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Abstract

We show the decompositions of Besov-Hausdorff and Triebel-
Lizorkin-Hausdorff spaces. We also show the characterizations of Besov-
Lipschitz, Besov-Morrey and Triebel-Lizorkin-Morrey spaces by
maximal functions, local mean and including Q spaces. The function
spaces, Besov-type spaces and atomic decomposition with variable
smoothness and integrability are studied.
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Introduction

We consider the Besov-Hausdorff spaces and the Triebel-Lizorkin
spaces. We complete earlier results. We find the dual spaces. Many
function or distribution spaces have been found to admit decomposition.

We study certain spaces of distribution. They are intimately related
to certain spaces studied by Triebel and Lizorkin. We discuss some basic
properties of Morrey type Besov-Triebel spaces.

We introduce Triebel-Lizorkin spaces with variable smoothness
and integrability. Our new scale covers spaces with variable exponent as
well as spaces of variable smoothness that have been studied in recent
years. Vector-valued maximal inequalities do not work in the generality
which we pursue, and an alternate approach is thus developed. We
introduce Besov spaces with variable smoothness and integrability
indices. We show independence of the choice of basic functions, as well
as several other basic properties.

Also we introduce Besov-type spaces B;',E(R") for p € (0, o] and
Triebel-Lizorkin-type spaces Fyg(R™) for p € (0,00] where s,T€ R,
which unify and generalize the Besov spaces, Triebel-Lizorkin spaces and
Q spaces. We then establish the ¢-transform characterization of these
new spaces in the sense of Frazier and Jawerth. Using the ¢ -transform

characterization of Byg(R™) and F5 (R™), we obtain their embedding

and lifting properties; moreover, for appropriate t, we also establish the
smooth atomic and molecular decomposition characterizations of
Byg(R™) and Fg(R™) . For p€ (1,0),q€[1,0), seR and T€

01~ e _
Besov-Hausdorff spaces BHy,(R™), and Triebel-Lizorkin-Hausdorff

spaces FHIS,'I1 R™) (q>1); as applications, then we establish their
embedding properties (which on BH;f](]R{") Is also sharp), smooth atomic
and molecular decomposition characterizations for suitable .

]. We establish the ¢ -transform characterizations of

We obtain three independent results on the Besov-Morrey spaces
and the Triebel-Lizorkin-Morrey spaces. We establish the maximal

function characterizations of the Besov-type space Bf,fl R™) with p,q €
(0,0]and t € [0, 0),the Triebel-Lizorkin-type space Fyg(R™) with p €
(0,0),q € (0,00]and T € [0, ), the Besov-Hausdorff space BHFS;’E(R")

with p € (1,),q € [1,00) and TE[O,m] and the Triebel-



Lizorkin-Hausdorff space FH} (R™ with p,qe (1,00) and t€

1 , i :
[0, m], where t’ denotes the conjugate index of t € [1, oo].

Finally we introduce Besov-type spaces with variable smoothness
and integrability. We establish their characterizations, respectively, in
terms of -transforms in the sense of Frazier and Jawerth, smooth atoms
or Peetre maximal functions, as well as a Sobolev-type embedding.

Vi
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Chapter 1
Some Observations and Decompositions

We determine the trace of Lizorkin-Triebel spaces. We give an extension of Hardy’s
inequality. We also obtain two types of decompositions for distributions in the
homogeneous Besov spaces.

Section (1.1): Besov and Lizorkin-Triebel Spaces

We consider the Besov spaces B,? and the Lizorkin-Triebel spaces F,?. We
complete earlier results. We find the dual spaces when 0 < p < 1. For B;q the dual was
previously only known when 0 < q < 1 (see [6]). We also determine the trace of F;q,
obtaining in this way a result analogous to the ne in [7] for B)?. We give an extension of
Hardy’s inequality to ng. In oure treatment, based on Szasz’ theorem and an imbedding

theorem, this becomes almost a triviality even in special case q = 2 corresponding to the
Hardy space H,,.

Definition (1.1.1) [17] (Definition of the spaces): To define the spaces to be studied we
choose a sequence {,, }, <z Of test functions such that

((Pv € S
supp , = {1.571 -2V < [§| < 1.5 -2V} .
1§, =C. >0 if2v(1.5—¢)"' < |E <2Y(1.5—¢) (1)

1D, ®,(®)| < C, |7 for every multiindex a.

Here and in what follows S, is space of rapidly decreasing whose Fourier transforms
vanish together with all their derivatives at the origin. S is its dual space. It is easy to see
that Sy in fact can be identified to the space of tempered distributions §’ modulo
polynomials.

Definition (1.1.2) [17]: Lets be real, 0 < p,q < co. The Besov space B} is the space of
all f € §; such that

1/q
1 llgsa = (Z (Z”Sllcpv * fIILp)q> < oo,

v

Definition (1.1.3) [17]: Letsbereal, 0 < p < o0, 0 < q < oo. The Lizorkin-Triebel space
F,7 is the space of all f € S; such that

1/q
(Z 2%, *flq>

||f||p;q = < oo,
Lp
From the definitions we at once get the embeddings
5Sq ~Sq 5Sp .
B, = F," > B if q<p @
5Sp ~Sq 5Sq .
By = F, =B if q=p

1



and especially
5SP __ =Sp
By =F, if 0 <p < oo 3)
Furthermore, using Littlewood-Paley theory it is possible to prove (see [8])
F9? ~ H,, (4)
where H;, is the hardy space on R™.

Let us list some other known properties of the space (cf. [9], [15]): the embeddings
from §, and in to S are continuous:

Se o B, FUo sy 5)
if 0 < p,q < o then §, is dense in B;q and F;q. (6)
B,! and F;? are complete. (7)

The Riesz potential IS = (—A)*/2 is an isomorphism from B>? onto B,*~>% and from F,*
onto F° >4, (8)

Theorem (1.1.4) [17]: Letsg > 51,0 <py <p; < 00,0< q,r < oo, If

So —N/Po =1 —n/p;
Then
N RSod _, [SiP
) Bpo, = Ppe
11 0 1
(||)Fp0. - Fpl.
(iii) F;‘(’)q - Ffﬁlp"
Proof: We may assume s, = 0 (cf. (8)).
(i) From the easily verified inequality

lpw * Flli,, < C27Pllg, * flIn, 9)
We get by Holder’s inequality
o * flly,, < C27mA/Po=V/PD I, 5 £, .
This readily gives (i).
(ii) It suffices to take g = oo and ||f||F;%oo =1.By (9)

gy * Flly,, < C2/P0]| 5o = C277/P0,
Po
Therefore for any fixed integer N

N 1/1‘
(vasl% . f|r> < C2"N/P1 < ¢ (10)

If t ~ C2"N/P1 On the other hand, since s; < 0

1) 1/r
<z|2”51¢>v * flr> < C251Nsup|g,, * f| < Ct'~Pr/Posup|g, * f]. (11)
N v v

2



Combining (10) and (11) we get

0 1/r
IIfI sur = jtpl ! {( IZ”Slcpv*fIr> > t} dt
0 -0
<p: ftpl_l {suplcp,, * f| > Ctpl/po} dt < Cj tP1-1
v

0

This proves (ii).
(ili) By (9) it follows that
S0 5 S',00
F '™~ - Bp,
if s —n/p; =s, —n/p’. Hence by interpolation

~S0® ~Sg© ! 00
(Fp?  Fp )ep - (Bp1 By, o,
or by the lemma below
FSOOO N B51po
Po P1

if1/pp=00-0)/p"+6/p”, s;=(1-0)s'"+0s"(0<06<1).
Lemma (1.1.5) [17]: Let 0 < p, q < oo. Concerning real interpolation we have
. 5s',qr »s",.qr _BHSq _ / / o "
(i) (B;Y,B, )eq—Bp ifs=(1—-0)s"+0s'(0<0<1;s #5")
(ii) (F;@,Fg%")ep =F3°,if1/p=(1-6)/p'+6/p"(0<6<1).

{suplg, « £1 > tf| ae
v

Proof: (i) is well-known; see [9]. We do not detail the proof of (iii). Roughly speaking,
one first shows that Fg‘” is a retract of H, (). Then it is just to invoke a vector valued

version of the Fefferman-Riviere-Sagher theorem [4] on interpolation of Hardy spaces.

Now we consider an application of Theorem (1.1.4). Recall the n-dimensional

version of Szasz’ theorem (cf. [9]):
Lemma (1.1.6) [17]: Let f denote the Fourier transform of £. Then

”f”Lp < Cllf”B?z”L(l/p—l/z),p if 0 < P <2

Theorem (1.1.7) [17]: Let0 < p < 2and 0 < q < o.Then

A 1D 1/p
(f IF®|/1g"=P dE) < Clif llgoa.
Proof: Let g = I7(2-P)/P£ By Theorem (1.1.4) :( iii) and (8) we have
I8l gna/p-1/20 < Cllf I goa.

Hence, using the Lemma, we get
18llw, = Clf1lzoa.

which is the desired inequality.

(12)



The duals of B)? and F? may be considered as sudspaces of S; because of (5) and

(6). It turns out that to characterize them exactly if 0 < p < 1is to a large extent just
another application of Theorem (1.1.4).

Theorem (1.1.8) [17]: Lets berealand 0 < p < 1. Then

(i) (859) ~ BZSO/P D2 g < q<1
(i) (BSY) = B WPDY 1 < g < oo
where 1/q+1/q = 1.

Proof: For simplicity we take s = 0. By Theorem (1.1.4): (i) we have

>0q s—-n(1/p-1),1 .
B,” - B, if0<q=s1

ng - Bl_n(l/p_l)’q if 1<gq<o

If we use the well-known fact (cf. [9])
(B ~B* if1<q<o
we therefore find
(i) BL/PD® L (BY) if0<q<1
(i) BP9 (B2) if 0 < q < oo.

In order to prove the converse inclusions we fix a f € (ng)’ with ||f||(B0q), =1.
p

(i) Is a consequence of (i") and

11l yn1/p-1.00 = SUP S%p|(f, 2vn/p=Dp (-—h))| < C-1.
© v

Thus there only remains to verify the second half of (ii). Let {¢,} be a sequence of
testfunctions satisfying in addition to (1) also )., @,, = & (which is on restriction). Then

we obviously have
f =Z(pv*f Ezav-

Assume with no loss of generality that supp d, and supp ¢, disjoint if v # p. (Just
multiply f by a suitable function.) For a fixed integer N > 0 we define the sequence

{bv}11>1=—N by

by (%) = £,27 /P Dlla, |80 0@ —hy), el =1

-n(1/p-1),
B(1/p=1),20

where {h,} and the argument of {¢,} are at our disposal. (That indeed ||av||Bn(1/p_1)_oo <
can be seen in the same way as for (i)). Clearly, in view of our assumption on the supports,



N N N N
f (Z bv) = z f(bv) = Z”av“gn—(ll/p—l).oo<av: szvn(l/p—l)(pv(_ _hv)) = Cz”av”gn(l/p—l),oo
-N N N ® -N ®
= Z(zvn(l/p—1)||a,,||Loo)q’
-N

If {h, } and the arguments of {¢,} are chosen properly. But on other hand

N N N 1/q
f (Z bv> <1-[Ybf| < (Z(Z"”WP‘”IIavIILw)q'>
N —N 50q -N

BP
Hence,

N 1/qr
(Yererman)”) s
-N

and the proof is complete if we let N — oo.

We turn our attention to F;q. To determine its dual almost becomes a triviality when
knowing both Theorem (1.1.4) and Theorem (1.1.8):

Theorem (1.1.9) [17]: Lets bereal and 0 < p < 1. Then
(F;q)' ~ BSTA/PTDe e g < g < o,

Proof: From (2) we deduce that

(k) ~ (B ifa<p

(ng)' - (B;p)’ ifq = p.
Conversely, Theorem (1.1.4) (ii) or (iii) yields

(Bi_n(l/p_l)'l)’ R (F;q)’
Invoking Theorem (1.1.8) we see that the Besov spaces have the same dual and thus also

. Sq.
Fom

(FIS)Q)’ ~ B;s+n(1/p—1),°°_
Let us denote a point x € R™ by x = (x',x,,), where x' € R* ! and x,, € R?.
Identify R™~! with the hyperplance x,, = 0 in R™ and consider the trace operator
Tr: §,(R") » S(R*1)
Defined by
Tr f(x) = f(x",0).



Theorem (1.1.10) [17]: Let0<p<o,0<q<wands>1/p+ max(o, n—-1QA/p-
1)). Then the trace operator can be extended so that

Tr : FSIR™) - B /PP(R™). (13)
Conversely, there is an operator Sr

Sr: BSY/PP(R™1) — F3(R™) (14)
so that Tr o Sr = Id.

Proof: In proving (13) we shall for convenience assume 0 <p <1 (with minor
modifications the same proof also works for p > 1). It also suffices to take q = oo.

Let f € F)3(R™). If q < oo we can extend Tr by continuity, since S, is then dense
in F;q (R™). For q = oo this is no longer applicable. However, for all q we can define Tr by

Tr f(x") =Zq)v*f(x',0) Ezav

VEZ VEZ

where {¢@,},cz IS a sequence of testfunctions on R™ satisfying (1) and ), ¢, =6.
Obviously, it is an extension of our original Tr. That the sum has a limit and thus that Tr is
well-defined.

Lemma (1.1.11) [17]: If f,g € S} and supp f, supp & < {|| < r} then
IIf = g”Lp < Crn(l/p_l)”f”Lp”g”Lp if0<p<1
IIf = g”Lp < ||f”L1”g”Lp if 0 <p< oo

For a proof we refer the reader to [9]. The second lemma is also a result by Peetre
[10] (we shall only need it for q = o0):

Set

@3f(x) = sup |, *f(y)l

[x—y|s27%a
For afixed a > 0.

Lemma (1.1.12) [17]: Letsberealand 0 < p < 0, 0 < q < . Then

1/q
(Zuvs@sﬂq)

Now the proof of (13) is easily accomplished. If {¢;},cz iS sequence of
testfunctions on R™~1 satisfying (1), then

||f||p;q ~

Lp

Trf*cp;=zau*cp;-

VEZ

Consequently,



||TI‘f * (Pv”L p(RP1) = Z ”au (Pv”L b(R71)

Since
(x +y)P <xP +yP
whenx,y > 0and 0 < p < 1. By Lemma (1.1.11) we have

law 04l (goey < 2P, o Nl

witht=1/p+ (n—1)(1/p—1). But

ol n-ry = 27772,

Hence,

2v(s— 1/p)p||(p *TrfII <C Z 2w-W(s-tpoy- “||2“Sau||

uzv—-1

Lp(R™™1) = Lp(R™1)

Inserting this in to the definition of Besov spaces (Definition (1.1.1)) and using
Minkowski’s inequality for sums we find

s sy < € ) 27 wZz 25 a,l} sy < cEz 20,7 oo

v<1

Since s > t. However,

2 n+1

22 U“ZHSaHHL SRy S Z f |2US(puf( xn)”L (R 1)dxn <C

Thus by Lemma (1.1.12)

sup|2“5(p2f|
Lp(R™)

“f” s— 1/pp(Rn 1 = C”f”FS‘”(Rn) (15)

This concludes the proof of (13).

We turn to (14). Now we can take q very small, at least q < p. Let {¢;},ez and
{Y, },ez be testfunctions on R™ ! and respectively, satisfying (1) as well as

D0h=8 W) =272, Wo(0) = 1.

Again in order to avoid some trivial technical nuisances we assume that
Ppx@u*xf=0 ifv#np
Y, *, =0 ifv+p

However, without any loss of generality we may assume that the testfunctions
{@,}yez ON R™ are of the form

(16)



G =G ® ) Uyt ) L@, (17)

psv usv

Put

Sr f(x',x,) = Z 27Hy * f(x) @ Py (xy).
u

Clearly,
Srf(x',0) = f(x).
That is, Tr o Sr = Id. Because of (16) and (17) we see that

Stfx @y =277y * @y f @ Wy, * Uy,

Hence,
1/q]|?
IS¢ FWsagqry < C[|| D127 000+ 0t £ @ iy s [*
Fpl(R™)
v Lp(R™)
© . p/q
<c [ Y (@ am, s w,6w)'| dx
—00 v
with
aU = ZU(S—l/p)”(p:] ES q_),:] * f“Lp(Rn_l)'
Inserting the trivial estimate
Wy * Uy, () | < €27 min(1, (2¥]x, ) 7))
for an arbitrarily large j, gives withr = p/q
© p/q
10 Wy < C [ [ (2P, min(L, @V DD)°| dx,
v

— 00

<C Z (Z (2”"”a5 min(1, (2”‘“)‘jp))1/r>

1

If we use Minkowski again, we see that
I FWsny < € ) a2 < CIFI s ey
v

This is the desired inequality and thus the proof of the theorem is complete.
Section (1.2): Besov Spaces and Decompositions

Many functions or distribution spaces have been found to admit decomposition, in
the sense that every member of the space is a linear combination of basic functions of a
particularly elementary form. Such decompositions simplify the analysis of the spaces and

8



the operators acting on mogeneous Besov spaces Bg‘q, —o < a<+4+00,0<p,q=< 400,
and present some applications of these results.

Defining the Fourier transform by £(¥) = [ f(x)e™*%dx, let {¢,},ez be a family
of functions on R" satisfying

Py, €S (18)
1
supp , € {g € R" : 2 < 2fgl < 2], (19)
_ 3 5
19, =c>0 if T = 27V[E| < 3 (20)
and
10V9,(®)| = ¢, 27V, for every multi- index . (21)

The Besov space B)?, —o0 < a < +00, 0 < p,q < +oo, is the collection of all f €
§'/S (tempered distributions modulo polynomials) such that

1/q
Ifllgga = (Z(zwncpv *fuLp)q) < +oo,

VEZ

with the usual interpretation if @ = +oo. This definition is independent of the family {¢,,}
satisfying (18, 19, 20 and 21); see [26].

We show that each f € B, can be decomposed into a sum of simple building
blocks. The building blocks in our first decomposition are similar to the atoms in the
atomic decomposition of Hardy spaces HP(R") , 0 < p < 1 ([27, 33, 23, 43]). We define
an (a,p)-atom a(x) (—o < a < 4+, 0 < p < +00) to be a function satisfying, for some
cube 9 € R™,

supp a € 30, (22)
|0Va(x)| < |Q|~/m~1/p=I/n if ly| < K, (23)

and
fxya(x)dx =0 if |y| <N, (24)

where K > ([a] + 1); and N > max([n(1/p— 1), —a],—1) are fixed integers. Here
x, = max(x,0), [x] is the greatest integer in x, and 3Q is the cube in R™concentric with
Q but with side length three times the side length £(Q) of Q. In (24), N = —1 means that
a(x) is not required to have any vanishing moments.

We write a, for an atom satisfying (22, 23 and 24) for a given cube Q, and adopt
the convention hereafter that whenever Q appears as a summation index, the sum runs only
over dyadic cubes. Our result is the quasi-norm equivalence



a/p\ V4 j
Ifllgza ~ inf (Z( Z |SQ|p> ) Hf = lim Z SoQg

veEZ \P(Q)=2"" v=—j£(Q)=27"Y

(in §'/S) and each aq is an (a, p)-atom . (25)

In our other decomposition of ng, the building blocks, although not of compact
support, are taken from a fixed, explicitly given family of functions which have simple
properties. Fixed | € § satisfying supp /(§) € {£ € R™ : |g| < m}, [xYa(x)dx = 0 if
ly| <N,and ¢(]) > c > 0if 1/2 < |§| < 2 (N is the fixed integer above). For each v € Z
and k = (kq, -+, k) € Z™, set

O ={x=(x1, ", x) ER": k27" < x; < (k; +1)277, i=1,--,n}, (26)
and define

Po(x) = Q¥ YPY(2Vx — k) ifQ = Qu (27)
We will show that

a/p\ V4 j
Ifllgga ~ inf (Z( D |SQ|p> ) f=lm ) > spenSYS) ¢ (28)

VEZ \(Q)=2"" v=—j £(Q)=2""

In fact, in our representation f = Yo soWg, €ach sy for Q = Q,, is a multiple of the
“sample value” @, * f(xg) for appropriate {¢,} satisfying (18, 19, 20 and 21), where
xQ = 27"k.

After completing the proofs of (25) and (28), we consider the space of functions of
bounded mean oscillation (BMO). Our decomposition (25) of ng corresponds to the
decomposition of BMO given by Uchiyama [42]. We show the analogue of (28) for BMO.

Both of our decomposition methods utilize a discrete version of Calderén’s
reproducing formula ([24, 26]), and a classical result of Plancherel-Pdlya [36]. The
primary difference between these methods is the manner in which a certain convolution is
written as a discrete sum. In (28) this is done on the Fourier transform, or frequency, side
using a Fourier series, while in (25) it is done directly on the time side.

Each decomposition has advantages. For example, we see that the fact that the
(a, p)-atoms in (25) have compact support is convenient for the consideration of “trace”
problems. The well-known result that

TrBSI(RY) = BS™VPIR™Y),  if a—1/p> (n—1(1/p— 1),
IS Immediate, and the result that

TrBy/P' (R = LP(R™™),  if 1<p <+

10



22, 31, 35]) is extended to show that TrB/”*(R™) = LP(R™ 1) whenever 0 < p < +oo,
p
q < max(1, p).

One advantage of (28) is the simplicity of the building blocks s, on the frequency
side. This is exploited to give a very simple proof that ng has the lower majorant property
ifo<p<1.

Calderdén’s formula plays a key role in many decomposition results; it is crucial to
the simplest known proofs of the atomic decomposition of HP(R™), 0 < p < 1 ([23, 43]).
Uchiyama [42], following Chang-Fefferman [25], used a similar formula to show the
BMO decomposition mentioned above. Our application of Calderén’s formula to ng in
general was prompted by recent work of Wilson [44], who used it to obtain (25) for the
case of the “special atoms” space BY*(R'). Another application was made by Cohen [26],
who decomposed the spaces H®®, which are similar to the Besov spaces. Methods not
relying on Calderén’s formula have been used by de Souza et al. [29] to obtain (25) for
B#, 0 < a < 1, on the circle.

A motivation for our second decomposition is the work of Coifman-Rochberg [28],
where Bergman spaces are decomposed into building blocks obtained from the Bergman
kernel. Rochberg-Semmes [39] obtain similar results for BMO. Ricci-Taibleson [37]
employ related ideas to show (25) in R! for & < 0; their work is extended to R™ by Bui
[21].

Lemma (1.2.1) [45]: Suppose f € §'/S and that ¢ and s are functions satisfying

o ES (29)
supp S{€: [§| <m}, suppP < {E:[E <m}, (30)
and
> 0@'9H2 = 1if £eRM(0} (31)
VEZ
If @,(x) = 2""@(2x) and y,,(x) = 2" (2Vx), then
FO=) 27 Y 0y« fFRIOUL( ~27K) (32)
VEZ kezn

In (32), the convergence of the right-hand side, as well as the equality, isin s'/S.

Proof: By (31), we have

f=zq]v*¢)v*f (33)
VEZ
Hence, (32) will follow from
o 9y x FO) =27 ) 9y % FRR(x = 2770 (34)
kezn

To prove (34), we note that ¢, * f is slowly increasing, and hence,
11



8xi

n (S j
fos@ = 0, f@] | (Sm( "J) e 12

If j is large enough. Also, by (30) and the fact that
suppl(sin 6x)/8x]" € [~8, 8], supp f,,5(8) < {§  [§ < 2"}

If & is sufficiently small. We have
fos @) by = @ [ £,(©F, et 35)

Extending §,(£)e*? periodically with period 2V*1m in each variable and representing
U, (£)e*? by its Fourier series, we obtain, by Fourier inversion,

To (et =27 3 i, (x = 27VI0el? (36)
KeZ"
If [€] < 2Ym. Inserting (36) in (35) and using Fourier inversion again yields
fos * e = 27 3" Wy (x = 270f,5(2K0. (37)
kezZn

Letting 6 = 0 in (37) and applying the dominated convergence theorem, (34)
follows.

Lemma (1.2.2) [45]: Let 0 <p <400 and v € Z . Suppose g€ S’ and suppg <
{€: )& < 2U*1} If Q, is defined by (26), then

1/p
(Z sup |g<z>|p> < 2P lgllip. (38)

Kezn “€9vk

Proof: By the Paley-Wiener theorem, g is a function of exponential type 2¥*1. Also, g is
slowly increasing. Let | € S satisfy suppp S {€: [§] <n}and (§) = 1if [§| < 2. If
P, (x) = 2""P(2Vx), and g(x +y) = g¥(x), then, exactly as in the proof of (34),

BOC+Y) = Uy + V(1) = 27 ) 52708 + Y, (x — 2770).
Legn

Therefore, for any y € 9.,

sup |g(z)| < sup |glx+y)| <27 Z g2 +y) sup |¢,(x—279)|.

Z€Qyk lx|<27vVn regn lx|<27YVn
Since y € S,

sup W, (x —2770)| < 2" (1 + |27V,
lxl<2=7

for any M. Taking M sufficiently large and applying the p-triangle inequality |a + b|P <
la|P + |b|P if 0 < p < 1 or Holder’s inequality if p > 1, we obtain

12



sup [g(z)|P < c, z g2 +y)(1 + |¢)) ™t

Z€EQyk IA=VAL

for any y € Q.. Integrating with respect to y over Q. yields

2" sup [g@P <y A+ [ IgGPax, (39)

€
=€k Lern Qv k+¢

Summing over k € Z™, we obtain

27 3" suplg@IP < ¢, llgllp ) (L+ 18D < ¢, gl

Kezn 29k L€T
which proves (38).

Remark (1.2.3) [45]: An alternate way of proving Lemma (1.2.2), which has the
advantage of making the connection with Hardy spaces more obvious, is to observe that

sup |g(y)| < inf N,(g)(2),
YEQuk Z€0vk

where N,,(g)(z) = sup |g(y)|. Hence
lz—yl<2=VV/n

1/p
(Z sup |g(y)|p> < 27PN, () -

keZn yEQ‘Uk

Since suppg < {€: [§] < 2¥*1} , (37) follows from the well-known inequality
IN,(@)]le < cliglle ([5, 27, 32, 41]); if in addition g(¥) = 0 for |§| < 2V~1, this is
essentially a restatement of the fact that ||g||.r = |lgllge.

In addition to (38), Plancherel-Pélya [36] that the inequality

1/p
llglle < cp,nZ‘”"/p (Z inf |g(z)|p> (40)
ZE€EQyk

kezn

holds as well if supp g € {€ : || < £2V*1} for ¢ sufficiently small. A proof of this can be
given, using Lemma (1.2.1) in a manner similar to our proof of Lemma (1.2.2). A more
precise statement can be obtained from an interpolation formula in Boas, [20].

Our main decomposition theorem for Bj* now follows readily from Lemmas
(1.2.1) and (1.2.2).

Theorem (1.2.4) [45]: Let —oo < @ < 400, 0 < p,q < +oo. Then each f € B;? can be
decomposed as follows:

(D) f = Zvez Ze@)=2-» SoWo.
where the yi,’s are defined by (37), and

() f = Xvez Zf(g)zz-v SgQg
where the ay’s are (o, p)-atoms.

13



In both cases the convergence is in §'/S and the numbers s satisfy

a/p\ /P
<§K Z:hﬁj ) < cllf llgeo (41)
VEZ \£(Q)=2""

for some constant c independent of f.
Proof:

(i) Our assumption on Y imply that there is a function ¢ satisfying (18, 19, 20, 21) forv =
0, and such that (31) holds. By Lemma (1.2.1),
FO=) > @u s fFRMIO2MEIDY, ()

VEZ KEZM

For Q = Q,x, define
so = 2vM@/M=1/P g« £(27VK). (42)
Clearly f = Y9 soPg, and (40) follows easily by applying (37) to ¢,, * f.

(ii)Select a function 8 € § satisfying supp 6 C {x : |x| < 1}, [ x¥Y0(x)dx = 0 if |y| < N,
and 8(¥) > c>0if1/2 < |g| < 2. (Such a 6 is easy to construct: let ® € S be a real-
valued radial function satisfying supp® € {x : |x| < 1} and ©(0) = 1. Then for some
e>0,0(8) = 1/2 for all € satisfying |§| < 2e < 1. Then 8(x) = (—A)N(e ™0 (x/¢))
satisfies all of the requirements.) Our conditions on 6 guarantee that a function ¢ exists
which satisfies (18, 19, 20, 21) for v = 0 and so that (31) holds. Therefore, if 0,,(x) =
29 (2Vx),

f=ZBV*‘P”*f=z z fev(x—y)%*f(y)dy

VEZL VEZ £(Q)=2""Y ¢
Define, for @ = Q,x,

g = L2/ supley, « f ()| (43)
yE

and
1
ag(x) = %f 0,(x —y)o, * f(y)dy
Q

Where C is a constant, picked large enough so that every ag satisfy (23). The ag’s
are (a, p)-atoms, since (22) and (24) are consequences of our requirements on 6. Finally,
(41) follows from Lemma (1.2.2) exactly as in (i).

Remark (1.2.5): There is a simpler proof for p > 1 of Theorem (1.2.4) (ii), which does
not depend on Lemma (1.2.2). Replace (43) by

1/p
sg = ClQ[~/™ (flcpv *f(y)lpdy> (44)
Q

14



(cf. [42]), and continue with a,(x) = (1/sg) J,85(x =)@, * f(y)dy as above. Then (23)

follows by Holder’s inequality if C is a large enough constant, and (22) and (24) follow as
above. With this definition of sy, (41) is trivial.

In each of our decompositions, sy, for Q = Q,, is determined by the values of ¢,, *
f on Q.. Up to multiple factors, s in (43) is the sup of |¢, * f] on Q.x, sg in (44) is the
LP -average of ¢, * f on Q.. And in (42) sy is the sample value @, * f(27"k). By
Plancherel-Polya, (38) and (40), these values are roughly interchangeable.

We call a function m an (a, p)-molecule if there exist u € Z and a point x, € R™ such
that

|0Ym(x)| < 20M/P=a+lYD(1 4 28 |x — x,[) M-IV if |yl <K (45)

and
jxvm(x)dx =0 if |yl <N, (46)

Where M is a large, fixed number; M > N + 10nmax(1/p, 1) is certainly enough. We
recall that K > ([a] + 1), and N = max(n[(1/p — 1), — a], —1) are fixed integers.

For each p € Z, let {xm}j be an arbitrary sequence of point in R™. We will write
m = m,,; if m satisfies (45, 46) for x, = x,,;.

We will use the notation m,, for an (a, p)-molecule which is in fact concentrated on
the dyadic cube @ = Q,, , (defined by (26)); i.e. m, satisfies (45, 46) with £(Q) = 27" and
Xo = X9 = 27H¢.

This distinction in notation is adopted to emphasize the fact that our estimates
require the (a, p)-molecules to be in correspondence with the dyadic cubes only if 1 <
p < +oo.

Theorem (1.2.8) [45]: Let —co < @ < 40,0 < q < +00.

(@) Let 0 <p < 1. Suppose f = X ez XjSujmy;, Where the m,;’s are (a, p)-molecules,

indexed as above. Then
q/p
||f||ng <c z <Z|Su.i|p>
j

UEZ

1/q

(b)Let 1 < p < +oo. Suppose f = X, ez Xe(g)=2-1 SgMg, Where each my is an (a,p)-
molecule concentrated on Q. Then

a/p\ /4
p
Ifllgge < c Z( > |sQ|> .
MEZ \(Q)=27H

In both cases the constant c is independent of f.

Proof: To prove (i), we write

15



T maee(5 0 % |Tem

UEZ j p=—00 p=v+1

and use Lemma (1.2.7) below and the p-triangle inequality |a + b|P < |a|P + |b|P to see
that

”f”quq SCZ( z 2-W-W (K- a)p2|s il )

VEZ \ p=—o00

z< z 2~ (u—v)(N+1+n— n/p+a)pZ|S J| )

VEZ \ p=v+1

The proof of (ii) is similar. If p > v we apply (47) and Lemma (1.2.8) with p = v,
and if p < v we apply (48) and Lemma (1.2.8) with n = y, to obtain

v 1/p q
—(1— _ p
11l e Scz 2 2--wK “)< z |so| )
P 2(Q)=2-1

VEZ \ p=—o0

Ie%) 1/p d
=y Z_m_v)mﬂm)( 5 |sQ|p> |
VEZ \ p=v+1 £(Q)=2"K

Now K—a >0 and N+ 1+ a > 0 by definition, so (ii) follows by considering
q = 1 and q < 1 separately, similarly to the proof of (i).

Lemma (1.2.7) [45]: Let m,; be an (@, p)-molecule. Then

N+1+n-M
H]D e

|y * my, ()| < 2#OV/Pm@=(=INHIF (7 4 2V |x — x (47)

if v <y, and

N+1+n-M
HJD e

g0y ()] < 240020 (14 24— x, 49

ifpu<w.

Proof: Consider (47) first. By translation and dilation invariance, we may assume v = 0
and x,; = 0. Putm = m; and ¢ = @,. By (46),
@ *m(x) = f m(x —y) (cp(y) - z Polx) (y - x)B/B!> dy.
IBI=N

Hence,

lp *m(x)| < < f + f )Im(x—y)IIx—y|N+1CI>(x,y)dy=I+II
lx=yllx|/2  |x=yl>|x|/2

16



where @(x,y) = sup sup |63(p(x+s(y—x))|/[3! . Since €eS§ , Plxy) =
IBI=N+1 0<e<1

(1 + |x )N+ "Mif |x — y| < |x|/2. Using this and (44),

I<c j ImCx — Pllx — yIN*1dy (1 + [xN+1+n-M
< 2K (14 2Hy) My PNy (1 + [NV
< Czu(n/p—a)z—u(N+1+n)(1 + |x|)N+1+n—M
Since @ is bounded,

11 < f Im(x — y)||x — y|N*1dy < c2r®/p-® (1 + 2%|x — y)™M|x — y|N*1dy

[x—yl>[x|/2 [x—yl|>|x|/2
< Czp.(n/p—a)z—u(N+1+n)(1 + |x|)N+1+n—M

by (45). This proves (47).

Now (48) follows similarly by reversing the role of ¢ and m in the above proof. By
(19), @ has moments of arbitrary order; we subtract a Taylor polynomial of degree K — 1
from m in the convolution ¢ * m(x) and use (45) with |y| = K.

Lemma (1.2.8) [45]: Let 1<p<+4c0 and wn€Z, n<p . Suppose F(x)=
Y s(0)=2-+ Sofo (x), Where

fo ()| < 280/P=) (1 4 2|3 — xp[)

1/p
|SQ|p> 2 (u-mn

Then

IFllLe < CZ‘“"‘<

@)=z

Proof: By our assumption on the f;’s,

IFIg <c ) 2-"n<2“<”/p-“>

p
5oL+ 21 |))
o(S)=2-H

2(Q)=27H

where {S} are the dyadic cubes of side length 27". Determine k, £ € Z™ such that xy =
27"k and xg = 27"¢, and sy = sy in this case. Then by Young’s inequality,

p
IFIE, < c2mver ) (Z Isic (1 + 21 ¥k - m-n-l)
LEZ™ \KeZn

p
< ez (Z |sk|p> (Z (1+ zn-uwn-”-l)

kezn LELT

< 2 Hap ( Z |Sk|p> 2~ (-wnp
£(S)=2"H

which prove the lemma.
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We should perhaps note that an immediate consequence of Theorem (1.2.6) is that if
q < oo, our representations of f € B;? in Theorem (1.2.4) converge to f in BJ (quasi-
norm). This may also be seen directly from the proof of the decomposition.

The functions Yy and ay in Theorem (1.2.4) may be taken to have any fixed
number of vanishing moments (or infinitely many, in the case of {s5). Conversely, though,
in Theorem (1.2.6) the assumption that m,;, or my, has at least N = max([n(1/p —
1), — «], —1) vanishing moments cannot be improved. For 0 < p < 1, this follows from
the general fact that any f € B;? satisfies |/ (§)| < c[g|**/P~2%; the same holds with o =
0 for f € HP.

A consideration of (45) leads to a remark about the atomic decomposition of
HP(R™), 0 < p < 1. A distribution f € HP(R™) satisfies f = ),; A\;a; where Y;|A;|P <
cllfllgp and each “p-atom” a; satisfies [xYa;(x)dx =0 if |y|<[n(1/p—1)],

supp a; € Q; and ||la; |l < 1Q;]~/P, for some associated cube Q; € R™. Clearly, if a; also
satisfies

[x¥a;(x)| < |Qq|~V/p=/n (49)

for |y] =1, then a; is a (0,p) -atom. The condition )} ;|A;|P < oo is precisely the
summation condition on the coefficients {s,;} in our decomposition of B. Since B &
HP for 0 < p <1, we see that it is not possible in general to obtain the smoothness
estimate (49) for |y| = 1 in the atomic decomposition of HP (R™). In our decompositions
of ng. however, our building blocks are C* and may be taken to satisfy (45) for an

arbitrarily large K. In particular, then, for 0 < p < 1, the space
{Z Aa; leilp < oo, each a; is a p- atom satisfying (49)for |y| < ]}
i i

is either HP, if ] = 0, or ng, if] > 1.
The space of functions of bounded mean oscillation is defined by

1
I

where the sup is taken over all cubes I € R™ (not necessarily dyadic), and f; =

/I . f.

For a sequence {sQ}Q, indexed by the dyadic cubes, define

1/2
1 2
lsobll, = sup <mgzg|59| IQI)

||{sQ}||; is equivalent to the Carleson norm of the measure ZQ|SQ|28( , where 8,y

is the point mass at (x,t) € R}*L,

18



Uchiyama’s decomposition of BMO functions into (0, c0)-atoms [42] shows the
close relation between the - and BMO-norms. Recall that a (0, c0)-atoms ag, for some

cube Q, is a function satisfying supp ay € 39, |8¥ay(x)| < £(Q)~M for |y| <K, and
[ xYag(x)dx = 0 for |y| <N, where K>1 and N > 0 are fixed integers. Uchiyama’s
result that

Ifllgmo = inf{”{sg}”p t f = Z Soag (in §'/C), where each a is (0, ©)-atoms; (50)
Q

(In [42], it is in fact the L2-, rather than the (S’/C)-, version of (50) that is stated.) Clearly,
(50) is the BMO-analogue of Theorem (1.2.4) ii).

The following theorem gives a decomposition of BMO corresponding to Theorem
(1.2.4) (i).

Theorem (1.2.9) [45]:

a) If f € BMO(R™), then there exists a sequence {so}, satisfying [|{so}{| , < cllfllzmo
suchthat f = }psog (in §'/C), where y, is defined by (27) with « = 0 and p = oo.
b) Conversely, suppose m, satisfies [ mq(x)dx = 0 and
|0Vmy ()| < £(Q)~M(1 + £(Q) 7 |x — x])
if |y| < 1, for each cube Q € R™. If {sQ}||p < oo, then Yo soWg converges in §'/C
and weak-* in BMO (regarded as (H')"), with [|Zgsowo |, < cll{so}l -

-n-1-1y|

Proof: The proof of a) is a direct application of the methods above. By Lemma (1.2.1),
f = Yvez Lkezn @v * f (27K, (x) (in '/C). Set sg = @, * f(277k) if @ = Q. It is
enough to prove that

27"y * f(277R)I2 < cl]lllf IIEmo (51)

v,k:QpkE]
for every dyadic cube J.

In (51), we may clearly assume ] = [0, 1]™. We apply the estimate (39) of Lemma
(1.2.2) to o, * f. (This is appropriate here because (39) is a nearly localized version of
Lemma (1.2.2).) This gives

[00] [00]

D N e f@E Sy > Y Al [ lgyn P

v=0 ke[0,2v)n v=0 kE[0,2V)" €L
(ee]

—cy D Y aklk=r [lo,fP
Qvr

v=0 k€e[0,2Y)" rez™
co

=c) > Alk=tD T [l £

v=0 ke[0,2Y)™ meZ™ r:QyrSQom Q

Qv,k+£’

We claim it if @, S Qom, then Yyepo2vyn(1 + |k — r)™" !t <c(1+ |m])™. For |m|
small, say |m| < 10+/n, this trivial; if [m| > 10+/n, then
19



Ir| > 2" m| > 5 2%V/n > 5[kK]|,

so that

I+ |k=rD™ <2 Im|)™ ! < c(1+ m])" 1.
ke[0,27)n

Hence, using this in the inequality above,

iz—vn Z ICPv*f(Z‘”k)IZSciZ Z (1 + [m[)~1 flcpv*flz
v=0 k

€[0,27)n v=0 m€EZ" r:QyrSQom Qur
< CZ Z (1+ |mp)—"1? _[|(Pv * f12.
v=0 meZ" Qom

Therefore (51) is reduced to

> [ 100+ 11 < clifliuo, — for @ = Qon,m € 7" (52)

v=09

The proof of (52) is standard (see [5]). Writing

f=/fs+ (f - fSQ)XSQ + (f - f3Q)X1R"\3Q =fHitf+/fs
f1 contributes nothing to (52), while

> [lous st < [ Y10lIAF < sl < cllf o

v=09 R v=0
For x € Q, we have the pointwise estimate

lpy * f5 ()| < f 2 f = f3|(1 + 27 |x —y)™ ' dy < c27lIf llzmo
R™\30Q

[5]. Altogether, this implies (52) and completes the proof of (i).

In (i), the convergence of f,, = Y.yg)<am Sgmg In §'/C, to some f (see [45]). If
sup||finllgmo = A < +o0, then | [ fi,h| < cAllh||y: for any h € H' 0 S such thath = 0 in
m

neighborhood of the origin. It follows that | [ fh| < c||h||,: for these h, so that || f||gmo <
cA and f,, converges to f weak-* in BMO, by the H1- BMO duality theorem [5]. Therefore

we need only to prove || fillsmo < c[[{so}l,

The proof of this is contained in Uchiyama’s work in [42]. By Lemma 3.5 of [42],
each my, may be written my = Y2, 271+ m, ., where

suppmg; € 29, ||Imgf| . <c274(Q)7",  and f mg;(x)dx = 0.
Then Lemma 3.4 of [42] implies that [ Yscy<zm somgjl ,,, < <2 |[{so}| ,- Therefore
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2, some

£(Q)s2™

< z 2-j(n+1)
=0

We may note that the proof of Theorem (1.2.9) shows that

Z oMy

Q

<) 2Hsoll, = clisoll,

BMO BMO

1 1
2 2
1 1
Ifllemo = sup ] Z 277" suple@y, * fI> | = sup 5] z jl(pv «f12] (53)
S dyadic gpres Ovk S dyadic v=—Tlogy £(S) 3
This should be compared with (38), with Theorem 3 (iii) of [5], and with the definition of
the B, norm.

Now let f € Bj®. In Theorem (1.2.4) ii) we obtained sy and ag such that f =
Y0 S Where supp ay € 39, [0¥ay(x)| < [Q|¢/m~V/P=WI/nif |y| < K, [xYay(x)dx =

0if |yl <N, and
a/p 1/p
Z( > |sg|"> < cllflgsa.
VEZ \(Q)=2"V

Write x € R"as x = (x',x,,), x’ € R" 1, x, € R, and let t: R™ - R""! be the natural
projection Tt(x) = x'. For each dyadic cube j in R"*~1 we set

= z |sQ| and hj(x’) = z sgag (x',0)/1;.
9:m(Q)=] 2:m(Q)=]
39N]=0 39N]=0
The restriction, or trace, of f to R is now
e =) ) hyx) (54)
HEZ £(J)=27H
Whenever the sum converges in 8’ /P. Clearly,

1/q

a/p
Z( > |t,|"> < clllga (55)
UEZ \£(J))=2"H
supp h; € 3] (56)
and
|6Yh](x’)| < |J|(@-1/p/(=1)=1/p=lyl/(n=1) jf |y| < K (57)

since [Q] = [J|™V if w(Q) =]. In other words, each hy satisfies all the requirements
for an (« — 1/p, p)-atom except possibly the moment condition (24). However, for a —
1/p>Mm-1)(1/p—1),, an (a — 1/p,p)-atoms in R* ! is not required to have any
vanishing moments. In these cases, then, by Theorem (1.2.6) and (55),
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”Tr f”Bg—l/pJQ(Rn—l) < C”f”]'ggq(Rn) (58)

Although Tr f in (54) is expressed in terms of the decomposition of f € ng([R{")
given in Theorem (1.2.4) ii), it is clear that Tr f(x") = f(x’,0) if that decomposition
converges absolutely and uniformly. This is the case, for instance, if f € B . In
particular, if f is any function of the form f = XN__\ p(0)=2-v Agbg, Where Sgp|7\Q| <

+o0 and by,’s are (a, p)-atoms satisfying [ by (x)dx = 0 and [8Vb(x)| < £(Q)@ /P=I¥D,
ly| < 1, for some a, p, M, N then f € B! and hence Tr f(x’) = f(x',0). Since such sums
are dense in B for q < +oo, by (58) the map Tr : BJ(R™) — Bg_l/p‘q(]R”‘l) is the
unique continuous linear extension to ng of pointwise restriction operator if « — 1/p >
(n —1)(1/p — 1),. Moreover, Tr extends the restriction operator for By as well, since
the inclusion B¢ < B5°" + B*" holds whenever a, < a < a;.

It is easy to see that the trace map Tr above is onto Bg_l/ PA(R™1), since any
h;(x") satisfying (56, 57) can be obtained as the restriction of an (a,p)-atom a,(x).
Hence, we obtain the known fact (which is classical if p>1) that Tr Bj4(R") =

Bg_l/p’q(R"‘l) when a —1/p > (n —1)(1/p — 1), (cf. [17, 41]). The failure of this
result fora —1/p < (n—1)(1/p — 1), is clearly due to the failure of the hy’s to have

vanishing moments, which is first necessary at this critical index.

The existence, or non-existence, of the trace of ng Is equivalent to the question
whether we can make sense of the sums in (54) whenever (55, 56, 57) holds, since any
such expression can arise from a suitable f € BJ¥(R™). It is not difficult to see that the

sums in (54) always converge, and thus the trace exists, in s'/S, ifand only if a — 1/p >
mn-1DA/p—1;ora—-1/p=n-1)A/p—1); and 0<q<1. This is also
previously known ([35], [41]).

Suppose now 0 <p<1. When 0<a-1/p<(n—-1)1A/p—-1), a—1/p=
(n—1)(A/p—1)andgq>1, ora=1/p,q=<p, (54) does not necessarily converge in
§'/S, but does not converge in LP + L*°(R™"1). This was observed in [17], and me be
seen readily from (54, 55, 56, 57). This is best possible in the sense that the sums (54) do
not necessarily converge in LP + L* whena — 1/p < 0ora = 1/p,q > p. Let us show
this, for example, in the case « = 1/p, q > p.

Pick a sequence {tu}:’=2 € £9\£P (since this is not our usual convention, in c,\#P if
q = +o0) and a collection {]u}:’:Z of dyadic cubes satisfying J, < [0,1]"7%, £(],) = 27%,
and 3], N3], =@ ifu+v. Sett;=t,if]=],and t; = 0 for any ] ¢ {]”}p=2' Let {h]}I

be functions satisfying (56, 57) and, in addition, h;(x") > c|]|71/P if x’ €], for some
small constant c. Then

a/p\ /4 - 1/q
z z |t]|p = Z'tulq < +x,
HEZ \£())=27H p=2
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and it is clear that Y,z X,q)=2-+tjh; would arise as the trace of a suitable f €
Bél/p)q(]R{“) if the trace operator were continuous. But if we let hy = Y\_, ¥ oj)=2-u tjhy

1/
for large N, then supphy < [0,1]™"1. Hence, |lh,|lpsre = cllhyllpe = c(25=2|tu|p) b
which can be made arbitrarily large. Therefore the sum ), t;hy cannot converge in LP +
L.

We know from above that the trace of ng(]R{") in the limiting case @ = 1/p exists
in LP + L®(R™ 1) only if 0 < q < min(1, p). In fact, we then have the following result.
Theorem (1.2.10) [45]: Let 0 < p < 400, 0 < q < min(1, p). Then

Tr Bl()l/P)Q(Rn) — Lp(Rn—l).

Proof: It is easy to verify that the sums in (54) converge in LP(R™1) if f €
B{/PI(R™),0 < q < min(1, p), and that Tr is bounded from BS'/P9(R™) to LP(R™).

To show that Tr is onto LP, it is sufficient to show that each h € LP(R™ 1) has a
decomposition

h(x') = Z Z t]h](x’)
HEZ £(J)=2"H

where the h;’s satisfy (56, 57) with @ = 1/p, and

1/q

q/p
It|” < cl[hllyo(gn-
J = LP(R™"1)
HeZ \£()=27#

To prove such a decomposition, start by picking a ® € C°® satisfying supp ®@ < [0, 1] 2,
0<®<1,and||1—®|pjn-1y < min(1/5,(1/5)P). If

J={x:k2™<x; < (k;+1)27H i=1,-,n—1}
put
h;(x") = CP(2Hx’" — k)2Hm-D/P (59)
where k = (k,, -+, ky,_1) and C is chosen small enough for h; to satisfy (57).

Fix a non-negative h € LP(R™1); it is enough to prove the decomposition for such
functions.

By choosing the side length 27%1 small enough, it is possible to find that a simple function

e;(x") = Z r]X](x’)
£(J)=2"M

such that e; =0 and ||h —ell.p < min(1/4,(1/4)Y/P)|Ih|l,p . we define the smooth
version
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g, (x") = z t;h; (x"),
t()=27M1

where the h;’s are given by (59) and t; = ;27" (~1/P /C with the same constant C. If we
set D = max(5/4, (5/4)*/P), then

1/p
< > Itll"> = lleylle/C < Il p/D (60)
t(N=2"H

and we picked @ so that [le; — &;|lp < min(1/5, (1/5)*P)|le,||». Hence,
lh —&llp < IIhllLp/2 (61)

If this process is repeated with h replaced by h — &;, we obtain &, = }.,j)=2-12 tjh; such
that

1/p
p ~
> I5P) < lih—ille/D < linlle/2D
t()=27M2

and
|lh — &, —&,|lpp < ITh —84llpp/2 < ||h|lp/4

by (60). We can also arrange so that p, > p,. Continuing this process inductively, we
obtain the functions &; = ¥,jy=2-w tjhy, i = 1,2, -+, satisfying

1/p
z t]°] < lihllw /201D (62)
e()=2"M

m
i=1

and p;,.; > u; for every i. The required decomposition of h is h(x") = };2, &;(x"). By
(63) this sum converges in LP and by (62),

< 2_m”h”Lpr m = 1! 2! (63)

LP

1/q

o q/p

p
z z | < clhll,p.
i=1 \£(PD=2""

Theorem (1.2.10) was previously known when 1 <p < 4o and q =1; see [33, 35,
31,22].

A space X of tempered distributions on R™ is said to have the lower majorant
property if, for each f € X, there isa g € X such that

If®|<8®, ifter” (64)
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and

lgllx < cllfllx

with c independent of f. For instance, the Hardy spaces HP(R"), 0 < p < 1 are known to
have this property; LP(R™)(p = 1) has the lower majorant property if and only if p = 1 or
p =2k/(2k—1),k =1,2,3,:-- References can be found in [34] and [19].

For a space X € §'/S§, the definition of the lower majorant property is as above,
except that the origin is excluded in (64). For BJ9(R™), the following theorem is an
Immediate consequence of Theorem (1.2.4) i) and Theorem (1.2.6) i).

Theorem (1.2.11) [45]: Let —o0 < @ < 40,0 < g < +00. If 0 < p < 1, then B;? has the
lower majorant property.

Proof: By Theorem (1.2.6) i), each f € B, has a representation f = ¥ s where

a/p 1/a
p
S5 k)] et
VEZ \(Q)=2"Y

The Yy’s are defined by (27); up to a multiple, the are obtained by translating the dilates
of a fixed Y by xo = 27Vk. We choose, as we may, { so that 0 < P < 1. Ifweputg(x) =

Yvez Le)=2-v|So|Wo (x + xo) we then have |f ()| < &(?).

Now since 0 < p < 1, it does not matter that the building blocks Yo (x + x4 ) are
not evenly scattered. Indeed, by Theorem (1.2.4) i), we obtain

a/p 1/q
p
lgllgea < c Z( > |sg|> < cllf a0
VEZ \(Q)=2""

It is not difficult to prove analogues of Theorems (1.2.4) and (1.2.6) for the
inhomogeneous Besov spaces ng(Rn), —o00 < @ < 400, 0 < p,q < +oo. To define these
spaces, let {¢, }o=, Satisfy (18, 19, 20, 21) and let ® € § satisfy

suppPc{€:1§<1} and DE) =>cif | <5/6 (65)
Then B, % is the set of f € §'(R™) such that

) 1/q
Ifllgga = 11+ Fllup + (Z(zmncpv *fan)q) < +oo
v=0

This definition is independent of the choice if ® and {¢,,};~, (see [26]).

Suppose ¥ € S satisfies suppP S {€: [§| <n}and P(®) =>c>0if [ < 1. We
have then the following decomposition results.

Theorem (1.2.12) [45]: Let —co < a < +o0 and 0 < p,q < +o.
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a) Each f € By can be decomposed as follows;

) f() = Xkezn sk (- —K) + XpZo Xegy=2-vSqWo (),
Where the i, ’s are defined by (26), or

i) f = Ykezn Skbk + Xoso Xe(g)=2- Sgdg;

Where the ag’s are (a, p)-atoms, and the by ’s satisfy supp by € 39 and [0Yby (x)| <
1if |y| < K. In both cases the convergence is in §’, and

1/p o a/p\ V4
p
(Ssr) (X[ Y ) ) g
kezZn v=0 \£(Q)=2""

with c independent of f.

b) Conversely, suppose f = Yxezn SkMk + Xz Le(g)=2-v SoMg, Where each my is an
(a, p)-molecule concentrated on Q, and each my, satisfies
0Yb ()| < (1 + |x —kP~™M if ly| <K
for some sufficiently large M. Then

el 52

kezZn v=0 \(Q)=2""
For 0 < p < 1, the conclusion of b) holds even if the my’s and my’s are not centered
near k and Q, respectively.

To prove (i), one obtains @ € § satisfying (65) and ¢ satisfying (18, 19, 20, 21) for v =0
such that

BEOPE) + Z 32OPQ2YE) =1  forallE € R
v=0

and proceeds as in Lemma (1.2.1) and Theorem (1.2.4). The proof of (ii) uses the
inequalities above and similar estimates, not requiring the assumption of vanishing
moments, however, for ® and my,.

The results above also have analogues for ng . The standard result that
Tr Bf(R™) = BL /PY(R™™) if a—1/p>(@m—-1(1/p-1),, and the analogue of
Theorem (1.2.10) that Tr BS/P(R™) = LP(R*™) if 0 < p < +o0 and 0 < q < min(1, p),
follow from Theorem (1.2.12). Also, remarks about the non-existence of the trace in S’ or
in LP are analogous. Further, ng is proved to have the lower majorant property if 0 <
p<1

The decompositions in Theorem (1.2.4) provide a natural approach to many of the
well-known properties of the Besov spaces, including the standard embedding and
interpolation results. Also, they yield a way of comparing the Besov spaces to other spaces
known to have a decomposition, such as HP, 0 < p < 1, or LP. On the other hand, the
main distinction between the building blocks obtained in the decomposition of LP
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(Theorem (1.2.10)) and the p-atoms for HP, or the (0, p)-atoms for ng, is that no
vanishing moments are assumed in the case of LP. It would be interesting to clarify the
relation between B2P and LP, HP and LP, and B_” and HP, by determining the interpolation
spaces between each of these couples.

There are a number of directions could possibly be extended. It is straightforward to
obtain decompositions similar to (25) and (28) for Besov spaces defined with respect to a
measure satisfying the doubling property. In the case of the polydisk, as well, the results
generalize in an obvious way. Since the machinery necessary of Calderdn’s representation
formula has been developed by Folland-Stein in [30] for appropriate homogenous groups,
it should be possible to extend our approach to this setting. In the case of more general
domains in R™, it may be natural to define Besov spaces for a > 0 via the atomic
decomposition. This point of view might be useful in the study of differential equations on
these domains (cf. [41]), especially since trace Theorems are easy in the atomic context. In
the proof of Theorem (1.2.4) (i), it would be interesting to replace the Fourier series
expansion with a representation in terms of other bases in L?, for example certain sets

{e”‘k"}k, or the eigenfunctions of some differential operator other than the Laplacian.

Similarly, it may be possible to replace Fourier series by appropriate group representations
In more abstract settings.

Now, After a normalization and reindexing, we obtain an expansion of the form f =
il Wiw;, with || ;]| 2 < c. The key aspect of this decomposition in our treatment of
Besov spaces is that the norm of f is equivalent to the appropriate sequence space norm of
the coefficients (f, ;). Although the expansion is not orthonormal, it has many of the
advantages of an orthonormal expansion. It follows directly from the identity f =

Y W that [|fll 2 = (Cil{f, w:)1?)Y2. Applying this to y; gives sup Zi|<¢j’¢i>|2 <
j

c, which is an almost orthogonality property. Writing an operator T in the form

Tf = ) (T W = ) (F T b
i L

effectively reduces the study of T to the study of the matrix {(quj, q;i)}.

Suppose {;}; is a quasi-orthogonal family, or that the matrix {(y;, W)} is bounded
on #2, and in addition that i = Xi{W;, Wiy, for each j. Then clearly the operator P

defined by Pf = Y ,{f, y;)U; is a bounded projection onto #, the closure of the span of
{W;};. Also we can write

1700 = ) [ FOBE i) = [ Keuy)f @)y

for K(x,y) = 3;W,(y) g;(x). This is reminiscent of the Bergman and Szegd Kkernels
except that ;s are not necessarily orthonormal. If the s;’s are sufficiently localized, as in
Lemma (1.2.2), then for f € H the identity f = ).;,{f, y;){; can be used to prove an
analogue of Plancherel-Pélya.
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Chapter 2
Characterization of the Besov-Lipschitz with Some Properties

We show a multiplier theorem of the Mikhlin type, extending the one by Triebel and
Lizorkin. We complete the characterization of the weighted Besov-Lipschitz and Triebel-
Lizorkin spaces. We give the boundedness of some operators which including pseudo-
differential operators of the Hérmander class.
Section (2.1): Spaces of Triebel-Lizorkin Type

We study certain spaces of distributions F? = F(R™) where s real, 0 < p, q < co.
They are intimately related to certain spaces studied by Triebel [15] and Lizorkin [63]
which says that the spaces do not depend on the special sequence of test functions
{¢@,}yez. This extends Triebel’s corresponding result. But we have to give an entirely new
proof, relying on two deep results by Fefferman & Stein: 1° their real variable
characterization of the Hardy classes H,[5], 2° their sequence valued version of the Hardy
& Littewood maximal theorem [60]. (Incidentally it follows from [5] that F)* = H,, if 0 <
p < oo while as F3?2 = B.M.0.!) As an application we prove a multiplier theorem of the
Milkhlin type, extending the one by Triebel and Lizorkin. We also give an application to
approximation theory related to a theorem of Freud’s [61]. Finally we briefly indicate how
the result might be extended to the case or a Riemannian manifold.

By L, where 0 < p < co we denote the space of measurable functions f = f(x)
(x € R™) such that

11, = (| FFa) <

By £9 where 0 < g < oo we denote the space of sequences t = {t, },z such that

1/q
lellee = (Zw) <o,

VEZ

We consider also spaces of sequence valued measurable functions L,(#9) and
£9(L,, ), defined in the obvious way. If 1 < p, q < oo these are all Banach spaces, in the
general case only quasi-Banach space.
By § we denote the space of rabidly decreasing functions in R™ and by S’ the dual space
of tempered distributions.

We denote a sequence of test functions {¢,},cz, With @, (x) = 2" ¢@(2"x), where
¢ € S with supp @ = {271 < |§] < 2}. For convenience let us also assume that {¢,,},cz is
normalized in the sense that

Y@, =1 (or Y ¢, =5)

VEZ VEZ

We can now define the principal spaces.
Definition (2.1.1) [66]: Let s real, 1 < p, q < co. Then we set (poised spaces of Besov

type) .
By'(a) = {fIf €S’ & {2"5(1 + 2*|x)*@, * flez € £9(Ly )}
We quip B, (a) with the quasi-norm
I lgsacay = 121 + 212Dy * foczlleae, )
If a = 0 we simply write B;q(O) = B;q(Besov space).
Let us now rapidly state some properties of these spaces which can be proven in a
more or less standard way (cf. [15]).
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(i) The space F,* and B)?(a) are complete. The embedding from S and into S’ are
continuous. They are thus quasi-Banach (Banach if 1 < p, q < oo) spaces of tempered
distributions.

(ii)S is a dense subspace of F;* and B} (a) if 0 < p, q < o.

(iii) We have embedding theorem, e.g. the embedding B)(a) - B!¥(a) if s —n/p =
S1 —n/p1, S =51,9 < q. ,

(iv) We have duality theorems, e.g. the duality (F;q)' ~ F;,Sq if1<p,q< o,

We have the following elementary result.
Lemma (2.1.3) [66]: Let u be any C! function on R™ and let 0 < r < o. Then we have
the inequality
u™ < C{8TVT(Mun)YT + §(Vu)*}, §<1

Where M denotes the Hardy & Littlewood maximal operator and where we have defied

u™ by

u™(x) = sup Julx —y)I/(1 + lyD™*
yER™

and (Vu)** in a similar fashion.
Proof: By the mean value theorem we have for any x,z € R"

1/r
lu(x —2)| < C{S"/r (fl | Iu(y)lrdy> +8 sup [Vu()ly.
x-y-z|<é

[x-y—z|<é
By definition of M and (Vu)** follows
JuCx = I < C{57/" (Mur ()" + 8(Tu)* @)} (1 + 6 + 2"

If 6 < 1 we clearly get the desired inequality.
Lemma (2.1.4) [66]: Let f be any measurable function in R™ and let b > n. Then holds

f FOI/A + x — yDP dy < CMf (x).

Lemma (2.1.5) [66]: Let f = {f,, },,cz be a sequence of measurable functions in R™ and let
1 < p, q < oo. Then holds
IMEl ey < ClIfll oo
where Mf = {Mf, },ez.
If f € F,7 and if {¢, },¢z is the sequence of test functions we set

@ f(x) = {ey f () }vezllea,
@, f(x) = sup 2" [, = f(x —y)|/(1 + 2¥|y])“.

yeER™
We also set
@ f () = {3 f()}vezllea
oy f(x) = 2", * f(x).

Clearly @™ f € Lp. Below we show that also ¢**f € Lp, at least if a is sufficiently
large. More generally, let {o,},cz be a general sequence of test functions, with o,,(x) =
2Y"o(2Vx) (but with no restriction on supp 6) and define o**f, o} f, o f as above. Then
we have the following
Theorem (2.1.6) [66]: Assume that ¢ € B;*%*(a) n B;*"*9'(a) with a > n/min(p,q),
q,; = min(1, q). Then holds:

fEeF!=0"f€Lp. (1
In particular (1) holds with o = «.
Proof: (Cf. Fefferman & Stein [5]) Let us start with the identity
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Oy * f = ZUEZ(Gu * (Pv) * ((Pv * f)
We then get
2650, + =2 = Y 2% [ (0> @)l = £~y — 2y
<372 [|(o+ 0o ) @G + 2Dy i QI + 2°12)°

< 720 [|(0+ 0, )@ + 2y Ay @3 F(I( + 2 9)(1 + 2402
where we have used the elementary inequality:
max(l1+u+v,1+u) <A +w+v), u=0, v=0
In other words we have
Oy O < Dty i FG0) 2)
with t, = Y 2775(1 + 2¥)* [(1 + 2”|y])%|o * ¢, (y)|dy. Here by hypothesis

(thv|q1)1/Q1 <c

Thus we have reduced ourselves to proving (1) with o = ¢. To this end we first note that
(3) in particular entails

Therefore follows

(Vo)™ f < Co™f.
On the other hand Lemma (2.1.3) implies (with r = n/a)

@y f < 8T M@ ANV + (V) f},  8<1

Thus we get

o™ fll, < C {6/ [ MEND |, + Sll0™F
By Lemma (2.1.5) we have (since r < min(p, q))

IMC@EADY gy = IMCEDTI” ) < CI@EATL pasey = Cllob FllLycens

= C||f||F;q

Thus we have
o™ fllL, < C{S_n/r”f”F;q + 6”(p**f”Lp}! 6 < 1.
If we knew already that ||(p**f||Lp < oo we could, taking & sufficiently small, conclude
that
o fllu, < Cllflgss @)

But if ||q)**f||Lp = oo this argument does not apply. To circumvent this difficulty we use
an approximation argument. The above proof at least shows that (4) is valid if f € S. For a
general f € F;q we find a sequence {f;};=, in § such that f; = f in §' as i - oo, with
Sll%P”ﬁ“F;q < oo, It is easily seen that

lo** £, < limlle* fill,
So an application of (3) to f; effectively yields [lo™ |, < . The proof is complete.
Corollary (2.1.7) [66]: The space Ff,q Is independent of the particular sequence of test

functions {@,},cz chosen.
Theorem (2.1.8) [66]: Assume that ¢ € B;Sql(a) with a > n/min(p, q), q; = min(1, q).
Then holds:
feFR!=0tfel, (5)
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Proof: The proof of Theorem (2.1.6) clearly also gives in place of (2)

GLF() < ) o0y )
with t, = 27 [(1 = 2Y|y])*|o * @, (y)|dy. This gives in place of (3):
ot f < Co™f.
Since we know already that ¢**f € L, it follows that 6* f € L,,.
Theorem (2.1.9) [66]: Assume that o € B’ "% (a) where a >n/min(1,p,q), q; =
min(1, q). Then holds again (5).
Proof: From Lemma (2.1.4) and Lemma (2.1.5) follows readily that

fery= {2”5 (27 [ 10w = G =ya1/1 + 221" dy)l/r} e L, (%)
where r < min(p, q), b > n. From this follows again readily
ferg= {20 [lg, £l = nI/A -+ 22lyD dy) € Ly ()
with a as in the hypothesis of the theorem. The proof of Theorem (2.1.9) now yields
GG < D27 [l * fGx = I/AL -+ 2°lyD* do

with t) = 2776+ [(1 + 27%|y])%|o * ¢, (y)|dy. The rest of the proof is the same.

Theorem (2.1.10) [66]: Assume that m € B{*(a) where a > n/min(p,q). Then f €

F;q:»m*fEF;q.

Proof: Let us set g =m=* f. We want to estimate ¢*g. Choose o in such a way that

Theorem (2.1.6) is applicable and that in addition 6,,(§) = 1 in supp G,,. Then we have
@y * g = (@, *m) * (o}, * f)

and we get

2710, + 801 < [ loy *mO)I(1 +2°lyD*dyoyf 0 < Coy'f ()
or
¢*g < Co™f.

Since 6**f € L, weget 9*g € L,andg € F,".

In order to get a true multiplier theorem we have to express the condition on m in
terms of m.
Corollary (2.1.11) [66]: The conclusion of Theorem (2.1.10) is valid in particular if
D@ (8)| < C|&|~1%! for all multi-indices a with |a| < T where T is an integer > n/2 + a.

We start by recalling the following known result (in the periodic case with n = 1)
Theorem (2.1.12) [61]: Let f belong to the closure of § in BL°(T?). Then f'(x) exists at
apoint x € T iff ,f'(x) tend to a limit as n — co. Here ®,,f denote the Fejer sums of f.

We can now show the following analogue of Theorem (2.1.12).
Theorem (2.1.13) [66]: Let f be in the closure of S in F)* = Fy*(R™) where 1 < p <
co. Assume that, for some o, 6, * f(x) converges as v — oo a.e. for x in set of positive
measure. Then the same is true for any other kernel such that the difference with the first
one belongs to B;*!(a) where a > n/min(1, p).
Proof: It suffices of course to prove that o,, * f tend to O a.e. throughout R", for every ¢ €
B:™(a). Since 6(0) = 0 this certainly is true if f € S. On the other hand by Theorem
(2.1.9) sup|o, * f(x)| < oo a.e. for a general f. Thus it suffices to apply the usual density
argument.

In retrospect we notice that in the preceding treatment only very little of the
structure of underlying space R™ has been utilized. This indicates that there exist
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generalizations. In the place of R™ we may indeed consider any (complete) Riemannian
manifold Q. The spaces F,' = F,'(Q) are then defined by a condition of the type
{25@(V=-b/2")f},_, € Ly(£9)

where A is the Laplace-Beltrami operator on Q. (In particular we can thus define Hardy-
classes H, = H,(£)). We plan to return to this topic in a forthcoming publication.
Section (2.2): Triebel-Lizorkin Spaces the Case q < 1

We complete the characterization of the weighted Besov-Lipschitz and Triebel-
Lizorkin spaces, which was started in [68]. Let us recall the following theorem:
Theorem (2.2.1) [68]: Let 0 < p,q < oo,p < oo. Suppose w is an A, weight, p € S
satisfies a moment condition of appropriately high order, and v € § satisfies the Tauberian
condition. Then, there exist a constant C such that

< Clif llgeo

1/q
[Fear
pbw
o 1/q
([ wesne)
0 t

forall f € §'/P, tempered distributions modulo polynomials.
Let us recall briefly that

\ o, 3 e = f(x = y)I -
e f (x) = peaf () —ysEuRgl T+ /ot ne(x) = t7ulx/t)

is the Peetre maximal function, with A, in the case of the above theorem, large and
dependent on p, g, w, and the dimension n. The norm |||, ,, is the weighted Lebesgue LP

norm with the weighted w. A similar theorem holds for the Besov-Lipschitz spaces Bg;g’ :
It has been shown in [68] that under additional assumptions (q = 1 for Fg"él*’ andp,gq=>1
for B, for example) the second inequality can be the improved:

p.q’
o) dt 1/q
( j -, » f|q—)
0 t
p,(D

We will show that the improved estimate holds without any addition hypotheses i.e.,
for0 < p,q < oo, p < 0. In effect, if v satisfies the conditions of the theorem, then the
right-hand side in the above inequality begin finite is necessary and sufficient condition
for f to be in qu , with equivalent norms.

The problem of characterizing these function spaces in terms of the Littlewood-
Paley g-functions, when ¥ is not compact support, has been an open problem since the
appearance of [66] by Peetre in 1975. The interest in this problem partially stems from the
historical fact that, classically, the study of function spaces was usually done via the
Poisson kernel or the Gaussian kernel, both of which do not have compactly supported
Fourier transforms. For the Hardy spaces HP of Fefferman and Stien, 0 < p < oo,
Uchiyama [72] proved a general theorem which implies that if v € § satisfies the standard
Tauberian condition, then there are positive constants ¢ and C such that

J(ere2)"] =] i)
p

and

a0 <
Ifllzge < C

p,w

a0 <
Ifllzge < C

< Ifllwe = C (6)
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for all f € HP. The method used by Uchiyama involves the full machinery of the HP-
theory, including the atomic decomposition and duality. Moreover, the prove of the right-
hand side inequality in (6) was done under the assumption that f € HP, and hence the
result does not give a complete characterization of HP. One would get a complete
characterization of HP from (6) by showing that the space of all f € §' for which the norm

|<j o, * 12 —)1/2 p

Is finite, complete and contains a nice dense subspace (which is also dense in HP).
However, the proof of such a density result would use the independence of the function
space on the defining function v, which is more or less the characterization one would
want to establish in the first place; we note that the proof of the density result for HP is
rather non-trivial (see, e.g., [67] or [71]). Since HP = F2,,, our result in [68] seems new
even for the unweighted Hardy spaces, see [68].

Let us recall some of the notation from [68]. Choose Y € § such that

supp c {1/2 < || <2} and ZlTJ(ZjE) =1 for €+ 0.
JEZ
For each integer j we let §i;(x) = y,-j(x) = 2"y(2/x). Leta € R, 0 < p,q < o0, and in
the case of k)¢’ suppose additionally that p < co. For f € S’ \;ve let
[ee) 1 q

g = . (Zja”%*f”m)q) |
. 1/q
gy = (Z el *fn‘*)
p,w

Let { € S be defined by (%) + Y1 LTJ]-(E) = 1. The following are the inhomogeneous
versions of the above norms:

P2’

1/q
(zwnwj*fuw)‘*) ,
] - 1/q
If Iz = 1 * fllpe + (Z(Z"“Iw,- *fl)q>

=1

I~

1l
[y

Ifllgze = 10 * fllpe + <

pw
Suppose that v € § satisfies the Tauberian condition, that if for each € + 0 there

exista a t> 0 such that D(tf) +# 0. Suppose —o<a <o, 0<p, q<o. and
additionally, in the case of F&;‘]", p < oo. Let w be an A,, weight. We then have the

following:
Theorem (2.2.2) [73]: Under the above assumptions there exists a constant C independent

of f € §' such that
. 1/q
<c . o dt
Ifllge < ||| [1ewepe$) |
0

p,w
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1/q
d
Ifllsze < <f (ENve* Fllpe)” t) :

Proof: We will follow the argument from [68]. We use a version of the Calderén’s
reproducing formula, which is due to Janson and Taibleson [69]. There exists ann € §
with 1) supported on an annulus centered at the origin, such that for f € §'

f= jf*vt*ntdt

with the integral converging in 8’ /%, the tempered distributions modulo polynomials of
degree up to m, depending on f. In our setting this implies the pointwise representation

dt
(W= = [ verneey s F0 T %
fj
where [; is such that i * y; = 0 unless t € I;. If supp fj  {274*1 < |§| < 2471} for some

A > 1, then we can take I; = {27774, 277+A} Pick A, r > 0 and lett € I;. By a version of
the result of Stromberg and Torchinsky [68], we obtain

|vt * Mg Py f(x)lr
. _ -n—-1 d
<9ffm*m*% ﬂw|@+ YU <1+“ ”) dys

S

Moreover, since s, t € I]-, then by [68] the inner integral can be estimated by vg f(x)", and
thus

r ds
(W * )| < Cfv;‘f(x)r; (8)
lj
for every j and x. The following lemma is special case of the result by Strémberg and
Torchinsky [71].
Lemma (2.2.3) [73]: Let v € § satisfy Tauberian condition, r,A > 0. Then there exists a
constant C such that

v *f(x)|r<Cj jl(vs*f)(Z)Ir<1+| l) (E) dZS_n%

+Cf|(vt*f)(z)|r<1+| l) t™dz

forall fesS', x e R" andt> 0.
Let us observe the following inequality, which holds for s < t

—Ar —Ar —Ar
|x —y —z S\AF |x —y —z S\ IyI |x —z| S\
(Hf O < (1+52) T O < (14 M) (1 B2 T
Ar . —Ar/2 Ar/2
X Z S
s<1+m> <1+| l) )
t s t

It follows that
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lve * f(x —y)I"

: —Ar/2 r/2
<c(1+ 'y'> (f [ per 1+ 552 () aas S

0 R

(1422 g
+R£|<vt*f)(z)|<+ t ) tdz

Ar/2

d
<cf1+ 'y'> f MUz DG () S 4 MQlve = D)

where M denotes the Hardy-Littlewood maximal operator. The last inequality follows,

provided Ar > 2n, by a standard argument involving decomposing R™ into a sum of
concentric annuli:

R" = {z: Ix—ZISs}UU{z: 2k_15<|x—Z|S2ks},

=1
with s replaced by t for the second integral. We have thus proved the following lemma,
which serves as replacement for the well-known pointwise estimate, due to Peetre [66],
which holds for functions of exponential type.

Lemma (2.2.4) [73]: For v € S satisfying the Tauberian condition and A, r such that Ar >
2n we have

Ar/2

r : d
(vef )" | [Mawx /DG () S Mllves DG

Thus, combining the above with (8), we obtain

1/r 1/r
[0 f<x>|<c<j | M(|vs*f|r><x>()“/2%$> +c<f Mqvt*ﬂr)(x)%)

fj
= Jj () + 7 (). (9
Choose 0 <r <min(p/ry,q), Where r, = inf{s : w € Ay}, so that, in particular, w €
Ap/r. Choose A such that A+ 2a > 0. Using Holder’s inequality, and then Hardy’s
inequality, we obtain

© 1/q .
<Z (Zialjl)q> <C z J(l M(In, *flr) xr/z %> z_aq%
pw

1/q

j=—

p,w
1/q

[0¢]

t q/r
<c|\ | (f M(lvs*ﬂf)s”/z@) @/
S t
0

0

o 1/q
dt
- (f S *f|r>)q/r7>
0
pw

We can now use the vector valued maximal inequality [70] to conclude

pw
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o 1/q . 1/q
(o] e

j=—o0 0
pw p,w

A similar, but simpler argument gives us the second inequality

o 1/q oo 1/q
(Z (Zia]jz(x))q> <C <f (t™%|v, * f|)q$>
0

j:—OO

p,w p,w
o,0

The second inequality of Theorem (2.2.2), concerning the space Bp;q, can be obtained
similarly from (9). Applying weighted LP norm to both side of (9) we obtain

o= £l < e+ 2l L)

Consider the first component. Applying Minkowski’s inequality twice for the weighted
LP/T norm, and the inequality for the Hardy-Littlewood maximal operator, we obtain

t 1/r
”]jl”p’m = ([ f M(|vg * 7)) (%)M/Z%%)
0
p

j

t , 1/r
s\M/2 ds dt
< ( [ [ mawe = 19 () ;T>

IjO

. 1/r
S\A1/2 ds dt
< c<ff|lvs*f||fo,w ({) ?T)

Ij 0
We can now, as in the Triebel-Lizorkin case, multiply both sides by 2/, apply
discrete £9 norm, and use Hardy’s inequality. The same argument, without the Hardy’s
inequality, is used to handle ]jz. Observe that in this case we only need to use the scalar

valued inequality for the Hardy-L.ittlewood maximal operator rather than the vector valued
one, so we can allow the case p = oo. The proof of Theorem (2.2.2) is complete.

Theorem (2.2.5) [73]: Under the assumptions of Theorem (2.2.2) there existsay > 1 and
a constant C, independent of f € S’ such that

- 1/q
Ifllgae < C <Z (Vv *f|)q>
1/q
. q
Iftlsge <c{ 2, (lw=rll,,) > |

j:—OO

p,®

Proof: The starting point for this case is the discrete version of the Calderén’s reproducing
formula, which can be obtained in the same way as the continuous from [69]. For v as in
the theorem, there exist y > 1, and n € §, with #j supported in annulus such that
f= Zf*vk*nk in §'/P
keZ
where vy = v, -k, and N = n,-«. Then
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(Fru)@ = ) wexmes f 00
ykel_j
Point wise (; = y,-j). The summation is over a finite set of ks, since both  and fj are
supported in annuli centered at the origin, and I_; is the interval, defined previously,
depending on the support of fj. We will use the discrete versions of the Stromberg-
Torchinsky type estimates that were used in the proof of Theorem (2.2.2):
v * M Wy + FCO]

=¢ Z J'”l sy FO| @+ e —yD A + ¥ x —yD T Ly v
ylel_j R™
and

@ AT <CY [ 10 NG +ylx = 2Py dzy,

=k pn
Both of these estimates hold in the setting they were used in the continuous case, and their
proof is the same. From the reproducing formula and the first estimate we obtain

NI < Y (vr@)
Y

lEI_]'
and, subsequently, from the second estimate

<”;‘lf (x))r =¢ 2 M(vy * ) ()yEoON2

k=1
We, combine these two inequalities, and then use Holder’s inequality, the discrete version

of the Hardy’s inequality, and the discrete vector valued maximal inequality to obtain
1/q

Ifllpae < C z (2% = £)*

j:—OO
pw

The corresponding result for the Byyg” space follows similarly.

The following theorem is the inhomogeneous counterpart of Theorem (2.2.2).
Together with Theorem 5.1 from [68] it provides the characterization of the

inhomogeneous spaces Fpg’ and By’ in terms of convolutions with general defining
functions.

Theorem (2.2.6) [73]: Let —oo < a < o0, 0 < p, q < oo, With p < oo in the case of Fg.
Suppose w € A,,. Let v € § satisfy the Tauberian condition and let @ € § satisfy the
strong Tauberian condition ®(0) # 0. Then, for b sufficiently large (see the proof) there

exists a positive constant C such that
1/q

b
dt
Fllege < C | 10« Fllp +[|[ [1<@x DI ,
0

p,w
b 1/q

. qdt
Ifllsge < C| 0 Fllpo +{ | (£lvex Fllpa) ' =

0
forevery f € §'.
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Proof: As before, we will follow the line of argument from [68]. Let us recall [69] that
there existn and y in §, with fj supported on an annulus, and ¥ compactly supported such
that
b
dt
f=Y*f+jnt*vt*f?
0
for arbitrary b > 0, with y depending on b. Moreover, taking b large we can make the

support of ¥ small. The integral in the above formula converge in §’. Pickj > 1 and we
obtain

dt
w,-*f=f¢,-*nt*vt*fT
]

if b is sufficiently large, so that the supports of LTJ]- and ¥ are disjoint, and that 24~ < b,
The intervals I; are the same as those in the previous. This representation is the same as

(7), so we can apply the same argument as we did in the homogeneous case. Doing so, we

arrive at the estimate
1/q

© 1/q b
; d
(Z(ZJ“I% *fl)q> <C ( IS *f|)q{> (10)
j=1 0
p,w p,w

Again, analogous argument vyields the 'corresponding estimate for the Besov-Lipschitz
spaces, without the p < oo restriction:

- va b i 1/q
(Z (Zja”‘l’j *f”p’w)q) <C <f(t_“||17t *f”p,w)q?)

i=1

We now consider {s * f
b

dt
W*f:W*y*f+jW*nt*vt*fT

for some 0 <a <b . Recall that supp® c {2741 < || <2271}, and supp®? c
{|€] < 2}, so can take a = 272, The second part is handled exactly as previously. Indeed,
even though ¥ does not vanish around 0, fj does, so for the purpose of this integral we may
multiply ® by a suitable cutoff function. Observe, however, that the b will have to be
increased 224~2 times. For the first part, observe that if we choose b large enough, so that
supp ¥ € {€ : ®(§) # 0}, then we can write
Yrxyxf=uxdxf

with u € S. It follows that for each A > 0 there is a constant C, independent of f, such that

(W *y)if (x) < CPf (x)
Let f; be f multiplied, on the Fourier transform side, by a smooth cutoff function, equal to
around the origin, and 0 outside some ball. Then

P1f(x) < P1fi(x) + P1fo(x)

Since @ * f; is of exponential type, so we may apply Peetre’s estimate to obtain

191 fillp < ClD * fillpe
provided A in the definition of @7 f; is large enough (see, [67]). To estimate & f,(x) we
use the left-hand inequality from [68] (actually only a part of it)

193 £ llpo < Cllfallpso
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Choose the cutoff function, which defines £, and f, such that the supports of £, and {s are

disjoint. Then
o 1/q
If2llpeo < C (Z(Zj“lw,- * fl)q>

=1
b,w

and this has already been estimated in (10). Finally,

”q)Iflllp,oo < C”CIJ * fl”p,oo < C”CD * f”p,co + ”CI) * fZ”p,w
Since we already have the estimate for ||® * f, || o, < [[P1/2lp,, We Obtain

o 1/q
If s = 1% * Fllpe + <Z(Zi“|¢,- *fl)“)
j=1

p,w

b 1/q
. dt
<l 0« Fllpe + ||| [ eler oS
0

pw
The proof of the Besov-Lipschitz case follows similarly.

Theorem (2.2.7) [73]: Leta,p,q, w, v, and @ be as in Theorem (2.2.5). Then, for any
a,b,r,N > 0, there is a positive constant C such that

1/r b 1/q
rd d
Il < C (] (119 fllp) t) . (j (t-“|vt*f|)q{>
a 1/r
rd d
Ifllgso < C < [ @0 £ll0) {) ( [ elive o) S

forevery f € §'.
Proof: We first show that for any ¢ € S,

a 1/r
rd
P+ fllpe < <](tN||®t * fllpe) t) (11)

0

for all f € 8. Choose 0 <'s <r such that w € Ay/s. Let N’ be such that sN" > n. By
using [6] and decomposmg R™ into concentric annuh we obtain

|x -yl
|<p*f(x)|s<cj j|c1>t*f(y)|s<1+
0 R
for every x € R™. Hence, it follows from Minkowski’s mequahty and the weighted

estimate for the Hardy-Littlewood maximal function that

a 1/s
’ s dt
19 * llpo < c< [ @0 £llw) T)

0
The above and Holder’s inequality imply (11).
We shall show the theorem only for the Triebel-Lizorkin spaces since the proof for
the Besov-Lipschitz spaces is similar. As in the proof of Theorem (2.2.6), we start with the
representation

p,w
1/q

! Vi dt
) N t‘"dy < CfM(ICDt*fI )TN —
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b
d
fovuf+ [ noevor s (12)

0
where y € § has compact support. There is a finite set §; such thaty = ;; = 0 for all j ¢
§7, and there is a finite set S, such that
I; = {27974, 277*A} c [0, b]
forallj& S,.LetS =8, US,. Then by (11),

1/q a 1/r
. rd
<Z(2’“|¢i *f|)q> < CE”‘IJ]' £, s clsl (f(tN”‘Dt * flipw) %)
p,w

jes jes 0

and

ka 1/r
N rdt
19 fllpe < | [ (209 % Fllp) T
0

where |§| denotes the number of elements in §. For j € S, the representation (12) gives

b
dt dt
L|Jj*f=f‘1t"‘17t”<'~|"j*JCT=.f-nt"‘vt"‘%*}c?
0 I]'
As observed in the proof of Theorem (2.2.6), the above and the method in the proof

of Theorem (2.2.2) imply that
b
dt
( IS *f|)q7>
0

1/q
(Z(Zi“le . f|)"> <C
j&s
pw
Combining all the above estimates, we obtain the desired inequality for the Triebel-
Lizorkin spaces. The proof of Theorem (2.2.7) is hence complete.
Section (2.3): Morrey Type Besov-Triebel Spaces

p,w

Many people have been considered problems of partial differential equation based
on Morrey space and Morrey type Besov space, (see [78, 79, 81, 82, 83, 84]). It is well-
known that Besov spaces Bj,(R™) and Triebel-Lizokin spaces Fp 4(R™) contain as
special cases many classical spaces, for example, the Holder spaces, the Sobolev spaces,
the Bessel-potential spaces, the Zygmund spaces, the local Hardy spaces and the space
BMO(RR™). All the above-mentioned classical spaces have been proved to be useful tools

in the study of ordinary and partial differential equations. For detail one can see Triebel’s
books [41, 56, 57, 58].

We study some properties, such as lifting properties, Fourier multiplier theorem,
and discrete characterization of Morrey type Besov-Triebel spaces. We consider the
boundedness of a class pseudo-differential operators on these spaces.

As usual, the n-dimensional real Euclidean space and its points are dented by R"
and x = (xq,+,x,) respectively. We purpose that n > 1 holds. S(R") is the Schwartz
space of all rapidly decreasing infinitely differential complex-valued functions on R™ and
S§'(R™) is the space of all complex-valued tempered distributions on R™. Let
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(F$) = (2m) ™2 f pO0)e¥Edx
Rn

and let F~1 denote the Fourier transform and its inverse on §’(R"), respectively.

Definition (2.3.1) [55]: If 0<q<p<o and f €L} (R"), we say f € Mg(R")

loc
provided that, for any ball B (x) of center at x and radius R,

x€ER™R>0

1/q
”f”Mg = sup Rn(l/p—l/Q)< jlf(y)|q(jy> <
Br(x)

(00]
j=

Definition (2.3.2) [55]: Let ¢(R™) be the collection of all systems ¢ = {¢;} , ©S(R™) of

real-valued even function with respect to the origin, such that ¢;(x) = ¢;(—x) if x €
supp ¢; where

supp ¢, < {x, [x]| < 2}
and
supp ¢; € {x, 217t < |x| < 21"} for j=0,1,-,
for every multi-index «a there exists a positive number C, such that
21|“||D“q)j(x)| <(C, forall j=0,1,--, and all x € R",
and
z ¢j(x) =1 forevery x € R"
j=0
We introduce Morrey type Besov-Triebel spaces.

Definition (2.3.3) [55]: Let —0 <s < 00,0 < q<p <0, 0<B <o, and $p = {c|>j}]i0 €
®(R"), then we define:

1/p
. , ) o - B
0 M35 = {F € SR <171,y = (50217 07 < o)
p.q
P s,B ' ¢ o 9k 1 B VP
()MFgh = {f € 5" RN IFIS Lo = (B 2Pl ¢1'Tf||Mg} <o
p.q

Obviously, for se R, 0 <p=gq <o, and 0 <B < oo, then MBy» =B, and
MFf;f1 = F s, standard Besov and Triebel-Lizorkin spaces respectively; see [41].

If s € R, we write
H(RY) = {f € S'®R™) : lIfllg = |1 + 1x2 P @), < oo}
If Q is a compact set of R™ we write

L9 = {f € §'(R™) : supp Ff c Q, IfllLa < oo}
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Let0 < B < oo If {fj};:o Is a sequence of complex-valued Lebesgue measurable function
on R", then we write

- 1/B
Ille = (meﬁ‘)
q i=0

If ||f]-||ng < oo, we call the sequence {fj};:o € M} . Furthermore, assume 0 < q < p <

p
Mq

0,0 < 3 < oo, and that Q = {Qj}:io is a sequence of compact sets on R™. If f; € L9 for
. o B
j € Nu {0}, and {fi},-=o EM

bq» then we call the sequence {fj}lto e Mb . From then, we let
N, denote N U {0}.

Lemma (2.3.4) [55]: Let0 <B<o0,1<q<p<oo. If {fj}:io is a sequence of local
integral function on R", then

- 1/B - 1/p
<2|ij|ﬁ> <c <2|f1|8>
j=0 P j=0

p
Mq Mq

where the constant C is independent of {fj}]io and M denotes Standard Hardy-Littlewood
maximal function.

Proof: In fact, the conclusion can be deduced from the weighted version of the
Fefferman-Stein vector maximal inequalities [74] and Theorem 3.1 in [75].

: : . : : 1/8 _
It is also interesting to give a direct proof. Let ( ;’;O|f]-|8) € My . Pick any x, € R™, and
write

[ =20+ ) fi

where £° = Xg,,x)fi + fi = XB,111 o0Bi e0fy fOr £21. We want to estimate

1/8
( ]5';0|Mj§°(x)|3) on B, (x,). By Fefferman-Stein maximal inequality [80] we have

- 1/8 - 1/8 - 1/8
<Z|ij°|ﬁ> <c (Zm‘*) < o) (ZW)
j=0 j=0 j=0
L4

q p
L Mq

Thus,
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© a/B o 1/8
| (ZIMB(}%(’)(»C)IB) dx| < <Z|Mf,-°|‘3>
Br(xo)

L4

Hence, we obtain
- 1/8 - 1/8
(Bwﬁ) <c (Zw‘*)
j=0 v j=0

. 1/B
It remains to estimate ( ]?‘20|ij‘(x)|ﬁ) on B,(x,). Fori > 1and x € B.(x,), by the
generalized Minkowski inequality, we have

o 1/p 5 8
<Z|ij"(x)|ﬁ> <C z((zir)-n | Iﬁ-"(y)|dy> ‘
=0 j=0 R™

p
Mq

1/8

- 1/8
<c@n™ f (Zlfj"(y)|6> dy
R™ \j=0

Then,
- - a/p 74 o o g\ /B 1Y
<ZMB (iji(x)>> dx| < f (Z (Z ]v[f].i(X)> ) dx
Br(x) \J=0 =1 Br(xp) \J=0 ‘i=1
o0 o0 1/8 a Ha
< Z(ZM%?(JC)) dx
By (o) =1 \j=0
- - ap 14
3| [ (Srnw)
=1 |Br(xo) \J=0
w w ap 14
< Z(Zi)—n/q f <Z|f] (x)|B dx
i=1 B,i+1,.(x0) j=0
n (11
< cZ(zi)‘Er(a‘ﬁ)" <Z|fj|6>
i=1 j=0
Mp

Thus, we obtain
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Z<MB <Zf>>/6 =0 (ZW)%

Mg Mg
Lemma (2.3.4) is proved.

Theorem (2.3.5) [55]: Let 0 < q<p <00, 0 < B < o0, and Q = {Qj};io be a sequence of

compact sets f; € L% j € N,. Let d; > 0 be the radius of Q;. If 0 <r < min{g, B}, then
exists a constant C such that

[3)1/3

Proof: We only prove for the case of MFE’E1 space. The result for MBf’,’fl can be obtained

. fi(-z)
(i) |[ sup L2421
xe]Rn1+|de|r

.- 1) |f(_Z)|
0 ( = |sup L2

xER™ 1+|djz|*

B
Mpq

<c||(zzolsl®)

p
Mq

p
Mq

by interchanging ||-|lq ” and ||-||Mg in the proof presented below.

First, let {fj}lio € Mgff ,y) € Q satisfying (i), then {h]-}]_ also do, where Q is replaced by
{Q —yi}]f'io, and the converse also holds. Thus we may let 0 € (), it is sufficient to
consider the case ; = D; = {y : |y| < d;}.

Second, we have to prove that (ii) holds when Q; = d; = {y : |yl < d;}and d; > 0. If
{fj}j=0 € Mg;g , YEQ, then fe L™ . If g(x)=f(d'x), then (Fg;)x)=
d]-"(Tf]-)(djx) and suppFg; c {y : |y] <1}

For x,z € R", we have

9= (gl ool (13)
1+ |z|r
see [41].
From (13), we obtain
M(x—_Z)ﬂ' < C[M(|fj|r)(X)]1/r, forall x,z € R"* (14)
1+ |d]Z|r

where the constant C independent of x, z, j.

If 0 < B < o, then by (14),
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;¢ —2)| 1/r 1/r
sup =l <[l , = el
“RT1 + |djz|" Mp g p/r.a/r

Since 0 < r < min{q, B}, we have p/r = q/r > 1, B/r > 1. By Lemma (2.3.4),

|f( z)l
p < ¢l s/r < C[lfill e
ZE]R 1+|dZ|r a prqr p.q
Mp'q
If B = oo, by (14), we have
| (x | . 1/r
sup sup — < Csup[]\/[(|f| )(x)] (sup|fj| ) (x)]
jENg ZER™ 1+ |d Z| j
Thus,
(- —2) b, U/ A
sup sup ——— I | < C|[sup[M(|£;] )] < (Sl,lp|fj| >(')
jENg ZzERM 1+ |d Z| j M j Mg;::

Using Lemma (2.3.4), then we obtain

¢ =2

Sup sup —mm—¢
jENg ZERM 1 + |d Zl

<C

sup|fj|
]

p
Mq

Thus (ii) holds when 3 = co.

Theorem (2.3.6) [55]: Let0 < q<p <, 0<B < oo, letQ = {Qj}::o be a sequence of

compact sets on R™and f; € LY j € N,. Let d; > 0 be the radius of Q;. If v >n/2 +
n/min{q, B}, then exists a constant C such that

72267 g, = Csupll2i(d; Mgl

and
1/B

- B B
(an %fmng) < Csupl}4(d; )l (anjnMg>
j=0 =0
for any sequence {M]-}]ZO € HY(R™M).
Theorem (2.3.7) [55]: Let¢ = {q>,.(x)};‘:0 € ®(R™) and @ = {o, (x)};io € d(RM).

(i) If —o<s<o,0<q<p<oand 0 <P <oo, then ||f||;';FS,B and IIfII? o5 are
pP.q pP.q

equivalent quasi-norms on MFS’E.
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(ii)If —o<s<o0,0<q<p<oand 0<p<oo, then ||f||;';BS,B and IIfII7 ., are
Pq P.q
s,B

equivalent quasi-norms on MB_J, .

Proof: We first prove (i).
If ¢y = 0, then we have ¢; = ; >, @j+r forj € Ny. Therefore,

1
FUGFS = ) FOFF g

j=—1

Now we choose 0 < v < min{q, B} and u > n/2 + n/v. If we replace f; and M; in
Theorem (2.3.6) by F =1, Ff and ¢, respectively, then we obtain

#2077 01Tl = C5upl01(25 )y 17 010ePF g
where C is independent of j.
By Definition (2.3.3), existing a constant C forr = —1, 0,1, we have

17 b Ff |l o < CNF 0 Ff e -

b.q p.q
Thus,
||T_1¢17f||MI§q =< C||T_1(P1Tf||MI§q-

Thus, (i) is proved. The proof of (ii) is similar.

Definition (2.3.8) [55]: Let L € N, and A; (R™) be the collection of all functions with
compact and satisfying

L(@) = suplxl* ) [Dho(0l+ _sup (¥l + [x|™) ) [Dy(@0)] < oo

x€ERM xeR™\{0},jEN
lyIsL \(0}j IYI=L

Definition (2.3.9) [55]: LetL € N, ¢ = {¢;}
we define the maximal function

e AL(R™), f € S'(R™) and a > 0, then

[0 0]
j=0

[(F 5 Ff) (x = y)|

n
Tty <R

(; () f)(x) = sup
yERM

where j € N,,.
By Theorem (2.3.4) and [41], we have

Proposition (2.3.10) [55]: Letse R, 0<q<p <, 0 < B <, a >n/min{q, B}. If
the maximal number L > |s| + 3a + n + 2, then exists a positive constant C such that

0<r<1 0<t<1

2 sup (o f)|| =€ sup L@ IAY g (15)
ng p.q

and
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i=0 0<t<1 0<t<1

- 1/B
_ B
(Z 2| sup (o) ) <C sup LODIFIY .p (16)
Mg p.q
forall = {drlreo € P(R™) and ¢ = {Prlreo € AL(R™), 0 <7< 1.
We consider Fourier multiplier.

Definition (2.3.11) [55]: Let m be in C*(IR™), then M is called a Fourier multiplier on
MFpS,’fl3 if there exists a constant C such that

IF*mFfIl ., .se < ClfIl,, .56
f MFs’q f MFS’q

5,
forall f € MF; .

s,B

Similarly, we can define the Fourier multiplier on MB)’;'.

Let N € N, we write

Imlly = sup sup (1 + |x|*)N2[DYm(x)].
[y|<N xeR™

Proposition (2.3.12) [55]: Lets e R, 0<gq<p <o, 0 <P <. If Nis sufficiently
large, then there exists a constant C such that for all m € C*(R"), f € MFpS,'é3 and MB;’E
we have

17 mF S lyess < Clmllyllfllyp 0 (17)
and

17 mFf 50 < Clmllnllfllyges (18)

Proof: For MF;'E space, since ¢ = {Prlreo € P(R™), we have

F W FIF ' mFf] = F Loy Ff.
By (15), ¢ = mdy and the following fact
|(F1O™FHC] < (6™ ) ().

When N > |s| + 3n/min{q, B} + n + 2, then (17) holds. The proof of (18) is similar to
that of (17). Thus Proposition (2.3.12) is proved.

Now, we consider the lifting properties. If ¢ € R, then operator I, is defined by
Lf = F1(1+ [x1D2Ff,  fe€S'(RY.

It is well-known that I is an one to one mapping on §'(R™) and S(R™) respectively.
Obviously, 151, =I5 4.

Theorem (2.3.13) [55]: Lets,c ER, mMEN, 0 <3< 00,0< q<p < o. Then
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(i) 15 is an isomorphic mapping from MF; ° B to MF, > GB Moreover
amf

D DYl ypsome and lflp e +Z (19)
[VI=m MF5o™P
are equivalent quasi-norms on MF B
(if)I5 is an isomorphic mapping from MB B to MB,, > "B Moreover
D IDYFllgs-ms and IFlgs-me +Z (20)

s—m,f3
lylsm MBp,q

are equivalent quasi-norms on MB B

Proof: We only prove (i), the proof of (ii) is similar. First, if ¢ € {dy}reo € P(R™), then
¢ = {drtreo € AL(R™), where L may be arbitrary large maximal number and ¢, (x) =

27K9(1 + |x|2)?¢k(x>.

If £ € MF.7', by Proposition (2.3.10) and the estimate [(F ¢ Ff)(x)| < di(x), we

have

pCI’

o fllygs-op = [[27CF A+ D2 0Ff | ypp. = [29F 7 0Ff |y
< Cllfllygese 21D

where C is independent of . Thus, I, maps continuously MF B into MF "B .
s,
If g € MF,; and
1 lypss = Cllgllyps-me = Clllof llygs-os (22)

Since I is an one to one mapping on §'(R™). So it is also an one to one mapping from
MFpS,’(‘l3 into MFpS,;"’B. By (21) and (22), ”IUf“MF;;lG'B is an equivalent quasi-norm on
MFP.

Next, we prove that the quasi norm in (19) is an equivalent quasi-norm on MF;’([I3 f
x = (x1,,x,) €ER", letx® = [[iL , where y = (y4, - Yn). By Proposition (2.3.12),
we have that xY(1+ [x|?)™™/2 is a Fourrer -multiplier on MF B Ayl <m, me

MFpS,E (R™), then we have

IDfllygsp = D IF R fl oo
Z f MFSP f MF S ™P

[ylsm lylsm
Z |77+ 1™ 2FF A A+ X 2F S | psms < Clllnfllygsoms
lylsm
< Cllfllygese (23)

where the last inequality is obtained by (21).
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We assume that m € MF, ™8 and —feMFS ™8 forj=1,---n, we hope to

prove that f € MF . We claim that there eX|st Fourier multipliers p;(x), -, p,(x) on

MFpS,qu and a posmve constant C such that 1 + 7%, p;(x)x™ = C(1 + |x|*)™/2, for all

x € R"; see [41]. By Proposition (2.3.12), we know that

-1
1+ Z Pj (x)xjm}

j=1

M(x) = (1 + |x[*)™/2

is also a Fourier-multiplier on MF, ™ P Then

1 g sme < c||;r-1(1 XD 2Ff ||y s

n
1+ z p; (x)x;™

j=1

m/2

Ff

MF

< C|lF*M@)FF?

s—m,f
p.q

n
< Cllflyps-me + CZ”T—lpj(x)x].mf'f”MF;amﬁ.
=1 '

However, x;"Ff = T By Fourier multiplier properties of p;(x), we obtain
]

1Flyess < Clfllyes- (24)

s—m,
Man

By (23) and (24), we prove that the quasi-norms in (21) are equivalent quasi-norms on
F g . This proved Theorem (2.3.13).

We give the discrete characterization of Morrey type Besov-Triebel spaces and we
generalize the discrete characterization of standard Besov-Triebel spaces [76]. Next, we
will use the idea of [76].

jENg

ez for

With MFSB we associate the space pr of complex sequences a = (af()
which the quasi- norm

(2 Z ek [Xiseny

kezn

IIocIIprfds =

lB Mg

is finite. Here XL is the characteristic of the parallelepiped
No=27[k+[-1/2,1/2]"], jeEN, kez"

The set A{( from a disjoint decomposition of R™ for fixed j.
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To give a discrete characterization of MB s

p.q
— () \JEN ; ;
the complex sequences a = ()., for which the quasi-norm

(2 Z |k bichens

g8 =
kezn Mg
g

Is finite.
For ¢, ¢, defined as in Definition (2.3.2), we write

Po(x)

= , <2,
MO e E e
2
Uy () = $.(2%) 1/2 < |x| < 2.

$3(x) + 3 (2x) + b7 (4x)’

which are extended by 0 to R™. These are C*-functions with properties
supp W, < {§ € R™ : [§] < 2},

suppU, € {EER™: 1/2 < [E] < 2}.

Lemma (2.3.14) [55]: Let —co<s<o, 0<q<p<ow, 0<B<o,.

n/min{q, B}, then there exists a positive constant C such that

" (F [0 7f1C -v)
veir 1+ 2[y[ld

< Clfllgess

lB Mg

N G e )
veir 1+ 2[y[ld

< Clfllg st

lg

hold, where ¢; defined as in Definition (2.3.2).

Lemma (2.3.15) [55]: For a = (a) )0, let

1
fi@ = Y Y || [1+ 2 -k, |, xemre

r=—1KkezZn

when L > n/min{1, q, 8}, then

sl |, = chotu

and

50

s,B
we need the sequence space Mb’; of

If d>

(25)

(26)



< Clio|

|12 el |

MBg
for —o <s< o0, 0 <q<p<o,0<f < oo, where the constant C is independent of c.
Proof: Letx € ALO and write

K;={kez": 2! <|k—Kkoll,, <2'*'}, €N,

Ifk € Ky, then ||2) — k||, >2'"".Byl; <1, 0 <t<1,we obtain

. ) -L . - .
%®=ZMWWM4%JSMHZZMV“

KEZN 1=0 keK;
/t
< (lell") +Z§}m 2t
1=0 \keK;
1/t t 1t
(21” j [lok X, (y)] dy) +ZZ L2 f ZIGLIXL(Y) dy | . @7
RN keK;

Since the AL,S are disjoint to each other and the measure is 277", Ify € AN ke K;, we
have
Ix —yl < |x — 27ke| + [27ko — 277k| + |27k — y| < €27 + C2792! + €27
< C27iH (28)
Therefore,
t

f Z |0L|x{< dy < C2Ci+Dnap

R" | keK,

> |cL|xL] &)

kezn

Since L. > n/min{1, q, B}, we take t such that 0 < t < min{1, q, 8} and L > n/t. Thus,

c 1/t
g,-c(x)sc/ 2| D lokbdeo (x)\ .

] )

By the maximal inequality in Lemma (2.3.4), we obtain

ez

kezn

1/t

12 giall, ||

[125all, |, <c

lg/elly o/t
Mq/t
1/t

<C = Cllolly,ss- (29)

> okl

LkeZn

ol

o1



For Mb’ B the proof is simpler.
Theorem (2.3.16) [55]: Lets e R", 0 < B < o0, 0 < q < p < o. The operators
se: MEFE Mg
and
u: MAS - MF¥

(these are abbreviations for sequence and function, respectively), defined by

se f =+(@m) 27 0 Ff] 20N
fuo =: z oQ(F 1Yo (- —Kk)) + z z ol (F-1y, (2 - —k))
kezn j=1 kez"

are bounded. Furthermore, fu-se = id and ||se -IIMf 5.8

prS the same result holds on Besov spaces when replacing MF by MB

pr by Mb

Proof: We only consider MF B . For MB B the proof is similar.

First, we prove that se is bounded. Let x € AL, then |x — 277k, | < €277 and we have

2Js z (sef){(x{((x) < (2m)™?% sup _2jS|T‘1[c|)ij] (x — 2)|

kezZn lylsC2™)
28|F- . Ffl(x — z
< ¢ P0G 0]

ZERM [1 + 2]|Z|]

By Lemma (2.3.14),

25|72 [y Ff] ¢ —2)
emn 1+ 2[z[]N

2 ) (sef) xL()

kezn

< f st

Thus, se is bounded.

Second, let

Ifuolly,ss = ||||21'51,-||ZB||MP, L(x) = |~ [ Ffuc](x)]
q

(30)

(31)

IS an equivalent quasi-norm on

and

(32)

(33)

We have the fact that I;(x) < Cfjs(x); see [76]. By the fact above and Lemma

(2.3.15), we know that fu is bounded.
Third, the proof of the rest is similar to that in [76]. Theorem (2.3.16) is proved.

52



Corollary (2.3.17) [55]: Assume 0 < g<p<oo, 0 < <oo, and sy s; €ER. Then a
linear operator T : MF, "B - MFSlB Is bounded, iff the operator seTfu : pri;"ﬁ

M fp'q is bounded. The respectlve quasi-norms of the operators are equivalent.

The operators sefu are given by matrices. Assume that T : § — S’ is bounded. Then

[}

where

jil
km —

(se(T[(FP)(—-K)D),,  j=0.
(se(T[(F o)~ k)]));, j>1.

The matrix associated with the pseudo-deferential operator A corresponding to the
symbol a is defined by B(a). The boundedness of this matrix between sequence spaces
depends on the relative size of its coefficient.

The Hormander class S7 s with v € Rand 0 < § < 1 consists of all functions a €
C*(R™ x R™) which satisfy

IDEDEalx, §)| < Cop(1 + [E¥I9I+3B,  x Ee R™
for all multi-indices o and B with a € SY 18

We associate the pseudo-deferential operator T defined by
Tf(x) = F 'a(x)Ffl(x), f€S, x€R™

The function a is called the symbol of T and the class of operators arising in this
way from S7 g is denoted by 7 5. If 8 = 1 one calls P! ; the exotic class.

Lemma (2.3.18) [55]: Assume 0 <8 <1,v€R and a € S5. Then for N € N there
exists a constant C > 0 such that

2020-ON(1 4 |2-tm — k)", j<L

B@} | = {sz(l IN(1 + |2tk = m|)” (N+n),

=
holds for all j,l € N, and k, m € Z".
Lemma (2.3.19) [55]: Assumes, v ER,0<B <, 0<q<p<owandL>n/min{l,q,B}.

(i) Ifk > s, then

-1
; . o i -L, 1eN
Q. D 1ol2 20+ 2rm k) | <Clloll e B9

holds, where C is independent of o.
(i) If A > n/min{1, q, B} — s, then
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<Z Z |6 |21 2R (1 4 |2tk — |) Y < C||o||prs,;u,3 (35)

j=1 kezn sB
pr,q

holds, where C is independent of o.

Proof: Step 1. We prove (34). Letx € AL, put K, :={k € z": 2" —= 1 < [2"'m — k| <
27+t — 1}, r € Ny with 0 < t < 1. Then it follows

ZZ"”Z’ 126-DK(1 + |21~tm — k|)” <Zzwz<l k)kzz_u Z|ok|

j=0 kezn keK;

/t

Ify e A | then |x —y| < C279*T, Since j < I, thus
t

Dol =2 ] lZIakb(k(y) dy < c2ma | ) |ol )| 6.

keKy keKy keKy

If we write 2 (x) = M [Sie |0k )] (), then

-1

2Js 2 rixt,(x) < Cz 2(1_1)(1‘_5)21(5+”)J\/[].1/t(x).

mezZn j=0

Since L > n/min{1, q, B}, so we can take t such that 0 < t < min{1,q,B}and L > n/t.
thus

Left side of (34) < |||[(2% Z T X () 1en,

kezn

lB Mg

-1
< c||lfs Zz(j—l)(k—s)tzj(s+v)t]v[j Niew,
=0

il

<C “((zj(s-l-wt]v[]'))leNo”lB/t”Mp/t < C“O'“prs';v,ﬁ . (36)
t

In the third inequality in (36), we use the following fact

(Z 207D} e, || < C”<ai)jeNo“lB: 1<p<o, €>0
g

where q; is a complex-sequence. In the last inequality in (36), we use the maximal

inequality in Lemma (2.3.4).
Step 2. To prove (35),we decompose R™ into subsets
={kezr: 2" —1<|m-2"7k| <21 -2}, reN,.
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The rest is similar to step 1 and by the following fact

(Z Z(I_j)ea]')IENo = C||<aj>j€N0||lB’ 1 = B < ©, €> 0'
j=1
Ig

where q; is a complex-sequence.
Theorem (2.3.20) [55]: Assume —0 <s< 00,0 < q<p<o0,0<B <o LetT€EPjg
with v € R.
(i) T = MFy¢"* - MF; ¥ is bounded, if 0 < § < 1.

T:=MB,:"" - MBJ¥ isbounded, if 0 < § < 1.
()T = MF3:"® — MF* is bounded, if s < n(1/min{1,q, B} — 1), § = 1.

T:= MBy " - MBS isbounded, if s < n(1/min{1,q,B} — 1), § = 1.

Proof : By Lemma (2.3.18), we have

il | _j\leN
”SeTfUGHprs',dB < <Z z |B{<,m|0-{<>kez(’)1
j=0 kez™ M fp?éﬁ
-1
. _ . —(N+
<C (Z 2 |} 272N (1 + [2tm — k) )i
j=0 kezn MfSE
p.q
j [9ivoG-DN -1 ~(N+1)y1eN,
+C | |0} | 2772 (1+ ]2k — ml) Neezn
j=1 kezn Mf B
p.q

By Lemma (2.3.19), we obtain

||seTfuo]| < C”U“prs'(-;v,ﬁ.

Mfod

If s > I, :==n(1/min{l,q,B} — 1) and N is sufficient large, by Corollary (2.3.17), the

operator T : MF;’,;”'B - MF;,'S is bounded.

When s < I g, by lifting properties, we have that

L == F (A + [[DY?F] € Y] 5 : MF " > MF,7

is bounded for s, T € R. By the fact that Y3’ - 7% < Y7572, 0 < 6 < 1, then the operator

1,6
. . I »B+1+V‘B I »6+1‘B
T® = [T, € ¥ 5 : MF - MF %
IS bounded.
Therefore,
i . I ,B+1+v+r,B I :B+1+T’B
T=1_,T"l, € Y5 : MF}; - MF %

55



Is bounded for T € R.

From MBpS,'é3 is similar, we omit the details here.

Thus, Theorem (2.3.20) is proved.
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Chapter 3
Variable Smoothness and Integrability

We give molecular and atomic decomposition results and show that the
space is well-defined, i.e., independent of the choice of basic functions. As in the
classical case, a unified scale of spaces permits clearer results in cases where
smoothness and integrability interact, such as Sobolev embedding and trace
theorems. As an application of the decomposition we show optimal trace
theorems in the variable indices case. We give Sobolev-type embeddings, and
show that the scale contains variable order Holder-Zygmund spaces as special
cases. We provide an alternative characterization of the Besov space using
approximations by analytic functions.
Section (3.1): Function Spaces

From a vast array of different function spaces a well ordered superstructure
appeared in the 1960’s and 70’s based on two three-index spaces: the Besov
space By, and the Triebel-Lizorkin space Fj, . There has been a growing
interest in generalizing classical spaces such as Lebesgue and Sobolev spaces to
the case with either variable integrability (e.g.,W%P®) ) or variable smoothness

(e.g., WmO2 ) These generalized spaces are obviously not covered by the
superstructures with fixed indices.

It is well-known from the classical case that smoothness and integrability
often interact, for instance, in trace and embedding theorems. There has so far
been no attempt to treat spaces with variable integrability and smoothness in one
scale. We address this issue by introducing Triebel-Lizorkin spaces with variable

indices, denoted Fg((,'))’q(_) .

Spaces of variable integrability can be traced back to 1931 and W. Orlicz
[124], but the modern development started with [113] of Kovacik and Rakosnik
in 1991. Apart from interesting theoretical considerations, the motivation to study
such function spaces comes from applications to fluid dynamics, image
processing, PDE and the calculus of variation.

The first concrete application arose from a model of electrorheological
fluids in [128] (cf. [85, 86, 130, 131] for mathematical treatments of the model).
We mention that an electrorheological fluid is a so-called smart material in which
the viscosity depends on the external electric field. This dependence is expressed
through the variable exponent p; specifically, the motion of the fluid is described
by a Navier—Stokes-type equation where the Laplacian 4u is replaced by the
p(x)-Laplacian div(qulP(x)‘ZVu). By standard arguments, this means that the

natural energy space of the problem is WPO) the Sobolev space of variable
integrability.

An application to image restoration was proposed by Chen, Levine & Rao
[94, 123]. Their model combines isotropic and total variation smoothing. And,
their model requires the minimization over u of the energy

f IVu(x)[P® + Alu(x) — I(x)|? dx
Q

where | is given input. Recall that in the constant exponent case, the power p =2
corresponds to isotropic smoothing, whereas p=1 gives total variation
smoothing. Hence the exponent varies between these two extremes in the variable
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exponent model. This variational problem has an Euler-Lagrange equation, and
the solution can be found by solving a corresponding evolutionary PDE.

Partial differential equations have also been studied from a more abstract
and general point of view in the variable exponent setting. We can approach
boundary value problems through a suitable trace space, which, by definition, is a
space consisting of restrictions of functions to the boundary. For the Sobolev
spaceW'P() the trace space was first characterized by an intrinsic norm, see

[100]. In analogy with the classical case, this trace space can be formally denoted

Fll,(_)ll/}g()) so it is an example of a space with variable smoothness and

integrability, albeit on with a very special relationship between the two
exponents. Already somewhat earlier Almeida & Samko [88] and Gurka,
Harjulehto & Nekvinda [109] had extended variable integrability Sobolev spaces
to Bessel potential spaces WP®) for constant but non-integer a.

Along a different line of study, Leopold [117, 118, 119, 120] and Leopold
& Schrohe [121] studied pseudo-differential operators with symbols of the
type(E™™) and defined related function spaces of Besov-type with variable

smoothness, formally BI’)’,‘&). In the case p = 2, this corresponds to the Sobolev

space H™O) = wm):2_ Function spaces of variable smoothness have been
studied by Besov [89, 90, 91, 91]. He generalized Leopold’s work by considering

both Triebel-Lizorkin spaces Fg,g) and Besov spaces Bgﬁ) in R"™. Schneider and

Schwab [135] used H™O(R) in the analysis of certain Black-Scholes equations.
The variable smoothness corresponds to the volatility of the market, which surely
should change with time.

We define and study a generalized scale of Triebel-Lizorkin type spaces
with variable smoothness «a(x), and variable primary and secondary indices of
integrability, p(x) and q(x). By setting some of the indices to appropriate values
we recover all previously mentioned spaces as special cases, except the Besov
spaces (which, like in the classical case, form a separate scale).

Apart from the value added through unification, our new space allows
treating traces and embeddings in a uniform and comprehensive manner, rather
than doing them case by case.

When generalizing Triebel-Lizorkin spaces, we have several obstacles to
overcome. The main difficulty is the absence of the vector-valued maximal
function inequalities. It turns out that the inequalities are not only missing, rather,
they do not even hold in the variable indices case. As a consequence of this, the
Hormander-Mikhlin - multiplier theorem does not apply in the case of variable
indices. The solution is to work in closer connection with the actual structure of
the space with what we call n-functions and to derive suitable estimates directly
for these functions.

We state the main results: atomic and molecular decomposition of Triebel-
Lizorkin spaces, a trace theorem, and a multiplier theorem. We show that the new
scale is indeed a unification of previous spaces, in that it includes them all as
special cases with appropriate choices of the indices. We formulate and prove an
appropriate version of the multiplier theorem. We give the proofs of the main
decompositions theorems, and we discuss the trace theorem.
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For x e R®™ and r >0 we denote by B"(x,r) the open ball in R"™ with
center x and radius r. By B™ we denote the unit ball B™"(0,1). We use ¢ as a
generic constant, i.e., a constant whose values may change from appearance to

appearance. The inequality f ~g means that %gSfch for some suitably

independent constant c. By x, we denote the characteristic function of the set A.
If a € R" then we use the notation a, for the positive part of a, ie., a, =
max{0,a}. By Nand N, we denote the sets of positive and non-negative
integers. For x € R we denote by |x| the largest integer less than or equal to x.

We denote the mean-value of the integrable function f, defined on a set A
of finite, non-zero measure, by

ff(x)dx = %ff(x)dx-

The Hardy-Littlewood maximal operator M is defined on Li,.(R™)
Mf(x) =sup f |f(y)ldy

r>0 B"(x,r)
By supp f we denote the support of the function £, i.e., the closure of its zero set.

By Qc R®™ we always denote an open set. By a variable exponent we
mean a measurable bounded function p:Q — (0,00) which is bounded away
from zero. For Ac Q we denote Py = esssupap(x) and P, = essinfyp(x); we
abbreviate p* =p§ and p~ =pg. We define the modular of a measurable
function f to be

0o () jﬂ F@)IP® dx

The variable exponent Lebesgue space LPC(Q) consists of all measurable
functions f:Q—R" for whichg p)gy(f) <. We define the Luxemburg

norm on this space by

1fllupercay = Inf{A > 0 & @upor oy (F/N) < 1,
which is the Minkowski functional of the absolutely convex set{f Fpey gy () <

1}. In the case when Q =R" we replace the LPO(R™) in subscripts simply by
p(). The variable exponent Sobolev space W'PO(Q) is the subspace of
LYPO Q) of functions f whose distributional gradient exists and satisfies |Vf| e
LPO(Q). The norm

If lwreorqy = fllporqy + IV Il oo
makes WP () a Banach space.

For fixed exponent spaces we have a very simple relationship between the
norm and the modular. In the variable exponent case this is not so. However, we
have the following useful property: @, p(f) <1 if and only if ||f ||, < 1. This
and many other basic results were proven in [113].

Definition (3.1.1) [140]: Lege C(R™). We say that g is locally log-Holder
continuous, abbreviated g € C,°8(R™), if there exists Clog > 0 such that

Clog
lg(x) — ()| < log(e + 1/[x —yD)

forall x,y € R™
We say that g is globally log-Hoélder continuous, abbreviated ge
clog(R™), if it is locally log-Hélder continuous and there exists g., € R such that
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18(0) — gl < ——8
& Beo ~ log(e + 1/|x])

Note that g is globally log-Hd6lder continuous if and only if
lg() —g)| =

1

llog 7 a(x,y)|
for all x,y € R®, where g denotes the spherical-chordal metric (the metric
inherited from a projection to the Riemann sphere), hence the name, global log-
Holder continuity.
Building on [96] and [97] it is shown in [99] that

M : LPO(R™) & LPO(R™)
is bounded if p e Cl°8(R™) and 1<p~ <p' <oo. Global log-Holder continuity
Is the best possible modulus of continuity to imply the boundedness of the
maximal operator, see [96]. However, if one moves beyond assumptions based on
continuity moduli, it is possible to derive results also under weaker assumptions,
see [98, 122, 126].
Definition (3.1.2) [140]: We say a pair (@,®) is admissible if ¢, ® € S(R")
satisfy

(i) sup® S {§ € R" : 2 < [¢] < 2}and [§(§)| = ¢ > 0 when > < [§] <
(iiysup® S {£ € R" : [§| < 2}and |®(§)| = ¢ > 0 when [§| < g
We set @y (x) = 2" @(2%x) for v € N and @y (x) = ®(X). For Q € D,, we set
19120, (x — x ifv>1
P (x) = { @v(x = xp)

101Y2d(x —xy) ifv=0
We define ys,, and 4 analogously.
Following [106], given an admissible pair (@,®) we can select another
admissible pair (s, ) such that

3©)- 2@+ ) F@D-F@ Y =1 forall §

wlun

v=1
Here, ®(x) = ®(—x) and similarly for .

For each f € S(R") we define the (inhomogeneous) ¢-transform Se as the
map taking f to the sequence (S,f)gep+ bY setting (S,f)g =(f,@g). Here,
(-,) denotes the usual inner product on L#(R™;C). For later purposes note that
(Sefo = 1Q1"2@, x f(27k)  for  1(Q)=27"<1 and (Sef)g=1Q1"*® «
f(27%k) for 1(Q) = 1.

The inverse (inhomogeneous) o-transform Ty is the map taking a sequence
S:{SQ}Z(Q)Sl to Tys = Yig)=150%0 + i0)<1S9Wo. We have the following

identity for f € S(R™):

f= D {f. 9% +i > (F.00) g (1)

Q€Dy v=1 Q€D
We consider all distributions in S(R™) (rather than S/P as in the
homogeneous case), since ®(0) = 0.
Using the admissible functions (¢, @) we can define the norms

Iflrg, = M12°%@y * fllalle and lIfllsg, = 112"y * Flliplla,
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for constants p,q € (0,00) and a € R. The Triebel-Lizorkin space Fg, and the
Besov BS, consists of distributions f €S for which Ifllpg, < oo and
||f||Bg_q < oo, respectively. The classical theory of these spaces is in Triebel [41,
56, 136]. The discrete representation as sequence spaces through the -transform
IS due to Frazier and Jawerth [45, 106]. Recently, anisotropic and weighted
versions of these spaces have been studied by many people, see, e.g., Bownik and
Ho [93], Frazier and Roudenko [129, 107], Kihn, Leopold, Sickel and

Skrzypczak [114]. We now move on to generalizing these definitions to the
variable index case.

We assume that p,q are positive functions on R™ such that % ée
Clo8(R™). This implies, in particular, 0 < p~ <p* < o and 0 < q <
q* < co. We also assume that a € C28(RM)NL®(R™) with a >0 and that

has a limit at infinity.

One of the central classical tools that we are missing in the variable
integrability setting is a general multiplier theorem of Mikhlin-Hérmander type.
We show that a general theorem does not hold, and instead prove the following
result which is still sufficient to work with Triebel-Lizorkin spaces.

For a family of functions f, : R® - R, v > 0, we define

1/q(x)
1 GOl aeo = (Zlfv(x)|Q(x)> .

v=20

Note that this is just an ordinary discrete Lebesgue space, since q(x) does
not depend on v. The mapping x = [If,(x)ll,aco is a function of x and can be

measured in LPO), We write L‘,’C(') to indicate that the integration variable is x. We
define
Mm(x) = (1 + [x)™™ and nym(x) = 20y (27x) (2)
Definition (3.1.3) [140]: Let @,,v € Ny, be as in Definition (3.1.2). The Triebel-
Lizorkin space Fg((_')),q(,)(R") is defined to be the space of all distributions f € S
with || fllgecy < oo, where
p()q()

- = 2va(x) *x f(x ”
— H a(’) ny . paC) n
In the case of p = q we use the notation Foe (R™) := Fp(_)'q(_)(ﬂ% ).

In the classical case it has proved very useful to express the Triebel-
Lizorkin norm in terms of two sums, rather than a sum and an integral, thus,
giving rise to discrete Triebel-Lizorkin spaces f,. This is achieved by viewing
the function as a constant on dyadic cubes. The size of the appropriate dyadic
cube varies according to the level of smoothness.

We next present a formulation of the Triebel-Lizorkin norm which is

similar in spirit. For a sequence of real numbers {So}  we define

1
5ol [l = [l Soen solior e o,
ae v UL
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The space fp‘zg?q(_) consists of all those sequences {SQ}Q for which this

norm is finite. We are ready to state our first decomposition result, which says

.pa() a() -
that S, Fp(,)'q(,) o fp(_),q(,) IS a bounded operator.

Definition (3.1.4) [140]: Let veN, Q€ D,and keZ Il eN, k and M=>n. A
function my is said to be a (k,[,M)-smooth molecule for Q if it satisfies the
following conditions for some m > M:
(i) ifv >0, then [, xYmy(x)dx = 0 forall |y| < k;and
(ii)|DYmy (x)| < 2% |92, n(x + xo)  for all  multi-indices y € R®  with
vl <1

The conditions (i) and (ii) are called the moment and decay conditions,
respectively.
Definition (3.1.5) [140]: Let K,L:R"®™ >R and M >n. The family {mQ}Q is
said to be a family of (K,L,M)-smooth molecules if mgy is (|Kg],|Lg| M)-smooth
forevery Q € D*.
Definition (3.1.6) [140]: We say that {mQ}Q is a family of smooth molecules for

Fo0 o ifitis afamily of (N + ¢ a + € + 1, M)-smooth molecules, where
n
Nx) = min{1, p(x), q(x)}
for some constant € > 0, and M is a sufficiently large constant.
The number M needs to be chosen sufficiently large, for instance
n + Cog (@)
min{1,p~,q7}
will do, where cjoq(a) denotes the log-Holder continuity constant of a. Since M
can be fixed depending on the parameters we will usually omit it from our
notation of molecules.

Theorems (3.1.22) and (3.1.24) yield an isomorphism between FeO and

p().q9()
a subspace of £y} . viathe S, transform:

Corollary (3.1.7) [140]: If the functions p,q and o are as in the Standing
Assumptions, then

—n—a(x)

Ufll ey = [|Sof|| .ac

Fotha0) 5 ”fpé)),q(-)
a() n

forevery f € F ¢ 4y (R™).

We can prove that the space Fgj,,(R™) is well-defined.

Theorem (3.1.8) [140]: The space Fg((_')),q(_)(]R") iIs well-defined, i.e., the
definition does not depend on the choice of the functions ¢ and & satisfying the
conditions of Definition (3.1.2), up to the equivalence of norms.

Proof: Let @, and ¢, be different basis functions as in Definition (3.1.2). Let

I/l and |||, denote the corresponding norms of Fg((,'))'q(_)(]l%”). By symmetry, it

suffices to prove ||fllg <cllfll, for all fES. Let Ifllo < oo. Then by (1) and
Theorem (3.1.22) we have f=ZQeD+(5(pf)QlIJQ and ||S(pf||fa((5) ., <cllflle.
pt)ql
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Since {Wo}, is a family of smooth molecules, [Ifll SC||S‘Pf||fIf‘(S)q(.)by Theorem

(3.1.24), which completes the proof.

It is often convenient to work with compactly supported basis functions.
Thus, we say that the molecule a, concentrated on Q is an atom if it satisfies
supp ag € 3Q. The downside of atoms is that we need to choose a new set of
them for each function fthat we represent. Note that this coincides with the
definition of atoms in [106] in the case when p, q and «a as constants.

If the maximal operator is bounded and 1 <p~ <p* < o, then it follows
easily that Cy°(R™) (the space of smooth functions with compact support) is
dense in W'PO(R™), since it is then possible to use convolution. However,
density can be achieved also under more general circumstances, see [105, 112,
139]. The standing assumptions are strong enough to give the density directly:

Corollary (3.1.9) [140]: Let the functions p,q and a be as in the Standing

Assumptions. Then Cy’(R™) is dense in F“(())q()([Rn). Another consequence of

our atomic decomposition is the analogue of the standard trace theorem. Note that
the assumption a—i—(n—l) (ﬁ—l) >0 is optimal also in the constant
+

smoothness and integrability case, cf. [45]

Proof: Choose K so large that F§+ (—>Fg 1+ This is possible by classical, fixed
exponent, embedding results.

Let f ng((_'))q(,) and choose smooth atoms a, € CX(R™) so that f = Ygep+toag in
S. Define

fm :Z Z toag
v=0 Q€Dy,,|xg|<m
Then clearly f,, € CKand £, > £ in F5 .
We can chose a sequence of functions @m € C5 so that ||fin — @ml|y e = 0
as k — o and the support of ¢, is lies in the ball B(0,r,). By the choice of K
we conclude that

”fm (pmk”Fa < C”fm (pmk”FK C”fm - (-pm,k”WK,p""

By Proposition (3.1.26) we conclude that
”fm (pm,k”Fa(') < C”fm - (pm,k||Fa+
p()q() +,

Now we show how the Triebel-Lizorkin scale F“(()) o includes as special

cases previously studied spaces with variable differentiability or integrability.

We begin with the variable exponent Lebesgue spaces, which were
originally introduced by Orlicz in [124]. We show that Fp()z_Lp() under
suitable assumptions on p. We use an extrapolation result for LP®). Recall, that a
weight w is in the Muckenhoupt class A, if M, <k, for some such K > 0. The
smallest K is the A; constant of w.

Lemma (3.1.10) [95]: Let peCl8(R™) with 1<p <p'<o and let G
denote a family of tuples (f,g) of measurable functions on R™. Suppose that
there exists a constant r, € (0,p~) so that
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1/r0

1/rg
(flf(x)l“’w(x)dx> < Co<flg(x)lr°w(x)dx>
R R™

for all (f,g) € G and every weight w € A;, where ¢, is independent of f and ¢
and depends on w only via its A;-constant. Then

“f”L(')(Rn) < Clllg”L(')(Rn)
forall (f,g) € G with [If|l o gn < oo
Theorem (3.1.11) [140]: Let pecls(R*) with 1<p <p"*<ow. Then
LPO(R™) = F)(,,(R™) particular,
I llpoery = Mllew * £l s g
for all f € LPO(R™).
Proof: Since C§’(R™) is dense in LPO)(R™) (see [113]) and also in Fp.,,(R™) by
Corollary (3.1.9), it suffices to prove the claim for all f e Cy(R"). Fix re
(1,p7). Then
||||(Pv *f”l%”LFO(R";m) ~ ||f”Lr0(Rn;(o);
for all w € A; by [115], where the constant depends only on the A,-constant of
the weight w, so the assumptions of Lemma (3.1.10) are satisfied. Applying the
lemma with G equal to either
{(oy * fllz. f) : f e @} or {(llgy, * fll;2) = f € CF(Q)}
completes the proof.

Theorem (3.1.11) generalizes the equivalence of LP(R™) =Fp, for
constant p € (1,) to the setting of variable exponent Lebesgue spaces. If p €
(0,1], then the spaces LP(R™) have to be replaced by the Hardy spaces hP(R™).
This suggests the following definition:

Definition (3.1.12) [140]: Let p € Cl°8(R™) with 1<p~ <p' <. Then we
define the variable exponent Hardy space hP®)(R™) by hPO(R™) = F) ,.

Let B° denote the Bessel potential operator B = F~1(1+ |&|?)zF for
o € R. Then the variable exponent Bessel potential space is defined by

LEPO(RM) := B® (Lp(')(R")) = (Bg : g € LPO(RM)},

equipped with the norm |igll ape:= IB~%gllp). It was shown independently in
[88] and [109] that £kPO(R™) = WkPO(R™) for k € N, when p € Cl°8(R™) with
1<p” <p'<oo.

We will show that £<PO(R™) = WkPO(R™) under suitable assumptions on
p for a >0 and that £*PO(R™) = WEPO(R™) = Ff,,(R™) for k€ Ny. It is clear
by the definition of £&PO(R™) that B® with ¢ >0 is an isomorphism between
L&PO(R™) and £e*oPO(R™), i.e., it has a lifting property. Therefore, in view of
Theorem (3.1.11) and L°PO(R™) = LPO(R") = FJ,,(R™), we will complete the

circle by proving a lifting property for the scale Fg() ., (R™.

Lemma (3.1.13) [140]: Let p,q and a« be as in the Standing Assumptions and
c=>0. Then the Bessel potential operator B° is an isomorphism between

a() a()+o
Fo0.a0@d Fyia0)-

Proof: Let feFg5),, We know that {go} is a family of smooth molecules,
thus, by Theorem (3.1.22)
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”{SQ}

where f = Y gep+ Sg @g. Therefore,
Bcf — Z Sg BG(PQ — z 2—UO'SQ ZUGBG(PQ
QeD* QeDt =i =:¢g
Let us check that {K¢y} 0 is a family of smooth molecules of an arbitrary order

for a suitable constant K. Let Q € D*. Without loss of generality we may assume
that xo = 0. Then

a0

5 < 20m® 271011262
PO T W) T T A+ e N

Since @ has support in the annulus B™(0,2)\B™(0,1/2) , it is clear that ¢y =0
in a neighborhood of the origin when [(Q) <1, so the family satisfies the
moment condition in Definition (3.1.4) for an arbitrarily high order.

We consider the decay condition for molecules. Let p € Nf be a multi-
index with |u| = m. We estimate

P2 “’E)]

Vo 1/
[PEGo®| < 271012 0} |

(P(O 1/29-vm|nkH[A -0
CEFNTIE < clo|*227"™| DY [ (D)3l ~]|
where ¢ =27"¢ and we used that the support of @ lies in the annulus B™(0,2)\
B™(0,1/2) for the last estimate. Define
Km= sup 27" |D¥[@@)IgI=°]].
|u|=m,leR™
Since 6 >0 and @ vanishes in a neighborhood of the origin, we conclude
that K,,, < oo for every m. From the estimate

XMW = c ]R{n(—1)m D?LTJ(E)e"x'EdE| < c|suppy| Sl%lp |DE‘1TJ(Z)| )
we conclude that
|x|m|¢)Q(x)| < ¢2"*|Q|Y/?27v™K  and |¢)Q(x)| < c2""|Q|V/22V™mK,.

Multiplying the former of the two inequalities by 2Y™ and adding it to the latter
gives

— |Q|1/22—vm

1
D(

(1 + 2™ [x|™)|@g ()] < 2|1 2(Ky + Kipp)-
Finally, this implies that

mm

(@0 (Ol < ¢ ey 12172 (Ko + K (),
from which we conclude that the family {K@Q}Q satisfy the decay condition when
K< (191Y2(Ky + Kyp)™t). A similar argument yields the decay condition for

D} g

Since {K(pQ}Qis a family of smooth molecules for F;‘(());E’) we can apply

Theorem (3.1.24) to conclude that
1B Fllgares < | {S0/K), aone < c|/{so},

p ),a()

The reverse mequallty Is handled similarly.

~|fll acr -
1584 f Fo0a0)

65



Theorem (3.1.14) [140]: Let pe Cl°8(R™) with 1<p <p' <o and a€
[0,c0). Then FJ.,(R") = L*O(R"). If keN, , then Fro2(RM) =
wkpO) (R™)

Proof: Suppose that feF()z([R") By Lemma (3.1.13), “feF()z(IR")
so we conclude by Theorem (3.1.11) that B~%f € LPO(R™) = LO%PO(R"™). Then
it follows by the definition of the Bessel space that f = BY[B %f]€

L*PO(R™). The reverse inclusion follows by reversing these steps.
The claim regarding the Sobolev spaces follows from this and the equivalence

LEPO(R™) = WRPO(R™) for k € N, (see [88] or [109]).

Now we come to spaces of variable smoothness as introduced by Besov
[89], following Leopold [116]. Let p,q € (1,00) and leta € C,25(R™) N L°(R™)
with @ = 0. Then Besov defines the following spaces of variable smoothness

Fg'g),BesoV(]Rn) = {f € LIOC(RH) : ”f”Ff,‘(gl)'Beso" < oo},

1f 1l oo mesov 2= |[]|27%) [ |AM(27%h, £)(x)|dh
pq |h|<1

+ “f”]_‘g)

l,c,1 L,I;

where

AM(y, f)(x) := i(—l)M‘k (I\If) f(x +ky).
k=0

In [91] Besov proved that Fa"®**°"(R™) can be renormed by
va(x) ~ .
|| “2 Py * f(x)”l;l ||L£ ”f“Fg,(q),BeSOV;

a()

which agrees with our definition of the norm of Foq

This immediately implies the following result:
Theorem (3.1.15) [140]: Let p,q€(1,%), a€C®nL® and «=0. Then
1 lpacymesos (R™) % I1f llpay (R™).

In his works, Besov also studied Besov spaces of variable differentiability.
For p,q € (1,),and a € C\°% N L® with & > 0, he defines

loc

Bg‘g),BesoV(Rn) = {f € Lloc(R") : ”f”Fg,(C'l)’BeSOV(Rn) < oo},

since p and g are constants.

+1f .

| If ” Bg’((-l),Besov (R™) =

sup [AM(27v4@h, £)(x)|
|h|=1

Lg 14
v
In the classical case the scale of Triebel-Lizorkin spaces and the scale of

Besov spaces agree if p = q. Besov showed in [92] that this is also the case for
his new scales of Triebel-Lizorkin and Besov spaces, i.e., pa()Besov pny —

p.q
BS,S)'B‘*S"V(R") for pe (L), a€C®nL® and a=0. This enables us to

loc
point out a connection to another family of spaces. By means of the symbols of

pseudodifferential operators, Leopold [116] introduced Besov spaces with
variable dlfferentlabllltyB“()LeOPOId(Rn). He further showed that if 0O0<a™ <

at <o and a€C®(R™), then the spaces Bg,g)’Le"p"ld(R") can be

characterized by means of finite differences. This characterization agrees with the
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one that later Besov [90] used in the definition of the spaces Bg,g)‘BeSOV([R{"). In

particular, we have Bf,‘,g)’Le"pOld(R") = Bg’g)’BeSO"(R") = FS?(]R%") for such a.

It should be mentioned that there have recently also been some extensions
of variable integrability spaces in other directions, not covered by the Triebel-
Lizorkin scale that we introduce here. For instance, Harjulehto & Hastd [110]
modified the Lebesgue space scale on the upper end to account for the fact that
Wm does not map to L® under the Sobolev embedding. Similarly, in the image
restoration model by Chen, Levine and Rao mentioned above, one has the
problem that the exponent p takes values in the closed interval [1,2], including
the lower bound, so that one is not working with reflexive spaces. It is well-
known that the space BV of functions of bounded variation is often a better
alternative than W11 when studying differential equations. Consequently, it was
necessary to modify the scale W'PO) so that the lower end corresponded to BV.
This was done by Harjulehto, Hast6 & Latvala in [111]. Schneider [133, 134] has
also investigated spaces of variable smoothness, but these spaces are not included
in the scale of Leopold and Besov. Diening, Harjulehto, Hastd, Mizuta &
Shimomura [99] have studied Sobolev embeddings when p — 1 using Lebesgue
spaces with an L log L-character on the lower end in place of L.

Cruz-Uribe, Fiorenza, Martell and Perez [95] proved a very general
extrapolation theorem, which implies among other things the following vector-
valued maximal inequality, for variable p but constant q:

Lemma (3.1.16) [140]: Let peC*®(R™), with 1<p <p'<w and 1<q< o.
Then
HIMfilliallpey < cllllfillallpey-

It would be very nice to generalize this estimate to the variable g case. In
particular, this would allow us to use classical machinery to deal with Triebel-
Lizorkin spaces. Unfortunately, it turns out that it is not possible: if g is not
constant, then the inequality

Il g L 11l g0

does not hold, even if p is constant or p(-) =q(:). For a concrete counter-
example consider g with qlﬂj,j =0,1, and qo # q; and a constant p. Set fy =

agXa,- Then Mfilg, =cagxq,. This shows that [9% < [%. The opposite
embedding follows in the same way, hence, we would conclude that [90 = [91
which is of course false.

In view of a vector-valued maximal inequality, we show estimates which
take into account that there is a clear stratification in the Triebel-Lizorkin space,
namely, a given magnitude of cube size is used in exactly one term in the sum.
Recall that n,(x) =1+ [x)™ and n,n(x) = 2"n,(2°x). For a measurable
set @ and an integrable function g we denote

Myg = é lg(x)|dx.
Lemma (3.1.17) [140]: For every m > n there exists c = c(m,n) > 0 such that
o * 18100 < € ) 290 3"y (Mg

j=0 Q€D

forallv > 0,g € Lj,., and x € R™ .

loc’
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Proof: Fix v>0,g€ell ., and x,y e R*. If |x—y| <27 then we choose Q€
D, Wwhich contains xand y. If |[x —y| > 27", then we choose j€ N, such that
2V < |x—y| <27 and let Q€ D,_; be the cube containing y. Note that
x € 3Q. In either case, we conclude that

2" (14 2% |x —y)™ < 271 My () %
we multiply this inequality by |g(y)| and integrate with respect to y over R™.
This gives n, m * 1g|(x) < czj(m‘")xgg(x)MQg, which clearly implies the claim.

For the proof of the Lemma (3.1.19) we need the following result on the

maximal operator. It follows from [99], since p* < oo in our case.
Lemma (3.1.18) [140]: Let p € Cl°8(R™), with 1<p~ <p* <oo. Then there
exists h eweaL! (R™) N L®(R™) such that

Mf (2)P® < eM(If ()IPO) @) + min{|Ql, 1}h(x)
forall £ € LPO(R™) with ||| oo gny < 1.
Lemma (3.1.19) [140]: Let p,q € Cl°8(R"), with 1<p  <p' <o, 1<q <
q" < oo, and (p/q)” - q~ > 1. Then there exists m > n such that

” Mo, * fv”lgm 120 =c ” £l ac0

L)r;(-)
for every sequence {f, }yen, Of Li,.-functions.

Proof: By homogeneity, it suffices to consider the case

[1fell g0

<1

Then, in particular,
[ 1f,(0P®dx < 1 3)
Rn

for every v=>1. Using Lemma (3.1.17) and Jensen’s inequality (i.e., the

embedding in weighted discrete Lebesgue spaces), we estimate
p(x)

p(x) a()\ qx)
f a6 0 —j(m-n)
ra |Tlv,m * fv(x)l dx < an 2 X3g (X)Myf, dx

v20 v20 \ j=0 Q€D
pP(x)

a()\ ax)
<cf ZEZ‘j(m‘")< Z X3Q(x)Mva> dx
an

v20 j20 Q€D

p(x)
q(x

< chn (Z z 2=im-n) z X30 (%) (Mva)q(x)> dx.

v=0 j=0 Q€EDy_j
For the last inequality we used the fact that the innermost sum contains only a
finite, uniformly bounded number of non-zero terms.

It follows from (3) and p(x) > % that |||l ae < c. Thus, by Lemma (3.1.18),
La-

qx)

ax) a9 _
(Mofy) = = Mg (I,13°) + ¢ min{|Q], 1}h(x)
forall Q € D,_; and x € Q. Combining this with the estimates above, we get
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an (va * ﬁ;(x)|q(x)>q( )dx < C]R{n <Z Z 27jm=n) Z X30(x) [MQ (|ﬁ;|qi_)]q >q dx

v=0 =0 j=0 Q€Dy_
p(x)

q(x)
Ty R{n<zzz—i<m—"> PR NES (min{|g|,1}h(x))q‘> dx =: () + (1)

v20 j=0 QED,,_;
Now we easily estimate that

p(x)
q(x)

m= 21 D] Yaimn S ) o

j=0 Q€Dy—j
p(x)

ol ()l [ = g (ol

The vector valued maximal inequality, Lemma (3.1.16), with (p/q)"q” >1
and q~ > 1, implies that the last expression is bounded since

p(x) p(x)
f (Z (Iﬁ;|¥> )qm dx = f (ZIf Iq(")>qm dx < 1.
R™ R™

v=0 v=0

For the estimation of (I1) we first note the inequality

z Z 2 i(m-n) Z X30(®) min{|Q[, 1}9" < z z 27im=m)mip{2ni-va" 1}

v20 j=0 Q€D v20 j=0

Zz j(m—n) ]_|_ 2n(1 v)q~
v>j

j20

< Z 27I-M(j 4 1) < c.

i=0
We then estimate (I1) as follows:

px)-
a1

p(x)
)
_ _ p(x) -
scfh@e Y Y 2Imm Ny omin(lel 139 | dx <c S @ dx.
R v=0 j=0 Q€EDy_j
Since (p/q)"q~ > 1 and h € weak-L! n L™, the last expression is bounded.
Theorem (3.1.20) [140]: Let p,q € C°8(R™) with 1< p~ <p" < o and 1<
q- < q" < o Then the inequality

” [[M,m () * ﬁ;”lq(x) ” £l a0

holds for every sequence {f,},en, Of Lioc- functlons and constant m > n.

Proof: Because of the uniform continuity of p and g, we can choose a finite

cover {Q;} of R™ with the following properties:

(i) each Q; c R", 1 <i <Kk, is open;

(ii) the sets Q; cover R™, i.e., U;Q; = R";

(iii) non-contiguous sets are separated in the sense that d(Q;Q;) >0 if |i—
jl > 1; and

p() p()
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(iv) we have (p/qQaqa, >1for 1<i<k where A;=Ul, Q (with the
understanding that Qy, = Qy,; = 0.

Let us choose an integer [ so that 21<|m}§13d(ﬂl,ﬂ)<2‘+1. Since
1-)

there are only finitely many indices, the third condition implies that such an |
exists.
Next we split the problem and work with the domains ;. In each of these

we argue as in the previous lemma to conclude that
p(x)

(ZIn « f, (x )Iq(x)>Q( )

v=20
p(x)

q(x)
({_ (Z'nvm * f,(0)] (x)> dx

v=20

IA
.M"‘

Il
[y

l
p(x)

q(x)

¥ NSz e Mof)" | a

Y\ v20 j20 Q€D,_;

IA

Mw

C

i

From this we get

p(x) %
———- v+l qx
q(x) ( _.(m_n) q(x)
J INom * fo ()] dx <c f 27 X30(x) (Mof;,) dx
& v=0 @ v20 j=0 Q€D
p(x)
v+l q(x)
+ef Z Z 27Im=m MF ()@ | dx.

v20 j2v+l
The first integral on the right hand side is handled as in the previous proof. This
is possible, since the cubes in this integral are always in A; and (p/q)3,95, > 1.

So it remains only to bound
p(x)

v+l q(x) g%%%
z z 27 ME T | dr<ef (Zz (m-n)v £, (x)q@)) dx.
i v20 j2v+l >0

For a non- negatlve sequence x; we have

c(r) Z 27Hm=n) ¥ ifr > 1

r
—i(m— (=0
<ZZ o ’”xi> <{ <
Y 2wt ifr <1

i=0
and conclude that
p(x)

qx)
<ZZ jm-nv £ (x)q(x)> dx < sz (m=n)v min{1,(g) }f MF, ()9 dx.

v=0 =0

The boundedness of the maximal operator implies that the integral may be
estimated by a constant, since [|f,(x)[P™dx < 1. We are left with a geometric
sum, which certainly converges.

We apply this estimate for r = ;

p(x
alx
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Lemma (3.1.21) [140]: Let a be as in the Standing Assumptions. There exists
d € (n, o) such that if m > d, then
Zva(x)nv,Zm(x - Y) = sza(Y)nv,m(x - Y)

forall x,y € R™.
Proof: Choose k € N, as small as possible subject to the condition that|x —y| <
27K Then 1 + 2Y|x — y| = 2X. We estimate that

nva( _Y) k -k

— 1+2 < c27¢m,

Ny, m(x - Y) ( )
On the other hand, the log-Holder continuity of a implies that

ov(a()-a) > 2~ VClog/log(e+1/|x-yl) > 2—kc10g|x _ yl—Clog/log(e+1/|X—Y|) > 2 km
The claim follows from these estimates provided we choose m = ¢jqg.

Theorem (3.1.22) [140]: If p,q and « are as in the Standing Assumptions, then

Sofll.acr  =cllifllacy -
Ise ”fg(g)),q(-) Fo00a0)
Proof: Let f € F*) . Then we have the representation

r(al)
=) (0o Mg = Y 1070, * f(xo)bo.

Qept gept

Letr € (0,min[p~,q~]) and let m be so large that Lemma (3.1.21) applies, so

o, * f”fg(g)q(.) = 2va) Z @y * f(xg)Xo

Q€Dy 19 PO
1/r
< | [l uam b« AV oo
v Lx
= c[l22= (m * 190« 11" .
v,2m v l,(,l(x)/r LE(')/F
By Lemma (3.1.21) and Theorem (3.1.20), we further conclude that
1/r 1/r
I0flyg < G + 22Oty 7Y Ngoon] . = € U210 1N g,

- |l « g

This proves the theorem.
Lemma (3.1.23) [140]: Let p,q, and a be as in the Standing Assumptions and
define functions ] =n/min{l,p,q} and N=]—n—a Let Q be a cube or the

complement of a finite collection of cubes and suppose that {mQ}Q,Q cQ, is a

family of (J*t—n—a +¢ af +1+¢)-smooth molecules, for some &> 0.
Then

£l a0 RO ”{SQ} 0 @’ where = z Z S0 Mo

v=0 2€Dy
QcQ

and c > 0 is independent of {so} and {mQ}Q.
Theorem (3.1.24) [140]: Let the functions p,q and a be as in the Standing
Assumptions. Suppose that {mQ}Qis a family of smooth molecules for

a() a()
Fo()qc) @nd that {my} 0 € fotyacy- Then
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fllgaey < cl|{m
Fp()a0) { Q}Q

a0 ,where f = Z Z Sg My.
p(.a()

v20 Q€Dy,
Proof: We will reduce the claim to the previous lemma.
By assumption there exists € >0 so that the molecules my, are (N + 4¢, a + 3¢)-

smooth. By the uniform continuity of p,q and «, we may choose p, =0 so that
Ng >Jj—ag—n+e and ag >af —e for every dyadic cube Q of level p,.
Note that if Q, is a dyadic cube of level p, and Q c Q, is another dyadic cube,
then

Ng 2Ng >J5 —ag —n—e=2]f—ag—n—g
similarly for a. Thus we conclude that my is a (J§ —ag —n+ 3¢ af + 1+ 2¢)-
smooth when @ is of level at most .
Since p, g and ahave a limit at infinity, we conclude that Ngn, > ]ﬁgn\k —
agm —n+—€ and  agn > O(H-En\k —¢ for some compact set Kc R™ We
denote by Q;,i =1,..,M, those dyadic cubes of level p, which intersect K, and
define Q; = R™\UM, Q.
For every integer i € [0, M] choose r; € (0, min{1, p5,qq,}) S0 that% <J§ +¢& and set
k;, = rﬁi— n—ag, +2¢ and K; = a;}i + 2&. Then my is a (k;, K; + 1) -smooth molecule
when Q is of level at most p,. Define k;(v,n) :==K;(v—w), +k;(n—v), and s’é’u =
SQH|QH|_1/2.FinaIIy, let r € (0,min{p~,q7}).

Note that the constants k; and K; have been chosen so that in each set Q;
we may argue as in the previous lemma. Thus we get

_ —1/2
©y * mQu(x)| < c2 k(v'u)SQu|Qu| (T]v,Zm * np,Zm * XQH) (x)
From this we conclude that

Ifllgaey < c || 120y * £ll 00
p()a0) v

L)Ig(-)
Ho—1
—~ r —
= Z Z |SQ| 2nato k(v'u)nv,Zm *Nyp2m * Xg,
=0 D
M
—~ r —
SIS S sl 2500, <,
=0 H2po—1Qu€D q(x) :
o RO
By the previous lemma, each term in the last sum is dominated by |{sQ}Q o0
fo(a0
so we conclude that
Ho—1
—~ r —
Il < 1D D 521200, =X,
pt)ql
=0 D
H=0 Qu€Dy, l;l(x) L,‘;(')

+c(M+1) {SQ} N
” el e

It remains only to take care of the first term on the right hand side. In the current
case we get instead see [311]
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uaCOr-rk(v,w (T]v,Zmr * Ny2mr * XQH)I‘ < C2Llot(x)r—ZSIv—M|+n(1—r)++(u—v)+nv'2mr * My 2mr * XQH'
since we have no control of k,. However, since p <y, and v = 0, the extra term
satisfies 2" D++W-v)+ < on(1-N+ko g0 jt s just a constant.
Theorem (3.1.25) [140]: Let the functions p,q and a be as in the Standing

Assumptions and let fng((,'))‘q(,). Then there exists a family of smooth atoms

{ao}, and a sequence of coefficients {t,}, such that

f= tgag in §' and ”{tQ}
Moreover, the atoms can be chosen to satlsfy conditions (i) and (ii)
Definition (3.1.4) for arbitrarily high, given order.

Proof: Define constants K=n/min{l,p~,q"}—n+¢e and L=a*+1+¢c We
construct (K, L)-smooth atoms {aQ} 0eD* (see [106]). Note that we may use the

constant indices construction, since the constants K and L give sufficient

smoothness at every point. These atoms are also atoms for the space F;‘((_'))q(,).

70
oo Fotae:

Let f € Fj(g,- With functions as in Definition (3.1.2), we represent f as
f = Xoep+to®g, Where ty = (f, o). Next, we define

1/r
. tp|"
(tH) 0y P;v L+ 2" ]
for 9 =0Q,,v €N’ and keZ" For there numbers (t;), we know that f =
Yo(th)gag Where {aQ}Q are atoms (molecules with support in 3Q), by the
construction of [106]. Technically, the atoms from the construction of [106]
satisfy our inequalities for molecules only up to a constant (independent of the

cube and scale).
For v €N, define T,:=Xgep, tgXxg. The definition of t; is a discrete

convolution of T, with nvm Changing to the continuous version, we see that

(to,, ~ (TlvM*(lT |r)(x) for X € Q. By this point-wise estimate we
conclude that

.
) -3 (¢t
Il = [[[127% > 10172()xg
e q) JeD,
\ PO o
~ ||{2va(x)+v/2nv‘M*(lTvlr)(x)}v| (o )
L, LJ12(-)/r
Next we use Lemma (3.1.21) and Theorem (3.1.20) to conclude that
1/r
va(x)+v/2
||{2 v l@ PO ”” LAITRI) | )
v L, ' v Ly

= [[[[ 22« > 1012t
2Xg

Q€EDy v l](]](x) Lp(_)
X
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Since f = Yoep+tg@g, Theorem (3.1.22) implies that this is bounded by a

constant times |||l .«
p()q()

This completes one direction. The other direction,
Iflleaty < c|{so}, | o
pC) Fo()ae)

follows from Theorem (3.1.24), since every family of atoms is in particular a
family of molecules.

We consider a general embedding lemma. The local classical scale of
Triebel-Lizorkin spaces is increasing in the primary index p and decreasing in the
secondary index q. This is a direct consequence of the corresponding properties
of LP and (9. In the variable exponent setting we have the following global result
provided we assume that p stays constant at infinity:

Proposition (3.1.26) [140]: Let pj,q;, and «; be as in the Standing Assumptions,
j=0,1.
(i) 1fpe =p;and (Pg)e = (P1) e, » then LPoO) o P10,
(i) If @ >ay, Po2P1 (Po)ew = (P)eo  aNd Qo <@y, then  Fpi o
(-
p11(())(h()
Proof: In Lemma 2.2 of [97] it is shown that Lpo()(]R”)(»Lpl()([R{") if and

only if p, =p; almost everywhere and 1€ L'O(R™), where

1

r(x) pl(x) po(x)
Note that r(x) = oo if p;(x) = po(x). The condition 1 € L'O(R™) means in this
context (since r is usually unbounded) that lim,.,or(*)(A) =0, where we use

the convention that A*™™ =0 if r(x) =00 and A € (0,1]. Due to the assumptions
leclogl 1 _ i 1 A

on py and p;, we have - € C -2 0, and ~ = 0. In particular, |r(x)| Slog(e+|x|)

for some A > 0 and all x € R™. Thus,

Qr(.)(eXp(‘Z"A))= exp # dx < | (e+|x])7?"dx < oo.
- m| -
The convexity of o, implies that . (exp(—2nA)) -0 as AN 0 and (i)
follows.
For (ii) we argue as follows. Since a, > a;, we have 2v%® < 2vai(®) for
all v>=0 and all x € R". Moreover, q, <q; implies |*|l;ax < |Ill;a0 and (i)
implies LPoO(R™) & LP1O(R™). Now, the claim follows immediately from the

- ey ao(') al()
definitions of the norms of F (a0 @A Flsq o) -

Now we deal with trace theorems for Triebel-Lizorkin spaces. We write
D™ and DI} for the families of dyadic cubes in D* when we want to emphasize
the dimension of the underlying space. The idea of the proof of the main trace
theorem is to use the localization afforded by the atomic decomposition, and
express a function as a sum of only those atoms with support intersecting the
hyperplane R"~! c R™. In the classical case, this approach is due to Frazier and
Jawerth [45].

There have been other approaches to deal with traces and an extension
operator using wavelet decomposition instead of atomic decomposition, which
utilizes compactly supported Daubechies wavelets, and thus, conveniently gives
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trace theorems. However, for that one would need to define and establish
properties of almost diagonal operators and almost diagonal matrices for the

a() a() ; ;
Fotae and f p()q()r SPaces. The following lemma shows that it does not matter

much for the norm if we shift around the mass a bit in the sequence space.
Lemma (3.1.27) [140]: Let p, g and a be as in the Standing Assumptions, € > 0,
and let {E, }, be a collection of sets with Eg < 3Q and |E| > £|Q| Then

1
a() ~ zva(x) Z |SQ||Q| ZXQ

Q€Dy lq(x)
v

”{SQ}

Lg(-)

a()

Proof: We start by proving the inequality “<”. Let r € (0,min{p~,q"}). We

EXPress the norm as
1/r

”{SQ}

= |[[[z7=cr S |5, [ 10172
a9 o Xo

X

since the sum has only one non-zero term. We use the estimate xg < cnym * Xg,
for all @ € D,,. Now Lemma (3.1.21) implies that

1/r
r, . _I
s}, . 220 % |51l 2 x
€D
oeP N poe
1/r
va()r r —
< clfffne | 2740 > sol 1012 x,
€D
0ePy g/ RO/
Then Theorem (3.1.20) completes the proof of the first direction:
1/r
va(x)r r -
”{SQ}Q a0 =2 Z'SQ| 19172 Xe,
(a)
P 9Dy e/ 1RO/
1/r
va(x _1
= cl[[|z=® > Isol101 7 xe,
€D
Q€Dy 3/ RO/

The other direction follows by the same argument, since XE, S €y * Xg-

Next we use the embedding proposition to show that the trace space does
not really depend on the secondary index of integration.
Lemma (3.1.28) [140]: Let p;,p39:, @ anda, be as in the Standing
Assumptions and let g, € (0,). Assume that @; = a, and p; = p, in the upper
or lower half space, and that «; = a, and p; < p,. Then

ai () ny — az () n
trFp g0 (RM) =trF2e,, (RT).
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Proof: We assume without loss of generality that @y = a, and p; =p, in the
upper half space. We define r, = min{q,,q7} and r; = max{q,,qf}. It follows
from Proposition (3.1.26) that

tr %20

p2()ro

az (")
p1().q1()

a, ()

ou FPlC)Il

StrF

and

az () az () a1 ()
tr sz(')'l‘o ot sz(')'QZ o Fp1('):r1' o
aq

We complete the proof by showing that trF;

feFal) According to Theorem (3.1.25) we have the representation
p1()ry

az()
o tFlo,, Let

£= ) toag with [{taly]| L, <l
QeD+ p1 r1 P10dry
where the a, are smooth atoms for F 18 satisfying (i) and (ii) up to high order.
“2()

Then they are also smooth atoms for F ) .

Let A:={Q€eD*:30 n{x,=0}#0}. If Q€A is contained in the
closed upper half space, then we write Q € A*, otherwise Q € A~. We set t, =
to when Q €A, and tp =0 otherwise. Then we define f =Yoep+toag. It is
clear that tr f =tr f, since all the atoms of f whose support intersects R""1 are
included in £. For Q € A*, we define

3
Eg = {x €Q: Z{’(Q) <x, < €(Q)}
for @ € A~ we define
By = {(tx) ER™: (6 -x) €0, 54(@) <%, <70
for all other cubes Ep =@. If Q €A, then [Q] = 4|Ey|; moreover, {Eg}  covers

each point at most three times.
By Theorem (3.1.24) and Lemma (3.1.27) we conclude that

—_—~

Fllpe < c||{E),|

pz()T

r
20 <c 2”“z<x>ZItQIIQI 2 Xg

p2()ro Q€D ro
l L)I:z()

The inner norm consists of at most three non-zero members for each x €
R". Therefore, we can replace r, by r;. Moreover, each E, is supported in the
upper half space, where a, and «a,, and p, and p, agree. Thus,

—_—~

r
Pl < c|[[[22@ D feol 10z xe,

Pz()r
0 Q€D l1r;1 p1(-)
The right hand side is bounded by [If]l a0 according to Theorem (3.1.24) and
p1()r1
Lemma (3.1.27) Therefore, tr F&') & trFS2() , and the claim follows.
1401 2 o

For the next proposition we recall the common notation F5) = Fg() ., for
the Triebel-Lizorkin space with identical primary and secondary indices of
integrability. The next result shows that the trace space depends only on the

values of the indices at the boundary, as should be expected.
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Proposition (3.1.29) [140]: Let pyp,qy,@;, and «a, be as in the Standing
Assumptions. Assume that a;(x) = a,(x) and p;(x) =p,(x) for all xe R"*"1!x
{0}. Then
tr F Gy (R = tr FEG (R,

Proof: By Lemma (3.1.28) we conclude that trFe'l)
can assume that q; = p,.

We define &; to equal «;on the lower half space and min{a,;,a,} on the
upper half space and let @ = min{a;,a,}. Similarly, we define p; and Bp.
Applying Lemma (3.1.28) four times in the following chain

tr Fi O (R™) = tr FS'0(R™) = tr gl (R™) = tr F32() (R™) = tr F20) (R™),
gives the result.
Theorem (3.1.30) [140]: Let the functions p,q and a be as in the Standing
Assumptions. If

a—1/p—m-1)(1/p—1), >0, then trFi). (R =Fo; PORD),
Proof: By Proposition (3.1.29) it suffices to consider the case q =p with p and «

independent of the n-th coordinate for |x,| < 2. Let fng((_')) with [[fllzee) <1
p()

and let f = ) sgag be an atomic decomposition as in Theorem (3.1.25).

We denote by m the orthogonal projection of R™ onto R™!, and (¥,x,) €
R"= R*"'xR. For JeD} ' a dyadic cube in R"', we define Q;(J)€
Dﬁ,i=1,...,6-5"‘1, to be all the dyadic cubes satisfying ] < 3Q;. We define

ty = |Q1(])|‘% Yilso,n| and hy(#) =t7 Xisg,0a0,. By Q.() we denote the
cube Q;(J) which has ] as a face (i.e. ] € dQ.(]) ).

Then we have
wf@ =) ) ghG)

W Jeppt
with convergence in S’. The condition ;—1/p—(n—1)(1/p—1)+>0 implies
that molecules in Fi) YPP(R™1) are not required to satisfy any moment
conditions. Therefore, h; is a family of smooth molecules for this space.
Consequently, by Theorem (3.1.24), we find that

tr V=1/PpO) (n-1y = C ” t
| flngg_g 190 (gn-1) { 1}]

a ()

Yot Therefore, we

=trF

f&S)—l/p(')(Rn—l)'

Thus, we conclude the proof by showing that the right hand side is bounded by a
constant. Since the norm is bounded if and only if the modular is bounded, we see
that it suffices to show that

1
J E E <2u(a(x"0)_—p(x',0))|t]||]|_1/2X](x',0)) dx’
RN-1

n—-1
L JeDy;

5T o [y a
J

W Jeppt
Is bounded. For the integral we calculate
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z—uf(zua(xr,0)|tl||]|—1/2)p(x"0)dx' =2 K .[ (2”“(""0)|t]||]|_1/2)p(xl'0)d(x’, x,)
J 2+()

p(x)
1 n1
<c f(Z”“(")ZIQiIIQI 2n 2n> dx
i

2+()

p(x)
= f(Z”“(x)Z|sQi|IQI‘1/2> dx
i

) 9+
Hence, we obtain

Z Z 2‘11.[(zua(x',O)|t]||]|—1/2)p(""0) dx’

w Jept ] "
p(x
scy Yo Hf<2w<x>2|sgl||g| 1/2> dx
W Q€D
sc[ 3T (2@ lsgliol @) dx
R™ %5 Q€D

Where were again swapped the integral and the sums. Since [Ifll .« <1, the right
p(©)

hand side quantity is bounded, and we are done.
Section (3.2): Besov Spaces

Spaces of variable integrability, also known as variable exponent function spaces,
can be traced back to 1931 and W. Orlicz [124], but the modern development started with
[113] of Kovacik and Rakosnik in 1991. Corresponding PDE with non-standard growth
have been studied since the same time. For an overview we refer to the surveys [101, 128,
132, 148] and the monograph [145]. Apart from interesting theoretical considerations, the
motivation to study such function spaces comes from applications to fluid dynamics [86,
130, 141], image processing [94], PDE and the calculus of variation [87, 103, 111, 147,
151, 155, 159].

We complete the picture of the variable exponent Lebesgue and Sobolev spaces,
Almeida and Samko [88] and Gurka, Harjulehto and Nekvinda [109] introduced variable
exponent Bessel potential spaces £ with constant & € R. As in the classical case, this
space coincides with the Lebesgue-Sobolev space for integer a. There was taken a step
further by Xu [137, 138, 159], who considered Besov BY,., , and Triebel-Lizorkin FY

spaces with variable p, but fixed q and a.

Along a different line of inquiry, Leopold [117, 119, 120] studied pseudo-
differential operators with symbols of the type (€™, and defined related function spaces
of Besov-type with variable smoothness, Bm() Beauzamy [144] had studied similar yDEs

already in the beginning of the 70s. Functlon spaces of variable smoothness have recently
been studied by Besov [90, 91, 92]: he generalized Leopold's work by considering both
Triebel-Lizorkin spaces Fp()(1 and Besov spaces Bp()q in R™. By way of application,

Schneider and Schwab [135] used Bm()(lR%) in the analysis of certain Black-Scholes

equations. For further considerations of YyDEs, see Hoh [149].

Integrating the above mentioned spaces into a single larger scale promises similar
gains and simplifications as were seen in the constant exponent case in the 60s and 70s
with the advent of the full Besov and Triebel-Lizorkin scales. Most of the advantages of

p().q p().q
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unification do not occur with only one index variable: for instance, traces or Sobolev
embeddings cannot be covered in this case, since they involve an interaction between
integrability and smoothness. To tackle this, Diening, Hast0 and Roudenko [140]

introduced Triebel-Lizorkin spaces with all three indices variable, F;‘((_'))‘q(_) and showed

that they behaved nicely with respect to trace. Subsequently, Vybiral [157] proved
Sobolev (Jawerth) type embeddings in these spaces; they were also studied by Kempka
[150]. These studies were all restricted to bounded exponents p and q.

a()

Vybiral [157] and Kempka [150] also considered Besov spaces B, (,q NOtE that only

the case of constant g was included. This is quite natural, since the norm in the Besov
space is usually defined via the iterated space £4(LP) so that the space integration in LP is
done first, followed by the sum over frequency scales in £9. Therefore, it is not obvious
how q could depend on x, which has already been integrated out. It is the purpose to
propose a method making this dependence possible and thus completing the unification
process in the variable integrability-smoothness case by introducing the Besov space

a() . T .
Bp(_)’q(_) with all three indices variable.

The space includes the previously mentioned spaces of Besov-type, as well as the
Holder-Zygmund space C2(). As in the constant exponent case, it is possible to consider
unbounded exponents p and q in the Besov space case, while for the Triebel-Lizorkin
space one needs p to be bounded. Another advantage of the Besov space for constant
exponent is its simplicity compared to the Triebel-Lizorkin space. This is not true for the
generalization with variable g. We will see that working in the Besov space is relatively
simple once some basic tools have been established for dealing in the “‘iterated’’ space
290 (LPO),

We then define the Besov space Bg((_'))’q(_) and give several basic properties

establishing the soundness of our definition. We show elementary embeddings between
Besov and Triebel-Lizorkin spaces, as well as Sobolev embeddings in the Besov scale. We
show that our scale includes the variable order Holder-Zygmund space as a special case:

ngf;,)o = C%0) for 0 < a < 1. We give an alternative characterization of the Besov space
by means of approximations by analytic functions.

So far, complex interpolation has been considered in the variable exponent in [101,
145]. Real interpolation, however, is more difficult in this setting. We have, for constant
exponents,

(LPo,LP1)q, = LPed
where 1/pg == 0/py + (1 — 6)/p, and LP®4 is the Lorenz space. To obtain interpolation
of Lebesgue spaces one simply chooses q = pg. It seems that there are no major
difficulties in letting p, and p, be variable here, i.e.
(Lpo(')’ Lpl('))e = Lpe()q
q

where pg is defined point-wise by the same formula as before. However, this time we do
not obtain an interpolation result in Lebesgue spaces, since we cannot set the constant q
equal to the function pg. In fact, the role of q in the real interpolation method is quite
similar to the role of q in the Besov space By 4. Therefore, we hope that the approach
introduced for Besov spaces with variable q will also allow us to generalize real

interpolation properly to the variable exponent context. Another interesting challenge is to
extend extrapolation [95] to the setting of Besov spaces.
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The expression f ~ g means that %gs f < cg for some suitably independent

constant c. By x, we denote the characteristic function of A ¢ R™. By supp f we denote
the support of the function f, i.e. the closure of its zero set. The notation X < Y denotes
continuous embeddings from X to Y.
The spaces studied fit into the framework of so-called semimodular spaces. For an

exposition of these concepts see [145, 151]. We recall the following definition:
Definition (3.2.1) [160]: Let X be a vector space over R or C. A function g : X = [0, o] is
called a semimodular on X if the following properties hold:
(i) ¢(0) = 0.
(io(Af) = o(f) forall f € Xand [A| = 1.
(i) o(Af) =0 forall [A| > 1 implies f = 0.
(iv) A - o(Af) is left-continuous on [0, o) for every f € X.

A semimodular g is called a modular if
(V)o(f) = 0 implies f = 0.

A semimodular g is called continuous if
(vi) Forevery f € X the mapping A = (Af) is continuous on [0, ).

A semimodular o can be additionally qualified by the term (quasi)convex. This means,

as usual, that

e(6f + (1 —0)g) < A[6a(f) + (1 —08)ea(g)]
forall f,g € X; here A = 1 in the convex case, and A € [1, c0) in the quasiconvex case.
We obtain a normed space in a standard way:
Definition (3.2.2) [160]: If ¢ is a (semi)modular on X, then
Xo={x €X:31>0,0Ax) < o0}

is called a (semi)modular space.
Theorem (3.2.3) [160]: Let @ be a (quasi)convex semimodular on X. Then X, is a

(quasi)normed space with the Luxemburg (quasi)norm given by

1
x|l = inf{A >0: Q(XX) < 1}.
For simplicity we will refer to semimodulars as modulars except when special
clarity is needed; similarly, we later drop the word “‘quasi’’.
For dealing with the somewhat complicated definition of a norm is the following
relationship which follows from the definition and left-continuity: o(f) < 1 if and only if

Ifll, < 1.

The variable exponents that we consider are always measurable functions on R"
with range (c, o] for some ¢ > 0. We denote the set of such functions by P,. The subset
of variable exponents with range [1, ] is denoted by . For A c R" and p € P, we
denote pi = ess supp(x) and p, = ess igfp(x); we abbreviate p* = pgn and p~ =

A
p]I_&n.
The function @y, is defined as follows:

tP if p € (0, ),
cpp(t)z{o if p=o0 andt <1,
o0 ifp=oc0 and t> 1.
The convention 1® = 0 is adopted in order that ¢, be left-continuous. In what

follows we write tP instead of ¢, (t), with this convention implied. The variable exponent
modular is defined by
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20 = [ @plf @i,
R
The variable exponent Lebesgue space LP®) and its norm ||f llp() are defined by the
modular as explained. The variable exponent Sobolev space WXPC) is the subspace of LP()
consisting of functions f whose distributional k-th order derivative exists and satisfies
|DXf| € LPO with norm
If e = Ifllpey + ||Dkf||p(_)-

We say that g : R* - R is locally log-Hélder continuous, abbreviated g € |8, if
there exists cjog > 0 such that
xX) — <
lgC0) — gl ogte t 1/Ix =D
for all x,y € R™. We say that g is globally log-Hélder continuous, abbreviated g € €108, if

it is locally log-Holder continuous and there exists g, € R™ such that
Clog

Clog

1g(x) — 8ol < m

for all x € R™. The notation P'°8 is used for those variable exponents p € P with é €

clg. The class P, ® is defined analogously. If p € P°¢, then convolution with a radially
decreasing L!-function is bounded on LP®):
lo * fllpey < cllollllf -

Now we introduce a generalization of the iterated function space ¢9(LP(?) for the
case of variable g, which allows us to define Besov spaces with variable g. We give a
general but quite strange looking definition for the mixed Lebesgue-sequence space
modular. This is not strictly an iterated function space indeed, it cannot be, since then there
would be no space variable left in the outer function space. To motivate our definition, we
show that it has several sensible properties and that it concurs with the iterated space when
q is constant (Proposition (3.2.5)). Then we show that our modular in fact is a
semimodular in the sense defined and conclude that it defines a normed space.
Definition (3.2.4) [160]: Let p,q € P,. The mixed Lebesgue-sequence space £9(LPC)) is
defined on sequences of LPO)-functions by the modular

Qa(re) (Fo)y) = Z inf{A, > 0|gpaqpey (£/497) < 1},
Here we use the convention A/® = 1. The norm is defined from this as usual:
) 1
1o )ullpaqpery = inf {u > 0 [Qpa(1p0) <ﬁ (ﬁ;)v) < 1}.

If g* < oo, then
inf{A > 0]epy (/A7) < 1} = [IF199]] ) 0
Since the right-hand side expression is much simpler, we use this notation to stand
for the left-hand side even when q* = . We often use the notation

0oy () = D NAEICN e

for the modular.
Proposition (3.2.5) [160]: If q € (0, ) is constant, then
1wl pauoory = [l ]
Proof: Suppose first that q € (0, o). Since q is constant,
81



—_ q
110y /q = AN,
and thus

0rauro) () = D AN = (1Mol

from which the claim follows.
In the case q = oo, we find

00y (D) = ) inf{A, > 00,0, (/AD < 1),

v
Here the infimum is zero, unless at least one of the sets over which it is taken is
empty, in which case it is infinite. Therefore, the inequality in the definition of the norm,

. (fo)v
”(fv)v”gOO(Lp(')) = ll‘lf{p, >0 Q{;oo(Lp(-)) <fT> < 1}
holds if and only if p is such that g, (f, /1) < 1 for every v, which means that

infp = sup{llf,llp0} = ””fv”p(-)”[w-
Proposition (3.2.6) [160]: Let p,q € P,. Then Qpa0)(LPO)) Is a semimodular. Additionally,
(i) itis a modular if p* < oo; and
(i)it is continuous if p*,q*" < .
Proof: We need to check properties (i)-(iv) of Definition (3.2.1) and properties (v)-(vi)
under the appropriate additional assumptions. Properties (i) and (ii) are clear. To prove
(iii), we suppose that

Q£Q(')(LP('))(7\(fv)v) =0
for all A>0 . Clearly, g{,q(.)(Lp(.))(o,...,o,Afvo,o ) < 0y Af),) = 0 . Thus
||fvo||p(.) = 0 see [323], and so f = 0. If p is bounded, then the same argument implies (V).

To prove the left-continuity we start by noting that p— o {,q@(Lp(.))(p(ﬁ,)v) in
nondecreasing. By relabeling the function if necessary, we see that it suffices to show that
Qa0 (1Lp0) (H(fo)v) 7 @pa0d (1p02) (o))

w7 1. We assume that
Q{Q(')(Lp('))((ﬁﬂ)v) <o

the other case is similar. We fix € > 0 and choose N > 0 such that
N

ng(-)(Lp(-))((ﬁ;)v) —&< z inf{)\v >0 |Qp(-) (fv/lll,/q(')) < 1}.

v=0
By the left-continuity of u — @,y (1f), we then choose u* < 1 such that
N N

Z inf{kv >0 |Qp(.) (ﬁ,/}\i/q(')) < 1} —e< Z inf{?\v >0 |Qp(.) (uﬁ,/?&,/q(')) < 1}

v=0 v=0
for all pe (u',1). Then guoee)((fi)v) < Qv pey(W(f)y) + 2¢ in the same range,
which proves (iv). When q* < oo, a similar argument reduces (vi) to the continuity of
Qp(-)» Which holds when p* < oo,

We would have shown that the modular is quasiconvex as part of the previous
theorem. Then Theorem (3.2.3) would immediately imply that the modular in £90(LP®))
defines a quasinorm. Unfortunately, we do not know whether the modular is quasiconvex
when q* = oo. Therefore, we prove the quasiconvexity of the norm directly; we do this in
two steps, beginning with the true convexity. Notice that our assumption when q is non-
constant is not as expected. We also do not know if it is necessary.
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Theorem (3.2.7) [160]: Let p,q € P. If either 1/p+ 1/q < 1 point-wise, or q is a
constant, then ||| £PAO(1P0O) IS a norm.

Proof: Theorem (3.2.3) implies all the other claims, except the convexity. If p € P and
q € [1, 0] is a constant, then by Proposition (3.2.3), the convexity follows directly from
the convexity of the modulars in £9 and LP®).

Thus it remains only to consider 1 + 3 < 1 and to show that

1(F)w + (80) ”{JQ()(LD()) IFodollpae@wpory + 11(80)vllpaer (pey-
Let A > [[(f,)vll paer1pery @nd > 11(g0) |l sacr (g p0y- Then the claim follows from left-

continuity if we show that
(fo)v + (80)v

<1
At PAO(LPO)
Moving to the modular, we get the equivalent condition
LU LI | SYME

with our usual convention regarding the case p/q = 0. Since

a0 q()
SIE, = Sl
] v p()/q() p()/q()
the claim follows provided we show that
ﬁ;"‘gv q(®) A ﬁu q() H|g |q()
S —_— —_—
Atu (/e AT RITA p()/q() Tr " p()/q()

for every v. Fix now one v. Denote the norms on the right-hand side of the previous
inequality by o and t. Then what we need to show reads

+ PX) A5 + ut -p(x)/q(x)
ff;+iv (A+E) dx < 1. ®)
: R™ i . . .
We use Holder's inequality (with two-point atomic measure and weights (A, u)) as follows:
|| /2 lg1/1
If,] + lgy| = Ac?/a®) ;q o + /A m

x) p(o)\ 1/P()
1,1 /2\" lg,|/n
1-1/p(x)-1/q(x) 1/q(x) v v/ -
<A +w (Ao + o) ( ( vam ) TH e '

With this, we obtain
o+ &P (o ur)‘p(’”/q(") _ A ( |f,,|/x>p(") L <|gv|/u>"(")

A+p A+p T A+ p\ola®) A+ p\ /a0 '
Integrating the inequality over R™ and taking into account that o is the norm of f,,/A and t
the norm of g,,/u gives us (5), which completes the proof.

Theorem (3.2.8) [160]: If p,q € Py, then [|ll ja0(p0y IS @ quasinorm on £90(LPOY),

Proof: By Theorem (3.2.3), we only need to cosinder quasiconvexity. Let re
(0,%min{p_,q_,2}] and define p = p/rand g = q/r. Then clearly 1/p+1/q < 1. Thus
we obtain by the previous theorem that
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1
r

1 1
”(fv)v + (gv)v”gq(')(Lp(')) = ”l(fv)v + (gv)vlr”;q(.)(Lfg(.)) < ”(lfvlr)v + (Igvlr)v”{,q(.)(Lﬁ(.))
1
< (ll(lﬁ}lr)vllgﬁ(')(Lﬁ(')) + ”(lgvlr)v”gﬁ(')(]_ﬁ(')))r
1

= (N Ml5aer o0y + 1@ o000

1
<2t (”(ﬁ))v”gQ(')(Lp(')) + ”(gv)v”,{JQ(')(Lp(')))-
This completes the proof.
The condition p, q = 1 is not sufficient to guarantee that the modular o A0 (LPO) be

convex! Although it is not true that the modular Qpa0)(LPO) IS never convex when q is non-

constant (see, [160]).
Since q is constant when f is non-zero, we conclude by Proposition (3.2.5) that

Q{Q(')(Lp)((ﬁﬂ)v) = Q{"h(]_,p(gl))((ﬁ;)v) = ”al/(hXQl”El = da.
Similarly, g, ((g,)») = b. Then we consider the modular of > (f + g):

1 1 1
Qpa()(LP) (E (fy + gv)v> = inf{l >0 |ep <§ (f + g)/Aq(-)) < 1}_
The condition in the infimum translates to

P p b
f+regy\, 1 Nh b\az 1 avg 1 (b\a
12> [ (es) =5 | 6) "0+ () et =53 +5 ()"

R™ R™
Since the right hand side is continuous and decreasing in A, we see that there exists a
unique A, > 0 for which equality holds. This number is the value of the modular of

%(f + g). Therefore the convexity inequality for the modular,

1 1
ng(-)(Lp) (E (ﬁ; + gv)v> < E [Q[Q(')(Lp)((ﬁ;)v) + Q{)Q(')(Lp)((gv)v)];

can be written as
p

N <a+b h <a)%+(b)q_z_2p
0S5 where » ™ = 2P,
Let us denote x := a/A, and y := b/A,. Then the convexity condition becomes

2 < x+y when x%+y%= 2P,
By monotonicity, we may reformulate this as follows:

x%+y%S2p when 2 =x+y. (6)
Thus we need to look for the maximum of x% +(2 - x)% on [0, 2].

Suppose first that p = 1. Then (6) holds with equality at x = y = 1, but this is not a
maximum if q; # q,. Thus we see that the inequality x'/91 + y/%2 < 2 does not hold in
this case, which means that the modular is non-convex for arbitrarily small [q; — q5|.

On the other hand, fix p > 1 and choose q; = 0. Then we can choose x € (0,2) so
large that 2P — xP/91 = 1/2. Sincey = 2 — x > 0, we can choose q, so large that yP/9z =
1/2. Thus we see that there exists q, and q, for every p such that (6) does not hold.

We use a Fourier approach to the Besov and Triebel-Lizorkin space. For this we
need some general definitions, well-known from the constant exponent case.

Definition (3.2.9) [160]: We say a pair (¢, @) is admissible if ¢, ® € § satisfy

(i) supp@g{EERn=%S €] SZ} and |®(%)| = c> 0 when %S H Sg,
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(ii)supp® < {§ € R™ : |§| < 2} and |P(Y)| = c > 0 when [§| <
We set @, (x) = 2""@(2Vx) for v € N and @, (x) = ®(x).

We always denote by «¢,, and s, admissible functions in the sense of the previous
definition. Usually, the Besov space is defined using the functions «,,; when this is not the

case, it will be explicitly marked, e.g. ||-||‘]‘3’a(.)
p().qa()
Using the admissible functions (¢, ®) we can define the norms

Iflles, = 12°%@, * flleall, and Ifllsg, = [12°%@y * flly]| v
for constants ¢ € R™ and p, q € (0, oo] (excluding p = oo for the F-scale). The Triebel-
Lizorkin space Fg 4 and the Besov space By 4 consist of all distributions f € S for which
||f||Fg_q < oo and ||f||B%,q < oo, respectively. It is well-known that these spaces do not

depend on the choice of the initial system (¢, ®) (up to equivalence of quasinorms).
Further details on the classical theory of these spaces can be found in Triebel [40, 41]; see

wlun

also [136].
Definition (3.2.10) [160]: Let @,, be as in Definition (3.2.9). Fora : R™ - Rand p,q €
P,, the Besov space Bg8q() consists of all distributions f € S’ such that
P — va(:)
7l B a0 ”(2 Pv 1), 290 (LPO) <

— ; a) ,_ pal)
In the case of p = q we use the notatlc_)n By = Bp(_):p(,).
To the Besov space we can also associate the following modular:
Craty () = @y (1p0 ((2 “Oe, +f) )

p()q()
which can be used to define the norm. By Proposition (3.2.5) we directly obtain the

following simplification in the case when q is constant:
Corollary (3.2.11) [160]: If q is a constant, then

”f”ggggq = || ||2va(-)(pv * f“p(.) ||{)q

An important special case of the Besov space is when p = q. In this case we show
that the Besov space agrees with the corresponding Triebel-Lizorkin space studied in
[140]. This space is defined via the norm

[ e R = ””2”“() *f”,gQ()”

Notice that there is no dlfflculty with q depending on the space variable x here,
since the £90-norm is inside the LP®)-norm.
Proposition (3.2.12) [160]: Let p € P, and a € L*. Then BY{) = F().
Proof: The claim follows from the following calculation:

(x()(f) Z ||||2U0»’() *f”p()” Z f|2va(x)(p *f(x)|p(x)

v RN

= jZ|2va(x)(pv *f(x)|p( x) f”zva(x)(p *f(x)”{)q(x)dx =0 a()(f)

R v Fo0)
So far we have not considered whether the space given by Definition (3.2.10)

depends on the choice of (¢, ®). Therefore, the previous result has to be understood in the
sense that the Besov space defined from a certain (¢, ®) equals the Triebel-Lizorkin
space defined by the same . This is not entirely satisfactory. In [140] it was shown that
the Triebel-Lizorkin space is independent of the basic functions, essentially assuming that
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p,q @ € ?OIOg N L. We prove now a corresponding result for the Besov space, but with
more general assumptions; namely we allow p,q € :Pg°g to be unbounded, and assume of

a € L™ only local log-Holder continuity.
Theorem (3.2.13) [160]: Let p,q € $,°® and a € C;2¥ L. Then the space BS) . does

not depend on the admissible basis functions «,,, i.e. different functions yield equivalent
guasinorms.
Proof: Let (¢, ®) and (y, W) be two pairs of admissible functions. By symmetry, it
suffices to prove that
1% < cllf e
p().q0) p().q9()
Define K := {—1,0,1}. Following classical lines, and using that cTJvtTJu = 0 when |p —

v| > 1, we have
@y * f =chv*'~|—’v+k*f-
keK
Fix r € (0,min{1,p~}) and m > n large. Since |¢@,| < c Ny 2m/r, With ¢ > 0 independent

of v, we obtain

1/r
I(Pv * LI"v+k * fl < Cnv,Zm/r * |'~|Jv+k *fl < Cnv,Zm/r * (T]v+k,2m * |¢v+k *flr) ’

where in the second inequality we used the r-trick. By Minkowski's integral inequality
(with exponent 1/r > 1) and Lemma A.3, [140] we further obtain

|(Pv * lIjv+k * flr <c [nv,Zm/r * Tlifk;m * |'~|Jv+k * flr ~ nv+k,2m * |¢v+k * flr
This, together with Lemma 6.1 [140] and Lemma 4.7 [160] gives

” (27O, * f)v

va()r r yr
PAOLPO) ”(2 oy * fl L'L@(LPTO)

va()r r 1r
< Cz (2 Nv+k2m * [Wyik * f1 )V||€&<L&>

KeK
S Y
< CZ (nv+k,m * (zva rN—’v+k * flr)) || 90/ pO)
(L)

£40(LPOY’

1/r
<o) | @O i £, | ey 00y = € Y| @i 1),

keK fr <L r ) ex
By the shift invariance of the mixed Lebesgue sequence space, the last sum equals

3||f||‘£a(,) , which completes the proof.

p(,a0)

Although one would obviously like to work in the variable index Besov space
independent of the choice of basic functions ¢,,, the assumptions needed in the previous
theorem are quite strong in the sense that many of the later results work under much
weaker assumptions. In the interest of clarity, we state those results only with the
assumptions actually needed in their proofs. They should then be understood to hold with
any particular choice of basic functions. For simplicity, we will not explicitly include the
dependence on ¢, thus omitting ¢ in the notation of the norm and modular.

The following theorem gives basic embeddings between Besov spaces and Triebel-
Lizorkin spaces.

Theorem (3.2.14) [160]: Let a, ay, @; € L™ and p,qq,q;1 € Py.
(i) If qo < qq, then
Bg((g,qo(-) I Bg((-)),ql(-)'
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(iNIf (aqg — a;)” > 0, then

ap(r) aq ()
Bpg')'QO(') ° Bp(l')'ql(')'
(iii) Ifp*,q* < oo, then

a() a() a()
Bo()mintpMaey < Fp()q() - Bp( 9 max(p(),a()}"

Proof: Assume that g, < q,;. We note that Aqo(x> < Aqﬂx) when A < 1. By the definition it
follows that
Qg (f/ll) = Qgat) (f/u)

p().ao( p(),q1(

for every p > 0, which implies (i).
By (i),

0(0(') 0‘0( ) 0‘1( ) xq Q)]
Botrae® < Bptrarey a0 Bpiyare) © Bppai o

Therefore, it suffices to prove (ii) for constant exponents q¢ and qy, which we denote
again by q,q; € (0, oo] for simplicity. Then the proof is similar to the constant exponent
situation. Indeed,

[0, « il | < e [0y « L | <o [0, = 1 |

with ¢t = 3,50 2791 (@-a)7 < o,
To prove the first embedding in (iii), let r :== min{p, q} and £, (x) = 2"¢®@|q,, * f(x)|. We

assume that o« (f) < 1. Then it suffices to show that o .y (f) <c. Since £® o
Bpire) Fh(.a0

£9) we obtain

r(x)
o) (I llpa) < oy (Ifllrew) = f (Z f“’”) dx = gp(,) (Z fr()>_

20
Thus it suffices to show that the right hand S|de is bounded by a constant, which follows if
the corresponding norm is bounded. Using the triangle inequality, we obtain just this:

Zfr() Z'lﬁfr()| p_ ge) (f) =1
p() ” r() Bpoore)

For the second embedding in (|||), we use a similar derivation, with s = max{p, q}. We

assume that Qpa() (f) <1. Then we estimate the modular in the Besov space with a
p().q()

reverse triangle inequality which holds since p/s < 1:
e ()= ZIIfif()llpT o [T
S()

Since p/s is bounded, the right hand side is bounded if and only if the corresponding
modular is bounded. In fact,

2 (I51155) = f IAIESdx = o (<1,

(

290

S()

>
s()

S0 we are done.
We next consider embeddings of Sobolev-type which trade smoothness for
integrability. For constant exponents it is well-known that

B0, ©Bo (7)
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if ao—i=a1—p£, where 0 <py<p; <, 0<gq=<o, —0<a; <a, <o (see e.g.

[41]). This is a consequence of certain Nikolskii inequalities for entire analytic functions
of exponential type (cf. [41]), which we now generalize to the variable exponent setting.
Lemma (3.2.15) [160]: Let p;,po,q € P, With « —n/p, and 1/q locally log-Holder
continuous. If p; = py, then there exists ¢ > 0 such that

[le2eeg|"

q()

n n
< 2”(“<'>+m‘m)g 4 v

p1()
| po()
q(®)

q()

for all v € N, and g € LPoO) 0§’ with supp g c {£ : [§| < 2¥*'} such that the norm on
the right hand side is at most one.
Proof: Let us denote :=a—n/p, and

n qaC)
- Zv(s(-)+m)g

a®)
Note that the assumption on the norm implies that A € [27%,1 + 277]. Using the r-trick
and [140, Lemma 6.1], we get

r r 1 r
A A@ 27O g ()| < c A aI2VB@ (1o x [g]T) (X)) < ey * (7\ q(')2"“(')Igl> (x)

for large m. Fixr € (0,py) and sets = po/r € P,. An application of Hoélder’s inequality

with exponent s yields
1/r

__1_ _wn _1 V(B(')‘FL)
A Q(x)zvﬁ(x)|g(x)| <c | 2 S(')nv’m(x —) A 902 po() g

s'0) po()
The second norm on the right hand side is bounded by 1 due to the choice of A. To show
that the first norm is also bounded, we investigate the corresponding modular:

mnm —
Q') (fﬁm,m(x —->> - f 2 (1 4+ 2%|x — y )™ Py < f (1 +2x — z]) ™) dz < oo,
RTL RTL
since m(s")™ > n. Now with the appropriate choice of ¢, € (0, 1], we find that

1 p1(x)
<C07\ 46927209 | g(x) |>

-po(@)
2P W g0l p0x< ¢ V(s(x>+L>|g(x)I>pO(x)

< CSO(x) [CO V) A a2 Po(x)

1 n Po(x)
< <x‘@2”(8(x)+po(x)) lg(x) |> ,

Integrating this inequality over R™ and taking into account the definition of A gives us the
claim.

Applying the previous lemma, we obtain the following generalization of (7).
Theorem (3.2.16) (Sobolev inequality) [160]: Let py, p1,q € Py and ay, a; € L* with

a, = a,.1f1/qand ,

n
ayx) ———==a,(x) ———=
o)~ =1
are locally log-Holder continuous, then

ap(*) a ()
Bpo(2a0 < Bpi(.a0>r
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Proof: Suppose without loss of generality that the ngg_'))'q(_)—modular of a function is less

than 1. Then an application of the previous lemma with a(x) = a;(x) and g = @,, * f,
shows that the BS() . -modular is bounded by a constant.
Corollary (3.2.17) [160]: Let py, P1,90,91 € Py and ay, @; € L* with @y = a;. If

n n
@) - po(x) =l p;(x)

is locally log-Hélder continuous and €~ > 0, then
o) a1 ()

~ Bp0at @ B
Proof: By Theorems (3.2.14) (i) and (3.2.16),

oo () o) a1 ()+e()

Bpya00) < Bporee @ Bpy(hen

We combine this with the embedding B5: )% & B0 from Theorem (3.2.14) (ii) to
conclude the proof.

Let C, be the space of all bounded uniformly continuous functions on R™ equipped
with the sup norm. Concerning embeddings into C,, we have the following result.

Corollary (3.2.18) [160]: Let a € c}gf, p € P¢and q € P,. If

alx) — ﬁ > Smax{l —
for some fixed 6 > 0 and every x € R", then
()
Byae) @ Cu
Proof: Let y(x) == a(x) — ﬁ. By Theorem (3.2.14) (i), we may replace q with the larger

exponent max{1,8/(8 —y)} € P'°8, It then follows from Theorem (3.2.16) that
Ba() BY()
p(.aC)  Peo,g()”
Since BY, ; & C, by classical results, we will complete the proof by showing that
Blao) © B
Denote f, := ¢, * f. The remaining embedding can be written, using homogeneity in the

usual manner, as

)

z sup|f,| < c whenever z sup|2W(x)f |q(x)
X
v
We choose x, such that sup|f,| < 2|f, (x,)] for each v. Then it follows from Young's
X

inequality that
Zsup|f,,| ~ Z|ﬁ,(x,,)| < Z|2vv(xu)f( B R R COLUCO IR +ZZ 05 < ¢

WhICh completes the proof of the remaining embedding.
Let L%PO), o € R, be the Bessel potential space modeled in LP®), It was shown in
[140] that F5(y, = L*PO whena > 0,1 < p~ < p* < coand p € P'°8. Under the same
assumptions on p, by Theorem (3.2.14) one gets the embedding
Boyae < L7
for 6= > 6% > 0. In particular, we have BSS) ., & LPO if a= > 0 (cf. [88] or [109]). Next
we derive a stronger version of this.

Let us define
1

op(x) =n (m — 1) and p(x) = max{1,p(x)}, x € R™. (8)
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If @« —n/p=a—-o,—n/p is log-Holder continuous, p,q € P, , a € L* and (a -
op) > 0, then by Corollary (3.2.17) we get

B0 ¢« RO

p().a() p()1°

We further conclude that
I llser < ) 10w * Fllsey = IFllgs, < ClFl oy,

20 P()l
Proposition (3.2.19) [160]: Assume that p,q € P, and a € L™ are such that @ —n/p is
log-Hélder continuous. Let o, and p be as in (8). If (« —o,) > 0, then

() 10}
Bpiyae < LP

Letp,q € PO and a € L*. Define «, = (a —g) Then a = «ay + —=:a; € L™. It is clear

that a; + 5 = « IS log-Holder continuous. Therefore we obtain by Theorem (3.2.16) that

n
Batoa < Bty © B., o P = Beioo 8.

Now we show that our scale of Besov spaces includes also the Holder-Zygmund
spaces of continuous functions. This application requires in particular that we include the
case of unbounded p and q.

We start by generalizing the definition of Holder-Zygmund spaces to the variable
order setting. Such spaces have been considered e.g. in [142, 143, 153].

Recall that C,, denotes the set of all bounded uniformly continuous functions.
Definition (3.2.20) [160]: Let o : R™ — (0,1]. The Zygmund space C*® consists of all

f € Cy such that [|f |l ;«y < o0, Where
|ALf ()]

al) = e +
Iflleaer = lIf1I e o ThIE
For a < 1, the Holder space C*O) is defined analogously but with the norm given by

|ALf ()]
Ifllcee> = llf Il +
x€R™ heR™\{0} |h

|a(x)
Here A’h is the j-th order difference operator h € R",j € N:
ALFGO) =fle+h) = f(),  AFf = AL(ALS).

One can easily derive the point-wise inequality
suplh|~“@|ALf ()] < - suplh| @ [AFf ()], x € R
h - h

Hence we have ¢*0 & c*O for a* < 1. In fact, these two spaces coincide for such
@, as in the classical case. This is one consequence of the following result.
Theorem (3.2.21) [160]: For a locally log-Ho6lder continuous with ™ > 0,

BLY) =0 (¢ <1) and BE) =C*O (a* < 1).
Proof: The proof is naturally divided into two parts. First we consider the claim that
c© o B2 (a<1) and BY, o CO  (at <1).

We prove only the first embedding; the second is similar. We estimate the absolute

value on the right hand side of
Ifllgacy = sup sup|2**@ @, « f(x)|
©0,00 v X

by [Ifllsacr. The term v = 0 is easily estimated in terms of ||f]|.,, SO we consider in what
follows v > 0.
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Since the Besov space is independent of the choice of admissible ¢, we may assume
without loss of generality that @(—y) = @(y). Then

J*f Q) = f @u(f G + 1) + f(x — )]dh = j @, (WAZf (x — h)dh,

where we used the fact that [ @, (y)dy = §,(0) =0 in the second step. By definition,
|A2f (x — )| < lIfllpae [W]*®~™ . For small h, the log-Holder continuity implies that

|h|@=0) < ¢|h|*®), Thus we obtain
oo * fGO] < j |y (W]1h¥@ dh + ¢ j [, () ]h]** dh

|hi|<1 |h|=1
¢ f [, (W)1[2-"h|*)dh + ¢ f I, (W)[2="h|** dh
|h|<2v |h|=2v

< cp-va f oy (WI[I1]<" + [h|%"]dh,

where in the second step we used a change of variables. Since ¢ decays faster than any
polynomial (as supp @ is bounded), the integral on the right-hand side is finite, and so we
are done.
We then move on to the second part of the proof of the theorem, and consider the claim
B2) o ¢c® (a<1) and BE) o C*O  (at <1).
First we note that
abf @) _

sup sup————— e <2 sup sup sup| 2K @AM £ ().

o<|h|s1 x k=0 |h|<2~k x
(We restrict ourselves to [h| < 1 since large h are easily handled.) Fora >0and M > 1
there exists ¢ > 0 such that

|AM (@, * £)()| < cmin{1, 207OM} (3 1), (x),

for every v,k € N, and |h| < 27X, where (@3 f),(x) = sup 22L&
y

2y is the Peetre maximal

function, cf. [40]. Since f =¥, ¢, * f with convergence in L!, we can use the previous
estimate to obtain
sup |2k“(x)AMf(x)|
|h|<2-K
¢ ) 2 MO (i), (1) + ¢ ) 2Ty, (9)

v<k vzk+1
Therefore, we need to estimate 2™ (¢ ), (x). Let us denote K = sup 2v¢® |, * f(x)].
X
Then

¥ — ov(a(x)-alx-y))
« f(x —y)l < Ksup

1+ [2vyl@ y 1+][2¥y|®

When |y| <2772, it follows from the log-Holder continuity of a that v(a(x) —
a(x —y)) < c. When |y| = 27%/2, the right-hand side is bounded by K2v(@*-@"-a/2),
which remains bounded provided we choose a > (a* — a™). Therefore we have shown
that

Zva(x)(q)vf) (x) — sup Zva(x) |(P

2@ (@ )a(x) < ¢ sup 27 @, * f(0] < cllfllges
Using this in (9), we find that
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sup |2ka(x)A}I\1/If(x)| < C[z Z(v—k)(M—a"') + Z Z(k—v)a_

Ihlsz—k v<k v=k+1
If M = 1, then we have assumed that a™ < 1; forM = 2, M — a™ > 1. Thus the terms in

the brackets are bounded, so we have estimated the main part of the norm. Since we also
have |Iflle < cllfll;ec for a™ > 0, the proof is complete.

1 llgac -

We characterize the elements from BY() ., in terms of Nikolskii representations
involving sequences of entire analytic functions. Let
UPO == {(u,), € 8’ NLPY : suppf, < {§: [E| < 2"*1}, v € Ny }.
Theorem (3.2.22) [160]: Let p,q € P,°8 and a € C,°8 N L* with &~ > 0. Then f € §’

loc
belongs to B;‘((f;’q(,) if and only if there exists u = (u,,), € UPO) such that
f=Ilimu, in §' (10)
V>0
and
M 5+ [|(27=0r - .

1 =t (20 -s0) | <

Moreover,

IF11" == infll £
IS an equivalent quasinorm in Bg((_'))'q(_), where the infimum is taken over all possible
representations (u,), € UP® satisfying (10).
Proof: First we show that ||f]|* < Ifllgeey - If (¢,), IS an admissible system, then

p().a(0)

v
u,,:=Z(p]-*f—>f in §' as v > .
j=0

Thus (u,), € UP® and
(20 = u) = z 2790204950 g « f)  in ',
=0
Observe that 27190 < 2-i@” and that = > 0 by assumption. Let r € (0,%min{p, q, 2}).

Using the previous expression and the triangle inequality in the mixed Lebesgue-sequence
space, we obtain

ral/r
ova()(f _ _ Zz—ia(-) 2(+0)al) g
”( (f u”))v 240 (LPO) = ( (p”"’*f)v {)@(L#>
1/r
< Z 2770 (250w £7)
()
fr|LTr
1/r
<[ 32 [0, « 11,

q0) / pQ)
fr |(Lr
)

<c || (2"“(')@1; * f),, fq(-)(]_lp(')),

where the last step follows from the invariance of the norm under shifts in the v direction.
Since [lugllpey = lleo * fllpey < IIfIIBa8 N we have shown that
pt)qt
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IfI" < CIIfIIBaE-g o
pC).ql
Now we prove the opposite inequality. Let (u,), € UPO be such that f = lim uy
and ”f”u < . Then Py *f = Zkz—l Py * (uv+k - uv+k—1)’ vVE N0 (Wlth U_; = 0) USing
the r-trick, with r as before, we find that

1
zva(x)l(pv * fl < Zva(x) z |(Pv * (uv+k - uv+k—1)| < Z [nv,m * (Zva(.)rlulﬁk - uv+k—1|r)]r-
k=—1 k>—1
Since 2v*0) < 2w+ka()p-ka™ e obtain
1

2vaCp  « <c Z 2~ ka” ”( « (20+0e0r |y — e q|T ) T O
||( Py f)v {’q(')(Lp(')) e nv,m ( | v+k v+k 1| ) v fQ(L%)>

Then we can get rid of the function n (see, [160]). Using
|uv+k - uv+k—1| < |f - uv+k| + |f - uv+k—1|r

we find that
va(?) —ka~ W+R)a()(f _
|| (2 Py * f)v f’Q(')(Lp(')) <c Zl 2 |(2 (f uv+k)) {JCI(')(LD(-)).

Using again the invariance of the sequence space with respect to shifts, we see that
the left hand side can be estimated by a constant times || f||". Taking the infimum over u,
we obtain [Ifllge < clfII"
p).ql

14
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Chapter 4
Besov-Type Spaces and Decomposition of Besov-Hausdorff Spaces

We introduce certain Hardy-Hausdorff spaces BHf;fl R™) and show that the dual
space of BHy, (R™) is just B;f:g,([[&"), where t’ denotes the conjugate index of t € (1, «).
Moreover, using their atomic and molecular decomposition characterizations, we
investigate the trace properties and the boundedness of pseudo-differential operators with
homogeneous symbols in BHyg(R™) and FHyG(R™) (q> 1), which generalize the
corresponding classical results on homogeneous Besov and Triebel-Lizorkin spaces when
p € (1,00) and q € [1, o0) by taking T = 0.
Section (4.1): Triebel-Lizorkin-Type Spaces Including Q@ Spaces

The most general scales, known so far, are the scales of Besov spaces and Triebel-
Lizorkin spaces. Besov spaces Bf;fl R™) respectively domains in R™ for the full range of
parameters s € R and p,q € (0, o] were introduced between 1959 and 1975 (see [41]).
They cover many well-known classical concrete function spaces such as Holder-Zygmund
spaces, Sobolev spaces, fractional Sobolev spaces (also often referred to as Bessel-
potential spaces), Hardy spaces and BMO( R"™ ), which have their own history.
Acomprehensive treatment of these function spaces and their history can be found in
Triebel’s monographes [56, 136].

Let S(R™) be the space of all Schwartz functions on R™. Let ¢ and y be functions
on R™ satisfying

@y ESRY (D
supp §, 9 < {§€ R": 1/2 < [g| <2}, (2)
9@ [0®|=C>0 if 3/5<I¢ <5/3, (3)
And
> @@ =1if §#0, @)

=7
where £ (€) = [i., f(x)e™™**dx. For all j € Z and x € R™, we put @;(x) = 2™"@(2)x). As
in [176], we set

So(R™) = {cp e S(R") : fcp(x)dex = 0 for all multi — indices y € (NU {0})";.
RTL

Following Triebel [41], we consider S, (R™) as a subspace of §(R™), including the

topology. Thus, S, (R™) is a complete metric space (see [181]). Equivalently, S, (R™) can

be defined as a collection of all @ € S(R™) such that semi-norms [l@|ly =

sup sup|dYPE)|(JEIM + |§|™) < oo for all M € N U {0} (see [93]), where and in what
ly|<M geR™

follows, Y=, Y E(NU{OD™ vyl =v1+ .+ Vo and QY =

0

(—) Y1 e (i) Yn0 . The semi-norms {||-||m}menuio; generate a topology of a locally
08, 08,

convex space on 8., (IR™) which coincides with the topology of S, (R™) as a subspace of a
locally convex space S (R™). Let S, (R™) be the topological dual of §,,(R™), namely, the
set of all continuous linear functionals §.,(R™). We endow §., (R™) with the weak x-
topology. Then S8, (R™) is complete; see [177].

Lets € R, p,q € (0, ] and ¢ satisfy (1) through (3). The Besov space Bg,q(R”) is
defined to be the set of all f € S, (R™) such that
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1/q
I llgs o mmy = {Z 2| *fHEP(lR{n)} <

=7

the Triebel-Lizorkin space Ff,,q([R") for p < oo is defined to be the set of all f € S, (R"™)

such that
1/q
”f”F%Iq(Rn) = {2(21‘5|(p]. *fDq} < 00;

JEZ

LP(R™)
see [41, 106]. For s € R and q € (0, o], the Triebel-Lizorkin space Fﬁo,q(R") Is defined to
be the set of all f € S, (R™) such that

o 1/q
1 .
”f”Fgo’q(an) = sup {ﬁf Z(lelcpj *f(x)l)qu} < o0,

P dyadic -
Y P J=)p

where [(P) is the side length of dyadic cube P,jp = —log, [(P) and the supremum is taken
over all dyadic cubes P; see [106]. It is well known that the spaces Bf,,q (R™) and Fg,q([R{")

are independent of the choices of ¢ (see, for example, [41, 106, 176]).

There has been increasing interest in a new family of function spaces, called Q,
spaces, where o € R. These spaces were originally defined by Aulaskari et al. [163] as
spaces of holomorphic functions on the unit disk, which are geometric in the sense that
they transform naturally under conformal mappings (see [185]). Following the works of
Essén and Xiao [174] and Janson [178] on the boundary values of these functions on the
unit circle, Essén et al. [173] extended these spaces to the n-dimensional Euclidean space
R™. Very recently, Xiao [186] found some applications of these spaces in Navier-Stokes
equations. Recall that for a € R, the space Q,(R") is defined to be the space of all
measurable functions f € L% .(R™) such that

loc
1 j If () — fF(I?

1/2
|X — y|n+2a dx dy < @, (5)

Ifllg,mmy = Sup{
|

Il

where I ranges over all cubes in R™. Sinée every cube I is contained in a cube ] with
dyadic length (namely, I(J) € {21 :j € Z}) such that I(J) < 2I(I), we obtain an
equivalent norm if we consider only cubes of dyadic edge lengths in (5).

In Dafni and Xiao [167], asked what are the relations among Q,(R"™), Besov
spaces and Triebel-Lizorkin spaces? Lets € R, t € [0,0),p € (1,00) and q € (1,]. In
[189], based on the Carleson measure characterizations of Q, spaces and Fﬁo,q(]R{”) spaces
(see [106]), we introduced a new class of function spaces F;';(R"), which unify and
generalize the Triebel-Lizorkin spaces with both p < oo [41] and p = o [41, 106] and Q
spaces [173] on R™. Our results establish the relationship between Triebel-Lizorkin spaces
and Q spaces. The spaces also include the space Qg’q(]R{") witha € (0,1)and 2 < g <
p < o in [166] as a special case. Furthermore, for s € R, p,q € [1, ), max{p,q} > 1

and t € [0, (maxqp q}),], via the Hausdorff capacity, we introduced in [189] a new class of

tent spaces Fiy5(R3*'), and determined their dual spaces FW *%/9(R*1); as an

application of this, we further introduced certain Hardy-Hausdorff spaces FH3F (R™) and
proved that the dual space of FHyg(R™) is just F;,f;/ 4(R™) when p,q € (1, o), where

95



herein and in what follows, t" denotes the conjugate index of t € [1, oo]. Also, herein and
in what follows, we set R7** = R™ x {2X : k € Z}.

Let s, € R. We continue study of the Triebel-Lizorkin-type spaces F;5(R™) by
also considering the cases p,q < 1; moreover, we also introduce some new class of
Besov-type spaces B, (R™) for p, q € (0, o] as follows.

Definition (4.1.1) [190] Lets,t € R, q € (0,00] and ¢ be a Schwartz function satisfying

(1) through (3).

(i) Let p € (0,00]. The Besov-type space B q(R™) is defined to be the set of all f €
S5 (R™) such that ”f”Bf,fq Ry < 0, where

a/p) /4
”) ” 5S,T rpny = SU —_— f 215 @; * | (X) dx
Bp‘q(R ) p dya% ic |P| ] ]P ( | ] |)

with suitable modifications made when p = oo or q = oo.
(if)Let p € (0, o). The Triebel-Lizorkin-type space FSZE(IR") is defined to be the set of all
f € 85, (R™) such that ||f||p%‘a(Rn) < oo, Where
| - p/a) /P
1 . q
ST opny = SUP ——— 258 1; * f(x dx
”f”Fp,q(R ) deal:()iiclpl‘[ ![;( |(P] f( )D ‘
with suitable modifications made When q = oo.
Obviously, when p = q € (0, ), B [R") [R") For simplicity, in what foIIows

we use Ay (R™) to denote either B ]R”) or F q(R™). 1f AYTL(R™) means Fyg (R™),

then the case p = oo is excluded. The spaces A;q(]R{") unify and generalize the classmal
Besov spaces [41, 45, 56, 176], Triebel-Lizorkin spaces [41, 56, 106, 176] and Q spaces
[173] on
R™. Thus, we give a complete answer to the question of Dafni and Xiao in [167].

Different from [189], we need some discrete Calderon reproducing formulae, which
further vyield the ¢ -transform characterization of these spaces via some subtle
modifications on the methods developed by Frazier and Jawerth [45, 106]. As a special

case of our Besov spaces B q(R™), we also obtain the ¢-transform characterization of the
space BBMOZq(Rn), WhICh was, via the ¢ -transform and the space of sequences,
introduced by Lin and Wang [180] to establish certain T(1) theorem for Besov spaces

B}, q(R™). We notice that the Besov-type spaces B q(R™) when p,q € [1,00) were first
mtroduced by El Baraka [169, 170, 171, 172]. El Baraka obtained some embedding and
lifting properties and applied in [171] these results to study properties of solutions of
certain elliptic systems.

Using the ¢-transform characterizations of Af;fq(IR{"), we obtain their embedding
and lifting properties, which are also new even when p, q = 1; moreover, for appropriate
T, we also show that almost diagonal operators are bounded on their corresponding
sequence spaces a (IR") which further induces the smooth atomic and molecular

decomposition charactenzatrons of A} (R™). For s€R, p,q€[l,00), max{p,q} > 1
and t € [ ﬁ] via the Hausdorff capacity, we introduce a new class of tent spaces
BTyq(RZ*1) and determine their dual spaces BW ™ T/‘]‘(]IRQ“); as an application of this, we
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further introduce certain Hardy-Hausdorff spaces BH;;(R™) and show that the dual space
of BH; 5 (R™) is just B‘ST (R™) when p € (1,0) and q e [1,00).

We establish some discrete Calderdn reproducing formulae in ., (R™) and its dual
space S5, (R™), which is a key tool.

For all s,t € Rand q € (0,], we introduce the sequence spaces, dls,',fl R™).Via
the fact that BT (R™) = FSE(R™) and Q,(R™) = F55/*/™(R™) (see [189]), we immediately
obtain the connectlon between Besov spaces and Q spaces. Let @ satisfy (1) through (3).
The main result is Theorem (4.1.5) below, which establish the ¢ -transform
characterizations of A q(R™) in the sense of Frazier and Jawerth for all desired indices
s,T,p and q. This result generalizes the classical results on BS q(IR") and F$ bq(R™) in [45,
106]. From this characterization, we deduce that the spaces A}},(R™) are independent of
the choices of ¢ as in (1) through (3). Also, applying the - transform characterizations of
Ay (R™), we obtain some embedding properties for different metrics and the lifting
properties of these spaces. If t = 0, all these results go back to the classical results. As a
by-product, we also obtain the ¢-transform characterization of the spaces BBMO;'q(lR%").

In Definition (4. 1 16) below, for all € € (0,), we introduce a class of e-almost
diagonal operators on a (R") and then prove in Theorem (4.1.17) below that for all s €
R, p,q € (0, oo] and t e [0 1/p + ¢/(2n)), e-almost diagonal operators on a IR{") are
bounded on a (R") We establish the smooth atomic and molecular decomposmon
characterlzatlons of A}, (R™).

Lets€ R, p,q € [1,), max{p,q} >1andt € [0 p— }),] Using the Hausdorff

capacity, we introduce tent spaces BT“(]R"“) and BW”(R"“) which are related to
Besov spaces. Then we establish their dual relations. These results generalize the
corresponding results in [167] for the spaces with p = q = 2 and s and t taking special
values to the full ranges as above. We point out that our restriction on t as above is
optimal in certain sense.

Via the Tent spaces we introduce a new class of Hardy-Hausdorff spaces
BH 5 (R™), where p € (1,00),q € [1,0). Via the duality of Tent spaces we further prove

that the dual space of Bleq(]R%”), IS just Bp o 5 (RM).

We make some conventions on notation. We denote by, C denotes unspecified
positive constants, possibly different at each occurrence; the symbol X < CY means that
there exists a positive constant C such that X < CY, and X ~ Y means C™1Y < X < CY. For
any @ € S(R™), we set o(x) = @(—x) for all x € R™. Fork = (ky,...,k,) EZ™" and j €
Z, Qjx denotes the dyadic cube Qj = {(xy, .., xp): k; < 2/x; <k; + 1 for i=1,..,n} €
Z" and Q = {Q,-k}]_k. We denote by x, the lower left-corner 277k of Q = Q. . When

dyadic cube Q appears as an index, such as )} and {-}o, it is understood that Q runs over
all dyadic cubes in R™. For each cube Q, we denote its side length by [(Q), its center by
cg, and forr > 0, we denote by r Q the cube concentric with Q having the side length
rl(Q). Let E be a set of R™. Denote by x its characteristic function and E° its interior.
Also,set N={1,2,...}and Z, = N U {0}.

Now we establish some Calderén reproducing formulae in ., (R™) and its dual
space S5 (R™).
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For a function ¢ and dyadic cube Q = Qj., set gyo(x) = 9|7?¢(2x — k) =
|Q|1/2(p]-(x — xp) forall x € R™.

We establish the following discrete Calderon reproducing formula via [189]. It is
well-known that this type of Calderon reproducing formula plays an important role in the
study of Besov and Triebel-Lizorkin spaces when p < 1 or q < 1; see, for example, [106].
The difference between these Calderon reproducing formulae with those in [16,18] exists
in that here, we use the distribution space ., (R™) instead of §'(R™) /P (R™) therein.
Lemma (4.1.2) [190]: Let ¢, € S(R™) satisfying (4) such that supp @, supp | are
compact and bounded away from the origin. Then for any f € S, (R"),

F=20m Y (@ £)@T0w —27K) = Z(f Pohg ©)

JEZ kezZn
holds in S, (R™), where $(x) = @(—x) for all x € R". Moreover, for any f € S, (R™),
(6) also holds in §¢, (R™).
Proof: Let f € §,(R™). By [189, Lemma 2.1], we have that f = Ycz U * @; * f in
S (R™). Thus, the proof of (6) for f € S, (R™) is reduced to proving
Wy Py f =270 ) (@ @I 27K @
kez™

in S, (R™).
To show this, let g = @; = f . Obviously, g€ S.,(R™). Since supp g c 2/[—m, 7]"

/2 P .
e=il2 ’k@} of 12(2i[—m, ™), then

expanding g in the Fourier orthonormal basis {W
kez™"

for any £ € 2J[—m, m]™, we have

27 i =] : : o=
8= 2 G { | e ’k'y>dy}e“<2 KO = ) 2img2Tige R ()
KEZ" 20 KEZ™

—m,m|"

Notice that supp LTJ]- c 2[-m ™, we can replace g by its periodic extension

without altering the product g;. Using g * s; = (gLTJj)V and (8), we obtain that for all
x € R™,
. . it v~ \VY . . .
(g wy)(x) = z 27ng(27K) (7)) (x) = 27 Z (@ £) 2710w (x — 277k),
kezZm kezn
where fV(x) = f(—x) for all x € R™. Thus, (7) holds pointwise.
To prove that (7) holds in S, (R™), by the chain rule, for any M € Z, and k € Z", we
have

lg@7KW;C —2~ ]k)” < |g(27k)| sup sup

0¥ (e8| sup |0V ;)| (IgI™ + 1517™)
lylsM

SER™ |y|<M
~ 127" g0 [hws
Since g is a Schwartz function, then |g(2 k)| < (1 + || . Hence
> ll2mg@ 0w —20|, < > 272 k" |g2 0| [, < o,

kezn kezn

which together with the completion of S, (R™) implies that Yyezn 27mg(2 7 K)y; (- —277k) €
S (R™), and then (7) holds in S, (R™). This shows that (6) holds in S, (R™).
To verify that (6) also holds for any f € §, (R™), by [189, Lemma 2.1] again, we only
need to show that (7) holds in 8¢, (R™).
To this end, let g = @; * f again. Then it is well-known that g is a slowly increasing
C® function. For any § > 0, let g5(x) = y(6x)g(x), where y € S(R") satisfies y(0) = 1,
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and supp ¥ is compact. Then gs € S(R™). For sufficient small 5, by the proof of (7), we
have that for all x € R",

by 2500 = 27 ) g5 (2700 — 27K) 9
kezmn
in S, (R™).
Assume that g is at most polynomially increasing with order m € Z,. Since {; €
S (R™), for any fixed x € R™, we have

| * gs(x)| < jlgs(x —VY|dy < Cy;(1 + [xD™ < oo,

Rn
|86(2_jk)||ll!j(x —27k)| < Cy,j(Z‘jk)m(l +x - 2‘1k|)_(m+"+1)
and

279 3 (2 k" (1 + [ - 27K) " < j YIm( + = yD) D dy < oo
kezZn
Then applying the Lebesgue dominated convergence theorem and taking the limit as

S — 01in (9), we obtain that (7) converges pointwise.

Noticing that for any ¢ € S(R™), [(;(- —277k), $)| < C;(1 + |x — 27k|)
|gs(27K)| < ¢, (1 +]277k])™, we have

Z 271 g5 (277K ||(W; (- —277K), d)| < Cy z (14 [27k|)™ (1 + [27k]|)

kezZ™ kezZn
This observation together with the Lebesgue dominated convergence theorem and (9)

implies that for any ¢ € S, (R"),
Wy g ) = lim(u = g5, &) = lim > 27 2T —277K0), )

kezZmn
= Z 272K (W; (- —277K), ).
kezZmn

Thus (6) holds in §¢, (R™), which completes the proof of Lemma (4.1.2).

For @ € S(R™) and M € Z,, set [|l¢lls,, = sup sup|0Y@(x)[(1 + [x[)**M*VI| The
[y|sM xeR™

following basic estimate is used; for its proof, see [189].
Lemma (4.1.3) [190]: For any M € N, there exists a positive constant C = C(M, n) such
that for all @,y € S,(R™), i,j € Z and x € R",

@ * U ()| < Cllolls,,,, 1Wlls,,, 27 1FM
where i A j = min{i, j}.
Now we establish the ¢-transform characterizations of the spaces A;fq(R"). To this
end, we introduce their corresponding sequence spaces as follows.
Definition (4.1.4): Lett,s € R and q € (0, oo].
(i) Let p € (0, o0]. The sequence space B;'}l(]R%”) is defined to be the set of all sequences
{tQ}Q < C such that [|tllsz gy < o0, where

p a/p
lItllist gny = sup —— 21Sq to|Xo(x) | dx
bp'q(R ) de'adlclpl —JP 5 (Q)=2- ]| Q| g

and o = Q|7 1/2XQ

—(m+n+1)

, by

—-(m+n+1)

2= (iA)M
(2—(i/\j) + |x|)n+M’

1/q
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(ii)Let p € (0,0). The sequence space f,q (R™) is defined to be the set of all sequences
{tQ}Q < Csuch that [|t]] jszgn)y < o0, where

. . p/q 1/p
|t]| tsteny = su f Z 10175/ [to |50 (x) dx .
Toia®%) dealziic |P|T 5 Qcp( | Q|XQ )

Obviously, we have

1/q

Iligyen =, 30, 2[ D, (lgrsmv/zu/ejgy) } (10)

j=ip l(Q) 27
QcP

Similarly to the case ofA q(R™), we use a ([R”) to denote either b E([R{") or
'I,fg(Rn). If a7, (R™) means f (]Rn) then the case p = oo is excluded.
Let o and Y satisfy (1) through (4). Recall that the @-transform S, is defined to be

the map taking each f € S, (R™) to the sequence S, f = {(S(pf)g}g,where (Sq,f)Q = (f, po)

for all dyadic cubes Q; the inverse ¢-transform Ty, is defined to be the map taking a
sequence t = {tQ}Q to Tyt = YotoWy; see, for example, [45, 175]. Then we have the
following result.

Theorem (4.1.5) [190]: Let s € R, r € [0, 00), p,q € (0,0] and (p and satisfy Q)
through (4). Then the operators S, : A}, (R™) — a)q(R™) and Ty, : a,q(R™) - A q(R™) are
bounded. Furthermore, Ty, o S, is the |dent|ty on AST R™).

Lemma (4.1.6) [190]: Let 6 € R. Then there eX|st positive constants L, and C such that

forallj € Z,
Z o1° < conCIsl+ Dl
n Lo —
ocoi@=-2- (1 + | /maX{l 1013)

To show that Ty, is well defined for all t € a (R”) we have the following conclusions.
Lemma (4.1.7) [190]: Lets € R, T € [0, oo) p,q € (0,c0] and Y € S, (]R") Then for all
t € ayq(R™), Tyt = YotoW, converges in S, (R™); moreover, Ty, : a g (R™) - S5 (R™) is
conUnuous
Proof: By Minkowski’s inequality, we see that for all s € R, T € [0, 0),p € (0, ) and
q € (0,00], b;fnm(p NGO foq (R™) € b;fnax{p ¢ (R™), which implies that to prove
Lemma (4.1.7), it suffices to show it for the space by§ (R™).

Lette b;fq(IR”). We need to show that there exists an M € Z_ such that for all ¢ €
So(R™), Yolto||(Wo, )| S lidlls,, - Indeed, observe that for all dyadic cubes Q, |to| <
||t||b;,L(Rn)|Q|S/”+1/2+T‘1/P. We have

 ltollwo, & < Il umy » 1Q17H1/242/0 (g, ).
9 9

To complete the proof, we need the following estimate that for any L > 0, there
existsan M € Z, such that for all Q,P € Q,

| K - o1 PN
X0 = Xp| )12 T
[(Wo, dp)| S IWllsy, lIdlls,, (1 * nax(l |Q|}> (mm{IPI , |Q|}> : (11)
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Recall that if P =[0,1)", then ¢p = ¢. Applying (11) for P =[0,1)", Q = Qj
and L >max{1/p+1/2—s/n—1, 1/p+3/2+s/n+7, Ly}, where L, is as in Lemma
(4.1.6), we obtain

n L
|<llJQ, (I))| < ”(I)HSM (1 + %) (min{277", 2InHL,

Then applying Lemma (4.1.6) yields that
> Teol o, &)

0
I I Y
S ”t”bf,'}l(R")”d)”SME2_|]|nL2 (2t e=1/0) (g, )
JEZ
n -L
X z (1+ |xo| /max{1,1213) = = litllgsz am lIdlls,-

0€Q,1(Q)=2"
Therefore, T,t =Y, topy converges in S;,(R™); moreover, for all te bf;}l(R") and ¢ €

S (R™), |(T¢t,<|>)| < ”t”b%Tq(Rn)”q)”SM, which completes the proof of Lemma (4.1.7).
For a sequence t = {tQ}Q, r € (0,00] and a fixed A € (0, ), set

e
(t:,) _( |tr]" )
rAg = A
° \wadiRion (1 + 1R |xr = xg)
and t;, = {(th)g}g' We have the following estimates.

Lemma (4.1.8) [190]: Lets € R, T € [0,2),p,q € (0,00] and A € (n, o). Then there
exists a constant C € [1,0) such that for all tea;,(R") , ||t||a;,a(Rn) <

t:nin{p,q}l”d%"a(Rn) = C”t”a;a(Rn)
Proof: Notice that |tQ|s(t’;)\)Q holds for all dyadic cubes Q . This observation
immediately implies that IItIIagg(Rn) <

t;Aq')‘||aIS)'}1(R")’ Where p A q = min{p' q}
To see the converses, fix a dyadic cube P. Letry =ty if Q < 3P and ry = 0 otherwise,

and let ug =ty —rg. Setr = {ro} and u = {ug} . Then for all dyadic cubes Q, we have

(t;/\ql)g/\q = (r;/\ql)g/\q + (u;/\q,k)g/\q- (12)

Applying the fact that for each sequence t={tQ}Q,

*
tp/\q'}‘”bf,,q(ll%n) ~ “t“b?),q(]Rn) and

t;’\%”fg,q(mn)"”t” js @ (see [106]), we then have

1/q

( Q/p\

1 { p 1
LR Z z —S/m=1/2+1/p (¥ } < —||r; :
I L ~ [lQl ( p/\q.)\)Q] |P| pAq'}‘”bf),q(Rn)

|i5p | 1=z |
QcP
1
< Wllrllb;q(w) < el e
and similarly,
k q p/q 1/p
T — —s/n—=1/2( .* |
Ip = |P|® .[ [QZP [lQl (rpAq,A)QXQ(X)] ‘ dx < ”t”fs,’ctl(ﬂ%")'
p c
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On the other hand, let Q c P be a dyadic cube with [(Q) = 2771(P) for some i €
Z.. Suppose Q is any dyadic cube with [(Q) = 1(Q) = 277I(P) and @ c P + ki(P) & 3P
for some ke Z", where P+ki(Q)={x+KkI(P):x€P}. Then |[k|]>2 and 1+
l(Q)_1|x —xQ|~2i|k|.Thus,

a/py /4
p
|p|r iz Z [|Q|_S/n_1/2+1/p(u;/\q'7\)g] ‘

=0 | 1(9)= 2 ‘l(P)

a\Ya
I I[ ]Ip/\q
A _a ~|—s/n—-1/2+1/p . PAq
|P|r szq/plq/mq) Y > (gl ts]) "
L kezn l(Q):Z_il(P) }

|k|=2
When p < q, by A > n, we have

JcP+ki(P)

(o q/p\ /a
< ”t”f)f)’,Tq(R") { Z 2inq/p—iAq/p z |k|~* } < ||t||bf5}](ﬂ§”);
= )
when p > q, by Hélder’s inequality and A > n, we obtain
\ 1/q

[ | 11

Jp S QZ 2ing/p—i zlkl -2 z (|Q| s/n— 1/2+1/p Q|$

PI" | & [kezn (0 ) ‘l

k lk|=2 9cP+ki(P) )

< Nt emy sz MO S el

kezn
[k|z2

To complete the proof, forany i € Z ., k € Z% and dyadic cube P, set
AGLkP)={0€Q:1(0)=271FP), JcP+ki(P), J n(3P)=ghL

Recall that 1+ 1(Q) " |xg — x5|~2i[k| for any Q c Pand 0 € A(i, k,P), and that for all

d € [0,1] and {a]-}j c ¢,

d
(Zw) < " (13)
j j
By (13), we obtain that for all x € Pand a € (0,p A q],
~1—s/n—1/2 pAq
(lo| ltg)

— )
OeA(LkP) (1 +1(9) 1|xQ - xQ')

< 27 i@A-n(pAg)/a) || -2

1(0)=2-11(P)
QcP+kI(P)

M| 0 (187 leelxe) <x+kza>>)‘ ,
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where herein and in what follows, My;, denotes the Hardy-Littlewood maximal function
on R*. Let a= % . Then a € (0,pAq) . Applying Minkowski’s inequality,
Fefferman-Stein’s vector-valued inequality and Holder’s inequality, we have

p/dq 1/p
Jp = IPIT{J [Z ['Q' Ry XQ(’“)H | dx}

Qocp

< |Pl|T ) J Z 2-i(A-n(pAd)/a) |-

\

q p/a P
A

|tQ|xQ) | (x + kl(P)) | | dx
1(9)=2"t1(P) /
JcP+kI(P) J

Therefore, by (12) again, ||timgp.qall foxm = ilég(lp +7Tp) < lltll sz gmy, Which completes
the proof of Lemma (4.1.8).

Let ¢ satisfy (1) through (3). Since ®(x) = d(—x) also satisfy (1) through (3), we
may take @ in place of ¢ in the definition of B;G(R™). For any f € S,(R™) and Q € Q

with 1(Q) =277, define the sequence sup(f)E{sup(f)} by setting sup(f) =
0 0 0

101*/% sup|@; = f(y)|, and for any y € Z,, the sequence inf(f) = {inf(f)} by setting
y€EQ Y [0 0

o s G o) |
L\

J

iQnyf(f) = |9|'/? max{ingﬂfpj «f(y)|:1(0)=271Q),0 c Q} . We have the following
, yE

estimates.
Lemma (4.1.9) [190]: Let s€ R, T €[0,0),p,q € (0,0] and y € Z, be sufficiently
large. Then there exists a constant C € [1, o) such that for all f € A q(R™),

Hinfol| < flaggan < Isup(Hllagz e < € |1nf(f) .
v e a5 ED
Proof: From Definitions (4.1.1), (4.1.4) and the definition of sup(f), it immediately
follows that ”f”Ai;,E(R") < ||sup(f)||als),}1(Rn).
To prove the converses, define a sequence t = {t]}] by setting t; = |J]*/2 iréﬂc’pi_y %
y

f ()| for all ] € Q with I(J) = 277 . Then for all r € (0, ), dyadic cubes Q with 1(Q) =
27 and a fixed A > n, we have

info, (DX 27 > (t5) %
0cQ
1(2)=2"YUQ)
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<

apq(R™
S Nellasz mmy S I lage @wmy- Finally, for each j € Z, applying Lemma A.4 in

Picking r=min(p,q) , then by Lemma (4.1.8), we obtain ”inf(f)
Y

S‘[(Rn)
[106] to the function @; * f(277x), we obtain that for all dyadic cubes Q with 1(Q) = 27,

(sup()in),~ (igf(f);)\)Q’ where r = min(p, q).

Thus, ||sup(f)§,;\||.s,T(Rn)~ igf(f):l , Which together with Lemma (4.1.8) yields
%pq '

SHEE

. This finishes the proof of Lemma (4.1.9).

su .S,T ~ [|inf
lIsup(H)llas ey || y(f ) apq(R™

Corollary (4.1.10) [190]: With all the notations as in Definition (4.1.1), then the spaces
A} (R™) are independent of the choice of ¢.

Let ¢ satisfy (1) through (3). In Lin and Wang [180], introduced spaces
bbmo;?(R™), and BBMO,*(R™) to establish certain T(1) theorem for Besov spaces.
Recall that the sequence space bbmof,’q(R") is defined to be the set of all sequences

{to}, = C such that
q/p\

(|Q|—s/n—1/2+1/p|tg |) |
)

ltllgp o5 = SUD Z
bbmop T(R™) P dyadic llp
1(Q)=2"}
QcP

and the space BBMOISJ'q(]R%") in [180] Is defined to be the set of all distributions f such that
I lsemozacem = ISeof llipmo sy < - Obviously, bbmo}*(R™) = bbmo:/P(R™), which

together with Theorem (4.1. 5) yields that BBMO,?(R") = BBMO,, 1/"(I[&”). Thus, Theorem
(4.1.5) also gives the @-transform characterization of the spaces BBMOISO’q(R”).

From Definition (4.1.1), it is easy to deduce the following basic properties of the spaces
AL (R™) ; see also [41]. In what follows, the symbol c stands for continuous
embedding.

Proposition (4.1.11) [190] Lett,s € Rand p,q € (0, oo].

(i) If q1 < q,, then A q, (R™) A (R™);

1 1

(||)A <2 (R € A}T J(R™) for 0 < p; < p; < oo;

P42

(iii) Ife€ (0,00)and q,q, € (0, ], then As " ”(R") c ALY, (R™);
(iv) Ift€[0,1/p),thenAs, (]R”) c A} ]R”)

1-tp tp
(V) If T =0, then By (R™) = B ,(R™) for p € (0, 0] and Fyg(R™) = F5 ,(R™) for p €
(0, o0) with equwalent norms;
(vi) If T€ (=00,0), then ATL(R™) = P(R™), where P(R"™) denotes the set of all
polynomials on R";
(vii) Forall p € (0,0), B¥T R™) c F q(R™) R™);

p, mm{p q}( p max{p q}(

(viii) Foreachr € (0, ), F (R”) = Fig,q(]R{") with equivalent norms;
(ix) Lett € [0,00). Then S (]R“) (- A q(R™).
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Proof: The properties (i) through (vii) are simple corollaries of both the monotonicity of
the [9-norm on q (see (13)) and Holder’s inequality. We leave the details to the reader.
Property (viii) is just [106, Corollary 5.7].

To prove (ix), let f € S, (R™) and ¢ be as in Definition (4.1.1). Then by Lemma

(4.1.3), we obtain that for all k € Z,
2—(0/\k)M

—|k|M
1% GO S sy Nl 27 o e

where M > 0 will be determined later. We now show f € B q(R™).

Let P be an arbitrary dyadic cube. If jp, = 0, choosmg M > max{0,n(1/p—1),s +
nt}, we then have

1/q

o0 a/p
1 :
LT ZZ’SQ[] D Icpj*f(x)lpdx‘ S fllsyy, lollsy, -

j=ip P 1(Q)=2"7]
If jp <O, then |P|7* <1 for all T €[0,%). Letting M > max{0,s,n(1/p —1),+n(1/p —

1) — s}, we see that
a/p 1/a -1 1/a
j gy * f(x)|pdx] } + {Z 2)sa } S 1 Nspeas 0 ll5yes

Jp = {Z 2)%
j=0 P

Thus, [If g5z wmy = sup Ip S flls,y,,, l@lls,,, .. namely, S, (R™) c By (R™) for all s €

R, T € [0,00) and p,q € (0, o].

Applying Proposition (4.1.11) (vii), we also have §,(R") c Bpmln{p g(R™)
Foq(R™), which completes the proof of Proposition (4.1.11).
Proposition (4.1.12) [190]: Lets € R and q € (0, oo].

(i) If r € (0, ), then BS, ,(R™) & By 1/’”(]R%") and particularly B3, ,(R™) € BS, ;(R™).

(i)if re[qo], then Bie/"(R™) c B (R ; if 7€ (0,q], then BS  (R™) c
BS 1/T(Rn)

Proof: By Theorem (4.1.5), it suffices to prove the corresponding conclusions on

sequence spaces by g (R™).

(i) The proof of b, 4(R™) C by A/ ¢ (R™)is trivial. Next we show that there exists certain
t e by 1“(]R?J‘) but Itllps, , @mmy = 0. Indeed, for all j € Z and Q € Q with [(Q) = 2~ J,
let t, = 27In(s/n41/2) when Q=1[0,27)" and t, =0 otherwise. Obviously,
lItllps,  mmy = . Observe that if a dyadic cube P contains [0 , 27" | then P =

sup{zoo 2-G-jpIna/r} Y9 < 1. That IS, t €

[0,277P)" and jp < j. Hence, |It]|. b33/ (am) =

S 1/I'(Rn)

(i) From Holder’s inequality, it is easy to deduce that if r € [q, oo, then [[t]] s @) <

IItll b/ ()’ and if r € (0,q], then ||t||b§:é/r(Rn) < ”tllbgqu(man)’ which completes the

proof of Proposition (4.1.12).
We establish some embedding results, which generalize the classical results on

Besov spaces Bf;',q (R™) and Triebel-Lizorkin spaces F;jq (R™) (see [41]). In fact, if T =0,
then Proposition (4.1.13) is just [41, Theorem 2.7.1].
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Proposition (4.1.13) [190]: Let t € [0,0),1,q € (0,0] and —o0 < 5; < 55 < 00,
(i) If 0 < py < p; < oo suchthatsy —n/py =s; —n/p;, then B,2% (R™) < ByVE (R™).
(i)If 0 < py < p; < oo suchthats, —n/p, =s; —n/p;, then FSOT R™) c FSlT (R™).
Proof: By Theorem (4.1.5), it suffices to prove the correspondlng conclusmns on
sequence spaces a R")

The embeddlng bt (R™) € byt (R™) is immediately deduced from (10) and (13).
To prove £, (R") c fpsl(;(]l%") by Proposmon (4.1.11)(i), we only need to show that
fori(R™) € fo25(R™). Let t € £, (R™). By the homogeneity of ||- 53 gy, Without
loss of generality, we may assume that ||t]| fOT @mm) = = 1.

Forany A € (0,) and P € Q, pick N € Z such that

_ o—an/p;}/4 THnN/p _ 9-qn/p Uq&
{1—2-an/p1} < |P[T2"N/P1 < {1 — 279n/P1} >

214n/py
If N=jp, since |Q| So/m"1/2|t,| < |Q|T_1/p0”t”f;8»:o(Rn) = 2-n(t=1/P0) for all Q € Q

with [(Q) = 277, this together with s, — n/p, = s; — n/p; Yields that

N 1/q
. q —
> 2 sup (1o eglgo() < P21 —2mam ) <y,
- 1(Q)=2"]
J=)p QcP

and
1/q

[}

Z 2719605 sup (19]%0/"]tg|%o ()"

j=N+1 Q=2
< 27PSoms/nfq — g-an/pa) PGSV 5-qlse-si)) 71/
X |P|™P10=s1)/n)~P1(so=s1)/n gy (|Q|_S°/n|tg|)~(g (x))
QcP

Notice that for all dyadic cubes P,

[z (lQl SO/n|tQ|XQ(x) } ZZ ja(so—s1) sup _(|Q|_50/n|tgl)~(g(x))q

l =2")
QcP ji=ip (QQ)CP

Thenby s, —n/p, =s; —n/p;, we have

1/q
x€P: [Z (|Q|—S°/"|tgl>~<g(x))q} > 2

QcP

1/q

< {x €P:sup (|Q|_Sl/n|tQ|7~(Q(x))
QcP
> 2—1—p1(So_51)/n

x {1 — g-an/py} PTG oq(so-s} qlpl—‘f(p1/po—1)}\p1/po}‘,

and hence

IelP: sup = f APo-1
10511:1(]Rn) deadiclpl Tpoo

For the case N < jp, notice that

. -sq/n v p

P1°°
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IA

o 1/q
q
{ Z sup _(|Q|_Sl/n|tgl)~(g(x)) } .
(Q@)=2"]

j=N+1"972

o 1/q
q
{Z sup _(|Q|_Sl/n|tg|)~(g(x)) }
1(@)=27)

j=jp QcP
By the argument same as above, we also obtain ||t||fs1,r(Rn) < 1, which completes the
p1.9

proof of Proposition (4.1.13).

From Proposition (4.1.13), we deduce the following properties of the space
Ai‘,’fq (R™). Recall that the symbol c stands for continuous embedding
Proposition (4.1.12) [190]: Let s € R,t € [0,00) and p,q € (0,00]. Then A} (R™) c
S, (R™).

Proof: We first show that By (R™) c S5, (R™), namely, there exists an M € N such that

forall f € By, (R™) and ¢ € So(R™), [{f, )| S ||f||B;.}q(Rn)||¢||5M+1. Indeed, let ¢ be as

in Definition (4.1.1). By [176, Lemma (6.9)], there exists a function s such that ¢ and
satisfy (1) through (4). Then by [189, Lemma 2.1] and Lemma (4.1.3), we obtain

Far <Y [y a@lloy = £00| dx

JEZ RT

. 2-(r0)M
S ”¢”5M+1 z 27" Z (2—(1A0)M + |x|)n+M |(Pj * f(x)ldx’

JEZ kezn Qjrok
where Qjxo x denotes the dyadic cube 279" (k + [0,1)™) and M € N will be determined
later.

Notice that there exist 2™ disjoint dyadic cubes {Q]-l,\o}f; with 1(Q},,) = 270" such

that the ball B(0,270/9) < (UZ, 9,,). Obviously, if Qjxox & {Q}AO}IZ; and x € Qjao, then
|x| = 27020 Moreover, if setting

Xjm (&) = Xfiezn :Zm—(jAO)S|CQjA0,k|<2m+1—(jA0)}(k):
where COinox denotes the center of Qj, We then have Yyezn Xjm (k) < 2™,

If p € [1, ], choose M > max{—s, s + nt — n/p}. Then applying Holder’s inequality, we
obtain

2" .
_ 2-(Gr0)M
0N S 1l p 20D | il = F)

JEZ =1 ot
]

£ tm® f ot S 1Dl I T oy
m=0 kezZn" 9Qjnok

The case p € (0,1) is deduced from the embedding B;5(R™) c Bj';"/ PFLTRM) in
Proposition (4.1.13).

For Triebel-Liorkin-type spaces F;ﬁl(]R{”), applying Proposition (4.1.11)(vii), we
obtain Fyg (R™) c B> (R™) c 8, (R™), which completes the proof of Proposition

.q p,max{p,q}
(4.1.14).

Now we have the following lifting property. For ¢ € R, recall that the lifting
operator I, (see, for example, [41]) is defined by (I5f)(x) = (|-|0f)v(x) for all x € R™
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and f € S..(R™), where the symbol v denotes the inverse Fourier transform. It is well-
known that I, maps S..(R™) onto itself.

Proposition (4.1.15) [190]: Let s,c € R,T € [0,0) and p,q € (0,]. Then I, maps
(]R") isomorphically onto AS ‘”(]R”) moreover, ||f||As o (R™) Is an equivalent quasi-

norm on A}, (R™).

The proof of Proposition (4.1.15) is standard (see [41]).

As an application of Theorem (4.1.5), we study boundedness of operators in A 'S'Tq(]R{") by
first considering their boundedness |n corresponding a q(R™). We show that almost
diagonal operators are bounded on a pq(R™) for approprlate indices, which generalize the
classical results on bST (R™) and f (R"); see [106, 176].

Deflnltlon (4.1. 16) [190] Lets € R p,q € (0,0] and € € (0, oo) Let] = n/min{l, p}
when a q(R™) = Tq(]R%") and ] =n/min{1,p,q} when a q(R™) _f R™) .
operator A associated with a matrix {an} , namely, for aII sequences t= {tQ} c C,
AtE{(At)Q}Q E{Zpagptp}g is called ¢ almost diagonal on a;5(R™) if the matrix

{agp}, , satisfies sup lagp|/wgp(€) < oo, where

= @ S |xg — x| >_]_£ . <@>(”+8)/2 <@>(n+s)/2+l—n
wgp(e) = (l(P)) <1 + max(l(P),l(Q)) X min 0 1o _

Theorem (4.1.17) [190]: Let € € (0, 00) seR,p,q€ (0,] and T €[0,1/p +¢/(2n)).
Then all e-almost diagonal operators on a o (R™) are bounded on a (R™).

Proof: Let t= {ty} o€ ayq(R™) and A be a €-almost diagonal operator on ayq(R™)

associated with the matrix {aQR} OR and € € (0, 00).Without loss of generality, we may

assume s = 0. Indeed, if the conclusion holds for s = 0, let tg = [(R)™Stg and B be the
operator associated with the matrix {bQR} , Where bgr = (I(R)/1(Q))%agg for all

Q,R € Q. Then we have [|Atllzs gm) = ||Bt|| Q%% (m™) S < 1Tl Q%% (R™) ™ lItll a5z ey, Which
deduces the desired conclusions.
We now consider the space bgjﬁl(]R{") in the case min(p,q) > 1. For all Q € Q, we

erte A = AO + Al Wlth (AOt)Q = Z{RJ(R)ZZ(Q)} aQRtR and (Alt)Q = Z{R:l(R)<l(Q)} aQRtR.
By Definition (4.1.16), we see that for all @ € Q,

(n+¢)

2 : 1(Q)\ 2 [trl
|(A0t) | S ( ) n+e’
’ RI(R)=1(Q)} [R) (1+ LR xg — xz])

and therefore

108



o (n+e)/2
1 1(Q)
IAotllyor @ny S sup. IP|* Z [f <l(§)>
P dyadic ji=ip | P \1(Q)=277 {R:1(Q)<L(R)<I(P)}
p qa/p\ /9
|trlXo (x
RlXQ( ) n+e dx
(1 + LR — xg|)
p qa/p\ /9
+ sup ﬁ lj | dx] iR
P dyadic i=ip l(g) 2-i {R: l(R)>l(P)}

For all ieZ and meN, set Uy; ={R€Q:I(R) =27 and |xy — xg| < [(R)}
and, U,,; ={R€Q: I(R) =27 and 2™ [(R) < |xg — xg| < 2™I(R)}. Then we have
#Up,; S 2™, where #U,,; denotes the cardinality of U,;. Notice that [tg]| <
[RIY/27/P4 |t jor n) for all R € Q. Thus, by 0 < T <~ + -,

1P1

l(Q) (n+g)/2
2= Wi 28, Zlf > 3 (@)

1=Ip l(Q) 2~ ll——oom 0 REUy ;
1/q

= ”t“bg'Tq(R")

a/p
|R|1/2 1/p+rX (x) P i
(1 + I(R)~ 1|xQ — xRDnJ“S

For I, let r and u be the same as in the proof of Lemma (4.1.8). We see that

p q
1S sup Z j Z(i—j)(n+s)/2 % z |rr|Xo (%) | dx
P dyadic |P| (Gym2- ]l = ,(1 + l(R)_lle _ le)

/py\ V4

j=ip I(R)=2"1
j

+ sup Z J Z 2 (=) n+e)/2

deadlclpl _

j=ip 1(©)=2"1i=jp
b .a/py Y4
lur|Xo (%)

% Z iXQ v | dx =h+]z

(e (1 + I(R) |xQ — xRD

Applying [106, Remark A.3] with a = 1, for all x € Q, we have

|rR|)~(Q(x)
s M )
Z (1 + l(R)‘1|xQ _ xR|)n+€ < MuL z Irrlxg | (x)

I(R)=2"¢ I(R)=2"
Hence Holder’s inequality and the LP(IR™)-boundedness for p € (1, ] of the Hardy-
Littlewood maximal operator yield
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p La/p) V4

J1 S cslu% W f Z(H)S/Z My, z IrrlXg | (x) | dx
P dyadic ] jp i=jp

I(R)=2"t J

( b qa/p) Ve

[00]

1 !
s sup iy j > el ) | dx ! < Mltllsor cum,
dealziic t RIAR J Ppia(R™)

|P|™ | & B
Ll—lp 3P \ I(R)=2"

where the last inequality follows from Minkowski’s inequality if g > p or (13) if ¢ < p.
To estimate J,, we notice that if Rn (3P) = @, then R c P+ kI(P) and (P + ki(P)) n
(3P) =9 for some keZ™ with |k| =2 and 1+ I(R)"Yxy — xg|~ [KIL(P)/I(R) .
Therefore, by Holder’s inequality,

LS|

j
Z z 2—i(n+s)/2

J2 S

€
+1+—
Pd}’ad1C|P|T n L]:JP lP 1(Q)=2"Ti=jp
1/q
\p ]q/p‘]
<Y Y gl | a }
kezn 1 —i
|k|=2 Rgl?+kzl(P) }
a~ 179
1 |+ ]
< el —s 271ag/2 272 % |k|TE < ltll
bOr( R™) sup 5 = bg}q(Rn).
deadlclpln 5o isp kezn

|k|=2
Hence, ”Aot”bg,'rq(Rn) S ||t||bg,fq(Rn). Some similar computations to I, also vyield that

”Alt”bg"fl(ll@”) S ”t”bg',fl(]R{n)' .
For Triebel-Lizorkin-type spaces fpfg R™), we also have

(n+g)/2
1 1(Q)
Itljszon < sup ot | [Z< 2, (z(R)
y p Locp \{rR:1(Q)<I(R)<l(P)}

/ 1/p
[t %o () )q o
(1 + l(R)‘1|xQ — xR|)n+8

q
P dyadlc Qcp {R: l(R)>l(P)}

Similarly to the estimate for I, applymg the fact that |tg| < |R|1/2_1/p+‘[”t”fr(’),(r](Rn) and
T € [0,= + =), we obtain
P 2n

p/q 1/p
dx

I, +1,.
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]p_1

(n+g)/2
I Iy, 509 o if z D z D (%)

P |i=ip 1(Q)=2"T \i=—c0o m=0R€EU,,;

q1°/a \1/1’

|R|1/2 1/p+‘[ (x)
X dx s ”t” 0,T (7Y -
(14 I1R)xg — xRI)n+£ } Foia (R

To estimate I, notice that

j
I, S sup j Z 2(i-j)(n+e)/2
P dyadic |P|

j=ip 1(@)=27J \i=jp

q-P/q 1/p

Z |1‘RI>~(Q(x) "
I(R)=2"1 (1 + l(R)—1|xQ _ xR|)n+g

+ sup j l 2(i—j)(n+s)/z
P
deadlcl | 5o l(Q) 2= \ iz JP

q+P/4 1/p

Z [ugl¥o(x) N
I(R)=2"1 (1 + l(R)_1|xQ _ xR|)Tl+£

Similarly to the estimate of J;, by [106, Remark A.3], Holder’s inequality and the
Fefferman-Stein vector valued inequality, we obtain

J1 + o

q\ P/ 1/p

Tlspgu% W f Z ZZ(‘ ])S/ZM HL z ITrlXr | (X) dx
yacie P \isip |i=jp I(R)=2"1
19\ P/ 1/p

< sup — f Z Z ltal¥x | GO dx b < Itlor mn,
dez}?ilclpl RIAR fpa(R™)

i=jp | \I(R)=2"¢

For J,, similarly to the estimate for J,, by Minkowski’s inequality and the Fefferman-Stein
vector-valued maximal inequality, we obtain

T —(n+¢) (i-)e/29-ie
o2 YO sup o | Z‘ZZ 2
n

KkeZ i=
k|>2 P j= JP =jp

q

xMHL< Z |R|1/2|tR|XR>(x+kl(P)) ) dx} < el o geny-

I(R)=2"1
RcP+kI(P) )

p/q \Up

Hence ”AOt”fOT(]Rn) ”t”fOt(Rn)
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Some similar estimates to I, also yield that “Alt”fr?,‘;(Rn) S ”t”f}g),(rl(Rn)- Thus, we

obtain the desired conclusion for the case min{p, q} > 1.
The case min{p,q} < 1 is a simple consequence of the case min{p,q} > 1. Indeed,

choosing a & € (0,p A q), then p/& > 1 and g/ > 1. Let A be an operator on ag;g R™)
associated with the matrix {dgp}, , = {|aQP|6(l(Q) /l(P))"/Z—S"/Z}QP. Then A is a e-almost

o) - ~
diagonal operator on ag/’s q/S(IR”) with &€ = 8¢.

— n/2-8én/2 8 1/8 ;
Define t = {l(Q) |to] } . Then ||T||* I e ”t”dg,’rq(Rn). Since § < 1, hy
(13), we see that [|At]|or ) < < ||At || 0y Applying the conclusions for min{p, q} >
1/8 1/6 .
1 yields ||At]|. 405 @) S ||At|| 0oy S ||t|| 05 ”t”dg,’rq(]Rn), which completes the

proof of Theorem (4.1.17).

Definition (4 1 18) [190]: Lets € R, T € [0,0),p,q € (0,0]and ] = n/ min{1, p} when

AV (IR") = Byg(R™) or J=n/min{l,p,q} when A} (R™) =F;3(R") . Let N=

max([] —n-— sJ —1) and s* = s — |s] denotes the maX|maI integer no more than s.

(i) A function my is called a smooth synthesis molecule for Ai;fq(R") supported near
dyadic cube Q if there exist a 6 € (max{s*, (s + nt)*}, 1] and an M € (J, o) such that

fRn xYmg(x)dx = 0 if [y| <N, |mQ(x)| < |Q|—1/2(1 + l(Q)_1|x _ xQ|)_maX(M’M_S),

|5VmQ(x)| < IQI_l/Z_WV”(l + l(Q)‘1|x — xQ|)_M if ly| < |s + nt|, (14)
and
|6VmQ(x) — 8VmQ(y)|

< [QITY2W/m=8/nx — y|8 x  sup (1+1(Q)~ 1|x—z—xQ|) if [y|
|z|<|x—yl
= |s + nt. (15)

A collection {mQ}Q is called a family of smooth synthesis molecules for A3, (R™),

if each m, is a smooth synthesis molecule for Af;fq(]R{") supported near Q.
(if) A function by is called a smooth analysis molecule for Ai;fq(]R{") supported near Q if
there exist ap € ((J—s)*, 1] and an M € (J, o) such that fRn xYbo(x)dx = 0 if |y| <

max(M,M+n+s+nt-J)

Is + ntl, [be ()| < 1Q17Y2(1 + L(Q) 7 |x — xg|) ,
|67 ()| < Q172 M/ (1 + 1(Q) 7Y |x — xQ|)‘M if [y] <N, (16)
and
|67bg(x) — 67by (y)|
< |Q|7V2WI/m=p/n|x —y|P x  sup (1 +1(Q)” 1|x -z —xQ|) if |y|

|zl <lx-yl

= N. (17)
A collection {by}  is called a family of smooth synthesis molecules for AY% (R™), if

each by is a smooth analysis molecule for AST R™) supported near Q.
Lemma (4.1.19) [190]: Lets,p,q,],M,N and p be as in Definition (4.1.18). Assume that

M-] p—(J-s)" M-] s+n—J
TE[O(p+2n)/\(p+ e ) if N 20, TE[O( =) A (g+ DifN<0, and 5 €
(max{(s + nt)*,s*},1]. Then there exist a posmve real number g, and a positive
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constant C such that £, > 2n (r —ﬁ) and for all families {mQ} of smooth synthesis

molecules for A}, (R™) and families {bQ} of smooth analysis molecules for ASY (R™),

|(mp'bg>| < Cygp (&)
Namely, the operator associated with the matrix {a, p}Q'P = {(mp, bQ)}Q,P is £, -almost
diagonal on ayy (R™).
As an immediate consequence of Lemma (4.1.19), we have the following corollary
Corollary (4.1.20) [190]: Lets,p,q,tand g be as in Lemma (4.1.19) and ¢ satisfy (1)
through (3). Suppose that {mQ}Q and {bQ}Q are families of smooth synthesis and analysis

molecules for Af;fq(]l%"), respectively. Then the operators associated with the matrices
{age},, = {(mg,cpp>} and {bgp}, , = {(wr,bo)}, , are, respectively, &, -almost diagonal
operators on a (]R%")

Lemma (4.1. 21) [190]: Lets € R,p,q € (0, 0], T and 81 be as in Lemma (4.1.19), f €
A q(R™) and @ be a smooth analysis molecule for A q(R™) supported near Q. Then
(f CD) is well defined. Indeed, for «,  satisfy (1) through (4)

(f, @) = 2«5,- g+ f, ) = Z(f 9e)p, @) (18)

converges absolutely and its value Is independent of the choices of ¢ and .
Proof: By 5|m|Iar|ty, we only consider the space B (R") Let ® be a smooth analysis
molecule for B q(R™) supported near @ and @, § satlsfy (1) through (4).We claim that
there exists a matrlx {ag P}Q,P such that [{f, @p)||{(Wp, @) < agp and Ypagp < . In
fact, Corollary (4.1.20) yields that there exists a positive constant C such that |{p, ®| <
Cwgp(gr). Then agp = CKf, pp)lwgp(g;) does the job. Furthermore, by Theorem
(4.1.5), the sequence {|{f, @p)|}p € b;}l(ﬂ%”), and hence by Theorem (4.1.17), Ypagp <
co. This shows the absolutely convergence of (18).

Next we claim that for f € B q(R™), 32 01]1] * ; * f converges in S'(R™). To see

this, we need the following estlmate that there exists an M € Z, such that for all ¢ €
So(R™), @ € S(R"),j € Z, and x € R™,

, 1
[W; * d(0)| = ||¢||5M+1||¢||5M+12_’MW- (19)

The proof of (19) is similar to that of Lemma (4.1.3) (see also, [189]). We omit the details.
Let M > max{0, —s}. If p € [1, ], then by (19) and Hélder’s inequality, we obtain
that forall @ € S(R™),

_ | * f ()
le, @+ f) ¢>|<||¢||5M+1||¢||5M+1Z M | ey
< 15y, Il T o (20)
s+(1—%)n,t

If p € (0,1), by Corollary (4.1.10), By (R™) c B, (R™), and hence

le, <0 0 5 D0l Il oot

Big @
S 1l I lsyep 1 s cemy: (21)
The estimates (20) and (21) imply that ;2 LTJ]- * (pj * f converges in § '(R™).
113



Since ¢ € S, (R™), for all x € R™,j € Z and multi-indices y, we have

) * 0. j(n+y) [0+ fO
08 = 0= 701 = Wl 2 | G e @

Then, if p € [1,o], applying Holder’s inequality, we obtain |(6YLTJ]-) * (; *f(x)| S
||¢||5M21'(Ivl+n/p—s—nr)||f||B;.;Tq(Rn). Similarly to the estimate of (21), applying Proposition
(4.1.13) again, we know this estimate still holds when p € (0,1). Thus, if |y| €
(s + nt—n/p, ), then for all x € R", 2].1:_00|(avq}].) * () * f(x)| < ||‘|J||SM||f||B§;},(R")’
which together with (20) and (21) implies that there exist a sequence of polynomials,
{Py}X-1, with degree no more than L =s+nt—n/p and g € S'(R™) such that g =
glilrgo(Z;‘i_N 1]3]- * @ * f + PN) inS'(R™) and g is a representative of the equivalence class
f + P(R™); see [106]. Using [93, Lemma 5.4] and repeating the argument in [106] then
completes the proof of Lemma (4.1.21).

Using Lemmas (4.1.19) and (4.1.21), by the method pioneered by Frazier and
Jawerth [93, 106], we obtain the following Theorem (4.1.22).
Theorem (4.1.22) [190]: Lets € R,p,q € (0,], T and &; be as in Lemma (4.1.19).
(i) If {mg} o 1s @ family of smooth synthesis molecules for A} (R™), then there exists a

positive constant C such that for all t={ty} € azq(R™, ||ZQtQmQ||A%a(Rn)S

Clltll g5 (rnys
P.q
(i) If {bQ}Q is a family of smooth analysis molecules for A} (R™), then there exists a

positive constant C such that for all f € A;T (R™), ||{(f, bQ)}Q < C||f||A;.}l(Rn).

q
We establish smooth atomic decomposition characterizations of A;'fq R™). For the
classical results on Bj ,(R™) and Fj ,(R™), see [93, 106, 164].
Definition (4.1.23) [190]: Lets,t,p,q and ] be as in Definition (4.1.18). A function ag is
called a smooth atom for A}7, (R™) supported near a dyadic cube Q if there exist Kand N
with K = max{|s + nt + 1,0} and N > max(|] —n —s],—1) such that supp ay < 39,
JenxYag(x)dx = 0if |y| < N, and |0Yag(x)| < 191722~/ if |y] < K.

A collection {ag]} , is called a family of smooth atoms for A, (R™), if each ag is a

(R

smooth atom for A} (R™) supported near Q.
It is clear that every smooth atom for A‘qu R™) is a multiple of a smooth synthesis
molecule for ASI;L(R”) supported near Q. Using Theorem (4.1.22) and repeating the

argument as in [106] or [93] yield the following result.
Theorem (4.1.24) [190]: Lets € R,p,q € (0,0],t be as in Lemma (4.1.19). Then for

each f € A}, (R™), there exist smooth atoms {aQ}Q for A%, (R™), coefficients t = {tQ}Q €
ayq(R™) such that f = Y5 tg ag in S, (R™) and ”t”a;'Tq(Rn) < C”f”A;.}](Rn), where C is a
positive constant independent of f and t.

Conversely, there exists a positive constant C such that for all families {aQ} 0 of

T

smooth atoms for A (R™) and t = {to} ) € apg(R™), [[Xgto ao asz ey < Clitlags )

In [189], some tent spaces FTyq(R7*") were introduced, which are used to
determine the predual spaces of Fy5(R™) . We introduce a class of tent spaces
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BT, (R7*), which is used to determine the predual space of B;; (R™). First we recall the

notion of Hausdorff capacities; see, for example, [161, 162]. In what follows, for x € R™
andr > 0,B(x,r) ={y e R": |[x —y| <r}.

Definition (4.1.25) [190]: Letd € (0,) and E ¢ R™. Then the d-dimensional Hausdorff
capacity of E is defined by

AE;O)(E) = inf{z r]-d ) U B(x]-,r]-)}, (22)

where the infimum is taken over all cov]ers of E by Jcountable families of open balls with
radius rj .

The notion of A51°°) can be extended to d = 0, namely, in (22), letd = 0. Then Ag’")
Is monotone and countable sub additive; moreover, Afi°°) does not vanish on the empty set,
it has the property that for all sets E ¢ R”, AS”(E) > 1 and AS™ (E) = 1 if E is bounded.

Adyadic version of the Hausdorff capacity, KS”), which ios defined by

AY(E) = inf zl(ll-)d :E <U 1,-) , (23)
j

j
where now the infimum ranges only over covers of E by dyadic cubes {Ij}j. Recall that A’

denotes the interior of the set A.

It was proved in [188] that K(dm)is a Choquet capacity and that AS’") and K(d°°) are
equivalent, namely, there exist positive constants C, and C,, only depending on the
dimension n, such that

C: A (B) < B (E) < C,AY () forall E c R™, (24)

Next we recall the notions of Choquet integral with respect to the Hausdorff

capacities Afj°°) and K(°°); see [161, 162]. For any function f : R® — [0, o], define

f £ Al = f A ({x € R™ : f(x) > 2})dA.

This functional is not sub linear, so sometlmes we need to use an equivalent integral with

respect to AEl ). which is sublinear and satisfies Fatou’s lemma. See [188, 189] for more
properties on the Hausdorff capacities and their Choquet integrals.

Let R**1 = R™ x (0,00). For x € R", let I'(x) = {(y,t) € R}*!: |y — x| < t} be
the cone at x. Define the nontangential maximal function N(f) of any measurable function

fon R¥ by Nf(x) = sup |f(y,t)| for all x € R™. Since a point (x,t) € R*?
(yDeT(x)

belongs to I'(y) for every y € B(x, t), we see that
If(x, D] < _inf N()(). (25)

yEB(x,t)
Recall that RZ** = R™ x {2¥ : k € Z}. For all functions f on R7*'or R}** and k €
Z, we set fX(x) = f(x,27%). For any set A, define T(A) = {(x,t) € R?*!: B(x,t) c A}.
Definition (4.1.26) [190]: Let s € R.
(i) Letp,q € [1,),(pvq) > 1landt € (0 ] The space BTy q(Rz*") is defined to

be the set of all functions f on RZ** such that {f “} oy @re Lebesgue measurable and
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1/q

|F<k] 7| < oo,

LP(R™)

“f”BTST(]RTH'l) = ll’lf{z 2ksq

kezZ
(if)where the infimum is taken over all nonnegative Borel measurable functions w on

R™+ with
j (Now(x ))(p VA < (26)

nt(pvg)’ —

and with the restriction that w is allowed to vanish only where f vanishes.
(iii) Letp,q € (0,0] and T € [0, ). The space BW, (Rz*") is defined to be the set of

all functions f on R7** such that {f*} _ are Lebesgue measurable and

1 a/p) /9
”f”BWST(]RU”l) = Sup |B|T{ ksq \ f|fk(X)| XT(B)(x 2” )dx] } <
keZ

where B runs over all balls in R™.
Definition (4.1.27) [190]: Lets, 1,p,q be as in Definition (4.1.25) (i). A function a on
R2*1 is called a BT“(R"“) atom associated with a ball B, if a is supported in T(B) and

satisfies
q/p
22ksq<f|ak(x)| XT(B)(x 2~ )dx) < |B|7".

keZ

Lemma (4.1.28) [190]: Lets, T, p,qbe as in Definition (4.1.26) (i). Then there exists a
positive constant C such that all BT,q(R7*") -atoms a belong to BT;q(R3*") and
||a||BT;.}l(R%+1) <C.

Lemma (4.1.29) [190]: Lets € R,p,q € (1,],(pAq) < oo, T € (0,%] and a € (0, o).
Then there exists a positive constant C such that for all f € B\/'\/Iff1 RZ*1) and nonnegative
Borel measurable functions w on R%**1, when q < p,

q/p
2ksq{j|fk(x)| [u)k(x)]apdx} < C||f|| BWST (RE*H) j(Nw(x)) dAgLO%(X):
keZ

and when p < q,

a/p\ /9 1/p
{szSQ[ | |fk(x)|p[wk(x)]apdx] } scuanw;-;,(Rv;H){ | (o)™ dAs:;gm] -
RN

keZ R"
In Theorem (4.1.30) below, we establish the dual relation between tent spaces

BTST(RZ+1) and BWST (R2*1), whose continuous variant when s = =2 ¢t = < and p=
P.q\ L p.q\ "Nz 2 2n

q = 2 was obtained by Dafni and Xiao [167]. The proof of Theorem (4.1.30) is a slight

modification of the proof of [189, Theorem 4.1] by replacing Lemmas 4.2 and 4.3 in [189]

with Lemmas (4.1.28) and (4.1.29) here.

Theorem (4.1.30) [190]: Let s, T, p, q be as in Definition (4.1.26) (i).

(i) If f € BTyq(R7*), then there exist BT, (Rj+!)-atoms {“i}j and an [*-sequence {A}
such that f = ¥; A;q; pointwise; moreover, Y;|A;| < Cllf sz (rp+r)- In particular, if

p = q € (1,0), then f = ¥; \;a; also in BTy (RE+H).
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Conversely, if p =g € (1,0), and there exist BT, g (Rz*")-atoms {a]-}j and an [*-
sequence {A;} such that f = ¥;Ajq; pointwise, then f = ¥ A;q; also in BT g (RE)
and [|fllgtsz (ra+r) < CY;|A;|, where C is a positive constant indep?ndent of f.

(i) There exists a positive constant C such that for all f € BTS"S R2*1) and g€

BW_ > (R ™), |Ekez [ f€ (08" (1) dx| < C||f||BT;}1(RQ+1)||g||Bw;,SJ,(R%+1)-

(iii) The dual space of BTyg(RZ*") is BW;ZT(RQH) under the following pairing

(f,8) = Xkez f]Rn fEOg" (x)dx.
Section (4.2): Triebel-Lizorkin-Hausdorff Spaces and their Applications
To establish the connections between Besov and Triebel-Lizorkin spaces with Q
spaces, which was an open problem (see, [167]), Yang and Yuan [189, 190] introduced
new classes of Besov-type spaces B;:EI(IR{") and Triebel-Lizorkin-type spaces FS;E(R"),
which unify and generalize the Besov spaces Bg,q(Rn), Triebel-Lizorkin spaces Fg,q (R™),
Morrey spaces, Morrey-Triebel-Lizorkin spaces and Q spaces. We pointed out that the Q
spaces on R™ were originally introduced in [193]; see also [167, 184, 185, 193] for the
history of Q spaces and their properties.
Let p€ (1,0),q€[1,00), seR and t€[0,1— ma;{pq}

follows, t denotes the conjugate index of t € [1,00). The Besov-Hausdorff spaces
BHy(R™) and Triebel-Lizorkin-Hausdorff spaces FHyg(R™) (q> 1) were also
introduced in [189, 190]; moreover, it was proved therein that they are, respectively, the
predual spaces of By *(R™) and F;2"(R™). The spaces BHyG (R™) and FHy g (R™) were
originally called the Hardy-Hausdorff spaces in [189, 190]. However, it seems that it is
more reasonable to call them, respectively, the Besov-Hausdorff spaces and the Triebel-

Lizorkin-Hausdorff spaces. The spaces BH; (R™) and FHy g (R™) unify and generalize
the Besov space Bf,,q(]Rn), the Triebel-Lizorkin space Ff),q(IR%”) and the Hardy-Hausdorff

space HH  (R™), where HH!  (R™) was introduced in [167] and was proved to be the
predual space of the space @, (R™) therein.

It is well known that the wavelet decomposition plays an important role in the study
of function spaces and their applications; see, for example, [198, 199]. The -transform
decomposition of Frazier and Jawerth [45, 106, 175] is very similar in spirit to the wavelet
decomposition, which is also proved to be a powerful tool in the study of function spaces
and boundedness of operators, and was further developed by Bownik [93, 165]. We
establish the ¢-transform characterizations of the spaces BH, (R™) and FHy, (R™); via
these characterizations, we also obtain their embedding properties (which on BHIS;}1 R™) is
also sharp), smooth atomic and molecular decomposition characterizations for suitable .
Using their atomic and molecular decomposition characterizations, we investigate the
trace properties and the boundedness of pseudo-differential operators with homogeneous
symbols (see [197]) in BHy g (R™) and FHy g (R™), which generalizes the corresponding
classical results on homogeneous Besov and Triebel-Lizorkin spaces when p € (1, o) and
q € [1, ) by taking T = 0; see, for example [7, 17, 106, 197]. Recall that the study of
pseudo-differential operators with non-homogeneous symbols on non-homogeneous
Besov and Triebel-Lizorkin spaces using ¢-transform arguments was started by Torres
[201, 202]; the results in [197] are based on these works. See Pseudo-differential operators

], where and in what
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on Triebel-Lizorkin spaces using more classical methods. We will concentrate here on -
transform arguments.

Let S(R™) be the space of all Schwartz functions on R™. Following Triebel’s [41],
set

So(R™) =

@ € S(R") : j(p(x)xydx = 0 for all multi — indices y € (N U {0})"
Rn

and use S, (R™) to denote the topological dual of S, (R™), namely, the set of all
continuous linear functionals on S, (R™) endowed with weak *-topology. Recall that
S'(R™)/P(R™) and S, (R™) are topologically equivalent, where S, (R™) and P(R")
denote, respectively, the space of all Schwartz distributions and the set of all polynomials
on R™,

For each cube Q@ in R™, we denote its side length by £(Q), its center by c Q, and set
jo = —log, £(Q). For k= (ky,..,.k,) EZ™ and jEZ, let Q; be the dyadic cube
{(g, oo, x) 1 Ky < 2x; <k;+ 1fori =1,..,n} € R, x, be the lower left-corner 2k of
Q =9, D(R™) = {ij}jk’ and D;(R™) = {Q € D(R™) : £(Q) = 277}. When dyadic cube Q

appears as an index, such as Y.geprn) and {-}gepwn), it is understood that Q runs over
all dyadic cubes in R™,

Forx € R*and r > 0, we write B(x,r) = {y € R" : |x —y| < r}. Next we recall
the notion of Hausdorff capacities; see, for example, [161, 188]. Let Ec R™* and d €
(0,n]. The d-dimensional Hausdorff capacity of E is defined by

HY(E) = inf{z ri:Ec U B(x,-,rj)},
j j
where the infimum is taken over all covers {B(x;, rj)};;of E by countable families of open
balls. It is well known that HY is monotone, countably subadditive and vanishes on empty
set. Moreover, the notion of HY can be extended to d = 0. In this case, H® has the property
that for all sets E ¢ R®, H°(E) > 1, and H°(E) = 1 if and only if E is bounded.

For any function f : R™ > [0, o], the Choquet integral of f with respect to HY is
defined by

(o]

f fdH = f H({x € R™ : £(x) > A}dA.
R 0
This functional is not sublinear, so sometimes we need to use an equivalent integral with

respect to the d-dimensional dyadic Hausdorff capacity HY, which is sublinear; see [188]
for the definition of dyadic Hausdorff capacities and their properties.

Set R?*1 = R™ x (0, ). For any measurable function w on R?*! and x € R™, we
define its nontangential maximal function Nw(x) by setting Nw(x) = supjy_xj<¢|w(y, D|.

In what follows, for any @ € R", we use F¢ to denote its Fourier transform,
namely, for all £ € R", Fp (%) = fRne_iEx(p(x)dx. For all j € Z and x € R™, let ¢;(x) =
21m@(2)x). For any p,q € (0,], let (pV q) = max{p,q}; and for any t € [1, ], we
denote by t’ the conjugate index, namely, % + 1/t = 1.

We now recall the notions of BH; (R™) and FHy g (R™) in [189, 190].
Definition (4.2.1) [204]: Let @ € S(R™) such that supp Fe c {E€ R": 1/2 < |[§| < 2}
and F never vanisheson {E € R™ : 3/5 < |§| < 5/3}. Letp € (1,) and s € R™.
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(i) Ifqe[1,0)and t € [ o ),], the Besov-Hausdorff space BH o(R") is then defined
to be the set of all f € S¢, (R™) such that

1/q
_ . . s _1 q
£ llgis mmy = Igf{z 29| + flw(, 27D)] ||Lp(Rn)} < o,

JEZ
where w runs over all nonnegative Borel measurable functions on R%*? such that
f [Nw(x)] PV qH TPV (x) < 1 (27)

R
and with the restriction that for any j € Z, w(+,277) is allowed to vanish only where

@; * f vanishes.
(ilifge (1,o)and Tt € [O, (pvlq), the Triebel-Lizorkin-Hausdorff space FH q(R™) is then

defined to be the set of all f € S, (R™) such that

1/q
I e ers = f {z Z‘Sqlcp,-*f[w(-,zin”q} <o,

jEL

p(R™
where w runs over all nonnegative Borel measurable functionsLo(rqltR I)R{Tl such that w
satisfies (27) and with the restriction that for any j € Z, w(-,277) is allowed to vanish
only where ; * f vanishes.

To simplify the presentation, in what follows, we use AHS’L(]R%") to denote either
BHy o (R™) or FHYG(R™) . When AHpg(R™) denotes FHyp(R™), then it will be
understood tacitly that q € (1,0). It was proved in [189, 190] that the space AH q(R™) is
independent of the choices of ¢. We also remark that when t = 0, then Bleq(]R%") =
BS Bjq(R™) and FHSO(]R") =F5,(R™); when a€(0,1), s=—a, p=q=2 and t=
1/2 — o/n, then AH; ‘”/2 “(R™) = HHL,(R™), which is the predual space of Q,, (R™).

We now recall the notions of Besov-type spaces By (R™) and Triebel-Lizorkin-
type spaces F q(R™) in [189, 190].

Definition (4 2 2) [204]: Letse R, T € [0,0), q € (0,00] and ¢ be as in Definition
(4.2.1).

(i) If p € (0,00], the Besov-type space Byg(R™) is defined to be the set of all f €
S (R™) such that ”f”BlSD,Tq(Rn) < oo, Where

o0 a/p) /4
Ifllgst gny = Sup 1 z f(ziS|(p]_*f(x)|)de
p.a pep(R™) |P|® =)

with suitable modifications made when p = oo or q = co.
(ii) If p € (0, ), the Triebel-Lizorkin-type space Fyg (R™) is defined to be the set of all
f € 8, (R™) such that || f ”FE’E ®m < o, where

p/q
]Rn)lplT f[z(215|‘91*f(x)|) ] dx

Il am = Sup
=P

1/p

with suitable modifications made when q = oo.
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Similarly, we useA q(R™) to denoteB q(R™) orF q(R™). IfA q(R™) meansF q(R™),
then the case p = o is excluded. It was proved |n [190] that the space Af,,q(]R{") IS

independent of the choices of . Also, [189, 190] show that ( A ('S'T (]R"))* = A‘,S’T,(IR%") for
allseR,pe(1,), q€[1,) andT € [ vy

known dual results on Besov spaces, Triebel-Lizorkin spaces and the recent result that
(HHL,(R™)" = Q,(R™) obtained in [167].

We establish the ¢ -transform characterizations and embedding properties of
AHST(]Rn) In particular, we show that the embedding property of BH (Rn) Is sharp.
Using these ¢-transform characterizations. We obtain the boundedness of almost diagonal
operators and the smooth atomic and molecular decomposition characterizations of
AHST R™). As applications of these decomposition characterizations, we investigate the
trace propertles and the boundedness of pseudo-differential operators with homogeneous
symbols in AH;;(R™). We pointed out that the method used in the proof of Theorem
(4.2.27) comes from [194, 195].

We denote by C a positive constant which is independent of the main parameters,
but it may vary from line to line. The symbol A < B means that A < CB. IfA < Band
B < A, then we write A ~ B. If E is a subset of R", we denote by yg the characteristic
function of E. For all @ € D(R™)and ¢ € S(R™), set ¢q(x) = 101~ 2¢ (ZjQ(x - xQ)) and
%o (x) = 19|72y (x) forall x € R™ We also set N = {1,2,...}and Z, = (N U {0}).

We establish the ¢-transform characterizations of the spaces AH q(R™) in the
sense of Frazier and Jawerth; see, for example, [45 106, 175, 176]. We begln with the
definition of the corresponding sequence space of AH q(R™).

Definition (4.2.3) [204]: Let p € (1,0)ands € R.

(i) Ifqe[1,0)and t e [0 ] the sequence space bH q(R™) is then defined to be the
|tQ| * Xolw(:, 2]

(pve'l
q 1/q
< o,
Q€eD(RM) LP(R™)

setofall t = {to} _ .y © Csuch that
el ey = Igf{z Jisa
JE€Z
where the infimum is taken over all nonnegative Borel measurable functions w on
R7*1 such that w satisfies (27) and with the restriction that for any j € Z, w(-,27) is
allowed to vanish only where ZQED(Rn)|tQ| * Xo Vanishes.

(ili) Ifqe (1, andte [0 ),], the sequence space fH R™) is then defined to be

the setof all t = {to} .y © C such that

q\ /4
el amy = ZZ"S“< D, Itgl*xgtw(-,z-i)]-1> <o,
QeD(R™)

JEZ
LP(R™)

where the infimum is taken over all nonnegative Borel measurable functions w on

R7**1 with the same restrictions as in (i).

Similarly, in what follows, we use aH q(R™) to denote either bH q(R™) or
f Hp,q(]R”). When a Hp,q(]R{") denotes f Hp,q(lR{"), then it will be understood taC|tIy that

] This result partially extends the well-
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q € (1,). We remark that ||-||aH;rq(Rn) IS a quasi-norm, namely, there exists a
nonnegative constant p € [0, 1] such that for all t,t, € aHf,’f1 R™),

lIt, + t2”aH§}l(Rn) <2° (”tlHaHf,'}l(R”) + “tz”aﬁg}l(u{gn)); (28)

Let ¢ be as in Definition (4.2.1). For all x € R", set $(x) = @(x). Then by [176],

there exists a function ¢ € S(R™) such that suppFypc{E€ R":1/2 < |¢| <2}, Fy

never vanishes on {{eR™:3/5<|¢{ <5/3} and that for all &€ R" |,

Yiez FPRIDFY(27E) = Xrm(o}(§). Furthermore, we have the following Calderén
reproducing formula which asserts that for all f € S¢, (R™),

F=D UG f= ) (f.o0b (29)
JEZ QeD(RM)
in 8§, (R™); see [190].
We recall the notion of the ¢-transform; see, for example, [45, 106, 175, 176].
Definition (4.2.4) [204]: Let ¢,y € S(R™) such that suppFyc{feR":1/2 < [E| <
2}, Fo, F never vanish on {§ € R™ : 3/5 < [§| < 5/3} and Yz F (@) F (§5) = Xrm\f0}-
(i) The @-transform S, is defined to be the map taking each f € S5, (R™) to the sequence
Sof = {(Sq,f)Q}QED(Rn), where (S@f)g = (f, @p) for all @ € D(R™).

(ii)The inverse ¢ -transform T, is defined to be the map taking a sequence t=
{to} yepqany © C 10 Tyt = Zgencan) toWo.
To show that Ty, is well defined for all t € aHyG(R™), we need the following

conclusion.
Lemma (4.2.5) [204]: Letp € (1,),q € [1,0),s€ R andt € [0,@]. Then for all t €

_CLHS',E(R”), Tyt = Toepmn) toWo CONVErges in Sy, (R™); moreover, T, : aHy5 (R™) - 84 (R™)
is continuous.
Proof: By similarity, we only consider the space bH); (R™).

Lett = {to} ) uny € PHpg(R™). We need to show that there exists an M € Z, such

that for all ¢ € So,(R™), Toepmm|to||[(Wo, )| S lldblls,,, where and in what follows, for
all M € Z, and ¢ € S(R™), we set [|$lls,, = supjyjsm SUPxern [0 @) [(1 + [x)HMHIVL,

Choose a Borel function w that almost attains the infimum in Definition (4.2.3)(i).
That is, w is a function on R?*?1 satisfying (27) as well as

q
Z 2jsq

=7

1/q

|to] * Xolo(:,271)]72
Q€D;(R™)

< 2lltllpg cgmy- (30)

LP(R™)
A simple consequence obtained from (27) is that for all (x,s) € R+, w(x,s) < s™™F; see
[189]. Then for all @ € D;(R™), by Holder’s inequality and (30), we have

1/p
| . s,1 1
[to] < 1017 Pltg] f [wG, 2] Pdx | <1012 Plltllypst @, B

Q
Recall that as a special case of [165], there exists a positive constant L, such that for all

j €z,

121



n —Lo
Z (1 + L) < 2nlil, (32)
ochThm max{1, 9|}

Furthermore, it was proved in [190] that if L > max{1/p+1/2—-s/n—1,1/p+3/2 +
s/n + 1, Lo}, then there exists an M € Z, such that for all 9 € D;(R™),

n -L
o, &) S lldlls, (1 + %) (min{2-", 27t (33)

see also [165]. Using (31), (32) and (33), we conclude that

s,1 1 "\,
|tQ||(‘~|JQ:¢>| S ||t||bH§;}1(R")||¢||5M S z Q"2 " p(1 +m 2 Llioln
QeD(R™) QeD(R™) ’

< Nl gy bl
which completes the proof of Lemma (4.2.5).

Lemma (4.2.6) [204]: Let s, p,q, T be as in Theorem (4.2.8) and A € (n, o) be sufficiently
large. Then there exists a positive constant C such that for all t € aHf;_fl(R"), “t“aH;‘a(Rn) <

t;)Aq,}\”aH%tq(Rn) < C”t”aH;’_Tq(]R{n)'
Proof: The inequality ”t”aH;‘a(Rn) <

t;AqJ”aﬁgg ny D€ING trivial, we only need to

t;/\q,?\”aH;,rq(Rn) < ||t||aH;,L(Rn). Also, by similarity, we only consider the
1S, T
spaces bHy o (R™).

Lett= {tQ}QED(an) € be,f](R"). We choose a Borel function w as in the proof of

Lemma (4.2.5). For all cubes Q € D;(R™) and m € N, we set A,(Q) = {P € D;(R™) :
2|xp — x| < 1}and A (Q) = {P € Dy(R™) : 2™ < 2|xp — xg| < 2™}. The triangle
inequality that |x —y| < |x —xg| + |xo — xp| + |xp —y| gives us that |x—y|<
3v/n2™7J providedx € 9, yePandP € A,,(Q).
Forallm € Z, and (x,s) € R?*1, we set
wy(x,s) = 2-mn (|(pva)'|+2) sup{u)(y, s):yeERY|y—x| < \/52“”25},
where and in what follows, |s| denotes the maximal integer no more than s. By the

argument in [189], we know that w,, still satisfies (27) modulo multiplicative constants
independent of m. Also it follows from the definition of w,, that forall x € 9, y € P with

PEAM(Q), w(y,27) <2-mn®eval+2)y (x,277). For all r € (0,) and a € (0,
r)), using this estimate and the monotonicity of [%/*, we obtain that for all x € Q,

concentrate on
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r
|tP| - [wm(x’z_]-)]—r
PED;, (RM) (1 + 2ifxg — xp)

r/a
S{ Z .ltpl xa/r[‘”m(x'z_j)]_a}

PeD; (R™) (1 + 2|xg — xp)

r/a
< 2-mMijnr/a { Itp|%xp () [m (x, 2_1)]_‘1 dy}

R" PEAR(Q)

r/a
ltp 1% () [wm (v, 27)] dy}

r/a
[tp|*xp [‘Dm(': z_j)]_a> (x)} )
PEAM(Q)

where HL denotes the Hardy-Littlewood maximal operator on R".
Forallm € Z,, set ;" = {(t with

< p-mA+mnr(1/a+|(pva)’|+2) {

R" PEAR(Q)

< p~-mA+mnr(1/a+|(pva)’|+2) {HL (

}QED(R”)

1/r
* |tP|r
(), = _ | .
¢ PE;@) (1 + 21[(P)]~*|xp — xo])
In what follows, choose a € (0,pAq) and A> (pAQ)[n(1/a+|(pVvVq)|+2)+0p],
where p is a nonnegative constant as in (30). By (30), the previous pointwise estimate and

p
the LE(]R")-boundedness of HL, we obtain

pAqA'lest (Rn) p/\q)\“bHST (R™)

|tp[> P Xo ()P
z 2pm z 2isq f Z Z - i r i
R" Q€D;(R™) \PEAR(Q) (1 + Zl[f(P)]_lle — xQD [wg (x, )]

S ha
B | ———
Q=

]EZ
q
o ( ¢ P
~ 6 pag)[n(1/a+|(pva) |+2)+p]} s f (Itp|¥%p)®
< 2 PAq 2’54 HL — | (x)| dx
InZO ]EZZ iRn <PE;R”)[ m( 2 ])]

S ||t||bH;'L(ugn);
which completes the proof of Lemma (4.2.6).
For any f € S, (R"), Yy EZ and @ € Dj(R"), set supy(f) = |0]1/2 supyeQ|cT)]- *

f ()| and
infy, (f) = 1011/2 max {nf|g « )] : €(0) = 27762, < 0}

Let sup(f) E{supg(f)}QED(Rn) and inf, (f) E{infg‘y(f)}geﬂ(Rn) . We have the
following conclusion, whose proof is similar to [106].
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Lemma (4.2.7) [204]: Lets,p,q,t be as in Theorem (4.2.8) and y € Z,. be sufficiently
large. Then there exists a constant C € [1, o) such that for all f € AH;’L(R"),

C_1||inf (f)” AST (R™) < ”f”AH&T ®Y = ”SuP(f)”aHST(Rn) < C”inf (f)“aHf;}](Rn)'
Theorem (4.2.8) [204]: Let p € (1,0),q€[1,o),s€E R, TE [0 ),],(p and ¥ be as in
Definition (4.2.4). Then S, AH q(R™) — aH q(R™) and Ty : aH q(R™) — AH q(R™) are

bounded; moreover, Ty, o §, is the |dent|ty on AHp,q(]R{").
Proof: To prove Theorem (4.2.8), we need some technical lemmas. For a sequence t =

{tQ}Qe‘D(IR")' 0 € D(R™), r € (0,0]and A € (0, ), define
1/r
[tp]"
(tra), = x
¢ peD,ZQ(:Rn) (1 + [P xp — xg)
and t;, = {(tl’i,;\) } . For any p,q € (0,],let pAq=min{p,q}. The following

9 gep(R™)
estimate is crucial in that this corresponds to the maximal operator estimate.
With the Calderon reproducing formula (29), Lemmas (4.2.6) and (4.2.7), the proof
of Theorem (4.2.8) follows (see [106, 165]). We omit the details.

Recall that the corresponding sequence spaces a ([R") of A Tq(]R%") in [190] were

defined as follows.
Definition (4.2.9) [204]: Let s€ R, q € (0,00] and T € (0,0). The sequence space
apq(R™) is defined to be the set of all t = {(t)Q}Q e © C such that [[t[| 5 (gmy < 0,

where if a5 (R™) = by (R™) for p € (0, ], then

p q
[tllist em = su Zzwqf z tolsoCo) | dx
by (R™) QED(gn”pF J |tol%o

j=ip 1(Q)=2"]

/ey 4

and if agg (R™) = fyq (R™) for p € (0, ), then

p/a P
”t” (ST (RN = sup ! j Z (lQl_S/n|tQ|XQ(X))q dx .
fp_q( Qe D(Rn) |P|T

We now establish the duality between a,(R™) and a'ST (R™). In what follows, for
any quasi-Banach spaces B, and B,, the symbol B, & Bl means that there exists a
positive constant C such that for all f € By, then f € B, and ||f |z, < C||f]l, .
Proposition (4.2.10) [204]: Lets,p,q, T be as in Theorem (4.2.8). Then (aH;;El(R")) =
ap, % (R™) in the following sense.
1Tt ={to},pmm € Gprq (R™), then the map
A= {}\Q}QGD(R”) —An = z Aoty

QeD(R™)
defines a continuous linear functional on aHf;}l(R") with operator norm no more than a

constant multiple of |[t]|, 3 - Conversely, every L € (aH“ (R")) is of this form for a
certaint € a , ,(]Rn) and ||t|| -sT % (R™) IS no more than a constant multiple of the operator
norm of L.

124



Proof: We only consider the spaces bH}; (R™) because the assertion for fHyT (R™) can
be proved similarly. Below we write R}*! = {(x,a) € R%*! : log, a € Z}.
For t ={to} . un) € Dy (R™ and A= {Ag} _ 1y € BHZL(R™), let Fand G be
functions on R%** defined by setting, for all x € R™ and j € Z,F(x,27) = Ygepmm|Ao|Xo
and G(x,27) = Zpepj(Rn)lxple. Since

IF s (mary~NAlprsz mmy

and [|Gllgyy-s=, (mu+1)~lItll-s7, wmy where BT, 5 (RZ*") and BWp‘,S;, (R2+1) are tent spaces
P .q p.q !
introduced in [190], by the duality of tent spaces obtained in [190] that (BT;'T(IR%“)) =

q
BWI)‘,S;IT,(RQ“), we have

IR f DD Polroltelxe G dx =Y ] F(x, 27)G(x, 27)dx

QeD(RM) JEZ rn QeD(RM) PeD]-(Rn) JEZ R
S ||F||BT;_fq(szl+1)||G||BWI-),S’;,(R§+1) ~ ”)\”bH;”a(Rn)”t”b;f;,(ﬂgn)
which implies that b, (R™) & (bH5% (R™)) .
Conversely, since sequences with finite non-vanishing elements are dense in
. S, . S, * - ~
bH;, (R™), we know that every L € (prT [R")) is of the form A — ¥ geprn) Aoty for

’q ’q

i = i - < *
a certain t {tQ}QED —_— It remains to show that ||t||bp,s’,;,(Rn) < |Itll (brts )

Fix P € D(R™) and a € R. For j > jp, let X; be the set of all @ € D;(R™) satisfying
Q < P and let u be a measure on X; such that the p-measure of the “point” Q is |Q[/|P|*.

Also, let Ly denote the set of all {a} < C with {a) = (5= [o|%)" and
ZJp

j=jp

jzjp lg
I (lp(X]-, du)) denote the set of all {aQ'j}QED-(R")QCP]‘ij c C with
| o a/p\ /4
||{a ]} N = |a ]|p O]
2 gep;(RM),9cP,jzjp Q |P|ta

BPe5an) 5 |oen; @ ocr
It is easy to see that the dual space of I} (lp(Xj, du)) is 13' (lp'(X]-, du)); see [41]. Via this
observation and the already proved conclusion of this proposition, we see that

1

P la

7

0 ! q

1 _s_1 P _s_1

EE 2. 2 ('Q' " 2|t9|) 2] =H{|Q| " 2|t9|} M ocpin
Q€D;j(R™),QcP,jzjp

j=Jp | Q€D;(R™),QcP

l4
19 (zP'(Xj,du))

s 1 ’
= sup D> gl | 101/1PI
<1 |ji=jp Q€D;(R™),QcP
lg(lp(Xj,le.))

H{AQ}Q@]- (R™),QcP,jzjp

(glor2101/1p1'}

< *
Sup -

Q€D;(R™),QCPjzjp

(8(1p(xy0))

To finish the proof of this proposition, it suffices to show that

1S, T n
H{AQ}QED]- (R™),QcP,jzjp bHpq(R™)
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for all sequences A satisfying ”{AQ}

(glor2101/1P1'}

<1
les:,‘:f](]R{")

<1. In fact, let B =
13(1P(x;.dn))

(Cp, Vn f(P)) and w be as in the proof of [189] associated with B, then w satisfies (27)
and for all x € Pand j = jp, [0(x,277)] " ~[£(P)]™*. We then obtain that

‘ (gloriz 101/1p )

Q€D;(R™),QcP,jzjp

Q€D;j(R™),QcP jzjp

mn s )
QED] (R );QCPJZJP bH;"Tq(]Rn)

QR

2)

» 1ol ) .
Q172 (|AQ||Q| |P|Qw> Qf [w(x,z—l)]-pdx\ }}

U=ip LeDj (R™),QcP

Tl
QlRr

)
p o’
{z 2 [4o]"121/1P] p} } - ||{’19}er,-(Rn),Qcp,jsz
\J=ip Loen;(R™) 0P J
which completes the proof of Proposition (4.2.10).

Applying Theorem (4.2.8), we establish the foIIowing Sobolev-type embedding
properties of AH q(R™). For the corresponding results on BS 5.q(R™) and Fg,q(]R%"), see
[41].

Proposition (4.2.11) [204]: Let1 < py < p; <o and —oo < s; < 55 < 00 Assume in

addition that s, — n/p, = s; — n/p;.

(i) If q € [1,0) and t € [0, min{
then BH ', (R™) < BH 0 (R™).

(i)If q,r € (1,00) and T € [0, mln{

then FH)*L(R™) & FH)'C (R™).
Proof: By Theorem (428) and similarity, it suffices to prove the corresponding
conclusions on sequence spaces fH R™), namely, to show that [|t]| FHELT (RM) S

s1

~ )

bH;’I](R”)

1 , ,

1
(povr)’’ (p1vQ)

11 such that ©(po v 1)’ = t(p; vV Q).

||t||stor(Rn) for allt € fHSOT(]R{") When t = 0, this is a classic conclusion on Triebel-

L|zork|n spaces.
In the case when Tt > 0, we have (p,vr) <(p,Vvq)'. Lette fHSOT(lR{”) and w
satisfy

f [N (x)]®ovD) qHtPovD) () < 1 (34)

R‘n
and
1/po

o po/T
_So I r —iNl—r

Rn [ J€Z 0eDj(Rm)
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For all (x,t) € R**1, we set &(x,s) = sup{w(y, s) :y € R", |y - X| < \/ﬁs}. Then by the
argument in [189], we know that a constant multiple of @ also satisfies (34). Since
(poVI)' < (p; vV q)', we note that & satisfies

][N(;,(x)](p1Vq)’de(p1Vq)’(x) < 1.

Rn

For all Q with £(Q) = 27, set Ty = |to| supyeo {[(’I)(y,Z‘j)]_l}. Observe that for all x €
0 with £(Q) =27 [@(y,27)] " sinfefw(y,27)]" ., and  hence,

suprQ[G’)(x,Z‘j)]_l < innyQ[u)(y,Z‘j)]_l. This observation together with p, < p; ,
So — n/po = s; — n/p; and the corresponding embedding property for Triebel-Lizorkin
spaces (see, [41]) yields that

1/p1

p1/q
_519 9 q ~ —inT—
[12 D0 105 @i, 270) q\ dx
Rn [ J€Z 0enj®m)
1/p1

p1/q
_519 9 q - e
<D0 D 105 g g supye 1507, 27) Q}\ dx
R" | JEZ Q€Dj(R™)

1/p1

( p1/4
_514.49,. (q

=D 2 ey xQ(x)\ dxp = lellgss guny S elso g,
KR" | JEZ Q€D;(R™)

R | J€2 0eD; ™)
Po/T 1/po
_Sor Ir r _ .
<D0 D 101 gl ke @) supyeolin 20|
R | 162 0eD;iRm)
_ Po/T 1/po
- _Sor'_ L r —iy1-r < IS0 T mn).
=~ 1917 2|ty | xo () [w(x,27D)] dx S fHYL(R™);
KRn | JEZ Q€D;(R™)

see [106] for the definition of the sequence spaces fpﬁq(Rn). Therefore, ||t]| ) p
P19

“t”fso.T(Rn), which completes the proof of Proposition (4.2.11).
PoT

When t = 0, Proposition (4.2.11) recovers the corresponding results on Bg,q(Rn)
and Fg’q(]R{") in [41], which are known to be sharp; see [203]. We further show that the

restriction that t(po vV q)" = t(p; V q)’ in Proposition (4.2.11)(i) is also sharp. To see this,
we need the following geometrical observation on the Hausdorff capacity.

Lemma (4.2.12) [204]: Letd € (0,n]. Suppose that {E]-}]:l are given subsets of R™ such
that E; c B((A,-,(), O)n) where {A,-};:1 is an increasing sequence of natural numbers
satisfying that A; > 10 and for all j,I € N,A;,; — A; = 4nl*/%. Then H!(U32,E;) and
2, H4(E;) are equivalent.
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Proof: The inequality H(U32, E;) < X2, HI(E;) is trivial. Let us prove the reverse
inequality. To this end, let us first notice the following geometric observation that when a
ball B = (xg, rg ) intersects E; and E;,; for some j,l € N, then 2B engulfs E;, E;,, ..., Ej.

Thus, 4rg is greater than A;,; — A; and hence, r§ > (A4, —Aj)/4)d > Ind. Therefore,

instead of using B we can use B ((A]-, 0, ...,0),n), ..,B ((Aj, 0, ...,0),n) to cover E; and Ej,;.

Notice that {B ((A,-,O, O)n)}oo are disjoint. Based on these observations, without loss
=1

of generality, we may assume, in estimating H“(U;’i1 E;), that each ball in the ball covering

meets only one E;. From this, it is easy to follow that HY(U32, E;) = X2, H4(E;), which

completes the proof of Lemma (4.2.12).

Lemma (4.2.13) [204]: Lets € R,p € (1,),q € [1,0), T € (0,(pv—1q),] and {Ax}r=, be as

in Lemma (4.2.12) such that @, = (A, 0, ...,0) + 27¥[0,1)" € D, (R") for all k € N (the

- > " is obv e t = _ )
existence of {Ax}y=, is obvious). Define t; = {(tj)Q}QED(Rn) so that (tj)Q =2 » if
Q=0 and ke {1,..,j}, (t]-)Q = 0 otherwise. Then for all jeN, ”tj”ng'fq(IRi”) is

1 1 1 1
. g . . T
equivalent to ja" ®va’ and ”ti”fH is equivalent to jp~ (va)’,

pq(R™
p'q
Proof: For the Besov-Hausdorff space, let us minimize

j 1/q
(Z 2% ”(ti)gkl Xo\ (%) [w( z_k)]_l ”:p(Rn)>

k=1
under the condition (27). By the definition of t; and the assumption on w in Definition

(4.2.3), we may assume that w = 0 outside Ul_,(Qoa,0,..0) X {27%}) and for all 0 €

where 9y (a0,..,0) = (A;,0,..,0) + [0,1)™ € Do(R™). Also, we can replace w with the
maximal function @ given by @(x,27%) = supyeg, . 0(y,27%), where k € {1, ...,j} and
Qxx € Dx(R™) is a unique cube containing x. This construction implies that & equals a

constant on Qy, 4 o...0) for each k € {1, ...,j}, namely, &(-,27) = UHD, (s o) Notice

that if N®(x) # 0, then x € B((A, 0, ...,0),n) for some k € {1, ...,j}. This combined
with Lemma (4.2.12) yields that

J[N(T)(x)](pvq)’dH"T(pVQ)’(x)

.....

R |
2 j
= f grteve) [ ), e UB((Ak, 0, ---,0),n) =[N(T)(x)](pvq)’
0 k=1
j oo
> 1 dl~2f Hnr(pvq)’({x € B((Ak, 0, ...,0),n) : [N(’I)(x)](qu)’
k=19
: j
k=1 B((Ak,O,...,O),n) e
On the other hand,
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j 1/q

Z(a’k)_q

k=1

LP(R™)

]. 1/q
- ~( ~-k\1-119
(Z 25 )y, R, L. 27] | ) )
k=1
In summary (modulo a multiplicative constant), we need to minimize (ZLzl(ak)‘q)l/q

under the condition ZL:1(ak)(qu)' < 1. This can be achieved as follows: By using the
geometric mean, we have

j /9 j 1/q , 1/(pva)’
@) 2| ) (@) (@) @V’

1/(pvq)’

~ jl/q+1/(pvq)’_

: O . ,
In particular, (¥)_,(a)™9)9 ~ja ®va’ when Y)_ (e )®'D" ~ 1 and the ay s are
1 1

1 1 . .—+—,
identical. Thus, for all j € N, ”ti”ng}l(mn) ~ ja"ovay,

For the Triebel-Lizorkin-Hausdorff space, similarly to the above arguments, we see that

1/p

Rn

j

2.

p/q
q _ CN1-
k |Qk|‘(s/n+1/2)q|(tj)gk| XQk(x)[w(x,Z k)] q] dx
—1

j 1/p j 1/q
- (fZlel_(S/nH/Z)q |(t,-)Qk|p)(gk(ac)(ak)‘p dx) = Z(ak)‘q\ :
k=1

RN k=1

Applying the geometric mean again, we have

]- 1/p j Up s 1/(pva)’
<Z(ak)-p> 2 <z (akrp) <Z (ak)<pvq>’>
k=1 k=1 k=1

1/(pvq)’
\ ~ ]-1/p+1/(qu)’_

. o1 1 - /
In particular, (Z}_,(e)7P)" ~ P ®va’ when Yo (@)®D ~ 1 and the a’s are

identical, which implies that for all j € N, ||| ~ jo"®va’, This finishes the proof of

Lemma (4.2.13).
Proposition (4.2.14) [204]: Let s, T, po, P1, g, T be as in Proposition (4.2.11).

(i) If bH;‘(’)”; S bH;ll’;, then t(po vV q)' =t(p; VQq)'.

H ‘150, 151, l l 1 1 l !
(i) If fo,‘(’); S fH;llfl, then t(povr) <t(p,VqQ) '+t (E — E) (povVr)(pyVvVQg).
Proof: By similarity, we only consider the Besov-Hausdorff space. Let t; be as in Lemma
(4.2.13) with s, p replaced, respectively, by s, and p,. Since sq —n/py =s; —n/py, by

be,’}l(R")
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Lemma (4.2.13), we have [|t[|, s, ~]p “Ga and 6]l e ]p G for all j € N, which
0.9 P1.9

1 1, 1

together with bH,”7 < bHY |mpI|es that ]q "®va’ < o ®ova) for all j € N. Therefore,

(poVQ) <(p1V q) Meanwhlle it is trivial that (p, vV q)’ = (p; V q)' since p; > py -
We then have (py V q)" = (p; V q)’ . This finishes the proof of Proposition (4.2.14).

We begin with considering the boundedness of almost diagonal operators on
aHST R™), which is applied to establish the smooth atomic and molecular decomposition

characterlzatlons of AHp,q(]Rn).
Definition (4.2.15) [204]: Let p € (1,),q€[1,0), se RTE (o,ﬁ] and €€
(0,0). For all 9,P € D(R™) , define

o= (4D (1l Y™ (10 F ()
P \eP) max(£(Q), £(P)) (@) \£(P) '

An operator A associated with a matrix {a,p}

0,PED(RM)’ namely, fOI‘ a“ Sequences t=

{to) yengany © € At = {(ADo} ) any = {Zpenmm agpte}, p gny: 15 Called e-almost diagonal

1S,T . . . e
on aHyg (R™), if the matrix {ag p} ) , ., n, Satisfies

sup |aQP|/wQP (e) < oo.
0,PED(R™)

Lemma (4.2.16) [204]: Letd € (0,n] and Q be an open set in R™ such that Q = U2, B;,
where {B,-}]_ = {B(X;, ])} is a countable collection of balls. Define

e (o {Bj};:1 )= 1nf{z rd:Qc U B(Xi, Ri), B(Xyo, Ry) D By if B; N B(Xy, Ry) # @
k=1 k=1
Then there exists a positive constant C, independent of 0, {Bj};; and d, such that
HY(Q) < HY (2. (B} ) < C46)HI(Q).
Proof: The first inequality is trivial. We only need to prove the second one. Without loss
of generality, we may assume supjecy R; < 0. By the well-known (5r)-covering lemma,
there exists a subset j* of N such that Uj2,(3B;) < Uje;(15B;) and e} * X(s,) < 1
Furthermore, by its construction, if By, j’ € N, intersects B; for some j € j*, we have that
(3Byr) c (15B)).
Let {B(xy rx)lkeny be a collection of balls such that Q c Uy, B(x, 1) and
Y rd < 2HY(Q). Set
= {k € N : when B(xy,45r) N Bj # @ forany j €N, thenry = 135R]-}
And J; = {j € N : Bj N B(xy, 45r,) # @ for somek € Kl}. Also define J, = (N\J;) and
K, = (N\K;). We remark that if k € K,, then there exists j €], such that B;n
B(xy, 45r) # @ and 135R; > ry. Notice that By € Q < (Uy-, B(xy, r)). Hence, for each

jEJ,, we have BjcQc (UkeKz,B(xk,rk)nBj:tQ) B(xy, rk)) , and then, by d <n and the
d
monotonicity of [», we see that
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Dok Y BGrnz > 3 BGaerl

keK, keK, JEI*NJ2 KEK3,BjNB(x,45rKk)#0
d
n

z > > BGendl) 2 ) RG
jEI*NJ2 \ KEK3,BjNB(xy,45r)#0 JEI*N],

ng+ Z Rgszrg.

KEK; i€l N, keK

which further yields that

On the other hand, we have

Qc CJB,. c | Jass) = { g (1513].)} u{ g (1513].)}

IS JEI*NJ1

c :U B(xk,46rk)} u{ U (1513]-)}.

( kEK, ISHNP

Notice that for k € Ky, B(xy, 45r) meets B; for some j € N gives us r, = 135R;, which
further implies that B(xy, 46ry) D Bj. Also, forj €] and j’ € N, if B;n By + @, then
(15B;) o By. As a result, we conclude that {B(xy,46ri)}kek, U {15B;}. is the

JEJ* N2

desired covering of Q and hence,

Hd (Q, {Bj};) < 2 (461, )9 + 2 (1515{,-)“l < (46)4HY(Q),
keK; jer Nz
which completes the proof of Lemma (4.2.16).
Applying Lemma (4.2.16), we have the following conclusion.
Lemma (4.2.17)[204]: Let B €[1,0), A€ (0,0) and w be a nonnegative Borel
measurable function on R%*1. Then there exists a positive constant C, independent of B, w
and 2, such that
Hi({x € R" : Ngw(x) > A} ) < CBIHI({x € R™ : Noo(x) > A}),
where Ngw(x) = supjy_xj<pt @(y, D).
Proof: Observe that

{x € R" : No(x) > A} = U U B(y, O

te(0,00) yeR™
w(y,H)>A

and that
frerm N >a= | | | BGpo.

te(0,00) yeR™
w(y,H)>A

By the Linderof covering lemma, there exists a countable subset {B,;};2,0f {B(y,t) : t €
(0,0),y € R" satisfying w(y,t) > A} such that {x € R" : Ngw(x) > 7\} . By Lemma
(4.2.16), it suffices to prove that

Hd({x €ER": NBw(x) > }\}:{BBZ}?ZO) = Bde (U By, {Bi}120 )
1=0

Let {By}reo be a ball covering of U;eyB; such that Y., r]%( < 2HY(U2, B, {B1}20).
and that By engulfs B; whenever they intersect, where rg: denotes the radius of By.
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Therefore, BBy engulfs BB, whenever they intersect and {x € R : Ngw(x) > A} C
{Upo(BB;)}. We then have

2pH¢ (U B, {Bi}iZo ) > E(Brg;)d > HY({x € R™ : Ngw(x) > 2}, {BB}2, ),
=0 =0

which completes the proof of Lemma (4.2.17).

As an immediate consequence of Lemma (4.2.17), we have the following result.
Corollary (4.2.18) [204]: Letd € (0,n], B € [1,0) and w be a nonnegative measurable
function on R}*!. Define wg(x,t) = supyep(xpr w(y,t). Then there exists a positive
constant C such that

fNBw(x)de(x) <Ccpl< wa(x)de(x).
RN RN

Theorem (4.2.19) [204]: Letp € (1,20), q € [1,0), s € R, e € (0,0) and T € (0, ]

Then all the e-almost diagonal operators on aHf)fl R™) are bounded if € > 2nt.
Proof: By similarity, we only consider fo)',g(]R%"). Similarly to the proof of [190,
Theorem 4.1], without loss of generality, we may assume s = 0, since this case implies the
general case.

By the Aoki theorem (see [191]), there exists a x € (0,1] such that ||-||;§Ho,r &Y

p.q

becomes a norm in FHYE(R™). Lett € FHYG(R™). For Q € D(R™), we write A = A, +
A; with (Agg = Xpepmrny:e)<ep)} @g ptp aNd (A1) = Yipe n(rn):2(P)<1(0)} Ao PP -
By Definition (4.2.15), we see that for Q € D(R"),

n+e

i’(Q)>T |tpl
¢P)) (14 [P xg — xp|)"""

I(Aot)y| < (
{Pe D(RM): £(Q)<¢(P)}
Thus, we have

Aot i

{z S ot

JEZ Q€ D]-(an)

j ; ay /9
z z Z(z—j)"T*E ltp| [ (-, 277)] \}

. n+e
i=—o00 PE D;(R™) (1 + 21|xQ - xPl)
Let w be a nonnegative Borel measurable function satisfying (27) and

>

JEZ Q€ Dj(Rn)

LP(R™)

1/q
dr~ —in1—4
[to] [Row (., 27)] } = el gy
' LP(R™)
Let Ag;(Q) = {P € D;(R™) : 2!|xg — xp| < Vn/2} and A, (Q) = {P € D;(R™) :
2M=1\n/2 < 2%|xp — xy| < 2™+/n/2} for all i € Z and m € Z, . Define oy, (x,t) =

2~ mnt sup w(y,t) for all (x,t) € R}**. Then Nwp S 27™'N 7 m+2 and
yEB(x/n2m+1t)

[0m(x,27)] " w(y,27) S 2™ for m € Z,,, x € Q with Q € D;(R™), y € P with P €
An;(Q)andi < j. Moreover, using Corollary (4.2.18), we see that a constant multiple of
wpy, also satisfies (27). Similarly to the proof of Lemma (4.2.6), we have that for all x € Q,

|tpl[w(x, 27)] 71

) ¥
PE A i(Q) (1 + zlle - xPDn )

S 2_m£+mnTHL< It DXpw (-, z_i)]_1> (x).

P€ A i(Q)
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Hence, choosing e > nt, by Fefferman-Stein’s vector-valued inequality, we obtain

q
SE inf E E 10172,
w
m=0 JEZ Q€ Dj(R™)

q~ 1/4 K

ij: Z Syt ltpllo, 27017 \}
)

, ¥
i=—o0 PE A, ;(Q) (1 + 21|xQ - xPDn )

LP(R™)
o j . ay /||
_g nte  |tp|[wy(,27)]7
SO DIPIRC DI W v v
m=0 jEZ Q€ D;(R™) i=—o0 PE Ay, ;(Q) (1 + 2 |xQ _xPD -
LP(R™
) j
< sz(nt—a)x Z z XQ z z(i—j)s/z
m=0 JEZ Q€ Dj(R™) i=—o0
g~ 1/4 b
XHL[ ) ItplRpw(, 271 < 1l gy
PE Am,i(Q)
LP(R™)
The proof for A;t is similar. Indeed, we have
n+e
|(A t) |< (f(Q)) 2 |tP|
o+/Q| ~ _ n+e
(Pe D(RM):£(0)<¢(P)} ¢(P) (1 + [£(P)] 1|xQ _XPD
Thus,
”Alt”f]l[%"a (R™)
a~ 1/9
_ _a _rre tpllw(,27)] 7!
Slgf z z 19| 2Xo Z z 2 . n+e
J€Z Q€ D;(RM) [=0 P€ D} (R™) (1 +21|xg — xe|) o
LP(R"

Let Ay;(Q) ={Pe€ Dy (R"): 2|xp —xg| <Vn/2} and A,;(Q) ={PE€

Dy (RY) : 2™ /2 < 2J|xp — xo| < 2™Vn/2} forallj € Zand [ € Z,. Set
Bm(x,5) = 27T supli(y,s) 1y € R?, |y — x| < vn2m+i+1s})

for all m € Z, and (x,s) € R**1. Similarly, we have that a constant multiple of &,,

satisfies (27) and [®y, (x, 2‘1')]_1 X w(y,277Y) s 2m*bnt form,l € Z,, x e QwithQ €

D;(R"),y € Pwith P € Km,j,l(g). Similarly to the proof of Lemma (4.2.6) again, we see

that for all x € Q,

~ — -1
[tp|[Om(x, 27)] < p-metin+(m+Dntyy, Z |tplxp (x).

n+e ~ —
P€ Am,j1(Q) (1 + 2L|xQ - xPl) PE Am;j1(Q) (27

Hence, choosing € > 2nt , similarly to the estimate of ||A0t||ng,a(Rn), we also have
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Aot

FHpGR™
oo q 1/q K
q nte  |tp|[wy (5, 27)]?
S Z Z Z |Q| ZXQ z z o 2 . = n+e
m=0 || \ i€z 0e D;(RM) =0 P€ A ;i(Q) (1+ 21|xQ — xPD

LP(R™)

< Z 2m(nr—s);c Xo Z 2~ I(e/2—n71)
m=0 JEZ Q€ D;j (R")

q~ 1/4
~ . —7 _1
X HL Z |tP|[XP(D(12 l)] “ } ~ ”t”fHOT(]Rn)I

Pe Am,j,i(Q) LP(R™)

which completes the proof of Theorem (4.2.19).
As applications of Theorem (4.2. 19) we establish the smooth atomic and molecular

decomposition characterizations of AH q(R™).

Definition (4.2.20) [204]: Let p € (1 oo) q€E€([1,0),seR, T€E]O,

D(R™). Set N = max(|—s + 2nt|,—1) and s* =s — [s].

(i) A function my is called a smooth synthesis molecule for AHf;}l(R") supported near Q ,
if there exist a & € (max{s" (s +nT) },1] and M >n+2nt such that

f xYmy(x)dx = 0if [y | <N, |mQ(x)| < 19| 2(1 + [2(9)] 1|x —xQD maX(M’M_S),
|6VmQ(x)| < IQl_"_(l + [2(9)] 1|x - xQ|) if|y| < [s + 3nt| (35)
and
0¥mg () — ¥mg(y)| < 101 K lx — yI5 sup (1+ (2@ x—2-x[)™ (36)

|z|<|x—yl
if |y|=I|s+ 3nt|.

A set {mQ}Q DIR™) of functions is called a family of smooth synthesis molecules for
AHST . (R™), if each mg is a smooth synthesis molecule for AH o (R™) supported near Q.
(i) A functlon by is called a smooth analysis molecule for AH R") supported near near

Q, if there exist ap € ((n—s)*,1]and M > n + 2nrt such that [, xYby(x)dx = 0 if

max(M,M+s+nt)

ly| < Is+ 3ntl, [bo(x)| < 121 2(1+[£’(Q) “Hx —xg|) ,

|aYbQ(x)| <1017 51+ @ x — )™ iyl <N (37)
andif |y | =
|0Yby (x) — aYbQ(y)l < 1ol & R - yI° sup (1+ Q1 x—z- %) (38)
Z|<|x—-y
A set {b,} of functions is called a family of smooth analysis molecules for

Q€ D(R™)
AHy 5 (R™), if each by is a smooth analysis molecule for AF5 (R™) supported near Q.

Lemma (4.2.21) [204]: Letp € (1,),q € [1,20),s E R, T € [0, (
g, > 2nt and a positive constant C such that for all families {mo},_, .., Of smooth
synthesis molecules for AH>T (R™) and families {b,}

of smooth analysis molecules
fOr AHST Rn) |<mPle)L2(]Rn)| < C(DQ p(sl)
To formulate the molecular decomposition, the following lemma is indispensable.

Qe D(R™)
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Lemma (4.2.22) [204]: Retain the same assumptions as in Lemma (4.2.21). Let f €
AHy 3 (R™) and @ be a smooth analysis molecule for AH (R") supported near a dyadic

cube Q. Then (f, ®) is well defined. Indeed, let ¢, € S(R“) be as in (29). Then the
series

(F.0)= D @ty f,0) = D {f,@p)p, D) (39
JEZ Pe D(R™)
converges absolutely and its value is independent of the choices of ¢ and .
Proof: The same proof as that of [190, Lemma 4.2] works for the absolute convergence of
(39). We only need to prove that the value of (39) is independent of the choices of ¢ and

. By similarity again, we only consider the spaces BH q(R™).
Let f € BHp,q(]R"). We claim that 3.2, @; * U; * f, @ converges in §'(R™). In fact,

similarly to the proof of [189, Lemma 4.2.6], we have that for all € S(R") and x € R",
2~ M
| j * d)(x)| 5 ||(P||5M+1||¢||5M+1 W,

where M € N is determined later. Thus,

_ C o [V @)
D 1@ £, 0] ||¢||5M+1||¢||5M+1j=202 " |

Recall again that w(x,t) < t™* for all nonnegative Borel measurable functions w on
R7E*L satlsfylng (27). Letting M > max(0, nt — s), by Holder’s inequality, we then obtain

i 271
Z|<cp]*¢] fq>>|~||@||5M+1||¢||SM+122’M“’” ] LY

< 105y, s 1 Tt oy
which implies that 3.2, @; * j; * fat converges in §'(R™). Thus, the claim is true.

We need to handle carefully the remaining summation: Z]__OO @ *yj*f. In
general it is not possible to prove that Z]__oo @; = P = f is convergent in S'(R™).

Therefore, we pass to its partial derivatives. Choose y € Z" such that |y| > s — nt — n/p.

Then using Holder’s inequality, similarly to the previous estimate, we obtain that for all

x € R™,
-1

-1
z 107 (&, * v, * £) ()| < Z 26l J (1+2]-|9’C_y|)n+M+|Y| y

j:—OO j=—00

j |y|—s+n‘c+E
< Z 2 Dollsy,, 1 Wit cemy S N@llsyg 1 gt en)-

j:—OO

Therefore, it follows from the well-known result in [93] that there exist a sequence
{Px}nen OF polynomials on R™ with degree no more than max(—1, |s — nt —n/p|) and

g €S'(R™) such that g= lim (Z2_n|®; * W+ f+Py]) in S'(R") and g is a
representative of the equivalence class f + P (R"); see [106]. Using [93, Lemma 5.4] and
repeating the argument in [106], we obtain that the value of (39) is independent of the

choices of ¢ and {5, which completes the proof of Lemma (4.2.22).
Theorem (4.2.23) [204]: Let s, p,q and t be as in Lemma (4.2.21).

() 1 {mo} . gny is @ family of smooth synthesis molecules for AH{ (R™), then there
exists a positive constant C such that for all t = {to} _ .. € aHpg R")
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tomg
QED(R™)

S C”t”aHIS:)‘}](Rn)'

AHP G (R™)
(i) If {bQ}Q DR is a family of smooth analysis molecules for AH;G (R™), then there
exists a positive constant C such that for all f € aH q(R™),

(K703 M— < cnanH;;(Rn)-

Theorem (4.2.23) generalizes the well-known results on Bf,,q(]R”) and F;q(Rn) in
[45, 106, 164, 165, 175, 176] by taking T=0. We establish the smooth atomic
decomposition characterizations of AH q(R™).
Definition (4.2.24) [204]: Lets € R, p € (1,2),q € [1, oo) tand N be as in Definition
(4.2.20). A function ay is called a smooth atom forAH q(R™) supported near a dyadic
cube Q , if there exist K and N with K > max(|s + 3nt + 1J,0) and N > N such that ag
satisfies the following support, regularity and moment conditions: suppay ©

_1 vl ~ . ~
30, ||0VaQ||L°°(Rn) <9z nifly] <K, and [ rnX7ag(x)dx = 0if [y < N.

Aset{ag}cp mny
each ay is a smooth atom for AH q(R™) supported near Q.
Theorem (4.2.25) [204]: Let s, p, q,t be as in Lemma (4.2.21). Then for each f €
AHG (R™), there exist a family {a,} 0EDEM of smooth atoms for AH; 5 (R™), a coefficient
sequence t =_{tQ}QeD & € aHyG(R™) , and a positive constant C such that f =
ZQED(Rn) tQaQ In Solo(Rn) and ”t”aHST (Rn) > C”f“AHST (Rn)

Conversely, there exists a positive constant C such that for all families {a,}

aHpyq(R™)

of functions is called a family of smooth atoms for AH q(R™), if

QeD(R™)

of smooth atoms for AH;g(R™) and coefficient sequences t = {ty} — aHyu(R™),

IZgenqmm toag| ABSTRM) S C||t||aH;}l(Rn)-
We give some applications of the smooth atomic and molecular decomposition
characterizations of AHE’E(R"), including the boundedness of pseudo-differential

operators with homogeneous symbols in these spaces and their trace properties. We first
recall the notion of homogeneous symbols; see, [197].

Definition (4.2.26) [204]: Letm € Z. A smooth function a defined on R x (IR \{0})
belongs to the class Sl,l(]R{"), If a satisfies the following differential inequalities that for
all o, B € Z%,

Sup |E|_m_|a|+|8|
x€R™Ee(R™\{0})

As an application of the smooth molecular decomposition of AHIS;';(]R{”) (Theorem
(4.2.23)) and the Calderon reproducing formula (29), we have the following conclusion.

Theorem (4.2.27) [204]: Letm € Z,s € R, p € (1,),q € [1,
a be a symbol in S{f‘l (R™) and a(x, D) be the pseudodifferential operator such that

a(x, D)f (%) = f a(x,§)(F )(©e " dE

0% 0%a(x,8)| < oo.

for all smooth synthesis molecules for AHS”“(]R“) and x € R™. Assume that its formal
adjoint a(x,D)* satisfies a(x,D)*(xP) =0 in SL(R™) for all BeZ} with |B| <
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max{—s + 2nt,—1}. Then a(x,D) is a bounded linear operator from AHS+mT(]R{") to
AHSE(R™).

Proof The proof is similar to that in [194, 195]; see also [200]. We abbreviate T =
a(x, D) for simplicity. Let f € AH, ™ (R™) and ¢ be as in Definition 4.2.1 such that for

all§ € R, ¥ s|F (27 JE)| = Xr\(0}(®). Then by the Calderén reproducing formula (29),
we have f = Yoepmm){f @g)pg In SL(R™) ; moreover, by the ¢ -transform

characterization  of AH;Lm’T(R”) ,we see that ”{(f (PQ)}QeD(Rn) S

~

S+m ‘[(Rn)

||f||AH;Lm,T(Rn), or equivalently, ||{|Q| n(f, (pg)} < ||f||AH§,;mﬂ(Rn)-

QeD(R™) aHIS),}l([Rn)
We claim that T(f) = Eoenmm(f, 9o)T(0g) in S (R™) with [ T(Allapsz @my S
||f||AHs+mT(Rn) To this end it suffices to show that every |Q|7T(ch) Is a constant multiple

of a synthesis molecule for AH q(R™) supported near @. This fact was established by
Grafakos and Torres [197]. We then conclude that T is bounded from AH,™*(R™) to
AHST q(R™), which completes the proof of Theorem (4.2.27).

Lemma (4.2.28) [204]: Let d € (0,n] and € be an open set in R™. Define

dist ( x;, Q)
Hi(Q) = 1nf{z :QcC UB(xr, ]) r; > lsl(ggoo )}

Then HY(Q) and HY(Q) are equivalent for aII Q.
Proof: The inequality HY(Q) < H4(Q) is trivial from the definitions To prove the

converse, we choose a ball covering {B(xj,r]-)}j of Q such that 32, rf! :< 2HI(Q). Let
{B(X]-,R]-)};:1 be a Whitney covering of Q satisfying Q = U;2, B(X;,R;), R;/1000 <
dist (x]-,a(m) < R;/100 and Yjen Xg; < Cp; see, [196]. Set

J, = {j € N: (B(X- R-) N B(xy, rk)) # @ and R; < 4ry for somek € N}
and J, = (N\ J;). Notice that if k € N satisfies (B(X], R;) N B(xy, rk)) + ¢ for somej € J,,
then B(xy, ry) C B(X]-, ZRJ-) since ry < R;/4. With this in mind, we define

K, = {k EN: (B(xk, r) N B(X], ])) # @ for some j € ]2}
and K; = (N\ K,). It is easy to see that

U B(xy, 1) © <U B(xy, 1) U U B(X;, 2R; )) (40)

keK, j€J2
Furthermore, for each k € N, the cardinality of the set {] €J,: (B(xk, r) N B(X; ])) * @}
Is bounded by a constant depending only on the dimension. Hence, we have
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Qb= it ) =) )| ) )=

k=1 keK4 keK, keK4 j€]2 kEKz,(B(Xk,Tk)nB(X]',R]'));t(z) keK4

vy > Bl

J€l2 kEKz,(B(xk,rk)nB(X]-,R]-)):#Q)
Notice that B(Xj, Rj) c Q c (Ugz; B(xy, ). Then for each j € J,, we have

B(X; R)) € U B(xy, 1) -

keK,(B(xiori)nB(X) R) ) %0
d
Since d € (0, n], by the monotonicity of =, we see that

Z |B(xy, rk)|% > 2 |B(xy, 1) |

keKa,(Bxri)NB(X).R;) )0 keKz,(B(xieri)NB(X) R;) )0

= [B(X, R)I™
As a consequence, Y-, rd = 2 YkeK, rd + Yiel, R4, which combined with (40) yields that
HI(Q) < Sper, 1 + Tjer, (2R)" S Sieer, 1l + By, RY S N ord S HAQ) . This
finishes the proof of Lemma (4.2.28).
As an application of smooth atomic decomposition of AHS;EI([R{”), we are now going
to show the trace theorem. For x = (x4, ..., x,) € R™, we set x’ = (x4, ... xn 1) e R*" 1,
Theorem (4.2.29) [204]: Let n>2, pe (1,»),q€[l,©), TE [0 ] and s €

o

(5 + 2nrt, oo). Then there exists a surjective and continuous operator

1 n
Tr: f € AHSS(RY) o Tr(f) € Al P70 (R™1)
such that Tr(f)(x") = f(x’,0) for all x’ € R"~* and smooth atoms f for AH; g (R™).
Proof: For similarity, we concentrate on the space BH q(R™). By Theorem (4 2.25), any
f € BHyo(R™) admits a smooth atomic decomposmon f = 2oepmn) toag in 8, (R™),
where each ag is a smooth atom for BHyG(R™) and t = {to} o) © C satisfies
||t||bH§;_g(Rn) < ||f||BH§,'fq(Rn)- Since s > 1/p+2n‘r, there is no need to postulate any

momentcondition on agy. Define
t 1
TGS ) teap(,0) = Y —2 0@z ag(,0).

QED(RM) oeprm [£(Q)]2
By the support condltlon of smooth atoms, the above summation can be re-written as

Lorxfi-ne(o’ ) ie(0"))

Tr(F)(+) = Z
i=0 'eD(RM-1) [£(Q’ )]2

We need to show that (41) converges in §%, (R™1) and
ITr(OI 2n S 1 lerst -

BHp_qp’n_l (R7-1)

[f(Q )] aQ x[(i-1)2(Q"), it(Q" ))( O) (41)
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To this end, by Theorem (4.2.25), it suffices to prove that each

1 n

p'n—-1

q (R™"1) supported near Q'

[{’(Q’)]éag,x[(i_l){,(g,)’ i{,(Q,))(*’, 0) is a smooth atom for BH;
and forall i € {0, 1, 2},

1
H{[3(9')]2t9'x[(i_1)e(g’), H’(Q’))}

Indeed, it was already proved in [200] that [{’(Q’)]éa

1 n

——=—T
p'n-1

atom for BH;Cl (R*1). By similarity, we only prove (42) when = 1. Let w be a
nonnegative function on R?*?! satisfying (27) and

(
> lol G j [w(x, 277)]Pdx
JEZ | Q€D (R™) 0

ain < o0, (42)
pr’qp’n—l (R7-1)

Q'eD(R™ 1)

o' x[(i-1e(2"), i{’(g’))(*’t 0) is a smooth

Tl
Qlr

)

)

For all A € (0, ), set E, = {x € R" : [Nw(x)]®¥®" > }. Then there exists a ball covering
{B,}m Of E; such that

HPe v (By) ~ ) e, (43)

m
where rg_ denotes the radius of By,. Let A"*®V®)" be the (n — 1) == (p v q)'-Hausdorff
capacity in R®! and define @ on R7? by setting, for all x’ € R}?*! and t € (0,»),

(', )=C sup  w((x',x,),t), where C is a positive constant chosen so that
{xn€R:[xp|<t}

N&(x') < Nw(x’,0) for all x' € R™1 . Therefore, if [N&(x)]®® > 1, then
[No(x’,0)]®VD" > A, and hence (x’,0) € B, for some m, which further implies that
E, = {x e R" L [N&G(x)]®YD" > 1} ¢ (Up B, where By, is the projection of B,
from R™ to R™ 1. This combined with (43) further yields that

f [NG ()] PV APV (') = f AV’ (F))dA s f HP V' (E,)dA < 1.

RP-1 O 0
Furthermore,
1
{[{’(Q’)]ft' e(0’' } -
H 9'x[0,£(Q )) Q'eD(R™ 1) bH:q%’mt(Rn_l)
( | a/p) /4
_op-TP e 2y
s<z z 1917727 |tg110, e(01) f[w(x'z e
jeZ [ Q'eD;(R™=1) ?

1/q

_ q/p
S 3 Z Z 0177 |tQ,X[O, {,(Q,))r) f [o(x, Z_j)]‘pdx‘
Q

kjeZ | 0’ eD; (R 1)

S ”t”bH;’Tq(Rn),

1 n
which implies that Tr is well defined and bounded from BH; 3, (R™) to BFI;q‘“'”‘1 (R*1).
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1 n

Let us show that Tr is surjective. To this end, for any f € BH p” S (R 1), by

Theorem (4.2.25), there exist smooth atoms {aQ,} for BHp'qp”‘lt(lR”‘l) and

Q'eD(R"1)
coefficients t = {tQ'}Q’eD(Rn-l) such that f = Ygrepmn-1ytyr g in S&L(R™1) and
el o an SIfIl an . Let ¢ € C¥(R) with supp ¢ C (—1,1) and
pr,qp'n_l (an_l) BHp‘qpn—l (]R{n_l) 2’2

@(0) = 1. For all ¢’ € D(R™) and x € R, set @y (x) = @(271°82¢@ ). Under this
notation, we define F = ¥ greprn-1) tor agr @ @gr. It is easy to check that for all Q' €
1 .
D(R™1), [£(Q)] 2ay @ @g is a smooth atom for BH, (R™) supported near Q' x
[0, £(Q")). Hence, to show F € BH; (R™), by Theorem (4.2.25), it suffices to prove that
1
H{[f(g')]ztgf} S s
bHSY (R™) BH, p” (R7-1)

Let & satisfy [, NG (x)] @V g eV (x') < 1 and

Q'eD(R™1)

1/q

, a/p
_(s=i/p,1 .
D 01 e [Be2niar| b s
JEZ | 0'eDj(R™1) o bi, S (R
By Lemma (4.2.28), for each A € (0,00) there exists a ball covering {B;}., =
{B(xg: , I‘Bm)} of Ey={x'eRrR"!: [NG(x)]PVD" > A} such that

St nr(qu)' Hnr(pvcﬂ’(E}\)~ﬁnf(pVQ)'(E;\) and that rg. > dist (xg: ,0E,)/10000 for all
m. For all x = (x',x,) € R" and t € (0, ), define w(x,t) = &(x’, )Xo, (xn). Notice
that if Nw(x’,x,) >Aev" | then &(y',t) = w((y',yn),t) > Aev" for some |(y',y,) —
(x',x,)| < tandy, €[0,t). Then N&(y') > A®va" and thus, y' € B}, for some m. Since
1
for all z’ € B(y',t), N&s(z') = ®(y',t) > A@va’, we see that B(y’,t) c E, c (U, B5),
and hence, t < 10000rg: . Notice that x,, € [0,t). We have (x',x,) € (20000By,) X
[0,20000rg: ) and E; © Uy, (20000B;,) x [0,20000r: ), which further implies that

H GV (Ey) < 31 (pVQ) < finteva)’ (E—,\) and

o]

J [Now(x', x,)] PV dHM VD' (x) = f HT PV (B, )dA < f A Ve’ (, )da
n 0 0
< f NG ()] @V dRmeva) (1) < 1.

Rn—l
Therefore, we have
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|{reconiec)

Q'eD(R™ 1)

be,’}q(Rn)
(T a/p) /4
AT T ety r | [w(x,z-m-pdx'\
\jEZ | 0'eD;j(R™1) 0'x[0,£(Q")
(T a/p /4
(s 1/p 1) )
5 Z 2 Q'] ltor]” j [B(x', 27)]Pdx’
KjeZ | 0'€Dj(R™1) o'
< |ltll P s £ P )
_ _ _ pr‘qp . (R71) BHp‘qp (R7-1)
which implies that F € BH; 5 (R™) and [|Fllggs gny S IfIl o1 n . Furthermore, the
’ p.q BHp qp'n—l (Rn_l)

definition of F implies Tr(F ) = f, which completes the proof of Theorem (4.2.29).

We point out that Theorem (4.2.29) generalizes the corresponding classical results
on Besov and Triebel-Lizorkin spaces for p € (1,o) and q € [1, =) by taking T = 0; see,
for example, [7, 17, 106].
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Chapter 5
Besov-Morrey Spaces and Characterizations of Besov-Type Spaces

We obtain the characterization of local means, the boundedness of pseudo-
differential operators and the characterization of the Hardy-Morrey spaces. By using the
maximal estimate and the molecular decomposition, we shall integrate and extend the
known results on these spaces. We obtain the local mean characterizations of these
function spaces via functions satisfying the Tauberian condition and establish a Fourier
multiplier theorem on these spaces. All these results generalize the existing classical
results on Besov and Triebel-Lizorkin spaces by taking t = 0 and are also new even for Q
spaces and Hardy-Hausdorff spaces.
Section (5.1): Triebel-Lizorkin-Morrey Spaces

The well-known two scales of spaces B;q and Fy, with s € R and p,q € (0, =]

(p < oo for the F-scale) on R™ are based on the LP spaces, that is, they can be regarded as

variants of the LP spaces which take into account some smoothness condition. A}, which
indicates either B34 or Fq, is applied to various partial differential equations. Recently

there arose some interest to replace LP by Morrey spaces Mé’ (see [55, 206, 207]). It is

Kozono and Yamazaki that initially investigated Besov-Morrey spaces in connection with
the Navier-Stokes equations. These function spaces are investigated by changing scales or
extending admissible parameters in [50, 52, 55, 206, 207].

Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces are defined as follows:

let 0 <g<p<oand0<r=<o. Given a sequence of functions {fj}jeA indexed by a
countable set A, we define

1/r
|07} e 60D = 115 - (003 8)] = (an,- = qunf) ,

jEA

1/r
=116, )] = <Z|f,-r> a2,

jeA

([T

where a natural modification is made if r = oo. If A = N, := N U {0}, then we write

I = 2ol = [[{),, = M2
Given a function £ € § and j € N, we define #/(x) := 2"#(2)x). f t €S and f € F,
then we denote £(D)f := F [+ - Ff], where F and F ! are the Fourier transform and its
inverse respectively. Pick ¢ € G so that xg1) < U < Xg(2), Where B(r) is the open ball
centered at the origin and of radius r. In this paper we use Q(r) to denote the closed cube
centered at the origin and of side length r = Q(r) = {x € R™: max(|x,|, |x,|, -+, |x,]) <
r}. Returning to the definition of the function spaces, we define Yy(x) = W(x) and ¢@(x) =
W(x) —¥(2x). Define @;(x) = (p(Z'jx) forjeN. Let0<g<p<,0<7r<o00and
s € R. Then the Besov-Morrey norm and the Triebel-Lizorkin-Morrey norm are given
respectively as follows:

IF = Mgl = Mo )F = 2 + || {250 @DF),, ¢ (2|,
If  Epaell:= W@ = 22 + [P D)1}, 20|
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for f € §'. To unify the statement in the sequel we use A}, to denote either Ny, or
gS

pqr- From the definition of the Morrey spaces we have
Appr = Aprs 0<p<oo, 0<r<oo, s € R
Theorem (5.1.1) [219]: Suppose that a € SY5 with 0 < & < 1. Then a(x, D), the pseudo-
differential operator with symbol a, is A} q-bounded.
We have the following
Proposition (5.1.2) [219]: Let the parameters p, g, 1,14, Iy, S, € Satisfy
0<qg <p<oo, 0<rrqr, < oo, s ER, e>0.
Then we have
1 Npar; © Epgr, and Epgr, © Nygr, .
2 AjEE, € Adgr, i1y <1y,
3 Npqmin(gr) € Epar © Mpgeo:
Proposition (5.1.3) [219]: The inclusions in Proposition (5.1.2) are strict in the following
sense:
1 Suppose that the parameters p, q, 1, 1, s satisfy
0<g<p<om, 0<7rr1r) <00, s € R.
If the continuous embedding €54, © Npyr, IS true, then ry = oo,
2 Suppose that the parameters p, q, s satisfy 0 < g < p < oo, s € R. Then the inclusion
Epqoo € Npgoo IS Strict.
Proposition (5.1.4) [219]: Suppose that the parameters satisfy
0<ql~§pi<00, 0<riSOO, SiER.
and let V; := N, . and & = E;L, . fori = 0,1. The following are true:
1 Ny = ifand only if (po, qo, o, So) = (P1,d1,T1,51),
2 &y =& ifandonly if (po, o, o, So) = (P1,d1, T1, 1),
3 Ny=¢& ifandonlyifp,=p; =qy =9, =1y =r; ands, = s;.
Now we have the following, which will yield a clue to the analysis of Morrey
spaces in connection with partial differential equations (see [206]).
Proposition (5.1.5) [219]: €34, = My with 1 < g < p < co.
For example, in [208] some properties connected to partial differential equations
such as the trace property of Sobolev-Morrey spaces were obtained.

Following [57], let us define molecules. As usual, fora € R and 0 < gq,r < oo, we

define
n n
(a) = +/l|al? + 1, O =——F——=—"n Ogr

" min(1,q) B " min(1,q,1) —n

Definition (5.1.6) [219]: (Molecule) Lets e R,0<q<p < 0,0 <r <. FIXK,LEZ
such that

K>(1+][s]);, L= max(—l, [oq — s])
for the JV'-scale and

K= (1+[s]);, L=max(-1, [qu — s])
for the &-scale. A CX-function m is called an (s, p)-molecule for the function space A3,
if the following oscillation and decay conditions hold for some point x, € R™ and v € Z,
where M is a sufficiently large constant:
1 [enx®m(x)dx = 0 for |a| <L,
2 10%m(x)| < 2706 n/Plal v (x — x))"M-lel if o] < K.
Here and below we call m a molecule centered at x, and we always assume that
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10n

ML+ ———,
min(1,q,r)
as we have assumed in [207]. One defines
Mol, = {{Mvm}vENo,meZ" : each M, is a molecular with x, = 2‘”m}.

Proposition (5.1.7) [219]: (Molecular Decomposition) Suppose that the parameters K, L. €
Z and p,q,r1,s € R satisfy

0<qg<p<om, 0<7r< oo, K> (1+[s]);, LZmaX(—l,[oq—sD
for the V'-scale and

0<qg<p<om, 0<r<ow, K=A+[s]);, L=max(-1[oq—s])
for the E-scale.
1 Assume that {Mym}yen,mezr € Molg and A = {A,m}yengmezr € apgr- Then the sum

F= > AomMom,

VENy meZ"

converges in 8’ and belongs to A3, with the norm estimate

If = Apar|| < cl|n = apgell
Here the constant c does not depend on {My,m },en, mezn NOT A.
2 Conversely, any f € Ajq, admits the following decomposition

= Z Z Ay My,

VENy meZn
The sum converges in §'. We can even arrange that {M,,},en,mezr € Mol and that

the coefficient A = {A,;}yen, mezn € apqr fUlfills the norm estimate
12+ apqell < cllf = Apgrll
We frequently use the following lemma, which gives us information on the
coefficients of molecular decomposition.
Lemma (5.1.8) [219]: Let ky, k; € S supported on B(4) and B(8)\B(1) respectively. Set
ki (x) = 1, (277*1x) for j > 2. Then we have

{zk<s-%) sup [k (D))

Y€Qkm }keNo,meZ”
In view of our actual construction, unfortunately the coefficient A does not depend
linearly on f, see [57, 106, 207].

We reconsider the local means on A3, The local means for A, are effective

equivalent norms for these function spaces dealt with in [56]. However, we had to be
prudent when we use it: we need to check that the function belongs a priori to the function
spaces in question.

Now we shall describe the local means. To do this, we set K(x) = W(x) and k(x) =
AYW(x) with L sufficiently large. In [207] the following assertion was established.
Theorem (5.1.9) [219]: Let 0<g<p<o, 0<r<oo and seR. For L> 1 the
following are true.

1 Let us define

Papgr|| S C”f : ‘ﬂzqr“-

I = Mgl = 1K £ = 2]+ 162510« e+ 1 (02
for f € §'. Then

”f  Nparll, < C”f : ]\fpsqr”
forall f € §'. Furthermore, if f € Ny,. Then we have

”f : Npsqr” = C”f * Npgr
144
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for some constant c > 0 independent of f.
2 Let us define

- = ”K*f : Mé)” + ”{stkj *f}jEN : Mc?(lr)”

*

If + €3ar
for f € §'. Then

IF + Earll, = cllf = Earll

orall f € §'. Furthermore, if f € £;,,. Then we have

If = Eaell < cllf : E3ar
for some constant ¢ > 0 independent of f.
Proposition (5.1.10) [219]: Let KE Ny and 0 < g < p < . Suppose that A is a CK-
function with compact support. Then a € Nplaoo. In particular if K> s, 0 < r < oo, then
we have a € A}
Proof: By virtue of the equivalent norm

*

n
o Aol = lla s Ml + > 11055 Mool
j=1

(see [207]) we can assume K = 0. Since the family {k! * a};cy is supported on a fixed
compact set, owing to the fact that

Mg° nA{f : supp(f) € BR)} > M* n{f : supp(f) < B(R)}
forall0 < qy<py<qs<p;<oandR > 0 we see, by using the local means, the
matter is reduced to the case when 1 < g < p < oo. In this case

la = Mogeo | = @ = Moo || < clla : ERge| < clja = M| < 0
and the proof of the first statement is now complete. The second assertion follows from the
embedding Apqr 2 Np‘aw, which follows from Proposition (5.1.2).
Definition (5.1.11) [219]: Letj € Nand A > 0. Then define

Mpif (x) := sup 2207D(2Iy) Akl « £ (x — y),
yER™
12]

Mpof (x) = M, f (x) + sup (y) 2K = f(x =y
yeER™
for f € §'. Also define
n
Mijinf () = (Mpif ()
for A,n > 0andj € N,.
For s € R, we denote s_ := — min(s, 0).

Proposition (5.1.12) [219]: Let0 < g <p <, 0<r <o ands € R.
1 IfA>—s_+—_—, then we have

[@5a008) .+ £ O] = el

min(1,9)’

*

forall f € §".
2 IfA>—s_+

n

then we have

|250¢; 1}t M)

min(1,q,r)’

| < cflf : Eqr .
forall f € §'.

Proof: The proof is identical to [213] except in that we use the Hardy norm. Here, for the

sake of convenience for readers, we include the proof. Let j € N. The term for j = 0 can be

readily incorporated afterward. Therefore, we shall consider M,;f with jEN .

Furthermore, we shall prove (ii), the proof of (i) being simpler.
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Choose ¢, 0 € D so that
- FK + z 021 +) - F[ki] =1, 0 & supp(®). 1)
=0

Note that 7718 has vanishing moment of infinite order. Then we have

W f = (211)% <Ki * (FIO) K« f + Z kK« (F~10)! = k! *f).
I=j+1
Let L » 1, where L is a number appearing in the definition of k : k = A*W. Note that
FIK =« (F~10)(x) = (2m)z = Fk(27x)8(27 %)
and that k has vanishing moment up to order [A] + 1. Hence, for every a € N, and M €
N, there exists c, » independent of [ and m such that
|09F[K * (F~10)(x)| < cqu2AIDG-DHR(2ix) =M,
Hence it follows that
[k« (F710)!(x)| < cx2AFDG=DHnoky) =K,
We remark that this technique was due to Rychkov [213]. As a result, we obtain
. e [ K f =)
K« (F71O) « ki + f(x)| < CZA(J_D“"f : d
s RO ) m @PF o
for all A > 0. A similar calculation works for the first term, namely, K) = (F~10)) « kJ « f,
and we obtain

0]

l —
K« £ ()] < CZ 2A(]'—l)+lnf |k *f_(xM Y)ldy.
1=j R™ <2]y)

Now we invoke this pointwise estimate. From this estimate we deduce
280Dk » £ (x — )|
(2ly)A

My,if (x) = sup
yER™

12]

(o8] m B B
< csup Z 2A(1—1)+A(l—m)+mnf k™ * _f(i zy _ z)| dz
e e (2y)N2'2)

12j M=t

o0 m _ .
= c sup z 2A<j_m)+m”f K"+ flx —y —2)] dz.
m=j R™

yER™ (2ly)A(2iz)A

By virtue of the Peetre inequality (y +z) < V2(y)(z) and by changing variables, we
obtain

[k« £O0)| < Myf(x) < CZ 2A0-m)+mn fRnl (;S)CA g (2)
m=]

Let us choose n > 0 so that
(A+s)n>n, An > n, 0 <71 <min(1,q,1),
which is possible by assumption. From the definition of the maximal operator Mj ; f (x)

and the above inequality we deduce

oo kl* B .
M () < oo ) Y. 2wt [ LSBT, 3
l=m

Here the constant ¢ depends on A. Therefore, if we assume that My ,f (x) < oo, then we
obtain from (3)
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. — N
Mpmnf () < CZ o (m=D)(An-m) +mn fw [k ( ;H(lazcwzn " ”
By using the Torchinsky technlque [214], Rychkov observed that (4) is still the case if we
do not assume M, ., f (x) < oo. To establish this, let us assume that the right-hand side of
(4) is finite. Since f € ', we see that there exists A¢ such that
Mpmf(x) < oo, x € R"
for all A= Ar and m € N,,. Note that cin (4) depends implicitly on A. Therefore, for all

f €', there exists ¢, > 0 depending on f such that

K+ f(x — Z)|"
(m-1)(An—n)+mn
|k1 *f(x)| < ¢ Z 2 n-n)+ ]Rn o dz. (5)
Since the right-hand side of (4) |s decreasmg with respect to A, we see that (5) is valid if
we replace A, with any positive number A less than A¢. Let A < A¢. Then we have

KL% G =yl

Mymnf(x) = su 2An(m—1
Amn/ yeRn,leFZ):lzm (2my)An
- . ki>l<f(x—y—z)|n
(m—-i)(An—-n)+mn |
<c¢ sup Z 2 fRn (ZmyyAn(2IZyAn dz

yERM™ IEZ:I2m =
(o]

i n
Z(m—i)(An—n)+mnf k' + f(x —y —2)| d
gn  (2My)An(2mz)An

< Cf Sup

eR™
y lEZ:L=l

k' fx —y —2)|"

(m-D(An-n)+mn
=€ 5&32 ’ fRn S

because we are assuming the rlght -hand side of (4) is finite. Returning to (3), we obtain (4)

forall f € §'. By using the Hardy-L.ittlewood maximal operator M, we have

2N M () < € 20D(A+MM[ |25 s £ (),
l=m
By the Fefferman-Stein maximal inequality for the Morrey spaces (see [54] or [55]), we
obtain the desired result.
Corollary (5.1.13) [219]: Retain the same condition as Proposition (5.1.12).

1 IfA>—-s_+ then we have

n
min(1,q)’
sup (2) 41K« £ (s —)| : 48| + || sup 2232y 4[1 « £~ + 1, (22)

ZERM ZER

is dominated by ||f Nor|| forall f € 8.
2 IfA>—s_+— X then we have

i (1,q
sup(z) A|K * f(x —2z)| : My

ZERM

is dominated by ||f : €5q,|| forall f € S'.

Theorem (5.1.14) [219]: Let0 < g <p < 00,0 <r < oo and s € R. Then there exists a
constant ¢ > 0 such that
cIf = oA

sup 215(2iz) Akl = f(x —2)| :

ZERM

I=<If: A5

pqr pqr pqr”

forall fes’.
Proof: From Theorem (5.1.9) it suffices to show the right inequality. Pick ¢{,n € D so that
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- Fl+ Z nR2™=x)-Fk™ =1, 0 ¢ supp(n).
m=0
Note that F~1n has vanishing moment up to order L, since 0 & supp(n). From this
formula, we deduce

(o]

25[F L] f = (232 [F L]« U # P + f + (2102 Z 2°[F ]+ (Fm) + X+ f.
m=j+1
Observe that
|[F 2] * Fn) ()| < c2m+L0-m)(2ix)=4,
where A satisfies the same condition as Corollary (5.1.13). Therefore, it follows that

27 y] + Fm ke )] < 2 | [[F ]« @] - Ik £ =) ldy
RN

< (sup(2m2yAlkm + £ =) ) (215 f 72 q;] * F)™ ()| - <2my>Ady>
Rn

ZERM

< 27 6HATLm—)) gyp (2M7) "A|25MK™ « f(x — z)],
ZERM
if m > j. Therefore, if we let L > A + s, then this inequality is summable. Hence, we

obtain the desired result by Corollary (5.1.13).
Now we deal with pseudo-differential operators.
First, we deal with the class ST5 with 0 < 8 < 1.
Let0 <p,8 <1.a € C”(R" x R") is said to be S, if for all o, § € P

sup |85 a%a(x, §)|(g)~m+elBl-dlal < oo,
x,EERM

Let a €S)ls with meR and 0 <p,§<1. One defines a continuous linear
mapping a(x,D) : § - § by
1 .
a(x,D)f(x) = nf e ta(x, B)Ff(E)dE.
(21‘[)5 R
By duality this mapping extends to a continuous mapping from §’ to S’ (see [216]).
Theorem (5.1.15) [219]: Let0 < g <p < o,0<r <oo,m € Rand a € ST;.
1 If s > o, then there exists ¢ > 0 such that
laGe, DI = Nogell < cllf = Mgl
then there exists ¢ > 0 such that
laGe, DS = Eqell < cl|f = E35"-
Proof: Let us pick auxiliary functions s, @, k € § with the following conditions.
1 Xow) =W =Xqu);
2 @(x) = Y(x) —p(2x);
3 Xq@) =¥ =Xqe)-
We consider a(x, D)(1 — y(D))f because a(x, D){(D)f can be dealt with in a similar
way.
Let us consider (1 — ) - Ff = X2, @; - Ff. EXpand @; - Ff into a Fourier series

@;(D)f (277 m)
¢ Ff = Z 7
mezn (2m)z - 2"
where k;(x) = k(27x) for j € N. From this we have

C (D)f (27 .
D[ - )] =Y Y BTE [ a0 explite - 29m)- D
RN

j=1 mezZ"

2 Ifs> Ogrs

K exp(—i27m - %),
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The Leibniz rule gives us that
% | a5 @ explCx - 27m) - §) d
]Rn

= > cun |_[0%aCe Dl @@ expliCe ~ 27m) - D
B=a

and k does not contain 0 as its support, where c,g is the binomial coefficient. If we carry
out integration by parts, then we obtain

2-i(s+m) j a(x, D (®) exp(iGx — 27m) - ) d
Rn

is a molecule in Aj,,. Together with Lemma (5.1.8) we obtain the desired result.
A passage to the general case can be achieved by the following well-known lemma
(see [216]).
Lemma (5.1.16) [219]: Let 0 < 8§ < 1, a € S{5 and N € N. Then there exists b € S such
that
a(x,D) = (1 —=A)Nob(x,D)o (1 —A)N
Corollary (5.1.17) [219]: Let0 < g <p<0,0<r <o, ssmER,0<8<1,a € Sy
Then there exists ¢ > 0 such that
laGe, Df = Aerll < el = Az
Definition (5.1.18) [215]: Let 0 < 6 < 1 and [ > 0. One defines
CiSm:={p:R*XR"™ > C: p(x,x) € C”,x € R™ and ||p : C!SK||, < o},
where

”p . CiS ” — sup({) m+|a|- lS”aap(* E) Cl m+|a|||a p(* E) Loo”

An elementary symbol |s an expression of the form

o) = ) oI,
j=1
where y;(§) =y, (277*%¢) for j € N and s, is a compactly supported function such that
IS not supported on the origin. Furthermore,
sup Z_jm”G]- (L + Z‘j(m“s)”csj : Ct
jEN

Proposition (5.1.19) [41]: Let f € L* such that supp(¥f) < B(R). Then for alln > 0,
there exists ¢ > 0 such that there holds
If( —y)I
s MI[|f|M](x)/n
for every x € R™.
Theorem (5.1.20) [219]: Suppose that the parameters p, q, 1, s, [, § satisfy
0<s<], 1<q<p<ox, 1<r<oo 0<é6<1
and that a € C;SYs. Then there exists ¢ > 0 such that
laGe, D)f = Apell < cllf - AsaR
Proof: Let us concentrate on the case when A = &, the case when A = IV is simpler.
Note that (1 —A)z is an isomorphism that composes well with pseudo-differential
operators. Therefore, it is enough to examine the case m = 0. Let f € €54, and a be an
elementary form as in [215]. Any symbol in C;S9s can be approximated by elementary
symbols. Therefore, it is sufficient to investigate the case when a is an elementary form:
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a(x® = ) 0% ®).
=1

Define qjx = @« (D)o;. Then we have

]|, < c207% (6)
As a consequence, we obtain q(x, D) f(x) = Yjenken, 9jx(x) - @;(D)f (x).We decompose
q(x, D) f into three pieces. Let us set

[e's] j_4
q:(x, D) f = Z z q]-k> @;(D)f,
ji=4 \ k=0
00 j+3
q2(x, D) f = Z qjk) @;(D)f,
j=0 \ k=max(j—3,0)
qs(x, D)f = z z q,-k> @;(D)f.
j=0 \ k=j+4

The estimate of q,(x,D)f is simple. Choose an auxiliary function x € § so that xq3) <

K < Xqem- Then we have |
]+
Z djk
k=max(j—3,0)

j+3
| D a
k=max(j—3,0) o o

Here we have used Proposition (5.1.19) for the first inequality and for the second
inequality we have used (6) and the fact that at most 7 terms are involved. Therefore,

© j+3
G Df =) ) cp,-(D)f(z-irm( > q,-k>f-1u<<zi «—m)

< c2ilal < c2ilal,

j=0 mez" k=max(j—3,0)
can be regarded as a molecular decomposition and hence we conclude that q,(x, D) is
bounded from A}, to itself.

The first piece is treated in a spirit similar to [41]. We shall make use of the fact that
supp(f * g) < supp(f) + supp(g) for all compactly supported distributions f,g € §’,
where the right-hand side denotes the algebraic sum. Note that (¥~ qj)@;(D)f is
concentrated on B(2/*3)\B(2/3) in frequency. Hence it follows that

max(j—4,0)
a1 (e, D)f : E5qel| < 2"S< z q;k>cp,-(D)f=M§ )
k=0
max(j—4,0)
< c/| sup Z >||stcpj(D)f:M§(lr)||
jENg =0
max(j—4,0) *
<clswp| Y ||q,-k||w>> [2,(03f : 22701
JENy =0
<c SupIIGJII 1270y f = MP U < cf|f : Edarll

Let us turn to the estimate of q3(x D). Let us rewrite
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o k-4
4 (6 D)) = ) <Z q,-k(x)> 9;(Df (),

k=4 \ j=0
where the change of order of the summation will be justified below. Note that the
frequency support of Y52 g (x) - ¢;(D)f(x) is concentrated on B(2X*3)\B(2%%). As a

result, we obtain
Kk—4 «©
{st Z Qjk * P (D)f} : M(i) )
j=0 k=4

k—4 *©
{Z 200 Zislcp,-(D)f|}  MP(L,)
j=0 k=4

where we have used the fact that s < [ for the second inequality. This is the desired result.
Now we are going to characterize quz and its homogeneous counterpart. Assume

that s is a non-degenerate function in the sense that

f TE) (7)
Definition (5.1.21) [219] (Hardy-Morrey Spaces): Let 0 < g < p < oo. Then define
”f : H]Vl‘é)” = sg;llpl *fl :]\/[é) , ”f : h]V['(i)” = :Selll\;pwj *fl :]V[Cll)
) JENo
for f € S'. HM (resp. hMy) is a set of all tempered distributions f € S’ for which the
quasi-norm [|f : HMY || (resp. ||f : hay||) is finite. HM] is the homogeneous Hardy-

Morrey space and h]v[(‘f is the nonhomogeneous Hardy-Morrey space. If we invoke the

fact that the maximal operator M is bounded from Mé’ to itself whenever 1 < g < p < oo,
then we obtain

las G, DYf : Egar| <

<c <cllf : Esarll

HM] = hMy = My
with norm equivalence.
We use the homogeneous norms to formulate our results:

o 1/r
If = Nosaell = 11220 (DYf = L(M7, Z) || = (Z 27| @y (D) f : My ||r> :
]=O_O°° 1/r
I+ Egarll = 1270, D)f = M2 )] = (Z erslcpj(D)flr> ||
j=—o0
Unlike the nonhomogeneous version, we need to consider these norms modulo the set of
all polynomials P (see [106]).
Note we assume that s € § is a non-degenerate function in the sense that [ # 0.
Define @(x) := 2"y (2x) — P(x).
Lemma (5.1.22) [219]: Let y € § and L € N, be given. Define @(x) := 2"y (2x) —
Y (x). Then there exist §r, § € S such that

Trb+) e =5
j=0
and that @ has vanishing moment up to order L.
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Proof: The proof can be obtained with a minor modification of the results due to Rychkov
(see [218]), where Rychkov used D instead of S.

Theorem (5.1.23) [219]: Let 0 <g<p<oo. Then the sets HM; and hM, are
independent of the choices of admissible s satisfying (7).
Proof: for H]\/[(f The following theorem asserts more than Theorem (5.1.23). To formulate
the stronger result, for N € N we set

pu(@ = ) sup(N oI,  es

IaISNxER
Note that {py}nen tOpologizes S.
Theorem (5.1.24) [219]: Let 0 < q <p < o. Assume that ¢ € § satisfies the non-
degenerate condition [ # 0. Then there exist N € N and ¢ > 0 such that

sup (supld « 1) :26Z]| = supl' 11 - 3¢5 |
)

¢eBp (1) \ JEZ
where B, (1) == {T € S : py(Q) < 1}. N
Proof: Fix (€ B, (1) and j € Z. Then there exist 5, € § such that @ has vanishing
moment up to order L with L large enough and that

Pry+ ) pleoi=5
by virtue of Lemma (5.1.22). Using this formula, we obtain

05 FO| <[0T W+ FOO + ) [0 5 G x @ s £
=0

<c

Let us set
. WL
@ f () = sup @Hy) 7 @ x fx -y,
yeR™
. Lo
llﬂ"'l'*f(x) = SuRp<2]+IY) r |l|J]+l *f(x - Y)l
yeR™

forj,l € Nyand 0 < r «< 1. Then we have
T+ @ s @M s fD < | [T [0 f e —y)|dy
Rn

. . . . n . - n
S @ F) | [T PG| - (2 y)rdy = @) |13 3| - (2y)rdy.
R R™
Now that @ has vanishing moment up to order L, we have |F@(x)| < c|x|t.

Therefore, it follows that

1
0+ 3 ()] < c2tiy) (),
Inserting this estimate, we obtain

0% G o f()| < 2P ), ®

Since ¢ = Y — , it follows that
9 @7 5 @ f ()] < 27 (0! (e p ) + i) ).
A similar estimate is valid for |g = §J = §J = f(x)|. As a result, adding these estimates over
[ € Ny, we have
[T+ f)| <c sup P f(x).
€

From this formula, we obtain
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<c

sup (sup|(j *f|> : My

sup Y f + My
ZeBpN(l) JEZ JEZ

Since we can deduce

P < ey 2 oM M, 8> 0
=0

in the same way as before, another application of the Hardy-Littlewood maximal
inequality for the Morrey spaces gives us

sup i f « My sup|yl * f| : My
JEZ JEZ

Putting together these observations, we obtain the desired result.

We consider the Fourier multiplier. Recall that Bui proved the following result on
the weighted Hardy spaces. As for A, -weights, see [216].
Proposition (5.1.25) [217]: Let w € Aand define

If : HP ()| := sugltb,- * f| =Lp(oo)H-
je

for f € §"and 0 < p < oo. Assume in addition that Tt € § and that

cy = sup |x|'* - |8%T(x)| < oo.
xERM

Then there exists c, depending on c,, « € N and on the A, -constant, such that
o ltD)f : HP(@)l| S cllf sHP(@).
With this proposition in mind, we show that the Fourier multiplier operators are
bounded on HM.

Proposition (5.1.26) [219]: Let 0 < g < p < o and T € D. Assume

c, = sup |x|!*! - |9%t(x)| < oo.
x€RM

Then there exists a constant ¢ depending only on c,, « € N," such that
lt@)f = HMG|| < cf|f - HM |

<c

forall f € HMY.
Proof: We adopt the following norm in view of Theorem (5.1.24): For f € §', we define

sup|y;(D)f| = My ||,
JEZ

where s is a bump function satisfying xg1) < ¥ < Xp(2)-

If : || =

_a
Since (MXQ)1 2P is an A;-weight, we obtain

a_, q a_
Q[P fQ (s}_gglw,-(mr(mfl )s Q[P

a_ ECRNTE!
< clal™ |7+ 1 (i) )|
where for the last inequality we have used Proposition (5.1.25). 2XQ denotes the cube

1

RO

1
concentric to Q with sidelength 2X|Q|=. Now we use the two-sided estimate

- szQ(x)
l\/[Xcz(x) = an )
k=0

which yields
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d d q

o | (supllllj(D)r(D)flq> <clqr Yy e | (suple(n)f|q>

Q \ JEZ =0 2kQ \ JEZ

n d
< CE 27 |2kQ|B‘1j <$up|¢j(D)f|q> < c|f - 2"
k=0 2kQ \ J€Z

The cubes being chosen arbitrarily, we obtain the desired estimate.

Now we turn to Local Hardy-Morrey spaces.
Lemma (5.1.27) [219]: Let 0 < g < p < oo. The definition of h]\/l‘(i3 does not depend on
the admissible choices of Y € § with [ # 0.
Proof: The proof is analogous to homogeneous Hardy spaces (just mimic the proof of
Theorem (5.1.24)).

Local Hardy spaces and Hardy spaces are related as follows :
Proposition (5.1.28) [219]: Let 0 < g < p < co. Assume in addition that F;, =1 on a

neighborhood of 0. Then we have
If = Mg ]| = [[wD)f : Mg || + [|(1 = w(D))f = HMmg |
Proof: Following the definition we calculate

If = haveg|| = || sup|; (D) « Mg
jENg

~

+

_s%pllbj(D)llJ(D)f | MY jsuNplllJ,- D)(1—wD)f|: My
jENg JENg

= [[w@)f : M| + [[(1 - w(D)f : HM |
where we have used Proposition (5.1.19) for the second and the third equivalences.
Definition (5.1.29) [219] (Vector-valued Spaces): Let E c Z. We define M(C, E) as the set
of all C-valued E x E-matrices for a set E. Now we shall consider the vector-valued space.

Let us denote by §(E) the set of all M(C, E)-valued functions ® of the form
P(x) = {q)ee, (x)}e,e’eE’
where @°¢ € s and ®°’ =0 with finite exception. In this case we denote @ =
{q)ee }e,e’eNo'
Recall we defined 1;(x) = t(27/x) for je Z and T € S. Given & = {®°*'}
S(E) and j € Z, we define @ = {(®=') }  €S(®. If we are given ® = {®=}
ee’€E

ee'eE

ee’cE

—_—

S(E) and F = {f_.}ccg, then we define

® xF = {z q;ee’*fe’} -
e€E

e'eE

Denote by HM (1, E) the set of all sequences of distributions F = {f, }eeg such that

||F : HM§(ZZ(E))|| = < o,

s_up||cbj « F lz(E)” : ]V[(f
JEZ

For @ € S(E), we define

(@) - ( S o), ., Bazm»n)-

x€ERM
|ai [BI<N
Denote by hy (1,(E)) the set of all sequences of distributions F = {f,}eeg for which the
quasi-norm
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I+ hae? (1 (B))]| = <o

sup [ {ly * £} o 2B 247

It is the same as the scalar case where the following theorems hold.
Theorem (5.1.30) [219]: LetE € Z. Let 0 < q < p < o and @ € S(E),. Then there exists
c such that
sup ||CI>]- * F(+) : lz(E)” : ]V[(f
cDeBpN(1),jeN
fOf' a” F= {ﬁe}eEE € S’E = {{fe}eeE : fe € 5’19 € E}
Theorem (5.1.31) [219]: Let ¢ € S(E). Set
C = sup |x[![|0*W(x) : BU)I.

xERM
Then there exists ¢ > 0 depending only on ¢4, a € N, such that

[« F s HP (1 (8) | < cf|F = v (1, B)))].

Having defined the nonhomogeneous Hardy spaces, we are now in a position of
proving an equivalence theorem (Theorem (5.1.32)). Now assume that yr € CZ is a bump
function that equals 1 on a neighborhood of 0. Let us set @(x) = ¢(271x) — Y(x) for x €
R™.

Proposition (5.1.32) [219]: Let f € S’ satisfy ||f : HM, || < . Then we have f =
Yjez @;j(D)f in the topology of S".
Proof: It is easy to see that f = ¢ JILTO y;(D)f for some cy, > 0. Therefore, we can

<c

Sllell\l? ”{N’J *fk”keE L (E) : M‘f”

assume that f itself is a band-limited distribution. As a result there exists j, € N such that
f = ;,(D)f. From this and the assumption that f € HM, we deduce that f € M. In
[207] we have shown that

n

jin jn
o7 s 12| < <2 - l4y 0)f : M2| < 2 - [y, (DF : 22|
Therefore, we conclude that

g = jLi{nm Z (D) f
k=]

converges in L*. However, F(f — g) is supported on the origin and hence f — g is a
polynomial. Furthermore, {f — ¥ cpk(D)f}]_EZ is a uniformly bounded set in M. As a

result we have f = g, which is the desired result.
Theorem (5.1.33) [219]: Let 0 < g < p < oo. Then we have
If = HMG || = [If = €peell
If = DM || = [If + Efee
forall f € §'.
Proof: see Proposition (5.1.23) for HM .
Let f € §'. Then we have
If = b || = [[w@)f = haveg || + [ (1 — wD))f = b |
= [[wDf : Mg || +[|(1 - wD)f : KM |
= [W@)f : M| + [l (DYf = MG (L2, N)|| = |If = €5zl
Let T € D be a function such that supp(t) 3 0 and T = 1 on a neighborhood of the origin.
We shall consider the following operators:
Ty, T, : HM (1, Z) - HMY (15, 7),
which are given by
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T ({fi}jez) - {51'0 Z Tk(D)fk} ’
jez

keZ
T, ({fj}jez) ={y (D)fo}jez-
By Theorem (5.1.31) and a simple limiting argument we have

> i ML, D| < el (e  MFA]

kezZ
Iy (D) fo : MG (U, D] < cllfo = M|
for all {filxez € Jv[(f(lz) such that fi, = 0 for all sufficiently large k. By virtue of
Proposition (5.1.32), we have

I+ nael| = = > 5 e;r] : Hae?

jEL

> @0f : HaE
J€Z

= ||@;(D)f = HMG (Lo, D) |-
It is not so hard by using Proposition (5.1.19) to show that

loy(D)f + KM (o, D] = || = Epe I

The proof is therefore complete.
Corollary (5.1.34) [299]: Let K € N, and 0 < € < o0. Suppose that A is a CX¥-function
with compact support. Then a € N3, ¢ 140, IN particular if K > s, then we have a €

€1+Ze)(1+e)2'
Proof: By virtue of the equivalent norm

n
la s Mszoasemll = lla s Miszoasenll + Z”aiKa F N szoasaell
j=1

(see [207]) we can assume K = 0. Since the family {k/ x a};cy is supported on a fixed
compact set, owing to the fact that

MO N {f2 : supp(F2) © B(R)} © M2 n {f? : supp(f?) < B(R)}
for all 0 <e; <€, <ooand R > 0 we see, by using the local means, the matter is
reduced to the case when 0 < e < . In this case

a: ]\r(11<+26)(1+e)00” =la: ]\f((1)+2€)(1+€)00“ <(@+ea: 881"'26)(1"'6)"0”
<(1+¢ ||a : M((11:€2)e) <

and the proof of the first statement is now complete. The second assertion follows from the
embedding A¢, o402 2 Ni+20+6 Which follows from Proposition (5.1.2).
Corollary (5.1.35) [299]: Let 0 < € <« and s € R. Then there exists a constant e > —1
such that

(1 + E)_1||f2 : ?1+2€)(1+e)2” = ”fz : ?1+2€)(1+e)2”* = (1 + e)”fz : €1+26)(1+e)2”
forall f2e S’
Proof: Now we refer back to the proof of Theorem (5.1.14). From Theorem (5.1.9) it
suffices to show the right inequality. Pick € D so that

C-Fl+ 2(1 + @™ Fkm =1, 0¢ supp(l + €.
m=0
Note that F~1(1 + €) has vanishing moment up to order L, since 0 & supp(1 + €).
From this formula, we deduce
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2Js [T—l(P]-] * f2 = (27’[)521'5 [T—l(Pj] [ Cj * fz + (27‘[)5 Z 2is [:F—lq)j] * (j:'n)] « K * le
m=j+1
Observe that |
|[T‘1(p].] * (T(l + e))](xn)| < C21n+L(i—m)<21xn)—(1+e),
where (1 + €) satisfies the same condition as Corollary (5.1.13). Therefore, it follows that

<(+02* | |[Fig]+ (1 +0) G| km s 2@ la,

< ( sup (2™ (x,, + 2€))” e k™ « f2(2€)|>

Xn€ERM

. <2js jRn |[5E“1(p].] * (iT-'(l + e))m(xn + (—:)| (2™ (x,, + e))(”e)dxn)

< (1 + E)2—(1+e+s—L)(m—j) xn(zm(xn + 26))_(1+€)|25mkm % f2(2€)|,
if m > j. Therefore, if we let L > 1 + € + s, then this inequality is summable. Hence, we
obtain the desired result by Corollary (5.1.13).
Corollary (5.1.36) [299]: Let 0 < e <o, m € Rand a € ST;.
(i) If s > 64,4, then there exists e > —1 such that

laCen, DYf? : N(S1+ze)(1+e)2” <@+of?: Msli?e)(1+e)2||'
(ii)If s > o142, then there exists e > —1 such that

laGen, DIF? : € agaaerll £ A+ O|IF? : €S0 querll
Proof: Let us pick auxiliary functions vy, ¢, x € § with the following conditions.
() Xy SV S Xoeay;
(“)(P(xn) = \V(xn) - \V(an);
(iii) Yo = K= Xge)-

We consider a(x,,D)(1 — w(D))f? because a(x,, D)y(D)f? can be dealt with in a
similar way.
Let us consider (1 —y) - Ff? = i1 9; -ffz. Expand P; - Ff?% into a Fourier series
¢,(D)f*(27m) .
P, -Ff? = ——Kj exp(—=i27m - ),
_ mezn (2m)z - 2
where «;(x,,) = x(277x,,) for j € N. From this we have
a(xn; D)[(l - \V(D))fz](xn)

i (D)f2(277m) -
= Z z - f a(xn, ©)15(8) exp(ilx, — 27m) - § d&
Rn

j=1 mezn (2m- 20
The Leibniz rule gives us that
0%, | a0 explit, - 27m) - ) de
Rn

=Y 1+ Oy [ [0h, 000, D@ expliCe, — 27m) - ) de
RN

B=a
and k does not contain 0 as its support, where (1 + €) 44 is the binomial coefficient. If we
carry out integration by parts, then we obtain

2795 [ a(x,, 90 expliCe, - 27m) - D de
Rn
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is a molecule in A, 5011 2- Together with Lemma (5.1.8) we obtain the desired result.
Corollary (5.1.37) [299]: Suppose that the parameters ¢, s, [ satisfy
0<s<]| 0<e<w
and that a € C;‘S‘l’,(l_e). Then there exists € > —1 such that
|aCen, DYf? : ?1+2€)(1+€)2” <@ +9f?: ﬂ?f$e><1+e)z||-
Proof: Let us concentrate on the case when A = &, the case when A = IV is simpler.

Let 2 € E14201402 @nd a be an elementary form as in [215]. Any symbol in
C}‘Si’,(l_e) can be approximated by elementary symbols. Therefore, it is sufficient to
investigate the case when a is an elementary form:

@t ® = ) 6.
j=1
Define gjx = ¢, (D)o;. Then we have
lagll, < (1 +€)207% (9)
As a consequence, we obtain q(x,, D)f?(x,) = Xjenxen, Ajk(*n) ~¢,(D)f 2(x,) .We
decompose q(x,,, D)f? into three pieces. Let us set

w [i=4
G (i DIf? = ) (2 q,-k> o,(D)f?,

j=4 \ k=0

w j+3
G2t DIf? = ) < > q,-k> o,(D)f?,

j=0 \ k=max(j—3,0)

q3(xn, D)f? = i ( i q,-k> ¢,(D)f2.

j=0 k=j+4
The estimate of q,(x,, D)f? is simple. Choose an auxiliary function « € S so that o) S

K= Xom: Then we have
j+3
:E: djk
k=max(j—3,0)

j+3
0“ :E: djk
k=max(j-3,0) " "

Here we have used Proposition (5.1.19) for the first inequality and for the second
inequality we have used (9) and the fact that at most 7 terms are involved. Therefore,

© j+3
Q2 (i DIf? = ) cpj(D)fZ(z-im)< > q,-k>f-11<(zi «—m)

j=0 mezZ" k=max(j—3,0)
can be regarded as a molecular decomposition and hence we conclude that q,(x,,, D) is
bounded from A, , 5142 tO itself.
The first piece is treated in a spirit similar to [41]. We shall make use of the fact that
supp(f? = g?) c supp(f?) + supp(g?) for all compactly supported distributions 12, g% €
S’, where the right-hand side denotes the algebraic sum. Hence it follows that

< (1+ ¢)2ilel < (1 + e)2ilal,
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”ql(xn’ D)f?: g(s1+2e)(1+e)2” <(+e

max(j—4,0)
st < z qjk) (Pj (D)fz : M((11:62)E) (l1+e )

k=0

max(j—4,0)
< (1+¢)|sup Z djk ||2"S(pj(D)f2 : M((11:52)6)01+e) |
JENo k=0
max(j—4,0) ”
< (1 + E) _Sup Z ”qjk”oO | ZjS(Pj(D)fZ : M((ll-i-’-ez)E) (ll+e) |
JENo k=0

<+ 9 suplsl, )20 007 2557
0

<1+ e)”fz : g€1+2€)(1+e)2”'
Finally let us turn to the estimate of q5(x,,, D). Let us rewrite

0 k-4
q3 (xn, D)fz(xn) = Z (Z q]'k(xn)> @, (D)fz(xn);

k=4 \ j=0
where the change of order of the summation will be justified below. As a result, we obtain

k—4 «
{st z djk = Pj (D)fz} : Mll-:—eze(ll+e )
j=0 k=4

k-4 ”
{2 20D . 235 (D) f2|} MU (L)
j=0 k=4

<A +9|f*: Eranasorly
where we have used the fact that s < [ for the second inequality. This is the desired result.
Corollary (5.1.38) [299]: Let 0 < e < . Then the sets HM ! 2¢ and hM}t2€ are
independent of the choices of admissible s satisfying (7).
Proof: For HM [ 2€ Corollary (5.1.39) asserts more than Corollary (5.1.38). To formulate
the stronger result, for N € N we set

@ = ) sup @NOY)l,  Tes

|2T=N xn€ERM
Corollary (5.1.39) [299]: Let 0 < € < co. Assume that € S satisfies the non-degenerate
condition [ yr # 0. Then there exist N € N and € > —1 such that

sup (supw *f2|> M sup| Wl « £7] : M2
CeBpy (D) \ j€Z JEZ

where By, (1) :=={C € § : py(0) < 1}, N

Proof: Fix (€ B, (1) and j € Z. Then there exist 5, € § such that @ has vanishing
moment up to order L with L large enough and that

Uxy+ ) plro=1-c¢
by virtue of Lemma (5.1.22). Using this formula, we obtain

|Zj *fz(xn)l < |<i * lTJj % q,j *fZ(xn)l +Z|<i * (’“ﬁiﬂ % (pj+l *fz(xn)l
1=0

las G, DIF? + €5 roarell < L+ 6

<(1+¢)

<(1+¢

)

Let us set
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@f2(x,) = sup (2 (x, + €))THE [t x £2(6)),

xn€ERM

W2 () = sup (2, + €) T8 [P« £2(0)],

Xn€ERM

forj,l € Nyand 0 < e « 1. Then we have
|0 @ x @it x f2(x,)| < j |0« @ ey + € - | @ % £2(e)|dxy
]Rn

. . . . n
< @) | T * @G + O (2 (G + ©)THEd,
]RTL

= @ F200) | 105 3G+ (21t + ©))Tredx,
]Rn
we have |F$(x,)| < (1 + €)|x,|-. Therefore, it follows that
2+E)_

10+ @l(x, + )] < (1+e)27x, + e)_n(m
Inserting this estimate, we obtain
[0 @ x o f2(x,)| < (1 + 927 (TR g 2 (),
Since @ = Y — s, it follows that
[0 G« @ f2x)] < (14 @27 TR (W 2 () + £ ),
A similar estimate is valid for |/ « ¢J * ) * £2(x,,)|. As a result, adding these estimates
over [ € N, we have

1

|§l' *fz(xn)| <(1+¢€ iug P £2(x,).
€
From this formula, we obtain

T
(eBpN(l) JEZ
Since we can deduce

W) < 1+ e) Z 271-OM [y £2 (x|
=0

in the same way as before, another application of the Hardy-Littlewood maximal
inequality for the Morrey spaces gives us

< (1 +¢) |[supyif? : MLz

jez

1+e€

](xn), e<1

<(1+¢

sup Y f2 : M sup|y! = £2] : M.
JE€Z =

Putting together these observations, we obtain the desired result.
Corollary (5.1.40) [299]: Let 0 < € < oo and t € D. Assume

(1+€)q = sup |, |- [0%T(x,)| < 0.
xnERM

Then there exists a constant (1 + €) depending only on (1 + €),, @ € N," such that
It(D)f? : HMLEN < (1 + Ol f? - HMEEEl

forall f2 € HM L 2€.
Proof: We adopt the following norm in view of Theorem (5.1.24): For f2 € §’, we define
sup|y;(D)f2| : M2
JE€Z

where y is a bump function satisfying xg(;) < U < Xg(2)-

1+3€

Since (Mxq)?@*29 is an A;-weight, we obtain

If? « HMLSE) =

)

160



1+e€

IQI%ef (s_uglw,-(D)r(D)fZIHE) < |Q[T¥z
Q \ €

1+3€
‘E(D)f2 : glte <(MXQ)2(1+2e)>

1+€

—€
< (1+¢)|Q|T+ze

1+3€
fz : glte <(MXQ)2(1+2e)>
where for the last inequality we have used Proposition (5.1.25).
Now we use the two-sided estimate

szQ(xn)
MXQ(xn):Z TR

k=0

which yields

1+3€

Qe [ (S_uple(mr(mle”e) <+ olq y 2 ) | <~°¢“p|"’i(D)f |>
Q \ J€Z k=0 2kQ \ Jez

2, (+en e Lte
<(1+¢€ z 2 2(1+2¢€) . |2kQ|1+2ej <SUp|lIJj (D)le )
k=0 2kQ \ jez
< (A +ellf? : HMee|te.
The cubes being chosen arbitrarily, we obtain the desired estimate.
Corollary (5.1.41) [299]: Let 0 <e<oco. Assume in addition that F, =1 on a
neighborhood of 0. Then we have
f2 : M2l = WD) f? : MEFE€Nl + “(1 - lIJ(D))fZ : HM11:e26”-
Proof: Following the definition we calculate

sup|y;(D)f?| : M11++36|
jENg

jsetélpltb,-(D)llJ(D)f 2| s mtize ]jsEuNpqu,- (D)(1 — y(D))f?| : Mmi2e

= [pD)f? : ML+ [|(1 = w(D))f? : HMe|
where we have used Proposition (5.1.19) for the second and the third equivalences.
Corollary (5.1.42) [299]: Let 0 < € < oo. Then we have
If2 s HM2el = || £ - g?1+2€)(1+e)2“’
IF + el = |2 : €¢ |

(1+2€)(1+€)?

177 = haves2e) =

~

+

forall f2 € S'.
Proof: Let f2 € §'. Then we have
1F2 = hME2eN = (D) f? =+ hMi2ell + | (1 — w(D))f? : hri2e||
= IW(D)f2 = M2 + | (1 ~ wD))f? : Haci |
= [WD)f? + ML + |loyDIf? + MEZ U, W = |IF? : €¢ia0ar0zll
where for the third equivalence we have used Proposition (5.1.19) and Theorem (5.1.32).
The proof is therefore complete.
Corollary (5.1.43) [299]: let t € D or (t € S) and Y € S(E) such that

1
”aalp(xn)” < M_ |aaT(xn)”aam(xn)|
0

where o € N.
Proof: For |[0%m(x,)|| < M, ()
where

M, = 277 /102988l (00" () — (x,)o)) ™71, ol <K

Using Theorem 4.10 we have
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(1 + €)ald*m(e)| = Mollo, "0 () | (ii)
Hence upon using Proposition (5.1.25) with (ii) the result follows.
Section (5.2): Triebel-Lizorkin-Hausdorff Spaces via Maximal Functions and Local
Means
Let s € R. The Besov-type space Byg(R™) with p,q € (0,] and T € [0, %), and
the Triebel-Lizorkin-type space Fy(R™) with p € (0, w?,q € (0,00]and T € [0, %) and
their predual spaces, the Besov-Hausdorff space BHG(R™) with p € (1,00),q€

[1,0)and Tt € [0, (max{lp‘q}),] and the Triebel-Lizorkin-Hausdorff space FHyg(R™) with

p,q € (1,00)and t € [O,W], were recently introduced and investigated in [189, 190,

200, 204], where t’ denotes the conjugate index of t € [1,o], namely, 1/t+ 1/t' = 1.
These spaces unify and generalize many classical function spaces including Besov spaces
BS (R™and Triebel=Lizorkin spaces Fyg(R™) (see [41, 106]), Morrey spaces My, (R™)
and Triebel-Lizorkin-Morrey spaces égqu(Rn) (see [55, 59, 200, 218]), Q spaces Q,(R™)
and Hardy-Hausdorff spaces HH_, (R™) (see, for example, [167, 173, 184, 185]).

We establish the maximal function characterizations of Bgfl(]l%") , F;:;(IR{") ,

BH; 5 (R™) and FHy G (R™) for all admissible indices s,,p and q as above. Using this
characterization, we further obtain the local mean characterizations of these function
spaces via functions satisfying the Tauberian condition and establish a Fourier multiplier
theorem on these spaces. All these results generalize the existing classical results on Besov
and Triebel-Lizorkin spaces by taking t = 0; (see [41, 56]). In particular, all our results
are also new even for Q spaces Q,(R™") and Hardy-Hausdorff spaces HH_, (R") with a €
(0,1).

To recall the notions of B} (R™) and Fyp(R™), let S(R™) be the space of all
Schwartz functions on R™ endowed with the classical topology and denote by §'(IR") its
topological dual, namely, the space of all continuous linear functionals on §(R™) endowed
with the weak *-topology. Following [41], we let

So(R") = {(p e S(R") : f @(x)xYdx = 0 for all multi- indices y € (N U {0})"
Rn

and consider §.,(R™) as a subspace of S(R™), including the topology. Use S¢, (R™) to
denote the topological dual of S, (R™), namely, the set of all continuous linear functional
on S, (R™). We also endow 8., (R™) with the weak *-topology. Let P(R™) be the set of
all polynomials on R™. It is well known that §,, (R") = §'(R")/P(R") as topological
spaces.

In what follows, for any ¢ € S(R™), we use @ to denote its Fourier transform,

namely, for all £ € R™, $(8) = fRn e % (x)dx for all j € Z and x € R™. For j € Z and
k € Z", denote by Qj the dyadic cube 273([0, )™ + k), £(Q) its side length, x, its lower
left-corner 277k and co its center. Let Q(R") = {Q]-k :jEZkeETI, QR") ={Q €
Q(R™) : £(Q) = 277} and jo = —log, £(Q) for all Q € Q(R™). When the dyadic cube Q
appears as an index, such as Y, peq(rm) and {}geqerny. it is understood that @ runs over all
dyadic cubes in R™.

Let q € (0,]and t € [0, ). Denote by ¢4 (LQ(R")) with p € (0, o] the set of all
sequences G = {g]-}jeZ of measurable functions on R™ such that
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1/p
q/p
G ) = d < 0o,
” ”gq(L}g(R )) Pesau(?lii")lplt{ (f'g](x)| x) } 0

Similarly, ¢ (L%(]Rn)) with p € (0, 0] is defined to be the set of all sequences G = {g]-}jEZ

of measurable functions on R™ such that
1/p

”G”{;p(Lfg(Rn)) = Pesgu(gn) |P|T f<2|g](x)| ) dx < oo,

Itis easy to see that £9 (Lh(R™)) = £9(LP(R™)) and L) (£9(R™) = LP(£9(R™)) (see [41]).
Let @ € S(R™) such that

supppc{EeR":1/2<|¢ <2} and |p(&)|=C>0 if 3/4<|¢ <5/3, (10)
where C is a positive constant independent of &. We recall the notions of the Besov-type
space B q(R™) and the Triebel-Lizorkin-type space F q(R™) in [190].
Deflnltlon (5.2.1) [222]: Let s ER,T€[0,0),q€ (0 oo] and @ € S(R") satisfy (10).
(i) The Besov-type space B q(R™) with p € (0,00] is defined to be the set of all f €

Se (R™) such that ||f||B“(1R") = ”{2J Ch f)}J€Z P (LIR™)) =
(i) The Triebel-Lizorkin-type space o (R™) with p € (0, o) is defined to be the set of all
f € 84 (R™) such that I|fllgss ) = ||{zl (p; * f)},-ez”Lp(gq(Rn)) < .

Recall that BSS(R™ = B3 4(RM), F50(R™) = F 4 (R™), F5e/P(R™) = F5,,(R™) , and
pel/2=4(rny = g (R™) for all a € (0,1) (see [189, 190]), where the spaces Q, (R™) were
orlglnally introduced by Essén et al. [173]; see also [167, 184, 185] for the history of Q
spaces and their properties.
Let ¢ be as in Definition (5.2.1) and f € S,,(R™). For allj € Z, a € (0,), P €
Q(R™) and x € R™, let
o * f ()] o * F()|
SO = S A gl —ype 2 @RS = S i ype
Usmg these maximal functions, we characterize the spaces By (R™) and Fg (R™)
as follows.
Definition (5.2.2) [222]: Lets € R,p € (1,0), and ¢ € S(R™) satisfy (10)
(i) The Besov-Hausdorff space BH (R™) with q € [1,00) and T € [0 ]IS defined to

be the set of all £ € S.,(R™) such that [|fl| s ) = ||{21 (¢, £)}

< o0,
ep(Lq(Rn))

JEZ
(i) The Triebel-Lizorkin-Hausdorff space FH;j
defined to be the set of all fesgo(Rn) such that ”f”FE‘E(R”)—”{ZJ ((pj*

f)}jeZ”Lg([q‘(’Rn)) <
Theorem (5.2.3) [222]: Lets € R, T € [0,0),q € (0, 0] and ¢ € S(R™) satisfy (9).
(i) Let p € (0,00] and a € (n/p, ). Then ”{21S “f} and
JEZ #q(Lp(]Rn))
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o 1/q
1 ' b a/p
su 2154 f () dx)
Pea(gn) |P|* ijl:: ( p[(p]'Pf ]

Are equivalent quasi-norms in Byg (R™).

(ii)Let p € (0,00) and a € (nmax{1/p, 1/q}, ). Then ||{215(p;'a 7}

JEZ
o p/q
ap (S outaroor)
pea®™) |PIT | Jp | 4 »P

and

LR (ear™)

1/p

J=Ip
are equivalent quasi-norms in Ff;fl R™).
Proof: By similarity, we only show (ii).

Notice that for all f € S,,(R"),j € Z, P € Q(R"), x € P, |g; » f(x)| < @5 f(x) < @ f(x).

<

~

Therefore, to complete the proof of (ii), it suffices to prove that ||{21'Scp;"“f}, o
L7 (£9(R™))

JEZ

||f||1':~°~T (R™)-
p.q
Let f € Ff;}l R™) Since a € (nmax{1/p,1/q}, ), there exists a § € (0,) such
that § <p,8 <qand a 6 > n. By the argument in [45], we see that for any y,z € Qj
withj € Z and j € Z™,
5 -N 4 5
|05+ F]" < CEN) Y (L + D Ngj» FQT1+2)],

lezm
where N € N is determined later and C(8, N) is a positive constant only depending on &

and N. Then for all x € R",
[0 FC0]° = sup sup )" (1 + DNy« F271+ )] 1

kezmn yEQ]'k e
+ 2|x —y)™*® ~ sup sup Z A+ [L=KkD™N]g; * FTID|” A + 2]x -y,
kezn ye€Qik jen
Notice that for all y € 9y, [y — 2791| < 277(1 + |1 — kI). This shows that (1 + 2/|x —yD(1 +
Il —Kk]) s (1+ 2)|x — 271|). Choosing N = a § then yields that for all x € R™,
e 8 25— Y . . \—as
[(p]-' f)] s Euzp Z(l + 1= kD N|g; « FQID| (1 + 2|x —271])
€ nlEZn
= z | FQ7D)|” (1 + 2i]x — 2791]) ™.
lezn
Let P € Q(R™),j = jp and x € Qy C P. It is easy to see that 1+ 2/|x —270I| ~ 1+
|l —K|.
Then by [106], there exists a y € N such that
e 8 T a
o7 I = D oy = F@ID[ (L + k=1
lezn
: 5 ~ ~
max{infl; « F@)|": 0 € 0, 1(0) = 21(0y)}
(1+|k—1])a8

<

~

(11)

lezn

For alljeZ and [ € Z", let ty, = max{ingflcpj s f@)| 0 c 0,,1(0) = z—Yl(le)}. Then
Z€E
forall x € Qjx C P,
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8 tQ'l th
fk’a < ) Z ) =
@IS D e A+ k-
{tezm: 0j,c(3P)} {tezm: 9;;n(3P)=0}
For Iy, since a & > n, by [106], we have that for all x € Q;, < P,

Il ~ HL( Z tleXle> (X),
{tezm: 0j,c(3P)}

where and in what follows, HL denotes the Hardy-Littlewood maximal operator. Then by

Fefferman-Stein's vector-valued inequality (see [60, 190]), we obtain
1/p 1/p

|;|T{Ll§2jsq(‘1)grd"l |p|r“m 2.7 ) (ta) XQJK’C)rC‘X}

j=ip ) j=ip {tezn: 9, (3P)}
S M e my-
For 1, , since a§>n and |271 —27k| ~ |i|I(P) when j>jp,Q;x P and Q; C
(P + il(P)) with |i| = 2, we see that for all x € P,
{iez™ilz2} {1ez™: gj,c(P+il(P))} 9t

_ z |i|—a82(ip—i)a62]'nf |(p]. * f(z)|6dz

(ieZm™i|22) P+il(P)

+ 1.

ola

p Z |i|~a82Gp=D(ad-n) ], (|(Pj * f|6XP+il(P)) (x +iL(P)),
{iez™:|i|=2}
where and in what follows, P + il(P) = {z + il(P) : z € P} for all i € Z™ and P € Q(R").
Then applying Minkowski's inequality and Fefferman-Stein's vector-valued inequality, we
also obtain

p
0 q
|PTST {J lz stq(lz)% dxl
IR

)

T

Qlo
Tl

a 9
ILI 8 f lz 24 [HL (| f|6XP+il(P))(x+il(P))]8‘ dx

{lEZ" Il|>2} j=ip

which together with the estimate for I, yields that

p/q
v . Zz% el

and hence completes the proof of Theorem (5.2.3).
Now let integer B > —1,5_; (R") = §(R™) and Sg(R™) be the set of all Schwartz

functions ¢ satisfying that [, d(x)xYdx =0 for all [y] <B when B> 0. Consider
Sg(R™) as a subspace of S(R™), including the topology. Let Sg(R™) denote the space of

1/p

dx < IfIN FL(R™
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all continuous linear functional on Sg(IR™), endowed with the weak *-topology. Let € €
(0,0) and k € Sg(R™) satisfy the following Tauberian condition:
|k(®)| >0 on{E € R™: ¢/2 < [g| < 2¢}. (12)
Forallj € Z, a € (0,0), P € Q(R™), f € Sg(R™) and x € R™, let
wa _ |kj * f(Y)l *a _ |kj * f(Y)|
SIS yern (1 + 21]x — yD® and kjp f(x) = eb (1 + 21x — yD&

Recall that k; = f is called the local mean; see, for example, [56]. Applying
Theorem (5.2.3) and the Calderdn reproducing formula, we establish the following local
mean characterizations of B} 5 (R™) and Fyg (R™).

Lemma (5.2.4) [222]: Let € € (0,0) and n € S(R™) satisfy (12). Then there exists a
function P ESL(R") such that suppyc {E € R": ;—;s < [§] < %s} and
Yz 12D P(2%) = 1 for all § € R™\{0}.

Proof: The proof of this lemma is similar to that of [176, Lemma (6.9)]. For the
convenience of the reader, we sketch some details. Let g € S(R™) such that g is
nonnegative, supp g C {E € R": %s < || < %e} and g(¥) > C > 0 when 3g/5 < [§| <
5¢/3, where C is a positive constant.

Set F(§) = Yez8(29¢) for all £ € R™. Then F is bounded and smooth outside the
origin, and F(§) = C > 0 for all £ € R™\{0}. Furthermore, F(2’§) = F(¢) for all £ € R"
and jEZ.

For all £ R™, let h(§) = g(%)/F(§). Then h e S(R"),supph c {E ER" :%s <

&l <2e},h(8) = ¢, > 0 when 3g/5 < [£] < 5¢/3, and for all § € R™\{0}, Sz h(25) =
1, where C; is a positive constant.

By (12), [f§(§)| =C, >0 on {E ER": ;—33 < |§] < %s} where C, is a positive
constant. Define { by setting, for all £ € R™, {(¥) = h(¥)/§(%). Then ¢ is the desired
function, which completes the proof of Lemma (5.2.4).

Lemma (5.2.5) [222]: Let B € Z, U {—1},p € S(R™) and f € Sg(R™).
(i) Letj € Z,. Then for all M € Z, there exists a positive constant C(M, n, ¢, f) such that
for all x € R™,

@y * £GO] < CQM,m, @, )M (1 + [y M1,
(i)Letj € Z\Z,. Then for all L € Z,, there exists a positive constant C(B, n, ¢, f, L) such
that for all x € R",

o * f(0)| < CBn, @, f, L) TED(1 4 2] |x[)
Lemma (5.2.6) [222]: Let q € (0,],T € [0,),6 € (nt,) and {g,} ez b€ a sequence
of measurable functions on R™ . For all jeZ and x €R" , let Gj(x) =

Y ez 27 m18g (x). Then there exists a positive constant C, independent of {g,,}mez,
such that for all p € (0, o],

”{Gﬁmz
and that for all p € (0, ),

”{GJEZ”

-n-2p-L-2

gq(Lg(Rn)) S C“{gm}mEZ”{;q(Lg(Rn));

< Cll{gm}mezll P (pa(gny)-
th’(fQ(]Rz]l)) 8mJSmez Ly (gq(]R ))
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Proof: By similarity, we only prove the first inequality. Let P € Q(R™). If p € (0,1],
applying the inequality that for all d € (0, 1] and {0(]-}]_ c C,

d
(Zlaﬂ) < lal’, (13)
j j
Z 2—Im— 1|8g (x)

a/p /4
dx)
meEZ
/p 1/q
|P|t{ (Z 2~ |m— ]lspjlg (x)lpdx> } .
j=ip

MmeZ

we obtain

"= |P1|r{i (f

J=IP

When q € (0, p], applying (13) again, we have

IP~|P|T{;’HZJP2 i feacor d") } W{i ]le "}W

J=]p m=—00

i1 1/q
{ z 2(p— m)ntq<z 2 (m- 1)5(1>} ”{gm}mEZ”fq(LE(R”))

m=jp
S ”{gm}mEZ”{;q(L}g(Rn))
When q € (p, o], choosing € € (0,86 — nt) and applying Hoélder's inequality, similarly to
the above proof, we also have

o Jjp—1

Ip < |P|T z z 2-Im-j|(6-©)q <j|g (x)|P dx)q/p IPIT Z Z

JJPmJP j=jp m=

~ ”{gm}mEZ”{)q(Lg(Rn))
If p € (1, 0], applying Minkowski's inequality, we see that

lp = |P|f{z Q, 2 (f & (x)'pdx> pr}l/q'

j=ip | m=jp

Then by Hélder's inequality when q € (1, oo]or (13) when q € (0, 1], we also obtain that
Ip S ||{gm}mEZ||{,q(Lp &™) which further implies that

”{ ]}]EZ p( n))

and then completes the proof of Lemma (5.2.6).

We also need the following estimate.
Lemma (5.2.7) [222]: Lets € R,t € [0,), be an integer such that = —1 and B +
1> s+ nt, and p,q € (0, o0]. Then there exists a positive constant C such that for all j €
Z, f € Aju(R™) and y € R", |kj* f(y)| < C||f||A;.L(Rn)2‘”5+”(f‘1/r’) , where A}7(R™)
denotes either By g (R™) or Fyg (R™).
Proof: By S|m|Iar|ty, we onIy conS|der the spaces F q(R™).
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Let f € F q(R™) and @ € S(R™)satisfy (10). Then by [176, Lemma (6.9)], there exists a

function L|J € S(R™) satisfying (10) such that ¥je; §(28)((2'5) = 1 for all £ € R™\{0}.
By the Calderon reproducing formula in [189], we know that f = ez Py * @ * f 0N
S (R™), where and in what follows, ((z) = y(—z) for all z € R™. From the arguments in

[190] (see also [106] and [93]), we deduce that there exists a sequence {Py}nen Of
polynomials, with degree no more than L = max{—1,|s +n(t—1/p)| } for al N € N

such that g = I}JEEO(ZQIZ_N U * @ * f + Py) exists in $'(R™) and g is a representative
of the equivalence class f + P(R™), where for any a € R, |a| denotes the maximal
integer not more than a. We identify f with its representative g. Since s + n(t — 1/p) <
B+1and [, k(x)x¥dx =0 for all [y| <B, we see that k; * f(y) = Zmezkj * U *
©n * f(y)forje Zandy € R™.

Applying Lemma (5.2.5), we see that for all y € R",

2jn—(m- ])Nl(P *f(z)l 2jn—(m- ])(B+n+1)|(p x f(2)]
|k *f(Y)l ZJ nAN+1 2f nrzpiNsz 0%
[1+ 2ily —z|] rn 1+ 2i|y — z|]**28
= 11 +1,,
where N € N is sufficiently large, which is determined later. When p € [1, «), choosing

N > max{n(tp—1) — 1,[n(1 —tp) + 1 —sp]/(p — 1), n(r — 1/p) — 2B — 2},
by Holder's inequality, we obtain that for all y € R™,

. 1/
L < z 2—(m-j)N j 2" @, * f(2)[P dz b
1= wn [1 + 21|y — z[]nN+1

mzj

< z 2= (m—-Np—j(N+1) {Zm(n"'N"'l) f lom * f(z)|Pdz

ly—z|<2~m

ms2j

o 1/p
+ ) gmobomne | om * f@IPdz
=1 Zl—m—15|y_z|<zl—m

oo 1/p
S If s amy Z 2JIN=(N+1)/plp-mIN(1-1/p)+s-1/p-n(1/p-1)] {Z Z—er+1+n(1—rp)1]

ms2j =0

S f g ey 2 75/

Similarly, for I,,by B + 1 > s + nt and Holder's inequality, we also have that for all y €
R‘n

Z o (m- 1)(s+1)2mnz 5- z<n+zs+N+z)f o * f(2)|dz

l-m
m<j ly—z|<2

< ”f”FST(R")Z 2-j(B+1)pm[B+1-s+n(1/p- r)lzz [2B+N+2-n(1—1/p)]
m<j
ST o n j(B+1) om[B+1-s+n(1/p-1)] < st 2-istn(t=1/p)]
S Wfllsgzamy ) 27002 < I less w2 |
m<j

When p € (0,1), by [190, Corollary 3.1], ES%(R™) < Fi+@~/P"*(R™), which together
with the above proved conclusion when p = 1 yields that for all f € Fjyq(R™) withp €
(0,1),je Zandy € R",

[k * f| s NIf ||Fi;(l—l/p)n,r(Rn)2‘”‘”(1‘1/ prin(t=ul < ||f IIF;L(Rn)Z‘”””(T‘” Pl
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and hence completes the proof of Lemma (5.2.7).
Theorem (5.2.8) [222]: Lets € R, T € [0,) and q € (0, ] such thats + nt <  + 1.

(i) Let p € (0,0] and a € (n/p, ). Then the quasi-norms ||{215(k « )}

]EZ ||€q Lp(Rn))

”{zisk;"“f} and

29(LE(®™)

1/q
a/p
PED(]R") IPIT{Z 2 (_[ [k, f(x)]pdx> }

are equivalent in B q(R™).
(i) Let p € (0,) and a € (nmax{1/p,1/q}, ). Then the quasi-norms ||{21'S(k]- x

el gy 1275

JEZ

and
L2 (¢a(rR™))

p/q
sup 2Jsq k*a X dx
Pesz(len)|P|T j(Z [ pf( ) )

are equivalent in F35 (R™).
Proof: By S|m|Iar|ty, we only prove (ii). Notice that for all f € F o(R™), JEZPE
Q(R™M and x € P, |kj * f(x)| < kip f(x) < k{*f(x). Therefore, to show (i), it suffices

to prove that ” 25k f} and ”{le(k *f)}

LP(pA(R™))’ jez

1/p

are equivalent quasi-

jEZ Lp({;q( n)) JEZ LP({)Q(Rn))
norms in k3o (R™). We show this in three steps.
Step 1. Let f € Fp,q([R"). First we prove
[2eier) < 2™ 05 Flmeall peacarm): (18)

LY (£9(rR™))
To this end, letting ¢ and s be as in the proof of Lemma (5.2.7), we see that for all j € Z
andy € R",

ki*f(y)=zkj*$m*cpm*f(y)- (15)

MEZ

Notice that for all y € R",
[k * T * @m * O] < @12F f [k * W (@] (1 + 27 [2])2dz.

By Lemma (5.2.5), we see that for all y € R",

[k * Uy * @ * £(¥)| S min{20m-DE+D, 20-mM-0} o £(y), (16)
where M > a can be sufficiently large, which is determined later; see also [213] and its
proof. On the other hand, for all x,y € R",

e f) < o' f)(A + 2™ |x — yD* < max{1, 20"} (1 + 2|x — y) %o f (%),
which together with (16) yields that
[k % B * @ * £ ()] S min{2mDED, 20-mM=200} oL £(0) (1 + 21| — y])“.
Then, from this and (15), it follows that for all x € R™,

§ k*lTJ *(Pm*f(Y)l , )
K? « (x) < | J m < § *,a (x) min 2(m—])([3+1)’ 2(-m)(M-2a)
f ~ ye]REl (1 + 21|x - yDa Pm f { }

me7Z

and hence
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zjsk;'a % f(X) < z ZmS(P:ﬁaf(X) min{z(m—j)([ﬂl—s),2(j—m)(M—2a+s)}.
mEeZ

Choosing M > 2a —s + nt, by B+ 1 > s + nt and Lemma (5.2.6), we obtain (14).
Step 2. Next we show that for all f € Sg(R™),

|01} sy = M5 el sy (17)
Without loss of generality, we may assume that the right-hand side of (17) is finite.
The proof for (17) is similar to that for (14). In fact, by Lemma (5.2.4), there exists a
function Y ESL(R™ such that supp c {E € R : %s < g < %s} and
¥ ez KRmOP(2mE) = 1 for all £ € R™\{0}. Then by the Calderén reproducing formula in
[189], for all f € Sg(R™), Yoz Um *ky * £ in SL(R™) and hence @ * f(y) =
Ymez @j * U, * ky, * f(y) for all j € Z and y € R™. Since ¢, € S, (R"), similarly to
the estimate of (16), by [189], we see that for all y € R",

| @) * Uy * ki * f(y)| S min{20IM, 20-mM-0 1t £ (y),

where we chose M > max{0, s + nt, 2a — s + nt}. Then repeating the argument in Step 1,
we obtain (17).

From Step 1, Step 2 and Theorem (5.2.3), it follows that ||{21'Scp]7"“f}

jez

IS
L2 (La(R™))

€T
an equivalent quasi-norm in Fyg (R™).

Step 3. To complete the proof of Theorem (5.2.8)(ii), we still need to prove that for

NS, T
all f € Fyq(R™),
2Isk S 1{2™s (ky, m ) 18
|x2r) ey = 127 G Dhncalugecany (18)

since the converse inequality is trivial. Without loss of generality, we may assume that the
right-hand side of (18) is finite.

Since a > (n/min{p, q}, ), we choose r < min{p, q} such that ar > n. By the
argument in the proof of Lemma (5.2.7), there exist functions ¢, € S, (R™) such that

f=YmezVj * Pm * f In SL(R™). For all N€N, set fy = Y- nWm * $m * f. Then
fu € S'(R™). By [190, (2.2)], we see that fy = ZN—_x icgy=2-m{f, @)g in S (R™).
Then, similarly to the proof of [190, Lemma 3.2], we obtain that for all f € Ff)fl(]R%") and
N e N,

jez

llist my S 1f llis emy- (19)

Also, similarly to the proof of Lemma (5.2.7), we know that there exists a sequence

{Px }nen Of polynomials with degree no more than L = max{—1, |s + n(t — 1/p)]} for all
N € N such that g = l\llii?o(fN + Py) exists in S, (R™) and g is a representative of the

equivalence class f + P(R™). Then, by f = —1and 8 + 1 > s + nt, for any ¢ € Sg(R")
and ally e R"™, ¢ * f(y) = 1\llim ¢ * fn(y). Hence, for allje Zandy € R", k; * f(y) =

1\1115?0 k; = fy(y). From the discrete version of the Stromberg-Torchinsky type estimate in

[71] (see also [73]), we deduce that for any M € N, there exists a positive constant
C(k,r,M), depending only on k,r and M, such that for all y € R,

~ , 2™k * fn (@[T
k; "< CkrM Zz(l‘m)Mrf m dz. 20
i [ = Clr )mzj o (L 2] -y 7 (20)

Applying Lemma (5.2.7) and (19), we see that for all m € Z and z € R",
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[k * fn(@)] = ”fN”F%E(Rn)z—mfﬁn(t—l/p)] < ”f”F%E(Rn)z—m[s+n(‘t—1/p)].
If we choose M > max{n/r,n(1/p —t) —s,a,a — s}, then for all y € R™,

Z z(j—m)MrJ Zmnlkm *fN(Z)lr dz
gn (14 2M |y — z|)Mr

mz2j
Jmn

< L Z 2er—mr[M+s+n(r—1/p)]] dz
”f”Fp',q(Rn) gn (1 + 2M]y — z|)Mr

ms2j

S If iy oy 27142/,
p.q
Therefore, from (20) and Lebesgue's dominated convergence theorem, it follows that for

ally € R",
. 2M K * fn(@)|"
- r< (]—m)Mrj m N
|k]*fN(y)| s E 2 AT 2y ZI)Mrdz. (21)

mz2j
Notice that for all m > jand x,y,z € R",
2 x —z| < 2™ (2 |x —y| + 2™y — z|).

Then 1 + 2™|x — z| < 2™7(1 + 2/|x — y])(1 + 2™|y — z|), which combined with (21) yields
that for all x,y € R",

r

|kj ff(}’)| < z Z(i‘m)(M—a)rj 2k, f(2)|" .
(1+2[x—yD* & g (1 + 27 |x — z|)*r
Thus, by taking the supremum on y € R™ in the above formula and a r > n, we obtain that
for all x € P with P € Q(R™),
2"k * f(2)|"

[k* “f(x)] z 2(-m)(M-a)r jRn 17 2o — 2@ dz

mzj

< Z 2(] m)(M—a)r j Zmnlkm *f(z)lr dz
3p (1 + 2m|x _ ZDar

2M ko * f(2)|F
+ E f dz
pricp) (1 + 2™ [x — z[)or

iEZM |i|=2

Z 20-m-ar ZZ‘WZ“‘" f ki * f(2)|"X3p (2)dz
£ |x—z|<2l-m
=j =0
n z |il—arz(jp—m)(ar—n)HLUkm * ferP+il(P))(x + il(P))]
i€Z" |i|22
= Z 207 HL (K, * f17X3p) ()
mz2j

+ Z |i|_arHL(|km*f|rX3p+iz(P))(x+il(P))]-

1EZN |i|=2
Then, choosing € € (0, min{M — a,M —a + s}), by Holder's inequality, Minkowski's
inequality, Fefferman-Stein's vector valued inequality and a r > n, we further obtain
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Qo
oTl=

)

(/o
—

j=ip
(
1 S |
< !j <Z zlsqz 2(-m)(M-a-g)q
P

|P|™ £ ]
L j=ip  m2]

T\ )
+ Z |i|_arHL(|km * ferP+il(P))(x + il(P)) dx L
)

HL(|kp, * f1"x3p) (%)

o=

1EZN |i|=2

o]

( m
1
= |P|r ij <Z z 2M-aer9)ag mM-a=Da[HL(ky * £ Xp i) (%
P

m=jp j=jp

\P
q
+ ll(P))]r> dx } S ”{zms(km * f)}mEZ”iIT)({)q(Rn));
)
which implies (18) and hence completes the proof of Theorem (5.2.8).
For the Besov-Hausdorff space BH;G(R™) and the Triebel-Lizorkin-Hausdorff
space FHy o (R™), we also have the maximal function and the local mean characterizations

similar to Theorems (5.2.3) and (5.2.8). To state these results, we first recall some
notation.

ForxeR*andr >0, let Blx,r) ={yeR" |x—y|<r}. ForEcR"” and d €
(0,n], the d-dimensional Hausdorff capacity of E is defined by

HY(E) = inf{z rf:Ec U B(x,-,r]-)}, (22)
j j
where the infimum is taken over all countable coverings {B(xj,r]-)}::l of open balls of E;

Qo

see, for example, [161, 188]. It is well known that HY is monotone, countably subadditive
and vanishes on the empty set. Moreover, H in (22) when d = 0 also makes sense, and
H° has the properties that for all sets E ¢ R®, H°(E) > 1, and H°(E) = 1 if and only if E
is bounded. For any function f : R™ — [0, ], the Choquet integral of f with respect to H¢
Is then defined by
£ dnd = f H({x € R : £(x) > A})dA.
R™ 0

In what follows, for any p, q € (0, 0], let p vV q = max{p,q} and p A q = min{p, q}.
Set Rt = R™ x (0, ). For any measurable function w on R**! and x € R™, define its
nontangential maximal function Nw by setting Nw(x) = sup |w(y,t)].

ly—x|<t

For p € (0,0) and t € [0, ), let ¢4 (Lﬁ(R")) with q € [1, 00) be the set of all

sequences G = {g]-}jeZ of measurable functions on R™ such that

172



a/p 1/a
”G”m(%n)) = igf{ (f |g](x)| [w(x, 2~ ])] pdx) } < oo

JEZ
and L2(#9(R™)) with q € (1,) the set of all sequences G = {gj}jeZ of measurable

functions on R™ such that
1/p

p/q
I1GI1 p zageny) = inf j <2|g,(x)| [w(x,27)]~ ) dxp <o,

JEZ

where the infimum is taken over all nonnegative Borel measurable functions on R%*1
satisfying
[No(x)]®V®" dH VD' (x) < 1 (23)
RTL
and with the restriction that for any j € Z,w(-,277) is allowed to vanish only where g;
vanishes.
Theorem (5.2.9) [222]: Lets € R,p € (1, ), and ¢ € S(R™) satisfy (10).

(i) Ifqe[1,0),te01/(pVq)]andae @m[1/p+1] ), then ||{zls af) is

£q (Lp (R™))

JEZ

an equivalent quasi-norm in BHST R™).
(i)lfqge (1,x),T€[0,1/(pVq)] and a € (n[max{1/p,1/q} + t], ), then the quasi-norm

25
||{ ©;f} .

Proof: By similarity, we only show (ii). Notice that for all f € §;,(R"), € Z andy € R",
|(p] * f (x)| < (p] f(x). Therefore, to complete the proof of (ii), it suffices to prove that

28 f S llepst s for all £ € FHYS (R™).
|| 1 LP(¢a(R™)) FHpia (8 / P4

Let w be a nonnegative function on R%?*1 satisfying (23) such that
1/p

p/q
f <z ZJSQ|(p] *f(x)l [w(x,27))]~ ) dx S “f”FHf,’}l(Rn)' (24)

JEZ

- Is an equivalent quasi-norm in FH q(R™).
]

jez

Since a > n(max{1/p, 1/q} + 1), we choose 6 € (0, min{p, q}) such thata > n(1/8 + ).
By (11), we know that for all x € Qj with j € Z and k,l € Z", 1 + 2/|x — 271|~1 +
|k — 1] and
*a 8 —a . s —-ab
[07FCOI" 5 ) o, (1 41k =D 5 Y g, (1+2)|x - 271])

lEZ =
where to, is as in the proof of Theorem (5.2.3). Set A, = {I € Z" : 2/|x — 2771| < Vn'} and
An={lez": 2™ Wn < 27|x - 271 < 2™yn} for all m € N. We further have that for
all x € ij,

0 F() [Z 5-mas z b, l} Z 9-m(e-a) [Z to,|

m=0 l€EAM IEAL
where the last inequality follows from (13) if 1/6 < 1 or Holder's inequality if 1/6 > 1,
and € € (O,a —n(1/6 + T)).
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Since ||| LB (7)) is a norm, the last inequality further implies that
1/8 1172
2is Pt Z 2mv2(e=a) |1 s Z to. . (25
||{ i f(x)}leZ LP(ea(r™)) IEA o )

ISR (rarm)
Foreachm € Z, and (y,s) € R%*1, define
Wy (y,s) = 27mnt sup{oo(z, s):zeRY |z—y| < ﬁ2m+2s}.
Then by [204, Corollary 3.1], w,, still satisfies (23) modulo a multiplicative positive
constant independent of m. Moreover, for all y € 9;, with [ € Aj,,, we have that

w(y,27) < 2™, (y, 279). Therefore, for all x € Qy,
> tg o2 NP 520 Y [ oy sl ay [om(x 2]

€A, leAy, ~ it

< 21"2“"”5] z o * )] XQ,l(Y)[w(y'z ] dy

€A

< MR . z oy * £1°xg, [0( 2] | ),
I€AL,
which combined with Fefferman-Stein's vector-valued inequality and (24) yields that

1/8 q/6 p/q
2" z th] f lz leq tgn[wm(x,Zj)]5> dx}
[€AN Rn

1/p

jEZ l€EAm
LR (a(rm)

p/q
< 2mn(1/8+‘t) f (Z 2isq Z |(pj % f(x)|qXle(x)[u)(X,Z_j)]—Q> dx
Rn

i€z I€EAm

1/p

< 2mn(1/8+r)”f”FH;"‘El(]R{n)'
Bya>n(1/86 + 1) and (25), we further have

|| 2]S(P] Z omv; (&= a+n(1/8+‘t))”f”

LP(£a(R™)) =

which completes the proof of Theorem (5.2.9).

Lemma (5.2.10) [222]: Let p € (1,2), 6 € (0,) and {g,}mez be a sequence of
measurable functions on R™. For all j € Z and x € R", let G;(x) = ¥ ez 2™ 18g,, ().
(i) Ifqe[1,0),T€[0,1/(pVq)]and § € (nt, o), then there exists a positive constant C,

independent of {g,, };mez, such that ||{G} o (iFm) S Cl{gm}mezll 2a(LP )

(i) Ifqe (1,»),t€[0,1/(pVv q)]and & € (nt, ), then there exists a positive constant
C, independent of {g,,, };ez, such that ||{G }

< AN

]eZ LP(earm) ~ LR (ea(r™))’

JEZ

]EZ||LPWR”)) Cll{gmdmezll o zagamy)-

Proof: By similarity, we only prove (ii). Let @ be a nonnegative function on R%?*1
satisfying (23) such that
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p/a P
Zlgm(x)lq ®(x,27™)]~ ] dx} S C”{gm}mezlll_‘g(mn))- (26)

{f meZ

For each i € Z, and all (x,s) € R%*1, let w;(x,s) = 27" sup{&(x, t) : 278 < s/t < 213,
Then by [204, Corollary 3.1], w; still satisfies (23) modulo a multiplicative constant
independent of i. Moreover, for all x € R, m,j € Z with |j —m| =i, we have that

[w;(x, 27)]7" < 27 [@(x, 27™)] 7

Since ||- ”Lp( ) is a norm, by (26), we see that
J \q]g lpz
. Igm(x)ll
f d
”{ ]}]EZ Lp(gq(ugn)) =1 fRn & \l 4 e w(x,?2 1)/ } x
L Im—j|=i
[ o fz
< 2—1’8172- f | |gm(x)| \ | d $
~ Z o ) jRn|Z Z w(x,279) | &
i=0 l]ez ImmEjIZ—i J )I

p P
isv, lgm@) 1%\
ZZ ? I{ Rn(z Lo (x, 27m+t)) ) dx}

V7

Z lgm®I 7 a : ’
Rn w; (x, 27m-1) x
o _ q g D
v, (5 |gm ()|
iv,(8—nTt)
= ; 2 ’ {fR" <HZZ (’I’)(xlz—m)l > dx} ”{gm}mEZ”Lp({Jq(Rn))

which completes the proof of Lemma (5.2.10).

Lemma (5.2.11) [222]: Letse R, p € (1,»),q€ [1,»), T€[0,1/(pV q)'] and B be an
integer such that B = —1 and  + 1 = s + nt. Then there exists a positive constant C such
that for all j € Z, f € AH;(R™) andy € R™, |k; * f(y)| < C||f||AHST(Rn)2 Is—n(t+1/P)I \where
AH; 5 (R™) denotes either BH a(R™) or FHy G (R™).

Proof By S|m|Iar|ty we only consider the Triebel-Lizorkin-Hausdorff spaces FHS'T q(R™).
Let f € FH q(R™) and @, € S(R™) be as in the proof of Lemma (5.2.7). From the

arguments |n [204] we deduce that there exists a sequence {Py}nen Of polynomials with
degree no more than L = max{—1,|s—n(t+ 1/p)|} for all N€ N such that g=

l{}f%(ZN=-NlIJm*<pm*f+PN) exists in S'(R™) and g is a representative of the

equivalence class f + P(R™). Since B+ 1 = s + nt and fRn k(x)xYdx = 0 for all |y| <
B, we obtain that ki* f(y) = Xmezkj* Um * @ * f(y) for all jEZ and y € R™ .

Furthermore, we have |k; * f(y)| S I; +1,, where I, 1, are as in the proof of Lemma
(5.2.7).
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Let w be as in (24). Recall that if w satisfies (23), then for all (x,s) € R**1, w(x,s) S
st (see [189]). Choosing N > nt — s and applying HOolder's inequality and (24) yield
that for all y € R™,

s Z 2-mN-nD N j 2" * f@Il0( 2™
gr 1+ 2]y — z[]m#N+1

mz2j

. _ _ 1/
< Z 2—m(N+s—nt)+jN .[ 2]n2msq|q)m *.f(Z)lp[U)(Z; 2 m)] P dz P
- R [1+ 2]|y — z[]**tN+1

mz2j

< Z 2—m(N+S—nT)+jN2jn/p”f”FH;’Il(Rn) < ”f”FH?,’L(R”)Z_”S_n(T-I-l/p)]'

mz2j
Similarly, by the assumption that § + 1 > s + nt and Holder's inequality, we also have
that for ally € R™, I, < 2‘”5‘"(”1/10)1||f||FH]s),a(Rn), which completes the proof of Lemma
(5.2.11).

Theorem (5.2.12) [222]: Leta € (1,0),s € R and p € (1, ).
(i) Ifqge[1,»),te[0,1/(pVvq)]andace€ (n[1/p+ 1],) such thats + nt <+ 1, then

2iske _and ||[{255k, ____are equivalent quasi-norms in
||{ ] f}jEZ fq(Lg(Rn)) ||{ ] * f}jEZ”{’q(L.}?(Rn)) q q
BHy ¢ (R™).
(iIf ge (1,0),t€[0,1/(pVvq)’] and a € (n[max{1/p,1/q} + t],) such that s + nt <
+ 1, then |[{2/sk ¢ and ||{2ik; = f} ___are eguivalent quasi-
B 5P el 125K+ £}, p—_——— q

norms in FHy 5 (R™).
Proof: By similarity, we only show (ii), namely, we need to prove that
|=x2r)

and ||{21'S(k,-*f)}jez|| are equivalent quasi-norms in

ez LP(ea(RM))

LR(ea(rm)

FHy g (R™). We show this in three steps.
Step 1. Let f € FH; 5 (R™), ¢ and s be as in the proof of Lemma (5.2.7). Similarly

to Step 1 of the proof of Theorem (5.2.8), we see that for all x € R™,
ZjSk;'af(x) < Z st(p;,laf(x) min{z(m—j)([ﬂl—s)’ 2(j—m)(M—2a+s)}.

meE7Z

Choosing M > 2a + s + nt, by  + 1 = s + nt and Lemma (5.2.10), we obtain
{2 f}

JEZ

< |[{2ms@ptd — .
L () 1£2™ o f}mezlng(fq(Rn))

Step 2. Next we show that for all f € Sg(R™),
js s msi.*a —
{Z*oj°f} , ity = N Dmeall iy 27)

Without loss of generality, we may assume that the right-hand side of (27) is finite.
Similarly to Step 2 of the proof of Theorem (5.2.8), there exists a function Y € S, (R")
such that for all j€ Z, f € S5(R™), @ € S,(R™) and y € R™, @ * f(¥) = Xmez @; *
Up, * kyy * £(y). By [189, Lemma 2.2], we obtain that for all y € R",

|@; * Wiy * Ky * £(y)| S minf{20m=DM, 20-mM-a} st £ (),
where we chose M > max({s + nt, 2a — s + nt}. Then, similarly to Step 1 of the proof of
Theorem (5.2.8), we obtain that for all x € R",

2js(p;6,af(x) < Z stk*n'qaf(x) min{z(m—j)(M—s)’ 2(j—m)(M—2a+s)}.

meZ
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which together with Lemma (5.2.10) yields (27).
Step 3. Combining Step 1, Step 2 and Theorem (5.2.9) vyields that

||{21'Sk]?*'“f IS an equivalent quasi-norm in Ff)fl([[%”). To complete the proof of

JEZILP (pa(rm))

(i), it suffices to prove that for all f € FS’,Z(R"),
275573l ey = 127 = My (28)

Without loss of generality, we may assume that the right-hand side of (28) is finite.
Since a >n[max{1/p,1/q}+t] , we choose 1<r <min{p,q} such that a >

n(1/r + 1). Let @ be a nonnegative function on R+ satisfying (23) such that
1/p

jez

p/q
fR ) (ZZ 259k, » f(x)|"[a>(x,z-i)]-q> dep S 12" 0 Dmerllp gy (29
JE

Let ¢ and  be as in the proof of Lemma (5.2.11). Then f = ¥ ez Wi * @ * fin
S, (R™). By the argument in [204], we know that there exists a sequence {Py}nen Of
polynomials with degree no more than L = max{—1, [s — n(t + 1/p)|} forall N € N such
that g = 1\11im (fy + Py) exists in S'(R™) and g is a representative of the equivalence class
f 4+ P(R™), where fy € S'(R™) is as in the proof of Theorem (5.2.8). By Lemma (5.2.11)
and [204, Lemma 2.1], we know that for all j€ Z, f € FH ¢ (R™), y € R" and N €
N, [k * iG] S Ifallpnse m2 TP S | fllpgse gy 2757CF/PT On - the
other hand, since B+ 1 =s+nt, we see that for all jeZ and y € R™, kj * f(y) =
l\llim kj = fy(y). Similarly to the proof of Theorem (5.2.8), we obtain that for all j € Z and

x € R™,
2k, * f(2)]7

[l rGof Z 2 fRn [1+ 2‘:1|x —z[]or

mzj
where we chose M > a + nt — s. Then for all x € R",
[k F ()] < Z 2 (-m)(M-a)rpjsrymn f kn *fDI"
’ N [+ 2M]x — z[]or

m>j

Zz lar{z 20-mM-ayrpjsrymn f K *f(z)lrdz} Zz i i
|z—x|<2i—m

mzj

which, together Wlth (13) and the fact that ||-||” is a norm, yields that

L7 (P (R™)
(]]l 1/r}

2~ iav,
Lp({)q(Rn)) Z(; JEZ Lp(fq(Rn))
Furthermore, by (13) and the fact that |||

V2

||{21'Sk;'“ (30)

JEZ

LP (7GR IS @ norm again, we obtain
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U2

~1nf!j Z ZZ —I(M—-a)r 2]sr2(1+l)nf |k]+l
|z—x|<2i-]-1

Lp(gq(Rn)) L JEZ

o),

V2
E p

q \
*f(z)| dz) [w(x,27)]~ dxl

ZZ {M-ajv, inf j 2215‘1 <2(]+l)"f K
R™ |z—x|<2i-i-1

JEZ
v

)’
*f(z)|r[oo(x,2_j)]_rdz> ] dx} . (31)
)

For all ,l€Z, and all (x,s) € RT*!, let w;;(x,s) = 2~ sup{&(y,¢) :
Ix —y| < 2't, 27t < t/s < 2'}. Then by [204, Corollary 3.1], w;; still satisfies (23)
modulo a multiplicative constant independent of i and [. Moreover, for all m, j € Z with
j-ml=1and x,y€R® with |z—x|<2"™ , we have that [w;(x,27)] " <
20+DnT(55(z, 27 ™)]~1. Thus, from Fefferman-Stein's vector-valued inequality, (29) and
(31), it follows that

QT
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U2

o,

LP(fa(rm))

Zz I[(M—a+s)v, f lz 2]sq Zjn |k]-
Rn

jez Iz x|<2i-
dxl

)

Zz I(M-a+s— n‘t)vzzm‘wz !f zzjsq (2]nf |k-
RN |z—x|<2i-] :

JEZ
p
dxl

)

< Z 2-l(M-a+s-nD)v; 9i(r+1/r)nv, {f Z 2Jsd [HL(|ki
U

1=0 jEZ

Qo

q
f@] [wir(x 277 dz) }

Qo

* f(z>|r[&>(z,2"’)]'rdz>r‘

V2
\F
)d"} s 2o (|@is(i « )} || p( )
LP(ea(r™)

)

=
Qo

«fl1a(,27)] @)

which together with (30) yields that

js1.-a [a-n(1/r+1)]
”{ZJSkj f} LP(£a(r™)) {ZZ e }”{ZJS(k " JEZ

=0
js
< “{2 (k * )}]ez Lp(gq(Rn))
and hence completes the proof of Theorem (5.2.12).
We give a simple application of Theorems (5.2.8) and (5.2.9), we establish a Fourier
multiplier theorem of the spaces A} (R™) and AH g (R") where AT (R") denotes either
]Rn) or B q(R™) and AH IR") denotes elther FH q(R™) or BH q(R™).

Lets € ]R p,q € (O, oo] a € [0,00) and ¢ be as |n Def|n|t|on (5 2.1). The space
Bg,q (a) is defined to be the set of all m € S, (R™) such that

”m”Bf),q(a) = ||{2js(1 + Zjl'l)a(pj * m}j€Z||lQ(Lm"))

see [66]. Then we have the following theorem, whose proof is similar to that of [66,
Theorem 5.1].
Theorem (5.2.13) [222]: Let s € R.
(i) If pgqe(0,o], T€[0,00), a€ (n/p,o) when Tq(IR") =Byy(R") or a€
(n[max{1/p, 1/q}], ) when A} (R™) = F; 3 (R™) and m € B}, (a), then
||m * f”Af,’L(Rn) < C”m”Bg'w(a)||f||AIS)"Tq(Rn),
where C is a positive constant independent of m and f.

jez LP(M(Rn))

< ©00;
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(i)If pe(1,0), q€e[l,0), TE [0,(pv—1q),] , a € (n[1/p+1],0) when AH;‘L(R”) =
BH, o (R™) or a € (n[max{1/p,1/q} + t],0) when AH;g(R™) = FH; (R™), and m €
B? .. (a), then

|m *f”AH;"T(l(Rn) < C”m”B‘{,oo(a)”f”AHf,'}l(R”)'
where C is a positive constant independent of m and f.
Proof: By similarity, we only consider the spaces Ff;',a R™). Let ¢ € S(R™) satisfy (10).
Then @ * ¢ also satisfies (10). Recall that FS;E(]R{") Is independent of the choice of .

Thus, ”{Zj((p]- * @ * f)}]_EZ”Lp({Jq(Rn)) is an equivalent quasi-norm of f € F}¢ (R™). Notice

that for all x € R",
|l@j * @j xm * f(x)| < U | * m(y)|(1 + Zjlyl)“dy} @ f(x) = llmllgo a0y “f ().
Then applying Theorem (5.5113) yields that
Im o« Fllege ey S || 200y« @ xmx )} |
which completes the proof of Theorem (5.2.13).

S llmllgo @ llf llgs @mys
L.I[)({’q(an)) Bl,oo(a) Fp,q(IR )
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Chapter 6
Atomic Decomposition and Besov-Type Spaces
We characterize the Besov spaces with variable smoothness and integrability by so-
called Peetre maximal functions. We use these results to show the atomic decomposition
for these spaces. As an application of their atomic characterization, we obtain a trace
theorem of these variable Besov-type spaces.
Section (6.1): Besov Spaces with Variable Smoothness and Integrability

Besov spaces of variable smoothness and integrability, B;‘((,'))q(_), initially appeared in

[160]. Several basic properties were established, such as the Fourier analytical
characterization. When p, q, a are constants they coincide with the usual function spaces
B 4. Also Sobolev type embeddings and the characterization by approximations of these
function spaces were obtained. Some properties of such a type are well known with
variable p, but fixed g and a. J. Vybiral [157] proved Sobolev type embeddings in these
spaces. H. Kempka [150, 264] has studied so-called micro-local versions of variable index
Besov spaces, when local means characterizations, atomic, molecular and wavelet
decomposition of these spaces are given. This setting includes also some range of weights
as well as slightly more general smoothness. These studies were all restricted to variable p,
but fixed q. Also J.-S. Xu [138, 158] has studied Besov spaces with variable p, but fixed g
and a.

The interest in these spaces comes not only from theoretical reasons but also from
their applications to several classical problems in analysis. For the range of parameters

p = q = 2, the spaces Bglz(')(]R%) have been considered in the analysis of certain Black-

Scholes equations, see Schneider, Reichmann and Schwab [135]. For further
considerations of PDEs, see [227].
a()

We present a decomposition by atoms for Boyqe) All these results generalize the

existing classical results on Besov spaces by taking p, q and a as constants.

We define the Besov spaces Bg((,'))q(,) and repeat some results from [160]. We show a

useful characterization of these spaces based on the so-called local means. The theorem on
local means that proved for Besov spaces of variable smoothness and integrability is
highly technical and its proved required (based on maximal functions and the classical
situation) new techniques and ideas. Using the results, we show the atomic decomposition

al
for By

As usual, R™ the n-dimensional real Euclidean space, N the collection of all natural
numbers and N, = N U {0}. The letter Z stands for the set of all integer numbers. For a
multi-index a = (a4, -, @,,) € Nj, we write |a| = a; + -+ + a,. The Euclidean scalar
product of x = (xq, -+, x,) andy = (yq, -+, ) isgiven by x -y = x;y4, + - + x,,y,. FOr
x € R™and r > 0 we denote by B(x, r) the open ball in R™ with center x and radius r. By
supp f we denote the support of the function £, i.e., the closure of its non-zero set. By
S(R™) we denote the Schwartz space of all complex-valued, infinitely differentiable and
rapidly decreasing functions on R™ and by §'(R™) the dual space of all tempered

distributions on R™. We define the Fourier transform of a function f € S(R™) by
FH® = @/ | eirdn

RTL
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Its inverse is denoted by F~1f. Both F and F~1 are extended to the dual Schwartz
space S'(R™) in the usual way. The Hardy-Littlewood maximal operator M is defined on

10c by

MG = sup j FG)Idy,

r>0|B(
B(x,r)

and M. f = M |f|* for any 0 < t < 1. The variable exponents that we consider are always

measurable functions on R™ with range in [c, o] for some ¢ > 0. We denote the set of

such functions by P,. The subset of variable exponents with range [1, oo] is denoted by P.
p = eiseiginnfp(x), pt = ess-sup p(x).

x€RM

tP if  p€(0,0),
pp(t) =40 ifp=oandt<1l,
o ifp=ocoandt> 1.

The convention 1 = 0 is adopted in order that p, be left-continuous. The variable
exponent modular is defined by

00y (f) = fpp(x)(lf(x)l)dx.

RTL
The variable exponent Lebesgue space LP®) consists of measurable functions f : R™ —» R
with g,y (Af) < oo for some A > 0.

We define the Luxemburg (quasi)-norm on this space by the formula

. f
”f”p() = 1nf{7\ >0: Qp(') (X) < 1}
As is known, the following inequalities hold (see [227])
Ifllpey =1 © o) =1 (1)

We define

and

If oy < @pey(f) + 1. (2)
Let p,q € P,. The mixed Lebesgue-sequence space £40(LPO)) is defined on sequences of
LPO-functions by the modular

Qa0 (10 ((fu)v) = z inf {7\1; >0 Qp0 <%) < 1}_

v

The norm is defined from this as usual:

IFodoll a0 @wpory = lnf{u >0: ng()(Lp())< (fdv ) < }
We will use the notation

a0y (F)v) = Z”lfvlq()”p()

for the modular. In (1) and (2) ||f1lp) and gp()(f) can be replaced by ||(fv)v||£q()(Lp())
and a0 (1p00) ((fy)v), respectively.

We say that g : R™ — R is locally log-Holder continuous, abbreviated g € Clo8  if

loc!
there exists c; > 0 such that
€1
X =
lg(x) —g(y)| < log(e + 1/Ix —y]
for all x,y € R™. We say that g satisfies the log-Holder decay condition, if there exists
g, > 0 and a constant c, > 0 such that

182



C2
— < —_—

for all x € R™. We say that g is globally-log-Holder continuous, abbreviated g € C'°8, if it
is locally log-Holder continuous and satisfies the log-Holder decay condition. The
constants ¢, and c, are called the locally log-Holder constant and the log-Hoélder decay
constant, respectively. The maximum max{c, c,} is just called the log-Holder constant of
g and it is denoted by c;44(g).

log

We note that all functions g € C, : always belong to L.
We define the following class of variable exponents

1
plog = {p EP: > is globally-log- Holder continuous }

The class P,°8 is defined analogously. It was shown in [227] that M : LPO) — LPO) s
bounded if p € P1°8 and p~ > 1, see [95] and [97], where various results on maximal
function in variable Lebesgue spaces were obtained.

Recall that n,,,(x) = 2™ (1 + 2¥|x[)™™, for any x € R", v € Ny and m > 0. Note
that 1, € L' when m > n and that ||, ||, = cn, is independent of v.

By c we denote generic positive constants, which may have different values at
different occurrences. Although the exact values of the constants are usually irrelevant for
our purposes, sometimes we emphasize their dependence on certain parameters (e.g. c(p)
means that c depends on p, etc.).

Lemma (6.1.1) [258]: If « € C\°%, then there exists d € (n, o) such that if m > d, then

loc?

2700, om (x = y) < 27O, (x — y)
with ¢ > 0 independent of x,y € R™ and v € N,.
The previous lemma allows us to treat the variable smoothness in many cases as if it
were not variable at all, namely we can move the term inside the convolution as follows:
zva(x)nv,Zm  £(X) < cMym * (Zva(')f) (x).
The next lemma often allows us to deal with exponents which are smaller than 1.
Lemma (6.1.2) [258]: Letr > 0, v € Ny and m > n. Then there exists c = c(r,m,n) > 0
such that for all g € ' (R™) with supp Fg c {€ € R" : [§] < 2Y*1}, we have

1/r
8! < ¢ (o * 8I"G0)) . xER™.
The next lemma is a Hardy-type inequality which is easy to prove.
Lemma (6.1.3) [258]: Let 0 <a<1land 0 <q < oo. Let {gJyen, b& a sequence of
positive real numbers, such that
[{ewdken, ||, = 1< .
The sequence {8y : &, = X2, a'k‘“sj}keNo is in £9 with

1813 ken, |l ,q < cL.
c depends only on a and q.
Lemma (6.1.4) [258]: Let w,p € S(R™) and M = —1, an integer such that [, x*u(x)dx = 0
for all |a] < M. Then for any N > 0, there is a constant cy > 0 so that

sup [t u(t™t ) * w(@)|(1 + [zDN < o tMHL.
ZERM

Lemma (6.1.5) [258]: Let0 <r <1, and let {bj}]_EN ’{di}jeN be two sequences taking
values in (0, +o). Assume that for some N, > 0
dy=0(2No),  j- oo, (3)
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and that forany N > 0

d < CNZ 20-ONp g1T e N,
k=j
Then forany N > 0

dr < CNZ 2G-Nrp e,
k=j

with the same constants Cy.

We present the Fourier analytical definition of the spaces Bl‘;‘((_'))‘q(_) and recall their
basic properties. We first need the concept of a smooth dyadic resolution of unity.
Definition (6.1.6) [258]: Let y be a function in §(R™) satisfying y(x) = 1 for |x] <1
and (x) = 0 for [x| = 2. We put Feo(x) = $(x), Foy () = ¥ (%) - ¢(x) and

Fo,(x) = Fe,(27*1x) forv =23,
Then {F@,},en, is a smooth dyadic resolution of unity,

iﬂpv(x) =1

v=
for all x € R™. Thus we obtain the Littlewood-Paley decomposition

f=chv*f
v=0

of all f € §'(R™) (convergence in S’(]R{"))._
Definition (6.1.7) [258]: Let ¢,, be as in Definition (6.1.6). For « : R®™ - Rand p,q € P,,

the Besov space B;‘((_')),q(,) consists of all distributions f € §'(IR™) such that

a0y = |[(2" O, * <@ 4
”f”Bpg'q(.) ”( Pv f)v 290 (LPOY) ®
log a()

Forany p,q € .’POlog and a € C,,;, the space B,; ., does not depend on the chosen smooth

dyadic resolution of unity {F ¢, },ey, (in the sense of equivalent quasi-norms). They are
quasi-Banach spaces, and

S(R™) © Byijg) © S'(R™.
Moreover, if p,q, « are constants, we re-obtain the usual Besov spaces Bf , studied in
detail by H. Triebel in [41, 56, 57, 136].

The full treatment of the spaces B") . can be found in [160] and [227], see [138,

p(.q()
150, 157, 264], for further results on the variable Besov spaces Bg((_'))'q (only the case of

constant q was considered, see also [90, 91]).
We characterize the spaces Bg((_'))’q(_) by so-called local means (see [213]). Therefore,
we define fora > 0, a : R® - Rand f € §'(R™), the Peetre maximal function
20|, * f(y)|
*,azva(.) — v ’
O 2 ) = S A 2~y

Theorem (6.1.8) [258]: Let a € C,°8, p,q € P,°8 and a > ;—_ Then

” ((p:,azva(-)f)v

- - - - a()
is an equivalent quasi-norm in BZ(J .

Proof: We will do the proof in two steps.

€ N,.

(5)

290 (LPO)
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Step 1. It is easy to see that for any f € §'(R™) and any x € R™ we have

2v4@| @, * ()] < @y 27O f (x).
This shows that the right-hand side in (4) is less than or equal (5).
Step 2. We will prove in this step that there is a constant c > 0 such that for every

fes'(RY)
*a va()
”( v {JQ()(LP()) ” (2 Pv
By a scaling argument, we see that it suffices to consider the case
va() —
|| (2 Pv * v {JQ(')(LP(')) -

and show that the modular of a constant times the function on the left-hand side is
bounded. In particular, we will show that

> iz 07y € whenevr S [, 1, =1

This clearly follows from the mequallty
. 0] .
|| |C(pvazva()f|q ||& < |||2va()(pv *f|
a()

for some o > 0. This claim can be reformulated as showing that
|67 leoze22e0 1, <
q()

240 (LPO) ’

q()”p() 4oV —
q()

which is equivalent to

1
cd a0 2veOFf(l < 1.
pC)

We choose t > 0 such that a > % > pl_ By Lemmas (6.1.2) and (6.1.1) the estimates

1/t ' t 1/t
2", * F)] < €2 (Mo 9y FI'0)) < (M * (2Ol + F)' D)) (©

are true forany y € R"*, v € Ny and any m > d (with d as in Lemma (6.1.1)). Divide both
sides of (6) by (1 + 27|x — y|)4, in the right-hand side we use the inequality
A+2%x—yD*<@+2%x—zD)"*(A + 2|y —2z|)% x,y,z€R",
in the left-hand side take the supremum over y € R™ and get for all f € S'(R"), any x €
R™, m > max(d, at) and any v € N,
204 @, * f(2)|"

t
*,azva(-) < C2vn d
(o @) = 1+ 27x—zD= "
[Rn

=C f ---dz+ci f -'-dZ=I%(x)+zlﬁ-i(x),

B(x,z—"/z) i=0 B(x,z‘”/2+i+1)\B(x,2“’/2+i) i=0
where C > 0 is independent of x, v and f . We choose ¢ > 0 such that
a—n/t
0<o<

4(1/q=—1/q%)
Since 1/q is log-Holder continuous and § € [27°7,1 + 27°7], we have

11 |1 1| 11
5(q(z) q(x)) < (2°v8)la@ q(x)lz”"|q(z) q(x)| < c22%Clog(@ov/logle+1/|x—z) < (7)
for any z € B(x,27%/2). Hence

t
__t § a(@)pvalz)t x f(2)|t

5 a1 (x) < C2v" f oo - fF@F
Rn

(1+ 2Y|x —z|)at
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Now the function z — m is in Lt (since a > n/t), then using the majorant property

for the Hardy-Littlewood maximal operator M, see [181]
) (x) <

M (g)(x),

(18« ) @ = ey Dl

it follows that for any x € R"
t 1
§ 1@JL(x) < M, (6_W2”“(')<Pv * f) (x),

where the constant C > 0 is independent of x and v. Since |x —z| = 27%/2*! and the
right-hand side of (7) can be estimated by ¢ 22v°(1/a"~1/4")) then for any x € R" and any
v € Ny, 6§ /4™)J2_ (x) is bounded by
Cth(Za(l/q_—1/q+)—a/2+n/t)2—iat f 8—t/q(z)2va(z)t|(pv " f(Z)ltdZ
B(x,Z“’/2+i+1)

< szt(Za(l/q‘—1/q+)—a/2+n/2t)zi(n—at)Mt(S—l/q(-)zva(-)(pv % f)(x)

< €210 (879027 O, x £ (),
due to our choice of 6. Hence,

Z 5§ t/q(x)lz (x) < CZ 2i(n- at)M (5 1/q()2va() *f)(x)

< CM, (5 1/Q()2va()(p *f)(x)
since again a > n/t. Consequently we have proved that

t
(890 ;20 f(x)) < M (57902740, = ) (),

. Q) . 0] O .
for all x € R™. Taking the Lt -norm and using the fact that M : Lt Lt is bounded we
obtain that

les=/a0py27e O || = |||es™ YOy 27O || < [|sa027 Ok g, x £

p()/t p()/t

50200, « ]l

with an appropriate choice of ¢ > 0. Now the right-hand side is less than or equal to one if
and only if
-1/q() yva(’) q()
” & 2w ”p(-)/q(-) =1

which follows immediately from the definition of 6.
The proof is completed.

In order to formulate the main result, let us consider kq,, k € S(R™) and S > —1 an
integer such that foran e > 0

|Fko(®)] > 0 for |E| < 2¢, (8)
PRI >0 for —< g <2e, 9)

and
fx“k(x)dx =0 forany |a| <S. (10)

]RTL
Here (8) and (9) are Tauberian conditions, while (10) are moment conditions on k. We
recall the notation
ke(x) = t7"k(t"1x), k;(x) = k,-i(x), for t>0 and j € N.
Foranya > 0, f € §'(R") and x € R™ we denote
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2ja(¥) |k.
k*az]a()f(x) = sup |kJ *f(Y)|

. , € N,. 11
yern (1 + 21[x —y|)@ 0 (11)

Usually k; = f is called local mean.
Theorem (6.1.9) [258]: Let « € C,2% and p, q € P,°® with q* < co. Leta > pi_ and at <
S+ 1. Then

Il =020 ., oz
and
858 | = 1@ )]s 13
a()

are equivalent quasi-norms on Bp(_),q(_).

Proof: First H. Kempka [150] proved this result, but only the case of constant q was
included. J.-S. Xu [138] has proved this result with variable p, but fixed q and a. H.
Kempka and J. Vybiral [265], independently, proved this result with 2¢Ok f

mrciog(/a) | Clog (@) in place of k*“zla() f — respectively. The idea of the proof is from

V.S. Rychkov [213].
Step 1. Take any pair of functions ¢, and ¢ € S(R"™) such that
|Fbo(®) >0 for [§] < 2,

IFdE®)| > 0 for §< IE| < 2e.

We will prove that there is a constant ¢ > 0 such that for any f € §'(R™)
a) |’ aqja()
||f|Bp()’Q()|| sc ||(¢] 2% f)] 7Eq(.)(]_‘p(.)).
By a scaling argument, we see that it suffices to consider the case
saqja() =1
||(¢ ) {)Q()(Lp())
and show that the modular of a constant times the function on the left-hand side is
bounded. In particular, we will show that

(14)

(o]

z |||Ck*a2’“()f|q()”p < C whenever z || ¢;"azia(-)f|
—)

j:O ()
Let A A € S(R") so that
suppFA c {£€ € R™ : [§] < 2¢}, suppFAcC {EER" : /2 < [§| < 2¢},

pC

q()”

FAGFo(®) + Zﬂ(z DFGRY =1,  FER (15)
In particular, for any f € §'(R") the identity i |s true
f=A*<I>o*f+z7\v*d>v*f- (16)

Hence we can write

ki f = ks Ao f+ ) Ky py * f.
v=1
We have

zia(y)|k]. x A, * By * f(y)| < i) f|k]. * 7\1;(2)“‘1)17 * f(y — z)|dz. (17)
Rn
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First let v < j. Writing for any z € R"
kj x4, (z) = 2""K,v-j * A(272),
we get by Lemma (6.1.4), that for any integer S > —1 and any N > 0 there is a constant

c > 0 independent of j and v
2(v—j)(S+1)+vn

|ki 2, (2)] < C(l ¥ 2v[z])2N
So the right-hand side of (17) can be estimated from above by

I+ =D (S+1)+vn f (1 + 2°)z])"N|, * f(y — 2)|dz = 2@ DEFDIeWIy x| by, * f1(y).
]Rn

7z € R™,

By Lemma (6.1.1) the estimates
290, o % 1y * F()] < 207997, « (27909, * £1)(y) < 207997 422740 £ () [Ny ncall,
< Cz(i—v)a+¢;'a2va(')f(y),
are true for any N > max(d,n + a) and any v < j (with d as in Lemma (6.1.1)).
Let now v > j. Then, again by Lemma (6.1.4) we have for any z € R™ and any L >
0

(G-v)(M+1)+jn

Ky * 2o @)] = 2k # Ay (22| < e g

where M > —1 an integer can be taken arbitrarily large, since D*FA(0) = 0 for all «a.
Therefore, for v > j, the right-hand side of (17) can be estimated from above by

QOO (14 D2l 5 £y = 2)ldz = DI s [, 5 £1(7),
Rn

We have forany v > j
(1 + 2i|z|) 72t < 22@-DL(1 4 27|z]) 2L,
Then, again, the right-hand side of (17) is dominated by
QWML [, 5 f(y) S 20Ny (20O, 1 £1) ()
< UMzl tramim) o gvaO £ (y) I, 1,
< C2(j—v)(M—2L+1+a‘+n)¢;aZva(-)f(y)’
where in the first inequality we have used Lemma (6.1.1) (by taking L > max(d,n + a)).
Taking M > 2L — a~ + a — n to estimate the last expression by
20 @D 2O f (y),
where ¢ > 0 is independent of j, v and f. Further, note that for all x,y € R® and all j,v €
N
by 27O f (y) < 27O f (1) (1 + 27|x —y)*
< %2790 f(x) max(1, 2 D9) (1 + 2)|x — y)4.
Hence
2ieM k. + A * * w-P(S+1-a*) :
sup | j .v q)v f(y)| < Cq),",'aZ”“(')f(x) x {2- %fv < ].,
yER™ (1+2)x —yDe 207 if v >j.

Using the fact that for any z € R™, any N > 0 and any integer S > —1
2—j(S+1)

A+ 12D

|k]- *A(z)| = |k2—j *A(Z)l <
we obtain by the similar arguments that for any j € N
209D [k * Ax dg * f(y)]

sup

yern (1 +2x —y])@
Hence with § = min(1,S+1—a*) > 0forall f € S'(R"), x € R",j €N

< 27 =) o £ (),
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kG 2UOf (7)< C2PGf () +C Y 271100220 f () = € 2715920 £ (),

Also for j = 0, we use the fact that for v > 1,any z € R", any N > 0 and any integer M >
-1

-v(M+1)

[ko * 2, ()] = [ko * A (2)| < CW

and
ko xA(z)| < ¢

(1+ [z)=N
to get forany x € R"

kg f () < C°f G + cE 27y 27O f (x) = CZ 27y 27O f (),
Let T > max(q*,q*/p~). Then by Lemma (6.1.3)

]ZO: ”|ck;'a21a()f|q()”p(.)/q(_) - ; |||Ck}k’a21a()f|q(-)/r T

()/q()

T
rp(-)/q(-))
s CZ ||

CE 2O <
wO/a0 ” ¥ fl ”p(-)/q(-)
with an appropriate ch0|ce of ¢ > 0.

Step 2. We will prove in this step that there is a constant ¢ > 0 such that for any f €
S'(R™)

e}

<2 (X7l

]=0

* Y 190/t
20|

d)* azla( )f|Q( )/t

”leg((-)),q(-)” = C||f|]?’g((-)),q(-)|| ' (18)
Analogously to (15), (16) find two functions A, ¢ € S(R™) such that
suppFA c {L€ R": |E| < 2¢}, suppFU c{feR":¢/2 < [§| < 2¢},
and forall f € S'"(R™) andj € N,

Fobr () s f+ ) Ukt f.

m=j+1
Hence

Kj* f = Ay * (Ko)j x k= f + Z Kj % Yy * kpy * f
m=j+1
By a scaling argument, we see that it suffices to consider the case

a) || _
”f |Bp(-),q(-)“ =1
and show that the modular of a constant times the function on the left-hand side is
bounded In particular, we will show that

Z ”|ck*a21a()f|q()||p()/q() < C whenever Z |||2]a()k f|q()||
Writlng for any z € R"

p()/Q()

k]' * L|Jm(Z) = Zjn(k * lljzj—m)(zjz);
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we get by Lemma (6.1.4), that for any integer K > —1 and any M > 0 there is a constant
c > 0 independent of j and m

2(j—m)(K+1)+jn
|kj * me(z)| <

“A+ 2z’

z € R™.
Analogous estimate
n

|Ai * (ko)i(z)| = C(l ¥ 2|z)2M”

is obvious. From this it follows that

0]

21’a(y)|k]_ % f(y)| < CZ 2(J'—m)(K+1+a_)Zma(Y)nj‘ZM * |km * f|(y)

z € R",

m=j
— CZ 2(-—m)(K+1+a™)+jn Zma(Y)!km * f(Z)I -
- 1+ 2|y —z])2M
m=) R™
Since
(14 2|y —z|)™2M < 22m=-DM(q 4 om|y _ 7|)~2M
then by Lemma (6.1.1) we have

Zia(Y)|k]_ % f(y)| < CZ 2(i—m)(K+1+a‘—2M+n)Zma(}’)nm'ZM * |km * f|(y)

m=j

< CZ 20mmrraT=2M O, o+ (27 Ok * £1) (), (19)
m=j
by taking M > max(d, a). Using the elementary estimates
A+2)x—yD <@+ 2|x—z]) %1+ 2|y — z|)*
< 2m=Da(1 4 2m|x — z)~¢(1 + 2™y — z])%, (20)
to get

[0¢]

k;,azja(-)f(x) < CZ 2(j—m)(K+1—a—a'—2M+n)+mn
m=j

Fix any r € (0, 1]. We have
2ma@|k « f(2)] = (2@ |k, « £(2)]) (2m9D [k + £(2)])

— ma(z r 2ma(z)|km * f(Z)l
_(2 ()lkm*f(z)l) ((1+2m|x_zl)a

1-r
< (2"l » f@N) (k2™ Of @) (@427 — 22070,

2@y, * £ (2)]
(1 +2m[x —z])®
RN

1-r
) (14 2™|x —z[)a@-0

Then
2@l + @)
(14 2m|x — z|)ar
RTL

where N =K+1—a+n—a” —2M can be still be taken arbitrarily large. Quite
analogously one proves for all f € §'(IR™) the estimate

v [ 27Ok FI"
Kk 4 <C z 2—mN'+mn m
A (1 + 27[x — 2]
m=0 R™

We now fix any x € R™ and apply Lemma (6.1.5) with
d =k “20f(x), jEN,

dz (k*rr,lazma(-)f(x))l_r,

k;,azja(-)f(x) <c Z 2(j—m)N’+mn
m=]

dz (k' 2me© f(x))l_r.
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2mra(z)+mnk * 2) |
bm=f ki, /1 (2)] dz, mEN,.

(14 2m|x —z|)ar
Rn

The assumption (3) is satisfied with N, = N; + n + [max(0,a*)] + 1, where N, is the
order of the distribution f € S'(R™) ([a] the integer part of the real number a). We
conclude that forany f € 8’ (]R") any N>0andanyj €N,

2mra(z)|k % f(Z)lr
*Aaja() < Z (j—m)Nr+mn .
(9240f () < 2 ol g
= ]Rn
This estimate is also true for r > 1, with much simpler proof. It suffices to take (19) with
a + n instead of a, apply Holder’s inequalities in m and z, and finally the inequality (20).
We omit the details.
Since a > n/p~, it possible to take n/a <r < p~. Let t > q* /r. We see that

|| |Ck;k,a2ja(.)f|q(-) || _ || |Ck;,a2ja(.)f|rq(-)/r _ || |Ck;,a2ja(.)f|rq(-)/rr :p(.)/q(.)

p()/a()

(o]

<C Z 2(—m)Nq~/t

o ®()/a0)

By the same method given in the proof of Theorem (6.1.8) (with m,q(-)/t,r in place of
v, q(+), t respectively) we can prove that

« (2mOpi, + 1)1

p()/q()

T

r|q(')/rt

|Cnm,ar * (Zma(.)lkm * fl)

a®)/t

—mo

< |20k +

Tp( )/a() ™()/q()

2—m0‘

g

)

p()/q()
with an appropriate choice of ¢ > 0 and here 0 <o <

S'(R")andanyj € N,

a-n/r
4t(1/q7-1/q*)’

Then for any f €

T

|||ck;'a2ja(')f|q(')|| ey S ZZ(] m)Ng~ /T( ||2ma()k f|q()| 11;/ ) 2—mc)
p q p()/q
By Lemma (6.1.3) we get
> T
Z ”'Ck*azlaof'q()” p()/a0) C; (”|2ja(')ki *f|q()||p()/q() * 2_16)

=c Z |||2]a()k f|q()||p()/q() ZZ s

Step 3. We will prove in this step that for all f € S’ (R") the following estimates are
true:
at) ||’ a() a) "
I71B5G 00|l < <[l F1BGa0 ]| < <l F1BaGae | -
Let {(p]-}jeN be as in Definition (6.1.6) and let ¢; = ;. The first inequality is proved by
0
the chain of the estimates

18550l = €l 20n, | gy = M@0y = MBS

where the first inequality is (14), see Step 1, the second inequality is (18) (with ¢ and ¢,
instead of k and k), see Step 2, and finally the third inequality is obvious. Now the
second inequality can be obtained by the following chain
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”leg((:)),q(-)” sc ||((p;'a2].a(.)f)]- PaOLPO) C”leg(('.)).q(-)”’ = C||f|B3((-.)),q(-)||”’

where the first inequality is obvious, the second inequality is (14), see Step 1, with the
roles of k, and k respectively ¢, and ¢ interchanged, and finally the last inequality is
(18), see Step 2. Hence the theorem is proved.

Now let Z™ be the lattice of all points in R™ with integer-valued components. If v €
N, and m = (m4,---,m,,) € Z™ we denote Q,,, the dyadic cube in R™ centred at 27Vm
which has sides parallel to the axes and side length 277, If Q,,,, is such a cube in R™ and
c > 0 then cQ,p, is the cube in R™ concentric with Q,,,, and with side length c277. BY Xym
we denote the characteristic function of the cube Q,,,,. The main goal is to show an atomic

" a()
decomposition result for Bp(_)’q(_).

Definition (6.1.10) [258]: Let p,q € Po(R™) and let « € C,°%. Then for all complex-

loc
valued sequences A = {A,, € C: v € Ny, m € Z™ } we define

gg%q()—{ ” 38.q(-)||<°°}

( z 2”0-’ (.)}\vavm>

mezZn

where

a() _
” }‘lbp(-),q(-) ” -
290 (LPO)

Definition (6.1.11) [258]: Let K,LEN, and let y>1. A K -times continuous

differentiable function a € CX(R™) is called [K, L]-atom centered at Q,,,,, v € N, and m €
", if

v

supp a & YQum, (21)
|DBa(x)| < 2vIBl for 0 < |B| <K, x € R" (22)

and if
fxsa(x)dx =0, for 0<|B|<Land v=1. (23)

Rn

If the atom a located at Q,,,,, that means if it fulfills (21), then we will denote it by
A,m- FOr v = 0 or L = 0 there are no moment conditions (23) required.
Lemma (6.1.12) [45]: Let {F¢;},j € N, be a resolution of unity and let p,,, be an [K, L]-
atom. Then

|(p]- * pym (0| < 2WVK(1 + 27|x — 27Vm[)™
if v <j, and
| * pom (¥)]| < 207 A4mHD (1 4 2|y — 27vm|)~™

if v > j, where M is sufficiently large.
Lemma (6.1.13) [45]: Let {T(pj}, j € N, be a resolution of unity and let R € N. Then there

exist functions 8, 6 € S(R™) with:
supp 0,,supp 0 c {x € R" : |x| < 1}, (24)

1
FO6®I > ¢y for <2, |FO®I>c for s<[l=<2,

fxBG(x)dx =0, for 0<|B| <R, (25)

RTL
such that

FO,@Fbo(®) + ) FORIDFY2ID =1, FER™,

=1
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where the functions y,, ¢ € S(R™) are defined via

_ Fo(®) _ F,(29)
Fo®) = fFG NG) and Fy(§) = TG(E) :
Theorem (6.1.14) [258]: Let a € C,°% and p, q € P,°¢ with q* < co. Further, let K, L € N,

such that

K>a+,L>n( —1)—1—a‘. (26)

min(1,p~)
Then f € §'(R™) belongs to B;‘((_'))‘q(_), if agd only if, it can be represented as

F=) D lambum, 27)

convergence being in §'(R™), where S;fnmaerze [K,L]-atoms and A = {A,, EC: v E Ny, mE

7"} . Furthermore, inf ||A|bg§_'§,q(_)|| , where the infimum is taken over admissible

representations (27), is an equivalent quasi-norm in Bg((_')),q(_).

Proof: The proof follows the ideas in [45].

Step 1. Assume that f € Bg((,'))'q(_) and let 6,, 6, Y, and s be the functions introduced
in Lemma (6.1.13). We have

f—eo*wo*f+Ze Wy f
and using the definition of the cubes Q,,,we obtaln

flx) = Z JG (x =y * f(y)dy+22"” Z fe(Z”(x—y))llJv*f(y)dy,

mez”" Qom mez" Qvm
with convergence in §'(R™). We define for every v € N and all m € Z"
Aym = Cg sup |'~|Jv * f(y)l (28)
YEQum
where
Co = max{supID“O(y)I Hal < K}.
lyls1
Define also
1
() =52 [ 0(2Cx = )y * @)y, (29)
vm

Similarly we define for every m € Z" the numbers A,,, and the functions p,,, taking in
(28) and (29) v = 0 and replacing Y, and 6 by y, and 6, respectively. Let us now check
that such p,, are atoms in the sense of Definition (6.1.11). Note that the support and
moment conditions are clear by (24) and (25), respectively. It thus remains to check (22)
in Definition (6.1.11). We have

2v(n+|B| -1
IDBpym ()] < f |(DPB) (2" (x — y))|IW, * f(y)Idy (yzlm [P, * f(y)l)
v(n+IBI)
= 2 f'(DBe)(zv(x —y))|dy < Zv(n+IBI)|Q al < 2vIBl

The modifications for the terms W|th v = 0 are obvious.
Step 2. Next we show that there is a constant ¢ > 0 such that
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a() a()
(A e Tty |
For that reason we exploit the equivalent quasi-norms given in Theorem (6.1.9) involving
Peetre’s maximal function. Let v € N. Taking into account that |x —y| < c27V for x,y €

Q,m We obtain
Clog(@)v Clog(@)v
217(0-'(96) a(y)) < 2logle+1/Ix-yD) < 2log(e+27/c) < ¢

if v > [log, c] + 2. 1f 0 < v < [log, c] + 2, then 2v(¢@~-a®) < 2v(a*~a”) < ¢ Therefore,
27O\, * F(Y| < 27O |y, * £ ()]
for any x,y € 9, and any v € N. Hence,

D A2 (@) = Co ) 2 sup 1, * £ hom ()

mez" mezn y€Qum

va(x—z) % _
SCZ 2 [, * f(x — 7))

sup (1 + Zvlzl)ava(x)

|z|gc2—V (1 + 2v|z|)a

mezn

< o2 0f (x) Z Xom () = e 27O f (x),

mezZn"

where we have used Y ,ezn Xom(x) = 1. This estimate and its counterpart for v =0
(which can be obtained by a similar calculation) give
a() ||

”}‘|bgg))'q(') | =c ”(Lljvﬂ qu(Lp()) ”f p(.a0) ||’
by Theorem (6.1.9) (since Y, € S(R™) and ¢ € S(R™) are two kernels which fulfill
Tauberian conditions (8) and (9) and the moment conditions (10)).
Step 3. Assume that f can be represented by (27), with K and L satisfying (26). We

will show that f € Bﬁ‘é')),q@ and that for some c > 0
71850 | < 2656 a0

p(),a() pOLaO ||
By a scaling argument, we see that it suffices to consider the case ||7\ bg((_'iq(_)” =1and

show that the modular of a constant times the function on the left-hand side is bounded. In
particular we will show that

z ”lczla()(P *flq()” b()/40) < C whenever z

j=0

40
z Zla())\]mxlm‘ =1, (30)

mez™ p()/a0)

where {Tcpj}jENo is the resolution of unity. We write

e}

=3 S =Yt 3 -

v=0 meZ" v=j+1

Let0 <r < max (q— —) We have

+7 g+
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1/r
rq()

C z 21hz(l)kvmcpj * pvm‘

mezZn"

FZO ”lczja(.)(pj *f|q(.)||p(')/Q(') = Z z

j=0 \ v=0

p()/rq()
. 1/r
o j rq(*)
<c ) [ 2 llle 2 2%hmay = pum
j=0 \v=0 || mez® p()/rq()
1/r
o) %) FQ(')
=0 \ve It mer p()/rq()

For each ke N we define Q ={m € z": 2k < 2minWD|x — 27vm| < 2k} and Q, =
{m € z" : 2mn@D|x — 27vm| < 1}.
Estimate of I . From Lemma (6.1.12), we have for any M sufficiently large

Z 2ja(x)|7\vm||(Pj % pvm(x)l < Cz(v—j)(k—a+) z 2va(x)|)\vm|(1 4+ 2V|x — 2—vm|)—M_
mezZ" ] mezn
We claim that there exists ¢ > 0 such that
rq() rq()
< 29O Xom +27v =68 (31)
O mez" p()
rq() rq()

Therefore, by Lemma (6.1.3) (with the help of (26)) we obtain

1/r
rq(*) \ o

mezZn j=0 mezZn

c Z 29Oy, (14 2¥|- =27V m|)™

mezm"

rq() ||/

+ c:§: 27/

pC) jz0
rq()

z(

_,
ﬁ|‘%
\_'/ p—
\_
I/\

Let us prove (31). This claim can be reformulated as showing that
rq()
6_1

c Z 2veO) (1 + 27| —27?m|)™ <1

mezZn

)

o _ p()/rq()
which is equivalent to

<1
p()

c§=1/ra0 z 2720, (1 + 28| —27Ym[)™
mezZn

We have, withM =R + T,

o)

1 1
Z § Ta2ve@ |, (1 4 2%|x — 27" m|)™ = Z 2 § TaCI2v @, (1 + 2%|x — 27V m[)™

mezZn" k=0 meQy
< CZ Z S_I"Cl(x)zva(x)z—Mkl)\vml — Z 2—(T-n/tk Z S_WZUa(x)Z_(R+n/t)k|7\vm|
k=0 meQy k=0 meQy
1
< sup Z S_FQ(X)ZVO-’(X)|)\vm|2—(R+n/t)k’
mEQk
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for any T sufficiently large such that T > n/t. For any 0 < t < 1, the last expression is
bounded by

1/t
sup Z 6—t/rq(x)2va(x)t|)\vm|t2—(Rt+n)k
keN, men,
t 1/t
= | sup 2—Rtk+(v—k)n j Z 6—1/rq(x)2va(x)|}\Umlxvm(y) dy ) (32)
KeN,

U meQy Qum \MEQk

Let y € Umeq, Qum then y € O,y for some m € Q) and 25 < 2¥|x — 277m| < 2.
From this it follows that

ly—x| <ly—27"m| + |x —27m| < Vn27? + 2k < 2kv+hn €N,
which implies that y is located in some ball B(x, Zk"’”‘n). Therefore, (32) does not

exceed
t 1/t

Z 5—1/rq(x)2va(x)|)\vm|va(y) dy . (33)

B(x,zk"“'hn) mey
Since 1/q is log-Holder continuous and § € [27Y,1 + 277], we have

2—Rtk

Cl Su
wen, |B(x, 2577+ )]

Clog(q)(2v+1)
§1/4)-1/a(y) = (2v§)1/ax)-1/a(y)p(1/q(x)-1/ayv < 211/9()-1/aWI(2v+1) < plogle+1/Tx—yD

Clog(@)(2v+1)
<2 vkhy < szclog(Q)k’

for any k < max(0,v — h,,) and any y € B(x, 257v*). If k > max(0, v — h,,) then since
againd € [277%,1 + 27Y],
§1/4)-1/q4() < ¢211/9@)-1/aW2v+1) < 22(1/97-1/q%)k

Also since a is log-Holder continuous we can prove that

ov(a)-al®) < ¢ x { 210k if k <max(0,v—h,),

B 2(@*=a”)k if Kk > max(0,v —h,),
where ¢ > 0 not depending on v and k. Hence with R sufficiently large such that
R > max(2/rcoq(q) + ciog(@),  2/r(1/q” —1/q*) +a* —a”),

we get that (33) is bounded by

1/t

c| Z §-1/ra02ve O Iy, | () |, x € R

meQy

O] (O
Now taking 0 < t < min(1,p~) and using the fact that M : Lt > Lt is bounded we
obtain

c Z §=1/ra02vaO 1, (1 + 2¥|- —27"m[) 7"

mezn p()
1/t
<cll| > 870250
mE p()/t
mezn

p()
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with an appropriate choice of c > 0. Now this expression is less than or equal to one if and
only if
rq()

<1

—_ )

Z §-1/ra0 vty
mezZn"
which follows immediately from the definition of 8.

Estimate of Il. From Lemma (6.1.6), we have for any M sufficiently large

D DO [| @) * o ()] < UMD N AW (1 4 D — 27 m) M.

mezn" mezZn

Let 0 <t <min(1,p~) be a real number such that L>n/t—1—n—a~. Using a
combination of the arguments used in the estimate of I, we arrive at the inequality

p()/rq(*)

rq()
2(-1)@/t-a”) Z 290X (1 4 2i|- —27vm[)™
mezt p()/rq()
rq(")
= z Zva(.)}\Vvam + 2—]"
_ 3 et oo
with some positive constant c. Hence Il can be estimated by
1/r
1) oo rq(’)
Z Z 2G=v)(L+n+1-n/tra)rq" z vaO) 5 P
j=0 \ v=j+1 meL” p()/ra()

L a0)

mez™ p()/a()

rq(*)

0]

II < :é:

Observing that L > n/t— 1 —n — a~, an application of Lemma (6.1.3) yields the desired
j=0

inequality, i.e.
+c=c
2
The proof is completed.

z 2ja(.))\ijjm
mezZn"
Corollary (6.1.15) [299]: Letj € N, and x" € R™. There exists € > 0 such that for all g :
R™ — R we have
1
r < —_
8601 < (14O (e =5

Proof. Since [g(x") — gy < [g(x" + Ig(y")!
Then by Lemma (6.1.2), we have

p()/rq()

1 1/1—€
(renve * lalGD) )

1+e€
lg(yDI < ogle t L/l =y I?(x )| /
=1+ (log(e +1/Ix" =y (n“e'“e " lgll_e(xr)) )

Corollary (6.1.16) [299]: Let & € C,°8, p,q € P,°8 and 1 + € > pl_. Then

[(ojeeeztromors
: : - - pa()
is an equivalent quasi-norm in B3 .

Proof. We will do the proof in two steps.
Step 1. It is easy to see that for any f2 € §'(R™) and any x' € R™ we have
20490« f2(x7)| < 22010 2,
197

(34)

jte 240 (LPO)



This shows that the right-hand side in (4) is less than or equal (34).

Step 2. We will prove in this step that there is a constant e > 0 such that for every
f?2eS'(RY)
x1teq(j+e)al) £2 < (G+e)a() q. 2

By a scaling argument, we see that it suffices to consider the case
(G+€)a()
”(2 Pj+e f ) 1zgq()(Llo())

and show that the modular of a constant times the function on the left-hand side is
bounded In particular, we will show that

]+6

z |||(1 + )y e20r0a0) 2 |q()||p. 1+ € whenever z |||2(1+€)“()cp q()”p =1

j+e=0 W j+e=0 _)
This clearly follows from the inequality

%, a) a() - i
|||(1 + O] repGraa0) 2| || < |||2(]+e)a() * f2 ” +2-(+ai+e = §
p()/qC) p()/qC)
for some € > 0. This claim can be reformulated as showing that
”5_1'(1 n e)cp;f:ez(jﬁ)a(')fz|q(')” <1
p()/a()

which is equivalent to
1 4 €)§~1/a0) pr1ter(+e)a() £2
11 + 87101 e, =1

We choose € = 0 such that 1+e>n/1+e>n/p~. By Lemmas (6.1.1) and (6.1.2) the
estimates

| r . ) Lre 1/1+¢€
20%9a60) |y, F2(yD)] < (1 + €20%9aC7) (ﬂj+e,2(n+e) * | Qe * £ (yr))

_ 14e 1/1+€

< (14O (Nreqne * (20790 gy = £2) 7)) 35)

are true for any y* € R", j € N,. Divide both sides of (35) by (1 + 2/*¢|x" — y*|)1*¢, in the
right-hand side we use the inequality

(1 + 2j+e|xr _ yrl)—(1+e) < (1 + 2j+e|xr _ Zrl)—(1+e)(1 + 2j+e|yr _ Zr|)1+e, X", yr, z' € R",

in the left-hand side take the supremum over y* € R™ and get for all f2 € §'(R™), any

x" € R" andanyj €N,

((p;_'i_1€+62(j+e)a(')f2 (xr))

2(j+e)(1—e)a(zr)|(pj+e " fz(zr)|l-€

r
(1 + 2j+e|xr — Zr|)(1—e2) dz

) < (1 4 €)20+em f
RTL

—(1+e f ---dzr+(1+e)z f o dar
B(xr,Z_j"'e/z) i=0 B(xr,z—(j+€)/2+i+1)\B(xr,2—(j+€)/2+i)

= ]];l+€(xl‘) + Z ]j2+e—i(xr)l
i=20
where e > 0 is independent of x*,j and f2, such that
1+e
0<———<1/4(1/q" —1/q%).
1797 —n /4(1/q /q%)

Since 1/q is log-Hélder continuous and § € [2~(1+€90+e) 1 4 2-1+(+O] we have
§(1/a(2)-1/a0") < (2U+G+ag)!AEI/IDN) oA vl /aE-1/a60]

ZCIOgQ(l"'e)(J""E)
< (1 + e)zlog(e+1/|xr—zr|)

<1l+e (36)
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for any z" € B(x¥,270%9/2). Hence
1+e€

8—(1+e)/q(zr)2(j+e)a(zr)(1+e) |(p(]_+€) % f2 (Zr)l

r
(1 + 2]‘+e|xr — Zrl)(1+e)2 dz".

5~/ (x7) < (1+ €)20+Om f
Rn

Now the function z' - is in L! (since (1 + €)? > n), then using the majorant

_
(1+|Zr|)(1+e)2
property for the Hardy-Littlewood maximal operator M
(gl 1/@ + D) ") < (L + |1/ + [-NO+O*|| My (@ (),
it follows that for any x* € R"
§+O/aCDIL (x7) < (1 + My, (67902090 gy + £2)(x7),
where the constant € > 0 is independent of x™ and j. Since |x" — z"| > 2-0+9/2+i gnd the
right-hand side of (36) can be estimated by (1 + €)220+0+e(1/a™-1/a%) then for any x* €
R™ and any j + € € Ny, §-1*9/a0D52 o (x7) is bounded by
(1 + €)20+00+0%(2(1/a7-1/a%)-n-(1+?/2) y-i(1+6)* 5~ (1+9/aEN2(+9aN 40|,
B(xr,z—(i+€)/2+i+1)

« f2(z0)] e

< (1 + €)20+90+0°(2(1/a7-1/a")#n-(149?/2)iln-(14+) 5, | (§5-1/a02G+0a0 .

# f2)(x) < (1 + €20+ (879020400 gy 5 £2)xT,
Hence,

z 5/ (r) < (1+€) Z 2=+ pg, | (57190204080 £2)(x7)
i=0 i=0
< (1 + My (679020790, + f2) (")
since again (1 + €)? > n. Consequently we have proved that
S ) 1+e )
(5-1/‘1(’“ Jpple20raat)f 2(xr)) < (1 + My, (6790204020 . £2)(x"),

- 0 : 0) O,
for all x™ € R™. Taking the Lr+e-norm and using the fact that M : Lr+e — Lis< is bounded
we obtain that

(1 + ©671/a0 ¢ ep+aa0) p2|

1+€
p()
< ||5—(1+€)/Q(')2(J+E)06(')1+E|(pj+e « f2

= || (1 + €5~ V/a0 @ lrep(+0a0) p2 |1
j+e

p()/(1+€)
|1+€

. p()/(1+€)

— ||g;—l/q(-)2(1+E)oz(-)(pj+e % f2”p(-)

with an appropriate choice of € > 0. Now the right-hand side is less than or equal to one if
and only if

|| |5-1/a02G+9a0 . 2 |90 ||

<1
p()/qC)
which follows immediately from the definition of §.

The proof is completed.

Corollary (6.1.17) [299]: Let « € C;°® and p, q € P,°® with q* < 0. Let 1+ ¢ >n/p~ and
at < e. Then

O N = estteriao
||f2|Bg()’CI()|| - | (k] ezja fz)] #q(')(Lp(')) (37)

and

72185600 | = @0k )| (38)

290 (LPOY’

199



are equivalent quasi-norms on B

Proof:
Step 1. Take any pair of functions ¢, and ¢ € S(R™) such that
|Fdo(®) >0 for |§| < 2g,
|Fp(E)| >0 for — <[] < 2e.

2
We will prove that there is a constant € > 0 such that for any /2 € §'(R")

21pa() ' *1+€qja(") £2

||f |Bp()'CI() | = (1 + E) ||((I)] 2 f )] gq(')(Lp(')).
By a scaling argument, we see that it suffices to consider the case

*,1+€~ja(-

wlteqjal) £2 =1

||(¢J U )i 290(LPO)

and show that the modular of a constant times the function on the left-hand side is
bounded In particular, we will show that

z ”l(l n )k* 1+e2]a()f2 Q()”p(')/q() <1+ € when z ”

j=0
Let A, A € §(R™) so that
supp FA c {€ € R™ : [§]| < 2¢}, suppFAcC {EER" : £/2 < [§| < 2¢},

(39)

*1+62]a() q®)
f l ” ()/q()

FAE)F o (5) + z FA(2-0+OE)FP(2-0+9E) =1,  EeR™. (40)
jte=1
In particular, for any 2 € §'(R™) the identity is true
2= Medo f2 4 D) Nuet biee s £ (41)
jte=1

Hence we can write

i f2 = ke A o s 24 ) Ky A x e * 2
j+e=1

We have
Zja(yr)lkj * 7\j+e * Qg * fz(yr)| < 2je0) f'kj * 7\j+e(Zr)||¢j+e * f2(y" — Zr)|er- (42)
RTL

First let e > 0. Writing for any z" € R"
kj * Ajye(zh) = 2079 kye + A(27*€2D),
we get by Lemma (6.1.4),

e2+(j+en

K * Ay (zD)] < (1 + €) AT g ¢ ER"

So the right-hand side of (42) can be estimated from above by
(1 + e)2j¢7z(yr)+ez+(j+e)n f(l + 21+e|Zr|)—2(1+e)|¢1+€ % fZ(yr _ Zr)|er

R
=1+ 6)262 2ja(yr)ﬂ1+e,2(1+e) * | Prye * 21D,
By Lemma (6.1.1) the estimates
2ja(yr)-r]1+e,2(1+e) * |¢j+e * fZ(yr)| < 2€a+nj+e,1+e * (2(j+€)a(.)|¢j+€ * f2|)(yr)
< zea+¢;‘:l_1€+€2(i+e)a(-)f2(yr)||nj+€”1 <1+ e)26a+¢;,|_1€+62(j+e)a(')f2 (D),
Let now € > 0. Then, again by Lemma (6.1.4) we have for any z" € R"
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€2+jn

(1 + 2]'|Zr|)2(1+e)’
where € > 0 an integer can be taken arbitrarily large, since D*FA(0) = 0 for all «.
Therefore, the right-hand side of (42) can be estimated from above by

1+ E)Zjoz(yr)+e2+jn j(l + 2j|Zr|)_2(1+E)|¢j+e * fZ(yr _ Zr)|er
RTL

|Kj * Aje(zD)] = 27k * e (202D < (1 + €)

=1+ E)2].0((yr)+62nj,2(1+e) * |(|)j+e * le(yr)-
We have
(1 + zjlzrl)—2(1+e) < 226(1+€)(1 + 2j+e|Zr|)_2(1+e).
Then, again, the right-hand side of (42) is dominated by
1+ E)Zla(yr)_e(n_e_l)njﬁ,ZL * |¢j+e * le(yr)
< (1+ @29 O+ (207990 gy + f2[) )
<1+ e)26(“_+n_6)Cb;_',_l:ez(j-"e)a(')fz(yr)||T]j+e,L—(1+e)”1
< (1 + 280+ 9¢pp F 20+ 9202 (y),
where in the first inequality we have used Lemma (6.1.1). Taking e <
the last expression by

a —n+4
2

to estimate

(1 + 2D rirepitan0 f2(yr),
where € > 0 is independent of j and f2. Further, note that for all x*,y* € R* and all j € N
q)]_*,+16+€2(j+e)a(')f2(yr) < ¢;;1€+€2(j+e)a(-)f2(xr)(l + 2j+e|xr _ yr|)1+e

< c]);i:eZ(j"'E)“(')fz(xr) max(l, ze(1+e))(1 + 2j|xr — yr|)1+e_

Hence
2ja(yr)“{' * N * Pjae * fz(yr)| - 2€(e-at) ife <0
sup | Dhve Tire < (1 + ©PprLreai+9a0) £2(xr) x { ife <0,
XTERM (14 2)[x" — yr|)1*e ) 2€ ife > 0.

Using the fact that for any z" € R", any integer e > 0

_]'e

(1 + |Zr|)2(1+e)’

|k]- * A(zr)| = |k2—j * A(Zr)| <(1+¢

we obtain by the similar arguments that forany j € N
20l o * 126

gremn (L + 21[x7 — y2)I+e
Hence with § = min(1,e — a*) > 0 forall /2 € $'(R"), x" € R",j EN

k200 f2(yT) < (14 €278y 2 (x7) + (1 + €) z 2718 (90 F2(x)

jte=1

=(1+¢) Z 27l grirep(+aal) £2(xr),
j+e=0
Also for j = 0, we use the fact that for e > 0, any z" € R"

< (1 + €279 gt (xn).

—e(j+€)

|k0 * ]-+€(Zr)| = |k0 * 7kz—(i+e)(Zr)| <(+e (1 + [z7[)20+9

and
ko * A(z")| < (1 +¢€)

(1 + |Zr|)2(1+e)
to get forany x* € R"

201



k2D < A+ | ot ter2(en) + z 278 Fep(+ea0) £2 (xr)

jte=1

=1+ ) 2 BIsgrIeO 2y,
j+e=0

Let T > max(q*,q*/p~). Then by Lemma (6.1.3)
Z ” (1 + E)k;'lﬁzja(')leqo ” = Z ” (1 + e)k;"1+52ja(-)f2|Q(')/T
=0 <

T
[ee]

T

p()/a() ™()/q()

; O/t
< Zz—|e|s s1+es(re)al) 2|4
. Pite 7| ()/q()
j=0
. . T
<(1+¢) Z q)lf"“‘fzwt(-)fz|q()/T
: ™w(®)/q()
j=0
— (1 + E) Z ¢f«,1+ezja(-)fz|Q(') ” <1+e
. ) p()/q()

with an appropriate choice of € > 0.
Step 2.  We will prove in this step that there is a constant e > 0 such that for any
f? €S (RM
72185600 ]| < @+ ol B0 (43)
Analogously to (40), (41) find two functions A, ¢ € S(R™) such that
supp FA c {€ € R™ : [§]| < 2¢}, suppFP c{E€ R : /2 < |E] < 2¢},
and for all f2 € S'(R™) and j € N,

szAj*(kO)j*fz'l' 2 L|Jn+e*kn+e*f2-

n=j—e+1
Hence

ki f2 = A G s K+ f2 ) g W # K £
n=j—e+1
By a scaling argument, we see that it suffices to consider the case
|721B50 00| =1
and show that the modular of a constant times the function on the left-hand side is
bounded. In particular, we will show that

jzzo ” |(1 n E)k]?k,1+e2]'a(.)fz|Q(-)|| <1+e when i ” |2]'a(.)kj *f2|Q(-)||p(.)/q(-) —1

p()/a() =
Writing for any z" € R"

kj * Wnie(zh) = Zjn(k * '~|Jzi—(n+e))(2jzr);
we get by Lemma (6.1.5), that for any integer e > 0 independent of j
ZG—n—deHn

IK; * Yrpe(z)| < (1 + €) IR z' € R",

Analogous estimate

n
(1 + 2J|zr|)2(e-D’
202
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IS obvious. From this it follows that

290l x 20| < (14 ) Y 20720490l £71(57)
=0

2(n+6)a(yr) |kn+e % f2 (Zr)l
(L + 2y — 2pFeD

—(1+¢ Z 2(-n-e)(e+a) +n

n=j—e

dz’.

Since
(1 + 2j|yr _ Zrl)—z(e—l) < 22(n+e—j)(e—1)(1 + 2n+e|yr _ Zrl)—z(e—l),
then by Lemma (6.1.1) we have

Zja(yr)|k]_ % fZ(yr)| < (1 + E) Z 2(j—n—e)(a‘—Ze+n—2)+(n+e)a(yr)nn+e'2(6_1) % Ikn+e % le(yr)

n=j—e

<(+e ) 20w ey, L (290K, )G, (44)
n=j—e
Using the elementary estimates
(1 + Zjlxr _ yrl)—(1+e) < (1 + 2j|xr _ Zr|)—(1+e)(1 + 2j|yr _ Zr|)1+e
< 2(n+e—j)(1+e)(1 + 2n+e|xr _ Zr|)—(1+e)(1 + 2n+e|yr _ Zr|)1+e’ (45)
to get
(n+e)a(z") 2(,r
2 [Kpse x f2(z7)]
(1 + 2n+e|xr _ Zr|)1+e
Rn

k]jh1+€2ja(-)f2(xr) < (1 + E) z 2(j—n—e)(—a‘—e+n+1)+(n+e)n dz’.

n=j—e

Fix any € = 0. We have
2(n+e)a(zr)|kn+E *fZ(Zr)| — (2(n+e)oc(zr)|kn+e % fZ(Zr)|)1—e(2(1+e)tx(zr)lkn+€ " fz(Zr)l)e

(1+e)a(z") 2 €
= (2(n+e)a(zr)|k *fz(zr)|)1_e 2MFOXZI Nk, e * f2(2D)] (1
n+e (1 + 2n+e|xr — Zr|)1+e
+ 2n+e|xr _ Zr|)(1+e)e

— €
< (209l 260N (k20902 60)
+ 2n+e|xr _ Zr|)(1+e)e.

Then
*1+€qja () £2
k2O (")
_ . 2n+e(1—e)a(zr)|k N *fZ(Zr)ll—e . . €
< (1 + E) z Z(J—n—e)N +(n+e)n f (1 " 2n+€|x”; i Zr|)1—e2 dz’ (kn.il-eznﬁa()fZ(xr)) )
n=j—e

where N’ =n — a~ — 2e — 1 can be still be taken arbitrarily large. Quite analogously one
proves for all 2 € S'(R™) the estimate

kg 2 ()
- . 2(+A-Da@) [|c x f2(z7)|17€ . .
— - *,1+€ .
<(1+¢€ Z 2 (n+e)(N'-n) f e Zrl)l_ez dz’ (kn+e 2(n+e)a()]c2 (xr)) .
n=-—e R?

We now fix any x" € R™ and apply Lemma (6.1.5) with
(n+e); =k 290F2(x7),  jEN,,

(429 = | ]

2(n+e)(1—e)a(zr)+(n+e)n|kn+E % fZ(Zr)ll—e
A (1 + 2n+e|xr _ Zr|)1—62

The assumption (3) is satisfied with N, = N; + n + [max(0, a*)] + 1, where N, is the order
of the distribution f2 € $'(R™). We conclude that for any f2 € §'(R"), and any j € N,

203

dz', n € Ny.



(ko2 p2en)
2(n+e)(1—e)a(zr)|k " f2 (Zr)ll—e

< (1 + E) Z 2(1—n—e)(1—52)+(n+e)n .[ nte dz’
Rn

L (1 + 2n+e|xr _ Zrl)l—ez

This estimate is also true for e < 0, with much simpler proof. It suffices to take (44) with

1+ e+ ninstead of 1 + €, apply Holder’s inequalities in z", and finally the inequality
(45). We omit the details.

Sincel+e¢€ > pi_, it possible to take i <l—e<p.Lett> f—; We see that

[l + Ok Hreaie0 20| |1

= ||l + ety Hre2ie0 2

p()/q()
- o+ ox 2o

p()/a()
|q(-)/t T

™()/q()

T
; - —e190)/(-o)t
<+9( Y 20N+ Onyyegc = (209 Clkeqac s £21)
n=j—e w()/q()

By the same method given in the proof of Theorem (6.1.8) we can prove that

—e190)/ (-t
|||(1 + e)nn+e,1_€2 * (2(n+€)a(')|kn+e * f2|)1 €
O/ w()/q()
< [[[2+0a0) « £2 al/t 7—(n+e)o
”l nee t S O/40
. Q)
— 2(n+e)a()k q 2—(n+e)0'
”| nre ”p()/q()
1+e—n/(1-¢€)

with an appropriate choice of e > 0 and here 0 < o <
S'(R*)andanyj € N,
1+ exgreeai |

———~ —_ Then for an 2 €
4t(1/q~-1/q%) en tor a yf

p()/a0)

S - a®) | /"
z 2(]—n—e)(1+e)q /T (” |2(n+€)a(.)kn+e % f2| || + 2—(n+e)(1+e))
p()/a()

n=j—e

By Lemma (6.1.4) we get

Dl oaror s s (o prOL )

p()/q()

<@+ e)z Jlze0w = 21|+t e)z 27T < 1t
. L,

]:
Step 3. We will prove in this step that for all /2 € §'(R") the following estimates are
true:

210 ' 210 210 "
”f |Bp(-),q(-) | =+ E)”f |Bp(-),q(-) | =+ e)”f |Bp(-),q(-)“ )
Let {cpj}jEN be as in Definition (6.1.1) and let ¢; = ;. The first inequality is proved by
0
the chain of the estimates
”f 2|Bpa: | <1+e

*,1+€~jq(:
wlteqjal) £2
((P] f )i 240 (LPO)

<@+ || (@0« f2) |

I paO(Lp0)
< (1+9)||£21B50) oo ||
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where the first inequality is (39), see Step 1, the second inequality is (43) (with ¢ and ¢,
instead of k and k), see Step 2, and finally the third inequality is obvious. Now the
second inequality can be obtained by the following chain

[0 ] < 1+ 0 | (oyrrzmor?) < 1+ 02180 ||

j 240 (LPO)
< 1+ 92185 0 ||
where the first inequality is obvious, the second inequality is (39), see Step 1, with the

roles of k, and k respectively ¢, and ¢ interchanged, and finally the last inequality is
(43), see Step 2. Hence the Corollary is proved.

Corollary (6.1.18) [299]: Let a € C,°8 and p,q € P,°8 with q* < oo. Further, letK,L €
N, such that

K>at, L>n —1—-a". (46)

1
(min(l,p‘) - 1)
Then f2 € §'(R™) belongs to B;‘((,')),q(,), if and only if, it can be represented as

=Z z AaPa, (47)

j=0 n+eezn

whereA=(G+e)(n+e¢)

convergence being in S'(R™), where p, are [K,L]-atoms and A = {Aj1m+e) €C:jE
No,€ = 0,n+ ¢ € Z" }. Furthermore, inf||7\|bg((_'§'q(_)||, where the infimum is taken over
admissible representations (47), is an equivalent quasi-norm in Bg((_')),q(_).

Proof: The proof follows the ideas in [45].

Step 1. Assume that 2 € B ) and let 6,, 6, Y, and yr be the functions introduced

p().q(
in Lemma (6.1.13). We have

[ =80k W x f74 ) Bpre* et f
and using the definition of the cubes Qj4.¢)(1.+¢)We obtain
P =y [ el =y s 260y

n+eezn Qo(n+e)

N z 2G+on z f 2te(xt — )) Yjse * f2(yDdy",

with convergence in S’ (IR{") We defrll;eeeiorg gvery] €N
A= (1+€)g sup [Wjee* f2G1) (48)
where e
(1+¢€)g= max{ sup IDFO(y")| : |a| < K}.
Define also e
oA = 5207 [ 0/(274 G =) e+ £ (49)
Qa
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Similarly we define for every n + € € Z" the numbers A, and the functions peen4.¢)
taking in (48) and (49) j = —e and replacing ;. and 8 by {_. and 6_,, respectively. Let

us now check that such p.e)m+e) are atoms in the sense of Definition (6.1.11). We have
2(+e)(n+IBD

D0 ()| < g j |(D%6) (2t — y)| [Wye

-1
* f2(y")|dy" (yslelp |Wise *fz(yr)|>

2G+e)(n+BD

(1 s, f |(D39) 21+€(x ))| dy" < 20+0@+IBD|g,| < 20+IBl,
0

The modifications for the terms with j = —e are obvious.
Step 2. Next we show that there is a constant e > 0 such that

a() 2|pa)
[AlbsGa0l = @+ o Bp(2.40 |
Let j € N. Taking into account that |x* — y*| < (1 + €)270+9 for xT,y" € 0, We obtain
(1+6)10g(@)(j+€) (1+6€)10g(a)(j+€)
2(]+€)(a(xr) a(y") < 2logle+1/Ix™=y™D) < 210g(e+2]+€/(1+€)) <1l+e€

if j+e>[log,(1+6e)]+2. If 0<j+e<][log,(1+€)]+2, then 20+a(axN-aGM) <
2G+a(@*~a7) < 1 4 ¢ Therefore,
20+9eGD |y, x f2(yD)| < (1 4 20490 |y, F2(yD)]
forany x',y" € Q5 and any j € N. Hence,
D, MG = (e Y 20095 sup . FYa ()
n+e€zn n+eezn y'€Qa
2(+e)alx"-z )|¢j+e % fZ(xr _ Zr)l

< 1+e€ Su - 1+ 2j+€ Zr 1+€ (xr
( ) r|s(1+§z—(i+e) (1 + 2i+e|zr|)1+e ( |z D xa(x")

|z

n+eezn

< (1 + E)llj;-,l_le+62(j+e)a(-)f2(xr) Z XA(xr) — (1 + E)llj;-,l_le+ez(j+e)a(-)f2(xr)’
n+eezn

where we have used Y., cczn xa(x") = 1. This estimate and its counterpart for j = —e give

bl = vofwmor |, L, <0voll

by Theorem (6.1.9) and ¢ € S(R™) are two kernels which fulfill Tauberian conditions (8)
and (9) and the moment conditions (10).
Step 3. Assume that 2 can be represented by (27), with K and L satisfying (26). We

will show that 2 € B“(()) (y and that for some € > 0
Sl

|72[Br0 a0 | = @+ @ [[AJp500
By a scaling argument, we see that it suffices to consider the case ||A bg((fiq(_)” =1 and

show that the modular of a constant times the function on the left-hand side is bounded. In
particular, we will show that

ZO ” |(1 + E)Zja(')(p]. * f2|Q(') ||

jte

p()/a()
a()
<1+ ewhen Z Z 2)a( ,(n+€)x,(n+e)‘
n+e€zn

p()/q()
=1, (50)
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where {}"(p]-}]_ENO is the resolution of unity. We write

EIPNTID R

j=0 n+eezm j=e+1

Let0 <1—e<max(1/q*,p~/q*). We have
D lict+ oze0g; 2|
j=0

p()/q()
1/(1-€)
o) 0 (1_5)(1(')
< Z (1+¢€) Z Zja(')lA(pj * Pp
=0 \ j=0 neer” P()/(1-9)q()
1/(1-€)
(1-e)q()
<(1+e Z Z (1+e Z Zja(')AA(p]- * Pa
=0 neesn p()/(1-6q()
1/(1-€)

(1-e)q()

+(1+€)Z z

j=0 \ j=e+1

(1+e) Z 25N, @) % pa

n+eezn

p()/(1-€)q()
=1+ IL

For each k € N we define Q, = {n+ € € Z": 2kt < 2minGrel |y — 2=+ (n 4 ¢)| < 2K}
and Q, = {n + e € Z" : 2minG+ed|yr — 2-0+(n 4 )| < 13,
Estimate of | . From Lemma (6.1.12), we have for any e sufficiently large
Zja(xr)P\A”(Pj * PA(XF)|
n+eezn
< (1 + )2¢(a) Z 20+l ), (1 4 2+€[xT — 270+ (n 4 ¢) )

n+eezn
We claim that there exists € > 0 such that

(1-9)q()
(1+¢) Z 20+9a0), (1 + 20| —2-0+(n + ¢)]) ™
n+eezn Q)
1-9q0
(1-9)q()
<|lla+o Z 2900, x s 427040 = § (51)
n+eezn p()
) (1-e)q()
Therefore, by Lemma (6.1.3) we obtain
1/(1-€)
® (1-9q0)
I<(1+e) Z 2j0{(.)}‘]'(n+e)Xi(n+e) +27
j=0 n+e€zm

p()/(1-e)q()

(1-eqO) ||/ (179
< (1 + 6) Z Z 2 ](n+e)X](n+e)
n+e€zn

+(1+e)22 j/(1-€) —(1+e)z

j=0

p()/(1-e)q()
q(®)

Z 290N mioXjnto <0.

nteer® p()/a0)
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Let us prove (51). This claim can be reformulated as showing that
(1-e)q()

<1

—_— )

§1|(1+¢) z 20490}, (1 4 2i*¢|- —2-0+(n + ¢)])" ™

n+eezn

o _ p()/(1-€)q(-)
which is equivalent to

(1 + €)6-1/1-990 Z 20+9e0, (1 + 2%¢|- =270+ (n + &)[)"
n+e€zmn

We have, withe—1 =R+ T,
5—1/(1—e)q(xr)2(i+e)a(xr)|;\A|(1 + 21+e|xr —2-G+o(p + €)|)1—e

n+eezn

<1
p()

_ Z z §71/(1=9aGN2(+alD ) |(1 4 2i*e|xr — 270+ (n 4 €)|)1_6

k=0 n+eeQyg

<(1+¢€ Z Z 5—1/(1—E)Q(xr)2(j+e)a(xr)2(1—e)k|)\A|
k=0 n+eeQyg

= Z 2_(T—n/(1—e))k Z 5_1/(1_E)q(xr)2(j+5)“(xr)2—(R+n/(1—e))k|}\A|

k=0 n+e€Qy
< sup z §~1/1=-9a(N G +alN |y |2-R¥n/1-eDk

€N,
n+e€Qy

for any T sufficiently large such that T>n/(1—€). For any 0 <e <1, the last
expression is bounded by

1
e (1-¢)
sup Z § T-0aG) 2(+9(1-Aal)|y, [1-ep-(RU-+mk _
keNo n+eeQy
1
1-e€ (1-¢)
1
sup 2 Rk(1-e)+(j+e-ln f Z § (1=9a@N20+9aD ), [x, (y") dy” : (52)
€Np

UQa \nt+eeQy

Let y* € Unteen, Qa then y™ € Q, for some n + € € Qy and 271 < 2F¢|x" — 270+ (n 4 ¢)| <
2X. From this it follows that
ly" — x| < [y" = 27091 + )| + [x" — 2709 (n + €)| < Vn270+9 4 2k=(+9)
< 2k—(j+e)+hn, hn € N,
which implies that y* is located in some ball B(xF, 2k=0+9+hn ) Therefore, (52) does not

exceed
1
1-€ -o

2—R(1+e)k ~ 1
§ @-9a@N20+0a@) ), |x A (y") dy" (53)

sup -
KEN, |B()Cr, 2k—(]+e)+hn)|
B(xr‘zk—(j+e)+hn) n+e€y

Since 1/q is log-Holder continuous and § € [270+9,1 4+ 2-0+9] we have
§1/9@N=1/40") = (2i+es)1/al)-1/a6")p(1/aGN)=1/aGM)G+e) < 2l1/aGN)-1/aGMI@G+O+1)

Clog((2(j+€)+1) Clog()(2(j+€)+1)
< 2log(e+1/Ix™=y') < 2 jte-k-hy < (1 + E)chlog(cﬂk,

for any k < max(0,j+e€—h,) and any y* € B(x", 2k-0+9+hn)  If k > max(0,j + € — h,,)
then since again 6§ € [270+9),1 + 270+9],
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§1/a(N-1/a0") < (1 + €)211/a@D-1/aNIRG++1) < (1 4 ¢)22(1/a7-1/a%)k
Also since a is log-Ho6lder continuous we can prove that

o ( )k 1 1 —
2(i+e)(a(xr)—a(yr)) < (146 x { 29 f “ ) if k <max(0,j+e€—h,),
2(a"—a")k if k=>max(0,j+e—h,),
where € > 0 not depending on j and k. Hence with R sufficiently large such that

1 1
R > max (2/(1 — €) Clog(q) + Cpog(a), 2/(1—¢€) (q—_ - q_+) +at — a‘),

we get that (53) is bounded by
1/(1-€)

(1+¢€) ]V[1+e< Z 6‘1/(1‘6)Q(')2(i+€)“(')I)\AIXA> (x") , x" € R™

n+eeQy

A N O] O .
Now taking 0 < e < min(1,p~) and using the fact that M : Li— - Li—< is bounded
we obtain

(1+6) Z §-1/(1-9a02+Ae0 ), |(1 + 27*¢| —2-0+ (n + )[) "

n+eezn p()
1/(1-€)
<(1+¢) M1+E< z 5—1/(1—e)q(-)2(j+6)a(-)|;\A|XA>
n+ecli p()/(1-¢)
<

)

Z 5~/ (1=940)20+aa0) 3 |x A

n+eezn

p()

with an appropriate choice of e > 0. Now this expression is less than or equal to one if and
only if

(1-9q()

§-1/(1-940)2(+9a0) o, <1

)

n+eezn

which follows immediately from the definition of §.
Section (6.2): Variable Smoothness and Integrability

Spaces of variable integrability, also known as variable exponent Lebesgue spaces
LPO(R™), can be traced back to Orlicz [124, 284], and studied by Musielak [45] and
Nakano [278, 279], but the modern development started with [31] of Kovacik and
Réakosnik as well as [8] of Cruz-Uribe and [13] of Diening. The variable Lebesgue spaces
have already widely used in the study of harmonic analysis. Apart from theoretical
considerations, such function spaces have interesting applications in fluid dynamics [85,
130], image processing [7], partial differential equations and variational calculus [87, 103,
111, 283, 285].

Function spaces with variable exponents attract many attentions, especially based on
classical Besov and Triebel-Lizorkin spaces (see Triebel’s monographes [41, 56, 136] for
the history of these two spaces). When Leopold [117, 118, 119, 120] and Leopold and
Schrohe [37] studied pseudo-differential operators, they introduced related Besov spaces

with variable smoothness, B;,((']) (R™), which were further generalized to the case that q #
p, including BIS;,(('J)(IR”) and FIS)’(('J)(]R"), by Besov [90, 91, 92]. Along a different line of

study, Xu [137, 138] studied Besov spaces Bf;(.),q(]R“) and Triebel-Lizorkin spaces

p()/(1-€q()
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F;(.),q(Rn)with variable exponent p(+) but fixed g and s. As was well known from the

trace theorem (see [22]) and Sobolev-type embeddings (see [60]) of classical function
spaces, the smoothness and the integrability often interact each other. However, the
unification of both trace theorems and Sobolev-type embeddings does not hold true on
function spaces with only one variable index; for example, the trace space of Sobolev
space WKPO) js no longer a space of the same type (see [15]). Thus, function spaces with
full ranges of variable smoothness and variable integrability are needed.

The concept of function spaces with variable smoothness and variable integrability
was firstly mixed up by Diening, Hastd and Roudenko in [16]; they introduced Triebel-

Lizorkin spaces with variable exponents F;(('_))Iq(_)(ﬂ%") and proved a trace theorem as
follows:

. S . _1 , _
Tr By g0 (R™) = Be o) /6 7 (R,

(see [16]), which shows that these spaces behaved nicely with respect to the trace operator.

Subsequently, Vybiral [65] established Sobolev-Jawerth embeddings of these spaces. On

the other hand, Almeida and Hé&st6 [3] introduced the Besov space with variable

smoothness and integrability B;(('_)),q(_)(]l%"), which makes a further step in completing the

unification process of function spaces with variable smoothness and integrability. Later,

Drihem [17] established the atomic characterization of B;(('_))'q(_)(w) and Noi et al. [280,

281, 282] also studied the space B5() ., (R™) and F5() o (R") including the boundedness

of trace and extension operators, duality and complex interpolation. Here we point out that
vector-valued convolution inequalities developed in [3] and [16] supply well remedy for
the absence of the Fefferman-Stein vector-valued inequality for the mixed Lebesgue

sequence spaces £90) (Lp(')(Rn)) and LPO ({’Q(')(IR%")), respectively, in studying Besov
spaces and Triebel-Lizorkin spaces with variable smoothness and integrability.

More generally, 2-microlocal Besov and Triebel-Lizorkin spaces with variable,
Boay (R and Fol) (R™), were introduced by Kempka [150, 264] and provided a
unified approach that cover the classical Besov and Triebel-Lizorkin spaces as well as
versions of variable smoothness and integrability. Afterwards, Kempka and Vybiral [29]
characterized these spaces by local means and ball means of differences. The trace spaces
of 2-microlocal type spaces were studied very recently by Moura et al. [44] and Gongalves
et al. [24].

Besov-type spaces By (R™) and Triebel-Lizorkin spaces F.g(R™) and their
homogeneous counterparts for all admissible parameters were introduced in [189, 190,
221] in order to clarify the relations among Besov spaces, Triebel-Lizorkin spaces and Q
space (see [12, 19]). Various properties and equivalent characterizations of Besov-type
and Triebel-Lizorkin-type spaces, including smoothness atomic, molecular or wavelet
decompositions, characterizations, respectively, via differences, oscillations, Peetre
maximal functions, Lusin area functions or g, functions, have already been established in
[222, 261, 271, 289, 290, 291, 292, 295]. Moreover, these function spaces, including some
of their special cases related to Q spaces, have been used to study the existence and the
regularity of solutions of some partial differential equations such as (fractional) Navier-
Stokes equations. Based on F; (R™), we introduced the Triebel-Lizorkin-type space with

variable exponent F5)?  (R™)p(-) in [76] with a measurable function ¢ on R%*! and
obtained a related trace theorem (see [294]).
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We based on Besov-type spaces B, (R™) and variable Besov spaces B;((',))’q(_)(]R{"),

we are aimed to introduce another more generalized scale of function spaces with variable
smoothness s(-), variable integrability p(-) and q(-), and a measurable function ¢ on

R%*1 denoted by B;(('_))'fll’(_)(IR”), which covers both Besov spaces with variable smoothness

and integrability and Besov-type spaces. We then establish their ¢ -transform
characterization in the sense of Frazier and Jawerth. We also characterize these spaces by
smooth atoms or Peetre maximal functions and we give some basic properties and

Sobolev-type embeddings. We show a trace theorem of B;(('_))"‘L’(_)(R") and obtain several

equivalent norms of these spaces.
We give some conventions and notation such as semimodular spaces, variable and
mixed Lebesgue-sequence spaces, and also introduce variable Besov-type spaces

B;((',)):‘ll’(_)(lf&”). We point out that the function spaces studied fit into the framework of so-

called semimodular spaces. We point out that, in general, the scale of Besov-type spaces
with variable smoothness and integrability and the scale of Musielak-Orlicz Besov-type
spaces in [75] do not cover each other.

s().¢

We devote to the ¢ -transform characterization of Bp(,),q(_)(lR”) in the sense of

Frazier and Jawerth [22], which is then applied to show that B;(('_))'E(_)(R”) is well defined.
s()

This is different from [3], in which the space B ) ,,(R™) was proved to be well defined
via the Calderon reproducing formula. We point out that the method used is originally
from Frazier and Jawerth [22], which is smartly modified, via a subtle decomposition of
dyadic cubes, so that it is suitable to the present setting. Observe that the r-trick lemma
from [16] plays a key role in establishing a convolutional estimate so that we can use the
convolutional inequality from [3] to obtain the desired conclusion.

By making full use of the r-trick lemma from [16] again, we mainly give out the

Sobolev-type embedding property of B;((',))"‘j]’(,)(R”). Some other basic embeddings and

: O
properties of the spaces B;(_)'q(_) (R™) are also presented.
S('),q)

We characterize the space Bp(,)’q(,)(ﬂ%") via Peetre maximal functions. A key step to
obtain this is to establish a technical lemma, which indicates that the Peetre maximal
function can be controlled, via semimodulars, by the approximation to the identity in a

suitable way. We further obtain two equivalent characterizations of B’()¢  (R™). By

applying a Hardy-type inequality from [18] and the Sobolev-type embedding theorem
obtained, together with some ideas from the proof of Lemma (6.2.23), we establish the

smooth atomic characterization of B3)® . (R™).

The symbols A < Bmeans A < CB. If A < Band B < A, then we write A ~ B. For
alla,b € R, leta Vb := max{a,b}. For all k := (kq,--:,k;,) € Z", let [K| := |k{| + -+ +
|k, |. LetZ, :={0,1,---},N:={1,2,---}and K := Ror C. Let R?*1 := R" X [0,). IfE
is a subset of R™, we denote by xg its characteristic function and ¥g = |E|~*/?xg. For all
x € R"and r € (0,), denote by Q(x,r) the cube centered at x with side length r, whose
sides parallel axes of coordinate. For all cube Q c R™, we denote its center by cy and its
side length by ¢(Q) and, for a € (0,), we denote by aQ the cube concentric with Q
having the side length with a£(Q).
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For an exposition of these concepts, see [15]. The function spaces studied fit into
the framework of so-called semimodular spaces. In what follows, let X be a vector space
over K.

Definition (6.2.1) [298]: A function o : X — [0, 0] is called a semimodular on X if it
satisfies:
(i) o(0) = 0and, forall f € Xand A € Kwith [A| =1, o(Af) = p(f);
(i)If o(A, f) = 0 forall A € (0, ), then f = 0;
(ili)  p is quasiconvex, namely, there exists A € [1, «) such that, forall f, g € X,
e(6f + (1 —0)g) < A[Be(f) + (1 —0)e(g)];
(iv) A= o(Af) is left continuous on [0, ) for every f € X, namely, x<11ir,{1—>190\f) =

e(f).

A semimodular o is called a modular if it satisfies that o(f) = 0 implies f = 0, and is
called continuous if, for every f € X, the mapping A = o(Af) is continuous on [0, o),
namely, lim o(Af) = e(f).

Definition (6.2.2) [298]: Let o be a (semi)modular on X. Then
X, ={f €X:31€ (0,0) such that g(Af) < oo}
Is called a (semi)modular space with the norm
If1lg = inf{A € (0,00) : o(f/A) < 1}.
Lemma (6.2.3) [298]: Let g be a semimodular on X. Then ||f]|, < 1 if and only ife(f) <
1; moreover, if g is continuous, then [|f|[, < 1 if and only if o(f) < 1, as well as ||f]l, =
1ifand only if o(f) = 1.
We recall some definitions and notation for the space with variable integrability. For
a measurable function p(:) : R™ - (0, o], let
p- = ees infp(x) and p, = ees sup p(x).
The set of variable exponents, denoted by P (R™), is the set of all measurable functions
p(-) : R™® — (0, ] satisfying p_ € (0,00]. For p(-) € P(R™) and x € R", define the
function p,,, by setting, for all t € [0, ),
@, if p(x) € (0, 00),
Ppo (D) = { 0, if p(x) = wandte€ [0,1],
0, if p(x) = wandt € (1,).
The variable exponent modular of a measurable function f on R™ is defined by

Ppy () = fRan(x)ﬂf(x)I)dx.

Definition (6.2.4) [298]: Let p(-) € P(R™) and E be a measurable subset of R™. Then the
variable exponent Lebesgue space LPC)(E) is defined to be the set of all measurable
functions f such that

“f”Lp(')(E) = lnf{)\ € (0,0) : Qp()(fXE/}\) < 1} < 00,
Definition (6.2.5) [298]: Let p,q € P(R™) and E be a measurable subset of R™. Then the

mixed Lebesgue-sequence space £40) (Lp(')(E)) is defined to be the set of all sequences
{£,},en Of functions in LPO(E) such that

||{fv}vEN||£q(-)(Lp(-)(E)) = inf{ A € (0,) : Q[q(')(Lp('))({vaE/}\}vEN) < 1} < o,
where, for all sequences {g,},en OFf measurable functions,

2050y Uudoer) = ) inf{u, € 0,0 1 0y ({gu/w/ 0} <1} 6w

veEN
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with the convention A1/® = 1 for all A € (0, ).

A measurable function g € P(R") is said to satisfy the locally log-Holder
continuous condition, denoted by g € Cigf(]R{"), if there exists a positive constant Cyo4(g)
such that, for all x,y € R",

Clog(.g)

lg() —g(y)| < log(e + 1/Ix =31’
and g is said to satisfy the globally log-Ho6lder continuous condition, denoted by g €
clog(R™), if g € Cllgf(lR{") and there exist positive constants C,, and g, such that, for all
x € R",

(55)

|lg(x) — goo| < Tog(e + [x) (56)

Now let G(R%?*1) be the set of all measurable functions ¢ : R%*! — (0, o) having
the following properties: there exist positive constants c; and c, such that, for all x € R"
and r € (0, ),

cilep(x,2r) < ¢px, 1) < c;Pp(x,2r) (57)
and, forall x,y € R™ and r € (0, ) with |[x —y| <,
ci'd(y, 1) < dx,1) < c,¢(y, 2r) (58)

In what follows, for ¢ € G(R?*1) and all cubes 9:= Q(x,r) c R™ with center x €
R™ and radius r € (0, ), define (Q) = d(Q(x,1)) = d(x, 2r). Let S(R™) be the space of
all Schwartz functions on R™ and §'(IR") its topological dual space. A pair of functions,
(¢, D), is said to be admissible if ¢, ® € S(R™) satisfy
supppc{EeR":1/2 < |¢| <2} and |p(&)| =c>0when 3/5< ¢ <5/3 (59)
and
supp @ c {£€ R™ : [§| < 2} and |33(E)| > c > 0when |§] <5/3, (60)
where f(¥) = Jan f (x)e~*%dx for all £ € R™ and c is a positive constant independent of
geR™. ForalljeN, ¢ € S(R™) and x € R™, we put @;(x) := 2"¢p(2)x) and §(x) =
@(—x). Forj€ Z and k € Z", denote by Qj the dyadic cube 271([0, D™ + k), X =
277k its lower left corner and £(Qjy) its side length. Let Q= {Q :j € Z, k€ Z"}, Q" =
{0 eQ:£(Q) <1}andj, = —log, £(Q) forall Q € Q.
Definition (6.2.6) [298]: Let (¢, ®) be a pair of admissible functions on R™. Letp,q €
Clog(R™) | s € Cfgf(Rn)nL‘”(Rn) and ¢ € G(R™*1) . Then the Besov-type space with

variable smoothness and integrability, B;((',))"‘g(_)(IR{”), is defined to be the set of all f €
S§'(R™) such that

1 :
— O]
||f||B;((-_)),’q(;(_)(Rn) o ilelgq)(p) ”{ZJS |(p] * f|}j2(iPVO) ||{)q(-)(Lp(-)(P))

where the supremum is taken over all dyadic cubes P in R™.

By comparing Besov-type spaces with variable smoothness and integrability with
Musielak-Orlicz Besov-type spaces in [75] we show that, in general, these two scales of
Besov-type spaces do not cover each other.

To recall the definition of Musielak-Orlicz Besov-type spaces, we need some
notions on Musielak-Orlicz functions. A function ¢ : R™ x [0, ) — [0,0) is called a
Musielak-Orlicz function if the function @(x,") : [0,00) = [0, o) is an Orlicz function for
all x e R, namely, for any given x € R®, ¢(x,) is nondecreasing, ¢(x,0) =0,
@(x,t) € (0,0) for all te (0,0) and !Lrg @(x,t) =, and @(-,t) is a Lebesgue

measurable function for all t € [0,00). A Musielak-Orlicz function ¢ is said to be of
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uniformly upper (resp. lower) type p for some p € [0, o) if there exist a positive constant
C such that, for all x e R", t€[0,00) and s € [1,) (resp. s € [0,1]), @(x,st) <
CsP@(x,t) (see [32]). Let

i(@) = sup{p € (0, ) : ¢ is uniformly lower type p}
and

[(@) = inf{p € (0, ) : @ is uniformly upper type p}.
The function (-, t) is said to satisfy the uniformly Muckenhoupt condition for some r €
[1,0), denoted by ¢ € A.(R™), if, when r € (1, =),

r'/r
sup BIF fcp(x t)dx{] [o(y, D] r/rdy} < oo,

te(0,00) balls Bc]Rn
where 1/r+ 1/r" = 1, or, when r =1,

sup  sup j(p(x t)dx {ess suple(y, )]~ } < oo,

te(0,0) balls BcR" IBI
Let Aoo (Rn) = UrE[l,oo) Ar(]Rn)
The Musielak-Orlicz space L® (IR™) is defined as the set of all measurable functions
f on R™ such that

If Lo wny = inf{l € (0,00) : [ @, |[f()]|/Ndx < 1} < o,
Rn

Let S, (R™) be the space of all Schwartz functions h satisfying that, for all multi-

indices y := (yq, ", Yn) € Z%, fRn h(x)xYdx = 0 and let §; (R™) be its topological dual
space.
Definition (6.2.7) [298]: Lets € R, T € [0,), q € (0,o] and y be a Schwartz function
satisfying suppdpc{E€R":1/2<[§| <2} and |p(&)|=C>0if 3/5<[¢§| <5/3 for
some positive constant C independent of § € R™. For all j € Z and x € R", let §;(x) =
2y (2)x). Assume that, for j € {1,2}, ¢; is a Musielak-Orlicz function with 0 < i(¢;) <
I(¢;) < 0 and @; € A, (R™). Then the Musielak-Orlicz Besov-type space B!, ,(R™) is
defined to be the space of all f € S, (R™) such that

S, T 2
”f”B(plq,zq(lR ) T PED ”XP”L‘Pl(Rn) {2( NJ f|) } < oo

LP2(R™)
with suitable modification made when q = o, where the supremum is taken over all
dyadic cubes P of R".
s().¢

The purpose is to show that B .y ., (R™) is independent of the choice of admissible

function pairs (¢, ®). To this end, we first introduce the sequence space b;(')"" »(R™) with

(.a(
respect to B;(('_))"ﬂl’(_)(ﬂ&") and then establish its ¢-transform characterization in the sense of

Frazier and Jawerth [22].
Definition (6.2.8) [98]: Letp,q,s and ¢ be as in Definition (6.2.6). Then the sequence

©1,92,9

s().¢ ; ; .
space b,y (R™) is defined to be the set of all sequences t := {tQ}QEQ* c C such that
( )
el : ! > 101 el ! <
LSO gny = SUP T n|to|X 0,
p q()(R ) PeQ d)(P) 0e&Dcp Qlie
e(Q)=2_] ]Z(ijO)

1zztl(-)(Ll.D(-)(p))
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where the supremum is taken over all dyadic cubes P in R™.

Let (¢, ®) be a pair of admissible functions. Then (cT), EI3) Is also a pair of
admissible functions, where @(-) == @(—-) and ®(-) == ®(— ). Moreover, by [22] or
[23], there exist Schwartz functions Y and W satisfying (59) and (60), respectively, such
that, for all £ € R",

POPE + ) pRIDHCTD = 1. (61)

Recall that the ¢-transform S, is defined_to be the mapping taking each f € §'(R") to the

sequence S, (f) = {(S(pf)Q} , where (Sq,f)Q = |92y, * f(xq) With @, replaced by
QeQ*

®; the inverse @-transform T, is defined to be the mapping taking a sequence t:=

{to}yee- € CO

Tyt = z toWo + 2 toWg; (62)
0eQ*£(Q)=1 QeQ*£(Q)<1
Corollary (6.2.9) [298]: With all notations as in Definition (6.2.6), the space B()® | (R™)
is independent of the choice of the admissible function pairs (¢, ®).
Lemma (6.2.10) [298]: Let ¢ € G(R™*1). Then there exist positive constants C and C such
that, for all j € Z, and k € Z", $(Qy) < C2/'°82c1(|k| + 1)?!°82¢1 and, for all € Q and
l ez,
d(Q +1£(Q))

s 2log, cq
) < C(1 + |l])?"o82¢1,

where ¢, is as in (57).
Lemma (6.2.11) [298]: Let p € C'°8(R™). Then there exists a positive constant C such
that, for all dyadic cubes Q;, with j € Z, and k € Z",
~19—(n/p-)j (1/p+=1/p-) -(n/p4)j (1/p-—1/p4)
c-1p-(n/p ](1 + |k|)n P+ pP-) < ||Xij||Lp(-)(Rn) < Cc2-(/p+ 1(1 + |k|)n p P+)

In what follows, for all h € S(R™) and M € Z,, let

|5, = sup sup [dVh(x)[(1 + [x[)™+M*Y.
[y|sM xeR™

Lemma (6.2.12) [298]: Let p,q,s and ¢ be as in Definition (6.2.6). Then, for all t €
pse )(]R") Tyt in (56) converges in S'(R™); moreover, Ty : b pSe )(IR”) - S'(RM) is

p()q( p().qC
continuous.
Proof: Observe that, for any Q € Q~,
—gs(- ~ -1
[to] < (12179 |to[%oll po g, Xl o gy 1Q1°-""/
S 1 ks |g|s-/n+1/2
= g1Xg T~
0c0,0eq* ”XQ “ LPO)(Q)
£(0)=27

200v0) 1 a0 (1p0) )

$(Q)
< Il bSO (rm) |—|Q|s_/n+1/z.

bo.a0 |XQ||LD()(Q)
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Then, by this and an argument similar to that used in [294], we conclude that, for all h €
S(R™M), |(T¢t,h)| < ||t||bs(-),¢ (Rn)llhllgM(Rn) with some large M € (0, o)which completes the
| JOX:(0]

proof of Lemma (6.2.12).

Lemma (6.2.13) [298]: Let r € (0,), v € Z, and m € (n,). Then there exists a
positive constant C, only depending on r,m and n, such that, for all x € R" and g €
S'(R™) with supp g < {§: [§] < 2”*'}, suplg(@)| < C[nym * (Iglr)(x)]l/r, where Q € Q

Z€Q
contains x and £(Q) = 277.

Lemma (6.2.14) [298]: Lets e C}Sf(ﬂ%") and d € [Cjoq(s), @), Where Cjo(s) denotes the
constant as in (55) with g replaced by s. Then, for all x,y e R"® and vEN,
2v5Wn, nea(x —y) < €27, L (x — y) with C being a positive constant independent
of x,y and v; moreover, for all nonnegative measurable functions f, it holds true that
sz(x)nv,m+d * f(x) < Cny * (sz(.)f)(x)» x € R™

Lemma (6.2.15) [298]: Let p,q € C°8(R™) satisfy p_,q_ € [1,0] and me (n+
Ciog(1/9), ), where Ciog(1/q) denotes the constant as in (55) with g replaced by 1/q.
Then there exists a positive constant C such that, for all sequences {f, },ey Of measurable
functions,

”{nv,m * folyen < C”{fv}vEN”gCI(')(LP(')(Rn))'

|{JQ(')(LP(')(RH))

Lemma (6.2.16) [298]: Letp,q € P(R™), q_ € (1,%) and f be a measurable function on
Rn
(') If ”f”Lp()(Rn) < 1, then ”Iflq()” p() ”fl Lp()(Rn)

LAO(R™)
i) If : > 1, then q0)
i) I 11 f 1l oo gy 171 ||Lg%( " < I 150 gn:

anl/q-
ity 1171900 po =1 then lIFll po < [lIF1%O] 58
L4O)(R™) LAO)(R™) LAO(RM)
. anl/
(v) 1A o =L then lIfll po < [lIF19O] bl
L4O)(R™) LAO)(R™) LAO(RM)
Proof: By similarity, we only prove (i) and (iii). Let f € LPO(R™). Then, by [298] and the
fact that ||f/||f||Lp(.>(Rn)||Lp(,)(Rn) =1, we see that o,y (f/lIfllpogny) < 1. Thus, if

”f”Lp(')(Rn) S 1, then

00 (F/ (1550 am) ) < 240 (f/(ufanO(Rn))l/q‘) = 050 (/I lpoam) < 1
which implies that [|If19°] a0 gny < 1156 gy @nd then completes the proof of (i).
For (iii), if |||f|Q(')||Lp(_)/q(_)(Rn) > 1, then for all A > |||f|q°)||Lp(.)/q(.)(Rn),

Qp) (f/AY9-) < @pey (f/A/90) <1,
which implies that I 1l oo (mmy < )\qi— . By this and the arbitrariness of A>
1199 Lpco/aergeny W cONClude that (iii) holds true, which completes the proof of Lemma
(6.2.16).
For a sequence t = {to} . = C, 1 € (0,00) and A € (0,0), let t;, = {(trx) }

where, for all @ € Q,
. . |tr]*
= >

x
REQ*2(R)=£(Q) [1 + {f(R)}_llxR - le]
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Lemma (6.2.17) [298]: Let p,q,s and ¢ be as in Definition (6.2.6), r € (0, min{p_,q_})
and\ € (2n + Ciog(s) + 2rlog, ¢, ), where Cjo,(s) denotes the constant as in (55) with
g replaced by s, and c; is as in (57). Then there exists a constant C € [1, o) such that, for
QX n
all t € b,y (R™,
tll so, < Eeadlso, < ClIt]]. so, . 63
I “bp((.))_‘g(.)(R) | ,A”bp(('))Iq(;(I)(R) [ ||bp((.>)’qé(_)(R) (63)
Proof: To prove this lemma, it suffices to show the second inequality of (63) since the
first one holds true obviously. We first claim that, for all teb’’t (R"),

| 01 gy S S It 01 Indeed, observe that, for all r € (0, min{p_,q_}), Q9 € Q*

and x e Q
1/r

)y~ {Moa| D Il @

REQ* £(R)=2"12
Thus, by Lemma (6.2.14) and Lemma (6.2.15), we see that
r 1/r

| S()l (]Rn) nj;}L_Clog(S) k 2]5() z |tR|r)~(R
REQ*#(R)=2712

€L Il pacy/r(Lp0)/r (rmy)

< ({2150 z |tr|Xr ~ It s (R’

-ig Ppa0)
REQ*L(R)=2 €Ly {’q(')/r(Lp(')/r(Rn))

which proves the above claim.
For all P € Qand Q € Q" let v =ty if Q c 4P and v := 0 otherwise, and let ug =
to —vg. Letv® = {ug} .. Then we have

*
r,A | s(),o
by ®™

( |
1
< sup o { IQI‘S(')/"|((UP)§,;\)Q|>~<Q}
PeQ 0eQ*,0cP
\e(@)=2 20 1| pa0o(Lp0 )
)
| |
1
+—= 121750/ (WP)r), | Xo (
$®) || g (@,
£(Q)=2"1 j=(jpv0) 1qq(-)(Lp(-)(p)))
=: sup(lp,l, Ip,z)- (64)
PeQ

By the above claim, (57), we find that
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1
Ipy < =< [|@")allsc n sO1
P q)(l,)ll( iallysn oy S ¢<p)" s
|| ( \ I
1 ! !
< -s()/n S
) P(4P) QED*ZQC4P|Q| |tQ|XQ " ”t” ;(()qé )(Rn)(65)
£(Q)=27)

j2(j4pVv0) {)q(-)(]_‘p(-)@p))
To estimate Ip ,, we only consider the case that q, € (0, %), since the proof of the

case that g, = oo is similar, the details being omitted. Without loss of generality, we may

assume that ||t|| eors = 1 and prove that Ip , < 1. To this end, it suffices to show that

p( ,q() (Rn)

ZE 1010/ (@) T } <1

{ QeQ*,0cP
t@)=27 2Gpvo) | 4a0) (PO )

By (54), we see that the above inequality is equivalent to that there exists some large

positive constant C, such that

||[ ]Q(') I
=s()/n( (1P | <
j=(jpv0) QED*,QCP
£(Q)=27] LPO/a0) (R
which, by Lemma (6.2.16) (i), is a consequence of
aC)
o= D | D e 12170 (@) Ko <1 (66)
£ - cI>(P)
j=Gpvo) ||2€Q*,QcP
2(Q)=27 LPO)/a0) (M)
Now we show (66). Since ||t]| bS00  n) = 1, it follows that, for all P € Q,
p ),a()
~\1-1 . -
[(b(P)] X‘15|Q|_S()/n|tg|XQ <1,
QEQ*,QCP
£(Q)=2"] jiz(jpvo) {’q(')(LP(')('F))
which, together with (54), implies that
aC)
<\1-1 . -
Dl D @] xeler0 ez <1
j=(jpv0) ||| 22 .0<P
£(Q)=2"1 LPO/a0) (r1)

From this, and (iii) and (iv) of Lemma (6.2.16), we deduce that, for all P € Qandj >

(g v 0),

S @ Mo || <1 (7

QeQ*,QcP
£(Q)=27 LPO(B)
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ForthegivenP e Q,i € Z, and [ € Z™, let
A(,L,P) ={Re€ Q" : £(R) = 27'¢(P),R c P + 1#(Q)}.

Then we see that
1 119-

Dl D wlo®Iter O (w,) %o
j=Govo) |[oeST0cp
£(Q)=2"1 LPO(R™)
1]

< XP_ | 4|-[s()/n+1/2]
- $(P) 9]
i=0 QeQ*,QcP

2(Q)=2"1¢(P)

r 1/r

lugl

8 al Xe
1eimTls2 Rearp [1 + (0@} |xr — xo]

—
av]

q-

LPO(R™)

Notice that, forall i € Z,, | € Z™ and x € Q € Q" with £(Q) = 2744(P),

Z |uR|r m " an,m * <[ Z |uR|XR“ )(X),
REA(I,LP) [1 T {{)(Q)}_1|XR - xQ” REA(I,LP)
where m € (n + Cjog(s), ) is chosen such that A >m +n + 2rlog, ¢, . Notice that,

when [l| = 2,1+ {t’(Q)}‘1|xR — xQ|~2i|l|. Thus, by Lemma (6.2.15), we know that

q-/r
N (2 1> I
Z [b(P)]F TThpYr Nitipm—Ciog(s) * Z R S()/n|uR|XR
i=0 ||lezZ" ReA(i,LP)
1|22 LPO/r (R
_/r
) ( r r \ !
< Z { Z [1|ym-* lq)(P(;(llj;(P)) Z )Ell’)-l_ lli((i))) |R|SO/n |tr|XRr } ,
=0 flelzrzl REA(LLP) oP LPO(RM) |

which, combined with (67) and Lemma (6.2.10), implies that
o q-/r
TP < { 2i(m—7\)|l|m+2rlog2 cl—l} ~1.
12(; leznzl;hz

Therefore, there exists a positive constant C, large enough such that (66) holds true for all
P € Q and hence

Ip2 S It so0 g (68)
P2 boqo®™

Combining (64), (65) and (68), we conclude that
i lls0o on S Suplps +1p2) S It s0 mays
bh a0 ®™ Peg( pat le2) baan®™)

which completes the proof of Lemma (6.2.17).
Theorem (6.2.18) [298]: Let p, q,s and ¢ be as in Definition (6.2.6) and ¢, {5, ® and W as

; S()d) S().d) S()¢
in ()4561) Then operators S, ID()q()(le") byig o (R™) and Ty, :b o0, q()(]R”) -
S

s().¢
p()q()(le”) are bounded. Furthermore, Ty, o S, is the identity on Bp(),q(,)(lR%").
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. : : s(),¢ s().¢
Proof: We first show that S, is bounded from Boo) q()(IR") to by q()(Rn) Let f €

;(())2()(1[%”) r € (0 ~min{p_, q_, 2}) and m € (n + Ciog(s) + Ciog(r/q) +logy cq, ©). Then,
by Lemma (6.2.13), we see that, for all 9;, € Q" and x € Qj,
P oy F |
@; * f ( xo, < 2t z f = —dy,
| J ( 1k)| S Josn (1 + 2in|x — y|)*
which, together with the fact that 1 + 2™|x — y|~1 + |I| when x € Qjx and y € Q1)
implies that

1/r
r
|0y £ (0, )| = [2(” D™ * | (@5 % FXoygern (x>] .
lezn
From this and Lemma (6.2.14), we deduce that
SeUN 500 rn
I8¢ ”bp((-)xqc;(-)(R )
2irs() L
= ok c|>(p) 2, e om0 Mo o
kezZ™ Liezn s
jz(jpVv0) £a0(LPO(P))

1/r

1 2irs()
< su - .
Peg ¢(P) (1 + |l|)mnl3m |((p] f)X3n|z|P|

jz(jpv0) gq(J/r(Lp(J/r(p))

1/r
gq()/r(Lp(D/r(p))]

: Z<1+”D““sup 0+ 250y # el
LG {3 ™7 ) n ]—(JPV0)|

which, combined with Lemmas (6.2.15) and (6.2.10), implies that

1SeOII, 08 gy S [Z(1+|l|) ™ sup

lezn

(20l 1)

1 1/r
o ¢(P)r j=(jpv0) ||[Q()(Lp()(3n|l|p))]

1/r
< Ifllgsoo (Rn){Z(HuD A+ IR L S (flso0

p()q i p()q()

; sC).$ s(),0
Therefore, S, is bounded from Bp(_)lq(_)(Rn) to b, a0 (R™).

s().$ s(),¢ ;
The boundedness of T, from bp(_),q(_)(Rn) to Bp(_),q(_)(Rn) is deduced from an

argument similar to that used in [78]. Finally, by the Calderdn reproducing formula [78],
we know that Ty oS, is the identity on B()® . (R"™), which completes the proof of
Theorem (6.2.18).

We show some basic properties and embeddings between B;(('-))"‘(’l’(,)(ﬂ%") and

;(())‘il’()(R”) Recall that the Triebel-Lizorkin-type space with variable exponents,

o0 (R™), is defined to be the set of all f € S'(R™) such that

o 1/4()

1 - q()
15010 gny = S8 > [PO%eyr O <o,
/ Dao® T 2 o(P) 12y £ O

j=max{jp,0} PO
where @, is replaced by @ and the supremum is taken over all dyadic cubes P in R",

which was introduced in [76].
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Proposition (6.2.19) [298]: Let ¢ € G(R™*1), 5, 5,5, € Co8(R™) N L°(R™) and p, q, g, q; €
Clog(Rn).
(i) If o < qy, then B)® (R™) © BSO® (R,

p(),q0( b p(),q1( 0
.. . Sol), n S10), n
(iii) Ifp,,q4 € (0,00), then
s().d s(), b NOX
Bpmintp,a03R™) @ F5ay (R™) © By haxp,a0y (R™:

In particular, if p, € (0, ), then B;(('_))"‘lf(_)(R”) = F;(('_))'I‘I‘)’(_)(IR”).

Proof: We only give the proof of (iii). Let f;(x) := 25(|q; = f(x)| for all x € R™, f €
S'(R™) andj € Z,. To prove the first embedding of (iii), we let r(-) := min{p(-),q(*)}

and f € BS('_)"" (R™). Without loss of generality, we may assume that || f|| 5500 oy = 1
pC)r() p()r()(R )
and prove that ||f|| s()q) &Y S < 1. Obviously, for all P € Q,
p QX1

<1

)

[{lo®) "% £}
which, together with (54), implies that

[0¢]

2, [0 el > Ty =

j=(jpv0) Lp(-)/r(-)(Rn) j=(jpv0)

Then, by the fact that, for all d € (0, 1] and {aj}jEN c

d
(Zw) <> lal", (69)
JEN

jz(jpv0) ||gQ()(Lp()(Rn))

[00]

r()

we find that, for all P € Q,

(o]

- 1/q()
000 l > [[¢<P>]-1xpﬁ]‘“')] st@/r@( > (o)1 fo}r()>

j=@pVvO0) j=(jpv0)

which implies that

1/q()

j=(pVv0) POP)

Therefore, ||f|| SO0 < 1, which completes the proof of the first embedding of (iii).

(R™)
FpOa0)
For the second embedding of (iii), let £ € F3)%  (R™) and a(*) = max{p(),q(")}.
Without loss of generality, we may assume that ||fIl sc.0 &’ = 1 and show that
pO.A0)
_ < ' s =
||f||B;((?)'_";(_)(R") < 1. Since ||f|| .0 &/ = 1, we know that, for all P € Q,

p(q

o 1/90)
{ PRI pf)q“} <1,

j=(pvo0) PO )

which, combined with (69), implies that, for all P € Q,
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e}

o 1/90)
q(')‘ <1

Qp()/a() Z {[opP)]~ pr} < Qp() lz [[d(P)] xpf]

j=(ipv0) j=(@ipv0)

From this, we deduce that

(0]

QpaO)(LPO(R™)) ({[d)(P)] xef, }J>(] VO)) Z ||([¢(P) R )a()”Lp(-)/a(-)(Rn)

j=(jpv0)
_ a()
> (6P e f) <1
j=(pv0) LPO/aO) (rm)
which implies that ||f|| SO0 (mm) < 1 and hence completes the proof of Proposition
BpOat
(6.2.19).

The Sobolev-type embedding of B;(('_))Iq(,)(ﬂ%") (see [3]) shows that it is reasonable

and necessary to consider the Besov spaces with variable smoothness and integrability.
For B;(())‘il’()(]Rn), we also have the following Sobolev-type embeddings.

Proposition (6.2.20) [298]: Let ¢ € G(R**), s¢,5, € Cigf(IR{”) N L2 (R™), po, p1 € C'°8(R")

satisfy that, for all x € R", s;(x) < sy(x) and sy(x) —n/pe(x) = s;(x) —n/p;(x).
Then

by ® (R™) & b2 0L (R™); (70)
moreover, B;‘)(())i’o(ﬂ%{n) S B;i((.)),fo(w)-

Proof: To prove this proposition, we only need to show (70), since the embedding
BS0? (rr) o BS1OX® (R) is a consequence of (70) and Theorem (6.2.18). To prove (70),

B s(),00 p1(),0
let t == {tQ}QeD* € b;"(())‘fo(ﬂ%") and P € Q be any given dyadic cube. For all Q € Q*, let

ug =ty when Q c P and uy = 0 otherwise. Then, by the Sobolev-type embedding of

b0 (R = b3 (R™) (see [28]), namely, b0 (R™) & b (R™), we conclude that
sl D 0Ol =supll D el gl
120pv0) N 9eST 0P =7 | oeare@)=2- LP10(p)

2(Q)=277 LP10)(p)

1917500/ |ug[%g
QeQ*,¢(Q)=2"]

u O} = (lu o} ~ su
” ” 15)11 ;(Rn) ” ” ;0()';(Rn) lgp

LPoO)(p)
11 Il

~ s > 01O gl
jz(jpv0) 0e& 0P
2(Q)=27 LPoO)(p)
From this, we further deduce that
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1 : 5
||t||bs1(-).¢(Rn) supd)(P)Psup Z 1017510/t |5,

p1(),00 PeQ (pvo) 0e&Hcp
£(Q)=277 Lp1(')(p)
ssups sup || 01Ol = s o
pea O(P) j=(pvo) oc&Dep b (00 R
2(Q)=27 LPoO)(P)

which implies that (69) holds true and hence completes the proof of Proposition (6.2.20).
Theorem (6.2.21) [298]: Let ¢ € G(R?*), sq,5, € Co8(R™) N L2 (R™), po, Py, q € CO8(RM).
Assume that, for all x € R", s;(x) < sy(x) and

n n
So(x) — o) -5 () — o) (71)

so().¢ s10).¢
Then Bl 50 (R © Byl g R™.
Proof: We only give the proof of the case that q, € (0, %), since the case that q, = o

was proved in Proposition (6.2.20). Let f € B()%  (R™) and, for all j € Z, and x € R™,

g;(x) = @; * f(x). Without loss of generality, we may assume that || f|| 55000 &™) = 1.
po( ac

Next, we show that [Ifll s.00 @y S 1 Obviously, by (54) we find that, for all R €
p1().a9()
DO(Rn)’

e}

2 §§)2150()|g]|] o S (72)
=Gy 10 L3O @

Let Pe Q be a given dyadic cube. We claim that there exists c€ (0,1),
independent of P, such that, for all j > [jP V 0, ),

cXp .. . aC) Xp: .
2]51()|g|] Z 2 lE ‘ l 2]50()|g |] 2_] =: 8.,
*® . | e & o(R) ] LqO)(R") |
where P;: = 21t14"p and € € (0, ). From this claim and (72), we deduce that
s a0)
CXp
Z 2510\ g |]
P ]
j=(jpv0) (I)( )
which, together with (54), implies that
Ifllgs100  gny S T~IIF 1 s ny-
f Bl O B f B o &™)

Therefore, it remains to prove the above claim. Observe that, for all j = [jp V 0, %), §; €

[273,277 + 6] with 6 € [0,0). Then, by Lemma (6.2.13), we conclude that, for all x €
R™ r € (0,p_) and m € (0, ) large enough,

jr[s; (x)-n/p; (x)] r/q(x) r 2jls1()-n/p1()] r
sl /9@ 8 ;[ < mjzm + b(P)5/0 lgl¢ | (0
]

® in(9ils1()-n/p1()] r
- f 2 (2 19:®])
= Jop [H(P)]T8T Y (1 + 2)]x — y])2m

Z A9, (73)

i=0

<
P10 s 1

L a0 (R™)

|gj(x)|rdy
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where D, p = 4¥nP and, for all i € [2,0), D;p = (2:**vnP)\(2'VnP). For A,, by the
Holder inequality in (71), (57) and Lemma (6.2.16), we see that

jng=jnr/po()
A, S ‘ [X‘*LT;(_)Z]'S()(-)MJ H 272 _
¢(P)5;"" LPoO)/r(RM) (@4 2l =D o0 amy
r
P q . )
q) d)(Pl)SJ Lp0(')(]R{")

where the last inequality follows from the definition of 6; . Similarly, observe that, for all
x €EPandy € D;p withi > 2, |x —y| = 2!77P, then the fact that j > jp further implies that

r
z%ﬂm[wﬂT‘ xp,2*0lg)|
2im=%/9-) | (P) ; 1/q()
q) d)(Pl){ZLES]} LpO(')(Rn)
< 20p=j)my—i(m-rlogz ¢;) < p—i(m-§/q--rlogzc1)
Thus, by (73) we conclude that, for all x € R",
xp QO [p(P)] 718,/ 4W 2irls10O-n/m @ g, ()] < 1.
From this, (71) and an appropriate choice of c € (0, 1), we deduce that

p1(x)
cxX (x)Z]Sl(x)
: ;@)

2inp=jnr/po()
T+ 2l —Dm

Aji S

L(PoO)/D)* (RrM)

_XP (x)szo(x) Po(x) e (x)21[51(x)—n/p1(x)] p1(x)—po(x)
[ j 1Po () . PolX

< cPo() M |g (x)l e XP1(-X)2]SO(9C) |g ( )l

- /() 19) = /aw 19

which, together with the definition of §;, implies that the previous claim holds true and
hence completes the proof of Theorem (6.2.21).

Now we characterize B;(('_))"L’(_)(R") in terms of the Peetre maximal functions and

establish their atomic characterization via Sobolev embeddings. Following [17], for all f €
S'(R™), a € (0,00) and s : R® - R, the Peetre maximal function of f is defined by
setting, for all j € Z,.,
- 250 |y * f ()|

] (25OF)(x) = ;eel(1+21|x YD
Lemma (6.2.22) [298]: Let p € Cl°8(R™) with p_ € (1, o]. Then there exists a positive
constant C, independent of f, such that, for all f € LPO(R™), IM (Ol oo gy <
C”f”Lp(-)(ﬂgn)-
Lemma (6.2.23) [298]: Let p,q,s, ¢ be as in Definition (6.2.6) and a € (n + log, c; +
e/q-,) with £ € (0,00). Assume that p_ € (1,), q, € (0,0) and f € BJ()® ; with
norm 1. Then there exists a positive constant c such that, for all P € Q and j € Z, with

j=(pVvO0),
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*a ic(-
_ cxp@; (2°01)
inf{2; € (0,) : gy ] 730 <1
P,

Xpn 20 |j * f »
< Z inf{nj € (0,00) : gp(_)< it | : 1/!1(,) < 1} + 2-0l-Gpvoll (74)
k=1 2ke/a0 (B

where, forall k € N, PJ* := 2k**"pand ¢ € (0 L)

"4(1/9--1/q4)
Proof: Let Sjp be the right hand side term of (74), we easily see that

- 1
§ < Z 27k ——00
: d(RY)

k=1

+ 2-oli=Gpv0)]
£Q(')(Lp(')(pﬁ))

@0k« 11}

jPQVO)
< Z 2—k€||f||Bs(_)'¢ - 4+ 2-0li=Gpv0)] — 1/(28—1) + Z_G[j_(]'PVO)],
p(),q()

k=1
which implies that

5],P € [2—6[1'—(jpv0)]’ 1/(28—1) + 2—6[1'—(jpv0)]]_ (75)
Thus, to prove Lemma (6.2.23), we only need to show that, for some positive constant c,

CXp (6]1))—1/(1() (p]?k,a (2]5()f)

inf{2; € (0,00) : g, <1;<1,
j p 1/q()
S(P)A
which, via Lemma (6.2.16), is a consequence of
-1/q0)
87)”" |
Hp = X—P( ) (p]?"“(zls(')f) S 1. (76)

$(P)
LPO(R™)

Next we prove (76). By Lemma (6.2.13) and the inequality that, for all x,y,z € R",
(1+27x—y]) "< (1 +27x—2|) (1 + 27z -y])",
we find that, for all x € R™,

_ 2in2is(@) | . % 1 2in2is@ | . x f(z
0 (2OF)(x) s Supf _|<P1 f(f)ldz | Sf _|<P, f(@)]
yern Jgn (L+ 2y —z)?2¢ (A + 2]x —yDe ™ Jgn (1 + 2)|x — z])?

(o]

ZjanS(Z) .ok (Z
~] .lq)l / a)ldz+zf - dz ::A]-(x)+ZA}<(x),
amp (14 2]x —z|) k=2 " Dkp k=2

where, for all k € N n [2, ), D p := (2K*1y/nP\2X/nP). Thus, we obtain
xpAj(*) wA ()  w
HP = P 1P/qé') + P 1P/qé.) Z Ai((') == HP,l + HP,Z' (77)
571 o(P) LPORM) 1871 d(P) (=
We first estimate Hp ;. For all x € P, we write

- 2m215@ | . % f(z z
A ()~ J +Zf oy € )|X4f"( D s = A, 48,0,  (78)
Lo &Em (1+ 2[x —z|)

where, for all x € R, B, (x) = B(x,27li-0»v0l/2) and, for all i € Z,,
Bl(x) = B(x, 2‘“‘UPV°)]/2+"+1)\B(x, 2—[1'—(ipv.0)]/2+i)_
From (75), q € C'°8(R™), we deduce that, for all x € R™andz € B’ | (x),

dz

LPO(R™)

1 1 o |L_L| o ‘L_L| 26[j—(ipv)] Clog(1/Q)
(S}J)q(z) 1@ < {20[1—(1pv0)]5]_P} 9@ q) {20[1—(1pv0)]} 1@ q@)| < 2V P ogle+1/Ix-2D < 1,

By this, a € (n, c0)and [286, (3.9)], we conclude that, for all x € P,
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(S.P)_l/q(x)

j 1 2" 2°® @ * £ (2)|Xaymp (Z)
$(P)

o) Jg 6719 (1 + 2)]x — 2

Aj,l (x) =

2°0]@; * f[Xayme
1/a0)
(571" o (P
On the other hand, by (75), we see that, forall x € P and z € R" with i € Z,,,
(SP)[l/Q(Z)—l/Q(x)] < 220li-GpvO)](1/a-~1/a4) (80)
(

S M

(79)

and 1+ 2l|x —z| > 1+ 22~
all x € P,

(s7) 9™ | 5200j~(Gpv0)1(1/a-~1/a.) f 2inpis()
B

WALZ(X) S Z [ 1 (5 P)l/q(z) |9; * £ (@) |[Xaysip (2)dz
=0 $(P)2

< 2il20(1/q-~1/q4)+n/2-a/2] 5 (jpv0)[-20(1/q-~1/q+)-a/2+n/2]

)+l a—n
. Thus, by o € ( m) we conclude that, for

i+Gpvo) .1,

[0¢]

. Xaynp ol
8 Zzl(n WM —7a5 2 Oley+ fl | @
(87177 o (P)

Xanp
[Sjp]l/Q(‘)q)(P)
which, together with (78) and (79), implies that, for all x € P,

(6!3)—1/(1(96) X
WAj x)sm [51’]12/?)]:1)(13) st(')|(p]- * f| (x).
j
By this, Lemma (6.2.22) and (57), we further know that

SM

2], 11 | 0,

X2”+2P

Hp; < 1 2js(l)"P' * f|
: p1/a0 o j
[6] ] (])(2 P) Lp(')(Rn)
ni2o28/A0)
< 9¢/a- Xlz/;(f; 250, + ] <1
871 d(2m+2P)

LPO(R™)
where the last inequality comes from the definition of 6}’ :
We now estimate Hp,. Notice that, when x € P and z € Dy p withk € NN [2, 00
1+ 2i|x — z| = 2X2i7Ip, Then, by (80) and (74), we see that, for all x € P,
-1/q(x)
(87) Ak ()

i—-Gpvo)l(1/ /a+)p—(k ) ke/ 27kl @ (z)
2 v0)|(1 -1 +
< 220lj-Gp q--1/q4)p—(k+j—jplagjnpke/q- f WZJS z |(p]- *f(z)|dz
k'P[ j]
B wpn2 ka0
< 2-(-ip)la-n-20(1/9-~1/a4)p~k(a-n-e/q-) pr Pk1/q(-) 215(')t|(pj « f| ] ()
1871 (P)

—ke/q()
Xpp2

< 2-kla-n-¢/q-) pr
~ 1/q()
187 o(P)

270y = f| | (),
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which, combined with Lemma (6.2.22), (57), the definition of 6}’ and a € (n + log, ¢, +
g/q_, ), implies that
Xpp2

, S Z 2-k(a-n-g/q_-logz c1)
n P
k=2 q)(Pk )[8] ] Lp(-)(Rn)

Combining (77), (81) and (82), we conclude that (76) holds true and then complete
the proof of Lemma (6.2.23).
Theorem (6.2.24) [298]: Let p, q, s, & be as in Definition (6.2.6) and

—ke/q()

1/40) 250 |y * f| s 1. (82)

a € ([n +logy cq]/p-, ). (83)
Then £ € B3 _(R™) if and only |ff € S'(R™) and ||fII* 5500 < oo, Where
p().q() Bo()q) R™
1N g = s || (250
! p(())";()(R) peg ¢ (P) {cp f)}1>(1pv0) [Q()(Lp()(ﬂgn))
s().d ..
Moreover, for all feBJ ¢, . lIfl, 00 (g ~lIfIL e with equivalent positive

constants independent of f.
Proof: Let f € S'(R™) and ||f]|* 500

p( .q(
Z, and x € R™,

oy < Then, by the obvious fact that, for all j €
)

< ¢;“(2*01) (),

. sC).¢
we find that ”f”B;(('_))'_q;(_)(R") IFII or and hence f € Bo)ae)

p()q()
the proof of this theorem, we only need to show that, for all £ € B30® ) (R™),

*S . S n 84

1520 oy S WFllgs00 any (84)

Without loss of generality, to prove (84), we may assume that ||f IIBs(-),¢ ®RY) 1 and
p(.90)

< 1. By (83), we find that there existt € (0,p_) and € € (0, )

&™) (R™). Thus, to complete

show that || ]| gsO0

Bp(r.at®™
such that
at € (n+ log, c; +¢/q_, ). (85)
Let P c R™ be a given dyadic cube. Next we show that
1 . t
S »a(is0) <1 86
[d(P)]t {[cp] (2*07)] }iz(ipvo) 2O/ (LPO/p) (86)

with implicit positive constant independent of P, by Lemma (6.2.3), is equivalent to prove

that 32 vo) Ipj S 1, where
. t
cxe | (2550
Ip’]' = inf )\] S (0, OO) 0] P[ ) ( t/ (f))] <1y
o\ [e@®IN

with c being a positive constant sufficiently small. Since

. 2500y + £ ()|
[(P (2] ()f)(x)] = S (1 + 2]|x yl)at’

it follows, from Lemma (6.2.23), that, for aII j e Z, N [(pV0),00),

227



2ket/q(") [q)(Pn)]t t/Q()

o t
Xen 25Ot ; * £ (y) iy
= Z Z_ks inf T]] € (0, OO) : Qp()/t Pk | ) 0 | <1:;+ 2_0'[]_(]PV0)]
& G

=: §F,
where P! := 2k+*1*7p and 5 € (0

o) ; t
Xop 2°0% ey % £ () e
Ipj = Z inf{nj € (0,00) : Qp(.)/t< | | <1+ 27%0-GevOll
k=1

at—n
4(1/q——1/q+)

Z kzl C])(Pn)]t ||{215()|(p1 * f|}]>(]PVO)|| q() p()(P")) +1

). From this, we further deduce that

j=(ipv0)

< z 2_k£||f||]t3s<)¢ @) +1s1,

pO).qC
which implies that (86) holds true This finishes the proof of Theorem (6.2.24).
As applications of Theorem (6.2.24), we obtain more equivalent quasi-norms of
Besov-type spaces with variable smoothness and integrability. To this end, for all f €
S'(R™), let

s(). — )
||f|Bp(.)'q()(Rn)|| Sup (I)(P) ||{2]S |(P] * f|}]>0 {,q() Lp()(Pn))
and
[ 7185655 @[, = sup suple@1101*/ xgll s g, 1930 *

Theorem (6.2.25) [298]: Let p, g, s, ® be as in Definition (6.2.6).
(i) Assume that p, € (0,0) and c, € (0,2"/P+). Then f € BX)®  (R™) if and only if

fes'(R") and || f |B;((',))"j]’(,)(ﬂ%") < o0; moreover, there exists a positive constant C,
’ 1

independent of £, such that

1Al quny < [ FIBS G0 D < CIFllg00 gy (87)
(ii)Assume that p_ € (0,) and ¢, € (0,27™/P-). Then f € BIS)((_))E(,)(R”) if and only if

fes'(R") and || f |B;((',))"j]’(,)(ﬂ%") < oo; moreover, there exists a positive constant C,
’ 2

independent of £, such that
-1 sC).¢
CHMgsr oy |r1850 00 @] < clrt, 508y (88)

p(
Proof: Let P c R" be a given dyadic cube and, for all j€Z, and x € R", fj(x) =

250y + £ (x|
We first prove (i). Let f € §'(R™) and ||f|BS(')'¢ (JRz")”1 < oo. Then, by definitions,

JOXIO]
; ; s(). s().¢
we easily find that ||f||B;<('?)fg(,)(Rn) < ||f|1313(.)‘(](_)([Rgn)”1 and hence f € By (e (R™).
Conversely, let f € B;(('_))"‘zl’(_)(IR"). Then f € S'(R™). To complete the proof of (i), it

suffices to show the second inequality of (87).
When p, € (0,0), we have
(ipv0) - 1”

1
d)(P) ” Ji }1>0 290 (LPO(P)) q)(P) ”{f } £a0(LPO(p)) T W ”{fj}jZGPVO)”gqo(Lp(-)(p))
=:lp; + Ip,, (89)
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where Ip; = 0 if jp < 0. Obviously, Ip, < ||f|| SO
Bpao

(&™) To estimate Ip ;, without loss

of generality, we may assume that ||f|| SO = 1 and show thatIp; < 1in the case

(R™)
Bp(),a0)
that jp > 0. Observe that, for all j € Z, withj < jp — 1, there exists a unique dyadic cube

P such that P c P and £(P,) = 27. It follows that, for all x € P,
fiG) = 250y « G| 5 inf @ (2°OF) @) (90)
]
and, moreover,
L P xeill s gy S ||[<I>(P)]‘1xp inf ¢ (2°0)®)

LPO(R™)
”XP ”Lp(')(Rn)

*,a S()
e | 0 Mhogey
Pj LPO(RM)
”XP”Lp(-)(Rn) d)(P])
P )
XP]'”Lp(')(Rn) (P)
where we used Theorem (6.2.24) in the last inequality. On the other hand, by [297, Lemma
2.6], we find that

”f” sC).¢ (R™) (91)

p()q()

”XPJ‘ ||Lp(-)(1Rzn) < 2_].EZJIPE”XP”Lp(‘)(R“)
and, by (57) and (58), we see that ¢p(P) = 2/1082¢12-Irlogz 1 (cpj,Z‘i). Thus, by (5.18), we
further conclude that
-1y £ < (-ip)(n/p4+—logzc1)
- ||[¢(P)] - pri”-L-p(')(]Rn) ~ ||f||B;(())$()(Rn)2 | P + 2C1) (92)
which, together with (i) and (ii) of Lemma (6.2.16), implies that

inf {2 : p) ([9P1 44V xe5) < 1} 5 1P Xe 150 my + ISP X0 gy
< 20-jp)(n/p+-logzc1)a- 4 2 (-jp)(n/p+-logz c1)q+

From this and c, € (0,2™P+), we deduce that there exists a positive constant C, such that

jp—1
. Xpf;
infiA; @ 0, |1 <1; <1,

i=0 _
namely, Qa0 (LrOp)) ({[Coq)(P)]‘lxpﬁ};i:) < 1 implies that Ip; < 1. Therefore, by (89),
we find that

sC).o n || < <
||f|Bp(.)’q(.)(]R ) 1 ~ ilég(lp,l + IP:Z) ~ ||f||BIS)((-,))',qC)1(,)(Rn)'

which completes the proof of the second inequality of (87) in the case q,. € (0, ).
We now consider the case that q, = o. In this case, q = . From (92) and c, €
(0,2/P+), we deduce that, for jp € N,

su (P]™ sy S Wfllgs00 gmy sup  207IPO/PeloB2c) <IN g
i€z, ]Elp & ”f”Lp()(P) ! By (a0 ® ) jez,, ,E,p / By (a0 ®™)
By this, we know that
Al v Al e
. ) JLpO(p)
IBXO? RM|| < su su + su S Il s gy
”f PO ” Peg ]EZ+]<8PVO) CI)(P) jEZ+,jZ(pij0) d)(P) f p()(c':o(]R )
which completes the proof of the second inequality of (87) in the case that q, = oo and
hence (i) of Theorem (6.2.25).
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Next, we show (ii). Let f € B;((',))’,‘(']’(_)(R"). Then f € §'(R™). On the other hand, for

all Q@ € Q" and x € Q, by Theorem (6.2.24) and (90), we easily see that

”XQ ” LPO) (M) “XQ ”Lp(-)(Rn)
% igs()
o@) e =y 9y (220) |

inf ¢;:(22°0f) (y) < [$(Q)] ™ |

¢(Q)  vyeo LPO)(Q)

p().q()
Conversely, let f € §'(R™) and ||f|BS(')"" (]R")” < oo, We need to show the first
2

This implies that ||f|BS(')'¢ (IR")”2 < IIfIIBs<(->),¢()(Rn) < o,
pC)ql

p(),q0)
inequality of (88). To this end, for all j= (jpv0) and x e R", Qp;={Q€Q": 0 C
P,2(Q) = 277} and, forall Q € Qp ., let
-1
9@, P)(x) = [dP)] ™ d(D)|xoll, po genyXo (O-
When g, € (0, ), by [297, Lemma 2.6], (57) and (58), we find that

Z g(Q,P)

QED;J

< 20-ip)(logz c1+n/p-)

LPO(R™)
which, combined with (i) and (ii) of Lemma (6.2.16), implies that

C ,P
Qa0 (1p0O)) ({ z 9, P)}) = Z inf{}\j € (0,) : gp(,)< z %) < 1}

QeDy; j=(pv0) 0exp; M
. q- q+
< > I sem +H[ > 9P
i=(pv0) | ||Q€Qp; LPO@ny 1969, LPO (R™)
< [Z(j—jp)(logz c1+n/p-)q- 4 2(—jp)(ogz C1+n/p—)Q+] < 1.
j=(pV0)

By this, we conclude that

{ > 9@, P)} <1

Q€Qp o
i’ i2Gevo)ll a0 (Lp0 )

Therefore,
\

1 1
G A o > 1 {Wgez%.ngj >

-

i2Gev0) H pa0) (LpO) (p))

s [|£1B3G 00 ® { D, 9@ p>} s [|l71B3G 0 ®)]),
0eVp; i2Gpvo)ll gy (Lp0) (py)
which implies that the first inequality of (88) holds true in the case that q, € (0, ). The
proof of the case that q, = oo is similar and more simple, the details being omitted. This
finishes the proof of (ii) and hence Theorem (6.2.25).

As another application of Theorem (6.2.24), we obtain the following conclusion.
Proposition (6.2.26) [298]: Let p,q,s and ¢ be as in Definition (6.2.6). Then
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SR™ & BX)? (R™) & 5'(RM). (93)

Proof: By Proposition (6.2.19), we see that B;(('_))'ﬁ_(n&") S B;(('_))'E(-)(Rn) S B;((',))’,‘fo(R").
Thus, to prove (93), it suffices to show that

S(R™) & B)® (R and BX)? (R™) & §'(R") (94)
The first embedding of (94) can be obtained by an argument similar to that used in

[294]. We give the proof of the second one. To this end, we only need to show that there

exists an M €N such that, for all feB)®(R" and hes®™ ., [(f,h)s

105y a1 s gy
p(),0

Let ¢, P, ® and ¥ be as in (61). Then, by the Calderén reproducing formula in
[221], together with [221, Lemma 2.4], we find that

< [ 1@ fNY hGlar+ Y. [ foy+ f@] iy« hGoax
RN ]=1 RN

S ||h||sM+1(Rn)z 27M Z
j=0 KEZM
where we used @, to replace . Notice that, forany j € Z,, k € Z™, a € (0,0) and y € Qjy,

j |‘Pj « f(x)|dx s (p;'a(ZjS(')f)(y)Zjaf 271 (1 4 2i|x| + 2)|y])%dx
Qok Qok

S 27 (2POf) (21 + kD

[ loy=reola+ h-omax, (95)
Q

ok

It follows that
f |@; * f()]dx 210751 + [KD® inf @ (255Of)(y),
Qok yeQk 9
which, combined with (95), Theorem (6.2.24), Lemmas (6.2.10) and (6.2.11), implies that
o o (@=07)]|
[F LS Dl camy ) 2700520 3" (14 ieyen™
j=0

kezm || Xij || LPO(R™)

LPO (ij)

(o]

2—j(M+s_—a) d)(Q]k)
< sy 1 g0 Gy D e
p()00 R (1 + [kD

j=0 kezZ™

X0y ” LPO (RM)
S sy s 1 200 gy
where a is as in Theorem (6.2.24) and M is large enough. This finishes the proof of
Proposition (6.2.26).
Definition (6.2.27) [298]: Let k € Z, and L € Z. A measurable function ay on R" is
called a (K, L)-smooth atom supported near Q := Q;x € Q if it satisfies the following
conditions:
(Al) (support condition) supp ay < 39;
(A2) (vanishing moment ) whenj € N, fRn xYag(x)dx = 0 for all y € Z% with |y| < L;
(A3) (smoothness condition) for all multi-indices a € Z with |a] <K, |D“aQ(x)| <
2 (lal+n/2)j
A collection {aQ}QEQ* is called a family of (K, L)-smoothness atoms, if each ag is a

(K, L)-smooth atom supported near Q.
We point out that, if L < 0, then the vanishing moment condition (A2) is avoid.

231



Lemma (6.2.28) [298]: Let {cp]-}]_eZ be as in Definition (6.2.6) and a,_, with v € Z, and
+
k € Z" be a (K, L)-smooth atom. Then, for all M € (0, o), there exist positive constants C,
and C, such that, for all x € R", whenj < v,
@) * ag,, ()| < €, 27/227 DAL 4 2]x — xp,, |)
and, whenj > v,

-M

oy * ag,, ()] < 2227 0K (1 + 2¥|x — xp,, [)
Lemma (6.2.29) [298]: Leta € (0,1),] € Z, q € (0,c0] and {g, }xez, be a sequence of
positive real numbers. For all k€ [Jv0,00), let & =X 0@ g and ny =
D=k ak- g;. Then there exists a positive constant C, depending only on a and g, such that

o 1/q . 1/q o 1/q
Y| o >oua) sel > a)
k=(Jv0) k=(v0) k=(Jv0)

Theorem (6.2.30) [298]: Let p, q,s and ¢ be as in Definition (6.2.6).
(i) LetK € (s, + log, ¢, ) and
L€ (n/min{l,p_} —n —s_, ). (96)
Suppose that {ao}, .. is a family of (K.L) -smooth atoms and t:={to} . €

OF — i ’
b;(_)ﬁ(_)(ﬂ%ﬂ) . Then f:=3ea-tgag converges in S'(R™) and ”f”BZ(é-))'ﬁ(-)(Rn)S

ClItll sy &) with C being a positive constant independent of t.
)

p(.qC
(if)Conversely, if f € B;(_),‘L’(_)(Rn), then, for any given K, L € Z, there exist sequences t :=

{tg}gem c Cand {a,} peg Of (K, L)-smooth atoms such that f = Speq-toag in S'(R™)
and |1t soe one < Cllfll.so0 .n With C being a positive constant independent of f.
bprae) ®™ By R™

Proof: The proof of (ii) is similar to that of [221, Theorem 3.3] (see also [106]). Indeed,
by repeating the argument that used in [221], therein replaced by Lemma (6.2.17), we can
prove (ii), the details being omitted.
Next we prove (i) by two steps. First, we show that f := }pcq- tgag converges in
S'(R™). To this end, it suffices to prove that
N

N_)gg\l_)oo z tijank (97)
j=0 KeZn |k|<A

exists in §'(R™). By (96), we find that there exists r € (0, min{1,p_}) such that s_ +

n/p_ (r— 1) > —L. Let, for all x € R™, p(x) = p(x)/r and § be a measurable function on

R™ such that s(x) —n/p(x) =5(x)—n/p(x) . Then s_>s_+n/p_(r—1)>-L .

Therefore, by Proposition (6.2.20) and an argument similar to that used in [294], we

conclude that there exist 6, € (log,c;,®), a € (n,), c, € N and R € (0, ) being

large enough such that, forall h € S(R") and j € Z,.,
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fmz Z to, oy (Wh(y)dy

" KeZM K| <A
< 2” j(L+5_ )Zz vsozz i(R-L—a)
Lﬁ(')(g(0’2i+U+C0))

< 2 iLHs0) Z 2980 Z 27URL=) ¢ (Q(0,2*9) ) il 5010 gy

p(),00

z 270 |tQ}k| Xojx

kezn

< 2-J(L+s_ )Zz v(80—log2c1)zz i(R-L—a-logy cq) [1tl| s()d)( )
Rn

< 27J(L+S- )||t|| or
B0 R

By this and the fact that L > —S_, we find that the limit of (97) exists in S’ (R").
Second, we prove that

s e St 500 o 98
Wl = Wl %
without loss of generality, we may assume that |[|t]l SO0 (Rn)=1 and show
p()q()
£l B0 () S s1
Case l) g, € (0,0). We see that, for all R € D,(R"),
L { IQI_ﬂlt |~} s1 (99)
™ [Lo[Xo =
S(R) 0eQ*£(Q)=2""

v2(jrV0) IQ(')(LP(')(R))
with implicit positive constant independent of R. Since f = Y pcq-tgag in ' (R™), it
follows that, forall P € Q,

(pvo)-1

Z Z + Z Z tQ(P] * ClQ =: S]',1 + Sj,2 + Sj‘g,

v=(jpv0) v=j+1 2(Q)=27"7

Where ZUPVO) 1... = 0ifjp < 0. Thus, we find that

2is()g ||
S i2Gev0) Il a0 (LpO (p))

= 5 ||{2]S”‘PJ IR . Zd)(l’) I

=:lpy +1py + Ipa.
In what follows, let r € (0, min{1,p_}) satisfyL+n—n/r+s_ > 0.
We show that Ip ; < 1. To this end, it suffices to consider the case that j, > 0 and
prove that there exists a positive constant C such that

PN )
XPZJS(') : <
Cea0wrO) () Car(P) [to@; * ag] =1L
v=0 £(Q)=2"" jip
which is equivalent to show that
= t Lk < 1.
]P,l Z C(I)(P) . _z_vl Q”(P] Q|
j=ip v=0 £(Q)= LPO/a0 Ry

By Lemma (6.2.28) and (69), we find that
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0o jp—1

= 0 2 2, 2, laud 10ad

j=jp =0 kezn

aO [T

X 20 DK (1 427 —xp )T <1, (100)

LPO/ra()(rm)
where M € (0, ) is large enough. On the other hand, by the proof of [294, Theorem
3.8(i)], we know that, for all v,j € Z, with v < jand x € P,

25 3" [tg,, [ 1Quid 2 x 20K (14 27|x - xp,, )

kezZn" ©
@ . Clog(s
< 2<v-i><1<—5+>rz 2“(“‘“‘—r )‘"

i=0

r
' q 2 |tgvk|ZUS(')XQURXQ(cp.zi-”CO)] >(x)’
kezn
where a € (n/r, ), cP is the center of P and c, € N independent of x, P, i, v and k. From

this, (100), and (i) and (ii) of Lemma (6.2.16), we deduce that Jp; < X2 [(]Pl) +
(]{,'1)%], where

—Mr

nv,ar

jp—1

]{3,1 = (I)(P)]r z 2= (K- 5+)FZ 2=i(M=a—Ciog(s)/T)r 5 Noa

1/r
r . _
* ( z |thk| 2vs( )rlgvk| I‘/ZXkaXQ(CP'Zi—ch))
kezZ™ Lp(')/r(Rn)
we find that
1 jp—1 o
< 2 W=D (K-s4)r Z 2= i(M=a=Ciog(s)/r)r
s = 5T 2. _
v=0 i=0
1/r
X | vk| ZUS()rlgvkl -r/2 XkaXQ(CP 9i— v+c0) b0
kezn 129 gy
/r
(]P ! i—-v+c ™t
< < z 2(17 DEK- s+)rz 2~ i(M—a— CIOg(S)/r)r [(I) (Q(CP,Z 0))] .
=0 [d(P)]"
\
By this, (57) and the fact that K € (s, + log2 c;,00), we know that
00 00 jp—1 q-/r
Z(]]'Pl)Q— < ZiPQ—logz cq1 Z 2j(s+—K) Z Z(K—s++log2 cvr <1
j=ip j=jp v=0
and %2 ]P(]Pl)q+ < 1, where M is chosen large enough such that M > a + Cjg(s)/r +

log, ¢y, which implies Ip ; < 1. This is a desired estimate.
We now estimate Ip ,. By Lemma (6.2.28), we see that, for all M € (0, ) and x € R",
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250 tg,, |05 * ag,, (0] s 207PE=sH) Z Q0 M 2t (1 + 27 |x — xg,,])

kEZn keZTl
and hence, for all r € (0, min{1/q,,p_/q+}),
X q()
AP JS()S
d)(P) LPO/a0) (r1) ,
1/r
jp—1 rq(*)
—s(- )/n+1/2
< Z 2(w-q-(K-s4) [ Xp loI” W (101)
P .
v=(jpVv0) ¢(P) (Q)=2""7 (1 + 2U| X, |) LPO/ra0) (g
We claim that there exists a positive constant c such that
(. rq(*)
[CXP |Q| s()/n+1/2|tQ|
¢(P) ol —r WM
£(Q)=2"" (1 +2 | le) LPO)/ra0) (M)
0 Yoo rq()
i op —s(- - _
SZZ T LP(QQ) z 19| S()/n|tQ|XQ] +277 =8y,
i=0 He@)=2v LPO/ral) (rn)

(102)
where 97 = Q(cp, 2!7IP*%) with some ¢, € N and T € (0, ).
From the above claim, (101), Lemma (6.2.29), the Minkowski inequality and (99),

we deduce that

= ©
z Xp_is0g |
]'=(]'PV0) d) (P) Lp()/Q()(Rn)
1) ( 0 Xp0 ra) \1/r
< >l 3 e |
i=Gevo) | =0 L @)=z LPO/raO ) )
+ Z 27/
j=0
: r 1/r
(e (el 10 \)
W 2 [ 2 ot o
ki=0 \j=(jPVO) l £(Q)=2"1 Lp(')/q(')(]Rn)/ )
1/r
[z 2" ”} +1s1,
which, together with Lemma (6.2.3) again, implies that Ip, < 1.
Let us prove (102) now. Obviously, it suffices to show that
—s(- rq()
B O e |] .
(P Gy (1427 —xo|)" LPO/ra0) (&)
which, via Lemma (6.2.16), is a consequence of
~sO/nt1/2]g ra()
A = [85]‘1/“1(')[ xr il |] < 1.
d)( ) £(Q)=2" 17(1 + 2v| _xQD Lp(')/FQ(')(]R")
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Taking t € (0, min{1, p_}) and using some arguments similar to those used in [261], we

conclude that, for all x € R™,
|Q | -s()/n+1/2 |tQ |

[8P]~1/rat®) M

M
2(Q)=2"" b(P) 2(Q)=2"" (1 + 2v|x - xQ|)
(v—cg)VvO 0 t 1/t
Z 7 XQ‘? 2”5(') | |
< 2058 M Z o Z — [ty [X
( §P11/rq() 172140
o@D, £ T
N Z 209.... (103)
i=(v—cg)VO0

where {:= =M +2+2Cio5(q) + Ciog(s) and 9 := =M +n/t+2/r(1/q_ —1/q,) +5, —
s_. Taking M large enough such that

M > max{n/t + 2/rCiog(q) + Ciog(s) +logy cy,2/r(1/q- —1/q4) + 54 —s_ +log; o},
then, by (57), Lemmas (6.2.22) and (6.2.16), we know that

(v—cg)VvOo o0 t
i Xop 20
st S PN P
. 2|l ) o (P) ) Tormao tel%o
=0 j=(jpv0) £(9)=2"] LPO/E(R™Y
(v—cp)VvOo t
. XQE) sz(')
< Z pit(sHlog; cy) |[ 29 z %
- $(Q7) [85]1/ra0) 12150
t=0 (=27 LPO(RM)
(v=cg)VO rq() t/rq4
jt(g+1 ) p| Xo? 2vs0)
L (o] C L ~
s Qe s o D, g ol
i=0 t f(Q):Z_] v
LPO/ra0) (g
< z 2it(g+log2 c1+7T) S 1,
i=0 - - - - - - - - -
where we used the definition of &Y in the penultimate inequality and, similarly,
t
. XQQ sz(')
iot l v <
2 2|5ty 2. ferpm el =1
i=(v—co)VO 2(Q)=27) LPO/t(Rm)

From this and (103), we deduce that A < 1, which implies that (102) holds true and then
completes the proof that Ip , < 1.

We next prove that Ip 3 < 1. To this end, it suffices to show that

r
e}

Xp e
- 2is() t _ <1
C(I)(P) N {)(Q)_Z_J Q”(p] * aQ|
3 P ) j2(pv0)
for some positive constant C large enough independent of P, which, by Definition (6.2.5),
is equivalent to show that 3.2 ;o) 2 ¢(0)=2- YjP < 1, where, forallj € Z, n [jp vV 0,0),

Qpa()/r(LPOI/r)

xp[250 3555 3 sgy=2v|to]| @y * ao|]

¢ [cp(P)le/“(')]r
We claim that, forall P € Q and j € Z, N [jp V 0, ),

Y/ := inf{ 2 € (0,9) : @y r

<1,
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R N I3 seorea—vto|27750x, I
Y]-P <27+ Z 2(]‘”)‘12 27" % inf{&, € (0,00) : Qp() XPL[ L2 |5l(_) T XQ] <1
- - r |o(P)E ¢

=:27 + » 20-wd A o-idyP —.§F, (104)
where P, := Q(cp, 217/P*%) with ¢, € N, d is chosen such that L+n—n/r+s_—
d/q, > 0andd € (0,).

From the above clalm (99) and (54), We deduce that

Z Y S1+ Z Z 20- v>dZZldY5 1+221d Z YP, s 1,

j=(jpv0) v=(jpv0) j=(jpv0) - =0 v=(jpV0)
which implies that Ip 3 < 1 and & € [277,277 + 8] for some 6 e [O, )

Therefore, to complete the estimate for Ip 3, it remains to prove the above claim
(104). To this end, it suffices to show that, for all j € Z, N [jp V 0, o),

Xp [2’ Oy i 2 0(0)= z-”|tg||<PJ *“Q”

inf{ A € (0,) : gp() <1;s1,
) P2 1/q()
r o) (s77%) ]
which follows from the following estimate
2js(Or -
W= e ), D, Melleaf]l 51 (105)
p11/4()
{d)(P)[S,-] } v=j Q=2 b
Next we show (105). By Lemma (6.2.28), we find that
o0 il r -r/2
H]-P < z 2-(w=)L+n)r Xp 210 ( |tQ”k.|| 190 il kDR (106)
1/90) 1+ 2))--277 r ’
17=j {(I)(P) [SP] } Lp(.)/r(Rn)

where R can be large enough. For all x € Pand v € Z, with v > j, let
Qo7 = {k €z : 2l|x - 27k| < 1}
and, for all i € N, Qg7 = {k € Z" : 2171 < 2|x — 27YKk| < 2%}. Then, we see that, for all x €
P,
215 [to,ul 19u1l ™
(SJP)UQ(") &, (14 2/|x — 277k[)Rr

2js@Ir & z | | o
19y kI ™"
(SP)r/q(x)L § G vkl 1Xvk

J(,j,x,P) =

r

2]s(x)r 'R
- P r/q(x) 2™ rzvnf z |thk|Xka(Y) dy (107)
(8] ) i=0 REvaka kE.va

Since, foralli € Z,, v € Z, withv >j,x e Pandy € Ureaz? Qv e there exists k,, € Q73"
suchthaty € 9, . it follows that

1+21'|x—y|s1+21'|x—x9E S2'+27s 2! (108)
v Xy

+ 2 |y - vaEy

and hence
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ly —cp| < |y — vaEy| + |x — vaEy| + |x —cp| S 27V + 247 + 270p g 2070p, (109)
By (109), we see that, foralli e Z,, v € Z, withv > j, x € P,
L) 2k = 0 20700y =200
keﬂfi"
for some constant ¢, € N, WhiCOD, combined with (107) and (108), implies that

1.}, %, P) = (SJP)—r/Q(X)st(x)r Z p=iRryW=nyila-er 5 Niarser

i=0
r

* Z |Q |XkaXQ (x)

keQ" v

< 2(v—])(n—rs_) Z 2—Lr(R—a—s)n]_’ar %

i=0
r

A D620 g, [Ropxg | |G, (110)
keﬂx'"

where € € [Clcg(s) + Clog(1/q), ). From this, (106) and Lemma (6.2.15), we deduce that
[b(Q)]
HP < 2~ (v-j))(L+n—-n/r+s_)r 2= —i(R—a—g)r L =t /1
Z Z [d(P)]"

r

(SP)—F/Q()
zl)(T Z [to, |

kezn

X 2vs0Oy

XQ‘U k
LPO(oP)

< z 2—(v—j)(L+n—n/r+s_—d/q+)r z 2—i(R—a—£—logc1—a/q_)r

v=j
r
Z | vk US()Xka]

kezn

X

2 (v=j)dr/q() p—idr/q()

LPO/r(g9)

ZZ (v=j)(L+n- n/r+s_—d/q+)r22 i(R-a—e-logcy—d/q-)r <1,
=j
where R is chosen large enough such that R > a + € + logc; + d/q_, which completes
the proof of that Ip 3 < 1 and hence the case I.
Case Il q, = oo.

We see that q(x) = oo for all x € R™. Thus, we see that

1 s()
ltll 562 g, = SUP sup > 1ol
bre®D  peny O(P) jez, j(ipvo) _ | Ql °
QeQ*£(Q)=27) Lp(-)(p)

Let P be a given dyadic cube. Then, by (97), we find that, forallj € Z, nj = [jp V 0, ),
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1

oo =
Gp = $(P)

12501y £1l

-1
1 -
ssolFe 2. lelloal

v=0 geQ* £(Q)=2"] LPO(p)

1 ||~ | |
5@ 2’5(')2 Z [tol[@; * ag =:Gp, + Gp. (111)
V=0 gen*£(Q)=27) LPO(P)
To estimate Gp, and Gy, ,, We let € € (Cjpg(s),), r € (0,min{1,q_}) and a €
(n/r,o). For G{,’l, by an argument similar to that used in the estimate for Ip,, we
conclude that there exists a positive constant c, such that

J )
G]P " < Z Z(V—j)(K—S+)I‘Z 2—i(M—a—s/r)
v=0 i=0

1

X —_—
P
(I)( ) Lp(')/r(Q(cP,Zi_”+C0))
which, together with (57) and the facts that c; € [1, ) and j > jp , implies that

j o [ ( ( iv) ry 1/1
: cp, 21 )]
Gpy S Il 020 gny E:Z(U_D(K_S*)r E 2~iM-a—e/r) b (Lfer
} P R
v=0 i=0

r . _
|tQ| zvs()rlgl r/ZXQ
QeEQ*£(Q)=2""

P00 [p(P)]"

]' l/r

00
< ”t”bq8¢, &Y z 20(K—S+—log2 cr z 2—1(M—a—s/r—log2 c1) 2]plog2 c1
p(),0

v=0 i=0

< lt] 27ilogzeapiplogz e < ||,y 4O (112)

baCy e (B™) b3 @wm)’
For G{)’Z, by an argument similar to that used in the proof of (110), we find that there
exists ¢, € N such that

(.

: 1 _ 2
G]p , S — Z 2~ (W= L+n)r Z 7-i(R-a-e)r
0

v=j+1

| o\ |

11/1‘

X [IMj,ar * Z |tQ||Q|_S(.)/n XQXQ(CP,zi—iP+C0) ,
l QeQ*
£(Q)=27" LPO/T (R

which, combined with (57) and (62), implies that
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< 2~ (v- ])(L+TL)FZZ i(R-a-9)r
G ¢(P) Z

v=j+1
1/r
r

X ( |tQ|IQI‘S(')/”>ZQ>

QEQ*£(Q)=2"" Lp(-)/r(Q(CP,zi—ipﬂo))

(o] 0 1/I'

< . —(v—j)(L+n)rz —i(R—a—&—log, cy)r < _
S a0 gy} . 2 2 S Nty 500 oy

v=j+1 i=0

By this, (111) and (112), we conclude that

isC) | p.
”f“ S()¢ > (rR™) S Sup d)(P) ]EZ_,_ﬂS[(l]:l;R/O),OO)”ZJS |(P] * f|||Lp(')(p)

j j
< sup sup Gy, +G S It g0 ,
PeQ ¢(P) JEZ4+N[(jpV0), 00)( i P'Z) bg(-),oo(Rn)

which completes the proof of the case II.
Combining Cases | and Il, we conclude that (98) holds true. This finishes the proof of

Theorem (6.2.30).
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