [45, 106]. Recently, anisotropic and weighted 

versions of these spaces have been studied by many people, see, e.g., Bownik and 

Ho [93], Frazier and Roudenko [129, 107], Kühn, Leopold, Sickel and 

Skrzypczak [114]. We now move on to generalizing these definitions to the 

variable index case. 

We assume that p, q are positive functions on ℝ𝑛 such that 
1

p
,
1

q
∈

Clog(ℝ𝑛). This implies, in particular, 0 <  p−  ≤ p+  <  ∞ and 0 <  q−  ≤

q+  <  ∞. We also assume that  𝛼 ∈ Cloc
log
(ℝ𝑛)⋂L∞(ℝ𝑛) with 𝛼 ≥ 0 and that 𝛼 

has a limit at infinity. 

One of the central classical tools that we are missing in the variable 

integrability setting is a general multiplier theorem of Mikhlin-Hörmander type. 

We show that a general theorem does not hold, and instead prove the following 

result which is still sufficient to work with Triebel-Lizorkin spaces. 

For a family of functions 𝑓𝑣 ∶ ℝ
𝑛 → ℝ, 𝑣 ≥ 0, we define 

‖𝑓𝑣(𝑥)‖𝑙𝑣
q(𝑥) = (∑|𝑓𝑣(𝑥)|

q(𝑥)

𝑣≥0

)

1 q(𝑥)⁄

. 

Note that this is just an ordinary discrete Lebesgue space, since q(𝑥) does 

not depend on 𝑣. The mapping 𝑥 ↦ ‖𝑓𝑣(𝑥)‖𝑙𝑣
𝑞(𝑥) is a function of 𝑥 and can be 

measured in Lp(∙). We write L𝑥
p(∙)

 to indicate that the integration variable is 𝑥. We 

define 

ηm(𝑥) = (1 + |𝑥|)
−m  and  η𝑣,m(𝑥) = 2

𝑛𝑣ηm(2
𝑣𝑥)                           (2) 

Definition (3.1.3) [140]: Let φ𝑣, 𝑣 ∈ ℕ0, be as in Definition (3.1.2). The Triebel-

Lizorkin space Fp(∙),q(∙)
𝛼(∙)

(ℝ𝑛) is defined to be the space of all distributions 𝑓 ∈ 𝒮̀ 

with ‖𝑓‖
Fp(∙),q(∙)
𝛼(∙) < ∞, where 

‖𝑓‖
Fp(∙),q(∙)
𝛼(∙) : = ‖‖2𝑣𝛼(𝑥)φ𝑣 ∗ 𝑓(𝑥)‖𝑙𝑣

q(𝑥)‖
L𝑥
p(∙)

 

In the case of p =  q we use the notation Fp(∙)
𝛼(∙)(ℝ𝑛) ≔ Fp(∙),q(∙)

𝛼(∙) (ℝ𝑛). 

In the classical case it has proved very useful to express the Triebel-

Lizorkin norm in terms of two sums, rather than a sum and an integral, thus, 

giving rise to discrete Triebel-Lizorkin spaces 𝑓p,q
α . This is achieved by viewing 

the function as a constant on dyadic cubes. The size of the appropriate dyadic 

cube varies according to the level of smoothness. 

We next present a formulation of the Triebel-Lizorkin norm which is 

similar in spirit. For a sequence of real numbers {𝒮𝒬}𝒬 we define 

‖{𝒮𝒬}𝒬  ‖𝑓p(∙),q(∙)
𝛼(∙)

≔ ‖‖2𝑣𝛼(𝑥)∑ |𝑠𝒬||𝒬|
−
1

2𝜒𝒬𝒬∈𝒟𝑣 ‖
𝑙𝑣
q(𝑥)
‖
L𝑥
p(∙)

. 
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The space 𝑓p(∙),q(∙)
𝛼(∙)

 consists of all those sequences {𝒮𝒬}𝒬 for which this 

norm is finite. We are ready to state our first decomposition result, which says 

that 𝒮φ: Fp(∙),q(∙)
𝛼(∙)

↪ 𝑓p(∙),q(∙)
𝛼(∙)

  is a bounded operator. 

Definition (3.1.4) [140]: Let 𝑣 ∈ ℕ0, 𝒬 ∈ 𝒟𝑣,and k ∈ ℤ, 𝑙 ∈ ℕ0 k and M ≥ 𝑛. A 

function m𝒬 is said to be a (k, 𝑙, M)-smooth molecule for 𝒬 if it satisfies the 

following conditions for some  m > M: 

(i)  if 𝑣 > 0, then ∫ 𝑥γm𝒬(𝑥)d𝑥ℝ𝑛
= 0  for all |γ| ≤ k; and 

(ii) |𝒟γm𝒬(𝑥)| ≤ 2
|𝛾|𝑣|𝒬|1 2⁄ η𝑣,m(𝑥 + 𝑥𝒬) for all multi-indices 𝛾 ∈ ℝ𝑛 with 

|𝛾| ≤ 𝑙 
The conditions (i) and (ii) are called the moment and decay conditions, 

respectively. 

Definition (3.1.5) [140]: Let K, L ∶ ℝ𝑛 → ℝ   and  M > 𝑛. The family {m𝒬}𝒬 is 

said to be a family of (K, L,M)-smooth molecules if m𝒬 is (⌊K𝒬
−⌋, ⌊L𝒬

−⌋, M)-smooth 

for every  𝒬 ∈ 𝒟+. 

Definition (3.1.6) [140]: We say that {m𝒬}𝒬 is a family of smooth molecules for 

Fp(∙),q(∙)
𝛼(∙)

 if it is a family of (N + ε, α + ε + 1,M)-smooth molecules, where 

N(𝑥)  ≔
𝑛

min{1, p(𝑥), q(𝑥)}
− 𝑛 − α(𝑥) 

for some constant ε > 0, and M is a sufficiently large constant. 

The number M needs to be chosen sufficiently large, for instance 

2
𝑛 + clog(α)

min{1, p−, q−}
 

will do, where clog(α) denotes the log-Hölder continuity constant of α. Since M 

can be fixed depending on the parameters we will usually omit it from our 

notation of molecules. 

Theorems (3.1.22) and (3.1.24) yield an isomorphism between Fp(∙),q(∙)
𝛼(∙)

 and 

a subspace of 𝑓p(∙),q(∙)
𝛼(∙)

 via the 𝒮φ transform: 

Corollary (3.1.7) [140]: If the functions p, q and α are as in the Standing 

Assumptions, then 

‖𝑓‖
F
p(∙),q(∙)
𝛼(∙) ≈ ‖𝒮φ𝑓‖𝑓

p(∙),q(∙)
𝛼(∙)  

for every 𝑓 ∈ Fp(∙),q(∙)
𝛼(∙) (ℝ𝑛). 

We can prove that the space  Fp(∙),q(∙)
𝛼(∙) (ℝ𝑛) is well-defined. 

Theorem (3.1.8) [140]: The space  Fp(∙),q(∙)
𝛼(∙)

(ℝ𝑛) is well-defined, i.e., the 

definition does not depend on the choice of the functions φ and Φ satisfying the 

conditions of Definition (3.1.2), up to the equivalence of norms. 

Proof: Let φ̃𝑣 and φ𝑣 be different basis functions as in Definition (3.1.2). Let 

‖∙‖φ̃ and ‖∙‖φ denote the corresponding norms of Fp(∙),q(∙)
𝛼(∙)

(ℝ𝑛). By symmetry, it 

suffices to prove ‖𝑓‖φ̃ ≤ c‖𝑓‖φ for all 𝑓 ∈ 𝒮̀. Let ‖𝑓‖φ < ∞. Then by (1) and 

Theorem (3.1.22) we have 𝑓 = ∑ (𝒮φ𝑓)𝒬
ψ𝒬𝒬∈𝒟+  and ‖𝒮φ𝑓‖𝑓p(∙),q(∙)

𝛼(∙) ≤ c‖𝑓‖φ. 
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Since {ψ𝒬}𝒬 is a family of smooth molecules, ‖𝑓‖φ̃ ≤ c‖𝒮φ𝑓‖𝑓p(∙),q(∙)
𝛼(∙) by Theorem 

(3.1.24), which completes the proof.              

It is often convenient to work with compactly supported basis functions. 

Thus, we say that the molecule 𝑎𝒬 concentrated on 𝒬 is an atom if it satisfies 

supp 𝑎𝒬 ⊂ 3𝒬. The downside of atoms is that we need to choose a new set of 

them for each function 𝑓 that we represent. Note that this coincides with the 

definition of atoms in [106] in the case when p, q and 𝛼 as constants. 

If the maximal operator is bounded and  1 < p− ≤ p+ < ∞, then it follows 

easily that C0
∞(ℝ𝑛) (the space of smooth functions with compact support) is 

dense in W1,p(∙)(ℝ𝑛), since it is then possible to use convolution. However, 

density can be achieved also under more general circumstances, see [105, 112, 

139]. The standing assumptions are strong enough to give the density directly: 

Corollary (3.1.9) [140]: Let the functions p, q and 𝛼 be as in the Standing 

Assumptions. Then C0
∞(ℝ𝑛) is dense in Fp(∙),q(∙)

𝛼(∙) (ℝn). Another consequence of 

our atomic decomposition is the analogue of the standard trace theorem. Note that 

the assumption 𝛼 −
1

p
− (𝑛 − 1) (

1

p
− 1)

+
> 0 is optimal also in the constant 

smoothness and integrability case, cf. [45] 

Proof: Choose K so large that Fp+,2
K ↪ Fp+,1

𝛼+ . This is possible by classical, fixed 

exponent, embedding results. 

Let 𝑓 ∈ Fp(∙)q(∙)
𝛼(∙)

 and choose smooth atoms 𝑎𝒬 ∈ C
k(ℝ𝑛) so that 𝑓 = ∑ t𝒬𝑎𝒬𝒬∈𝒟+  in 

𝒮́. Define 

𝑓m =∑ ∑ 𝑡𝒬𝑎𝒬
𝒬∈𝒟𝑣,|𝑥𝒬|<m

m

𝑣=0

 

Then clearly 𝑓m ∈ C0
K and 𝑓m → 𝑓 in Fp(∙)q(∙)

𝛼(∙) . 

We can chose a sequence of functions φm,k ∈ C0
∞ so that ‖𝑓m −φm,k‖WK,p+ → 0 

as k → ∞ and the support of φm,k is lies in the ball B(0, rm). By the choice of K 

we conclude that 

‖𝑓m − φm,k‖F
p+,1
𝛼+ ≤ c‖𝑓m − φm,k‖F

p+,2
K = c‖𝑓m − φm,k‖WK,p+ . 

By Proposition (3.1.26) we conclude that 

‖𝑓m − φm,k‖Fp(∙)q(∙)
𝛼(∙) ≤ c‖𝑓m − φm,k‖F

p+,1
𝛼+  

Now we show how the Triebel-Lizorkin scale Fp(∙),q(∙)
𝛼(∙)

 includes as special 

cases previously studied spaces with variable differentiability or integrability. 

We begin with the variable exponent Lebesgue spaces, which were 

originally introduced by Orlicz in [124]. We show that Fp(∙),2
0 ≅ Lp(∙) under 

suitable assumptions on p. We use an extrapolation result for Lp(∙). Recall, that a 

weight ω is in the Muckenhoupt class A1 if Mω ≤ kω for some such K >  0. The 

smallest K is the A1 constant of ω. 

Lemma (3.1.10) [95]: Let p ∈ Clog(ℝ𝑛) with 1 < p− ≤ p+ < ∞ and let 𝒢 

denote a family of tuples (𝑓, g) of measurable functions on ℝ𝑛. Suppose that 

there exists a constant r0 ∈ (0, p
−)  so that 
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( ∫|𝑓(𝑥)|r0

ℝ𝑛

ω(𝑥)d𝑥)

1 r0⁄

≤ c0 ( ∫|g(𝑥)|
r0

ℝ𝑛

ω(𝑥)d𝑥)

1 r0⁄

 

for all (𝑓, g) ∈ 𝒢 and every weight ω ∈ A1, where c0 is independent of 𝑓 and g 

and depends on 𝜔 only via its A1-constant. Then 

‖𝑓‖L(∙)(ℝ𝑛) ≤ c1‖g‖L(∙)(ℝ𝑛) 

for all  (𝑓, g) ∈ 𝒢 with ‖𝑓‖L(∙)(ℝ𝑛) < ∞. 

Theorem (3.1.11) [140]: Let p ∈ Clog(ℝ𝑛) with 1 < p− ≤ p+ < ∞. Then 

Lp(∙)(ℝ𝑛) ≅ Fp(∙),2
0 (ℝ𝑛) particular, 

‖𝑓‖Lp(∙)(ℝ𝑛) ≈ ‖‖φ𝑣 ∗ 𝑓‖𝑙𝑣2‖Lp(∙)(ℝ𝑛)
 

for all 𝑓 ∈ Lp(∙)(ℝ𝑛). 

Proof: Since C0
∞(ℝ𝑛) is dense in Lp(∙)(ℝ𝑛) (see [113]) and also in Fp(∙),2

0 (ℝ𝑛) by 

Corollary (3.1.9), it suffices to prove the claim for all 𝑓 ∈ C0
∞(ℝ𝑛). Fix r ∈

(1, p−). Then 

‖‖φ𝑣 ∗ 𝑓‖𝑙𝑣2‖Lr0(ℝ𝑛;ω)
≈ ‖𝑓‖Lr0(ℝ𝑛;ω), 

for all ω ∈ A1 by [115], where the constant depends only on the A1-constant of 

the weight ω, so the assumptions of Lemma (3.1.10) are satisfied. Applying the 

lemma with 𝒢 equal to either 

{(‖φ𝑣 ∗ 𝑓‖𝑙𝑣2 , 𝑓) ∶ 𝑓 ∈ C0
∞(Ω)}   or   {(‖φ𝑣 ∗ 𝑓‖𝑙𝑣2) ∶ 𝑓 ∈ C0

∞(Ω)}  

completes the proof. 

Theorem (3.1.11) generalizes the equivalence of Lp(ℝ𝑛) ≅ Fp,q
0  for 

constant p ∈ (1,∞) to the setting of variable exponent Lebesgue spaces. If p ∈
(0, 1], then the spaces Lp(ℝn) have to be replaced by the Hardy spaces hp(ℝ𝑛). 
This suggests the following definition: 

Definition (3.1.12) [140]: Let p ∈ Clog(ℝn) with 1 < p− ≤ p+ < ∞. Then we 

define the variable exponent Hardy space hp(∙)(ℝ𝑛) by hp(∙)(ℝ𝑛) ≔ Fp(∙),2
0 . 

Let ℬ𝜎 denote the Bessel potential operator ℬ𝜎 = ℱ−1(1 + |𝜉|2)−
𝜎

2ℱ for 

σ ∈ ℝ. Then the variable exponent Bessel potential space is defined by 

ℒ𝛼,p(∙)(ℝ𝑛) ≔ ℬ𝛼 (Lp(∙)(ℝ𝑛)) = {ℬ𝛼g ∶ g ∈ Lp(∙)(ℝ𝑛)}, 

equipped with the norm ‖g‖ℒ𝛼,p(∙): = ‖ℬ
−𝛼g‖p(∙). It was shown independently in 

[88] and [109] that ℒk,p(∙)(ℝ𝑛) ≅ Wk,p(∙)(ℝ𝑛) for k ∈ ℕ0 when p ∈ Clog(ℝ𝑛) with 

1 < p− ≤ p+ < ∞. 

We will show that ℒk,p(∙)(ℝ𝑛) ≅ Wk,p(∙)(ℝ𝑛) under suitable assumptions on 

p for 𝛼 ≥ 0 and that ℒk,p(∙)(ℝ𝑛) ≅ Wk,p(∙)(ℝ𝑛) ≅ Fp(∙),2
k (ℝ𝑛) for k ∈ ℕ0. It is clear 

by the definition of ℒ𝛼,p(∙)(ℝ𝑛) that ℬ𝜎 with 𝜎 > 0 is an isomorphism between 

ℒ𝛼,p(∙)(ℝ𝑛) and ℒ𝛼+σ,p(∙)(ℝ𝑛), i.e., it has a lifting property. Therefore, in view of 

Theorem (3.1.11) and ℒ0,p(∙)(ℝ𝑛) = Lp(∙)(ℝ𝑛) ≅ Fp(∙),2
0 (ℝ𝑛), we will complete the 

circle by proving a lifting property for the scale Fp(∙),q(∙)
𝛼(∙) (ℝ𝑛). 

Lemma (3.1.13) [140]: Let p, q and 𝛼  be as in the Standing Assumptions and 

σ ≥ 0. Then the Bessel potential operator ℬσ is an isomorphism between 

Fp(∙),q(∙)
𝛼(∙)

and Fp(∙),q(∙)
𝛼(∙)+σ

. 

Proof: Let 𝑓 ∈ Fp(∙),q(∙)
𝛼(∙)

. We know that {φ𝒬} is a family of smooth molecules, 

thus, by Theorem (3.1.22) 
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‖{𝑠𝒬}𝒬‖𝑓p(∙),q(∙)
𝛼(∙)

≈ ‖𝑓‖
Fp(∙),q(∙)
𝛼(∙) , 

where 𝑓 = ∑ s𝒬𝒬∈𝒟+ φ𝒬. Therefore, 

ℬσ𝑓 = ∑ s𝒬
𝒬∈𝒟+

ℬσφ𝒬 = ∑ 2−𝑣σs𝒬⏟  
=:ś𝒬𝒬∈𝒟+

2𝑣σℬσφ𝒬⏟      .

=:φ́𝒬

 

Let us check that {Kφ́𝒬}𝒬 is a family of smooth molecules of an arbitrary order 

for a suitable constant K. Let 𝒬 ∈ 𝒟+. Without loss of generality we may assume 

that 𝑥𝒬 = 0 . Then 

φ́𝒬̂(ξ) =
2𝑣σφ𝒬̂(ξ)

(1 + |ξ|)σ
=
2vσ|𝒬|1 2⁄ φ̂(2−𝑣ξ)

(1 + |ξ|)σ
. 

Since φ̂  has support in the annulus B𝑛(0,2)\B𝑛(0, 1 2⁄ ) , it is clear that φ́𝒬̂ ≡ 0 

in a neighborhood of the origin when 𝑙(𝒬) < 1, so the family satisfies the 

moment condition in Definition (3.1.4) for an arbitrarily high order. 

We consider the decay condition for molecules. Let μ ∈ ℕ0
𝑛 be a multi-

index with |μ| = m. We estimate 

|Dξ
μ
φ́𝒬̂(ξ)| ≤ 2

𝑣σ|𝒬|1 2⁄ |Dξ
μ
[
φ̂(2−𝑣ξ)

(1 + |ξ|)σ
]|

= |𝒬|1 2⁄ 2−𝑣m |Dζ
μ
[

φ̂(ζ)

(2−𝑣 + |ζ|)σ
]| ≤ c|𝒬|1 2⁄ 2−𝑣m|Dζ

μ[φ̂(ζ)|ζ|−σ]| 

where ζ = 2−𝑣ξ and we used that the support of φ̂ lies in the annulus B𝑛(0,2)\
B𝑛(0, 1 2⁄ ) for the last estimate. Define 

Km = sup
|μ|=m,ζ∈ℝ𝑛

2−𝑣m |Dζ
μ[φ̂(ζ)|ζ|−σ]| . 

Since σ ≥ 0 and φ̂ vanishes in a neighborhood of the origin, we conclude 

that Km < ∞ for every m. From the estimate 

|𝑥μψ(𝑥)| = c | ∫
ℝ𝑛
(−1)mDζ

μ
ψ̂(ξ)e𝑖𝑥∙ξdξ| ≤ c|suppψ̂| sup

ξ
|Dζ
μ
ψ̂(ξ)| , 

we conclude that 

|𝑥|m|φ́𝒬(𝑥)| ≤ 𝑐2
𝑣𝑛|𝒬|1 2⁄ 2−𝑣mKm and |φ́𝒬(𝑥)| ≤ c2

𝑣n|𝒬|1 2⁄ 2𝑣mK0. 

Multiplying the former of the two inequalities by 2𝑣m and adding it to the latter 

gives 

(1 + 2𝑣m|𝑥|m)|φ́𝒬(𝑥)| ≤ c2
𝑣𝑛|𝒬|1 2⁄ (K0 + Km). 

Finally, this implies that 

|φ́𝒬(𝑥)| ≤ c
2𝑣𝑛

(1 + 2𝑣|𝑥|𝑚)
|𝒬|1 2⁄ (K0 + Km)η𝑣,m(𝑥), 

from which we conclude that the family {Kφ́𝒬}𝒬 satisfy the decay condition when 

K ≤ (|𝒬|1 2⁄ (K0 + Km)
−1). A similar argument yields the decay condition for 

D𝑥
μ
φ́𝒬 

Since {Kφ́𝒬}𝒬is a family of smooth molecules for Fp(∙),q(∙)
𝛼(∙)+σ

, we can apply 

Theorem (3.1.24) to conclude that 

‖ℬσ𝑓‖
Fp(∙),q(∙)
𝛼(∙)+σ ≤ c‖{ś𝒬 K⁄ }

𝒬
‖
𝑓p(∙),q(∙)
𝛼(∙)+σ

≤ 𝑐 ‖{𝑠𝒬}𝒬‖𝑓p(∙),q(∙)
𝛼(∙)

≈ ‖𝑓‖
Fp(∙),q(∙)
𝛼(∙) . 

The reverse inequality is handled similarly.  
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Theorem (3.1.14) [140]: Let p ∈ Clog(ℝn) with 1 < p− ≤ p+ < ∞ and 𝛼 ∈

[0,∞). Then Fp(∙),2
𝛼 (ℝn) ≅ ℒ𝛼,p(∙)(ℝ𝑛). If k ∈ ℕ0 , then Fp(∙),2

k (ℝn) ≅

Wk,p(∙)(ℝ𝑛) 

Proof: Suppose that 𝑓 ∈ Fp(∙),2
k (ℝ𝑛). By Lemma (3.1.13), ℬ−𝛼𝑓 ∈ Fp(∙),2

0 (ℝ𝑛), 

so we conclude by Theorem (3.1.11) that ℬ−𝛼𝑓 ∈ Lp(∙)(ℝ𝑛) = ℒ0,p(∙)(ℝ𝑛). Then 

it follows by the definition of the Bessel space that 𝑓 = ℬ𝛼[ℬ−𝛼𝑓] ∈

ℒ𝛼,p(∙)(ℝ𝑛). The reverse inclusion follows by reversing these steps. 

The claim regarding the Sobolev spaces follows from this and the equivalence 

ℒk,p(∙)(ℝ𝑛) ≅ Wk,p(∙)(ℝ𝑛) for k ∈ ℕ0 (see [88] or [109]). 

Now we come to spaces of variable smoothness as introduced by Besov 

[89], following Leopold [116]. Let p, q ∈ (1,∞) and let𝛼 ∈ Cloc
log(ℝ𝑛) ∩ L∞(ℝ𝑛) 

with 𝛼 ≥ 0. Then Besov defines the following spaces of variable smoothness 

Fp,q
𝛼(∙),Besov(ℝ𝑛) ∶= {𝑓 ∈ Lloc

p (ℝ𝑛) ∶ ‖𝑓‖
Fp,q
𝛼(∙),Besov < ∞}, 

‖𝑓‖
Fp,q
𝛼(∙),Besov ∶= ‖‖2𝑣𝛼(𝑥) ∫

|h|≤1
|∆M(2−kℎ, 𝑓)(𝑥)|dh‖

𝑙𝑣
q

‖

L𝑥
p

+ ‖𝑓‖L𝑥
p , 

where 

∆M(y, 𝑓)(𝑥) ∶=∑(−1)M−k (
M

k
) 𝑓(𝑥 + ky).

M

k=0

 

In [91] Besov proved that Fp,q
𝛼(∙),Besov(ℝ𝑛) can be renormed by 

‖‖2𝑣𝛼(𝑥)φ𝑣 ∗ 𝑓(𝑥)‖𝑙𝑣
q‖

L𝑥
p
≈ ‖𝑓‖

Fp,q
𝛼(∙),Besov , 

which agrees with our definition of the norm of Fp,q
𝛼(∙)

, since p and q are constants. 

This immediately implies the following result: 

Theorem (3.1.15) [140]: Let p, q ∈ (1,∞), 𝛼 ∈ Cloc
log
∩ L∞ and 𝛼 ≥ 0. Then 

‖𝑓‖
Fp,q
𝛼(∙),Besov(ℝ𝑛) ≈ ‖𝑓‖

Fp,q
𝛼(∙)(ℝ𝑛).  

In his works, Besov also studied Besov spaces of variable differentiability. 

For p, q ∈ (1,∞), and 𝛼 ∈ Cloc
log
∩ L∞ with 𝛼 ≥ 0, he defines 

Bp,q
𝛼(∙),Besov(ℝ𝑛) ∶= {𝑓 ∈ Lloc

p (ℝ𝑛) ∶ ‖𝑓‖
Fp,q
𝛼(∙),Besov(ℝ𝑛)

< ∞}, 

‖𝑓‖
Bp,q
𝛼(∙),Besov(ℝ𝑛)

∶= ‖‖sup
|h|≤1

|∆M(2−𝑣𝛼(𝑥)h, 𝑓)(𝑥)|‖
L𝑥
p

‖

𝑙𝑣
q

+ ‖𝑓‖L𝑥
p . 

In the classical case the scale of Triebel-Lizorkin spaces and the scale of 

Besov spaces agree if p = q. Besov showed in [92] that this is also the case for 

his new scales of Triebel-Lizorkin and Besov spaces, i.e., Fp,q
𝛼(∙),Besov(ℝ𝑛) =

Bp,q
𝛼(∙),Besov(ℝ𝑛) for p ∈ (1,∞), 𝛼 ∈ Cloc

log
∩ L∞. and 𝛼 ≥ 0. This enables us to 

point out a connection to another family of spaces. By means of the symbols of 

pseudodifferential operators, Leopold [116] introduced Besov spaces with 

variable differentiability Bp,q
𝛼(∙),Leopold(ℝ𝑛). He further showed that if  0 < 𝛼− ≤

𝛼+ < ∞ and 𝛼 ∈ C∞(ℝ𝑛), then the spaces  Bp,q
𝛼(∙),Leopold(ℝ𝑛) can be 

characterized by means of finite differences. This characterization agrees with the 



67 

one that later Besov [90] used in the definition of the spaces Bp,q
𝛼(∙),Besov(ℝ𝑛). In 

particular, we have Bp,q
𝛼(∙),Leopold(ℝ𝑛) = Bp,q

𝛼(∙),Besov(ℝ𝑛) = Fp,q
𝛼(∙)(ℝ𝑛) for such 𝛼. 

It should be mentioned that there have recently also been some extensions 

of variable integrability spaces in other directions, not covered by the Triebel-

Lizorkin scale that we introduce here. For instance, Harjulehto & Hästö [110] 

modified the Lebesgue space scale on the upper end to account for the fact that  

W1,𝑛 does not map to L∞ under the Sobolev embedding. Similarly, in the image 

restoration model by Chen, Levine and Rao mentioned above, one has the 

problem that the exponent p takes values in the closed interval [1,2], including 

the lower bound, so that one is not working with reflexive spaces. It is well-

known that the space BV of functions of bounded variation is often a better 

alternative than W1,1 when studying differential equations. Consequently, it was 

necessary to modify the scale W1,p(∙) so that the lower end corresponded to BV. 

This was done by Harjulehto, Hästö & Latvala in [111]. Schneider [133, 134] has 

also investigated spaces of variable smoothness, but these spaces are not included 

in the scale of Leopold and Besov. Diening, Harjulehto, Hästö, Mizuta & 

Shimomura [99] have studied Sobolev embeddings when  p → 1 using Lebesgue 

spaces with an L log L-character on the lower end in place of L1. 

Cruz-Uribe, Fiorenza, Martell and Pérez [95] proved a very general 

extrapolation theorem, which implies among other things the following vector-

valued maximal inequality, for variable p but constant q: 

Lemma (3.1.16) [140]: Let p ∈ C∞(ℝ𝑛), with 1 < p− ≤ p+ < ∞ and 1 < q < ∞. 

Then 

‖‖M𝑓𝑖‖𝑙q‖p(∙) ≤ c‖‖𝑓𝑖‖𝑙q‖p(∙). 

It would be very nice to generalize this estimate to the variable q case. In 

particular, this would allow us to use classical machinery to deal with Triebel-

Lizorkin spaces. Unfortunately, it turns out that it is not possible: if q is not 

constant, then the inequality 

‖‖M𝑓𝑖‖𝑙𝑥
q(𝑥)‖

L𝑥
p(∙)
≤ 𝑐 ‖‖𝑓𝑖‖𝑙𝑥

q(𝑥)‖
L𝑥
p(∙)
. 

does not hold, even if p is constant or p(·) = q(·). For a concrete counter-

example consider q with  q|Ω𝑗 , j = 0, 1, and q0 ≠ q1 and a constant p. Set 𝑓k ≔

𝑎kχΩ0. Then M𝑓k|Ω1 ≥ c𝑎k𝜒Ω1. This shows that 𝑙q0 ↪ 𝑙q1. The opposite 

embedding follows in the same way, hence, we would conclude that 𝑙q0 ≅ 𝑙q1, 
which is of course false. 

In view of a vector-valued maximal inequality, we show estimates which 

take into account that there is a clear stratification in the Triebel-Lizorkin space, 

namely, a given magnitude of cube size is used in exactly one term in the sum. 

Recall that ηm(𝑥) = (1 + |𝑥|)
−m and η𝑣,m(𝑥) = 2

𝑛𝑣ηm(2
𝑣𝑥). For a measurable 

set 𝒬  and an integrable function g we denote 

M𝒬g ≔ ∫
𝒬
|g(𝑥)|d𝑥. 

Lemma (3.1.17) [140]: For every m > 𝑛 there exists c = c(m, 𝑛) > 0 such that 

η𝑣,𝑚 ∗ |g|(𝑥) ≤ c∑2−j(m−𝑛)

j≥0

∑ χ3𝒬(𝑥)M𝒬g

𝒬∈𝒟𝑣−j

 

for all 𝑣 ≥ 0, g ∈ Lloc
1 , and 𝑥 ∈ ℝ𝑛 . 
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Proof: Fix 𝑣 ≥ 0, g ∈ Lloc
1 , and 𝑥, y ∈ ℝ𝑛. If  |𝑥 − y| ≤ 2−𝑣, then we choose 𝒬 ∈

𝒟𝑣 which contains 𝑥 and y. If ||𝑥 − y| > 2−𝑣, then we choose j ∈ ℕ0 such that 

2𝑣−j ≤ |𝑥 − y| ≤ 2𝑣−j+1 and let 𝒬 ∈ 𝒟𝑣−j be the cube containing y. Note that  

𝑥 ∈ 3𝒬. In either case, we conclude that 

2𝑣𝑛(1 + 2𝑣|𝑥 − y|)−m ≤ c2−j(m−𝑛)χ3𝒬(𝑥)
χ𝒬(y)

|𝒬|
. 

we multiply this inequality by |g(y)| and integrate with respect to y over ℝ𝑛. 

This gives η𝑣,m ∗ |g|(𝑥) ≤ c2
j(m−𝑛)χ3𝒬(𝑥)M𝒬g, which clearly implies the claim. 

For the proof of the Lemma (3.1.19) we need the following result on the 

maximal operator. It follows from [99], since p+ < ∞ in our case. 

Lemma (3.1.18) [140]: Let p ∈ Clog(ℝ𝑛), with 1 < p− ≤ p+ < ∞. Then there 

exists h ∈weaL1(ℝ𝑛) ∩ L∞(ℝ𝑛) such that 

M𝑓(𝑥)p(𝑥) ≤ cM(|𝑓(∙)|p(∙))(𝑥) + min{|𝒬|, 1}h(𝑥) 

for all 𝑓 ∈ Lp(∙)(ℝ𝑛) with ‖𝑓‖Lp(∙)(ℝ𝑛) ≤ 1. 

Lemma (3.1.19) [140]: Let p, q ∈ Clog(ℝ𝑛), with 1 < p− ≤ p+ < ∞, 1 < q− ≤
q+ < ∞, and (p q⁄ )− ∙ q− > 1. Then there exists m > 𝑛 such that 

‖‖η𝑣,m ∗ 𝑓𝑣‖𝑙𝑥
q(𝑥)‖

L𝑥
p(∙)
≤ c‖‖𝑓𝑣‖𝑙𝑥

q(𝑥)‖
L𝑥
p(∙)

 

for every sequence {𝑓𝑣}𝑣∈ℕ0 of Lloc
1 -functions. 

Proof: By homogeneity, it suffices to consider the case 

‖‖𝑓𝑣‖𝑙𝑥
q(𝑥)‖

L𝑥
p(∙)
≤ 1. 

Then, in particular, 

∫
ℝ𝑛
|𝑓𝑣(𝑥)|

p(𝑥)d𝑥 ≤ 1                                                                  (3) 

for every 𝑣 ≥ 1. Using Lemma (3.1.17) and Jensen’s inequality (i.e., the 

embedding in weighted discrete Lebesgue spaces), we estimate 

∫
ℝ𝑛
(∑|η𝑣,m ∗ 𝑓𝑣(𝑥)|

q(𝑥)

𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥 ≤ ∫
ℝ𝑛
(∑(∑2−j(m−𝑛) ∑ χ3𝒬(𝑥)M𝒬𝑓𝑣

𝒬∈𝒟𝑣−jj≥0

)

q(𝑥)

𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥  

≤  c ∫
ℝ𝑛
(∑∑2−j(m−𝑛)( ∑ χ3𝒬(𝑥)M𝒬𝑓𝑣

𝒬∈𝒟𝑣−j

)

q(𝑥)

j≥0𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥

≤   c ∫
ℝ𝑛
(∑∑2−j(m−𝑛)c ∑ χ3𝒬(𝑥)

𝒬∈𝒟𝑣−j

(M𝒬𝑓𝑣)
q(𝑥)

j≥0𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥.  

For the last inequality we used the fact that the innermost sum contains only a 

finite, uniformly bounded number of non-zero terms. 

It follows from (3) and p(𝑥) ≥
q(𝑥)

q−
  that ‖𝑓𝑣‖

L
q(∙)
q−
≤ c. Thus, by Lemma (3.1.18), 

(M𝒬𝑓𝑣)
q(𝑥)
q− ≤ cM𝒬 (|𝑓𝑣|

q
q−) + c  min{|𝒬|, 1}h(𝑥) 

for all 𝒬 ∈ 𝒟𝑣−𝑗 and  𝑥 ∈ 𝒬. Combining this with the estimates above, we get 
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∫
ℝ𝑛
(∑|η𝑣 ∗ 𝑓𝑣(𝑥)|

q(𝑥)

𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥 ≤  c ∫
ℝ𝑛
(∑∑2−j(m−𝑛) ∑ 𝜒3𝒬(𝑥) [M𝒬 (|𝑓𝑣|

q
q−)]

q−

𝒬∈𝒟𝑣−jj≥0𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥

+   c ∫
ℝ𝑛
(∑∑2−j(m−𝑛) ∑ 𝜒3𝒬(𝑥)

𝒬∈𝒟𝑣−j

(min{|𝒬|, 1}h(𝑥))q
−

j≥0𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥 =: (I) + (II) . 

Now we easily estimate that 

                 (I) ≤ ∫ (∑[M(|𝑓𝑣|
q
q−) (𝑥)]

q−

𝑣≥0

∑2−𝑗(m−𝑛)

j≥0

∑ 𝜒3𝒬(𝑥)

𝒬∈𝒟𝑣−j

)

p(𝑥)
q(𝑥)

d𝑥
ℝ𝑛

≤ c∫ (∑[M(|𝑓𝑣|
q
q−) (𝑥)]

q−

𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥
ℝ𝑛

    =  c ∫
ℝ𝑛
‖M(|𝑓𝑣|

q
q−) (𝑥)‖

𝑙𝑣
q−

p(𝑥)
q(𝑥)

q−

d𝑥. 

The vector valued maximal inequality, Lemma (3.1.16), with (p q⁄ )− ∙ q− > 1  

and q− > 1, implies that the last expression is bounded since 

∫ (∑(|𝑓𝑣|
q(𝑥)
q− )

q−

𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥
ℝ𝑛

= ∫ (∑|𝑓𝑣|
q(𝑥)

𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥
ℝ𝑛

≤ 1. 

For the estimation of (II) we first note the inequality 

∑∑2−j(m−𝑛)

j≥0𝑣≥0

∑ χ3𝒬(𝑥)

𝒬∈𝒟𝑣−𝑗

min{|𝒬|, 1}q
−
≤∑∑2−j(m−𝑛)min{2𝑛(j−𝑣)q

−
, 1}

j≥0𝑣≥0

     

≤ ∑2−j(m−𝑛)(j +∑2𝑛(j−𝑣)q
−

𝑣>𝑗

)

j≥0

                                                                       

≤ ∑2−j(m−𝑛)(j + 1)

j≥0

≤ c. 

We then estimate (II) as follows: 

(II) ≤ c ∫
ℝ𝑛
(h(𝑥)q

−
∑∑2−j(m−𝑛)

j≥0𝑣≥0

∑ 𝜒3𝒬(𝑥)

𝒬∈𝒟𝑣−j

min{|𝒬|, 1}q
−
)

p(𝑥)
q(𝑥)

d𝑥  ≤ c ∫
ℝ𝑛
h(𝑥)

p(𝑥)
q(𝑥)

q−

d𝑥. 

Since (p q⁄ )−q− > 1  and h ∈ weak-L1 ∩ L∞, the last expression is bounded.  

Theorem (3.1.20) [140]: Let p, q ∈ Clog(ℝ𝑛) with 1 <  p−  ≤ p+  <  ∞ and  1 <
 q−  ≤ q+  <  ∞ Then the inequality 

‖‖η𝑣,m(𝑥) ∗ 𝑓𝑣‖𝑙𝑣
q(𝑥)‖

𝑙𝑥
p(∙)
≤ 𝑐 ‖‖𝑓𝑣‖𝑙𝑣

q(𝑥)‖
𝑙𝑥
p(∙)

 

holds for every sequence {𝑓𝑣}𝑣∈ℕ0 of  Lloc
1 -functions and constant m > 𝑛. 

Proof: Because of the uniform continuity of p and q, we can choose a finite 

cover {Ω𝑖} of ℝn with the following properties: 

(i)  each Ω𝑖 ⊂ ℝ
𝑛, 1 ≤ 𝑖 ≤ k, is open; 

(ii)  the sets Ω𝑖 cover ℝ𝑛, i.e., ⋃𝑖Ω𝑖 = ℝ
𝑛; 

(iii)  non-contiguous sets are separated in the sense that d(Ω𝑖 , Ω𝑖) > 0 if |𝑖 −
j| > 1; and 
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(iv)  we have (p/q)A𝑖
− qA𝑖

− > 1 for 1 ≤ 𝑖 ≤ k, where A𝑖: =∪j=𝑖−1
𝑖+1 Ω𝑖  (with the 

understanding that Ω0 = Ωk+1 = ∅. 
Let us choose an integer 𝑙 so that  2𝑖 ≤ min

|𝑖−j|>1
3d(Ω𝑖 , Ω𝑖) < 2

𝑖+1. Since 

there are only finitely many indices, the third condition implies that such an 𝑙 
exists. 

Next we split the problem and work with the domains Ω𝑖. In each of these 

we argue as in the previous lemma to conclude that 

∫
ℝ𝑛
(∑|η𝑣,m ∗ 𝑓𝑣(𝑥)|

q(𝑥)

𝑣≥0

)

p(𝑥)
q(𝑥)

≤∑ ∫
Ω𝑖

(∑|η𝑣,m ∗ 𝑓𝑣(𝑥)|
q(𝑥)

𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥                 

k

𝑖=1

≤ c∑ ∫
Ω𝑖

(∑∑2−j(m−𝑛)

j≥0𝑣≥0

∑ χ3𝒬(𝑥)

𝒬∈𝒟𝑣−j

(M𝒬𝑓𝑣)
q(𝑥)

)

p(𝑥)
q(𝑥)

d𝑥.

k

𝑖=1

 

From this we get 

∫
Ω𝑖

(∑|η𝑣,m ∗ 𝑓𝑣(𝑥)|
q(𝑥)

𝑣≥0

)

p(𝑥)
q(𝑥)

d𝑥 ≤ c ∫
Ω𝑖

(∑∑2−j(m−𝑛)
𝑣+𝑙

j=0𝑣≥0

∑ χ3𝒬(𝑥)

𝒬∈𝒟𝑣−j

(M𝒬𝑓𝑣)
q(𝑥)

)

p(𝑥)
q(𝑥)

d𝑥

+ c ∫
Ω𝑖

(∑ ∑ 2−j(m−𝑛)
𝑣+𝑙

j≥𝑣+𝑙𝑣≥0

M𝑓𝑣(𝑥)
q(𝑥))

p(𝑥)
q(𝑥)

d𝑥. 

The first integral on the right hand side is handled as in the previous proof. This 

is possible, since the cubes in this integral are always in A𝑖 and (p/q)A𝑖
− qA𝑖

− > 1. 

So it remains only to bound 

∫
Ω𝑖

(∑ ∑ 2−j(m−𝑛)
𝑣+𝑙

j≥𝑣+𝑙𝑣≥0

M𝑓𝑣(𝑥)
q(𝑥))

p(𝑥)
q(𝑥)

d𝑥 ≤ c ∫
Ω𝑖

(∑2−(m−𝑛)𝑣

𝑣≥0

M𝑓𝑣(𝑥)
q(𝑥))

p(𝑥)
q(𝑥)

d𝑥. 

For a non-negative sequence 𝑥𝑖 we have 

(∑2−j(m−𝑛)

𝑣≥0

𝑥𝑖)

r

≤

{
 
 

 
 c(r)∑2−𝑖(m−𝑛)

𝑖≥0

𝑥𝑖
r  if r ≥ 1

∑2−𝑖(m−𝑛)

𝑖≥0

𝑥𝑖
r  if r ≤ 1.

 

We apply this estimate for r =
p(𝑥)

q(𝑥)
 and conclude that 

∫
Ω𝑖

(∑2−j(m−𝑛)𝑣

𝑣≥0

M𝑓𝑣(𝑥)
q(𝑥))

p(𝑥)
q(𝑥)

d𝑥 ≤ c∑2
−(m−𝑛)𝑣 min{1,(

p
q
)
−
}

𝑣≥0

∫
Ω𝑖

M𝑓𝑣(𝑥)
q(𝑥)d𝑥. 

The boundedness of the maximal operator implies that the integral may be 

estimated by a constant, since ∫|𝑓𝑣(𝑥)|
p(𝑥)d𝑥 ≤ 1. We are left with a geometric 

sum, which certainly converges. 
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Lemma (3.1.21) [140]: Let 𝛼 be as in the Standing Assumptions. There exists 

d ∈ (𝑛,∞) such that if m > d, then 

2𝑣𝛼(𝑥)η𝑣,2m(𝑥 − y) ≤ c2
𝑣𝛼(y)η𝑣,m(𝑥 − y) 

for all 𝑥, y ∈ ℝ𝑛. 

Proof: Choose k ∈ ℕ0 as small as possible subject to the condition that|𝑥 − y| ≤
2−𝑣+k. Then 1 + 2𝑣|𝑥 − y| ≈ 2k. We estimate that 

η𝑣,2m(𝑥 − y)

η𝑣,m(𝑥 − y)
≤ c(1 + 2k)

−m
≤ c2−km. 

On the other hand, the log-Hölder continuity of 𝛼 implies that 

2𝑣(𝛼(𝑥)−𝛼(y)) ≥ 2−𝑣clog log(e+1 |𝑥−y|⁄ )⁄ ≥ 2−kclog|𝑥 − y|−clog log(e+1 |𝑥−y|⁄ )⁄ ≥ c2−km. 
The claim follows from these estimates provided we choose m ≥ clog. 

Theorem (3.1.22) [140]: If p, q and 𝛼 are as in the Standing Assumptions, then 

‖𝒮φ𝑓‖𝑓
p(∙),q(∙)
𝛼(∙) ≤ c‖𝑓‖

F
p(∙),q(∙)
𝛼(∙) . 

Proof: Let 𝑓 ∈ Fp(∙)q(∙)
𝛼(∙)

. Then we have the representation 

𝑓 = ∑ 〈φ𝒬 , 𝑓〉ψ𝒬
𝒬∈𝒟+

= ∑ |𝒬|
1
2φ𝑣 ∗ 𝑓(𝑥𝒬)ψ𝒬

𝒬∈𝒟+

. 

Let r ∈ (0,min[p−, q−]) and let m be so large that Lemma (3.1.21) applies, so 

‖φ𝑣 ∗ 𝑓‖𝑓
p(∙)q(∙)
𝛼(∙) = ‖‖2𝑣𝛼(𝑥) ∑ φ𝑣 ∗ 𝑓(𝑥𝒬)χ𝒬

𝒬∈𝒟𝑥

‖

𝑙𝑣
q(𝑥)

‖

L𝑥
p(∙)

≤ c‖‖2𝑣𝛼(𝑥)r(η𝑣,2m ∗ |φ𝑣 ∗ 𝑓|
r)
1 r⁄
‖
𝑙𝑣
q(𝑥)
‖
L𝑥
p(∙)

= c‖‖2𝑣𝛼(𝑥)r(η𝑣,2m ∗ |φ𝑣 ∗ 𝑓|
r)
1 r⁄
‖
𝑙𝑣
q(𝑥) r⁄

‖
L𝑥
p(∙) r⁄

. 

By Lemma (3.1.21) and Theorem (3.1.20), we further conclude that 

‖S𝑣𝑓‖𝑓p(∙)q(∙)
𝛼(∙) ≤ c‖‖(η𝑣,m ∗ 2

𝑣𝛼(∙)|φ𝑣 ∗ 𝑓|)
r
‖
𝑙𝑣
q(𝑥) r⁄ ‖

L𝑥
p(∙) r⁄

1 r⁄

≤ c‖‖2𝑣𝛼(𝑥)r|φ𝑣 ∗ 𝑓|
r‖
𝑙𝑣
q(𝑥) r⁄ ‖

L𝑥
p(∙) r⁄

1 r⁄

= c‖‖2𝑣𝛼(𝑥)φ𝑣 ∗ 𝑓‖𝑙𝑣
q(𝑥)‖

L𝑥
p(∙)
. 

This proves the theorem. 

Lemma (3.1.23) [140]: Let p, q, and 𝛼 be as in the Standing Assumptions and 

define functions J = 𝑛 min{1, p, q}⁄  and N = J − 𝑛 − 𝛼 Let Ω be a cube or the 

complement of a finite collection of cubes and suppose that {m𝒬}𝒬 , 𝒬 ⊂ Ω, is a 

family of (J+ − 𝑛 − α− + ε, α+ + 1 + ε)-smooth molecules, for some ε > 0. 

Then 

‖𝑓‖
Fp(∙)q(∙)
𝛼(∙) (Ω)

≤ c‖{s𝒬}𝒬‖𝑓p(∙)q(∙)
𝛼(∙) (Ω)

, where  𝑓 =∑∑ s𝒬
𝒬∈𝒟𝑣
𝒬⊂Ω

𝑣≥0

m𝒬 

and c > 0 is independent of {s𝒬}𝒬and {m𝒬}𝒬. 

Theorem (3.1.24) [140]: Let the functions p, q and α be as in the Standing 

Assumptions. Suppose that {m𝒬}𝒬is a family of smooth molecules for 

Fp(∙),q(∙)
𝛼(∙)

, and that {m𝒬}𝒬 ∈ 𝑓p(∙),q(∙)
𝛼(∙)

. Then  
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‖𝑓‖
F
p(∙),q(∙)
𝛼(∙) ≤ c‖{m𝒬}𝒬‖𝑓

p(∙),q(∙)
𝛼(∙)

, where 𝑓 =∑ ∑ s𝒬
𝒬∈𝒟𝑣𝑣≥0

m𝒬 . 

Proof: We will reduce the claim to the previous lemma. 

By assumption there exists ε > 0 so that the molecules m𝒬 are (N + 4ε, α + 3ε)-

smooth. By the uniform continuity of p, q and 𝛼, we may choose μ0 ≥ 0  so that 

N𝒬
− > J𝒬

+ − α𝒬
− − 𝑛 + ε and α𝒬

− > 𝛼𝒬
+ − ε for every dyadic cube 𝒬 of level μ0. 

Note that if 𝒬0 is a dyadic cube of level μ0 and 𝒬 ⊂ 𝒬0 is another dyadic cube, 

then 

N𝒬
− ≥ N𝒬0

− > J𝒬0
+ − α𝒬0

− − 𝑛 − ε ≥ J𝒬
+ − α𝒬

− − 𝑛 − ε, 

similarly for 𝛼. Thus we conclude that m𝒬 is a (J𝒬
+ − α𝒬

− − 𝑛 + 3ε, α𝒬
+ + 1 + 2ε)-

smooth when 𝒬 is of level at most μ0. 

Since p, q and 𝛼 have a limit at infinity, we conclude that Nℝ𝑛\k
− > Jℝ𝑛\k

+ −

αℝ𝑛\k
− − 𝑛 + −ε and αℝ𝑛\k

− > αℝ𝑛\k
+ − ε for some compact set K ⊂ ℝ𝑛. We 

denote by Ω𝑖 , 𝑖 = 1,… ,M, those dyadic cubes of level μ0 which intersect K, and 

define Ω𝑖 = ℝ
𝑛\∪𝑖=1

M Ω𝑖 . 

For every integer 𝑖 ∈ [0,𝑀] choose r𝑖 ∈ (0,min{1, pΩ𝑖
− , qΩ𝑖

− }) so that 
𝑛

r𝑖
< J𝒬

+ + ε, and set 

k𝑖 =
𝑛

r𝑖
− 𝑛 − αΩ𝑖

− + 2𝜀  and K𝑖 = αΩ𝑖
+ + 2ε.  Then 𝑚𝒬  is a (k𝑖 , K𝑖 + 1) -smooth molecule 

when 𝒬  is of level at most μ0 . Define k𝑖(𝑣, μ) ≔ K𝑖(𝑣 − μ)+ + k𝑖(μ − 𝑣)+  and s𝒬μ̃ ≔

s𝒬μ|𝒬μ|
−1 2⁄

.Finally, let  r ∈ (0,min{p−, q−}). 

Note that the constants k𝑖 and K𝑖 have been chosen so that in each set Ω𝑖 
we may argue as in the previous lemma. Thus we get 

|φ𝑣 ∗ m𝒬μ
(𝑥)| ≤ c2−k(𝑣,μ)s𝒬μ|𝒬μ|

−1 2⁄
(η𝑣,2m ∗ ημ,2m ∗ χ𝒬μ) (𝑥). 

From this we conclude that 

‖𝑓‖
Fp(∙)q(∙)
𝛼(∙) ≤ c‖‖2𝑣𝛼φ𝑣 ∗ 𝑓‖𝑙𝑣

q(𝑥)‖
L𝑥
p(∙)

≤ ‖‖∑ ∑ |s𝒬̃|
r
2μ𝛼(𝑥)−k(𝑣,μ)η𝑣,2m ∗ ημ,2m ∗ χ𝒬μ

𝒬μ∈𝒟μ

μ0−1

μ=0

‖

𝑙𝑣
q(𝑥)

‖

L𝑥
p(∙)

+∑‖‖ ∑ ∑ |s𝒬̃|
r
2μ𝛼(𝑥)−k(𝑣,μ)η𝑣,2m ∗ ημ,2m ∗ χ𝒬μ

𝒬μ∈𝒟μμ≥μ0−1

‖

𝑙𝑣
q(𝑥)

‖

L𝑥
p(∙)

(𝒬𝑖)

M

𝑖=0

. 

By the previous lemma, each term in the last sum is dominated by ‖{s𝒬}𝒬‖𝑓p(∙)q(∙)
𝛼(∙)

, 

so we conclude that 

‖𝑓‖
Fp(∙)q(∙)
𝛼(∙) ≤ ‖‖∑ ∑ |s𝒬̃|

r
2μ𝛼(𝑥)−k(𝑣,μ)η𝑣,2m ∗ ημ,2m ∗ χ𝒬μ

𝒬μ∈𝒟μ

μ0−1

μ=0

‖

𝑙𝑣
q(𝑥)

‖

L𝑥
p(∙)

+ c(M + 1)‖{s𝒬}𝒬‖𝑓p(∙)q(∙)
𝛼(∙)

. 

It remains only to take care of the first term on the right hand side. In the current 

case we get instead see [311] 
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2μ𝛼(𝑥)r−rk(𝑣,μ) (η𝑣,2mr ∗ ημ,2mr ∗ χ𝒬μ)
r

≤ c2μ𝛼(𝑥)r−2ε|𝑣−μ|+𝑛(1−r)++(μ−𝑣)+η𝑣,2mr ∗ ημ,2mr ∗ χ𝒬μ , 

since we have no control of k2. However, since μ ≤ μ0 and 𝑣 ≥ 0, the extra term 

satisfies 2𝑛(1−r)++(μ−𝑣)+ ≤ 2𝑛(1−r)+μ0, so it is just a constant. 

Theorem (3.1.25) [140]: Let the functions p, q and 𝛼 be as in the Standing 

Assumptions and let 𝑓 ∈ Fp(∙),q(∙)
𝛼(∙)

. Then there exists a family of smooth atoms 

{𝑎𝒬}𝒬 and a sequence of coefficients {t𝒬}𝒬 such that 

𝑓 = ∑ t𝒬
𝒬∈𝒟+

𝑎𝒬   in  𝒮′    and    ‖{t𝒬}𝒬‖𝑓
p(∙),q(∙)
𝛼(∙)

≈ Fp(∙),q(∙)
𝛼(∙)

. 

Moreover, the atoms can be chosen to satisfy conditions (i) and (ii) in 

Definition (3.1.4) for arbitrarily high, given order. 

Proof: Define constants K = 𝑛 min{1, p−, q−} − 𝑛 + ε⁄  and L = 𝛼+ + 1 + ε. We 

construct (K, L)-smooth atoms {𝑎𝒬}𝒬∈𝒟+ (see [106]). Note that we may use the 

constant indices construction, since the constants K and L give sufficient 

smoothness at every point. These atoms are also atoms for the space Fp(∙)q(∙)
𝛼(∙)

. 

Let 𝑓 ∈ Fp(∙)q(∙)
𝛼(∙)

. With functions as in Definition (3.1.2), we represent 𝑓 as 

𝑓 = ∑ t𝒬φ𝒬 ,𝒬∈𝒟+  where t𝒬 = 〈𝑓,ψ𝒬〉. Next, we define 

(tr
∗)𝒬𝑣k = (∑

|tP|
r

(1 + 2v|𝑥P − 𝑥𝒬|)
m

P∈𝒟𝑣

)

1 r⁄

, 

for 𝒬 = 𝒬𝑣k, 𝑣 ∈ ℕ
0, and k ∈ ℤ𝑛. For there numbers (tr

∗)𝒬 we know that 𝑓 =

∑ (tr
∗)𝒬𝒬 𝑎𝒬 where {𝑎𝒬}𝒬 are atoms (molecules with support in 3𝒬), by the 

construction of [106]. Technically, the atoms from the construction of [106] 

satisfy our inequalities for molecules only up to a constant (independent of the 

cube and scale). 

For 𝑣 ∈ ℕ0 define T𝑣: = ∑ t𝒬𝒬∈𝒟𝑣 χ𝒬. The definition of tr
∗ is a discrete 

convolution of T𝑣 with η𝑣,m. Changing to the continuous version, we see that 

(tr
∗)𝒬𝑣k ≈ (η𝑣,M ∗ (|T𝑣|

r)(𝑥))
1 r⁄

for 𝑥 ∈ 𝒬𝑣k. By this point-wise estimate we 

conclude that 

‖tr
∗‖
𝑓p(∙)q(∙)
𝛼(∙) = ‖‖‖{2𝑣𝛼(𝑥) ∑|𝒬|−

1
2(tr

∗)𝒬χ𝒬
𝒬∈𝒟𝑣

}

𝑣

‖

𝑙𝑣
q(𝑥)

‖‖

L𝑥
p(∙)

≈ ‖‖{2𝑣𝛼(𝑥)+𝑣 2⁄ η𝑣,M ∗ (|T𝑣|
r)(𝑥)}

𝑣
‖
𝑙𝑣
q(𝑥) r⁄

‖
L𝑥
p(∙) r⁄

. 

Next we use Lemma (3.1.21) and Theorem (3.1.20) to conclude that 

‖‖{2𝑣𝛼(𝑥)+𝑣 2⁄ η𝑣,M ∗ (|T𝑣|
r)}

𝑣
‖
𝑙𝑣

q(𝑥)
r
‖

L𝑥

p(∙)
r

1 r⁄

 ≤ c ‖‖{2𝑣𝛼(𝑥)+𝑣 2⁄ T𝑣}𝑣‖𝑙𝑣
q(𝑥)
‖
L𝑥
p(∙)

= ‖‖‖{2𝑣𝛼(𝑥) ∑|𝒬|−
1
2t𝒬χ𝒬

𝒬∈𝒟𝑣

}

𝑣

‖

𝑙𝑣
q(𝑥)

‖‖

L𝑥
p(∙)

. 
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Since 𝑓 = ∑ t𝒬𝒬∈𝒟+ φ𝒬 , Theorem (3.1.22) implies that this is bounded by a 

constant times ‖𝑓‖
𝐹𝑝(∙)𝑞(∙)
𝛼(∙) . 

This completes one direction. The other direction, 

‖𝑓‖
Fp(∙)q(∙)
𝛼(∙) ≤ c‖{s𝒬}𝒬‖𝑓p(∙)q(∙)

𝛼(∙)
, 

follows from Theorem (3.1.24), since every family of atoms is in particular a 

family of molecules. 

We consider a general embedding lemma. The local classical scale of 

Triebel-Lizorkin spaces is increasing in the primary index p and decreasing in the 

secondary index q. This is a direct consequence of the corresponding properties 

of Lp and 𝑙q. In the variable exponent setting we have the following global result 

provided we assume that p stays constant at infinity: 

Proposition (3.1.26) [140]: Let pj, qj, and 𝛼j be as in the Standing Assumptions, 

j = 0, 1. 
(i)  If p0 ≥ p1 and (p0)∞ = (p1)∞, , then Lp0(∙) ↪ Lp1(∙).  

(ii)  If 𝛼0 ≥ 𝛼1, p0 ≥ p1, (p0)∞ = (p1)∞, and q0 ≤ q1, then Fp0(∙)q0(∙)
𝛼0(∙) ↪

Fp1(∙)q1(∙)
𝛼1(∙) . 

Proof: In Lemma 2.2 of [97] it is shown that Lp0(∙)(ℝ𝑛) ↪ Lp1(∙)(ℝ𝑛). if and 

only if p0 ≥ p1 almost everywhere and 1 ∈ Lr(∙)(ℝ𝑛), where 
1

r(𝑥)
≔

1

p1(𝑥)
−

1

p0(𝑥)
. 

Note that r(𝑥) = ∞ if p1(𝑥) = p0(𝑥). The condition 1 ∈ Lr(∙)(ℝ𝑛) means in this 

context (since r is usually unbounded) that limλ↘0 ϱr(∙)(λ) = 0, where we use 

the convention that λr(𝑥) = 0 if  r(𝑥) = ∞ and λ ∈ (0, 1]. Due to the assumptions 

on p0 and p1, we have 
1

r
∈ Clog,

1

r
≥ 0, and 

1

r∞
= 0. In particular, |

1

r(𝑥)
| ≤

A

log (e+|𝑥|)
 

for some A > 0 and all 𝑥 ∈ ℝ𝑛. Thus, 

ϱr(∙)
(exp(−2𝑛A))=∫ exp(

−2𝑛A

|
1
r(𝑥)

|
)

ℝ𝑛
d𝑥 ≤ ∫ (e + |𝑥|)−2𝑛

ℝ𝑛
d𝑥 < ∞. 

The convexity of ϱr(∙) implies that ϱr(∙)(exp(−2𝑛A)) → 0 as λ ↘ 0 and (i) 

follows. 

For (ii) we argue as follows. Since 𝛼0 ≥ 𝛼1, we have 2𝑣𝛼0(𝑥) ≤ 2𝑣𝛼1(𝑥) for 

all 𝑣 ≥ 0 and all 𝑥 ∈ ℝ𝑛. Moreover, q0 ≤ q1 implies ‖∙‖𝑙q1 ≤ ‖∙‖𝑙q0  and (i) 

implies Lp0(∙)(ℝ𝑛) ↪ Lp1(∙)(ℝ𝑛). Now, the claim follows immediately from the 

definitions of the norms of Fp0(∙)q0(∙)
𝛼0(∙)  and Fp1(∙)q1(∙)

𝛼1(∙)  .  

Now we deal with trace theorems for Triebel-Lizorkin spaces. We write 

𝒟𝑛 and 𝒟𝑣
𝑛 for the families of dyadic cubes in 𝒟+ when we want to emphasize 

the dimension of the underlying space. The idea of the proof of the main trace 

theorem is to use the localization afforded by the atomic decomposition, and 

express a function as a sum of only those atoms with support intersecting the 

hyperplane ℝ𝑛−1 ⊂ ℝ𝑛. In the classical case, this approach is due to Frazier and 

Jawerth [45]. 

There have been other approaches to deal with traces and an extension 

operator using wavelet decomposition instead of atomic decomposition, which 

utilizes compactly supported Daubechies wavelets, and thus, conveniently gives 
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trace theorems. However, for that one would need to define and establish 

properties of almost diagonal operators and almost diagonal matrices for the 

Fp(∙)q(∙)
𝛼(∙)

, and 𝑓p(∙)q(∙)
𝛼(∙)

, spaces. The following lemma shows that it does not matter 

much for the norm if we shift around the mass a bit in the sequence space. 

Lemma (3.1.27) [140]: Let p, q and 𝛼 be as in the Standing Assumptions, ε > 0, 

and let {E𝒬}𝒬 be a collection of sets with E𝒬 ⊂ 3𝒬 and |E𝒬| ≥ ε|𝒬| Then 

‖{𝑠𝒬}𝒬‖𝑓p(∙)q(∙)
𝛼(∙)

≈ ‖‖2𝑣𝛼(𝑥) ∑|s𝒬||𝒬|
−
1
2

𝒬∈𝒟𝑣

χ𝒬‖

l𝑣
q(𝑥)

‖

L𝑥
p(∙)

 

for all {s𝒬}𝒬 ∈ 𝑓p(∙)q(∙)
𝛼(∙) . 

Proof: We start by proving the inequality “ ≤ ”. Let r ∈ (0,min{p−, q−}). We 

express the norm as 

‖{s𝒬}𝒬‖𝑓p(∙)q(∙)
𝛼(∙)

= ‖‖2𝑣𝛼(𝑥)r ∑|s𝒬|
r
|𝒬|−

r
2

𝒬∈𝒟𝑣

χ𝒬‖

𝑙𝑣
q(𝑥)

‖

L𝑥
p(∙) r⁄

1 r⁄

 

since the sum has only one non-zero term. We use the estimate χ𝒬 ≤ c η𝑣,m ∗ χE𝒬  

for all 𝒬 ∈ 𝒟𝑣. Now Lemma (3.1.21) implies that 

‖{s𝒬}𝒬‖𝑓p(∙)q(∙)
𝛼(∙)

= ‖‖2𝑣𝛼(𝑥)r ∑|s𝒬|
r
|𝒬|−

r
2

𝒬∈𝒟𝑣

χ𝒬‖

𝑙𝑣
q(𝑥)

‖

L𝑥
p(∙) r⁄

1 r⁄

≤ c‖‖η𝑣 ∗ (2
𝑣𝛼(∙)r ∑|s𝒬|

r
|𝒬|−

r
2

𝒬∈𝒟𝑣

χE𝒬)‖

𝑙𝑣
q(𝑥) r⁄

‖

L𝑥
p(∙) r⁄

1 r⁄

. 

Then Theorem (3.1.20) completes the proof of the first direction: 

‖{s𝒬}𝒬‖𝑓p(∙)q(∙)
𝛼(∙)

≤ c‖‖2𝑣𝛼(𝑥)r ∑|s𝒬|
r
|𝒬|−

r
2

𝒬∈𝒟𝑣

χE𝒬‖

𝑙𝑣
q(𝑥) r⁄

‖

L𝑥
p(∙) r⁄

1 r⁄

= c‖‖2𝑣𝛼(𝑥) ∑|s𝒬||𝒬|
−
1
2

𝒬∈𝒟𝑣

χE𝒬‖

𝑙𝑣
q(𝑥) r⁄

‖

L𝑥
p(∙) r⁄

1 r⁄

 

The other direction follows by the same argument, since χE𝒬 ≤ c ηv ∗ χ𝒬. 

Next we use the embedding proposition to show that the trace space does 

not really depend on the secondary index of integration. 

Lemma (3.1.28) [140]: Let p1, p2, q1, 𝛼1 and𝛼2 be as in the Standing 

Assumptions and let q2 ∈ (0,∞). Assume that 𝛼1 = 𝛼2 and p1 = p2 in the upper 

or lower half space, and that 𝛼1 ≥ 𝛼2 and p1 ≤ p2. Then 

tr Fp1(∙)q1(∙)
𝛼1(∙) (ℝ𝑛) = tr Fp2(∙)q2

𝛼2(∙) (ℝ𝑛). 
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Proof: We assume without loss of generality that 𝛼1 = 𝛼2 and p1 = p2 in the 

upper half space. We define r0 = min{q2, q1
−} and r1 = max{q2, q1

+}. It follows 

from Proposition (3.1.26) that 

tr Fp2(∙),r0
𝛼2(∙) ↪ tr Fp1(∙),q1(∙)

𝛼2(∙) ↪ tr Fp1(∙),r1
𝛼1(∙)  

and 

tr Fp2(∙),r0
𝛼2(∙) ↪ tr Fp2(∙),q2

𝛼2(∙) ↪ tr Fp1(∙),r1
𝛼1(∙) . 

We complete the proof by showing that tr Fp1(∙),r1
𝛼1(∙) ↪  tr Fp2(∙),r0

𝛼2(∙) . Let 

𝑓𝜖Fp1(∙),r1
𝛼1(∙) . According to Theorem (3.1.25) we have the representation 

𝑓 = ∑ t𝒬𝑎𝒬
𝒬∈𝒟+

  with ‖{t𝒬}𝒬‖𝑓
p1(∙),r1

𝛼1(∙)
≤ c‖𝑓‖

F
p1(∙),r1

𝛼1(∙)  

where the 𝑎𝒬 are smooth atoms for Fp1(∙),r1
𝛼1(∙)  satisfying (i) and (ii) up to high order. 

Then they are also smooth atoms for Fp2(∙),r0
𝛼2(∙) . 

Let A:= {𝒬 ∈ 𝒟+ ∶ 3𝒬̅  ∩ {𝑥𝑛 = 0} ≠ ∅}. If 𝒬 ∈ A is contained in the 

closed upper half space, then we write 𝒬 ∈ A+, otherwise 𝒬 ∈ A−. We set t𝒬̃ =

t𝒬 when 𝒬 ∈ A, and t𝒬̃ = 0 otherwise. Then we define 𝑓 = ∑ t𝒬̃𝑎𝒬̃𝒬∈𝒟+ . It is 

clear that tr 𝑓 = tr 𝑓, since all the atoms of 𝑓 whose support intersects ℝ𝑛−1 are 

included in 𝑓. For 𝒬 ∈ A+, we define 

E𝒬 = {𝑥 ∈ 𝒬 ∶
3

4
ℓ(𝒬) ≤ 𝑥𝑛 ≤ ℓ(𝒬)} 

for 𝒬 ∈ A− we define 

E𝒬 = {(𝑥,́ 𝑥𝑛) ∈ ℝ
𝑛 ∶ (𝑥,́ −𝑥𝑛) ∈ 𝒬,

1

2
ℓ(𝒬) ≤ 𝑥𝑛 ≤

3

4
ℓ(𝒬)} 

for all other cubes E𝒬 = ∅. If 𝒬 ∈ A, then |𝒬| = 4|E𝒬|; moreover, {E𝒬}𝒬 covers 

each point at most three times. 

By Theorem (3.1.24) and Lemma (3.1.27) we conclude that 

‖𝑓‖̃
F
p2(∙),𝑟0

𝛼2(∙) ≤ c‖{𝑡𝒬̃}𝒬‖f
p2(∙),𝑟0

𝛼2(∙)
≤ c‖‖2𝑣𝛼2(𝑥) ∑|t𝒬||𝒬|

−
r
2

𝒬∈𝒟𝑣

𝜒𝐸𝒬‖

𝑙𝑣
r0

‖

Lx
p2(∙)

. 

The inner norm consists of at most three non-zero members for each 𝑥 ∈
ℝn. Therefore, we can replace r0 by r1. Moreover, each E𝒬 is supported in the 

upper half space, where 𝛼2 and 𝛼1, and p2 and p1 agree. Thus, 

‖𝑓‖̃
F
p2(∙),r0

𝛼2(∙) ≤ c‖‖2𝑣𝛼1(𝑥) ∑|t𝒬||𝒬|
−
r
2

𝒬∈𝒟𝑣

χE𝒬‖

𝑙𝑣
r1

‖

L𝑥
p1(∙)

. 

The right hand side is bounded by ‖𝑓‖
Fp1(∙),r1
𝛼1(∙) according to Theorem (3.1.24) and 

Lemma (3.1.27) Therefore, tr Fp1(∙),r1
𝛼1(∙) ↪  tr Fp2(∙),r0

𝛼2(∙) , and the claim follows.  

For the next proposition we recall the common notation Fp(∙)
𝛼(∙) = Fp(∙),q(∙)

𝛼(∙)
 for 

the Triebel-Lizorkin space with identical primary and secondary indices of 

integrability. The next result shows that the trace space depends only on the 

values of the indices at the boundary, as should be expected. 
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Proposition (3.1.29) [140]: Let p1, p2, q1, 𝛼1, and 𝛼2 be as in the Standing 

Assumptions. Assume that 𝛼1(𝑥) = 𝛼2(𝑥) and p1(𝑥) = p2(𝑥) for all 𝑥 ∈ ℝ𝑛−1 ×
{0}. Then 

tr Fp1(∙),q1(∙)
𝛼1(∙) (ℝ𝑛) = tr Fp2(∙)

𝛼2(∙)(ℝ𝑛). 

Proof: By Lemma (3.1.28) we conclude that tr Fp1(∙),𝑞1(∙)
𝛼1(∙) = tr Fp1(∙)

𝛼1(∙). Therefore, we 

can assume that q1 = p1. 

We define 𝛼̃j to equal 𝛼j on the lower half space and min{𝛼1, 𝛼2} on the 

upper half space and let 𝛼̃ = min{𝛼1, 𝛼2}. Similarly, we define p̃j and p̃. 

Applying Lemma (3.1.28) four times in the following chain 

tr Fp1(∙)
𝛼1(∙)(ℝ𝑛) = tr Fp̃1(∙)

𝛼̃1(∙)(ℝ𝑛) = tr Fp̃(∙)
𝛼̃(∙)(ℝ𝑛) = tr Fp̃2(∙)

𝛼̃2(∙)(ℝ𝑛) = tr Fp2(∙)
𝛼2(∙)(ℝ𝑛), 

gives the result. 

Theorem (3.1.30) [140]: Let the functions p, q and 𝛼 be as in the Standing 

Assumptions. If 

𝛼 − 1 p⁄ − (𝑛 − 1)(1 p⁄ − 1)+ > 0,   then   tr Fp(∙),q(∙)
𝛼(∙) (ℝ𝑛) = Fp(∙)

𝛼(∙)−1 p(∙)⁄
(ℝ𝑛−1). 

Proof: By Proposition (3.1.29) it suffices to consider the case q = p with p and 𝛼 

independent of the n-th coordinate for |𝑥𝑛| ≤ 2. Let 𝑓 ∈ Fp(∙)
𝛼(∙)

 with ‖𝑓‖
Fp(∙)
𝛼(∙) ≤ 1 

and let 𝑓 = ∑𝑠𝒬𝑎𝒬 be an atomic decomposition as in Theorem (3.1.25). 

We denote by π the orthogonal projection of ℝ𝑛 onto ℝ𝑛−1, and (𝑥,́ 𝑥𝑛) ∈
ℝ𝑛 = ℝ𝑛−1 ×ℝ. For J ∈ 𝒟μ

𝑛−1, a dyadic cube in ℝ𝑛−1, we define 𝒬𝑖(J) ∈

𝒟μ
𝑛, 𝑖 = 1,… ,6 ∙ 5𝑛−1,  to be all the dyadic cubes satisfying J ⊂ 3𝒬𝑖. We define 

tJ = |𝒬1(J)|
−
1

2𝑛∑ |s𝒬𝑖(J)|𝑖  and hJ(𝑥́) = tJ
−1∑ s𝒬𝑖𝒬𝑎𝒬𝑖𝑖 . By 𝒬+(J) we denote the 

cube 𝒬𝑖(J) which has J as a face (i.e. J ⊂ ∂𝒬+(J) ). 
Then we have 

tr 𝑓(𝑥́) =∑ ∑ tJhJ(𝑥′)

J∈𝒟μ
𝑛−1μ

 

with convergence in S′. The condition 𝛼 − 1 p⁄ − (𝑛 − 1)(1 p⁄ − 1)+ > 0 implies 

that molecules in Fp(∙)
𝛼(∙)−1 p(∙)⁄

(ℝ𝑛−1) are not required to satisfy any moment 

conditions. Therefore, hJ is a family of smooth molecules for this space. 

Consequently, by Theorem (3.1.24), we find that 

‖tr 𝑓‖
F
p(∙)
𝛼(∙)−1 p(∙)⁄

(ℝ𝑛−1)
≤ c‖{tJ}J

‖
𝑓
p(∙)
𝛼(∙)−1 p(∙)⁄

(ℝ𝑛−1)
. 

Thus, we conclude the proof by showing that the right hand side is bounded by a 

constant. Since the norm is bounded if and only if the modular is bounded, we see 

that it suffices to show that 

∫ ∑ ∑ (2
μ(α(𝑥′,0)−

1
p(𝑥′,0)

)
|tJ||J|

−1 2⁄ χJ(𝑥′, 0))

J∈𝒟μ
𝑛−1

d𝑥′

μℝ𝑛−1

=∑ ∑ 2−μ∫(2μα(𝑥′,0)|tJ||J|
−1 2⁄ )

p(𝑥́,0)

JJ∈𝒟μ
𝑛−1

d𝑥′

μ

 

is bounded. For the integral we calculate 
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2−μ∫(2μα(𝑥′,0)|tJ||J|
−1 2⁄ )

p(𝑥′,0)
d𝑥′ =

J

2−μ ∫ (2μα(𝑥′,0)|tJ||J|
−1 2⁄ )

p(𝑥′,0)
d(𝑥′, 𝑥𝑛)

𝒬+(J)

≤ c ∫ (2μα(𝑥)∑|𝒬i||𝒬|
−
1
2𝑛
−
𝑛−1
2𝑛

𝑖

)

p(𝑥)

d𝑥

𝒬+(J)

= c ∫ (2μα(𝑥)∑|s𝒬i||𝒬|
−1 2⁄

𝑖

)

p(𝑥)

d𝑥

𝒬+(J)

 

Hence, we obtain 

∑ ∑ 2−μ∫(2μα(𝑥′,0)|tJ||J|
−1 2⁄ )

p(𝑥′,0)

JJ∈𝒟μ
𝑛−1

d𝑥′

μ

≤ c∑ ∑ 2−μ∫(2μα(𝑥)∑|s𝒬i||𝒬|
−1 2⁄

𝑖

)

p(𝑥)

d𝑥

𝒬𝒬∈𝒟μ
𝑛μ

≤ c∫ ∑ ∑ (2𝑣α(𝑥)|s𝒬||𝒬|
−1 2⁄ χ𝒬(𝑥))

p(𝑥)

𝒬∈𝒟μ
𝑛

d𝑥

𝑣ℝ𝑛
 

Where were again swapped the integral and the sums. Since ‖𝑓‖
Fp(∙)
𝛼(∙) ≤ 1, the right 

hand side quantity is bounded, and we are done. 

Section (3.2): Besov Spaces 

Spaces of variable integrability, also known as variable exponent function spaces, 

can be traced back to 1931 and W. Orlicz [124], but the modern development started with 

[113] of Kováčik and Rákosník in 1991. Corresponding PDE with non-standard growth 

have been studied since the same time. For an overview we refer to the surveys [101, 128, 

132, 148] and the monograph [145]. Apart from interesting theoretical considerations, the 

motivation to study such function spaces comes from applications to fluid dynamics [86, 

130, 141], image processing [94], PDE and the calculus of variation [87, 103, 111, 147, 

151, 155, 159]. 

We complete the picture of the variable exponent Lebesgue and Sobolev spaces, 

Almeida and Samko [88] and Gurka, Harjulehto and Nekvinda [109] introduced variable 

exponent Bessel potential spaces ℒαp(∙) with constant 𝛼 ∈ ℝ. As in the classical case, this 

space coincides with the Lebesgue-Sobolev space for integer α. There was taken a step 

further by Xu [137, 138, 159], who considered Besov Bp(∙),q
𝛼  and Triebel-Lizorkin Fp(∙),q

𝛼  

spaces with variable p, but fixed q and 𝛼. 

Along a different line of inquiry, Leopold [117, 119, 120] studied pseudo-

differential operators with symbols of the type 〈ξm(𝑥)〉, and defined related function spaces 

of Besov-type with variable smoothness, Bp,p
m(∙)

. Beauzamy [144] had studied similar ψDEs 

already in the beginning of the 70s. Function spaces of variable smoothness have recently 

been studied by Besov [90, 91, 92]: he generalized Leopold's work by considering both 

Triebel-Lizorkin spaces Fp(∙),q
𝛼  and Besov spaces Bp(∙),q

𝛼  in ℝ𝑛 . By way of application, 

Schneider and Schwab [135] used B2,2
m(∙)(ℝ)  in the analysis of certain Black-Scholes 

equations. For further considerations of ψDEs, see Hoh [149]. 

Integrating the above mentioned spaces into a single larger scale promises similar 

gains and simplifications as were seen in the constant exponent case in the 60s and 70s 

with the advent of the full Besov and Triebel-Lizorkin scales. Most of the advantages of 
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unification do not occur with only one index variable: for instance, traces or Sobolev 

embeddings cannot be covered in this case, since they involve an interaction between 

integrability and smoothness. To tackle this, Diening, Hästö and Roudenko [140] 

introduced Triebel-Lizorkin spaces with all three indices variable, Fp(∙),q(∙)
𝛼(∙)

 and showed 

that they behaved nicely with respect to trace. Subsequently, Vybíral [157] proved 

Sobolev (Jawerth) type embeddings in these spaces; they were also studied by Kempka 

[150]. These studies were all restricted to bounded exponents p and q. 

Vybíral [157] and Kempka [150] also considered Besov spaces Bp(∙),q
𝛼(∙)

 note that only 

the case of constant q was included. This is quite natural, since the norm in the Besov 

space is usually defined via the iterated space ℓq(Lp) so that the space integration in Lp is 

done first, followed by the sum over frequency scales in ℓq. Therefore, it is not obvious 

how q could depend on 𝑥, which has already been integrated out. It is the purpose to 

propose a method making this dependence possible and thus completing the unification 

process in the variable integrability-smoothness case by introducing the Besov space 

Bp(∙),q(∙)
𝛼(∙)

 with all three indices variable. 

The space includes the previously mentioned spaces of Besov-type, as well as the 

Hölder-Zygmund space C𝛼(∙). As in the constant exponent case, it is possible to consider 

unbounded exponents p and q in the Besov space case, while for the Triebel-Lizorkin 

space one needs p to be bounded. Another advantage of the Besov space for constant 

exponent is its simplicity compared to the Triebel-Lizorkin space. This is not true for the 

generalization with variable q. We will see that working in the Besov space is relatively 

simple once some basic tools have been established for dealing in the ‘‘iterated’’ space 

ℓq(∙)(Lp(∙)). 

We then define the Besov space Bp(∙),q(∙)
𝛼(∙)

 and give several basic properties 

establishing the soundness of our definition. We show elementary embeddings between 

Besov and Triebel-Lizorkin spaces, as well as Sobolev embeddings in the Besov scale. We 

show that our scale includes the variable order Hölder-Zygmund space as a special case: 

B∞,∞
𝛼(∙)

= C𝛼(∙) for 0 < 𝛼 < 1. We give an alternative characterization of the Besov space 

by means of approximations by analytic functions. 

So far, complex interpolation has been considered in the variable exponent in [101, 

145]. Real interpolation, however, is more difficult in this setting. We have, for constant 

exponents, 
(Lp0 , Lp1)θ,q = L

pθ,q 

where 1 pθ⁄ ≔ θ p0⁄ + (1 − θ) p1⁄  and Lpθ,q is the Lorenz space. To obtain interpolation 

of Lebesgue spaces one simply chooses q = pθ . It seems that there are no major 

difficulties in letting p0 and p1 be variable here, i.e. 

(Lp0(∙), Lp1(∙))
θ,q
= Lpθ(∙),q 

where pθ is defined point-wise by the same formula as before. However, this time we do 

not obtain an interpolation result in Lebesgue spaces, since we cannot set the constant q 

equal to the function pθ. In fact, the role of q in the real interpolation method is quite 

similar to the role of q in the Besov space Bp,q
𝛼 . Therefore, we hope that the approach 

introduced for Besov spaces with variable q  will also allow us to generalize real 

interpolation properly to the variable exponent context. Another interesting challenge is to 

extend extrapolation [95] to the setting of Besov spaces. 
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The expression 𝑓 ≈  g  means that 
1

c
g ≤ 𝑓 ≤ cg  for some suitably independent 

constant c. By χA we denote the characteristic function of A ⊂ ℝ𝑛. By supp𝑓 we denote 

the support of the function 𝑓, i.e. the closure of its zero set. The notation X ↪ Y denotes 

continuous embeddings from X to Y. 

The spaces studied fit into the framework of so-called semimodular spaces. For an 

exposition of these concepts see [145, 151]. We recall the following definition: 

Definition (3.2.1) [160]: Let X be a vector space over ℝ or ℂ. A function ϱ ∶ X → [0,∞] is 

called a semimodular on X if the following properties hold: 

(i) ϱ(0) = 0. 

(ii) ϱ(λ𝑓) = ϱ(𝑓) for all 𝑓 ∈ X and |λ| = 1. 

(iii) ϱ(λ𝑓) = 0 for all |λ| > 1 implies 𝑓 = 0. 

(iv) λ ↦ ϱ(λ𝑓) is left-continuous on [0,∞) for every 𝑓 ∈ X. 

A semimodular ϱ is called a modular if  

(v) ϱ(𝑓) = 0 implies 𝑓 = 0. 

A semimodular ϱ is called continuous if  

(vi) For every 𝑓 ∈ X the mapping λ ↦ ϱ(λ𝑓) is continuous on [0,∞). 
A semimodular ϱ can be additionally qualified by the term (quasi)convex. This means, 

as usual, that 
ϱ(θ𝑓 + (1 − θ)g) ≤ A[θϱ(𝑓) + (1 − θ)ϱ(g)] 

     for all 𝑓, g ∈ X; here A = 1 in the convex case, and A ∈ [1,∞) in the quasiconvex case. 

We obtain a normed space in a standard way: 

Definition (3.2.2) [160]: If ϱ is a (semi)modular on X, then 
Xϱ ≔ {𝑥 ∈ X ∶ ∃λ > 0, ϱ(λ𝑥) < ∞ } 

is called a (semi)modular space. 

Theorem (3.2.3) [160]: Let ϱ  be a (quasi)convex semimodular on X . Then Xϱ  is a 

(quasi)normed space with the Luxemburg (quasi)norm given by 

‖𝑥‖ϱ ≔ inf {λ > 0 ∶ ϱ (
1

λ
𝑥) ≤ 1}. 

For simplicity we will refer to semimodulars as modulars except when special 

clarity is needed; similarly, we later drop the word ‘‘quasi’’. 

For dealing with the somewhat complicated definition of a norm is the following 

relationship which follows from the definition and left-continuity: ϱ(𝑓) ≤ 1 if and only if 

‖𝑓‖ϱ ≤ 1. 

The variable exponents that we consider are always measurable functions on ℝ𝑛 

with range (c,∞] for some c > 0. We denote the set of such functions by 𝒫0. The subset 

of variable exponents with range [1,∞]  is denoted by 𝒫 . For A ⊂ ℝ𝑛  and p ∈ 𝒫0  we 

denote pA
+ = ess sup

A
p(𝑥)  and pA

− = ess inf
A
p(𝑥) ; we abbreviate p+ = pℝ𝑛

+  and p− =

pℝ𝑛
− . 

The function φp is defined as follows: 

φp(t) = {
tp           if p ∈ (0,∞),              
0            if  p = ∞  and t ≤ 1,
∞           if p = ∞  and  t > 1.

 

The convention 1∞ = 0  is adopted in order that φp  be left-continuous. In what 

follows we write tp instead of φp(t), with this convention implied. The variable exponent 

modular is defined by 
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ϱp(∙)(𝑓) ≔ ∫φp(|𝑓(𝑥)|)d𝑥

ℝ𝑛

. 

The variable exponent Lebesgue space Lp(∙) and its norm ‖𝑓‖p(∙) are defined by the 

modular as explained. The variable exponent Sobolev space Wk,p(∙) is the subspace of Lp(∙) 
consisting of functions 𝑓  whose distributional k-th order derivative exists and satisfies 

|Dk𝑓| ∈ Lp(∙) with norm 

‖𝑓‖Wk,p(∙) = ‖𝑓‖p(∙) + ‖D
k𝑓‖

p(∙)
. 

We say that g ∶ ℝ𝑛 → ℝ is locally log-Hölder continuous, abbreviated g ∈ Cloc
log

, if 

there exists clog > 0 such that 

|g(𝑥) − g(y)| ≤
clog

log(e + 1 |𝑥 − y|⁄ )
 

for all 𝑥, y ∈ ℝ𝑛. We say that g is globally log-Hölder continuous, abbreviated g ∈ Clog, if 
it is locally log-Hölder continuous and there exists g∞ ∈ ℝ

𝑛 such that 

|g(𝑥) − g∞| ≤
clog

log(e + |𝑥|)
 

for all 𝑥 ∈ ℝ𝑛 . The notation 𝒫log  is used for those variable exponents p ∈ 𝒫  with 
1

p
∈

Clog. The class 𝒫0
log

 is defined analogously. If p ∈ 𝒫log, then convolution with a radially 

decreasing L1-function is bounded on Lp(∙): 
‖φ ∗ 𝑓‖p(∙) ≤ c‖φ‖1‖𝑓‖p(∙). 

Now we introduce a generalization of the iterated function space ℓq(Lp(∙)) for the 

case of variable q, which allows us to define Besov spaces with variable q. We give a 

general but quite strange looking definition for the mixed Lebesgue-sequence space 

modular. This is not strictly an iterated function space indeed, it cannot be, since then there 

would be no space variable left in the outer function space. To motivate our definition, we 

show that it has several sensible properties and that it concurs with the iterated space when 

q  is constant (Proposition (3.2.5)). Then we show that our modular in fact is a 

semimodular in the sense defined and conclude that it defines a normed space. 

Definition (3.2.4) [160]: Let p, q ∈ 𝒫0. The mixed Lebesgue-sequence space ℓq(Lp(∙)) is 

defined on sequences of Lp(∙)-functions by the modular 

ϱℓq(Lp(∙))((𝑓𝑣)𝑣) ≔∑inf {λ𝑣 > 0 |ϱℓq(Lp(∙)) (𝑓𝑣 λ𝑣
1 q(∙)⁄

⁄ ) ≤ 1}

𝑣

. 

Here we use the convention λ1 ∞⁄ = 1. The norm is defined from this as usual: 

‖(𝑓𝑣)𝑣‖ℓq(Lp(∙)) ≔ inf {μ > 0 |ϱℓq(Lp(∙)) (
1

μ
(𝑓𝑣)𝑣) ≤ 1}. 

If q+ < ∞, then 

inf{λ > 0|ϱp(∙)(𝑓 λ1 q(∙)⁄⁄ ) ≤ 1} = ‖|𝑓|q(∙)‖
p(∙) q(∙)⁄

. 

Since the right-hand side expression is much simpler, we use this notation to stand 

for the left-hand side even when q+ = ∞. We often use the notation 

ϱℓq(Lp(∙))((𝑓𝑣)𝑣) =∑‖|𝑓𝑣|
q(∙)‖

p(∙) q(∙)⁄
𝑣

 

for the modular. 

Proposition (3.2.5) [160]: If q ∈ (0,∞) is constant, then 

‖(𝑓𝑣)𝑣‖ℓq(Lp(∙)) = ‖‖𝑓𝑣‖p(∙)‖ℓq . 

Proof: Suppose first that q ∈ (0,∞). Since q is constant, 



82 

‖|𝑓𝑣|
q‖p(∙) q⁄ = ‖𝑓𝑣‖p(∙)

q
 

and thus 

ϱℓq(Lp(∙))((𝑓𝑣)𝑣) =∑‖𝑓𝑣‖p(∙)
q

𝑣

= ‖‖𝑓𝑣‖p(∙)‖ℓq
q

 

from which the claim follows. 

In the case q = ∞, we find 

ϱℓ∞(Lp(∙))((𝑓𝑣)𝑣) =∑inf{λ𝑣 > 0|ϱp(∙)(𝑓𝑣 λ𝑣
0⁄ ) ≤ 1}

𝑣

. 

Here the infimum is zero, unless at least one of the sets over which it is taken is 

empty, in which case it is infinite. Therefore, the inequality in the definition of the norm, 

‖(𝑓𝑣)𝑣‖ℓ∞(Lp(∙)) = inf {μ > 0 |ϱℓ∞(Lp(∙)) (
(𝑓𝑣)𝑣
μ
) ≤ 1} 

holds if and only if μ is such that ϱp(∙)(𝑓𝑣 μ⁄ ) ≤ 1 for every 𝑣, which means that 

inf μ = sup{‖𝑓𝑣‖p(∙)} = ‖‖𝑓𝑣‖p(∙)‖ℓ∞ . 

Proposition (3.2.6) [160]: Let p, q ∈ 𝒫0. Then ϱℓq(∙)(Lp(∙)) is a semimodular. Additionally, 

(i) it is a modular if p+ < ∞; and 

(ii) it is continuous if p+, q+ < ∞. 

Proof: We need to check properties (i)-(iv) of Definition (3.2.1) and properties (v)-(vi) 

under the appropriate additional assumptions. Properties (i) and (ii) are clear. To prove 

(iii), we suppose that 
ϱℓq(∙)(Lp(∙))(λ(𝑓𝑣)𝑣) = 0 

for all λ > 0 . Clearly,  ϱℓq(∙)(Lp(∙))(0,⋯ , 0, λ𝑓𝑣0 , 0⋯ ) ≤ ϱℓq(∙)(Lp(∙))(λ(𝑓𝑣)𝑣) = 0 . Thus 

‖𝑓𝑣0‖p(∙)
= 0 see [323], and so 𝑓 = 0. If p is bounded, then the same argument implies (v). 

To prove the left-continuity we start by noting that μ ⟼ ϱℓq(∙)(Lp(∙))(μ(𝑓𝑣)𝑣)  in 

nondecreasing. By relabeling the function if necessary, we see that it suffices to show that 
ϱℓq(∙)(Lp(∙))(μ(𝑓𝑣)𝑣) ↗ ϱℓq(∙)(Lp(∙))((𝑓𝑣)𝑣) 

μ ↗ 1. We assume that  
ϱℓq(∙)(Lp(∙))((𝑓𝑣)𝑣) < ∞ 

the other case is similar. We fix ε > 0 and choose N > 0 such that 

ϱℓq(∙)(Lp(∙))((𝑓𝑣)𝑣) − ε <∑inf {λ𝑣 > 0 |ϱp(∙) (𝑓𝑣 λ𝑣
1 q(∙)⁄

⁄ ) ≤ 1}

N

𝑣=0

. 

By the left-continuity of μ ⟼ ϱp(∙)(μ𝑓), we then choose μ∗ < 1 such that 

∑inf {λ𝑣 > 0 |ϱp(∙) (𝑓𝑣 λ𝑣
1 q(∙)⁄

⁄ ) ≤ 1}

N

𝑣=0

− ε <∑inf {λ𝑣 > 0 |ϱp(∙) (μ 𝑓𝑣 λ𝑣
1 q(∙)⁄

⁄ ) ≤ 1}

N

𝑣=0

 

for all μ ∈ (μ∗, 1) . Then ϱℓq(∙)(Lp(∙))((𝑓𝑣)𝑣) < ϱℓq(∙)(Lp(∙))(μ(𝑓𝑣)𝑣) + 2ε  in the same range, 

which proves (iv). When q+ < ∞, a similar argument reduces (vi) to the continuity of 

ϱp(∙), which holds when p+ < ∞. 

We would have shown that the modular is quasiconvex as part of the previous 

theorem. Then Theorem (3.2.3) would immediately imply that the modular in ℓq(∙)(Lp(∙)) 

defines a quasinorm. Unfortunately, we do not know whether the modular is quasiconvex 

when q+ = ∞. Therefore, we prove the quasiconvexity of the norm directly; we do this in 

two steps, beginning with the true convexity. Notice that our assumption when q is non-

constant is not as expected. We also do not know if it is necessary. 
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Theorem (3.2.7) [160]: Let  p, q ∈ 𝒫 . If either 1 p⁄ + 1 q⁄ ≤ 1  point-wise, or q  is a 

constant, then ‖∙‖ℓq(∙)(Lp(∙)) is a norm. 

Proof: Theorem (3.2.3) implies all the other claims, except the convexity. If p ∈ 𝒫 and 

q ∈ [1,∞] is a constant, then by Proposition (3.2.3), the convexity follows directly from 

the convexity of the modulars in ℓq and Lp(∙). 

Thus it remains only to consider 
1

p
+
1

q
≤ 1 and to show that 

‖(𝑓𝑣)𝑣 + (g𝑣)𝑣‖ℓq(∙)(Lp(∙)) ≤ ‖(𝑓𝑣)𝑣‖ℓq(∙)(Lp(∙)) + ‖(g𝑣)𝑣‖ℓq(∙)(Lp(∙)). 

Let λ > ‖(𝑓𝑣)𝑣‖ℓq(∙)(Lp(∙)) and μ > ‖(g𝑣)𝑣‖ℓq(∙)(Lp(∙)). Then the claim follows from left-

continuity if we show that 

‖
(𝑓𝑣)𝑣 + (g𝑣)𝑣

λ + μ
‖
ℓq(∙)(Lp(∙))

≤ 1. 

Moving to the modular, we get the equivalent condition 

∑‖|
𝑓𝑣 + g𝑣
λ + μ

|
q(∙)

‖
p(∙) q(∙)⁄𝑣

≤ 1 

with our usual convention regarding the case p q⁄ = 0. Since 

∑‖|
𝑓𝑣
λ
|
q(∙)

‖
p(∙) q(∙)⁄𝑣

≤ 1    and    ∑‖|
g𝑣
μ
|
q(∙)

‖
p(∙) q(∙)⁄𝑣

≤ 1 

the claim follows provided we show that 

‖|
𝑓𝑣 + g𝑣
λ + μ

|
q(∙)

‖
p(∙) q(∙)⁄

≤
λ

λ + μ
‖|
𝑓𝑣
λ
|
q(∙)

‖
p(∙) q(∙)⁄

+
μ

λ + μ
‖|
g𝑣
μ
|
q(∙)

‖
p(∙) q(∙)⁄

 

for every 𝑣. Fix now one 𝑣. Denote the norms on the right-hand side of the previous 

inequality by σ and τ. Then what we need to show reads 

∫ |
𝑓𝑣 + g𝑣
λ + μ

|
p(𝑥)

(
λσ + μτ

λ + μ
)
−p(𝑥) q(𝑥)⁄

d𝑥

ℝ𝑛

≤ 1.                                              (5) 

We use Hölder's inequality (with two-point atomic measure and weights (λ, μ)) as follows: 

|𝑓𝑣| + |g𝑣| = λσ
1 q(𝑥)⁄

|𝑓𝑣| λ⁄

σ1 q(𝑥)⁄
+ μτ1 q(𝑥)⁄

|g𝑣| μ⁄

τ1 q(𝑥)⁄

≤ (λ + μ)1−1 p(𝑥)⁄ −1 q(𝑥)⁄ (λσ + μτ)1 q(𝑥)⁄ (λ (
|𝑓𝑣| λ⁄

σ1 q(𝑥)⁄
)

p(𝑥)

+ μ(
|g𝑣| μ⁄

τ1 q(𝑥)⁄
)

p(𝑥)

)

1 p(𝑥)⁄

. 

With this, we obtain 

|
𝑓𝑣 + g𝑣
λ + μ

|
p(𝑥)

(
λσ + μτ

λ + μ
)
−p(𝑥) q(𝑥)⁄

≤
λ

λ + μ
(
|𝑓𝑣| λ⁄

σ1 q(𝑥)⁄
)

p(𝑥)

+
μ

λ + μ
(
|g𝑣| μ⁄

τ1 q(𝑥)⁄
)

p(𝑥)

. 

Integrating the inequality over ℝ𝑛 and taking into account that σ is the norm of 𝑓𝑣 λ⁄  and τ 
the norm of g𝑣 μ⁄  gives us (5), which completes the proof. 

Theorem (3.2.8) [160]: If p, q ∈ 𝒫0, then ‖∙‖ℓq(∙)(Lp(∙)) is a quasinorm on ℓq(∙)(Lp(∙)). 

Proof: By Theorem (3.2.3), we only need to cosinder quasiconvexity. Let r ∈

(0,
1

2
min{p−, q−, 2}] and define p̃ = p r⁄  and q̃ = q r⁄ . Then clearly 1 p⁄ + 1 q⁄ ≤ 1. Thus 

we obtain by the previous theorem that 
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‖(𝑓𝑣)𝑣 + (g𝑣)𝑣‖ℓq(∙)(Lp(∙)) = ‖|(𝑓𝑣)𝑣 + (g𝑣)𝑣|
r‖
ℓq̃(∙)(Lp̃(∙))

1
r ≤ ‖(|𝑓𝑣|

r)𝑣 + (|g𝑣|
r)𝑣‖ℓq̃(∙)(Lp̃(∙))

1
r

≤ (‖(|𝑓𝑣|
r)𝑣‖ℓq̃(∙)(Lp̃(∙)) + ‖(|g𝑣|

r)𝑣‖ℓq̃(∙)(Lp̃(∙)))

1
r

= (‖(𝑓𝑣)𝑣‖ℓq(∙)(Lp(∙))
r + ‖(g𝑣)𝑣‖ℓq(∙)(Lp(∙))

r )

1
r

≤ 2
1
r
−1 (‖(𝑓𝑣)𝑣‖ℓq(∙)(Lp(∙)) + ‖(g𝑣)𝑣‖ℓq(∙)(Lp(∙))). 

This completes the proof.  

The condition p, q ≥ 1 is not sufficient to guarantee that the modular ϱℓq(∙)(Lp(∙)) be 

convex! Although it is not true that the modular ϱℓq(∙)(Lp(∙)) is never convex when q is non-

constant (see, [160]). 

Since q is constant when 𝑓 is non-zero, we conclude by Proposition (3.2.5) that 

ϱℓq(∙)(Lp)((𝑓𝑣)𝑣) = ϱℓq1(Lp(𝒬1))((𝑓𝑣)𝑣) = ‖𝑎
1 q1⁄ χ𝒬1‖p

q1
= 𝑎. 

Similarly, ϱℓq(∙)(Lp)((g𝑣)𝑣) = b. Then we consider the modular of 
1

2
(𝑓 + g): 

ϱℓq(∙)(Lp) (
1

2
(𝑓𝑣 + g𝑣)𝑣) = inf {λ > 0 |ϱp (

1

2
(𝑓 + g) λ

1
q(∙)⁄ ) ≤ 1}. 

The condition in the infimum translates to 

1 ≥ ∫(
𝑓 + g

2λ1 q(𝑥)⁄
)
p

d𝑥

ℝ𝑛

=
1

2p
∫(
𝑎

λ
)

p
q1
χ𝒬1 + (

b

λ
)

p
q2
χ𝒬2d𝑥

ℝ𝑛

=
1

2p
(
𝑎

λ
)

p
q1
+
1

2p
(
b

λ
)

p
q2
. 

Since the right hand side is continuous and decreasing in  λ, we see that there exists a 

unique λ0 > 0  for which equality holds. This number is the value of the modular of 
1

2
(𝑓 + g). Therefore the convexity inequality for the modular, 

ϱℓq(∙)(Lp) (
1

2
(𝑓𝑣 + g𝑣)𝑣) ≤

1

2
[ϱℓq(∙)(Lp)((𝑓𝑣)𝑣) + ϱℓq(∙)(Lp)((g𝑣)𝑣)], 

can be written as 

λ0 ≤
𝑎 + b

2
  where  (

𝑎

λ0
)

p
q1
+ (

b

λ0
)

p
q2
= 2p. 

Let us denote 𝑥 ≔ 𝑎 λ0⁄  and y ≔ b λ0⁄ . Then the convexity condition becomes 

2 ≤ 𝑥 + y  when  𝑥
p
q1 + y

p
q2 = 2p. 

By monotonicity, we may reformulate this as follows: 

𝑥
p
q1 + y

p
q2 ≤ 2p   when   2 = 𝑥 + y.                                                  (6) 

Thus we need to look for the maximum of 𝑥
p

q1 + (2 − 𝑥)
p

q2 on [0, 2]. 
Suppose first that p = 1. Then (6) holds with equality at 𝑥 = y = 1, but this is not a 

maximum if q1 ≠ q2. Thus we see that the inequality 𝑥1 q1⁄ + y1 q2⁄ ≤ 2    does not hold in 

this case, which means that the modular is non-convex for arbitrarily small |q1 − q2|. 
On the other hand, fix p > 1 and choose q1 = 0. Then we can choose 𝑥 ∈ (0, 2) so 

large that 2p − 𝑥p q1⁄ = 1 2⁄ . Since y = 2 − 𝑥 > 0, we can choose q1 so large that yp q2⁄ =

1 2⁄ . Thus we see that there exists q1 and q2 for every p such that (6) does not hold. 

We use a Fourier approach to the Besov and Triebel-Lizorkin space. For this we 

need some general definitions, well-known from the constant exponent case. 

Definition (3.2.9) [160]: We say a pair (φ,Φ) is admissible if φ,Φ ∈ 𝒮 satisfy 

(i) supp φ̂ ⊆ {ξ ∈ ℝ𝑛 ∶
1

2
≤ |ξ| ≤ 2}   and  |φ̂(ξ)| ≥ c > 0  when  

3

5
≤ |ξ| ≤

5

3
, 
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(ii) supp Φ̂ ⊆ {ξ ∈ ℝ𝑛 ∶ |ξ| ≤ 2}  and  |Φ̂(ξ)| ≥ c > 0  when  |ξ| ≤
5

3
. 

We set φ𝑣(𝑥) ≔ 2𝑣𝑛φ(2𝑣𝑥) for 𝑣 ∈ ℕ and φ0(𝑥) ≔ Φ(𝑥). 
We always denote by φ𝑣 and ψ𝑣 admissible functions in the sense of the previous 

definition. Usually, the Besov space is defined using the functions φ𝑣; when this is not the 

case, it will be explicitly marked, e.g. ‖∙‖
Bp(∙),q(∙)
α(∙)
ψ

 

Using the admissible functions (φ,Φ) we can define the norms 

‖𝑓‖Fp,qα ≔ ‖‖2𝑣𝛼φ𝑣 ∗ 𝑓‖ℓq‖p    and    ‖𝑓‖Bp,qα ≔ ‖‖2𝑣𝛼φ𝑣 ∗ 𝑓‖p‖ℓq
, 

for constants 𝛼 ∈ ℝ𝑛  and p, q ∈ (0,∞] (excluding p = ∞ for the F-scale). The Triebel-

Lizorkin space Fp,q
α  and the Besov space Bp,q

α  consist of all distributions 𝑓 ∈ 𝒮′ for which 

‖𝑓‖Fp,qα < ∞ and ‖𝑓‖Bp,qα < ∞, respectively. It is well-known that these spaces do not 

depend on the choice of the initial system (φ,Φ) (up to equivalence of quasinorms). 

Further details on the classical theory of these spaces can be found in Triebel [40, 41]; see 

also [136]. 

Definition (3.2.10) [160]: Let φ𝑣 be as in Definition (3.2.9). For 𝛼 ∶ ℝ𝑛 → ℝ and p, q ∈

𝒫0, the Besov space Bp(∙),q(∙)
α(∙)

 consists of all distributions 𝑓 ∈ 𝒮′ such that 

‖𝑓‖
Bp(∙),q(∙)
α(∙)
φ

≔ ‖(2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))
< ∞. 

In the case of p = q we use the notation Bp(∙)
α(∙) ≔ Bp(∙),p(∙)

α(∙)
. 

To the Besov space we can also associate the following modular: 

ϱ
Bp(∙),q(∙)
α(∙)
φ (𝑓) ≔ ϱℓq(∙)(Lp(∙)) ((2

𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣), 

which can be used to define the norm. By Proposition (3.2.5) we directly obtain the 

following simplification in the case when q is constant: 

Corollary (3.2.11) [160]: If q is a constant, then 

‖𝑓‖
Bp(∙),q
α(∙)
φ

≔ ‖‖2𝑣𝛼(∙)φ𝑣 ∗ 𝑓‖p(∙)‖ℓq
. 

An important special case of the Besov space is when p = q. In this case we show 

that the Besov space agrees with the corresponding Triebel-Lizorkin space studied in 

[140]. This space is defined via the norm 

‖𝑓‖
Fp(∙),q
α(∙)
φ

≔ ‖‖2𝑣𝛼(∙)φ𝑣 ∗ 𝑓‖ℓq(∙)‖p(∙)
. 

Notice that there is no difficulty with q depending on the space variable 𝑥  here, 

since the ℓq(∙)-norm is inside the Lp(∙)-norm. 

Proposition (3.2.12) [160]: Let p ∈ 𝒫0 and 𝛼 ∈ L∞. Then Bp(∙)
α(∙)

= Fp(∙)
α(∙)

. 

Proof: The claim follows from the following calculation: 

ϱ
Bp(∙)
α(∙)
φ (𝑓) =∑‖‖2𝑣𝛼(∙)φ𝑣 ∗ 𝑓‖

p(∙)
‖
1

𝑣

=∑ ∫|2𝑣𝛼(𝑥)φ𝑣 ∗ 𝑓(𝑥)|
p(𝑥)

d𝑥

ℝ𝑛𝑣

= ∫∑|2𝑣𝛼(𝑥)φ𝑣 ∗ 𝑓(𝑥)|
p(𝑥)

d𝑥

𝑣ℝ𝑛

= ∫‖2𝑣𝛼(𝑥)φ𝑣 ∗ 𝑓(𝑥)‖ℓq(𝑥)
p(𝑥)

d𝑥

ℝ𝑛

= ϱ
Fp(∙)
α(∙)
φ (𝑓). 

So far we have not considered whether the space given by Definition (3.2.10) 

depends on the choice of (φ,Φ). Therefore, the previous result has to be understood in the 

sense that the Besov space defined from a certain (φ,Φ)  equals the Triebel-Lizorkin 

space defined by the same φ. This is not entirely satisfactory. In [140] it was shown that 

the Triebel-Lizorkin space is independent of the basic functions, essentially assuming that 
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p, q, 𝛼 ∈ 𝒫0
log
∩ L∞. We prove now a corresponding result for the Besov space, but with 

more general assumptions; namely we allow p, q ∈ 𝒫0
log

 to be unbounded, and assume of 

𝛼 ∈ L∞ only local log-Hölder continuity. 

Theorem (3.2.13) [160]: Let p, q ∈ 𝒫0
log

 and 𝛼 ∈ Cloc
log
∩ L∞. Then the space Bp(∙),q(∙)

α(∙)
 does 

not depend on the admissible basis functions φ𝑣, i.e. different functions yield equivalent 

quasinorms. 

Proof: Let (φ,Φ)  and (ψ,Ψ)  be two pairs of admissible functions. By symmetry, it 

suffices to prove that 

‖𝑓‖
Bp(∙),q(∙)
α(∙)
φ

≤ c‖𝑓‖
Bp(∙),q(∙)
α(∙)
ψ

. 

Define K ≔ {−1, 0, 1} . Following classical lines, and using that φ̂𝑣ψ̂μ = 0  when |μ −

𝑣| > 1, we have 

φ𝑣 ∗ 𝑓 =∑φ𝑣 ∗ ψ𝑣+k ∗ 𝑓

k∈K

. 

Fix r ∈ (0,min{1, p−}) and m > 𝑛 large. Since |φ𝑣| ≤ c η𝑣,2m r⁄ , with c > 0 independent 

of 𝑣, we obtain 

|φ𝑣 ∗ ψ𝑣+k ∗ 𝑓| ≤ c η𝑣,2m r⁄ ∗ |ψ𝑣+k ∗ 𝑓| ≤ c η𝑣,2m r⁄ ∗ ( η𝑣+k,2m ∗ |ψ𝑣+k ∗ 𝑓|
r)
1 r⁄
, 

where in the second inequality we used the r-trick. By Minkowski's integral inequality 

(with exponent 1 r⁄ > 1) and Lemma  A.3, [140] we further obtain 

|φ𝑣 ∗ ψ𝑣+k ∗ 𝑓|
r ≤ c [η𝑣,2m r⁄ ∗ η𝑣+k,2m

1 r⁄ ]
r
∗ |ψ𝑣+k ∗ 𝑓|

r ≈ η𝑣+k,2m ∗ |ψ𝑣+k ∗ 𝑓|
r. 

This, together with Lemma 6.1 [140] and Lemma 4.7 [160] gives 

‖(2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))
= ‖(2𝑣𝛼(∙)r|φ𝑣 ∗ 𝑓|

𝑟)
𝑣
‖
ℓ
q(∙)
r (L

p(∙)
r )

1 r⁄

≤ c∑‖(2𝑣𝛼(∙)rη𝑣+k,2m ∗ |ψ𝑣+k ∗ 𝑓|
r)
𝑣
‖
ℓ
q(∙)
r (L

p(∙)
r )

1 r⁄

k∈K

≤ c∑‖(η𝑣+k,m ∗ (2
𝑣𝛼(∙)r|ψ𝑣+k ∗ 𝑓|

r))
𝑣
‖
ℓ
q(∙)
r (L

p(∙)
r )

1 r⁄

k∈K

≤ c∑‖(2𝑣𝛼(∙)r|ψ𝑣+k ∗ 𝑓|
r)
𝑣
‖
ℓ
q(∙)
r (L

p(∙)
r )

1 r⁄

k∈K

= c∑‖(2𝑣𝛼(∙)ψ𝑣+k ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))
k∈K

. 

By the shift invariance of the mixed Lebesgue sequence space, the last sum equals 

3‖𝑓‖
Bp(∙),q(∙)
α(∙)
ψ

, which completes the proof. 

Although one would obviously like to work in the variable index Besov space 

independent of the choice of basic functions φ𝑣, the assumptions needed in the previous 

theorem are quite strong in the sense that many of the later results work under much 

weaker assumptions. In the interest of clarity, we state those results only with the 

assumptions actually needed in their proofs. They should then be understood to hold with 

any particular choice of basic functions. For simplicity, we will not explicitly include the 

dependence on φ, thus omitting φ in the notation of the norm and modular. 

The following theorem gives basic embeddings between Besov spaces and Triebel-

Lizorkin spaces. 

Theorem (3.2.14) [160]: Let 𝛼, 𝛼0, 𝛼1 ∈ L
∞ and p, q0, q1 ∈ 𝒫0. 

(i) If q0 ≤ q1, then 

Bp(∙),q0(∙)
α(∙)

↪ Bp(∙),q1(∙)
α(∙)

. 
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(ii) If (𝛼0 − 𝛼1)
− > 0, then 

Bp(∙),q0(∙)
α0(∙) ↪ Bp(∙),q1(∙)

α1(∙) . 

(iii) If p+, q+ < ∞, then 

Bp(∙),min{p(∙),q(∙)}
α(∙)

↪ Fp(∙),q(∙)
α(∙)

↪ Bp(∙),max{p(∙),q(∙)}
α(∙)

. 

Proof: Assume that q0 ≤ q1. We note that λ
1

q0(𝑥) ≤ λ
1

q1(𝑥) when λ ≤ 1. By the definition it 

follows that 
ϱ
Bp(∙),q0(∙)
𝛼(∙) (𝑓 μ⁄ ) ≥ ϱ

Bp(∙),q1(∙)
𝛼(∙) (𝑓 μ⁄ ) 

for every μ > 0, which implies (i). 

By (i), 

Bp(∙),q0(∙)
α0(∙) ↪ B

p(∙),q0
+(∙)

α0(∙)    and   Bp(∙),q1−(∙)
α1(∙) ↪ Bp(∙),q1(∙)

α1(∙) . 

Therefore, it suffices to prove (ii) for constant exponents q0
+ and q0

−, which we denote 

again by q0, q1 ∈ (0,∞] for simplicity. Then the proof is similar to the constant exponent 

situation. Indeed, 

‖‖2𝑣𝛼1(∙)φ𝑣 ∗ 𝑓‖p(∙)‖ℓq1
≤ c1 ‖‖2

𝑣𝛼0(∙)φ𝑣 ∗ 𝑓‖p(∙)‖ℓ∞
≤ c1 ‖‖2

𝑣𝛼0(∙)φ𝑣 ∗ 𝑓‖p(∙)‖ℓq0
 

with c1
q1 = ∑ 2𝑣q1(𝛼0−𝛼1)

−

𝑣≥0 < ∞. 
To prove the first embedding in (iii), let r ≔ min{p, q} and 𝑓𝑣(𝑥) ≔ 2𝑣𝛼(𝑥)|φ𝑣 ∗ 𝑓(𝑥)|. We 

assume that ϱ
Bp(∙),r(∙)
𝛼(∙) (𝑓) ≤ 1. Then it suffices to show that ϱ

Fp(∙),q(∙)
𝛼(∙) (𝑓) ≤ c. Since ℓr(𝑥) ↪

ℓq(𝑥), we obtain 

ϱp(∙)(‖𝑓𝑣‖ℓq(𝑥)) ≤ ϱp(∙)(‖𝑓𝑣‖ℓr(𝑥)) = ∫(∑𝑓𝑣
r(𝑥)

𝑣

)

p(𝑥)
r(𝑥)

d𝑥

ℝ𝑛

= ϱp(∙)
r(∙)

(∑𝑓𝑣
r(∙)

𝑣

). 

Thus it suffices to show that the right hand side is bounded by a constant, which follows if 

the corresponding norm is bounded. Using the triangle inequality, we obtain just this: 

‖∑𝑓𝑣
r(∙)

𝑣

‖
p(∙)
r(∙)

≤∑‖𝑓𝑣
r(∙)‖p(∙)

r(∙)𝑣

= ϱ
Bp(∙),r(∙)
𝛼(∙) (𝑓) ≤ 1. 

For the second embedding in (iii), we use a similar derivation, with s = max{p, q}. We 

assume that ϱ
Fp(∙),q(∙)
𝛼(∙) (𝑓) ≤ 1. Then we estimate the modular in the Besov space with a 

reverse triangle inequality which holds since p s⁄ ≤ 1: 

ϱ
Bp(∙),s(∙)
𝛼(∙) (𝑓) = ∑‖𝑓𝑣

s(∙)‖p(∙)
s(∙)𝑣

≤ ‖∑𝑓𝑣
s(∙)

𝑣

‖
p(∙)
s(∙)

= ‖‖𝑓𝑣‖ℓs(∙)
s(∙) ‖p(∙)

s(∙)

. 

Since p s⁄  is bounded, the right hand side is bounded if and only if the corresponding 

modular is bounded. In fact, 

ϱp(∙)
s(∙)

(‖𝑓𝑣‖ℓs(∙)
s(∙) ) = ∫‖𝑓𝑣‖ℓs(𝑥)

p(𝑥)
d𝑥

ℝ𝑛

= ϱ
Fp(∙),q(∙)
𝛼(∙) (𝑓) ≤ 1, 

so we are done.  

We next consider embeddings of Sobolev-type which trade smoothness for 

integrability. For constant exponents it is well-known that 

Bp0,q
α0 ↪ Bp1,q

α1                                                                       (7) 
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if 𝛼0 −
𝑛

p0
= 𝛼1 −

𝑛

p1
, where 0 < p0 ≤ p1 ≤ ∞ , 0 < q ≤ ∞ , −∞ < 𝛼1 ≤ 𝛼0 < ∞  (see e.g. 

[41]). This is a consequence of certain Nikolskii inequalities for entire analytic functions 

of exponential type (cf. [41]), which we now generalize to the variable exponent setting. 

Lemma (3.2.15) [160]: Let p1, p0, q ∈ 𝒫0  with 𝛼 − 𝑛 p1⁄  and 1 q⁄  locally log-Hölder 

continuous. If p1 ≥ p0, then there exists c > 0 such that 

‖|c2𝑣𝛼(∙)g|
q(∙)
‖p1(∙)
q(∙)

≤ ‖|2
𝑣(𝛼(∙)+

𝑛
p0(∙)

−
𝑛

p1(∙)
)
g|

q(∙)

‖
p0(∙)
q(∙)

+ 2−𝑣 

for all 𝑣 ∈ ℕ0  and g ∈ Lp0(∙) ∩ 𝒮′  with supp ĝ ⊂ {ξ ∶ |ξ| ≤ 2𝑣+1} such that the norm on 

the right hand side is at most one. 

Proof: Let us denote  β ≔ α − 𝑛 p1⁄  and 

λ ≔ ‖|2
𝑣(β(∙)+

𝑛
p0(∙)

)
g|

q(∙)

‖
p0(∙)
q(∙)

+ 2−𝑣. 

Note that the assumption on the norm implies that λ ∈ [2−𝑣, 1 + 2−𝑣]. Using the r-trick 

and [140, Lemma 6.1], we get 

λ
−

r
q(𝑥)2𝑣rβ(𝑥)|g(𝑥)|r ≤ c λ

−
r

q(𝑥)2𝑣rβ(𝑥)(η𝑣,2m ∗ |g|
r)(𝑥) ≤ c η𝑣,m ∗ (λ

−
1
q(∙)2𝑣β(∙)|g|)

r

(𝑥) 

for large m. Fix r ∈ (0, p0
−) and set s = p0 r⁄ ∈ 𝒫0. An application of Hölder’s inequality 

with exponent s yields 

λ
−

1
q(𝑥)2𝑣β(𝑥)|g(𝑥)| ≤ c ‖2

−
𝑣𝑛
s(∙)η𝑣,m(𝑥 −∙)‖

s′(∙)

1 r⁄

‖λ
−
1
q(∙)2

𝑣(β(∙)+
𝑛

p0(∙)
)
g‖

p0(∙)

. 

The second norm on the right hand side is bounded by 1 due to the choice of λ. To show 

that the first norm is also bounded, we investigate the corresponding modular: 

ϱs′(∙) (2
−
𝑣𝑛
s(∙)η𝑣,m(𝑥 −∙)) = ∫2𝑣𝑛(1 + 2𝑣|𝑥 − y|)−ms

′(y)dy

ℝ𝑛

≤ ∫(1 + |2𝑣𝑥 − z|)−m(s
′)
−

dz

ℝ𝑛

< ∞, 

since m(s′)− > 𝑛. Now with the appropriate choice of c0 ∈ (0, 1], we find that 

(c0λ
−

1
q(𝑥)2𝑣𝛼(𝑥)|g(𝑥)|)

p1(𝑥)

≤ c0
p0(𝑥)  [c0

2𝑣β(𝑥)|g(𝑥)|

λ−1 q(𝑥)⁄
]

p1(𝑥)−p0(𝑥)

(λ
−

1
q(𝑥)2

𝑣(β(𝑥)+
𝑛

p0(𝑥)
)
|g(𝑥)|)

p0(𝑥)

≤ (λ
−

1
q(𝑥)2

𝑣(β(𝑥)+
𝑛

p0(𝑥)
)
|g(𝑥)|)

p0(𝑥)

. 

Integrating this inequality over ℝ𝑛 and taking into account the definition of λ gives us the 

claim.  

Applying the previous lemma, we obtain the following generalization of (7). 

Theorem (3.2.16) (Sobolev inequality) [160]: Let p0, p1, q ∈ 𝒫0  and 𝛼0, 𝛼1 ∈ L
∞  with 

𝛼0 ≥ 𝛼1. If 1 q⁄  and 

𝛼0(𝑥) −
𝑛

p0(𝑥)
= 𝛼1(𝑥) −

𝑛

p1(𝑥)
 

are locally log-Hölder continuous, then 

Bp0(∙),q(∙)
α0(∙) ↪ Bp1(∙),q(∙)

α1(∙) . 
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Proof: Suppose without loss of generality that the Bp0(∙),q(∙)
α0(∙) -modular of a function is less 

than 1. Then an application of the previous lemma with 𝛼(𝑥) = 𝛼1(𝑥) and g = φ𝑣 ∗ 𝑓, 

shows that the Bp1(∙),q(∙)
α1(∙) -modular is bounded by a constant. 

Corollary (3.2.17) [160]: Let p0, p1, q0, q1 ∈ 𝒫0 and 𝛼0, 𝛼1 ∈ L
∞ with 𝛼0 ≥ 𝛼1. If 

𝛼0(𝑥) −
𝑛

p0(𝑥)
= 𝛼1(𝑥) −

𝑛

p1(𝑥)
+ ε(𝑥) 

is locally log-Hölder continuous and ε− > 0, then 

Bp0(∙),q0(∙)
α0(∙) ↪ Bp1(∙),q1(∙)

α1(∙) . 

Proof: By Theorems (3.2.14) (i) and (3.2.16), 

Bp0(∙),q0(∙)
α0(∙) ↪ Bp0(∙),∞

α0(∙) ↪ Bp1(∙),∞
α1(∙)+ε(∙). 

We combine this with the embedding Bp1(∙),∞
α1(∙)+ε(∙) ↪ Bp1(∙),q1(∙)

α1(∙)  from Theorem (3.2.14) (ii) to 

conclude the proof.  

Let Cu be the space of all bounded uniformly continuous functions on ℝ𝑛 equipped 

with the sup norm. Concerning embeddings into Cu, we have the following result. 

Corollary (3.2.18) [160]: Let 𝛼 ∈ Cloc
log

, p ∈ 𝒫log and q ∈ 𝒫0. If 

𝛼(𝑥) −
𝑛

p(𝑥)
≥ δmax {1 −

1

q(𝑥)
, 0} 

for some fixed δ > 0 and every 𝑥 ∈ ℝ𝑛, then 

Bp(∙),q(∙)
α(∙) ↪ Cu 

Proof: Let γ(𝑥) ≔ 𝛼(𝑥) −
𝑛

p(𝑥)
. By Theorem (3.2.14) (i), we may replace q with the larger 

exponent max{1, δ (δ − γ)⁄ } ∈ 𝒫log. It then follows from Theorem (3.2.16) that 

Bp(∙),q(∙)
α(∙) ↪ B∞,q(∙)

γ(∙)
. 

Since B∞,1
0 ↪ Cu by classical results, we will complete the proof by showing that 

B∞,q(∙)
γ(∙)

↪ B∞,1
0 . 

Denote 𝑓𝑣 ≔ φ𝑣 ∗ 𝑓. The remaining embedding can be written, using homogeneity in the 

usual manner, as 

∑sup
𝑥

|𝑓𝑣|

𝑣

≤ c    whenever    ∑sup
𝑥
|2𝑣γ(𝑥)𝑓𝑣|

q(𝑥)

𝑣

≤ 1. 

We choose 𝑥𝑣  such that sup
𝑥
|𝑓𝑣| ≤ 2|𝑓𝑣(𝑥𝑣)| for each 𝑣 . Then it follows from Young's 

inequality that 

∑sup
𝑥

|𝑓𝑣|

𝑣

≈∑|𝑓𝑣(𝑥𝑣)|

𝑣

≤∑|2𝑣γ(𝑥𝑣)𝑓𝑣(𝑥𝑣)|
q(𝑥𝑣)

𝑣

+ 2−𝑣γ(𝑥𝑣)q
′(𝑥𝑣) ≤ 1 +∑2−𝑣δ

𝑣

≤ c, 

which completes the proof of the remaining embedding.  

Let ℒα,p(∙), α ∈ ℝ, be the Bessel potential space modeled in Lp(∙). It was shown in 

[140] that Fp(∙),2
α = ℒα,p(∙) when 𝛼 ≥ 0, 1 < p− ≤ p+ < ∞ and p ∈ 𝒫log. Under the same 

assumptions on p, by Theorem (3.2.14) one gets the embedding 

Bp(∙),q(∙)
α(∙) ↪ ℒσ,p(∙) 

for σ− > σ+ ≥ 0. In particular, we have Bp(∙),q(∙)
α(∙) ↪ Lp(∙) if 𝛼− > 0 (cf. [88] or [109]). Next 

we derive a stronger version of this. 

Let us define 

σp(𝑥) ≔ 𝑛 (
1

max{1, p(𝑥)}
− 1)    and  p̅(𝑥) ≔ max{1, p(𝑥)} , 𝑥 ∈ ℝ𝑛.                (8) 
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If 𝛼 − 𝑛 p⁄ = 𝛼 − σp − 𝑛 p̅⁄  is log-Hölder continuous, p, q ∈ 𝒫0 , 𝛼 ∈ L∞  and (𝛼 −

σp)
−
> 0, then by Corollary (3.2.17) we get 

Bp(∙),q(∙)
α(∙)

↪ Bp̅(∙),1
0 . 

We further conclude that 

‖𝑓‖p̅(∙) ≤∑‖φ𝑣 ∗ 𝑓‖p̅(∙)
𝑣≥0

= ‖𝑓‖Bp̅(∙),1
0 ≤ c‖𝑓‖

B
p̅(∙),1

α(∙)−σp(∙) . 

Proposition (3.2.19) [160]: Assume that p, q ∈ 𝒫0 and 𝛼 ∈ L∞ are such that 𝛼 − 𝑛 p⁄  is 

log-Hölder continuous. Let σp and p̅ be as in (8). If (𝛼 − σp)
−
> 0, then 

Bp(∙),q(∙)
α(∙) ↪ Lp̅(∙). 

Let p, q ∈ 𝒫0 and 𝛼 ∈ L∞. Define 𝛼0 ≔ (𝛼 −
𝑛

p
)
−

. Then 𝛼 ≥ 𝛼0 +
𝑛

p
=:𝛼1 ∈ L

∞. It is clear 

that 𝛼1 +
𝑛

p
= 𝛼0 is log-Hölder continuous. Therefore we obtain by Theorem (3.2.16) that 

Bp(∙),q(∙)
α(∙)

↪ Bp(∙),∞
α1(∙) ↪ B∞,∞

α1(∙)−
𝑛
p(∙)

= B∞,∞
α0 ↪ 𝒮′. 

Now we show that our scale of Besov spaces includes also the Hölder-Zygmund 

spaces of continuous functions. This application requires in particular that we include the 

case of unbounded p and q. 

We start by generalizing the definition of Hölder-Zygmund spaces to the variable 

order setting. Such spaces have been considered e.g. in [142, 143, 153]. 

Recall that Cu denotes the set of all bounded uniformly continuous functions. 

Definition (3.2.20) [160]: Let α ∶ ℝ𝑛 → (0, 1]. The Zygmund space 𝒞α(∙) consists of all 

𝑓 ∈ Cu such that ‖𝑓‖𝒞α(∙) < ∞, where 

‖𝑓‖𝒞α(∙) ≔ ‖𝑓‖∞ + sup
𝑥∈ℝ𝑛,h∈ℝ𝑛\{0}

|∆h
2𝑓(𝑥)|

|h|𝛼(𝑥)
 

For 𝛼 < 1, the Hölder space Cα(∙) is defined analogously but with the norm given by 

‖𝑓‖Cα(∙) ≔ ‖𝑓‖∞ + sup
𝑥∈ℝ𝑛,h∈ℝ𝑛\{0}

|∆h
1𝑓(𝑥)|

|h|𝛼(𝑥)
 

Here ∆h
j
 is the j-th order difference operator h ∈ ℝ𝑛, j ∈ ℕ: 

∆h
1𝑓(𝑥) = 𝑓(𝑥 + h) − 𝑓(𝑥),      ∆h

j+1
𝑓 = ∆h

1(∆h
j
𝑓). 

One can easily derive the point-wise inequality 

sup
h

|h|−𝛼(𝑥)|∆h
1𝑓(𝑥)| ≤

1

2 − 2𝛼
+ sup

h

|h|−𝛼(𝑥)|∆h
2𝑓(𝑥)| ,   𝑥 ∈ ℝ𝑛. 

Hence we have 𝒞α(∙) ↪ Cα(∙) for 𝛼+ < 1. In fact, these two spaces coincide for such 

𝛼, as in the classical case. This is one consequence of the following result. 

Theorem (3.2.21) [160]: For 𝛼 locally log-Hölder continuous with 𝛼− > 0, 

B∞,∞
𝛼(∙)

= 𝒞α(∙)   (𝛼 ≤ 1)   and   B∞,∞
𝛼(∙)

= Cα(∙)   (𝛼+ < 1). 

Proof: The proof is naturally divided into two parts. First we consider the claim that 

𝒞α(∙) ↪ B∞,∞
𝛼(∙)      (𝛼 ≤ 1)     and    B∞,∞

α0 ↪ Cα(∙)     (𝛼+ < 1). 

We prove only the first embedding; the second is similar. We estimate the absolute 

value on the right hand side of 

‖𝑓‖
B∞,∞
𝛼(∙) = sup

𝑣
sup
𝑥
|2𝑣𝛼(𝑥)φ𝑣 ∗ 𝑓(𝑥)| 

by ‖𝑓‖𝒞α(∙). The term 𝑣 = 0 is easily estimated in terms of ‖𝑓‖∞, so we consider in what 

follows 𝑣 > 0. 
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Since the Besov space is independent of the choice of admissible φ, we may assume 

without loss of generality that φ(−y) = φ(y). Then 

φ𝑣 ∗ 𝑓(𝑥) =
1

2
∫φ𝑣(h)[𝑓(𝑥 + h) + 𝑓(𝑥 − h)]dh

ℝ𝑛

=
1

2
∫φ𝑣(h)∆h

2𝑓(𝑥 − h)dh

ℝ𝑛

, 

where we used the fact that ∫φ𝑣(y)dy = φ𝑣̂(0) = 0  in the second step. By definition, 

|∆h
2𝑓(𝑥 − h)| ≤ ‖𝑓‖𝒞α(∙)|h|

𝛼(𝑥−h) . For small h , the log-Hölder continuity implies that 

|h|𝛼(𝑥−h) ≤ c|h|𝛼(𝑥). Thus we obtain 

|φ𝑣 ∗ 𝑓(𝑥)| ≤ c ∫ |φ𝑣(h)||h|
𝛼(𝑥)dh

|h|<1

+ c ∫ |φ𝑣(h)||h|
𝛼+dh

|h|≥1

= c ∫ |φ𝑣(h)||2
−𝑣h|𝛼(𝑥)dh

|h|<2𝑣 

+ c ∫ |φ𝑣(h)||2
−𝑣h|𝛼

+
dh

|h|≥2𝑣

≤ c2−𝑣𝛼(𝑥) ∫|φ𝑣(h)|[|h|
𝛼+ + |h|𝛼

−
]dh

ℝ𝑛

, 

where in the second step we used a change of variables. Since φ decays faster than any 

polynomial (as supp φ̂ is bounded), the integral on the right-hand side is finite, and so we 

are done. 

We then move on to the second part of the proof of the theorem, and consider the claim 

B∞,∞
𝛼(∙) ↪ 𝒞α(∙)     (𝛼 ≤ 1)     and    B∞,∞

𝛼(∙) ↪ Cα(∙)     (𝛼+ < 1). 

First we note that 

sup
0<|h|≤1

sup
𝑥

|∆h
M𝑓(𝑥)|

|h|𝛼(𝑥)
≤ 2𝛼

+
sup
k≥0

sup
|h|≤2−k

sup
𝑥
|2k𝛼(𝑥)∆h

M𝑓(𝑥)|. 

(We restrict ourselves to |h| ≤ 1 since large h are easily handled.) For 𝑎 > 0 and M > 1 

there exists c > 0 such that 

|∆h
M(φ𝑣 ∗ 𝑓)(𝑥)| ≤ cmin{1, 2

(𝑣−k)M} (φ𝑣
∗𝑓)𝑎(𝑥), 

for every 𝑣, k ∈ ℕ0 and |h| ≤ 2−k, where (φ𝑣
∗𝑓)𝑎(𝑥) ≔ sup

y

|φ𝑣∗𝑓(𝑥−y)|

1+|2𝑣y|𝑎
 is the Peetre maximal 

function, cf. [40]. Since 𝑓 = ∑ φ𝑣 ∗ 𝑓𝑣  with convergence in L1, we can use the previous 

estimate to obtain 

sup
|h|≤2−k

|2k𝛼(𝑥)∆h
M𝑓(𝑥)|

≤ c∑2(𝑣−k)(M−𝛼(𝑥))2𝑣𝛼(𝑥)(φ𝑣
∗𝑓)𝑎(𝑥)

𝑣<𝑘

+ c ∑ 2(𝑣−k)𝛼(𝑥)2𝑣𝛼(𝑥)(φ𝑣
∗𝑓)𝑎(𝑥)

𝑣≥k+1

     (9) 

Therefore, we need to estimate 2𝑣𝛼(𝑥)(φ𝑣
∗𝑓)𝑎(𝑥). Let us denote K ≔ sup

𝑥
2𝑣𝛼(𝑥)|φ𝑣 ∗ 𝑓(𝑥)|. 

Then 

2𝑣𝛼(𝑥)(φ𝑣
∗𝑓)𝑎(𝑥) = sup

y
2𝑣𝛼(𝑥)

|φ𝑣 ∗ 𝑓(𝑥 − y)|

1 + |2𝑣y|𝑎
≤ K sup

y

2𝑣(𝛼(𝑥)−𝛼(𝑥−y))

1 + |2𝑣y|𝑎
. 

When |y| < 2−𝑣 2⁄ , it follows from the log-Hölder continuity of 𝛼  that 𝑣(𝛼(𝑥) −

𝛼(𝑥 − y)) ≤ c. When |y| ≥ 2−𝑣 2⁄ , the right-hand side is bounded by K2𝑣(𝛼
+−𝛼−−𝑎 2⁄ ) , 

which remains bounded provided we choose 𝑎 > (𝛼+ − 𝛼−). Therefore we have shown 

that 

2𝑣𝛼(𝑥)(φ𝑣
∗𝑓)𝑎(𝑥) ≤ c sup

𝑥
2𝑣𝛼(𝑥)|φ𝑣 ∗ 𝑓(𝑥)| ≤ c‖𝑓‖B∞,∞

𝛼(∙) . 

Using this in (9), we find that 



92 

sup
|h|≤2−k

|2k𝛼(𝑥)∆h
M𝑓(𝑥)| ≤ c [∑2(𝑣−k)(M−𝛼

+)

𝑣<𝑘

+ ∑ 2(k−𝑣)𝛼
−

𝑣≥k+1

] ‖𝑓‖
B∞,∞
𝛼(∙) . 

If M = 1, then we have assumed that 𝛼+ < 1; for M = 2, M− 𝛼+ ≥ 1. Thus the terms in 

the brackets are bounded, so we have estimated the main part of the norm. Since we also 

have  ‖𝑓‖∞ ≤ c‖𝑓‖B∞,∞
𝛼(∙)  for 𝛼− > 0, the proof is complete.  

We characterize the elements from Bp(∙),q(∙)
α(∙)

 in terms of Nikolskii representations 

involving sequences of entire analytic functions. Let 

𝒰p(∙) ≔ {(u𝑣)𝑣 ⊂ 𝒮
′ ∩ Lp(∙) ∶ supp û𝑣 ⊂ {ξ ∶ |ξ| ≤ 2

𝑣+1}, 𝑣 ∈ ℕ0}. 

Theorem (3.2.22) [160]: Let p, q ∈ 𝒫0
log

 and 𝛼 ∈ Cloc
log
∩ L∞  with 𝛼− > 0. Then 𝑓 ∈ 𝒮′ 

belongs to Bp(∙),q(∙)
α(∙)

 if and only if there exists u = (u𝑣)𝑣 ∈ 𝒰
p(∙) such that 

𝑓 = lim
𝑣→∞

u𝑣    in   𝒮
′                                                              (10) 

and 

‖𝑓‖u ≔ ‖u0‖p(∙) + ‖(2
𝑣𝛼(∙)(𝑓 − u𝑣))

𝑣
‖
ℓq(∙)(Lp(∙))

< ∞. 

Moreover, 
‖𝑓‖∗ ≔ inf

u
‖𝑓‖u 

is an equivalent quasinorm in Bp(∙),q(∙)
α(∙)

, where the infimum is taken over all possible 

representations (u𝑣)𝑣 ∈ 𝒰
p(∙) satisfying (10). 

Proof: First we show that ‖𝑓‖∗ ≤ ‖𝑓‖
Bp(∙),q(∙)
α(∙) . If (φ𝑣)𝑣 is an admissible system, then 

u𝑣 ≔∑φj ∗ 𝑓

𝑣

𝑗=0

→ 𝑓   in   𝒮′   as  𝑣 → ∞. 

Thus (u𝑣)𝑣 ∈ 𝒰
p(∙) and 

(2𝑣𝛼(∙)(𝑓 − u𝑣))
𝑣
=∑2−j𝛼(∙)(2(j+𝑣)𝛼(∙)φj+𝑣 ∗ 𝑓)𝑣

j≥0

     in   𝒮′. 

Observe that 2−j𝛼(∙) ≤ 2−j𝛼
−

 and that 𝛼− > 0  by assumption. Let r ∈ (0,
1

2
min{p, q, 2}) . 

Using the previous expression and the triangle inequality in the mixed Lebesgue-sequence 

space, we obtain 

‖(2𝑣𝛼(∙)(𝑓 − u𝑣))
𝑣
‖
ℓq(∙)(Lp(∙))

= ‖|∑2−j𝛼(∙)(2(j+𝑣)𝛼(∙)φj+𝑣 ∗ 𝑓)𝑣
j≥0

|

r

‖

ℓ
q(∙)
r (L

p(∙)
r )

1 r⁄

≤ ‖∑2−jr𝛼(∙)(2(j+𝑣)r𝛼(∙)|φj+𝑣 ∗ 𝑓|
r
)
𝑣

j≥0

‖

ℓ
q(∙)
r (L

p(∙)
r )

1 r⁄

≤ (∑2−jr𝛼
−
‖(2(j+𝑣)r𝛼(∙)|φj+𝑣 ∗ 𝑓|

r
)
𝑣
‖
ℓ
q(∙)
r (L

p(∙)
r )

j≥0

)

1 r⁄

≤ c‖(2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))
, 

where the last step follows from the invariance of the norm under shifts in the 𝑣 direction. 

Since ‖u0‖p(∙) = ‖φ0 ∗ 𝑓‖p(∙) ≤ ‖𝑓‖Bp(∙),q(∙)
α(∙) , we have shown that 
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‖𝑓‖u ≤ c‖𝑓‖
Bp(∙),q(∙)
α(∙) . 

Now we prove the opposite inequality. Let (u𝑣)𝑣 ∈ 𝒰
p(∙) be such that 𝑓 = lim

k→∞
uk 

and ‖𝑓‖u < ∞. Then φ𝑣 ∗ 𝑓 = ∑ φ𝑣 ∗ (u𝑣+k − u𝑣+k−1)k≥−1 , 𝑣 ∈ ℕ0  (with u−1 = 0). Using 

the r-trick, with r as before, we find that 

2𝑣𝛼(𝑥)|φ𝑣 ∗ 𝑓| ≤ 2
𝑣𝛼(𝑥) ∑|φ𝑣 ∗ (u𝑣+k − u𝑣+k−1)|

k≥−1

≤ ∑ [η𝑣,m ∗ (2
𝑣𝛼(∙)r|u𝑣+k − u𝑣+k−1|

r)]
1
r

k≥−1

. 

Since 2𝑣𝛼(∙) ≤ 2(𝑣+k)𝛼(∙)2−k𝛼
−
, we obtain 

‖(2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))
≤ c ∑ 2−k𝛼

−
‖(η𝑣,m ∗ (2

(𝑣+k)𝛼(∙)r|u𝑣+k − u𝑣+k−1|
r))

𝑣
‖
ℓ
q(∙)
r (L

p(∙)
r )

1
r

k≥−1

. 

Then we can get rid of the function η (see, [160]). Using 
|u𝑣+k − u𝑣+k−1| ≤ |𝑓 − u𝑣+k| + |𝑓 − u𝑣+k−1|, 

we find that 

‖(2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))
≤ c ∑ 2−k𝛼

−
‖(2(𝑣+k)𝛼(∙)(𝑓 − u𝑣+k))

𝑣
‖
ℓq(∙)(Lp(∙))

k≥−1

. 

Using again the invariance of the sequence space with respect to shifts, we see that 

the left hand side can be estimated by a constant times ‖𝑓‖u. Taking the infimum over u, 

we obtain  ‖𝑓‖
Bp(∙),q(∙)
α(∙) ≤ c‖𝑓‖∗.  
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Chapter 4 

Besov-Type Spaces and Decomposition of Besov-Hausdorff Spaces 

We introduce certain Hardy-Hausdorff spaces BḢp,q
s,τ (ℝ𝑛) and show that the dual 

space of BḢp,q
s,τ (ℝ𝑛) is just Ḃ

p′,q′
−s,τ (ℝ𝑛), where t′ denotes the conjugate index of t ∈ (1,∞). 

Moreover, using their atomic and molecular decomposition characterizations, we 

investigate the trace properties and the boundedness of pseudo-differential operators with 

homogeneous symbols in BḢp,q
s,τ (ℝ𝑛) and FḢp,q

s,τ (ℝ𝑛) (q > 1), which generalize the 

corresponding classical results on homogeneous Besov and Triebel-Lizorkin spaces when 

p ∈ (1,∞) and q ∈ [1,∞) by taking τ = 0. 

Section (4.1): Triebel-Lizorkin-Type Spaces Including 𝓠 Spaces 

The most general scales, known so far, are the scales of Besov spaces and Triebel-

Lizorkin spaces. Besov spaces Ḃp,q
s,τ (ℝ𝑛) respectively domains in ℝ𝑛 for the full range of 

parameters s ∈ ℝ and p, q ∈ (0,∞] were introduced between 1959 and 1975 (see [41]). 

They cover many well-known classical concrete function spaces such as Hölder-Zygmund 

spaces, Sobolev spaces, fractional Sobolev spaces (also often referred to as Bessel-

potential spaces), Hardy spaces and BMO( ℝ𝑛 ), which have their own history. 

Acomprehensive treatment of these function spaces and their history can be found in 

Triebel’s monographes [56, 136]. 

Let 𝒮(ℝ𝑛) be the space of all Schwartz functions on ℝ𝑛. Let φ and ψ be functions 

on ℝ𝑛 satisfying  
φ,ψ ∈ 𝒮(ℝ𝑛)                                                                   (1) 

supp φ̂, ψ̂  ⊂ {ξ ∈ ℝ𝑛 : 1 2⁄ ≤ |ξ| ≤ 2},                                         (2) 
|φ̂(ξ)|, |ψ̂(ξ)| ≥ C > 0  𝑖𝑓  3 5⁄ ≤ |ξ| ≤ 5 3⁄ ,                                 (3) 

And 

∑φ̂(2jξ)̅̅ ̅̅ ̅̅ ̅̅ ψ̂(2jξ)

j∈ℤ

= 1  if  ξ ≠ 0,                                                (4) 

where 𝑓(ξ) ≡ ∫ 𝑓(𝑥)e−𝑖𝑥∙ξd𝑥
ℝ𝑛

. For all j ∈ ℤ  and 𝑥 ∈ ℝ𝑛, we put φj(𝑥) ≡ 2
j𝑛φ(2j𝑥). As 

in [176], we set 

𝒮∞(ℝ
𝑛) ≡ {φ ∈ 𝒮(ℝ𝑛) ∶ ∫φ(𝑥)𝑥γd𝑥

ℝ𝑛

= 0  for all multi − indices  γ ∈ (ℕ ∪ {0})𝑛}. 

Following Triebel [41], we consider 𝒮∞(ℝ
𝑛) as a subspace of 𝒮(ℝ𝑛), including the 

topology. Thus, 𝒮∞(ℝ
𝑛) is a complete metric space (see [181]). Equivalently, 𝒮∞(ℝ

𝑛) can 

be defined as a collection of all φ ∈ 𝒮(ℝ𝑛)  such that semi-norms ‖φ‖M ≡

sup
|γ|≤M

sup
ξ∈ℝ𝑛

|∂γφ̂(ξ)|(|ξ|M + |ξ|−M) < ∞  for all M ∈ ℕ ∪ {0}  (see [93]), where and in what 

follows, γ = (γ1, … , γ𝑛) ∈ (ℕ ∪ {0})
𝑛 , |γ| = γ1 + …+ γ𝑛  and ∂γ =

(
∂

∂ξ1
) γ1  … (

∂

∂ξ1
) γ𝑛∂ . The semi-norms {‖∙‖M}M∈ℕ∪{0}  generate a topology of a locally 

convex space on 𝒮∞(ℝ
𝑛) which coincides with the topology of 𝒮∞(ℝ

𝑛) as a subspace of a 

locally convex space 𝒮(ℝ𝑛). Let 𝒮∞
′ (ℝ𝑛) be the topological dual of 𝒮∞(ℝ

𝑛), namely, the 

set of all continuous linear functionals 𝒮∞(ℝ
𝑛). We endow 𝒮∞

′ (ℝ𝑛) with the weak ∗-
topology. Then 𝒮∞

′ (ℝ𝑛) is complete; see [177]. 

Let s ∈ ℝ, p, q ∈ (0,∞] and φ satisfy (1) through (3). The Besov space Ḃp,q
s (ℝ𝑛) is 

defined to be the set of all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛) such that 
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‖𝑓‖Ḃp,qs (ℝ𝑛) ≡ {∑2jsq‖φj ∗ 𝑓‖Lp(ℝ𝑛)
q

j∈ℤ

}

1 q⁄

< ∞; 

the Triebel-Lizorkin space Ḟp,q
s (ℝ𝑛) for p < ∞ is defined to be the set of all 𝑓 ∈ 𝒮∞

′ (ℝ𝑛) 

such that 

‖𝑓‖Ḟp,qs (ℝ𝑛) ≡ ‖{∑(2js|φj ∗ 𝑓|)
q

j∈ℤ

}

1 q⁄

‖

Lp(ℝ𝑛)

< ∞; 

see [41, 106]. For s ∈ ℝ and q ∈ (0,∞], the Triebel-Lizorkin space Ḟ∞,q
s (ℝ𝑛) is defined to 

be the set of all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛) such that 

‖𝑓‖Ḟ∞,qs (ℝ𝑛) ≡ sup
P dyadic

{
1

|P|
∫∑(2js|φj ∗ 𝑓(𝑥)|)

q
∞

j=jP

d𝑥

P

}

1 q⁄

< ∞, 

where 𝑙(P) is the side length of dyadic cube P, jP ≡ − log2 𝑙(P) and the supremum is taken 

over all dyadic cubes P; see [106]. It is well known that the spaces Ḃp,q
s (ℝ𝑛) and Ḟp,q

s (ℝ𝑛) 

are independent of the choices of φ (see, for example, [41, 106, 176]). 

There has been increasing interest in a new family of function spaces, called 𝒬𝛼 

spaces, where α ∈ ℝ. These spaces were originally defined by Aulaskari et al. [163] as 

spaces of holomorphic functions on the unit disk, which are geometric in the sense that 

they transform naturally under conformal mappings (see [185]). Following the works of 

Essén and Xiao [174] and Janson [178] on the boundary values of these functions on the 

unit circle, Essén et al. [173] extended these spaces to the n-dimensional Euclidean space 

ℝ𝑛. Very recently, Xiao [186] found some applications of these spaces in Navier-Stokes 

equations. Recall that for α ∈ ℝ  , the space 𝒬𝛼(ℝ
𝑛) is defined to be the space of all 

measurable functions 𝑓 ∈ Lloc
2 (ℝ𝑛) such that 

‖𝑓‖𝒬𝛼(ℝ𝑛) ≡ sup
I
{

1

|I|1−
2α
𝑛

∫∫
|𝑓(𝑥) − 𝑓(y)|2

|𝑥 − y|𝑛+2𝛼
d𝑥

I

dy

I

}

1 2⁄

< ∞,                         (5) 

where I ranges over all cubes in ℝ𝑛 . Since every cube I is contained in a cube J with 

dyadic length (namely, 𝑙(J ) ∈ {2j ∶ j ∈ ℤ} ) such that 𝑙(J )  <  2𝑙(I ) , we obtain an 

equivalent norm if we consider only cubes of dyadic edge lengths in (5). 

In Dafni and Xiao [167], asked what are the relations among  𝒬𝛼(ℝ
𝑛), Besov 

spaces and Triebel-Lizorkin spaces? Let s ∈ ℝ, τ ∈ [0,∞), p ∈ (1,∞) and q ∈ (1,∞]. In 

[189], based on the Carleson measure characterizations of 𝒬𝛼 spaces and Ḟ∞,q
s (ℝ𝑛) spaces 

(see [106]), we introduced a new class of function spaces Ḟp,q
s,τ (ℝ𝑛), which unify and 

generalize the Triebel-Lizorkin spaces with both p < ∞ [41] and p = ∞ [41, 106] and 𝒬 

spaces [173] on ℝ𝑛. Our results establish the relationship between Triebel-Lizorkin spaces 

and 𝒬  spaces. The spaces also include the space 𝒬p
α,q(ℝ𝑛) with α ∈ (0, 1) and 2 ≤ q <

p < ∞ in [166] as a special case. Furthermore, for s ∈ ℝ, p, q ∈ [1,∞), max{p, q} > 1 

and τ ∈ [0,
q

(max{p,q})′
], via the Hausdorff capacity, we introduced in [189] a new class of 

tent spaces FṪp,q
s,τ(ℝℤ

𝑛+1) , and determined their dual spaces FẆ
p′,q′
−s,τ q⁄ (ℝℤ

𝑛+1) ; as an 

application of this, we further introduced certain Hardy-Hausdorff spaces FḢp,q
s,τ (ℝ𝑛) and 

proved that the dual space of  FḢp,q
s,τ (ℝ𝑛) is just Ḟ

p′,q′
−s,τ q⁄ (ℝ𝑛) when p, q ∈ (1,∞), where 
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herein and in what follows, t′ denotes the conjugate index of t ∈ [1,∞]. Also, herein and 

in what follows, we set ℝℤ
𝑛+1 ≡ ℝ𝑛 × {2k ∶ k ∈ ℤ}. 

Let s, τ ∈ ℝ . We continue study of the Triebel-Lizorkin-type spaces Ḟp,q
s,τ (ℝ𝑛) by 

also considering the cases p, q ≤ 1 ; moreover, we also introduce some new class of 

Besov-type spaces Ḃp,q
s,τ (ℝ𝑛) for p, q ∈ (0,∞] as follows. 

Definition (4.1.1) [190]: Let s, τ ∈ ℝ, q ∈ (0,∞] and φ be a Schwartz function satisfying 

(1) through (3). 

(i) Let p ∈ (0,∞] . The Besov-type space Ḃp,q
s,τ (ℝ𝑛) is defined to be the set of all 𝑓 ∈

𝒮∞
′ (ℝ𝑛) such that  ‖𝑓‖Ḃp,q

s,τ (ℝ𝑛) < ∞, where 

‖𝑓‖Ḃp,q
s,τ (ℝ𝑛) ≡ sup

P dyadic

1

|P|τ
{∑[∫(2js|φj ∗ 𝑓(𝑥)|)

p
d𝑥

P

]

q p⁄∞

j=jP

}

1 q⁄

 

with suitable modifications made when p = ∞ or q = ∞. 

(ii) Let p ∈ (0,∞). The Triebel-Lizorkin-type space Ḟp,q
s,τ (ℝ𝑛) is defined to be the set of all 

𝑓 ∈ 𝒮∞
′ (ℝ𝑛) such that  ‖𝑓‖Ḟp,q

s,τ (ℝ𝑛) < ∞, where 

‖𝑓‖Ḟp,q
s,τ (ℝ𝑛) ≡ sup

P dyadic

1

|P|τ
{∫[∑(2js|φj ∗ 𝑓(𝑥)|)

q
∞

j=jP

d𝑥]

p q⁄

P

}

1 p⁄

 

     with suitable modifications made when q = ∞. 

Obviously, when p = q ∈ (0,∞), Ḃp,q
s,τ (ℝ𝑛) = Ḟp,q

s,τ (ℝ𝑛). For simplicity, in what follows, 

we use Ȧp,q
s,τ (ℝ𝑛)  to denote either Ḃp,q

s,τ (ℝ𝑛)  or Ḟp,q
s,τ (ℝ𝑛) . If Ȧp,q

s,τ (ℝ𝑛)  means Ḟp,q
s,τ (ℝ𝑛) , 

then the case p = ∞ is excluded. The spaces Ȧp,q
s,τ (ℝ𝑛) unify and generalize the classical 

Besov spaces [41, 45, 56, 176], Triebel-Lizorkin spaces [41, 56, 106, 176] and 𝒬 spaces 

[173] on 

ℝ𝑛. Thus, we give a complete answer to the question of Dafni and Xiao in [167]. 

Different from [189], we need some discrete Calderón reproducing formulae, which 

further yield the φ -transform characterization of these spaces via some subtle 

modifications on the methods developed by Frazier and Jawerth [45, 106]. As a special 

case of our Besov spaces Ḃp,q
s,τ (ℝ𝑛), we also obtain the φ-transform characterization of the 

space ḂBMOp
s,q(ℝ𝑛) , which was, via the φ -transform and the space of sequences, 

introduced by Lin and Wang [180] to establish certain T(1) theorem for Besov spaces 

Ḃp,q
s (ℝ𝑛). We notice that the Besov-type spaces Ḃp,q

s,τ (ℝ𝑛) when p, q ∈ [1,∞) were first 

introduced by El Baraka [169, 170, 171, 172]. El Baraka obtained some embedding and 

lifting properties and applied in [171] these results to study properties of solutions of 

certain elliptic systems. 

Using the φ-transform characterizations of  Ȧp,q
s,τ (ℝ𝑛), we obtain their embedding 

and lifting properties, which are also new even when p, q ≥ 1; moreover, for appropriate 

τ , we also show that almost diagonal operators are bounded on their corresponding 

sequence spaces 𝑎̇p,q
s,τ (ℝ𝑛) , which further induces the smooth atomic and molecular 

decomposition characterizations of  Ȧp,q
s,τ (ℝ𝑛). For  s ∈ ℝ , p, q ∈ [1,∞), max{p, q} > 1 

and τ ∈ [0,
1

(max{p,q})′
], via the Hausdorff capacity, we introduce a new class of tent spaces 

BṪp,q
s,τ(ℝℤ

𝑛+1) and determine their dual spaces BẆ
p′,q′
−s,τ q⁄ (ℝℤ

𝑛+1); as an application of this, we 
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further introduce certain Hardy-Hausdorff spaces BḢp,q
s,τ (ℝ𝑛) and show that the dual space 

of BḢp,q
s,τ (ℝ𝑛) is just Ḃ

p′,q′
−s,τ (ℝ𝑛) when p ∈ (1,∞) and q ∈ [1,∞). 

We establish some discrete Calderón reproducing formulae in 𝒮∞(ℝ
𝑛) and its dual 

space 𝒮∞
′ (ℝ𝑛), which is a key tool. 

For all s, τ ∈ ℝ and  q ∈ (0,∞], we introduce the sequence spaces, 𝑎̇p,q
s,τ (ℝ𝑛).Via 

the fact that Ḃp,q
s,τ (ℝ𝑛) = Ḟp,q

s,τ (ℝ𝑛) and 𝒬𝛼(ℝ
𝑛) = Ḟ2,2

𝛼,1 2⁄ −𝛼 𝑛⁄ (ℝ𝑛) (see [189]), we immediately 

obtain the connection between Besov spaces and 𝒬 spaces. Let φ satisfy (1) through (3). 

The main result is Theorem (4.1.5) below, which establish the φ -transform 

characterizations of  Ȧp,q
s,τ (ℝ𝑛) in the sense of Frazier and Jawerth for all desired indices 

s, τ, p and q. This result generalizes the classical results on Ḃp,q
s (ℝ𝑛) and Ḟp,q

s (ℝ𝑛) in [45, 

106]. From this characterization, we deduce that the spaces Ȧp,q
s,τ (ℝ𝑛) are independent of 

the choices of φ as in (1) through (3). Also, applying the φ-transform characterizations of 

Ȧp,q
s,τ (ℝ𝑛) , we obtain some embedding properties for different metrics and the lifting 

properties of these spaces. If  τ = 0, all these results go back to the classical results. As a 

by-product, we also obtain the φ-transform characterization of the spaces ḂBMOp
s,q(ℝ𝑛). 

In Definition (4.1.16) below, for all ε ∈ (0,∞), we introduce a class of ε-almost 

diagonal operators on 𝑎̇p,q
s,τ (ℝ𝑛), and then prove in Theorem (4.1.17) below that for all s ∈

ℝ, p, q ∈ (0,∞] and τ ∈ [0, 1/p + ε/(2𝑛)), ε-almost diagonal operators on 𝑎̇p,q
s,τ (ℝ𝑛) are 

bounded on 𝑎̇p,q
s,τ (ℝ𝑛) . We establish the smooth atomic and molecular decomposition 

characterizations of Ȧp,q
s,τ (ℝ𝑛). 

Let s ∈ ℝ, p, q ∈ [1,∞),max{p, q} > 1 and τ ∈ [0,
1

(max{p,q})′
]. Using the Hausdorff 

capacity, we introduce tent spaces BṪp,q
s,τ(ℝℤ

𝑛+1)  and BẆp,q
s,τ(ℝℤ

𝑛+1) , which are related to 

Besov spaces. Then we establish their dual relations. These results generalize the 

corresponding results in [167] for the spaces with p = q = 2 and s and τ taking special 

values to the full ranges as above. We point out that our restriction on τ as above is 

optimal in certain sense.  

Via the Tent spaces we introduce a new class of Hardy-Hausdorff spaces 

BḢp,q
s,τ (ℝ𝑛), where p ∈ (1,∞), q ∈ [1,∞). Via the duality of Tent spaces we further prove 

that the dual space of BḢp,q
s,τ (ℝ𝑛), is just Ḃ

p′,q′
−s,τ (ℝ𝑛). 

We make some conventions on notation. We denote by, C  denotes unspecified 

positive constants, possibly different at each occurrence; the symbol X ≲ CY means that 

there exists a positive constant C such that X ≤ CY, and  X ∼ Y means C−1Y ≤ X ≤ CY. For 

any φ ∈ 𝒮(ℝ𝑛), we set φ̃(𝑥) ≡ φ(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ for all 𝑥 ∈ ℝ𝑛. For k = (k1, … , k𝑛) ∈ ℤ
𝑛 and j ∈

ℤ, 𝒬jk denotes the dyadic cube 𝒬jk ≡ {(𝑥1, … , 𝑥𝑛): k𝑖 ≤ 2
j𝑥i < k𝑖 + 1  for  𝑖 = 1,… , 𝑛} ∈

ℤ𝑛  and 𝒬 ≡ {𝒬jk}j,k
. We denote by 𝑥𝒬  the lower left-corner 2−jk  of  𝒬 = 𝒬jk  . When 

dyadic cube 𝒬 appears as an index, such as ∑𝒬 and {∙}𝒬, it is understood that 𝒬 runs over 

all dyadic cubes in ℝ𝑛. For each cube  𝒬, we denote its side length by 𝑙(𝒬), its center by 

c𝒬 , and for r > 0, we denote by r 𝒬 the cube concentric with 𝒬 having the side length 

𝑟𝑙(𝒬). Let E be a set of  ℝ𝑛. Denote by χE its characteristic function and E∘ its interior. 

Also, set  ℕ ≡ {1, 2, . . . } and ℤ+ ≡  ℕ ∪ {0}. 
Now we establish some Calderón reproducing formulae in 𝒮∞(ℝ

𝑛) and its dual 

space 𝒮∞
′ (ℝ𝑛). 
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For a function φ  and dyadic cube 𝒬 = 𝒬jk , set φ𝒬(𝑥) ≡ |𝒬|
−1 2⁄ φ(2j𝑥 − k) =

|𝒬|1 2⁄ φj(𝑥 − 𝑥𝒬) for all 𝑥 ∈ ℝ𝑛. 

We establish the following discrete Calderón reproducing formula via [189]. It is 

well-known that this type of Calderón reproducing formula plays an important role in the 

study of Besov and Triebel-Lizorkin spaces when p ≤ 1 or q ≤ 1; see, for example, [106]. 

The difference between these Calderón reproducing formulae with those in [16,18] exists 

in that here, we use the distribution space 𝒮∞
′ (ℝ𝑛) instead of 𝒮′(ℝ𝑛) 𝒫(ℝ𝑛)⁄  therein. 

Lemma (4.1.2) [190]: Let φ,ψ ∈ 𝒮(ℝ𝑛)  satisfying (4) such that supp φ̂, supp ψ̂  are 

compact and bounded away from the origin. Then for any 𝑓 ∈ 𝒮∞(ℝ
𝑛), 

𝑓 =∑2−j𝑛 ∑(φ̃j ∗ 𝑓)(2
−jk)ψj(∙ −2

−jk)

k∈ℤ𝑛j∈ℤ

=∑〈𝑓,φ𝒬〉ψ𝒬
𝒬

                       (6) 

holds in 𝒮∞(ℝ
𝑛), where φ̃(𝑥) ≡ φ(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ for all 𝑥 ∈ ℝ𝑛. Moreover, for any 𝑓 ∈ 𝒮∞(ℝ

𝑛), 
(6) also holds in 𝒮∞

′ (ℝ𝑛). 
Proof: Let 𝑓 ∈ 𝒮∞(ℝ

𝑛) . By [189, Lemma 2.1], we have that 𝑓 = ∑ ψj ∗ φ̃j ∗ 𝑓j∈ℤ  in 

𝒮∞(ℝ
𝑛). Thus, the proof of (6) for 𝑓 ∈ 𝒮∞(ℝ

𝑛) is reduced to proving  

ψj ∗ φ̃j ∗ 𝑓 = 2
−j𝑛 ∑(φ̃j ∗ 𝑓)(2

−jk)ψj(∙ −2
−jk)

k∈ℤ𝑛

                                  (7) 

in 𝒮∞(ℝ
𝑛). 

To show this, let g ≡ φ̃j ∗ 𝑓 . Obviously,  g ∈ 𝒮∞(ℝ
𝑛). Since supp ĝ ⊂ 2j[−π, π]𝑛 

expanding ĝ in the Fourier orthonormal basis {
2−j𝑛 2⁄

(2π)𝑛 2⁄
e−𝑖〈2

−jk,ξ〉}
k∈ℤ𝑛

 of L2(2j[−π, π]𝑛), then 

for any ξ ∈ 2j[−π, π]𝑛, we have 

ĝ = ∑
2−j𝑛

(2π)𝑛
{ ∫ ĝ(y)e𝑖〈2

−jk,y〉dy

2j[−π,π]𝑛

} e−𝑖〈2
−jk,ξ〉

k∈ℤ𝑛

= ∑ 2−j𝑛g(2−jk)e−𝑖〈2
−jk,ξ〉

k∈ℤ𝑛

.          (8) 

Notice that supp ψ̂j ⊂ 2
j[−π, π]𝑛 , we can replace ĝ  by its periodic extension 

without altering the product ĝψ̂j. Using g ∗ ψj = (ĝψ̂j)
∨
 and (8), we obtain that for all  

𝑥 ∈ ℝ𝑛, 

(g ∗ ψj)(𝑥) = ∑ 2−j𝑛g(2−jk) (e−𝑖〈2
−jk,∙〉ψ̂j)

∨
(𝑥)

k∈ℤ𝑛

= 2−j𝑛 ∑(φ̃j ∗ 𝑓)(2
−jk)ψj(𝑥 − 2

−jk)

k∈ℤ𝑛

, 

where 𝑓∨(𝑥) = 𝑓(−𝑥) for all 𝑥 ∈ ℝ𝑛. Thus, (7) holds pointwise. 

To prove that (7) holds in  𝒮∞(ℝ
𝑛), by the chain rule, for any M ∈ ℤ+ and k ∈ ℤ𝑛, we 

have  

‖g(2−jk)ψj(∙ −2
−jk)‖

M
≲ |g(2−jk)| sup

𝜉∈ℝ𝑛
sup
|γ|≤M

|∂γ (e−𝑖〈2
−jk,ξ〉)| sup

|γ|≤M
|∂γψ̂j(ξ)|(|ξ|

M + |ξ|−M)

∼ |2−jk|
M
|g(2−jk)|‖ψj‖M

. 

Since g is a Schwartz function, then |g(2−jk)| ≲ (1 + |(2−jk)|)
−M−𝑛−1

. Hence 

∑‖2−j𝑛g(2−jk)ψj(∙ −2
−jk)‖

M
k∈ℤ𝑛

≲ ∑ 2−j𝑛|2−jk|
M
|g(2−jk)|

k∈ℤ𝑛

‖ψj‖M
< ∞, 

which together with the completion of 𝒮∞(ℝ
𝑛) implies that ∑ 2−j𝑛g(2−jk)ψj(∙ −2

−jk)k∈ℤ𝑛 ∈

𝒮∞(ℝ
𝑛), and then (7) holds in 𝒮∞(ℝ

𝑛). This shows that (6) holds in 𝒮∞(ℝ
𝑛). 

To verify that (6) also holds for any 𝑓 ∈ 𝒮∞
′ (ℝ𝑛), by [189, Lemma 2.1] again, we only 

need to show that (7) holds in 𝒮∞
′ (ℝ𝑛). 

To this end, let g ≡ φ̃j ∗ 𝑓 again. Then it is well-known that g is a slowly increasing 

C∞ function. For any δ > 0, let gδ(𝑥) ≡ γ(δ𝑥)g(𝑥), where γ ∈ 𝒮(ℝ𝑛) satisfies γ(0) = 1, 
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and supp γ̂ is compact. Then  gδ ∈ 𝒮(ℝ
𝑛). For sufficient small δ, by the proof of (7), we 

have that for all 𝑥 ∈ ℝ𝑛, 

ψj ∗ gδ(𝑥) = 2
−j𝑛 ∑ gδ(2

−jk)ψj(𝑥 − 2
−jk)

k∈ℤ𝑛

                                          (9) 

in 𝒮∞(ℝ
𝑛). 

Assume that g is at most polynomially increasing with order 𝑚 ∈ ℤ+. Since ψj ∈

𝒮∞(ℝ
𝑛), for any fixed 𝑥 ∈ ℝ𝑛, we have 

|ψj ∗ gδ(𝑥)| ≤ ∫|gδ(𝑥 − y)ψj(y)|dy

ℝ𝑛

≤ Cγ,j(1 + |𝑥|)
m < ∞, 

|gδ(2
−jk)||ψj(𝑥 − 2

−jk)| ≤ Cγ,j(2
−jk)m(1 + |𝑥 − 2−jk|)

−(m+𝑛+1)
 

and 

2−j𝑛 ∑|2−jk|
m
(1 + |𝑥 − 2−jk|)

−(m+𝑛+1)

k∈ℤ𝑛

≤ Cγ,j ∫|𝑦|
m(1 + |𝑥 − y|)−(m+𝑛+1)dy

ℝ𝑛

< ∞. 

Then applying the Lebesgue dominated convergence theorem and taking the limit as 

δ → 0 in (9), we obtain that (7) converges pointwise. 

Noticing that for any φ ∈ 𝒮(ℝ𝑛), |〈ψj(∙ −2
−jk),ϕ〉| ≤ C j(1 + |𝑥 − 2

−jk|)
−(m+𝑛+1)

, by 

|gδ(2
−jk)| ≤ C γ(1 + |2

−jk|)
m

, we have 

∑ 2−j𝑛|gδ(2
−jk)||〈ψj(∙ −2

−jk),ϕ〉|

k∈ℤ𝑛

≤ Cγ,j ∑(1 + |2−jk|)
m
(1 + |2−jk|)

−(m+𝑛+1)

k∈ℤ𝑛

< ∞. 

This observation together with the Lebesgue dominated convergence theorem and (9) 

implies that for any φ ∈ 𝒮∞(ℝ
𝑛), 

〈ψj ∗ g, ϕ〉 = lim
δ→0
〈ψj ∗ gδ, ϕ〉 = lim

δ→0
∑ 2−j𝑛gδ(2

−jk)〈ψj(∙ −2
−jk),ϕ〉

k∈ℤ𝑛

= ∑ 2−j𝑛g(2−jk)〈ψj(∙ −2
−jk),ϕ〉

k∈ℤ𝑛

. 

Thus (6) holds in 𝒮∞
′ (ℝ𝑛), which completes the proof of Lemma (4.1.2). 

For φ ∈ 𝒮(ℝ𝑛) and M ∈ ℤ+ , set ‖φ‖𝒮M ≡ sup
|γ|≤M

sup
𝑥∈ℝ𝑛

|∂γφ(𝑥)|(1 + |𝑥|)𝑛+M+|γ| . The 

following basic estimate is used; for its proof, see [189]. 

Lemma (4.1.3) [190]: For any M ∈ ℕ, there exists a positive constant C = C(M, 𝑛) such 

that for all φ,ψ ∈ 𝒮∞(ℝ
𝑛), 𝑖, j ∈ ℤ and 𝑥 ∈ ℝ𝑛, 

|φj ∗ ψ𝑖(𝑥)| ≤ C‖φ‖𝒮M+1‖ψ‖𝒮M+12
−|𝑖−j|M

2−(𝑖∧j)M

(2−(𝑖∧j) + |𝑥|)𝑛+M
, 

where 𝑖 ∧ j ≡ min{𝑖, j}. 
Now we establish the φ-transform characterizations of the spaces  Ȧp,q

s,τ (ℝ𝑛). To this 

end, we introduce their corresponding sequence spaces as follows. 

Definition (4.1.4): Let τ, s ∈ ℝ  and q ∈ (0,∞]. 

(i) Let p ∈ (0,∞]. The sequence space ḃp,q
s,τ (ℝ𝑛) is defined to be the set of all sequences 

{t𝒬}𝒬 ⊂ ℂ  such that ‖t‖ḃp,q
s,τ (ℝ𝑛) < ∞, where 

‖t‖ḃp,q
s,τ (ℝ𝑛) ≡ sup

P dyadic

1

|P|τ
{∑2jsq [∫( ∑ |t𝒬|χ̃𝒬(𝑥)

𝑙(𝒬)=2−j

)

p

d𝑥

P

]

q p⁄
∞

j=jP

}

1 q⁄

 

and χ̃𝒬 ≡ |𝒬|
−1 2⁄ χ𝒬 . 
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(ii) Let p ∈ (0,∞). The sequence space 𝑓̇p,q
s,τ(ℝ𝑛) is defined to be the set of all sequences 

{t𝒬}𝒬 ⊂ ℂ such that ‖t‖𝑓̇p,q
s,τ(ℝ𝑛) < ∞, where 

‖t‖𝑓̇p,q
s,τ(ℝ𝑛) ≡ sup

P dyadic

1

|P|τ
{∫ [∑ (|𝒬|−s 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))

q

𝒬⊂P

]

p q⁄

d𝑥

P

}

1 p⁄

. 

Obviously, we have 

‖t‖ḃp,q
s,τ (ℝ𝑛) ≡ sup

P dyadic

1

|P|τ

{
 

 

∑

[
 
 
 
∑ (|𝒬|−s 𝑛⁄ −1 2⁄ +1 p⁄ |t𝒬|)

p

𝑙(𝒬)=2−j

𝒬⊂P ]
 
 
 
q p⁄

∞

j=jP
}
 

 
1 q⁄

        (10) 

Similarly to the case of Ȧp,q
s,τ (ℝ𝑛), we use 𝑎̇p,q

s,τ (ℝ𝑛) to denote either ḃp,q
s,τ (ℝ𝑛) or 

𝑓̇p,q
s,τ(ℝ𝑛). If 𝑎̇p,q

s,τ (ℝ𝑛) means 𝑓̇p,q
s,τ(ℝ𝑛), then the case p = ∞ is excluded. 

Let φ and ψ satisfy (1) through (4). Recall that the φ-transform Sφ is defined to be 

the map taking each 𝑓 ∈ 𝒮∞(ℝ
𝑛) to the sequence Sφ𝑓 = {(Sφ𝑓)𝒬

}
𝒬

,where (Sφ𝑓)𝒬
≡ 〈𝑓, φ𝒬〉 

for all dyadic cubes 𝒬 ; the inverse φ-transform Tψ  is defined to be the map taking a 

sequence t = {t𝒬}𝒬  to Tψt = ∑ t𝒬ψ𝒬𝒬 ; see, for example, [45, 175]. Then we have the 

following result. 

Theorem (4.1.5) [190]: Let s ∈ ℝ , τ ∈ [0,∞), p, q ∈ (0,∞]  and φ  and ψ  satisfy (1) 

through (4). Then the operators Sφ ∶ Ȧp,q
s,τ (ℝ𝑛) → 𝑎̇p,q

s,τ (ℝ𝑛) and Tψ ∶ 𝑎̇p,q
s,τ (ℝ𝑛) → Ȧp,q

s,τ (ℝ𝑛) are 

bounded. Furthermore, Tψ ∘ Sφ is the identity on Ȧp,q
s,τ (ℝ𝑛). 

Lemma (4.1.6) [190]: Let  δ ∈ ℝ. Then there exist positive constants L0 and C such that 

for all j ∈ ℤ, 

∑
|𝒬|δ

(1 + |𝑥𝒬|
𝑛
max{1, |𝒬|}⁄ )

L0

𝒬∈𝒬,𝑙(𝒬)=2−j

≤ C2𝑛(2|δ|+1)|j|. 

To show that Tψ is well defined for all t ∈ 𝑎̇p,q
s,τ (ℝ𝑛), we have the following conclusions. 

Lemma (4.1.7) [190]: Let s ∈ ℝ, τ ∈ [0,∞), p, q ∈ (0,∞] and ψ ∈ 𝒮∞(ℝ
𝑛). Then for all 

t ∈ 𝑎̇p,q
s,τ (ℝ𝑛) , Tψt = ∑ t𝒬ψ𝒬𝒬  converges in 𝒮∞

′ (ℝ𝑛) ; moreover, Tψ ∶ 𝑎̇p,q
s,τ (ℝ𝑛) → 𝒮∞

′ (ℝ𝑛)  is 

continuous. 

Proof: By Minkowski’s inequality, we see that for all s ∈ ℝ, τ ∈ [0,∞), p ∈ (0,∞) and 

q ∈ (0,∞] ,  ḃp,min(p,q)
s,τ (ℝ𝑛) ⊂ 𝑓ṗ,q

s,τ(ℝ𝑛) ⊂ ḃp,max{p,q}
s,τ (ℝ𝑛) , which implies that to prove 

Lemma (4.1.7), it suffices to show it for the space ḃp,q
s,τ (ℝ𝑛). 

Let t ∈ ḃp,q
s,τ (ℝ𝑛). We need to show that there exists an M ∈ ℤ+ such that for all ϕ ∈

𝒮∞(ℝ
𝑛) , ∑ |t𝒬||〈ψ𝒬 , ϕ〉|𝒬 ≲ ‖ϕ‖SM . Indeed, observe that for all dyadic cubes 𝒬 , |t𝒬| ≤

‖t‖ḃp,q
s,τ (ℝ𝑛)|𝒬|

s 𝑛⁄ +1 2⁄ +τ−1 p⁄ . We have 

∑|t𝒬||〈ψ𝒬 , ϕ〉|

𝒬

≤ ‖t‖ḃp,q
s,τ (ℝ𝑛)∑|𝒬|s 𝑛⁄ +1 2⁄ +τ−1 p⁄ |〈ψ𝒬 , ϕ〉|

𝒬

. 

To complete the proof, we need the following estimate that for any  L > 0, there 

exists an M ∈ ℤ+ such that for all 𝒬, P ∈ 𝒬, 

|〈ψ𝒬 , ϕP〉| ≲ ‖ψ‖SM‖ϕ‖SM (1 +
|𝑥𝒬 − 𝑥P|

𝑛

max{|P|, |𝒬|}
)

−L

(min {
|𝒬|

|P|
,
|P|

|𝒬|
})

L

.               (11) 
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Recall that if  P = [0, 1)𝑛, then ϕP ≡ ϕ. Applying (11) for P = [0, 1)𝑛, 𝒬 = 𝒬jk 

and L > max{1 p⁄ + 1 2⁄ − s 𝑛⁄ − τ, 1 p⁄ + 3 2⁄ + s 𝑛⁄ + τ, L0} , where L0  is as in Lemma 

(4.1.6), we obtain 

|〈ψ𝒬 , ϕ〉| ≲ ‖ϕ‖SM (1 +
|𝑥𝒬|

𝑛

max{1, |𝒬|}
)

−L

(min{2−j𝑛, 2j𝑛})L.  

Then applying Lemma (4.1.6) yields that 

∑|t𝒬||〈ψ𝒬 , ϕ〉|

𝒬

≲ ‖t‖ḃp,q
s,τ (ℝ𝑛)‖ϕ‖SM∑2−|j|𝑛L2−j𝑛(

s
𝑛
+
1
2
+τ−1 p⁄ )|〈ψ𝒬 , ϕ〉|

j∈ℤ

× ∑ (1 + |𝑥𝒬|
𝑛
max{1, |𝒬|}⁄ )

−L

𝒬∈𝒬,𝑙(𝒬)=2−j

≲ ‖t‖ḃp,q
s,τ (ℝ𝑛)‖ϕ‖SM . 

Therefore, Tψt = ∑ t𝒬ψ𝒬𝒬  converges in 𝒮∞
′ (ℝ𝑛) ; moreover, for all t ∈ ḃp,q

s,τ (ℝ𝑛)  and φ ∈

𝒮∞(ℝ
𝑛), |〈Tψt, ϕ〉| ≲ ‖t‖ḃp,q

s,τ (ℝ𝑛)‖ϕ‖SM, which completes the proof of Lemma (4.1.7). 

For a sequence t = {t𝒬}𝒬, r ∈ (0,∞] and a fixed λ ∈ (0,∞), set 

(t𝑟,λ
∗ )

𝒬
≡ ( ∑

|tR|
r

(1 + 𝑙(R)−1|𝑥R − 𝑥𝒬|)
λ

{R∶𝑙(R)=𝑙(𝒬)}

)

1
r⁄

 

and  t𝑟,λ
∗ ≡ {(t𝑟,λ

∗ )
𝒬
}
𝒬
. We have the following estimates. 

Lemma (4.1.8) [190]: Let s ∈ ℝ , τ ∈ [0,∞), p, q ∈ (0,∞]  and λ ∈ (𝑛,∞) . Then there 

exists a constant C ∈ [1,∞)  such that for all t ∈ 𝑎̇p,q
s,τ (ℝ𝑛) , ‖t‖𝑎̇p,q

s,τ (ℝ𝑛) ≤

‖tmin{p,q},λ
∗ ‖

𝑎̇p,q
s,τ (ℝ𝑛)

≤ C‖t‖𝑎̇p,q
s,τ (ℝ𝑛). 

Proof: Notice that |t𝒬| ≤ (tr,λ
∗ )

𝒬
 holds for all dyadic cubes 𝒬 . This observation 

immediately implies that ‖t‖𝑎̇p,q
s,τ (ℝ𝑛) ≤ ‖tp∧q,λ

∗ ‖
𝑎̇p,q
s,τ (ℝ𝑛)

, where  p ∧ q = min{p, q}. 

To see the converses, fix a dyadic cube P. Let r𝒬 ≡ t𝒬 if 𝒬 ⊂ 3P and r𝒬 ≡ 0 otherwise, 

and let u𝒬 ≡ t𝒬 − r𝒬. Set r ≡ {r𝒬}𝒬 and u ≡ {u𝒬}𝒬. Then for all dyadic cubes 𝒬, we have 

(tp∧q,λ
∗ )

𝒬

p∧q
= (rp∧q,λ

∗ )
𝒬

p∧q
+ (up∧q,λ

∗ )
𝒬

p∧q
.                                             (12) 

Applying the fact that for each sequence t = {t𝒬}𝒬 , ‖tp∧q,λ
∗ ‖

ḃp,q
s (ℝ𝑛)

~‖t‖ḃp,qs (ℝ𝑛)  and 

‖tp∧q,λ
∗ ‖

𝑓̇p,q
s (ℝ𝑛)

~‖t‖𝑓̇p,qs (ℝ𝑛) (see [106]), we then have 

IP ≡
1

|P|τ

{
 

 

∑

[
 
 
 
∑ [|𝒬|−s 𝑛⁄ −1 2⁄ +1 p⁄ (rp∧q,λ

∗ )
𝒬
]
p

𝑙(𝒬)=2−j

𝒬⊂P ]
 
 
 
q p⁄

∞

j=jP
}
 

 
1 q⁄

≤
1

|P|τ
‖rp∧q,λ
∗ ‖

ḃp,q
s (ℝ𝑛)

≲
1

|P|τ
‖r‖ḃp,qs (ℝ𝑛) ≲ ‖t‖ḃp,q

s,τ (ℝ𝑛) 

and similarly, 

ĨP ≡
1

|P|τ
{∫ [∑ [|𝒬|−s 𝑛⁄ −1 2⁄ (rp∧q,λ

∗ )
𝒬
χ𝒬(𝑥)]

q

𝒬⊂P

]

p q⁄

d𝑥

P

}

1 p⁄

≲ ‖t‖𝑓̇p,q
s,τ(ℝ𝑛). 
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On the other hand, let 𝒬 ⊂ P be a dyadic cube with 𝑙(𝒬) = 2−j𝑙(P) for some 𝑖 ∈

ℤ+. Suppose 𝒬̃ is any dyadic cube with 𝑙(𝒬̃) = 𝑙(𝒬) = 2−j𝑙(P) and 𝒬̃ ⊂ P + k𝑙(P) ⊈ 3P 

for some k ∈ ℤ𝑛 , where P + k𝑙(𝒬) ≡ {𝑥 + k𝑙(P) ∶ 𝑥 ∈ P} . Then |k| ≥ 2  and 1 +

𝑙(𝒬̃)
−1
|𝑥𝒬 − 𝑥𝒬̃|~2

𝑖|k|. Thus, 

JP ≡
1

|P|τ

{
 

 

∑[ ∑ [|𝒬|−s 𝑛⁄ −1 2⁄ +1 p⁄ (𝑢p∧q,λ
∗ )

𝒬
]
p

𝑙(𝒬)=2−𝑖𝑙(P)
𝒬⊂P

]

q p⁄
∞

𝑖=0
}
 

 
1 q⁄

≲
1

|P|τ

{
 
 

 
 

∑2𝑖𝑛q p⁄ −𝑖λq (p∧q)⁄

[
 
 
 
 

∑|k|−λ

k∈ℤ𝑛

|k|≥2

∑ (|𝒬̃|
−s 𝑛⁄ −1 2⁄ +1 p⁄

|t𝒬̃|)
p∧q

𝑙(𝒬̃)=2−𝑖𝑙(P)

𝒬̃⊂P+k𝑙(P) ]
 
 
 
 

q
p∧q

∞

𝑖=0

}
 
 

 
 
1 q⁄

. 

When p ≤ q, by λ > 𝑛, we have 

JP ≲ ‖t‖ḃp,q
s,τ (ℝ𝑛)

{
 

 

∑2𝑖𝑛q p⁄ −𝑖λq p⁄ (∑|k|−λ

k∈ℤ𝑛

|k|≥2

)

q p⁄
∞

𝑖=0
}
 

 
1 q⁄

≲ ‖t‖ḃp,q
s,τ (ℝ𝑛); 

when p > q, by Hölder’s inequality and λ > 𝑛, we obtain 

JP ≲
1

|P|τ

{
 
 

 
 

∑2𝑖𝑛q p⁄ −𝑖λ

[
 
 
 
 

∑|k|−λ

k∈ℤ𝑛

|k|≥2

∑ (|𝒬̃|
−s 𝑛⁄ −1 2⁄ +1 p⁄

|t𝒬̃|)
q

𝑙(𝒬̃)=2−𝑖𝑙(P)

𝒬̃⊂P+k𝑙(P) ]
 
 
 
 ∞

𝑖=0

}
 
 

 
 
1 q⁄

≲ ‖t‖ḃp,q
s,τ (ℝ𝑛){∑2𝑖𝑛−𝑖λ(∑|k|−λ

k∈ℤ𝑛

|k|≥2

)

∞

𝑖=0

}

1 q⁄

≲ ‖t‖ḃp,q
s,τ (ℝ𝑛). 

Therefore, by (12), ‖tmin{p,q},λ
∗ ‖

ḃp,q
s,τ (ℝ𝑛)

≲ sup
P∈𝒬

(IP + JP) ≲ ‖t‖ḃp,q
s,τ (ℝ𝑛). 

To complete the proof, for any 𝑖 ∈ ℤ+, k ∈ ℤ+
𝑛  and dyadic cube P, set 

A(𝑖, k, P) ≡ {𝒬̃ ∈ 𝒬 ∶ 𝑙(𝒬̃) = 2−𝑖𝑙(P), 𝒬̃ ⊂ P + k𝑙(P), 𝒬̃  ∩ (3P) = ∅}. 

Recall that 1 + 𝑙(𝒬̃)
−1
|𝑥𝒬 − 𝑥𝒬̃|~2

𝑖|k| for any 𝒬 ⊂ P and  𝒬̃ ∈ A(𝑖, k, P), and that for all 

d ∈ [0, 1] and {𝑎j}j
⊂ ℂ, 

(∑|𝑎j|

j

)

d

≤∑|𝑎j|
d

j

.                                                            (13) 

By (13), we obtain that for all 𝑥 ∈ P and 𝑎 ∈ (0, p ∧ q], 

∑
(|𝒬̃|

−s 𝑛⁄ −1 2⁄
|t𝒬̃|)

p∧q

(1 + 𝑙(𝒬̃)
−1
|𝑥𝒬 − 𝑥𝒬̃|)

λ

𝒬̃∈A(𝑖,k,P)

≲ 2−𝑖(λ−𝑛(p∧q) 𝑎⁄ )|k|−λ

[
 
 
 
 

MHL

(

 
 

∑ (|𝒬̃|
−s 𝑛⁄

|t𝒬̃|χ̃𝒬̃)
𝑎

𝑙(𝒬̃)=2−𝑖𝑙(P)

𝒬̃⊂P+k𝑙(P) )

 
 
(𝑥 + k𝑙(P))

]
 
 
 
 

p∧q
𝑎

, 



103 

where herein and in what follows, MHL denotes the Hardy-Littlewood maximal function 

on ℝ𝑛 . Let 𝑎 ≡
2𝑛(p∧q)

𝑛+λ
. Then 𝑎 ∈ (0, p ∧ q) . Applying Minkowski’s inequality, 

Fefferman-Stein’s vector-valued inequality and Hölder’s inequality, we have 

J̃P ≡
1

|P|τ
{∫ [∑ [|𝒬|−

s
𝑛
−
1
2(𝑢p∧q,λ

∗ )
𝒬
χ𝒬(𝑥)]

q

𝒬⊂P

]

p q⁄

d𝑥

P

}

1 p⁄

≲
1

|P|τ

{
 
 
 

 
 
 

∫

[
 
 
 
 
 
 

∑

(

 
 
 
∑ 2−𝑖(𝜆−𝑛(p∧q) 𝑎⁄ )|k|−λ

k∈ℤ𝑛

|k|≥2

∞

𝑖=0P

×

[
 
 
 
 

MHL

(

 
 

∑ (|𝒬̃|
−s 𝑛⁄

|t𝒬̃|χ̃𝒬̃)
𝑎

𝑙(𝒬̃)=2−𝑖𝑙(P)

𝒬̃⊂P+k𝑙(P) )

 
 
(𝑥 + k𝑙(P))

]
 
 
 
 

p∧q
𝑎

)

 
 
 

q
p∧q

]
 
 
 
 
 
 
p q⁄

d𝑥

}
 
 
 

 
 
 
1 p⁄

≲ ‖t‖𝑓̇p,q
s,τ(ℝ𝑛). 

Therefore, by (12) again, ‖tmin{p,q},λ
∗ ‖

𝑓̇p,q
s,τ(ℝ𝑛)

≲ sup
P∈𝒬

(ĨP + J̃P) ≲ ‖t‖𝑓̇p,q
s,τ(ℝ𝑛), which completes 

the proof of Lemma (4.1.8). 

Let φ satisfy (1) through (3). Since φ̃(𝑥) ≡ ϕ(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ also satisfy (1) through (3), we 

may take φ̃ in place of φ in the definition of  Ḃp,q
s,τ (ℝ𝑛). For any 𝑓 ∈ 𝒮∞

′ (ℝ𝑛) and 𝒬 ∈ 𝒬 

with 𝑙(𝒬) = 2−j , define the sequence  sup(𝑓) ≡ {sup
𝒬

(𝑓)}
𝒬

  by setting sup
𝒬

(𝑓) ≡

|𝒬|1 2⁄ sup
y∈𝒬
|φ̃j ∗ 𝑓(y)| , and for any γ ∈ ℤ+ , the sequence  inf

γ
(𝑓) ≡ {inf

𝒬,γ
(𝑓)}

𝒬

 by setting 

inf
𝒬,γ
(𝑓) ≡ |𝒬|1 2⁄ max {inf

y∈𝒬̃
|φ̃j ∗ 𝑓(y)| ∶ 𝑙(𝒬̃) = 2

−γ𝑙(𝒬), 𝒬̃ ⊂ 𝒬} . We have the following 

estimates. 

Lemma (4.1.9) [190]: Let s ∈ ℝ , τ ∈ [0,∞), p, q ∈ (0,∞]  and γ ∈ ℤ+  be sufficiently 

large. Then there exists a constant C ∈ [1,∞) such that for all 𝑓 ∈ Ȧp,q
s,τ (ℝ𝑛), 

C−1 ‖inf
γ
(𝑓)‖

𝑎̇p,q
s,τ (ℝ𝑛)

≤ ‖𝑓‖Ȧp,q
s,τ (ℝ𝑛) ≤ ‖sup(𝑓)‖𝑎̇p,q

s,τ (ℝ𝑛) ≤ C‖infγ
(𝑓)‖

𝑎̇p,q
s,τ (ℝ𝑛)

. 

Proof: From Definitions (4.1.1), (4.1.4) and the definition of  sup(𝑓), it immediately 

follows that ‖𝑓‖Ȧp,q
s,τ (ℝ𝑛) ≤ ‖sup(𝑓)‖𝑎̇p,q

s,τ (ℝ𝑛). 

To prove the converses, define a sequence t ≡ {tJ}J  by setting tJ ≡ |J|
1 2⁄ inf

y∈J
|φ̃𝑖−𝛾 ∗

𝑓(y)| for all J ∈ 𝒬 with 𝑙(J) = 2−j . Then for all r ∈ (0,∞), dyadic cubes 𝒬 with 𝑙(𝒬) =

2−j and a fixed λ > 𝑛, we have 

inf𝒬,γ(𝑓) χ̃𝒬 ≲ 2
γλ r⁄ ∑ (tr,λ

∗ )
𝒬̃
χ̃𝒬̃

𝒬̃⊂𝒬

 𝑙(𝒬̃)=2−γ𝑙(𝒬)

. 
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Picking  r = min(p, q) , then by Lemma (4.1.8), we obtain ‖inf
γ
(𝑓)‖

𝑎̇p,q
s,τ (ℝ𝑛)

≲

‖t𝑟,λ
∗ ‖

𝑎̇p,q
s,τ (ℝ𝑛)

≲ ‖t‖𝑎̇p,q
s,τ (ℝ𝑛) ≲ ‖𝑓‖Ȧp,q

s,τ (ℝ𝑛). Finally, for each j ∈ ℤ, applying Lemma A.4 in 

[106] to the function φ̃j ∗ 𝑓(2
−j𝑥), we obtain that for all dyadic cubes 𝒬 with 𝑙(𝒬) = 2−j, 

(sup(𝑓)𝑟,λ
∗ )

𝒬
~(inf

γ
(𝑓)𝑟,λ

∗ )
𝒬

, where r = min(p, q). 

Thus, ‖sup(𝑓)𝑟,λ
∗ ‖

𝑎̇p,q
s,τ (ℝ𝑛)

~‖inf
γ
(𝑓)𝑟,λ

∗ ‖
𝑎̇p,q
s,τ (ℝ𝑛)

, which together with Lemma (4.1.8) yields  

‖sup(𝑓)‖𝑎̇p,q
s,τ (ℝ𝑛)~‖infγ

(𝑓)‖
𝑎̇p,q
s,τ (ℝ𝑛)

. This finishes the proof of Lemma (4.1.9). 

Corollary (4.1.10) [190]: With all the notations as in Definition (4.1.1), then the spaces 

Ȧp,q
s,τ (ℝ𝑛) are independent of the choice of  φ. 

Let φ  satisfy (1) through (3). In Lin and Wang [180], introduced spaces 

ḃbmop
s,q(ℝ𝑛) , and ḂBMOp

s,q(ℝ𝑛)  to establish certain T(1)  theorem for Besov spaces. 

Recall that the sequence space ḃbmop
s,q(ℝ𝑛) is defined to be the set of all sequences 

{t𝒬}𝒬 ⊂ ℂ  such that 

‖t‖ḃbmop
s,q(ℝ𝑛) = sup

P dyadic

{
 

 

∑

[
 
 
 1

|P|
∑ (|𝒬|−s 𝑛⁄ −1 2⁄ +1 p⁄ |t𝒬|)

p

𝑙(𝒬)=2−j

𝒬⊂P ]
 
 
 
q p⁄

∞

j=jP
}
 

 
1 q⁄

< ∞, 

and the space ḂBMOp
s,q(ℝ𝑛) in [180] is defined to be the set of all distributions 𝑓 such that 

‖𝑓‖ḂBMOp
s,q(ℝ𝑛) ≡ ‖Sφ𝑓‖ḃbmop

s,q(ℝ𝑛)
< ∞ . Obviously, ḃbmop

s,q(ℝ𝑛) ≡ ḃbmop,q
s,1 p⁄ (ℝ𝑛) , which 

together with Theorem (4.1.5) yields that ḂBMOp
s,q(ℝ𝑛) ≡ ḂBMOp,q

s,1 p⁄ (ℝ𝑛). Thus, Theorem 

(4.1.5) also gives the φ-transform characterization of the spaces ḂBMOp
s,q(ℝ𝑛). 

From Definition (4.1.1), it is easy to deduce the following basic properties of the spaces 

Ȧp,q
s,τ (ℝ𝑛) ; see also [41]. In what follows, the symbol ⊂ stands   for continuous 

embedding. 

Proposition (4.1.11) [190]: Let τ, s ∈ ℝ and p, q ∈ (0,∞]. 

(i) If q1 ≤ q2, then  Ȧp,q1
s,τ (ℝ𝑛) ⊂ Ȧp,q2

s,τ (ℝ𝑛); 

(ii) Ȧp2,q
s,τ+

1

p2
−
1

p1(ℝ𝑛) ⊂ Ȧp1,q
s,τ (ℝ𝑛) for 0 < p1 ≤ p2 ≤ ∞; 

(iii) If ε ∈ (0,∞) and q1, q2 ∈ (0,∞], then Ȧp,q1
s+ε,τ−

ε

𝑛(ℝ𝑛) ⊂ Ȧp,q2
s,τ (ℝ𝑛); 

(iv) If τ ∈ [0, 1/p), then Ȧ p

1−τp
,q

s (ℝ𝑛) ⊂ Ȧp,q
s,τ (ℝ𝑛); 

(v) If τ = 0, then Ḃp,q
s,τ (ℝ𝑛) = Ḃp,q

s (ℝ𝑛) for p ∈ (0,∞] and Ḟp,q
s,τ (ℝ𝑛) = Ḟp,q

s (ℝ𝑛)  for p ∈

(0,∞) with equivalent norms; 

(vi) If τ ∈ (−∞, 0) , then Ȧp,q
s,τ (ℝ𝑛) = 𝒫(ℝ𝑛) , where 𝒫(ℝ𝑛)  denotes the set of all 

polynomials on ℝ𝑛; 

(vii) For all p ∈ (0,∞), Ḃp,min{p,q}
s,τ (ℝ𝑛) ⊂ Ḟp,q

s,τ (ℝ𝑛) ⊂ Ḃp,max{p,q}
s,τ (ℝ𝑛); 

(viii) For each 𝑟 ∈ (0,∞), Ḟr,q
s,
1

r(ℝ𝑛) = Ḟ∞,q
s, (ℝ𝑛) with equivalent norms; 

(ix) Let τ ∈ [0,∞). Then 𝒮∞(ℝ
𝑛) ⊂ Ȧp,q

s,τ (ℝ𝑛). 
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Proof: The properties (i) through (vii) are simple corollaries of  both the monotonicity of 

the 𝑙q-norm on q (see (13)) and Hölder’s inequality. We leave the details to the reader. 

Property (viii) is just [106, Corollary 5.7]. 

To prove (ix), let 𝑓 ∈ 𝒮∞(ℝ
𝑛) and φ be as in Definition (4.1.1). Then by Lemma 

(4.1.3), we obtain that for all k ∈ ℤ, 

|φk ∗ 𝑓(𝑥)| ≲ ‖𝑓‖SM+1‖φ‖SM+12
−|k|M

2−(0∧k)M

(2−(0∧k) + |𝑥|)𝑛+M
, 

where M > 0  will be determined later. We now show 𝑓 ∈ Ḃp,q
s,τ (ℝ𝑛). 

Let P be an arbitrary dyadic cube. If  jP ≥ 0, choosing M > max{0, 𝑛(1 p⁄ − 1), s +
𝑛τ}, we then have 

JP ≡
1

|P|τ
{∑2jsq [∫ ∑ |φj ∗ 𝑓(𝑥)|

p

𝑙(𝒬)=2−j

d𝑥

P

]

q p⁄
∞

j=jP

}

1 q⁄

≲ ‖𝑓‖SM+1‖φ‖SM+1 . 

If  jP < 0 , then |P|−τ ≤ 1  for all τ ∈ [0,∞) . Letting M > max{0, s, 𝑛(1 p⁄ − 1),+𝑛(1 p⁄ −
1) − s}, we see that 

JP ≤ {∑2jsq [∫|φj ∗ 𝑓(𝑥)|
p
d𝑥

P

]

q p⁄∞

j=0

}

1 q⁄

+ {∑2jsq…

−1

j=jP

}

1 q⁄

≲ ‖𝑓‖SM+1‖φ‖SM+1 . 

Thus, ‖𝑓‖Ḃp,q
s,τ (ℝ𝑛) = sup

P∈𝒬
JP ≲ ‖𝑓‖SM+1‖φ‖SM+1 , namely, 𝒮∞(ℝ

𝑛) ⊂ Ḃp,q
s,τ (ℝ𝑛) for all s ∈

ℝ, τ ∈ [0,∞) and p, q ∈ (0,∞]. 
Applying Proposition (4.1.11) (vii) , we also have 𝒮∞(ℝ

𝑛) ⊂ Ḃp,min{p,q}
s,τ (ℝ𝑛) ⊂

Ḟp,q
s,τ (ℝ𝑛), which completes the proof of Proposition (4.1.11). 

Proposition (4.1.12) [190]: Let s ∈ ℝ  and q ∈ (0,∞]. 

(i) If r ∈ (0,∞), then Ḃ∞,q
s (ℝ𝑛) ⊊ Ḃ𝑟,q

s,1 𝑟⁄ (ℝ𝑛) and particularly Ḃ∞,q
s (ℝ𝑛) ⊊ Ḃ∞,q

s (ℝ𝑛)̃ . 

(ii) If  r ∈ [q,∞] , then Ḃr,q
s,1 r⁄ (ℝ𝑛) ⊂ Ḃ∞,q

s (ℝ𝑛)̃ ; if  𝑟 ∈ (0, q] , then Ḃ∞,q
s (ℝ𝑛)̃ ⊂

Ḃ𝑟,q
s,1 𝑟⁄ (ℝ𝑛). 

Proof: By Theorem (4.1.5), it suffices to prove the corresponding conclusions on 

sequence spaces  ḃp,q
s,τ (ℝ𝑛). 

(i) The proof of  ḃ∞,q
s (ℝ𝑛) ⊂ ḃ𝑟,q

s,1 𝑟⁄ (ℝ𝑛) is trivial. Next we show that there exists certain 

t ∈ ḃr,q
s,1 r⁄ (ℝ𝑛) but ‖t‖ḃ∞,qs (ℝ𝑛) = ∞. Indeed, for all j ∈ ℤ and 𝒬 ∈ 𝒬 with 𝑙(𝒬) = 2−j , 

let t𝒬 ≡ 2
−j𝑛(s 𝑛⁄ +1 2⁄ )  when 𝒬 = [0, 2−j)𝑛  and t𝒬 ≡ 0  otherwise. Obviously, 

‖t‖ḃ∞,qs (ℝ𝑛) = ∞ . Observe that if a dyadic cube P  contains [0, 2−j)𝑛 , then P =

[0, 2−jP)𝑛  and jP ≤ j . Hence, ‖t‖
ḃr,q
s,1 r⁄ (ℝ𝑛)

= sup
jP∈ℤ

{∑ 2−(j−jP)𝑛q r⁄∞
j=jP

}
1 q⁄

≲ 1 . That is, t ∈

ḃr,q
s,1 r⁄ (ℝ𝑛). 

(ii) From Hölder’s inequality, it is easy to deduce that if  r ∈ [q,∞], then ‖t‖
ḃ∞,q
s (ℝ𝑛)̃ ≤

‖t‖
ḃr,q
s,1 r⁄ (ℝ𝑛)

, and if  r ∈ (0, q], then ‖t‖
ḃr,q
s,1 r⁄ (ℝ𝑛)

≤ ‖t‖
ḃ∞,q
s (ℝ𝑛)̃ , which completes the 

proof of Proposition (4.1.12). 

We establish some embedding results, which generalize the classical results on 

Besov spaces Ḃp,q
s, (ℝ𝑛) and Triebel-Lizorkin spaces Ḟp,q

s, (ℝ𝑛) (see [41]). In fact, if  τ = 0, 

then Proposition (4.1.13) is just [41, Theorem 2.7.1]. 
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Proposition (4.1.13) [190]: Let τ ∈ [0,∞), r, q ∈ (0,∞] and −∞ < s1 < s0 < ∞. 

(i) If 0 < p0 < p1 ≤ ∞ such that s0 − 𝑛 p0⁄ = s1 − 𝑛 p1⁄ , then Ḃp0,q
s0,τ (ℝ𝑛) ⊂ Ḃp1,q

s1,τ (ℝ𝑛). 

(ii) If  0 < p0 < p1 < ∞ such that s0 − 𝑛 p0⁄ = s1 − 𝑛 p1⁄ , then Ḟp0,r
s0,τ(ℝ𝑛) ⊂ Ḟp1,q

s1,τ (ℝ𝑛). 

Proof: By Theorem (4.1.5), it suffices to prove the corresponding conclusions on 

sequence spaces 𝑎̇p,q
s,τ (ℝ𝑛). 

The embedding ḃp0,q
s0,τ (ℝ𝑛) ⊂ ḃp1,q

s1,τ (ℝ𝑛) is immediately deduced from (10) and (13). 

To prove 𝑓̇p0,𝑟
s0,τ(ℝ𝑛) ⊂ 𝑓̇p1,q

s1,τ(ℝ𝑛), by Proposition (4.1.11)(i), we only need to show that 

𝑓̇p0,∞
s0,τ (ℝ𝑛) ⊂ 𝑓̇p1,q

s1,τ(ℝ𝑛). Let t ∈ 𝑓̇p0,∞
s0,τ (ℝ𝑛). By the homogeneity of  ‖∙‖𝑓̇p,q

s,τ(ℝ𝑛), without 

loss of generality, we may assume that ‖t‖𝑓̇p0,∞
s0,τ (ℝ𝑛) = 1. 

For any λ ∈ (0,∞) and P ∈ 𝒬, pick N ∈ ℤ such that 

{1 − 2−q𝑛 p1⁄ }
1 q⁄ λ

21+𝑛 p1⁄ < |P|τ2𝑛N p1⁄ ≤ {1 − 2−q𝑛 p1⁄ }
1 q⁄ λ

2
. 

If  N ≥ jP , since |𝒬|−s0 𝑛⁄ −1 2⁄ |t𝒬| ≤ |𝒬|
τ−1 p0⁄ ‖t‖𝑓̇p0,∞

s0,τ (ℝ𝑛) = 2
−j𝑛(τ−1 p0⁄ )  for all 𝒬 ∈ 𝒬 

with 𝑙(𝒬) = 2−j, this together with s0 − 𝑛 p0⁄ = s1 − 𝑛 p1⁄  yields that 

{∑2−jq(s0−s1) sup
𝑙(𝒬)=2−j

𝒬⊂P

(|𝒬|−s0 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))
q

N

j=jP

}

1 q⁄

≤ |P|τ2𝑛N p1⁄ {1 − 2−q𝑛 p1⁄ }
−1 q⁄

≤ λ 2⁄ , 

and 

{ ∑ 2−jq(s0−s1) sup
𝑙(𝒬)=2−j

𝒬⊂P

(|𝒬|−s0 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))
q

∞

j=N+1

}

1 q⁄

≤ 2−p1(s0−s1) 𝑛⁄ {1 − 2−q𝑛 p1⁄ }
−p1(s0−s1) q𝑛⁄

{1 − 2−q(s0−s1)}
−1 q⁄

× |P|τp1(s0−s1) 𝑛⁄ λ−p1(s0−s1) 𝑛⁄ sup
𝒬⊂P

(|𝒬|−s0 𝑛⁄ |t𝒬|χ̃𝒬(𝑥)). 

Notice that for all dyadic cubes P, 

{∑ (|𝒬|−s0 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))
q

𝒬⊂P

}

1 q⁄

= {∑2−jq(s0−s1) sup
𝑙(𝒬)=2−j

𝒬⊂P

(|𝒬|−s0 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))
q

∞

j=jP

}

1 q⁄

. 

Then by  s0 − 𝑛 p0⁄ = s1 − 𝑛 p1⁄ , we have 

|{𝑥 ∈ P ∶ {∑ (|𝒬|−s0 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))
q

𝒬⊂P

}

1 q⁄

> 𝜆}|

≲ |{𝑥 ∈ P ∶ sup
𝒬⊂P

(|𝒬|−s1 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))

> 2−1−p1(s0−s1) 𝑛⁄

× {1 − 2−q𝑛 p1⁄ }
−p1(s0−s1) q𝑛⁄

{1 − 2−q(s0−s1)}
1 q⁄
|P|−τ(p1 p0⁄ −1)λp1 p0⁄ }|, 

and hence 

‖t‖
𝑓̇p1,q
s1,τ(ℝ𝑛)

p1 ≲ sup
P dyadic

1

|P|−τp0
∫ λp0−1 |{𝑥 ∈ P ∶ sup

𝒬⊂P
(|𝒬|−s1 𝑛⁄ |t𝒬|χ̃𝒬(𝑥)) > 𝜆}| dλ

∞

0

∼ ‖t‖
𝑓̇p1,∞
s0,τ (ℝ𝑛)

p0 ∼ 1. 

For the case  N < jP, notice that 
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{∑ sup
𝑙(𝒬)=2−j

𝒬⊂P

(|𝒬|−s1 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))
q

∞

j=jP

}

1 q⁄

≤ { ∑ sup
𝑙(𝒬)=2−j

𝒬⊂P

(|𝒬|−s1 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))
q

∞

j=N+1

}

1 q⁄

. 

By the argument same as above, we also obtain ‖t‖𝑓̇p1,q
s1,τ(ℝ𝑛) ≲ 1, which completes the 

proof of Proposition (4.1.13). 

From Proposition (4.1.13), we deduce the following properties of the space 

Ȧp,q
s,τ (ℝ𝑛). Recall that the symbol ⊂ stands for continuous embedding 

Proposition (4.1.12) [190]: Let s ∈ ℝ, τ ∈ [0,∞)  and p, q ∈ (0,∞] . Then Ȧp,q
s,τ (ℝ𝑛) ⊂

𝒮∞
′ (ℝ𝑛). 

Proof: We first show that  Ḃp,q
s,τ (ℝ𝑛) ⊂ 𝒮∞

′ (ℝ𝑛), namely, there exists an M ∈ ℕ such that 

for all 𝑓 ∈ Ḃp,q
s,τ (ℝ𝑛) and ϕ ∈ 𝒮∞(ℝ

𝑛), |〈𝑓, ϕ〉| ≲ ‖𝑓‖Ḃp,q
s,τ (ℝ𝑛)‖ϕ‖𝒮M+1. Indeed, let φ be as 

in Definition (4.1.1). By [176, Lemma (6.9)], there exists a function ψ such that φ and ψ 

satisfy (1) through (4). Then by [189, Lemma 2.1] and Lemma (4.1.3), we obtain 

|〈𝑓, ϕ〉| ≤∑ ∫|ψj ∗ ϕ(𝑥)||φj ∗ 𝑓(𝑥)|

ℝ𝑛

d𝑥

j∈ℤ

≲ ‖ϕ‖𝒮M+1∑2−|j|M ∑ ∫
2−(j∧0)M

(2−(j∧0)M + |𝑥|)𝑛+M
|φj ∗ 𝑓(𝑥)|d𝑥

𝒬j∧0,kk∈ℤ𝑛j∈ℤ

, 

where  𝒬j∧0,k denotes the dyadic cube 2−(j∧0)(k + [0, 1)𝑛) and M ∈ ℕ will be determined 

later. 

Notice that there exist 2𝑛 disjoint dyadic cubes {𝒬j∧0
𝑙 }

𝑙=1

2𝑛

 with 𝑙(𝒬j∧0
𝑙 ) = 2−(j∧0) such 

that the ball B(0, 2−(j∧0)) ⊂ (⋃ 𝒬j∧0
𝑙2𝑛

𝑙=1 ). Obviously, if 𝒬j∧0,k ∉ {𝒬j∧0
𝑙 }

𝑙=1

2𝑛

 and 𝑥 ∈ 𝒬j∧0,k, then 

|𝑥| ≥ 2−(j∧0). Moreover, if setting 
χj,𝑚(k) ≡ χ{k∈ℤ𝑛 ∶2m−(j∧0)≤|c𝒬j∧0,k|<2

m+1−(j∧0)}
(k), 

where c𝒬j∧0,k denotes the center of 𝒬j∧0,k we then have ∑ χj,m(k)k∈ℤ𝑛 ≲ 2m𝑛. 

If p ∈ [1,∞], choose M > max{−s, s + 𝑛τ − 𝑛 p⁄ }. Then applying Hölder’s inequality, we 

obtain 

|〈𝑓, ϕ〉| ≲ ‖ϕ‖𝒮M+1∑2−|j|M {∑ ∫
2−(j∧0)M

(2−(j∧0)M + |𝑥|)𝑛+M
|φj ∗ 𝑓(𝑥)|d𝑥

𝒬j∧0
𝑙

2𝑛

𝑙=1j∈ℤ

+ ∑ ∑ χj,m(k)

k∈ℤ𝑛

∫ ⋯

𝒬j∧0,k

∞

𝑚=0

} ≲ ‖ϕ‖𝒮M+1‖𝑓‖Ḃp,q
s,τ (ℝ𝑛). 

The case p ∈ (0, 1) is deduced from the embedding  Ḃp,q
s,τ (ℝ𝑛) ⊂ Ḃ1,q

s−𝑛 p⁄ +𝑛,τ(ℝ𝑛) in 

Proposition (4.1.13). 

For Triebel-Liorkin-type spaces Ḟp,q
s,τ (ℝ𝑛), applying Proposition (4.1.11)(vii), we 

obtain Ḟp,q
s,τ (ℝ𝑛) ⊂ Ḃp,max{p,q}

s,τ (ℝ𝑛) ⊂ 𝒮∞
′ (ℝ𝑛), which completes the proof of Proposition 

(4.1.14). 

Now we have the following lifting property. For σ ∈ ℝ , recall that the lifting 

operator İσ (see, for example, [41]) is defined by (İσ𝑓)(𝑥) ≡ (|∙|
σ𝑓)

∨
(𝑥) for all 𝑥 ∈ ℝ𝑛 
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and 𝑓 ∈  𝒮∞
′ (ℝ𝑛), where the symbol ∨ denotes the inverse Fourier transform. It is well-

known that İσ maps 𝒮∞
′ (ℝ𝑛) onto itself. 

Proposition (4.1.15) [190]: Let s, σ ∈ ℝ, τ ∈ [0,∞)  and p, q ∈ (0,∞] . Then İσ  maps 

Ȧp,q
s,τ (ℝ𝑛) isomorphically onto Ȧp,q

s−σ,τ(ℝ𝑛); moreover, ‖𝑓‖Ȧp,q
s−σ,τ(ℝ𝑛) is an equivalent quasi-

norm on Ȧp,q
s,τ (ℝ𝑛). 

The proof of Proposition (4.1.15) is standard (see [41]). 

As an application of Theorem (4.1.5), we study boundedness of operators in Ȧp,q
s,τ (ℝ𝑛) by 

first considering their boundedness in corresponding 𝑎̇p,q
s,τ (ℝ𝑛) . We show that almost 

diagonal operators are bounded on 𝑎̇p,q
s,τ (ℝ𝑛) for appropriate indices, which generalize the 

classical results on ḃp,q
s,τ (ℝ𝑛) and 𝑓̇p,q

s,τ(ℝ𝑛); see [106, 176]. 

Definition (4.1.16) [190]: Let s ∈ ℝ, p, q ∈ (0,∞] and ε ∈ (0,∞). Let J ≡ 𝑛 min{1, p}⁄  

when 𝑎̇p,q
s,τ (ℝ𝑛) ≡ ḃp,q

s,τ (ℝ𝑛)  and J ≡ 𝑛 min{1, p, q}⁄  when 𝑎̇p,q
s,τ (ℝ𝑛) ≡ 𝑓̇p,q

s,τ(ℝ𝑛) . An 

operator A associated with a matrix {𝑎𝒬P}𝒬,P , namely, for all sequences t =  {t𝒬}𝒬 ⊂ ℂ, 

At ≡ {(At)𝒬}𝒬 ≡ {
∑ 𝑎𝒬PtPP }

𝒬
, is called ε -almost diagonal on 𝑎̇p,q

s,τ (ℝ𝑛)  if the matrix 

{𝑎𝒬P}𝒬,P satisfies sup
𝒬,P

|𝑎𝒬P| ω𝒬P(ε)⁄ < ∞, where 

ω𝒬P(ε) ≡ (
𝑙(𝒬)

𝑙(P)
)

s

(1 +
|𝑥𝒬 − 𝑥P|

max(𝑙(P), 𝑙(𝒬))
)

−J−ε

×min [(
𝑙(𝒬)

𝑙(P)
)

(𝑛+ε) 2⁄

, (
𝑙(P)

𝑙(𝒬)
)

(𝑛+ε) 2⁄ +J−𝑛

]. 

Theorem (4.1.17) [190]: Let ε ∈ (0,∞), s ∈ ℝ, p, q ∈ (0,∞] and τ ∈ [0, 1 p⁄ + ε (2𝑛)⁄ ). 
Then all ε-almost diagonal operators on 𝑎̇p,q

s,τ (ℝ𝑛) are bounded on 𝑎̇p,q
s,τ (ℝ𝑛). 

Proof: Let t =  {t𝒬}𝒬 ∈ 𝑎̇p,q
s,τ (ℝ𝑛)  and A be a ε-almost diagonal operator on 𝑎̇p,q

s,τ (ℝ𝑛) 

associated with the matrix {𝑎𝒬R}𝒬,R  and ε ∈ (0,∞).Without loss of generality, we may 

assume s = 0. Indeed, if the conclusion holds for s = 0, let t̃R ≡ 𝑙(R)
−𝑠tR and B be the 

operator associated with the matrix {b𝒬R}𝒬,R , where b𝒬R ≡ (𝑙(R) 𝑙(𝒬)⁄ )s𝑎𝒬R  for all 

𝒬, R ∈ 𝒬 . Then we have ‖At‖𝑎̇p,q
s,τ (ℝ𝑛) = ‖Bt̃‖𝑎̇p,q

0,τ (ℝ𝑛) ≲ ‖t̃‖𝑎̇p,q
0,τ (ℝ𝑛) ∼ ‖t‖𝑎̇p,q

s,τ (ℝ𝑛) , which 

deduces the desired conclusions. 

We now consider the space ḃp,q
0,τ (ℝ𝑛) in the case min(p, q) > 1. For all 𝒬 ∈ 𝒬, we 

write A ≡ A0 + A1  with(A0t)𝒬 ≡ ∑ 𝑎𝒬RtR{R∶𝑙(R)≥𝑙(𝒬)}   and (A1t)𝒬 ≡ ∑ 𝑎𝒬RtR{R∶𝑙(R)<𝑙(𝒬)} . 

By Definition (4.1.16), we see that for all 𝒬 ∈ 𝒬, 

|(A0t)𝒬| ≲ ∑ (
𝑙(𝒬)

𝑙(R)
)

(𝑛+ε)
2 |tR|

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀

{R∶𝑙(R)≥𝑙(𝒬)}

, 

and therefore 
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‖A0t‖ḃp,q
0,τ (ℝ𝑛) ≲ sup

P dyadic

1

|P|τ
{∑[∫( ∑ ∑ (

𝑙(𝒬)

𝑙(R)
)

(𝑛+ε) 2⁄

{R∶𝑙(𝒬)≤𝑙(R)≤𝑙(P)}𝑙(𝒬)=2−jP

∞

j=jP

×
|tR|χ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀)

p

d𝑥]

q p⁄

}

1 q⁄

+ sup
P dyadic

1

|P|τ
{∑[∫( ∑ ∑ ⋯

{R∶𝑙(R)>𝑙(P)}𝑙(𝒬)=2−j

)

p

d𝑥

P

]

q p⁄
∞

j=jP

}

1 q⁄

≡ I1 + I2. 

For all 𝑖 ∈ ℤ  and 𝑚 ∈ ℕ , set U0,𝑖 ≡ {R ∈ 𝒬 ∶ 𝑙(R) = 2
−𝑖  and |𝑥𝒬 − 𝑥R| < 𝑙(R)} 

and, U𝑚,𝑖 ≡ {R ∈ 𝒬 ∶ 𝑙(R) = 2
−𝑖   and 2𝑚−1 𝑙(R) ≤ |𝑥𝒬 − 𝑥R| < 2

𝑚𝑙(R)}. Then we have 

#U𝑚,𝑖 ≲ 2
𝑚𝑛 , where #U𝑚,𝑖  denotes the cardinality of  U𝑚,𝑖 . Notice that |tR| ≤

|R|1 2⁄ −1 p⁄ +τ‖t‖ḃp,q
0,τ (ℝ𝑛) for all R ∈ 𝒬. Thus, by 0 ≤ τ <

1

p
+

ε

2𝑛
, 

I2 ≲ ‖t‖ḃp,q
0,τ (ℝ𝑛) sup

P dyadic

1

|P|τ
{∑[∫( ∑ ∑ ∑ ∑ (

𝑙(𝒬)

𝑙(R)
)

(𝑛+ε) 2⁄

R∈U𝑚,𝑖

∞

𝑚=0

jP−1

𝑖=−∞𝑙(𝒬)=2−jP

∞

j=jP

×
|R|1 2⁄ −1 p⁄ +τχ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀)

p

d𝑥]

q p⁄

}

1 q⁄

≲ ‖t‖ḃp,q
0,τ (ℝ𝑛) 

For I1, let r and u be the same as in the proof of Lemma (4.1.8). We see that 

I1 ≲ sup
P dyadic

1

|P|τ
{∑[∫( ∑ ∑2(𝑖−j)(𝑛+ε) 2⁄

j

𝑖=jP𝑙(𝒬)=2−j

× ∑
|rR|χ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀

𝑙(R)=2−𝑖

)

p

d𝑥

P

]

q p⁄
∞

j=jP

}

1 q⁄

+ sup
P dyadic

1

|P|τ
{∑[∫( ∑ ∑2(𝑖−j)(𝑛+ε) 2⁄

j

𝑖=jP𝑙(𝒬)=2−jP

∞

j=jP

× ∑
|uR|χ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀

𝑙(R)=2−𝑖

)

p

d𝑥]

q p⁄

}

1 q⁄

≡ J1 + J2 

Applying [106, Remark A.3] with 𝑎 = 1, for all 𝑥 ∈ 𝒬, we have 

∑
|rR|χ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀

𝑙(R)=2−𝑖

≲ MHL ( ∑ |rR|χR
𝑙(R)=2−𝑖

)(𝑥). 

Hence Hölder’s inequality and the Lp(ℝ𝑛) -boundedness for p ∈ (1,∞]  of the Hardy-

Littlewood maximal operator yield 
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J1 ≲ sup
P dyadic

1

|P|τ

{
 
 

 
 

∑[∫(∑2(𝑖−j)ε 2⁄
j

𝑖=jP

MHL ( ∑ |rR|χ̃R
𝑙(R)=2−𝑖

)(𝑥))

p

d𝑥

P

]

q p⁄

∞

j=jP

}
 
 

 
 
1 q⁄

≲ sup
P dyadic

1

|P|τ

{
 
 

 
 

∑[∫( ∑ |tR|χ̃R
𝑙(R)=2−𝑖

(𝑥))

p

d𝑥

3P

]

q p⁄

∞

𝑖=jP

}
 
 

 
 
1 q⁄

≲ ‖t‖ḃp,q
0,τ (ℝ𝑛), 

where the last inequality follows from Minkowski’s inequality if q > p or (13) if q ≤ p. 

To estimate J2 , we notice that if R ∩ (3P) = ∅, then R ⊂ P + k𝑙(P) and (P + k𝑙(P)) ∩

(3P) = ∅  for some k ∈ ℤ𝑛  with |k| ≥ 2  and 1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|~ |k|𝑙(P) 𝑙(R)⁄ . 

Therefore, by Hölder’s inequality, 

J2 ≲ sup
P dyadic

1

|P|τ+1+
ε
𝑛

{
 
 

 
 

∑2−jqε 2⁄

[
 
 
 

∫

(

 ∑ ∑2−𝑖(𝑛+ε) 2⁄
j

𝑖=jP𝑙(𝒬)=2−jP

∞

j=jP

× ∑|k|−𝑛−ε

k∈ℤ𝑛

|k|≥2

∑ |tR|χR(𝑥)

𝑙(R)=2−𝑖

R⊂P+k𝑙(P) )

 

p

d𝑥

]
 
 
 
q p⁄

}
 
 

 
 
1 q⁄

≲ ‖t‖ḃp,q
0,τ (ℝ𝑛) sup

P dyadic

1

|P|
ε
𝑛

{∑2−jqε 2⁄ [∑2−𝑖ε 2⁄
j

𝑖=jP

∑|k|−𝑛−ε

k∈ℤ𝑛

|k|≥2

]

q
∞

j=jP

}

1 q⁄

≲ ‖t‖ḃp,q
0,τ (ℝ𝑛). 

Hence, ‖A0t‖ḃp,q
0,τ (ℝ𝑛) ≲ ‖t‖ḃp,q

0,τ (ℝ𝑛) . Some similar computations to I1  also yield that 

‖A1t‖ḃp,q
0,τ (ℝ𝑛) ≲ ‖t‖ḃp,q

0,τ (ℝ𝑛). 

For Triebel-Lizorkin-type spaces 𝑓̇p,q
s,τ(ℝ𝑛), we also have 

‖A0t‖𝑓̇p,q
s,τ (ℝ𝑛) ≲ sup

P dyadic

1

|P|τ
{∫ [∑( ∑ (

𝑙(𝒬)

𝑙(R)
)

(𝑛+ε) 2⁄

{R∶𝑙(𝒬)≤𝑙(R)≤𝑙(P)}𝒬⊂PP

×
|tR|χ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀)

q

]

p q⁄

d𝑥}

1 p⁄

+ sup
P dyadic

1

|P|τ
{∫ [∑( ∑ ⋯

{R∶𝑙(R)>𝑙(P)}

)

q

𝒬⊂P

]

p q⁄

d𝑥

P

}

1 p⁄

≡ Ĩ1 + Ĩ2. 

Similarly to the estimate for I2, applying the fact that |tR| ≤ |R|
1 2⁄ −1 p⁄ +τ‖t‖𝑓̇p,q

0,τ(ℝ𝑛) and 

τ ∈ [0,
1

p
+

ε

2𝑛
), we obtain 
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Ĩ2 ≲ ‖t‖𝑓̇p,q
0,τ (ℝ𝑛) sup

P dyadic

1

|P|τ

{
 

 

∫[∑ ∑ (∑ ∑ ∑ (
𝑙(𝒬)

𝑙(R)
)

(𝑛+ε) 2⁄

R∈U𝑚,𝑖

∞

𝑚=0

jp−1

𝑖=−∞𝑙(𝒬)=2−j

∞

j=jPP

×
|R|1 2⁄ −1 p⁄ +τχ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀)

q

]

p q⁄

d𝑥

}
 

 
1 p⁄

≲ ‖t‖𝑓̇p,q
0,τ (ℝ𝑛). 

To estimate Ĩ1, notice that 

Ĩ1 ≲ sup
P dyadic

1

|P|τ
{∫[∑ ∑ (∑2(𝑖−j)(𝑛+ε) 2⁄

j

𝑖=jP𝑙(𝒬)=2−j

∞

j=jPP

× ∑
|rR|χ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀

𝑙(R)=2−𝑖

)

q

]

p q⁄

d𝑥}

1 p⁄

+ sup
P dyadic

1

|P|τ
{∫ [∑ ∑ (∑2(𝑖−j)(𝑛+ε) 2⁄

j

𝑖=jP𝑙(𝒬)=2−j

∞

j=jPP

× ∑
|𝑢R|χ̃𝒬(𝑥)

(1 + 𝑙(R)−1|𝑥𝒬 − 𝑥R|)
𝑛+𝜀

𝑙(R)=2−𝑖

)

q

]

p q⁄

d𝑥}

1 p⁄

≡ J̃1 + J̃2. 

Similarly to the estimate of J1 , by [106, Remark A.3], Hölder’s inequality and the 

Fefferman-Stein vector valued inequality, we obtain 

J̃1 ≲ sup
P dyadic

1

|P|τ
{∫(∑[∑2(𝑖−j)ε 2⁄ MHL

j

𝑖=jP

( ∑ |𝑟R|χ̃R
𝑙(R)=2−𝑖

)(𝑥)]

q
∞

j=jP

)

p q⁄

d𝑥

P

}

1 p⁄

≲ sup
P dyadic

1

|P|τ
{∫(∑[( ∑ |tR|χ̃R

𝑙(R)=2−𝑖

)(𝑥)]

q
∞

𝑖=jP

)

p q⁄

d𝑥

3P

}

1 p⁄

≲ ‖t‖𝑓̇p,q
0,τ (ℝ𝑛). 

For J̃2, similarly to the estimate for J2, by Minkowski’s inequality and the Fefferman-Stein 

vector-valued maximal inequality, we obtain 

J̃2 ≲ ∑|k|−(𝑛+ε)

k∈ℤ𝑛

|k|≥2

sup
P dyadic

1

|P|τ+ε 𝑛⁄

{
 
 

 
 

∫

(

 ∑

[
 
 
 

∑2(𝑖−j)ε 2⁄ 2−𝑖ε

j

𝑖=jP

∞

j=jPP

× MHL

(

 ∑ |R|−1 2⁄ |tR|χR
𝑙(R)=2−𝑖

R⊂P+k𝑙(P) )

 (𝑥 + k𝑙(P))

]
 
 
 
q

)

 

p q⁄

d𝑥

}
 
 

 
 
1 p⁄

≲ ‖t‖𝑓̇p,q
0,τ (ℝ𝑛). 

Hence ‖A0t‖𝑓̇p,q
0,τ(ℝ𝑛) ≲ ‖t‖𝑓̇p,q

0,τ(ℝ𝑛). 
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Some similar estimates to Ĩ1  also yield that ‖A1t‖𝑓̇p,q
0,τ(ℝ𝑛) ≲ ‖t‖𝑓̇p,q

0,τ(ℝ𝑛) . Thus, we 

obtain the desired conclusion for the case min{p, q} > 1. 

The case min{p, q} ≤ 1  is a simple consequence of the case min{p, q} > 1 . Indeed, 

choosing a δ ∈ (0, p ∧ q), then p/δ > 1 and q/δ > 1. Let Ã be an operator on 𝑎̇p,q
0,τ (ℝ𝑛) 

associated with the matrix {𝑎̃𝒬P}𝒬,P ≡ {|𝑎𝒬P|
δ
(𝑙(𝒬) 𝑙(P)⁄ )𝑛 2⁄ −δ𝑛 2⁄ }

𝒬,P
. Then  Ã is a ε-almost 

diagonal operator on 𝑎̇p δ⁄ ,q δ⁄
0,τδ (ℝ𝑛) with ε̃ = δε. 

Define t̃ ≡ {𝑙(𝒬)𝑛 2⁄ −δ𝑛 2⁄ |t𝒬|
δ
}
𝒬

. Then ‖t̃‖
𝑎̇p δ⁄ ,q δ⁄
0,τδ (ℝ𝑛)

1 δ⁄ = ‖t‖𝑎̇p,q
0,τ (ℝ𝑛) . Since δ < 1 , by 

(13), we see that ‖At‖𝑎̇p,q
0,τ (ℝ𝑛) ≲ ‖Ãt̃‖𝑎̇p δ⁄ ,q δ⁄

0,τδ (ℝ𝑛)

1 δ⁄
. Applying the conclusions for min{p, q} >

1  yields ‖At‖𝑎̇p,q
0,τ (ℝ𝑛) ≲ ‖Ãt̃‖𝑎̇p δ⁄ ,q δ⁄

0,τδ (ℝ𝑛)

1 δ⁄
≲ ‖t̃‖

𝑎̇p δ⁄ ,q δ⁄
0,τδ (ℝ𝑛)

1 δ⁄ ∼ ‖t‖𝑎̇p,q
0,τ (ℝ𝑛) , which completes the 

proof of Theorem (4.1.17). 
Definition (4.1.18) [190]: Let s ∈ ℝ, τ ∈ [0,∞), p, q ∈ (0,∞] and J ≡ 𝑛/ min{1, p} when 

Ȧp,q
s,τ (ℝ𝑛) ≡ Ḃp,q

s,τ (ℝ𝑛)  or J ≡ 𝑛/ min{1, p, q}  when Ȧp,q
s,τ (ℝ𝑛) ≡ Ḟp,q

s,τ (ℝ𝑛) . Let N ≡

max(⌊J − 𝑛 − s⌋, −1) and s∗ = s − ⌊s⌋ denotes the maximal integer no more than s. 

(i) A function m𝒬  is called a smooth synthesis molecule for Ȧp,q
s,τ (ℝ𝑛)  supported near 

dyadic cube 𝒬 if there exist a δ ∈ (max{s∗, (s + 𝑛𝜏)∗} , 1] and an M ∈ (J,∞) such that 

∫ 𝑥γm𝒬(𝑥)d𝑥ℝ𝑛
= 0 if |γ| ≤ N, |m𝒬(𝑥)| ≤ |𝒬|

−1 2⁄ (1 + 𝑙(𝒬)−1|𝑥 − 𝑥𝒬|)
−max(M,M−s)

, 

|𝛿𝛾m𝒬(𝑥)| ≤ |𝒬|
−1 2⁄ −|γ| 𝑛⁄ (1 + 𝑙(𝒬)−1|𝑥 − 𝑥𝒬|)

−M
 if |γ| ≤ ⌊s + 𝑛τ⌋,                (14) 

and 

|𝛿𝛾m𝒬(𝑥) − δ
γm𝒬(y)|

≤ |𝒬|−1 2⁄ −|γ| 𝑛⁄ −δ 𝑛⁄ |𝑥 − y|𝛿 × sup
|z|≤|𝑥−y|

(1 + 𝑙(𝒬)−1|𝑥 − z − 𝑥𝒬|)
−M
 if |γ|

= ⌊s + 𝑛τ⌋.                                                                                                              (15) 

A collection {m𝒬}𝒬 is called a family of smooth synthesis molecules for Ȧp,q
s,τ (ℝ𝑛), 

if each m𝒬 is a smooth synthesis molecule for Ȧp,q
s,τ (ℝ𝑛) supported near 𝒬. 

(ii) A function b𝒬 is called a smooth analysis molecule for Ȧp,q
s,τ (ℝ𝑛) supported near 𝒬 if 

there exist a ρ ∈ ((J − s)∗, 1] and an M ∈ (J,∞) such that ∫ 𝑥γb𝒬(𝑥)d𝑥ℝ𝑛
= 0 if |γ| ≤

⌊s + 𝑛τ⌋, |b𝒬(𝑥)| ≤ |𝒬|
−1 2⁄ (1 + 𝑙(𝒬)−1|𝑥 − 𝑥𝒬|)

−max(M,M+𝑛+s+𝑛τ−J)
, 

|𝛿𝛾b𝒬(𝑥)| ≤ |𝒬|
−1 2⁄ −|γ| 𝑛⁄ (1 + 𝑙(𝒬)−1|𝑥 − 𝑥𝒬|)

−M
 if |γ| ≤ N,                  (16) 

and 

|𝛿𝛾b𝒬(𝑥) − 𝛿
𝛾b𝒬(y)|

≤ |𝒬|−1 2⁄ −|γ| 𝑛⁄ −ρ 𝑛⁄ |𝑥 − y|𝜌 × sup
|z|≤|𝑥−y|

(1 + 𝑙(𝒬)−1|𝑥 − z − 𝑥𝒬|)
−M
 if |γ|

= N.                                                                                                                          (17) 

A collection {b𝒬}𝒬 is called a family of smooth synthesis molecules for Ȧp,q
s,τ (ℝ𝑛), if 

each b𝒬 is a smooth analysis molecule for Ȧp,q
s,τ (ℝ𝑛) supported near 𝒬. 

Lemma (4.1.19) [190]: Let s, p, q, J , M, N and ρ be as in Definition (4.1.18). Assume that 

τ ∈ [0, (
1

p
+
M−J

2𝑛
) ∧ (

1

p
+
ρ−(J−s)∗

𝑛
)) if N ≥ 0, τ ∈ [0, (

1

p
+
M−J

2𝑛
) ∧ (

1

p
+
s+𝑛−J

𝑛
)) if N < 0, and δ ∈

(max{(s +  nτ)∗, s∗} , 1] . Then there exist a positive real number ε1  and a positive 
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constant C  such that ε1 > 2n(τ −
1

p
)  and for all families {m𝒬}𝒬  of smooth synthesis 

molecules for Ȧp,q
s,τ (ℝ𝑛) and families {b𝒬}𝒬 of smooth analysis molecules for Ȧp,q

s,τ (ℝ𝑛), 

|〈mP, b𝒬〉| ≤ Cω 𝒬 P(ε1). 

Namely, the operator associated with the matrix {𝑎𝒬 P}𝒬,P ≡ {
〈mP, b𝒬〉}𝒬,P  is ε1 -almost 

diagonal on 𝑎̇p,q
s,τ (ℝ𝑛). 

As an immediate consequence of Lemma (4.1.19), we have the following corollary 

Corollary (4.1.20) [190]: Let s, p, q, τ and ε1 be as in Lemma (4.1.19) and φ satisfy (1) 

through (3). Suppose that {m𝒬}𝒬 and {b𝒬}𝒬 are families of smooth synthesis and analysis 

molecules for Ȧp,q
s,τ (ℝ𝑛), respectively. Then the operators associated with the matrices 

{𝑎𝒬 P}𝒬,P = {
〈m𝒬 , φP〉}𝒬,P  and {b𝒬 P}𝒬,P = {

〈φP, b𝒬〉}𝒬,P  are, respectively, ε1 -almost diagonal 

operators on 𝑎̇p,q
s,τ (ℝ𝑛). 

Lemma (4.1.21) [190]: Let s ∈ ℝ, p, q ∈ (0,∞], τ and ε1  be as in Lemma (4.1.19), 𝑓 ∈

Ȧp,q
s,τ (ℝ𝑛)  and Φ  be a smooth analysis molecule for Ȧp,q

s,τ (ℝ𝑛)  supported near 𝒬 . Then 

〈𝑓, Φ〉 is well defined. Indeed, for φ,ψ satisfy (1) through (4), 

〈𝑓,Φ〉 ≡∑〈φ̃j ∗ ψj ∗ 𝑓, Φ〉

j

=∑〈𝑓,φP〉〈ψP, Φ〉

P

                                     (18) 

converges absolutely and its value is independent of the choices of φ and ψ. 

Proof: By similarity, we only consider the space Ḃp,q
s,τ (ℝ𝑛). Let Φ be a smooth analysis 

molecule for Ḃp,q
s,τ (ℝ𝑛) supported near 𝒬  and φ,ψ satisfy (1) through (4).We claim that 

there exists a matrix {𝑎𝒬 P}𝒬,P  such that |〈𝑓, φP〉||〈ψP, Φ〉| ≤ 𝑎𝒬 P  and ∑ 𝑎𝒬 PP < ∞ . In 

fact, Corollary (4.1.20) yields that there exists a positive constant C such that |ψP, Φ| ≤
Cω𝒬 P(ε1) . Then 𝑎𝒬 P ≡ C|〈𝑓, φP〉|ω𝒬 P(ε1)  does the job. Furthermore, by Theorem 

(4.1.5), the sequence {|〈𝑓, φP〉|}P ∈ ḃp,q
s,τ (ℝ𝑛), and hence by Theorem (4.1.17), ∑ 𝑎𝒬 PP <

∞. This shows the absolutely convergence of (18). 

Next we claim that for 𝑓 ∈ Ḃp,q
s,τ (ℝ𝑛), ∑ ψ̃j ∗ φj ∗ 𝑓

∞
j=0  converges in 𝒮 ′(ℝ𝑛). To see 

this, we need the following estimate that there exists an M ∈ ℤ+  such that for all ψ ∈
𝒮∞(ℝ

𝑛), φ ∈ 𝒮(ℝ𝑛), j ∈ ℤ+ and 𝑥 ∈ ℝ𝑛, 

|ψj ∗ ϕ(𝑥)| ≲ ‖ϕ‖𝒮M+1‖ψ‖𝒮M+12
−jM

1

(1 + |𝑥|)𝑛+M
.                             (19) 

The proof of (19) is similar to that of Lemma (4.1.3) (see also, [189]). We omit the details. 

Let M > max{0,−s}. If p ∈ [1,∞], then by (19) and Hölder’s inequality, we obtain 

that for all φ ∈ 𝒮(ℝ𝑛), 

∑|〈ψ̃j ∗ φj ∗ 𝑓, ϕ〉|

∞

j=0

≲ ‖ϕ‖𝒮M+1‖ψ‖𝒮M+1∑2−jM ∫
|φj ∗ 𝑓(𝑥)|

(1 + |𝑥|)𝑛+M
d𝑥

ℝ𝑛

∞

j=0

≲ ‖ϕ‖𝒮M+1‖ψ‖𝒮M+1‖𝑓‖Ḃp,q
s,τ (ℝ𝑛).                                                                                    (20) 

If p ∈ (0, 1), by Corollary (4.1.10), Ḃp,q
s,τ (ℝ𝑛) ⊂ Ḃ1,q

s+(1−
1

p
)𝑛,τ
(ℝ𝑛), and hence 

∑|〈ψ̃j ∗ φj ∗ 𝑓, ϕ〉|

∞

j=0

≲ ‖ϕ‖𝒮M+1‖ψ‖𝒮M+1‖𝑓‖
Ḃ1,q

s+(1−
1
p
)𝑛,τ

(ℝ𝑛)

≲ ‖ϕ‖𝒮M+1‖ψ‖𝒮M+1‖𝑓‖Ḃp,q
s,τ (ℝ𝑛).                                                                                    (21) 

The estimates (20) and (21) imply that ∑ ψ̃j ∗ φj ∗ 𝑓
∞
j=0  converges in 𝒮 ′(ℝ𝑛). 
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Since ψ ∈ 𝒮∞(ℝ
𝑛), for all 𝑥 ∈ ℝ𝑛, j ∈ ℤ and multi-indices γ, we have 

|(∂γψ̃j) ∗ φj ∗ 𝑓(𝑥)| ≲ ‖ψ‖𝒮M+12
j(𝑛+γ) ∫

|φj ∗ 𝑓(y)|

(1 + |𝑥 − y|)𝑛+M+|γ|
dy

ℝ𝑛

. 

Then, if p ∈ [1,∞] , applying Hölder’s inequality, we obtain |(∂γψ̃j) ∗ φj ∗ 𝑓(𝑥)| ≲

‖ψ‖𝒮M2
j(|γ|+𝑛 p⁄ −s−𝑛τ)‖𝑓‖Ḃp,q

s,τ (ℝ𝑛). Similarly to the estimate of (21), applying Proposition 

(4.1.13) again, we know this estimate still holds when p ∈ (0, 1) . Thus, if |γ| ∈
(s + 𝑛τ − 𝑛 p⁄ ,∞), then for all 𝑥 ∈ ℝ𝑛, ∑ |(∂γψ̃j) ∗ φj ∗ 𝑓(𝑥)|

1
j=−∞ ≲ ‖ψ‖𝒮M‖𝑓‖Ḃp,q

s,τ (ℝ𝑛), 

which together with (20) and (21) implies that there exist a sequence of polynomials, 

{PN}N=1
∞ , with degree no more than L ≡ s + 𝑛τ − 𝑛 p⁄  and g ∈ 𝒮 ′(ℝ𝑛)  such that g =

lim
N→∞

(∑ ψ̃j ∗ φj ∗ 𝑓 + PN
∞
j=−N ) in 𝒮 ′(ℝ𝑛) and g is a representative of the equivalence class 

𝑓 + 𝒫(ℝ𝑛); see [106]. Using [93, Lemma 5.4] and repeating the argument in [106] then 

completes the proof of Lemma (4.1.21). 

Using Lemmas (4.1.19) and (4.1.21), by the method pioneered by Frazier and 

Jawerth [93, 106], we obtain the following Theorem (4.1.22). 

Theorem (4.1.22) [190]: Let s ∈ ℝ, p, q ∈ (0,∞], τ and ε1 be as in Lemma (4.1.19). 

(i) If {m𝒬}𝒬 is a family of smooth synthesis molecules for Ȧp,q
s,τ (ℝ𝑛), then there exists a 

positive constant C  such that for all t = {t𝒬}𝒬 ∈ 𝑎̇p,q
s,τ (ℝ𝑛), ‖∑ t𝒬𝒬 m𝒬‖Ȧp,q

s,τ (ℝ𝑛)
≤

C‖t‖𝑎̇p,q
s,τ (ℝ𝑛); 

(ii) If {b𝒬}𝒬  is a family of smooth analysis molecules for Ȧp,q
s,τ (ℝ𝑛), then there exists a 

positive constant C such that for all 𝑓 ∈ Ȧp,q
s,τ (ℝ𝑛), ‖{〈𝑓, b𝒬〉}𝒬‖𝑎̇p,q

s,τ (ℝ𝑛)
≤ C‖𝑓‖Ȧp,q

s,τ (ℝ𝑛). 

We establish smooth atomic decomposition characterizations of Ȧp,q
s,τ (ℝ𝑛). For the 

classical results on Ḃp,q
s (ℝ𝑛) and Ḟp,q

s (ℝ𝑛), see [93, 106, 164]. 

Definition (4.1.23) [190]: Let s, τ, p, q and J be as in Definition (4.1.18). A function 𝑎𝒬 is 

called a smooth atom for Ȧp,q
s,τ (ℝ𝑛) supported near a dyadic cube 𝒬 if there exist K̃ and Ñ 

with K̃ ≥ max{⌊s + 𝑛τ + 1⌋, 0}  and Ñ ≥ max(⌊J − 𝑛 − s⌋, −1)  such that supp 𝑎𝒬 ⊂ 3𝒬 , 

∫ 𝑥γ𝑎𝒬(𝑥)d𝑥ℝ𝑛
= 0 if |γ| ≤ Ñ, and |∂γ𝑎𝒬(𝑥)| ≤ |𝒬|

−1 2⁄ −|γ| 𝑛⁄  if |γ| ≤ K̃. 

A collection {𝑎𝒬}𝒬 is called a family of smooth atoms for Ȧp,q
s,τ (ℝ𝑛), if each 𝑎𝒬 is a 

smooth atom for Ȧp,q
s,τ (ℝ𝑛) supported near 𝒬. 

It is clear that every smooth atom for Ȧp,q
s,τ (ℝ𝑛) is a multiple of a smooth synthesis 

molecule for Ȧp,q
s,τ (ℝ𝑛)  supported near 𝒬 . Using Theorem (4.1.22) and repeating the 

argument as in [106] or [93] yield the following result. 

Theorem (4.1.24) [190]: Let s ∈ ℝ, p, q ∈ (0,∞], τ be as in Lemma (4.1.19). Then for 

each 𝑓 ∈ Ȧp,q
s,τ (ℝ𝑛), there exist smooth atoms {𝑎𝒬}𝒬 for Ȧp,q

s,τ (ℝ𝑛), coefficients t = {t𝒬}𝒬 ∈

𝑎̇p,q
s,τ (ℝ𝑛) such that 𝑓 = ∑ t𝒬𝒬 𝑎𝒬 in 𝒮∞

′ (ℝ𝑛) and  ‖t‖𝑎̇p,q
s,τ (ℝ𝑛) ≤ C‖𝑓‖Ȧp,q

s,τ (ℝ𝑛), where C is a 

positive constant independent of 𝑓 and t. 

Conversely, there exists a positive constant C such that for all families {𝑎𝒬}𝒬  of 

smooth atoms for Ȧp,q
s,τ (ℝ𝑛) and t = {t𝒬}𝒬 ∈ 𝑎̇p,q

s,τ (ℝ𝑛), ‖∑ t𝒬𝒬 𝑎𝒬‖Ȧp,q
s,τ (ℝ𝑛)

≤ C‖t‖𝑎̇p,q
s,τ (ℝ𝑛). 

In [189], some tent spaces FṪp,q
s,τ(ℝℤ

𝑛+1)  were introduced, which are used to 

determine the predual spaces of Ḟp,q
s,τ (ℝ𝑛) . We introduce a class of tent spaces 



115 

BṪp,q
s,τ(ℝℤ

𝑛+1), which is used to determine the predual space of Ḃp,q
s,τ (ℝ𝑛). First we recall the 

notion of Hausdorff capacities; see, for example, [161, 162]. In what follows, for 𝑥 ∈ ℝ𝑛 

and r > 0, B(𝑥, r) ≡ {y ∈ ℝ𝑛 ∶ |𝑥 − y| < r}. 
Definition (4.1.25) [190]: Let d ∈ (0,∞) and E ⊂ ℝ𝑛. Then the d-dimensional Hausdorff 

capacity of E is defined by 

Λd
(∞)(E) ≡ inf {∑rj

d ∶ E ⊂⋃B(𝑥j, rj)

jj

},                                          (22) 

where the infimum is taken over all covers of E by countable families of open balls with 

radius rj . 

The notion of Λd
(∞)

 can be extended to d = 0, namely, in (22), let d = 0. Then Λd
(∞)

 

is monotone and countable sub additive; moreover, Λd
(∞)

 does not vanish on the empty set, 

it has the property that for all sets E ⊂ ℝ𝑛, Λ0
(∞)(E) ≥ 1 and Λ0

(∞)(E) = 1 if  E is bounded. 

Adyadic version of the Hausdorff capacity, Λ̃d
(∞)

, which is defined by 

Λ̃d
(∞)(E) ≡ inf {∑𝑙(Ij)

d
∶ E ⊂ (⋃Ij

j

)

°

j

},                                        (23) 

where now the infimum ranges only over covers of E by dyadic cubes {Ij}j
. Recall that  A° 

denotes the interior of the set A. 

It was proved in [188] that Λ̃d
(∞)

is a Choquet capacity and that Λd
(∞)

 and Λ̃d
(∞)

 are 

equivalent, namely, there exist positive constants C1  and C2 , only depending on the 

dimension 𝑛, such that 

C1Λd
(∞)(E) ≤ Λ̃d

(∞)(E) ≤ C2Λd
(∞)(E)   for all  E ⊂ ℝ𝑛.                        (24) 

Next we recall the notions of Choquet integral with respect to the Hausdorff 

capacities Λd
(∞)

 and Λ̃d
(∞)

; see [161, 162]. For any function 𝑓 ∶ ℝ𝑛 → [0,∞], define 

∫𝑓 dΛd
(∞)

ℝ𝑛

≡ ∫ Λd
(∞)({𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) > 𝜆})dλ

∞

0

. 

This functional is not sub linear, so sometimes we need to use an equivalent integral with 

respect to Λ̃d
(∞)

, which is sublinear and satisfies Fatou’s lemma. See [188, 189] for more 

properties on the Hausdorff capacities and their Choquet integrals. 

Let ℝ+
𝑛+1 ≡ ℝ𝑛 × (0,∞). For 𝑥 ∈ ℝ𝑛 , let Γ(𝑥) ≡ {(y, t) ∈  ℝ+

𝑛+1 ∶ |y − 𝑥| < 𝑡} be 

the cone at 𝑥. Define the nontangential maximal function N(𝑓) of any measurable function 

𝑓  on ℝ+
𝑛+1  by N𝑓(x) ≡ sup

(y,t)∈ Γ(𝑥)
|𝑓(y, t)|  for all 𝑥 ∈ ℝ𝑛 . Since a point (𝑥, t) ∈  ℝ+

𝑛+1 

belongs to Γ(y) for every y ∈ B(𝑥, t), we see that 

|𝑓(𝑥, t)| ≤ inf
y∈B(𝑥,t)

N(𝑓)(y).                                                (25) 

Recall that ℝℤ
𝑛+1 ≡ ℝ𝑛 × {2k ∶ k ∈ ℤ}. For all functions f on ℝ+

𝑛+1or ℝℤ
𝑛+1 and k ∈

ℤ, we set 𝑓k(𝑥) ≡ 𝑓(𝑥, 2−k). For any set A, define T(A) ≡  {(𝑥, t) ∈ ℝ+
𝑛+1 ∶ B(𝑥, t) ⊂ A }. 

Definition (4.1.26) [190]: Let s ∈ ℝ. 

(i) Let p, q ∈ [1,∞), (p ∨ q) > 1 and τ ∈ (0,
1

(p∨q)′
]. The space BṪp,q

s,τ(ℝℤ
𝑛+1) is defined to 

be the set of all functions f on ℝℤ
𝑛+1 such that {𝑓k}

k∈ℤ
 are Lebesgue measurable and 
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‖𝑓‖BṪp,q
s,τ (ℝℤ

𝑛+1) ≡ infω
{∑2ksq ‖𝑓k[ωk]

−1
‖
Lp(ℝ𝑛)

q

k∈ℤ

}

1 q⁄

< ∞, 

(ii) where the infimum is taken over all nonnegative Borel measurable functions ω on 

ℝ+
𝑛+1 with 

∫(Nω(𝑥))
(p∨q)′

 dΛ
𝑛τ(p∨q)′
(∞)

ℝ𝑛

≤ 1                                                 (26) 

and with the restriction that ω is allowed to vanish only where 𝑓 vanishes. 

(iii) Let p, q ∈ (0,∞] and τ ∈ [0,∞). The space BẆp,q
s,τ(ℝℤ

𝑛+1) is defined to be the set of 

all functions 𝑓 on ℝℤ
𝑛+1 such that {𝑓k}

k∈ℤ
 are Lebesgue measurable and 

‖𝑓‖BẆp,q
s,τ (ℝℤ

𝑛+1) ≡ sup
B

1

|B|τ
{∑2ksq [ ∫|𝑓k(𝑥)|

p
χT(B)(𝑥, 2

−k)d𝑥

ℝ𝑛

]

q p⁄

k∈ℤ

}

1 q⁄

< ∞ 

     where B runs over all balls in ℝ𝑛. 

Definition (4.1.27) [190]: Let s, τ, p, q be as in Definition (4.1.25) (i). A function 𝑎 on 

ℝℤ
𝑛+1 is called a BṪp,q

s,τ(ℝℤ
𝑛+1)-atom associated with a ball B, if a is supported in T(B) and 

satisfies 

∑2ksq ( ∫|𝑎k(𝑥)|
p
χT(B)(𝑥, 2

−k)d𝑥

ℝ𝑛

)

q p⁄

k∈ℤ

≤ |B|−τq. 

Lemma (4.1.28) [190]: Let s, τ, p, q be as in Definition (4.1.26) (i). Then there exists a 

positive constant C  such that all BṪp,q
s,τ(ℝℤ

𝑛+1) -atoms a belong to BṪp,q
s,τ(ℝℤ

𝑛+1)  and 

‖𝑎‖BṪp,q
s,τ (ℝℤ

𝑛+1) ≤ C. 

Lemma (4.1.29) [190]: Let s ∈ ℝ, p, q ∈ (1,∞], (p ∧ q) < ∞, τ ∈ (0,
1

p∧q
] and 𝑎 ∈ (0,∞). 

Then there exists a positive constant C such that for all 𝑓 ∈ BẆp,q
s,τ(ℝℤ

𝑛+1) and nonnegative 

Borel measurable functions ω on ℝ+
𝑛+1, when q ≤ p, 

∑2ksq { ∫|𝑓k(𝑥)|
p
[ωk(𝑥)]

𝑎p
d𝑥

ℝ𝑛

}

q p⁄

k∈ℤ

≤ C‖𝑓‖
BẆp,q

s,τ (ℝℤ
𝑛+1)

q
∫(Nω(𝑥))

𝑎p
 dΛ𝑛τq

(∞) (𝑥)

ℝ𝑛

; 

and when p < q, 

{∑2ksq [ ∫|𝑓k(𝑥)|
p
[ωk(𝑥)]

𝑎p
d𝑥

ℝ𝑛

]

q p⁄

k∈ℤ

}

1 q⁄

≤ C‖𝑓‖BẆp,q
s,τ (ℝℤ

𝑛+1) { ∫(Nω(𝑥))
𝑎p
 dΛ𝑛τq

(∞) (𝑥)

ℝ𝑛

}

1 p⁄

. 

In Theorem (4.1.30) below, we establish the dual relation between tent spaces 

BṪp,q
s,τ(ℝℤ

𝑛+1) and BẆp,q
s,τ(ℝℤ

𝑛+1), whose continuous variant when s =
𝑛−d

2
, τ =

d

2𝑛
  and p =

q = 2 was obtained by Dafni and Xiao [167]. The proof of Theorem (4.1.30) is a slight 

modification of the proof of [189, Theorem 4.1] by replacing Lemmas 4.2 and 4.3 in [189] 

with Lemmas (4.1.28) and (4.1.29) here. 

Theorem (4.1.30) [190]: Let s, τ, p, q be as in Definition (4.1.26) (i). 

(i) If 𝑓 ∈ BṪp,q
s,τ(ℝℤ

𝑛+1), then there exist BṪp,q
s,τ(ℝℤ

𝑛+1)-atoms {𝑎j}j
 and an 𝑙1-sequence {λj} 

such that 𝑓 = ∑ λj𝑎jj  pointwise; moreover, ∑ |λj|j ≤ C‖𝑓‖BṪp,q
s,τ (ℝℤ

𝑛+1) . In particular, if 

p = q ∈ (1,∞), then 𝑓 = ∑ λj𝑎jj  also in BṪp,q
s,τ(ℝℤ

𝑛+1). 
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Conversely, if p = q ∈ (1,∞) , and there exist BṪp,q
s,τ(ℝℤ

𝑛+1) -atoms {𝑎j}j
and an 𝑙1 -

sequence {λj}  such that 𝑓 = ∑ λj𝑎jj  pointwise, then 𝑓 = ∑ λj𝑎jj  also in BṪp,q
s,τ(ℝℤ

𝑛+1) 

and ‖𝑓‖BṪp,q
s,τ (ℝℤ

𝑛+1) ≤ C∑ |λj|j , where C is a positive constant independent of 𝑓 . 

(ii) There exists a positive constant C  such that for all 𝑓 ∈ BṪp,q
s,τ(ℝℤ

𝑛+1)  and g ∈

BẆ
p′,q′
−s,τ(ℝℤ

𝑛+1), |∑ ∫ 𝑓k(𝑥)gk(𝑥)d𝑥
ℝ𝑛k∈ℤ | ≤ C‖𝑓‖BṪp,q

s,τ (ℝℤ
𝑛+1)‖g‖BẆ

p′,q′
−s,τ(ℝℤ

𝑛+1). 

(iii) The dual space of BṪp,q
s,τ(ℝℤ

𝑛+1)  is BẆ
p′,q′
−s,τ(ℝℤ

𝑛+1)  under the following pairing 

〈𝑓, g〉 = ∑ ∫ 𝑓k(𝑥)gk(𝑥)d𝑥
ℝ𝑛k∈ℤ . 

Section (4.2): Triebel-Lizorkin-Hausdorff Spaces and their Applications 

To establish the connections between Besov and Triebel-Lizorkin spaces with 𝒬 

spaces, which was an open problem (see, [167]), Yang and Yuan [189, 190] introduced 

new classes of Besov-type spaces Ḃp,q
s,τ (ℝ𝑛) and Triebel-Lizorkin-type spaces Ḟp,q

s,τ (ℝ𝑛), 

which unify and generalize the Besov spaces Ḃp,q
s (ℝ𝑛), Triebel-Lizorkin spaces Ḟp,q

s (ℝ𝑛), 

Morrey spaces, Morrey-Triebel-Lizorkin spaces and 𝒬 spaces. We pointed out that the 𝒬 

spaces on ℝ𝑛 were originally introduced in [193]; see also [167, 184, 185, 193] for the 

history of Q spaces and their properties. 

Let  p ∈ (1,∞), q ∈ [1,∞),  s ∈ ℝ  and τ ∈ [0, 1 −
1

max{p,q}
 ] , where and in what 

follows, t̀  denotes the conjugate index of t ∈ [1,∞) . The Besov-Hausdorff spaces 

BḢp,q
s,τ (ℝ𝑛)  and Triebel-Lizorkin-Hausdorff spaces FḢp,q

s,τ (ℝ𝑛)  (q > 1)  were also 

introduced in [189, 190]; moreover, it was proved therein that they are, respectively, the 

predual spaces of Ḃp̀,q̀
−s,τ(ℝ𝑛) and Ḟp̀,q̀

−s,τ(ℝ𝑛). The spaces BḢp,q
s,τ (ℝ𝑛) and FḢp,q

s,τ (ℝ𝑛) were 

originally called the Hardy-Hausdorff spaces in [189, 190]. However, it seems that it is 

more reasonable to call them, respectively, the Besov-Hausdorff spaces and the Triebel-

Lizorkin-Hausdorff spaces. The spaces BḢp,q
s,τ (ℝ𝑛) and FḢp,q

s,τ (ℝ𝑛) unify and generalize 

the Besov space Ḃp,q
s (ℝ𝑛), the Triebel-Lizorkin space Ḟp,q

s (ℝ𝑛) and the Hardy-Hausdorff 

space HH−α
1 (ℝ𝑛), where HH−α

1 (ℝ𝑛) was introduced in [167] and was proved to be the 

predual space of the space 𝒬𝛼(ℝ
𝑛) therein.  

It is well known that the wavelet decomposition plays an important role in the study 

of function spaces and their applications; see, for example, [198, 199]. The φ-transform 

decomposition of Frazier and Jawerth [45, 106, 175] is very similar in spirit to the wavelet 

decomposition, which is also proved to be a powerful tool in the study of function spaces 

and boundedness of operators, and was further developed by Bownik [93, 165]. We 

establish the φ-transform characterizations of the spaces BḢp,q
s,τ (ℝ𝑛) and FḢp,q

s,τ (ℝ𝑛); via 

these characterizations, we also obtain their embedding properties (which on BḢp,q
s,τ (ℝ𝑛) is 

also sharp), smooth atomic and molecular decomposition characterizations for suitable τ. 
Using their atomic and molecular decomposition characterizations, we investigate the 

trace properties and the boundedness of pseudo-differential operators with homogeneous 

symbols (see [197]) in BḢp,q
s,τ (ℝ𝑛) and FḢp,q

s,τ (ℝ𝑛), which generalizes the corresponding 

classical results on homogeneous Besov and Triebel-Lizorkin spaces when p ∈ (1,∞) and 

q ∈ [1,∞) by taking τ = 0; see, for example [7, 17, 106, 197]. Recall that the study of 

pseudo-differential operators with non-homogeneous symbols on non-homogeneous 

Besov and Triebel-Lizorkin spaces using φ-transform arguments was started by Torres 

[201, 202]; the results in [197] are based on these works. See Pseudo-differential operators 
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on Triebel-Lizorkin spaces using more classical methods. We will concentrate here on φ-

transform arguments.  

Let 𝒮(ℝ𝑛) be the space of all Schwartz functions on ℝ𝑛. Following Triebel’s [41], 

set 

𝒮∞(ℝ
𝑛) = {φ ∈ 𝒮(ℝ𝑛) ∶ ∫φ(𝑥)𝑥γd𝑥 = 0 for all multi − indices γ ∈ (ℕ ∪ {0})𝑛

ℝ𝑛

} 

and use 𝒮∞
′ (ℝ𝑛)  to denote the topological dual of 𝒮∞(ℝ

𝑛) , namely, the set of all 

continuous linear functionals on 𝒮∞(ℝ
𝑛)  endowed with weak ∗-topology. Recall that 

𝒮′(ℝ𝑛) 𝒫(ℝ𝑛)⁄  and 𝒮∞
′ (ℝ𝑛)  are topologically equivalent, where 𝒮∞

′ (ℝ𝑛)  and 𝒫(ℝ𝑛) 
denote, respectively, the space of all Schwartz distributions and the set of all polynomials 

on ℝ𝑛.  

For each cube 𝒬 in ℝ𝑛, we denote its side length by ℓ(𝒬), its center by c 𝒬, and set 

j𝒬 ≡ − log2 ℓ(𝒬).   For k = (k1, … , k𝑛) ∈ ℤ
𝑛  and j ∈ ℤ , let 𝒬jk  be the dyadic cube 

{(𝑥1, … , 𝑥𝑛) ∶ k𝑖 ≤ 2
j𝑥𝑖 < k𝑖 + 1 for 𝑖 = 1,… , 𝑛} ⊂ ℝ

𝑛, 𝑥𝒬 be the lower left-corner 2jk of 

𝒬 = 𝒬jk, 𝒟(ℝ
𝑛) ≡ {𝒬jk}j,k

, and 𝒟j(ℝ
𝑛) ≡ {𝒬 ∈ 𝒟(ℝ𝑛) ∶ ℓ(𝒬) = 2−j} . When dyadic cube 𝒬 

appears as an index, such as ∑   and  {∙}𝒬∈𝒟(ℝ𝑛)𝒬∈𝒟(ℝ𝑛) , it is understood that 𝒬 runs over 

all dyadic cubes in ℝ𝑛.  

For 𝑥 ∈ ℝ𝑛  and r > 0, we write B(𝑥, r) ≡ {y ∈ ℝ𝑛 ∶ |𝑥 − y| < 𝑟}. Next we recall 

the notion of Hausdorff capacities; see, for example, [161, 188]. Let E ⊂ ℝ𝑛  and d ∈
(0, 𝑛]. The d-dimensional Hausdorff capacity of E is defined by  

Hd(E) ≡ inf {∑rj
d ∶ E ⊂⋃B(𝑥j, rj)

jj

}, 

where the infimum is taken over all covers {B(𝑥j, rj)}j=1
∞

of E by countable families of open 

balls. It is well known that Hd is monotone, countably subadditive and vanishes on empty 

set. Moreover, the notion of Hd can be extended to d = 0. In this case, H0 has the property 

that for all sets E ⊂ ℝ𝑛, H0(E) ≥ 1, and H0(E) = 1 if and only if E is bounded. 

For any function 𝑓 ∶ ℝ𝑛  ⟼ [0,∞], the Choquet integral of f with respect to Hd is 

defined by 

∫𝑓dHd

ℝ𝑛

≡ ∫ H𝑑({𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) > 𝜆})dλ

∞

0

. 

This functional is not sublinear, so sometimes we need to use an equivalent integral with 

respect to the d-dimensional dyadic Hausdorff capacity H̃d, which is sublinear; see [188] 

for the definition of dyadic Hausdorff capacities and their properties. 

Set ℝ+
𝑛+1 ≡ ℝ𝑛 × (0,∞). For any measurable function ω on ℝ+

𝑛+1 and 𝑥 ∈ ℝ𝑛, we 

define its nontangential maximal function Nω(𝑥) by setting Nω(𝑥) ≡ sup|y−𝑥|<𝑡|ω(y, t)|. 

In what follows, for any φ ∈ ℝ𝑛 , we use ℱφ  to denote its  Fourier transform, 

namely, for all ξ ∈ ℝ𝑛 , ℱφ(ξ) = ∫ 𝑒−𝑖ξ𝑥φ(𝑥)d𝑥
ℝ𝑛

. For all j ∈ ℤ and 𝑥 ∈ ℝ𝑛, let φj(𝑥) =

2j𝑛φ(2j𝑥).  For any p, q ∈ (0,∞] , let (p ∨ q) ≡ max{p, q};  and for any t ∈ [1,∞] , we 

denote by t′ the conjugate index, namely, 
1

t
+ 1/t′ = 1. 

We now recall the notions of BḢp,q
s,τ (ℝ𝑛) and FḢp,q

s,τ (ℝ𝑛) in [189, 190]. 

Definition (4.2.1) [204]: Let φ ∈ 𝒮(ℝ𝑛) such that supp ℱφ ⊂ {ξ ∈ ℝ𝑛 ∶ 1/2 ≤ |ξ | ≤ 2} 
and ℱφ never vanishes on {ξ ∈ ℝ𝑛 ∶ 3/5 ≤ |ξ | ≤ 5/3}. Let p ∈ (1,∞) and s ∈ ℝ𝑛. 
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(i) If q ∈ [1,∞) and τ ∈ [0,
1

(p∨q)′
], the Besov-Hausdorff space BḢp,q

s,τ (ℝn) is then defined 

to be the set of all 𝑓 ∈ 𝒮∞
′ (ℝn) such that 

‖𝑓‖BḢp,q
s,τ (ℝ𝑛) ≡ Infω

{∑2jsq‖φj ∗ 𝑓[ω(∙, 2
−j)]−1‖

Lp(ℝ𝑛)

q

j∈ℤ

}

1 q⁄

< ∞, 

where ω runs over all nonnegative Borel measurable functions on ℝ+
𝑛+1 such that 

∫[Nω(𝑥)](p∨q)
′
dH𝑛τ(p∨q)

′
(𝑥)

ℝ𝑛

≤ 1                                                (27) 

and with the restriction that for any j ∈ ℤ,ω(∙, 2−j) is allowed to vanish only where 

φj ∗ 𝑓 vanishes. 

(ii) If q ∈ (1,∞) and τ ∈ [0,
1

(p∨q)′
], the Triebel-Lizorkin-Hausdorff space FḢp,q

s,τ (ℝ𝑛) is then 

defined to be the set of all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛) such that 

‖𝑓‖FḢp,q
s,τ (ℝ𝑛) ≡ Infω

‖{∑2jsq|φj ∗ 𝑓[ω(∙, 2
−j)]−1|

q

j∈ℤ

}

1 q⁄

‖

Lp(ℝ𝑛)

< ∞, 

where ω runs over all nonnegative Borel measurable functions on ℝ+
𝑛+1 such that ω 

satisfies (27) and with the restriction that for any j ∈ ℤ,ω(∙, 2−j) is allowed to vanish 

only where φj ∗ 𝑓 vanishes. 

To simplify the presentation, in what follows, we use AḢp,q
s,τ (ℝ𝑛) to denote either 

BḢp,q
s,τ (ℝ𝑛)  or FḢp,q

s,τ (ℝ𝑛) . When AḢp,q
s,τ (ℝ𝑛)  denotes FḢp,q

s,τ (ℝ𝑛) , then it will be 

understood tacitly that q ∈ (1,∞). It was proved in [189, 190] that the space AḢp,q
s,τ (ℝ𝑛) is 

independent of the choices of φ. We also remark that when τ = 0, then BḢp,q
s,0 (ℝ𝑛) ≡

Ḃp,q
s (ℝ𝑛)  and FḢp,q

s,0 (ℝ𝑛) ≡ Ḟp,q
s (ℝ𝑛);  when α ∈ (0, 1), s = −α, p = q = 2 and τ =

1 2⁄ − α 𝑛⁄ , then AḢ2,2
−α,1 2−α⁄ (ℝ𝑛) ≡ HH−α

1 (ℝ𝑛), which is the predual space of 𝒬𝛼(ℝ
𝑛). 

We now recall the notions of Besov-type spaces Ḃp,q
s,τ (ℝ𝑛) and Triebel-Lizorkin-

type spaces Ḟp,q
s,τ (ℝ𝑛) in [189, 190]. 

Definition (4.2.2) [204]: Let s ∈ ℝ, τ ∈ [0,∞), q ∈ (0,∞]  and φ  be as in Definition 

(4.2.1). 

(i)  If p ∈ (0,∞] , the Besov-type space Ḃp,q
s,τ (ℝ𝑛)  is defined to be the set of all 𝑓 ∈

𝒮∞
′ (ℝ𝑛) such that ‖𝑓‖Ḃp,q

s,τ (ℝ𝑛) < ∞, where 

‖𝑓‖Ḃp,q
s,τ (ℝ𝑛) ≡ Sup

P∈𝒟(ℝ𝑛)

1

|P|τ
{∑[∫(2js|φj ∗ 𝑓(𝑥)|)

P
d𝑥

P

]

q p⁄∞

j=jP

}

1 q⁄

 

with suitable modifications made when p = ∞ or q = ∞. 

(ii)  If p ∈ (0,∞), the Triebel-Lizorkin-type space Ḟp,q
s,τ (ℝ𝑛) is defined to be the set of all 

𝑓 ∈ 𝒮́∞(ℝ
𝑛) such that ‖𝑓‖Ḟp,q

s,τ (ℝ𝑛) < ∞, where 

‖𝑓‖Ḟp,q
s,τ (ℝ𝑛) ≡ Sup

P∈𝒟(ℝ𝑛)

1

|P|τ
{∫[∑(2js|φj ∗ 𝑓(𝑥)|)

q
∞

j=jP

]

p q⁄

P

d𝑥}

1 p⁄

 

     with suitable modifications made when q = ∞. 
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Similarly, we use Ȧp,q
s,τ (ℝ𝑛) to denote Ḃp,q

s,τ (ℝ𝑛) or Ḟp,q
s,τ (ℝ𝑛). If Ȧp,q

s,τ (ℝ𝑛) means Ḟp,q
s,τ (ℝ𝑛), 

then the case p = ∞  is excluded. It was proved in [190] that the space Ȧp,q
s,τ (ℝ𝑛)  is 

independent of the choices of φ. Also, [189, 190] show that (Ȧp,q
s,τ (ℝ𝑛))

∗

= Ȧ
p′,q′
−s,τ (ℝ𝑛) for 

all s ∈ ℝ, p ∈ (1,∞), q ∈ [1,∞)  and τ ∈ [0,
1

(p⋁q)′
]. This result partially extends the well-

known dual results on Besov spaces, Triebel-Lizorkin spaces and the recent result that 

(HH−𝛼
1 (ℝ𝑛))

∗
= 𝒬𝛼(ℝ

𝑛) obtained in [167]. 
We establish the φ -transform characterizations and embedding properties of 

AḢp,q
s,τ (ℝ𝑛). In particular, we show that the embedding property of BḢp,q

s,τ (ℝ𝑛) is sharp. 

Using these φ-transform characterizations. We obtain the boundedness of almost diagonal 

operators and the smooth atomic and molecular decomposition characterizations of 

AḢp,q
s,τ (ℝ𝑛). As applications of these decomposition characterizations, we investigate the 

trace properties and the boundedness of pseudo-differential operators with homogeneous 

symbols in AḢp,q
s,τ (ℝ𝑛). We pointed out that the method used in the proof of Theorem 

(4.2.27) comes from [194, 195]. 

We denote by C a positive constant which is independent of the main parameters, 

but it may vary from line to line. The symbol A ≲  B means that A ≤ CB. If A ≲ B and 

B ≲ A, then we write A ∼ B. If E is a subset of ℝ𝑛 , we denote by χE the characteristic 

function of E. For all 𝒬 ∈ 𝒟(ℝ𝑛)and φ ∈ 𝒮(ℝ𝑛), set φ𝒬(𝑥) ≡ |𝒬|
−1 2⁄ φ(2j𝒬(𝑥 − 𝑥𝒬)) and 

χ̃𝒬(𝑥) ≡ |𝒬|
−1 2⁄ χ𝒬(𝑥) for all 𝑥 ∈ ℝ𝑛. We also set ℕ ≡ {1, 2, . . . } and ℤ+ ≡ (ℕ ∪ {0}). 

We establish the φ-transform characterizations of the spaces AḢp,q
s,τ (ℝ𝑛)   in the 

sense of Frazier and Jawerth; see, for example, [45, 106, 175, 176]. We begin with the 

definition of the corresponding sequence space of AḢp,q
s,τ (ℝ𝑛). 

Definition (4.2.3) [204]: Let p ∈ (1,∞) and s ∈ ℝ . 

(i) If q ∈ [1,∞) and τ ∈ [0,
1

(p⋁q)′
],  the sequence space bḢp,q

s,τ (ℝ𝑛) is then defined to be the 

set of all t = {t𝒬}𝒬∈𝒟(ℝ𝑛) ⊂ ℂ such that 

‖t‖bḢp,q
s,τ (ℝ𝑛) ≡ Infω

{∑2jsq ‖ ∑ |t𝒬| ∗ χ̃𝒬[ω(∙, 2
−j)]−1

𝒬∈𝒟(ℝ𝑛)

‖

Lp(ℝ𝑛)

q

j∈ℤ

}

1 q⁄

< ∞, 

where the infimum is taken over all nonnegative Borel measurable functions ω on 

ℝ+
𝑛+1  such that ω satisfies (27) and with the restriction that for any j ∈ ℤ, ω(·, 2−j) is 

allowed to vanish only where ∑ |t𝒬| ∗ χ̃𝒬𝒬∈𝒟(ℝ𝑛)  vanishes. 

(iii) If q ∈ (1,∞) and τ ∈ [0,
1

(p⋁q)′
], the sequence space 𝑓Ḣp,q

s,τ (ℝ𝑛) is then defined to be 

the set of all t = {t𝒬}𝒬∈𝒟(ℝ𝑛) ⊂ ℂ  such that 

‖t‖𝑓Ḣp,q
s,τ (ℝ𝑛) ≡ Infω

‖{∑2jsq ( ∑ |t𝒬| ∗ χ̃𝒬[ω(∙, 2
−j)]−1

𝒬∈𝒟(ℝ𝑛)

)

q

j∈ℤ

}

1 q⁄

‖

Lp(ℝ𝑛)

< ∞, 

where the infimum is taken over all nonnegative Borel measurable functions ω on 

ℝ+
𝑛+1 with the same restrictions as in (i). 

Similarly, in what follows, we use 𝑎Ḣp,q
s,τ (ℝ𝑛)  to denote either b Ḣp,q

s,τ (ℝ𝑛)  or 

𝑓 Ḣp,q
s,τ (ℝ𝑛). When 𝑎 Ḣp,q

s,τ (ℝ𝑛) denotes 𝑓 Ḣp,q
s,τ (ℝ𝑛), then it will be understood tacitly that 
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q ∈ (1,∞). We remark that ‖∙‖𝑎Ḣp,q
s,τ (ℝ𝑛)  is a quasi-norm, namely, there exists a 

nonnegative constant ρ ∈ [0, 1] such that for all t1, t2 ∈ 𝑎Ḣp,q
s,τ (ℝ𝑛), 

‖t1 + t2‖𝑎Ḣp,q
s,τ (ℝ𝑛) ≤ 2

ρ (‖t1‖𝑎Ḣp,q
s,τ (ℝ𝑛) + ‖t2‖𝑎Ḣp,q

s,τ (ℝ𝑛)).                           (28)  

Let φ be as in Definition (4.2.1). For all 𝑥 ∈ ℝ𝑛, set φ̃(𝑥) ≡  φ(𝑥)̅̅ ̅̅ ̅̅ ̅. Then by [176], 

there exists a function ψ ∈ 𝒮(ℝ𝑛)  such that supp ℱψ ⊂ {ξ ∈ ℝ𝑛 ∶ 1 2⁄ ≤ |ξ| ≤ 2} , ℱψ 

never vanishes on {ξ ∈ ℝ𝑛: 3 5⁄ ≤ |ξ| ≤ 5 3⁄ }  and that for all ξ ∈ ℝ𝑛 , 

∑ ℱφ̃(2−jξ)ℱψ(2−jξ)j∈ℤ = 𝜒ℝ𝑛\{0}(𝜉).  Furthermore, we have the following Calderón 

reproducing formula which asserts that for all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛), 

𝑓 =∑ψj ∗ φ̃j ∗ 𝑓

j∈ℤ

= ∑ 〈𝑓,φ𝒬〉ψ𝒬
𝒬∈𝒟(ℝ𝑛)

                                       (29) 

in 𝒮∞
′ (ℝ𝑛); see [190]. 

We recall the notion of the φ-transform; see, for example, [45, 106, 175, 176]. 

Definition (4.2.4) [204]: Let φ,ψ ∈ 𝒮(ℝ𝑛)  such that supp ℱψ ⊂ {ξ ∈ ℝ𝑛 ∶ 1 2⁄ ≤ |ξ| ≤

2}, ℱφ,ℱψ never vanish on {ξ ∈ ℝ𝑛 ∶ 3 5⁄ ≤ |ξ| ≤ 5 3⁄ } and ∑ ℱ(φ̃j)ℱ(ψj)j∈ℤ ≡ 𝜒ℝ𝑛\{0}. 

(i) The φ-transform 𝒮φ is defined to be the map taking each 𝑓 ∈ 𝒮∞
′ (ℝ𝑛) to the sequence 

𝒮φ𝑓 ≡ {(𝒮φ𝑓)𝒬
}
𝒬∈𝒟(ℝ𝑛)

, where (𝒮φ𝑓)𝒬
≡ 〈𝑓, φ𝒬〉 for all 𝒬 ∈ 𝒟(ℝ𝑛). 

(ii) The inverse φ -transform Tψ  is defined to be the map taking a sequence t =

{t𝒬}𝒬∈𝒟(ℝ𝑛) ⊂ ℂ to Tψt ≡ ∑ t𝒬ψ𝒬𝒬∈𝒟(ℝ𝑛) . 

To show that Tψ  is well defined for all t ∈ 𝑎Ḣp,q
s,τ (ℝ𝑛), we need the following 

conclusion. 

Lemma (4.2.5) [204]: Let p ∈ (1,∞), q ∈ [1,∞), s ∈ ℝ  and τ ∈ [0,
1

(p∨q)
]. Then for all t ∈

𝑎Ḣp,q
s,τ (ℝ𝑛), Tψt ≡ ∑ t𝒬ψ𝒬𝒬∈𝒟(ℝ𝑛)  converges in 𝒮∞

′ (ℝ𝑛); moreover, Tψ ∶ 𝑎Ḣp,q
s,τ (ℝ𝑛) → 𝒮∞

′ (ℝ𝑛) 

is continuous. 

Proof: By similarity, we only consider the space bḢp,q
s,τ (ℝ𝑛). 

Let t = {t𝒬}𝒬∈𝒟(ℝ𝑛) ∈ bḢp,q
s,τ (ℝ𝑛). We need to show that there exists an M ∈ ℤ+ such 

that for all ϕ ∈ 𝒮∞(ℝ
𝑛), ∑ |t𝒬||〈ψ𝒬 , ϕ〉|𝒬∈𝒟(ℝ𝑛) ≲ ‖ϕ‖𝒮M , where and in what follows, for 

all M ∈ ℤ+ and φ ∈ 𝒮(ℝ𝑛), we set ‖ϕ‖𝒮M ≡ sup|γ|≤M sup𝑥∈ℝ𝑛|∂
γφ(𝑥)|(1 + |𝑥|)𝑛+M+|γ|. 

Choose a Borel function ω that almost attains the infimum in Definition (4.2.3)(i). 

That is, ω is a function on ℝ+
𝑛+1 satisfying (27) as well as 

{∑2jsq ‖ ∑ |t𝒬| ∗ χ̃𝒬[ω(∙, 2
−j)]−1

𝒬∈𝒟j(ℝ
𝑛)

‖

Lp(ℝ𝑛)

q

j∈ℤ

}

1 q⁄

≤ 2‖t‖bḢp,q
s,τ (ℝ𝑛).                 (30)  

A simple consequence obtained from (27) is that for all (𝑥, s) ∈ ℝ+
𝑛+1, ω(𝑥, s) ≲ s−𝑛τ; see 

[189]. Then for all 𝒬 ∈ 𝒟j(ℝ
𝑛), by Hölder’s inequality and (30), we have 

|t𝒬| ≤ |𝒬|
−τ−

1
p|t𝒬| (∫[ω(𝑥, 2

−j)]−pd𝑥

𝒬

)

1 p⁄

≲ |𝒬|
s
𝑛
+
1
2
−τ−

1
p‖t‖bḢp,q

s,τ (ℝ𝑛).                 (31) 

Recall that as a special case of [165], there exists a positive constant L0 such that for all 

j ∈ ℤ, 
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∑ (1+
|𝑥𝒬|

𝑛

max{1, |𝒬|}
)

−L0

𝒬∈𝒟j(ℝ
𝑛)

≲ 2𝑛|j|.                                              (32) 

Furthermore, it was proved in [190] that if L > max{1 p⁄ + 1 2⁄ − s 𝑛⁄ − τ, 1 p⁄ + 3 2⁄ +
s 𝑛⁄ + τ, L0}, then there exists an M ∈ ℤ+ such that for all 𝒬 ∈ 𝒟j(ℝ

𝑛), 

|〈ψ𝒬 , ϕ〉| ≲ ‖ϕ‖𝒮M (1 +
|𝑥𝒬|

𝑛

max{1, |𝒬|}
)

−L

(min{2−j𝑛, 2j𝑛})L                        (33) 

see also [165]. Using (31), (32) and (33), we conclude that 

∑ |t𝒬||〈ψ𝒬 , ϕ〉|

𝒬∈𝒟(ℝ𝑛)

≲ ‖t‖bḢp,q
s,τ (ℝ𝑛)‖ϕ‖𝒮M ≲ ∑ |𝒬|

s
𝑛
+
1
2
−τ−

1
p

𝒬∈𝒟(ℝ𝑛)

(1 +
|𝑥𝒬|

𝑛

max{1, |𝒬|}
)

−L

2−L|j𝒬|𝑛

≲ ‖t‖bḢp,q
s,τ (ℝ𝑛)‖ϕ‖𝒮M , 

which completes the proof of Lemma (4.2.5). 

Lemma (4.2.6) [204]: Let s, p, q, τ be as in Theorem (4.2.8) and λ ∈ (𝑛,∞) be sufficiently 

large. Then there exists a positive constant C such that for all t ∈ 𝑎Ḣp,q
s,τ (ℝ𝑛), ‖t‖𝑎Ḣp,q

s,τ (ℝ𝑛) ≤

‖tp∧q,λ
∗ ‖

𝑎Ḣp,q
s,τ (ℝ𝑛)

≤ C‖t‖𝑎Ḣp,q
s,τ (ℝ𝑛). 

Proof: The inequality ‖t‖𝑎Ḣp,q
s,τ (ℝ𝑛) ≤ ‖tp∧q,λ

∗ ‖
𝑎Ḣp,q

s,τ (ℝ𝑛)
 being trivial, we only need to 

concentrate on ‖tp∧q,λ
∗ ‖

𝑎Ḣp,q
s,τ (ℝ𝑛)

≲ ‖t‖𝑎Ḣp,q
s,τ (ℝ𝑛). Also, by similarity, we only consider the 

spaces bḢp,q
s,τ (ℝ𝑛). 

Let t = {t𝒬}𝒬∈𝒟(ℝ𝑛) ∈ bḢp,q
s,τ (ℝ𝑛). We choose a Borel function ω as in the proof of 

Lemma (4.2.5). For all cubes 𝒬 ∈ 𝒟j(ℝ
𝑛) and m ∈ ℕ, we set A0(𝒬 ) ≡ {P ∈ 𝒟j(ℝ

𝑛) ∶

2j|𝑥P − 𝑥𝒬| ≤ 1}and  Am(𝒬 ) ≡ {P ∈ 𝒟j(ℝ
𝑛) ∶ 2m−1 < 2j|𝑥P − 𝑥𝒬| ≤ 2

m} . The triangle 

inequality that |𝑥 − y| ≤ |𝑥 − 𝑥𝒬| + |𝑥𝒬 − 𝑥P| + |𝑥P − y|  gives us that |𝑥 − y| ≤

3√𝑛2m−j provided 𝑥 ∈ 𝒬 , y ∈ P and P ∈ Am(𝒬 ). 
For all m ∈ ℤ+ and (𝑥, s) ∈ ℝ+

𝑛+1, we set 

ωm(𝑥, s) ≡ 2
−m𝑛 (⌊(p∨q)′⌋+2) sup{ω(y, s) ∶ y ∈ ℝ𝑛, |y − 𝑥| < √𝑛2m+2s}, 

where and in what follows, ⌊s⌋  denotes the maximal integer no more than s. By the 

argument in [189], we know that ω𝑚 still satisfies (27) modulo multiplicative constants 

independent of m. Also it follows from the definition of ωm that for all 𝑥 ∈ 𝒬 , y ∈ P with 

P ∈ Am(𝒬 ),    ω(y, 2
−j)  ≤ 2−m𝑛 (⌊(p∨q)

′⌋+2)ωm(𝑥, 2
−j) . For all r ∈ (0,∞)  and 𝑎 ∈ (0,

r)), using this estimate and the monotonicity of  𝑙𝑎/r, we obtain that for all 𝑥 ∈ 𝒬, 
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∑
|tP|

r

(1 + 2j|𝑥𝒬 − 𝑥P|)
λ

P∈𝒟j𝒬
(ℝ𝑛)

[ωm(𝑥, 2
−j)]

−r

≤ { ∑
|tP|

𝑎

(1 + 2j|𝑥𝒬 − 𝑥P|)
λ𝑎 r⁄

P∈𝒟j𝒬
(ℝ𝑛)

[ωm(𝑥, 2
−j)]

−𝑎
}

r 𝑎⁄

≲ 2−mλ+j𝑛r 𝑎⁄ { ∫ ∑ |tP|
𝑎χP(y)[ωm(𝑥, 2

−j)]
−𝑎

P∈Am(𝒬 )

dy

ℝ𝑛

}

r 𝑎⁄

≲ 2−mλ+m𝑛r(1 𝑎⁄ +⌊(p∨q)′⌋+2) { ∫ ∑ |tP|
𝑎χP(y)[ωm(𝑦, 2

−j)]
−𝑎

P∈A𝑚(𝒬 )

dy

ℝ𝑛

}

r 𝑎⁄

≲ 2−mλ+m𝑛r(1 𝑎⁄ +⌊(p∨q)′⌋+2) {HL( ∑ |tP|
𝑎χP[ωm(∙, 2

−j)]
−𝑎

P∈Am(𝒬 )

)(𝑥)}

r 𝑎⁄

, 

where HL denotes the Hardy-Littlewood maximal operator on ℝ𝑛. 

For all m ∈ ℤ+, set tr,λ
∗,m ≡ {(tr,λ

∗,m)
𝒬
}
𝒬∈𝒟(ℝ𝑛)

with 

(tr,λ
∗,m)

𝒬
≡ ( ∑

|tP|
r

(1 + 2j[ℓ(P)]−1|𝑥P − 𝑥𝒬|)
λ

P∈Am(𝒬 )

)

1 r⁄

. 

In what follows, choose 𝑎 ∈ (0, p ∧ q)  and λ > (p ∧ q)[𝑛(1 𝑎⁄ + ⌊(p ∨ q)′⌋ + 2) + ρ] , 

where ρ is a nonnegative constant as in (30). By (30), the previous pointwise estimate and 

the L
p

𝑎(ℝ𝑛)-boundedness of HL, we obtain 

‖tp∧q,λ
∗ ‖

bḢp,q
s,τ (ℝ𝑛)

≲ ∑ 2ρm‖tp∧q,λ
∗,m ‖

bḢp,q
s,τ (ℝ𝑛)

∞

𝑚=0

≲ ∑ 2ρm

{
 
 

 
 

∑2jsq

[
 
 
 

∫ ∑ ( ∑
|tP|

p∧q

(1 + 2j[ℓ(P)]−1|𝑥P − 𝑥𝒬|)
λ

P∈A𝑚(𝒬 )

)

p
p∧q

χ̃𝒬(𝑥)
p

[ωm(𝑥, 2
−j)]p

d𝑥

𝒬∈𝒟j(ℝ
𝑛)ℝ𝑛 ]

 
 
 

q
p

j∈ℤ

}
 
 

 
 

1
q

∞

m=0

≲ ∑ 2
−
m
p∧q

{λ−(p∧q)[𝑛(1 𝑎⁄ +⌊(p∨q)′⌋+2)+ρ]}

[
 
 
 
 

∑2jsq

{
 

 
∫ [HL( ∑

(|tP|χ̃P)
𝑎

[ωm(∙, 2
−j)]𝑎

P∈𝒟j(ℝ
𝑛)

)(𝑥)]

p
𝑎

d𝑥

ℝ𝑛 }
 

 

q
p

j∈ℤ

]
 
 
 
 

1
q

∞

m=0

≲ ‖t‖bḢp,q
s,τ (ℝ𝑛), 

which completes the proof of Lemma (4.2.6). 

For any 𝑓 ∈ 𝒮∞
′ (ℝ𝑛) , γ ∈ ℤ  and 𝒬 ∈ 𝒟j(ℝ

𝑛) , set sup𝒬(𝑓) ≡ |𝒬|
1 2⁄ supy∈𝒬|φ̃j ∗

𝑓(y)| and 

inf𝒬,γ(𝑓) ≡ |𝒬|
1 2⁄ max {inf

y∈𝒬̃
|φ̃j ∗ 𝑓(y)| ∶ ℓ(𝒬̃) = 2

−γℓ(𝒬), 𝒬̃ ⊂ 𝒬}. 

Let sup(𝑓) ≡ {sup𝒬(𝑓)}𝒬∈𝒟(ℝ𝑛)  and infγ(𝑓) ≡ {inf𝒬,γ(𝑓)}𝒬∈𝒟(ℝ𝑛) . We have the 

following conclusion, whose proof is similar to [106]. 
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Lemma (4.2.7) [204]: Let s, p, q, τ be as in Theorem (4.2.8) and γ ∈ ℤ+ be sufficiently 

large. Then there exists a constant C ∈ [1,∞) such that for all 𝑓 ∈ AḢp,q
s,τ (ℝ𝑛), 

C−1‖infγ(𝑓)‖𝑎Ḣp,q
s,τ (ℝ𝑛)

≤ ‖𝑓‖AḢp,q
s,τ (ℝ𝑛) ≤ ‖sup(𝑓)‖𝑎Ḣp,q

s,τ (ℝ𝑛) ≤ C‖infγ(𝑓)‖𝑎Ḣp,q
s,τ (ℝ𝑛)

. 

Theorem (4.2.8) [204]: Let p ∈ (1,∞), q ∈ [1,∞), s ∈ ℝ, τ ∈ [0,
1

(p∨q)′
] , φ and Ψ  be as in 

Definition (4.2.4). Then 𝒮φ ∶ AḢp,q
s,τ (ℝ𝑛) → 𝑎Ḣp,q

s,τ (ℝ𝑛)  and Tψ ∶ 𝑎Ḣp,q
s,τ (ℝ𝑛) → AḢp,q

s,τ (ℝ𝑛)  are 

bounded; moreover, Tψ ∘ 𝒮φ is the identity on AḢp,q
s,τ (ℝ𝑛). 

Proof: To prove Theorem (4.2.8), we need some technical lemmas. For a sequence t =

{t𝒬}𝒬∈𝒟(ℝ𝑛), 𝒬 ∈ 𝒟
(ℝ𝑛), r ∈ (0,∞]and λ ∈ (0,∞), define 

(tr,λ
∗ )

𝒬
≡ ( ∑

|tP|
r

(1 + [ℓ(P)]−1|𝑥P − 𝑥𝒬|)
λ

P∈𝒟j𝒬
(ℝ𝑛)

)

1 r⁄

 

and tr,λ
∗ ≡ {(tr,λ

∗ )
𝒬
}
𝒬∈𝒟(ℝ𝑛)

. For any p, q ∈ (0,∞], let  p ∧ q ≡ min{p, q} . The following 

estimate is crucial in that this corresponds to the maximal operator estimate. 

With the Calderón reproducing formula (29), Lemmas (4.2.6) and (4.2.7), the proof 

of Theorem (4.2.8) follows (see [106, 165]). We omit the details. 

 Recall that the corresponding sequence spaces 𝑎̇p,q
s,τ (ℝ𝑛) of Ȧp,q

s,τ (ℝ𝑛) in [190] were 

defined as follows. 

Definition (4.2.9) [204]: Let s ∈ ℝ, q ∈ (0,∞]  and τ ∈ (0,∞) . The sequence space 

𝑎̇p,q
s,τ (ℝ𝑛) is defined to be the set of all t = {(t)𝒬}𝒬∈𝒟(ℝ𝑛) ⊂ ℂ such that ‖t‖𝑎̇p,q

s,τ (ℝ𝑛) < ∞, 

where if 𝑎̇p,q
s,τ (ℝ𝑛) ≡ ḃp,q

s,τ (ℝ𝑛) for p ∈ (0,∞], then 

‖t‖ḃp,q
s,τ (ℝ𝑛) ≡ sup

𝒬∈𝒟(ℝ𝑛)

1

|P|τ
{∑2jsq [∫( ∑ |t𝒬|χ̃𝒬(𝑥)

𝑙(𝒬)=2−j

)

p

d𝑥

P

]

q p⁄
∞

j=jP

}

1 q⁄

 

and if 𝑎̇p,q
s,τ (ℝ𝑛) ≡ 𝑓̇p,q

s,τ(ℝ𝑛) for p ∈ (0,∞), then 

‖t‖𝑓̇p,q
s,τ(ℝ𝑛) ≡ sup

𝒬∈𝒟(ℝ𝑛)

1

|P|τ
{∫ [∑ (|𝒬|−s 𝑛⁄ |t𝒬|χ̃𝒬(𝑥))

q

𝒬⊂𝑃

]

p q⁄

d𝑥

P

}

1 p⁄

. 

We now establish the duality between 𝑎̇p,q
s,τ (ℝ𝑛) and 𝑎̇

p′,q′
−s,τ (ℝ𝑛). In what follows, for 

any quasi-Banach spaces ℬ1  and ℬ2 , the symbol ℬ1 ↪ ℬ1   means that there exists a 

positive constant C such that for all 𝑓 ∈ ℬ1, then 𝑓 ∈ ℬ2 and ‖𝑓‖ℬ2 ≤ C‖𝑓‖ℬ1 . 

Proposition (4.2.10) [204]: Let s, p, q, τ be as in Theorem (4.2.8). Then (𝑎Ḣp,q
s,τ (ℝ𝑛))

∗

=

𝑎̇
p′,q′
−s,τ (ℝ𝑛) in the following sense. 

If t = {t𝒬}𝒬∈𝒟(ℝ𝑛) ∈ 𝑎̇p′,q′
−s,τ (ℝ𝑛), then the map 

λ = {λ𝒬}𝒬∈𝒟(ℝ𝑛) ⟼
〈λ, t〉 ≡ ∑ λ𝒬 t̃𝒬

𝒬∈𝒟(ℝ𝑛)

 

defines a continuous linear functional on 𝑎Ḣp,q
s,τ (ℝ𝑛) with operator norm no more than a 

constant multiple of  ‖t‖𝑎̇
p′,q′
−s,τ (ℝ𝑛). Conversely, every L ∈ (𝑎Ḣp,q

s,τ (ℝ𝑛))
∗

 is of this form for a 

certain t ∈ 𝑎̇
p′,q′
−s,τ (ℝ𝑛) and ‖t‖𝑎̇

p′,q′
−s,τ (ℝ𝑛) is no more than a constant multiple of the operator 

norm of  L. 
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Proof: We only consider the spaces bḢp,q
s,τ (ℝ𝑛) because the assertion for 𝑓Ḣp,q

s,τ (ℝ𝑛) can 

be proved similarly. Below we write ℝℤ
𝑛+1 ≡ {(𝑥, 𝑎) ∈ ℝ+

𝑛+1 ∶ log2 𝑎 ∈ ℤ}. 
For t = {t𝒬}𝒬∈𝒟(ℝ𝑛) ∈ ḃp′,q′

−s,τ (ℝ𝑛)  and λ = {λ𝒬}𝒬∈𝒟(ℝ𝑛) ∈ bḢp,q
s,τ (ℝ𝑛) , let F  and G   be 

functions on ℝℤ
𝑛+1 defined by setting, for all 𝑥 ∈ ℝ𝑛 and j ∈ ℤ, F(𝑥, 2−j) ≡ ∑ |λ𝒬|χ̃𝒬𝒬∈𝒟(ℝ𝑛)  

and G(𝑥, 2−j) ≡ ∑ |λP|χ̃PP∈𝒟j(ℝ
𝑛) . Since 

‖F‖BṪp,q
s,τ (ℝℤ

𝑛+1)~‖λ‖bḢp,q
s,τ (ℝ𝑛) 

and ‖G‖BẆ
p′,q′
−s,τ (ℝℤ

𝑛+1)~‖t‖ḃ
p′,q′
−s,τ (ℝ𝑛) , where BṪp,q

s,τ(ℝℤ
𝑛+1)  and BẆ

p′,q′
−s,τ(ℝℤ

𝑛+1)  are tent spaces 

introduced in [190], by the duality of tent spaces obtained in [190] that (BṪp,q
s,τ(ℝℤ

𝑛+1))
∗

=

BẆ
p′,q′
−s,τ (ℝℤ

𝑛+1), we have 

| ∑ λ𝒬 t̃𝒬
𝒬∈𝒟(ℝ𝑛)

| ≤∑ ∫ ∑ ∑ |λ𝒬|χ̃𝒬|tP|χ̃P
P∈𝒟j(ℝ

𝑛)

(𝑥)

𝒬∈𝒟(ℝ𝑛)

d𝑥

ℝ𝑛j∈ℤ

=∑ ∫F(𝑥, 2−j)G(𝑥, 2−j)d𝑥

ℝ𝑛j∈ℤ

≲ ‖F‖BṪp,q
s,τ (ℝℤ

𝑛+1)‖G‖BẆ
p′,q′
−s,τ (ℝℤ

𝑛+1) ~ ‖λ‖bḢp,q
s,τ (ℝ𝑛)‖t‖ḃ

p′,q′
−s,τ (ℝ𝑛)  

which implies that ḃ
p′,q′
−s,τ (ℝ𝑛) ↪ (bḢp,q

s,τ (ℝ𝑛))
∗

. 

Conversely, since sequences with finite non-vanishing elements are dense in 

bḢp,q
s,τ (ℝ𝑛), we know that every L ∈ (bḢp,q

s,τ (ℝ𝑛))
∗
 is of the form λ ⟼ ∑ λ𝒬 t̃𝒬𝒬∈𝒟(ℝ𝑛)  for 

a certain t = {t𝒬}𝒬∈𝒟(ℝ𝑛) ⊂ ℂ. It remains to show that ‖t‖ḃ
p′,q′
−s,τ (ℝ𝑛) ≲ ‖t‖(bḢp,q

s,τ (ℝ𝑛))
∗ .  

Fix P ∈ 𝒟(ℝ𝑛) and 𝑎 ∈ ℝ. For j ≥ jP, let Xj be the set of all 𝒬 ∈ 𝒟j(ℝ
𝑛) satisfying 

𝒬 ⊂ P and let μ be a measure on Xj such that the μ-measure of the “point” 𝒬 is |𝒬| |P|τ𝑎⁄ . 

Also, let 𝑙P
q

 denote the set of all {𝑎j}j≥jP
⊂ ℂ  with ‖{𝑎j}j≥jP

‖
𝑙P
q
≡ (∑ |𝑎j|

q∞
j=jP

)
1 q⁄

 and 

𝑙P
q
(𝑙p(Xj, dμ)) denote the set of all {𝑎𝒬 , j}𝒬∈𝒟j(ℝ𝑛),𝒬⊂P,j≥jP 

⊂ ℂ with 

‖{𝑎𝒬 , j}𝒬∈𝒟j(ℝ𝑛),𝒬⊂P,j≥jP 
‖
𝑙P
q
(𝑙p(Xj,dμ))

≡ (∑[ ∑ |𝑎𝒬 , j|
p |𝒬|

|P|τ𝑎
𝒬∈𝒟j(ℝ

𝑛),𝒬⊂P

]

q p⁄
∞

j=jP

)

1 q⁄

. 

It is easy to see that the dual space of 𝑙P
q
(𝑙p(Xj, dμ)) is 𝑙P

q′
(𝑙p

′
(Xj, dμ)); see [41]. Via this 

observation and the already proved conclusion of this proposition, we see that 

1

|P|τ

{
 
 

 
 

∑[ ∑ (|𝒬|−
s
𝑛
−
1
2|t𝒬|)

p′

|𝒬|

𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P

]

p′

q′∞

j=jP

}
 
 

 
 

1
q′

= ‖{|𝒬|−
s
𝑛
−
1
2|t𝒬|}

𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P,j≥jP 

‖

𝑙P
q′
(𝑙p

′
(Xj,dμ))

= sup

‖{𝜆𝒬}𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P,j≥jP 

‖
𝑙
P
q
(𝑙p(Xj,dμ))

≤1

|∑ ∑ 𝜆𝒬|𝒬|
−
s
𝑛
−
1
2|t𝒬| |𝒬| |P|

τp′⁄

𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P

∞

j=jP

|

≤ sup

‖{𝜆𝒬}𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P,j≥jP 

‖
𝑙
P
q
(𝑙p(Xj,dμ))

≤1

‖t‖
(bḢp,q

s,τ (ℝ𝑛))
∗ ‖{𝜆𝒬|𝒬|

−
s
𝑛
−
1
2 |𝒬| |P|τp

′
⁄ }

𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P,j≥jP 

‖

bḢp,q
s,τ (ℝ𝑛)

. 

To finish the proof of this proposition, it suffices to show that 
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‖{𝜆𝒬|𝒬|
−
s
𝑛
−
1
2 |𝒬| |P|τp

′
⁄ }

𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P,j≥jP 

‖

bḢp,q
s,τ (ℝ𝑛)

≲ 1 

for all sequences λ  satisfying ‖{𝜆𝒬}𝒬∈𝒟j(ℝ𝑛),𝒬⊂P,j≥jP 
‖
𝑙P
q
(𝑙p(Xj,dμ))

≤ 1 . In fact, let B ≡

B(CP, √𝑛ℓ(P)) and ω be as in the proof of [189] associated with B, then ω satisfies (27) 

and for all 𝑥 ∈ P and j ≥ jP, [ω(𝑥, 2−j)]
−1
~[ℓ(P)]𝑛τ. We then obtain that 

‖{𝜆𝒬|𝒬|
−
s
𝑛
−
1
2 |𝒬| |P|τp

′
⁄ }

𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P,j≥jP 

‖

bḢp,q
s,τ (ℝ𝑛)

≲

{
 

 
∑2jsq [ ∑ |𝒬|−

p
2 (|𝜆𝒬||𝒬|

−
s
𝑛
−
1
2
|𝒬|

|P|τp
′)

p

∫[ω(𝑥, 2−j)]−pd𝑥

𝒬𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P

]

q
p∞

j=jP }
 

 

1
q

  

~

{
 

 
∑[ ∑ |𝜆𝒬|

p
|𝒬| |P|τp

′
⁄

𝒬∈𝒟j(ℝ
𝑛),𝒬⊂P

]

q
p∞

j=jP }
 

 

1
q

~‖{𝜆𝒬}𝒬∈𝒟j(ℝ𝑛),𝒬⊂P,j≥jP 
‖
bḢp,q

s,τ (ℝ𝑛)

≲ 1,  

which completes the proof of Proposition (4.2.10). 

Applying Theorem (4.2.8), we establish the following Sobolev-type embedding 

properties of AḢp,q
s,τ (ℝ𝑛). For the corresponding results on Ḃp,q

s (ℝ𝑛) and Ḟp,q
s (ℝ𝑛), see 

[41]. 

Proposition (4.2.11) [204]: Let 1 <  p0 < p1 < ∞ and −∞ < s1 < s0 < ∞ Assume in 

addition that s0 − 𝑛 p0⁄ = s1 − 𝑛 p1⁄ . 

(i) If q ∈ [1,∞)  and τ ∈  [0,min {
1

(p0∨q)
′
,

1

(p1∨q)
′}] such that τ(p0 ∨ q)

′ =  τ(p1 ∨ q)
′ , 

then BḢp0,q
s0,τ (ℝ𝑛) ↪ BḢp1,q

s1,τ (ℝ𝑛). 

(ii) If q, r ∈ (1,∞)  and τ ∈  [0,min {
1

(p0∨r)
′
,

1

(p1∨q)
′}]  such that τ(p0 ∨ r)

′ = τ(p1 ∨ q)
′ , 

then FḢp0,r
s0,τ(ℝ𝑛) ↪ FḢp1,q

s1,τ (ℝ𝑛). 

Proof: By Theorem (4.2.8) and similarity, it suffices to prove the corresponding 

conclusions on sequence spaces 𝑓Ḣp,q
s,τ (ℝ𝑛) , namely, to show that ‖t‖𝑓Ḣp1,q

s1,τ (ℝ𝑛) ≲

‖t‖𝑓Ḣp0,r
s0,τ(ℝ𝑛) for all t ∈ 𝑓Ḣp0,r

s0,τ(ℝ𝑛). When τ = 0, this is a classic conclusion on Triebel-

Lizorkin spaces. 

In the case when τ > 0 , we have (p0 ∨ r)
′ ≤ (p1 ∨ q)

′ . Let t ∈ 𝑓Ḣp0,r
s0,τ(ℝ𝑛)  and ω 

satisfy 

∫[Nω(𝑥)](p0∨r)
′
dH𝑛τ(p0∨r)

′
(𝑥)

ℝ𝑛

≤ 1                                                    (34) 

and 

{ ∫[∑ ∑ |𝒬|−
s0
𝑛
−
r
2|𝑡𝒬|

r
χ𝒬[ω(𝑥, 2

−j)]−r

𝒬∈𝒟j(ℝ
𝑛)

∞

j∈ℤ

]

p0 r⁄

d𝑥

ℝ𝑛

}

1 p0⁄

≲ ‖t‖𝑓Ḣp0,r
s0,τ (ℝ𝑛). 
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For all (𝑥, t) ∈ ℝ+
𝑛+1, we set ω̃(𝑥, s) ≡ sup{ω(y, s) ∶ y ∈ ℝ𝑛, |y –  x| < √𝑛s}. Then by the 

argument in [189], we know that a constant multiple of ω̃  also satisfies (34). Since 
(p0 ∨ r)

′ ≤ (p1 ∨ q)
′, we note that ω̃ satisfies 

∫[Nω̃(𝑥)](p1∨q)
′
dH𝑛τ(p1∨q)

′
(𝑥)

ℝ𝑛

≲ 1. 

For all 𝒬 with ℓ(𝒬) = 2−j, set t̃𝒬 ≡ |t𝒬| supy∈𝒬 {[ω̃(y, 2
−j)]

−1
}. Observe that for all 𝑥 ∈

𝒬  with ℓ(𝒬) = 2−j, [ω̃(y, 2−j)]
−1
≲ infy∈𝒬[ω(y, 2

−j)]
−1

, and hence, 

sup𝑥∈𝒬[ω̃(𝑥, 2
−j)]

−1
≲ infy∈𝒬[ω(y, 2

−j)]
−1

. This observation together with p0 < p1 , 

s0 − 𝑛 p0⁄ = s1 − 𝑛 p1⁄  and the corresponding embedding property for Triebel-Lizorkin 

spaces (see, [41]) yields that 

{ ∫ [∑ ∑ |𝒬|−
s1q
𝑛
−
q
2|𝑡𝒬|

q
χ𝒬(𝑥)[ω̃(𝑥, 2

−j)]−q

𝒬∈𝒟j(ℝ
𝑛)j∈ℤ

]

p1 q⁄

d𝑥

ℝ𝑛

}

1 p1⁄

≤ { ∫[∑ ∑ |𝒬|−
s1q
𝑛
−
q
2|t𝒬|

q
χ𝒬(𝑥) supy∈𝒬{[ω̃(y, 2

−j)]−q}

𝒬∈𝒟j(ℝ
𝑛)j∈ℤ

]

p1 q⁄

d𝑥

ℝ𝑛

}

1 p1⁄

= { ∫ [∑ ∑ |𝒬|−
s1q
𝑛
−
q
2|t̃𝒬|

q
χ𝒬(𝑥)

𝒬∈𝒟j(ℝ
𝑛)j∈ℤ

]

p1 q⁄

d𝑥

ℝ𝑛

}

1 p1⁄

= ‖t‖𝑓̇p1,q
s1 (ℝ𝑛) ≲ ‖t‖𝑓̇p0,r

s0 (ℝ𝑛)

∼ { ∫[∑ ∑ |𝒬|−
s0r
𝑛
−
r
2|t̃𝒬|

r
χ𝒬(𝑥)

𝒬∈𝒟j(ℝ
𝑛)j∈ℤ

]

p0 r⁄

d𝑥

ℝ𝑛

}

1 p0⁄

∼ { ∫[∑ ∑ |𝒬|−
s0r
𝑛
−
r
2|t𝒬|

r
χ𝒬(𝑥)

𝒬∈𝒟j(ℝ
𝑛)j∈ℤ

supy∈𝒬{[ω̃(y, 2
−j)]−r}]

p0 r⁄

d𝑥

ℝ𝑛

}

1 p0⁄

≲ { ∫ [∑ ∑ |𝒬|−
s0r
𝑛
−
r
2|t𝒬|

r
χ𝒬(𝑥)

𝒬∈𝒟j(ℝ
𝑛)j∈ℤ

[ω(𝑥, 2−j)]−r]

p0 r⁄

d𝑥

ℝ𝑛

}

1 p0⁄

≲ 𝑓Ḣp0,r
s0,τ(ℝ𝑛); 

see [106] for the definition of the sequence spaces 𝑓̇p,q
s (ℝ𝑛). Therefore, ‖t‖𝑓̇p1,q

s1,τ(ℝ𝑛) ≲

‖t‖𝑓̇p0,r
s0,τ(ℝ𝑛), which completes the proof of Proposition (4.2.11).  

When τ = 0, Proposition (4.2.11) recovers the corresponding results on Ḃp,q
s (ℝ𝑛) 

and Ḟp,q
s (ℝ𝑛) in [41], which are known to be sharp; see [203]. We further show that the 

restriction that 𝜏(p0 ∨ q)
′ = τ(p1 ∨ q)

′ in Proposition (4.2.11)(i) is also sharp. To see this, 

we need the following geometrical observation on the Hausdorff capacity. 

Lemma (4.2.12) [204]: Let d ∈ (0, 𝑛]. Suppose that {Ej}j=1
∞

 are given subsets of ℝ𝑛 such 

that Ej ⊂ B ((Aj, 0, … ,0), 𝑛), where {Aj}j=1
∞

 is an increasing sequence of natural numbers 

satisfying that A1 ≥ 10  and for all j, 𝑙 ∈ ℕ, Aj+𝑙 − Aj ≥ 4𝑛𝑙
1 d⁄ .  Then Hd(⋃ Ej

∞
j=1 )  and 

∑ Hd(Ej)
∞
j=1  are equivalent. 
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Proof: The inequality Hd(⋃ Ej
∞
j=1 ) ≤ ∑ Hd(Ej)

∞
j=1  is trivial. Let us prove the reverse 

inequality. To this end, let us first notice the following geometric observation that when a 

ball B ≡ (𝑥B, rB ) intersects Ej and Ej+𝑙 for some j, 𝑙 ∈ ℕ, then 2B engulfs Ej, Ej+𝑙 , … , Ej+𝑙. 

Thus, 4rB  is greater than Aj+𝑙 − Aj  and hence, rB
d ≥ ((Aj+𝑙 − Aj) 4⁄ )

d
≥ 𝑙𝑛d . Therefore, 

instead of using B we can use B ((Aj, 0, … ,0), 𝑛) , … , B ((Aj, 0, … ,0), 𝑛) to cover Ej and Ej+𝑙. 

Notice that {B ((Aj, 0, … ,0), 𝑛)}
j=1

∞

 are disjoint. Based on these observations, without loss 

of generality, we may assume, in estimating Hd(⋃ Ej
∞
j=1 ), that each ball in the ball covering 

meets only one Ej. From this, it is easy to follow that Hd(⋃ Ej
∞
j=1 ) ≳ ∑ Hd(Ej)

∞
j=1 , which 

completes the proof of Lemma (4.2.12). 

Lemma (4.2.13) [204]: Let s ∈ ℝ, p ∈ (1,∞), q ∈ [1,∞), τ ∈ (0,
1

(p∨q)′
] and {Ak}k=1

∞  be as 

in Lemma (4.2.12) such that 𝒬𝑘 ≡ (Ak, 0, … ,0) + 2
−k[0,1)𝑛 ∈ 𝒟k(ℝ

𝑛) for all k ∈ ℕ (the 

existence of {Ak}k=1
∞  is obvious). Define tj ≡ {(tj)𝒬

}
𝒬∈𝒟(ℝ𝑛)

 so that (tj)𝒬
≡ 2

−
k𝑛

2
−k(s−

𝑛

p
)
 if 

𝒬 = 𝒬k  and k ∈ {1,… , j} , (tj)𝒬
≡ 0  otherwise. Then for all j ∈ ℕ , ‖tj‖bḢp,q

s,τ (ℝ𝑛)
 is 

equivalent to j
1

q
+

1

(p∨q)′ and ‖tj‖𝑓Ḣp,q
s,τ (ℝ𝑛)

 is equivalent to j
1

p
+

1

(p∨q)′. 

Proof: For the Besov-Hausdorff space, let us minimize 

(∑2ksq ‖|(tj)𝒬k
| χ̃𝒬k(𝑥)[ω(∙, 2

−k)]
−1
‖
Lp(ℝ𝑛)

q
j

k=1

)

1 q⁄

 

under the condition (27). By the definition of tj and the assumption on ω in Definition 

(4.2.3), we may assume that ω ≡ 0 outside ⋃ (𝒬0,(Ak,0,…,0) × {2
−k})

j
k=1  and for all 𝒬 ∈

𝒟k(ℝ
𝑛) , 𝒬 ⊂ 𝒬0,(Ak,0,…,0)  and k ∈ {1,… , j} , sup𝑥∈𝒬 ω(𝑥, 2

−k) = sup𝑥∈𝒬k ω(𝑥, 2
−k) , 

where 𝒬0,(Aj,0,…,0) ≡ (Aj, 0, … ,0) + [0,1)
𝑛 ∈ 𝒟0(ℝ

𝑛) . Also, we can replace ω  with the 

maximal function ω̃ given by ω̃(𝑥, 2−k) ≡ supy∈𝒬k,𝑥 
ω(y, 2−k), where k ∈ {1, … , j} and 

𝒬k,𝑥 ∈ 𝒟k(ℝ
𝑛) is a unique cube containing 𝑥. This construction implies that ω̃ equals a 

constant on 𝒬0,(Aj,0,…,0)  for each k ∈ {1,… , j}, namely, ω̃(∙, 2−k) ≡ 𝛼kχ𝒬
0,(Aj,0,…,0)

. Notice 

that if  Nω̃(𝑥) ≠ 0 , then 𝑥 ∈ B((Ak, 0, … ,0), 𝑛) for some k ∈ {1,… , j} . This combined 

with Lemma (4.2.12) yields that 

∫[Nω̃(𝑥)](p∨q)
′
dH𝑛τ(p∨q)

′
(𝑥)

ℝ𝑛

= ∫ H𝑛τ(p∨q)
′
({𝑥 ∈ (⋃B((Ak, 0, … ,0), 𝑛)

j

k=1

) ∶ [Nω̃(𝑥)](p∨q)
′

∞

0

> 𝜆})dλ~∑∫ H𝑛τ(p∨q)
′
({𝑥 ∈ B((Ak, 0, … ,0), 𝑛) ∶ [Nω̃(𝑥)]

(p∨q)′

∞

0

j

k=1

> 𝜆})dλ~∑ ∫ [Nω̃(𝑥)](p∨q)
′

B((Ak,0,…,0),𝑛)

j

k=1

dH𝑛τ(p∨q)
′
(𝑥)~∑(𝛼k)

(p∨q)′

j

k=1

. 

On the other hand, 
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(∑2ksq ‖|(tj)𝒬k
| χ̃𝒬k(𝑥)[ω̃(∙, 2

−k)]
−1
‖
Lp(ℝ𝑛)

q
j

k=1

)

1 q⁄

= [∑(𝛼k)
−q

j

k=1

]

1 q⁄

 

In summary (modulo a multiplicative constant), we need to minimize (∑ (𝛼k)
−qj

k=1 )
1 q⁄

 

under the condition ∑ (𝛼k)
(p∨q)′j

k=1 ≲ 1. This can be achieved as follows: By using the 

geometric mean, we have 

(∑(𝛼k)
−q

j

k=1

)

1 q⁄

≳ (∑(𝛼k)
−q

j

k=1

)

1 q⁄

(∑(𝛼k)
(p∨q)′

j

k=1

)

1 (p∨q)′⁄

≳

(

 
 
j√∏(𝛼k)

−q

j

k=1

j

)

 
 

1 q⁄

(

 
 
j√∏(𝛼k)

(p∨q)′

j

k=1

j

)

 
 

1 (p∨q)′⁄

∼ j1 q⁄ +1 (p∨q)′⁄ . 

In particular, (∑ (𝛼k)
−qj

k=1 )
1

q ∼ j
1

q
+

1

(p∨q)′  when ∑ (𝛼k)
(p∨q)′j

k=1 ∼ 1  and the 𝛼k ’s are 

identical. Thus, for all j ∈ ℕ, ‖tj‖bḢp,q
s,τ (ℝ𝑛)

∼ j
1

q
+

1

(p∨q)′. 

For the Triebel-Lizorkin-Hausdorff space, similarly to the above arguments, we see that 

( ∫[∑|𝒬k|
−(s 𝑛⁄ +1 2⁄ )q |(tj)𝒬k

|
q

χ𝒬k(𝑥)[ω̃(𝑥, 2
−k)]

−𝑞

j

k=1

]

p q⁄

d𝑥

ℝ𝑛

)

1 p⁄

= ( ∫∑|𝒬k|
−(s 𝑛⁄ +1 2⁄ )q |(tj)𝒬k

|
p

χ𝒬k(𝑥)(𝛼k)
−p

j

k=1

d𝑥

ℝ𝑛

)

1 p⁄

= [∑(𝛼k)
−q

j

k=1

]

1 q⁄

. 

Applying the geometric mean again, we have 

(∑(𝛼k)
−p

j

k=1

)

1 p⁄

≳ (∑(𝛼k)
−p

j

k=1

)

1 p⁄

(∑(𝛼k)
(p∨q)′

j

k=1

)

1 (p∨q)′⁄

≳

(

 
 
j√∏(𝛼k)

−p

j

k=1

j

)

 
 

1 p⁄

(

 
 
j√∏(𝛼k)

(p∨q)′

j

k=1

j

)

 
 

1 (p∨q)′⁄

∼ j1 p⁄ +1 (p∨q)′⁄ . 

In particular, (∑ (𝛼k)
−pj

k=1 )
1

p ∼ j
1

p
+

1

(p∨q)′  when ∑ (𝛼k)
(p∨q)′j

k=1 ∼ 1  and the 𝛼k ’s are 

identical, which implies that for all j ∈ ℕ, ‖tj‖bḢp,q
s,τ (ℝ𝑛)

∼ j
1

p
+

1

(p∨q)′. This finishes the proof of 

Lemma (4.2.13). 

Proposition (4.2.14) [204]: Let s, τ, p0, p1, q, r be as in Proposition (4.2.11). 

(i) If bḢp0,q
s0,τ ↪ bḢp1,q

s1,τ , then τ(p0 ∨ q)
′ = τ(p1 ∨ q)

′. 

(ii) If 𝑓Ḣp0,r
s0,τ ↪ 𝑓Ḣp1,q

s1,τ , then τ(p0 ∨ r)
′ ≤ τ(p1 ∨ q)

′ + τ(
1

p0
−

1

p1
) (p0 ∨ r)

′(p1 ∨ q)
′. 

Proof: By similarity, we only consider the Besov-Hausdorff space. Let tj be as in Lemma 

(4.2.13) with s, p replaced, respectively, by s0 and p0. Since s0 − 𝑛 p0⁄ = s1 − 𝑛 p1⁄ , by 
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Lemma (4.2.13), we have ‖tj‖bḢp0,q
s0,τ ∼ j

1

p
+

1

(p∨q)′ and ‖tj‖bḢp1,q
s1,τ ∼ j

1

p
+

1

(p∨q)′ for all j ∈ ℕ, which 

together with bḢp0,q
s0,τ ↪ bḢp1,q

s1,τ  implies that j
1

q
+

1

(p1∨q)
′ ≲ j

1

p
+

1

(p0∨q)
′  for all j ∈ ℕ . Therefore, 

(p0 ∨ q)
′ ≤ (p1 ∨ q)

′ . Meanwhile it is trivial that (p0 ∨ q)
′ ≥ (p1 ∨ q)

′  since p1 > p0  . 

We then have (p0 ∨ q)
′ = (p1 ∨ q)

′ . This finishes the proof of Proposition (4.2.14). 

We begin with considering the boundedness of almost diagonal operators on 

𝑎Ḣp,q
s,τ (ℝ𝑛), which is applied to establish the smooth atomic and molecular decomposition 

characterizations of AḢp,q
s,τ (ℝ𝑛). 

Definition (4.2.15) [204]: Let  p ∈ (1,∞), q ∈ [1,∞) ,  s ∈ ℝ, τ ∈ (0,
1

(p∨q)′
]  and ε ∈

(0,∞). For all 𝒬, P ∈ 𝒟(ℝ𝑛) , define 

ω𝒬 P(ε) ≡ (
ℓ(𝒬)

ℓ(P)
)

s

(1 +
|𝑥P − 𝑥𝒬|

max(ℓ(𝒬), ℓ(P))
)

−𝑛−ε

min((
ℓ(P)

ℓ(𝒬)
)

n+ε
2

, (
ℓ(𝒬)

ℓ(P)
)

n+ε
2

). 

An operator A  associated with a matrix {𝑎𝒬 P}𝒬,P∈𝒟(ℝ𝑛) , namely, for all sequences t =

{t𝒬}𝒬∈𝒟(ℝ𝑛) ⊂ ℂ, At ≡ {(At)𝒬}𝒬∈𝒟(ℝ𝑛) ≡ {
∑ 𝑎𝒬 PtPP∈𝒟(ℝ𝑛) }

𝒬∈𝒟(ℝ𝑛)
, is called ε-almost diagonal 

on 𝑎Ḣp,q
s,τ (ℝ𝑛), if the matrix {𝑎𝒬 P}𝒬,P∈𝒟(ℝ𝑛) satisfies 

sup
𝒬,P∈𝒟(ℝ𝑛)

|𝑎𝒬 P| ω𝒬 P⁄ (ε) < ∞. 

Lemma (4.2.16) [204]: Let d ∈ (0, n] and Ω be an open set in ℝ𝑛 such that Ω = ⋃ Bj
∞
j=1 , 

where {Bj}j=1
∞
≡ {B(Xj, Rj)}j=1

∞
 is a countable collection of balls. Define 

Hd (Ω, {Bj}j=1
∞
 ) ≡ inf {∑rk

d ∶ Ω ⊂⋃B(Xk, Rk), B(Xk, Rk) ⊃ Bj

∞

k=1

∞

k=1

 if Bj ∩ B(Xk, Rk) ≠ ∅} 

Then there exists a positive constant C, independent of Ω, {Bj}j=1
∞

 and d, such that 

Hd(Ω ) ≤ Hd (Ω, {Bj}j=1
∞
 ) ≤ C(46)dHd(Ω ). 

Proof: The first inequality is trivial. We only need to prove the second one. Without loss 

of generality, we may assume supj∈ℕ Rj < ∞. By the well-known (5r)-covering lemma, 

there exists a subset j∗  of ℕ  such that ⋃ (3Bj)
∞
j=1 ⊂ ⋃ (15Bj)j∈j∗  and χj∈j∗ ∗ χ(3Bj) ≤ 1 . 

Furthermore, by its construction, if Bj′ , j
′ ∈ ℕ , intersects Bj for some j ∈ j∗, we have that 

(3Bj′) ⊂ (15Bj). 

Let  {B(𝑥k, rk)}k∈ℕ  be a collection of balls such that Ω ⊂ ⋃ B(𝑥k, 𝑟k)
∞
k=1  and 

∑ rk
d∞

k=1 ≤ 2Hd(Ω). Set 

K1 ≡ {k ∈ ℕ ∶ when B(𝑥k, 45rk) ∩ Bj ≠ ∅   for any  j ∈ ℕ, then rk ≥ 135Rj}  

And J1 ≡ {j ∈ ℕ ∶ Bj ∩ B(𝑥k, 45rk) ≠ ∅ for some k ∈ K1} . Also define J2 ≡ (ℕ\J1)  and 

K2 ≡ (ℕ\K1) . We remark that if k ∈ K2 , then there exists j ∈ J2  such that Bj ∩

B(𝑥k, 45rk) ≠ ∅ and 135Rj > rk. Notice that Bj ⊂ Ω ⊂ (⋃ B(𝑥k, rk)
∞
k=1 ). Hence, for each 

j ∈ J2 , we have Bj ⊂ Ω ⊂ (⋃ B(𝑥k, rk)k∈K2,B(𝑥k,rk)∩Bj≠∅ 
) , and then, by d ≤ 𝑛  and the 

monotonicity of 𝑙
d

𝑛, we see that 
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∑ rk
d

k∈K2

~ ∑|B(𝑥k, rk)|
d
𝑛

k∈K2

≳ ∑ ∑ |B(𝑥k, rk)|
d
𝑛

k∈K2,Bj∩B(𝑥k,45rk)≠∅j∈J∗∩J2

≳ ∑ ( ∑ |B(𝑥k, rk)|

k∈K2,Bj∩B(𝑥k,45rk)≠∅

)

d
𝑛

j∈J∗∩J2

≳ ∑ Rj
d

j∈J∗∩J2

, 

which further yields that 

∑ rk
d

k∈K1

+ ∑ Rj
d

j∈J∗∩J2

≲∑rk
d

k∈K

. 

On the other hand, we have 

Ω ⊂⋃Bj

∞

j=1

⊂⋃(15Bj)

j∈J∗

= { ⋃ (15Bj)

j∈J∗∩J1

} ∪ { ⋃ (15Bj)

j∈J∗∩J2

}

⊂ {⋃ B(𝑥k, 46𝑟k)

k∈K1

} ∪ { ⋃ (15Bj)

j∈J∗∩J2

}. 

Notice that for k ∈ K1, B(𝑥k, 45rk) meets Bj for some j ∈ ℕ gives us rk ≥ 135Rj, which 

further implies that B(𝑥k, 46rk) ⊃ Bj . Also, for j ∈ J∗  and j′ ∈ ℕ, if Bj ∩ Bj′ ≠ ∅ , then 

(15Bj) ⊃ Bj′ . As a result, we conclude that {B(𝑥k, 46rk)}k∈K1 ∪ {15Bj}j∈J∗∩J2
is the 

desired covering of Ω and hence, 

Hd (Ω, {Bj}j=1
∞
 ) ≤ ∑(46rk)

d

k∈K1

+ ∑ (15Rj)
d

j∈J∗∩J2

≲ (46)dHd(Ω ), 

which completes the proof of Lemma (4.2.16). 

Applying Lemma (4.2.16), we have the following conclusion. 

Lemma (4.2.17)[204]: Let β ∈ [1,∞) , λ ∈ (0,∞)  and ω  be a nonnegative Borel 

measurable function on ℝ+
𝑛+1. Then there exists a positive constant C, independent of β,ω 

and λ, such that 

Hd({𝑥 ∈ ℝ𝑛 ∶ Nβω(𝑥) > λ} ) ≤ Cβ
dHd({𝑥 ∈ ℝ𝑛 ∶ Nω(𝑥) > λ} ), 

where Nβω(𝑥) ≡ sup|y−𝑥|<βtω(y, t). 

Proof: Observe that 

{𝑥 ∈ ℝ𝑛 ∶ Nω(𝑥) > λ} = ⋃ ⋃ B(y, t)

y∈ℝ𝑛

ω(y,t)>λ
t∈(0,∞)

 

and that 

{𝑥 ∈ ℝ𝑛 ∶ Nβω(𝑥) > λ} = ⋃ ⋃ B(y, βt)

y∈ℝ𝑛

ω(y,t)>λ
t∈(0,∞)

. 

By the Linderöf covering lemma, there exists a countable subset {B𝑙}𝑙=0
∞ of {B(y, t) ∶ t ∈

(0,∞), y ∈ ℝ𝑛 satisfying ω(y, t) > λ}  such that {𝑥 ∈ ℝ𝑛 ∶ Nβω(𝑥) > λ} . By Lemma 

(4.2.16), it suffices to prove that 

Hd({𝑥 ∈ ℝ𝑛 ∶ Nβω(𝑥) > λ}, {βB𝑙}𝑙=0
∞  ) ≲ βdHd (⋃B𝑙 ,

∞

𝑙=0

{B𝑙}𝑙=0
∞  ). 

Let {Bk
∗}k=0
∞  be a ball covering of ⋃ B𝑙𝑙∈ℕ  such that ∑ 𝑟Bk

∗
d∞

k=0 ≤ 2Hd(⋃ B𝑙 ,
∞
𝑙=0 {B𝑙}𝑙=0

∞  ), 

and that Bk
∗  engulfs B𝑙  whenever they intersect, where rBk

∗  denotes the radius of Bk
∗ . 
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Therefore, βBk
∗  engulfs βB𝑙  whenever they intersect and {𝑥 ∈ ℝ𝑛 ∶ Nβω(𝑥) > λ} ⊂

{⋃ (βBk
∗)∞

k=0 }. We then have 

2βdHd (⋃B𝑙 ,

∞

𝑙=0

{B𝑙}𝑙=0
∞  ) ≥∑(βrBk

∗ )
d

∞

𝑙=0

≥ Hd({𝑥 ∈ ℝ𝑛 ∶ Nβω(𝑥) > λ}, {βB𝑙}𝑙=0
∞  ), 

which completes the proof of Lemma (4.2.17).  

As an immediate consequence of Lemma (4.2.17), we have the following result. 

Corollary (4.2.18) [204]: Let d ∈ (0, n], β ∈ [1,∞) and ω be a nonnegative measurable 

function on ℝ+
𝑛+1 . Define ωβ(𝑥, t) ≡ supy∈B(𝑥,βt)ω(y, t) . Then there exists a positive 

constant C such that 

∫Nβω(𝑥)dH
d(𝑥)

ℝ𝑛

≤ Cβd ≤ ∫Nω(𝑥)dHd(𝑥)

ℝ𝑛

. 

Theorem (4.2.19) [204]: Let p ∈ (1,∞), q ∈ [1,∞), s ∈ ℝ, ε ∈ (0,∞) and τ ∈ (0,
1

(p∨q)′
]. 

Then all the ε-almost diagonal operators on 𝑎Ḣp,q
s,τ (ℝ𝑛) are bounded if ε > 2𝑛τ . 

Proof: By similarity, we only consider 𝑓Ḣp,q
s,τ (ℝ𝑛) . Similarly to the proof of [190, 

Theorem 4.1], without loss of generality, we may assume s = 0, since this case implies the 

general case. 

By the Aoki theorem (see [191]), there exists a κ ∈ (0, 1] such that ‖∙‖
𝑓Ḣp,q

0,τ (ℝ𝑛)
κ  

becomes a norm in 𝑓Ḣp,q
0,τ(ℝ𝑛). Let t ∈ 𝑓Ḣp,q

0,τ(ℝ𝑛). For 𝒬 ∈  𝒟(ℝ𝑛), we write A ≡ A0 +

A1  with (A0t)𝒬 ≡ ∑ 𝑎𝒬 PtP{P∈ 𝒟(ℝ𝑛)∶ℓ(𝒬)≤ℓ(P)}  and (A1t)𝒬 ≡ ∑ 𝑎𝒬 PtP{P∈ 𝒟(ℝ𝑛)∶ℓ(P)<𝑙(𝒬)} . 

By Definition (4.2.15), we see that for 𝒬 ∈  𝒟(ℝ𝑛), 

|(A0t)𝒬| ≲ ∑ (
ℓ(𝒬)

ℓ(P)
)

𝑛+ε
2 |tP|

(1 + [ℓ(P)]−1|𝑥𝒬 − 𝑥P|)
𝑛+ε

{P∈ 𝒟(ℝ𝑛): ℓ(𝒬)≤ℓ(P)}

. 

Thus, we have 
‖A0t‖𝑓Ḣp,q

0,τ (ℝ𝑛)

≲ inf
ω
‖{∑ ∑ |𝒬|−

q
2χ𝒬 [ ∑ ∑ 2

(𝑖−j)
𝑛+ε
2

|tP|[ω(∙, 2
−j)]−1

(1 + 2𝑖|𝑥𝒬 − 𝑥P|)
𝑛+ε

P∈ 𝒟𝑖(ℝ
𝑛)

j

𝑖=−∞

]

q

𝒬∈ 𝒟j(ℝ
𝑛)j∈ℤ

}

1 q⁄

‖

Lp(ℝ𝑛)

. 

Let ω be a nonnegative Borel measurable function satisfying (27) and 

‖{∑ ∑ |t𝒬|
q
[χ̃𝒬ω(∙, 2

−j)]
−q

𝒬∈ 𝒟j(ℝ
𝑛)j∈ℤ

}

1 q⁄

‖

Lp(ℝ𝑛)

≲ ‖t‖𝑓Ḣp,q
0,τ (ℝ𝑛). 

Let A0,𝑖(𝒬) ≡ {P ∈  𝒟𝑖(ℝ
𝑛) ∶ 2𝑖|𝑥𝒬 − 𝑥P| ≤ √𝑛 2⁄ } and Am,𝑖(𝒬) ≡ {P ∈  𝒟𝑖(ℝ

𝑛) ∶

 2m−1 √𝑛 2⁄ < 2𝑖|𝑥P − 𝑥𝒬| ≤ 2
m √𝑛 2⁄ }  for all 𝑖 ∈ ℤ  and m ∈ ℤ+ . Define ωm(𝑥, t) ≡

2−m𝑛τ sup
y∈B(𝑥,√𝑛2m+1t)

ω(y, t)  for all (𝑥, t) ∈ ℝ𝑛
𝑛+1 . Then Nωm ≲ 2

−m𝑛τN√𝑛2m+2ω  and 

[ωm(𝑥, 2
−j)]

−1
ω(y, 2−j) ≲ 2m𝑛τ  for m ∈ ℤ+ , 𝑥 ∈ 𝒬  with 𝒬 ∈  𝒟j(ℝ

𝑛) , y ∈ P  with P ∈

Am,𝑖(𝒬) and 𝑖 ≤ j. Moreover, using Corollary (4.2.18), we see that a constant multiple of 

ωm also satisfies (27). Similarly to the proof of Lemma (4.2.6), we have that for all 𝑥 ∈ 𝒬, 

∑
|tP|[ω(𝑥, 2

−j)]−1

(1 + 2𝑖|𝑥𝒬 − 𝑥P|)
𝑛+ε

P∈ Am,𝑖(𝒬)

≲ 2−mε+m𝑛τHL( ∑ |tP|[χPω(∙, 2
−𝑖)]−1

P∈ Am,𝑖(𝒬)

)(𝑥). 
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Hence, choosing ε > 𝑛τ , by Fefferman-Stein’s vector-valued inequality, we obtain 
‖A0t‖𝑓Ḣp,q

0,τ (ℝ𝑛)
κ

≲ ∑

{
 

 

inf
ω
‖{∑ ∑ |𝒬|−

q
2χ𝒬

𝒬∈ 𝒟j(ℝ
𝑛)j∈ℤ

∞

m=0

× [ ∑ ∑ 2
(𝑖−j)

𝑛+ε
2

|tP|[ω(∙, 2
−j)]−1

(1 + 2𝑖|𝑥𝒬 − 𝑥P|)
𝑛+ε

P∈ Am,𝑖(𝒬)

j

𝑖=−∞

]

q

}

1 q⁄

‖

Lp(ℝ𝑛)}
 

 
κ

≲ ∑ ‖{∑ ∑ |𝒬|−
q
2χ𝒬

𝒬∈ 𝒟j(ℝ
𝑛)

[ ∑ ∑ 2
(𝑖−j)

𝑛+ε
2

|tP|[ωm(∙, 2
−j)]−1

(1 + 2𝑖|𝑥𝒬 − 𝑥P|)
𝑛+ε

P∈ Am,𝑖(𝒬)

j

𝑖=−∞

]

q

j∈ℤ

}

1 q⁄

‖

Lp(ℝ𝑛)

κ
∞

m=0

≲ ∑ 2m(𝑛τ−ε)𝜅
∞

m=0

‖{∑ ∑ χ𝒬
𝒬∈ 𝒟j(ℝ

𝑛)

[ ∑ 2(𝑖−j)ε 2⁄
j

𝑖=−∞j∈ℤ

× HL( ∑ |tP|[χ̃Pω(∙, 2
−𝑖)]−1

P∈ Am,𝑖(𝒬)

)]

q

}

1 q⁄

‖

Lp(ℝ𝑛)

κ

≲ ‖t‖
𝑓Ḣp,q

0,τ (ℝ𝑛)
κ . 

The proof for A1t is similar. Indeed, we have 

|(A0t)𝒬| ≲ ∑ (
ℓ(𝒬)

ℓ(P)
)

𝑛+ε
2 |tP|

(1 + [ℓ(P)]−1|𝑥𝒬 − 𝑥P|)
𝑛+ε

{P∈ 𝒟(ℝ𝑛)∶ℓ(𝒬)≤ℓ(P)}

. 

Thus, 
‖A1t‖𝑓Ḣp,q

0,τ (ℝ𝑛)

≲ inf
ω
‖{∑ ∑ |𝒬|−

q
2χ𝒬 [∑ ∑ 2−𝑙

𝑛+ε
2

|tP|[ω(∙, 2
−j)]−1

(1 + 2j|𝑥𝒬 − 𝑥P|)
𝑛+ε

P∈ 𝒟j+𝑙(ℝ
𝑛)

∞

𝑙=0

]

q

𝒬∈ 𝒟j(ℝ
𝑛)j∈ℤ

}

1 q⁄

‖

Lp(ℝ𝑛)

. 

Let Ã0,j,𝑙(𝒬) ≡ {P ∈  𝒟j+𝑙(ℝ
𝑛) ∶ 2j|𝑥P − 𝑥𝒬| ≤ √𝑛 2⁄ }  and Ãm,j,𝑙(𝒬) ≡ {P ∈

 𝒟j+𝑙(ℝ
𝑛) ∶ 2m−1 √𝑛 2⁄ < 2j|𝑥P − 𝑥𝒬| ≤ 2

m√𝑛 2⁄ } for all j ∈ ℤ and 𝑙 ∈ ℤ+. Set  

ω̃m(𝑥, s) ≡ 2
−(m+𝑙)𝑛τ sup{ω(y, s) ∶ y ∈ ℝ𝑛, |y − 𝑥| < √𝑛2m+𝑙+1s} 

for all m ∈ ℤ+  and (𝑥, s) ∈ ℝ+
𝑛+1 . Similarly, we have that a constant multiple of ω̃𝑚 

satisfies (27) and [ω̃m(𝑥, 2
−j)]

−1
× ω(y, 2−j−𝑙) ≲ 2(m+𝑙)𝑛τ for m, 𝑙 ∈ ℤ+, 𝑥 ∈ 𝒬 with 𝒬 ∈

 𝒟j(ℝ
𝑛), y ∈ P with P ∈  Ãm,j,𝑙(𝒬). Similarly to the proof of Lemma (4.2.6) again, we see 

that for all 𝑥 ∈ 𝒬, 

∑
|tP|[ω̃m(𝑥, 2

−j)]−1

(1 + 2𝑖|𝑥𝒬 − 𝑥P|)
𝑛+ε

P∈ Ãm,j,𝑙(𝒬)

≲ 2−mε+𝑙𝑛+(m+𝑙)𝑛τHL( ∑
|tP|χP
ω(∙, 2−𝑖)

P∈ Ãm,j,𝑙(𝒬)

)(𝑥). 

Hence, choosing ε > 2𝑛τ , similarly to the estimate of ‖A0t‖𝑓Ḣp,q
0,τ (ℝ𝑛), we also have 
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‖A0t‖𝑓Ḣp,q
0,τ (ℝ𝑛)

κ

≲ ∑ ‖{∑ ∑ |𝒬|−
q
2χ𝒬

𝒬∈ 𝒟j(ℝ
𝑛)

[∑ ∑ 2−𝑙
𝑛+ε
2

|tP|[ωm(∙, 2
−j)]−1

(1 + 2j|𝑥𝒬 − 𝑥P|)
𝑛+ε

P∈ Ãm,j,𝑖(𝒬)

∞

𝑙=0

]

q

j∈ℤ

}

1 q⁄

‖

Lp(ℝ𝑛)

κ
∞

m=0

≲ ∑ 2m(𝑛τ−ε)𝜅
∞

𝑚=0

‖{∑ ∑ χ𝒬
𝒬∈ 𝒟j(ℝ

𝑛)

[∑2−𝑙(ε 2⁄ −𝑛τ)

∞

𝑙=0j∈ℤ

× HL( ∑ |tP|[χ̃Pω(∙, 2
−𝑖)]−1

P∈ Ãm,j,𝑖(𝒬)

)]

q

}

1 q⁄

‖

Lp(ℝ𝑛)

κ

≲ ‖t‖
𝑓Ḣp,q

0,τ (ℝ𝑛)
κ , 

which completes the proof of Theorem (4.2.19). 

As applications of Theorem (4.2.19), we establish the smooth atomic and molecular 

decomposition characterizations of AḢp,q
s,τ (ℝ𝑛). 

Definition (4.2.20) [204]: Let p ∈ (1,∞) , q ∈ [1,∞) , s ∈ ℝ , τ ∈ [0,
1

(p∨q)′
)  and 𝒬 ∈

 𝒟(ℝ𝑛). Set N ≡ max(⌊−s + 2𝑛τ⌋,−1) and s∗  ≡ s − ⌊s⌋. 

(i) A function m𝒬 is called a smooth synthesis molecule for AḢp,q
s,τ (ℝ𝑛) supported near 𝒬 , 

if there exist a δ ∈ (max{s∗, (s + 𝑛τ)∗}, 1]  and M > 𝑛 + 2𝑛τ  such that 

∫ 𝑥γm𝒬(𝑥)d𝑥ℝ𝑛
= 0 if |γ | ≤ N, |m𝒬(𝑥)| ≤ |𝒬|

−
1

2(1 + [ℓ(𝒬)]−1|𝑥 − 𝑥𝒬|)
−max(M,M−s)

, 

|∂γm𝒬(𝑥)| ≤ |𝒬|
−
1
2
−
|γ |
𝑛 (1 + [ℓ(𝒬)]−1|𝑥 − 𝑥𝒬|)

−M
   if |γ | ≤ ⌊s + 3𝑛τ⌋            (35) 

and  

|∂γm𝒬(𝑥) − ∂
γm𝒬(y)| ≤ |𝒬|

−
1
2
−
|γ |
𝑛
−
δ
𝑛|𝑥 − 𝑦|δ sup

|z|≤|𝑥−y|
(1 + [ℓ(𝒬)]−1|𝑥 − z − 𝑥𝒬|)

−M
    (36) 

if  |γ | = ⌊s + 3𝑛τ⌋. 

A set {m𝒬}𝒬∈ 𝒟(ℝ𝑛) of functions is called a family of smooth synthesis molecules for 

AḢp,q
s,τ (ℝ𝑛), if each 𝑚𝒬 is a smooth synthesis molecule for AḢp,q

s,τ (ℝ𝑛) supported near 𝒬. 

(ii) A function b𝒬 is called a smooth analysis molecule for AḢp,q
s,τ (ℝ𝑛) supported near near 

𝒬 , if there exist a ρ ∈ ((𝑛 − s)∗, 1] and M > 𝑛 + 2𝑛τ such that ∫ 𝑥γb𝒬(𝑥)d𝑥ℝ𝑛
= 0 if 

|γ | ≤ ⌊s + 3𝑛τ⌋, |b𝒬(𝑥)| ≤ |𝒬|
−
1

2(1 + [ℓ(𝒬)]−1|𝑥 − 𝑥𝒬|)
−max(M,M+s+𝑛τ)

, 

|∂γb𝒬(𝑥)| ≤ |𝒬|
−
1
2
−
|γ |
𝑛 (1 + [ℓ(𝒬)]−1|𝑥 − 𝑥𝒬|)

−M
   if |γ | ≤ N                   (37) 

and if |γ | = N 

|∂γb𝒬(𝑥) − ∂
γb𝒬(y)| ≤ |𝒬|

−
1
2
−
|γ |
𝑛
−
δ
𝑛|𝑥 − 𝑦|δ sup

|z|≤|𝑥−y|
(1 + [ℓ(𝒬)]−1|𝑥 − z − 𝑥𝒬|)

−M
  (38) 

A set {b𝒬}𝒬∈ 𝒟(ℝ𝑛) of functions is called a family of smooth analysis molecules for 

AḢp,q
s,τ (ℝ𝑛), if each b𝒬 is a smooth analysis molecule for AḢp,q

s,τ (ℝ𝑛) supported near 𝒬. 

Lemma (4.2.21) [204]: Let p ∈ (1,∞), q ∈ [1,∞), s ∈ ℝ, τ ∈ [0,
1

(p∨q)′
). Then there exist 

ε1 > 2𝑛τ  and a positive constant C  such that for all families {m𝒬}𝒬∈ 𝒟(ℝ𝑛)  of smooth 

synthesis molecules for AḢp,q
s,τ (ℝ𝑛) and families {b𝒬}𝒬∈ 𝒟(ℝ𝑛) of smooth analysis molecules 

for AḢp,q
s,τ (ℝ𝑛), |〈mP, b𝒬〉L2(ℝ𝑛)| ≤ Cω𝒬 P(ε1). 

To formulate the molecular decomposition, the following lemma is indispensable.  
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Lemma (4.2.22) [204]: Retain the same assumptions as in Lemma (4.2.21). Let 𝑓 ∈

AḢp,q
s,τ (ℝ𝑛) and Φ be a smooth analysis molecule for AḢp,q

s,τ (ℝ𝑛) supported near a dyadic 

cube 𝒬 . Then 〈𝑓,Φ〉 is well defined. Indeed, let ϕ,ψ ∈ 𝒮(ℝ𝑛) be as in (29). Then the 

series 

〈𝑓, Φ〉 ≡∑〈φ̃j ∗ ψj ∗ 𝑓,Φ〉

j∈ ℤ

= ∑ 〈𝑓,φP〉〈ψP, Φ〉

P∈ 𝒟(ℝ𝑛)

                           (39) 

converges absolutely and its value is independent of the choices of ϕ and ψ. 

Proof: The same proof as that of [190, Lemma 4.2] works for the absolute convergence of 

(39). We only need to prove that the value of (39) is independent of the choices of ϕ and 

ψ. By similarity again, we only consider the spaces BḢp,q
s,τ (ℝ𝑛). 

Let 𝑓 ∈ BḢp,q
s,τ (ℝ𝑛). We claim that ∑ φ̃j ∗ ψj ∗ 𝑓,Φ

∞
j=0  converges in 𝒮′(ℝ𝑛). In fact, 

similarly to the proof of [189, Lemma 4.2.6], we have that for all ψ ∈ 𝒮(ℝ𝑛) and 𝑥 ∈ ℝ𝑛, 

|φj ∗ ϕ(𝑥)| ≲ ‖φ‖𝒮M+1‖ϕ‖𝒮M+1
2−jM

(1 + |𝑥|)𝑛+M
, 

where M ∈ ℕ is determined later. Thus, 

∑|〈φ̃j ∗ ψj ∗ 𝑓,Φ〉|

∞

j=0

≲ ‖φ‖𝒮M+1‖ϕ‖𝒮M+1∑2−jM ∫
|ψj ∗ 𝑓(𝑥)|

(1 + |𝑥|)𝑛+M
d𝑥

ℝ𝑛

∞

j=0

. 

Recall again that ω(𝑥, t) ≲ t−𝑛τ  for all nonnegative Borel measurable functions ω  on 

ℝ+
𝑛+1 satisfying (27). Letting M > max(0, 𝑛τ − s), by Hölder’s inequality, we then obtain 

∑|〈φ̃j ∗ ψj ∗ 𝑓, Φ〉|

∞

j=0

≲ ‖φ‖𝒮M+1‖ϕ‖𝒮M+1∑2−jM+j𝑛τ ∫
|ψj ∗ 𝑓(𝑥)|[ω(𝑥, 2

−j)]−1

(1 + |𝑥|)𝑛+M
d𝑥

ℝ𝑛

∞

j=0

≲ ‖φ‖𝒮M+1‖ϕ‖𝒮M+1‖𝑓‖BḢp,q
s,τ (ℝ𝑛), 

which implies that ∑ φ̃j ∗ ψj ∗ 𝑓
∞
j=0 at  converges in 𝒮′(ℝ𝑛). Thus, the claim is true. 

We need to handle carefully the remaining summation:  ∑ φ̃j ∗ ψj ∗ 𝑓
−1
j=−∞ . In 

general it is not possible to prove that  ∑ φ̃j ∗ ψj ∗ 𝑓
−1
j=−∞  is convergent in 𝒮′(ℝ𝑛) . 

Therefore, we pass to its partial derivatives. Choose γ ∈ ℤ+
𝑛  such that |γ| > 𝑠 − 𝑛τ − 𝑛 p⁄ . 

Then using Hölder’s inequality, similarly to the previous estimate, we obtain that for all 

𝑥 ∈ ℝ𝑛, 

∑ |∂γ(φ̃j ∗ ψj ∗ 𝑓)(𝑥)|

−1

j=−∞

≲ ∑ 2j(+|γ|)‖φ‖𝒮M+1 ∫
|ψj ∗ 𝑓(𝑥)|

(1 + 2j|𝑥 − y|)𝑛+M+|γ|
dy

ℝ𝑛

−1

j=−∞

≲ ∑ 2
j(|γ|−s+𝑛τ+

𝑛
p
)
‖φ‖𝒮M+1

−1

j=−∞

‖𝑓‖BḢp,q
s,τ (ℝ𝑛) ≲ ‖φ‖𝒮M+1‖𝑓‖BḢp,q

s,τ (ℝ𝑛). 

Therefore, it follows from the well-known result in [93] that there exist a sequence 
{PN}N∈ℕ of polynomials on ℝ𝑛 with degree no more than max(−1, ⌊𝑠 − 𝑛τ − 𝑛 p⁄ ⌋) and 

g ∈ 𝒮′(ℝ𝑛)  such that g = lim
N→∞

(∑ |φ̃j ∗ ψj ∗ 𝑓 + PN|
∞
j=−N )  in 𝒮′(ℝ𝑛)  and g  is a 

representative of the equivalence class 𝑓 + 𝒫(ℝ𝑛); see [106]. Using [93, Lemma 5.4] and 

repeating the argument in [106], we obtain that the value of (39) is independent of the 

choices of ϕ and ψ, which completes the proof of Lemma (4.2.22). 

Theorem (4.2.23) [204]: Let s, p, q and τ be as in Lemma (4.2.21). 

(i) If {m𝒬}𝒬∈𝒟(ℝ𝑛) is a family of smooth synthesis molecules for AḢp,q
s,τ (ℝ𝑛), then there 

exists a positive constant C such that for all t = {t𝒬}𝒬∈𝒟(ℝ𝑛) ∈ 𝑎Ḣp,q
s,τ (ℝ𝑛), 
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‖ ∑ t𝒬m𝒬

𝒬∈𝒟(ℝ𝑛)

‖

AḢp,q
s,τ (ℝ𝑛)

≤ C‖t‖𝑎Ḣp,q
s,τ (ℝ𝑛). 

(ii) If {b𝒬}𝒬∈𝒟(ℝ𝑛)  is a family of smooth analysis molecules for AḢp,q
s,τ (ℝ𝑛), then there 

exists a positive constant C such that for all 𝑓 ∈ 𝑎Ḣp,q
s,τ (ℝ𝑛), 

‖{〈𝑓, b𝒬  〉}𝒬∈𝒟(ℝ𝑛)‖𝑎Ḣp,q
s,τ (ℝ𝑛)

≤ C‖𝑓‖AḢp,q
s,τ (ℝ𝑛). 

Theorem (4.2.23) generalizes the well-known results on Ḃp,q
s (ℝ𝑛) and Ḟp,q

s (ℝ𝑛) in 

[45, 106, 164, 165, 175, 176] by taking τ = 0 . We establish the smooth atomic 

decomposition characterizations of AḢp,q
s,τ (ℝ𝑛). 

Definition (4.2.24) [204]: Let s ∈ ℝ, p ∈ (1,∞), q ∈ [1,∞), τ and N be as in Definition 

(4.2.20). A function 𝑎𝒬 is called a smooth atom for AḢp,q
s,τ (ℝ𝑛) supported near a dyadic 

cube 𝒬 , if there exist K̃ and Ñ with K̃ ≥ max(⌊s + 3𝑛τ + 1⌋, 0) and Ñ ≥ N such that 𝑎𝒬 

satisfies the following support, regularity and moment conditions: supp 𝑎𝒬 ⊂

3𝒬, ‖𝜕𝛾𝑎𝒬‖L∞(ℝ𝑛) ≤
|𝒬|−

1

2
−
|γ|

𝑛  if |γ| ≤ K̃, and ∫ 𝑥γ𝑎𝒬(𝑥)d𝑥ℝ𝑛
= 0 if |γ| ≤ Ñ . 

A set {𝑎𝒬}𝒬∈𝒟(ℝ𝑛) of functions is called a family of smooth atoms for AḢp,q
s,τ (ℝ𝑛), if 

each 𝑎𝒬 is a smooth atom for AḢp,q
s,τ (ℝ𝑛) supported near 𝒬. 

Theorem (4.2.25) [204]: Let s, p, q, τ  be as in Lemma (4.2.21). Then for each 𝑓 ∈

AḢp,q
s,τ (ℝ𝑛), there exist a family {𝑎𝒬}𝒬∈𝒟(ℝ𝑛) of smooth atoms for AḢp,q

s,τ (ℝ𝑛), a coefficient 

sequence t ≡ {t𝒬}𝒬∈𝒟(ℝ𝑛) ∈ 𝑎Ḣp,q
s,τ (ℝ𝑛) , and a positive constant C  such that 𝑓 =

∑ t𝒬𝑎𝒬𝒬∈𝒟(ℝ𝑛)  in 𝒮∞
′ (ℝ𝑛) and ‖t‖𝑎Ḣp,q

s,τ (ℝ𝑛) ≤ C‖𝑓‖AḢp,q
s,τ (ℝ𝑛). 

Conversely, there exists a positive constant C such that for all families {𝑎𝒬}𝒬∈𝒟(ℝ𝑛) 

of smooth atoms for AḢp,q
s,τ (ℝ𝑛)  and coefficient sequences t ≡ {t𝒬}𝒬∈𝒟(ℝ𝑛) ∈ 𝑎Ḣp,q

s,τ (ℝ𝑛) , 

‖∑ t𝒬𝑎𝒬𝒬∈𝒟(ℝ𝑛) ‖
AḢp,q

s,τ (ℝ𝑛)
≤ C‖t‖𝑎Ḣp,q

s,τ (ℝ𝑛). 

We give some applications of the smooth atomic and molecular decomposition 

characterizations of AḢp,q
s,τ (ℝ𝑛) , including the boundedness of pseudo-differential 

operators with homogeneous symbols in these spaces and their trace properties. We first 

recall the notion of homogeneous symbols; see, [197]. 

Definition (4.2.26) [204]: Let m ∈ ℤ. A smooth function a defined on ℝ𝑥
𝑛 × (ℝξ

𝑛\{0}) 

belongs to the class Ṡ1,1
m (ℝ𝑛), if 𝑎 satisfies the following differential inequalities that for 

all α, β ∈ ℤ+
𝑛 , 

sup
𝑥∈ℝ𝑛,ξ∈(ℝ𝑛\{0})

|ξ|−m−|α|+|β| |∂𝑥
α ∂ξ

β
𝑎(𝑥, ξ)| < ∞. 

As an application of the smooth molecular decomposition of AḢp,q
s,τ (ℝ𝑛) (Theorem 

(4.2.23)) and the Calderón reproducing formula (29), we have the following conclusion. 

Theorem (4.2.27) [204]: Let m ∈ ℤ, s ∈ ℝ, p ∈ (1,∞), q ∈ [1,∞) and τ ∈ [0,
1

(p∨q)′
]. Let 

𝑎 be a symbol in Ṡ1,1
m (ℝ𝑛) and 𝑎(𝑥, D) be the pseudodifferential operator such that 

𝑎(𝑥, D)𝑓(𝑥) ≡ ∫𝑎(𝑥, ξ)(ℱ 𝑓)(ξ)e−𝑖𝑥ξdξ

ℝ𝑛

 

for all smooth synthesis molecules for AḢp,q
s+m,τ(ℝ𝑛) and 𝑥 ∈ ℝ𝑛. Assume that its formal 

adjoint 𝑎(𝑥, D)∗  satisfies 𝑎(𝑥, D)∗(𝑥β) = 0  in 𝒮∞
′ (ℝ𝑛)  for all β ∈ ℤ+

𝑛   with |β| ≤
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max{−s + 2𝑛τ,−1} . Then 𝑎(𝑥, D)  is a bounded linear operator from AḢp,q
s+𝑚,τ(ℝ𝑛)  to 

AḢp,q
s,τ (ℝ𝑛). 

Proof: The proof is similar to that in [194, 195]; see also [200]. We abbreviate T ≡

𝑎(𝑥, D) for simplicity. Let 𝑓 ∈ AḢp,q
s+𝑚,τ(ℝ𝑛) and ϕ be as in Definition 4.2.1 such that for 

all ξ ∈ ℝ𝑛, ∑ |ℱ φ(2−jξ)|
2

j ∈ℤ = χℝ\{0}(ξ). Then by the Calderón reproducing formula (29), 

we have 𝑓 ≡ ∑ 〈𝑓, φ𝒬〉φ𝒬𝒬∈𝒟(ℝ𝑛)  in 𝒮∞
′ (ℝ𝑛) ; moreover, by the φ -transform 

characterization of AḢp,q
s+m,τ(ℝ𝑛) ,we see that ‖{〈𝑓, φ𝒬〉}𝒬∈𝒟(ℝ𝑛)‖𝑎Ḣp,q

s+𝑚,τ(ℝ𝑛)
≲

‖𝑓‖AḢp,q
s+m,τ(ℝ𝑛), or equivalently, ‖{|𝒬|−

m

𝑛 〈𝑓, φ𝒬〉}
𝒬∈𝒟(ℝ𝑛)

‖
𝑎Ḣp,q

s,τ (ℝ𝑛)

≲ ‖𝑓‖AḢp,q
s+m,τ(ℝ𝑛). 

We claim that T(𝑓) ≡ ∑ 〈𝑓, φ𝒬〉T(φ𝒬)𝒬∈𝒟(ℝ𝑛)  in 𝒮∞
′ (ℝ𝑛)  with ‖T(𝑓)‖AḢp,q

s,τ (ℝ𝑛) ≲

‖𝑓‖AḢp,q
s+m,τ(ℝ𝑛). To this end it suffices to show that every |𝒬|

𝑚

𝑛T(φ𝒬) is a constant multiple 

of a synthesis molecule for AḢp,q
s,τ (ℝ𝑛) supported near 𝒬 . This fact was established by 

Grafakos and Torres [197]. We then conclude that T is bounded from AḢp,q
s+𝑚,τ(ℝ𝑛) to 

AḢp,q
s,τ (ℝ𝑛), which completes the proof of Theorem (4.2.27). 

Lemma (4.2.28) [204]: Let d ∈ (0, 𝑛] and Ω be an open set in ℝ𝑛. Define 

H∗
d(Ω) ≡ inf {∑rj

d: Ω ⊂⋃B(𝑥𝑟 , rj),

∞

j=1

rj >
dist (𝑥j, ∂Ω)

10000

∞

j=1

}. 

Then Hd(Ω) and H∗
d(Ω) are equivalent for all Ω. 

Proof: The inequality Hd(Ω) ≤ H∗
d(Ω)  is trivial from the definitions. To prove the 

converse, we choose a ball covering {B(𝑥j, rj)}j=1
∞

 of Ω such that ∑ rj
d∞

j=1 ∶≤ 2Hd(Ω). Let 

{B(Xj, Rj)}j=1
∞

 be a Whitney covering of Ω  satisfying Ω = ⋃ B(Xj, Rj),
∞
j=1  Rj 1000⁄ ≤

dist (Xj, ∂(Ω)) ≤ Rj 100⁄  and ∑ χRjj∈ℕ ≤ C𝑛; see, [196]. Set 

J1 ≡ {j ∈ ℕ: (B(Xj, Rj) ∩ B(𝑥k, rk)) ≠ ∅ and Rj ≤ 4rk for some k ∈ ℕ} 

and J2 ≡ (ℕ\ J1). Notice that if k ∈ ℕ satisfies (B(Xj, Rj) ∩ B(𝑥k, rk)) ≠ ∅ for some j ∈ J2, 

then B(𝑥k, rk) ⊂ B(Xj, 2Rj) since rk < Rj 4⁄ . With this in mind, we define 

K1 ≡ {k ∈ ℕ ∶ (B(𝑥k, rk) ∩ B(Xj, Rj)) ≠ ∅  for some  j ∈ J2}, 

and K1 ≡ (ℕ\ K2). It is easy to see that 

⋃B(𝑥k, rk)

∞

k=1

⊂ (⋃ B(𝑥k, rk)

k∈K1

∪⋃B(Xj, 2Rj)

j∈J2

).                                    (40) 

Furthermore, for each k ∈ ℕ, the cardinality of the set {j ∈ J2 : (B(𝑥k, rk) ∩ B(Xj, Rj)) ≠ ∅} 

is bounded by a constant depending only on the dimension. Hence, we have 
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∑rk
d

∞

k=1

= ∑ rk
d 

k∈K1

+ ∑ rk
d 

k∈K2

~ ∑ rk
d 

k∈K1

+∑( ∑ rk
d 

k∈K2,(B(𝑥k,𝑟k)∩B(Xj,Rj))≠∅ 

)

j∈J2

~ ∑ rk
d 

k∈K1

+∑( ∑ |B(𝑥k, rk)|
d
𝑛 

k∈K2,(B(𝑥k,rk)∩B(Xj,Rj))≠∅ 

)

j∈J2

. 

Notice that B(Xj, Rj) ⊂ Ω ⊂ (⋃ B(𝑥k, rk)
∞
k=1 ). Then for each j ∈ J2, we have 

B(Xj, Rj) ⊂ { ⋃ B(𝑥k, rk)

k∈K2,(B(𝑥k,rk)∩B(Xj,Rj))≠∅

}. 

Since d ∈ (0, 𝑛], by the monotonicity of 𝑙
d

𝑛, we see that 

( ∑ |B(𝑥k, rk)|
d
𝑛 

k∈K2,(B(𝑥k,rk)∩B(Xj,Rj))≠∅ 

) ≥ ( ∑ |B(𝑥k, rk)| 

k∈K2,(B(𝑥k,rk)∩B(Xj,Rj))≠∅ 

)

d
𝑛

≥ |B(Xj, Rj)|
d
𝑛. 

As a consequence, ∑ rk
d∞

k=0 ≳ ∑ rk
d k∈K1 + ∑ Rj

d j∈J2 , which combined with (40) yields that 

H∗
d(Ω) ≤ ∑ rk

d k∈K1 + ∑ (2Rj)
d
 j∈J2 ≲ ∑ rk

d k∈K1 + ∑ Rj
d j∈J2 ≲ ∑ rk

d∞
k=0 ≲ Hd(Ω) . This 

finishes the proof of Lemma (4.2.28). 

As an application of smooth atomic decomposition of AḢp,q
s,τ (ℝ𝑛), we are now going 

to show the trace theorem. For 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑛, we set 𝑥′ ≡ (𝑥1, … , 𝑥𝑛−1) ∈ ℝ

𝑛−1 . 

Theorem (4.2.29) [204]: Let 𝑛 ≥ 2 , p ∈ (1,∞), q ∈ [1,∞) , τ ∈ [0,
𝑛−1

𝑛(p∨q)′
]  and s ∈

(
1

p
+ 2𝑛τ,∞). Then there exists a surjective and continuous operator 

Tr ∶ 𝑓 ∈ AḢp,q
s,τ (ℝ𝑛) ↦ Tr(𝑓) ∈ AḢp,q

s−
1
p
,
𝑛
𝑛−1

τ
(ℝ𝑛−1) 

such that Tr(𝑓)(𝑥′) = 𝑓(𝑥′, 0) for all 𝑥′ ∈ ℝ𝑛−1 and smooth atoms 𝑓 for AḢp,q
s,τ (ℝ𝑛). 

Proof: For similarity, we concentrate on the space BḢp,q
s,τ (ℝ𝑛). By Theorem (4.2.25), any 

𝑓 ∈ BḢp,q
s,τ (ℝ𝑛)  admits a smooth atomic decomposition 𝑓 = ∑ t𝒬𝑎𝒬𝒬∈𝒟(ℝ𝑛)  in 𝒮∞

′ (ℝ𝑛) , 

where each 𝑎𝒬  is a smooth atom for BḢp,q
s,τ (ℝ𝑛)  and t ≡ {t𝒬}𝒬∈𝒟(ℝ𝑛) ⊂ ℂ  satisfies 

‖t‖bḢp,q
s,τ (ℝ𝑛) ≲ ‖𝑓‖BḢp,q

s,τ (ℝ𝑛) . Since s > 1 p⁄ + 2𝑛τ , there is no need to postulate any 

momentcondition on 𝑎𝒬. Define 

Tr(𝑓)(∗′) ≡ ∑ t𝒬𝑎𝒬(∗
′, 0)

𝒬∈𝒟(ℝ𝑛)

= ∑
t𝒬

[ℓ(𝒬)]
1
2

[ℓ(𝒬)]
1
2

𝒬∈𝒟(ℝ𝑛)

𝑎𝒬(∗
′, 0). 

By the support condition of smooth atoms, the above summation can be re-written as 

Tr(𝑓)(∗′) ≡∑ ∑
t
𝒬′×[(𝑖−1)ℓ(𝒬′), 𝑖ℓ(𝒬′))

[ℓ(𝒬′)]
1
2

[ℓ(𝒬′)]
1
2

𝒬′∈𝒟(ℝ𝑛−1)

𝑎
𝒬′×[(𝑖−1)ℓ(𝒬′), 𝑖ℓ(𝒬′))

(∗′, 0)

2

𝑖=0

.        (41) 

We need to show that (41) converges in 𝒮∞
′ (ℝ𝑛−1) and 

‖Tr(𝑓)‖
BḢp,q

s−
1
p,

𝑛
𝑛−1τ

(ℝ𝑛−1)

≲ ‖𝑓‖BḢp,q
s,τ (ℝ𝑛). 
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To this end, by Theorem (4.2.25), it suffices to prove that each 

[ℓ(𝒬′)]
1

2𝑎
𝒬′×[(𝑖−1)ℓ(𝒬′), 𝑖ℓ(𝒬′))

(∗′, 0) is a smooth atom for BḢp,q
s−

1

p
,
𝑛

𝑛−1
τ
(ℝ𝑛−1) supported near 𝒬′ 

and for all 𝑖 ∈ {0, 1, 2}, 

‖{[ℓ(𝒬′)]
1
2t
𝒬′×[(𝑖−1)ℓ(𝒬′), 𝑖ℓ(𝒬′))

}
𝒬′∈𝒟(ℝ𝑛−1)

‖

bḢp,q

s−
1
p
,
𝑛
𝑛−1

τ
(ℝ𝑛−1)

< ∞.                  (42) 

Indeed, it was already proved in [200] that [ℓ(𝒬′)]
1

2𝑎
𝒬′×[(𝑖−1)ℓ(𝒬′), 𝑖ℓ(𝒬′))

(∗′, 0) is a smooth 

atom for BḢp,q
s−

1

p
,
𝑛

𝑛−1
τ
(ℝ𝑛−1) . By similarity, we only prove (42) when = 1 . Let ω  be a 

nonnegative function on ℝ+
𝑛+1 satisfying (27) and 

{
 

 
∑[ ∑ |𝒬|−(

s
𝑛
+
1
2
)p|t𝒬|

p

𝒬∈𝒟(ℝ𝑛)

∫[ω(𝑥, 2−j)]−pd𝑥

𝒬

]

q
p

j∈ℤ
}
 

 

1
q

≲ ‖t‖bḢp,q
s,τ (ℝ𝑛). 

For all λ ∈ (0,∞), set Eλ ≡ {𝑥 ∈ ℝ
𝑛 ∶ [Nω(𝑥)](p∨q)

′
> 𝜆}. Then there exists a ball covering 

{Bm}m of  Eλ such that 

H𝑛τ(p∨q)
′
(Eλ) ∼∑rBm

𝑛τ(p∨q)′

m

,                                                           (43) 

where rBm denotes the radius of Bm. Let H̃𝑛τ(p∨q)
′
 be the (𝑛 − 1)

𝑛τ

𝑛−1
(p ∨ q)′-Hausdorff 

capacity in ℝ𝑛−1  and define ω̃  on ℝ+
𝑛  by setting, for all 𝑥′ ∈ ℝ+

𝑛+1  and t ∈ (0,∞) , 

ω̃(𝑥′, t) ≡ C̃ sup
{𝑥𝑛∈ℝ∶|𝑥𝑛|<𝑡}

ω((𝑥′, 𝑥𝑛), t) , where C̃  is a positive constant chosen so that 

Nω̃(𝑥′) ≤ Nω(𝑥′, 0)  for all 𝑥′ ∈ ℝ𝑛−1 . Therefore, if [Nω̃(𝑥′)](p∨q)
′
> 𝜆 , then 

[Nω(𝑥′, 0)](p∨q)
′
> 𝜆 , and hence (𝑥′, 0) ∈ B𝑚  for some m, which further implies that 

Ẽλ ≡ {𝑥
′ ∈ ℝ𝑛−1: [Nω̃(𝑥′)](p∨q)

′
> 𝜆} ⊂ (⋃ Bm

∗
m ) , where Bm

∗  is the projection of Bm 

from ℝ𝑛 to ℝ𝑛−1. This combined with (43) further yields that 

∫ [Nω̃(𝑥′)](p∨q)
′
dH̃𝑛τ(p∨q)

′
(𝑥′)

ℝ𝑛−1

= ∫ H̃𝑛τ(p∨q)
′
(Ẽλ)dλ

∞

0

≲ ∫ H𝑛τ(p∨q)
′
(Eλ)dλ

∞

0

≲ 1. 

Furthermore, 

‖{[ℓ(𝒬′)]
1
2t
𝒬′×[0, ℓ(𝒬′))

}
𝒬′∈𝒟(ℝ𝑛−1)

‖

bḢp,q

s−
1
p
,
𝑛
𝑛−1

τ
(ℝ𝑛−1)

≲ {∑[ ∑ |𝒬|−sp−
𝑛p
2
+1 |t

𝒬′×[0, ℓ(𝒬′))
|
p

𝒬′∈𝒟j(ℝ
𝑛−1)

∫[ω̃(𝑥′, 2−j)]−pd𝑥′

𝒬′

]

q p⁄

j∈ℤ

}

1 q⁄

≲ {∑[ ∑ |𝒬|−sp−
𝑛p
2 |t

𝒬′×[0, ℓ(𝒬′))
|
p

𝒬′∈𝒟j(ℝ
𝑛−1)

∫[ω(𝑥, 2−j)]−pd𝑥

𝒬

]

q p⁄

j∈ℤ

}

1 q⁄

≲ ‖t‖bḢp,q
s,τ (ℝ𝑛), 

which implies that Tr is well defined and bounded from BḢp,q
s,τ (ℝ𝑛) to BḢp,q

s−
1

p
,
𝑛

𝑛−1
τ
(ℝ𝑛−1). 



140 

Let us show that Tr is surjective. To this end, for any 𝑓 ∈ BḢp,q
s−

1

p
,
𝑛

𝑛−1
τ
(ℝ𝑛−1), by 

Theorem (4.2.25), there exist smooth atoms {𝑎𝒬′}𝒬′∈𝒟(ℝ𝑛−1)
 for BḢp,q

s−
1

p
,
𝑛

𝑛−1
τ
(ℝ𝑛−1)  and 

coefficients t ≡ {t𝒬′}𝒬′∈𝒟(ℝ𝑛−1)
 such that 𝑓 = ∑ t𝒬′𝒬′∈𝒟(ℝ𝑛−1) 𝑎𝒬′  in 𝒮∞

′ (ℝ𝑛−1)  and 

‖t‖
bḢp,q

s−
1
p,

𝑛
𝑛−1τ

(ℝ𝑛−1)

≲ ‖𝑓‖
BḢp,q

s−
1
p,

𝑛
𝑛−1τ

(ℝ𝑛−1)

. Let φ ∈ Cc
∞(ℝ)  with supp φ ⊂ (−

1

2
,
1

2
)  and 

φ(0) = 1. For all 𝒬′ ∈ 𝒟(ℝ𝑛−1) and 𝑥 ∈ ℝ, set φ𝒬′(𝑥) ≡ φ(2
− log2 ℓ(𝒬

′)𝑥). Under this 

notation, we define F ≡ ∑ t𝒬′𝒬′∈𝒟(ℝ𝑛−1) 𝑎𝒬′ ⊗φ𝒬′ . It is easy to check that for all 𝒬′ ∈

𝒟(ℝ𝑛−1) , [ℓ(𝒬′)]−
1

2𝑎𝒬′⊗φ𝒬′  is a smooth atom for BḢp,q
s,τ (ℝ𝑛)  supported near 𝒬′ ×

[0,  ℓ(𝒬′)). Hence, to show F ∈ BḢp,q
s,τ (ℝ𝑛), by Theorem (4.2.25), it suffices to prove that 

‖{[ℓ(𝒬′)]
1
2t𝒬′}

𝒬′∈𝒟(ℝ𝑛−1)

‖

bḢp,q
s,τ (ℝ𝑛)

≲ ‖𝑓‖
BḢp,q

s−
1
p,

𝑛
𝑛−1τ

(ℝ𝑛−1)

. 

Let ω̃ satisfy ∫ [Nω̃(𝑥′)](p∨q)
′
dH̃𝑛τ(p∨q)

′
(𝑥′)

ℝ𝑛−1
≤ 1 and 

{∑[ ∑ |𝒬′|
−(
s−1 p⁄
𝑛−1

+
1
2
)
|t𝒬′|

p

𝒬′∈𝒟j(ℝ
𝑛−1)

∫[ω̃(𝑥′, 2−j)]−pd𝑥′

𝒬′

]

q p⁄

j∈ℤ

}

1 q⁄

≲ ‖t‖
bḢp,q

s−
1
p,

𝑛
𝑛−1τ

(ℝ𝑛−1)

. 

By Lemma (4.2.28), for each λ ∈ (0,∞)  there exists a ball covering {Bm
∗ }m ≡

{B(𝑥Bm∗ , rBm∗ )}m
of Ẽλ ≡ {𝑥

′ ∈ ℝ𝑛−1 ∶ [Nω̃(𝑥′)](p∨q)
′
> 𝜆}  such that 

∑ rBm∗
𝑛τ(p∨q)′

m ~H̃∗
𝑛τ(p∨q)′

(Ẽλ)~H̃
𝑛τ(p∨q)′(Ẽλ)  and that rBm∗ > dist (𝑥Bm∗ , ∂Ẽλ) 10000⁄  for all 

m. For all 𝑥 = (𝑥′, 𝑥𝑛) ∈ ℝ
𝑛  and t ∈ (0,∞), define ω(𝑥, t) ≡ ω̃(𝑥′, t)χ[0,t)(𝑥𝑛). Notice 

that if Nω(𝑥′, 𝑥𝑛) > λ
1

(p∨q)′ , then ω̃(y′, t) = ω((y′, y𝑛), t) > λ
1

(p∨q)′  for some |(y′, y𝑛) −

(𝑥′, 𝑥𝑛)| < 𝑡 and y𝑛 ∈ [0, t). Then Nω̃(y′) > 𝜆
1

(p∨q)′  and thus, y′ ∈ Bm
∗  for some m. Since 

for all z′ ∈ B(y′, t), Nω̃(z′) ≥ ω̃(y′, t) > 𝜆
1

(p∨q)′ , we see that B(y′, t) ⊂ Ẽλ ⊂ (⋃ B𝑚
∗

𝑚 ), 
and hence, t ≤ 10000rBm∗ . Notice that 𝑥𝑛 ∈ [0, t) . We have (𝑥′, 𝑥𝑛) ∈ (20000Bm

∗ ) ×

[0,20000rBm∗ )  and Eλ ⊂ ⋃ (20000Bm
∗ ) × [0,20000rBm∗ )m , which further implies that 

H𝑛τ(p∨q)
′
(Eλ) ≲ ∑ rBm∗

𝑛τ(p∨q)′

m ≲ H̃𝑛τ(p∨q)
′
(Ẽλ) and 

∫[Nω(𝑥′, 𝑥𝑛)]
(p∨q)′dH𝑛τ(p∨q)

′
(𝑥)

ℝ𝑛

= ∫ H𝑛τ(p∨q)
′
(Eλ)dλ

∞

0

≲ ∫ H̃𝑛τ(p∨q)
′
(Ẽλ)dλ

∞

0

≲ ∫ [Nω̃(𝑥′)](p∨q)
′
dH̃𝑛τ(p∨q)

′
(𝑥′)

ℝ𝑛−1

≲ 1. 

Therefore, we have 
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‖{[ℓ(𝒬′)]
1
2t𝒬′}

𝒬′∈𝒟(ℝ𝑛−1)

‖

bḢp,q
s,τ (ℝ𝑛)

≲ {∑[ ∑ [ℓ(𝒬′)]−(
s
𝑛
+
1
2
)p𝑛+

p
2|t𝒬′|

p

𝒬′∈𝒟j(ℝ
𝑛−1)

∫ [ω(𝑥, 2−j)]−pd𝑥′

𝒬′×[0,ℓ(𝒬′))

]

q p⁄

j∈ℤ

}

1 q⁄

≲ {∑[ ∑ |𝒬′|
−(
s−1 p⁄
𝑛−1

+
1
2
)
|t𝒬′|

p

𝒬′∈𝒟j(ℝ
𝑛−1)

∫[ω̃(𝑥′, 2−j)]−pd𝑥′

𝒬′

]

q p⁄

j∈ℤ

}

1 q⁄

≲ ‖t‖
bḢp,q

s−
1
p,

𝑛
𝑛−1τ

(ℝ𝑛−1)

≲ ‖𝑓‖
BḢp,q

s−
1
p,

𝑛
𝑛−1τ

(ℝ𝑛−1)

, 

which implies that F ∈ BḢp,q
s,τ (ℝ𝑛) and ‖F‖BḢp,q

s,τ (ℝ𝑛) ≲ ‖𝑓‖
BḢp,q

s−
1
p,

𝑛
𝑛−1τ

(ℝ𝑛−1)

. Furthermore, the 

definition of F implies Tr(F ) = 𝑓, which completes the proof of Theorem (4.2.29). 

We point out that Theorem (4.2.29) generalizes the corresponding classical results 

on Besov and Triebel-Lizorkin spaces for p ∈ (1,∞) and q ∈ [1,∞) by taking τ = 0; see, 

for example, [7, 17, 106].  
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Chapter 5 

Besov-Morrey Spaces and Characterizations of Besov-Type Spaces 

We obtain the characterization of local means, the boundedness of pseudo-

differential operators and the characterization of the Hardy-Morrey spaces. By using the 

maximal estimate and the molecular decomposition, we shall integrate and extend the 

known results on these spaces. We obtain the local mean characterizations of these 

function spaces via functions satisfying the Tauberian condition and establish a Fourier 

multiplier theorem on these spaces. All these results generalize the existing classical 

results on Besov and Triebel-Lizorkin spaces by taking τ = 0 and are also new even for 𝒬 

spaces and Hardy-Hausdorff spaces. 

Section (5.1): Triebel-Lizorkin-Morrey Spaces 

The well-known two scales of spaces Bpq
s  and Fpq

s  with s ∈ ℝ  and p, q ∈ (0,∞] 

(p < ∞ for the F-scale) on ℝ𝑛 are based on the Lp spaces, that is, they can be regarded as 

variants of the Lp spaces which take into account some smoothness condition. Apq
s , which 

indicates either Bpq
s  or Fpq

s , is applied to various partial differential equations. Recently 

there arose some interest to replace Lp by Morrey spaces ℳq
p
 (see [55, 206, 207]). It is 

Kozono and Yamazaki that initially investigated Besov-Morrey spaces in connection with 

the Navier-Stokes equations. These function spaces are investigated by changing scales or 

extending admissible parameters in [50, 52, 55, 206, 207]. 

Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces are defined as follows: 

let 0 < q ≤ p < ∞ and 0 < r ≤ ∞. Given a sequence of functions {𝑓j}j∈A
 indexed by a 

countable set A, we define 

‖{𝑓j}j∈A
∶ 𝑙r(ℳq

p
 )‖ ≔ ‖𝑓j ∶ 𝑙r(ℳq

p
 , A)‖ ≔ (∑‖𝑓j ∶ ℳq

p
‖
r

j∈A

)

1 r⁄

, 

‖{𝑓j}j∈A
∶ ℳq

p(𝑙r )‖ ≔ ‖𝑓j ∶ ℳq
p(𝑙r , A)‖ ≔ ‖(∑|𝑓j|

r

j∈A

)

1 r⁄

∶ ℳq
p
‖, 

where a natural modification is made if r = ∞. If A = ℕ0 ∶= ℕ ∪ {0}, then we write 

‖𝑓j ∶ 𝑙r(ℳq
p
 )‖ = ‖{𝑓j}j∈A

∶  𝑙r(ℳq
p
 )‖, 

‖𝑓j ∶ ℳq
p(𝑙r )‖ = ‖{𝑓j}j∈A

∶  ℳq
p(𝑙r )‖. 

Given a function 𝓉 ∈ 𝒮  and j ∈ ℕ0 , we define 𝓉j(𝑥) ≔  2j𝑛𝓉(2j𝑥) . If 𝓉 ∈ 𝒮  and 𝑓 ∈ ℱ , 

then we denote 𝓉(D)𝑓 ≔ ℱ−1[𝓉 ∙ ℱ𝑓], where ℱ and ℱ−1 are the Fourier transform and its 

inverse respectively. Pick ψ ∈ 𝒢 so that χB(1) ≤ ψ ≤ χB(2) , where B(r) is the open ball 

centered at the origin and of radius r. In this paper we use Q(r) to denote the closed cube 

centered at the origin and of side length r = Q(r) ≔ {𝑥 ∈ ℝ𝑛:max(|𝑥1|, |𝑥2|,⋯ , |𝑥𝑛|) ≤
r}. Returning to the definition of the function spaces, we define ψ(𝑥) = Ψ(𝑥) and φ(𝑥) =

Ψ(𝑥) − Ψ(2𝑥). Define φj(𝑥) ≔ φ(2−j𝑥) for j ∈ ℕ. Let 0 < q ≤ p < ∞,0 < 𝑟 ≤ ∞ and 

s ∈ ℝ. Then the Besov-Morrey norm and the Triebel-Lizorkin-Morrey norm are given 

respectively as follows: 

‖𝑓 ∶ 𝒩pqr
s ‖:= ‖ψ(D)𝑓 ∶ ℳq

p
‖ + ‖{2jsφj(D)𝑓}j∈ℕ

∶ 𝑙r(ℳq
p
 )‖, 

‖𝑓 ∶ ℰpqr
s ‖:= ‖ψ(D)𝑓 ∶ ℳq

p
‖ + ‖{2jsφj(D)𝑓}j∈ℕ

∶ ℳq
p(𝑙r )‖ 
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for 𝑓 ∈ 𝒮′. To unify the statement in the sequel we use 𝒜pqr
s  to denote either 𝒩pqr

s  or 

ℰpqr
s . From the definition of the Morrey spaces we have 

𝒜ppr
s = 𝒜pr

s , 0 < 𝑝 < ∞, 0 < 𝑟 ≤ ∞, s ∈ ℝ. 

Theorem (5.1.1) [219]: Suppose that 𝑎 ∈ S1δ
0  with 0 ≤ δ < 1. Then 𝑎(𝑥, D), the pseudo-

differential operator with symbol 𝑎, is 𝒜pqr
s -bounded. 

We have the following 

Proposition (5.1.2) [219]: Let the parameters p, q, r, r1, r2, s, ε satisfy 

0 < 𝑞 ≤ p < ∞, 0 < 𝑟, r1, r2 ≤ ∞, s ∈ ℝ, ε > 0. 
Then we have 

1 𝒩pqr1
s+ε ⊂ ℰpqr2

s  and ℰpqr1
s+ε ⊂ 𝒩pqr2

s , 

2 𝒜pqr1
s+ε ⊂ 𝒜pqr2

s , if r1 ≤ r2, 

3 𝒩pqmin(q,r)
s ⊂ ℰpqr

s ⊂ 𝒩pq∞
s . 

Proposition (5.1.3) [219]: The inclusions in Proposition (5.1.2) are strict in the following 

sense: 

1 Suppose that the parameters p, q, r, r0, s satisfy 

0 < 𝑞 < p < ∞, 0 < 𝑟, r0 ≤ ∞, s ∈ ℝ. 
If the continuous embedding ℰpqr

s ⊂ 𝒩pqr0
s  is true, then r0 = ∞. 

2 Suppose that the parameters p, q, s satisfy 0 < 𝑞 ≤ p < ∞, s ∈ ℝ. Then the inclusion 

ℰpq∞
s ⊂ 𝒩pq∞

s  is strict. 

Proposition (5.1.4) [219]: Suppose that the parameters satisfy 

0 < q𝑖  ≤ p𝑖 < ∞, 0 < r𝑖 ≤ ∞, s𝑖 ∈ ℝ. 
and let 𝒩𝑖 ≔𝒩p𝑖q𝑖r𝑖

s𝑖  and ℰ𝑖 ≔ ℰp𝑖q𝑖r𝑖
s𝑖  for 𝑖 = 0, 1. The following are true: 

1 𝒩0 = 𝒩1 if and only if (p0, q0, r0, s0) = (p1, q1, r1, s1), 
2 ℰ0 = ℰ1 if and only if (p0, q0, r0, s0) = (p1, q1, r1, s1), 
3 𝒩0 = ℰ1 if and only if p0 = p1 = q0 = q1 = r0 = r1 and s0 = s1. 

Now we have the following, which will yield a clue to the analysis of Morrey 

spaces in connection with partial differential equations (see [206]). 

Proposition (5.1.5) [219]: ℰpq2
0 = ℳq

p
 with 1 < 𝑞 ≤ p < ∞. 

For example, in [208] some properties connected to partial differential equations 

such as the trace property of Sobolev-Morrey spaces were obtained. 

Following [57], let us define molecules. As usual, for 𝑎 ∈ ℝ𝑛 and 0 < 𝑞, 𝑟 ≤ ∞, we 

define 

〈𝑎〉 ≔ √|𝑎|2 + 1, σq ≔
𝑛

min(1, q)
− 𝑛, σqr ≔

𝑛

min(1, q, r)
− 𝑛. 

Definition (5.1.6) [219]: (Molecule) Let s ∈ ℝ, 0 < q ≤ p < ∞, 0 < 𝑟 ≤ ∞. Fix K, L ∈ ℤ 

such that 

K ≥ (1 + [s])+,    L ≥ max(−1, [σq − s]) 

for the 𝒩-scale and 

K ≥ (1 + [s])+,    L ≥ max(−1, [σqr − s]) 

for the ℰ-scale. A CK-function m is called an (s, p)-molecule for the function space 𝒜pqr
s , 

if the following oscillation and decay conditions hold for some point 𝑥0 ∈ ℝ
𝑛 and 𝜈 ∈ ℤ, 

where M is a sufficiently large constant: 

1 ∫ 𝑥𝛼m(𝑥)d𝑥
ℝ𝑛

= 0  for  |𝛼| ≤ L, 

2 |∂𝛼m(𝑥)| ≤ 2−𝑣(s−𝑛 p⁄ )+𝑣|𝛼|〈2𝑣(𝑥 − 𝑥0)〉
−M−|𝛼|  if  |𝛼| ≤ K. 

Here and below we call m a molecule centered at 𝑥0 and we always assume that 
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M ≥ L +
10𝑛

min(1, q, r)
, 

as we have assumed in [207]. One defines 

Mol0 = {{M𝑣m}𝜈∈ℕ0,m∈ℤ𝑛 ∶ each  M𝑣m is a molecular with  𝑥0 = 2
−𝑣m}. 

Proposition (5.1.7) [219]: (Molecular Decomposition) Suppose that the parameters K, L ∈
ℤ and p, q, r, s ∈ ℝ satisfy 

0 < 𝑞 ≤ p < ∞, 0 < 𝑟 ≤ ∞, K ≥ (1 + [s])+, L ≥ max(−1, [σq − s]) 

for the 𝒩-scale and 

0 < 𝑞 ≤ p < ∞, 0 < 𝑟 ≤ ∞, K ≥ (1 + [s])+, L ≥ max(−1, [σqr − s]) 

for the ℰ-scale. 

1 Assume that {M𝑣m}𝜈∈ℕ0,m∈ℤ𝑛 ∈ Mol0 and λ = {λ𝑣m}𝜈∈ℕ0,m∈ℤ𝑛 ∈ apqr. Then the sum 

𝑓 ≔ ∑ ∑ λ𝑣mM𝑣m
m∈ℤ𝑛𝜈∈ℕ0

 

converges in 𝒮′ and belongs to 𝒜pqr
s  with the norm estimate 

‖𝑓 ∶ 𝒜pqr
s ‖ ≤ c‖λ ∶ apqr‖. 

Here the constant c does not depend on {M𝑣m}𝜈∈ℕ0,m∈ℤ𝑛 nor λ. 

2 Conversely, any 𝑓 ∈ 𝒜pqr
s  admits the following decomposition 

𝑓 ≔ ∑ ∑ λ𝑣mM𝑣m
m∈ℤ𝑛𝜈∈ℕ0

. 

The sum converges in 𝒮′. We can even arrange that {M𝑣m}𝜈∈ℕ0,m∈ℤ𝑛 ∈ Mol0 and that 

the coefficient λ = {λ𝑣m}𝜈∈ℕ0,m∈ℤ𝑛 ∈ apqr fulfills the norm estimate 

‖λ ∶ apqr‖ ≤ c‖𝑓 ∶ 𝒜pqr
s ‖. 

We frequently use the following lemma, which gives us information on the 

coefficients of molecular decomposition. 

Lemma (5.1.8) [219]: Let κ0, κ1 ∈ 𝒮 supported on B(4) and B(8)\B(1) respectively. Set 

κj(𝑥) = κ1(2
−j+1𝑥) for j ≥ 2. Then we have 

‖{2
k(s−

𝑛
p
)
sup
y∈Qkm

|κk(D)𝑓(y)|}
k∈ℕ0,m∈ℤ

𝑛

∶ apqr‖ ≤ c‖𝑓 ∶ 𝒜pqr
s ‖. 

In view of our actual construction, unfortunately the coefficient λ does not depend 

linearly on 𝑓, see [57, 106, 207]. 

We reconsider the local means on 𝒜pqr
s . The local means for 𝒜pq

s  are effective 

equivalent norms for these function spaces dealt with in [56]. However, we had to be 

prudent when we use it: we need to check that the function belongs a priori to the function 

spaces in question. 

Now we shall describe the local means. To do this, we set K(𝑥) = Ψ(𝑥) and k(𝑥) =

∆LΨ(𝑥) with L sufficiently large. In [207] the following assertion was established. 

Theorem (5.1.9) [219]: Let 0 < q ≤ p < ∞ , 0 < r ≤ ∞  and s ∈ ℝ . For L ≫ 1  the 

following are true. 

1 Let us define 

‖𝑓 ∶ 𝒩pqr
s ‖

∗
: = ‖K ∗ 𝑓 ∶ ℳq

p
‖ + ‖{2jskj ∗ 𝑓}j∈ℕ ∶ 𝑙r(ℳq

p
 )‖ 

for  𝑓 ∈ 𝒮′. Then 

‖𝑓 ∶ 𝒩pqr
s ‖

∗
≤ c‖𝑓 ∶ 𝒩pqr

s ‖ 

for all 𝑓 ∈ 𝒮′. Furthermore, if 𝑓 ∈ 𝒩pqr
s . Then we have 

‖𝑓 ∶ 𝒩pqr
s ‖ ≤ c‖𝑓 ∶ 𝒩pqr

s ‖
∗
 



145 

for some constant c > 0  independent of 𝑓. 

2 Let us define 

‖𝑓 ∶ ℰpqr
s ‖

∗
: = ‖K ∗ 𝑓 ∶ ℳq

p
‖ + ‖{2jskj ∗ 𝑓}j∈ℕ ∶ ℳq

p(𝑙r )‖ 

for  𝑓 ∈ 𝒮′. Then 

‖𝑓 ∶ ℰpqr
s ‖

∗
≤ c‖𝑓 ∶ ℰpqr

s ‖ 

or all 𝑓 ∈ 𝒮′. Furthermore, if 𝑓 ∈ ℰpqr
s . Then we have 

‖𝑓 ∶ ℰpqr
s ‖ ≤ c‖𝑓 ∶ ℰpqr

s ‖
∗
 

for some constant c > 0  independent of 𝑓. 

Proposition (5.1.10) [219]: Let K ∈ ℕ0  and 0 < 𝑞 ≤ p < ∞ . Suppose that A  is a CK -

function with compact support. Then 𝑎 ∈ 𝒩pq∞
K . In particular if K > s, 0 < 𝑟 ≤ ∞, then 

we have 𝑎 ∈ 𝒜pqr
s . 

Proof: By virtue of the equivalent norm 

‖𝑎 ∶ 𝒩pq∞
K ‖ ≃ ‖𝑎 ∶ 𝒩pq∞

0 ‖ +∑‖∂j
K𝑎 ∶ 𝒩pq∞

0 ‖

𝑛

j=1

, 

(see [207]) we can assume K = 0. Since the family {kj ∗ 𝑎}j∈ℕ  is supported on a fixed 

compact set, owing to the fact that 

ℳq0

p0 ∩ {𝑓 ∶ supp(𝑓) ⊂ B(R)} ⊃ ℳq1

p1 ∩ {𝑓 ∶ supp(𝑓) ⊂ B(R)} 

for all 0 < q0 ≤ p0 < q1 ≤ p1 < ∞ and R >  0 we see, by using the local means, the 

matter is reduced to the case when 1 < 𝑞 ≤ p < ∞. In this case 

‖𝑎 ∶ 𝒩pq∞
K ‖ = ‖𝑎 ∶ 𝒩pq∞

0 ‖ ≤ c‖𝑎 ∶ ℰpq2
0 ‖ ≤ c‖𝑎 ∶ ℳq

p
‖ < ∞ 

and the proof of the first statement is now complete. The second assertion follows from the 

embedding 𝒜pqr
s ⊃ 𝒩pq∞

K , which follows from Proposition (5.1.2). 

Definition (5.1.11) [219]: Let j ∈ ℕ and A > 0. Then define 

ℳA,j𝑓(𝑥) ≔ sup
y∈ℝ𝑛

𝑙≥j

2A(j−𝑙)〈2jy〉−A|k𝑙 ∗ 𝑓(𝑥 − y)|, 

ℳA,0𝑓(𝑥) ≔ ℳA,1𝑓(𝑥) + sup
y∈ℝ𝑛

〈y〉−A|K ∗ 𝑓(𝑥 − y)| 

for 𝑓 ∈ 𝒮′. Also define 

ℳA,j; η𝑓(𝑥) ≔ (ℳA,j𝑓(𝑥))
η

 

for A, η > 0 and j ∈ ℕ0. 

For s ∈ ℝ, we denote s− ≔ −min(s, 0). 
Proposition (5.1.12) [219]: Let 0 < 𝑞 ≤ p < ∞, 0 < 𝑟 ≤ ∞ and s ∈ ℝ. 

1 If A > −s− +
𝑛

min(1,q)
, then we have 

‖{2jsℳA,j𝑓}j∈ℕ0
∶ 𝑙r(ℳq

p
 )‖ ≤ c‖𝑓 ∶ 𝒩pqr

s ‖
∗
 

for all 𝑓 ∈ 𝒮′. 
2 If A > −s− +

𝑛

min(1,q,r)
, then we have 

‖{2jsℳA,j𝑓}j∈ℕ0
∶ ℳq

p(𝑙r )‖ ≤ c‖𝑓 ∶ ℰpqr
s ‖

∗
 

for all 𝑓 ∈ 𝒮′. 
Proof: The proof is identical to [213] except in that we use the Hardy norm. Here, for the 

sake of convenience for readers, we include the proof. Let j ∈ ℕ. The term for j = 0 can be 

readily incorporated afterward. Therefore, we shall consider ℳA,j𝑓  with j ∈ ℕ . 

Furthermore, we shall prove (ii), the proof of (i) being simpler. 
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Choose ζ, θ ∈ 𝒟 so that 

ζ ∙ ℱK +∑θ(2−𝑙 ∗) ∙ ℱ[k𝑙]

∞

𝑙=0

≡ 1,    0 ∉ supp(θ).                                     (1) 

Note that ℱ−1θ has vanishing moment of infinite order. Then we have 

kj ∗ 𝑓 = (2π)
𝑛
2 (Kj ∗ (ℱ−1ζ)j ∗ kj ∗ 𝑓 + ∑ kj ∗ (ℱ−1θ)𝑙 ∗ k𝑙 ∗ 𝑓

∞

𝑙=j+1

). 

Let L ≫ 1, where L is a number appearing in the definition of k ∶ k = ΔLΨ. Note that 

ℱ[kj ∗ (ℱ−1θ)𝑙](𝑥) = (2π)
𝑛
2 = ℱk(2−j𝑥)θ(2−𝑙𝑥) 

and that k has vanishing moment up to order [A] + 1. Hence, for every α ∈ ℕ0
𝑛 and M ∈

ℕ, there exists cα,M independent of 𝑙 and m such that 

|∂𝛼ℱ[kj ∗ (ℱ−1θ)𝑙](𝑥)| ≤ cα,M2
([A]+1)(j−𝑙)+j𝑛〈2j𝑥〉−M. 

Hence it follows that 

|kj ∗ (ℱ−1θ)𝑙(𝑥)| ≤ cK2
([A]+1)(j−𝑙)+j𝑛〈2k𝑥〉−K. 

We remark that this technique was due to Rychkov [213]. As a result, we obtain 

|kj ∗ (ℱ−1θ)𝑙 ∗ k𝑙 ∗ 𝑓(𝑥)| ≤ c2A(j−𝑙)+j𝑛∫
|k𝑙 ∗ 𝑓(𝑥 − y)|

〈2jy〉A
dy

ℝ𝑛
. 

for all A > 0. A similar calculation works for the first term, namely, Kj ∗ (ℱ−1ζ)j ∗ kj ∗ 𝑓, 

and we obtain 

|kj ∗ 𝑓(𝑥)| ≤ c∑2A(j−𝑙)+𝑙𝑛
∞

𝑙=j

∫
|k𝑙 ∗ 𝑓(𝑥 − y)|

〈2jy〉M
dy

ℝ𝑛
. 

Now we invoke this pointwise estimate. From this estimate we deduce 

ℳA,j𝑓(𝑥) = sup
y∈ℝ𝑛

𝑙≥j

2A(j−𝑙)|k𝑙 ∗ 𝑓(𝑥 − y)|

〈2jy〉A

≤ c sup
y∈ℝ𝑛

𝑙≥j

∑2A(j−𝑙)+A(𝑙−𝑚)+m𝑛
∞

m=𝑙

∫
|km ∗ 𝑓(𝑥 − y − z)|

〈2jy〉A〈2𝑙z〉A
dz

ℝ𝑛

= c sup
y∈ℝ𝑛

∑2A(j−m)+m𝑛
∞

m=j

∫
|km ∗ 𝑓(𝑥 − y − z)|

〈2jy〉A〈2jz〉A
dz

ℝ𝑛
. 

By virtue of the Peetre inequality 〈y + z〉 ≤ √2〈y〉〈z〉  and by changing variables, we 

obtain 

|kj ∗ 𝑓(𝑥)| ≤ ℳA,j𝑓(𝑥) ≤ c∑2A(j−m)+m𝑛
∞

m=j

∫
|km ∗ 𝑓(𝑥 − z)|

〈2jz〉A
dz

ℝ𝑛
.                       (2) 

Let us choose η > 0 so that 
(A + s)η > 𝑛, Aη > 𝑛, 0 < 𝜂 < min(1, q, r) , 

which is possible by assumption. From the definition of the maximal operator ℳA,j𝑓(𝑥) 

and the above inequality we deduce 

ℳA,m𝑓(𝑥) ≤ cℳA,m;1−η𝑓(𝑥)∑2Aη(m−𝑙)+𝑙𝑛
∞

𝑙=m

∫
|k𝑙 ∗ 𝑓(𝑥 − z)|η

〈2mz〉Aη
dz

ℝ𝑛
.                    (3) 

Here the constant c depends on A. Therefore, if we assume that ℳA,m𝑓(𝑥) < ∞, then we 

obtain from (3) 
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ℳA,m;η𝑓(𝑥) ≤ c∑2(m−𝑙)(Aη−𝑛)+m𝑛
∞

𝑙=m

∫
|k𝑙 ∗ 𝑓(𝑥 − z)|η

〈2mz〉Aη
dz

ℝ𝑛
.                          (4) 

By using the Torchinsky technique [214], Rychkov observed that (4) is still the case if we 

do not assume ℳA,m𝑓(𝑥) < ∞. To establish this, let us assume that the right-hand side of 

(4) is finite. Since 𝑓 ∈ 𝒮′, we see that there exists A𝑓 such that 

ℳA,m𝑓(𝑥) < ∞, 𝑥 ∈ ℝ𝑛 

for all A ≥ A𝑓 and m ∈ ℕ0. Note that c in (4) depends implicitly on A. Therefore, for all 

𝑓 ∈ 𝒮′, there exists c𝑓 > 0 depending on 𝑓 such that 

|kj ∗ 𝑓(𝑥)|
η
≤ c𝑓∑2(m−𝑙)(Aη−𝑛)+m𝑛

∞

𝑙=m

∫
|k𝑙 ∗ 𝑓(𝑥 − z)|η

〈2mz〉A𝑓η
dz

ℝ𝑛
.                         (5) 

Since the right-hand side of (4) is decreasing with respect to A, we see that (5) is valid if 

we replace A𝑓 with any positive number A less than A𝑓. Let A ≤ A𝑓. Then we have 

ℳA,m;η𝑓(𝑥) = sup
y∈ℝ𝑛,𝑙∈ℤ∶𝑙≥m

2Aη(m−𝑙)
|k𝑙 ∗ 𝑓(𝑥 − y)|η

〈2my〉Aη

≤ c𝑓 sup
y∈ℝ𝑛,𝑙∈ℤ∶𝑙≥m

∑2(m−𝑖)(Aη−𝑛)+m𝑛
∞

𝑖=𝑙

∫
|k𝑖 ∗ 𝑓(𝑥 − y − z)|

η

〈2my〉Aη〈2𝑙z〉Aη
dz

ℝ𝑛

≤ c𝑓 sup
y∈ℝ𝑛

∑ 2(m−𝑖)(Aη−𝑛)+m𝑛
∞

𝑙∈ℤ∶𝑖=𝑙

∫
|k𝑖 ∗ 𝑓(𝑥 − y − z)|

η

〈2my〉Aη〈2mz〉Aη
dz

ℝ𝑛

≤ c𝑓 sup
y∈ℝ𝑛

∑2(m−𝑙)(Aη−𝑛)+m𝑛
∞

𝑙=m

∫
|k𝑙 ∗ 𝑓(𝑥 − y − z)|η

〈2m(y + z)〉Aη
dz

ℝ𝑛
< ∞, 

because we are assuming the right-hand side of (4) is finite. Returning to (3), we obtain (4) 

for all 𝑓 ∈ 𝒮′. By using the Hardy-Littlewood maximal operator M, we have 

2jsηℳA,m;η𝑓(𝑥) ≤ c∑2(m−𝑙)((A+s)η−𝑛)M[|2𝑙sk𝑙 ∗ 𝑓|η](𝑥)

∞

𝑙=m

. 

By the Fefferman-Stein maximal inequality for the Morrey spaces (see [54] or [55]), we 

obtain the desired result. 

Corollary (5.1.13) [219]: Retain the same condition as Proposition (5.1.12). 

1 If A > −s− +
𝑛

min(1,q)
, then we have 

‖sup
z∈ℝ𝑛

〈z〉−A|K ∗ 𝑓(∗ −z)| ∶ ℳq
p
‖ + ‖sup

z∈ℝ𝑛
2js〈2jz〉−A|kj ∗ 𝑓(∗ −z)| ∶ 𝑙r(ℳq

p
)‖ 

is dominated by ‖𝑓 ∶ 𝒩pqr
s ‖

∗
 for all 𝑓 ∈ 𝒮′. 

2 If A > −s− +
𝑛

min(1,q,r)
, then we have 

‖sup
z∈ℝ𝑛

〈z〉−A|K ∗ 𝑓(∗ −z)| ∶ ℳq
p
‖ + ‖sup

z∈ℝ𝑛
2js〈2jz〉−A|kj ∗ 𝑓(∗ −z)| ∶ ℳq

p(𝑙r )‖ 

is dominated by ‖𝑓 ∶ ℰpqr
s ‖

∗
for all 𝑓 ∈ 𝒮′. 

Theorem (5.1.14) [219]: Let 0 < 𝑞 ≤ p < ∞, 0 < 𝑟 ≤ ∞ and s ∈ ℝ. Then there exists a 

constant c > 0 such that 

c−1‖𝑓 ∶ 𝒜pqr
s ‖ ≤ ‖𝑓 ∶ 𝒜pqr

s ‖
∗
≤ c‖𝑓 ∶ 𝒜pqr

s ‖ 

for all  𝑓 ∈ 𝒮′. 
Proof: From Theorem (5.1.9) it suffices to show the right inequality. Pick ζ, η ∈ 𝒟 so that 
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ζ ∙ ℱ𝑙 + ∑ η(2−m ∗) ∙ ℱkm
∞

m=0

≡ 1,    0 ∉ supp(η). 

Note that ℱ−1η  has vanishing moment up to order L , since 0 ∉ supp(η) . From this 

formula, we deduce 

2js[ℱ−1φj] ∗ 𝑓 = (2𝜋)
n
22js[ℱ−1φj] ∗ 𝑙

j ∗ ζj ∗ 𝑓 + (2π)
𝑛
2 ∑ 2js[ℱ−1φj] ∗ (ℱη)

j ∗ kj ∗ 𝑓

∞

m=j+1

. 

Observe that 

|[ℱ−1φj] ∗ (ℱη)
j(𝑥)| ≤ c2j𝑛+L(j−m)〈2j𝑥〉−A, 

where A satisfies the same condition as Corollary (5.1.13). Therefore, it follows that 

|2js[ℱ−1φj] ∗ (ℱη)
m ∗ km ∗ 𝑓(𝑥)| ≤ c2js∫ |[ℱ−1φj] ∗ (ℱη)

m(y)| ∙ |km ∗ 𝑓(𝑥 − y)|dy
ℝ𝑛

≤ (sup
z∈ℝ𝑛

〈2mz〉−A|km ∗ 𝑓(𝑥 − z)|) ∙ (2js∫ |[ℱ−1φj] ∗ (ℱη)
m(y)| ∙ 〈2my〉Ady

ℝ𝑛
)

≤ c2−(s+A−L)(m−j) sup
z∈ℝ𝑛

〈2mz〉−A|2smkm ∗ 𝑓(𝑥 − z)|, 

if m ≥ j. Therefore, if we let L > A + s, then this inequality is summable. Hence, we 

obtain the desired result by Corollary (5.1.13). 

Now we deal with pseudo-differential operators.  

First, we deal with the class S1δ
m  with 0 ≤ δ ≤ 1. 

Let 0 ≤ ρ, δ ≤ 1. 𝑎 ∈ C∞(ℝ𝑛 × ℝ𝑛) is said to be Sρ,δ
m , if for all α, β ∈ ℕ0

𝑛, 

sup
𝑥,ξ∈ℝ𝑛

|∂𝑥
β
∂ξ
α𝑎(𝑥, ξ)|〈ξ〉−m+ρ|β|−δ|α| < ∞. 

Let 𝑎 ∈ Sρ,δ
m  with m ∈ ℝ  and 0 ≤ ρ, δ ≤ 1 . One defines a continuous linear 

mapping 𝑎(𝑥, D) ∶ 𝒮 → 𝒮 by 

𝑎(𝑥, D)𝑓(𝑥) ≔
1

(2π)
𝑛
2

∫ e𝑖𝑥∙ξ𝑎(𝑥, ξ)ℱ𝑓( ξ)dξ
ℝ𝑛

. 

By duality this mapping extends to a continuous mapping from 𝒮′ to 𝒮′(see [216]). 

Theorem (5.1.15) [219]: Let 0 < 𝑞 ≤ p < ∞, 0 < 𝑟 ≤ ∞, m ∈ ℝ and 𝑎 ∈ S1,1
m . 

1 If s > σq, then there exists c > 0 such that 

‖𝑎(𝑥, D)𝑓 ∶ 𝒩pqr
s ‖ ≤ c‖𝑓 ∶ 𝒩pqr

s+m‖. 

2 If s > σqr, then there exists c > 0 such that 

‖𝑎(𝑥, D)𝑓 ∶ ℰpqr
s ‖ ≤ c‖𝑓 ∶ ℰpqr

s+m‖. 

Proof: Let us pick auxiliary functions ψ,φ, κ ∈ 𝒮 with the following conditions. 

1 χQ(1) ≤ ψ ≤ χQ(2); 

2 φ(𝑥) = ψ(𝑥) − ψ(2𝑥); 
3 χQ(2) ≤ κ ≤ χQ(3). 

We consider 𝑎(𝑥, D)(1 − ψ(D))𝑓 because 𝑎(𝑥, D)ψ(D)𝑓 can be dealt with in a similar 

way. 

Let us consider (1 − ψ) ∙ ℱ𝑓 = ∑ φj ∙ ℱ𝑓
∞
j=1 . Expand φj ∙ ℱ𝑓 into a Fourier series 

φj ∙ ℱ𝑓 = ∑
φj(D)𝑓(2

−jm)

(2π)
𝑛
2 ∙ 2j𝑛m∈ℤ𝑛

κj exp(−i2
−jm ∙ ∗), 

where κj(𝑥) = κ(2
−j𝑥) for j ∈ ℕ. From this we have 

𝑎(𝑥, D)[(1 − ψ(D))𝑓](𝑥) =∑ ∑
φj(D)𝑓(2

−jm)

(2π ∙ 2j)𝑛
m∈ℤ𝑛

∫ 𝑎(𝑥, ξ)κj(ξ) exp(i(𝑥 − 2
−jm) ∙  ξ) dξ

ℝ𝑛

∞

j=1

. 
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The Leibniz rule gives us that 

∂𝑥
𝛼∫ 𝑎(𝑥, ξ)κj(ξ) exp(i(𝑥 − 2

−jm) ∙  ξ) dξ
ℝ𝑛

=∑c𝛼β∫ [∂𝑥
β
𝑎(𝑥, ξ)]κj(ξ)(𝑖ξ)

𝛼−β exp(i(𝑥 − 2−jm) ∙  ξ) dξ
ℝ𝑛β≤𝛼

 

and κ does not contain 0 as its support, where c𝛼β is the binomial coefficient. If we carry 

out integration by parts, then we obtain 

2−j(s+m)∫ 𝑎(𝑥, ξ)κj(ξ) exp(i(𝑥 − 2
−jm) ∙  ξ) dξ

ℝ𝑛
 

is a molecule in 𝒜pqr
s . Together with Lemma (5.1.8) we obtain the desired result. 

A passage to the general case can be achieved by the following well-known lemma 

(see [216]). 

Lemma (5.1.16) [219]: Let 0 ≤ δ < 1, 𝑎 ∈ S1δ
0  and N ∈ ℕ. Then there exists b ∈ S1δ

0  such 

that 

𝑎(𝑥, D) = (1 − ∆)N ∘ b(𝑥, D) ∘ (1 − ∆)−N. 

Corollary (5.1.17) [219]: Let 0 < 𝑞 ≤ p < ∞, 0 < 𝑟 ≤ ∞, s,m ∈ ℝ, 0 ≤ δ < 1, 𝑎 ∈ S1δ
0 . 

Then there exists c > 0 such that 

‖𝑎(𝑥, D)𝑓 ∶ 𝒜pqr
s ‖ ≤ c‖𝑓 ∶ 𝒜pqr

s+m‖. 

Definition (5.1.18) [215]: Let 0 ≤ δ ≤ 1 and 𝑙 > 0. One defines 

C∗
𝑙S1δ
m ≔ {p ∶ ℝ𝑛 × ℝ𝑛 → ℂ ∶ p(𝑥,∗) ∈ C∞, 𝑥 ∈ ℝ𝑛  and ‖p ∶ C∗

𝑙S1δ
m ‖∗ < ∞}, 

where 

‖p ∶ C∗
𝑙S1δ
m ‖∗ ≔ sup

ξ∈ℝ𝑛
〈ξ〉−m+|𝛼|−𝑙δ‖∂ξ

αp(∗, ξ) ∶ C∗
𝑙‖ + sup

ξ∈ℝ𝑛
〈ξ〉−m+|𝛼|‖∂ξ

αp(∗, ξ) ∶ L∞‖. 

An elementary symbol is an expression of the form 

σ(𝑥, ξ) =∑σj(𝑥)ψj(ξ)

∞

j=1

, 

where ψj(ξ) = ψ1(2
−j+1ξ) for j ∈ ℕ and ψ1 is a compactly supported function such that ψ1 

is not supported on the origin. Furthermore, 

sup
j∈ℕ

2−jm‖σj ∶ L
∞‖ + 2−j(m+𝑙δ)‖σj ∶ C∗

𝑙‖ < ∞. 

Proposition (5.1.19) [41]: Let 𝑓 ∈ L∞  such that supp(ℱ𝑓) ⊂ B(R) . Then for all η > 0, 

there exists c > 0 such that there holds 

sup
y∈ℝ𝑛

|𝑓(𝑥 − y)|

〈Ry〉𝑛 η⁄
< cM[|𝑓|η](𝑥)1 η⁄  

for every 𝑥 ∈ ℝ𝑛. 

Theorem (5.1.20) [219]: Suppose that the parameters p, q, r, s, 𝑙, δ satisfy 

0 < 𝑠 < 𝑙, 1 ≤ q ≤ p < ∞, 1 ≤ r ≤ ∞, 0 ≤ δ ≤ 1 

and that 𝑎 ∈ C𝑙
∗S1δ
0 . Then there exists c > 0 such that 

‖𝑎(𝑥, D)𝑓 ∶ 𝒜pqr
s ‖ ≤ c‖𝑓 ∶ 𝒜pqr

s+m‖. 

Proof: Let us concentrate on the case when 𝒜 = ℰ, the case when 𝒜 = 𝒩 is simpler. 

Note that (1 − ∆)
m

2  is an isomorphism that composes well with pseudo-differential 

operators. Therefore, it is enough to examine the case m = 0. Let 𝑓 ∈ ℰpqr
s  and 𝑎 be an 

elementary form as in [215]. Any symbol in C𝑙
∗S1δ
0  can be approximated by elementary 

symbols. Therefore, it is sufficient to investigate the case when 𝑎 is an elementary form: 
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𝑎(𝑥, ξ) =∑σj(𝑥)φj(ξ)

∞

j=1

. 

Define qjk = φk(D)σj. Then we have 

‖qjk‖∞
≤ c2(j−k)𝑙 .                                                                 (6) 

As a consequence, we obtain q(𝑥, D)𝑓(𝑥) = ∑ qjk(𝑥) ∙ φj(D)𝑓(𝑥)j∈ℕ,k∈ℕ0 .We decompose 

q(𝑥, D)𝑓 into three pieces. Let us set 

q1(𝑥, D)𝑓 ≔∑(∑qjk

j−4

 k=0

)φj(D)𝑓

∞

j=4

,                

q2(𝑥, D)𝑓 ≔∑( ∑ qjk

j+3

 k=max(j−3,0)

)φj(D)𝑓

∞

j=0

, 

q3(𝑥, D)𝑓 ≔∑( ∑ qjk

∞

 k=j+4

)φj(D)𝑓

∞

j=0

.            

The estimate of q2(𝑥, D)𝑓 is simple. Choose an auxiliary function κ ∈ 𝒮 so that χQ(3) ≤

κ ≤ χQ(π). Then we have 

‖∂𝛼 ( ∑ qjk

j+3

 k=max(j−3,0)

)‖

∞

≤ c2j|𝛼| ‖( ∑ qjk

j+3

 k=max(j−3,0)

)‖

∞

≤ c2j|𝛼|. 

Here we have used Proposition (5.1.19) for the first inequality and for the second 

inequality we have used (6) and the fact that at most 7 terms are involved. Therefore, 

q2(𝑥, D)𝑓 ≔∑ ∑ φj(D)𝑓(2
−jm)( ∑ qjk

j+3

 k=max(j−3,0)

)

m∈ℤ𝑛

ℱ−1κ(2j ∗ −m)

∞

j=0

 

can be regarded as a molecular decomposition and hence we conclude that q2(𝑥, D) is 

bounded from 𝒜pqr
s  to itself. 

The first piece is treated in a spirit similar to [41]. We shall make use of the fact that 

supp(𝑓 ∗ g) ⊂ supp(𝑓) + supp(g)  for all compactly supported distributions 𝑓, g ∈ 𝒮′ , 

where the right-hand side denotes the algebraic sum. Note that (∑ qjk
j−4
 k=0 )φj(D)𝑓  is 

concentrated on B(2j+3)\B(2j−3) in frequency. Hence it follows that 

‖q1(𝑥, D)𝑓 ∶ ℰpqr
s ‖ ≤ c‖2js ( ∑ qjk

max(j−4,0)

 k=0

)φj(D)𝑓 ∶ ℳq
p(𝑙r )‖

≤ c(sup
j∈ℕ0

‖ ∑ qjk

max(j−4,0)

 k=0

‖

∞

)‖2jsφj(D)𝑓 ∶ ℳq
p(𝑙r )‖

≤ c(sup
j∈ℕ0

( ∑ ‖qjk‖∞

max(j−4,0)

 k=0

))‖2jsφj(D)𝑓 ∶ ℳq
p(𝑙r )‖

≤ c (sup
j∈ℕ0

‖σj‖∞
) ‖2jsφj(D)𝑓 ∶ ℳq

p(𝑙r )‖ ≤ c‖𝑓 ∶ ℰpqr
s ‖. 

Let us turn to the estimate of q3(𝑥, D). Let us rewrite 
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q3(𝑥, D)𝑓(𝑥) ≔∑(∑qjk(𝑥)

k−4

 j=0

)φj(D)𝑓(𝑥)

∞

k=4

, 

where the change of order of the summation will be justified below. Note that the 

frequency support of ∑ qjk(𝑥) ∙ φj(D)𝑓(𝑥)
k−4
 j=0  is concentrated on B(2k+3)\B(2k−3). As a 

result, we obtain 

‖q3(𝑥, D)𝑓 ∶ ℰpqr
s ‖ ≤ c‖{2ks∑qjk

k−4

 j=0

∙ φj(D)𝑓}

k=4

∞

∶ ℳq
p(𝑙r )‖

≤ c‖{∑2(k−j)(s−𝑙)
k−4

 j=0

∙ 2js|φj(D)𝑓|}

k=4

∞

∶ ℳq
p(𝑙r )‖ ≤ c‖𝑓 ∶ ℰpqr

s ‖, 

where we have used the fact that s < 𝑙 for the second inequality. This is the desired result. 

Now we are going to characterize ℰpq2
0  and its homogeneous counterpart. Assume 

that ψ is a non-degenerate function in the sense that 

∫ψ ≠ 0.                                                                           (7) 

Definition (5.1.21) [219] (Hardy-Morrey Spaces): Let 0 < 𝑞 ≤ p < ∞. Then define 

‖𝑓 ∶ Hℳq
p
‖ ≔ ‖sup

j∈ℤ
|ψj ∗ 𝑓| ∶ ℳq

p
‖ , ‖𝑓 ∶ hℳq

p
‖ ≔ ‖sup

j∈ℕ0

|ψj ∗ 𝑓| ∶ ℳq
p
‖ 

for 𝑓 ∈ 𝒮′. Hℳq
p
 (resp.  hℳq

p
) is a set of all tempered distributions 𝑓 ∈ 𝒮′ for which the 

quasi-norm ‖𝑓 ∶ Hℳq
p
‖ (resp.  ‖𝑓 ∶ hℳq

p
‖)  is finite. Hℳq

p
 is the homogeneous Hardy-

Morrey space and hℳq
p
 is the nonhomogeneous Hardy-Morrey space. If we invoke the 

fact that the maximal operator M is bounded from ℳq
p
 to itself whenever 1 < 𝑞 ≤ p < ∞, 

then we obtain 

Hℳq
p
≃ hℳq

p
≃ℳq

p
 

with norm equivalence. 

We use the homogeneous norms to formulate our results: 

‖𝑓 ∶ 𝒩̇pqr
s ‖ ≔ ‖2jsφj(D)𝑓 ∶ 𝑙r(ℳq

p
, ℤ)‖ = (∑ 2jrs‖φj(D)𝑓 ∶ ℳq

p
‖
r

∞

j=−∞

)

1 r⁄

, 

‖𝑓 ∶ ℰ̇pqr
s ‖ ≔ ‖2jsφj(D)𝑓 ∶ ℳq

p(𝑙r, ℤ)‖ = ‖(∑ 2jrs|φj(D)𝑓|
r

∞

j=−∞

)

1 r⁄

∶ ℳq
p
‖. 

Unlike the nonhomogeneous version, we need to consider these norms modulo the set of 

all polynomials 𝒫 (see [106]). 

Note we assume that ψ ∈ 𝒮 is a non-degenerate function in the sense that ∫ψ ≠ 0. 

Define φ(𝑥) ∶= 2𝑛ψ(2𝑥) − ψ(𝑥). 
Lemma (5.1.22) [219]: Let ψ ∈ 𝒮  and L ∈ ℕ0  be given. Define φ(𝑥) ∶= 2𝑛ψ(2𝑥) −
ψ(𝑥). Then there exist ψ̃, φ̃ ∈ 𝒮 such that 

ψ̃ ∗  ψ +∑φ̃j ∗ φj
∞

j=0

= δ 

and that φ̃ has vanishing moment up to order L. 
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Proof: The proof can be obtained with a minor modification of the results due to Rychkov 

(see [218]), where Rychkov used 𝒟 instead of 𝒮. 

Theorem (5.1.23) [219]: Let 0 < 𝑞 ≤ p < ∞ . Then the sets Hℳq
p

 and hℳq
p

 are 

independent of the choices of admissible ψ satisfying (7). 

Proof: for Hℳq
p
 The following theorem asserts more than Theorem (5.1.23). To formulate 

the stronger result, for N ∈ ℕ we set 

pN(ζ) ≔ ∑ sup
𝑥∈ℝ𝑛

〈𝑥〉N |∂𝛼ζ(𝑥)|

|𝛼|≤N

, ζ ∈ 𝒮 

Note that {pN}N∈ℕ topologizes 𝒮. 

Theorem (5.1.24) [219]: Let 0 < 𝑞 ≤ p < ∞ . Assume that ψ ∈ 𝒮  satisfies the non-

degenerate condition ∫ψ ≠ 0. Then there exist N ∈ ℕ and c > 0 such that 

‖ sup
ζ∈BpN

(1)
(sup
j∈ℤ
|ζj ∗ 𝑓|) ∶ ℳq

p
‖ ≤ c‖sup

j∈ℤ
|ψj ∗ 𝑓| ∶ ℳq

p
‖, 

where BpN(1) ≔ {ζ ∈ 𝒮 ∶ pN(ζ) < 1}. 

Proof: Fix ζ ∈ BpN(1) and j ∈ ℤ . Then there exist ψ̃, φ̃ ∈ 𝒮  such that φ̃  has vanishing 

moment up to order L with L large enough and that 

ψ̃ ∗  ψ +∑φ̃𝑙 ∗ φ𝑙
∞

𝑙=0

= δ 

by virtue of Lemma (5.1.22). Using this formula, we obtain 

|ζj ∗ 𝑓(𝑥)| ≤ |ζj ∗ ψ̃j ∗ ψj ∗ 𝑓(𝑥)| +∑|ζj ∗ φ̃j+𝑙 ∗ φj+𝑙 ∗ 𝑓(𝑥)|

∞

𝑙=0

. 

Let us set 

φj+𝑙,∗𝑓(𝑥) ≔ sup
y∈ℝ𝑛

〈2j+𝑙y〉−
𝑛
r |φj+𝑙 ∗ 𝑓(𝑥 − y)|, 

ψj+𝑙,∗𝑓(𝑥) ≔ sup
y∈ℝ𝑛

〈2j+𝑙y〉−
𝑛
r |ψj+𝑙 ∗ 𝑓(𝑥 − y)| 

for j, 𝑙 ∈ ℕ0 and 0 < 𝑟 ≪  1. Then we have 

|ζj ∗ φ̃j+𝑙 ∗ φj+𝑙 ∗ 𝑓(𝑥)| ≤ ∫ |ζj ∗ φ̃j+𝑙(y)| ∙ |φj+𝑙 ∗ 𝑓(𝑥 − y)|dy
ℝ𝑛

≤ φj+𝑙,∗𝑓(𝑥)∫ |ζj ∗ φ̃j+𝑙(y)| ∙ 〈2j+𝑙y〉
𝑛
rdy

ℝ𝑛
= φj+𝑙,∗𝑓(𝑥)∫ |ζ ∗ φ̃𝑙(y)| ∙ 〈2𝑙y〉

𝑛
rdy

ℝ𝑛
. 

Now that φ̃  has vanishing moment up to order L , we have |ℱφ̃(𝑥)| ≤ c|𝑥|L . 

Therefore, it follows that 

|ζ ∗ φ̃𝑙(y)| ≤ c2−L𝑙〈y〉−𝑛(1+
1
r
)−1. 

Inserting this estimate, we obtain 

|ζj ∗ φ̃j+𝑙 ∗ φj+𝑙 ∗ 𝑓(𝑥)| ≤ c2−(L−
𝑛
r
)𝑙φj+𝑙,∗𝑓(𝑥).                                        (8) 

Since φ = ψ1 −ψ, it follows that 

|ζj ∗ φ̃j+𝑙 ∗ φj+𝑙 ∗ 𝑓(𝑥)| ≤ c2−(L−
𝑛
r
)𝑙 (ψj+𝑙+1,∗𝑓(𝑥) + ψj+𝑙,∗𝑓(𝑥)). 

A similar estimate is valid for |ζj ∗ ψ̃j ∗ ψj ∗ 𝑓(𝑥)|. As a result, adding these estimates over 

𝑙 ∈ ℕ0, we have 

|ζj ∗ 𝑓(𝑥)| ≤ c sup
k∈ℤ

ψk,∗𝑓(𝑥). 

From this formula, we obtain 
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‖ sup
ζ∈BpN

(1)
(sup
j∈ℤ
|ζj ∗ 𝑓|) ∶ ℳq

p
‖ ≤ c‖sup

j∈ℤ
ψj,∗𝑓 ∶ ℳq

p
‖. 

Since we can deduce 

ψj,∗𝑓(𝑥)𝜂 ≤ c∑2−𝑙δM[|ψj+𝑙,∗𝑓(𝑥)|
η
](𝑥)

∞

𝑙=0

, δ > 0 

in the same way as before, another application of the Hardy-Littlewood maximal 

inequality for the Morrey spaces gives us 

‖sup
j∈ℤ
ψj,∗𝑓 ∶ ℳq

p
‖ ≤ c‖sup

j∈ℤ
|ψj ∗ 𝑓| ∶ ℳq

p
‖. 

Putting together these observations, we obtain the desired result. 

We consider the Fourier multiplier. Recall that Bui proved the following result on 

the weighted Hardy spaces. As for A∞-weights, see [216]. 

Proposition (5.1.25) [217]: Let ω ∈ A∞and define 

‖𝑓 ∶ Hp(ω)‖ ≔ ‖sup
j∈ℤ
|ψj ∗ 𝑓| ∶ L

p(ω)‖. 

for 𝑓 ∈ 𝒮′ and 0 < 𝑝 < ∞. Assume in addition that τ ∈ 𝒮 and that 

c𝛼 ≔ sup
𝑥∈ℝ𝑛

|𝑥||𝛼| ∙ |∂𝛼τ(𝑥)| < ∞. 

Then there exists c, depending on cα, 𝛼 ∈ ℕ and on the A∞-constant, such that 

‖τ(D)𝑓 ∶  Hp(ω)‖ ≤ c‖𝑓 ∶ Hp(ω)‖. 
With this proposition in mind, we show that the Fourier multiplier operators are 

bounded on Hℳq
p
. 

Proposition (5.1.26) [219]: Let 0 < 𝑞 ≤ p < ∞ and τ ∈ 𝒟. Assume 

c𝛼 ≔ sup
𝑥∈ℝ𝑛

|𝑥||𝛼| ∙ |∂𝛼τ(𝑥)| < ∞. 

Then there exists a constant c depending only on cα, 𝛼 ∈ ℕ0
𝑛 such that 

‖τ(D)𝑓 ∶ Hℳq
p
‖ ≤ c‖𝑓 ∶ Hℳq

p
‖ 

for all 𝑓 ∈ Hℳq
p
. 

Proof: We adopt the following norm in view of Theorem (5.1.24): For 𝑓 ∈ 𝒮′, we define 

‖𝑓 ∶ Hℳq
p
‖ = ‖sup

j∈ℤ
|ψj(D)𝑓| ∶ ℳq

p
‖, 

where ψ is a bump function satisfying χB(1) ≤ ψ ≤ χB(2). 

Since (MχQ)
1−

q

2p is an A1-weight, we obtain 

|Q|
q
p
−1
∫ (sup

j∈ℤ
|ψj(D)τ(D)𝑓|

q
)

Q

≤ |Q|
q
p
−1
‖τ(D)𝑓 ∶ Hq ((MχQ)

1−
q
2p)‖

q

≤ c|Q|
q
p
−1
‖𝑓 ∶ Hq ((MχQ)

1−
q
2p)‖

q

, 

where for the last inequality we have used Proposition (5.1.25). 2kQ denotes the cube 

concentric to Q with sidelength 2k|Q|
1

𝑛. Now we use the two-sided estimate 

MχQ(𝑥) ≃∑
χ2kQ(𝑥)

2k 𝑛

∞

k=0

, 

which yields 
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|Q|
q
p
−1
∫ (sup

j∈ℤ
|ψj(D)τ(D)𝑓|

q
)

Q

≤ c|Q|
q
p
−1
∑2

k(
q
2p
−1)
∫ (sup

j∈ℤ
|ψj(D)𝑓|

q
)

2kQ

∞

k=0

≤ c∑2
−
q 𝑛
2p ∙ |2kQ|

q
p
−1
∫ (sup

j∈ℤ
|ψj(D)𝑓|

q
)

2kQ

∞

k=0

≤ c‖𝑓 ∶ Hℳq
p
‖
q
. 

The cubes being chosen arbitrarily, we obtain the desired estimate. 

Now we turn to Local Hardy-Morrey spaces. 

Lemma (5.1.27) [219]: Let 0 < 𝑞 ≤ p < ∞. The definition of hℳq
p
 does not depend on 

the admissible choices of ψ ∈ 𝒮 with ∫ψ ≠ 0. 

Proof: The proof is analogous to homogeneous Hardy spaces (just mimic the proof of 

Theorem (5.1.24)). 

Local Hardy spaces and Hardy spaces are related as follows : 

Proposition (5.1.28) [219]: Let 0 < 𝑞 ≤ p < ∞. Assume in addition that ℱψ ≡ 1 on a 

neighborhood of 0. Then we have 

‖𝑓 ∶ hℳq
p
‖ ≃ ‖ψ(D)𝑓 ∶ ℳq

p
‖ + ‖(1 − ψ(D))𝑓 ∶ Hℳq

p
‖. 

Proof: Following the definition we calculate 

‖𝑓 ∶ hℳq
p
‖ ≃ ‖sup

j∈ℕ0

|ψj(D)𝑓| ∶ ℳq
p
‖

≃ ‖sup
j∈ℕ0

|ψj(D)ψ(D)𝑓| ∶ ℳq
p
‖ + ‖sup

j∈ℕ0

|ψj(D)(1 − ψ(D))𝑓| ∶ ℳq
p
‖

≃ ‖ψ(D)𝑓 ∶ ℳq
p
‖ + ‖(1 − ψ(D))𝑓 ∶ Hℳq

p
‖ 

where we have used Proposition (5.1.19) for the second and the third equivalences. 

Definition (5.1.29) [219] (Vector-valued Spaces): Let E ⊂ ℤ. We define M(ℂ, E) as the set 

of all ℂ-valued E × E-matrices for a set E. Now we shall consider the vector-valued space. 

Let us denote by 𝒮(E)̃ the set of all M(ℂ, E)-valued functions Φ of the form 

Φ(𝑥) = {Φee
′
(𝑥)}

e,e′∈E
, 

where Φee
′
∈ 𝒮  and Φee

′
≡ 0  with finite exception. In this case we denote Φ =

{Φee
′
}
e,e′∈ℕ0

. 

Recall we defined τj(𝑥) = τ(2
−j𝑥)  for j ∈ ℤ  and τ ∈ 𝒮 . Given Φ = {Φee

′
}
e,e′∈E

∈

𝒮(E)̃ and j ∈ ℤ, we define Φj ≔ {(Φee
′
)
j
}
e,e′∈E

∈ 𝒮(E)̃. If we are given Φ = {Φee
′
}
e,e′∈E

∈

𝒮(E)̃ and F = {𝑓e}e∈E, then we define 

Φ ∗ F ≔ {∑ Φee
′
∗ 𝑓e′

e′∈E

}

e∈E

. 

Denote by Hℳq
p(𝑙2, E) the set of all sequences of distributions F = {𝑓e}e∈E such that 

‖F ∶ Hℳq
p
(𝑙2(E))‖ ≔ ‖sup

j∈ℤ
‖Φj ∗ F ∶ 𝑙2(E)‖ ∶ ℳq

p
‖ < ∞. 

For Φ ∈ 𝒮(E)̃, we define 

pN(Φ) ≔ sup
𝑥∈ℝ𝑛

( ∑ ‖{𝑥α ∂βΦee
′
(𝑥)}

e,e′∈E
∶ B(𝑙2(E))‖

|𝛼|,|β|≤N

). 

Denote by hℳq
p
(𝑙2(E)) the set of all sequences of distributions F = {𝑓e}e∈E for which the 

quasi-norm 
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‖F ∶ hℳq
p
(𝑙2(E))‖ ≔ ‖sup

j∈ℕ
‖{|ψj ∗ 𝑓e|}e∈E

∶ 𝑙2(E)‖ ∶ ℳq
p
‖ < ∞. 

It is the same as the scalar case where the following theorems hold. 

Theorem (5.1.30) [219]: Let E ⊂ ℤ. Let 0 < q ≤ p < ∞ and Φ ∈ 𝒮(E)0̃. Then there exists 

c such that 

‖ sup
Φ∈BpN

(1),j∈ℕ
‖Φj ∗ F(∙) ∶ 𝑙2(E)‖ ∶ ℳq

p
‖ ≤ c‖sup

j∈ℕ
‖{|ψj ∗ 𝑓k|}k∈E

∶ 𝑙2(E) ∶ ℳq
p
‖‖ 

for all F = {𝑓e}e∈E ∈ 𝒮
′E = {{𝑓e}e∈E ∶ 𝑓e ∈ 𝒮

′, e ∈ E}. 

Theorem (5.1.31) [219]: Let ψ ∈ 𝒮(E)̃. Set 

cα ≔ sup
𝑥∈ℝ𝑛

|𝑥||α|‖∂αΨ(𝑥) ∶ B(𝑙2)‖. 

Then there exists c > 0 depending only on cα, α ∈ ℕ0
𝑛 such that 

‖Ψ ∗ F ∶ Hℳq
p
(𝑙2(E))‖ ≤ c‖F ∶ Hℳq

p
(𝑙2(E))‖. 

Having defined the nonhomogeneous Hardy spaces, we are now in a position of 

proving an equivalence theorem (Theorem (5.1.32)). Now assume that ψ ∈ Cc
∞ is a bump 

function that equals 1 on a neighborhood of 0. Let us set φ(𝑥) = ψ(2−1𝑥) − ψ(𝑥) for 𝑥 ∈
ℝ𝑛. 

Proposition (5.1.32) [219]: Let 𝑓 ∈ 𝒮′  satisfy ‖𝑓 ∶ Hℳq
p
‖ < ∞ . Then we have 𝑓 =

∑ φj(D)𝑓j∈ℤ  in the topology of 𝒮′. 

Proof: It is easy to see that 𝑓 = cψ lim
j→∞

ψj(D)𝑓  for some cψ > 0 . Therefore, we can 

assume that 𝑓 itself is a band-limited distribution. As a result there exists j0 ∈ ℕ such that 

𝑓 = ψj0(D)𝑓. From this and the assumption that 𝑓 ∈ Hℳq
p
 we deduce that 𝑓 ∈ ℳq

p
. In 

[207] we have shown that 

‖φj(D)𝑓 ∶ L
∞‖ ≤ c2

j 𝑛
p ∙ ‖ψj(D)𝑓 ∶ ℳq

p
‖ ≤ c2

j 𝑛
p ∙ ‖ψj0(D)𝑓 ∶ ℳq

p
‖. 

Therefore, we conclude that 

𝑔 ≔ lim
j→−∞

∑φk(D)𝑓

∞

k=j

 

converges in L∞ . However, ℱ(𝑓 − 𝑔) is supported on the origin and hence 𝑓 − 𝑔  is a 

polynomial. Furthermore, {𝑓 − ∑ φk(D)𝑓
∞
k=j }

j∈ℤ
 is a uniformly bounded set in ℳq

p
. As a 

result we have 𝑓 = 𝑔, which is the desired result. 

Theorem (5.1.33) [219]: Let 0 < 𝑞 ≤ p < ∞. Then we have 

‖𝑓 ∶ Hℳq
p
‖ ≃ ‖𝑓 ∶ ℰ̇pq2

0 ‖, 

‖𝑓 ∶ hℳq
p
‖ ≃ ‖𝑓 ∶ ℰ̇pq2

0 ‖ 

for all 𝑓 ∈ 𝒮′. 

Proof: see Proposition (5.1.23) for Hℳq
p
. 

Let 𝑓 ∈ 𝒮′. Then we have 

‖𝑓 ∶ hℳq
p
‖ ≃ ‖ψ(D)𝑓 ∶ hℳq

p
‖ + ‖(1 − ψ(D))𝑓 ∶ hℳq

p
‖

≃ ‖ψ(D)𝑓 ∶ ℳq
p
‖ + ‖(1 − ψ(D))𝑓 ∶ Hℳq

p
‖

≃ ‖ψ(D)𝑓 ∶ ℳq
p
‖ + ‖φj(D)𝑓 ∶ ℳq

p(𝑙2, ℕ)‖ = ‖𝑓 ∶ ℰpq2
0 ‖, 

Let τ ∈ 𝒟 be a function such that supp(τ) ∋ 0 and τ ≡ 1 on a neighborhood of the origin. 

We shall consider the following operators: 

T1, T2 ∶ Hℳq
p(𝑙2, ℤ) → Hℳq

p(𝑙2, ℤ), 

which are given by 
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T1 ({𝑓j}j∈ℤ
) = {𝛿j0∑τk(D)𝑓k

k∈ℤ

}

j∈ℤ

, 

T2 ({𝑓j}j∈ℤ
) = {τj(D)𝑓0}j∈ℤ

.             

By Theorem (5.1.31) and a simple limiting argument we have 

‖∑τk(D)𝑓k
k∈ℤ

∶ ℳq
p(𝑙2, ℤ)‖ ≤ c‖{𝑓k}k∈ℤ ∶ ℳq

p(𝑙2)‖, 

‖τj(D)𝑓0 ∶ ℳq
p(𝑙2, ℤ)‖ ≤ c‖𝑓0 ∶ ℳq

p
‖  

for all {𝑓k}k∈ℤ  ∈ ℳq
p(𝑙2)  such that 𝑓k = 0  for all sufficiently large k . By virtue of 

Proposition (5.1.32), we have 

‖𝑓 ∶ Hℳq
p
‖ = ‖∑φj(D)𝑓

j∈ℤ

∶ Hℳq
p
‖ = ‖∑τj(D)[φj(D)𝑓]

j∈ℤ

∶ Hℳq
p
‖

≃ ‖φj(D)𝑓 ∶ Hℳq
p(𝑙2, ℤ)‖. 

It is not so hard by using Proposition (5.1.19) to show that 

‖φj(D)𝑓 ∶ Hℳq
p(𝑙2, ℤ)‖ ≃ ‖𝑓 ∶ ℰ̇pq2

0 ‖. 

The proof is therefore complete. 

Corollary (5.1.34) [299]: Let K ∈ ℕ0  and 0 ≤ ϵ ≤ ∞. Suppose that A is a CK -function 

with compact support. Then 𝑎 ∈ 𝒩(1+2ϵ)(1+ϵ)∞
K . In particular if K > s, then we have 𝑎 ∈

𝒜(1+2ϵ)(1+ϵ)2
s . 

Proof: By virtue of the equivalent norm 

‖𝑎 ∶ 𝒩(1+2ϵ)(1+ϵ)∞
K ‖ ≃ ‖𝑎 ∶ 𝒩(1+2ϵ)(1+ϵ)∞

0 ‖ +∑‖∂j
K𝑎 ∶ 𝒩(1+2ϵ)(1+ϵ)∞

0 ‖

𝑛

j=1

, 

(see [207]) we can assume K = 0. Since the family {kj ∗ 𝑎}j∈ℕ  is supported on a fixed 

compact set, owing to the fact that 

ℳ1+ϵ0

1+2ϵ0 ∩ {𝑓2 ∶ supp(𝑓2) ⊂ B(R)} ⊃ ℳ1+ϵ1

1+2ϵ1 ∩ {𝑓2 ∶ supp(𝑓2) ⊂ B(R)} 

for all 0 ≤ ϵ0 ≤ ϵ1 ≤ ∞ and R >  0  we see, by using the local means, the matter is 

reduced to the case when 0 ≤ ϵ ≤ ∞. In this case 

‖𝑎 ∶ 𝒩(1+2ϵ)(1+ϵ)∞
K ‖ = ‖𝑎 ∶ 𝒩(1+2ϵ)(1+ϵ)∞

0 ‖ ≤ (1 + ϵ)‖𝑎 ∶ ℰ(1+2ϵ)(1+ϵ)∞
0 ‖

≤ (1 + ϵ)‖𝑎 ∶ ℳ(1+ϵ)
(1+2ϵ)

‖ < ∞ 

and the proof of the first statement is now complete. The second assertion follows from the 

embedding 𝒜(1+2ϵ)(1+ϵ)2
s ⊃ 𝒩(1+2ϵ)(1+ϵ)∞

K , which follows from Proposition (5.1.2). 

Corollary (5.1.35) [299]: Let 0 ≤ ϵ ≤ ∞ and s ∈ ℝ. Then there exists a constant ϵ > −1 

such that 

(1 + ϵ)−1‖𝑓2 ∶ 𝒜(1+2ϵ)(1+ϵ)2
s ‖ ≤ ‖𝑓2 ∶ 𝒜(1+2ϵ)(1+ϵ)2

s ‖
∗
≤ (1 + ϵ)‖𝑓2 ∶ 𝒜(1+2ϵ)(1+ϵ)2

s ‖ 

for all  𝑓2 ∈ 𝒮 ′. 

Proof: Now we refer back to the proof of Theorem (5.1.14). From Theorem (5.1.9) it 

suffices to show the right inequality. Pick ζ ∈ 𝒟 so that 

ζ ∙ ℱ𝑙 + ∑(1 + ϵ)(2−m ∗) ∙ ℱkm
∞

m=0

≡ 1,    0 ∉ supp(1 + ϵ). 

Note that ℱ−1(1 + ϵ) has vanishing moment up to order L, since 0 ∉ supp(1 + ϵ). 
From this formula, we deduce 
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2js [ℱ−1φ
j
] ∗ 𝑓2 = (2π)

n
22js [ℱ−1φ

j
] ∗ 𝑙j ∗ ζ

j ∗ 𝑓2 + (2π)
𝑛
2 ∑ 2js [ℱ−1φ

j
] ∗ (ℱη)j ∗ kj ∗ 𝑓2

∞

m=j+1

. 

Observe that 

|[ℱ−1φ
j
] ∗ (ℱ(1 + ϵ))

j
(𝑥𝑛)| ≤ c2

j𝑛+L(j−m)〈2j𝑥𝑛〉
−(1+ϵ), 

where (1 + ϵ) satisfies the same condition as Corollary (5.1.13). Therefore, it follows that 

|2js [ℱ−1φ
j
] ∗ (ℱ(1 + ϵ))

m
∗ km ∗ 𝑓2(𝑥𝑛)|

≤ (1 + ϵ)2js∫ |[ℱ−1φ
j
] ∗ (ℱ(1 + ϵ))

m
(𝑥𝑛)| ∙ |k

m ∗ 𝑓2(ϵ)|d𝑥𝑛
ℝ𝑛

≤ ( sup
𝑥𝑛∈ℝ

𝑛
〈2m(𝑥𝑛 + 2ϵ)〉

−(1+ϵ)|km ∗ 𝑓2(2ϵ)|)

∙ (2js∫ |[ℱ−1φ
j
] ∗ (ℱ(1 + ϵ))

m
(𝑥𝑛 + ϵ)| ∙ 〈2

m(𝑥𝑛 + ϵ)〉
(1+ϵ)d𝑥𝑛

ℝ𝑛
)

≤ (1 + ϵ)2−(1+ϵ+s−L)(m−j) 𝑥𝑛〈2
m(𝑥𝑛 + 2ϵ)〉

−(1+ϵ)|2smkm ∗ 𝑓2(2ϵ)|, 
if m ≥ j. Therefore, if we let L > 1 + ϵ + s, then this inequality is summable. Hence, we 

obtain the desired result by Corollary (5.1.13). 

Corollary (5.1.36) [299]: Let 0 ≤ ϵ ≤ ∞,  m ∈ ℝ and 𝑎 ∈ S1,1
m . 

(i) If s > σ1+ϵ, then there exists ϵ > −1 such that 

‖𝑎(𝑥𝑛 , D)𝑓
2 ∶ 𝒩(1+2ϵ)(1+ϵ)2

s ‖ ≤ (1 + ϵ)‖𝑓2 ∶ 𝒩(1+2ϵ)(1+ϵ)2
s+m ‖. 

(ii) If s > σ(1+ϵ)2, then there exists ϵ > −1 such that 

‖𝑎(𝑥𝑛, D)𝑓
2 ∶ ℰ(1+2ϵ)(1+ϵ)2

s ‖ ≤ (1 + ϵ)‖𝑓2 ∶ ℰ(1+2ϵ)(1+ϵ)2
s+m ‖. 

Proof: Let us pick auxiliary functions ψ,φ, κ ∈ 𝒮 with the following conditions. 

(i) χ
Q(1)

≤ ψ ≤ χ
Q(2)

; 

(ii) φ(𝑥𝑛) = ψ(𝑥𝑛) − ψ(2𝑥𝑛); 
(iii) χ

Q(2)
≤ κ ≤ χ

Q(3)
. 

We consider 𝑎(𝑥𝑛 , D)(1 − ψ(D))𝑓2  because 𝑎(𝑥𝑛, D)ψ(D)𝑓
2  can be dealt with in a 

similar way. 

Let us consider (1 − ψ) ∙ ℱ𝑓2 = ∑ φ
j
∙ ℱ𝑓2∞

j=1 . Expand φ
j
∙ ℱ𝑓2 into a Fourier series 

φ
j
∙ ℱ𝑓2 = ∑

φ
j
(D)𝑓2(2−jm)

(2π)
𝑛
2 ∙ 2j𝑛m∈ℤ𝑛

κj exp(−i2
−jm ∙ ∗), 

where κj(𝑥𝑛) = κ(2−j𝑥𝑛) for j ∈ ℕ. From this we have 

𝑎(𝑥𝑛, D)[(1 − ψ(D))𝑓2](𝑥𝑛)

=∑ ∑
φ
j
(D)𝑓2(2−jm)

(2π ∙ 2j)𝑛
m∈ℤ𝑛

∫ 𝑎(𝑥𝑛, ξ)κj(ξ) exp(i(𝑥𝑛 − 2
−jm) ∙  ξ) dξ

ℝ𝑛

∞

j=1

. 

The Leibniz rule gives us that 

∂𝑥𝑛
𝛼 ∫ 𝑎(𝑥𝑛, ξ)κj(ξ) exp(i(𝑥𝑛 − 2

−jm) ∙  ξ) dξ
ℝ𝑛

=∑(1 + ϵ)𝛼β∫ [∂𝑥𝑛
β
𝑎(𝑥𝑛 , ξ)]κj(ξ)(𝑖ξ)

𝛼−β exp(i(𝑥𝑛 − 2
−jm) ∙  ξ) dξ

ℝ𝑛
β≤𝛼

 

and κ does not contain 0 as its support, where (1 + ϵ)𝛼β is the binomial coefficient. If we 

carry out integration by parts, then we obtain 

2−j(s+m)∫ 𝑎(𝑥𝑛, ξ)κj(ξ) exp(i(𝑥𝑛 − 2
−jm) ∙  ξ) dξ

ℝ𝑛
 



158 

is a molecule in 𝒜(1+2ϵ)(1+ϵ)2
s . Together with Lemma (5.1.8) we obtain the desired result. 

Corollary (5.1.37) [299]: Suppose that the parameters ϵ, s, 𝑙 satisfy 

0 < s < 𝑙, 0 ≤ ϵ ≤ ∞ 

and that 𝑎 ∈ C𝑙
∗S1,(1−ϵ)
0 . Then there exists ϵ > −1 such that 

‖𝑎(𝑥𝑛, D)𝑓
2 ∶ 𝒜(1+2ϵ)(1+ϵ)2

s ‖ ≤ (1 + ϵ)‖𝑓2 ∶ 𝒜(1+2ϵ)(1+ϵ)2
s+m ‖. 

Proof: Let us concentrate on the case when 𝒜 = ℰ, the case when 𝒜 = 𝒩 is simpler. 

Let 𝑓2 ∈ ℰ(1+2ϵ)(1+ϵ)2
s  and 𝑎  be an elementary form as in [215]. Any symbol in 

C𝑙
∗S1,(1−ϵ)
0  can be approximated by elementary symbols. Therefore, it is sufficient to 

investigate the case when 𝑎 is an elementary form: 

𝑎(𝑥𝑛 , ξ) =∑ σj(𝑥𝑛)φj(ξ)

∞

j=1

. 

Define qjk = φ
k
(D)σj. Then we have 

‖qjk‖∞
≤ (1 + ϵ)2(j−k)𝑙 .                                                           (9) 

As a consequence, we obtain q(𝑥𝑛, D)𝑓
2(𝑥𝑛) = ∑ qjk(𝑥𝑛) ∙ φj(D)𝑓

2(𝑥𝑛)j∈ℕ,k∈ℕ0 .We 

decompose q(𝑥𝑛, D)𝑓
2 into three pieces. Let us set 

q1(𝑥𝑛, D)𝑓
2 ≔∑(∑qjk

j−4

 k=0

)φ
j
(D)𝑓2

∞

j=4

, 

q2(𝑥𝑛, D)𝑓
2 ≔∑( ∑ qjk

j+3

 k=max(j−3,0)

)φ
j
(D)𝑓2

∞

j=0

, 

q3(𝑥𝑛, D)𝑓
2 ≔∑( ∑ qjk

∞

 k=j+4

)φ
j
(D)𝑓2

∞

j=0

. 

The estimate of q2(𝑥𝑛, D)𝑓
2 is simple. Choose an auxiliary function κ ∈ 𝒮 so that χ

Q(3)
≤

κ ≤ χ
Q(π)

. Then we have 

‖∂𝛼 ( ∑ qjk

j+3

 k=max(j−3,0)

)‖

∞

≤ (1 + ϵ)2j|𝛼| ‖( ∑ qjk

j+3

 k=max(j−3,0)

)‖

∞

≤ (1 + ϵ)2j|𝛼|. 

Here we have used Proposition (5.1.19) for the first inequality and for the second 

inequality we have used (9) and the fact that at most 7 terms are involved. Therefore, 

q2(𝑥𝑛, D)𝑓
2 ≔∑ ∑ φ

j
(D)𝑓2(2−jm)( ∑ qjk

j+3

 k=max(j−3,0)

)

m∈ℤ𝑛

ℱ−1κ(2j ∗ −m)

∞

j=0

 

can be regarded as a molecular decomposition and hence we conclude that q2(𝑥𝑛, D) is 

bounded from 𝒜(1+2ϵ)(1+ϵ)2
s  to itself. 

The first piece is treated in a spirit similar to [41]. We shall make use of the fact that 

supp(𝑓2 ∗ g2) ⊂ supp(𝑓2) + supp(g2) for all compactly supported distributions 𝑓2, g2 ∈
𝒮 ′, where the right-hand side denotes the algebraic sum. Hence it follows that 
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‖q1(𝑥𝑛, D)𝑓
2 ∶ ℰ(1+2ϵ)(1+ϵ)2

s ‖ ≤ (1 + ϵ) ‖2js ( ∑ qjk

max(j−4,0)

 k=0

)φ
j
(D)𝑓2 ∶ ℳ(1+ϵ)

(1+2ϵ)(𝑙1+ϵ )‖

≤ (1 + ϵ)(sup
j∈ℕ0

‖ ∑ qjk

max(j−4,0)

 k=0

‖

∞

)‖2jsφ
j
(D)𝑓2 ∶ ℳ(1+ϵ)

(1+2ϵ)(𝑙1+ϵ )‖

≤ (1 + ϵ)(sup
j∈ℕ0

( ∑ ‖qjk‖∞

max(j−4,0)

 k=0

))‖2jsφ
j
(D)𝑓2 ∶ ℳ(1+ϵ)

(1+2ϵ)(𝑙1+ϵ )‖

≤ (1 + ϵ) (sup
j∈ℕ0

‖σj‖∞
)‖2jsφ

j
(D)𝑓2 ∶ ℳ(1+ϵ)

(1+2ϵ)(𝑙1+ϵ )‖

≤ (1 + ϵ)‖𝑓2 ∶ ℰ(1+2ϵ)(1+ϵ)2
s ‖. 

Finally let us turn to the estimate of q3(𝑥𝑛, D). Let us rewrite 

q3(𝑥𝑛, D)𝑓
2(𝑥𝑛) ≔∑(∑qjk(𝑥𝑛)

k−4

 j=0

)φ
j
(D)𝑓2(𝑥𝑛)

∞

k=4

, 

where the change of order of the summation will be justified below. As a result, we obtain 

‖q3(𝑥𝑛, D)𝑓
2 ∶ ℰ(1+2ϵ)(1+ϵ)2

s ‖ ≤ (1 + ϵ) ‖{2ks∑qjk

k−4

 j=0

∙ φj(D)𝑓
2}

k=4

∞

∶ ℳ1+ϵ
1+2ϵ(𝑙1+ϵ )‖

≤ (1 + ϵ) ‖{∑2(k−j)(s−𝑙)
k−4

 j=0

∙ 2js|φj(D)𝑓
2|}

k=4

∞

∶ ℳ1+ϵ
1+2ϵ(𝑙1+ϵ )‖

≤ (1 + ϵ)‖𝑓2 ∶ ℰ(1+2ϵ)(1+ϵ)2
s ‖, 

where we have used the fact that s < 𝑙 for the second inequality. This is the desired result. 

Corollary (5.1.38) [299]: Let 0 ≤ ϵ ≤ ∞ . Then the sets Hℳ1+ϵ
1+2ϵ  and hℳ1+ϵ

1+2ϵ  are 

independent of the choices of admissible ψ satisfying (7). 

Proof: For Hℳ1+ϵ
1+2ϵ Corollary (5.1.39) asserts more than Corollary (5.1.38). To formulate 

the stronger result, for N ∈ ℕ we set 

pN(ζ) ≔ ∑ sup
𝑥𝑛∈ℝ

𝑛
〈𝑥𝑛〉

N |∂𝛼ζ(𝑥𝑛)|

|𝛼|≤N

, ζ ∈ 𝒮 

Corollary (5.1.39) [299]: Let 0 ≤ ϵ ≤ ∞. Assume that ψ ∈ 𝒮 satisfies the non-degenerate 

condition ∫ψ ≠ 0. Then there exist N ∈ ℕ and ϵ > −1 such that 

‖ sup
ζ∈BpN

(1)
(sup
j∈ℤ
|ζj ∗ 𝑓2|) ∶ ℳ1+ϵ

1+2ϵ‖ ≤ (1 + ϵ) ‖sup
j∈ℤ
|ψj ∗ 𝑓2| ∶ ℳ1+ϵ

1+2ϵ‖, 

where BpN(1) ≔ {ζ ∈ 𝒮 ∶ pN(ζ) < 1}. 

Proof: Fix ζ ∈ BpN(1) and j ∈ ℤ . Then there exist ψ̃, φ̃ ∈ 𝒮  such that φ̃  has vanishing 

moment up to order L with L large enough and that 

ψ̃ ∗  ψ +∑φ̃𝑙 ∗ φ𝑙
∞

𝑙=0

= 1 − ϵ 

by virtue of Lemma (5.1.22). Using this formula, we obtain 

|ζj ∗ 𝑓2(𝑥𝑛)| ≤ |ζ
j ∗ ψ̃j ∗ ψj ∗ 𝑓2(𝑥𝑛)| +∑|ζj ∗ φ̃j+𝑙 ∗ φj+𝑙 ∗ 𝑓2(𝑥𝑛)|

∞

𝑙=0

. 

Let us set 
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φj+𝑙,∗𝑓2(𝑥𝑛) ≔ sup
𝑥𝑛∈ℝ

𝑛
〈2j+𝑙(𝑥𝑛 + ϵ)〉

−
𝑛
1+ϵ |φj+𝑙 ∗ 𝑓2(ϵ)|, 

ψj+𝑙,∗𝑓2(𝑥𝑛) ≔ sup
𝑥𝑛∈ℝ

𝑛
〈2j+𝑙(𝑥𝑛 + ϵ)〉

−
𝑛
1+ϵ |ψj+𝑙 ∗ 𝑓2(ϵ)|, 

for j, 𝑙 ∈ ℕ0 and 0 ≤ ϵ ≪  1. Then we have 

|ζj ∗ φ̃j+𝑙 ∗ φj+𝑙 ∗ 𝑓2(𝑥𝑛)| ≤ ∫ |ζj ∗ φ̃j+𝑙(𝑥𝑛 + ϵ)| ∙ |φ
j+𝑙 ∗ 𝑓2(ϵ)|d𝑥𝑛

ℝ𝑛

≤ φj+𝑙,∗𝑓2(𝑥𝑛)∫ |ζj ∗ φ̃j+𝑙(𝑥𝑛 + ϵ)| ∙ 〈2
j+𝑙(𝑥𝑛 + ϵ)〉

𝑛
1+ϵd𝑥𝑛

ℝ𝑛

= φj+𝑙,∗𝑓2(𝑥𝑛)∫ |ζ ∗ φ̃𝑙(𝑥𝑛 + ϵ)| ∙ 〈2
𝑙(𝑥𝑛 + ϵ)〉

𝑛
1+ϵd𝑥𝑛

ℝ𝑛
. 

we have |ℱφ̃(𝑥𝑛)| ≤ (1 + ϵ)|𝑥𝑛|
L. Therefore, it follows that 

|ζ ∗ φ̃𝑙(𝑥𝑛 + ϵ)| ≤ (1 + ϵ)2
−L𝑙〈𝑥𝑛 + ϵ〉

−𝑛(
2+ϵ
1+ϵ

)−1. 
Inserting this estimate, we obtain 

|ζj ∗ φ̃j+𝑙 ∗ φj+𝑙 ∗ 𝑓2(𝑥𝑛)| ≤ (1 + ϵ)2
−(L−

𝑛
1+ϵ

)𝑙φj+𝑙,∗𝑓2(𝑥𝑛). 

Since φ = ψ1 −ψ, it follows that 

|ζj ∗ φ̃j+𝑙 ∗ φj+𝑙 ∗ 𝑓2(𝑥𝑛)| ≤ (1 + ϵ)2
−(L−

𝑛
1+ϵ

)𝑙 (ψj+𝑙+1,∗𝑓2(𝑥𝑛) + ψ
j+𝑙,∗𝑓2(𝑥𝑛)). 

A similar estimate is valid for |ζj ∗ ψ̃j ∗ ψj ∗ 𝑓2(𝑥𝑛)|. As a result, adding these estimates 

over 𝑙 ∈ ℕ0, we have 

|ζj ∗ 𝑓2(𝑥𝑛)| ≤ (1 + ϵ) sup
k∈ℤ

ψk,∗𝑓2(𝑥𝑛). 

From this formula, we obtain 

‖ sup
ζ∈BpN

(1)
(sup
j∈ℤ
|ζj ∗ 𝑓2|) ∶ ℳ1+ϵ

1+2ϵ‖ ≤ (1 + ϵ) ‖sup
j∈ℤ
ψj,∗𝑓2 ∶ ℳ1+ϵ

1+2ϵ‖. 

Since we can deduce 

ψj,∗𝑓2(𝑥𝑛)
1+ϵ ≤ (1 + ϵ)∑2−𝑙(1−ϵ)M[|ψj+𝑙,∗𝑓2(𝑥𝑛)|

1+ϵ
] (𝑥𝑛)

∞

𝑙=0

, ϵ < 1 

in the same way as before, another application of the Hardy-Littlewood maximal 

inequality for the Morrey spaces gives us 

‖sup
j∈ℤ

ψj,∗𝑓2 ∶ ℳ1+ϵ
1+2ϵ‖ ≤ (1 + ϵ) ‖sup

j∈ℤ
|ψj ∗ 𝑓2| ∶ ℳ1+ϵ

1+2ϵ‖. 

Putting together these observations, we obtain the desired result. 

Corollary (5.1.40) [299]: Let 0 ≤ ϵ ≤ ∞ and τ ∈ 𝒟. Assume 

(1 + ϵ)𝛼 ≔ sup
𝑥𝑛∈ℝ

𝑛
|𝑥𝑛|

|𝛼| ∙ |∂𝛼τ(𝑥𝑛)| < ∞. 

Then there exists a constant (1 + ϵ) depending only on (1 + ϵ)α, 𝛼 ∈ ℕ0
𝑛 such that 

‖τ(D)𝑓2 ∶ Hℳ1+ϵ
1+2ϵ‖ ≤ (1 + ϵ)‖𝑓2 ∶ Hℳ1+ϵ

1+2ϵ‖ 

for all 𝑓2 ∈ Hℳ1+ϵ
1+2ϵ. 

Proof: We adopt the following norm in view of Theorem (5.1.24): For 𝑓2 ∈ 𝒮′, we define 

‖𝑓2 ∶ Hℳ1+ϵ
1+2ϵ‖ = ‖sup

j∈ℤ
|ψj(D)𝑓

2| ∶ ℳ1+ϵ
1+2ϵ‖, 

where ψ is a bump function satisfying χB(1) ≤ ψ ≤ χB(2). 

Since (MχQ)
1+3ϵ

2(1+2ϵ) is an A1-weight, we obtain 
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|Q|
−ϵ
1+2ϵ∫ (sup

j∈ℤ
|ψj(D)τ(D)𝑓

2|
1+ϵ
)

Q

≤ |Q|
−ϵ
1+2ϵ ‖τ(D)𝑓2 ∶ H1+ϵ ((MχQ)

1+3ϵ
2(1+2ϵ))‖

1+ϵ

≤ (1 + ϵ)|Q|
−ϵ
1+2ϵ ‖𝑓2 ∶ H1+ϵ ((MχQ)

1+3ϵ
2(1+2ϵ))‖

1+ϵ

, 

where for the last inequality we have used Proposition (5.1.25). 

Now we use the two-sided estimate 

MχQ(𝑥𝑛) ≃∑
χ2kQ(𝑥𝑛)

2k 𝑛

∞

k=0

, 

which yields 

|Q|
−ϵ
1+2ϵ∫ (sup

j∈ℤ
|ψj(D)τ(D)𝑓

2|
1+ϵ
)

Q

≤ (1 + ϵ)|Q|
−ϵ
1+2ϵ∑2

−k(
1+3ϵ
2(1+2ϵ)

)
∫ (sup

j∈ℤ
|ψj(D)𝑓

2|
1+ϵ
)

2kQ

∞

k=0

≤ (1 + ϵ)∑2
−
(1+ϵ)𝑛
2(1+2ϵ) ∙ |2kQ|

−ϵ
1+2ϵ∫ (sup

j∈ℤ
|ψj(D)𝑓

2|
1+ϵ
)

2kQ

∞

k=0

≤ (1 + ϵ)‖𝑓2 ∶ Hℳ1+ϵ
1+2ϵ‖1+ϵ. 

The cubes being chosen arbitrarily, we obtain the desired estimate. 

Corollary (5.1.41) [299]: Let 0 ≤ ϵ ≤ ∞ . Assume in addition that ℱψ ≡ 1  on a 

neighborhood of 0. Then we have 

‖𝑓2 ∶ hℳ1+ϵ
1+2ϵ‖ ≃ ‖ψ(D)𝑓2 ∶ ℳ1+ϵ

1+2ϵ‖ + ‖(1 − ψ(D))𝑓2 ∶ Hℳ1+ϵ
1+2ϵ‖. 

Proof: Following the definition we calculate 

‖𝑓2 ∶ hℳ1+ϵ
1+2ϵ‖ ≃ ‖sup

j∈ℕ0

|ψj(D)𝑓
2| ∶ ℳ1+ϵ

1+2ϵ‖

≃ ‖sup
j∈ℕ0

|ψj(D)ψ(D)𝑓
2| ∶ ℳ1+ϵ

1+2ϵ‖ + ‖sup
j∈ℕ0

|ψj(D)(1 − ψ(D))𝑓
2| ∶ ℳ1+ϵ

1+2ϵ‖

≃ ‖ψ(D)𝑓2 ∶ ℳ1+ϵ
1+2ϵ‖ + ‖(1 − ψ(D))𝑓2 ∶ Hℳ1+ϵ

1+2ϵ‖ 

where we have used Proposition (5.1.19) for the second and the third equivalences. 

Corollary (5.1.42) [299]: Let 0 ≤ ϵ ≤ ∞. Then we have 

‖𝑓2 ∶ Hℳ1+ϵ
1+2ϵ‖ ≃ ‖𝑓2 ∶ ℰ̇(1+2ϵ)(1+ϵ)2

0 ‖, 

‖𝑓2 ∶ hℳ1+ϵ
1+2ϵ‖ ≃ ‖𝑓2 ∶ ℰ̇(1+2ϵ)(1+ϵ)2

0 ‖ 

for all 𝑓2 ∈ 𝒮′. 
Proof: Let 𝑓2 ∈ 𝒮′. Then we have 

‖𝑓2 ∶ hℳ1+ϵ
1+2ϵ‖ ≃ ‖ψ(D)𝑓2 ∶ hℳ1+ϵ

1+2ϵ‖ + ‖(1 − ψ(D))𝑓2 ∶ hℳ1+ϵ
1+2ϵ‖

≃ ‖ψ(D)𝑓2 ∶ ℳ1+ϵ
1+2ϵ‖ + ‖(1 − ψ(D))𝑓2 ∶ Hℳ1+ϵ

1+2ϵ‖

≃ ‖ψ(D)𝑓2 ∶ ℳ1+ϵ
1+2ϵ‖ + ‖φj(D)𝑓

2 ∶ ℳ1+ϵ
1+2ϵ(𝑙2, ℕ)‖ = ‖𝑓

2 ∶ ℰ(1+2ϵ)(1+ϵ)2
0 ‖, 

where for the third equivalence we have used Proposition (5.1.19) and Theorem (5.1.32). 

The proof is therefore complete. 

Corollary (5.1.43) [299]: let τ ∈ 𝒟 or (τ ∈ 𝒮) and ψ ∈ 𝒮(E)̃ such that 

‖∂αψ(𝑥𝑛)‖ ≤
1

M0
|∂ατ(𝑥𝑛)||∂

αm(𝑥𝑛)| 

where α ∈ ℕ. 

Proof: For     ‖∂αm(𝑥𝑛)‖ ≤ M0                                                                                                    (i) 
where 

M0 = 2
−𝑣2(s−𝑛 1+2ϵ⁄ )+𝑣2|𝛼|〈2𝑣

2
(𝑥𝑛 − (𝑥𝑛)0)〉

−M−|𝛼|, |𝛼| ≤ K 
Using Theorem 4.10 we have 
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(1 + ϵ)α|∂
αm(𝑥𝑛)| ≥ M0‖𝑥𝑛‖

|α|‖∂αψ(𝑥𝑛)‖                                               (ii) 
Hence upon using Proposition (5.1.25) with (ii) the result follows. 

Section (5.2): Triebel-Lizorkin-Hausdorff Spaces via Maximal Functions and Local 

Means 

Let s ∈ ℝ. The Besov-type space Ḃp,q
s,τ (ℝ𝑛) with p, q ∈ (0,∞] and τ ∈ [0,∞), and 

the Triebel-Lizorkin-type space Ḟp,q
s,τ (ℝ𝑛)  with p ∈ (0,∞), q ∈ (0,∞]and τ ∈ [0,∞) and 

their predual spaces, the Besov-Hausdorff space BḢp,q
s,τ (ℝ𝑛)  with p ∈ (1,∞), q ∈

[1,∞) and τ ∈ [0,
1

(max{p,q})′
]  and the Triebel-Lizorkin-Hausdorff space FḢp,q

s,τ (ℝ𝑛)  with 

p, q ∈ (1,∞)and τ ∈ [0,
1

(max{p,q})′
], were recently introduced and investigated in [189, 190, 

200, 204], where t′ denotes the conjugate index of  t ∈ [1,∞], namely, 1 t⁄ + 1 t′⁄ = 1. 

These spaces unify and generalize many classical function spaces including Besov spaces 

Ḃp,q
s (ℝ𝑛)and Triebel=Lizorkin spaces Ḟp,q

s,τ (ℝ𝑛) (see [41, 106]), Morrey spaces Mu
p(ℝ𝑛) 

and Triebel-Lizorkin-Morrey spaces ℇ̇pqu
s (ℝ𝑛) (see [55, 59, 200, 218]), Q spaces Q𝛼(ℝ

𝑛) 

and Hardy-Hausdorff spaces HH−𝛼(ℝ
𝑛) (see, for example, [167, 173, 184, 185]). 

We establish the maximal function characterizations of Ḃp,q
s,τ (ℝ𝑛) , Ḟp,q

s,τ (ℝ𝑛) , 

BḢp,q
s,τ (ℝ𝑛)  and FḢp,q

s,τ (ℝ𝑛)  for all admissible indices s, τ, p  and q  as above. Using this 

characterization, we further obtain the local mean characterizations of these function 

spaces via functions satisfying the Tauberian condition and establish a Fourier multiplier 

theorem on these spaces. All these results generalize the existing classical results on Besov 

and Triebel-Lizorkin spaces by taking τ = 0; (see [41, 56]). In particular, all our results 

are also new even for Q spaces Q𝛼(ℝ
𝑛) and Hardy-Hausdorff spaces HH−𝛼(ℝ

𝑛) with 𝛼 ∈
(0, 1). 

To recall the notions of Ḃp,q
s,τ (ℝ𝑛)  and Ḟp,q

s,τ (ℝ𝑛) , let 𝒮(ℝ𝑛)  be the space of all 

Schwartz functions on ℝ𝑛 endowed with the classical topology and denote by 𝒮′(ℝ𝑛) its 

topological dual, namely, the space of all continuous linear functionals on 𝒮(ℝ𝑛) endowed 

with the weak *-topology. Following [41], we let 

𝒮∞(ℝ
𝑛) = {φ ∈ 𝒮(ℝ𝑛) ∶ ∫φ(𝑥)𝑥γd𝑥

ℝ𝑛

= 0 for all multi‐ indices γ ∈ (ℕ ∪ {0})𝑛} 

and consider 𝒮∞(ℝ
𝑛) as a subspace of 𝒮(ℝ𝑛), including the topology. Use 𝒮∞

′ (ℝ𝑛) to 

denote the topological dual of 𝒮∞(ℝ
𝑛), namely, the set of all continuous linear functional 

on 𝒮∞(ℝ
𝑛). We also endow 𝒮∞

′ (ℝ𝑛) with the weak *-topology. Let 𝒫(ℝ𝑛) be the set of 

all polynomials on ℝ𝑛 . It is well known that 𝒮∞
′ (ℝ𝑛) = 𝒮′(ℝ𝑛) 𝒫(ℝ𝑛)⁄  as topological 

spaces. 

In what follows, for any φ ∈ 𝒮(ℝ𝑛), we use φ̂ to denote its Fourier transform, 

namely, for all ξ ∈ ℝ𝑛 , φ̂(ξ) ≡ ∫ e−𝑖ξ𝑥φ(𝑥)d𝑥
ℝ𝑛

 for all j ∈ ℤ and 𝑥 ∈ ℝ𝑛 . For j ∈ ℤ and 

k ∈ ℤ𝑛, denote by 𝒬jk the dyadic cube 2−j([0, 1)𝑛 + k), ℓ(𝒬) its side length, 𝑥𝒬 its lower 

left-corner 2−jk  and c𝒬  its center. Let 𝔔(ℝ𝑛) ≡ {𝒬jk ∶ j ∈ ℤ, k ∈ ℤ
𝑛} , 𝔔j(ℝ

𝑛) ≡ {𝒬 ∈

𝔔(ℝ𝑛) ∶ ℓ(𝒬) = 2−j} and j𝒬 ≡ − log2 ℓ(𝒬) for all 𝒬 ∈ 𝔔(ℝ𝑛). When the dyadic cube 𝒬 

appears as an index, such as ∑𝒬∈𝔔(ℝ𝑛) and {∙}𝒬∈𝔔(ℝ𝑛), it is understood that 𝒬 runs over all 

dyadic cubes in ℝ𝑛. 

Let q ∈ (0,∞]and τ ∈ [0,∞). Denote by ℓq (Lτ
p(ℝ𝑛)) with p ∈ (0,∞] the set of all 

sequences G ≡ {gj}j∈ℤ
 of measurable functions on ℝ𝑛 such that 
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‖G‖
ℓq(Lτ

p(ℝ𝑛))
≡ sup

P∈𝔔(ℝ𝑛)

1

|P|τ
{∑(∫|gj(𝑥)|

p
d𝑥

P

)

q p⁄∞

j=jP

}

1 p⁄

< ∞. 

Similarly, ℓp (Lτ
q(ℝ𝑛)) with p ∈ (0,∞] is defined to be the set of all sequences G ≡ {gj}j∈ℤ

 

of measurable functions on ℝ𝑛 such that 

‖G‖
ℓp(Lτ

q(ℝ𝑛))
≡ sup

P∈𝔔(ℝ𝑛)

1

|P|τ
{∫ (∑|gj(𝑥)|

q
∞

j=jP

)

p q⁄

d𝑥
P

}

1 p⁄

< ∞. 

It is easy to see that ℓq (L0
p(ℝ𝑛)) = ℓq(Lp(ℝ𝑛)) and L0

p
(ℓq(ℝ𝑛)) = Lp(ℓq(ℝ𝑛)) (see [41]). 

Let φ ∈ 𝒮(ℝ𝑛) such that  
supp φ̂ ⊂ {ξ ∈ ℝ𝑛 ∶ 1 2⁄ ≤ |ξ| ≤ 2}   and  |φ̂(ξ)| ≥ C > 0  if  3 4⁄ ≤ |ξ| ≤ 5 3⁄ ,         (10) 

where C is a positive constant independent of ξ. We recall the notions of the Besov-type 

space Ḃp,q
s,τ (ℝ𝑛) and the Triebel-Lizorkin-type space Ḟp,q

s,τ (ℝ𝑛) in [190]. 

Definition (5.2.1) [222]: Let s ∈ ℝ, τ ∈ [0,∞), q ∈ (0,∞] and φ ∈ 𝒮(ℝ𝑛) satisfy (10). 

(i) The Besov-type space Ḃp,q
s,τ (ℝ𝑛) with p ∈ (0,∞]  is defined to be the set of all 𝑓 ∈

𝒮∞
′ (ℝ𝑛) such that ‖𝑓‖Ḃp,q

s,τ (ℝ𝑛) ≡ ‖{2
js(φj ∗ 𝑓)}j∈ℤ

‖
ℓp(Lτ

q(ℝ𝑛))
< ∞. 

(ii) The Triebel-Lizorkin-type space Ḟp,q
s,τ (ℝ𝑛) with p ∈ (0,∞) is defined to be the set of all 

𝑓 ∈ 𝒮∞
′ (ℝ𝑛) such that ‖𝑓‖Ḟp,q

s,τ (ℝ𝑛) ≡ ‖{2
js(φj ∗ 𝑓)}j∈ℤ

‖
Lτ
p
(ℓq(ℝ𝑛))

< ∞. 

Recall that Ḃp,q
s,0 (ℝ𝑛) = Ḃp,q

s (ℝ𝑛), Ḟp,q
s,0 (ℝ𝑛) = Ḟp,q

s (ℝ𝑛), Ḟp,q
s,1 p⁄ (ℝ𝑛) = Ḟ∞,q

s (ℝ𝑛) , and 

Ḟ2,2
𝛼,1 2⁄ −𝛼(ℝ𝑛) = 𝒬α(ℝ

𝑛) for all 𝛼 ∈ (0, 1) (see [189, 190]), where the spaces 𝒬α(ℝ
𝑛) were 

originally introduced by Essén et al. [173]; see also [167, 184, 185] for the history of 𝒬 

spaces and their properties. 

Let φ be as in Definition (5.2.1) and 𝑓 ∈ 𝒮∞
′ (ℝ𝑛). For all j ∈ ℤ, 𝑎 ∈ (0,∞), P ∈

𝔔(ℝ𝑛) and 𝑥 ∈ ℝ𝑛, let 

φj
∗,𝑎𝑓(𝑥) ≡ sup

y∈ℝ𝑛

|φj ∗ 𝑓(y)|

(1 + 2j|𝑥 − y|)𝑎
  and  φj,P

∗,𝑎𝑓(𝑥) ≡ sup
y∈P

|φj ∗ 𝑓(y)|

(1 + 2j|𝑥 − y|)𝑎
. 

Using these maximal functions, we characterize the spaces Ḃp,q
s,τ (ℝ𝑛) and Ḟp,q

s,τ (ℝ𝑛) 

as follows. 

Definition (5.2.2) [222]: Let s ∈ ℝ, p ∈ (1,∞), and φ ∈ 𝒮(ℝ𝑛) satisfy (10). 

(i) The Besov-Hausdorff space BḢp,q
s,τ (ℝ𝑛) with q ∈ [1,∞) and τ ∈ [0,

1

(p∨q)′
]is defined to 

be the set of all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛) such that ‖𝑓‖Ḃp,q

s,τ (ℝ𝑛) ≡ ‖{2
js(φj ∗ 𝑓)}j∈ℤ

‖
ℓp(Lτ

q(ℝ𝑛))
̃

< ∞. 

(ii) The Triebel-Lizorkin-Hausdorff space FḢp,q
s,τ (ℝ𝑛)  with q ∈ (1,∞)  and τ ∈ [0,

1

(p∨q)′
] is 

defined to be the set of all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛)  such that ‖𝑓‖Ḟp,q

s,τ (ℝ𝑛) ≡ ‖{2
js(φj ∗

𝑓)}
j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

< ∞. 

Theorem (5.2.3) [222]: Let s ∈ ℝ, τ ∈ [0,∞), q ∈ (0,∞] and φ ∈ 𝒮(ℝ𝑛) satisfy (9). 

(i) Let p ∈ (0,∞]  and 𝑎 ∈ (𝑛 p⁄ ,∞). Then ‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))

 and 
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sup
P∈𝔔(ℝ𝑛)

1

|P|τ
{∑2jsq (∫[φj,P

∗,𝑎𝑓(𝑥)]
p
d𝑥

P

)

q p⁄∞

j=jP

}

1 q⁄

 

Are equivalent quasi-norms in Ḃp,q
s,τ (ℝ𝑛). 

(ii) Let p ∈ (0,∞) and 𝑎 ∈ (𝑛max{1 p⁄ , 1 q⁄ } ,∞). Then ‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

 and 

sup
P∈𝔔(ℝ𝑛)

1

|P|τ
{∫ (∑2jsq[φj,P

∗,𝑎𝑓(𝑥)]
q

∞

j=jP

)

p q⁄

d𝑥
P

}

1 p⁄

 

are equivalent quasi-norms in Ḟp,q
s,τ (ℝ𝑛). 

Proof: By similarity, we only show (ii). 

Notice that for all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛), j ∈ ℤ, P ∈ 𝔔(ℝ𝑛), 𝑥 ∈ P, |φj ∗ 𝑓(𝑥)| ≤ φj,P

∗,𝑎𝑓(𝑥) ≤ φj
∗,𝑎𝑓(𝑥). 

Therefore, to complete the proof of (ii), it suffices to prove that ‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

≲

‖𝑓‖Ḟp,q
s,τ (ℝ𝑛). 

Let 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛) Since 𝑎 ∈ (𝑛max{1 p⁄ , 1 q⁄ } ,∞), there exists a δ ∈ (0,∞) such 

that δ < p, δ < q and 𝑎 δ > 𝑛. By the argument in [45], we see that for any y, z ∈ 𝒬jk 

with j ∈ ℤ and j ∈ ℤ𝑛, 

|φj ∗ 𝑓(y)|
𝛿
≤ C(δ, N) ∑(1 + |𝑙|)−N|φj ∗ 𝑓(2

−j𝑙 + z)|
δ

𝑙∈ℤ𝑛

, 

where N ∈ ℕ is determined later and C(δ, N) is a positive constant only depending on δ 

and N. Then for all 𝑥 ∈ ℝ𝑛, 

[φj
∗,𝑎𝑓(𝑥)]

δ
≲ sup

k∈ℤ𝑛
sup
y∈𝒬jk

∑(1 + |𝑙|)−N|φj ∗ 𝑓(2
−j𝑙 + z)|

δ

𝑙∈ℤ𝑛

(1

+ 2j|𝑥 − y|)−𝑎δ~ sup
k∈ℤ𝑛

sup
y∈𝒬jk

∑(1 + |𝑙 − k|)−N|φj ∗ 𝑓(2
−j𝑙)|

𝛿

𝑙∈ℤ𝑛

(1 + 2j|𝑥 − y|)−𝑎δ. 

Notice that for all y ∈ 𝒬jk, |y − 2
−j𝑙| ≲ 2−j(1 + |𝑙 − k|). This shows that (1 + 2j|𝑥 − y|)(1 +

|𝑙 − k|) ≲ (1 + 2j|𝑥 − 2−j𝑙|). Choosing N ≥ 𝑎 δ then yields that for all 𝑥 ∈ ℝ𝑛, 

[φj
∗,𝑎𝑓(𝑥)]

δ
≲ sup

k∈ℤ𝑛
∑(1 + |𝑙 − k|)𝑎δ−N|φj ∗ 𝑓(2

−j𝑙)|
𝛿

𝑙∈ℤ𝑛

(1 + 2j|𝑥 − 2−j𝑙|)
−𝑎δ

≲ ∑|φj ∗ 𝑓(2
−j𝑙)|

δ

𝑙∈ℤ𝑛

(1 + 2j|𝑥 − 2−j𝑙|)
−𝑎δ
. 

Let P ∈ 𝔔(ℝ𝑛), j ≥ jP  and 𝑥 ∈ 𝒬jk ⊂ P . It is easy to see that 1 + 2j|𝑥 − 2−j𝑙| ∼ 1 +
|𝑙 − k|. 
Then by [106], there exists a γ ∈ ℕ such that 

[φj
∗,𝑎𝑓(𝑥)]

δ
≲ ∑|φj ∗ 𝑓(2

−j𝑙)|
δ

𝑙∈ℤ𝑛

(1 + |k − 𝑙|)−𝑎δ

≲ ∑
max {inf

z∈𝒬̃
|φj ∗ 𝑓(z)|

𝛿
: 𝒬̃ ⊂ 𝒬j𝑙 , 𝑙(𝒬̃) = 2

−γ𝑙(𝒬j𝑙)}

(1 + |k − 𝑙|)𝑎δ
𝑙∈ℤ𝑛

                                      (11) 

For all j ∈ ℤ and 𝑙 ∈ ℤ𝑛 , let t𝒬j𝑙 ≡ max {infz∈𝒬̃
|φj ∗ 𝑓(z)|

𝛿
∶ 𝒬̃ ⊂ 𝒬j𝑙 , 𝑙(𝒬̃) = 2

−γ𝑙(𝒬j𝑙)} . Then 

for all 𝑥 ∈ 𝒬jk ⊂ P, 
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[φj
∗,𝑎𝑓(𝑥)]

δ
≲ ∑

t𝒬j𝑙
(1 + |k − 𝑙|)𝑎δ

{𝑙∈ℤ𝑛: 𝒬j𝑙⊂(3P)}

+ ∑
t𝒬j𝑙

(1 + |k − 𝑙|)𝑎δ
{𝑙∈ℤ𝑛: 𝒬j𝑙∩(3P)=∅}

≡ I1 + I2. 

For I1, since 𝑎 δ > 𝑛, by [106], we have that for all 𝑥 ∈ 𝒬jk ⊂ P, 

I1 ≲ HL( ∑ t𝒬j𝑙χ𝒬j𝑙
{𝑙∈ℤ𝑛: 𝒬j𝑙⊂(3P)}

)(𝑥), 

where and in what follows, HL denotes the Hardy-Littlewood maximal operator. Then by 

Fefferman-Stein's vector-valued inequality (see [60, 190]), we obtain 

1

|P|τ

{
 

 
∫ [∑2jsq(I1)

q
δ

∞

j=jP

]

p
q

d𝑥
P

}
 

 
1 p⁄

≲
1

|P|τ

{
 

 
∫ [∑2jsq ∑ (t𝒬j𝑙)

q
δ
χ𝒬j𝑙(𝑥)

{𝑙∈ℤ𝑛: 𝒬j𝑙⊂(3P)}

∞

j=jP

]

p
q

d𝑥
ℝ𝑛

}
 

 
1 p⁄

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛). 

For I2 , since 𝑎δ > 𝑛  and |2−j𝑙 − 2−jk| ∼ |𝑖|𝑙(P)  when j ≥ jP, 𝒬jk ⊂ P  and 𝒬j𝑙 ⊂

(P + 𝑖𝑙(P)) with |𝑖| ≥ 2, we see that for all 𝑥 ∈ P, 

I2 ≲ ∑ ∑ |𝑖|−𝑎δ2(jP−j)𝑎δ2j𝑛

{𝑙∈ℤ𝑛: 𝒬j𝑙⊂(P+𝑖𝑙(P))}{𝑖∈ℤ𝑛:|𝑖|≥2}

∫ |φj ∗ 𝑓(z)|
𝛿
dz

𝒬j𝑙

∼ ∑ |𝑖|−𝑎δ2(jP−j)𝑎δ2j𝑛

{𝑖∈ℤ𝑛:|𝑖|≥2}

∫ |φj ∗ 𝑓(z)|
𝛿
dz

P+𝑖𝑙(P)

≲ ∑ |𝑖|−𝑎δ2(jP−j)(𝑎δ−𝑛)

{𝑖∈ℤ𝑛:|𝑖|≥2}

HL (|φj ∗ 𝑓|
𝛿
𝜒P+𝑖𝑙(P)) (𝑥 + 𝑖𝑙(P)), 

where and in what follows, P + 𝑖𝑙(P) ≡ {z + 𝑖𝑙(P) ∶ z ∈ P} for all 𝑖 ∈ ℤ𝑛 and P ∈ 𝔔(ℝ𝑛). 
Then applying Minkowski's inequality and Fefferman-Stein's vector-valued inequality, we 

also obtain 

1

|P|δτ

{
 

 
∫ [∑2jsq(I2)

q
δ

∞

j=jP

]

p
q

d𝑥
P

}
 

 

δ
p

≲ ∑
|𝑖|−𝑎δ

|P|δτ

{
 

 
∫ [∑2jsq [HL (|φj ∗ 𝑓|

𝛿
𝜒P+𝑖𝑙(P)) (𝑥 + 𝑖𝑙(P))]

q
δ

∞

j=jP

]

p
q

d𝑥
P

}
 

 

δ
p

{𝑖∈ℤ𝑛:|𝑖|≥2}

≲ ‖𝑓‖
Ḟp,q
s,τ (ℝ𝑛)
δ , 

which together with the estimate for I1 yields that 

1

|P|τ
{∫ [∑2jsq[φj

∗,𝑎𝑓(𝑥)]
q

∞

j=jP

]

p q⁄

d𝑥
P

}

1 p⁄

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛) 

and hence completes the proof of Theorem (5.2.3). 

Now let integer β ≥ −1, 𝒮−1(ℝ
𝑛) ≡ 𝒮(ℝ𝑛) and 𝒮β(ℝ

𝑛) be the set of all Schwartz 

functions ϕ  satisfying that ∫ ϕ(𝑥)𝑥γd𝑥
ℝ𝑛

= 0  for all |γ| ≤ β  when β ≥ 0 . Consider 

𝒮β(ℝ
𝑛) as a subspace of 𝒮(ℝ𝑛), including the topology. Let 𝒮β

′(ℝ𝑛) denote the space of 
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all continuous linear functional on 𝒮β(ℝ
𝑛), endowed with the weak *-topology. Let ε ∈

(0,∞) and k ∈ 𝒮β(ℝ
𝑛) satisfy the following Tauberian condition: 

|k̂(ξ)| > 0  on {ξ ∈ ℝ𝑛 ∶ ε 2⁄ ≤ |ξ| ≤ 2ε}.                                           (12) 

For all j ∈ ℤ, 𝑎 ∈ (0,∞), P ∈ 𝔔(ℝ𝑛), 𝑓 ∈ 𝒮β
′(ℝ𝑛) and 𝑥 ∈ ℝ𝑛, let 

kj
∗,𝑎𝑓(𝑥) ≡ sup

y∈ℝ𝑛

|kj ∗ 𝑓(y)|

(1 + 2j|𝑥 − y|)𝑎
  and  kj,P

∗,𝑎𝑓(𝑥) ≡ sup
y∈P

|kj ∗ 𝑓(y)|

(1 + 2j|𝑥 − y|)𝑎
. 

Recall that kj ∗ 𝑓  is called the local mean; see, for example, [56]. Applying 

Theorem (5.2.3) and the Calderón reproducing formula, we establish the following local 

mean characterizations of Ḃp,q
s,τ (ℝ𝑛) and Ḟp,q

s,τ (ℝ𝑛). 

Lemma (5.2.4) [222]: Let ε ∈ (0,∞) and η ∈ 𝒮(ℝ𝑛)  satisfy (12). Then there exists a 

function  ψ ∈ 𝒮∞(ℝ
𝑛)  such that supp ψ̂ ⊂ {ξ ∈ ℝ𝑛 ∶

11

20
ε < |ξ| <

20

11
ε}  and 

∑ η̂(2jξ)ψ̂(2jξ)̅̅ ̅̅ ̅̅ ̅̅ ̅
j∈ℤ = 1 for all ξ ∈ ℝ𝑛\{0}. 

Proof: The proof of this lemma is similar to that of [176, Lemma (6.9)]. For the 

convenience of the reader, we sketch some details. Let g ∈ 𝒮(ℝ𝑛)  such that ĝ  is 

nonnegative, supp ĝ ⊂ {ξ ∈ ℝ𝑛 ∶
11

20
ε < |ξ| <

20

11
ε} and ĝ(ξ) ≥ C̃ > 0 when 3ε 5⁄ < |ξ| <

5ε 3⁄ , where C̃ is a positive constant. 

         Set F(ξ) ≡ ∑ ĝ(2jξ)j∈ℤ  for all ξ ∈ ℝ𝑛 . Then F is bounded and smooth outside the 

origin, and F(ξ) ≥ C̃ > 0 for all ξ ∈ ℝ𝑛\{0}. Furthermore, F(2jξ) = F(ξ) for all ξ ∈ ℝ𝑛 

and  j ∈ ℤ . 

For all ξ ∈ ℝ𝑛 , let h(ξ) ≡ ĝ(ξ) F(ξ)⁄ . Then h ∈ 𝒮(ℝ𝑛), supp h ⊂ {ξ ∈ ℝ𝑛 ∶
11

20
ε <

|ξ| <
20

11
ε} , h(ξ) ≥ C1 > 0 when 3ε 5⁄ < |ξ| < 5ε 3⁄ , and for all ξ ∈ ℝ𝑛\{0}, ∑ h(2jξ)j∈ℤ =

1, where C1 is a positive constant. 

By (12), |η̂(ξ)| ≥ C2 > 0   on {ξ ∈ ℝ𝑛 ∶
11

20
ε < |ξ| <

20

11
ε} , where C2  is a positive 

constant. Define ψ  by setting, for all ξ ∈ ℝ𝑛, ψ̂(ξ)̅̅ ̅̅ ̅̅ ≡ h(ξ) η̂(ξ)⁄ . Then ψ is the desired 

function, which completes the proof of Lemma (5.2.4). 

Lemma (5.2.5) [222]: Let β ∈ ℤ+ ∪ {−1}, φ ∈ 𝒮(ℝ
𝑛) and 𝑓 ∈ 𝒮β(ℝ

𝑛). 

(i) Let j ∈ ℤ+. Then for all M ∈ ℤ+, there exists a positive constant C(M, 𝑛, φ, 𝑓) such that 

for all 𝑥 ∈ ℝ𝑛, 

|φj ∗ 𝑓(𝑥)| ≤ C(M, 𝑛, φ, 𝑓)
−jM(1 + |𝑥|)−𝑛−M−1. 

(ii) Let j ∈ ℤ\ℤ+. Then for all L ∈ ℤ+, there exists a positive constant C(β, 𝑛, φ, 𝑓, L) such 

that for all 𝑥 ∈ ℝ𝑛, 

|φj ∗ 𝑓(𝑥)| ≤ C(β, 𝑛, φ, 𝑓, L)
−j(β+𝑛+1)(1 + 2j|𝑥|)

−𝑛−2β−L−2
. 

Lemma (5.2.6) [222]: Let q ∈ (0,∞], τ ∈ [0,∞), δ ∈ (𝑛τ,∞) and {gm}m∈ℤ be a sequence 

of measurable functions on ℝ𝑛 . For all j ∈ ℤ  and 𝑥 ∈ ℝ𝑛 , let Gj(𝑥) ≡

∑ 2−|m−j|δgm(𝑥)m∈ℤ . Then there exists a positive constant C, independent of {gm}m∈ℤ , 

such that for all p ∈ (0,∞], 

‖{Gj}j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))
≤ C‖{gm}m∈ℤ‖ℓq(Lτ

p(ℝ𝑛))
, 

and that for all p ∈ (0,∞), 

‖{Gj}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

≤ C‖{gm}m∈ℤ‖Lτ
p
(ℓq(ℝ𝑛)). 
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Proof: By similarity, we only prove the first inequality. Let P ∈ 𝔔(ℝ𝑛). If p ∈ (0, 1], 

applying the inequality that for all d ∈ (0, 1] and {αj}j
⊂ ℂ, 

(∑|αj|

j

)

d

≤∑|αj|
d

j

,                                                              (13) 

we obtain 

IP ≡
1

|P|τ
{∑(∫ |∑ 2−|m−j|δgm(𝑥)

m∈ℤ

|

p

d𝑥
P

)

q p⁄∞

j=jP

}

1 q⁄

≲
1

|P|τ
{∑(∑ 2−|m−j|δp∫|gm(𝑥)|

pd𝑥
Pm∈ℤ

)

q p⁄∞

j=jP

}

1 q⁄

. 

When q ∈ (0, p], applying (13) again, we have 

IP ≲
1

|P|τ
{∑ ∑ 2−|m−j|δq (∫|gm(𝑥)|

pd𝑥
P

)

q p⁄∞

m=jP

∞

j=jP

}

1 q⁄

+
1

|P|τ
{∑ ∑ ⋯

jP−1

m=−∞

∞

j=jP

}

1 q⁄

≲ ‖{gm}m∈ℤ‖ℓq(Lτ
p(ℝ𝑛))

+ { ∑ 2(jP−m)𝑛τq (∑ 2(m−j)δq
∞

m=jP

)

jP−1

m=−∞

}

1 q⁄

‖{gm}m∈ℤ‖ℓq(Lτ
p(ℝ𝑛))

≲ ‖{gm}m∈ℤ‖ℓq(Lτ
p(ℝ𝑛))

. 

When q ∈ (p,∞], choosing ε ∈ (0, δ − 𝑛τ) and applying Hölder's inequality, similarly to 

the above proof, we also have 

IP ≲
1

|P|τ
{∑ ∑ 2−|m−j|(δ−ε)q (∫|gm(𝑥)|

pd𝑥
P

)

q p⁄∞

m=jP

∞

j=jP

}

1 q⁄

+
1

|P|τ
{∑ ∑ ⋯

jP−1

m=−∞

∞

j=jP

}

1 q⁄

≲ ‖{gm}m∈ℤ‖ℓq(Lτ
p
(ℝ𝑛))

. 

If p ∈ (1,∞], applying Minkowski's inequality, we see that 

IP ≲
1

|P|τ
{∑[∑ 2−|m−j|δq (∫|gm(𝑥)|

pd𝑥
P

)

1 p⁄

m=jP

]

q
∞

j=jP

}

1 q⁄

. 

Then by Hölder's inequality when q ∈ (1,∞]or (13) when q ∈ (0, 1], we also obtain that  
IP ≲ ‖{gm}m∈ℤ‖ℓq(Lτ

p
(ℝ𝑛))

, which further implies that 

‖{Gj}j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))
≲ ‖{gm}m∈ℤ‖ℓq(Lτ

p(ℝ𝑛))
, 

and then completes the proof of Lemma (5.2.6). 

We also need the following estimate. 

Lemma (5.2.7) [222]: Let s ∈ ℝ, τ ∈ [0,∞), β be an integer such that β ≥ −1 and β +
1 > s + 𝑛τ, and p, q ∈ (0,∞]. Then there exists a positive constant C such that for all j ∈

ℤ , 𝑓 ∈ Ȧp,q
s,τ (ℝ𝑛)  and y ∈ ℝ𝑛 , |kj ∗ 𝑓(y)| ≤ C‖𝑓‖Ȧp,q

s,τ (ℝ𝑛)2
−j⌈s+𝑛(τ−1 p⁄ )⌉ , where Ȧp,q

s,τ (ℝ𝑛) 

denotes either Ḃp,q
s,τ (ℝ𝑛) or Ḟp,q

s,τ (ℝ𝑛). 

Proof: By similarity, we only consider the spaces Ḟp,q
s,τ (ℝ𝑛). 
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Let 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛) and φ ∈ 𝒮(ℝ𝑛)satisfy (10). Then by [176, Lemma (6.9)], there exists a 

function   ψ ∈ 𝒮(ℝ𝑛) satisfying (10) such that ∑ φ̂(2jξ)̅̅ ̅̅ ̅̅ ̅̅ ̅ψ̂(2jξ)j∈ℤ = 1 for all ξ ∈ ℝ𝑛\{0}. 

By the Calderón reproducing formula in [189], we know that 𝑓 = ∑ ψ̃m ∗ φm ∗ 𝑓j∈ℤ  in 

𝒮∞
′ (ℝ𝑛), where and in what follows, ψ̂(z) ≡ ψ(−z)̅̅ ̅̅ ̅̅ ̅̅  for all z ∈ ℝ𝑛. From the arguments in 

[190] (see also [106] and [93]), we deduce that there exists a sequence {PN}N∈ℕ  of 

polynomials, with degree no more than L = max{−1, ⌊s + 𝑛(τ − 1 p⁄ )⌋ }  for all N ∈ ℕ 

such that g ≡ lim
N→∞

(∑ ψ̃m ∗ φm ∗ 𝑓 + PN
N
m=−N ) exists in 𝒮′(ℝ𝑛) and g is a representative 

of the equivalence class 𝑓 + 𝒫(ℝ𝑛) , where for any 𝑎 ∈ ℝ , ⌊𝑎⌋  denotes the maximal 

integer not more than 𝑎. We identify 𝑓 with its representative g. Since s + 𝑛(τ − 1 p⁄ ) <
𝛽 + 1  and ∫ k(𝑥)𝑥γd𝑥

ℝ𝑛
= 0  for all |γ| ≤ β , we see that kj ∗ 𝑓(y) = ∑ kj ∗ ψ̃m ∗m∈ℤ

φm ∗ 𝑓(y) for j ∈ ℤ and y ∈ ℝ𝑛. 

Applying Lemma (5.2.5), we see that for all y ∈ ℝ𝑛, 

|kj ∗ 𝑓(y)| ≲∑∫
2j𝑛−(m−j)N|φm ∗ 𝑓(z)|

[1 + 2j|y − z|]𝑛+N+1
dz

ℝ𝑛m≥j

+∑∫
2j𝑛−(m−j)(β+𝑛+1)|φm ∗ 𝑓(z)|

[1 + 2j|y − z|]𝑛+2β+N+2
dz

ℝ𝑛m<𝑗

≡ I1 + I2, 
where N ∈ ℕ is sufficiently large, which is determined later. When p ∈ [1,∞), choosing 

N > max{𝑛(τp − 1) − 1, [𝑛(1 − τp) + 1 − sp] (p − 1)⁄ , 𝑛(τ − 1 p⁄ ) − 2β − 2}, 
by Hölder's inequality, we obtain that for all y ∈ ℝ𝑛, 

I1 ≲∑2−(m−j)N {∫
2j𝑛|φm ∗ 𝑓(z)|

p

[1 + 2j|y − z|]𝑛+N+1
dz

ℝ𝑛
}

1 p⁄

m≥j

≲∑2−(m−j)N2−j(N+1) {2m(𝑛+N+1)∫ |φm ∗ 𝑓(z)|
pdz

|y−z|<2−mm≥j

+∑2(m−𝑙)(𝑛+N+1)∫ |φm ∗ 𝑓(z)|
pdz

2𝑙−m−1≤|y−z|<2𝑙−m

∞

𝑙=1

}

1 p⁄

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)∑2j⌈N−(N+1) p⁄ ⌉2−m⌈N(1−1 p⁄ )+s−1 p⁄ −𝑛(1 p⁄ −τ)⌉ {∑2−𝑙⌈N+1+𝑛(1−τp)⌉

∞

𝑙=0

}

1 p⁄

m≥j

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)2

−j⌈s+𝑛(τ−1 p⁄ )⌉. 

Similarly, for I2,by β + 1 > 𝑠 + 𝑛τ and Hölder's inequality, we also have that for all y ∈
ℝ𝑛, 

I2 ≲ ∑ 2(m−j)(β+1)2m𝑛∑2−𝑙(𝑛+2β+N+2)∫ |φm ∗ 𝑓(z)|dz
|y−z|<2𝑙−m

∞

𝑙=0m<𝑗

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)∑2−j(β+1)2m⌈β+1−s+𝑛(1 p⁄ −τ)⌉∑2−𝑙⌈2β+N+2−𝑛(τ−1 p⁄ )⌉

∞

𝑙=0m<𝑗

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)∑2−j(β+1)2m⌈β+1−s+𝑛(1 p⁄ −τ)⌉

m<𝑗

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)2

−j⌈s+𝑛(τ−1 p⁄ )⌉. 

When p ∈ (0, 1) , by [190, Corollary 3.1], Ḟp,q
s,τ (ℝ𝑛) ⊂ Ḟ1,q

s+(1−1 p⁄ )𝑛,τ(ℝ𝑛) , which together 

with the above proved conclusion when p = 1 yields that for all 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛) with p ∈

(0, 1), j ∈ ℤ and y ∈ ℝ𝑛, 

|kj ∗ 𝑓(y)| ≲ ‖𝑓‖Ḟ1,q
s+(1−1 p⁄ )𝑛,τ(ℝ𝑛)

2−j⌈s+(1−1 p⁄ )𝑛+𝑛(τ−1)⌉ ≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)2

−j⌈s+𝑛(τ−1 p⁄ )⌉ 
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and hence completes the proof of Lemma (5.2.7). 

Theorem (5.2.8) [222]: Let s ∈ ℝ, τ ∈ [0,∞) and q ∈ (0,∞] such that s + 𝑛τ < β + 1. 

(i) Let p ∈ (0,∞]  and 𝑎 ∈ (𝑛 p⁄ ,∞). Then the quasi-norms ‖{2js(kj ∗ 𝑓)}j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))
, 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))

and 

sup
P∈𝔔(ℝ𝑛)

1

|P|τ
{∑2jsq (∫[kj,P

∗,𝑎𝑓(𝑥)]
p
d𝑥

P

)

q p⁄∞

j=jP

}

1 q⁄

 

are equivalent in Ḃp,q
s,τ (ℝ𝑛). 

(ii) Let p ∈ (0,∞)  and 𝑎 ∈ (𝑛max{1 p⁄ , 1 q⁄ } ,∞) . Then the quasi-norms ‖{2js(kj ∗

𝑓)}
j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

, ‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

and 

sup
P∈𝔔(ℝ𝑛)

1

|P|τ
{∫ (∑2jsq[kj,P

∗,𝑎𝑓(𝑥)]
q

∞

j=jP

)

p q⁄

d𝑥
P

}

1 p⁄

 

are equivalent in Ḟp,q
s,τ (ℝ𝑛). 

Proof: By similarity, we only prove (ii). Notice that for all 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛) ,  j ∈ ℤ, P ∈

𝔔(ℝ𝑛) and 𝑥 ∈ P, |kj ∗ 𝑓(𝑥)| ≤ kj,P
∗,𝑎𝑓(𝑥) ≤ kj

∗,𝑎𝑓(𝑥). Therefore, to show (ii), it suffices 

to prove that ‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

 and ‖{2js(kj ∗ 𝑓)}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

 are equivalent quasi-

norms in Ḟp,q
s,τ (ℝ𝑛). We show this in three steps. 

Step 1. Let 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛). First we prove 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

≲ ‖{2msφm
∗,𝑎𝑓}m∈ℤ‖Lτ

p
(ℓq(ℝ𝑛)).                              (14) 

To this end, letting φ and ψ be as in the proof of Lemma (5.2.7), we see that for all j ∈ ℤ 

and y ∈ ℝ𝑛, 

kj ∗ 𝑓(y) = ∑ kj ∗ ψ̃m ∗ φm ∗ 𝑓(y)

m∈ℤ

.                                             (15) 

Notice that for all y ∈ ℝ𝑛, 

|kj ∗ ψ̃m ∗ φm ∗ 𝑓(y)| ≤ φm
∗,𝑎𝑓∫ |kj ∗ ψm(z)|(1 + 2

m|z|)𝑎dz
ℝ𝑛

. 

By Lemma (5.2.5), we see that for all y ∈ ℝ𝑛, 

|kj ∗ ψ̃m ∗ φm ∗ 𝑓(y)| ≲ min{2
(m−j)(β+1), 2(j−m)(M−𝑎)}φm

∗,𝑎𝑓(y),                       (16) 

where M > 𝑎 can be sufficiently large, which is determined later; see also [213] and its 

proof. On the other hand, for all 𝑥, y ∈ ℝ𝑛, 

φm
∗,𝑎𝑓(y) ≤ φm

∗,𝑎𝑓(𝑥)(1 + 2m|𝑥 − y|)𝑎 ≤ max{1, 2(m−j)𝑎} (1 + 2j|𝑥 − y|)𝑎φm
∗,𝑎𝑓(𝑥), 

which together with (16) yields that 

|kj ∗ ψ̃m ∗ φm ∗ 𝑓(y)| ≲ min{2
(m−j)(β+1), 2(j−m)(M−2𝑎)}φm

∗,𝑎𝑓(𝑥)(1 + 2j|𝑥 − y|)𝑎 . 

Then, from this and (15), it follows that for all 𝑥 ∈ ℝ𝑛, 

kj
∗,𝑎 ∗ 𝑓(𝑥) ≤ ∑ sup

y∈ℝ𝑛

|kj ∗ ψ̃m ∗ φm ∗ 𝑓(y)|

(1 + 2j|𝑥 − y|)𝑎
m∈ℤ

≲ ∑φm
∗,𝑎𝑓(𝑥)min{2(m−j)(β+1), 2(j−m)(M−2𝑎)}

m∈ℤ

 

and hence 
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2jskj
∗,𝑎 ∗ 𝑓(𝑥) ≲ ∑ 2msφm

∗,𝑎𝑓(𝑥)min{2(m−j)(β+1−s), 2(j−m)(M−2𝑎+s)}

m∈ℤ

. 

Choosing M > 2𝑎 − s + 𝑛τ, by β + 1 > 𝑠 + 𝑛τ and Lemma (5.2.6), we obtain (14). 

Step 2. Next we show that for all 𝑓 ∈ 𝒮β
′(ℝ𝑛), 

‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

≲ ‖{2mskm
∗,𝑎𝑓}m∈ℤ‖Lτ

p
(ℓq(ℝ𝑛)).                            (17) 

Without loss of generality, we may assume that the right-hand side of (17) is finite. 

The proof for (17) is similar to that for (14). In fact, by Lemma (5.2.4), there exists a 

function ψ ∈ 𝒮∞(ℝ
𝑛)  such that supp ψ̂ ⊂ {ξ ∈ ℝ𝑛 ∶  

11

20
ε < |ξ| <

20

11
ε}  and 

∑ k̂(2mξ)ψ̂(2mξ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
m∈ℤ = 1 for all ξ ∈ ℝ𝑛\{0}. Then by the Calderón reproducing formula in 

[189], for all 𝑓 ∈ 𝒮β
′(ℝ𝑛) , ∑ ψ̃m ∗ km ∗ 𝑓m∈ℤ  in 𝒮∞

′ (ℝ𝑛)  and hence φj ∗ 𝑓(y) =

∑ φj ∗ ψ̃m ∗ km ∗ 𝑓(y)m∈ℤ  for all j ∈ ℤ  and y ∈ ℝ𝑛 . Since φ,ψ ∈ 𝒮∞(ℝ
𝑛) , similarly to 

the estimate of (16), by [189], we see that for all y ∈ ℝ𝑛, 

|φj ∗ ψ̃m ∗ km ∗ 𝑓(y)| ≲ min{2
(m−j)M, 2(j−m)(M−𝑎)} km

∗,𝑎𝑓(y),  

where we chose M > max{0, s + 𝑛τ, 2𝑎 − s + 𝑛τ}. Then repeating the argument in Step 1, 

we obtain (17). 

From Step 1, Step 2 and Theorem (5.2.3), it follows that ‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

 is 

an equivalent quasi-norm in Ḟp,q
s,τ (ℝ𝑛). 

Step 3. To complete the proof of Theorem (5.2.8)(ii), we still need to prove that for 

all 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛), 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

≲ ‖{2ms(km ∗ 𝑓)}m∈ℤ‖Lτ
p
(ℓq(ℝ𝑛)),                              (18) 

since the converse inequality is trivial. Without loss of generality, we may assume that the 

right-hand side of (18) is finite. 

Since 𝑎 > (𝑛 min{p, q}⁄ ,∞), we choose r < min{p, q} such that 𝑎 r > 𝑛. By the 

argument in the proof of Lemma (5.2.7), there exist functions φ,ψ ∈ 𝒮∞(ℝ
𝑛) such that 

𝑓 = ∑ ψj ∗ φ̃m ∗ 𝑓m∈ℤ  in 𝒮∞
′ (ℝ𝑛) . For all N ∈ ℕ , set 𝑓N = ∑ ψm ∗ φ̃m ∗ 𝑓

N
m=−N . Then 

𝑓N ∈ 𝒮
′(ℝ𝑛). By [190, (2.2)], we see that 𝑓N = ∑ ∑ 〈𝑓, φ𝒬〉ψ𝒬𝑙(𝒬)=2−m

N
m=−N  in 𝒮∞

′ (ℝ𝑛). 

Then, similarly to the proof of [190, Lemma 3.2], we obtain that for all 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛) and 

N ∈ ℕ, 
‖𝑓N‖Ḟp,q

s,τ (ℝ𝑛) ≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛).                                                              (19) 

Also, similarly to the proof of Lemma (5.2.7), we know that there exists a sequence 
{PN}N∈ℕ of polynomials with degree no more than L ≡ max{−1, ⌊s + 𝑛(τ − 1 p⁄ )⌋} for all 

N ∈ ℕ  such that g ≡ lim
N→∞

(𝑓N + PN)  exists in 𝒮∞
′ (ℝ𝑛)  and g  is a representative of the 

equivalence class 𝑓 + 𝒫(ℝ𝑛). Then, by β ≥ −1 and β + 1 > 𝑠 + 𝑛τ, for any ϕ ∈ 𝒮β(ℝ
𝑛) 

and all y ∈ ℝ𝑛 , ϕ ∗ 𝑓(y) = lim
N→∞

ϕ ∗ 𝑓N(y). Hence, for all j ∈ ℤ and y ∈ ℝ𝑛 , kj ∗ 𝑓(y) =

lim
N→∞

kj ∗ 𝑓N(y). From the discrete version of the Strömberg-Torchinsky type estimate in 

[71] (see also [73]), we deduce that for any M ∈ ℕ , there exists a positive constant 

C̃(k, r,M), depending only on k, r and M, such that for all y ∈ ℝ𝑛, 

|kj ∗ 𝑓N(y)|
r
≤ C̃(k, r,M)∑2(j−m)Mr∫

2m𝑛|km ∗ 𝑓N(z)|
r

(1 + 2m|𝑥 − y|)Mr
dz

ℝ𝑛m≥j

.                           (20) 

Applying Lemma (5.2.7) and (19), we see that for all m ∈ ℤ and z ∈ ℝ𝑛, 
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|km ∗ 𝑓N(z)| ≲ ‖𝑓N‖Ḟp,q
s,τ (ℝ𝑛)2

−m⌈s+𝑛(τ−1 p⁄ )⌉ ≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)2

−m⌈s+𝑛(τ−1 p⁄ )⌉. 

If we choose M > max{𝑛 r⁄ , 𝑛(1 p⁄ − τ) − s, 𝑎, 𝑎 − s}, then for all y ∈ ℝ𝑛, 

∑2(j−m)Mr∫
2m𝑛|km ∗ 𝑓N(z)|

r

(1 + 2m|y − z|)Mr
dz

ℝ𝑛m≥j

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)
r ∑2jMr−mr⌈M+s+𝑛(τ−1 p⁄ )⌉∫

2m𝑛

(1 + 2m|y − z|)Mr
dz

ℝ𝑛m≥j

≲ ‖𝑓‖Ḟp,q
s,τ (ℝ𝑛)2

−j⌈s+𝑛(τ−1 p⁄ )⌉. 

Therefore, from (20) and Lebesgue's dominated convergence theorem, it follows that for 

all y ∈ ℝ𝑛, 

|kj ∗ 𝑓N(y)|
r
≲∑2(j−m)Mr∫

2m𝑛|km ∗ 𝑓N(z)|
r

(1 + 2m|y − z|)Mr
dz

ℝ𝑛m≥j

.                                 (21) 

Notice that for all m ≥ j and 𝑥, y, z ∈ ℝ𝑛, 

2m|𝑥 − z| ≤ 2m−j(2j|𝑥 − y| + 2m|y − z|). 
Then 1 + 2m|𝑥 − z| ≤ 2m−j(1 + 2j|𝑥 − y|)(1 + 2m|y − z|), which combined with (21) yields 

that for all 𝑥, y ∈ ℝ𝑛, 

|kj ∗ 𝑓(y)|
r

(1 + 2j|𝑥 − y|)𝑎r
≲∑2(j−m)(M−𝑎)r∫

2m𝑛|km ∗ 𝑓(z)|
r

(1 + 2m|𝑥 − z|)𝑎r
dz

ℝ𝑛m≥j

.  

Thus, by taking the supremum on y ∈ ℝ𝑛 in the above formula and 𝑎 r > 𝑛, we obtain that 

for all 𝑥 ∈ P with P ∈ 𝔔(ℝ𝑛), 

[kj
∗,𝑎𝑓(𝑥)]

r
≲∑2(j−m)(M−𝑎)r∫

2m𝑛|km ∗ 𝑓(z)|
r

(1 + 2m|𝑥 − z|)𝑎r
dz

ℝ𝑛m≥j

≲∑2(j−m)(M−𝑎)r [∫
2m𝑛|km ∗ 𝑓(z)|

r

(1 + 2m|𝑥 − z|)𝑎r
dz

3Pm≥j

+ ∑ ∫
2m𝑛|km ∗ 𝑓(z)|

r

(1 + 2m|𝑥 − z|)𝑎r
dz

P+𝑖𝑙(P)𝑖∈ℤ𝑛,|𝑖|≥2

]

≲∑2(j−m)(M−𝑎)r [∑2−𝑙𝑎r2m𝑛∫ |km ∗ 𝑓(z)|
rχ3P(z)dz

|𝑥−z|≤2𝑙−m

∞

𝑖=0m≥j

+ ∑ |𝑖|−𝑎r2(jP−m)(𝑎r−𝑛)HL(|km ∗ 𝑓|
rχP+𝑖𝑙(P))(𝑥 + 𝑖𝑙(P))

𝑖∈ℤ𝑛,|𝑖|≥2

]

≲∑2(j−m)(M−𝑎)r [HL(|km ∗ 𝑓|
rχ3P)(𝑥)

m≥j

+ ∑ |𝑖|−𝑎rHL(|km ∗ 𝑓|
rχ3P+𝑖𝑙(P))(𝑥 + 𝑖𝑙(P))

𝑖∈ℤ𝑛,|𝑖|≥2

]. 

Then, choosing ε ∈ (0,min{M − 𝑎,M − 𝑎 + s}) , by Hölder's inequality, Minkowski's 

inequality, Fefferman-Stein's vector valued inequality and 𝑎 r > 𝑛, we further obtain 
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1

|P|τr

{
 

 
∫ (∑2jsq[kj

∗,𝑎𝑓(𝑥)]
q

∞

j=jP

)

p
q

d𝑥
P

}
 

 

r
p

≲
1

|P|τr

{
 
 

 
 

∫ (∑2jsq∑2(j−m)(M−𝑎−ε)q [HL(|km ∗ 𝑓|
rχ3P)(𝑥)

m≥j

∞

j=jP
P

+ ∑ |𝑖|−𝑎rHL(|km ∗ 𝑓|
rχP+𝑖𝑙(P))(𝑥 + 𝑖𝑙(P))

𝑖∈ℤ𝑛,|𝑖|≥2

]

q
r

)

p
q

d𝑥

}
 
 

 
 

r
p

≲
1

|P|τr

{
 

 
∫ (∑ ∑2(M−𝑎−ε+s)q2−m(M−𝑎−ε)q[HL(|km ∗ 𝑓|

rχP+𝑖𝑙(P))(𝑥

m

j=jP

∞

m=jP
P

+ 𝑖𝑙(P))]
q
r)

p
q

d𝑥

}
 

 

r
p

≲ ‖{2ms(km ∗ 𝑓)}m∈ℤ‖Lτ
p
(ℓq(ℝ𝑛))

r , 

which implies (18) and hence completes the proof of Theorem (5.2.8).  

For the Besov-Hausdorff space BḢp,q
s,τ (ℝ𝑛)  and the Triebel-Lizorkin-Hausdorff 

space FḢp,q
s,τ (ℝ𝑛), we also have the maximal function and the local mean characterizations 

similar to Theorems (5.2.3) and (5.2.8). To state these results, we first recall some 

notation. 

For 𝑥 ∈ ℝ𝑛  and r > 0 , let B(𝑥, r) ≡ {y ∈ ℝ𝑛: |𝑥 − y| < 𝑟} . For E ⊂ ℝ𝑛  and d ∈
(0, 𝑛], the d-dimensional Hausdorff capacity of E is defined by 

Hd(E) ≡ inf {∑rj
d

j

∶ E ⊂⋃B(𝑥j, rj)

j

},                                           (22) 

where the infimum is taken over all countable coverings {B(𝑥j, rj)}j=1
∞

 of open balls of E; 

see, for example, [161, 188]. It is well known that Hd is monotone, countably subadditive 

and vanishes on the empty set. Moreover, Hd in (22) when d = 0 also makes sense, and 

H0 has the properties that for all sets E ⊂ ℝ𝑛, H0(E) ≥ 1, and H0(E) = 1 if and only if E 

is bounded. For any function 𝑓 ∶ ℝ𝑛 → [0,∞], the Choquet integral of f with respect to Hd 

is then defined by 

∫ 𝑓 dHd

ℝ𝑛
≡ ∫ Hd({𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) > λ})dλ

∞

0

. 

In what follows, for any p, q ∈ (0,∞], let p ∨ q ≡ max{p, q} and p ∧ q ≡ min{p, q}. 
Set ℝ+

𝑛+1 ≡ ℝ𝑛 × (0,∞). For any measurable function ω on ℝ+
𝑛+1 and 𝑥 ∈ ℝ𝑛, define its 

nontangential maximal function Nω by setting Nω(𝑥) ≡ sup
|y−𝑥|<𝑡

|ω(y, t)|. 

For p ∈ (0,∞) and τ ∈ [0,∞) , let ℓq (Lτ
p(ℝ𝑛))
̃

 with q ∈ [1,∞)  be the set of all 

sequences G ≡ {gj}j∈ℤ
 of measurable functions on ℝ𝑛 such that 
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‖G‖
ℓq(Lτ

p(ℝ𝑛))
̃ ≡ inf

ω
{∑(∫ |gj(𝑥)|

p
[ω(𝑥, 2−j)]−pd𝑥

ℝ𝑛
)

q p⁄

j∈ℤ

}

1 q⁄

< ∞ 

and Lτ
p
(ℓq(ℝ𝑛))̃  with q ∈ (1,∞)  the set of all sequences G ≡ {gj}j∈ℤ

 of measurable 

functions on ℝ𝑛 such that 

‖G‖
Lτ
p
(ℓq(ℝ𝑛))̃ ≡ inf

ω
{∫ (∑|gj(𝑥)|

q
[ω(𝑥, 2−j)]−q

j∈ℤ

)

p q⁄

d𝑥
ℝ𝑛

}

1 p⁄

< ∞, 

where the infimum is taken over all nonnegative Borel measurable functions on ℝ+
𝑛+1 

satisfying 

∫ [Nω(𝑥)](p∨q)
′
 dH𝑛τ(p∨q)

′
(𝑥)

ℝ𝑛
≤ 1                                                  (23) 

and with the restriction that for any j ∈ ℤ,ω(∙, 2−j) is allowed to vanish only where gj 

vanishes. 

Theorem (5.2.9) [222]: Let s ∈ ℝ, p ∈ (1,∞), and φ ∈ 𝒮(ℝ𝑛)  satisfy (10). 

(i)  If q ∈ [1,∞), τ ∈ [0, 1 (p ∨ q)′⁄ ] and 𝑎 ∈ (𝑛[1 p⁄ + τ],∞), then ‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))
̃

is 

an equivalent quasi-norm in BḢp,q
s,τ (ℝ𝑛). 

(ii) If q ∈ (1,∞), τ ∈ [0, 1 (p ∨ q)′⁄ ] and 𝑎 ∈ (𝑛[max{1 p⁄ , 1 q⁄ } + τ],∞), then the quasi-norm 

‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

is an equivalent quasi-norm in FḢp,q
s,τ (ℝ𝑛). 

Proof: By similarity, we only show (ii). Notice that for all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛), ∈ ℤ and y ∈ ℝ𝑛, 

|φj ∗ 𝑓(𝑥)| ≤ φj
∗,𝑎𝑓(𝑥). Therefore, to complete the proof of (ii), it suffices to prove that 

‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

≲ ‖𝑓‖FḢp,q
s,τ (ℝ𝑛) for all 𝑓 ∈ FḢp,q

s,τ (ℝ𝑛). 

Let ω be a nonnegative function on ℝ+
𝑛+1 satisfying (23) such that 

{∫ (∑2jsq|φj ∗ 𝑓(𝑥)|
q
[ω(𝑥, 2−j)]−q

∞

j∈ℤ

)

p q⁄

d𝑥
ℝ𝑛

}

1 p⁄

≲ ‖𝑓‖FḢp,q
s,τ (ℝ𝑛).                    (24) 

Since 𝑎 > 𝑛(max{1 p⁄ , 1 q⁄ } + τ), we choose δ ∈ (0,min{p, q}) such that a > 𝑛(1 δ⁄ + τ). 

By (11), we know that for all 𝑥 ∈ 𝒬jk  with j ∈ ℤ  and k, 𝑙 ∈ ℤ𝑛 , 1 + 2j|𝑥 − 2−j𝑙|~1 +
|k − 𝑙| and 

[φj
∗,𝑎𝑓(𝑥)]

δ
≲ ∑ t𝒬jk(1 + |k − 𝑙|)

−𝑎δ

𝑙∈ℤ𝑛

≲ ∑ t𝒬jk(1 + 2
j|𝑥 − 2−j𝑙|)

−𝑎δ

𝑙∈ℤ𝑛

, 

where t𝒬jk is as in the proof of Theorem (5.2.3). Set A0 ≡ {𝑙 ∈ ℤ
𝑛 ∶ 2j|𝑥 − 2−j𝑙| ≤ √𝑛 } and 

Am ≡ {𝑙 ∈ ℤ
𝑛 ∶ 2m−1√𝑛 < 2−j|𝑥 − 2−j𝑙| ≤ 2m√𝑛 } for all m ∈ ℕ. We further have that for 

all 𝑥 ∈ 𝒬jk, 

φj
∗,𝑎𝑓(𝑥) ≲ [∑ 2−m𝑎δ ∑ t𝒬j𝑙

𝑙∈Am

∞

𝑚=0

]

1 δ⁄

≲ ∑ 2−m(ε−𝑎) [∑ t𝒬j𝑙
𝑙∈Am

]

1 δ⁄
∞

𝑚=0

, 

where the last inequality follows from (13) if 1 δ⁄ ≤ 1 or Hölder's inequality if 1 δ⁄ > 1, 

and ε ∈ (0, 𝑎 − 𝑛(1 δ⁄ + τ)). 
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Since ‖∙‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2  is a norm, the last inequality further implies that 

‖{2jsφj
∗,𝑎𝑓(𝑥)}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2

≲ ∑ 2m𝑣2(ε−𝑎) ‖‖{2js [∑ t𝒬j𝑙
𝑙∈Am

]

1 δ⁄

}

j∈ℤ

‖‖

Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2
∞

m=0

.     (25) 

For each m ∈ ℤ+ and (y, s) ∈ ℝ+
𝑛+1, define 

ωm(y, s) ≡ 2
−m𝑛τ sup{ω(z, s) ∶ z ∈ ℝ𝑛, |z − y| < √𝑛2m+2s}. 

Then by [204, Corollary 3.1], ωm  still satisfies (23) modulo a multiplicative positive 

constant independent of m . Moreover, for all y ∈ 𝒬j𝑙  with 𝑙 ∈ Am , we have that 

ω(y, 2−j) ≤ 2m𝑛𝜏ωm(y, 2
−j). Therefore, for all 𝑥 ∈ 𝒬𝑗k, 

∑ t𝒬j𝑙[ωm(𝑥, 2
−j)]

−δ

𝑙∈Am

≲ 2j𝑛 ∑ ∫ |φj ∗ 𝑓(y)|
δ
dy

𝒬j𝑙𝑙∈Am

[ωm(𝑥, 2
−j)]

−δ

≲ 2j𝑛2m𝑛τδ∫ ∑ |φj ∗ 𝑓(y)|
δ
χ𝒬j𝑙(y)[ω(y, 2

−j)]
−δ
dy

𝑙∈Am
ℝ𝑛

≲ 2m𝑛(1+τδ)HL(∑ |φj ∗ 𝑓|
δ
χ𝒬j𝑙[ω(∙, 2

−j)]
−δ

𝑙∈Am

)(𝑥), 

which combined with Fefferman-Stein's vector-valued inequality and (24) yields that 

‖‖{2js [∑ t𝒬j𝑙
𝑙∈Am

]

1 δ⁄

}

j∈ℤ

‖‖

Lτ
p
(ℓq(ℝ𝑛))̃

≲

{
 

 

∫ [∑2jsq(∑ t𝒬j𝑙[ωm(𝑥, 2
−j)]−δ

𝑙∈Am

)

q δ⁄

j∈ℤ

]

p q⁄

d𝑥
ℝ𝑛

}
 

 
1 p⁄

≲ 2m𝑛(1 δ⁄ +τ) {∫ (∑2jsq ∑|φj ∗ 𝑓(𝑥)|
q
χ𝒬j𝑙(𝑥)[ω(𝑥, 2

−j)]−q

𝑙∈Amj∈ℤ

)

p q⁄

d𝑥
ℝ𝑛

}

1 p⁄

≲ 2m𝑛(1 δ⁄ +τ)‖𝑓‖FḢp,q
s,τ (ℝ𝑛). 

By 𝑎 > 𝑛(1 δ⁄ + τ) and (25), we further have 

‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2

≲ ∑ 2m𝑣2(ε−𝑎+𝑛(1 δ⁄ +τ))‖𝑓‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2

∞

m=0

≲ ‖𝑓‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2 , 

which completes the proof of Theorem (5.2.9). 

Lemma (5.2.10) [222]: Let p ∈ (1,∞) , δ ∈ (0,∞)  and {gm}m∈ℤ  be a sequence of 

measurable functions on ℝ𝑛. For all j ∈ ℤ and 𝑥 ∈ ℝ𝑛, let Gj(𝑥) ≡ ∑ 2−|m−j|δgm(𝑥)m∈ℤ . 

(i) If q ∈ [1,∞), τ ∈ [0, 1 (p ∨ q)′⁄ ] and δ ∈ (𝑛τ,∞), then there exists a positive constant C, 

independent of {gm}m∈ℤ, such that ‖{Gj}j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))
̃

≲ C‖{gm}m∈ℤ‖ℓq(Lτ
p(ℝ𝑛))
̃ . 

(ii)  If q ∈ (1,∞), τ ∈ [0, 1 (p ∨ q)′⁄ ] and δ ∈ (𝑛τ,∞), then there exists a positive constant 

C, independent of {gm}m∈ℤ, such that ‖{Gj}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

≲ C‖{gm}m∈ℤ‖Lτ
p
(ℓq(ℝ𝑛))̃ . 

Proof: By similarity, we only prove (ii). Let ω̃  be a nonnegative function on ℝ+
𝑛+1 

satisfying (23) such that 
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{∫ [∑|gm(𝑥)|
q[ω̃(𝑥, 2−m)]−q

m∈ℤ

]

p q⁄

d𝑥
ℝ𝑛

}

1 p⁄

≲ C‖{gm}m∈ℤ‖Lτ
p
(ℓq(ℝ𝑛))̃ .                    (26) 

For each  𝑖 ∈ ℤ+  and all (𝑥, s) ∈ ℝ+
𝑛+1 , let ω𝑖(𝑥, s) ≡ 2

−𝑖𝑛τ sup{ω̃(𝑥, t) ∶ 2−𝑖 ≤ s t⁄ ≤ 2𝑖} . 

Then by [204, Corollary 3.1], ω𝑖  still satisfies (23) modulo a multiplicative constant 

independent of 𝑖 . Moreover, for all 𝑥 ∈ ℝ𝑛 , m, j ∈ ℤ  with |j − m| = 𝑖 , we have that 
[ω𝑖(𝑥, 2

−j)]−1 ≤ 2𝑖𝑛τ[ω̃(𝑥, 2−m)]−1. 

Since ‖∙‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2  is a norm, by (26), we see that 

‖{Gj}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))
̃

𝑣2
= inf

ω

{
 
 

 
 

∫

[
 
 
 

∑

(

 ∑ ∑ 2−𝑖δ [
|gm(𝑥)|

ω(𝑥, 2−j)
]

m∈ℤ
|m−j|=𝑖

∞

𝑖=0
)

 

q

j∈ℤ
]
 
 
 

p
q

d𝑥
ℝ𝑛

}
 
 

 
 

𝑣2
p

≲∑2−𝑖δ𝑣2 inf
ω

{
 
 

 
 

∫

[
 
 
 

∑

(

 ∑ [
|gm(𝑥)|

ω(𝑥, 2−j)
]

m∈ℤ
|m−j|=𝑖 )

 

q

j∈ℤ
]
 
 
 

p
q

d𝑥
ℝ𝑛

}
 
 

 
 

𝑣2
p

∞

𝑖=0

≲∑2−𝑖δ𝑣2

[
 
 
 
 

{∫ (∑ [
|gm(𝑥)|

ω𝑖(𝑥, 2−m+𝑖)
]

q

m∈ℤ

)

p
q

d𝑥
ℝ𝑛

}

𝑣2
p∞

𝑖=0

+ {∫ (∑ [
|gm(𝑥)|

ω𝑖(𝑥, 2−m−𝑖)
]

q

m∈ℤ

)

p
q

d𝑥
ℝ𝑛

}

𝑣2
p

]
 
 
 
 

≲∑2−𝑖𝑣2(δ−𝑛τ) {∫ (∑ [
|gm(𝑥)|

ω̃(𝑥, 2−m)
]

q

m∈ℤ

)

p
q

d𝑥
ℝ𝑛

}

𝑣2
p∞

𝑖=0

≲ ‖{gm}m∈ℤ‖
Lτ
p
(ℓq(ℝ𝑛))
̃

𝑣2 , 

which completes the proof of Lemma (5.2.10). 

Lemma (5.2.11) [222]: Let s ∈ ℝ , p ∈ (1,∞) , q ∈ [1,∞) , τ ∈ [0, 1 (p ∨ q)′⁄ ]  and β  be an 

integer such that β ≥ −1 and β + 1 ≥ s + 𝑛τ. Then there exists a positive constant C such 

that for all j ∈ ℤ, 𝑓 ∈ AḢp,q
s,τ (ℝ𝑛) and y ∈ ℝ𝑛, |kj ∗ 𝑓(y)| ≤ C‖𝑓‖AḢp,q

s,τ (ℝ𝑛)2
−j⌈s−𝑛(τ+1 p⁄ )⌉, where 

AḢp,q
s,τ (ℝ𝑛) denotes either BḢp,q

s,τ (ℝ𝑛) or FḢp,q
s,τ (ℝ𝑛). 

Proof: By similarity, we only consider the Triebel-Lizorkin-Hausdorff spaces FḢp,q
s,τ (ℝ𝑛). 

Let 𝑓 ∈ FḢp,q
s,τ (ℝ𝑛)  and φ,ψ ∈ 𝒮(ℝ𝑛)  be as in the proof of Lemma (5.2.7). From the 

arguments in [204], we deduce that there exists a sequence {PN}N∈ℕ of polynomials with 

degree no more than L ≡ max{−1, ⌊s − 𝑛(τ + 1 p⁄ )⌋}  for all N ∈ ℕ  such that g ≡

lim
N→0

(∑ ψ̃m ∗ φm ∗ 𝑓 + PN
N
m=−N )  exists in 𝒮′(ℝ𝑛)  and g  is a representative of the 

equivalence class 𝑓 + 𝒫(ℝ𝑛). Since β + 1 ≥ s + 𝑛τ and ∫ k(𝑥)𝑥γd𝑥
ℝ𝑛

= 0 for all |γ| ≤

β , we obtain that kj ∗ 𝑓(y) = ∑ kj ∗ ψ̃m ∗ φm ∗ 𝑓(y)m∈ℤ  for all j ∈ ℤ  and y ∈ ℝ𝑛 . 

Furthermore, we have |kj ∗ 𝑓(y)| ≲ I1 + I2 , where I1, I2  are as in the proof of Lemma 

(5.2.7). 
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Let ω be as in (24). Recall that if ω satisfies (23), then for all (𝑥, s) ∈ ℝ+
𝑛+1, ω(𝑥, s) ≲

s−𝑛τ  (see [189]). Choosing N > 𝑛τ − s and applying Hölder's inequality and (24) yield 

that for all y ∈ ℝ𝑛, 

I1 ≲∑2−m(N−𝑛τ)+jN∫
2j𝑛|φm ∗ 𝑓(z)|[ω(z, 2

−m)]−1

[1 + 2j|y − z|]𝑛+N+1
dz

ℝ𝑛m≥j

≲∑2−m(N+s−𝑛τ)+jN {∫
2j𝑛2msq|φm ∗ 𝑓(z)|

p[ω(z, 2−m)]−p

[1 + 2j|y − z|]𝑛+N+1
dz

ℝ𝑛
}

1 p⁄

m≥j

≲∑2−m(N+s−𝑛τ)+jN2j𝑛 p⁄ ‖𝑓‖FḢp,q
s,τ (ℝ𝑛)

m≥j

≲ ‖𝑓‖FḢp,q
s,τ (ℝ𝑛)2

−j⌈s−𝑛(τ+1 p⁄ )⌉. 

Similarly, by the assumption that β + 1 ≥ s + 𝑛τ and Hölder's inequality, we also have 

that for all y ∈ ℝ𝑛, I1 ≲ 2
−j⌈s−𝑛(τ+1 p⁄ )⌉‖𝑓‖FḢp,q

s,τ (ℝ𝑛), which completes the proof of Lemma 

(5.2.11). 

Theorem (5.2.12) [222]: Let 𝑎 ∈ (1,∞), s ∈ ℝ  and p ∈ (1,∞). 
(i) If q ∈ [1,∞), τ ∈ [0, 1 (p ∨ q)′⁄ ] and 𝑎 ∈ (𝑛[1 p⁄ + τ],∞) such that s + 𝑛τ < β + 1, then 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))
̃

 and ‖{2jskj ∗ 𝑓}j∈ℤ
‖
ℓq(Lτ

p(ℝ𝑛))
̃

 are equivalent quasi-norms in 

BḢp,q
s,τ (ℝ𝑛). 

(ii) If q ∈ (1,∞), τ ∈ [0, 1 (p ∨ q)′⁄ ]  and 𝑎 ∈ (𝑛[max{1 p⁄ , 1 q⁄ } + τ],∞)  such that s + 𝑛τ <

β + 1, then ‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

 and ‖{2jskj ∗ 𝑓}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

 are equivalent quasi-

norms in FḢp,q
s,τ (ℝ𝑛). 

Proof: By similarity, we only show (ii), namely, we need to prove that 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

 and ‖{2js(kj ∗ 𝑓)}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

 are equivalent quasi-norms in  

FḢp,q
s,τ (ℝ𝑛). We show this in three steps. 

Step 1. Let 𝑓 ∈ FḢp,q
s,τ (ℝ𝑛), φ and ψ be as in the proof of Lemma (5.2.7). Similarly 

to Step 1 of the proof of Theorem (5.2.8), we see that for all 𝑥 ∈ ℝ𝑛, 

2jskj
∗,𝑎𝑓(𝑥) ≲ ∑ 2msφm

∗,𝑎𝑓(𝑥)min{2(m−j)(β+1−s), 2(j−m)(M−2𝑎+s)}

m∈ℤ

. 

Choosing M > 2𝑎 + s + 𝑛τ, by β + 1 ≥ s + 𝑛τ and Lemma (5.2.10), we obtain 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

≲ ‖{2msφm
∗,𝑎𝑓}m∈ℤ‖Lτ

p
(ℓq(ℝ𝑛))̃ . 

Step 2. Next we show that for all 𝑓 ∈ 𝒮β
′(ℝ𝑛), 

‖{2jsφj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

≲ ‖{2mskm
∗,𝑎𝑓}m∈ℤ‖Lτ

p
(ℓq(ℝ𝑛))̃ .                             (27) 

Without loss of generality, we may assume that the right-hand side of (27) is finite. 

Similarly to Step 2 of the proof of Theorem (5.2.8), there exists a function  ψ ∈ 𝒮∞(ℝ
𝑛) 

such that for all j ∈ ℤ , 𝑓 ∈ 𝒮β
′(ℝ𝑛) , φ ∈ 𝒮∞(ℝ

𝑛)  and y ∈ ℝ𝑛 , φj ∗ 𝑓(y) = ∑ φj ∗m∈ℤ

ψ̃m ∗ km ∗ 𝑓(y). By [189, Lemma 2.2], we obtain that for all y ∈ ℝ𝑛, 

|φj ∗ ψ̃m ∗ km ∗ 𝑓(y)| ≲ min{2
(m−j)M, 2(j−m)(M−𝑎)} kj

∗,𝑎𝑓(y), 

where we chose M > max{s + 𝑛τ, 2𝑎 − s + 𝑛τ}. Then, similarly to Step 1 of the proof of 

Theorem (5.2.8), we obtain that for all 𝑥 ∈ ℝ𝑛, 

2jsφj
∗,𝑎𝑓(𝑥) ≲ ∑ 2mskm

∗,𝑎𝑓(𝑥)min{2(m−j)(M−s), 2(j−m)(M−2𝑎+s)}

m∈ℤ

. 
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which together with Lemma (5.2.10) yields (27). 

Step 3. Combining Step 1, Step 2 and Theorem (5.2.9) yields that 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

 is an equivalent quasi-norm in Ḟp,q
s,τ (ℝ𝑛). To complete the proof of 

(ii), it suffices to prove that for all 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛), 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

≲ ‖{2ms(km ∗ 𝑓)}m∈ℤ‖Lτ
p
(ℓq(ℝ𝑛))̃ .                         (28) 

Without loss of generality, we may assume that the right-hand side of (28) is finite. 

Since 𝑎 > 𝑛[max{1 p⁄ , 1 q⁄ } + τ] , we choose 1 ≤ r ≤ min{p, q}  such that 𝑎 >
𝑛(1 r⁄ + τ). Let ω̃ be a nonnegative function on ℝ+

𝑛+1 satisfying (23) such that 

{∫ (∑2jsq|kj ∗ 𝑓(𝑥)|
q
[ω̃(𝑥, 2−j)]−q

j∈ℤ

)

p q⁄

d𝑥
ℝ𝑛

}

1 p⁄

≲ ‖{2ms(km ∗ 𝑓)}m∈ℤ‖Lτ
p
(ℓq(ℝ𝑛))̃ .       (29) 

Let φ and ψ be as in the proof of Lemma (5.2.11). Then 𝑓 = ∑ ψ̃m ∗ φj ∗ 𝑓m∈ℤ  in 

𝒮∞
′ (ℝ𝑛). By the argument in [204], we know that there exists a sequence {PN}N∈ℕ  of 

polynomials with degree no more than L ≡ max{−1, ⌊s − 𝑛(τ + 1 p⁄ )⌋} for all N ∈ ℕ such 

that g ≡ lim
N→∞

(𝑓N + PN) exists in 𝒮′(ℝ𝑛) and g is a representative of the equivalence class 

𝑓 + 𝒫(ℝ𝑛), where 𝑓N ∈ 𝒮
′(ℝ𝑛) is as in the proof of Theorem (5.2.8). By Lemma (5.2.11) 

and [204, Lemma 2.1], we know that for all j ∈ ℤ , 𝑓 ∈ FḢp,q
s,τ (ℝ𝑛) , y ∈ ℝ𝑛  and N ∈

ℕ ,  |kj ∗ 𝑓N(y)| ≲ ‖𝑓N‖FḢp,q
s,τ (ℝ𝑛)2

−j⌈s−𝑛(τ+1 p⁄ )⌉ ≲ ‖𝑓‖FḢp,q
s,τ (ℝ𝑛)2

−j⌈s−𝑛(τ+1 p⁄ )⌉ .  On the 

other hand, since β + 1 ≥ s + 𝑛τ , we see that for all j ∈ ℤ  and y ∈ ℝ𝑛 , kj ∗ 𝑓(y) =

lim
N→∞

kj ∗ 𝑓N(y). Similarly to the proof of Theorem (5.2.8), we obtain that for all j ∈ ℤ and 

𝑥 ∈ ℝ𝑛, 

[kj
∗,𝑎𝑓(𝑥)]

r
≲∑2(j−m)(M−𝑎)r∫

2m𝑛|km ∗ 𝑓(z)|
r

[1 + 2m|𝑥 − z|]𝑎r
dz

ℝ𝑛m≥j

, 

where we chose M > 𝑎 + 𝑛τ − s. Then for all 𝑥 ∈ ℝ𝑛, 

[2jskj
∗,𝑎𝑓(𝑥)]

r
≲∑2(j−m)(M−𝑎)r2jsr2m𝑛∫

|km ∗ 𝑓(z)|
r

[1 + 2m|𝑥 − z|]𝑎r
dz

ℝ𝑛m≥j

≲∑2−𝑖𝑎r {∑2(j−m)(M−𝑎)r2jsr2m𝑛∫ |km ∗ 𝑓(z)|
rdz

|z−𝑥|≤2𝑖−mm≥j

}

∞

𝑖=0

≡∑2−𝑖𝑎rJj,𝑖

∞

𝑖=0

, 

which, together with (13) and the fact that ‖∙‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2  is a norm, yields that 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2

≲∑2−𝑖𝑎𝑣2

∞

𝑖=0

‖{(Jj,𝑖)
1 r⁄
}
j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2

.                      (30) 

Furthermore, by (13) and the fact that ‖∙‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2  is a norm again, we obtain 
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‖{(Jj,𝑖)
1
r}
j∈ℤ

‖

Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2

~ inf
ω

{
 
 

 
 

∫ [∑(∑2−𝑙(M−𝑎)r
∞

𝑙=0

2jsr2(j+𝑙)𝑛∫ |kj+𝑙
|z−𝑥|≤2𝑖−j−𝑙j∈ℤℝ𝑛

∗ 𝑓(z)|
r
dz)

q
r

[ω(𝑥, 2−j)]−q]

p
q

d𝑥

}
 
 

 
 

𝑣2
p

≲∑2−𝑙(M−𝑎)𝑣2 inf
ω

{
 

 
∫ [∑2jsq (2(j+𝑙)𝑛∫ |kj+𝑙

|z−𝑥|≤2𝑖−j−𝑙j∈ℤℝ𝑛

∞

𝑙=0

∗ 𝑓(z)|
r
[ω(𝑥, 2−j)]−rdz)

q
r

]

p
q

d𝑥

}
 

 

𝑣2
p

.                                                                          (31) 

For all 𝑖, 𝑙 ∈ ℤ+   and all (𝑥, s) ∈ ℝ+
𝑛+1 , let ω𝑖,𝑙(𝑥, s) ≡ 2

−(𝑖+𝑙)𝑛τ sup{ω̃(y, t) ∶

|𝑥 − y| ≤ 2𝑖t, 2−𝑙 ≤ t s⁄ ≤ 2𝑙} . Then by [204, Corollary 3.1], ω𝑖,𝑙  still satisfies (23) 

modulo a multiplicative constant independent of 𝑖 and 𝑙. Moreover, for all m, j ∈ ℤ with 

|j − m| = 𝑙 and 𝑥, y ∈ ℝ𝑛  with |z − 𝑥| ≤ 2𝑖−m , we have that [ω𝑖,𝑙(𝑥, 2
−j)]

−1
≤

2(𝑖+𝑙)𝑛τ[ω̃(z, 2−m)]−1 . Thus, from Fefferman-Stein's vector-valued inequality, (29) and 

(31), it follows that 
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‖{(Jj,𝑖)
1
r}
j∈ℤ

‖

Lτ
p
(ℓq(ℝ𝑛))
̃

𝑣2

≲∑2−𝑙(M−𝑎+s)𝑣2

{
 

 
∫ [∑2jsq (2j𝑛∫ |kj

|z−𝑥|≤2𝑖−jj∈ℤℝ𝑛

∞

𝑙=0

∗ 𝑓(z)|
r
[ω𝑖,𝑙(𝑥, 2

−j−𝑙)]
−r
dz)

q
r

]

p
q

d𝑥

}
 

 

𝑣2
p

≲∑2−𝑙(M−𝑎+s−𝑛τ)𝑣22𝑖𝑛τ𝑣2

{
 

 
∫ [∑2jsq (2j𝑛∫ |kj

|z−𝑥|≤2𝑖−jj∈ℤℝ𝑛

∞

𝑙=0

∗ 𝑓(z)|
r
[ω̃(z, 2−j)]

−r
dz)

q
r

]

p
q

d𝑥

}
 

 

𝑣2
p

≲∑2−𝑙(M−𝑎+s−𝑛τ)𝑣22𝑖(𝜏+1 r⁄ )𝑛𝑣2

{
 

 
∫ (∑2jsq[HL(|kj

j∈ℤℝ𝑛

∞

𝑙=0

∗ 𝑓|
r
[ω̃(∙, 2−j)]

−r
)(𝑥)]

q
r)

p
q

d𝑥

}
 

 

𝑣2
p

≲ 2𝑖(𝜏+1 r⁄ )𝑛𝑣2 ‖{2js(kj ∗ 𝑓)}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))
̃

𝑣2
, 

which together with (30) yields that 

‖{2jskj
∗,𝑎𝑓}

j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2

≲ {∑2−𝑖𝑣2⌈𝑎−𝑛(1 r⁄ +τ)⌉

∞

𝑖=0

} ‖{2js(kj ∗ 𝑓)}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2

≲ ‖{2js(kj ∗ 𝑓)}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))̃

𝑣2
 

and hence completes the proof of Theorem (5.2.12).  

We give a simple application of Theorems (5.2.8) and (5.2.9), we establish a Fourier 

multiplier theorem of the spaces Ȧp,q
s,τ (ℝ𝑛) and AḢp,q

s,τ (ℝ𝑛), where Ȧp,q
s,τ (ℝ𝑛) denotes either 

Ḟp,q
s,τ (ℝ𝑛) or Ḃp,q

s,τ (ℝ𝑛) and AḢp,q
s,τ (ℝ𝑛) denotes either FḢp,q

s,τ (ℝ𝑛) or BḢp,q
s,τ (ℝ𝑛). 

Let s ∈ ℝ, p, q ∈ (0,∞], 𝑎 ∈ [0,∞) and φ be as in Definition (5.2.1). The space 

Ḃp,q
s (𝑎) is defined to be the set of all m ∈ 𝒮∞

′ (ℝ𝑛) such that 

‖m‖Ḃp,qs (𝑎) ≡ ‖{2
js(1 + 2j|∙|)𝑎φj ∗ m}j∈ℤ

‖
𝑙q(Lp(ℝ𝑛))̃

< ∞; 

see [66]. Then we have the following theorem, whose proof is similar to that of [66, 

Theorem 5.1]. 

Theorem (5.2.13) [222]: Let s ∈ ℝ. 

(i) If p, q ∈ (0,∞] , τ ∈ [0,∞) , 𝑎 ∈ (𝑛 p⁄ ,∞)  when Ȧp,q
s,τ (ℝ𝑛) ≡ Ḃp,q

s,τ (ℝ𝑛)  or 𝑎 ∈

(𝑛[max{1 p⁄ , 1 q⁄ }],∞) when Ȧp,q
s,τ (ℝ𝑛) ≡ Ḟp,q

s,τ (ℝ𝑛) and m ∈ Ḃ1,∞
0 (𝑎), then 

‖m ∗ 𝑓‖Ȧp,q
s,τ (ℝ𝑛) ≤ C‖m‖Ḃ1,∞0 (𝑎)‖𝑓‖Ȧp,q

s,τ (ℝ𝑛), 

where C is a positive constant independent of m and 𝑓. 
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(ii) If p ∈ (1,∞) , q ∈ [1,∞) , τ ∈ [0,
1

(p∨q)′
] , 𝑎 ∈ (𝑛[1 p⁄ + τ],∞)  when AḢp,q

s,τ (ℝ𝑛) ≡

BḢp,q
s,τ (ℝ𝑛)  or 𝑎 ∈ (𝑛[max{1 p⁄ , 1 q⁄ } + τ],∞)  when AḢp,q

s,τ (ℝ𝑛) ≡ FḢp,q
s,τ (ℝ𝑛) , and m ∈

Ḃ1,∞
0 (𝑎), then 

‖m ∗ 𝑓‖AḢp,q
s,τ (ℝ𝑛) ≤ C‖m‖Ḃ1,∞0 (𝑎)‖𝑓‖AḢp,q

s,τ (ℝ𝑛), 

where C is a positive constant independent of m and 𝑓. 

Proof: By similarity, we only consider the spaces Ḟp,q
s,τ (ℝ𝑛). Let φ ∈ 𝒮(ℝ𝑛) satisfy (10). 

Then φ ∗ φ also satisfies (10). Recall that Ḟp,q
s,τ (ℝ𝑛) is independent of the choice of φ. 

Thus, ‖{2j(φj ∗ φj ∗ 𝑓)}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

 is an equivalent quasi-norm of 𝑓 ∈ Ḟp,q
s,τ (ℝ𝑛). Notice 

that for all 𝑥 ∈ ℝ𝑛, 

|φj ∗ φj ∗ m ∗ 𝑓(𝑥)| ≤ {∫ |φj ∗ m(y)|(1 + 2
j|y|)𝑎dy

ℝ𝑛
}φj

∗,𝑎𝑓(𝑥) = ‖m‖Ḃ1,∞0 (𝑎)φj
∗,𝑎𝑓(𝑥). 

Then applying Theorem (5.2.3) yields that 

‖m ∗ 𝑓‖Ḟp,q
s,τ (ℝ𝑛) ≲ ‖{2

j(φj ∗ φj ∗ m ∗ 𝑓)}j∈ℤ
‖
Lτ
p
(ℓq(ℝ𝑛))

≲ ‖m‖Ḃ1,∞0 (𝑎)‖𝑓‖Ḟp,q
s,τ (ℝ𝑛), 

which completes the proof of Theorem (5.2.13).   
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Chapter 6 

Atomic Decomposition and Besov-Type Spaces 

We characterize the Besov spaces with variable smoothness and integrability by so-

called Peetre maximal functions. We use these results to show the atomic decomposition 

for these spaces. As an application of their atomic characterization, we obtain a trace 

theorem of these variable Besov-type spaces. 

Section (6.1): Besov Spaces with Variable Smoothness and Integrability 

Besov spaces of variable smoothness and integrability, Bp(∙)q(∙)
𝛼(∙)

, initially appeared in 

[160]. Several basic properties were established, such as the Fourier analytical 

characterization. When p, q, α are constants they coincide with the usual function spaces 

Bp,q
𝛼 . Also Sobolev type embeddings and the characterization by approximations of these 

function spaces were obtained. Some properties of such a type are well known with 

variable p, but fixed q and α. J. Vybiral [157] proved Sobolev type embeddings in these 

spaces. H. Kempka [150, 264] has studied so-called micro-local versions of variable index 

Besov spaces, when local means characterizations, atomic, molecular and wavelet 

decomposition of these spaces are given. This setting includes also some range of weights 

as well as slightly more general smoothness. These studies were all restricted to variable p, 

but fixed q. Also J.-S. Xu [138, 158] has studied Besov spaces with variable p, but fixed q 

and α. 

The interest in these spaces comes not only from theoretical reasons but also from 

their applications to several classical problems in analysis. For the range of parameters 

p = q = 2, the spaces B2,2
m(∙)(ℝ) have been considered in the analysis of certain Black-

Scholes equations, see Schneider, Reichmann and Schwab [135]. For further 

considerations of PDEs, see [227]. 

We present a decomposition by atoms for Bp(∙)q(∙)
𝛼(∙)

. All these results generalize the 

existing classical results on Besov spaces by taking p, q and α as constants. 

We define the Besov spaces Bp(∙)q(∙)
𝛼(∙)

 and repeat some results from [160]. We show a 

useful characterization of these spaces based on the so-called local means. The theorem on 

local means that proved for Besov spaces of variable smoothness and integrability is 

highly technical and its proved required (based on maximal functions and the classical 

situation) new techniques and ideas. Using the results, we show the atomic decomposition 

for Bp(∙)q(∙)
𝛼(∙)

. 

As usual, ℝ𝑛 the 𝑛-dimensional real Euclidean space, ℕ the collection of all natural 

numbers and ℕ0 = ℕ∪ {0}. The letter ℤ stands for the set of all integer numbers. For a 

multi-index α = (𝛼1, ⋯ , 𝛼𝑛) ∈ ℕ0
𝑛 , we write |α| = 𝛼1 +⋯+ 𝛼𝑛 . The Euclidean scalar 

product of 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) and y = (y1, ⋯ , y𝑛) is given by 𝑥 ∙ y = 𝑥1y1, +⋯+ 𝑥𝑛y𝑛. For 

𝑥 ∈ ℝ𝑛 and r > 0 we denote by B(𝑥, r) the open ball in ℝ𝑛 with center 𝑥 and radius r. By 

supp 𝑓 we denote the support of the function 𝑓 , i.e., the closure of its non-zero set. By 

𝒮(ℝ𝑛) we denote the Schwartz space of all complex-valued, infinitely differentiable and 

rapidly decreasing functions on ℝ𝑛  and by 𝒮′(ℝ𝑛)  the dual space of all tempered 

distributions on ℝ𝑛. We define the Fourier transform of a function 𝑓 ∈ 𝒮(ℝ𝑛) by 

ℱ(𝑓)(ξ) = (2π)−𝑛 2⁄ ∫e−𝑖𝑥∙ξ𝑓(𝑥)d𝑥

ℝ𝑛

. 
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Its inverse is denoted by ℱ−1𝑓. Both ℱ and ℱ−1 are extended to the dual Schwartz 

space 𝒮′(ℝ𝑛) in the usual way. The Hardy-Littlewood maximal operator ℳ is defined on 

Lloc
1  by 

ℳ𝑓(𝑥) = sup
r>0

1

|B(𝑥, r)|
∫ |𝑓(y)|dy

B(𝑥,r)

, 

and ℳt𝑓 = ℳ|𝑓|t for any 0 < t ≤ 1. The variable exponents that we consider are always 

measurable functions on ℝ𝑛  with range in [c,∞] for some c > 0. We denote the set of 

such functions by 𝒫0. The subset of variable exponents with range [1,∞] is denoted by 𝒫. 
p− = ess‐ inf

𝑥∈ℝ𝑛
p(𝑥) , p+ = ess‐ sup

𝑥∈ℝ𝑛
p(𝑥). 

We define 

ρp(t) = {
tp   if        p ∈ (0,∞),      
0     if p = ∞ and t ≤ 1,
∞    if p = ∞ and t > 1.

 

The convention 1∞ = 0  is adopted in order that ρp  be left-continuous. The variable 

exponent modular is defined by 

ϱp(∙)(𝑓) = ∫ρp(𝑥)(|𝑓(𝑥)|)d𝑥

ℝ𝑛

. 

The variable exponent Lebesgue space Lp(∙) consists of measurable functions 𝑓 ∶ ℝ𝑛 → ℝ 

with ϱp(∙)(λ𝑓) < ∞ for some λ > 0.  

We define the Luxemburg (quasi)-norm on this space by the formula 

‖𝑓‖p(∙) = inf {λ > 0 ∶ ϱp(∙) (
𝑓

λ
) ≤ 1}. 

As is known, the following inequalities hold (see [227]) 
‖𝑓‖p(∙) ≤ 1  ⇔   ϱp(∙)(𝑓) ≤ 1                                                       (1) 

and 

‖𝑓‖p(∙) ≤ ϱp(∙)(𝑓) + 1.                                                              (2) 

Let p, q ∈ 𝒫0. The mixed Lebesgue-sequence space ℓq(∙)(Lp(∙)) is defined on sequences of 

Lp(∙)-functions by the modular 

ϱℓq(∙)(Lp(∙))((𝑓𝑣)𝑣) =∑inf {λ𝑣 > 0 ∶ ϱp(∙) (
𝑓𝑣

λ𝑣
1 q(∙)⁄

) ≤ 1}

𝑣

. 

The norm is defined from this as usual: 

‖(𝑓𝑣)𝑣‖ℓq(∙)(Lp(∙)) = inf {μ > 0 ∶ ϱℓq(∙)(Lp(∙)) (
1

μ
(𝑓𝑣)𝑣) ≤ 1}. 

We will use the notation 

ϱℓq(∙)(Lp(∙))((𝑓𝑣)𝑣) =∑‖|𝑓𝑣|
q(∙)‖p(∙)

q(∙)𝑣

 

for the modular. In (1) and (2) ‖𝑓‖p(∙) and ϱp(∙)(𝑓) can be replaced by ‖(𝑓𝑣)𝑣‖ℓq(∙)(Lp(∙)) 

and ϱℓq(∙)(Lp(∙))((𝑓𝑣)𝑣), respectively. 

We say that g ∶ ℝ𝑛 → ℝ is locally log-Hölder continuous, abbreviated g ∈ Cloc
log

, if 

there exists c1 > 0 such that 

|g(𝑥) − g(y)| ≤
c1

log(e + 1 |𝑥 − y|⁄ )
 

for all 𝑥, y ∈ ℝ𝑛. We say that g satisfies the log-Hölder decay condition, if there exists 

g∞ > 0 and a constant c2 > 0 such that 
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|g(𝑥) − g∞| ≤
c2

log(e + |𝑥|)
 

for all 𝑥 ∈ ℝ𝑛. We say that g is globally-log-Hölder continuous, abbreviated g ∈ Clog, if it 
is locally log-Hölder continuous and satisfies the log-Hölder decay condition. The 

constants c1 and c2 are called the locally log-Hölder constant and the log-Hölder decay 

constant, respectively. The maximum max{c1, c2} is just called the log-Hölder constant of 

g and it is denoted by clog(g). 

We note that all functions g ∈ Cloc
log

 always belong to L∞. 

We define the following class of variable exponents 

𝒫log = {p ∈ 𝒫 ∶
1

p
 is globally‐ log‐Hölder continuous }. 

The class 𝒫0
log

 is defined analogously. It was shown in [227] that ℳ ∶ Lp(∙) → Lp(∙)  is 

bounded if p ∈ 𝒫log  and p− > 1, see [95] and [97], where various results on maximal 

function in variable Lebesgue spaces were obtained. 

Recall that η𝑣,m(𝑥) = 2
𝑛𝑣(1 + 2𝑣|𝑥|)−m, for any 𝑥 ∈ ℝ𝑛 , 𝑣 ∈ ℕ0  and m > 0. Note 

that η𝑣,m ∈ L
1 when m > 𝑛 and that ‖η𝑣,m‖1 = cm is independent of 𝑣. 

By c  we denote generic positive constants, which may have different values at 

different occurrences. Although the exact values of the constants are usually irrelevant for 

our purposes, sometimes we emphasize their dependence on certain parameters (e.g. c(p) 
means that c depends on p, etc.). 

Lemma (6.1.1) [258]: If 𝛼 ∈ Cloc
log

, then there exists d ∈ (𝑛,∞) such that if m > d, then 

2𝑣𝛼(𝑥)η𝑣,2m(𝑥 − y) ≤ c2
𝑣𝛼(y)η𝑣,m(𝑥 − y) 

with c > 0 independent of 𝑥, y ∈ ℝ𝑛 and 𝑣 ∈ ℕ0. 

The previous lemma allows us to treat the variable smoothness in many cases as if it 

were not variable at all, namely we can move the term inside the convolution as follows: 

2𝑣𝛼(𝑥)η𝑣,2m ∗ 𝑓(𝑥) ≤ c η𝑣,m ∗ (2
𝑣𝛼(∙)𝑓)(𝑥). 

The next lemma often allows us to deal with exponents which are smaller than 1. 

Lemma (6.1.2) [258]: Let r > 0, 𝑣 ∈ ℕ0 and m > 𝑛. Then there exists c = c(r,m, 𝑛) > 0 

such that for all g ∈ 𝒮′(ℝ𝑛) with supp ℱg ⊂ {ξ ∈ ℝ𝑛 ∶ |ξ| ≤ 2𝑣+1}, we have 

|g(𝑥)| ≤ c (η𝑣,m ∗ |g|
r(𝑥))

1 r⁄

, 𝑥 ∈ ℝ𝑛  . 

The next lemma is a Hardy-type inequality which is easy to prove. 

Lemma (6.1.3) [258]: Let 0 < 𝑎 < 1  and 0 < q ≤ ∞ . Let {εk}k∈ℕ0  be a sequence of 

positive real numbers, such that 

‖{εk}k∈ℕ0‖ℓq
= I < ∞. 

The sequence {δk ∶ δk = ∑ 𝑎|k−j|εj
∞
j=0 }

k∈ℕ0
 is in ℓq with 

‖{δk}k∈ℕ0‖ℓq
≤ cI. 

c depends only on 𝑎 and q. 

Lemma (6.1.4) [258]: Let ω, μ ∈ 𝒮(ℝ𝑛) and M ≥ −1, an integer such that ∫ 𝑥𝛼μ(𝑥)d𝑥
ℝ𝑛

= 0 

for all |𝛼| ≤ M. Then for any N > 0, there is a constant cN > 0 so that 
sup
z∈ℝ𝑛

|t−𝑛μ(t−1 ∙) ∗ ω(z)|(1 + |z|)N ≤ cNt
M+1. 

Lemma (6.1.5) [258]: Let 0 < r ≤ 1, and let {bj}j∈ℕ0
, {dj}j∈ℕ0

 be two sequences taking 

values in (0,+∞). Assume that for some N0 > 0 

dj = O(2
jN0), j → ∞,                                                            (3) 
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and that for any N > 0 

dj ≤ CN∑2(j−k)Nbkdk
1−r

∞

k=j

, j ∈ ℕ0. 

Then for any N > 0 

dj
r ≤ CN∑2(j−k)Nrbk

∞

k=j

, j ∈ ℕ0 

with the same constants CN. 

We present the Fourier analytical definition of the spaces Bp(∙),q(∙)
𝛼(∙)

 and recall their 

basic properties. We first need the concept of a smooth dyadic resolution of unity. 

Definition (6.1.6) [258]: Let ψ be a function in 𝒮(ℝ𝑛) satisfying ψ(𝑥) = 1 for |𝑥| ≤ 1 

and ψ(𝑥) = 0 for |𝑥| ≥ 2. We put ℱφ0(𝑥) = ψ(𝑥), ℱφ1(𝑥) = ψ(
𝑥

2
) − ψ(𝑥) and 

ℱφ𝑣(𝑥) = ℱφ1(2
−𝑣+1𝑥)    for 𝑣 = 2, 3,⋯ 

Then {ℱφ𝑣}𝑣∈ℕ0 is a smooth dyadic resolution of unity, 

∑ℱφ𝑣(𝑥)

∞

𝑣=0

= 1 

for all 𝑥 ∈ ℝ𝑛. Thus we obtain the Littlewood-Paley decomposition 

𝑓 =∑φ𝑣 ∗ 𝑓

∞

𝑣=0

 

of all 𝑓 ∈ 𝒮′(ℝ𝑛) (convergence in 𝒮′(ℝ𝑛)). 
Definition (6.1.7) [258]: Let φ𝑣 be as in Definition (6.1.6). For α ∶ ℝ𝑛 → ℝ and p, q ∈ 𝒫0, 

the Besov space Bp(∙),q(∙)
𝛼(∙)

 consists of all distributions 𝑓 ∈ 𝒮′(ℝ𝑛) such that 

‖𝑓‖
Bp(∙),q(∙)
𝛼(∙) = ‖(2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))

< ∞.                                        (4) 

For any p, q ∈ 𝒫0
log

 and 𝛼 ∈ Cloc
log

, the space Bp(∙),q(∙)
𝛼(∙)

 does not depend on the chosen smooth 

dyadic resolution of unity {ℱφ𝑣}𝑣∈ℕ0 (in the sense of equivalent quasi-norms). They are 

quasi-Banach spaces, and 

𝒮(ℝ𝑛) ↪ Bp(∙),q(∙)
𝛼(∙) ↪ 𝒮′(ℝ𝑛). 

Moreover, if p, q, α are constants, we re-obtain the usual Besov spaces Bp,q
𝛼  studied in 

detail by H. Triebel in [41, 56, 57, 136]. 

The full treatment of the spaces Bp(∙),q(∙)
𝛼(∙)

 can be found in [160] and [227], see [138, 

150, 157, 264], for further results on the variable Besov spaces Bp(∙),q
𝛼(∙)

 (only the case of 

constant q was considered, see also [90, 91]).  

We characterize the spaces Bp(∙),q(∙)
𝛼(∙)

 by so-called local means (see [213]). Therefore, 

we define for 𝑎 > 0, α ∶ ℝ𝑛 → ℝ and 𝑓 ∈ 𝒮′(ℝ𝑛), the Peetre maximal function 

φ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥) = sup

y∈ℝ𝑛

2𝑣𝛼(y)|φ𝑣 ∗ 𝑓(y)|

(1 + 2𝑣|𝑥 − y|)𝑎
,    𝑣 ∈ ℕ0. 

Theorem (6.1.8) [258]: Let 𝛼 ∈ Cloc
log

, p, q ∈ 𝒫0
log

 and 𝑎 >
𝑛

p−
. Then 

‖(φ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓)

𝑣
‖
ℓq(∙)(Lp(∙))

                                                          (5) 

is an equivalent quasi-norm in Bp(∙),q(∙)
𝛼(∙)

. 

Proof: We will do the proof in two steps. 
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Step 1. It is easy to see that for any 𝑓 ∈ 𝒮′(ℝ𝑛) and any 𝑥 ∈ ℝ𝑛 we have 

2𝑣𝛼(𝑥)|φ𝑣 ∗ 𝑓(𝑥)| ≤ φ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥). 

This shows that the right-hand side in (4) is less than or equal (5). 

Step 2. We will prove in this step that there is a constant c > 0 such that for every 

𝑓 ∈ 𝒮′(ℝ𝑛) 

‖(φ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓)

𝑣
‖
ℓq(∙)(Lp(∙))

≤ c‖(2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))
. 

By a scaling argument, we see that it suffices to consider the case 

‖(2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)𝑣‖ℓq(∙)(Lp(∙))
= 1 

and show that the modular of a constant times the function on the left-hand side is 

bounded. In particular, we will show that 

∑‖|cφ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓|

q(∙)
‖p(∙)
q(∙)

∞

𝑣=0

≤ C   whenever   ∑‖|2𝑣𝛼(∙)φ𝑣 ∗ 𝑓|
q(∙)
‖p(∙)
q(∙)

∞

𝑣=0

= 1. 

This clearly follows from the inequality 

‖|cφ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓|

q(∙)
‖p(∙)
q(∙)

≤ ‖|2𝑣𝛼(∙)φ𝑣 ∗ 𝑓|
q(∙)
‖p(∙)
q(∙)

+ 2−σ𝑣 = δ, 

for some σ > 0. This claim can be reformulated as showing that 

‖δ−1|cφ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓|

q(∙)
‖p(∙)
q(∙)

≤ 1, 

which is equivalent to 

‖cδ
−
1
q(∙)φ𝑣

∗,𝑎2𝑣𝛼(∙)𝑓‖
p(∙)

≤ 1. 

We choose t > 0 such that 𝑎 >
𝑛

t
>

𝑛

p−
. By Lemmas (6.1.2) and (6.1.1) the estimates 

2𝑣𝛼(y)|φ𝑣 ∗ 𝑓(y)| ≤ C2
𝑣𝛼(y) (η𝑣,2m ∗ |φ𝑣 ∗ 𝑓|

t(y))
1 t⁄

≤ C(η𝑣,m ∗ (2
𝑣𝛼(∙)|φ𝑣 ∗ 𝑓|)

t
(y))

1 t⁄

(6) 

are true for any y ∈ ℝ𝑛, 𝑣 ∈ ℕ0 and any m > d (with d as in Lemma (6.1.1)). Divide both 

sides of (6) by (1 + 2𝑣|𝑥 − y|)𝑎, in the right-hand side we use the inequality 
(1 + 2𝑣|𝑥 − y|)−𝑎 ≤ (1 + 2𝑣|𝑥 − z|)−𝑎(1 + 2𝑣|y − z|)𝑎 ,      𝑥, y, z ∈ ℝ𝑛, 

in the left-hand side take the supremum over y ∈ ℝ𝑛 and get for all 𝑓 ∈ 𝒮′(ℝ𝑛), any 𝑥 ∈
ℝ𝑛, m > max(d, 𝑎t) and any 𝑣 ∈ ℕ0 

(φ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥))

t

≤ C2𝑣𝑛 ∫
2𝑣𝛼(z)t|φ𝑣 ∗ 𝑓(z)|

t

(1 + 2𝑣|𝑥 − z|)𝑎t
dz

ℝ𝑛

= C ∫ ⋯dz

B(𝑥,2−𝑣 2⁄ )

+ C∑ ∫ ⋯dz

B(𝑥,2−𝑣 2⁄ +𝑖+1)\B(𝑥,2−𝑣 2⁄ +𝑖)

∞

𝑖=0

= J𝑣
1(𝑥) +∑J𝑣−𝑖

2 (𝑥)

𝑖≥0

, 

where C > 0 is independent of 𝑥, 𝑣 and 𝑓 . We choose σ > 0 such that 

0 < σ <
𝑎 − 𝑛 t⁄

4(1 q−⁄ − 1 q+⁄ )
. 

Since 1 q⁄  is log-Hölder continuous and δ ∈ [2−σ𝑣 , 1 + 2−σ𝑣], we have 

δ
(
1
q(z)

−
1

q(𝑥)
)
≤ (2σ𝑣δ)

|
1
q(z)

−
1

q(𝑥)
|
2
𝑣σ|

1
q(z)

−
1

q(𝑥)
|
≤ c22clog(q)σ𝑣 log(e+1 |𝑥−z|⁄ )⁄ ≤ c              (7) 

for any z ∈ B(𝑥, 2−𝑣 2⁄ ). Hence 

δ
−

t
q(𝑥)J𝑣

1(𝑥) ≤ C2𝑣𝑛 ∫
δ
−

t
q(z)2𝑣𝛼(z)t|φ𝑣 ∗ 𝑓(z)|

t

(1 + 2𝑣|𝑥 − z|)𝑎t
dz

ℝ𝑛

. 



186 

Now the function z ↦
1

(1+|z|)𝑎t
 is in L1 (since 𝑎 > 𝑛 t⁄ ), then using the majorant property 

for the Hardy-Littlewood maximal operator ℳ, see [181], 

(|g|t ∗
1

(1 + |∙|)𝑎t
) (𝑥) ≤ C ‖

1

(1 + |∙|)𝑎t
‖
1

ℳt(g)(𝑥), 

it follows that for any 𝑥 ∈ ℝ𝑛 

δ
−

t
q(𝑥)J𝑣

1(𝑥) ≤ Cℳt (δ
−
1
q(∙)2𝑣𝛼(∙)φ𝑣 ∗ 𝑓) (𝑥), 

where the constant C > 0  is independent of 𝑥  and 𝑣 . Since |𝑥 − z| ≥ 2−𝑣 2⁄ +𝑖  and the 

right-hand side of (7) can be estimated by c 22𝑣σ(1 q−⁄ −1 q+⁄ )), then for any 𝑥 ∈ ℝ𝑛 and any 

𝑣 ∈ ℕ0, δ−t q(𝑥)⁄ J𝑣−𝑖
2 (𝑥) is bounded by 

C2𝑣t(2𝜎(1 q−⁄ −1 q+⁄ )−𝑎 2⁄ +𝑛 t⁄ )2−𝑖𝑎t ∫ δ−t q(z)⁄ 2𝑣𝛼(z)t|φ𝑣 ∗ 𝑓(z)|
tdz

B(𝑥,2−𝑣 2⁄ +𝑖+1)

≤ C2𝑣t(2𝜎(1 q−⁄ −1 q+⁄ )−𝑎 2⁄ +𝑛 2t⁄ )2𝑖(𝑛−𝑎t)ℳt(δ
−1 q(∙)⁄ 2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)(𝑥)

≤ C2𝑖(𝑛−𝑎t)ℳt(δ
−1 q(∙)⁄ 2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)(𝑥), 

due to our choice of σ. Hence, 

∑δ−t q(𝑥)⁄ J𝑣−𝑖
2 (𝑥)

∞

𝑖=0

≤ C∑2𝑖(𝑛−𝑎t)ℳt(δ
−1 q(∙)⁄ 2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)(𝑥)

∞

𝑖=0

≤ Cℳt(δ
−1 q(∙)⁄ 2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)(𝑥), 

since again 𝑎 > 𝑛 t⁄ . Consequently we have proved that 

(δ−1 q(𝑥)⁄ φ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥))

t

≤ Cℳt(δ
−1 q(∙)⁄ 2𝑣𝛼(∙)φ𝑣 ∗ 𝑓)(𝑥), 

for all 𝑥 ∈ ℝ𝑛. Taking the L
p(∙)

t -norm and using the fact that ℳ ∶ L
p(∙)

t → L
p(∙)

t  is bounded we 

obtain that 

‖cδ−1 q(∙)⁄ φ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓‖

p(∙)

t
= ‖|cδ−1 q(∙)⁄ φ𝑣

∗,𝑎2𝑣𝛼(∙)𝑓|
t
‖
p(∙) t⁄

≤ ‖δ−t q(∙)⁄ 2𝑣𝛼(∙)t|φ𝑣 ∗ 𝑓|
t‖
p(∙) t⁄

= ‖δ−1 q(∙)⁄ 2𝑣𝛼(∙)φ𝑣 ∗ 𝑓‖p(∙)
t
, 

with an appropriate choice of c > 0. Now the right-hand side is less than or equal to one if 

and only if 

‖|δ−1 q(∙)⁄ 2𝑣𝛼(∙)φ𝑣 ∗ 𝑓|
q(∙)
‖
p(∙) q(∙)⁄

≤ 1, 

which follows immediately from the definition of δ. 

The proof is completed.  

In order to formulate the main result, let us consider k0, k ∈ 𝒮(ℝ
𝑛) and S ≥ −1 an 

integer such that for an ε > 0 
|ℱk0(ξ)| > 0    for   |ξ| < 2ε,                                                           (8) 

|ℱk(ξ)| > 0      for   
ε

2
< |ξ| < 2ε,                                                       (9) 

and 

∫𝑥𝛼k(𝑥)d𝑥

ℝ𝑛

= 0      for any   |𝛼| ≤ S.                                                 (10) 

Here (8) and (9) are Tauberian conditions, while (10) are moment conditions on k. We 

recall the notation 
kt(𝑥) = t

−𝑛k(t−1𝑥), kj(𝑥) = k2−j(𝑥), for  t > 0  and  j ∈ ℕ. 

For any 𝑎 > 0, 𝑓 ∈ 𝒮′(ℝ𝑛) and 𝑥 ∈ ℝ𝑛 we denote 
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kj
∗,𝑎2j𝛼(∙)𝑓(𝑥) = sup

y∈ℝ𝑛

2j𝛼(y)|kj ∗ 𝑓(y)|

(1 + 2j|𝑥 − y|)𝑎
, j ∈ ℕ0.                                    (11) 

Usually kj ∗ 𝑓 is called local mean. 

Theorem (6.1.9) [258]: Let α ∈ Cloc
log

 and p, q ∈ 𝒫0
log

 with q+ < ∞. Let 𝑎 >
𝑛

p−
 and 𝛼+ <

𝑆 + 1. Then 

‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′

= ‖(kj
∗,𝑎2j𝛼(∙)𝑓)

j
‖
ℓq(∙)(Lp(∙))

                                        (12) 

and  

‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′′

= ‖(2j𝛼(∙)kj ∗ 𝑓)j
‖
ℓq(∙)(Lp(∙))

,                                     (13) 

are equivalent quasi-norms on Bp(∙),q(∙)
𝛼(∙)

. 

Proof: First H. Kempka [150] proved this result, but only the case of constant q was 

included. J.-S. Xu [138] has proved this result with variable p, but fixed q and α. H. 

Kempka and J. Vybiral [265], independently, proved this result with 2j𝛼(∙)kj
∗,𝑎𝑓 , 

 
𝑛+clog(1 q⁄ )

p−
+ clog(α) in place of kj

∗,𝑎2j𝛼(∙)𝑓, 
𝑛

p−
 respectively. The idea of the proof is from 

V.S. Rychkov [213]. 

Step 1. Take any pair of functions ϕ0 and ϕ ∈ 𝒮(ℝ𝑛) such that 
|ℱϕ0(ξ)| > 0             for  |ξ| < 2ε,              

|ℱϕ(ξ)| > 0               for  
ε

2
< |ξ| < 2𝜀.     

We will prove that there is a constant c > 0 such that for any 𝑓 ∈ 𝒮′(ℝ𝑛) 

‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ c‖(ϕj
∗,𝑎2j𝛼(∙)𝑓)

j
‖
ℓq(∙)(Lp(∙))

.                                     (14) 

By a scaling argument, we see that it suffices to consider the case 

‖(ϕj
∗,𝑎2j𝛼(∙)𝑓)

j
‖
ℓq(∙)(Lp(∙))

= 1 

and show that the modular of a constant times the function on the left-hand side is 

bounded. In particular, we will show that 

∑‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

q(∙)
‖p(∙)
q(∙)

∞

j=0

≤ C    whenever    ∑‖|ϕj
∗,𝑎2j𝛼(∙)𝑓|

q(∙)
‖p(∙)
q(∙)

∞

j=0

= 1. 

Let Λ, λ ∈ 𝒮(ℝ𝑛) so that 
suppℱΛ ⊂ {ξ ∈ ℝ𝑛 ∶ |ξ| < 2ε}, suppℱλ ⊂ {ξ ∈ ℝ𝑛 ∶ ε 2⁄ < |ξ| < 2ε}, 

ℱΛ(ξ)ℱϕ0(ξ) +∑ℱλ(2−𝑣ξ)ℱϕ(2−𝑣ξ)

∞

𝑣=1

= 1, ξ ∈ ℝ𝑛.                            (15) 

In particular, for any 𝑓 ∈ 𝒮′(ℝ𝑛) the identity is true 

𝑓 = Λ ∗ ϕ0 ∗ 𝑓 +∑λ𝑣 ∗ ϕ𝑣 ∗ 𝑓

∞

𝑣=1

.                                                   (16) 

Hence we can write 

kj ∗ 𝑓 = kj ∗ Λ ∗ ϕ0 ∗ 𝑓 +∑kj ∗ λ𝑣 ∗ ϕ𝑣 ∗ 𝑓

∞

𝑣=1

. 

We have 

2j𝛼(y)|kj ∗ λ𝑣 ∗ ϕ𝑣 ∗ 𝑓(y)| ≤ 2
j𝛼(y) ∫|kj ∗ λ𝑣(z)||ϕ𝑣 ∗ 𝑓(y − z)|dz

ℝ𝑛

.                 (17) 



188 

First let 𝑣 ≤ j. Writing for any z ∈ ℝ𝑛 
kj ∗ λ𝑣(z) = 2

𝑣𝑛k2𝑣−j ∗ λ(2
𝑣z), 

we get by Lemma (6.1.4), that for any integer S ≥ −1 and any N > 0 there is a constant 

c > 0 independent of j and 𝑣 

|kj ∗ λ𝑣(z)| ≤ c
2(𝑣−j)(S+1)+𝑣𝑛

(1 + 2𝑣|z|)2N
,    z ∈ ℝ𝑛. 

So the right-hand side of (17) can be estimated from above by 

c2j𝛼(y)+(𝑣−j)(S+1)+𝑣𝑛 ∫(1 + 2𝑣|z|)−2N|ϕ𝑣 ∗ 𝑓(y − z)|dz

ℝ𝑛

= c2(𝑣−j)(S+1)2j𝛼(y)η𝑣,2N ∗ |ϕ𝑣 ∗ 𝑓|(y). 

By Lemma (6.1.1) the estimates 

2j𝛼(y)η𝑣,2N ∗ |ϕ𝑣 ∗ 𝑓(y)| ≤ 2
(j−𝑣)𝛼+η𝑣,N ∗ (2

𝑣𝛼(∙)|ϕ𝑣 ∗ 𝑓|)(y) ≤ 2
(j−𝑣)𝛼+ϕ𝑣

∗,𝑎2𝑣𝛼(∙)𝑓(y)‖η𝑣,N−𝑎‖1
≤ c2(j−𝑣)𝛼

+
ϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(y), 

are true for any N > max(d, 𝑛 + 𝑎) and any 𝑣 ≤ j (with d as in Lemma (6.1.1)). 

Let now 𝑣 ≥ j. Then, again by Lemma (6.1.4) we have for any z ∈ ℝ𝑛 and any L >
0 

|kj ∗ λ𝑣(z)| = 2
j𝑛|k ∗ λ2j−𝑣(2

jz)| ≤ c
2(j−𝑣)(M+1)+j𝑛

(1 + 2j|z|)2L
,  

where M ≥ −1 an integer can be taken arbitrarily large, since D𝛼ℱλ(0) = 0 for all α . 

Therefore, for 𝑣 ≥ j, the right-hand side of (17) can be estimated from above by 

c2j𝛼(y)+(j−𝑣)(M+1)+j𝑛 ∫(1 + 2j|z|)−2L|ϕ𝑣 ∗ 𝑓(y − z)|dz

ℝ𝑛

= c2jα(y)+(j−𝑣)(M+1)ηj,2L ∗ |ϕ𝑣 ∗ 𝑓|(y). 

We have for any 𝑣 ≥ j 
(1 + 2j|z|)−2L ≤ 22(𝑣−j)L(1 + 2𝑣|z|)−2L. 

Then, again, the right-hand side of (17) is dominated by 

c2j𝛼(y)+(j−𝑣)(M−2L+1+𝑛)η𝑣,2L ∗ |ϕ𝑣 ∗ 𝑓|(y) ≤ c2
(j−𝑣)(M−2L+1+𝛼−+𝑛)η𝑣,L ∗ (2

𝑣𝛼(∙)|ϕ𝑣 ∗ 𝑓|)(y)

≤ c2(j−𝑣)(M−2L+1+𝛼
−+𝑛)ϕ𝑣

∗,𝑎2𝑣𝛼(∙)𝑓(y)‖η𝑣,L−𝑎‖1
≤ c2(j−𝑣)(M−2L+1+𝛼

−+𝑛)ϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(y), 

where in the first inequality we have used Lemma (6.1.1) (by taking L > max(d, 𝑛 + 𝑎)). 
Taking M > 2L − 𝛼− + 𝑎 − 𝑛 to estimate the last expression by 

c2(j−𝑣)(𝑎+1)ϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(y), 

where c > 0 is independent of j, 𝑣 and 𝑓. Further, note that for all 𝑥, y ∈ ℝ𝑛 and all j, 𝑣 ∈
ℕ 

ϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(y) ≤ ϕ𝑣

∗,𝑎2𝑣𝛼(∙)𝑓(𝑥)(1 + 2𝑣|𝑥 − y|)𝑎

≤ ϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥)max(1, 2(𝑣−j)𝑎)(1 + 2j|𝑥 − y|)𝑎 . 

Hence 

sup
y∈ℝ𝑛

2j𝛼(y)|kj ∗ λ𝑣 ∗ ϕ𝑣 ∗ 𝑓(y)|

(1 + 2j|𝑥 − y|)𝑎
≤ Cϕ𝑣

∗,𝑎2𝑣𝛼(∙)𝑓(𝑥) × {
2(𝑣−j)(S+1−𝛼

+)    if 𝑣 ≤ j,

2j−𝑣                      if 𝑣 ≥ j.
 

Using the fact that for any z ∈ ℝ𝑛, any N > 0 and any integer S ≥ −1 

|kj ∗ Λ(z)| = |k2−j ∗ Λ(z)| ≤ c
2−j(S+1)

(1 + |z|)2N
, 

we obtain by the similar arguments that for any j ∈ ℕ 

sup
y∈ℝ𝑛

2j𝛼(y)|kj ∗ Λ ∗ ϕ0 ∗ 𝑓(y)|

(1 + 2j|𝑥 − y|)𝑎
≤ C2−j(S+1−α

+)ϕ0
∗,𝑎𝑓(𝑥). 

Hence with δ = min(1, S + 1 − α+) > 0 for all 𝑓 ∈ 𝒮′(ℝ𝑛), 𝑥 ∈ ℝ𝑛, j ∈ ℕ 
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k𝑣
∗,𝑎2j𝛼(∙)𝑓(y) ≤ C2−jδϕ0

∗,𝑎𝑓(𝑥) + C∑2−|j−𝑣|δϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥)

∞

𝑣=1

= C∑2−|j−𝑣|δϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥)

∞

𝑣=0

. 

Also for j = 0, we use the fact that for 𝑣 ≥ 1, any z ∈ ℝ𝑛, any N > 0 and any integer M ≥
−1 

|k0 ∗ λ𝑣(z)| = |k0 ∗ λ2−𝑣(z)| ≤ c
2−𝑣(M+1)

(1 + |z|)2N
 

and 

|k0 ∗ Λ(z)| ≤ c
1

(1 + |z|)2N
 

to get for any 𝑥 ∈ ℝ𝑛 

k0
∗,𝑎𝑓(𝑥) ≤ Cϕ0

∗,𝑎𝑓(𝑥) + C∑2−𝑣δϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥)

∞

𝑣=1

= C∑2−𝑣δϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥)

∞

𝑣=0

. 

Let τ > max(q+, q+ p−⁄ ). Then by Lemma (6.1.3) 

∑‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

=∑‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

q(∙) τ⁄
‖
τp(∙) q(∙)⁄

τ
∞

j=0

≤∑(∑2−|j−𝑣|δ ‖|ϕ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓|

q(∙) τ⁄
‖
τp(∙) q(∙)⁄

∞

𝑣=0

)

τ∞

j=0

≤ C∑‖|ϕj
∗,𝑎2j𝛼(∙)𝑓|

q(∙) τ⁄
‖
τp(∙) q(∙)⁄

τ
∞

j=0

= C∑‖|ϕj
∗,𝑎2j𝛼(∙)𝑓|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ C, 

with an appropriate choice of c > 0. 

Step 2.  We will prove in this step that there is a constant c > 0 such that for any 𝑓 ∈
𝒮′(ℝ𝑛)  

‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ c‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′′

.                                                   (18) 

Analogously to (15), (16) find two functions Λ,ψ ∈ 𝒮(ℝ𝑛) such that 

suppℱΛ ⊂ {ξ ∈ ℝ𝑛 ∶ |ξ| < 2𝜀}, suppℱψ ⊂ {ξ ∈ ℝ𝑛 ∶ ε 2⁄ < |ξ| < 2𝜀}, 
and for all 𝑓 ∈ 𝒮′(ℝ𝑛) and j ∈ ℕ0 

𝑓 = Λj ∗ (k0)j ∗ 𝑓 + ∑ ψm ∗ km ∗ 𝑓

∞

m=j+1

. 

Hence 

kj ∗ 𝑓 = Λj ∗ (k0)j ∗ kj ∗ 𝑓 + ∑ kj ∗ ψm ∗ km ∗ 𝑓

∞

m=j+1

. 

By a scaling argument, we see that it suffices to consider the case 

‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′′

= 1 

and show that the modular of a constant times the function on the left-hand side is 

bounded. In particular, we will show that 

∑‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ C   whenever   ∑‖|2j𝛼(∙)kj ∗ 𝑓|
q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

= 1. 

Writing for any z ∈ ℝ𝑛 

kj ∗ ψm(z) = 2
j𝑛(k ∗ ψ2j−m)(2

jz), 
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we get by Lemma (6.1.4), that for any integer K ≥ −1 and any M > 0 there is a constant 

c > 0 independent of j and m 

|kj ∗ ψm(z)| ≤ c
2(j−m)(K+1)+j𝑛

(1 + 2j|z|)2M
,    z ∈ ℝ𝑛 . 

Analogous estimate 

|Λj ∗ (k0)j(z)| ≤ c
2j𝑛

(1 + 2j|z|)2M
,    z ∈ ℝ𝑛, 

is obvious. From this it follows that 

2j𝛼(y)|kj ∗ 𝑓(y)| ≤ c∑2(j−m)(K+1+𝛼
−)2m𝛼(y)ηj,2M ∗ |km ∗ 𝑓|(y)

∞

m=j

= c∑2(j−m)(K+1+𝛼
−)+j𝑛 ∫

2m𝛼(y)|km ∗ 𝑓(z)|

(1 + 2j|y − z|)2M
dz

ℝ𝑛

∞

m=j

. 

Since 

(1 + 2j|y − z|)−2M ≤ 22(m−j)M(1 + 2m|y − z|)−2M, 
then by Lemma (6.1.1) we have 

2j𝛼(y)|kj ∗ 𝑓(y)| ≤ c∑2(j−m)(K+1+𝛼
−−2M+𝑛)2m𝛼(y)ηm,2M ∗ |km ∗ 𝑓|(y)

∞

m=j

≤ c∑2(j−m)(K+1+𝛼
−−2M+𝑛)ηm,𝑎 ∗ (2

m𝛼(∙)|km ∗ 𝑓|)(y)

∞

m=j

,                                        (19) 

by taking M > max(d, 𝑎). Using the elementary estimates 
(1 + 2j|𝑥 − y|)−𝑎 ≤ (1 + 2j|𝑥 − z|)−𝑎(1 + 2j|y − z|)𝑎

≤ 2(m−j)𝑎(1 + 2m|𝑥 − z|)−𝑎(1 + 2m|y − z|)𝑎 ,                                                         (20) 
to get 

kj
∗,𝑎2j𝛼(∙)𝑓(𝑥) ≤ c∑2(j−m)(K+1−𝑎−𝛼

−−2M+𝑛)+m𝑛 ∫
2m𝛼(z)|km ∗ 𝑓(z)|

(1 + 2m|𝑥 − z|)𝑎
dz

ℝ𝑛

∞

m=j

. 

Fix any r ∈ (0, 1]. We have 

2m𝛼(z)|km ∗ 𝑓(z)| = (2
m𝛼(z)|km ∗ 𝑓(z)|)

r
(2m𝛼(z)|km ∗ 𝑓(z)|)

1−r

= (2m𝛼(z)|km ∗ 𝑓(z)|)
r
(
2m𝛼(z)|km ∗ 𝑓(z)|

(1 + 2m|𝑥 − z|)𝑎
)

1−r

(1 + 2m|𝑥 − z|)𝑎(1−r)

≤ (2m𝛼(z)|km ∗ 𝑓(z)|)
r
(km

∗,𝑎2m𝛼(∙)𝑓(𝑥))
1−r
(1 + 2m|𝑥 − z|)𝑎(1−r). 

Then 

kj
∗,𝑎2j𝛼(∙)𝑓(𝑥) ≤ c∑2(j−m)N

′+m𝑛 ∫
2mr𝛼(z)|km ∗ 𝑓(z)|

r

(1 + 2m|𝑥 − z|)𝑎r
dz

ℝ𝑛

∞

m=j

(km
∗,𝑎2m𝛼(∙)𝑓(𝑥))

1−r

, 

where N′ = K + 1 − 𝑎 + 𝑛 − 𝛼− − 2M  can be still be taken arbitrarily large. Quite 

analogously one proves for all 𝑓 ∈ 𝒮′(ℝ𝑛) the estimate 

k0
∗,𝑎𝑓(𝑥) ≤ C ∑ 2−mN

′+m𝑛 ∫
2mr𝛼(z)|km ∗ 𝑓(z)|

r

(1 + 2m|𝑥 − z|)𝑎r
dz

ℝ𝑛

∞

m=0

(km
∗,𝑎2m𝛼(∙)𝑓(𝑥))

1−r
. 

We now fix any 𝑥 ∈ ℝ𝑛 and apply Lemma (6.1.5) with 

dj = kj
∗,𝑎2j𝛼(∙)𝑓(𝑥), j ∈ ℕ0,                                    
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bm = ∫
2mr𝛼(z)+m𝑛|km ∗ 𝑓(z)|

r

(1 + 2m|𝑥 − z|)𝑎r
dz

ℝ𝑛

, m ∈ ℕ0. 

The assumption (3) is satisfied with N0 = N1 + 𝑛 + [max(0, 𝛼
+)] + 1, where N1  is the 

order of the distribution 𝑓 ∈ 𝒮′(ℝ𝑛)  ([𝑎]  the integer part of the real number 𝑎 ). We 

conclude that for any 𝑓 ∈ 𝒮′(ℝ𝑛), any N > 0 and any j ∈ ℕ0 

(kj
∗,𝑎2j𝛼(∙)𝑓(𝑥))

r

≤ C∑2(j−m)Nr+m𝑛 ∫
2mr𝛼(z)|km ∗ 𝑓(z)|

r

(1 + 2m|𝑥 − z|)𝑎r
dz

ℝ𝑛

∞

m=j

. 

This estimate is also true for r > 1, with much simpler proof. It suffices to take (19) with 

𝑎 + 𝑛 instead of 𝑎, apply Hölder’s inequalities in m and z, and finally the inequality (20). 

We omit the details. 

Since 𝑎 > 𝑛 p−⁄ , it possible to take 𝑛 𝑎⁄ < r < p−. Let τ > q+ r⁄ . We see that 

‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

q(∙)
‖
p(∙) q(∙)⁄

= ‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

rq(∙) r⁄
‖
p(∙) q(∙)⁄

= ‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

rq(∙) rτ⁄
‖
τp(∙) q(∙)⁄

τ

≤ C(∑2(j−m)Nq
− τ⁄ ‖|cηm,𝑎r ∗ (2

m𝛼(∙)|km ∗ 𝑓|)
r
|
q(∙) rτ⁄

‖
τp(∙) q(∙)⁄

∞

m=j

)

τ

. 

By the same method given in the proof of Theorem (6.1.8) (with m, q(∙) τ⁄ , r in place of 

𝑣, q(∙), t respectively) we can prove that 

‖|cηm,𝑎r ∗ (2
m𝛼(∙)|km ∗ 𝑓|)

r
|
q(∙) rτ⁄

‖
τp(∙) q(∙)⁄

≤ ‖|2m𝛼(∙)km ∗ 𝑓|
q(∙) τ⁄

‖
τp(∙) q(∙)⁄

+ 2−mσ

= ‖|2m𝛼(∙)km ∗ 𝑓|
q(∙)
‖
p(∙) q(∙)⁄

1 τ⁄

+ 2−mσ, 

with an appropriate choice of c > 0  and here 0 < 𝜎 <
𝑎−𝑛 r⁄

4τ(1 q−⁄ −1 q+⁄ )
. Then for any 𝑓 ∈

𝒮′(ℝ𝑛) and any j ∈ ℕ0 

‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

q(∙)
‖
p(∙) q(∙)⁄

≤ (∑2(j−m)Nq
− τ⁄ (‖|2m𝛼(∙)km ∗ 𝑓|

q(∙)
‖
p(∙) q(∙)⁄

1 τ⁄

+ 2−mσ)

∞

m=j

)

τ

. 

By Lemma (6.1.3) we get 

∑‖|ckj
∗,𝑎2j𝛼(∙)𝑓|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ c∑(‖|2j𝛼(∙)kj ∗ 𝑓|
q(∙)
‖
p(∙) q(∙)⁄

1 τ⁄

+ 2−jσ)

τ∞

j=0

≤ c∑‖|2j𝛼(∙)kj ∗ 𝑓|
q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

+ c∑2−jστ
∞

j=0

≤ C. 

Step 3. We will prove in this step that for all 𝑓 ∈ 𝒮′(ℝ𝑛) the following estimates are 

true: 

‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ c‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖ ≤ c‖𝑓|Bp(∙),q(∙)

𝛼(∙) ‖
′′

. 

Let {φj}j∈ℕ0
 be as in Definition (6.1.6) and let ϕj = φj. The first inequality is proved by 

the chain of the estimates 

‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ c‖(φj
∗,𝑎2j𝛼(∙)𝑓)

j
‖
ℓq(∙)(Lp(∙))

≤ c‖(2j𝛼(∙)ϕj ∗ 𝑓)j
‖
ℓq(∙)(Lp(∙))

≤ c‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖, 

where the first inequality is (14), see Step 1, the second inequality is (18) (with ϕ and ϕ0 

instead of k and k0 ), see Step 2, and finally the third inequality is obvious. Now the 

second inequality can be obtained by the following chain 
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‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖ ≤ c‖(φj

∗,𝑎2j𝛼(∙)𝑓)
j
‖
ℓq(∙)(Lp(∙))

≤ c‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ c‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖

′′

, 

where the first inequality is obvious, the second inequality is (14), see Step 1, with the 

roles of k0  and k respectively φ0  and φ interchanged, and finally the last inequality is 

(18), see Step 2. Hence the theorem is proved. 

Now let ℤ𝑛 be the lattice of all points in ℝ𝑛 with integer-valued components. If 𝑣 ∈
ℕ0  and m = (m1, ⋯ ,m𝑛) ∈ ℤ

𝑛  we denote 𝒬𝑣m  the dyadic cube in ℝ𝑛  centred at 2−𝑣m 

which has sides parallel to the axes and side length 2−𝑣. If 𝒬𝑣m is such a cube in ℝ𝑛 and 

c > 0 then c𝒬𝑣m is the cube in ℝ𝑛 concentric with 𝒬𝑣m and with side length c2−𝑣. By χ𝑣m 

we denote the characteristic function of the cube 𝒬𝑣m. The main goal is to show an atomic 

decomposition result for Bp(∙),q(∙)
𝛼(∙)

. 

Definition (6.1.10) [258]: Let p, q ∈ 𝒫0(ℝ
𝑛)  and let α ∈ Cloc

log
. Then for all complex-

valued sequences λ = {λ𝑣m ∈ ℂ ∶ 𝑣 ∈ ℕ0, m ∈ ℤ𝑛 } we define 

bp(∙),q(∙)
𝛼(∙) = {λ ∶ ‖λ|bp(∙),q(∙)

𝛼(∙) ‖ < ∞} 

where 

‖λ|bp(∙),q(∙)
𝛼(∙) ‖ = ‖( ∑ 2𝑣𝛼(∙)λ𝑣mχ𝑣m

m∈ℤ𝑛

)

𝑣

‖

ℓq(∙)(Lp(∙))

. 

Definition (6.1.11) [258]: Let K, L ∈ ℕ0  and let γ > 1 . A K -times continuous 

differentiable function 𝑎 ∈ Ck(ℝ𝑛) is called [K, L]-atom centered at 𝒬𝑣m, 𝑣 ∈ ℕ0 and m ∈
ℤ𝑛, if 

supp 𝑎 ⊆ γ𝒬𝑣m,                                                                  (21) 
|Dβ𝑎(𝑥)| ≤ 2𝑣|β|, for  0 ≤ |β| ≤ K, 𝑥 ∈ ℝ𝑛                               (22) 

and if 

∫𝑥β𝑎(𝑥)d𝑥

ℝ𝑛

= 0,     for  0 ≤ |β| < L  and   𝑣 ≥ 1.                                (23) 

If the atom 𝑎 located at 𝒬𝑣m, that means if it fulfills (21), then we will denote it by 

𝑎𝑣m. For 𝑣 = 0 or L = 0 there are no moment conditions (23) required. 

Lemma (6.1.12) [45]: Let {ℱφj}, j ∈ ℕ0 be a resolution of unity and let ρ𝑣m be an [K, L]-
atom. Then 

|φj ∗ ρ𝑣m(𝑥)| ≤ c2
(𝑣−j)K(1 + 2𝑣|𝑥 − 2−𝑣m|)−M 

if 𝑣 ≤ j, and 

|φj ∗ ρ𝑣m(𝑥)| ≤ c2
(j−𝑣)(L+𝑛+1)(1 + 2j|𝑥 − 2−𝑣m|)−M 

if 𝑣 ≥ j, where M is sufficiently large. 

Lemma (6.1.13) [45]: Let {ℱφj}, j ∈ ℕ0 be a resolution of unity and let R ∈ ℕ. Then there 

exist functions θ0, θ ∈ 𝒮(ℝ
𝑛) with: 

supp θ0 , supp θ ⊂ {𝑥 ∈ ℝ
𝑛 ∶ |𝑥| ≤ 1},                                                 (24) 

|ℱθ0(ξ)| > c0   for  |ξ| ≤ 2, |ℱθ(ξ)| > 𝑐   𝑓𝑜𝑟   
1

2
≤ |ξ| ≤ 2,  

∫𝑥βθ(𝑥)d𝑥

ℝ𝑛

= 0,     for  0 ≤ |β| < 𝑅,                                                  (25) 

such that 

ℱθ0(ξ)ℱψ0(ξ) +∑ℱθ(2−jξ)ℱψ(2−jξ)

j≥1

= 1,    ξ ∈ ℝ𝑛, 
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where the functions ψ0, ψ ∈ 𝒮(ℝ
𝑛) are defined via 

ℱψ0(ξ) =
ℱφ0(ξ)

ℱθ0(ξ)
    and    ℱψ(ξ) =

ℱφ1(2ξ)

ℱθ(ξ)
. 

Theorem (6.1.14) [258]: Let α ∈ Cloc
log

 and p, q ∈ 𝒫0
log

 with q+ < ∞. Further, let K, L ∈ ℕ0 

such that 

K > 𝛼+,   L > 𝑛 (
1

min(1, p−)
− 1) − 1 − 𝛼−.                                      (26) 

Then 𝑓 ∈ 𝒮′(ℝ𝑛) belongs to Bp(∙),q(∙)
𝛼(∙)

, if and only if, it can be represented as 

𝑓 =∑ ∑ λ𝑣mρ𝑣m
m∈ℤ𝑛

∞

𝑣=0

,                                                             (27) 

convergence being in 𝒮′(ℝ𝑛), where ρ𝑣m are [K, L]-atoms and λ = {λ𝑣m ∈ ℂ ∶ 𝑣 ∈ ℕ0, m ∈

ℤ𝑛 } . Furthermore, inf ‖λ|bp(∙),q(∙)
𝛼(∙) ‖ , where the infimum is taken over admissible 

representations (27), is an equivalent quasi-norm in Bp(∙),q(∙)
𝛼(∙)

. 

Proof: The proof follows the ideas in [45]. 

Step 1. Assume that 𝑓 ∈ Bp(∙),q(∙)
𝛼(∙)

 and let θ0, θ, ψ0 and ψ be the functions introduced 

in Lemma (6.1.13). We have 

𝑓 = θ0 ∗ ψ0 ∗ 𝑓 +∑θ𝑣 ∗ ψ𝑣 ∗ 𝑓

∞

𝑣=1

 

and using the definition of the cubes 𝒬𝑣mwe obtain 

𝑓(𝑥) = ∑ ∫ θ0(𝑥 − y)ψ0 ∗ 𝑓(y)dy

𝒬0mm∈ℤ𝑛

+∑2𝑣𝑛 ∑ ∫ θ(2𝑣(𝑥 − y))ψ𝑣 ∗ 𝑓(y)dy

𝒬𝑣mm∈ℤ𝑛

∞

𝑣=1

, 

with convergence in 𝒮′(ℝ𝑛). We define for every 𝑣 ∈ ℕ and all m ∈ ℤ𝑛 
λ𝑣m = Cθ sup

y∈𝒬𝑣m

|ψ𝑣 ∗ 𝑓(y)|                                                          (28) 

where 

Cθ = max {sup
|y|≤1

|D𝛼θ(y)| ∶ |𝛼| ≤ K}. 

Define also 

ρ𝑣m(𝑥) =
1

λ𝑣m
2𝑣𝑛 ∫ θ(2𝑣(𝑥 − y))ψ𝑣 ∗ 𝑓(y)dy

𝒬𝑣m

.                               (29) 

Similarly we define for every m ∈ ℤ𝑛 the numbers λ0m and the functions ρ0m taking in 

(28) and (29) 𝑣 = 0 and replacing ψ𝑣 and θ by ψ0 and θ0, respectively. Let us now check 

that such ρ𝑣m  are atoms in the sense of Definition (6.1.11). Note that the support and 

moment conditions are clear by (24) and (25), respectively. It thus remains to check (22) 

in Definition (6.1.11). We have 

|Dβρ𝑣m(𝑥)| ≤
2𝑣(𝑛+|β|)

Cθ
∫|(Dβθ)(2𝑣(𝑥 − y))||ψ𝑣 ∗ 𝑓(y)|dy

𝒬𝑣m

( sup
y∈𝒬𝑣m

|ψ𝑣 ∗ 𝑓(y)|)

−1

≤
2𝑣(𝑛+|β|)

Cθ
∫|(Dβθ)(2𝑣(𝑥 − y))|dy

𝒬𝑣m

≤ 2𝑣(𝑛+|β|)|𝒬𝑣m| ≤ 2
𝑣|β|. 

The modifications for the terms with 𝑣 = 0 are obvious. 

Step 2. Next we show that there is a constant c > 0 such that 



194 

‖λ|bp(∙),q(∙)
𝛼(∙) ‖ ≤ c‖𝑓|Bp(∙),q(∙)

𝛼(∙) ‖. 

For that reason we exploit the equivalent quasi-norms given in Theorem (6.1.9) involving 

Peetre’s maximal function. Let 𝑣 ∈ ℕ. Taking into account that |𝑥 − y| ≤ c2−𝑣 for 𝑥, y ∈
𝒬𝑣m we obtain 

2𝑣(𝛼(𝑥)−𝛼(y)) ≤ 2
clog(𝛼)𝑣

log(e+1 |𝑥−y|⁄ ) ≤ 2
clog(𝛼)𝑣

log(e+2𝑣 c⁄ ) ≤ c 

if 𝑣 ≥ [log2 c] + 2. If 0 < 𝑣 < [log2 c] + 2, then 2𝑣(𝛼(𝑥)−𝛼(y)) ≤ 2𝑣(𝛼
+−𝛼−) ≤ c. Therefore, 

2𝑣𝛼(𝑥)|ψ𝑣 ∗ 𝑓(y)| ≤ c2
𝑣𝛼(y)|ψ𝑣 ∗ 𝑓(y)| 

for any 𝑥, y ∈ 𝒬𝑣m and any 𝑣 ∈ ℕ. Hence, 

∑ λ𝑣m2
𝑣𝛼(𝑥)χ𝑣m(𝑥)

m∈ℤ𝑛

= Cθ ∑ 2𝑣𝛼(𝑥) sup
y∈𝒬𝑣m

|ψ𝑣 ∗ 𝑓(y)|χ𝑣m(𝑥)

m∈ℤ𝑛

≤ c ∑ sup
|z|≤c2−𝑣

2𝑣𝛼(𝑥−z)|ψ𝑣 ∗ 𝑓(𝑥 − z)|

(1 + 2𝑣|z|)𝑎
(1 + 2𝑣|z|)𝑎χ𝑣m(𝑥)

m∈ℤ𝑛

≤ cψ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥) ∑ χ𝑣m(𝑥)

m∈ℤ𝑛

= cψ𝑣
∗,𝑎2𝑣𝛼(∙)𝑓(𝑥), 

where we have used ∑ χ𝑣m(𝑥)m∈ℤ𝑛 = 1 . This estimate and its counterpart for 𝑣 = 0 

(which can be obtained by a similar calculation) give 

‖λ|bp(∙),q(∙)
𝛼(∙) ‖ ≤ c‖(ψ𝑣

∗,𝑎2𝑣𝛼(∙)𝑓)
𝑣
‖
ℓq(∙)(Lp(∙))

≤ c‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖, 

by Theorem (6.1.9) (since ψ0 ∈ 𝒮(ℝ
𝑛)  and ψ ∈ 𝒮(ℝ𝑛)  are two kernels which fulfill 

Tauberian conditions (8) and (9) and the moment conditions (10)). 

Step 3. Assume that 𝑓 can be represented by (27), with K and L satisfying (26). We 

will show that 𝑓 ∈ Bp(∙),q(∙)
𝛼(∙)

 and that for some c > 0 

‖𝑓|Bp(∙),q(∙)
𝛼(∙) ‖ ≤ c‖λ|bp(∙),q(∙)

𝛼(∙) ‖. 

By a scaling argument, we see that it suffices to consider the case ‖λ|bp(∙),q(∙)
𝛼(∙) ‖ = 1 and 

show that the modular of a constant times the function on the left-hand side is bounded. In 

particular, we will show that 

∑‖|c2j𝛼(∙)φj ∗ 𝑓|
q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ C  whenever  ∑‖| ∑ 2j𝛼(∙)λjmχjm
m∈ℤ𝑛

|

q(∙)

‖

p(∙) q(∙)⁄

∞

j=0

= 1,   (30) 

where {ℱφj}j∈ℕ0
 is the resolution of unity. We write 

𝑓 =∑ ∑ λ𝑣mρ𝑣m
m∈ℤ𝑛

∞

𝑣=0

=∑+

j

𝑣=0

⋯+ ∑ ⋯

∞

𝑣=j+1

. 

Let 0 < r < max (
1

q+
,
p−

q+
). We have 
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∑‖|c2j𝛼(∙)φj ∗ 𝑓|
q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤  ∑(∑‖|c ∑ 2j𝛼(∙)λ𝑣mφj ∗ ρ𝑣m
m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

∞

𝑣=0

)

1 r⁄
∞

j=0

≤ c ∑(∑‖|c ∑ 2j𝛼(∙)λ𝑣mφj ∗ ρ𝑣m
m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

j

𝑣=0

)

1 r⁄
∞

j=0

+ c∑( ∑ ‖|c ∑ 2j𝛼(∙)λ𝑣mφj ∗ ρ𝑣m
m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

∞

𝑣=j+1

)

1 r⁄
∞

j=0

= I + II. 

For each k ∈ ℕ  we define Ωk = {m ∈ ℤ𝑛 ∶ 2k−1 < 2min(𝑣,j)|𝑥 − 2−𝑣m| ≤ 2k}  and Ω0 =

{m ∈ ℤ𝑛 ∶ 2min(𝑣,j)|𝑥 − 2−𝑣m| ≤ 1}. 

Estimate of I . From Lemma (6.1.12), we have for any M sufficiently large 

∑ 2j𝛼(𝑥)|λ𝑣m||φj ∗ ρ𝑣m(𝑥)|

m∈ℤ𝑛

≤ c2(𝑣−j)(k−𝛼
+) ∑ 2𝑣𝛼(𝑥)|λ𝑣m|(1 + 2

𝑣|𝑥 − 2−𝑣m|)−M

m∈ℤ𝑛

. 

We claim that there exists c > 0 such that 

‖|c ∑ 2𝑣𝛼(∙)λ𝑣m(1 + 2
𝑣|∙ −2−𝑣m|)−M

m∈ℤ𝑛

|

rq(∙)

‖

p(∙)
rq(∙)

≤ ‖|c ∑ 2j𝛼(∙)λ𝑣mχ𝑣m
m∈ℤ𝑛

|

rq(∙)

‖

p(∙)
rq(∙)

+ 2−𝑣 = δ    (31) 

Therefore, by Lemma (6.1.3) (with the help of (26)) we obtain 

I ≤ c∑

(

 
 
‖| ∑ 2j𝛼(∙)λjmχjm
m∈ℤ𝑛

|

rq(∙)

‖

p(∙)
rq(∙)

+ 2−j

)

 
 

1 r⁄

∞

j=0

≤ c∑‖| ∑ 2j𝛼(∙)λjmχjm
m∈ℤ𝑛

|

rq(∙)

‖

p(∙)
rq(∙)

1 r⁄
∞

j=0

+ c∑2−j r⁄

j≥0

= c∑‖| ∑ 2j𝛼(∙)λjmχjm
m∈ℤ𝑛

|

q(∙)

‖

p(∙)
q(∙)

∞

j=0

+ c ≤ C. 

Let us prove (31). This claim can be reformulated as showing that 

‖δ−1 |c ∑ 2𝑣𝛼(∙)λ𝑣m(1 + 2
𝑣|∙ −2−𝑣m|)−M

m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

≤ 1, 

which is equivalent to 

‖cδ−1 rq(∙)⁄ ∑ 2𝑣𝛼(∙)λ𝑣m(1 + 2
𝑣|∙ −2−𝑣m|)−M

m∈ℤ𝑛

‖

p(∙)

≤ 1. 

We have, with M = R + T, 

∑ δ
−

1
rq(𝑥)2𝑣𝛼(𝑥)|λ𝑣m|(1 + 2

𝑣|𝑥 − 2−𝑣m|)−M

m∈ℤ𝑛

=∑ ∑ δ
−

1
rq(𝑥)2𝑣𝛼(𝑥)|λ𝑣m|(1 + 2

𝑣|𝑥 − 2−𝑣m|)−M

m∈Ωk

∞

k=0

≤ c∑ ∑ δ
−

1
rq(𝑥)2𝑣𝛼(𝑥)2−Mk|λ𝑣m|

m∈Ωk

∞

k=0

=∑2−(T−𝑛 t⁄ )k ∑ δ
−

1
rq(𝑥)2𝑣𝛼(𝑥)2−(R+𝑛 t⁄ )k|λ𝑣m|

m∈Ωk

∞

k=0

≤ sup
k∈ℕ0

∑ δ
−

1
rq(𝑥)2𝑣𝛼(𝑥)|λ𝑣m|2

−(R+𝑛 t⁄ )k

m∈Ωk

, 
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for any T sufficiently large such that T > 𝑛 t⁄ . For any 0 < t ≤ 1, the last expression is 

bounded by 

sup
k∈ℕ0

( ∑ δ−t rq(𝑥)⁄ 2𝑣𝛼(𝑥)t|λ𝑣m|
t2−(Rt+𝑛)k

m∈Ωk

)

1 t⁄

= (sup
k∈ℕ0

2−Rtk+(𝑣−k)𝑛 ∫ ( ∑ δ−1 rq(𝑥)⁄ 2𝑣𝛼(𝑥)|λ𝑣m|χ𝑣m(y)

m∈Ωk

)

t

dy

⋃ 𝒬𝑣mm∈Ωk

)

1 t⁄

.                           (32) 

Let y ∈ ⋃ 𝒬𝑣mm∈Ωk  then y ∈ 𝒬𝑣m  for some m ∈ Ωk  and 2k−1 < 2𝑣|𝑥 − 2−𝑣m| ≤ 2k . 

From this it follows that 

|y − 𝑥| ≤ |y − 2−𝑣m| + |𝑥 − 2−𝑣m| ≤ √𝑛2−𝑣 + 2k−𝑣 ≤ 2k−𝑣+h𝑛 , h𝑛 ∈ ℕ, 

which implies that y  is located in some ball B(𝑥, 2k−𝑣+h𝑛) . Therefore, (32) does not 

exceed 

c (sup
k∈ℕ0

2−Rtk

|B(𝑥, 2k−𝑣+h𝑛)|
∫ ( ∑ δ−1 rq(𝑥)⁄ 2𝑣𝛼(𝑥)|λ𝑣m|χ𝑣m(y)

m∈Ωk

)

t

dy

B(𝑥,2k−𝑣+h𝑛)

)

1 t⁄

.            (33) 

Since 1 q⁄  is log-Hölder continuous and δ ∈ [2−𝑣, 1 + 2−𝑣], we have 

δ1 q(𝑥)⁄ −1 q(y)⁄ = (2𝑣δ)1 q(𝑥)⁄ −1 q(y)⁄ 2(1 q(𝑥)⁄ −1 q(y)⁄ )𝑣 ≤ 2|1 q(𝑥)⁄ −1 q(y)⁄ |(2𝑣+1) ≤ 2
clog(q)(2𝑣+1)

log(e+1 |𝑥−y|⁄ )

≤ 2
clog(q)(2𝑣+1)

𝑣−k−h𝑛 ≤ c22clog(q)k, 

for any k < max(0, 𝑣 − h𝑛) and any y ∈ B(𝑥, 2k−𝑣+h𝑛). If k ≥ max(0, 𝑣 − h𝑛) then since 

again δ ∈ [2−𝑣, 1 + 2−𝑣], 

δ1 q(𝑥)⁄ −1 q(y)⁄ ≤ c2|1 q(𝑥)⁄ −1 q(y)⁄ |(2𝑣+1) ≤ c22(1 q−⁄ −1 q+⁄ )k. 
Also since α is log-Hölder continuous we can prove that 

2𝑣(𝛼(𝑥)−𝛼(y)) ≤ c × {
2clog(𝛼)k           if    k < max(0, 𝑣 − h𝑛) ,

  2(𝛼
+−𝛼−)k        if     k ≥ max(0, 𝑣 − h𝑛),

 

where c > 0 not depending on 𝑣 and k. Hence with R sufficiently large such that 

R > max(2 r⁄ clog(q) + clog(𝛼), 2 r⁄ (1 q−⁄ − 1 q+⁄ ) + 𝛼+ − 𝛼−), 

we get that (33) is bounded by 

c(ℳt ( ∑ δ−1 rq(∙)⁄ 2𝑣𝛼(∙)|λ𝑣m|χ𝑣m
m∈Ωk

) (𝑥))

1 t⁄

,   𝑥 ∈ ℝ𝑛. 

Now taking 0 < t < min(1, p−)  and using the fact that ℳ ∶ L
p(∙)

t → L
p(∙)

t  is bounded we 

obtain 

‖c ∑ δ−1 rq(∙)⁄ 2𝑣𝛼(∙)|λ𝑣m|(1 + 2
𝑣|∙ −2−𝑣m|)−L

m∈ℤ𝑛

‖

p(∙)

≤ c‖ℳt ( ∑ δ−1 rq(∙)⁄ 2𝑣𝛼(∙)|λ𝑣m|χ𝑣m
m∈Ωk

)‖

p(∙) t⁄

1 t⁄

≤ ‖ ∑ δ−1 rq(∙)⁄ 2𝑣𝛼(∙)|λ𝑣m|χ𝑣m
m∈ℤ𝑛

‖

p(∙)

, 
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with an appropriate choice of c > 0. Now this expression is less than or equal to one if and 

only if 

‖| ∑ δ−1 rq(∙)⁄ 2𝑣𝛼(∙)λ𝑣mχ𝑣m
m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

≤ 1, 

which follows immediately from the definition of δ. 

Estimate of II. From Lemma (6.1.6), we have for any M sufficiently large 

∑ 2j𝛼(𝑥)|λ𝑣m||φj ∗ ρ𝑣m(𝑥)|

m∈ℤ𝑛

≤ c2(j−𝑣)(L+𝑛+1) ∑ 2j𝛼(𝑥)|λ𝑣m|(1 + 2
j|𝑥 − 2−𝑣m|)−M

m∈ℤ𝑛

. 

Let 0 < t < min(1, p−)  be a real number such that L > 𝑛 t⁄ − 1 − 𝑛 − 𝛼− . Using a 

combination of the arguments used in the estimate of I, we arrive at the inequality 

‖|c2(j−𝑣)(𝑛 t⁄ −𝛼−) ∑ 2j𝛼(∙)λ𝑣m(1 + 2
j|∙ −2−𝑣m|)−M

m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

≤ ‖| ∑ 2𝑣𝛼(∙)λ𝑣mχ𝑣m
m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

+ 2−j, 

with some positive constant c. Hence II can be estimated by 

∑( ∑ 2(j−𝑣)(L+𝑛+1−𝑛 t⁄ +𝛼−)rq− (‖| ∑ 2𝑣𝛼(∙)λ𝑣mχ𝑣m
m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

+ 2−j)

∞

𝑣=j+1

)

1 r⁄
∞

j=0

. 

Observing that L > 𝑛 t⁄ − 1 − 𝑛 − 𝛼−, an application of Lemma (6.1.3) yields the desired 

inequality, i.e. 

II ≤∑‖| ∑ 2j𝛼(∙)λjmχjm
m∈ℤ𝑛

|

rq(∙)

‖

p(∙) rq(∙)⁄

1 r⁄
∞

j=0

+ c = c∑‖| ∑ 2j𝛼(∙)λjmχjm
m∈ℤ𝑛

|

q(∙)

‖

p(∙) q(∙)⁄

∞

j=0

+ c ≤ C. 

The proof is completed.  

Corollary (6.1.15) [299]: Let j ∈ ℕ0 and 𝑥r ∈ ℝ𝑛. There exists ϵ > 0 such that for all g ∶
ℝ𝑛 → ℝ we have 

|g(yr)| ≤ (1 + ϵ) (
1

log(e + 1 |𝑥r − yr|⁄ )
− (ηj+ϵ,1+ϵ ∗ |g|

1−ϵ(𝑥r))
1 1−ϵ⁄

) 

Proof. Since |g(𝑥r) − g(yr)| ≤ |g(𝑥r)| + |g(yr)| 

Then by Lemma (6.1.2), we have 

|g(yr)| ≤
1 + ϵ

log(e + 1 |𝑥r − yr|⁄ )
− |g(𝑥r)|

= (1 + ϵ) (
1

log(e + 1 |𝑥r − yr|⁄ )
− (ηj+ϵ,1+ϵ ∗ |g|

1−ϵ(𝑥r))
1 1−ϵ⁄

) 

Corollary (6.1.16) [299]: Let 𝛼 ∈ Cloc
log

, p, q ∈ 𝒫0
log

 and 1 + ϵ >
𝑛

p−
. Then 

‖(φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2)

j+ϵ
‖
ℓq(∙)(Lp(∙))

                                               (34) 

is an equivalent quasi-norm in Bp(∙),q(∙)
𝛼(∙)

. 

Proof. We will do the proof in two steps. 

Step 1. It is easy to see that for any 𝑓2 ∈ 𝒮′(ℝ𝑛) and any 𝑥r ∈ ℝ𝑛 we have 

2(j+ϵ)𝛼(𝑥
r)|φj+ϵ ∗ 𝑓

2(𝑥r)| ≤ φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r). 
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This shows that the right-hand side in (4) is less than or equal (34). 

Step 2. We will prove in this step that there is a constant ϵ ≥ 0 such that for every 
𝑓2 ∈ 𝒮′(ℝ𝑛) 

‖(φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2)

j+ϵ
‖
ℓq(∙)(Lp(∙))

≤ (1 + ϵ) ‖(2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2)
j+ϵ
‖
ℓq(∙)(Lp(∙))

. 

By a scaling argument, we see that it suffices to consider the case 

‖(2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2)
j+ϵ
‖
ℓq(∙)(Lp(∙))

= 1 

and show that the modular of a constant times the function on the left-hand side is 

bounded. In particular, we will show that 

∑ ‖|(1 + ϵ)φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2|

q(∙)
‖p(∙)
q(∙)

∞

j+ϵ=0

≤ 1 + ϵ  whenever ∑ ‖|2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2|
q(∙)
‖p(∙)
q(∙)

∞

j+ϵ=0

= 1 

This clearly follows from the inequality 

‖|(1 + ϵ)φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

≤ ‖|2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2|
q(∙)
‖
p(∙) q(∙)⁄

+ 2−(1+ϵ)(j+ϵ) = δ, 

for some ϵ > 0. This claim can be reformulated as showing that 

‖δ−1|(1 + ϵ)φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

≤ 1, 

which is equivalent to 

‖(1 + ϵ)δ−1 q(∙)⁄ φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2‖

p(∙)
≤ 1. 

We choose ϵ ≥ 0  such that 1 + ϵ > 𝑛 1 + ϵ⁄ > 𝑛 p−⁄ . By Lemmas (6.1.1) and (6.1.2) the 

estimates 

2(j+ϵ)𝛼(y
r)|φj+ϵ ∗ 𝑓

2(yr)| ≤ (1 + ϵ)2(j+ϵ)𝛼(y
r) (ηj+ϵ,2(𝑛+ϵ) ∗ |φj+ϵ ∗ 𝑓

2|
1+ϵ
(yr))

1 1+ϵ⁄

≤ (1 + ϵ) (ηj+ϵ,(𝑛+ϵ) ∗ (2
(j+ϵ)𝛼(∙)|φj+ϵ ∗ 𝑓

2|)
1+ϵ
(yr))

1 1+ϵ⁄

                                   (35) 

are true for any yr ∈ ℝ𝑛, j ∈ ℕ0. Divide both sides of (35) by (1 + 2j+ϵ|𝑥r − yr|)1+ϵ, in the 

right-hand side we use the inequality 

(1 + 2j+ϵ|𝑥r − yr|)−(1+ϵ) ≤ (1 + 2j+ϵ|𝑥r − zr|)−(1+ϵ)(1 + 2j+ϵ|yr − zr|)1+ϵ,      𝑥r, yr, zr ∈ ℝ𝑛, 

in the left-hand side take the supremum over yr ∈ ℝ𝑛 and get for all 𝑓2 ∈ 𝒮′(ℝ𝑛), any 

𝑥r ∈ ℝ𝑛, and any j ∈ ℕ0 

(φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r))

1−ϵ

≤ (1 + ϵ)2(j+ϵ)𝑛 ∫
2(j+ϵ)(1−ϵ)𝛼(z

r)|φj+ϵ ∗ 𝑓
2(zr)|

1−ϵ

(1 + 2j+ϵ|𝑥r − zr|)(1−ϵ
2)

dzr

ℝ𝑛

= (1 + ϵ) ∫ ⋯dzr

B(𝑥r,2−j+ϵ 2⁄ )

+ (1 + ϵ)∑ ∫ ⋯dzr

B(𝑥r,2−(j+ϵ) 2⁄ +𝑖+1)\B(𝑥r,2−(j+ϵ) 2⁄ +𝑖)

∞

𝑖=0

= Jj+ϵ
1 (𝑥r) +∑Jj+ϵ−𝑖

2 (𝑥r)

𝑖≥0

, 

where ϵ > 0 is independent of 𝑥r, j and 𝑓2, such that 

0 <
1 + ϵ

(1 + ϵ)2 − 𝑛
< 1 4(1 q−⁄ − 1 q+⁄ )⁄ . 

Since 1 q⁄  is log-Hölder continuous and δ ∈ [2−(1+ϵ)(j+ϵ) , 1 + 2−(1+ϵ)(j+ϵ)], we have 

δ(1 q(z2)⁄ −1 q(𝑥r)⁄ ) ≤ (2(1+ϵ)(j+ϵ)δ)
|1 q(zr)⁄ −1 q(𝑥r)⁄ |

2(j+ϵ)(1+ϵ)|1 q(zr)⁄ −1 q(𝑥r)⁄ |

≤ (1 + ϵ)2
2clogq(1+ϵ)(j+ϵ)

log(e+1 |𝑥r−zr|⁄ )

≤ 1 + ϵ                                                                                                                                 (36) 
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for any zr ∈ B(𝑥r, 2−(j+ϵ) 2⁄ ). Hence 

δ−(1+ϵ) q(𝑥
r)⁄ Jj+ϵ
1 (𝑥r) ≤ (1 + ϵ)2(j+ϵ)𝑛 ∫

δ−(1+ϵ) q(z
r)⁄ 2(j+ϵ)𝛼(z

r)(1+ϵ)|φ(j+ϵ) ∗ 𝑓
2(zr)|

1+ϵ

(1 + 2j+ϵ|𝑥r − zr|)(1+ϵ)
2 dzr

ℝ𝑛

. 

Now the function zr ↦
1

(1+|zr|)(1+ϵ)
2 is in L1 (since (1 + ϵ)2 > 𝑛), then using the majorant 

property for the Hardy-Littlewood maximal operator ℳ 

(|g|1+ϵ ∗ 1 (1 + |∙|)(1+ϵ)
2

⁄ )(𝑥r) ≤ (1 + ϵ)‖1 (1 + |∙|)(1+ϵ)
2

⁄ ‖
1
ℳ1+ϵ(g)(𝑥

r), 

it follows that for any 𝑥r ∈ ℝ𝑛 

δ−(1+ϵ) q(𝑥
r)⁄ Jj+ϵ
1 (𝑥r) ≤ (1 + ϵ)ℳ1+ϵ(δ

−1 q(∙)⁄ 2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2)(𝑥r), 

where the constant ϵ ≥ 0 is independent of 𝑥r and j. Since |𝑥r − zr| ≥ 2−(j+ϵ) 2⁄ +𝑖 and the 

right-hand side of (36) can be estimated by (1 + ϵ)22(j+ϵ)(1+ϵ)(1 q−⁄ −1 q+⁄ ), then for any 𝑥r ∈
ℝ𝑛 and any j + ϵ ∈ ℕ0, δ−(1+ϵ) q(𝑥

r)⁄ J(j+ϵ)−𝑖
2 (𝑥r) is bounded by 

(1 + ϵ)2(j+ϵ)(1+ϵ)
2(2(1 q−⁄ −1 q+⁄ )−𝑛−(1+ϵ)2 2⁄ )2−𝑖(1+ϵ)

2
∫ δ−(1+ϵ) q(z

r)⁄ 2(j+ϵ)𝛼(z
r)(1+ϵ)|φj+ϵ

B(𝑥r,2−(j+ϵ) 2⁄ +𝑖+1)

∗ 𝑓2(zr)|
1+ϵ
dzr

≤ (1 + ϵ)2(j+ϵ)(1+ϵ)
2(2(1 q−⁄ −1 q+⁄ )+𝑛−(1+ϵ)2 2⁄ )2𝑖(𝑛−(1+ϵ)

2)ℳ1+ϵ(δ
−1 q(∙)⁄ 2(j+ϵ)𝛼(∙)φj+ϵ

∗ 𝑓2)(𝑥r) ≤ (1 + ϵ)2𝑖(𝑛−(1+ϵ)
2)ℳ1+ϵ(δ

−1 q(∙)⁄ 2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2)𝑥r, 

Hence, 

∑δ−1+ϵ q(𝑥
r)⁄ Jj+ϵ−𝑖
2 (𝑥r)

∞

𝑖=0

≤ (1 + ϵ)∑2𝑖(𝑛−(1+ϵ)
2)ℳ1+ϵ(δ

−1 q(∙)⁄ 2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2)(𝑥r)

∞

𝑖=0

≤ (1 + ϵ)ℳ1+ϵ(δ
−1 q(∙)⁄ 2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓

2)(𝑥r) 

since again (1 + ϵ)2 > 𝑛. Consequently we have proved that 

(δ−1 q(𝑥r)⁄ φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r))

1+ϵ

≤ (1 + ϵ)ℳ1+ϵ(δ
−1 q(∙)⁄ 2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓

2)(𝑥r), 

for all 𝑥r ∈ ℝ𝑛. Taking the L
p(∙)

1+ϵ-norm and using the fact that ℳ ∶ L
p(∙)

1+ϵ → L
p(∙)

1+ϵ is bounded 

we obtain that 

‖(1 + ϵ)δ−1 q(∙)⁄ φj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2‖

p(∙)

1+ϵ
= ‖|(1 + ϵ)δ−1 q(∙)⁄ φj+ϵ

∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2|
1+ϵ
‖
p(∙) (1+ϵ)⁄

≤ ‖δ−(1+ϵ) q(∙)⁄ 2(j+ϵ)𝛼(∙)1+ϵ|φj+ϵ ∗ 𝑓
2|
1+ϵ
‖
p(∙) (1+ϵ)⁄

= ‖δ−1 q(∙)⁄ 2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2‖
p(∙)

1+ϵ
 

with an appropriate choice of ϵ > 0. Now the right-hand side is less than or equal to one if 

and only if 

‖|δ−1 q(∙)⁄ 2(j+ϵ)𝛼(∙)φj+ϵ ∗ 𝑓
2|
q(∙)
‖
p(∙) q(∙)⁄

≤ 1, 

which follows immediately from the definition of δ. 

The proof is completed.  

Corollary (6.1.17) [299]: Let α ∈ Cloc
log

 and p, q ∈ 𝒫0
log

 with q+ < ∞. Let 1 + ϵ > 𝑛 p−⁄  and 

𝛼+ < 𝜖. Then 

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′

= ‖(kj
∗,1+ϵ2j𝛼(∙)𝑓2)

j
‖
ℓq(∙)(Lp(∙))

                                   (37) 

and  

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′′

= ‖(2j𝛼(∙)kj ∗ 𝑓
2)
j
‖
ℓq(∙)(Lp(∙))

,                                   (38) 
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are equivalent quasi-norms on Bp(∙),q(∙)
𝛼(∙)

. 

Proof: 

Step 1. Take any pair of functions ϕ0 and ϕ ∈ 𝒮(ℝ𝑛) such that 
|ℱϕ0(ξ)| > 0             for  |ξ| < 2ε,              

|ℱϕ(ξ)| > 0               for  
ε

2
< |ξ| < 2ε.     

We will prove that there is a constant ϵ > 0 such that for any 𝑓2 ∈ 𝒮′(ℝ𝑛) 

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ (1 + ϵ) ‖(ϕj
∗,1+ϵ2j𝛼(∙)𝑓2)

j
‖
ℓq(∙)(Lp(∙))

.                                    (39) 

By a scaling argument, we see that it suffices to consider the case 

‖(ϕj
∗,1+ϵ2j𝛼(∙)𝑓2)

j
‖
ℓq(∙)(Lp(∙))

= 1 

and show that the modular of a constant times the function on the left-hand side is 

bounded. In particular, we will show that 

∑‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ 1 + ϵ    when    ∑‖|ϕj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

= 1. 

Let Λ, λ ∈ 𝒮(ℝ𝑛) so that 
suppℱΛ ⊂ {ξ ∈ ℝ𝑛 ∶ |ξ| < 2𝜀}, suppℱλ ⊂ {ξ ∈ ℝ𝑛 ∶ ε 2⁄ < |ξ| < 2𝜀}, 

ℱΛ(ξ)ℱϕ0(ξ) + ∑ ℱλ(2−(j+ϵ)ξ)ℱϕ(2−(j+ϵ)ξ)

∞

j+ϵ=1

= 1, ξ ∈ ℝ𝑛.                         (40) 

In particular, for any 𝑓2 ∈ 𝒮′(ℝ𝑛) the identity is true 

𝑓2 = Λ ∗ ϕ0 ∗ 𝑓
2 + ∑ λj+ϵ ∗ ϕj+ϵ ∗ 𝑓

2

∞

j+ϵ=1

.                                             (41) 

Hence we can write 

kj ∗ 𝑓
2 = kj ∗ Λ ∗ ϕ0 ∗ 𝑓

2 + ∑ kj ∗ λj+ϵ ∗ ϕj+ϵ ∗ 𝑓
2

∞

j+ϵ=1

. 

We have 

2j𝛼(y
r)|kj ∗ λj+ϵ ∗ ϕj+ϵ ∗ 𝑓

2(yr)| ≤ 2j𝛼(y
r) ∫|kj ∗ λj+ϵ(z

r)||ϕj+ϵ ∗ 𝑓
2(yr − zr)|dzr

ℝ𝑛

.           (42) 

First let ϵ ≥ 0. Writing for any zr ∈ ℝ𝑛 

kj ∗ λj+ϵ(z
r) = 2(j+ϵ)𝑛k2ϵ ∗ λ(2

j+ϵzr), 

we get by Lemma (6.1.4), 

|kj ∗ λj+ϵ(z
r)| ≤ (1 + ϵ)

2ϵ
2+(j+ϵ)𝑛

(1 + 2j+ϵ|zr|)2(1+ϵ)
,    zr ∈ ℝ𝑛. 

So the right-hand side of (42) can be estimated from above by 

(1 + ϵ)2j𝛼(y
r)+ϵ2+(j+ϵ)𝑛 ∫(1 + 21+ϵ|zr|)−2(1+ϵ)|ϕ1+ϵ ∗ 𝑓

2(yr − zr)|dzr

ℝ𝑛

= (1 + ϵ)2ϵ
2
2j𝛼(y

r)η1+ϵ,2(1+ϵ) ∗ |ϕ1+ϵ ∗ 𝑓
2|(yr). 

By Lemma (6.1.1) the estimates 

2j𝛼(y
r)η1+ϵ,2(1+ϵ) ∗ |ϕj+ϵ ∗ 𝑓

2(yr)| ≤ 2ϵ𝛼
+
ηj+ϵ,1+ϵ ∗ (2

(j+ϵ)𝛼(∙)|ϕj+ϵ ∗ 𝑓
2|)(yr)

≤ 2ϵ𝛼
+
ϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(yr)‖ηj+ϵ‖1

≤ (1 + ϵ)2ϵ𝛼
+
ϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(yr), 

Let now ϵ ≥ 0. Then, again by Lemma (6.1.4) we have for any zr ∈ ℝ𝑛  
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|kj ∗ λj+ϵ(z
r)| = 2j𝑛|k ∗ λ2ϵ(2

jzr)| ≤ (1 + ϵ)
2ϵ

2+j𝑛

(1 + 2j|zr|)2(1+ϵ)
,  

where ϵ ≥ 0  an integer can be taken arbitrarily large, since D𝛼ℱλ(0) = 0  for all α . 

Therefore, the right-hand side of (42) can be estimated from above by 

(1 + ϵ)2j𝛼(y
r)+ϵ2+j𝑛 ∫(1 + 2j|zr|)−2(1+ϵ)|ϕj+ϵ ∗ 𝑓

2(yr − zr)|dzr

ℝ𝑛

= (1 + ϵ)2jα(y
r)+ϵ2ηj,2(1+ϵ) ∗ |ϕj+ϵ ∗ 𝑓

2|(yr). 

We have 

(1 + 2j|zr|)−2(1+ϵ) ≤ 22ϵ(1+ϵ)(1 + 2j+ϵ|zr|)−2(1+ϵ). 
Then, again, the right-hand side of (42) is dominated by 

(1 + ϵ)2j𝛼(y
r)−ϵ(𝑛−ϵ−1)ηj+ϵ,2L ∗ |ϕj+ϵ ∗ 𝑓

2|(yr)

≤ (1 + ϵ)2ϵ(𝛼
−+𝑛−ϵ)ηj+ϵ,L ∗ (2

(j+ϵ)𝛼(∙)|ϕj+ϵ ∗ 𝑓
2|)(yr)

≤ (1 + ϵ)2ϵ(𝛼
−+𝑛−ϵ)ϕj+ϵ

∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(yr)‖ηj+ϵ,L−(1+ϵ)‖1
≤ (1 + ϵ)2ϵ(𝛼

−+𝑛−ϵ)ϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(yr), 

where in the first inequality we have used Lemma (6.1.1). Taking ϵ <
𝛼−−𝑛+4

2
 to estimate 

the last expression by 

(1 + ϵ)2ϵ(ϵ+2)ϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(yr), 

where ϵ ≥ 0 is independent of j and 𝑓2. Further, note that for all 𝑥r, yr ∈ ℝ𝑛 and all j ∈ ℕ 

ϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(yr) ≤ ϕj+ϵ

∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r)(1 + 2j+ϵ|𝑥r − yr|)1+ϵ

≤ ϕj+ϵ
∗,j+ϵ

2(j+ϵ)𝛼(∙)𝑓2(𝑥r)max(1, 2ϵ(1+ϵ))(1 + 2j|𝑥r − yr|)1+ϵ. 

Hence 

sup
𝑥r∈ℝ𝑛

2j𝛼(y
r)|kj ∗ λj+ϵ ∗ ϕj+ϵ ∗ 𝑓

2(yr)|

(1 + 2j|𝑥r − yr|)1+ϵ
≤ (1 + ϵ)ϕj+ϵ

∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r) × {2
ϵ(ϵ−𝛼+)        if ϵ ≤ 0,
2ϵ                   if ϵ ≥ 0.

 

Using the fact that for any zr ∈ ℝ𝑛, any integer ϵ ≥ 0 

|kj ∗ Λ(z
r)| = |k2−j ∗ Λ(z

r)| ≤ (1 + ϵ)
2−jϵ

(1 + |zr|)2(1+ϵ)
, 

we obtain by the similar arguments that for any j ∈ ℕ 

sup
yr∈ℝ𝑛

2j𝛼(y
r)|kj ∗ Λ ∗ ϕ0 ∗ 𝑓

2(yr)|

(1 + 2j|𝑥r − y2|)1+ϵ
≤ (1 + ϵ)2−j(ϵ−α

+)ϕ0
∗,1+ϵ𝑓2(𝑥r). 

Hence with δ = min(1, ϵ − α+) > 0 for all 𝑓2 ∈ 𝒮′(ℝ𝑛), 𝑥r ∈ ℝ𝑛, j ∈ ℕ 

kj+ϵ
∗,1+ϵ2j𝛼(∙)𝑓2(yr) ≤ (1 + ϵ)2−jδϕ0

∗,1+ϵ𝑓2(𝑥r) + (1 + ϵ) ∑ 2−|ϵ|δϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r)

∞

j+ϵ=1

= (1 + ϵ) ∑ 2−|ϵ|δϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r)

∞

j+ϵ=0

. 

Also for j = 0, we use the fact that for ϵ ≥ 0, any zr ∈ ℝ𝑛 

|k0 ∗ λj+ϵ(z
r)| = |k0 ∗ λ2−(j+ϵ)(z

r)| ≤ (1 + ϵ)
2−ϵ(j+ϵ)

(1 + |zr|)2(1+ϵ)
 

and 

|k0 ∗ Λ(z
r)| ≤ (1 + ϵ)

1

(1 + |zr|)2(1+ϵ)
 

to get for any 𝑥r ∈ ℝ𝑛 
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k0
∗,1+ϵ𝑓2(𝑥r) ≤ (1 + ϵ)(ϕ0

∗,1+ϵ𝑓2(𝑥r) + ∑ 2−(j+ϵ)δϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r)

∞

j+ϵ=1

)

= (1 + ϵ) ∑ 2−(j+ϵ)δϕj+ϵ
∗,1+ϵ2j+ϵ𝛼(∙)𝑓2(𝑥r)

∞

j+ϵ=0

. 

Let τ > max(q+, q+ p−⁄ ). Then by Lemma (6.1.3) 

∑‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

=∑‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙) τ⁄
‖
τp(∙) q(∙)⁄

τ
∞

j=0

≤ (∑2−|ϵ|δ ‖|ϕj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2|

q(∙) τ⁄
‖
τp(∙) q(∙)⁄

∞

j=0

)

τ

≤ (1 + ϵ)∑‖|ϕj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙) τ⁄
‖
τp(∙) q(∙)⁄

τ
∞

j=0

= (1 + ϵ)∑‖|ϕj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ 1 + ϵ, 

with an appropriate choice of ϵ > 0. 

Step 2.  We will prove in this step that there is a constant ϵ > 0 such that for any 

𝑓2 ∈ 𝒮′(ℝ𝑛)  

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ (1 + ϵ)‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′′

.                                               (43) 

Analogously to (40), (41) find two functions Λ,ψ ∈ 𝒮(ℝ𝑛) such that 
suppℱΛ ⊂ {ξ ∈ ℝ𝑛 ∶ |ξ| < 2ε}, suppℱψ ⊂ {ξ ∈ ℝ𝑛 ∶ ε 2⁄ < |ξ| < 2ε}, 

and for all 𝑓2 ∈ 𝒮′(ℝ𝑛) and j ∈ ℕ0 

𝑓2 = Λj ∗ (k0)j ∗ 𝑓
2 + ∑ ψ𝑛+ϵ ∗ k𝑛+ϵ ∗ 𝑓

2

∞

𝑛=j−ϵ+1

. 

Hence 

kj ∗ 𝑓
2 = Λj ∗ (k0)j ∗ kj ∗ 𝑓

2 + ∑ kj ∗ ψ𝑛+ϵ ∗ k𝑛+ϵ ∗ 𝑓
2

∞

𝑛=j−ϵ+1

. 

By a scaling argument, we see that it suffices to consider the case 

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′′

= 1 

and show that the modular of a constant times the function on the left-hand side is 

bounded. In particular, we will show that 

∑‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ 1 + ϵ   when   ∑‖|2j𝛼(∙)kj ∗ 𝑓
2|
q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

= 1. 

Writing for any zr ∈ ℝ𝑛 

kj ∗ ψ𝑛+ϵ(z
r) = 2j𝑛(k ∗ ψ2j−(𝑛+ϵ))(2

jzr), 

we get by Lemma (6.1.5), that for any integer ϵ ≥ 0 independent of j  

|kj ∗ ψ𝑛+ϵ(z
r)| ≤ (1 + ϵ)

2(j−𝑛−ϵ)ϵ+j𝑛

(1 + 2j|zr|)2(ϵ−1)
,    zr ∈ ℝ𝑛. 

Analogous estimate 

|Λj ∗ (k0)j(z
r)| ≤ (1 + ϵ)

2j𝑛

(1 + 2j|zr|)2(ϵ−1)
,    zr ∈ ℝ𝑛, 
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is obvious. From this it follows that 

2j𝛼(y
r)|kj ∗ 𝑓

2(yr)| ≤ (1 + ϵ)∑2(j−𝑛−ϵ)(ϵ+𝛼
−)2(𝑛+ϵ)𝛼(y

r)ηj,2(ϵ−1) ∗ |k𝑛+ϵ ∗ 𝑓
2|(yr)

∞

j=0

= (1 + ϵ) ∑ 2(j−𝑛−ϵ)(ϵ+𝛼
−)+j𝑛 ∫

2(𝑛+ϵ)𝛼(y
r)|k𝑛+ϵ ∗ 𝑓

2(zr)|

(1 + 2j|yr − zr|)2(ϵ−1)
dzr

ℝ𝑛

∞

𝑛=j−ϵ

. 

Since 

(1 + 2j|yr − zr|)−2(ϵ−1) ≤ 22(𝑛+ϵ−j)(ϵ−1)(1 + 2𝑛+ϵ|yr − zr|)−2(ϵ−1), 
then by Lemma (6.1.1) we have 

2j𝛼(y
r)|kj ∗ 𝑓

2(yr)| ≤ (1 + ϵ) ∑ 2(j−𝑛−ϵ)(𝛼
−−2ϵ+𝑛−2)+(𝑛+ϵ)𝛼(yr)η𝑛+ϵ,2(ϵ−1) ∗ |k𝑛+ϵ ∗ 𝑓

2|(yr)

∞

𝑛=j−ϵ

≤ (1 + ϵ) ∑ 2(j−𝑛−ϵ)(𝛼
−−2ϵ+𝑛−2)η𝑛+ϵ,1+ϵ ∗ (2

(𝑛+ϵ)𝛼(∙)|k𝑛+ϵ ∗ 𝑓
2|)(yr)

∞

𝑛=j−ϵ

,       (44) 

Using the elementary estimates 

(1 + 2j|𝑥r − yr|)−(1+ϵ) ≤ (1 + 2j|𝑥r − zr|)−(1+ϵ)(1 + 2j|yr − zr|)1+ϵ

≤ 2(𝑛+ϵ−j)(1+ϵ)(1 + 2𝑛+ϵ|𝑥r − zr|)−(1+ϵ)(1 + 2𝑛+ϵ|yr − zr|)1+ϵ,                        (45) 
to get 

kj
∗,1+ϵ2j𝛼(∙)𝑓2(𝑥r) ≤ (1 + ϵ) ∑ 2(j−𝑛−ϵ)(−𝛼

−−ϵ+𝑛+1)+(𝑛+ϵ)𝑛 ∫
2(𝑛+ϵ)𝛼(z

r)|k𝑛+ϵ ∗ 𝑓
2(zr)|

(1 + 2𝑛+ϵ|𝑥r − zr|)1+ϵ
dzr

ℝ𝑛

∞

𝑛=j−ϵ

. 

Fix any ϵ ≥ 0. We have 

2(𝑛+ϵ)𝛼(z
r)|k𝑛+ϵ ∗ 𝑓

2(zr)| = (2(𝑛+ϵ)𝛼(z
r)|k𝑛+ϵ ∗ 𝑓

2(zr)|)
1−ϵ
(2(1+ϵ)𝛼(z

r)|k𝑛+ϵ ∗ 𝑓
2(zr)|)

ϵ

= (2(𝑛+ϵ)𝛼(z
r)|k𝑛+ϵ ∗ 𝑓

2(zr)|)
1−ϵ
(
2(1+ϵ)𝛼(z

r)|k𝑛+ϵ ∗ 𝑓
2(zr)|

(1 + 2𝑛+ϵ|𝑥r − zr|)1+ϵ
)

ϵ

(1

+ 2𝑛+ϵ|𝑥r − zr|)(1+ϵ)ϵ

≤ (2(1+ϵ)𝛼(z
r)|k𝑛+ϵ ∗ 𝑓

2(zr)|)
1−ϵ
(k𝑛+ϵ

∗,1+ϵ2(1+ϵ)𝛼(∙)𝑓2(𝑥r))
ϵ
(1

+ 2𝑛+ϵ|𝑥r − zr|)(1+ϵ)ϵ. 
Then 

kj
∗,1+ϵ2j𝛼(∙)𝑓2(𝑥r)

≤ (1 + ϵ) ∑ 2(j−𝑛−ϵ)N
′+(𝑛+ϵ)𝑛 ∫

2𝑛+ϵ(1−ϵ)𝛼(z
r)|k𝑛+ϵ ∗ 𝑓

2(zr)|1−ϵ

(1 + 2𝑛+ϵ|𝑥r − zr|)1−ϵ
2 dzr

ℝ𝑛

∞

𝑛=j−ϵ

(k𝑛+ϵ
∗,1+ϵ2𝑛+ϵ𝛼(∙)𝑓2(𝑥r))

ϵ

, 

where N′ = 𝑛 − 𝛼− − 2ϵ − 1 can be still be taken arbitrarily large. Quite analogously one 

proves for all 𝑓2 ∈ 𝒮′(ℝ𝑛) the estimate 

k0
∗,1+ϵ𝑓2(𝑥r)

≤ (1 + ϵ) ∑ 2−(𝑛+ϵ)(N
′−𝑛) ∫

2(𝑛+ϵ)(1−ϵ)𝛼(z
r)|k𝑛+ϵ ∗ 𝑓

2(zr)|1−ϵ

(1 + 2𝑛+ϵ|𝑥r − zr|)1−ϵ
2 dzr

ℝ𝑛

∞

𝑛=−ϵ

(k𝑛+ϵ
∗,1+ϵ2(𝑛+ϵ)𝛼(∙)𝑓2(𝑥r))

ϵ

. 

We now fix any 𝑥r ∈ ℝ𝑛 and apply Lemma (6.1.5) with 

(𝑛 + ϵ)j = kj
∗,1+ϵ2j𝛼(∙)𝑓2(𝑥r), j ∈ ℕ0,                                    

(𝑛 + 2ϵ)𝑛+ϵ = ∫
2(𝑛+ϵ)(1−ϵ)𝛼(z

r)+(𝑛+ϵ)𝑛|k𝑛+ϵ ∗ 𝑓
2(zr)|1−ϵ

(1 + 2𝑛+ϵ|𝑥r − zr|)1−ϵ
2 dzr

ℝ𝑛

, 𝑛 ∈ ℕ0. 

The assumption (3) is satisfied with N0 = N1 + 𝑛 + [max(0, 𝛼
+)] + 1, where N1 is the order 

of the distribution 𝑓2 ∈ 𝒮′(ℝ𝑛). We conclude that for any 𝑓2 ∈ 𝒮′(ℝ𝑛), and any j ∈ ℕ0 
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(kj
∗,1+ϵ2j𝛼(∙)𝑓2(𝑥r))

1−ϵ

≤ (1 + ϵ) ∑ 2(j−𝑛−ϵ)(1−ϵ
2)+(𝑛+ϵ)𝑛 ∫

2(𝑛+ϵ)(1−ϵ)𝛼(z
r)|k𝑛+ϵ ∗ 𝑓

2(zr)|1−ϵ

(1 + 2𝑛+ϵ|𝑥r − zr|)1−ϵ
2 dzr

ℝ𝑛

∞

j=𝑛+ϵ

. 

This estimate is also true for ϵ < 0, with much simpler proof. It suffices to take (44) with 

1 + ϵ + 𝑛 instead of 1 + ϵ, apply Hölder’s inequalities in zr , and finally the inequality 

(45). We omit the details. 

     Since 1 + ϵ >
𝑛

p−
, it possible to take 

𝑛

1+ϵ
< 1 − ϵ < p−. Let τ >

q+

1−ϵ
. We see that 

‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

= ‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙) τ⁄
‖
p(∙) q(∙)⁄

= ‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙) τ⁄
‖
τp(∙) q(∙)⁄

τ

 

≤ (1 + ϵ)( ∑ 2(j−𝑛−ϵ)Nq
− τ⁄ ‖|(1 + ϵ)η𝑛+ϵ,1−ϵ2 ∗ (2

(𝑛+ϵ)𝛼(∙)|k𝑛+ϵ ∗ 𝑓
2|)

1−ϵ
|
q(∙) (1−ϵ)τ⁄

‖
τp(∙) q(∙)⁄

∞

𝑛=j−ϵ

)

τ

 

By the same method given in the proof of Theorem (6.1.8) we can prove that 

‖|(1 + ϵ)η𝑛+ϵ,1−ϵ2 ∗ (2
(𝑛+ϵ)𝛼(∙)|k𝑛+ϵ ∗ 𝑓

2|)
1−ϵ
|
q(∙) (1−ϵ)τ⁄

‖
τp(∙) q(∙)⁄

≤ ‖|2(𝑛+ϵ)𝛼(∙)k𝑛+ϵ ∗ 𝑓
2|
q(∙) τ⁄

‖
τp(∙) q(∙)⁄

+ 2−(𝑛+ϵ)σ

= ‖|2(𝑛+ϵ)𝛼(∙)k𝑛+ϵ ∗ 𝑓
2|
q(∙)
‖
p(∙) q(∙)⁄

1 τ⁄

+ 2−(𝑛+ϵ)σ, 

with an appropriate choice of ϵ ≥ 0 and here 0 < 𝜎 <
1+ϵ−𝑛 (1−ϵ)⁄

4τ(1 q−⁄ −1 q+⁄ )
. Then for any 𝑓2 ∈

𝒮′(ℝ𝑛) and any j ∈ ℕ0 

‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

≤ ( ∑ 2(j−𝑛−ϵ)(1+ϵ)q
− τ⁄ (‖|2(𝑛+ϵ)𝛼(∙)k𝑛+ϵ ∗ 𝑓

2|
q(∙)
‖
p(∙) q(∙)⁄

1 τ⁄

+ 2−(𝑛+ϵ)(1+ϵ))

∞

𝑛=j−ϵ

)

τ

. 

By Lemma (6.1.4) we get 

∑‖|(1 + ϵ)kj
∗,1+ϵ2j𝛼(∙)𝑓2|

q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ (1 + ϵ)∑(‖|2j𝛼(∙)kj ∗ 𝑓
2|
q(∙)
‖
p(∙) q(∙)⁄

1 τ⁄

+ 2−j(1+ϵ))

τ∞

j=0

≤ (1 + ϵ)∑‖|2j𝛼(∙)kj ∗ 𝑓
2|
q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

+ (1 + ϵ)∑2−j(1+ϵ)τ
∞

j=0

≤ 1 + ϵ. 

Step 3. We will prove in this step that for all 𝑓2 ∈ 𝒮′(ℝ𝑛) the following estimates are 

true: 

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ (1 + ϵ)‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖ ≤ (1 + ϵ)‖𝑓2|Bp(∙),q(∙)

𝛼(∙) ‖
′′

. 

Let {φj}j∈ℕ0
 be as in Definition (6.1.1) and let ϕj = φj. The first inequality is proved by 

the chain of the estimates 

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ (1 + ϵ) ‖(φj
∗,1+ϵ2j𝛼(∙)𝑓2)

j
‖
ℓq(∙)(Lp(∙))

≤ (1 + ϵ)‖(2j𝛼(∙)ϕj ∗ 𝑓
2)
j
‖
ℓq(∙)(Lp(∙))

≤ (1 + ϵ)‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖, 
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where the first inequality is (39), see Step 1, the second inequality is (43) (with ϕ and ϕ0 

instead of k and k0 ), see Step 2, and finally the third inequality is obvious. Now the 

second inequality can be obtained by the following chain 

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖ ≤ (1 + ϵ) ‖(φj

∗,1+ϵ2j𝛼(∙)𝑓2)
j
‖
ℓq(∙)(Lp(∙))

≤ (1 + ϵ)‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′

≤ (1 + ϵ)‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖

′′

, 

where the first inequality is obvious, the second inequality is (39), see Step 1, with the 

roles of k0  and k respectively φ0  and φ interchanged, and finally the last inequality is 

(43), see Step 2. Hence the Corollary is proved. 

Corollary (6.1.18) [299]: Let α ∈ Cloc
log

 and p, q ∈ 𝒫0
log

 with q+ < ∞. Further, let K, L ∈

ℕ0 such that 

K > 𝛼+,   L > 𝑛 (
1

min(1, p−)
− 1) − 1 − 𝛼−.                                              (46) 

Then 𝑓2 ∈ 𝒮′(ℝ𝑛) belongs to Bp(∙),q(∙)
𝛼(∙)

, if and only if, it can be represented as 

𝑓2 =∑ ∑ λAρA
𝑛+ϵ∈ℤ𝑛

∞

j=0

,                                                           (47) 

where A = (j + ϵ)(𝑛 + ϵ) 

convergence being in 𝒮′(ℝ𝑛) , where ρA  are [K, L] -atoms and λ = {𝜆(j+ϵ)(n+ϵ) ∈ ℂ ∶ j ∈

ℕ0, ϵ ≥ 0, 𝑛 + ϵ ∈ ℤ
𝑛 } . Furthermore, inf ‖λ|bp(∙),q(∙)

𝛼(∙) ‖ , where the infimum is taken over 

admissible representations (47), is an equivalent quasi-norm in Bp(∙),q(∙)
𝛼(∙)

. 

Proof: The proof follows the ideas in [45]. 

Step 1. Assume that 𝑓2 ∈ Bp(∙),q(∙)
𝛼(∙)

 and let θ0, θ, ψ0 and ψ be the functions introduced 

in Lemma (6.1.13). We have 

𝑓2 = θ0 ∗ ψ0 ∗ 𝑓
2 +∑θj+ϵ ∗ ψj+ϵ ∗ 𝑓

2

∞

j=1

 

and using the definition of the cubes 𝒬(j+ϵ)(1+ϵ)we obtain 

𝑓2(𝑥r) = ∑ ∫ θ0(𝑥
r − yr)ψ0 ∗ 𝑓

2(yr)dyr

𝒬0(𝑛+ϵ)𝑛+ϵ∈ℤ𝑛

+∑2(j+ϵ)𝑛 ∑ ∫θ(2j+ϵ(𝑥r − yr))ψj+ϵ ∗ 𝑓
2(yr)dyr

𝒬A𝑛+ϵ∈ℤ𝑛

∞

j=1

, 

with convergence in 𝒮′(ℝ𝑛). We define for every j ∈ ℕ 

λA = (1 + ϵ)θ sup
yr∈𝒬A

|ψj+ϵ ∗ 𝑓
2(yr)|                                                (48) 

where 

(1 + ϵ)θ = max { sup
|yr|≤1

|D𝛼θ(yr)| ∶ |𝛼| ≤ K}. 

Define also 

ρA(𝑥
r) =

1

λA
2(j+ϵ)𝑛 ∫θ (2j+ϵ(𝑥r − yr))ψj+ϵ ∗ 𝑓

2(yr)dyr

𝒬A

.                         (49) 
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Similarly we define for every 𝑛 + ϵ ∈ ℤ𝑛  the numbers λϵ(𝑛+ϵ) and the functions ρϵ(𝑛+ϵ) 

taking in (48) and (49) j = −ϵ and replacing ψj+ϵ and θ by ψ−ϵ and θ−ϵ, respectively. Let 

us now check that such ρ(j+ϵ)(𝑛+ϵ) are atoms in the sense of Definition (6.1.11). We have 

|DβρA(𝑥
r)| ≤

2(j+ϵ)(𝑛+|β|)

(1 + ϵ)θ
∫|(Dβθ) (2j+ϵ(𝑥r − yr))| |ψj+ϵ
𝒬A

∗ 𝑓2(yr)|dyr ( sup
yr∈𝒬A

|ψj+ϵ ∗ 𝑓
2(yr)|)

−1

≤
2(j+ϵ)(𝑛+|β|)

(1 + ϵ)θ
∫|(Dβθ) (2j+ϵ(𝑥r − yr))| dyr

𝒬A

≤ 2(j+ϵ)(𝑛+|β|)|𝒬A| ≤ 2
(j+ϵ)|β|. 

The modifications for the terms with j = −ϵ are obvious. 

Step 2. Next we show that there is a constant ϵ ≥ 0 such that 

‖λ|bp(∙),q(∙)
𝛼(∙) ‖ ≤ (1 + ϵ) ‖𝑓2|Bp(∙),q(∙)

𝛼(∙) ‖. 

Let j ∈ ℕ. Taking into account that |𝑥r − yr| ≤ (1 + ϵ)2−(j+ϵ) for 𝑥r, yr ∈ 𝒬A we obtain 

2(j+ϵ)(𝛼(𝑥
r)−𝛼(yr)) ≤ 2

(1+ϵ)log(𝛼)(j+ϵ)

log(e+1 |𝑥r−yr|⁄ ) ≤ 2

(1+ϵ)log(𝛼)(j+ϵ)

log(e+2j+ϵ (1+ϵ)⁄ ) ≤ 1 + ϵ 

if j + ϵ ≥ [log2(1 + ϵ)] + 2 . If 0 < j + ϵ < [log2(1 + ϵ)] + 2 , then 2(j+ϵ)(𝛼(𝑥
r)−𝛼(yr)) ≤

2(j+ϵ)(𝛼
+−𝛼−) ≤ 1 + ϵ. Therefore, 

2(j+ϵ)𝛼(𝑥
r)|ψj+ϵ ∗ 𝑓

2(yr)| ≤ (1 + ϵ)2(j+ϵ)𝛼(y
r)|ψj+ϵ ∗ 𝑓

2(yr)| 

for any 𝑥r, yr ∈ 𝒬A and any j ∈ ℕ. Hence, 

∑ λA2
(j+ϵ)𝛼(𝑥r)χA(𝑥

r)

𝑛+ϵ∈ℤ𝑛

= (1 + ϵ)θ ∑ 2(j+ϵ)𝛼(𝑥
r) sup
yr∈𝒬A

|ψj+ϵ ∗ 𝑓
2(yr)|χA(𝑥

r)

𝑛+ϵ∈ℤ𝑛

 

≤ (1 + ϵ) ∑ sup
|zr|≤(1+ϵ)2−(j+ϵ)

2(j+ϵ)𝛼(𝑥
r−zr)|ψj+ϵ ∗ 𝑓

2(𝑥r − zr)|

(1 + 2j+ϵ|zr|)1+ϵ
(1 + 2j+ϵ|zr|)1+ϵχA(𝑥

r)

𝑛+ϵ∈ℤ𝑛

≤ (1 + ϵ)ψj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r) ∑ χA(𝑥

r)

𝑛+ϵ∈ℤ𝑛

= (1 + ϵ)ψj+ϵ
∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2(𝑥r), 

where we have used ∑ χA(𝑥
r)𝑛+ϵ∈ℤ𝑛 = 1. This estimate and its counterpart for j = −ϵ  give 

‖λ|bp(∙),q(∙)
𝛼(∙) ‖ ≤ (1 + ϵ) ‖(ψj+ϵ

∗,1+ϵ2(j+ϵ)𝛼(∙)𝑓2)
j+ϵ
‖
ℓq(∙)(Lp(∙))

≤ (1 + ϵ) ‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖, 

by Theorem (6.1.9) and ψ ∈ 𝒮(ℝ𝑛) are two kernels which fulfill Tauberian conditions (8) 

and (9) and the moment conditions (10). 

Step 3. Assume that 𝑓2 can be represented by (27), with K and L satisfying (26). We 

will show that 𝑓2 ∈ Bp(∙),q(∙)
𝛼(∙)

 and that for some ϵ ≥ 0 

‖𝑓2|Bp(∙),q(∙)
𝛼(∙) ‖ ≤ (1 + ϵ)‖λ|bp(∙),q(∙)

𝛼(∙) ‖. 

By a scaling argument, we see that it suffices to consider the case ‖λ|bp(∙),q(∙)
𝛼(∙) ‖ = 1 and 

show that the modular of a constant times the function on the left-hand side is bounded. In 

particular, we will show that 

∑‖|(1 + ϵ)2j𝛼(∙)φj ∗ 𝑓
2|
q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ 1 + ϵ when ∑‖| ∑ 2j𝛼(∙)λj(𝑛+ϵ)χj(𝑛+ϵ)
𝑛+ϵ∈ℤ𝑛

|

q(∙)

‖

p(∙) q(∙)⁄

∞

j=0

= 1,                                                                                                                                     (50) 
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where {ℱφj}j∈ℕ0
 is the resolution of unity. We write 

𝑓2 =∑ ∑ λAρA
𝑛+ϵ∈ℤ𝑛

∞

j=0

=∑+

j

j=0

⋯+ ∑ ⋯

∞

j=ϵ+1

 

Let 0 < 1 − ϵ < max(1 q+⁄ , p− q+⁄ ). We have 

∑‖|(1 + ϵ)2j𝛼(∙)φj ∗ 𝑓
2|
q(∙)
‖
p(∙) q(∙)⁄

∞

j=0

≤ ∑(∑‖|(1 + ϵ) ∑ 2j𝛼(∙)λAφj ∗ ρA
𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙) (1−ϵ)q(∙)⁄

∞

j=0

)

1 (1−ϵ)⁄
∞

j=0

≤ (1 + ϵ) ∑(∑‖|(1 + ϵ) ∑ 2j𝛼(∙)λAφj ∗ ρA
𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙) (1−ϵ)q(∙)⁄

∞

j=0

)

1 (1−ϵ)⁄
∞

j=0

+ (1 + ϵ)∑(∑ ‖|(1 + ϵ) ∑ 2j𝛼(∙)λAφj ∗ ρA
𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙) (1−ϵ)q(∙)⁄

∞

j=ϵ+1

)

1 (1−ϵ)⁄
∞

j=0

= I + II. 
For each k ∈ ℕ  we define Ωk = {𝑛 + ϵ ∈ ℤ

𝑛 ∶ 2k−1 < 2min(j+ϵ,j)|𝑥r − 2−(j+ϵ)(𝑛 + ϵ)| ≤ 2k} 

and Ω0 = {𝑛 + ϵ ∈ ℤ
𝑛 : 2min(j+ϵ,j)|𝑥r − 2−(j+ϵ)(𝑛 + ϵ)| ≤ 1}. 

Estimate of I . From Lemma (6.1.12), we have for any ϵ sufficiently large 

∑ 2j𝛼(𝑥
r)|λA||φj ∗ ρA(𝑥

r)|

𝑛+ϵ∈ℤ𝑛

≤ (1 + ϵ)2ϵ(k−𝛼
+) ∑ 2(j+ϵ)𝛼(𝑥

r)|λA|(1 + 2
j+ϵ|𝑥r − 2−(j+ϵ)(𝑛 + ϵ)|)

1−ϵ

𝑛+ϵ∈ℤ𝑛

. 

We claim that there exists ϵ ≥ 0 such that 

‖|(1 + ϵ) ∑ 2(j+ϵ)𝛼(∙)λA(1 + 2
j+ϵ|∙ −2−(j+ϵ)(𝑛 + ϵ)|)

1−ϵ

𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙)
(1−ϵ)q(∙)

≤ ‖|(1 + ϵ) ∑ 2j𝛼(∙)λAχA
𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙)
(1−ϵ)q(∙)

+ 2−(j+ϵ) = δ                          (51) 

Therefore, by Lemma (6.1.3) we obtain 

I ≤ (1 + ϵ)∑(‖| ∑ 2j𝛼(∙)λj(𝑛+ϵ)χj(𝑛+ϵ)
𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙) (1−ϵ)q(∙)⁄

+ 2−j)

1 (1−ϵ)⁄
∞

j=0

≤ (1 + ϵ)∑‖| ∑ 2j𝛼(∙)λj(𝑛+ϵ)χj(𝑛+ϵ)
𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙) (1−ϵ)q(∙)⁄

1 (1−ϵ)⁄
∞

j=0

+ (1 + ϵ)∑2−j (1−ϵ)⁄

j≥0

= (1 + ϵ)∑‖| ∑ 2j𝛼(∙)λj(𝑛+ϵ)χj(𝑛+ϵ)
𝑛+ϵ∈ℤ𝑛

|

q(∙)

‖

p(∙) q(∙)⁄

∞

j=0

≤ 0. 
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Let us prove (51). This claim can be reformulated as showing that 

‖δ−1 |(1 + ϵ) ∑ 2(j+ϵ)𝛼(∙)λA(1 + 2
j+ϵ|∙ −2−(j+ϵ)(𝑛 + ϵ)|)

1−ϵ

𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙) (1−ϵ)q(∙)⁄

≤ 1, 

which is equivalent to 

‖(1 + ϵ)δ−1 (1−ϵ)q(∙)⁄ ∑ 2(j+ϵ)𝛼(∙)λA(1 + 2
j+ϵ|∙ −2−(j+ϵ)(𝑛 + ϵ)|)

1−ϵ

𝑛+ϵ∈ℤ𝑛

‖

p(∙)

≤ 1. 

We have, with ϵ − 1 = R + T, 

∑ δ−1 (1−ϵ)q(𝑥r)⁄ 2(j+ϵ)𝛼(𝑥
r)|λA|(1 + 2

j+ϵ|𝑥r − 2−(j+ϵ)(𝑛 + ϵ)|)
1−ϵ

𝑛+ϵ∈ℤ𝑛

=∑ ∑ δ−1 (1−ϵ)q(𝑥r)⁄ 2(j+ϵ)𝛼(𝑥
r)|λA|(1 + 2

j+ϵ|𝑥r − 2−(j+ϵ)(𝑛 + ϵ)|)
1−ϵ

𝑛+ϵ∈Ωk

∞

k=0

≤ (1 + ϵ)∑ ∑ δ−1 (1−ϵ)q(𝑥r)⁄ 2(j+ϵ)𝛼(𝑥
r)2(1−ϵ)k|λA|

𝑛+ϵ∈Ωk

∞

k=0

=∑2−(T−𝑛 (1−ϵ)⁄ )k ∑ δ−1 (1−ϵ)q(𝑥r)⁄ 2(j+ϵ)𝛼(𝑥
r)2−(R+𝑛 (1−ϵ)⁄ )k|λA|

𝑛+ϵ∈Ωk

∞

k=0

≤ sup
k∈ℕ0

∑ δ−1 (1−ϵ)q(𝑥r)⁄ 2(j+ϵ)𝛼(𝑥
r)|λA|2

−(R+𝑛 (1−ϵ)⁄ )k

𝑛+ϵ∈Ωk

, 

for any T sufficiently large such that T > 𝑛 (1 − ϵ)⁄ . For any 0 ≤ ϵ < 1 , the last 

expression is bounded by 

sup
k∈ℕ0

( ∑ δ
−

1−ϵ
(1−ϵ)q(𝑥r)2(j+ϵ)(1−ϵ)𝛼(𝑥

r)|λA|
1−ϵ2−(R(1−ϵ)+𝑛)k

𝑛+ϵ∈Ωk

)

1
(1−ϵ)

= 

(sup
k∈ℕ0

2−Rk(1−ϵ)+(j+ϵ−k)𝑛 ∫ ( ∑ δ
−

1
(1−ϵ)q(𝑥r)2(j+ϵ)𝛼(𝑥

r)|λA|χA(y
r)

𝑛+ϵ∈Ωk

)

1−ϵ

dyr

⋃𝒬A

)

1
(1−ϵ)

.          (52) 

Let yr ∈ ⋃ 𝒬A𝑛+ϵ∈Ωk
 then yr ∈ 𝒬A for some 𝑛 + ϵ ∈ Ωk and 2k−1 < 2j+ϵ|𝑥r − 2−(j+ϵ)(𝑛 + ϵ)| ≤

2k. From this it follows that 

|yr − 𝑥r| ≤ |yr − 2−(j+ϵ)(1 + ϵ)| + |𝑥r − 2−(j+ϵ)(𝑛 + ϵ)| ≤ √𝑛2−(j+ϵ) + 2k−(j+ϵ)

≤ 2k−(j+ϵ)+h𝑛 ,   h𝑛 ∈ ℕ, 

which implies that yr is located in some ball B(𝑥r, 2k−(j+ϵ)+h𝑛). Therefore, (52) does not 

exceed 

(sup
k∈ℕ0

2−R(1+ϵ)k

|B(𝑥r, 2k−(j+ϵ)+h𝑛)|
∫ ( ∑ δ

−
1

(1−ϵ)q(𝑥r)2(j+ϵ)𝛼(𝑥
r)|λA|χA(y

r)

𝑛+ϵ∈Ωk

)

1−ϵ

dyr

B(𝑥r,2k−(j+ϵ)+h𝑛)

)

1
(1−ϵ)

(53) 

Since 1 q⁄  is log-Hölder continuous and δ ∈ [2−(j+ϵ), 1 + 2−(j+ϵ)], we have 

δ1 q(𝑥r)⁄ −1 q(yr)⁄ = (2j+ϵδ)1 q(𝑥r)⁄ −1 q(yr)⁄ 2(1 q(𝑥r)⁄ −1 q(yr)⁄ )(j+ϵ) ≤ 2|1 q(𝑥r)⁄ −1 q(yr)⁄ |(2(j+ϵ)+1)

≤ 2
clog(q)(2(j+ϵ)+1)

log(e+1 |𝑥r−yr|⁄ ) ≤ 2
clog(q)(2(j+ϵ)+1)

j+ϵ−k−h𝑛 ≤ (1 + ϵ)22clog(q)k, 

for any k < max(0, j + ϵ − h𝑛)  and any yr ∈ B(𝑥r, 2k−(j+ϵ)+h𝑛) . If k ≥ max(0, j + ϵ − h𝑛) 

then since again δ ∈ [2−(j+ϵ), 1 + 2−(j+ϵ)], 



209 

δ1 q(𝑥r)⁄ −1 q(yr)⁄ ≤ (1 + ϵ)2|1 q(𝑥r)⁄ −1 q(yr)⁄ |(2(j+ϵ)+1) ≤ (1 + ϵ)22(1 q−⁄ −1 q+⁄ )k. 
Also since α is log-Hölder continuous we can prove that 

2(j+ϵ)(𝛼(𝑥
r)−𝛼(yr)) ≤ (1 + ϵ) × {

2clog(𝛼)k                 if    k < max(0, j + ϵ − h𝑛) ,

  2(𝛼
+−𝛼−)k               if     k ≥ max(0, j + ϵ − h𝑛),

 

where ϵ ≥ 0 not depending on j and k. Hence with R sufficiently large such that 

R > max (2 (1 − ϵ)⁄ clog(q) + clog(𝛼), 2 (1 − ϵ)⁄ (
1

q−
−
1

q+
) + 𝛼+ − 𝛼−), 

we get that (53) is bounded by 

(1 + ϵ)(ℳ1+ϵ ( ∑ δ−1 (1−ϵ)q(∙)⁄ 2(j+ϵ)𝛼(∙)|λA|χA
𝑛+ϵ∈Ωk

) (𝑥r))

1 (1−ϵ)⁄

,   𝑥r ∈ ℝ𝑛 . 

Now taking 0 ≤ ϵ < min(1, p−) and using the fact that ℳ ∶ L
p(∙)

1−ϵ → L
p(∙)

1−ϵ is bounded 

we obtain 

‖(1 + ϵ) ∑ δ−1 (1−ϵ)q(∙)⁄ 2(j+ϵ)𝛼(∙)|λA|(1 + 2
j+ϵ|∙ −2−(j+ϵ)(𝑛 + ϵ)|)

−L

𝑛+ϵ∈ℤ𝑛

‖

p(∙)

≤ (1 + ϵ) ‖ℳ1+ϵ( ∑ δ−1 (1−ϵ)q(∙)⁄ 2(j+ϵ)𝛼(∙)|λA|χA
𝑛+ϵ∈Ωk

)‖

p(∙) (1−ϵ)⁄

1 (1−ϵ)⁄

≤ ‖ ∑ δ−1 (1−ϵ)q(∙)⁄ 2(j+ϵ)𝛼(∙)|λA|χA
𝑛+ϵ∈ℤ𝑛

‖

p(∙)

, 

with an appropriate choice of ϵ ≥ 0. Now this expression is less than or equal to one if and 

only if 

‖| ∑ δ−1 (1−ϵ)q(∙)⁄ 2(j+ϵ)𝛼(∙)λAχA
𝑛+ϵ∈ℤ𝑛

|

(1−ϵ)q(∙)

‖

p(∙) (1−ϵ)q(∙)⁄

≤ 1, 

which follows immediately from the definition of δ. 

Section (6.2): Variable Smoothness and Integrability 

Spaces of variable integrability, also known as variable exponent Lebesgue spaces 

Lp(∙)(ℝ𝑛), can be traced back to Orlicz [124, 284], and studied by Musielak [45] and 

Nakano [278, 279], but the modern development started with [31] of Kováčik and 

Rákosník as well as [8] of Cruz-Uribe and [13] of Diening. The variable Lebesgue spaces 

have already widely used in the study of harmonic analysis. Apart from theoretical 

considerations, such function spaces have interesting applications in fluid dynamics [85, 

130], image processing [7], partial differential equations and variational calculus [87, 103, 

111, 283, 285]. 

Function spaces with variable exponents attract many attentions, especially based on 

classical Besov and Triebel-Lizorkin spaces (see Triebel’s monographes [41, 56, 136] for 

the history of these two spaces). When Leopold [117, 118, 119, 120] and Leopold and 

Schrohe [37] studied pseudo-differential operators, they introduced related Besov spaces 

with variable smoothness, Bp,q
s(∙)(ℝ𝑛), which were further generalized to the case that q ≠

p, including Bp,q
s(∙)(ℝ𝑛) and Fp,q

s(∙)(ℝ𝑛), by Besov [90, 91, 92]. Along a different line of 

study, Xu [137, 138] studied Besov spaces Bp(∙),q
s (ℝ𝑛)   and Triebel-Lizorkin spaces 
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Fp(∙),q
s (ℝ𝑛)with variable exponent p(∙) but fixed q and s. As was well known from the 

trace theorem (see [22]) and Sobolev-type embeddings (see [60]) of classical function 

spaces, the smoothness and the integrability often interact each other. However, the 

unification of both trace theorems and Sobolev-type embeddings does not hold true on 

function spaces with only one variable index; for example, the trace space of Sobolev 

space Wk,p(∙) is no longer a space of the same type (see [15]). Thus, function spaces with 

full ranges of variable smoothness and variable integrability are needed. 

The concept of function spaces with variable smoothness and variable integrability 

was firstly mixed up by Diening, Hästö and Roudenko in [16]; they introduced Triebel-

Lizorkin spaces with variable exponents Fp(∙),q(∙)
s(∙) (ℝ𝑛)  and proved a trace theorem as 

follows: 

Tr Fp(∙),q(∙)
s(∙) (ℝ𝑛) = Fp(∙,0),p(∙,0)

s(∙,0)−1 p⁄ (∙,0)(ℝ𝑛−1), 

(see [16]), which shows that these spaces behaved nicely with respect to the trace operator. 

Subsequently, Vybíral [65] established Sobolev-Jawerth embeddings of these spaces. On 

the other hand, Almeida and Hästö [3] introduced the Besov space with variable 

smoothness and integrability Bp(∙),q(∙)
s(∙) (ℝ𝑛), which makes a further step in completing the 

unification process of function spaces with variable smoothness and integrability. Later, 

Drihem [17] established the atomic characterization of Bp(∙),q(∙)
s(∙) (ℝ𝑛) and Noi et al. [280, 

281, 282] also studied the space Bp(∙),q(∙)
s(∙) (ℝ𝑛) and Fp(∙),q(∙)

s(∙) (ℝ𝑛) including the boundedness 

of trace and extension operators, duality and complex interpolation. Here we point out that 

vector-valued convolution inequalities developed in [3] and [16] supply well remedy for 

the absence of the Fefferman-Stein vector-valued inequality for the mixed Lebesgue 

sequence spaces ℓq(∙) (Lp(∙)(ℝ𝑛))  and Lp(∙) (ℓq(∙)(ℝ𝑛)) , respectively, in studying Besov 

spaces and Triebel-Lizorkin spaces with variable smoothness and integrability. 

More generally, 2-microlocal Besov and Triebel-Lizorkin spaces with variable, 

Bp(∙),q(∙)
ω(∙) (ℝ𝑛)  and Fp(∙),q(∙)

ω(∙) (ℝ𝑛) , were introduced by Kempka [150, 264] and provided a 

unified approach that cover the classical Besov and Triebel-Lizorkin spaces as well as 

versions of variable smoothness and integrability. Afterwards, Kempka and Vybíral [29] 

characterized these spaces by local means and ball means of differences. The trace spaces 

of 2-microlocal type spaces were studied very recently by Moura et al. [44] and Gonçalves 

et al. [24]. 

Besov-type spaces Bp,q
s,τ (ℝ𝑛)  and Triebel-Lizorkin spaces Fp,q

s,τ (ℝ𝑛)  and their 

homogeneous counterparts for all admissible parameters were introduced in [189, 190, 

221] in order to clarify the relations among Besov spaces, Triebel-Lizorkin spaces and 𝒬 

space (see [12, 19]). Various properties and equivalent characterizations of Besov-type 

and Triebel-Lizorkin-type spaces, including smoothness atomic, molecular or wavelet 

decompositions, characterizations, respectively, via differences, oscillations, Peetre 

maximal functions, Lusin area functions or 𝑔λ
∗ functions, have already been established in 

[222, 261, 271, 289, 290, 291, 292, 295]. Moreover, these function spaces, including some 

of their special cases related to 𝒬 spaces, have been used to study the existence and the 

regularity of solutions of some partial differential equations such as (fractional) Navier-

Stokes equations. Based on Fp,q
s,τ (ℝ𝑛), we introduced the Triebel-Lizorkin-type space with 

variable exponent Fp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)p(·) in [76] with a measurable function ϕ  on ℝ+

𝑛+1  and 

obtained a related trace theorem (see [294]). 
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We based on Besov-type spaces Bp,q
s,τ (ℝ𝑛) and variable Besov spaces Bp(∙),q(∙)

s(∙) (ℝ𝑛), 

we are aimed to introduce another more generalized scale of function spaces with variable 

smoothness s(∙) , variable integrability p(∙)  and q(∙) , and a measurable function ϕ  on 

ℝ+
𝑛+1, denoted by Bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛), which covers both Besov spaces with variable smoothness 

and integrability and Besov-type spaces. We then establish their φ -transform 

characterization in the sense of Frazier and Jawerth. We also characterize these spaces by 

smooth atoms or Peetre maximal functions and we give some basic properties and 

Sobolev-type embeddings. We show a trace theorem of Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) and obtain several 

equivalent norms of these spaces. 

We give some conventions and notation such as semimodular spaces, variable and 

mixed Lebesgue-sequence spaces, and also introduce variable Besov-type spaces 

Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛). We point out that the function spaces studied fit into the framework of so-

called semimodular spaces. We point out that, in general, the scale of Besov-type spaces 

with variable smoothness and integrability and the scale of Musielak-Orlicz Besov-type 

spaces in [75] do not cover each other. 

We devote to the φ -transform characterization of Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)  in the sense of 

Frazier and Jawerth [22], which is then applied to show that Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) is well defined. 

This is different from [3], in which the space Bp(∙),q(∙)
s(∙) (ℝ𝑛) was proved to be well defined 

via the Calderón reproducing formula. We point out that the method used is originally 

from Frazier and Jawerth [22], which is smartly modified, via a subtle decomposition of 

dyadic cubes, so that it is suitable to the present setting. Observe that the r-trick lemma 

from [16] plays a key role in establishing a convolutional estimate so that we can use the 

convolutional inequality from [3] to obtain the desired conclusion. 

By making full use of the r-trick lemma from [16] again, we mainly give out the 

Sobolev-type embedding property of Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) . Some other basic embeddings and 

properties of the spaces Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) are also presented. 

We characterize the space Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) via Peetre maximal functions. A key step to 

obtain this is to establish a technical lemma, which indicates that the Peetre maximal 

function can be controlled, via semimodulars, by the approximation to the identity in a 

suitable way. We further obtain two equivalent characterizations of Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) . By 

applying a Hardy-type inequality from [18] and the Sobolev-type embedding theorem 

obtained, together with some ideas from the proof of Lemma (6.2.23), we establish the 

smooth atomic characterization of Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛). 

The symbols A ≲ B means A ≤ CB. If A ≲ B and B ≲ A, then we write A ∼ B. For 

all 𝑎, b ∈ ℝ, let 𝑎 ∨ b ∶= max{𝑎, b}. For all k ≔ (k1,⋯ , k𝑛) ∈ ℤ
𝑛, let |k| ≔ |k1| + ⋯+

|k𝑛|. Let ℤ+ ≔ {0, 1,⋯ }, ℕ ≔ {1, 2,⋯ } and 𝕂 ≔ ℝ or ℂ. Let ℝ+
𝑛+1 ≔ ℝ𝑛 × [0,∞). If E 

is a subset of ℝ𝑛, we denote by χE its characteristic function and χ̃E ≔ |E|−1 2⁄ χE. For all 

𝑥 ∈ ℝ𝑛 and r ∈ (0,∞), denote by 𝒬(𝑥, r) the cube centered at 𝑥 with side length r, whose 

sides parallel axes of coordinate. For all cube 𝒬 ⊂ ℝ𝑛, we denote its center by c𝒬 and its 

side length by ℓ(𝒬) and, for 𝑎 ∈ (0,∞), we denote by 𝑎𝒬  the cube concentric with 𝒬 

having the side length with 𝑎ℓ(𝒬). 
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For an exposition of these concepts, see [15]. The function spaces studied fit into 

the framework of so-called semimodular spaces. In what follows, let X be a vector space 

over 𝕂. 

Definition (6.2.1) [298]: A function ϱ ∶ X → [0,∞] is called a semimodular on X  if it 

satisfies: 

(i) ϱ(0) = 0 and, for all 𝑓 ∈ X and λ ∈ 𝕂 with |λ| = 1, ϱ(λ𝑓) = ρ(𝑓); 
(ii) If ϱ(λ, 𝑓) = 0 for all λ ∈ (0,∞), then 𝑓 = 0; 

(iii) ρ is quasiconvex, namely, there exists A ∈ [1,∞) such that, for all 𝑓, 𝑔 ∈ X, 
ϱ(θ𝑓 + (1 − θ)𝑔) ≤ A[θϱ(𝑓) + (1 − θ)ϱ(𝑔)]; 

(iv) λ ↦ ϱ(λ𝑓) is left continuous on [0,∞) for every 𝑓 ∈ X, namely, lim
λ<1,𝜆→1

ϱ(λ𝑓) =

ϱ(𝑓). 
A semimodular ϱ is called a modular if it satisfies that ϱ(𝑓) = 0 implies 𝑓 = 0, and is 

called continuous if, for every 𝑓 ∈ X, the mapping λ ↦ ϱ(λ𝑓) is continuous on [0,∞), 
namely, lim

λ→1
ϱ(λ𝑓) = ϱ(𝑓). 

Definition (6.2.2) [298]: Let ϱ be a (semi)modular on X. Then 
Xϱ ≔ {𝑓 ∈ X ∶ ∃ λ ∈ (0,∞)  such that ϱ(λ𝑓) < ∞} 

is called a (semi)modular space with the norm 
‖𝑓‖ϱ ≔ inf{ λ ∈ (0,∞) ∶ ϱ(𝑓 λ⁄ ) ≤ 1}. 

Lemma (6.2.3) [298]: Let ϱ be a semimodular on X. Then ‖𝑓‖ϱ ≤ 1 if and only ifϱ(𝑓) ≤

1; moreover, if ϱ is continuous, then ‖𝑓‖ϱ < 1 if and only if ϱ(𝑓) < 1, as well as ‖𝑓‖ϱ =

1 if and only if ϱ(𝑓) = 1. 

We recall some definitions and notation for the space with variable integrability. For 

a measurable function p(·) ∶ ℝ𝑛 → (0,∞], let 
p− ≔ ees

𝑥∈ℝ𝑛
inf p(𝑥)    and   p+ ≔ ees

𝑥∈ℝ𝑛
sup p(𝑥). 

The set of variable exponents, denoted by 𝒫(ℝ𝑛), is the set of all measurable functions 

p(·) ∶ ℝ𝑛 → (0,∞]  satisfying p− ∈ (0,∞] . For p(·) ∈ 𝒫(ℝ𝑛)  and 𝑥 ∈ ℝ𝑛 , define the 

function ρp(𝑥) by setting, for all t ∈ [0,∞), 

ρp(𝑥)(t) ≔  {
tp(𝑥),       if  p(𝑥) ∈ (0,∞),                     

0,              if  p(𝑥) = ∞ and t ∈ [0, 1],   

∞,              if  p(𝑥) = ∞ and t ∈ (1,∞).  

 

The variable exponent modular of a measurable function 𝑓 on ℝ𝑛 is defined by 

ρp(∙)(𝑓) ≔  ∫ ρp(𝑥)(|𝑓(𝑥)|)d𝑥
ℝ𝑛

. 

Definition (6.2.4) [298]: Let p(∙) ∈ 𝒫(ℝ𝑛) and E be a measurable subset of ℝ𝑛. Then the 

variable exponent Lebesgue space Lp(∙)(E)  is defined to be the set of all measurable 

functions 𝑓 such that 

‖𝑓‖Lp(∙)(E) ≔ inf{ λ ∈ (0,∞) ∶ ϱp(∙)(𝑓χE λ⁄ ) ≤ 1} < ∞. 

Definition (6.2.5) [298]: Let p, q ∈ 𝒫(ℝ𝑛) and E be a measurable subset of ℝ𝑛. Then the 

mixed Lebesgue-sequence space ℓq(∙) (Lp(∙)(E)) is defined to be the set of all sequences 

{𝑓𝑣}𝑣∈ℕ of functions in Lp(∙)(E) such that 

‖{𝑓𝑣}𝑣∈ℕ‖ℓq(∙)(Lp(∙)(E)) ≔ inf { λ ∈ (0,∞) ∶ ϱℓq(∙)(Lp(∙))({𝑓𝑣χE λ⁄ }𝑣∈ℕ) ≤ 1} < ∞, 

where, for all sequences {𝑔𝑣}𝑣∈ℕ of measurable functions, 

ϱℓq(∙)(Lp(∙))({𝑔𝑣}𝑣∈ℕ) ≔∑inf { μ𝑣 ∈ (0,∞) ∶ ϱp(∙) ({𝑔𝑣 μ𝑣
1 q(∙)⁄

⁄ }
𝑣∈ℕ
) ≤ 1}

𝑣∈ℕ

             (54) 
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with the convention λ1 ∞⁄ = 1 for all λ ∈ (0,∞). 
A measurable function 𝑔 ∈ 𝒫(ℝ𝑛)  is said to satisfy the locally log-Hölder 

continuous condition, denoted by 𝑔 ∈ Cloc
log(ℝ𝑛), if there exists a positive constant Clog(𝑔) 

such that, for all 𝑥, y ∈ ℝ𝑛, 

|𝑔(𝑥) − 𝑔(y)| ≤
Clog(𝑔)

log(e + 1 |𝑥 − y|⁄ )
,                                              (55) 

and 𝑔  is said to satisfy the globally log-Hölder continuous condition, denoted by 𝑔 ∈

Clog(ℝ𝑛), if 𝑔 ∈ Cloc
log(ℝ𝑛) and there exist positive constants C∞ and 𝑔∞ such that, for all 

𝑥 ∈ ℝ𝑛, 

|𝑔(𝑥) − 𝑔∞| ≤
C∞

log(e + |𝑥|)
.                                                     (56) 

Now let 𝒢(ℝ+
𝑛+1) be the set of all measurable functions ϕ ∶ ℝ+

𝑛+1 → (0,∞) having 

the following properties: there exist positive constants c1 and c2 such that, for all 𝑥 ∈ ℝ𝑛 

and r ∈ (0,∞), 
c1
−1ϕ(𝑥, 2r) ≤ ϕ(𝑥, r) ≤ c1ϕ(𝑥, 2r)                                            (57) 

and, for all 𝑥, y ∈ ℝ𝑛 and r ∈ (0,∞) with |𝑥 − y| ≤ r, 
c1
−1ϕ(y, r) ≤ ϕ(𝑥, r) ≤ c2ϕ(y, 2r)                                              (58) 

In what follows, for ϕ ∈ 𝒢(ℝ+
𝑛+1) and all cubes 𝒬:=  𝒬(𝑥, r) ⊂ ℝ𝑛  with center 𝑥 ∈

ℝ𝑛 and radius r ∈ (0,∞), define ϕ(𝒬) ≔ ϕ(𝒬(𝑥, r)) ≔ ϕ(𝑥, 2r). Let 𝒮(ℝ𝑛) be the space of 

all Schwartz functions on ℝ𝑛 and 𝒮′(ℝ𝑛) its topological dual space. A pair of functions, 

(φ,Φ), is said to be admissible if φ,Φ ∈ 𝒮(ℝ𝑛) satisfy 
supp φ̂ ⊂ {ξ ∈ ℝ𝑛 ∶ 1 2⁄ ≤ |ξ| ≤ 2}  and  |φ̂(ξ)| ≥ c > 0 when 3 5⁄ ≤ |ξ| ≤ 5 3⁄          (59) 

and 

supp Φ̂ ⊂ {ξ ∈ ℝ𝑛 ∶ |ξ| ≤ 2}  and  |Φ̂(ξ)| ≥ c > 0 when |ξ| ≤ 5 3⁄ ,                       (60) 

where 𝑓(ξ) ≔ ∫ 𝑓(𝑥)e−𝑖𝑥∙ξd𝑥
ℝ𝑛

 for all ξ ∈ ℝ𝑛  and c is a positive constant independent of 

ξ ∈ ℝ𝑛 . For all j ∈ ℕ, φ ∈ 𝒮(ℝ𝑛) and 𝑥 ∈ ℝ𝑛 , we put φj(𝑥) ≔ 2j𝑛φ(2j𝑥) and φ̃(𝑥) ≔

φ(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅. For j ∈ ℤ and k ∈ ℤ𝑛 , denote by 𝒬jk  the dyadic cube 2−j([0, 1)𝑛 + k) , 𝑥𝒬jk ≔

2−jk its lower left corner and ℓ(𝒬jk) its side length. Let 𝔔 ≔ {𝒬jk ∶ j ∈ ℤ, k ∈ ℤ
𝑛}, 𝔔∗ ≔

{𝒬 ∈ 𝔔 ∶ ℓ(𝒬) ≤ 1} and j𝒬 ≔ − log2 ℓ(𝒬) for all 𝒬 ∈ 𝔔. 

Definition (6.2.6) [298]: Let (φ,Φ) be a pair of admissible functions on ℝ𝑛. Let p, q ∈

Clog(ℝ𝑛) , s ∈ Cloc
log(ℝ𝑛) ∩ L∞(ℝ𝑛)  and ϕ ∈ 𝒢(ℝ+

𝑛+1) . Then the Besov-type space with 

variable smoothness and integrability, Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛), is defined to be the set of all 𝑓 ∈

𝒮′(ℝ𝑛) such that 

‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≔ sup
P∈𝔔

1

ϕ(P)
‖{2js(∙)|φj ∗ 𝑓|}j≥(jP∨0)

‖
ℓq(∙)(Lp(∙)(P))

< ∞, 

where the supremum is taken over all dyadic cubes P in ℝ𝑛. 

By comparing Besov-type spaces with variable smoothness and integrability with 

Musielak-Orlicz Besov-type spaces in [75] we show that, in general, these two scales of 

Besov-type spaces do not cover each other. 

To recall the definition of Musielak-Orlicz Besov-type spaces, we need some 

notions on Musielak-Orlicz functions. A function φ ∶ ℝ𝑛 × [0,∞) → [0,∞)  is called a 

Musielak-Orlicz function if the function φ(𝑥,∙) ∶ [0,∞) → [0,∞) is an Orlicz function for 

all 𝑥 ∈ ℝ𝑛 , namely, for any given 𝑥 ∈ ℝ𝑛 , φ(𝑥,∙)  is nondecreasing, φ(𝑥, 0) = 0,
φ(𝑥, t) ∈ (0,∞)  for all t ∈ (0,∞)  and lim

t→∞
φ(𝑥, t) = ∞ , and φ(∙, t)  is a Lebesgue 

measurable function for all t ∈ [0,∞). A Musielak-Orlicz function φ  is said to be of 
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uniformly upper (resp. lower) type p for some p ∈ [0,∞) if there exist a positive constant 

C  such that, for all 𝑥 ∈ ℝ𝑛 , t ∈ [0,∞)  and s ∈ [1,∞)  (resp. s ∈ [0, 1] ), φ(𝑥, st) ≤
Cspφ(𝑥, t) (see [32]). Let 

𝑖(φ) ≔ sup{p ∈ (0,∞) ∶ φ is uniformly lower type  p} 
and 

I(φ) ≔ inf{p ∈ (0,∞) ∶ φ is uniformly upper type  p}. 
The function φ(∙, t) is said to satisfy the uniformly Muckenhoupt condition for some r ∈
[1,∞), denoted by φ ∈ Ar(ℝ

𝑛), if, when r ∈ (1,∞), 

sup
t∈(0,∞)

sup
balls B⊂ℝ𝑛

1

|B|r
∫φ(𝑥, t)d𝑥
B

{∫[φ(y, t)]−r
′ r⁄ dy

B

}

r′ r⁄

< ∞, 

where 1 r⁄ + 1 r′⁄ = 1, or, when r = 1, 

sup
t∈(0,∞)

sup
balls B⊂ℝ𝑛

1

|B|
∫φ(𝑥, t)d𝑥
B

{ess
y∈B

sup[φ(y, t)]−1} < ∞. 

Let A∞(ℝ
𝑛) ≔ ⋃ Ar(ℝ

𝑛)r∈[1,∞) . 

The Musielak-Orlicz space Lφ(ℝ𝑛) is defined as the set of all measurable functions 

𝑓 on ℝ𝑛 such that 

‖𝑓‖Lφ(ℝ𝑛) ≔ inf { λ ∈ (0,∞) ∶ ∫ φ(𝑥, |𝑓(𝑥)| λ⁄ )d𝑥
ℝ𝑛

≤ 1} < ∞. 

        Let 𝒮∞(ℝ
𝑛) be the space of all Schwartz functions h satisfying that, for all multi-

indices γ ∶= (γ1, ⋯ , γ𝑛) ∈ ℤ+
𝑛 , ∫ h(𝑥)𝑥γd𝑥

ℝ𝑛
= 0 and let 𝒮∞

′ (ℝ𝑛) be its topological dual 

space. 

Definition (6.2.7) [298]: Let s ∈ ℝ, τ ∈ [0,∞), q ∈ (0,∞] and ψ be a Schwartz function 

satisfying supp φ̂ ⊂ {ξ ∈ ℝ𝑛 ∶ 1 2⁄ ≤ |ξ| ≤ 2}  and  |φ̂(ξ)| ≥ C > 0 if 3 5⁄ ≤ |ξ| ≤ 5 3⁄ for 

some positive constant C independent of ξ ∈ ℝ𝑛 . For all j ∈ ℤ and 𝑥 ∈ ℝ𝑛 , let ψj(𝑥) ≔

2j𝑛ψ(2j𝑥). Assume that, for j ∈ {1, 2}, φj is a Musielak-Orlicz function with 0 < 𝑖(φj) ≤

I(φj) < ∞ and φj ∈ A∞(ℝ
𝑛). Then the Musielak-Orlicz Besov-type space Ḃφ1,φ2,q

s,τ (ℝ𝑛) is 

defined to be the space of all 𝑓 ∈ 𝒮∞
′ (ℝ𝑛) such that 

‖𝑓‖Ḃφ1,φ2,q
s,τ (ℝ𝑛) ≔ sup

P∈𝔔

1

‖χP‖Lφ1(ℝ𝑛)
‖{∑(2js|ψj ∗ 𝑓|)

q
∞

j=jP

}

1 q⁄

‖

Lφ2(ℝ𝑛)

< ∞ 

with suitable modification made when q = ∞ , where the supremum is taken over all 

dyadic cubes P of ℝ𝑛. 

The purpose is to show that Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) is independent of the choice of admissible 

function pairs (φ,Φ). To this end, we first introduce the sequence space bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) with 

respect to Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) and then establish its φ-transform characterization in the sense of 

Frazier and Jawerth [22]. 

Definition (6.2.8) [98]: Let p, q, s and ϕ be as in Definition (6.2.6). Then the sequence 

space bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) is defined to be the set of all sequences t ∶=  {t𝒬}𝒬∈𝔔∗ ⊂ ℂ such that 

‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≔ sup
P∈𝔔

1

ϕ(P) ‖

‖

{
 
 

 
 

∑ |𝒬|−
s(∙)
𝑛 |t𝒬|χ̃𝒬

𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j }
 
 

 
 

j≥(jp∨0)

‖

‖

ℓq(∙)(Lp(∙)(P))

< ∞, 
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where the supremum is taken over all dyadic cubes P in ℝ𝑛. 

Let (φ,Φ)  be a pair of admissible functions. Then (φ̃, Φ̃)  is also a pair of 

admissible functions, where φ̃(∙) ≔ φ(− ∙)̅̅ ̅̅ ̅̅ ̅̅  and Φ̃(∙) ≔ Φ(− ∙)̅̅ ̅̅ ̅̅ ̅̅ ̅ . Moreover, by [22] or 

[23], there exist Schwartz functions ψ and Ψ satisfying (59) and (60), respectively, such 

that, for all ξ ∈ ℝ𝑛, 

Φ̂(ξ)Ψ̂(ξ) +∑φ̂(2−jξ)ψ̂(2−jξ)

∞

j=1

= 1.                                             (61) 

Recall that the φ-transform Sφ is defined to be the mapping taking each 𝑓 ∈ 𝒮′(ℝ𝑛) to the 

sequence Sφ(𝑓) ≔ {(Sφ𝑓)𝒬
}
𝒬∈𝔔∗

, where (Sφ𝑓)𝒬
≔ |𝒬|1 2⁄ φj𝒬 ∗ 𝑓(𝑥𝒬)  with φ0  replaced by 

Φ ; the inverse φ -transform Tψ  is defined to be the mapping taking a sequence t ≔

{t𝒬}𝒬∈𝔔∗ ⊂ ℂ to 

Tψt ≔ ∑ t𝒬Ψ𝒬
𝒬∈𝔔∗,ℓ(𝒬)=1

+ ∑ t𝒬ψ𝒬
𝒬∈𝔔∗,ℓ(𝒬)<1

;                                      (62) 

Corollary (6.2.9) [298]: With all notations as in Definition (6.2.6), the space Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) 

is independent of the choice of the admissible function pairs (φ,Φ). 
Lemma (6.2.10) [298]:  Let ϕ ∈ 𝒢(ℝ+

𝑛+1). Then there exist positive constants C and C̃ such 

that, for all j ∈ ℤ+  and k ∈ ℤ𝑛 , ϕ(𝒬jk) ≤ C2
j log2 c1(|k| + 1)2 log2 c1  and, for all 𝒬 ∈ 𝔔 and 

𝑙 ∈ ℤ𝑛, 

ϕ(𝒬 + 𝑙ℓ(𝒬))

ϕ(𝒬)
≤ C̃(1 + |𝑙|)2 log2 c1 , 

where c1 is as in (57). 

Lemma (6.2.11) [298]: Let p ∈ Clog(ℝ𝑛). Then there exists a positive constant C such 

that, for all dyadic cubes 𝒬jk with j ∈ ℤ+ and k ∈ ℤ𝑛, 

C−12−(𝑛 p−⁄ )j(1 + |k|)𝑛(1 p+⁄ −1 p−⁄ ) ≤ ‖χ𝒬jk‖Lp(∙)(ℝ𝑛)
≤ C2−(𝑛 p+⁄ )j(1 + |k|)𝑛(1 p−⁄ −1 p+⁄ ). 

In what follows, for all h ∈ 𝒮(ℝ𝑛) and M ∈ ℤ+, let 
‖h‖𝒮M(ℝ𝑛) ≔ sup

|γ|≤M
sup
𝑥∈ℝ𝑛

|∂γh(𝑥)|(1 + |𝑥|)𝑛+M+γ. 

Lemma (6.2.12) [298]: Let p, q, s and ϕ  be as in Definition (6.2.6). Then, for all t ∈

bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) , Tψt  in (56) converges in 𝒮′(ℝ𝑛) ; moreover, Tψ ∶ bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛) → 𝒮′(ℝ𝑛)  is 

continuous. 

Proof: Observe that, for any 𝒬 ∈ 𝔔∗, 

|t𝒬| ≤ ‖|𝒬|
−s(∙) 𝑛⁄ |t𝒬|χ̃𝒬‖Lp(∙)(𝒬)‖χ𝒬‖Lp(∙)(𝒬)

−1
|𝒬|s− 𝑛⁄ +1 2⁄

≤
‖

‖

{
 
 

 
 

∑ |𝒬̃|
−s(∙) 𝑛⁄

|t𝒬̃|χ̃𝒬̃
𝒬̃⊂𝒬,𝒬̃∈𝔔∗

ℓ(𝒬̃)=2−j }
 
 

 
 

j≥(j𝒬∨0)

‖

‖

ℓq(∙)(Lp(∙)(𝒬))

|𝒬|s− 𝑛⁄ +1 2⁄

‖χ𝒬‖Lp(∙)(𝒬)

≤ ‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

ϕ(𝒬)

‖χ𝒬‖Lp(∙)(𝒬)

|𝒬|s− 𝑛⁄ +1 2⁄ . 
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Then, by this and an argument similar to that used in [294], we conclude that, for all h ∈

𝒮(ℝ𝑛), |〈Tψt, h〉| ≲ ‖t‖b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

‖h‖𝒮M(ℝ𝑛) with some large M ∈ (0,∞)which completes the 

proof of Lemma (6.2.12). 

Lemma (6.2.13) [298]: Let r ∈ (0,∞) , 𝑣 ∈ ℤ+  and m ∈ (𝑛,∞) . Then there exists a 

positive constant C , only depending on r,m  and 𝑛 , such that, for all 𝑥 ∈ ℝ𝑛  and 𝑔 ∈

𝒮′(ℝ𝑛)  with supp 𝑔̂ ⊂ {ξ ∶ |ξ| ≤ 2𝑣+1} , sup
z∈𝒬

|𝑔(z)| ≤ C[η𝑣,m ∗ (|𝑔|
r)(𝑥)]

1 r⁄
, where 𝒬 ∈ 𝔔 

contains 𝑥 and ℓ(𝒬) = 2−𝑣. 

Lemma (6.2.14) [298]: Let s ∈ Cloc
log(ℝ𝑛)  and d ∈ [Clog(s),∞) , where Clog(s)  denotes the 

constant as in (55) with 𝑔  replaced by s . Then, for all 𝑥, y ∈ ℝ𝑛  and 𝑣 ∈ ℕ , 

2𝑣s(𝑥)η𝑣,m+d(𝑥 − y) ≤ C2
𝑣s(y)η𝑣,m(𝑥 − y) with C being a positive constant independent 

of 𝑥, y and 𝑣; moreover, for all nonnegative measurable functions 𝑓, it holds true that 

2𝑣s(𝑥)η𝑣,m+d ∗ 𝑓(𝑥) ≤ Cη𝑣,m ∗ (2
𝑣s(∙)𝑓)(𝑥), 𝑥 ∈ ℝ𝑛. 

Lemma (6.2.15) [298]: Let p, q ∈ Clog(ℝ𝑛)  satisfy p−, q− ∈ [1,∞]  and m ∈ (𝑛 +

Clog(1 q⁄ ),∞), where Clog(1 q⁄ ) denotes the constant as in (55) with 𝑔 replaced by 1 q⁄ . 

Then there exists a positive constant C such that, for all sequences {𝑓𝑣}𝑣∈ℕ of measurable 

functions, 

‖{η𝑣,m ∗ 𝑓𝑣}𝑣∈ℕ‖ℓq(∙)(Lp(∙)(ℝ𝑛))
≤ C‖{𝑓𝑣}𝑣∈ℕ‖ℓq(∙)(Lp(∙)(ℝ𝑛)). 

Lemma (6.2.16) [298]: Let p, q ∈ 𝒫(ℝ𝑛), q− ∈ (1,∞) and 𝑓 be a measurable function on 

ℝ𝑛. 

(i) If ‖𝑓‖Lp(∙)(ℝ𝑛) ≤ 1, then ‖|𝑓|q(∙)‖
L

p(∙)
q(∙)(ℝ𝑛)

≤ ‖𝑓‖
Lp(∙)(ℝ𝑛)

q− . 

(ii) If ‖𝑓‖Lp(∙)(ℝ𝑛) > 1, then ‖|𝑓|q(∙)‖
L

p(∙)
q(∙)(ℝ𝑛)

≤ ‖𝑓‖
Lp(∙)(ℝ𝑛)

q+ . 

(iii) If ‖|𝑓|q(∙)‖
L

p(∙)
q(∙)(ℝ𝑛)

≥ 1, then ‖𝑓‖
L

p(∙)
q(∙)(ℝ𝑛)

≤ ‖|𝑓|q(∙)‖
L

p(∙)
q(∙)(ℝ𝑛)

1 q−⁄
. 

(iv) If ‖|𝑓|q(∙)‖
L

p(∙)
q(∙)(ℝ𝑛)

≥ 1, then ‖𝑓‖
L

p(∙)
q(∙)(ℝ𝑛)

≤ ‖|𝑓|q(∙)‖
L

p(∙)
q(∙)(ℝ𝑛)

1 q+⁄
. 

Proof: By similarity, we only prove (i) and (iii). Let 𝑓 ∈ Lp(∙)(ℝ𝑛). Then, by [298] and the 

fact that ‖𝑓 ‖𝑓‖Lp(∙)(ℝ𝑛)⁄ ‖
Lp(∙)(ℝ𝑛)

= 1 , we see that ϱp(∙)(𝑓 ‖𝑓‖Lp(∙)(ℝ𝑛)⁄ ) ≤ 1 . Thus, if 

‖𝑓‖Lp(∙)(ℝ𝑛) ≤ 1, then 

ϱp(∙) (𝑓 (‖𝑓‖
Lp(∙)(ℝ𝑛)

q− )
1 q(∙)⁄

⁄ ) ≤ ϱp(∙) (𝑓 (‖𝑓‖
Lp(∙)(ℝ𝑛)

q− )
1 q−⁄

⁄ ) = ϱp(∙)(𝑓 ‖𝑓‖Lp(∙)(ℝ𝑛)⁄ ) ≤ 1, 

which implies that ‖|𝑓|q(∙)‖
Lp(∙) q(∙)⁄ (ℝ𝑛)

≤ ‖𝑓‖
Lp(∙)(ℝ𝑛)

q−  and then completes the proof of (i). 

For (iii), if ‖|𝑓|q(∙)‖
Lp(∙) q(∙)⁄ (ℝ𝑛)

≥ 1, then for all λ > ‖|𝑓|q(∙)‖
Lp(∙) q(∙)⁄ (ℝ𝑛)

, 

ϱp(∙)(𝑓 λ1 q−⁄⁄ ) ≤ ϱp(∙)(𝑓 λ1 q(∙)⁄⁄ ) ≤ 1, 

which implies that ‖𝑓‖Lp(∙)(ℝ𝑛) ≤ λ
1

q− . By this and the arbitrariness of λ >

‖|𝑓|q(∙)‖
Lp(∙) q(∙)⁄ (ℝ𝑛)

, we conclude that (iii) holds true, which completes the proof of Lemma 

(6.2.16). 

For a sequence t = {t𝒬}𝒬∈𝔔∗ ⊂ ℂ, r ∈ (0,∞) and λ ∈ (0,∞), let tr,λ
∗ ≔ {(tr,λ

∗ )
𝒬
}
𝒬∈𝔔∗

, 

where, for all 𝒬 ∈ 𝔔∗, 

(tr,λ
∗ )

𝒬
≔ { ∑

|tR|
r

[1 + {ℓ(R)}−1|𝑥R − 𝑥𝒬|]
λ

R∈𝔔∗,ℓ(R)=ℓ(𝒬)

}

1 r⁄

. 
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Lemma (6.2.17) [298]: Let p, q, s and ϕ be as in Definition (6.2.6), r ∈ (0,min{p−, q−}) 

andλ ∈ (2𝑛 + Clog(s) + 2r log2 c1 , ∞), where Clog(s) denotes the constant as in (55) with 

𝑔 replaced by s, and c1 is as in (57). Then there exists a constant C ∈ [1,∞) such that, for 

all t ∈ bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛), 

‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ ‖tr,λ
∗ ‖

b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ C‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

.                                (63) 

Proof: To prove this lemma, it suffices to show the second inequality of (63) since the 

first one holds true obviously. We first claim that, for all t ∈ bp(∙),q(∙)
s(∙),1 (ℝ𝑛) , 

‖tr,λ
∗ ‖

bp(∙),q(∙)
s(∙),1 (ℝ𝑛)

≲ ‖t‖
bp(∙),q(∙)
s(∙),1 (ℝ𝑛)

. Indeed, observe that, for all r ∈ (0,min{p−, q−}), 𝒬 ∈ 𝔔
∗ 

and 𝑥 ∈ 𝒬, 

(tr,λ
∗ )

𝒬
∼ {ηj𝒬 ,λ ∗ ( ∑ |tR|

rχR

R∈𝔔∗,ℓ(R)=2
−j𝒬

)(𝑥)}

1 r⁄

. 

Thus, by Lemma (6.2.14) and Lemma (6.2.15), we see that 

‖tr,λ
∗ ‖

bp(∙),q(∙)
s(∙),1 (ℝ𝑛)

≲ ‖{ηj,λ−Clog(s) ∗ ([2
js(∙) ∑ |tR|

rχ̃R

R∈𝔔∗,ℓ(R)=2
−j𝒬

]

r

)}

j∈ℤ+

‖

ℓq(∙) r⁄ (Lp(∙) r⁄ (ℝ𝑛))

1 r⁄

≲ ‖{2js(∙) ∑ |tR|χ̃R

R∈𝔔∗,ℓ(R)=2
−j𝒬

}

j∈ℤ+

‖

ℓq(∙) r⁄ (Lp(∙) r⁄ (ℝ𝑛))

~‖t‖
bp(∙),q(∙)
s(∙),1 (ℝ𝑛)

, 

which proves the above claim. 

For all P ∈ 𝔔 and 𝒬 ∈ 𝔔∗, let 𝑣𝒬
P ≔ t𝒬  if 𝒬 ⊂ 4P and 𝑣𝒬

P ≔ 0 otherwise, and let 𝑢𝒬
P ≔

t𝒬 − 𝑣𝒬
P. Let 𝑣P ≔ {𝑢𝒬

P}
𝒬∈𝔔∗

. Then we have 

‖tr,λ
∗ ‖

b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ sup
P∈𝔔

{
 
 

 
 

1

ϕ(P)‖
‖

{
 
 

 
 

∑ |𝒬|−s(∙) 𝑛⁄ |((𝑣P)r,λ
∗ )

𝒬
| χ̃𝒬

𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j }
 
 

 
 

j≥(jP∨0)

‖
‖

 ℓq(∙)(Lp(∙)(P))

+
1

ϕ(P)‖
‖

{
 
 

 
 

∑ |𝒬|−s(∙) 𝑛⁄ |((𝑢P)r,λ
∗ )

𝒬
| χ̃𝒬

𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j }
 
 

 
 

j≥(jP∨0)

‖
‖

 ℓq(∙)(Lp(∙)(P))}
 
 

 
 

=: sup
P∈𝔔

(IP,1, IP,2).                                                                                                               (64) 

By the above claim, (57), we find that 
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IP,1 ≤
1

ϕ(P)
‖(𝑣P)r,λ

∗ ‖
bp(∙),q(∙)
s(∙),1 (ℝ𝑛)

≲
1

ϕ(P)
‖𝑣P‖

bp(∙),q(∙)
s(∙),1 (ℝ𝑛)

≲
1

ϕ(4P)‖
‖

{
 
 

 
 

∑ |𝒬|−s(∙) 𝑛⁄ |t𝒬|χ̃𝒬
𝒬∈𝔔∗,𝒬⊂4P

ℓ(𝒬)=2−j }
 
 

 
 

j≥(j4P∨0)

‖
‖

 ℓq(∙)(Lp(∙)(4P))

≲ ‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

(65) 

To estimate IP,2, we only consider the case that q+ ∈ (0,∞), since the proof of the 

case that q+ = ∞ is similar, the details being omitted. Without loss of generality, we may 

assume that ‖t‖
bp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)
= 1 and prove that IP,2 ≲ 1. To this end, it suffices to show that 

‖
‖

{
 
 

 
 

∑
χP
ϕ(P)

|𝒬|−s(∙) 𝑛⁄ ((𝑢P)r,λ
∗ )

𝒬
χ̃𝒬

𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j }
 
 

 
 

j≥(jP∨0)

‖
‖

 ℓq(∙)(Lp(∙)(ℝ𝑛))

≲ 1. 

By (54), we see that the above inequality is equivalent to that there exists some large 

positive constant C0 such that 

∑ ‖
‖

[
 
 
 
 

∑
χP

C0ϕ(P)
|𝒬|−s(∙) 𝑛⁄ ((𝑢P)r,λ

∗ )
𝒬
χ̃𝒬

𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j ]
 
 
 
 
q(∙)

‖
‖

Lp(∙) q(∙)⁄ (ℝ𝑛)

∞

j=(jP∨0)

≤ 1, 

which, by Lemma (6.2.16) (i), is a consequence of 

JP ≔ ∑ ‖‖ ∑
χP

C0ϕ(P)
|𝒬|−s(∙) 𝑛⁄ ((𝑢P)r,λ

∗ )
𝒬
χ̃𝒬

𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j

‖‖

Lp(∙) q(∙)⁄ (ℝ𝑛)

q(∙)

∞

j=(jP∨0)

≤ 1.                 (66) 

Now we show (66). Since ‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

= 1, it follows that, for all P̃ ∈ 𝔔, 

‖

‖

{
 
 

 
 

∑ [ϕ(P̃)]
−1
χP̃|𝒬|

−s(∙) 𝑛⁄ |t𝒬|χ̃𝒬
𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j }
 
 

 
 

j≥(jP̃∨0)

‖

‖

 ℓq(∙)(Lp(∙)(P̃))

≤ 1, 

which, together with (54), implies that 

∑ ‖
‖

[
 
 
 
 

∑ [ϕ(P̃)]
−1
χP̃|𝒬|

−s(∙) 𝑛⁄ |t𝒬|χ̃𝒬
𝒬∈𝔔∗,𝒬⊂P̃

ℓ(𝒬)=2−j ]
 
 
 
 
q(∙)

‖
‖

Lp(∙) q(∙)⁄ (ℝ𝑛)

∞

j=(jP̃∨0)

≤ 1. 

From this, and (iii) and (iv) of Lemma (6.2.16), we deduce that, for all P̃ ∈ 𝔔 and j ≥
(jP̃ ∨ 0), 

‖
‖ ∑ [ϕ(P̃)]

−1
|𝒬|−s(∙) 𝑛⁄ |t𝒬|χ̃𝒬

𝒬∈𝔔∗,𝒬⊂P̃

ℓ(𝒬)=2−j

‖
‖

Lp(∙)(P̃)

≤ 1.                                      (67) 
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For the given P ∈ 𝔔, 𝑖 ∈ ℤ+ and 𝑙 ∈ ℤ𝑛, let 

A(𝑖, 𝑙, P) ≔ {R ∈ 𝔔∗ ∶ ℓ(R) = 2−𝑖ℓ(P), R ⊂ P + 𝑙ℓ(𝒬)}. 
Then we see that 

J̃P ≔ ∑ ‖‖ ∑ χP[ϕ(P)]
−1|𝒬|−s(∙) 𝑛⁄ (𝑢r,λ

∗ )
𝒬
χ̃𝒬

𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j

‖‖

Lp(∙)(ℝ𝑛)

q−
∞

j=(jP∨0)

≲∑‖‖ ∑
χP
ϕ(P)

|𝒬|−[s(∙) 𝑛⁄ +1 2⁄ ]

𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−𝑖ℓ(P)

∞

𝑖=0

× [ ∑ ∑
|𝑢R|

r

[1 + {ℓ(𝒬)}−1|𝑥R − 𝑥𝒬|]
λ

R∈A(𝑖,𝑙,P)𝑙∈ℤ𝑛,|𝑙|≥2

]

1 r⁄

χ𝒬‖‖

Lp(∙)(ℝ𝑛)

q−

. 

Notice that, for all 𝑖 ∈ ℤ+, 𝑙 ∈ ℤ𝑛 and 𝑥 ∈ 𝒬 ∈ 𝔔∗ with ℓ(𝒬) = 2−𝑖ℓ(P), 

∑
|𝑢R|

r

[1 + {ℓ(𝒬)}−1|𝑥R − 𝑥𝒬|]
m

R∈A(𝑖,𝑙,P)

∼ ηj𝒬 ,m ∗ ([ ∑ |𝑢R|χR
R∈A(𝑖,𝑙,P)

]

r

) (𝑥), 

where m ∈ (𝑛 + Clog(s),∞)  is chosen such that λ > m+ 𝑛 + 2r log2 c1 . Notice that, 

when |𝑙| ≥ 2, 1 + {ℓ(𝒬)}−1|𝑥R − 𝑥𝒬|~2
𝑖|𝑙|. Thus, by Lemma (6.2.15), we know that 

J̃P ≲∑‖‖∑
(2𝑖|𝑙|)m−λ

[ϕ(P)]r
η𝑖+jP,m−Clog(s) ∗ ([ ∑ |R|−rs(∙) 𝑛⁄ |𝑢R|χ̃R

R∈A(𝑖,𝑙,P)

]

r

)

𝑙∈ℤ𝑛

|𝑙|≥2

‖‖

Lp(∙) r⁄ (ℝ𝑛)

q− r⁄
∞

𝑖=0

≲∑

{
 

 
∑(2𝑖|𝑙|)m−λ [

ϕ(P + 𝑙ℓ(P))

ϕ(P)
]

r

𝑙∈ℤ𝑛

|𝑙|≥2

‖ ∑
χP + 𝑙ℓ(P)

ϕ(P + 𝑙ℓ(P))
|R|−s(∙) 𝑛⁄

R∈A(𝑖,𝑙,P)

|tR|χ̃R‖

Lp(∙)(ℝ𝑛)

r

}
 

 
q− r⁄

∞

𝑖=0

, 

which, combined with (67) and Lemma (6.2.10), implies that 

J̃P ≲∑{ ∑ 2𝑖(m−λ)|𝑙|m+2r log2 c1−λ

𝑙∈ℤ𝑛,|𝑙|≥2

}

q− r⁄∞

𝑖=0

~1. 

Therefore, there exists a positive constant C0 large enough such that (66) holds true for all 

P ∈ 𝔔 and hence 
IP,2 ≲ ‖t‖b

p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

.                                                              (68) 

Combining (64), (65) and (68), we conclude that 

‖tr,λ
∗ ‖

b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ sup
P∈𝔔

(IP,1 + IP,2) ≲ ‖t‖b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

, 

which completes the proof of Lemma (6.2.17). 

Theorem (6.2.18) [298]: Let p, q, s and ϕ be as in Definition (6.2.6) and φ,ψ,Φ and Ψ as 

in (61). Then operators Sφ ∶ Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) → bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛)  and Tψ ∶ bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) →

Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) are bounded. Furthermore, Tψ ∘ Sφ is the identity on Bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛). 
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Proof: We first show that Sφ  is bounded from Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)  to bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛) . Let 𝑓 ∈

Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛), r ∈ (0,

1

2
min{p−, q−, 2}) and m ∈ (𝑛 + Clog(s) + Clog(r q⁄ ) + log2 c1 , ∞). Then, 

by Lemma (6.2.13), we see that, for all 𝒬jk ∈ 𝔔
∗ and 𝑥 ∈ 𝒬jk, 

|φj ∗ 𝑓 (𝑥𝒬jk)|
r

≲ 2j𝑛 ∑∫
|φj ∗ 𝑓(y)|

r

(1 + 2j𝑛|𝑥 − y|)4m
dy

𝒬j(k+𝑙)𝑙∈ℤ𝑛

, 

which, together with the fact that 1 + 2j𝑛|𝑥 − y|~1 + |𝑙| when 𝑥 ∈ 𝒬jk  and y ∈ 𝒬j(k+𝑙) , 

implies that 

|φj ∗ 𝑓 (𝑥𝒬jk)| ≲ [∑(1 + |𝑙|)−mηj,3m ∗ |(φj ∗ 𝑓)χ𝒬j(k+𝑙)|
r
(𝑥)

𝑙∈ℤ𝑛

]

1 r⁄

. 

From this and Lemma (6.2.14), we deduce that 

‖Sφ(𝑓)‖b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

 

≲ sup
P∈𝔔

1

ϕ(P)
‖{∑ [∑

2jrs(∙)

(1 + |𝑙|)m
ηj,3m ∗ |(φj ∗ 𝑓)χ3𝑛|𝑙|P|

r

𝑙∈ℤ𝑛

]

1 r⁄

k∈ℤ𝑛

}

j≥(jP∨0)

χ𝒬jk‖

 ℓq(∙)(Lp(∙)(P))

≲ sup
P∈𝔔

1

ϕ(P)
‖{∑

2jrs(∙)

(1 + |𝑙|)m
ηj,3m ∗ |(φj ∗ 𝑓)χ3𝑛|𝑙|P|

r

𝑙∈ℤ𝑛

}

j≥(jP∨0)

‖

ℓq(∙) r⁄ (Lp(∙) r⁄ (P))

1 r⁄

  

≲ [∑(1 + |𝑙|)−m sup
P∈𝔔

1

{ϕ(P)}r
‖{ηj,2m ∗ |2

js(∙)(φj ∗ 𝑓)χ3𝑛|𝑙|P|
r
}
j≥(jP∨0)

‖
ℓq(∙) r⁄ (Lp(∙) r⁄ (P))

𝑙∈ℤ𝑛

]

1 r⁄

 

which, combined with Lemmas (6.2.15) and (6.2.10), implies that 

‖Sφ(𝑓)‖b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≲ [∑(1 + |𝑙|)−m sup
P∈𝔔

1

ϕ(P)r
‖{2js(∙)|φj ∗ 𝑓|}j≥(jP∨0)

‖
ℓq(∙)(Lp(∙)(3𝑛|𝑙|P))

r

𝑙∈ℤ𝑛

]

1 r⁄

≲ ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

{∑(1 + |𝑙|)−m(1 + |𝑙|)r log2 c1

𝑙∈ℤ𝑛

}

1 r⁄

≲ ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

. 

Therefore, Sφ is bounded from Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) to bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛). 

The boundedness of Tψ  from bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)  to Bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛)  is deduced from an 

argument similar to that used in [78]. Finally, by the Calderón reproducing formula [78], 

we know that Tψ ∘ Sφ  is the identity on Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) , which completes the proof of 

Theorem (6.2.18). 

We show some basic properties and embeddings between Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)  and 

Fp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) . Recall that the Triebel-Lizorkin-type space with variable exponents, 

Fp(∙),q(∙)
s(∙),ϕ (ℝ𝑛), is defined to be the set of all 𝑓 ∈ 𝒮′(ℝ𝑛) such that 

‖𝑓‖
F
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≔ sup
P∈𝔔

1

ϕ(P)
‖{ ∑ [2js(∙)|φj ∗ 𝑓(∙)|]

q(∙)
∞

j=max{jP,0}

}

1 q(∙)⁄

‖

Lp(∙)(P)

< ∞, 

where φ0  is replaced by Φ and the supremum is taken over all dyadic cubes P in ℝ𝑛 , 

which was introduced in [76]. 
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Proposition (6.2.19) [298]: Let ϕ ∈ 𝒢(ℝ+
𝑛+1), s, s0, s1 ∈ Cloc

log(ℝ𝑛) ∩ L∞(ℝ𝑛) and p, q, q0, q1 ∈

Clog(ℝ𝑛). 

(i) If q0 ≤ q1, then Bp(∙),q0(∙)
s(∙),ϕ (ℝ𝑛) ↪ Bp(∙),q1(∙)

s(∙),ϕ (ℝ𝑛). 

(ii) If (s0 − s1)− > 0, then Bp(∙),q0(∙)
s0(∙),ϕ (ℝ𝑛) ↪ Bp(∙),q1(∙)

s1(∙),ϕ (ℝ𝑛). 

(iii) If p+, q+ ∈ (0,∞), then 

Bp(∙),min{p(∙),q(∙)}
s(∙),ϕ (ℝ𝑛) ↪ Fp(∙),q(∙)

s(∙),ϕ (ℝ𝑛) ↪ Bp(∙),max{p(∙),q(∙)}
s(∙),ϕ (ℝ𝑛). 

In particular, if p+ ∈ (0,∞), then Bp(∙),p(∙)
s(∙),ϕ (ℝ𝑛) = Fp(∙),p(∙)

s(∙),ϕ (ℝ𝑛). 

Proof: We only give the proof of (iii). Let 𝑓j(𝑥) ≔ 2js(𝑥)|φj ∗ 𝑓(𝑥)| for all 𝑥 ∈ ℝ𝑛, 𝑓 ∈

𝒮′(ℝ𝑛) and j ∈ ℤ+. To prove the first embedding of (iii), we let r(∙) ≔ min{p(∙), q(∙)} 

and 𝑓 ∈ Bp(∙),r(∙)
s(∙),ϕ (ℝ𝑛). Without loss of generality, we may assume that ‖𝑓‖

Bp(∙),r(∙)
s(∙),ϕ

(ℝ𝑛)
= 1 

and prove that ‖𝑓‖
F
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≲ 1. Obviously, for all P ∈ 𝔔,  

‖{[ϕ(P)]−1χP𝑓j}j≥(jP∨0)
‖
ℓq(∙)(Lp(∙)(ℝ𝑛))

≤ 1, 

which, together with (54), implies that 

‖ ∑ [[ϕ(P)]−1χP𝑓j]
r(∙)

∞

j=(jP∨0)

‖

Lp(∙) r(∙)⁄ (ℝ𝑛)

≤ ∑ ‖{[ϕ(P)]−1χP𝑓j}
r(∙)
‖
Lp(∙) r(∙)⁄ (ℝ𝑛)

∞

j=(jP∨0)

≤ 1. 

Then, by the fact that, for all d ∈ (0, 1] and {𝑎j}j∈ℕ
⊂ ℂ, 

(∑|𝑎j|

j∈ℕ

)

d

≤∑|𝑎j|
d

j∈ℕ

,                                                            (69) 

we find that, for all P ∈ 𝔔, 

ϱp(∙)([ ∑ [[ϕ(P)]−1χP𝑓j]
q(∙)

∞

j=(jP∨0)

]

1 q(∙)⁄

) ≤ ϱp(∙) r(∙)⁄ ( ∑ {[ϕ(P)]−1χP𝑓j}
r(∙)

∞

j=(jP∨0)

) ≤ 1, 

which implies that 

1

ϕ(P)
‖{ ∑ [2js(∙)|φj ∗ 𝑓|]

q(∙)
∞

j=(jP∨0)

}

1 q(∙)⁄

‖

Lp(∙)(P)

≤ 1. 

Therefore, ‖𝑓‖
Fp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)
≤ 1, which completes the proof of the first embedding of (iii). 

For the second embedding of (iii), let 𝑓 ∈ Fp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) and 𝛼(∙) ≔ max{p(∙), q(∙)}. 

Without loss of generality, we may assume that ‖𝑓‖
Fp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)
= 1  and show that 

‖𝑓‖
Bp(∙),𝛼(∙)
s(∙),ϕ

(ℝ𝑛)
≲ 1. Since ‖𝑓‖

Fp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)
= 1, we know that, for all P ∈ 𝔔, 

‖{ ∑ ([ϕ(P)]−1χP𝑓j)
q(∙)

∞

j=(jP∨0)

}

1 q(∙)⁄

‖

Lp(∙)(P)

≤ 1, 

which, combined with (69), implies that, for all P ∈ 𝔔, 
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ϱp(∙) 𝛼(∙)⁄ ( ∑ {[ϕ(P)]−1χP𝑓j}
α(∙)

∞

j=(jP∨0)

) ≤ ϱp(∙)([ ∑ [[ϕ(P)]−1χP𝑓j]
q(∙)

∞

j=(jP∨0)

]

1 q(∙)⁄

) ≤ 1. 

From this, we deduce that 

ϱ
ℓ𝛼(∙)(Lp(∙)(ℝ𝑛))

({[ϕ(P)]−1χP𝑓j}j≥(jP∨0)
) = ∑ ‖([ϕ(P)]−1χP𝑓j)

𝛼(∙)
‖
Lp(∙) 𝛼(∙)⁄ (ℝ𝑛)

∞

j=(jP∨0)

≤ ‖ ∑ ([ϕ(P)]−1χP𝑓j)
𝛼(∙)

∞

j=(jP∨0)

‖

Lp(∙) 𝛼(∙)⁄ (ℝ𝑛)

≤ 1, 

which implies that ‖𝑓‖
Bp(∙),𝛼(∙)
s(∙),ϕ

(ℝ𝑛)
≤ 1  and hence completes the proof of Proposition 

(6.2.19). 

The Sobolev-type embedding of Bp(∙),q(∙)
s(∙) (ℝ𝑛) (see [3]) shows that it is reasonable 

and necessary to consider the Besov spaces with variable smoothness and integrability. 

For Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛), we also have the following Sobolev-type embeddings. 

Proposition (6.2.20) [298]: Let ϕ ∈ 𝒢(ℝ+
𝑛+1), s0, s1 ∈ Cloc

log(ℝ𝑛) ∩ L∞(ℝ𝑛), p0, p1 ∈ C
log(ℝ𝑛) 

satisfy that, for all 𝑥 ∈ ℝ𝑛 , s1(𝑥) ≤ s0(𝑥)  and s0(𝑥) − 𝑛 p0(𝑥)⁄ = s1(𝑥) − 𝑛 p1(𝑥)⁄ . 

Then  

bp0(∙),∞
s0(∙),ϕ (ℝ𝑛) ↪ bp1(∙),∞

s1(∙),ϕ (ℝ𝑛);                                              (70) 

moreover, Bp0(∙),∞
s0(∙),ϕ (ℝ𝑛) ↪ Bp1(∙),∞

s1(∙),ϕ (ℝ𝑛). 

Proof: To prove this proposition, we only need to show (70), since the embedding 

Bp0(∙),∞
s0(∙),ϕ (ℝ𝑛) ↪ Bp1(∙),∞

s1(∙),ϕ (ℝ𝑛) is a consequence of (70) and Theorem (6.2.18). To prove (70), 

let t ≔ {t𝒬}𝒬∈𝔔∗ ∈ bp0(∙),∞
s0(∙),ϕ (ℝ𝑛) and P ∈ 𝔔 be any given dyadic cube. For all 𝒬 ∈ 𝔔∗ , let 

𝑢𝒬 ≔ t𝒬  when 𝒬 ⊂ P  and 𝑢𝒬 = 0  otherwise. Then, by the Sobolev-type embedding of 

bp(∙),∞
s(∙) (ℝ𝑛) = bp(∙),∞

s(∙),1 (ℝ𝑛) (see [28]), namely, bp0(∙),∞
s0(∙),1 (ℝ𝑛) ↪ bp1(∙),∞

s1(∙),1 (ℝ𝑛), we conclude that 

sup
j≥(jP∨0)

‖‖ ∑ |𝒬|−s1(∙) 𝑛⁄ |t𝒬|χ̃𝒬
𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j

‖‖

Lp1(∙)(P)

= sup
j≥0

‖ ∑ |𝒬|−s1(∙) 𝑛⁄ |𝑢𝒬|χ̃𝒬
𝒬∈𝔔∗,ℓ(𝒬)=2−j

‖

Lp1(∙)(P)

= ‖𝑢‖
b
p1(∙),∞
s1(∙),1 (ℝ𝑛)

≲ ‖𝑢‖
b
p0(∙),∞
s0(∙),1 (ℝ𝑛)

∼ sup
j≥0
‖ ∑ |𝒬|−s0(∙) 𝑛⁄ |𝑢𝒬|χ̃𝒬
𝒬∈𝔔∗,ℓ(𝒬)=2−j

‖

Lp0(∙)(P)

∼ sup
j≥(jP∨0)

‖‖ ∑ |𝒬|−s0(∙) 𝑛⁄ |t𝒬|χ̃𝒬
𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j

‖‖

Lp0(∙)(P)

. 

From this, we further deduce that 
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‖t‖
b
p1(∙),∞
s1(∙),ϕ (ℝ𝑛)

= sup
P∈𝔔

1

ϕ(P)
sup

j≥(jP∨0)
‖‖ ∑ |𝒬|−s1(∙) 𝑛⁄ |t𝒬|χ̃𝒬
𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j

‖‖

Lp1(∙)(P)

≲ sup
P∈𝔔

1

ϕ(P)
sup

j≥(jP∨0)
‖‖ ∑ |𝒬|−s0(∙) 𝑛⁄ |t𝒬|χ̃𝒬
𝒬∈𝔔∗,𝒬⊂P

ℓ(𝒬)=2−j

‖‖

Lp0(∙)(P)

∼ ‖t‖
b
p0(∙),∞
s0(∙),ϕ (ℝ𝑛)

, 

which implies that (69) holds true and hence completes the proof of Proposition (6.2.20). 

Theorem (6.2.21) [298]: Let ϕ ∈ 𝒢(ℝ+
𝑛+1), s0, s1 ∈ Cloc

log(ℝ𝑛) ∩ L∞(ℝ𝑛), p0, p1, q ∈ C
log(ℝ𝑛). 

Assume that, for all 𝑥 ∈ ℝ𝑛, s1(𝑥) ≤ s0(𝑥) and 

s0(𝑥) −
𝑛

p0(𝑥)
= s1(𝑥) −

𝑛

p1(𝑥)
                                                    (71) 

Then Bp0(∙),q(∙)
s0(∙),ϕ (ℝ𝑛) ↪ Bp1(∙),q(⋅)

s1(∙),ϕ (ℝ𝑛). 

Proof: We only give the proof of the case that q+ ∈ (0,∞), since the case that q+ = ∞ 

was proved in Proposition (6.2.20). Let 𝑓 ∈ Bp0(∙),q(∙)
s0(∙),ϕ (ℝ𝑛) and, for all j ∈ ℤ+ and 𝑥 ∈ ℝ𝑛, 

𝑔j(𝑥) ≔ φj ∗ 𝑓(𝑥). Without loss of generality, we may assume that ‖𝑓‖
Bp0(∙),q(∙)
s0(∙),ϕ (ℝ𝑛)

= 1. 

Next, we show that ‖𝑓‖
B
p1(∙),q(⋅)
s1(∙),ϕ (ℝ𝑛)

≲ 1 . Obviously, by (54) we find that, for all R ∈

𝒟0(ℝ
𝑛), 

∑ ‖[
χR
ϕ(R)

2js0(∙)|𝑔j|]
q(∙)

‖
L

p0(∙)
q(∙) (ℝ𝑛)

∞

j=(jR∨0)

≲ 1.                                         (72) 

Let P ∈ 𝔔  be a given dyadic cube. We claim that there exists c ∈ (0, 1) , 

independent of P, such that, for all j ≥ [jP ∨ 0,∞), 

‖[
cχP
ϕ(P)

2js1(∙)|𝑔j|]
q(∙)

‖
L

p1(∙)
q(∙) (ℝ𝑛)

≤∑2−𝑖ξ ‖[
χP𝑖
ϕ(P𝑖)

2js0(∙)|𝑔j|]
q(∙)

‖
L

p0(∙)
q(∙) (ℝ𝑛)

∞

𝑖=1

+ 2−j =: δj, 

where P𝑖: = 2
𝑖+1+𝑛P and ξ ∈ (0,∞). From this claim and (72), we deduce that 

∑ ‖[
cχP
ϕ(P)

2js1(∙)|𝑔j|]
q(∙)

‖
L

p1(∙)
q(∙) (ℝ𝑛)

∞

j=(jP∨0)

≲ 1. 

which, together with (54), implies that 
‖𝑓‖

B
p1(∙),q(⋅)
s1(∙),ϕ (ℝ𝑛)

≲ 1~‖𝑓‖
B
p0(∙),q(⋅)
s0(∙),ϕ (ℝ𝑛)

. 

Therefore, it remains to prove the above claim. Observe that, for all j ≥ [jP ∨ 0,∞), δj ∈

[2−j, 2−j + θ] with θ ∈ [0,∞). Then, by Lemma (6.2.13), we conclude that, for all 𝑥 ∈
ℝ𝑛, r ∈ (0, p−) and m ∈ (0,∞) large enough, 

2jr[s1(𝑥)−𝑛 p1(𝑥)⁄ ] [ϕ(P)]rδj
r q(𝑥)⁄

⁄ |𝑔j(𝑥)|
r
≲ ηj,2m ∗ ({

2j[s1(∙)−𝑛 p1(∙)⁄ ]

ϕ(P)δj
1 q(∙)⁄

|𝑔j|}

r

) (𝑥)

≲∑∫
2j𝑛(2j[s1(y)−𝑛 p1(y)⁄ ]|𝑔j(y)|)

r

[ϕ(P)]rδj
r q(y)⁄

(1 + 2j|𝑥 − y|)2m
|𝑔j(𝑥)|

r
dy

D𝑖,P

∞

𝑖=0

=:∑Aj,𝑖(𝑥)

∞

𝑖=0

,                                                                                                                    (73) 
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where D1,P ≔ 4√𝑛P  and, for all 𝑖 ∈ [2,∞) , D𝑖,P ≔ (2𝑖+1√𝑛P)\(2𝑖√𝑛P) . For Aj,1 , by the 

Hölder inequality in (71), (57) and Lemma (6.2.16), we see that 

Aj,1 ≲ ‖[
χ4√𝑛P

ϕ(P)δj
1 q(∙)⁄ 2js0(∙)|𝑔j|]

r

‖

Lp0(∙) r⁄ (ℝ𝑛)

≲ ‖
2j𝑛2−j𝑛r 𝑝0(∙)⁄

(1 + 2j|𝑥 −∙|)2m
‖
L(p0(∙) r⁄ )

∗
(ℝ𝑛)

≲ [
ϕ(P1)

ϕ(P)
]

r

‖
χ4√𝑛P

ϕ(P1)δj
1 q(∙)⁄ 2js0(∙)|𝑔j|‖

Lp0(∙)(ℝ𝑛)

r

≲ 1, 

where the last inequality follows from the definition of δj . Similarly, observe that, for all 

𝑥 ∈ P and y ∈ D𝑖,P with 𝑖 ≥ 2, |𝑥 − y| ≳ 2𝑖−jP, then the fact that j ≥ jP further implies that 

Aj,𝑖 ≲
2(jP−j)m

2𝑖(m−ξ q−⁄ )
[
ϕ(P𝑖)

ϕ(P)
]

r

‖
χP𝑖2

js0(∙)|𝑔j|

ϕ(P𝑖){2
𝑖ξδj}

1 q(∙)⁄
‖

Lp0(∙)(ℝ𝑛)

r

‖
2j𝑛2−j𝑛r 𝑝0(∙)⁄

(1 + 2j|𝑥 −∙|)m
‖
L(p0(∙) r⁄ )

∗
(ℝ𝑛)

≲ 2(jP−j)m2−𝑖(m−r log2 c1) ≲ 2−𝑖(m−ξ q−⁄ −r log2 c1). 
Thus, by (73) we conclude that, for all 𝑥 ∈ ℝ𝑛, 

χP(𝑥)[ϕ(P)]
−1δj

−1 q(𝑥)⁄
2jr[s1(𝑥)−𝑛 p1(𝑥)⁄ ]|𝑔j(𝑥)| ≲ 1. 

From this, (71) and an appropriate choice of c ∈ (0, 1), we deduce that 

[
cχP(𝑥)2

js1(𝑥)

ϕ(P)δj
1 q(𝑥)⁄

|𝑔j(𝑥)|]

p1(𝑥)

= cp0(𝑥) [
χP(𝑥)2

js0(𝑥)

ϕ(P)δj
1 q(𝑥)⁄

|𝑔j(𝑥)|]

p0(𝑥)

[
cχP(𝑥)2

j[s1(𝑥)−𝑛 p1(𝑥)⁄ ]

ϕ(P)δj
1 q(𝑥)⁄

|𝑔j(𝑥)|]

p1(𝑥)−p0(𝑥)

≤ cp0(𝑥) [
χP(𝑥)2

js0(𝑥)

ϕ(P)δj
1 q(𝑥)⁄

|𝑔j(𝑥)|]

p0(𝑥)

≤ [
χP1(𝑥)2

js0(𝑥)

ϕ(P1){2
ξδj}

1 q(𝑥)⁄
|𝑔j(𝑥)|]

p0(𝑥)

, 

which, together with the definition of δj, implies that the previous claim holds true and 

hence completes the proof of Theorem (6.2.21). 

Now we characterize Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) in terms of the Peetre maximal functions and 

establish their atomic characterization via Sobolev embeddings. Following [17], for all 𝑓 ∈
𝒮′(ℝ𝑛) , 𝑎 ∈ (0,∞)  and s ∶ ℝ𝑛 → ℝ , the Peetre maximal function of 𝑓  is defined by 

setting, for all j ∈ ℤ+, 

φj
∗,𝑎(2js(∙)𝑓)(𝑥) ≔ sup

y∈ℝ𝑛

2js(y)|φj ∗ 𝑓(𝑦)|

(1 + 2j|𝑥 − y|)𝑎
. 

Lemma (6.2.22) [298]: Let p ∈ Clog(ℝ𝑛) with p− ∈ (1,∞]. Then there exists a positive 

constant C , independent of 𝑓 , such that, for all 𝑓 ∈ Lp(∙)(ℝ𝑛) , ‖ℳ(𝑓)‖Lp(∙)(ℝ𝑛) ≤

C‖𝑓‖Lp(∙)(ℝ𝑛). 

Lemma (6.2.23) [298]: Let p, q, s, ϕ be as in Definition (6.2.6) and 𝑎 ∈ (𝑛 + log2 c1 +

ε q−⁄ ,∞)  with ε ∈ (0,∞) . Assume that p− ∈ (1,∞) , q+ ∈ (0,∞)  and 𝑓 ∈ Bp(∙),q(∙)
s(∙),ϕ

 with 

norm 1. Then there exists a positive constant c such that, for all P ∈ 𝔔 and j ∈ ℤ+ with  

j ≥ (jP ∨ 0), 
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inf {λj ∈ (0,∞) ∶ ϱp(∙) (
cχPφj

∗,𝑎(2js(∙)𝑓)

ϕ(P)λj
1 q(∙)⁄

) ≤ 1}

≤∑inf {ηj ∈ (0,∞) ∶ ϱp(∙) (
χPk

𝑛2js(∙)|φj ∗ 𝑓|

2kε q(∙)⁄ ϕ(Pk
𝑛)ηj

1 q(∙)⁄
) ≤ 1}

∞

k=1

+ 2−σ[j−(jP∨0)]           (74) 

where, for all k ∈ ℕ, Pk
𝑛 ≔ 2k+1+𝑛P and σ ∈ (0,

𝑎−𝑛

4(1 q−⁄ −1 q+⁄ )
). 

Proof: Let δj
P be the right hand side term of (74), we easily see that 

δj
P ≤∑2−kε

1

ϕ(Pk
𝑛)
‖{2js(∙)|φj ∗ 𝑓|}j≥(j

Pk
𝑛∨0)

‖
ℓq(∙)(Lp(∙)(Pk

𝑛))

∞

k=1

+ 2−σ[j−(jP∨0)]

≤∑2−kε‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

∞

k=1

+ 2−σ[j−(jP∨0)] = 1 (2ε − 1)⁄ + 2−σ[j−(jP∨0)], 

which implies that 

δj
P ∈ [2−σ[j−(jP∨0)], 1 (2ε − 1)⁄ + 2−σ[j−(jP∨0)]].                                      (75) 

Thus, to prove Lemma (6.2.23), we only need to show that, for some positive constant c, 

inf {λj ∈ (0,∞) ∶ ϱp(∙)(
cχP(δj

P)
−1 q(∙)⁄

φj
∗,𝑎(2js(∙)𝑓)

ϕ(P)λj
1 q(∙)⁄

) ≤ 1} ≤ 1, 

which, via Lemma (6.2.16), is a consequence of 

HP ≔ ‖
χP(δj

P)
−1 q(∙)⁄

ϕ(P)
φj
∗,𝑎(2js(∙)𝑓)‖

Lp(∙)(ℝ𝑛)

≲ 1.                                   (76) 

Next we prove (76). By Lemma (6.2.13) and the inequality that, for all 𝑥, y, z ∈ ℝ𝑛, 

(1 + 2−j|𝑥 − y|)
−𝑎
≤ (1 + 2−j|𝑥 − z|)

−𝑎
(1 + 2−j|z − y|)

𝑎
, 

we find that, for all 𝑥 ∈ ℝ𝑛, 

φj
∗,𝑎(2js(∙)𝑓)(𝑥) ≲ sup

y∈ℝ𝑛
∫

2j𝑛2js(z)|φj ∗ 𝑓(𝑦)|

(1 + 2j|y − z|)2𝑎
dz

ℝ𝑛

1

(1 + 2j|𝑥 − y|)𝑎
≲ ∫

2j𝑛2js(z)|φj ∗ 𝑓(𝑧)|

(1 + 2j|𝑥 − z|)𝑎
dz

ℝ𝑛

∼ ∫
2j𝑛2js(z)|φj ∗ 𝑓(𝑧)|

(1 + 2j|𝑥 − z|)𝑎
dz

4√𝑛P

+∑∫ ⋯dz
Dk,P

∞

k=2

=: Aj(𝑥) +∑Aj
k(𝑥)

∞

k=2

, 

where, for all k ∈ ℕ ∩ [2,∞), Dk,P ≔ (2k+1√𝑛P\2k√𝑛P). Thus, we obtain 

HP ≤ ‖
χPAj(∙)

[δj
P]
1 q(∙)⁄

ϕ(P)
‖

Lp(∙)(ℝ𝑛)

+ ‖
χPAj(∙)

[δj
P]
1 q(∙)⁄

ϕ(P)
∑Aj

k(∙)

∞

k=2

‖

Lp(∙)(ℝ𝑛)

=:HP,1 + HP,2.       (77) 

We first estimate HP,1. For all 𝑥 ∈ P, we write 

Aj(𝑥)~ {∫ +∑∫
B𝑖
j(𝑥)

∞

k=2B−1
j (𝑥)

}
2j𝑛2js(z)|φj ∗ 𝑓(𝑧)|χ4√𝑛P(z)

(1 + 2j|𝑥 − z|)𝑎
dz =: Aj,1(𝑥) + Aj,2(𝑥),        (78) 

where, for all 𝑥 ∈ ℝ𝑛, B−1
j (𝑥) ≔ B(𝑥, 2−[j−(jP∨0)] 2⁄ ) and, for all 𝑖 ∈ ℤ+, 

B𝑖
j(𝑥) ≔ B(𝑥, 2−[j−(jP∨0)] 2⁄ +𝑖+1)\B(𝑥, 2−[j−(jP∨0)] 2⁄ +𝑖). 

From (75), q ∈ Clog(ℝ𝑛), we deduce that, for all 𝑥 ∈ ℝ𝑛andz ∈ B−1
j (𝑥), 

(δj
P)

1
q(z)

−
1

q(𝑥) ≤ {2σ[j−(jP∨0)]δj
P}
|
1
q(z)

−
1

q(𝑥)
|
{2σ[j−(jP∨0)]}

|
1
q(z)

−
1

q(𝑥)
|
≲ 2

2σ[j−(jP∨0)]
Clog(1 q⁄ )

log(e+1 |𝑥−z|⁄ ) ≲ 1. 

By this, 𝑎 ∈ (𝑛,∞)and [286, (3.9)], we conclude that, for all 𝑥 ∈ P, 
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(δj
P)
−1 q(𝑥)⁄

ϕ(P)
Aj,1(𝑥) ≲

1

ϕ(P)
∫

2j𝑛2js(z)|φj ∗ 𝑓(𝑧)|χ4√𝑛P(z)

[δj
P]
1 q(z)⁄

(1 + 2j|𝑥 − z|)𝑎
dz

B−1
j (𝑥)

≲ ℳ(
2js(∙)|φj ∗ 𝑓|χ4√𝑛P

[δj
P]
1 q(∙)⁄

ϕ(P)
) (𝑥).                                                                                    (79) 

On the other hand, by (75), we see that, for all 𝑥 ∈ P and z ∈ ℝ𝑛 with 𝑖 ∈ ℤ+, 

(δj
P)
[1 q(z)⁄ −1 q(𝑥)⁄ ]

≲ 22σ[j−(jP∨0)](1 q−⁄ −1 q+⁄ )                                               (80) 

and 1 + 2j|𝑥 − z| ≥ 1 + 2j2−
j−(jP∨0)

2
+𝑖. Thus, by σ ∈ (0,

𝑎−𝑛

4(1 q−⁄ −1 q+⁄ )
), we conclude that, for 

all 𝑥 ∈ P, 

(δj
P)
−1 q(𝑥)⁄

ϕ(P)
Aj,2(𝑥) ≲∑

22σ[j−(jP∨0)](1 q−⁄ −1 q+⁄ )

ϕ(P)2
[
j+(jP∨0)

2
+𝑖]𝑎

∞

𝑖=0

∫
2j𝑛2js(z)

(δj
P)
1 q(z)⁄

|φj ∗ 𝑓(𝑧)|χ4√𝑛P(z)dz
B𝑖
j(𝑥)

≲ 2j[2σ(1 q−⁄ −1 q+⁄ )+𝑛 2⁄ −𝑎 2⁄ ]2(jP∨0)[−2σ(1 q−⁄ −1 q+⁄ )−𝑎 2⁄ +𝑛 2⁄ ]

×∑2𝑖(𝑛−𝑎)ℳ(
χ4√𝑛P

[δj
P]
1 q(∙)⁄

ϕ(P)
2js(∙)|φj ∗ 𝑓|) (𝑥)

∞

𝑖=0

≲ ℳ(
χ4√𝑛P

[δj
P]
1 q(∙)⁄

ϕ(P)
2js(∙)|φj ∗ 𝑓|) (𝑥), 

which, together with (78) and (79), implies that, for all 𝑥 ∈ P, 

(δj
P)
−1 q(𝑥)⁄

ϕ(P)
Aj(𝑥) ≲ ℳ(

χ4√𝑛P

[δj
P]
1 q(∙)⁄

ϕ(P)
2js(∙)|φj ∗ 𝑓|) (𝑥). 

By this, Lemma (6.2.22) and (57), we further know that 

HP,1 ≲ ‖
χ2𝑛+2P

[δj
P]
1 q(∙)⁄

ϕ(2𝑛+2P)
2js(∙)|φj ∗ 𝑓|‖

Lp(∙)(ℝ𝑛)

≲ 2ε q−⁄ ‖
χ2𝑛+2P2

ε q(∙)⁄

[δj
P]
1 q(∙)⁄

ϕ(2𝑛+2P)
2js(∙)|φj ∗ 𝑓|‖

Lp(∙)(ℝ𝑛)

≲ 1, 

where the last inequality comes from the definition of δj
P. 

We now estimate HP,2 . Notice that, when 𝑥 ∈ P and z ∈ Dk,P  with k ∈ ℕ ∩ [2,∞, 

1 + 2j|𝑥 − z| ≳ 2k2j−jP. Then, by (80) and (74), we see that, for all 𝑥 ∈ P, 

(δj
P)
−1 q(𝑥)⁄

Aj
k(𝑥)

≲ 22σ[j−(jP∨0)](1 q−⁄ −1 q+⁄ )2−(k+j−jP)𝑎2j𝑛2kε q−⁄ ∫
2−kε q(z)⁄

[δj
P]
1 q(z)⁄ 2js(z)|φj ∗ 𝑓(𝑧)|dz

Dk,P

≲ 2−(j−jP)[𝑎−𝑛−2σ(1 q−⁄ −1 q+⁄ )]2−k(𝑎−𝑛−ε q−⁄ )ℳ(
χPk

𝑛2−kε q(∙)⁄

[δj
P]
1 q(∙)⁄

ϕ(P)
2js(∙)t|φj ∗ 𝑓|) (𝑥)

≲ 2−k(𝑎−𝑛−ε q−⁄ )ℳ(
χPk

𝑛2−kε q(∙)⁄

[δj
P]
1 q(∙)⁄

ϕ(P)
2js(∙)|φj ∗ 𝑓|) (𝑥), 
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which, combined with Lemma (6.2.22), (57), the definition of δj
P and 𝑎 ∈ (𝑛 + log2 c1 +

ε q−⁄ ,∞), implies that 

HP,2 ≲∑2−k(𝑎−𝑛−ε q−⁄ −log2 c1) ‖
χPk

𝑛2−kε q(∙)⁄

ϕ(Pk
𝑛)[δj

P]
1 q(∙)⁄ 2js(∙)|φj ∗ 𝑓|‖

Lp(∙)(ℝ𝑛)

∞

k=2

≲ 1.            (82) 

Combining (77), (81) and (82), we conclude that (76) holds true and then complete 

the proof of Lemma (6.2.23). 

Theorem (6.2.24) [298]: Let p, q, s, ϕ be as in Definition (6.2.6) and 

𝑎 ∈ ([𝑛 + log2 c1] p−⁄ ,∞).                                               (83) 

Then 𝑓 ∈ Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) if and only if 𝑓 ∈ 𝒮′(ℝ𝑛) and ‖𝑓‖

B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

∗ < ∞, where 

‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

∗ = sup
P∈𝔔

1

ϕ(P)
‖{φj

∗,𝑎(2js(∙)𝑓)}
j≥(jP∨0)

‖
ℓq(∙)(Lp(∙)(ℝ𝑛))

. 

Moreover, for all 𝑓 ∈ Bp(∙),q(∙)
s(∙),ϕ

, ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

~‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

∗  with equivalent positive 

constants independent of 𝑓. 

Proof: Let 𝑓 ∈ 𝒮′(ℝ𝑛) and ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

∗ < ∞. Then, by the obvious fact that, for all j ∈

ℤ+ and 𝑥 ∈ ℝ𝑛, 

2js(𝑥)|φj ∗ 𝑓(𝑥)| ≤ φj
∗,𝑎(2js(∙)𝑓)(𝑥), 

we find that ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

∗  and hence 𝑓 ∈ Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛). Thus, to complete 

the proof of this theorem, we only need to show that, for all 𝑓 ∈ Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛), 

‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

∗ ≲ ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

.                                                   (84) 

Without loss of generality, to prove (84), we may assume that ‖𝑓‖
Bp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)
= 1 and 

show that ‖𝑓‖
Bp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)

∗ ≲ 1. By (83), we find that there exist t ∈ (0, p−) and ε ∈ (0,∞) 

such that 

𝑎t ∈ (𝑛 + log2 c1 + ε q−⁄ ,∞).                                             (85) 
Let P ⊂ ℝ𝑛 be a given dyadic cube. Next we show that 

1

[ϕ(P)]t
‖{[φj

∗,𝑎(2js(∙)𝑓)]
t
}
j≥(jP∨0)

‖
ℓq(∙) t⁄ (Lp(∙) t⁄ (P))

≲ 1                            (86) 

with implicit positive constant independent of P, by Lemma (6.2.3), is equivalent to prove 

that ∑ IP,j
∞
j=(jP∨0)

≲ 1, where 

IP,j ≔ inf {λj ∈ (0,∞) ∶ ϱp(∙)
t

(
cχP[φj

∗,𝑎(2js(∙)𝑓)]
t

[ϕ(P)]tλj
t q(∙)⁄

) ≤ 1}, 

with c being a positive constant sufficiently small. Since 

[φj
∗,𝑎(2js(∙)𝑓)(𝑥)]

t
= sup

y∈ℝ𝑛

2js(y)t|φj ∗ 𝑓(y)|
𝑡

(1 + 2j|𝑥 − y|)𝑎t
, 

it follows, from Lemma (6.2.23), that, for all j ∈ ℤ+ ∩ [(jP ∨ 0),∞), 
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IP,j ≤∑inf {ηj ∈ (0,∞) ∶ ϱp(∙) t⁄ (
χPk

𝑛2js(∙)t|φj ∗ 𝑓(y)|
𝑡

2kεt q(∙)⁄ [ϕ(Pk
𝑛)]tηj

t q(∙)⁄
) ≤ 1}

∞

k=1

+ 2−σ̃[j−(jP∨0)]

=∑2−kε inf {ηj ∈ (0,∞) ∶ ϱp(∙) t⁄ (
χPk

𝑛2js(∙)t|φj ∗ 𝑓(y)|
𝑡

[ϕ(Pk
𝑛)]tηj

t q(∙)⁄
) ≤ 1}

∞

k=1

+ 2−σ̃[j−(jP∨0)]

=: δj
P̃, 

where Pk
𝑛 ≔ 2k+1+𝑛P and σ̃ ∈ (0,

𝑎t−𝑛

4(1 q−⁄ −1 q+⁄ )
). From this, we further deduce that 

∑ IP,j

∞

j=(jP∨0)

≲∑
2−kε

[ϕ(Pk
𝑛)]t

‖{2js(∙)|φj ∗ 𝑓|}j≥(jP∨0)
‖
ℓq(∙)(Lp(∙)(Pk

𝑛))

t
∞

k=1

+ 1

≲∑2−kε‖𝑓‖
Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

t

∞

k=1

+ 1 ≲ 1, 

which implies that (86) holds true. This finishes the proof of Theorem (6.2.24). 

As applications of Theorem (6.2.24), we obtain more equivalent quasi-norms of 

Besov-type spaces with variable smoothness and integrability. To this end, for all 𝑓 ∈
𝒮′(ℝ𝑛), let 

‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

1
≔ sup

P∈𝔔

1

ϕ(P)
‖{2js(∙)|φj ∗ 𝑓|}j≥0

‖
ℓq(∙)(Lp(∙)(Pk

𝑛))
 

and  

‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

2
≔ sup

𝒬∈𝔔∗
sup
𝑥∈𝒬

[ϕ(𝒬)]−1|𝒬|−s(𝑥) 𝑛⁄ ‖χ𝒬‖Lp(∙)(ℝ𝑛) |φj𝒬 ∗ 𝑓
(𝑥)|. 

Theorem (6.2.25) [298]: Let p, q, s, ϕ be as in Definition (6.2.6). 

(i) Assume that p+ ∈ (0,∞) and c1 ∈ (0, 2
𝑛 p+⁄ ). Then 𝑓 ∈ Bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛)  if and only if 

𝑓 ∈ 𝒮′(ℝ𝑛) and ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

1
< ∞; moreover, there exists a positive constant C, 

independent of 𝑓, such that 

‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

1
≤ C‖𝑓‖

B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

.                            (87) 

(ii) Assume that p− ∈ (0,∞) and c1 ∈ (0, 2
−𝑛 p−⁄ ). Then 𝑓 ∈ Bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛) if and only if 

𝑓 ∈ 𝒮′(ℝ𝑛) and ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

2
< ∞; moreover, there exists a positive constant C, 

independent of 𝑓, such that 

C−1‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

2
≤ C‖𝑓‖

B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

.                         (88) 

Proof: Let P ⊂ ℝ𝑛  be a given dyadic cube and, for all j ∈ ℤ+  and 𝑥 ∈ ℝ𝑛 , 𝑓j(𝑥) ≔

2js(𝑥)|φj ∗ 𝑓(𝑥)|. 

We first prove (i). Let 𝑓 ∈ 𝒮′(ℝ𝑛) and ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

1
< ∞. Then, by definitions, 

we easily find that ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

1
 and hence 𝑓 ∈ Bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛) . 

Conversely, let 𝑓 ∈ Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) . Then 𝑓 ∈ 𝒮′(ℝ𝑛) . To complete the proof of (i), it 

suffices to show the second inequality of (87). 

When p+ ∈ (0,∞), we have 
1

ϕ(P)
‖{𝑓j}j≥0

‖
ℓq(∙)(Lp(∙)(P))

≲
1

ϕ(P)
‖{𝑓j}j=0

(jP∨0)−1
‖
ℓq(∙)(Lp(∙)(P))

+
1

ϕ(P)
‖{𝑓j}j≥(jP∨0)

‖
ℓq(∙)(Lp(∙)(P))

=: IP,1 + IP,2,                                                                                                                      (89) 
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where IP,1 = 0 if jP ≤ 0. Obviously, IP,2 ≲ ‖𝑓‖Bp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)
. To estimate IP,1, without loss 

of generality, we may assume that ‖𝑓‖
Bp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)
= 1 and show that IP,1 ≲ 1 in the case 

that jP > 0. Observe that, for all j ∈ ℤ+ with j ≤ jP − 1, there exists a unique dyadic cube 

Pj such that P ⊂ Pj and ℓ(Pj) =  2
−j. It follows that, for all 𝑥 ∈ P, 

𝑓j(𝑥) ≔ 2js(𝑥)|φj ∗ 𝑓(𝑥)| ≲ inf
y∈Pj

φj
∗,𝑎(2js(∙)𝑓)(y)                                      (90) 

and, moreover, 

‖[ϕ(P)]−1χP𝑓j‖Lp(∙)(ℝ𝑛)
≲ ‖[ϕ(P)]−1χP inf

y∈Pj
φj
∗,𝑎(2js(∙)𝑓)(y)‖

Lp(∙)(ℝ𝑛)

≲
‖χP‖Lp(∙)(ℝ𝑛)

‖χPj‖Lp(∙)(ℝ𝑛)

[ϕ(P)]−1‖φj
∗,𝑎(2js(∙)𝑓)‖

Lp(∙)(Pj)

≲ ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

‖χP‖Lp(∙)(ℝ𝑛)

‖χPj‖Lp(∙)(ℝ𝑛)

ϕ(Pj)

ϕ(P)
,                                                                       (91) 

where we used Theorem (6.2.24) in the last inequality. On the other hand, by [297, Lemma 

2.6], we find that 

‖χPj‖Lp(∙)(ℝ𝑛)
≳ 2

−j
𝑛
p+2

jP
𝑛
p+‖χP‖Lp(∙)(ℝ𝑛) 

and, by (57) and (58), we see that ϕ(P) ≳ 2j log2 c12−jP log2 c1ϕ(cPj , 2
−j). Thus, by (5.18), we 

further conclude that 

‖[ϕ(P)]−1χP𝑓j‖Lp(∙)(ℝ𝑛)
≲ ‖𝑓‖

Bp(∙),q(∙)
s(∙),ϕ

(ℝ𝑛)
2(j−jP)(𝑛 p+⁄ −log2 c1),                     (92) 

which, together with (i) and (ii) of Lemma (6.2.16), implies that 

inf {λj ∶ ϱp(∙) ([ϕ(P)]
−1λj

−1 q(∙)⁄
χP𝑓j) ≤ 1} ≲ ‖[ϕ(P)]

−1χP𝑓j‖Lp(∙)(ℝ𝑛)
q−

+ ‖[ϕ(P)]−1χP𝑓j‖Lp(∙)(ℝ𝑛)
q+

≲ 2(j−jP)(𝑛 p+⁄ −log2 c1)q− + 2(j−jP)(𝑛 p+⁄ −log2 c1)q+ . 

From this and c1 ∈ (0, 2
𝑛 p+⁄ ), we deduce that there exists a positive constant C0 such that 

∑ inf {λj ∶ ϱp(∙) (
χP𝑓j

C0ϕ(P)λj
1 q(∙)⁄

) ≤ 1}

jP−1

j=0

≤ 1, 

namely, ϱ
ℓq(∙)(Lp(∙)(P))

({[C0ϕ(P)]
−1χP𝑓j}j=0

jP−1
) ≤ 1 implies that IP,1 ≲ 1. Therefore, by (89), 

we find that  

‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

1
≲ sup

P∈𝔔
(IP,1 + IP,2) ≲ ‖𝑓‖B

p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

, 

which completes the proof of the second inequality of (87) in the case q+ ∈ (0,∞). 
We now consider the case that q+ = ∞. In this case, q ≡ ∞. From (92) and c1 ∈

(0, 2𝑛 p+⁄ ), we deduce that, for jP ∈ ℕ, 

sup
j∈ℤ+,j≤jP

[ϕ(P)]−1‖𝑓j‖Lp(∙)(P)
≲ ‖𝑓‖

B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

sup
j∈ℤ+,j≤jP

2(j−jP)(𝑛 p+⁄ −log2 c1) ≲ ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

. 

By this, we know that 

‖𝑓|Bp(∙),∞
s(∙),ϕ (ℝ𝑛)‖

1
≲ sup

P∈𝔔
{ sup
j∈ℤ+,j≤(jP∨0)

‖𝑓j‖Lp(∙)(P)

ϕ(P)
+ sup
j∈ℤ+,j≥(jP∨0)

‖𝑓j‖Lp(∙)(P)

ϕ(P)
} ≲ ‖𝑓‖

B
p(∙),∞
s(∙),ϕ (ℝ𝑛)

, 

which completes the proof of the second inequality of (87) in the case that q+ = ∞ and 

hence (i) of Theorem (6.2.25). 
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Next, we show (ii). Let 𝑓 ∈ Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛). Then 𝑓 ∈ 𝒮′(ℝ𝑛). On the other hand, for 

all 𝒬 ∈ 𝔔∗ and 𝑥 ∈ 𝒬, by Theorem (6.2.24) and (90), we easily see that 

‖χ𝒬‖Lp(∙)(ℝ𝑛)

ϕ(𝒬)
𝑓j𝒬(𝑥) ≲

‖χ𝒬‖Lp(∙)(ℝ𝑛)

ϕ(𝒬)
inf
y∈𝒬

φj𝒬
∗,𝑎(2j𝒬s(∙)𝑓)(y) ≲ [ϕ(𝒬)]−1 ‖φj𝒬

∗,𝑎(2j𝒬s(∙)𝑓)‖
Lp(∙)(𝒬)

≲ ‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

. 

This implies that ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

2
≲ ‖𝑓‖

B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

< ∞. 

Conversely, let 𝑓 ∈ 𝒮′(ℝ𝑛) and ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

2
< ∞. We need to show the first 

inequality of (88). To this end, for all j ≥ (jP ∨ 0)  and 𝑥 ∈ ℝ𝑛 , 𝔔P,j
∗ ≔ {𝒬 ∈ 𝔔∗ ∶ 𝒬 ⊂

P, ℓ(𝒬) = 2−j}  and, for all 𝒬 ∈ 𝔔P,j
∗ , let 

𝑔(𝒬, P)(𝑥) ≔ [ϕ(P)]−1ϕ(𝒬)‖χ𝒬‖Lp(∙)(ℝ𝑛)
−1

χ𝒬(𝑥). 

When q+ ∈ (0,∞), by [297, Lemma 2.6], (57) and (58), we find that 

‖ ∑ 𝑔(𝒬, P)

𝒬∈𝔔P,j
∗

‖

Lp(∙)(ℝ𝑛)

≲ 2(j−jP)(log2 c1+𝑛 p−⁄ ), 

which, combined with (i) and (ii) of Lemma (6.2.16), implies that 

ϱℓq(∙)(Lp(∙))({ ∑ 𝑔(𝒬, P)

𝒬∈𝔔P,j
∗

}) = ∑ inf {λj ∈ (0,∞) ∶ ϱp(∙)( ∑
𝑔(𝒬, P)

λj
1 q(∙)⁄

𝒬∈𝔔P,j
∗

) ≤ 1}

∞

j=(jP∨0)

≤ ∑ [‖ ∑ 𝑔(𝒬, P)

𝒬∈𝔔P,j
∗

‖

Lp(∙)(ℝ𝑛)

q−

+ ‖ ∑ 𝑔(𝒬, P)

𝒬∈𝔔P,j
∗

‖

Lp(∙)(ℝ𝑛)

q+

]

∞

j=(jP∨0)

≲ ∑ [2(j−jP)(log2 c1+𝑛 p−⁄ )q− + 2(j−jP)(log2 c1+𝑛 p−⁄ )q+]

∞

j=(jP∨0)

≲ 1. 

By this, we conclude that 

‖{ ∑ 𝑔(𝒬, P)

𝒬∈𝔔P,j
∗

}

j≥(jP∨0)

‖

ℓq(∙)(Lp(∙)(P))

≲ 1. 

Therefore, 

‖{[ϕ(P)]−1χP𝑓j}j≥(jP∨0)
‖
ℓq(∙)(Lp(∙)(P))

≲ 1‖{
1

ϕ(P)
∑ χ𝒬𝑓j
𝒬∈𝔔P,j

∗

}

j≥(jP∨0)

‖

ℓq(∙)(Lp(∙)(P))

≲ ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

2
‖{ ∑ 𝑔(𝒬, P)

𝒬∈𝔔P,j
∗

}

j≥(jP∨0)

‖

ℓq(∙)(Lp(∙)(P))

≲ ‖𝑓|Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛)‖

2
, 

which implies that the first inequality of (88) holds true in the case that q+ ∈ (0,∞). The 

proof of the case that q+ = ∞ is similar and more simple, the details being omitted. This 

finishes the proof of (ii) and hence Theorem (6.2.25). 

As another application of Theorem (6.2.24), we obtain the following conclusion. 

Proposition (6.2.26) [298]: Let p, q, s and ϕ be as in Definition (6.2.6). Then 
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𝒮(ℝ𝑛) ↪ Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) ↪ 𝒮′(ℝ𝑛).                                              (93) 

Proof: By Proposition (6.2.19), we see that Bp(∙),q−
s(∙),ϕ (ℝ𝑛) ↪ Bp(∙),q(∙)

s(∙),ϕ (ℝ𝑛) ↪ Bp(∙),∞
s(∙),ϕ (ℝ𝑛) . 

Thus, to prove (93), it suffices to show that 

𝒮(ℝ𝑛) ↪ Bp(∙),q−
s(∙),ϕ (ℝ𝑛)     and    Bp(∙),∞

s(∙),ϕ (ℝ𝑛) ↪ 𝒮′(ℝ𝑛)                           (94) 

The first embedding of (94) can be obtained by an argument similar to that used in 

[294]. We give the proof of the second one. To this end, we only need to show that there 

exists an M ∈ ℕ  such that, for all 𝑓 ∈ Bp(∙),∞
s(∙),ϕ (ℝ𝑛)  and h ∈ 𝒮(ℝ𝑛) , |〈𝑓, h〉| ≲

‖h‖𝒮M+1(ℝ𝑛)‖𝑓‖B
p(∙),∞
s(∙),ϕ (ℝ𝑛)

. 

Let φ,ψ,Φ and Ψ be as in (61). Then, by the Calderón reproducing formula in 

[221], together with [221, Lemma 2.4], we find that 

|〈𝑓, h〉| ≤ ∫ |Φ ∗ 𝑓(𝑥)||Ψ ∗ h(𝑥)|d𝑥
ℝ𝑛

+∑∫ |φj ∗ 𝑓(𝑥)||ψj ∗ h(𝑥)|d𝑥
ℝ𝑛

∞

j=1

≲ ‖h‖𝒮M+1(ℝ𝑛)∑2−jM ∑ ∫ |φj ∗ 𝑓(𝑥)|(1 + |𝑥|)
−(𝑛+M)d𝑥

𝒬0kk∈ℤ𝑛

∞

j=0

,                          (95) 

where we used φ0 to replace . Notice that, for any j ∈ ℤ+, k ∈ ℤ𝑛, 𝑎 ∈ (0,∞) and y ∈ 𝒬jk, 

∫ |φj ∗ 𝑓(𝑥)|d𝑥
𝒬0k

≲ φj
∗,𝑎(2js(∙)𝑓)(y)2j𝑎∫ 2−js(𝑥)(1 + 2j|𝑥| + 2j|y|)𝑎d𝑥

𝒬0k

≲ 2−js−φj𝒬
∗,𝑎(2js(∙)𝑓)(y)2j𝑎(1 + |k|)𝑎 . 

It follows that 

∫ |φj ∗ 𝑓(𝑥)|d𝑥
𝒬0k

≲ 2j(𝑎−s−)(1 + |k|)𝑎 inf
y∈𝒬jk

φj𝒬
∗,𝑎(2js(∙)𝑓)(y), 

which, combined with (95), Theorem (6.2.24), Lemmas (6.2.10) and (6.2.11), implies that 

|〈𝑓, h〉| ≲ ‖h‖𝒮M+1(ℝ𝑛)∑2−j(M+s−−𝑎) ∑(1 + |k|)𝑎−𝑛−M
‖φj𝒬

∗,𝑎(2js(∙)𝑓)‖
Lp(∙)(𝒬jk)

‖χ𝒬jk‖Lp(∙)(ℝ𝑛)k∈ℤ𝑛

∞

j=0

≲ ‖h‖𝒮M+1(ℝ𝑛)‖𝑓‖B
p(∙),∞
s(∙),ϕ (ℝ𝑛)

∑∑
2−j(M+s−−𝑎)

(1 + |k|)M+𝑛−𝑎
ϕ(𝒬jk)

‖χ𝒬jk‖Lp(∙)(ℝ𝑛)k∈ℤ𝑛

∞

j=0

≲ ‖h‖𝒮M+1(ℝ𝑛)‖𝑓‖B
p(∙),∞
s(∙),ϕ (ℝ𝑛)

, 

where 𝑎  is as in Theorem (6.2.24) and M  is large enough. This finishes the proof of 

Proposition (6.2.26). 

Definition (6.2.27) [298]: Let k ∈ ℤ+  and L ∈ ℤ . A measurable function 𝑎𝒬  on ℝ𝑛  is 

called a (K, L) -smooth atom supported near 𝒬 ≔ 𝒬jk ∈ 𝔔  if it satisfies the following 

conditions: 

(A1) (support condition) supp 𝑎𝒬 ⊂ 3𝒬; 

(A2) (vanishing moment ) when j ∈ ℕ, ∫ 𝑥γ𝑎𝒬(𝑥)d𝑥ℝ𝑛
= 0 for all γ ∈ ℤ+

𝑛  with |γ| < 𝐿; 

(A3) (smoothness condition) for all multi-indices 𝛼 ∈ ℤ+
𝑛  with |𝛼| ≤ K , |D𝛼𝑎𝒬(𝑥)| ≤

2(|𝛼|+𝑛 2⁄ )j. 

A collection {𝑎𝒬}𝒬∈𝔔∗ is called a family of (K, L)-smoothness atoms, if each 𝑎𝒬 is a 

(K, L)-smooth atom supported near 𝒬. 

We point out that, if L ≤ 0, then the vanishing moment condition (A2) is avoid. 
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Lemma (6.2.28) [298]: Let {φj}j∈ℤ+
 be as in Definition (6.2.6) and 𝑎𝒬𝑣 k with 𝑣 ∈ ℤ+ and 

k ∈ ℤ𝑛 be a (K, L)-smooth atom. Then, for all M ∈ (0,∞), there exist positive constants C1 

and C2 such that, for all 𝑥 ∈ ℝ𝑛, when j ≤ 𝑣, 

|φj ∗ 𝑎𝒬𝑣 k(𝑥)| ≤ C12
𝑣𝑛 2⁄ 2−(𝑣−j)(L+𝑛)(1 + 2j|𝑥 − 𝑥𝒬𝑣 k|)

−M
 

and, when j > 𝑣, 

|φj ∗ 𝑎𝒬𝑣 k(𝑥)| ≤ C22
𝑣𝑛 2⁄ 2−(j−𝑣)K(1 + 2𝑣|𝑥 − 𝑥𝒬𝑣 k|)

−M
. 

Lemma (6.2.29) [298]: Let 𝑎 ∈ (0, 1), J ∈ ℤ, q ∈ (0,∞] and {εk}k∈ℤ+  be a sequence of 

positive real numbers. For all k ∈ [J ∨ 0,∞) , let δk ≔ ∑ 𝑎j−kεj
k
j=(J∨0)  and ηk ≔

∑ 𝑎k−jεj
∞
j=k . Then there exists 𝑎 positive constant C, depending only on 𝑎 and q, such that 

( ∑ δk
q

∞

k=(J∨0)

)

1 q⁄

+ ( ∑ ηk
q

∞

k=(J∨0)

)

1 q⁄

≤ C( ∑ εk
q

∞

k=(J∨0)

)

1 q⁄

. 

Theorem (6.2.30) [298]: Let p, q, s and ϕ be as in Definition (6.2.6). 

(i) Let K ∈ (s+ + log2 c1 , ∞) and 

L ∈ (𝑛 min{1, p−}⁄ − 𝑛 − s−, ∞).                                           (96) 
Suppose that {𝑎𝒬}𝒬∈𝔔∗  is a family of (K, L) -smooth atoms and t ≔ {t𝒬}𝒬∈𝔔∗ ∈

bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛) . Then 𝑓 ≔ ∑ t𝒬𝑎𝒬𝒬∈𝔔∗  converges in 𝒮′(ℝ𝑛)  and ‖𝑓‖

B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤

C‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

 with C being a positive constant independent of t. 

(ii) Conversely, if 𝑓 ∈ Bp(∙),q(∙)
s(∙),ϕ (ℝ𝑛), then, for any given K, L ∈ ℤ+, there exist sequences t ≔

{t𝒬}𝒬∈𝔔∗ ⊂ ℂ and {𝑎𝒬}𝒬∈𝔔∗  of (K, L)-smooth atoms such that 𝑓 ≔ ∑ t𝒬𝑎𝒬𝒬∈𝔔∗  in  𝒮′(ℝ𝑛) 

and ‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≤ C‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

 with C being a positive constant independent of 𝑓. 

Proof: The proof of (ii) is similar to that of [221, Theorem 3.3] (see also [106]). Indeed, 

by repeating the argument that used in [221], therein replaced by Lemma (6.2.17), we can 

prove (ii), the details being omitted. 

Next we prove (i) by two steps. First, we show that 𝑓 ≔ ∑ t𝒬𝑎𝒬𝒬∈𝔔∗  converges in 

𝒮′(ℝ𝑛). To this end, it suffices to prove that 

lim
N→∞,Λ→∞

∑ ∑ t𝒬jk𝑎𝒬jk
k∈ℤ𝑛,|k|≤Λ

N

j=0

                                               (97) 

exists in 𝒮′(ℝ𝑛). By (96), we find that there exists r ∈ (0,min{1, p−}) such that s− +

𝑛 p−⁄ (r − 1) > −L. Let, for all 𝑥 ∈ ℝ𝑛, p̃(𝑥) ≔ p(𝑥) r⁄  and s̃ be a measurable function on 

ℝ𝑛  such that s(𝑥) − 𝑛 p(𝑥)⁄ = s̃(𝑥) − 𝑛 p̃(𝑥)⁄ . Then s̃− ≥ s− + 𝑛 p−⁄ (r − 1) > −L . 

Therefore, by Proposition (6.2.20) and an argument similar to that used in [294], we 

conclude that there exist δ0 ∈ (log2 c1 , ∞) , 𝑎 ∈ (𝑛,∞) , c0 ∈ ℕ  and R ∈ (0,∞)  being 

large enough such that, for all h ∈ 𝒮(ℝ𝑛) and j ∈ ℤ+, 
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|∫ ∑ t𝒬jk𝑎𝒬jk
k∈ℤ𝑛,|k|≤Λ

(y)h(y)dy
ℝ𝑛

|

≲ 2−j(L+s̃−)∑2−𝑣δ0∑2−𝑖(R−L−𝑎)
∞

𝑖=0

∞

𝑣=0

‖∑ 2js̃(∙) |t𝒬jk| χ̃𝒬jk
k∈ℤ𝑛

‖

Lp̃(∙)(𝒬(0,2𝑖+𝑣+c0))

≲ 2−j(L+s̃−)∑2−𝑣δ0∑2−𝑖(R−L−𝑎)
∞

𝑖=0

∞

𝑣=0

ϕ(𝒬(0, 2𝑖+𝑣+c0)) ‖t‖
b
p̃(∙),∞
s̃(∙),ϕ (ℝ𝑛)

≲ 2−j(L+s̃−)∑2−𝑣(δ0−log2 c1)∑2−𝑖(R−L−𝑎−log2 c1)
∞

𝑖=0

∞

𝑣=0

‖t‖
b
p(∙),∞
s(∙),ϕ (ℝ𝑛)

≲ 2−j(L+s̃−)‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

. 

By this and the fact that L > −s̃−, we find that the limit of (97) exists in 𝒮′(ℝ𝑛). 
Second, we prove that 

‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≲ ‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

.                                                 (98) 

without loss of generality, we may assume that ‖t‖
b
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

= 1  and show 

‖𝑓‖
B
p(∙),q(∙)
s(∙),ϕ (ℝ𝑛)

≲ 1 

Case I)  q+ ∈ (0,∞). We see that, for all R ∈ 𝒟0(ℝ
𝑛), 

1

ϕ(R)
‖{ ∑ |𝒬|−

s(∙)
𝑛 |t𝒬|χ̃𝒬

𝒬∈𝔔∗,ℓ(𝒬)=2−𝑣

}

𝑣≥(jR∨0)

‖

ℓq(∙)(Lp(∙)(R))

≲ 1                      (99) 

with implicit positive constant independent of R . Since 𝑓 = ∑ t𝒬𝑎𝒬𝒬∈𝔔∗  in 𝒮′(ℝ𝑛) , it 

follows that, for all P ∈ 𝒬, 

φj ∗ 𝑓 = { ∑ + ∑ + ∑

∞

𝑣=j+1

j

𝑣=(jP∨0)

(jP∨0)−1

𝑣=0

} ∑ t𝒬φj ∗ 𝑎𝒬
ℓ(𝒬)=2−𝑣

=: Sj,1 + Sj,2 + Sj,3, 

Where ∑ ⋯
(jP∨0)−1
𝑣=0 = 0 if jP ≤ 0. Thus, we find that 

IP ≔
1

ϕ(P)
‖{2js(∙)φj ∗ 𝑓}j≥(jP∨0)

‖
ℓq(∙)(Lp(∙)(P))

≲∑
1

ϕ(P)
‖{2js(∙)Sj,𝑖}j≥(jP∨0)

‖
ℓq(∙)(Lp(∙)(P))

3

𝑖=1

=: IP,1 + IP,2 + IP,3. 

In what follows, let r ∈ (0,min{1, p−}) satisfy L + 𝑛 − 𝑛 r⁄ + s− > 0. 

We show that IP,1 ≲ 1. To this end, it suffices to consider the case that jP > 0 and 

prove that there exists a positive constant C such that 

ϱℓq(∙)(Lp(∙))({
χP2

js(∙)

Cϕ(P)
∑ ∑ |t𝒬||φj ∗ 𝑎𝒬|

 ℓ(𝒬)=2−𝑣

jP−1

𝑣=0

}

j≥jP

) ≤ 1, 

which is equivalent to show that 

JP,1 ≔∑‖[
χP

Cϕ(P)
2js(∙) ∑ ∑ |t𝒬||φj ∗ 𝑎𝒬|

 ℓ(𝒬)=2−𝑣

jP−1

𝑣=0

]

q(∙)

‖

Lp(∙) q(∙)⁄ (ℝ𝑛)

∞

j=jP

≲ 1. 

By Lemma (6.2.28) and (69), we find that 
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JP,1 ≲∑‖[
χP

{ϕ(P)}r
2js(∙)r ∑ ∑ |t𝒬𝑣k|

r
|𝒬𝑣k|

−r 2⁄

 k∈ℤ𝑛

jP−1

𝑣=0

∞

j=jP

× 2(𝑣−j)Kr(1 + 2𝑣|∙ −𝑥𝒬𝑣k|)
−Mr

]

q(∙)

‖

Lp(∙) rq(∙)⁄ (ℝ𝑛)

1 r⁄

≲ 1,                                        (100) 

where M ∈ (0,∞) is large enough. On the other hand, by the proof of [294, Theorem 

3.8(i)], we know that, for all 𝑣, j ∈ ℤ+with 𝑣 ≤ j and 𝑥 ∈ P, 

2js(𝑥)r ∑ |t𝒬𝑣k|
r
|𝒬𝑣k|

−
r
2 × 2(𝑣−j)Kr(1 + 2𝑣|𝑥 − 𝑥𝒬𝑣k|)

−Mr

 k∈ℤ𝑛

≲ 2(𝑣−j)(K−s+)r∑2
−𝑖(M−𝑎−

Clog(s)

r
)r
η𝑣,𝑎r

∞

𝑖=0

∗ ([∑ |t𝒬𝑣k|2
𝑣s(∙)χ̃𝒬𝑣kχ𝒬(cP,2𝑖−𝑣+c0)

 k∈ℤ𝑛

]

r

) (𝑥), 

where 𝑎 ∈ (𝑛 r⁄ ,∞), cP is the center of P and c0 ∈ ℕ independent of 𝑥, P, 𝑖, 𝑣 and k. From 

this, (100), and (i) and (ii) of Lemma (6.2.16), we deduce that JP,1 ≲ ∑ [(JP,1
j
)
q−
+∞

j=jP

(JP,1
j
)
q+
], where 

JP,1
j
≔ ‖

χP
[ϕ(P)]r

∑ 2(𝑣−j)(K−s+)r∑2−𝑖(M−𝑎−Clog(s) r⁄ )r × η𝑣,𝑎r

∞

𝑖=0

jP−1

𝑣=0

∗ (∑ |t𝒬𝑣k|
r
2𝑣s(∙)r|𝒬𝑣k|

−r 2⁄ χ𝒬𝑣kχ𝒬(cP,2𝑖−𝑣+c0)
 k∈ℤ𝑛

)‖

Lp(∙) r⁄ (ℝ𝑛)

1 r⁄

 

we find that 

JP,1
j
≲ {

1

[ϕ(P)]r
∑2(𝑣−j)(K−s+)r∑2−𝑖(M−𝑎−Clog(s) r⁄ )r

∞

𝑖=0

jP−1

𝑣=0

× ‖∑ |t𝒬𝑣k|
r
2𝑣s(∙)r|𝒬𝑣k|

−r 2⁄ χ𝒬𝑣kχ𝒬(cP,2𝑖−𝑣+c0)
 k∈ℤ𝑛

‖

L
p(∙)
r (ℝ𝑛)

}

1 r⁄

≲ {∑ 2(𝑣−j)(K−s+)r∑2−𝑖(M−𝑎−Clog(s) r⁄ )r
[ϕ (𝒬(cP, 2

𝑖−𝑣+c0))]
r

[ϕ(P)]r

∞

𝑖=0

jP−1

𝑣=0

}

1 r⁄

. 

By this, (57) and the fact that K ∈ (s+ + log2 c1 , ∞), we know that 

∑(JP,1
j
)
q−

∞

j=jP

≲ 2jPq−log2 c1∑{2j(s+−K) ∑2(K−s++log2 c1)𝑣r

jP−1

𝑣=0

}

q− r⁄
∞

j=jP

≲ 1 

and ∑ (JP,1
j
)
q+∞

j=jP
≲ 1 , where M  is chosen large enough such that M > 𝑎 + Clog(s) r⁄ +

log2 c1, which implies IP,1 ≲ 1. This is a desired estimate. 

     We now estimate IP,2. By Lemma (6.2.28), we see that, for all M ∈ (0,∞) and 𝑥 ∈ ℝ𝑛, 
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∑ 2js(𝑥)|t𝒬𝑣k||φj ∗ 𝑎𝒬𝑣k(𝑥)|

 k∈ℤ𝑛

≲ 2(𝑣−j)(K−s+) ∑ |𝒬𝑣k|
−s(𝑥) 𝑛⁄ +1 2⁄ |t𝒬𝑣k|(1 + 2

𝑣|𝑥 − 𝑥𝒬𝑣k|)
−M

 k∈ℤ𝑛

 

and hence, for all r ∈ (0,min{1 q+⁄ , p− q+⁄ }), 

‖[
χP
ϕ(P)

2js(∙)Sj,2]
q(∙)

‖
Lp(∙) q(∙)⁄ (ℝ𝑛)

≲ { ∑ 2(𝑣−j)q−(K−s+) ‖[
χP
ϕ(P)

∑
|𝒬|−s(∙) 𝑛⁄ +1 2⁄ |t𝒬|

(1 + 2𝑣|∙ −𝑥𝒬|)
M

 ℓ(𝒬)=2−𝑣

]

rq(∙)

‖

Lp(∙) rq(∙)⁄ (ℝ𝑛)

jP−1

𝑣=(jP∨0)

}

1 r⁄

.            (101) 

We claim that there exists a positive constant c such that 

‖[
cχP
ϕ(P)

∑
|𝒬|−s(∙) 𝑛⁄ +1 2⁄ |t𝒬|

(1 + 2𝑣|∙ −𝑥𝒬|)
M

 ℓ(𝒬)=2−𝑣

]

rq(∙)

‖

Lp(∙) rq(∙)⁄ (ℝ𝑛)

≤∑2−𝑖τ ‖[
χ𝒬𝑖

0

ϕ(𝒬𝑖
0)

∑ |𝒬|−s(∙) 𝑛⁄ |t𝒬|χ̃𝒬
 ℓ(𝒬)=2−𝑣

]

rq(∙)

‖

Lp(∙) rq(∙)⁄ (ℝ𝑛)

∞

𝑖=0

+ 2−𝑣 =: δ𝑣
P,

(102) 

where 𝒬𝑖
0 ≔ 𝒬(cP, 2

𝑖−jP+c0) with some c0 ∈ ℕ and τ ∈ (0,∞). 
From the above claim, (101), Lemma (6.2.29), the Minkowski inequality and (99), 

we deduce that 

∑ ‖[
χP
ϕ(P)

2js(∙)Sj,2]
q(∙)

‖
Lp(∙) q(∙)⁄ (ℝ𝑛)

∞

j=(jP∨0)

≲ ∑

{
 

 

∑2−𝑖τ ‖[
χ𝒬𝑖

0

ϕ(𝒬𝑖
0)

∑ |𝒬|−s(∙) 𝑛⁄ |t𝒬|χ̃𝒬
 ℓ(𝒬)=2−j

]

rq(∙)

‖

Lp(∙) rq(∙)⁄ (ℝ𝑛)

0

𝑖=0
}
 

 
1 r⁄

∞

j=(jP∨0)

+∑2−j r⁄
∞

j=0

≲

{
 

 

∑2−𝑖τ

(

 ∑ ‖[
χ𝒬𝑖

0

ϕ(𝒬𝑖
0)

∑ |𝒬|−s(∙) 𝑛⁄ |t𝒬|χ̃𝒬
 ℓ(𝒬)=2−j

]

q(∙)

‖

Lp(∙) q(∙)⁄ (ℝ𝑛)

∞

j=(jP∨0)
)

 

r
∞

𝑖=0
}
 

 
1 r⁄

+ 1

≲ {∑2−𝑖τ
∞

𝑖=0

}

1 r⁄

+ 1 ≲ 1, 

which, together with Lemma (6.2.3) again, implies that IP,2 ≲ 1. 

Let us prove (102) now. Obviously, it suffices to show that 

‖[δ𝑣
P]−1 [

cχP
ϕ(P)

∑
|𝒬|−s(∙) 𝑛⁄ +1 2⁄ |t𝒬|

(1 + 2𝑣|∙ −𝑥𝒬|)
M

 ℓ(𝒬)=2−𝑣

]

rq(∙)

‖

Lp(∙) rq(∙)⁄ (ℝ𝑛)

≤ 1, 

which, via Lemma (6.2.16), is a consequence of 

𝒜 ≔ ‖[δ𝑣
P]−1 rq(∙)⁄ [

χP
ϕ(P)

∑
|𝒬|−s(∙) 𝑛⁄ +1 2⁄ |t𝒬|

(1 + 2𝑣|∙ −𝑥𝒬|)
M

 ℓ(𝒬)=2−𝑣

]

rq(∙)

‖

Lp(∙) rq(∙)⁄ (ℝ𝑛)

≲ 1. 
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Taking t ∈ (0,min{1, p−}) and using some arguments similar to those used in [261], we 

conclude that, for all 𝑥 ∈ ℝ𝑛, 

∑ [δ𝑣
P]−1 rq(𝑥)⁄

χP(𝑥)

ϕ(P)
∑

|𝒬|−s(∙) 𝑛⁄ +1 2⁄ |t𝒬|

(1 + 2𝑣|𝑥 − 𝑥𝒬|)
M

 ℓ(𝒬)=2−𝑣ℓ(𝒬)=2−𝑣

≲ ∑ 2𝑖ζ {ℳ( ∑ [
χ𝒬𝑖

0

ϕ(𝒬𝑖
0)

∑
2𝑣s(∙)

[δ𝑣
P]1 rq(∙)⁄

|t𝒬|χ̃𝒬
 ℓ(𝒬)=2−j

]

t
∞

j=(jP∨0)

)}

1 t⁄
(𝑣−c0)∨0

𝑖=0

+ ∑ 2𝑖ϑ⋯

∞

𝑖=(𝑣−c0)∨0

,                                                                                                      (103) 

where ζ ∶= −M +
𝑛

t
+
2

r
Clog(q) + Clog(s)  and ϑ ∶= −M + 𝑛 t⁄ + 2 r⁄ (1 q−⁄ − 1 q+⁄ ) + s+ −

s−. Taking M large enough such that 

M > max{𝑛 t⁄ + 2 r⁄ Clog(q) + Clog(s) + log2 c1 , 2 r⁄ (1 q−⁄ − 1 q+⁄ ) + s+ − s− + log2 c1} + r, 

then, by (57), Lemmas (6.2.22) and (6.2.16), we know that 

∑ 2𝑖ςt ‖ℳ( ∑
χ𝒬𝑖

0

ϕ(P)
[ ∑

2𝑣s(∙)

[δ𝑣
P]1 rq(∙)⁄

|t𝒬|χ̃𝒬
 ℓ(𝒬)=2−j

]

t
∞

j=(jP∨0)

)‖

Lp(∙) t⁄ (ℝ𝑛)

(𝑣−c0)∨0

𝑖=0

≲ ∑ 2𝑖t(ς+log2 c1) ‖
χ𝒬𝑖

0

ϕ(𝒬𝑖
0)

∑
2𝑣s(∙)

[δ𝑣
P]1 rq(∙)⁄

|t𝒬|χ̃𝒬
 ℓ(𝒬)=2−j

‖

Lp(∙)(ℝ𝑛)

t(𝑣−c0)∨0

𝑖=0

≲ ∑ 2𝑖t(ς+log2 c1) ‖1 δ𝑣
P⁄ [

χ𝒬𝑖
0

ϕ(𝒬𝑖
0)

∑
2𝑣s(∙)

[δ𝑣
P]1 rq(∙)⁄

|t𝒬|χ̃𝒬
 ℓ(𝒬)=2−j

]

rq(∙)

‖

Lp(∙) rq(∙)⁄ (ℝ𝑛)

t rq+⁄
(𝑣−c0)∨0

𝑖=0

≲∑2𝑖t(ς+log2 c1+τ)
∞

𝑖=0

≲ 1, 

where we used the definition of δ𝑣
P in the penultimate inequality and, similarly, 

∑ 2𝑖ϑt ‖ℳ([
χ𝒬𝑖

0

ϕ(P)
∑

2𝑣s(∙)

[δ𝑣
P]1 rq(∙)⁄

|t𝒬|χ̃𝒬
 ℓ(𝒬)=2−j

]

t

)‖

Lp(∙) t⁄ (ℝ𝑛)

∞

𝑖=(𝑣−c0)∨0

≲ 1. 

From this and (103), we deduce that 𝒜 ≲ 1, which implies that (102) holds true and then 

completes the proof that IP,2 ≲ 1. 

We next prove that IP,3 ≲ 1. To this end, it suffices to show that 

ϱℓq(∙) r⁄ (Lp(∙) r⁄ )({
χP

C̃ϕ(P)
2js(∙) ∑ ∑ |t𝒬||φj ∗ 𝑎𝒬|

 ℓ(𝒬)=2−𝑣

∞

𝑣=(jP∨0)

}

j≥(jP∨0)

r

) ≤ 1 

for some positive constant C̃ large enough independent of P, which, by Definition (6.2.5), 

is equivalent to show that ∑ ∑ Yj
P

 ℓ(𝒬)=2−𝑣
∞
j=(jP∨0)

≲ 1, where, for all j ∈ ℤ+ ∩ [jP ∨ 0,∞), 

Yj
P ≔ inf {λj ∈ (0,∞) ∶ ϱp(∙) r⁄ (

χP[2
js(∙)∑ ∑ |t𝒬||φj ∗ 𝑎𝒬| ℓ(𝒬)=2−𝑣

∞
𝑣=j ]

r

C̃ [ϕ(P)λj
1 q(∙)⁄

]
r ) ≤ 1}. 

We claim that, for all P ∈ 𝔔 and j ∈ ℤ+ ∩ [jP ∨ 0,∞), 
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Yj
P ≤ 2−j +∑2(j−𝑣)d

∞

𝑣=j

∑2−𝑖d̃
∞

𝑖=0

× inf {ξ𝑣 ∈ (0,∞) ∶ ϱp(∙)
r

(
χP𝑖[∑ |t𝒬|2

−𝑣s(∙)χ𝒬 ℓ(𝒬)=2−𝑣 ]
r

[ϕ(P𝑖)ξ𝑣
1 q(∙)⁄

]
r ) ≤ 1}

=: 2−j +∑2(j−𝑣)d
∞

𝑣=j

∑2−𝑖d̃Y𝑣,2
P

∞

𝑖=0

=: δj
P,                                                                     (104) 

where P𝑖 ≔ 𝒬(cP, 2
𝑖−jP+c0)  with c0 ∈ ℕ , d  is chosen such that L + 𝑛 − 𝑛 r⁄ + s− −

d q+⁄ > 0 and d̃ ∈ (0,∞). 
From the above claim, (99) and (54), we deduce that 

∑ Yj
P

∞

j=(jP∨0)

≲ 1 + ∑ ∑ 2(j−𝑣)d
𝑣

j=(jP∨0)

∞

𝑣=(jP∨0)

∑2−𝑖d̃Y𝑣,2
P

∞

𝑖=0

≲ 1 +∑2−𝑖d̃
∞

𝑖=0

∑ Y𝑣,2
P

∞

𝑣=(jP∨0)

≲ 1, 

which implies that IP,3 ≲ 1 and δj
P ∈ [2−j, 2−j + θ] for some θ ∈ [0,∞) 

Therefore, to complete the estimate for IP,3, it remains to prove the above claim 

(104). To this end, it suffices to show that, for all j ∈ ℤ+ ∩ [jP ∨ 0,∞), 

inf {λ̃j ∈ (0,∞) ∶ ϱp(∙)
r

(
χP[2

js(∙)∑ ∑ |t𝒬||φj ∗ 𝑎𝒬| ℓ(𝒬)=2−𝑣
∞
𝑣=j ]

r

[ϕ(P)(δj
Pλ̃j)

1 q(∙)⁄
]
r ) ≤ 1} ≲ 1, 

which follows from the following estimate 

Hj
P ≔ ‖

χP2
js(∙)r

{ϕ(P)[δj
P]
1 q(∙)⁄

}
r∑ ∑ |t𝒬|

r
|φj ∗ 𝑎𝒬|

r

 ℓ(𝒬)=2−𝑣

∞

𝑣=j

‖

Lp(∙) r⁄

≲ 1.                    (105) 

Next we show (105). By Lemma (6.2.28), we find that 

Hj
P ≲∑2−(𝑣−j)(L+𝑛)r ‖

χP2
js(∙)r

{ϕ(P)[δj
P]
1 q(∙)⁄

}
r ∑

|t𝒬𝑣 k|
r
|𝒬𝑣 k|

−r 2⁄

(1 + 2j|∙ −2−𝑣k|)Rr
 k∈ℤ𝑛

‖

Lp(∙) r⁄ (ℝ
𝑛)

∞

𝑣=j

,         (106) 

where R can be large enough. For all 𝑥 ∈ P and 𝑣 ∈ ℤ+ with 𝑣 ≥ j, let 

Ω0,j
𝑥,𝑣 ≔ {k ∈ ℤ𝑛 ∶ 2j|𝑥 − 2−𝑣k| ≤ 1} 

and, for all 𝑖 ∈ ℕ, Ω0,j
𝑥,𝑣 ≔ {k ∈ ℤ𝑛 ∶ 2𝑖−1 < 2j|𝑥 − 2−𝑣k| ≤ 2𝑖}. Then, we see that, for all 𝑥 ∈

P, 

J(𝑣, j, 𝑥, P) ≔
2js(𝑥)r

(δj
P)
r q(𝑥)⁄

∑
|t𝒬𝑣 k|

r
|𝒬𝑣 k|

−r 2⁄

(1 + 2j|𝑥 − 2−𝑣k|)Rr
 k∈ℤ𝑛

 

~
2js(𝑥)r

(δj
P)
r q(𝑥)⁄

∑ ∑ |t𝒬𝑣 k|
r
|𝒬𝑣 k|

−𝑖Rr

 k∈Ω𝑖,j
𝑥,𝑣

∞

𝑖=0

                 

~ 
2js(𝑥)r

(δj
P)
r q(𝑥)⁄

∑2−𝑖Rr2𝑣𝑛∫ [ ∑ |t𝒬𝑣 k|χ̃𝒬𝑣 k(y)

 k∈Ω𝑖,j
𝑥,𝑣

]

r

dy
⋃ 𝒬𝑣 k̃k̃∈Ω

𝑖,j
𝑥,𝑣

∞

𝑖=0

.        (107) 

Since, for all 𝑖 ∈ ℤ+, 𝑣 ∈ ℤ+ with 𝑣 ≥ j, 𝑥 ∈ P and y ∈ ⋃ 𝒬𝑣 k̃k̃∈Ω𝑖,j
𝑥,𝑣 , there exists k̃y ∈ Ω𝑖,j

𝑥,𝑣
 

such that y ∈ 𝒬𝑣 k̃y, it follows that 

1 + 2j|𝑥 − y| ≤ 1 + 2j |𝑥 − 𝑥𝒬𝑣 k̃y
| + 2j |y − 𝑥𝒬𝑣 k̃y

| ≲ 2𝑖 + 2j−𝑣 ≲ 2𝑖                    (108) 

and hence 
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|y − cP| ≤ |y − 𝑥𝒬𝑣 k̃y
| + |𝑥 − 𝑥𝒬𝑣 k̃y

| + |𝑥 − cP| ≲ 2
−𝑣 + 2𝑖−j + 2−jP ≲ 2𝑖−jP .          (109) 

By (109), we see that, for all 𝑖 ∈ ℤ+, 𝑣 ∈ ℤ+ with 𝑣 ≥ j, 𝑥 ∈ P, 

⋃ 𝒬𝑣 k̃
k̃∈Ω𝑖,j

𝑥,𝑣

⊂ 𝒬(cP, 2
𝑖−jP+c0) =: 𝒬𝑖

0 

for some constant c0 ∈ ℕ, which, combined with (107) and (108), implies that 

J(𝑣, j, 𝑥, P) ≔ (δj
P)
−r q(𝑥)⁄

2js(𝑥)r∑2−𝑖Rr2(𝑣−j)𝑛2𝑖(𝑎−ε)r
∞

 𝑖=0

× ηj,𝑎r+εr

∗ ([ ∑ |t𝒬𝑣 k̃| χ̃𝒬𝑣 kχ𝒬𝑖
0

 k̃∈Ω𝑖,j
𝑥,𝑣

]

r

)(𝑥)

≲ 2(𝑣−j)(𝑛−rs−)∑2−𝑖r(R−𝑎−ε)ηj,𝑎r

∞

 𝑖=0

×

∗ ([ ∑ (δj
P)
−r q(∙)⁄

2js(∙)|t𝒬𝑣 k|χ̃𝒬𝑣 kχ𝒬𝑖
0

 k∈Ω𝑖,j
𝑥,𝑣

]

r

)(𝑥),                                                     (110) 

where ε ∈ [Clog(s) + Clog(1 q⁄ ),∞). From this, (106) and Lemma (6.2.15), we deduce that 

Hj
P ≲∑2−(𝑣−j)(L+𝑛−𝑛 r⁄ +s−)r∑2−𝑖(R−𝑎−ε)r

[ϕ(𝒬𝑖
0)]r

[ϕ(P)]r

∞

 𝑖=0

∞

𝑣=j

× ‖
(δj
P)
−r q(∙)⁄

ϕ(𝒬𝑖
0)

∑ |t𝒬𝑣 k|2
𝑣s(∙)χ̃𝒬𝑣 k

 k∈ℤ𝑛

‖

Lp(∙)(𝒬𝑖
0)

r

≲∑2−(𝑣−j)(L+𝑛−𝑛 r⁄ +s−−d q+⁄ )r∑2−𝑖(R−𝑎−ε−log c1−d̃ q−⁄ )r

∞

 𝑖=0

∞

𝑣=j

× ‖
2(𝑣−j)dr q(∙)⁄ 2−𝑖d̃r q(∙)⁄

[ϕ(𝒬𝑖
0)]r(δj

P)
r q(∙)⁄

[ ∑ |t𝒬𝑣 k|2
𝑣s(∙)χ̃𝒬𝑣 k

 k∈ℤ𝑛

]

r

‖

Lp(∙) r⁄ (𝒬𝑖
0)

≲∑2−(𝑣−j)(L+𝑛−𝑛 r⁄ +s−−d q+⁄ )r∑2−𝑖(R−𝑎−ε−log c1−d̃ q−⁄ )r

∞

 𝑖=0

∞

𝑣=j

≲ 1, 

where R is chosen large enough such that R > 𝑎 + ε + log c1 + d̃ q−⁄ , which completes 

the proof of that IP,3 ≲ 1 and hence the case I. 

Case II q+ = ∞. 

We see that q(𝑥) = ∞ for all 𝑥 ∈ ℝ𝑛. Thus, we see that 

‖t‖
b
p(∙),∞
s(∙),ϕ (ℝ𝑛)

= sup
P∈𝔔

1

ϕ(P)
sup

j∈ℤ+,j≥(jP∨0)
‖ ∑ |𝒬|−

s(∙)
𝑛 |t𝒬|χ̃𝒬

 𝒬∈𝔔∗,ℓ(𝒬)=2−j

‖

Lp(∙)(P)

. 

Let P be a given dyadic cube. Then, by (97), we find that, for all j ∈ ℤ+ ∩ j ≥ [jP ∨ 0,∞), 
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GP
j
≔

1

ϕ(P)
‖2js(∙)|φj ∗ 𝑓|‖Lp(∙)(P)

≲
1

ϕ(P)
‖2js(∙)∑ ∑ |t𝒬||φj ∗ 𝑎𝒬|

𝒬∈𝔔∗,ℓ(𝒬)=2−j

j−1

𝑣=0

‖

Lp(∙)(P)

+
1

ϕ(P)
‖2js(∙)∑ ∑ |t𝒬||φj ∗ 𝑎𝒬|

𝒬∈𝔔∗,ℓ(𝒬)=2−j

∞

𝑣=0

‖

Lp(∙)(P)

=: GP,1
j
+ GP,2

j
.                    (111) 

To estimate GP,1
j
 and GP,2

j
, we let ε ∈ (Clog(s),∞) , r ∈ (0,min{1, q−})  and a ∈

(𝑛 r⁄ ,∞). For GP,1
j

, by an argument similar to that used in the estimate for IP,1 , we 

conclude that there exists a positive constant c0 such that 

GP,1
j
≲ {∑2(𝑣−j)(K−s+)r

j

𝑣=0

∑2−𝑖(M−𝑎−ε r⁄ )
∞

𝑖=0

×
1

ϕ(P)
‖ ∑ |t𝒬|

r
2𝑣s(∙)r|𝒬|−r 2⁄

𝒬∈𝔔∗,ℓ(𝒬)=2−𝑣

χ𝒬‖

Lp(∙) r⁄ (𝒬(cP,2
𝑖−𝑣+c0))

}

1 r⁄

, 

which, together with (57) and the facts that c1 ∈ [1,∞) and j ≥ jP , implies that 

GP,1
j
≲ ‖t‖

b
p(∙),∞
q(∙),ϕ (ℝ𝑛)

{∑2(𝑣−j)(K−s+)r

j

𝑣=0

∑2−𝑖(M−𝑎−ε r⁄ )
∞

𝑖=0

[ϕ (𝒬(cP, 2
𝑖−𝑣))]

r

[ϕ(P)]r
}

1 r⁄

≲ ‖t‖
b
p(∙),∞
q(∙),ϕ (ℝ𝑛)

{∑2𝑣(K−s+−log2 c1)r

j

𝑣=0

∑2−𝑖(M−𝑎−ε r⁄ −log2 c1)
∞

𝑖=0

2jPlog2 c1}

1 r⁄

≲ ‖t‖
b
p(∙),∞
q(∙),ϕ (ℝ𝑛)

2−jlog2 c12jPlog2 c1  ≲ ‖t‖‖t‖
b
p(∙),∞
q(∙),ϕ

(ℝ𝑛)
.                                             (112) 

For GP,2
j

, by an argument similar to that used in the proof of (110), we find that there 

exists c0 ∈ ℕ such that 

GP,2
j
≲

1

ϕ(P)

{
 
 

 
 

∑ 2−(𝑣−j)(L+𝑛)r
∞

𝑣=j+1

∑2−𝑖(R−𝑎−ε)r
∞

𝑖=0

× ‖
‖ηj,𝑎r ∗

(

 
 

[
 
 
 

∑ |t𝒬||𝒬|
−s(∙) 𝑛⁄

𝒬∈𝔔∗

ℓ(𝒬)=2−𝑣

χ̃𝒬χ𝒬(cP,2𝑖−jP+c0)

]
 
 
 
r

)

 
 
‖
‖

Lp(∙) r⁄ (ℝ𝑛)}
 
 

 
 
1 r⁄

, 

which, combined with (57) and (62), implies that 
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GP,2
j
≲

1

ϕ(P)
{ ∑ 2−(𝑣−j)(L+𝑛)r

∞

𝑣=j+1

∑2−𝑖(R−𝑎−ε)r
∞

𝑖=0

× ‖( ∑ |t𝒬||𝒬|
−s(∙) 𝑛⁄

𝒬∈𝔔∗,ℓ(𝒬)=2−𝑣

χ̃𝒬)‖

Lp(∙) r⁄ (𝒬(cP,2
𝑖−jP+c0))

r

}

1 r⁄

≲ ‖t‖
b
p(∙),∞
q(∙),ϕ (ℝ𝑛)

{ ∑ 2−(𝑣−j)(L+𝑛)r
∞

𝑣=j+1

∑2−𝑖(R−𝑎−ε−log2 c1)r
∞

𝑖=0

}

1 r⁄

≲ ‖t‖
b
p(∙),∞
q(∙),ϕ (ℝ𝑛)

. 

By this, (111) and (112), we conclude that 

‖𝑓‖
B
p(∙),∞
s(∙),ϕ (ℝ𝑛)

≲ sup
P∈𝔔

1

ϕ(P)
sup

j∈ℤ+∩[(jP∨0),∞)
‖2js(∙)|φj ∗ 𝑓|‖Lp(∙)(P)

≲ sup
P∈𝔔

1

ϕ(P)
sup

j∈ℤ+∩[(jP∨0),∞)
(GP,1

j
+ GP,2

j
) ≲ ‖t‖

b
p(∙),∞
q(∙),ϕ (ℝ𝑛)

, 

which completes the proof of the case II. 

Combining Cases I and II, we conclude that (98) holds true. This finishes the proof of 

Theorem (6.2.30).  



241 

List of Symbols 

 

 
Symbol  Page 

𝐵𝑝
𝑠𝑝
: Besov space 1 

𝐻𝑝: Hardy space 1 

supp: support 1 

sup: supremum 2 

max: maximum 6 

Tr: trace 6 

⨂: tensor product 8 

inf: infimum 10 

BMO: Bounded mean oscillation 10 

𝐿𝑝: Lebesgue space 13 

loc: local 18 

𝐿2: Hilbert space 21 

𝐿∞: Essential Lebesgue space 22 

min: minimum 26 

ℓ2: Hilbert space of sequences 27 

ℓ𝑞: Dual of Hilbert space of sequences 27 

𝑀𝐵𝑝,𝑞
𝑠,𝛽
, 𝑀𝐹𝑝,𝑞

𝑠,𝛽
: Besov and Triebel-Lizerkin space 41 

𝑊1,𝑝(⋅): Sobolev space of variable 57 

𝐿1: Lebesgue space 59 

ess: essential 59 

𝑓𝑝,𝑞
𝛼 : Triebel-Lizorkin space 61 

𝐵𝑉: Bounded variation 67 

𝐿𝑝0,𝑞: Lorentz space 79 

ℓ∞: Essential Lebesgue space sequences 82 

𝐵𝐻𝑠,𝜏 Hardy-Hausdorff space 93 

Mol: Molecular 142 

𝑀𝑢
𝑝
: Morrey space 162 

𝐻𝐻−𝛼: Hardy-Hausdorff space 162 
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