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Abstract

The Trudinger inequality for Riesz potentials of functions in Musielak-Orlicz
spaces, in generalizes Orlicz spaces and Sobolev embedding on generalized Lebesgue
and Sobolev spaces are studied. We determine the boundedness of the maximal
functions and operators with approximate identities and Sobolev inequalities on
Musielak-Orlicz-Morrey spaces. Also the boundedness of the classical operators, local-
to-global result and fractional operators in weighted and variable exponent spaces are
considered. The Sobolev inequalities and embedding, mean continuity type results,
type Young inequalities and regularity for double phase for Orlicz and certain Sobolev
spaces are given and characterized.
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Introduction

We study the Riesz potentials I,f on the generalized Lebesgue spaces
LPO(RY), where 0<a<d and If = [.f®Ilx—yl*¢dy. Under the
assumptions that p locally satisfies [p(x) — p(¥)| < €/(—|Inlx — y||) and is constant
outside some large ball, we show that I,: LPO (R%) - LP*O(R®), where — .

g. If p is given only on abounded domain Q with Lipschitz boundary we show how to

p(x)  p®)
extend p to p on R% such that there exists a bounded linear extension operator « :
wirOQ) o WrP(R?), while the bounds and the continuity condition of p are
preserved. We show that many classical operators in harmonic analysis such that as
maximal operators, singulars, integrals, commutators and fractional integrals are
bounded on the variable Lebesgue space LPC) whenever the Hardy-Littlewood
maximal operator is bounded on LP®). We do so by applying the theory of weighted
norm inequalities and extrapolation.

A new method for moving from local to global results in variable exponent
function spaces is presented. Several applications of the method are also given. We
deal with Sobolev's embeddings for Sobolev Orlicz functions Vu € log L) (Q) for
Q c R™.

For functions f in Sobolev spaces WP™)(Q) which exponent lower
semicontinuous, bounded away from 1 and oo and with the property of the density of
smooth, it is shown that for each open set w cc Q, for each h € R" such that w +
th ¢ Qvt € [0,1], the following inequality holds

If Cx + h) = fOOlpminpearny ) < (1 + [QDNVF |l oo g
where min p(x, x + h) denotes the minimum of p along the segment whose endpoints
are x,x + h. We study the boundedness of the maximal operator, potential type
operators and operators with fixed singularity (of Hardy and Hankel type).

We give conditions for the convergence of approximate identities, both pointwise
and in variable L? spaces. We unify extend results due to Diening [4], Samko [23] and
Sharapudinov [145]. We deal with approximate identities in generalized Lebesgue
spaces LPO) (log L)1 (R™).

We discuss the convergence of approximate identities in Musielek-Orlicz spaces
extending the results given by Cruz-Uribe and Fiorenza (2007) and F.-Y. Maeda, Y.
Mizuta and T. Ohno (2010). We treat the case where the approximate identity is of
compact support. We show a Riesz potential estimate and a Sobolev inequality for
general generalized Orlicz spaces. Our assumptions are natural generalizations of the
log-Hoblder continuity that is commonly used in the variable exponent case.

We give continuity conditions on the exponent function p(x) which are sufficient
for the Hardy-L.ittlewood maximal operator to be bounded on the variable Lebesgue
space LP™((Q), where Q is any open subset of R™. Further, our conditions are
necessary on R. We present a sufficient condition for the boundedness of the maximal
operator on generalized Orlicz spaces.




The Contents

Subject Page
Dedication I
Acknowledgements ]
Abstract Il
Abstract (Arabic) \Y
Introduction \4
The Contents Vi
Chapter 1
Riesz Potential and Sobolev Embeding with Boundedness
Section (1.1): Generalized Lebesque and Sobolev Spaces LP®) with w*»0) 1
Section (1.2): Classical Operators on Variable LP®) Spaces 15
Chapter 2
Local-to-Global Result and Sobolev Inequalities
Section (2.1): Variable Exponent Spaces 37
Section (2.2): Orlicz Spaces of two Variables 52
Chapter 3
Mean Continuity Type Result with Maximal and Fractional Operators
Section (3.1): Certain Sobolev Spaces with Variable Exponent 63
Section (3.2): Weighted LP®) Spaces 77
Chapter 4
Approximate Identities
Section (4.1): Variable LP Spaces 95
Section (4.2): Young Type Inequalities in Variable Lebesgue-Orlicz Spaces | 111

Chapter 5

Approximate Identities and Trudinger's Inequalities with Riesz Potentials

Section (5.1): Young Type Inequalities in Musielak-Orlicz Spaces 128
Section (5.2): Riesz Potentials of Functions in Musielak—Orlicz spaces 151
Section (5.3): Generalizes Orlicz spaces 160
Chapter 6
Maximal Function and Operators
Section (6.1): Maximality and Variable LP Spaces 183
Section (6.2): Generalized Orlicz Spaces 197
List of Symbols 205
References 206

VI




Chapter 1
Riesz Potential and Sobolev Embeding with Boundedness

As an application of Riesz potentials we show the optimal Sobolev embedding
WkrO(R?) & LP"O(R?) with p*tx) = ﬁ —=and WkPO(Q) o LP'O(Q) for k =
1. We show compactness of the embedding WP (Q) & LiO(Q), whenever q(x) <
p*(-) — e for some € > 0. As applications we show the Calderéon-Zygmund inequality
for solutions of Au = f in variable Lebesgue spaces, and show the Calderon extension

theorem for variable Sobolev spaces.
Section (1.1): Generalized Lebesque and Sobolev Spaces LPO) with wk»()

The generalized Orlicz-Lebesgue spaces LP®) (also known as LP™) and the
corresponding generalized Orlicz-Sobolev spaces WP have attracted more and
more attention. These spaces are special cases of the generalized Orlicz and Orlicz-
Sobolev spaces originated by Nakano [19] and developed by Musielak and Orlicz [17],
[18]. See Hudzik [12], Kovacik, Rakosnik [13], Samko [23], Edmunds, Lang,
Nekvinda [7], Razic¢ka [22], Edmunds, Rakosnik [8], Fan, Shen, Zhao [10], Diening
[3, 5] for properties of the spaces LPOand W P() such as reflexivity, denseness of
smooth functions, and Sobolev type embeddings. The study of these spaces has been
stimulated by problems of elasticity, fluid dynamics, calculus of variations, and
differential equations with p(x)-growth conditions, where energies of the type
[IDf (x)|P™ appear (see e.g. Zhikov [26] and RuZicka [22]). This energy also
appears in the investigations of variational integrals with non-standard growth; see e.g.
Zhikov [25], Marcellini [15], Acerbi, Mingione [2].

Since the spaces LP() are not invariant to translations, they unfortunately suffer
of some undesired properties. So for example the translation operator is not
continuous and the convolution with g € LP is in general not continuous, i.e. in
general||f = gll, % Cllgll1llgll,. If P satisfies the uniform, local continuity condition
lp(x) —p(y)| < Wc_y” it is still possible to mollify with ¢ € C5°(R%) function (see
Samko [23], Diening [3]). One can reduce this property to the continuity of the Hardy-
Littlewood maximal function M (see Diening [3]). If P is constant outside a large ball
By and satisfies the uniform, local continuity condition above, then M is continuous
on LPO(R%) (see [3]). Especially there holds f * ¢, — f in LPO(R%), where ¢, (x) =
e~%p(x/e), for a large class of mollifiers including C$°(R%) in W*PO(R%) and
C*(Q) in WkPO () for domains (Q) with Lipschitz boundary. It has been proved by
Pick and Ruazicka [21] that the continuity condition above on p is limiting one.
Nekvinda [20] gives a sufficient condition on P, which replaces the assumption on P
to be constant outside a large ball B; by some integral condition, i.e. there exists p,, =
lim p(x) and constant c > 0, [ c/@)=Px) dy < oo,

Razi¢ka and Diening [6] have examined singular operators on LPO(R%) . They
showed that if 7" is a Caldéron-Zygmund operator and p satisfies the local continuity
condition above and is constant outside some ball, then there holds ||ITf||,, < C[[f]l-
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Moreover, if T, are the truncated operators, then T.f — Tf almost everywhere and in
Lp(')(]Rd).

We examine the Riesz potentials I,f with 0<a<d and [,f =
Jral FODIlx — y|*~% dy on the spaces LP()(R%) under the same assumptions on p.

For sup p < < we show that I: LPO(R%) - LP*O(R%), where — L _«
(04

P @ @
the case of 0 < a < d we will derive a pointwise estimate I,in terms of Mf, see
theorem (1.1.13). Note that if 0 < a < d,Q is a bounded domain, p satisfies the
local continuity condition above, and M is continuous on LP()(()), then the continuity
of I,: LPO(R%) - LP"O(Q) was proved in [24]. Since it has been proved in [4, 3] that
the local continuity assumption on p implies the continuity of M on LP®)(Q), these
two results imply the continuity I: LPO(R?) - LP*O () for bounded domainsQ. In

the case of the unbounded domain R® the results of [24] cannot be applied and the
technique has to be refined

As an application of the results on the Riesz potentials with the same assumptions
on p we prove the Sobolev embedding WP (Q) & LP"O(Q) with — Lk

p*(x) pkx) d
For bounded domain Q with Lipschitz boundary we prove w1rO(Q) - LP" O(Q).
The latter result on Sobolev embeddings for bounded domains has also been considered
by Edmunds and Rékosnik. Under the assumption that sup p < d and p is Lipschitz
on Q see [8], or p € WkPO(Q) for some s > d, see [9], they prove WP (Q) —
LP"O(Q). Since every p € WS(Q) is uniformly Holder continuous, i.e. p € C%* for
some a > 0, every p € W1S(Q) satisfies the uniform, local continuity condition
lp(x) —p)| < C/(—|In|x — y||) . Therefore for sup p>d our result is a
generalization of the work of Edmunds and Rdékosnik. Note that Edmunds and
Rakosnik have also considered the case sup p = d, which implies sup p* = d. In this
case LP'®) has to be replaced by a suitable space of Orlicz-Musielak type, which
involves a weight depending on |p — d|.

If Q is bounded and has Lipschitz boundary, then we show that the embedding
WP Q) oo 190(Q) is compact whenever g(x) < p*(x) — e. This result is well-

known and can also be shown by using only classical Sobolev spaces. See Kovacik.
We refer to Kovacik, Rakosnik [13] for an alternative proof, who also consider

compact embeddings of type Wol‘p(')(ﬂ) S C(Q) in the case inf p>d. The
technique used in nevertheless different. For ¢ € C°(R%) with [@(y)dy =1 we
show that ||, * v — v|| ¢y < eC||Vv]|, under the condition that M is continuous on

199 Form this we deduce W, (Q) oo L0 (Q). This compact embedding and the
embedding W,""(R%) oo LP"O(RY) (under the conditions on p as stated earlier)
imply via interpolation the desired compact embedding W,"*©(Q) o L10(Q)
whenever g(x) < p*(x) — e.



We will now introduce the spaces L10(Q) and W*PO(Q) and state some
fundamental properties of these spaces, which can be found in mentioned above. Let p :
R¢ — [1,00) be a measurable function called the exponent or the exponenton R¢. Then
for an open set Q we define LPO (Q) to consist of measurable functions f : Q — R such
that the modular p,(f) = [, |f(x)|P@dx is finite. If p* == sup p < oo (called a
bounded exponent) then the expression ||f ||, = inf{A > 0 : p,(f/4) < 1} defines

a norm on LPO)(Q). This makes LP()(Q)) a Banach space. Moreover, convergence with
respect to the modular is equivalent to convergence with respect to the norm and

Ifll,ey < 1iff p,() < 1.1f p~ = infp > 1, then LPO(Q) is uniformly convex and
the dual space is isomorphic to LP"©)(Q), where %+§ = 1. Further let W*rO(Q)

denote the space of measurable functions f : Q — R such f and its distributional
derivatives V¥f up to order k are in LP ). Define the modular py ,(f) =

Y i<k Pp (VEf), then the norm  |Ifllkpe = inf{d > 0: py,(f/2) <1} makes
WwkrO(Q) a Banach space. By W,""(Q) we denote the closure of Cg°() in

wkrC)(Q). By B we denote arbitrary ball in R%. We write B(x) for a ball centered at

x and B, for a ball with radius r. For f € Lj,.(R%) we denote

Myf = j FO)ldy and ML= j FO) = faldy
B B

where f3f is the mean value integral over B and f5 := fzfdx. By f, resp. M*f we
denote the Hardy-Lttewood maximal of f, resp. the sharb maximal function f, i.e.

i . # — . #
Mf(x) = gl(gcr)l Mg f, M flx) = gl&r)l MB(x)f’

Where the supremum is taken over all balls the centered at x. By P(R%) we dente the
set of bounded exponent p such that M is bounded on LPO (R®)

Lemma (1.1.1)[1]: Let p : R% = (0, o) be continuous with 0 < p~ < p* < oo. Then
the following conditions are equivalent:

(a) p is uniformly condition on R with

1
p() —pO)I < -2 forall [x—y| <=

-yl 2
(b) For all opens ball B there holds
BB PP < ¢,

(c) % is uniformly continuous on R4 with

1 1 < G for all < 1
e ol = i ol eyl <3
(d) For all open balls B there hold
infl—supl

1B 278 < (.

3



Proof. (a) & (b): This proved in [3].

(@) = (c): Note that for all |x — y| < - there holds

1 1 Co Co
|p<x> 20 p(x)p(y)lpU PO = S350 Ttk =31 = Zinlx =31

(c) = (a): Let g := Ethen q satisfies(a). Thus “(a) = (c)” implies

— < ¢
q(x) qO)I~ —Injx —y|

PG~ Pl = |

(c¢) © (d): Thus follows from (a) < (b) with replaced p by %.

Let L1'°°(1Rld) denote the space of measurable functions f for which there exists a
constant C(f) = 0 such that for all A > 0 there holds

[(x € R : |f ()] > 2}] < (f)

The following propositions have been shown in [3].

Proposition (1.1.2)[1]: Let p be a bounded exponent on R¢ which satisfies the
assumptions of Lemma (1.1.1) and is constant outside some ball B;(0). Then there
exist a constant C(p) > 0 and h € LV (R®*) n L*(R%), such that for all ||f1],, < 1
there holds

p(x) P
(Mf(x) P~ <C(x)M (lflp') (x) + h(x) fora.a. x € R4, (D

Moreoverif p~ > 1, then (1) implies p € p(R%) , i.e. the maximal operator f —» Mf
is continuous on LPO)(RY),

Proposition (1.1.3)[1]: Let p € P(R%). Let ¢ : R% - R be an integrable function and
set @ (x) :== e %@p(x/¢) forall e > 0. Assume that least decreasing redial majorant of

@ is integrable, i.e. A := fRd sup|y|=|x| @ (¥)| dx < oo. Then we have
(i) supesol (f * @)l < 2Mf(x) for all f € LPO(R?).

(i) If [oo(x)dx=1, then for f e LPO(R?) there holds f * ¢, if almost
everywhere and in LPO(R%). Furthermore

If * @ellpey < CAADIMS Il < CA DI llpey

Proposition (1.1.4)[1]: Let Q be a bounded domain with Lipschitz boundary. Further
let p € p(R2). Then C* () is dense in WO Q).

As a direct consequence of Proposition (1.1.3) there follows

4



Corollary (1.1.5)[1]: Let p € p(R%) and & € R? be open ball, then C°(Q) is dense
in LPO(Q) and € (R?) is dense in WP (1),

Note that the statements of Corollary (1.1.5) are known without the assumption
that the maximal operator is bounded in LP(): see Kové¢ik and Rdkosnik [13], for the
denseness of C°(R4) in LPO(R%) and Samko [23] for the denseness of C§°(R%) in
LPO(RY) .

Definition (1.1.6)[1]: Let 0 < a < d. For f € C°(R%) or f measurable with f > 0.
we define I f: R% — [0, ) by

f()
I = —= 7 dy.
af(x) fRd |x - )’|d_a
The corresponding kernels |x|*~¢ are called Riesz kernels.

Definition (1.1.7)[1]: Let p be a bounded exponent. For every ball B we define pg by

1 j 1 p

Pp . g P(x) Y
Lemma (1.1.8)[1]: Let p be a bounded exponenton R% and h € L'*(R%) n L*(RY),
such for all || /]|, < 1 there holds

P

(Mf(x))%m <C(p)M (lflp )(x) + h(x) fora.a. x € R%. (2)

Then for all balls B(x) there hods

p(x)

. v o)
|B(x)| PP0) < <C(p)IBI PT+ h(X)) : (3)

Proof. For x € R? and an open ball B(x) define f = XB(x)|B(x)|_?. Then p,(f) = 1.
Sine t — st is convex forall s > 0, Jensen’s inequality implies
1 1

__ _ 1 I
|B(x)| PE® = |B(x)] st ® < f |B(x)| P2® dy = Mg f < Mf(x).
B(x)

Sine p,(f) < 1 inequality (2) implies

P
_PX®) p(x)

B 7o < (C(p)M (17177 ) 0 + h(x))

P _P P _P
Note |f|r~ < |B(x)| »~ almost everywhere, so M(lflv‘) < |B(x)| »~ almost
everywhere and



p
_p)

. _r P
|B(x)| PP® < (C(p)IBI PT+ h(x)> :
This proves the lemma.

Note that in order to prove Lemma (1.1.8) it is sufficient to require that (2) holds
1

for all f = xz|B| ». Note also that if p is bounded exponent on R4 with 1 <p~ <
pt < oo which satisfies the assumptions of Lemma (1.1.1) and is constant outside some
ball B (0), then due to Proposition (1.1.2) the requirements of Lemma (1.1.8) are
satisfied for all [|f[,) < 1.

Lemma (1.1.9)[1]: Let p € p(R%), then for all balls B there holds

1

IXBllp¢y < C(p)IBI.

1

Proof. Let (x) := XB|B|? , then lfll,y = 1. Furthermore x € B there holds

1
CMF() = Mycof = [ 1BGOI P07 dy,
B

Since t = a~tis convex forall a > 0, there follows

1 _1
CMf(x) = |B| 2?®® = |B| % forall x € B. (4)

Since M is continuous on LP® (R%) by assumption, we deduce from (4)

1
e

= CIM ey < 1y < €
.

This proves the lemma.

Definition (1.1.10)[1]: Let 0 < a < d. Then for every bounded exponent p with p* <

g, we define p* : R? - [1, ) by pi# = % — %- Note that due to p* < % the function
p* is also a bounded exponent.

Lemma (1.1.11)[1]: Let 0 < a < d and let p be a bounded on R? with 1 < p~ <<
p* <% , and d?T“p’ € P(R%). Moreover, assume that there exists h € L (R%) n

L*(R%) such that for all ||f]| ., < 1 there holds

p

(Mf(x))% < C(p" M (lfl(l’#)_) (x) + h(x) fora.a. x € R%. (5)

Then there exists g € L**(R?) n L*(R?), such that for all ||f|,,., < 1 there holds



p*

U (f D)™ < CMPP™ + g.

(6)

Proof. First note that p* < g implies that %p’ and p* are bounded exponent. Let
Ifll,) < 1and x € R4, It is well-known (see e.g. Maly, Ziemer [14]) that forall § >

0 and f € L}, .(R4) there holds

loc

j Ly)aly < CS*MF(x).

500 1 = ¥4

Moreover,

f T < Ol X RNBs GOl — 15
B

s() |x — y|4-@ p'()

d-a
= ClIfllpeo X RINBs () |x — -[*4| o2,
TP “)

Note that for all y € R*\Bs(x) there holds

MAB@IBII0 = [ XBs(IBs (I
Ble—y|(3’)
1
=——— sincel|lx—y| =8
|BZIx—y|(y)|
= Clx — y|%.

Thus for all y € R%
XR*\Bs(x)|x —+|*7% < CM(XBs(x)|Bs (x)|") ()
From (8), (9) and [|f|l,,¢) < 1, there follows

[ LY s CIMCCBs (185 () [ g.
]Rd\Bg(x) |x - yl TP’(')

a—d d-a
= C|Bs(x)| @ |[M(XBs(x))||ae , ..
—a P ®

Since d;—“p’(-) € P(R%), there follows

f) a-d d—a
j |x — y|d-@ dy < C|Bs(x)| 4 ”XB5(x)”dC_la ,
RA\B5(0) 1%~ VI Aoty

Thus Lemma (1.1.9) applied to %p'(-) € P(R%) gives

7

(7)

(8)

€)



s 1X — YIS

1 d
f &dy < ClBa(x)Iﬂ('Ba(xNpo,Ba(x))
R

a—d 1
a
= C|Bs(x)| 7o

a, 1
= ClBs(0)|® PP5®

1

= C|Bs(x)| P Bow.
Due (5) we apply Lemma (1.1.8) to p* and get

/0 I
de\Bg(x)mdy < <C|Ba(x)| ®H" 4+ h(x)>
Thus (7) and (10) implies for all 5 > 0
(")

__1 #(x)
IL,(fD(x) <CO*Mf(x) + (CIBa(x)I (CLOS h(x))p

(»*)
< CS*Mf(x) + (ca“(v#)‘ + h(x))p 7

Fix § = 8(x) by

_pXx)
§:=(Mf(x) ¢,
then (11) simplifies to

(»*)
Faeo) PO P
LAfDG) < C(MF))P ) + | ¢(Mf(x))P*® + h(x) :

#
Since 1 < (pr;)_ < C(p, @) < oo, this implies

p# (%) p(x)

(I (fD@))# < C(Mf(x))P"® + Ch(x).

This proves the lemma.

(10)

(11)



Theorem (1.1.12)[1]: Let 0 < a < d and let p be a bounded exponent on R4 with
1<p  <p*< g which satisfies the assumptions of Lemma (1.1.1) and is constant

outside some large ball B, = B, (0). Then there exists g € L¥*(R2) n L (R4), such
that for all ||f|,,() < 1 there holds

;
(1 (F D)™ < CMP +g. (12)
Moreover,
Ief ey < Co, DI lpe)- (13)
Proof. Since
1 1 « 1 1 1
F=p a o =d_a(1‘5)

and p fulfills condition (1) of Lemma (1.1.1) , so do the exponent p* and %p’. Thus

form Proposition (1.1.2) applied to p, p*, and %p’ we see that p € P(R%) and that

p fulfills the conditions of Lemma (1.1.11). Therefore there exists g € L*®(R%) n
L®(R%), such that for all If1l,) < 1 there holds (6). Let ||f]l,, < 1, then due (6).

There holds p,+ (I, (If])) < pp(Mf) + pp(g) < pp(Mf) + C. Since p € P, i.e M is
continuous on LPO(R%), and p, <1 there holds p,(Mf) < C. Hence implies
ppt(af) < C and therefore |[I,f]l,#.) < C. Overall we have shown that I, is a

bouneded mapping from LPO (R%) to LP#(')(Rd). Since 1, is linear, this implies (13).
This proves the theorem.

Definition (1.1.13)[1]: Let Q ¢ R? be open and p : R% - [1,0) be a bounded
exponent. Then we say that Q is a (1, p(-) )-extension domain if there exists a bounded
extension operator &

< Wl,p(-)(g) N Wl.p(-)(Rd)
Such that e(u)|q = u for all u € WP0O),

Letq : Q — [1, o) be measurable bounded. Then we say that (g, Q) has 1-extension
(g, R%) if there exist a bounded exponent g : R4 — [1, o0) such that p|g = q|q and Q
is a (1,p(+) )—extension domain.

Theorem (1.1.14)[1]: Let & c R be an open, bounded set with Lipschitz boundary.
Let p : R — [1, ) satisfy the uniform continuity condition

lp(x) —p()| < p(lx—yl) forall xye€q,

where p is concave for t >0 and p(t) - 0 for t - 0*. Then there exists an 1-
extension (g, R%) of (g, Q) and a constant A > 0, such that

9



Ip(x) —p(@)| < p(lx—y|) forall x,yE€ Q.

Moreover, there holds p~ = p~ and p~ = p~. Furthermore the corresponding linear
bounded extension operator & : WPO(Q) - WLPO(R?) can be chosen in such a
way that ef has compact support contained in Qg = {x € R? : dist(x, Q) < B} for
some fixed B > 0, i.e. £ : WPO(Q) > WLPO(Qz) continuously.

Proof. In Theorem 4.1 of [8] it is proved via the reflection method of Hestenes [10] that
there exists a bounded exponent g with p|g = q|q and bounede linear extension
operator which satisfies the estimate

||<9f”W1,p(-)(Rd) < C”f“WLq(-)(Q)

This extension operator further satisfies that ef has compact support contained
{x € R% : dist(x,Q) < B} for some B =>0. In order to construct the extension
Edmunds and Rakosnik cover Q by small open sets V;,j =1, ...... ,k, where they

flatten the boundary by bi-Lipschitz maps T; : (=6, 5% 1 x (=y,y) - R To these
flattened domains Tj‘l(Vj) they apply the reflection operator

f(x',xy) forx, =0,

Efea) = {f(x',xn) for x,, < 0,

both to p and to the f;, where f;(x) = f(x)¢;(x) with a sutable partition {¢;} of
unity. Especially they define p; : V; U Q by

B p(x) for x€Q,
p;j(x) = E.;j(T7 % (x)) forx € V\Q,

where rj := p , T;. Note that since E, T}, and Tj‘1 are Lipschitz there exists C > 0 such
that

|pj(x) — pj(y)| <p(Clx—y|) forall «x,y€ Q. (14)

Then Edmunds and Rakosnik extend the p; on ( to p; on R4 preserving their upper
and lower bounds, where they pose no further conditions on extensions of the p,. Note
to Mc shane [16], the p; can be extended in a way that (15) remains valid for p;. Here
we use that p is concave and thatp (x) — 0 for t —» 0*. After that Edmunds and
Rakosnik define on p : R% — [1, o) by

, o— 1 ~ d
P](x) jg}_l_}kp](x) for x e R

Thus there holds

lp(x) —pW)| < p(Clx —y[) forall x,ye€AQ. (15)

For the rest of the proof we may proceed exactly as Edmunds and Rakosnik. This
proves the theorem.
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Corollary (1.1.15)[1]: Let Q c R¢ be an open, bounded set with Lipschitz boundary.
Let g : Q — [1, o0) satisfy the local uniform continuity condition

lq(x) —q(y)| < —— forall x,y,€Q, (16)

—In|x-y|

Then there exists 1-extension (p, R%) of (g, Q) with p~ = g~and p* = g, which
satisfies the same local uniform continuity condition ( with a possibly different
constant) and is constant outside some ball Bg. Further the corresponding bounded
extension operator £ : WP (Q) - WPO(R?) can be chosen in such a way that ef
has compact support contained in Q = {x € R? : dist(x, ) < B} for some fixed g >

0,i.e.e: WPO(Q) » WPO(Qz) continuously.

If moreover g~ > 0, then p € p(R%), l.e. M is continuous on LPO(R4).

Proof. Since the mapping ¢ :=t — C/(—In|t]) is concave on [0, exp(—2),y(t) -
0] fort —» 0%, and q satisfies uniformly the local continuity condition (16), there exists
p : [0,00) = [0,00) With|g .1 = Cpljo,,1, Which is concave on [0, o) and p(t) — 0
for such that

lq(x) —q)| < p(Jx —y]) forall x,y€Q.

Due to Theorem (1.1.14) it follows that there exists a 1-extension (p, R%) 0f (g, ),
which possesses all the desired properties save to be constant outside some large ball.
For 8 > 0 Theorem (1.1.14) choose an open ball B, with R\3 > f that Q) is a compact
subset of Bg\, and let 7 € C®(R?Y) with XBg\z <N < XBg. Now set p(x) =

(1 -=n())p~ +n(x)s(X), then s is constant outside B and satisfies the local
uniform continuity condition (with possible a possible different constant). Since
supp &f C Qg forall f € WHPX)(Q) there follwos

lefllyrreora)y = lef lwrecomay < llefllyapeoqy- (17)

This proves the existence of a suitable 1-extension. If moreover g~ > 1, then p~ >
1, and Proposition (1.1.2) implies 77 € p(R%). This proves the corollary.

We will prove Sobolev embeddings with optimal exponent. In order to do so we need
the following result about the maximal sharp function M*f, which can be found in

[6]:

Proposition (1.1.16)[1]: Let p,p’ € P(R%) with 1 < p~ < p* < . Then there for
all £ € LPO(R?) there holds

”f”p(-) = C”M#f”p(.)

We are now prepared to prove the Sobolev embeddings:

11



Theorem (1.1.17)[1]: Let k € Ny with 0 < k < d and let p be a bounded exponent
on R with 1 <p~ <p* < % which satisfies the assumptions of Lemma (1.1.1)

! k.Then

and is constant outside some large ball B = B;(0). Define p* by% =23

wkrpO(RY) - LP"O(R%)  continuously.

Proof. Note that 0 < k < d implies (p*)* < . We will proceed by induction over
k. Case k = 1: Let f € WYPO(RY) with ||f[lypcy < 1. We will show [|f]l,¢) < C.
Sine € (R4) is dense in WYPO(R4) and LPO(R%) we can assume without loss of
generality f € Cs°(R?). Due to Theorem (1.1.12) there holds [[I;(IVDfl,.) < C.
From [14] we deduce that for all B,.(x) there holds

\Y
i or<er [wrons [ SO0

dy < CL(IVIf)(x).
Y — y|d-1
B, () B0 ¥~V

By taking the supremum over all balls B,.(x) we deduce that for all x there holds

Mg ) < CLIVIF) ()
This and (I, (IVDf I,y < € imply ||M#f||p(_) < C. From Proposition (1.1.16) there
follows ||f |l < C, where we have used f € LPO(R?) due to f € C5°(R?). Since
CE(RY) is dense in WIPO(RY) and LPO(R?) (this is a direct consequence of
Proposition (1.1.4) of [5] ), this prove |[f]l,) < € for all f with [|f]l;,¢) < 1. This
proves the case k = 1.

Case k - k + 1: Let f € WFTLPO(RY) with ||f [l pey < 1, then ||fllxpcy < 1 and

IVFllkpy < 1. By assumption this implies ||f]lzy <1 and ||V, < C, ie.

. 1 1 k-1 . . .
Ifll1q¢) < 1, with =TT The case k = 1 implies ||f]|,¢y < C. This proves the

theorem.

Corollary (1.1.18)[1]: Let Q c R¥ be an open, bounded set with Lipschitz boundary.
Let p: Q> [1,0) with 1 <p~ <p* <d satisfy the local uniform continuity
condition

c
—Infx-y|

lp(x) —q()| < forall x,y € Q.

Then we have the following continuous embeddings
wiPO(RY) - LPO(RY).

where -1
p*(x)  p(x)

1
7
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Proof. Due to corollary (1.1.15) there exists extension of p to R4, which we still
denote by p satisfies the assumptions of Theorem (1.1.17) and there exists a linear

bounded extension operator & : WP0) (Q) - WLPO(R?). Thus
WLPO(RY) & [PTO(RY)
Moreover, there holds
WO Q) S WPO(RY) & [P O(RY) - LP"O(Q).
This proves the corollary.

Lemma (1.1.19)[1]: Let ¢ € C(R?) with [¢@(y)dy = 1. Then there exists a
constant A = A(¢) > 0 such that for all v € Wl};Cl(Rd) and all ¢ > 0 there holds

[(@e * v)(x) — v(x)| < eAM(V,)(x).
If p € P(R?), then there exists 4, = A,(¢) > 0 such that for all f € WPO(R?).

lpe v — vy < €AzlIVyllp0-

Proof. Without loss of generality we can assume supp ¢ < B;(0). Then

(@ * ) (x) — v(x) = j 0 (v — ) — v(x)) dy

B.(0)

1
- j j 0 (Vo (x — t).y dt dy
B_(0) /o
1
- j j 0. (Vo (x — ty).y dy dt
o JB_(0)

1
y
[ [ eate-nF dyar.
o JB_,(0)

Thus

(e * v)(x) — ()| < ej j oI G =)l dy de
o JB_(0

- sjo (el * 17,1 )() dt

Since ¢ € C°(R%) the function |¢| satisfies the assumption of proposition (1.12).
Thus there exists A > 0 with

|(pe * V) () = v(x) < e4, IVl

Since p € P(R%), this implies
13



lpe * v = vllpe) < AIIMV)pe) < €ACIV, I
Thus proves the lemma.

Lemma (1.1.20)[1]: Let p € P(R%) and let Q be a bounded domain with Lipschitz
boundary, then the mapping

WO @) oo 1O@)
IS compact.

Proof. Let v, v € W,"?"(Q) with v, > v in Wol'p(') (Q). We have to show v;, - v in

L0 Q). Without loss of generality we may assume v = 0. Furthermore, we extend
the function v, by zero outside of Q.

Let ¢ € C°(R?) with > 0, supp ¢ © B;(0) and [ @(y)dy = 1. For € > 0 define
@, = e %p(x/¢), then

V(%) = (U — @ *x V) () + (@ * Vi) (X) . (18)
Lemma (1.1.19)
Ivillpey < v — e * vicllpey < ll@e * villpe

< Cel|[Vvgllpey l@e * vicllpe- (19)

k
Since v, — 0 there holds (¢, * v;)(x) = (vg, @.(x —+)) = 0 almost everywhere. Let
Q. == Q+ B.(0), then (¢, *v;)(x) =0 for all x € (RH)\Q,. Moreover, for all
x € Q,

|(@g * i) ()| = Kvk, @ (x = N < Cllvgellpy Nloe(x = Il ey

Since ¢ has compact support and is bounded, there holds p,/(¢.(x —) < C(¢, p) and
e (x = Il,ry =) < C(e,p) forall x € Q,. So x € R?

|(@e * vi) ()| < C(e,p) X Qe (X).

k
Since xQ. € LPO(RY) and (¢, * v;)(x) = 0 almost everywhere we can use the
theorem convergence which implies ¢, * v, — 0 in LPO(R%). Hence (19) implies

lirl? sup||lvillyy < Ce lirz? sup||villye)-

Since £ > 0 was arbitrary this proves v, — 0 in LPO(R%). This proves the lemma.
By using a suitable partition of the unity on € this implies
W, P9 Q) oo LPOQ)

Nevertheless the result for p € P(R%) is stronger: Indeed, if p is uniformly
continuous on (), then there exists g : O — [1, ), with g < p < q* — ¢ which satisfies
14



the local, uniform continuity condition |p(x) — q(y)| Sﬁx_yl. This g can be

extended outside Q such that the local, uniform continuity condition is preserved and
q is constant outside some large ball (see [6]). Applying Lemma (1.1.20) to g we get

w PO Q) o W 110 (Q) oo [T¢(Q) © LPO(Q)

This shows that the result for uniformly continuous p can immediately be deduced
from Lemma (1.1.20).

Theorem (1.1.21)[1]: Let Q,p and p* as in corollary (1.1.19). Then for all measurable
qg: Q- [1,00) with g(x) < p*(x) — ¢ for almost x € R? and some & > 0 there holds

wirt(Q) oo L10(Q),
I.e. the embedding is compact.

Proof. Asin Corollary (1.1.19) we extend p to R¢, such that p satisfies the assumptions

of Theorem (1.1.18) and there exists a linear bounded extension operator ¢ :

wrPO(Q) - WiPO(RY).

For 0 <6 <1 defin L =19, % sin <p*(x)—eand p i
or 0 <6 <1 define sq by e p(x)+p*(x) Since q(x) <p*(x) —e and p* is

continuous, there exists 0 < 8, < 1, such g < sg, < p* almost everywhere. Note that

S, IS abounded exponent. Let f, , f € WO (Q) with £, = f in WO (Q) (weak

limit). We have to show that £, — £ in L0 (Q) (strong limit). Due to corollary (1.1.18)
and Lemma (1.1.20) holds

fo=f in LPOQ),
fo= f in LPOQ).

Thus, the generalized Holder's inequality (see [13]) implies

Cfa = FllacS W = Fllgeey

-0 <c

0

1fn = fllsg, <
Since g < sp, < p* and Q is bounded, this implies f,, - f in L0 (Q). This proves the
theorem.

Section (1.2): Classical Operators on Variable LP®) Spaces

Given an openset O < R™, we consider a measurable functionp : Q - [1, o),
LPO () denotes the set of measurable functions f on Q such that for some 1 > 0,

[ e <o
Q

This set becomes a Banach function space when equipped with the norm

. | ) \P )
Ifllpey0 = 1nf{l >0: f ( : ) dx < 1}.
QO
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These spaces are referred to as variable Lebesgue spaces or, more simply, as
variable LPC) spaces since they generalize the standard LP®) spaces if p(x) = p, is
constant, then LPO () equals LPo((2). (Here and below p(+) instead of p to emphasize
that exponent is a function and not a constant.) They have many properties in

common with the standard LP®) spaces.

These spaces, and the corresponding variable Sobolev spaces WPO(Q), are of
interest in their own right, and also have applications to partial differential equations
and the calculus of variations. (See, [4], [6], [8], [13], [25], [27], [59].)

A crucial step has been to show that one of the classical operators of harmonic
analysis—e.g., a maximal operator, singular integrals, fractional integrals—is bounded
on variable LP space. We considered the equation of sufficient condition on the
exponent function p(-) for given operators to be bounded: see, [1], [6], [24], [48],
[49], [51].

We apply techniques from the theory of weighted norm inequalities and
extrapolation to show that the boundedness of a wide variety of operators follows
from the boundedness of the maximal operator on variable L? spaces, and from known
estimates on weighted Lebesgue spaces. In order to provide the foundation for
stating the results, we discuss each of these ideas in turn.

In harmonic analysis, a fundamental operator is the Hardy—Littlewood
maximal operator. Given a function f, we define the maximal function, Mf, by

1
MFG) = sup [ 1F Iy,
Q3x |Q| Q
where the supremum is taken over all cubes containing x. It is well known that M
is bounded on LP,1 < p < oo, and it is natural to ask for which exponent functions
for which exponent functions p(-) the maximal operator is bounded on LP)((). For
conciseness, define p(Q) to be the set of measurable functionsp : Q — [1, o) such

that

p_ =essinf{p(x) : x € Q} > 1, p, = esssup{p(x) : x € Q} < oo,
Let B(Q) be the set of p(-) € p(Q) such that M is bounded on LPO((Q).

Theorem (1.2.1)[66]: Given an open set (), ¢ R™, and p(-) € p(Q) suppose that p(-)
satisfies
Cc
~loglx—yl’
C
—log(e+|x])’

lp(x) —q)| < x,y €EQ,|x—y|l<1/2, (20)

lp(x) —q)| <

Then p(-) € p(Q), that is the Hardy—Littlewood maximal operator is bounded on
Lp(-)(m_
Theorem (1.2.1) is independently due to Cruz-Uribe, Fiorenza and

Neugebauer [36] and to Nekvinda [20]. (In fact, Nekvinda replaced (21) with a
slightly more general condition.) Earlier, Diening [4] showed that (20) alone is

x,y €Q, |yl = x|, (21)
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sufficient if Q is bounded. Examples show that the continuity conditions (20) and
(21) are in some sense close to necessary: see Pick and Ruazic¢ka [57] and [36]. See
also the examples in [54]. The condition p_ > 1 is necessary for M to be bounded,
see [36].

Diening [38], working in the more general setting of Musielak—Orlicz spaces,
has given a necessary and sufficient condition on p(-) for M to be bounded on
LPO(R™). His exact condition is somewhat technical (see [38]).

We proofs rely on duality arguments, we will not need that the maximal

operator is bounded on LP®)(€) but on its associate space LP')((), where p’ (*) is the
conjugate exponent function defined by

1 1

p(x)+p’(x) =1, x €.
Since
, , lp(x) —q()I
Ip"(x) —p' WM < TR

it follows at once that if p(-) satisfies (20) and (21), then so does p'()—i.e., if

these two conditions hold, then M is bounded on LP©)(Q) and LP'©(Q). Furthermore,
Diening’s characterization of variable LP spaces on which maximal operator is
bounded has the following important consequence (see [38,]).

Theorem (1.2.2)[66]: Let p(-) € p(R™). Then the following conditions are
equivalent:

() p() € B(R™).

(ii) p'C) € B(R™).

(i) p(-)/q € B(R") forsomel<q<p._.
(iv) (p()/q)' € B(R™) forsome1 < q <p_.

By a weight we mean a non-negative, locally integrable function w. There is
a weights and weighted norm inequalities; here we will summarize the most important
aspects, (see [40], [43]).

Central to the study of weights are the so-called A,, weights, 1 < p < oo. When
1<p <o, wesay w € 4, if for every cube Q,

(ij a)(x)dx> (ij a)(x)l_p'dx>p_1 <(C<o
Q1 J, Q1 J, B '

We say that w € A; if Mw(x) < Cw(x) forae x. If 1 <p < q < o, then 4, c 4,
we let A, denote the union of all the A, classes, 1 <p < co. Weighted norm
inequalities are generally of two types. The first is

17



j TGO P w(@)dx < C f £GP w(x)dx, (22)
R" R"

where T is some operator and w € A, ,1 < p, < oo. (In other words, T is defined

and bounded on LPo(w).) The constant is assumed to depend A4, constant of w.
The second type is

| Irreomemdrsc [ Isf@ip o, (23)
R R

where S and T are operators, 0 < p, < 0, w € A, and f is such that the left—hand
side in finite. The constant is assumed to depend only on the A,, constant of w. Such
inequalities are known for a wide variety of operators and pairs of operators. (See
[40], [43].)

Corresponding to these types of inequalities are two extrapolation theorems.
Associated (22) is the classical extrapolation theorem of Rubio de Francia [58] (also
see [40], [43]). He proved that (22) holds for some operator T, a fixed value py, 1 <
po < o, and every weight w € 4, , then (22) holds with p, replaced by any p,1 <
p < o, whenever w € A,. Recently, the analogous extrapolation result for
inequalities of the form (23) was proved in [37]: if (23) holds for some py, 1 < py <
o, and every w € 4, , then it holds forevery p,1 <p < oo, whenever w € 4,.

The proofs of the above extrapolation theorems depend not on the properties
of the properties of operators, but rather on duality, the structure of A, weights, and
norm inequalities for the Hardy—L.ittlewood maximal operator. These ideas can be
extended to sitting of the variable LP spaces to yield our main result, which can be
summarized as follows: If an operator T, or a pair of operator (T, S), satisfies weighted
norm inequalities on the classical Lebesgue spaces, then it satisfies the corresponding
inequality in a variable LP spaces on which the maximal operators is bounded.

We will adopt the approach taken in [37]. There it was observed that since
nothing is assumed about the operators involved (e.g., linearity or sublinearity),
better to replace inequalities (22) and (23) with

f(xX)Pow(x)dx < Cf g(x)Pe w(x)dx, (24)
R™ R

where the pairs (f, g) are such that the left-hand side of the inequality is finite. One
important consequence of adopting this approach is that vector-valued
inequalities follow immediately from extrapolation.

F will denote a family of ordered pairs of non-negative, measurable functions
(f,9). Whenever we say that an inequality such as (24) holds for any (f,g) € F
and w € 4, (for some q,1 < g < o), we mean that it holds for any pair in F such
that the left-hand side is finite, and the constant C depends only on p, and the 4,
constant of w.

Note that in the classical Lebesgue spaces we can work with LP where 0 <
p < 1.(Thus, in (23) or (24) we can take p, < 1.) We would like to consider analogous
18



spaces with variable exponents. Define F°(Q) to be the set of measurable
functions p: Q - (0, ) such that

p_ =essinf{p(x) : x€Q} >0, p,=-esssup{p(x):x € Q} < oo,

Given p(-) € p°(Q), we can define the Define LPO(Q) as above. This is
equivalent to defining it to the set of all functions Define f such that Define
|f|Po € LPO(Q), where 0 <p, <p_ and q(x) = p(x)/p, € p(Q). We can
define a quiasi-norm on these spaces by

1
1fllpra = FIPOILES.

We will not need any other properties of these spaces, so this definition will
suffice for our purposes.

Theorem (1.2.3)[66]: Given a family F and an open set 0 < R, suppose that for some
Do, 0 < po < o0, and for every weight w € A,

] f(xX)Pow(x)dx < COJ g@)Pew(x)dx (f,g) €F, (25)
Q Q

where C, depends only on p, and the A; constant of w. Let p(:) € »°(Q) be such
that po <p_, and (p()/po)’ € B(Q). Then for all (f,g) € F such that
f € LPOW),

If e < Cllgllpe.a (26)
where the constant C is independent of the pair (f, g).

We want to call attention to two features of Theorem (1.2.3). First, the
conclusion (26) is an a priori estimate: that is, it holds for (f,g) € F such that
f €LPOQ). In practice, when applying this theorem in conjunction with
inequalities of the form (22) to show that an operator is bounded on variable LF
we will usually need to work with a collection of functions f which satisfy the given
weighted Lebesgue space inequality and are dense in LP)(£). When working
with inequalities of the form (22) the final estimate will hold for a suitable family of
“nice” functions.

The family F in the hypothesis of and conclusion of the same, so the goal is
to find a large, reasonable family F such that (25) holds with a constant depending
only on p, and the A, constant of w.

Remark (1.2.4)[66]: In Theorem (1.2.3), (26) holds if p(-) satisfies (20) and (21).
By Theorem (1.2.1), setting q(x) = p(-)/p, We have that p(:) € p(Q) and
lp(x) —p()I
"(x)—¢q' < :
9'0) = O < -
When Q € R", if 1 < p, < p_, then by Theorem (1.2.2) the hypothesis that
(p()/po)’ € B(R™) is equivalent to assuming that p(-) € B(R™). As we will see

below to conclude that a variety of operators are bounded on LP®)(R™) whenever
Hardy-Littlewood maximal a operator is.
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Using pairs of functions leads to an equivalent formulation of Theorem (1.2.3)
in which the exponent p, does not play a role. This can be done by defining a new
family F, consisting of the pairs (fPo, gPo) with (f,g) € F. Notice that in this
case (26) is satisfied by F, with p, = 1. Thus, the case p, = 1 will imply that if
1 <p_andp(:)’ € B(R") the (26) holds. Therefore, if we define r(x) = p(x)p,,
we have that 7(-) € p°(Q), py < 1—, (P(-) /1)’ € B(R™) and (26) holds with r(+)
in place of p(+). But this is exactly the conclusion of Theorem (1.2.3).

We believe that a more general version of Theorem (1.2.3) is true, one which
holds for larger classes of weights and yield inequalities in weighted variable LP
spaces. However, proving such result will require a weighted version of Theorem
(1.2.1), and even the statement of such a result has eluded us. For such a weighted
extrapolation result the appropriate class of weights is no longer A;, but 4, (as in
[58]) or A, (as in [37]). We emphasize, though, that the class A;, which is the
smallest among the A,, classes, is the natural one to consider when attempting to
prove unweighted estimates. Theorem (1.2.3) can be generalized to give “off-
diagonal” results. In the classical setting the extrapolation theorem of Rubio de
Francia was extended in this manner by Harboure, Macias and Segovia [46].

Theorem (1.2.5)[66]: Given a family F and an open set O < R"™, assume that for some
po and gy, 0 < py < gy < o0, and every weight w € Ay,

1/qo 1/po
(j f(x)%w(x)dx) sco(j g(x)qow(x)po/qwdx) (f.g) €F. (27)
Q Q

Given p(-) € p°(Q), such that py < p_ < py < Poq0/(qo — Do), define the
function q () by

1 1 1 1
———, x€Q (28)

p() 4G po 4o
If (p(x)/q,)" € B(Q), then for all (f,g) € F suchthat f € LPO(Q),

Ifllgera = Cllglipea (29)

Corollary (1.2.6)[66]: Given a family F and an open set < R", assume that for
some p,, 0 < py < oo, and for every w € A,

f f)Pew(x)dx < C, f g(x)Pew(x)dx, (f,g) €F. (30)
Q Q

Let p(-) € p°(Q) be such that there exists 0 < p; < p_ with (p(-)/q,)’ € B(Q).
Then for all (f, g) € F such that f € LPO(Q),

1fllper0 = ClIgllpea (31)
Furthermore, for every 0 < g < oo and sequence {fj,gj}j CF,
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1/q /q

1
z(f,-)q <cC Z(g,-)" . (32)
7 7

p().Q p().Q
Corollary (1.2.7)[66]: Given a family F and an open set 0 < R™, assume that (30)
holds for some 1 < p, < oo, for every w € 4,, and for all (f,g) €.F. Let p() €
»(Q) be such that there exists 1 < p; < p_ with (p(*)/p1)’ € B(Q). Then (31)
holds for all (f,g) € F such that f € LPO(Q). Furthermore, for every 0 < q < o
and sequence {fj,gj}j C F, the vector-valued inequality (32) holds.

We give a number of examples of operators which are bounded on LP®).
These results are immediate consequences of the above results and the theory of
weighted norm inequalities. Some of these have been proved by others, but most new.
We also prove vector-valued inequalities for these operators, all of which are new
results. We present an application to partial differential equations: we extend the
Calderon-Zygmund inequality (see [31], [44]) to solution of Au = f with f €
LPO(Q). We give an application to the theory of Sobolev spaces: we show that
the Calderdn extension theorem (see [28], [30]) holds in variable Sobolev spaces.
We prove Theorems (1.2.3) and (1.2.5). We prove it adeptly from the arguments
given in [37]. We prove Corollaries (1.2.6) and (1.2.7).

We will make use of the basic properties of variable LP() spaces, and will
state some results as needed. For a detailed discussion of these spaces, see Kovacik
and Rakosnk [13]. As we noted above, in order to emphasize that are dealing with
variable exponent, we will always write p(-) instead of p to denote an exponent
function. C will denote a positive constant whose exact value may change at each
appearance.

We give a number of applications of Theorems (1.2.3) and (1.2.5), and
Corollaries (1.2.6) and (1.2.7), to show that wide variety of classical operators are
bounded on the variable LP spaces. In the following applications, we will impose
different conditions on the exponents p(-) to guarantee the corresponding
estimates. In most of the cases, it will suffice to assume that p(-) € B(R™), or in
particular that p(:) satisfies (20) and (21). As we noted in the remarks following
Theorem (1.2.3), to prove these applications we will need to use density arguments.
In doing so we will use the following facts:

(i) LZ, bounded functions of compact support, and C;°, smooth functions of compact
support, are dense LPO) (). See Kovacik and Rakosnik [13].

(i) If p, < oo and f € LP+(Q) N LP-(Q) then f € LPO(Q) this follows from the
fact that | £ (x)IP® < |[FCOIP* xqrao21y + I COIP-Xr001<1)-

It is well known that for 0 < p < oo and for w € 4,,

f)Pwx)dx < C | f()Pw(x)dx.
R™ R™
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From Corollary (1.2.8) with the pairs (Mf,|f]), we get vector-valued inequalities
for M on LPO), provided there exists 1 < p; < p_ with (p(:)/p,)" € B(R™); by
Theorem (1.2.2), this equivalent to p(-) € B(R™). To apply Corollary (1.2.8) we need
to restrict the pairs to functions f € L7, but since these form a dense subset we get

the desired estimate for all f € LPO(R™).

Corollary (1.2.8)[66]: If p(-) € B(R"), thenforall 0 < p < oo,
1/q

D (M <cl|{ 2l

! p(),R™ ! p(),R™
From Corollary (1.2.7) we also get one of the implications of Theorem (1.2.2)[66]
if (p(*)/p1)' € B(R™) then p(-) € B(R™). It is very tempting to speculate that all of
Theorem (1.2.2) can be proved via extrapolation, but we have been unable to do
sO.

Given a measurable function f and Q, define
dy,
fo=151 j F)dy

and the sharp maximal operator by

MPFC) = sup o j FO) = foldy.

The sharp maximal operator was introduced by Fefferman and Stein [42], who
showed that for all p,0 < p < o0, and w € A,

Mf(x)P w(x)dx < Cf M*f(x)?P w(x)dx

R R
(Also see Journe[48].) Therefore, by Corollary (1.2.6) with the pairs (Mf, M*f),
f € L7 (R™) and by Theorem (1.2.2) we have the following result.

Corollary (1.2.9)[66]: Let p(*) € p°(R™) be such that there exists 0 < p; < p_
with p(-)/p, € B(R™). Then

”Mf”p('),Rn =< C”M#f”p(,)’RnJ (33)
and forall 1 < g < oo,
1/q 7
q
PXCINL <c||( Dl e
J J
p(),R™ p(),R"

Given a locally integrable function K defined on R™\{0}, suppose that the
Fourier transform of K is bounded, and K satisfies
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VK (x)] < L x#0 (35)

KGOl < e

x|
Then the singular integral operator T, defined by Tf(x) = K * f(x), is a

bounded operator on weighted LP. More precisely, given 1 < p < oo, and w € 4,,
then

ITFO)IP w()dx < C | |f(0)P w(x)dx. (36)
R™ R™

(For details, see [40], [43].)

From Corollary (1.2.7), we get that T is bounded on variable L? provided
there exists 1 <p, <p_ with (p(-)/py)’ € B(R™); by Theorem (1.2.2) this
equivalentto p(-) € B(R™). Again, to apply the corollary we need to restrict ourselves
to a suitable dense of functions. We use the fact that C=° is dense in LP®) (R™), and the
fact that if £ € C°, then Tf € Nycpeoo LPLPO(R™).

Corollary (1.2.10)[66]: If p(+) € B(R"), then
ITfllpeyre < Clifllpcyrns (37)

and forall 1 < g < oo,
1/q

1/q
DAl <cll{ DAl . 38)
J

J
p(),R" p(),R"
We can get estimate on sets £ in the following way: observe that (36) implies that foe
any Q c R™ we have

j ITFOOP w(x)dx < f ITFOOIP w(x)dx
Q RN

<[ 1feroma=c f FOIP w(x)dx
R" 9]

for all f such that supp(f) < Q and for all w € A,. That, we can apply Corollary
(1.2.9) on Q in particular, if p(*) € p(Q) satisfies (20) and (21), then

UTF o0 < ClIfllpe.a-

We will use this observation below. Singular integrals satisfy another inequality
due to Coifman and Fefferman [33]:

ITfF)IP w(¥)dx < C | [Mf(x)IP w(x)dx,

RN RN
for all 1<qg<o and w € A, and f such that the left-hand side is finite. In
particular, if w € A; < A, then the left-hand side is finite for all f € L7 (R™). Thus,
by applying Corollary (1.2.6) we can prove the following.
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Corollary (1.2.11)[66]: Let p(-) € »°(R"™) be such that there exists 0 < p, < p_
with p(-) /p; € B(R™). Then

ITfllpc)me < ClIMEllpey,rm) (39)
and forall 0 < p < oo,
1/q 1/q

Dlrsl <c |l Dlmsl" . (40)

j j
p(),R" p(),R"

Inequality (37) was proved by Diening and Ruzitka [6] using (33) and assuming
that p(-), (p(-)/p,)’ € B(R™) for some 0 < s < 1. More recently, Diening [38]
showed that it was enough to assume p(-) € B(R™). Note that our technique provides
an alternative proof which also yields vector-valued inequalities. A weighted version
of (33) was proved by Kokilashvili and Samko [50].

The results can be generalized to the Calder6n Zygmund operators of Coifman and
Meyer. Also, the same estimates hold for T,, the supremum of the truncated integrals.
See [40], [48] for more details

Similar inequalities hold for homogeneous™ singular integral operators with
“rough” kernels. Let $*~1 denote the unit sphere in R™, in and suppose

_ a0x/1xD)
[

K(x) (41)
wher Q € L7(S™™1), for some r, 1 <r <o, and [,_, Q(y)dy = 0. Then, if
r'<p<o and w € 4,,, inequality (36) holds. (See Duoandikoetxea [39] and
Watson [62].) To apply Theorem (1.2.1) we restate these weighed norm estimates as

(ITFI") w@dx < | (IF@I") w@)dx
RN RN

for every 1 < s < o and all w € A,.We consider the family of pairs (ITf]", |f]")
which satisfy the hypotheses of Corollary (1.2.8). Then s(:) € p(R™) such that
(s(*)/s1)' € B(R™) forsome 1 < s; < s_, we have

WA < AT e

By Theorem (1.2.2) the assumptions on s(-) are equivalentto s(-) € B(R™).
If we let p(x) = s(x)r’, then we see that T is bounded LP®) (R™) for all p(-) such
that p(-)/r' € B(R™). In the same way can prove [P-valued inequalities as (38) for
all r' < g < . Note in particular that all of these estimates hold if p_ > r' and
p(+) satisfies (20) and (21).

Similar inequalities also hold for Banach space valued singular integrals, since
such operators satisfy weighted norm inequalities with A, weights. For further details,

(see [43]). We note one particular application. Let ¢ € L' be a non-negative
function such that
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Clyl
lp(x —y) — p(x)] SW, |x[ > 2]y[>0

Let o.(x) =t "@(x/t), and define the maximal operator M,, by
My f(x) = suplp, * f(x)|
t>0

If 1<p<o and w € A4,, then ”prf”w(w) < ClIfllLp(wy- (In the unweightet

case, this result is originally due to Zo [65].) Therefore, by Corollary (1.2.7), M,, is

bounded on LPO) for p(-) € B(R™). It is bounded if p(-) satisfies (20) and (21); this
gives a positive answer to a conjecture made in [35].

Given a Calderon—Zygmund singular integral operator T, and a function b € BMO,
define the commutator [b, T] to be the operator

[b, T1f (x) = b(x)Tf (x) = T(bf)(x)

These operators were shown to be bounded on LPO)(R™), 1 < p < oo by Coifman,
Rochberg and Weiss [34]. In [56] it was shownthat 0 < p < oo and all w € A,

I[b, T1f () [Pw(x)dx < C J M2F(x)P w(x)dx, (42)

R"? R
where M? = MoM. Hence, if and 1<p <o and w € A4,, then [b,T] is
bounded on L?(w). Thus, we can apply Corollaries (1.2.6) and (1.2.7) and Theorem
(1.2.2) to get the following

Corollary (1.2.12)[66]: Let p(-) € p°(R™M).
(i) If there exists 0 < p, < p_ with p(-)/p; € B(R™), then

[T, b1f lyomn < CHIMP £l R7 »
and forall 0 < g < o,

D I pis|
j

(i) If p(-) € B(R™), then

[T, b1f lpcymn < Cllf Iy, mms
and forall 0 < g < oo,

Dl big|f
J

/4

1
q
<cl|| D Imzp°
J

p(),R™ p(),R™

/4

1
q
<c |l 25l
J

p(),R™ p(),R"
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The boundedness of commutators on variable LP spaces was proved by
Karlovich and Lerner [49]. Given a bounded function m, define the operator T,,,
(initially on € (R™) by T,,,f = mf. The function m is referred to as a multiplier.
Here we two important results: the multiplier theorems of Marcinkiewicz and
Hormander.

On the real line, if m has uniformly bounded variation on each dyadic interval
in R™" then for 1 <p <o and w € 4,,

j T f ()P0 (X)dx < C f FCOIPw@)dx. (43)
R R

(See Kurtz [52].) Therefore, by Corollary (1.2.7), if p(-) € B(R"),
T f llpcyrn < ClIfllpe),res
we also get the corresponding vector-valued inequalities with 1 < g < oo, In
dimensions (i.e,n=2)let k=[n/2]+1 and suppose that m satisfies
|DAm(x)| < Clx|7!#! for x # 0 and every multi-index g with |B| < k. If n/k <
p < and w € Ay then T, is bounded on LP (w). (See Kurtz and Wheeden
[53].) Proceeding as in the case of the singular integral operators with “rough”
kernels we obtain that if p(-)/(n/k) € B(R™), then
T f llporr < ClIf oy rm

with constant ¢ independent of f € C(R™). We also get [9-valued inequalities
with n/k < p < oo in the same way.

Weighted inequalities also hold for Bochner—Riesz multipliers, so from these
we can deduce results on variable LP paces. See [40].
Let ¢ be a Schwartz function such that [ ¢ (x)dx = 0, and for ¢t > 0 let ¢, (x) =
t " (x/t). Given a locally integrable function f, we define two closely related

functions: the area integral,
1/2

S¢f<x>=(j| | e TIPSk
x—y|<t

and for 1 < A < oo the Littlewood—Paley function

- ad gy 1/2
g;f(x)=<j0 | 1ocr O (i) “;%dx) ,

In the classical case, we take ¢ to be the derivative of the Poisson kernel.

Givenp, 1 <p <, and w € A, the area integral is bounded on LP (w) in
the classical case, this due to Gundy and Wheeden [45]; in the general case it is due
to Stromberg and Torchinsky [61]. Therefore, for all p(-) € B(R™),

The same inequality is true for g; iIf A >2. If 1 <A< 2, thenfor1/2<p <o
and w € A;,,2, g, is bounded on LP(w). In the classical case, this due to
Muckenhoupt and Wheeden [55]; in general case it due to Stromberg and
Torchinsky [61]. Therefore, for all p(-)/(2/4) € B(R"),

g fllrore < Clfllporms
26



with constant C independent of f € CZ°(R™). For both kinds of square functions
we also get the corresponding vector-valued inequalities.

Given 1 < a < n define the fractional integral operator I, (also known as the
Riesz potential) by

Lf G = [ SO _,

re X =y

Define the associated fractional maximal operator M, by

1
Maf () = sup o | 1£)ldy.

Q>x

Both operators satisfy weighted inequalities. To state them, we need a different class
of weights: given p,q such that 1 < p <n/a and

1 1 «a

p pon
we say that w € A, , if for all cubes Q,

)

!

1 1 , q/p
ol j w(x)dy (@ jQ w(x)7P /%ly) SC<o
Q

Note that this is equivalentto w € A4,, r =1+ q/p’, so in particular, if w € A4, then
w € A, 4. Muckenhoupt and Wheeden [55] showed that if w € 4, , then

1/p

1/p
( Ilaf(x)lqw(x)dx) < C( If(x)lp/qw(x)dx> ,
RTL ]Rn

1/p

1/p
( IMaf(x)I"w(x)dx) < C( If(x)lp/qw(X)dx>
R™ R™

(These results are usually stated with the class A,, , defined slightly differently, with
w replaced by w4. Though non-standard, is better for purposes.)
As in these estimates hold with the integrals restricted to any Q c R™. Thus

Theorems (1.2.7) and (1.2.2) immediately yield the following results in variable L?
spaces.

Corollary (1.2.13)[66]: Let p(-), q(-) € p(Q) be such that p, < n/a and

1 1 a
ﬁ — @ = x € Q.
If there exists q,, n/(n — a) < qo < %, such that p(-)/q,, € B(R™), then
Hafllgea < Ifllpe.0- (44)
and
IMafllgora < l1fllpe,a- (45)
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Corollary (1.2.13) follows automatically from Theorem (1.2.5) applied to the
pairs (|If|,1f]) and (IM_f]|,|f]), since the estimates of Muckenhoupt and
Wheeden above give (27) forall 1 < po <n/aandn/(n — a) < qo < oo with

1 1 a

Po do o
When Q < R™, the condition on q(+) sis equivalenttosaythatg(:-)(n — a)/n €
B(R™), then

qx) _q9x) 9o
nfn-a) q n/(n—a)
since the second ratio is greater than one. (Givenr(-) € B(R") and A > 1, then by
Jensen’s inequality, r(1)A € B(R").)

By Theorem (1.2.2),if g(*)(n — a)/n € B(R™) then there is A > 1 such that
g(’)(n—a)/(nA) € B(R"). Taking g, =nA/(n—a) we have that g, >
n/(n—a) and p(-)/q, € B(R™) as desired.

Inequality (44) extends several earlier results. Samko [24] proved (44) assuming
that Q is bounded, p(-) satisfies (20), and the maximal operator is bounded. (Note
that given Theorem (1.2.1), his second hypothesis implies his third.) Diening [1]
proved it on unbounded domains with (20) replaced by the stronger hypothesis that
p(+) is constant outside of a large ball. kokilashvili and Samko [89] proved it on R™
with L9 replaced by a certain weighted variable LP spaces. (They actually
consider a more general operator I,y where the constant « in the definition
of I, isreplaced by a function a(+).) Implicit in the results the are norm inequalities
for M, in the variable LP spaces, since M, f (x) < CI,(|f])(x). This is made
explicit by Kokilashvili and Samko [51].

€ B(R"),

Inequality (45) was proved directly by Capone, Cruz-Uribe and Fiorenza [32];
as in an application they used it to prove (44) and to extend the Sobolev embedding
theorem to variable LPspaces. (Other authors have considered this question; see
[32].) We consider the behavior of the solution of Poisson’s equation,

Auf(x) = f(x), a.e. x €,
when f € LPO(Q), p(+) € p(Q). We restrict ourselves to the O ¢ R, n = 3.

We begin with a few definitions and a lemma. Given p(-) € p() and a natural
number, define the variable Sobolev space W*?) (Q) to be the set of all functions
f € LPO(Q) such that

z 1Dy .0 < +oo.
|a|<k

Where the derivatives are understood in the sense of distributions.

Given a function f which is twice differentiable (in the weak sense), we define
fori =1,2,
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1/2
Dif = (Z (D“f)2> .
lx|<k

We need the following auxiliary result whose proof can be found in [13].

Lemma (1.2.14)[66]: If Q < R™ is bounded domain, and if p(-),q(*) € p(Q) are
such that p(x) < q(x), x € Q, then [|fll;cy)a < A+ [QDIIfllg0).0-

Theorem (1.2.15)[66]: Given an open set Q c R™, n = 3, suppose p(-) € p(Q)
with p, <n/2 satisfies (20) and (21). f € LPO(Q), then there exists a
function u € L10(Q), where

1 1 2
ﬁ_ng’ x € (), (46)
such that
Auf(x) = f(x), a.e. x € Q. 47)
Furthermore
ID2ullg0y0 < Cllfllp.0 (48)
ID ullgy0 < Clifllpe00 (49)
lullgeo.a < Clifllpe- (50)
where
1 1 _ 1
p(x) (@) n

if Q is bounded, then u € W2P0(Q).

Proof. We proof roughly follows the proof in the setting of Lebesgue spaces given
by Gilbarg and Trudinger [44], but also uses this result in key steps.

Fix f € LPO(Q); without loss of generality we may assume that ||f1l,cyq = 1.
Decompose f as

f=h+h=Xxirosy T X<y

Note that |f;(x)| < |f(x)| and sol|f;ll,¢)a < 1. Further, we have f; € LP-(Q)

and f; € LP-(Q) since, by the definition of the norm in LPO(Q) and since
fllpy0 =1,

[ reor-ax= | FelP-dr< [ IF@P@ax<,
Q {x:€Q|f (x)|>1} Q

f fo(OP-dx = j FCOIP-dx < j FOP@dx <1,
Q {x:€Q|f (x)[>1}

Q
Thus, we can solve Poisson’s equation with f; and f, (see [44]): define

uy () = (I'* f) (%), uy(x) = (I'* f1)(x)

where I' is the Newtonian potential,
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1
n(2 —n)w,
and w,, is the volume of the unit ball in R™. Since p_ and p, also satisfy (46),
by the Caldero” n—Zygmund inequality on classical Lebesgue spaces, u; € L1-(L).
Similarly, since p_ and p, satisfy (46), u, € L79+(Q). Let u = u; + u,; thenu €
L1-(Q) + L9+ (). Since u,and u, are solutions of Poisson’s equation,
Auf (x) = Auy f(x) + Auy f(x) = f1(x) + fo(x) = f(x), a.e x€Q.

We show that u € L9 (Q) and that (50) holds: by inequality (44),

Ufllgea < lluallgeya + Tuzllgen

F'(x) = |x|27"

N TL(Z _ n)a)n (||11u1||q(-),9 + ||12u2||q(.)’ﬂ)

< (||f1||p(-),n + ”fZ”p(-),Q)
< C=Clfllpey0
the last equality holds since [|f1l,.) a0 = 1.

Similarly, a direct computation shows that for any multi-index «, |a| = 1,

1
IDT(x)| < x|+
nw

n
Therefore,

ID*u()| < [DU(T * f1) )| + DT * f2)(x)| =
= I(ll?"‘F * f1) ()| + (DT * £2) (X))
— (LUADE) + L3LD@).
So again, by inequality (44) we get
ID*ullrcy0 < C(Ifllpea + Ifallpera) < C
which yields inequality (49).

<

Given a multi-index a, |a| = 2, another computation shows that DT is singular

convolution kernels which satisfies (35). Therefore the operator

Teag(x)(DT * g)(x) = D(T * g)(x)
is singular integral operator, and as before (48) follows from inequality (37) applied
to f; and f,.

If Q is bounded, since p(x) < q(x) and p(x) < r(x), x € Q, by Lemma
(1.2.15) we have that u € W2PO(Q).

We could have worked directly with f. We done so, however, we would have
had to check that all the integrals appearing were absolutely convergent. The
advantage of decomposing fas f; + f, is that we did not need to pay attention to
this since f; € L9-(Q), f, € L1+ (Q).

We also want to stress that u; and u,, as solutions of Poisson’s equation with
fi € L9-(Q) and f, € L1+ (Q), satisfy Lebesgue space estimates. For instance, as
noted above, u € L9- () + L9+(£). We have actually proved more, since L10(Q)
is smaller space. Similar remarks hold for the first and second derivatives of wu.

We state and prove the Calderdn extension theorem for variable Sobolev
spaces. We proof follows closely the proof of the result in the classical set-ting; see,
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for example, R. Adams [28] or Calderén [30]. We give two definitions and a
lemma.
Definition (1.2.16)[66]: Given a point x € R™, a finite cone with vertex at x, C,, is a
set of the form

Ce=B,n{x+A(y—x):y €B,, 1>0},
where B; is an open ball centered at x, and B, is an open ball which does not
contain x.
Definition (1.2.17)[66]: An open set Q) € R™ has uniform cone property if there
exists a finite collection of open sets {Uj} (not necessarily bounded) and an

associated collection {C;} of finite cones such that the following hold:
(i) there exists § > 0 such that

Qs ={x € Q:dist (x,0Q) < 6}CUU-;
Jj

(ii) for every index j and every x € Q N U;, x + C; < Q).

An example of a set Q with the uniform cone property is any bounded set
whose boundary is locally Lipschitz (See Adams [28].)

In giving extension theorems for variable LP spaces, we must show worry
about extending the exponent function p(+). The following result shows that this is
always possible, provided that p(-) satisfies (20) and (21).

Lemma (1.2.18)[66]: Given an open set Q € R™ and p(+) € p(Q) such that (20) and
(21) hold, there exists a function p(-) € p(R™) such that:

() p satisfies (20) and (21);

(i) p(x) = p(x),x € Q;

(i) p_ =p_and p, =p..

Remark (1.2.19)[66]: Diening [1] proved an extension theorem for exponent p(-)
which satisfy (20), provided that Q is bounded and has Lipschitz boundary. It

would be interesting to determine if every exponent p(:) € B(Q) can be extended
to an exponent function in B(R™).

Proof. Since p(+) is bounded and uniformly continuous, by a well-known result it
extends to a continuous function on Q. Straightforward limiting arguments show
that this extension satisfies (i), (ii) and (iii).

The extension of p(-) on Q to p(x) defined on all of R follows from a
construction due to Whitney [63] and described in detail in Stein [60]. For ease of
reference, we will follow Stein’s notation. We first consider the case when Q is
unbounded; the case when Q is bounded is simpler and will be sketched below.

When Q is unbounded, (21) is equivalent to the existence of a constant po,, P_ < pe, <
p., such that for all x € Q,
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Ip(x) — Poo| < log(e—+|x|)'

Define a new function r(-) by r(x) = p(x) — ps. Then r(+) is still bounded (though
no longer necessarily positive), still satisfies

[r ()| <

log(e + 1)’ (D

We will extend r to all of R™. If we define w(t) = 1/log(e/2t),0 <t < 1/2,
and w(t) = 1 fort = 1/2, then a straightforward calculation shows that w(2t) <
Cw(t). Further, since log(e/2t) ~log(1/t), 0<t<1/2, and since r is
bounded, |7 (x) — r(y)| < Cw|x — y| forall x,y € Q. Therefore, in Stein [60, p. 175],
there exists a function 7(+) Satisfies (20). For x € R™\(Q, #(x) is defined by sum

) = ) Tmei @),

k

Where {Q,} are the cubes of the Whitney decomposition of R™"\Q, {p}} is the
partition of unity subordinate to this decomposition, and each point p, € Q is such

that (pk' Qk) = dlst(ﬁ, Qk)

It follows immediately from this definition that for all x € R", r— < #(x) <
r,. However, #(x) need not satisfies (51) so we must modify it slightly. To do so
we need the following observation: if f;, f, are functions and max(f;, f,) satisfies
the same inequality. The proof of this observation consists of a number of very
similar cases. For instance, suppose min(f;(x),f>(x)) = f;(x) and

min(f; (¥), f2(y¥)) = f1(y). Then

f1(x) — f2(y) < (%) — f2(¥) < Cw(]x —yl]),

f2(0) = fi(¥) < fi(x) = f1(¥) < Cow(|x —y]).
Hence,

[min(f; (x), f2(x)) — min(f1(¥), W) = |fi(x) = (W] < Cw(lx = y])
It follows immediately from this observation that
s(x) = max(min(#(x), C/log(e + |x|)),—C/log(e + |x|))
satisfies (20) and (51). Therefore, if we define
p(x) = s(x) + Poo

Then (i), (ii) and (iii) hold.

If Q is bounded, we define r(x) = p(x) — p,. and repeat the above argument
essentially without change.

Theorem (1.2.20)[66]: Given an open set QO ¢ R™ which has the uniform cone
property, and given p(:) € p(Q) such that (20) and (21) hold, then for any natural
number k there exists an extension operator

E: WkrO(Q) - WkPO(RM),
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such that E,u(x) = u(x),a.e. x € Q, and

|Exullpeyrn < C@C), k, Dlullye,0-

The proof of Theorem (1.2.20) in variable Sobolev spaces is nearly identical to
that in the classical setting. (See Adams [28].) The proof, beyond calculations,
requires the following facts hypotheses insure are true

(i) By Lemma (1.2.18), p(-) immediately extends to an exponent function on
R™.
(ii) Functions in C*(Q) are dense in W*PO(Q). By hypotheses, the maximal operator

is bounded on LPO(Q), and the density of € () follows from this by the standard
argument (cf. Ziemer [64]). For more details, see Diening [4] or Cruz-Uribe and
Fiorenza [35].

(iii) If ¢ is smooth function on R™\{0} with compact support, and if there exists € > 0
such that on B.(0),¢ is a homogeneous function of degree k,k > —n, then
o * fllyon < C@E), @)fllp0.n this again follows from the fact that the

maximal operator is bounded on LP(Q) and from the well-known inequality
lp * f(x)| < CMf(x). For more details, see Cruz-Uribe and Fiorenza [35].

(iv) Singular integral operators with kernels of the form

G(x)

| |™

where G is bounded on R™\{0}, has compact support, is homogenous of degree zero
on Be\{0} for some R >0, and has [ G dx = 0, are bounded on LPO(Q). Such

kernels are essentially the same as those given by (41), and as discussed above, our
hypotheses imply that they are bounded.

If p(-)satisfies (20), then CZ°(R™) is dense in W*PO(R™). (See [23], [35].)
Hence, if the hypotheses of Theorem (1.2.20) hold, then it follows immediately

that the set {u,q : u € CZ°(R™)} is dense in W*P0)(Q). However this this result is
true under much weaker hypotheses; see [8], [25], [28], [41], [47], for details.

Since Theorem (1.2.3) is particular case of Theorem (1.2.5) with pg = qo,
it suffices to prove the second result.

k(x) =

We need two facts about variable LP® spaces. First, if p(x), q(x) € p°(Q)
and p(x)/q(x) = r, then it follows from the definition of the norm that

11500 < NI llge .0 (52)

Second, given p(x) € p(Q1), we have the we have the generalized HGlder’s
inequality

[ r@gelar s (14— =) < Iflhoaloly (53)
N —= D p.) = p(),Q p (O

- +

and the “duality” relationship
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1 1
Il < sup | | FCgGIdx| < (14 5= =) Ifllaira (59

where the supremum is taken over all g € LP'©(Q) such that gl )0 = 1. For
proofs of these results, see Kovacik and Rakosnik [13].

The proof of Theorem (1.2.5) begins with version of a construction due to
Rubio de Francia [58] (also see [37], [43]). Fix p(-) € »°(Q) such that p_ > p,,
and let p(x) = p(x)/po. Define as in (173), and let g(x) = q(x)/q,. By
assumption, the maximal operator is bounded on LP'O(Q), so there exists a
positive constant B such that

IMfllz )0 < Blifllz )0

Define a new operator R on LP O(Q) by

x k
R =2M

2k Bk’
k=0

where, for k >1,M*=MoMo ..... M denotes k iterations of the maximal
operator, and M° is the identity operator. It follows immediately from this
definition that:

(i) if h is non-negative, h(x) < Rh(x);
(i) IRRll57 5,0 < 2llRllpr )03

(iti) For every x € Q, M(Rh)(x) < 2Bh(x), so Rh € A; with an A; constant
that does not depend on h.

We can argue as follows: by (52) and (54),

17150 < 217 50 < sup | FGO®RCOd

Where the supremum is taken over all non-negative h e LP'OQ) with
|~l[57y,0 = 1. Fix any functionh; it will suffice to show that

| Feomneodr = cllgy,
with the constant C independent of h. First note that by (i) above we have that
fﬂ f(x)%Ph(x)dx < fﬂ f(x)PRh(x)dx (55)
By (53), (ii), and since f € L10(Q),
| FeomRRCOE = 7% gt IR )

< CIIFI, o Rllgr ey
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< CIFING, o < .

Therefore we can apply (27) to the right-hand side of (55) and again apply (53),
this time with exponent p(*):

qdo/Po
j FOO)DR(x)dx < C ( f g(x)pORh(x)po/qux>
QO Q

< Cligro gy || RmyPo/ao | 277

do/Po
p'O0
HQO/PO

= Cllgls, ol RRYPo/ |

To complete the proof, we need to show that ||(Rk)Po/%o is bounded by a
constant independent of h. But it follows from (24) that for aII x € Q,
_, p(x) do  q(x) Po _,
P(x) === = 2 =2 (),
p()—po  Pod()—Po Po’
Therefore,
/
[(RRYPo/40|| 7570 = RAlg y0 < lRllgya = C.

This completes the proof.

The proof of Corollaries (1.2.6) and (1.2.7) require the more general version
the extrapolation theorem discussed in the introduction.

Theorem (1.2.21)[66]: Given a family F and an open set Q c R", assume that
for some py, 0 < p, < o and for every w € A,

| remewd<c [ geomodr, (rg)er ()
Q Q

Then forall 0 < p < oo and w € Ay,

| remedrsc, [ geomotd, (fer (6N
Q Q

Furthermore, for every 0 < p,q < o, w € A, and sequence {(fj,gj)}j cF,

1/q 1/q

> e <cl| D.(a)" . (58)
j .

LP (w,Q) LP(w,Q)

Theorem (1.2.22)[66]: Given family F and an open set Q c R"™, assume that for
that some py, 1 <p < o0, and w € 4,, (57) holds. Furthermore, for every 1 <

p,q < %, w € A,, and sequence {(fj,gj)}j c F, (58) holds.

Theorem (1.2.21) is proved in [37]. The original statement of Theorem
(1.2.22) is only for pairs of the form(|Tf|, f), and does not include the vector-
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valued estimate (58). (See [40], [43], [58].) However, an examination of the proofs
shows that they hold without change when applied to pairs (f, g) € F. Furthermore,
as we noted before, this approach immediately yields the vector-valued inequalities:
given a family F and 1 < q < oo, define the new family F, to consist of the pairs
(F;, Gg), where

1/q 1/q
Fy(x) = <Z(f,-)q> ;o Gg(x) = <Z(fj)"> AU 9p}, e F
j J

Clearly, inequality (56) holds for F, when p, = g, so by extrapolation we get
(58).

Corollary (1.2.7) follows immediately from Theorems (1.2.3) and
(1.2.21). Since (30) holds for some p,, by Theorem (1.2.21) it holds for all 1 <
q < oo and for all w € A,,. Therefore, we can apply Theorem (1.2.3) with p, in
place of p, to obtain (31). To prove the vector-valued inequality (32), note that by
(58) we can apply Theorem (1.2.3) to the family F, defined above, again with p,
in place of p,.

In exactly the same way, Corollary (1.2.7) follows from Theorems (1.2.21)
and (1.2.22).

36



Chapter 2
Local-to-Global Result and Sobolev Inequalities

We show Sobolev and trace embedding; variable Riesz potential estimates; and
maximal function inequalities in Morrey spaces are derived for unbounded domains.
For p and g are variable exponents satisfying natural continuity conditions. Also the
case when p attains the value 1 in some parts of the domain is included in the results.

Section (2.1): Variable Exponent Spaces

Function spaces with variable exponent and related differential equations have
attracted a lot of interest, cf. surveys [75, 97]. Apart from interesting theoretical
considerations, these investigations were motivated by a proposed application to
modeling electrorheological fluids [22, 27], and, an application to image restoration
[67, 73]. We focus on the function space aspect of variable exponent problems. For
more information on the PDE aspect see e.g. [68, 69, 71, 78, 80, 83, 85, 91, 98].

The study of variable exponent function spaces in higher dimensions was
initiated in a 1991 article by O. Kovdcik and J. Rékosnik [13], where basic properties
such as reflexivity and Holder inequalities were obtained. The rapid expansion of the
field started only in the beginning of the current decade with the advent of techniques,
which allowed one to control the Hardy-Littlewood maximal operator, and through it
may other operators.

One way to describe the impediment to progress in the 90s is a lack of a Holder
inequality for the modular, i.e. the integral form of the Lebesgue norm. In a classical
Lebesgue space, the relation between the modular o(-) and norm ||. || is very simple:

1fllpy = (@upy(F)IP  where QLvm)=fQ |f (0)IP dx.

In the variable exponent context, we retain the form of the modular, but the
norm is defined in the spirit of the Luxemburg norm in Orlicz spaces (or
Minkowski functional in abstract spaces):

”u”Lp(.)(Q) = inf{)l > 0:QLr(q) (%) < 1} ((f))%

where

Q0 (W) = j lu(x)|P™ dx.
Q

Obviously, in this case no functional relationship between norm and modular holds,
ie. llull poqy = F(@Lr)(w)) does not hold for any F. We do not get a Holder

inequality for modular from our inequality for the norm.

The major breakthrough came with L. Diening’s work [4], which contained
the following weak Hélder-type inequality for the modular:

p(x)
(f If(y)ldy> sf )l dy
B(x,r) B(x,r)
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Provided pthat is bounded away from 1 and oo and satisfies the local log-Holder
continuity condition

lp(x) —p)I| < log(e +1/|x —yl)

for all x,y € Q. Using Diening’s result, one can easily prove the
boundedness of the maximal operator on bounded sets. However, the additive
error prevents us from adding up local estimates to obtain a global result on R".
(Incidentally, the inequality does not hold without the additive term unless p is
constant [87].)

The next quest therefor was to prove a global version of the maximal
inequality. Diening [4] achieved this only under the additional, unnatural
assumption that constant outside some ball. It did not take long for D. Cruz-Uribe,
A. Fiorenza and C. Neugebauer [35] to show that the maximal operator is
bounded on LPO) (R™) if the previous assumptions are complemented by a natural
decay condition at infinity:

C
— <

for some p,, > 1,c > 0 and all x € R™. A. Nekvinda [94] independently
obtained an even slightly stronger result; this result is explained.

The pattern described for the maximal operator was repeated a great many
times for instance with the Riesz potential operator, the sharp maximal operator,
fractional maximal operators, etc.: first, one proves an easy local result, and then
additional, sometimes messy, optimization allows one to prove also the global
version.

To introduce a simple and convenient method to pass from local to global results.
The idea is simply to generalize the following property of the Lebesgue-norm:

1 o guny = D I IBncay 0
i

for a partition of R™into measurable sets ;. Once the idea is stated, it is almost
trivial to carry out, cf. Theorem (2.1.3). It proves to be a very powerful tool. Thus,
we take results by different teams, which have only been proven in bounded
domains and extend them to unbounded domains. As a simple “toy example” of
how the method is applied, we prove in the second part of Hardy inequality in
unbounded domains using a result in bounded domains from [84].

We reprove the above-mentioned boundedness of the maximal operator in
R™ in order to introduce in a simple setting some techniques that are then applied
in Morrey spaces. Apart from that, the problems treated are based on articles
published in 2007-2008, which had not been solved in the unbounded case, or
solved only under additional assumptions. Specifically, the following problems
are considered:

Sobolev inequalities:
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(i) in the case whenp is not bounded away from 1, generalizing P. Harjulehto and P.
Hasto [82]; and

(i) in trace spaces, generalizing X.— L. Fan [79].

Embeddings of Riesz potentials with weights, generalizing N. & S. Samko and B.
Vakulov [96]:

The boundedness of maximal function:
(iii) in LPO(R™), reproving Nekvinda’s result [84]; and

(iv) in variable exponent Morrey spaces, generalizing A. Almeida, J. Hasanov
and S. Samko [70] and Y. Mizota and T. [92].

Let us consider perhaps the biggest advance in the theory of variable exponent
spaces since Diening’s trick. An extrapolation method was introduced by D. Cruz-
Uribe, A. Fiorenza, J. M. Martell and C. Pérez [66], which allows us to pass from
weighted, constant exponent spaces to variable, unweighted spaces. Since there is a
constant exponent Lebesgue spaces, this allowed them to directly derive results on a
variety of topics, including the sharp maximal operators, singular integral operators
and multipliers. These results are also directly obtained for the case of unbounded
domains. Despite the impressive record of their method, it does not work in every case.
The main advantages of the method presented over the extrapolation method from [66]
are:

(i) Extrapolation does not allow weights in the variable exponent case (cf. Riesz
potentials).

(if) Extrapolation is not easy to adapt to other than the Lebesgue-norm (cf. Morrey
spaces).

(iii) Extrapolation requires that we know weighted results (e.g. this leads to extraneous
assumptions when dealing with multipliers).

(iv) Extrapolation requires that p* < oo, whereas the new method can be extended to
cover this case, as well.

Extrapolation also has definite advantages:
(i) A local, variable exponent result to start with.

(if) A non-trivial proof; extrapolation follows by a one-line argument, when all the right
elements are in place.

(iii) p is long-Holder continuous, whereas extrapolation works under the slightly
weaker assumption that the maximal operator is bounded.

It is fair to say that the methods are complementary: if extrapolation works and
gives a sufficiently good result, then it is the method of choice; when this is not the
case, the new method is likely to provide an alternative, which is still much simpler
than a direct proof.

The notation f < g means that f < cg for some constant ¢, and f =~ g means
f S gs<f. By c we denote a generic constant, whose value may change between
appearances even within a single line. By cQ we denote a c-fold dilate of the cube Q.
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By f, and f, fdx we denote the average integral of f over A. The notation A : X < Y,
means that A is a continuous embedding from X and Y. Omitting the operator, A : X <
Y, means that the identity is a continuous embedding.

By Q c R™ we denote an open set. A measurable function p : Q — [1, o) is called a
variable exponent, and we denote for A ¢ Q
+

pa = ess supp(x),py = ess supp(x),p* = pd andp~ = pg.
X EA X EA

We always assume that p* < oo. We will denote by P©9(Q) the class of variable
exponents, which are log-Hoélder continuous, as defined.

The variable exponent Lebesgue space LPO)(Q) consists of all measurable functions
u : Q - Rfor which ||f]lp¢) ) < 0. Equipped with this norm, LPO(Q) is a Banach

space. The variable exponent Lebesque space is a special case of a Musielak Orliez
space. For a constant function, it coincides with the standard Lebesgue space.

Theorem (2.1.3), which allows us to prove global results from local ones.

We need the following result by A. Nekvinda on equivalence of discrete
Lebesgue spaces. The space ({47 is defined by the modular

eyap () =) []"

J

and the norm is defined by ||(xj)||l(qj) := inf {A >0: 0 (a)) ((%)) < 1}.

Lemma (2.1.1)[99]: Let (q;) be a sequence in (1, o). If there exists g, and ¢ > 0

R ¢ (@j) ~ ]9«
such that |q; — qe| < {———=, then () = (9=,

Definition (2.1.2)[99]: Let (Q;) be a partition of R"into equal sized cubes, ordered
so that I > j if dist(0, Q;). Let p be log-Hblder continuous. We define a partition

norm on LPO)(R™) by

”f”p(-),(Qj) = ||”f“Lp(')(Qj)||lpoo'

Note that ||f||p(,)’(Qj) = |Ifll, if p is a constant, by (1). The only essential

property of the norm that we need for the next theorem is the following weak
relationship between norm and modular:

1

1
min {0, 0) ()P, 0up0ey (PP} < Il

< max {QLp(-)(Q) (f)p__’ Q.pr0 Q) (f)p_"'} (2)

The proof of this well-known fact follows directly from the definition of the norm.
Theorem (2.1.3)[99]: If p € PI°8(R™), then ||f||p(_)'(Qj) = ||fllpy Where the cubes
(Q;) are as in Definition (2.1.2).
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Proof. Define g;: pgj and g, = po. Since p is log-Holder continuous, we conclude

that |q; — qe| < clog(e + dist(0,Q;))~". Since the cubes are in increasing order of
distance to the origin, there are at most (2j)" cubes at distance less than j sidelength
(Qo) from the origin. Hence |q; — q.| < ¢log(e + j)~*, so the condition of Lemma
(2.1.1) is satisfied. It follows that

1o = [0l 0

The claim that we are trying to prove is homogeneous, and clearly holds when
If1l,) = 0. Therefor we may assume that ||f||,y = 1. Then ||f||p(.),(Qj) S fllpe

follows if we prove that ” ||f||p(_)(Qj) ”z("f) < c. Since g, is a bounded sequence, this
Is equivalent to showing that

Q (a)) (||f||Lp(-)(Qj)) =c.
Since ||f||lp(.)(Qj) < Ifll,¢y = 1, it follows by (2) that

+
Pg;
I’

PO

(¢)) = QLP(')(Qj) ().

Therefor,

(0e]

€,(4)) (”f”p(-)(Qj)) = zllf”;(.)@j) = Z)Qu?(-)(qj)(f) = 0po@my(f) = 1.
=

j=0
To prove the opposite inequality, we set q; := Po; and use the same steps, with

the other inequality in (2).
A. Nekvinda has championed the cause of an integral decay condition, which

is slightly weaker that the log-Holder decay condition, see e.g. [95]. His condition
on p may be stated as the existence of a constant ¢ > 0 such that

1
j Clp(x)-peol dx < o0.
{P#£D 0o}

Lemma (2.1.3) holds also for the discrete analogue of this condition, and thus
Theorem (2.1.3) actually automatically gives slightly stronger results, with Nekvinda’s
decay condition instead of the log-HOlder decay condition. Hence, all the results
works directly under this more general condition. Thus, if one prefers, the class
Plo8(Q)) can be interpreted as locally log-Holder continuous exponents, which satisfy
Nekvinda’s decay condition.

We present three examples of how the theorem of the previous can be applied
to upgrade local results, proved only on bounded domains, to global results, valid in
all of R™. These results involve variable exponent Sobolev spaces, and to state them
we need some definitions.
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The variable exponent Sobolev space WP (Q) consists of functions u €
LPO(Q) whose distributional gradient Vu belongs to LP®(Q). The variable
exponent Sobolev space W PO (Q) is a Banach space with the norm

Ilu”Wl-p(')(Q) = ”u”LP(')(Q) + ”vu”LP(')(Q)-
Since the Sobolev norm is just a sum of Lebesgue norms, it is clear that Theorem

(2.1.3) holds for this norm as well. We define the Sobolev space with zero boundary

values, Wol'p(') (Q), as the closure of the set of compactly WP (Q)-functions with
respect to the norm ||-||W1p(-)(m [81].

Hardy inequalities have been studied by several authors in the variable
exponent setting, e.g. [72, 84, 86, 90]. Here we consider the following version of
Hardy’s inequality proved by P. Hast6 and M. Koskenoja [84]:

Lemma (2.1.4)[99]: Let Q be an open and bounded subset of R™. Let p €
Plog()with 1 < p~ <p* < oo. Assume that there exists a constant b > 0 such

that |B(z,7) N Q¢| = b|B(z,7)|
Forevery z € dQ and r > 0. Then

- < Nlully 1o

60 Lp© Q) w @

Holds forall u € Wol'p(')(ﬂ). Here §4(2) := dist(z, Q).

Using Theorem (2.1.3) we can easily remove the boundedness restriction.
Theorem (2.1.5)[99]: Lemma (2.1.4) holds without the assumption that Q is
bounded.

Proof. Letu € Wol'p(') (). We consider u as a function on R™ by extending it by 0
to R™\Q. Let (Q;) be a partition of R™ into unit cubes which satisfies the condition
of Definition (2.1.2). Let ®; be Lipschitz function with Lipschitz constant 2 which
equals 1 in Q; and is supported in 2Q;. Then ®;u € WOLP(')(ZQ]-) and Lemma
(2.1.4)[99] implies that

u | D;u D;u
Sallipoge,y W da lipoag)) 1102 N 2051 porgnag,)
S ||q’ju||wl,(P)(sz) S Ml ;)

Next, we apply Theorem (2.1.3) and this inequality:

1/Poo 1/Peo
D
~\ 2[5, < | 2o,
LP(')(Q) 7 Q Wl'(P)(Qj) 7 J

|5
)
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Then we note that each cube 2Q; can be covered by 3™ of the cubes Q. Using this
and Theorem (2.1.3) a second time, we conclude that

1/Peo 1/Poo
Znunwl(m@,2 ) quuwl(m(w )

~ ||u||W1,(P)(2Qj)-

59 PO@)

Using Riesz’ potential and the Hardy Littlewood maximal function, one can
easily prove a Sobolev inequality in WPO)(R™). This was done by L. Diening [1].
However, this leads to the extraneous assumption p~ > 1. P. Harjulehto and the
author [82] devised a method based on a weak-type estimate to circumvent this
problem. Unfortunately, it was not possible to get global results with this method:

Lemma (2.1.6)[99]: Suppose that p € P8(Q)with 1 <p(x)<c<n in a
bounded open set Q c R™. Then ||u||Lp*(.>(m < ||Vu||Lp(.)(m for every u €
Wol’p(')(ﬂ). Here the constant depends only on n,p and |€|.

np(x)
n-p(x)’
Note the p* is log-Hbélder continuous if p is log-H6lder continuous and bounded
away from n.

Theorem (2.1.7)[99]: Suppose that p € P°8(R™) with 1 < p(x) < c <n in R".
Then ||u||Lp*(.)(Rn) S ||u||W1,p(-)(Rn) for every u € Wol’p(')(R”). Here the constant
depends only on n and p.

As usual, p* denotes the point-wise Sobolev conjugate exponent, p*(x) :=

Proof. Let u € WHPO(R™). By homogeneity, it suffices to consider the case
lull,, o0 (R™) = 1. Let (Q;) be a partition of R™ into unit cubes which satisfies the
condition of Definition (2.1.2). Let ®; be a Lipschitz function with Lipschitz

constant 2 which equals 1 in Q; and is supported in 2Q;. Then ®; u € Wol'p(')(ZQj)
and Lemma (2.1.6) implies that
”u”Lp*(')(Qj) = ||CDju||Lp*(')(2Qj) S ||CDJ Vu”Lp(')(ZQj) = ”vullwl.p(')(sz)

Next, we apply Theorem (2.1.3),
1/pe 1/pc

pa— Zu T Zuuuwup)m )

1/Pso
= Znunwl@m S

In contrast to the case of the Hardy inequality, we here end up with the wrong power
after the inequality for using Theorem (2.1.3) we would want the norm to be raised
to the power of p,, instead of p;,. However, since ||u||W1,p(.)(Qj) < ||u||W1,p(.)(Rn) —
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1 and p,, < p%, we conclude that ||u||p 10 (g;) = < |lul|P= Then we can use

w0 (q;)’
Theorem (2.1.3) again:

1/Ps
Poo/D
[ Z||u|wl,,()(0) Zuuuw‘ﬁ{p;zw

The trace of a function essentially means a restriction of the function to a lower
dimensional subset of its original domain of definition. Since Sobolev functions are,
a priori, only equivalence classes of measurable functions, some care is needed in
making this rigorous.

In the variable exponent Sobolev spaces, traces have been studied in [74, 79,
89]. Since W10 (Q) o W1 (), we know by classical theory that u|dQ € L1, .(Q).
X.-L. Fan [79] studied Sobolev embeddings for the traces of Sobolev functions. His
Theorem (2.1.1) reads:

Lemma (2.1.8)[99]: Let Q c R™ be an open bounded domain with Lipschitz

boundary. Suppose that [|p|[y1r) <o and 1 < p~ <p™ <n <y. Thenthere is a
(n-1)p()
continuous boundary trace embedding W0 (Q) & L »-r0 (9Q).

X.-L. Fan also gave results in the unbounded case; however, these results were
based on a stronger assumption on the domain, which was assumed to satisfy a
strong Lipschitz boundary condition.

We can easily upgrade to local trace embedding to a global result without the
extra assumption on the boundary. We require only that ||p|ly,1v(zq) is uniformly

bounded over unit cubes Q, whereas Fan needs to assume that p € LPO(R™) and
p € L”(R™). On the other hand, we need the decay condition at infinity. As pointed
out in [79], this does not follow the previous assumptions.

Theorem (2.1.9)[99]: Let Q < R™ be an open bounded domain with Lipschitz
boundary. Suppose that [|p|ly1r39nq) < © is uniformly bounded over unit cubes Q,

that p satisfies the decay condition, and that 1 < p~ < p* <n <y. Thenthereisa
(n-1)p()
continuous boundary trace embedding W10 (Q) & L »r0 (9Q).

Proof. Let us denote p*(-) = (2= 1)?)() Assume as before that [lull,1p0q) < 1. Let

(Q;) be a partition of R™ as in Deflnltlon (2.1.2). By Theorem (2.1.3) we then obtain

1/pk, 1/p%
”u”Lp#()(aQ) z” L "O20nQ)) 2””' wt®(ang;)

1/1700

~ Poo/Pé
2||u||wl<p)m) < Nl o = 1
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We consider the variable index Riesz potential on weighted Lebesgue spaces
with variable exponent. By a weight, we mean a measurable, non-negative
function. The weighted Lebesgue space is defined by norm |[|f]|

||fa)1/p(')||

20w T

12O 20) The weighted modular is defined by

o) = | @O w6dx

Q
And it is clear that the following analogue of (2) holds:

1 1
min {0,000 0y (P @,y (P} < I 50

1 1
< max {QLz)(.)(m (fHr, QLZ)(')(Q) (f)p+}.

We noted previously that Theorem (2.1.3) depends only on this property of the
norm, and hence we conclude that it holds also for weighted Lebesgue spaces with
variable exponent.

N. & S. Samko and B. Vakulov [96] studied mapping properties of a variable
Riesz potential in weighted Lebesgue spaces with variable exponent. The potential
operator is defined by

Ia(x)f(x) — f |f(Y)|

Rn |X — yln—a(x) '

Assume that p and « are log-Holder continuous. When Q is bounded, they proved
in [96] that

190 [PO(Q) & 17O (),
np(x)
n-a(x)p(x)’
will here not get into the details of which weights are allowed, and instead refer to
[96, Definition (2.1.2)] for further discussion on this. Suffice it to say by way of

example that radial weights with appropriate exponents are allowed.

if sup a(x)p(x) < n, where p*(x) = w is weight, and w# := wP"/P. We

Note that one could equivalently study the operator

19O £ () = j lf )l

RN |x — yln_a(J’) )

where a(x) is replaced by a(y), since |x — y|*® ~ |x — y|*®) by the log-Holder
continuity of « [96, Lemma (2.1.5)]

For unbounded domains, N. & S. Samko and B. Vakulov needed to assume
that « is constant, in which case they proved that

. #(.
1%, [PO(RR) & [P O(RR),
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if supp(x) < g where the radial weight is controlled by polynomials at 0 and co. It
turns out that there is a good reason that they could not prove that 1#®): L’Z)(') (R") &
LP##(')(Rn) this embedding does not hold in general, as we now show.

w

Let R > 2 and let a : R™ — (0,n) be Lipschitz continuous with a|g 1) = g
and a|gm\p(o,1) = @eo. The exponent p is defined similarly with values po and pe.
Set f(x) = |x|™P xrm\5(0,1)(x). For x € B(0,1) we find that

-B
Ia(x)f(x) — f |y|

rRm\B(0,1) X — Y| 7%
provided ag = . No the other hand,

dy o J T—B—n+a0+n—1 dr = o
R

— - ~ - 00 -1
1o mey = 11721 e s o.my) jR r=Bpetn=1 gy < oo

provided n < fp,,. Therefore we see that there exists a function f € LPO(R™)
with 1¢® f = oo in B(0, R) provided agpy, > n.

For function p and « as before and Xp(01), similar calculations show that
190F ¢ LP*ORY) if (ap — atey) Dl = 1.

There is no point in investigating the global behavior of the potentials 1*®*)

or I%0), even in the unweighted case. It is, however, possible to obtain a global result,
which encompasses all the previous results. For this we introduce the potential
operator

If )l

n |x — y|r-ara) e’

o - |

R

where aAb denotes min{a, b}. As was noted before, |x — y|?~¢@1al)
lx — y|" ™) ~ |x — y|*~*O) in a bounded domain. Therefore

f |f Ol y j lf )l v
1%V F(x) < JBy X — y|rmatd 7o+ RM\B (x,1) [ X — y|ra@nal)
= Ig(x)f(x) =: 13" f (x)

Let us now investigate how the local-to-global result can be applied to prove
the general, variable o result in the global case. It sufficesto study the mapping

properties of Ii‘(") and If°° separately. For the former we apply Theorem (2.1.3).
Lemma (2.1.10)[99]: Let p, o € P°8(R™) With sup a(x)p(x) < n. Then
. #(.
Ig(x): Lz;)()(Rn) N LZ)#()(Rn)'

where the weight w satisfies the condition of [96].
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Proof. Let (Q;) be a partition of R™ into unit cubes which satisfies the condition of

Definition (2.1.2) For x € Q;, 1209 £ (x) is not affected by the values of f outside 30Q;.
If 0 € 3Q;, then the conditions of [96] are satisfied, and conclude that

=07 o,y = M0G0 s, = 12 R0
= ”f”LZ(#)@Qj). (3)

If 0 & 30Q;, then d(0,3Q;) = 1 since the cubes Q; are unit cubes integer coordinates.
Since w satisfies the condition of [96] one easily checks that the weight is locally
constant in the sense that wngj < cngjwith constant ¢ independent of j. Thus (3)

follows in this case from the unweighted estimate. Now that we have our local
estimate in place, we use Theorem (2.1.3).

=07 =07

#e #
210() 20~

S Hllfll

#e. ~

1/p%
3O Vil
>~ # .
LZ#()(Q]')

By homogeneity we assume that ||f||

||f|| #9(q P . Thus

p# #
a() ~ Poo/Poo  _
120 0 sy = (> L,,O(Q])) < IFIES, =
We now continue with the other part of the Riesz potential, 1"
Lemma (2.1.11)[99]: Let p, & € P°8(R™) With sup a(x)p(x) < n. Then
. #(.
9 EP (R & 170 (R,

where the weight w satisfies the condition of [96].

# p*0)
LZ#()(Qj) ol L+ (3Q)) p

POgny = 1, SO that [Villks p()(Q) <
@ ]

Proof. Let us here present a simple proof using the stronger, log-Holder decay
condition instead of the more general condition. It is possible to adapt the proof
for the more general condition using the techniques introduced.

The decay condition on « implies that |x|*® = |x|%= for |x| > 1. Therefore
|x — y|*GNa0) < |x — y|% since 1< |x —y| < 2max{|x]|,|y|}. Hence I%"f <

122 f. Since 1%°: [PO(R™) & LZ)##(')(R”) by [96], we conclude that the same property
holds for 1<,
Combining the previous two lemmas yields:

Corollary (2.1.12)[99]: Let p, & € P°8(R™) With sup a(x)p(x) < n. Then
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198 12O (R o 12O (Rm),
where the weight w satisfies the condition of [96].

Let us start by giving a new proof of the global boundedness of the maximal
operator in variable exponent spaces which is much shoeter than the original one.
Itis interesting to note that A. Lerner and C. Perez [88] have also recently reproved
the result of Nekvinda [94]. Their proof is completely different from the one
presented here and is based on a general theorem which they prove in quasi-Banach
spaces.

We start with the following trivial estimate:

sup j FO)dy + sup f FO)ldy.
Mf(x) < re,1) B(x,r) +7‘€[011) B(x,T)

=:Mf(x) =: M f(x)
The part M is easily handled by Theorem (2.1.3), as we see in Lemma (2.1.16). To
deal with the part M, we develop a new method.

We need the following lemma, which is due to L. Diening and S. Samko [77].

Their version has LP"(R™) in place of LP=(R™), so a short proof is given here for
completeness. Recall that the norm in X nY is given by ||. |lx + || lly.

Lemma (2.1.13)[99]: (cf. Lemma (2.1.12), [77]). Let p € P°8(R™). Then

LPO(R™) N L®(R") = LP=(R™) N L®(R™).
Proof. Let p(x) := min{p(x), ps}. Then p is also 10g-Hblder continuous on R®, p <
p, and Py = Po,. By [76], LPO(R™) & LPO(R™). on the other hand, p < p < o, so
LPOR™) n L®(R") & LPO(R™). Combining these embeddings yields the claim.
(Incidentally, [76] is written for log-Hdlder continuous exponents, but it also holds
for exponents satisfying only Nekvinda’s condition.)

To control M., we need some understanding of the convolution operator. Its

boundedness on LP©)(R™) is in general proven using the boundedness of the maximal
operator. Since we now want to reprove this fact, we must take a different route.

Lemma (2.1.14)[99]: Let p € P'°8(R™) and define §(x) = pz(y1y and Af (x) =
|fla ). Then B € P1O8(Q), B, = po and LPO(R™) & LPO(R™).

Proof: It is easy to see that p satisfies the local log-Holder condition and that p,, =

Pe. The log-Holder decay condition is also easily checked; if one works with
Nekvinda’s condition, some more effort is needed, see Lemma (2.1.17).

We start the estimate of Af(x) with a constant exponent Hélder inequality,
followed by Young’s inequality with exponent %:
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By 169
(Aﬁ(") If ) I) dy

146D
IfIPPdy + 2pD=P@ dy,

Ao =5 [

B(x,1)

< -
A B(x,1)

where 1 € (0, 1). For sufficiently small 4,6 — 21/9 is convex on (0,p*]. Thus, we
have

p(y) 1 1 1
AW -P(x) < Ap(M)-D(x) < AIP(V) Pl < AIP(X) Dol |

Integrating the previous estimate now gives

. 1 1 1
j Af ()PP dx < j - j If () [P® 4 APOIPeol + ATBE Pl dydx
RN ]RTLA B(x,1)

1 1
== If () |PX) + APO)=Peol + ATBE)—Peol dydyx
A B(x,1)

which is finite for sufficiently small 4, by Nekvinda’s condition for p and p.

The following corollary is the globalization of Diening’s result [69, Theorem
(2.1.8)] which says that M: L (Q) < LFO (Q) for bounded Q.

Corollary (2.1.15)[99]: Let p € P°8(R™) satisfy 1 <p~ <p* < oo. Then

M: LPO(R™) & LPO(RM).

Proof. As noted above, we have Mf < M_f + M. f. Therefore we study the

operators M. and M., separately. Let (Q;) be a partition of R™ as in Definition

(2.1.2). Then, by Theorem (2.1.3) and the local boundedness of M_, we obtain
||M<f||LP(')(Q) ~ ”M<f”p(-)(Qj) 5 ”f”p(-)(ng) ~ ”f”LP(')(Q) .

For the other part we see start by noting M~ f ~ M- (Af) with A asin Lemma (2.1.14).
From Holder’s inequality we infer that Af € L*(R™). Thus, by Lemmas (2.1.14)
and (2.1.13),

A: LPO(RM) & L®°(R™) N LPO(R™) = L®(R™) N LP=(RM).
Since [[M.fll,y, < IM<fllp, S lIflp,,, we conclude that L”(R™) N LP~(R") <
LPO(R™). Thus Ms = M. 0 A: LPO(R™) & LPO(R™), as required. Combining the
estimates for M_ and M., yields the result.

Let us now get back to the technical part of Lemma (2.1.14), i.e. the case of
Nekvinda’s decay condition.

Lemma (2.1.16)[99]: Let p satisfy the local log-Hdlder condition and Nekvinda’s
decay Then p(x) := pp(, 1) satisfies the same conditions.

Proof. It remains only to check Nekvinda’s decay condition. Let « € (0, 1) be such
that
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1
j alPX) =Pl dx < oo.
Rn

Let 8 € (0, ), its value will be specified later. Since p(x) < p(x) we conclude that

1

1
Rnﬁh?(x)—pod X{ﬁoo>p°°}(x)dx < JRn alP(X)—Peol X{ﬁoo>Poo}(x) dx < oo,

Thus it remains to consider points where P, < po. Let (Q;) be a partition of R" into
unit cubes. Thus

1

1 1 _
BIPEP] Y5 5y ()X < ) BP2 7501 € Qi By < pol < ) 77501
R

For each x; € 3Q, be such that p(x;) = p3p,. If p(x;) < pw, then we conclude from
the local log-Holder condition that p(y) < pe, — 2 (poo < p(x;)) in a ball B; centered

2;( )} where ¢, is the log-Holder constant. Hence

at x; with radius exp {1 —

2 _ ZTlCO 2 1
aPo—P(Xi)e DPoo—D(Xi) apoo—p(xi)|3i| gf alP()—Peol dx.
B;
Since any given point can occur at most 4N times as a point xj we conclude by
choosing f = a*e ™" that

2nc, 1
Zﬁpw p3QL < z o(Poo— p(xl)e Poo—P(x) < 42j alP)—Pwl dx < oo.
B;
Thus we have shown that p satisfies Nekvinda’s condition with constant 5.

Variable exponent Morrey spaces have been studied in [70, 92]. The Morrey
space is defined by the modular

zZeOQ,r>0

0pow0qy(f) = sup 1 ”(Z)f If GO |P® dx.
B(z,r)
As usual, [If Il pew0qy = inf{A > 0: 0,p0w0 g (f/A) < 1}. In[70], it is shown that
1 1
min {QLP(-).U(-)(Q) (f)P_, QLp(.),v(.)(Q) (f)p"'} < ”f”Lp(')’”(')(Q)

1 1
< max {QLp(-)U(') Q) (f)p_r QLP('),V(') ()] (f)p+}

In [70], an alternative expression for the norm is provided:

_v(2)
T p()

(4)

“f”Lp('),v(')(Q) = Ssup

ZEQ,T>0 LPOB(z,1))

For (Q;) as in Definition (2.1.2) we define a partition norm on LPOYO (R™) by
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11l om0y = 1000 ..

We now have all the ingredients that were needed in the proof of Theorem (2.1.3),
and may therefore state the following version for Morrey spaces. Being the same,
the proof is omitted.

Corollary (2.1.17)[99]: Let p € P'°8(R™), then [If |l o000,y = IfllLp0r0(g,)-

The following result is proven. Theorem (2.1.6) contains a different version of
the result, with slightly more general spaces, but also more restrictive assumptions
on p.

Lemma (2.1.18)[99]: Let O c R™ be bounded and open, p € P'°€(Q), and let 0 <
v~ < vt <n. Then M: LPOPO(Q) o LPOPO(Q),

Theorem (2.1.19)[99]: Let p € P°8(R™), and let 0 <v~ <v* <n. Then
M: LPOYO(R™) & [POYO(RM),

Proof. As before, we have Mf < M_f + M. f. Therefore we study the operators M_
and M., separately. Let (Q;) be a partition of R™ as in Definition (2.1.2). Then, by
Corollary (2.1.17).

IMcfll povomny = IM<fllpeom0) S Ifllhoweie) = IfIlpovo s -
We consider M.,. For B = B(z,r) with r = 1 we use Young’s inequality:

_v(@) v(z)
f If ()| dx = j [rr p(x)lf(x)llr_p(x)_ndx
B B

_v(z)-np(x)
S_[ r V@ ()PP + 1+ P@®-1 dx
B

_v(@)-np(x)
Sr—v(z)J |f () [P SJ r pPOO-1 (dx < 0.pOrORny T C.
B B

Hence M. f € L*(IR"). Since v < n, it follows that

zeQ,r>0

sup @ f Mo f GO dx < (1 + IMfll)?" < C.
B(z,r)

Hence we need only consider the Morrey normover r € [1, ). Asin Lemma (2.1.14)
we obtain
1

1
j Af (0)P®) dx < % j If ()PP + AP ~Peol 4 ATFE=Peol dx
B 2

B

for Bwith radius at least 1, where Af (x) = |f|p(y,1)- Thus, we conclude that

r=v@ f Af (x)P®) dx < (2r)~"@ j IfMIPP dx + C,
B 2B

o1



And so it follows that M : LPOVYO(R™) & LPOPYO(RM). In view of (4), an analogue
of Lemma (2.1.13) holds for Morrey spaces. Hence we conclude as in Corollary
(2.1.15) that M. f = M. (Af) and

A: Lp(')'”(')(]Rn) 2N Lﬁ(-),v(')(Rn) N L®(Rn") = Lpoo,v(')(Rn) N L®(RM).

Since [[Msfll,, < IMfll,, s lIfll,,, we conclude (4) that |[Msfll, .0 <
IMfll,, vy Hence

M. LP=YO(R™) N L®(R™) & LPOPO(R™) N L2 (R™) & LPOPO(R™),
Thus My ~ M. 0 A: LPOPO(R™) & [POYO(RM), as required.

Section (2.2): Orlicz Spaces of two Variables

Variable exponent spaces have been studied; for a survey see [75,97]. These
investigations have dealt both with the spaces themselves, with related differential
equations, and with applications. One typical feature is that the exponent has to
be strictly bounded away from various critical values. We consider the example of
the Sobolev embedding theorem. Such embeddings and embeddings of Riesz
potentials have been studied, e.g., in[1, 75,102,100, 106, 105, 106, 109, 110, 115] in
the variable exponent setting. Most proofs are based on the Riesz potential and
maximal functions, and thus lead to the additional, unnatural restriction infp > 1.

Due to Edmunds and Rakosnik [8, 9] avoided this restriction by a use of ad
hoc methods of proofs, but these turned out not to extend conveniently to other
situations. Harjulehto and Hasto [82] introduced a method based on a weak type
estimate, which covers the case infp = 1 and can be easily adopted also, to other
situations. Their result was extended to the case of unbounded domains in [99].

We consider more general variable exponents following Cruz-Uribe and
Fiorenza [103]. To define these spaces let p : R®™ —» [1,00) and q : R® —» R be
continuous functions. We will be considering spaces of type LP®) log L0 (Q). For
simplicity we denote the function defining the space by @, ie. &(x,t) =
tP™® (log(c,y + t))9™). By C we denote a generic constant whose value may change
between appearances even within a single line.

We assume throughout that the variable exponents p and g are continuous
functions on R™ or Q c R™ satisfying:
(pPD1 < p~ := infyepnp(X) < SUPxernp(x) =:p* < oo

— ¢ n n.
(p2) Ip(x) =PV < [ Whenever x € R" and y € R™;

P3)lp () — PO < (o Whenever [y| > |x|/2;

(ql) —o0 < g7 := infyegnq(x) < supyernq(x) =:q* < oo;

— ¢ n n.
(a2) 19(0) = )| < oo Whenever x € R™ and y € R™,

Moreover, we assume that
(d,) there exists ¢, € [e, o) such that ®(x,") is convex on [0, ) for every x € R™.
If there is a positive constant C,, such that
Co(p(x) —=1) +q(x) = 0,
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then condition (&) holds; this follows from a computation of the second derivative
d(x,"). For example, this inequality holds if p~ > 0 or if g~ > 0. For later use it is
convenient to note that (d,) implies the following condition:
(d,) t » t~1d(x,t) is non-decreasing on (0, ) for fixed x € R™.

We define the space L®(Q) to consist of all measurable functions f on the open

set O c R™ with
j o (x, M) dx < oo
Q A

for some A > 0. We define the norm

. If @)l
”f”q)(.'.)(ﬂ) ll’lf{l >0: f CD( A dx < oo
Q
for £ € L®(Q). These spaces have been studied in [9, 105]. Note that L®(Q) is a

Musielak—Orlicz space [111]. In case g = 0, L®(Q) reduces to the variable exponent
Lebesgue space LPO) ().

We prove a weak type inequality of maximal functions in Theorem (2.2.6).
Then we prove in Theorem (2.2.11) a weak-type estimate for the Riesz potential.
These enable us to prove the main result, a Sobolev embedding for functions in
WL®. The Sobolev space W% (Q) contains of those functions u € L* () with a
distributional gradient satisfying |V, | € L* (). Further, we denote by Wol'q’(ﬂ) the
closure of € (Q) in the space W% (Q) (cf. [83] for definitions of zero boundary
value functions in the variable exponent context).

Let p*(x) denote the Sobolev conjugate of p(x), that is,

1/p*(x) = 1/p(x) —a/n.
For the Sobolev embedding in W% we need the conjugate exponent with o = 1,
which is denoted by p*.
Theorem (2.2.1)[114]: Let p and g satisfy the above conditions. If p* < n,
then
lullyey@ < allVulloe @
for every u € W,"®(Q), where ®(x,t) := (tlog(c, + t)1*)/P)

(tlog(co + t)Q(x)/p(x))p*(x).

This extends [105] and [99, Theorem (2.2.10)] which dealt with the case g = 0.
Proof. We may split R™ into a finite number of cubes Qi ......... ,Q, and the
complement ofacube Q,, in such away that pg, < (p™)g, for each i. Then

P@) and Y(x, t) =

el my < Z||u||¢( < anv oo = e+ DerllVullog -

=0
by Lemma (2.2. 14)
In order to prove the main result, a weak-type for the maximal function, we start by
presenting several preparatory results.
Let B(x,r) denote the open ball centered at x with radius r. For a locally
integrable function f on R™, we consider the maximal function M f defined by

1
MF(x) = sup fy = sup T f FO)1dy,
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where the supremum is taken over all balls B = B(x,r) and |B| denotes the volume
of B.

The following lemma is an improvement of [110].
Lemma (2.2.2)[114]: Let f be a non-negative measurable function on R™ with

”f”cp(.,.)(g) < 1. Set

1
[=— d
B Jyoer) 0P
and
- o(y, dy.
= Bl e (v, fO))dy
Then

I < C{JMYP™ (log(c, + J))~9/P@ 4 1),
Proof. By condition (®,),we have for K > 0

c FON\P™ flog(eo + F) 1P
=K+ |B(x, )| B(x’r)f(}’) <T> ( log(cy + K) ) 4y,

where the first term, K, represents the contribution to the integral of points where
f(y) < K.If] <1, then we take K = 1 and obtain
1<1+4+C(C]<C.

Now suppose that / > 1 and set

K = JY/?™®) (log(cy + J))~90/p),
Note that J¢/1°8C/"™ < ¢ and (log(c, + J))¢/108008(e+CI"™) < ¢ Since we
assumed that || f|| ¢ .. rny < 1, we conclude that

1
I <K+ {5Gm )20 O) & < prsy

Hence, by conditions (p2) and (q2), we obtain, for y € B(x, ), that
K PO < {le/p(x) (log(c, _|_]))—q(x)/p(x)}—P(x)+C/log(l/r)

- 1/n
< {C]P@ (log(cy + J))~aG/PE0yTPEITE/ 18T

< €] 7' (log(co + )P
and
(log(co + K))_Q(y) < {C log(co _l_])}—C[(X)+C/10g(10g(€+1/1‘))
< {Clog(c, + J)}~aC0+C/logllog(e+cM/™)
< (log(co + /)79
Consequently it follows that
i < C]l/p(x)(log(co +]))_Q(x)/p(x) .
Combining this with the estimate I < C from the previous case yields the claim.
Lemma (2.2.2), for each bounded open set G in R™ we can find a positive
constant C such that

MFOP® < c{Mgx)(log(co + Mg®)) ™ + @+ D™} ()
for all x € G and g(y) = ®(y,f(y)), whenever f is nonnegative measurable
function on R™ with ||f|[o(.ymm) < 1.
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For later use, it is convenient to note that
CTHA+ [x)7Pe < (1 4 |x)TPC) < C(1 + |x[) /P (6)
in view of (p3).
Lemma (2.2.3)[114]: Let f is nonnegative measurable function on R™ with
”f”q)(’)(]]gn) <1. |f] < 1, then

1

1BC ) Jperna(oixl./2)
Proof. By condition (®,), we have for K > 0

C FON\'P™ log(eo + F) 1P
t=f |B(x, 1)l B(x,r)\B(O,lxl,/Z)f(y)< K ) ( log(cy + K) ) @

Then we take K := max{J/P® + (1 + |x|)™™/P™®} < 1 and find
I, <K+ CKP®*) < cK
sincep(y) < p(x) + C/log(e + |x)|) fory € B(x,r)\B(O0, |x|,/2) by (p3). Thus the
proof is complete.
Lemma (2.2.4)[114]: Let f is nonnegative measurable function on R™ with
“f”q)(.,.)(Rn) <1 |f] < 1, then
1

Iy fO)dy < P + (1 + |x)7/P}

L =—— dy < —n/p(),
2 |B(x, 7”)| B(x'r)nB(OJxL/Z)f(y) Y= C(l + |x|)
Proof. Since J < 1, we see from Lemma (2.2.2) that I, is bounded on B(0, e), so that
we have only treat the case when |x| > e.
If < |x|/2, then the integration set is empty and the claim is trivial. We will

show that
1
' = ———
IB(O, r)l B(0,r)
forr > 1. Since I, < I' when r > |x|/2, the claim then follows.
By condition (®,), we have for a measurable function K = K(y) > 0

K(y)dy

. o) (f(y))””‘l (losta t FOON
|B(O, ") Jp0.) K®) log(co + K(¥)) '
If po, > 1, then we take K := (1 + |x|)™/?™ and find that
I’ S C(’r_n/poo + rn(poo_l)/poo)]’)

f)dy < Cr—/Pe) 7).

' <—
|B(O; r)l B(0,r)

By use of (p3), where

J' = B B(O’T)Cb(y'f(Y)) dy.

If po, = 1, then we take K == (1 + |x|)~# for £ > n and obtain
I'<c@r™+]".
Noting that I' < Cr~" completes the proof.
Lemma (2.2.5)[114]: Let f is nonnegative measurable function on an open set Q
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N(x) = Mg(x)?® Mg(x)(log(co + Mg(x)))_q(X)/p(x),

where g(y) == @(y, f()). Then

J d(x,t)dx <C,
E;

where E, == {x € Q: N(x) > t,Mg(x) > C;(1 + |x])™"}and C,;|B(0,1/2)|1.
Proof. By the Besicovitch covering theorem, we can find a countable family of bolls
B; = B(x;,r;) with a bounded overlap property such that E, cu; B;,

< g;/p( D) (log(c + gg, ))—CI(XJ/P(XL)
and
gg, > Ci(1+ [x;D7™.
If 1 < gp, < |B;|™*, then conditions (p2) and (p2) imply that
1/p( l)(log(co . )) q(x;)/p(xq) <C l/p(x)(log(c + g, )) q(x)/p(x)
forx € Bl, and if C; (1 + |x;)™™ < gp, < 1, then; < (1 + |x;])/2, so that the above

inequality by use of (p3). A similar argument holds for changing q(x;) to g(x). Thus
we obtain

CD(x g;/p( L)(log(c + gp ))—q(x)/p(x))
< Cd (gB/p(x) (log(co + gp. ))—Q(X)/P(X))
= Cgs,(log(co + 5,)) """ (log(co + g5/7) (10g(co + g,

< (gs, -
Hence we see that

Lt CD(x,t)deZLi d(x,t)dx
SCZL'gBideCZJB.g(y)dy

SCf gy)dy <C.
Q

We are now ready for the first main result, a weak-type estimate for the maximal
function. This is an extension of [101] and [84, Theorem (2.2.8)].
Theorem (2.2.6)[114]: Let f is nonnegative measurable function on R"™ with
”f”cp(.,.)(Rn) <1 |f] <1, then

—alx: 3 \4(X)
)) Q(xl)/P(xl)))

j d(x,t)dx <C.
{xeR™: Mf(x)>t}
Proof. Lemmas (2.2.2)— (2.2.4) and (6) give
1< C{JMP@ (log(c + ) 1W/PE 4+ (1 + |x]) 7P} (8)
for x € R™. Hence
{xeR": Mf(x) >t} C E,U{x € R": (1 + |x|)™/P= > t/C}
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with E; as in Lemma (2.2.5). Note that we may Mg(x) = C;(1 + |x|)™™ in the first
set since if Mg(x) < C;(1 + [x])™and N(x) > t/C, then C;(1 + |x|)™™P= > t/C.

If the second set is empty, the claim follows from Lemma (2.2.5). If this is not
the case we define r > 0 so that (1 + |x|)~™/P~ = t/C. Note that ¢ is bounded in this
case. Then

j Dd(x,t)dx < f d(x, t)dx + J d(x,t) dx.

{xeR™: Mf(x)>t} E; B(0,1)

The first integral on the right hand side is bounded by Lemma (2.2.5). For the
second, we note that ®(x,t)) < CtP™ since t and since g are bounded. By the
definition of r we have

j tP™ dx < Cf 1+ 1”)_"7"(’“)/”oo dx
B(0,r) B(0,r)

< Cf (1 + r)_n+(cn/poo)/10g(€+|x|) dx.
B(0,r)

For 0 < m < n, noting that (1 + r) ™+ (n/Pe)/108(e+1) (1 4 )™ js hounded on (c;,7)
when m + (C,,/p-)/log(e + c;) < 0, we find

j tP) dx < Cf tPO) dy + C(1 4+ 7)™ " dx < J (1+7r)™dx <C.
B(0,r) B(0,c1) B(0,r)
Therefore fB(O " ®(x,t) dx < C, and so we obtain the theorem.

Take w € C*(R) such that 0 < w < 1,w(r) = 0 when r <0 and w(r) = 1 when
r=>1/2. Let

alog(e + log(e + |x])) 2x, — |x|
p(x) = w( )

log(e + |x|) 1+ |x]|
forx = (x4, ... ... ,X,,), Where a > 0. Consider the function
_ (e +]xD"(log(e + |x)B if 4x, > 3|x| + 1,
f(x) =

0 elsewhere.

If —1 < f < an — 1, then f € LPO(R™). Note that
Mf(x) = (e + |x])"(log(e + |x])F*?

for all x € R™. There exists a constant C > 0 such that if

lx|] < Ct~Y"(log(e + t=1))B+0/n
Then Mf(x) > t, so that

f tP®) dx > t|{x € R* : Mf(x) > t,x, < 0}
{xeR™: Mf(x)>t}
> C(log(e + t~1))A+1,
which tends to oo as t — 0 +. This example shows that the assumption on the
exponent in our weak type estimate is quite sharp.
For 0 < @ <n, we define the Riesz potential of order a for a locally
integrable function f on R" by

wrm [ IO

dy.
R™ |x — y[*=@ Y

Here it is natural to assume that
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A+ [y “lf D dy < e, 9)
Rn

which is equivalent to the condition that I,|f| # oo (see [110, Theorem (2.2.1)]).
To establish weak-type estimates for Riesz potentials of functions in L* (R™),
when the exponent p satisfies
pt <n/a.
Let p#(x) denote the Sobolev conjugate of p(x), as defined.
Lemma (2.2.7)[114]: Suppose that p* < n/a. If f is nonnegative measurable
function on R™ with ||f|[o(.ywn) < 1, then

j L)_ dy < C{ra/P) 4 (1 + [x[)an/re)
R™\B(x,r) |x — yln *

forallx e R*andr > 1/e

proof. If |x| < randr = 1/e, then (7) gives

f) _
j I gy<c| o+ rody
rRM\Bxr) X — VI R

<C joo( f(y)dy) (r+t)* " 1dt
o \/B(0pt)

< Cra P < C(1 + |x])¥ /P,
Next consider the case |x| > r = 1/e. Then we have

fB IO < e j f()dy

©.lxl/2\B@) X = YITTE B(0,Jx1/2)
< C'|x|0‘_”/poo )
and

[ IO ¢ [ Y1 £ dy
R R™\B(0,2|x])

mp(z2lx)) [X = YI"7F
< Cj ( f(y)dy> te "l dt
2|x| B(0,t)

< C(1+ |x])* /P,
It remains to estimate the integral of |x — y|* " f(y) over the set E :=
B(0,2|xD\{B(0, |x|/2) U B(x,r)}. By condition (®,), we have K(y):=|x—
y| /P

f) K(y)
L x—ya Y SL X —ypa

p(x)-1 q(x)
N f f(y) (f (y)) (10g(co +f (}’))) dy

lx — y|""* \K(y) log(co + K(¥))
n(p(x)—1)

P00 f o(y, f(y))dy

-n+

n
<crir@® 4+ cr”

< Cra-n/p@)
since p(y) < p(x) + C/log|x| fory € R™\B(0, |x|/2) by (p3) and ap™ < n.
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Lemma (2.2.8)[114]: Suppose that p* <n/a. If f is nonnegative measurable
function on R™ with ||f|[o(..)rn) < 1. Then

f L)_ dy < C5% P (log(cy + 1/6))~9X)/p(x)
Bx1/eNBs) X — YI'¢
forallx e R"and 0 < 6 < 1/e.
Proof. The proof is similar to the last case in the previous proof. Let us set E :=
B(x,1/e)\B(x,d) and

K(y) = lx = y|7"P®(log(co + 1/|x — y[))~90/P)
for x € E. By condition (p2), (q2) and (®,), we obtain

f) K(y)
fE |x — y|"~@ 4y SL |x — y|n—@ d

F®) (O (logleo + FONY'®
“L x — y|"@ (K(y)) <log<co+1<<y))) @y

<C <5a—n/p(x) + (log(cy + 1/8))~9®)/P()

+ j x = y|7P@ (log(co + 1/1x — y D) TIPS @ (y, £ (1)) dY>
E

< C§*7 P (log(co + 1/8)) ~1/PCI (1 + JE S, f) dy)

< CE54MPM) (log(cy + 1/6))~9X)/P(x),
as required.
The next lemma generalization of [110].
Lemma (2.2.9)[114]: Suppose that p* < n/a. Let f € L® (R™) be nonnegative with
”f”q;(’)(ﬂgn) < 1. Then
Iof (0) < C{Mf()P@/P" @ (log(co + MF)) ™™ + (1 + [x])7/P%},
Proof. By Lemmas (2.2.7) and (2.2.8),

f) f)
. = 1 dy < 1 d
Iof(x) j y<fR y

B(x,5) |x — y|"~« n\B(x,5) |x — y|—@
< C{6*Mf (x) + 8 ™P®) (log(co + 1/6))™1F/PE®) 4 (1 4 |x|)*/Peo)
for & > 0. Here, letting
§ = min{Mf (x) P/ (log(co + MF())) 1@/ + 1+ |x]},
we find
I, f(x) < C{Mf(x)p(x)/p#(x)(log(co + Mf(x)))—aq(x)/n +(1+ |x|)—n/p°#o}-

Recall that Y(x, t) = (tlog(cy + t)Q(X)/p(x))p#(x).
Lemma (2.2.10)[114]: Suppose that p* < n/a. Let f be a nonnegative measurable
function on an open set Q with || f || (.. < 1. Set
N(x) == Mg(x)l/p#(x)(log(co + Mg(x)))_Q(x)/p(x),
where g(y) == ®(y, f(y)) then

V) dy <,

Et
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where £, :={x € Q: N(x) > t,Mg(x) = C;(1+ |x])""}and C; := |B(0,1/2)|*.
Proof. By the Besicovitch covering theorem, we can find a countable family of balls
B; = B(x;,1;) with abounded over property such that £, cu; B;,

1/p%(x; —q(xi)/p(x;)
t < gB{p (x )(log(co +9s,))
and

gp, > C1 (1 + |x])™™

As in Lemma (2.2.5), we obtain
v (X, g;{p#(x") (log(co + gBi))_Q(xi)/P(xi))

1/p*(x; —q(x)/p(x;)
< Cll] (xl gB{p . )(log(CO + gBi)) )
< CgBi

for x € B;. Hence obtain as before that

REREE Z jB P dx

SZ] gBideCf gy)dy <C.
i B; QO

Now we are ready to show the weak- type estimate for Riesz potentials, as
extension of [101] and [82, Theorem (2.2.10)].
Lemma (2.2.11)[114]: Suppose that p* < n/a. Let f be a nonnegative measurable
function on R with ||f|le¢..yrn < 1. Then

j P(x, t)dx < C.
{xeR™: I, f(x)>t}
Proof. By Lemmas (2.2.9) and (2.2.2)—(2.2.4) give
loaf (x) < C{Mf (x)PE/P" ) (log(co + M (x))) 1D/ + (1 + |x[)™/P%)
< C{Mg(x)P@/P* @) (log(co + Mg(x)))"1X/™ + (1 + |x[) 7P}
for x € R™. Hence
xeQ:lf(x)>tyc B ufxeq: (1+|x])™P% >t/C),
where E, is as in Lemma (2.2.10). If the second set is empty, then the claim follows

from Lemma (2.2.10). If this is not the case we define » > 0 so that (1 + r) /P =
t/C. Then

f Ulx,t)dx < | Ylx,t)dx < P(x, t)dx.

{x€R™ : I, f(x)>t} E; B(0,1)

The first integral on the right hand side is bounded by Lemma (2.2.10). For second we
note that Yi(x, t) < Ct*™ since t and q(-) are bounded. Thus

f 4O g < f C(1 + 1)+ Cn/pl)/ I0g(e+xD) gy < ¢
B(0,1) B(0,r)
where the last step follows exactly as in the proof of Theorem (2.2.6).
Continuing with the notation, we further see that
Iof (x) 2 C(1 +1)*™(log(e + |x[))F**
for allx € R", so that
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n
j t¥ ) dx > tn-a{x € Q: I,f(x) > t,x,, <0}
{xeR™: I, f (x)>t}

> C(log(e + t~1))MB+D/(n-a)
which tendsto o ast — 0 +.
In view of [109], for each § > 1 one can find a constant C > 1 such that

{ef (Y@ (log(e + Iof () # (logle + Lo f (1) ™) Fdx < C
]RTL
whenever f is a nonnegative measurable function on R™ with ||f||Lp(.)(Rn) < 1. This
gives a supplement of O’Neil [82].
Let us consider the generalized Orlicz-Sobolev space W® (Q) with the norm
lullyoc, )@ = lullocy@ + 1IVulloey@) <
Further we denote by Wol'd’ (Q) the closure of C§°(Q) in the space W1® (Q) (cf. [81]
for definitions of zero boundary value functions in the variable exponent context).
We derive a Sobolev inequality for functions in Wol'q’(ﬂ) as the application of
Sobolev’s weak type inequality for Riesz potentials of functions in L® (). Frist note
the following lemma:
Lemma (2.2.12)[114]: Set k(y,t) = (log(e + t))Y foryand t = 0. Then
k(y,at) < t(y,a)k(y, t)
whenever a,t > 0, where
7(y,t) = amax{(Clog(e + a))?, (Clog(e + a 1))V}
We define local versions of p* and p~ as follows:
po = ess infyeqap(x) and pd = ess infycqp(x).
Using the previous lemma we can derive a scaled version of the weak type estimate
from which will be needed below.
Lemma (2.2.13)[114]: Let Q be an open set in R™. Suppose that p* < n/a.Let f €
L® (R™) be a nonnegative with [|f[lo(.,ywm) < 1. Then for every & > 0 there exists a
constant C > 0 such that
("), -¢
<
f{ e WOND dx S CIF St
forevery t > 0.
Proof. For simplicity we denote ||f||o..)rn) bY a € [0, 1]. The case a = 0 is clear, so
we assume that a > 0. We apply Theorem (2.2.11) to the function f/a, which has
norm equal to 1. Thus

P(x, t) dx =f P(x, t) dx

{xEQ e P a(x)>t}

—[;xeﬂ 2o f(x)>s}

Sf P(x,t) dx < C.
{xe]Rn 2y cLz(x)>t}
With k as in the previous lemma and r = q(x)p*(x)/p(x), we have Y(x,t) =
tP"@=1k(r, t). Hence the lemma implies that
k(r,s/a)

W(x, s/a) = W(x, s)al P ® Rrs) > Y(x, s)al P ®z(r,a) L.
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Since 7 is logarithmic and a < 1, it follows a'?*®z(r,q) < ca®a~¢, Now the
claim follows by combining the inequalities derived.
Lemma (2.2.14)[114]. Suppose that p* < n,pd. Let and Q be an open set. If u €

Wol'q’ (R™7), then there exists a constant C; > 0 such that
lulloe @) < CillVulloe)wm -
Proof. We may assume that ||V, ||o(. &) < 1 and u is nonnegative. It follows from
[108] that
vl < C)1 [V, (x)

for v € W,"®(R™) and almost every x € R™. For u € W,"*(R™) and each integer j,
we write U; ={x € Q: 2/ <u(x) <2/*} and v; = max{0, min{u — 2/,27}}.
Since v € Wy (Q) and v;(x) = 2/ for almost every x € U;,,, we have

I |Vy,| (%) = €2
for almost every x € U, 4, it follows that

]Q P(x, u(x)) dx < ZJU U(x, ulx)) dx

JEZ j+1

< CZf q;(x,u(x)) dx

jer " Ui+t
< CZ_[ L|J(x,u(x)) dx .

= {xeuj+1:11|\7,,j|(x)>czf}

Taking r € (p™, (p*)g), we obtain by Lemma (2.2.13) that

>

JEL {xEUj+1! 11|V,,j|(x)>czj}

L|J(x,u(x)) dx < CZ”f”fp(.,.)(Rn)

ez
< CZJ O(x, |V, (0)]) dx < C,

JEZ Uj
Which completes the proof.
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Chapter 3
Mean Continuity Type Result with Maximal and Fractional Operators

We show that, if p(x) is also continuous, for mollifiers (p,),cz the liminf
and the limsup of

1
—

| |f C)—f ()l
lx-y|

min p(xry)(ﬂxﬂ)>neN

are respectively manrorized by majorized by expressions equitant to ||Vf||.»q). The

spaces LPO)(p, Q) over a bounded open set in R™ with a power weight p(x) =
lx — x,|7, xo € Q, and an exponent p(x) satisfying the Dini-Lipschitz condition.

Section (3.1): Certain Sobolev Spaces with Variable Exponent

Throughout Q will be a non-empty, open cube in RN, N € N and P (Q) will be the
class of all lower semi continuous functions p = p(x) on Q such that
p. = infp(x) >1

X€EN

p. = supp(x) < o

xX€Q
and satisfying the following condition:

(i) For every x € () there exists numbers 0 < r(x) < 1, {(x) > 0 and a vector {(x) €
RN\{0} such that

¢(x) < E(x)| <1,
B(x,r(x)) + U B(té(x),t{(x)) c Q,

o<t=s1

P <p-pvren,  vye || BE®KW)
o<t=<1
where for x € RN and r > 0, B(x,r) is open ball centered at x and with radius .

Unless differently specified, in the sequel we will always assume that any
function p = P(x) in the class P(Q). Examples of functions p € P(Q) are the
constant functions, the convex functions, the functions in the C*(Q) class with
gradient different from zero in any point. A special explicit example given in
Proposition (3.1.9).

We denote also

Din = inf p(x) pp= sup p(x)

B (x 'ﬁ) nQ B (x%) nQ

forall x € Q,n € N.
For x, y € Q such that the segment with endpoints x, y is all contained in Q, we
set
minp(x,y) = min, p(A(x + (1 — Dy).
Notice that the definition is well-posed by virtue of the lower semi continuity of p €
P(Q).
For any (Lebesgue) measurable function f in Q we define by
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p(x)

|¥ dx <14 (@

1oy = Il = infd2> 0« |
Q
The norm of f in Banach space LP™) (Q). The LP®)(Q) is called generalized Lebegue
space, because if p(x) = p is constant, then the norm coincides with the usual norm of
LP™)(Q). In the sequal we will denote by LP™) (RN) the space defined substituting the
cube Q by RY; its main properties are discussed in [13] and [23].
Problems involving variable exponents have been considered several times (see
e.g., [15, 115, 116, 121, 122, 123, 124] and references therein).
We will consider also the following generalization of the norm (1). For a, 8 €
PQ), a(x) < L(x) Vx € Q, let
Dy p (t,x) = max(t“("), tﬁ(")) vVt >0, x €Q,

and let us set

_ i : [f (I
Ifllogcty =INf{A>0: | @pgp — ¥ dx <1,. (2)

Q
We will write simply @, ;(t) in the place of @, z(t, x) if a, B are constant functions.
Norms (1), (2) are particular cases of norms of Musielak—Orlicz ([18]).

Some properties of the classical Lebesgue spaces can be generalized in the
context of the LP™)(Q) spaces. We state them as lemmas; proofs can be found in
[13].

Lemma (3.1.1)[125]: Let p = p(x) € P(Q). If |||l < 1, then [ [ro|PPdx <
1 llpco-
Lemma (3.1.2)[125]:(Ho6lder’s Inequality). Let p = p(x) € P(Q), and let
p'(x) € P(Q) be the conjugate function of p(x) defined by
p'(x) = P
p(x) -1
Then the inequality

[ 11901 < (145 =) Il o
) p. P’ ?

holds for every f € LP@(Q), g € LP ¥ ().
Lemma (3.1.3)[125]: (Duality and Reflexivity). Let p = p(x) € P(Q). The dual
space to LP®)(Q) is LP ™) (Q), and the space LP®)(Q) is reflexive.
Lemma (3.1.4)[125]: (Embedding). Let a(x), B(x) € P (). The space LA™ (Q) is
continuously in embedded L*™)(Q) if and only if (x) < B(x) Vx € Q. The norm of
the embedding operator does not exceed 1 + |Q].
Lemma (3.1.5)[125]: (Density).Let p =p(x) € P(Q). Then setsC(Q) N
LPO(Q), C2 () is LP' @ (Q) are dense LPX) ().

The theory on spaces LP™)(Q)) has been developed in [13] for exponents p =
p(x) lying in a much larger class than the ours, which has been called still by P(Q).
Namely, the exponents p(x) are simply measurable functions p : Q = [1,]. We

stress that in the more general context of [13] the lemmas stated above are generally
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still true, but with some further conditions to be imposed on p(x) and with less
restrictive conditions on Q. The simplified statements are true only because of the
strong assumptions made on P ((1).

Differently from [13], we will write in the sequel, for not necessarily constant
functions p = p(x) € P(Q),

LPX(Q) instad of LP(Q)

II1, instad of [|-][,

p(x) € P(Q) instadof p(x) € P(Q)
i.e. we will write explicitly the x-varible. Even if after the generalization of the
classical theory made in [3] the symbol LP (Q) is not confessional when it denotes a
generalized Lebesgue space with variable exponent, we will write the variable x
because Is mainly on properties, which are in general not hereditated when the
exponents are variable.

The generalized Sobolev space immediately WP (Q) is defined the Banach
space of all measurable functions f on Q such that |Vf| € LP® (Q), endowed with
the norm

Ifllipeo = 1fllpay + IVFllpe-
Also WP () spaces are particular cases of Musielak—Orlicz spaces. For its main
properties, besides the already quoted [13], see [8, 12, 23, 120].

Fundamental for the sequel is the following result, due to Edmunds and

Rakosnik (see [120]), proved also for higher order Sobolev spaces:
Theorem (3.1.6)[125]: Let A ¢ RY be an open, non-empty set let p : Q — [1, oo[ be
a measurable function satisfying the condition (i) (the inequality p(x) < p(x + y)
being satisfied almost everywhere). Then the set C®(4) N WP™X)(A) is dense in
WP (4).

A more recent result for functions defined in all the space R" appears in Samko

([23]), in which (i) substituted by a certain continuity condition (the Dini—
Lipschitz condition).
As declared by Kovatik and Rakosnik in ([13]) about the spaces LP™)(Q),
whkr™(Q), it appears that spaces LP™)(Q) and LP(Q) (1 < p < o) have many
common properties except a very important one: the p-mean continuity. A function
f € LPX(Q) is called p(x)-main continuous if for every £ > 0 there exists § =
6(g) > 0 such that

flf(x+h)—f(x)|p(x)dx<s vhe RN, |h| <é.
Q

When p(x) = p, we will speak of p-main continuity.
It well-known that functions in LP (1) p-main continuous:
felP!(Q)=IIflx—y)=fIl, =o(h)
and that for functions in classical Sobolev spaces it is possible to estimate the
order of o(h) (see e.g. [117]):
fewWP(Q) > Vopensetw cc Q, Yh € RV, |h| <dist(w, °Q), (3)
If Cx—y) = FOlrw) < IVFllLroy-
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When the exponent p is a not constant function of x, in general, these
properties do not hold true: in [13] it is shown that for any continuous and not
constant p(x) € P(Q) there exist functions in LP(Q) which are not p(x)-mean
continuous, and, in general, p(x)-mean continuity fails also for WP (Q) functions,
therefore (3) cannot have its direct counterpart for variable exponents.

In [118] a new expression for the LP(Q) norm of the gradient for functions
in classical Sobolev spaces has been discovered, namely, for f € LP(Q),1 < p < oo,
the following equivalence hods:

j If () = fFIP

e WP®(Q) & lim
f Q) =y

n—oo

pn(x —y)dxdy < co
and In this case

feWP®(Q) & lim

n—oo

— p
f FQ=FOW

|x — y|P

= K, j V)PP dx @)
9]

where (p,) denotes a sequence of radial mollifiers and K,y is a constant
depending The proof of (4) is based on (3) and therefore the result cannot be
directly generalized to the context of variable exponents. In fact we can explicitly
state (see Proposition (3.1.17)) that the natural generalization of (4) (i.e. withp
replaced by p(x)) is in fact false.

In spite of the above considerations, the goal of the prove that some results of
the type (3), (4) hold true.

The first main result of that functions in W1P®)(Q) are mean continuous with
respect to a “penalized” version of the function p(x), namely, the function
minp(x,x +y).

Theorem (3.1.7)[125]: Let p = p(x) € P(Q) and f € WPX)(Q). Then for each
open set w cc Q, the following inequality holds:
I G = ) = F OOl minpicensy < (1 + IQDIRINTF I peo -

for every h € RY such that

w+thcQ vtelo1]. (5)
Proof. Without loss of generality, by Theorem (3.1.6), we may assume f € C*(Q), f
not constant almost everywhere.
Fix an open set w cc Q, such that w + th € Q VvVt € [0, 1], and set

Tof (x) = f(x + h),
u(x) =f(x+h), te]lo,1].

We have

Thf(x) — f(x) = u(1) —u(0) = J

0]

1 1

u'(t)dt = J h.Vf(x + th)dt
0
and therefore

1
|t f (x) — f(x)|minpxx+h) < (f h.Vf(x + th)dt
0
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1
< f |h|minp(x,x+h)|vf(x + th)|minp(x,x+h)dt.
0

Integrating over w

f |Tof () — f(x)|minPCaxth) gy

w

1
SJ dxf |h|minp(x,x+h)|vf(x+th)lminp(x,x+h)dt
w 0

1
:f dtf |h|minp(x,x+h)|vf(x+th)lminp(x,x+h)dx.
0 w
By Lemma (3.1.10),

j [T f (x) — f ()| minPEex+h) gy

w

1 1
SJ “ O [RIPCTENTS G + eh) PO M dox + mI)
01 {)
=J dtJ |WPNVF )PP dy + 19|
w+th

1
Sf IhPOVF ()PP dy + |Ql.
QO
and therefore

j < |t f(x) — f(x)] )minp(x,x+h)
(1+ Iﬂ|)|h|||Vf||p(x)

f
(|h|||Vf||p(x)) (9= (|h|||Vf||p(x)) ()

f ( V() )’“’” by 0
T+ |n| Vi) 7 T+l
Q] Q]
= +
1 +1Q] 14+ 1Q]
from which we get the assertion.

Similarly to the classical case of constant exponents (see [117]), the proof of
this result relies upon a result of density of smooth functions. As far as we know,
the theory of functions of Sobolev spaces with variable exponents has not actually
results of density of smooth functions completely analogous to the classical theory,
because of various conditions to be imposed on the exponent p(x). Among the
results obtained in this direction (see e.g. Samko, [23]), we will use that one
obtained by Edmunds and Rakosnik (see [120]), recalled in Theorem (3.1.6),
where the monotonicity condition for p(x) with respect to some cone, considered
in our definition of P (), has been proved to be sufficient for the density of smooth
functions.

We had to insert the assumption (i) of Theorem (3.1.6), made on the
exponent p(x), as a condition for the class P (). A nice property of the condition
(i) will be used in the sequel, namely, that it is preserved when making extensions
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by the (classical) reflection method (see the proof of Lemma (3.1.12). We stress that
the condition (i) could be substituted by any other condition, ensuring the density
of the smooth functions, satisfying also this nice property. For instance, we claim
that the results could be obtained also by using the Dini—Lipschitz condition used
in [23]; however, the use of (i) allows also discontinuous exponents in Theorem
(3.1.7).

The second main result is that, substituting p with min p(x, y) in (4), the limit
of the converging sequences are equivalent to the p(x)-norm of the gradient. We
will prove the following theorem, consequence of Corollary (3.1.16) and Theorem
(3.1.20).

Theorem (3.1.8)[125]: Let Q c RN be a cube, f € WP (Q), p(x) € C(Q) N
P(Q), and (p,) be a sequence of mollifiers. Then there exist constants ¢’ =
c'(N,1Q]), c”" =c"(N,|Q|,p*, p.), such that
lim inf ” |f Co)—fF )
lx—yl

n—oo

2 IV llpe),

< "IVl

1
|
LMinpxy) (OxQ)

lim sup | |f CO—f )l

N—oo lx=yl
In other word: the sequence
_ |IF&)=Fl
An o ||W |Lminp(x,y)(ﬂxﬂ)
contains converging subsequences, and each converging subsequence is such that
Tlan(}o Apg = K“Vf”p(x)
with K such that ¢’(N, |Q]) < K < c¢""(N, |Q],p*, p.).

The proofs of the Propositions (3.1.9) and (3.1.17) are refinements of [13];
Theorem (3.1.7) follows adapting classical arguments of variable coefficients; the
proof of Theorem (3.1.8), splitted in various statements given, has been inspired by
the ideas of [118], and, due to the expression (1) of the norm of LP™) (Q) (which is
not of integral-type), involves the Musielak—Orlicz norm (2). A difficulty which is
met in generalizing the proof in [118] is that it does not exist, to the knowledge,
a satisfactory Poincare-Wirtinger inequality for Sobolev spaces with variable
exponents. To overcome such problem we have to refine the proof of [118], in order
to avoid the extension to all the space RY (see Lemma (3.1.12) and Theorem
(3.1.13).

Proposition (3.1.9)[125]: Let p(x) € P(Q) having the following properties
A(xy), xXm EQ Vx,, EN, Xm — Z € 0Q,
AWm), Ym €Q Vyn €N,  yy >z €0,

NpGem)
p(ym) > m, vm € N.

Then there exist functions in WP™)(Q) which are not p(x)-mean continuous.
Proof. At first we give an example of function p(x) satisfying the assumed properties.

FiXs > 2,0 >, ay, by €]0,1],ap, T 1/2,by, | 1/2 and set
Q =]0,1[x]0, 1[

p(x) = p(xx?) =s+ %(1 + sinx—lz) (6 —s)+ (xz n %)

1
[pn (x—y)]minPxy)

| Lmin p(x,y) (QXQ)

1
[pn (x-y)]MPED)
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3 -1

Xy = <<En + 2mn> , am>
3 -1

Ym = ((En + Zmn) , bm>.

The function p(x) € P(Q) because it is the C1(Q) class, and |Vp(x)| # 0 in every
point x € Q.

Now we begin the construction of a function f in WP®(Q), which is not
p(x)-mean continuous.

The continuity of p yields the existence of numbers r,, > 0, 4,,, i,, > 1 such

that
Np(x) NAn
N-p(x) N—2Am

< tm <P) Vx € B(Xy, ) VY € B(Um, i) (6)
Set

Im =[x = x| """ Xpx, ) (X) VX € Q, VM EQ,
where a,, €|N/um, (N —A,,)/Am[. Since a,, < (N —A,,,)/A,, We have g,, €
WlAn(Q) (see e.g. [119]) and therefore, by Lemma (3.1.4), g,, € WP™®)(Q); on the
other hand, since a,, > N/u,,, we have g,, & L*m(Q). Set

)
fmz—m

lgmlliz,
Evidently f,, € WA (Q), f,, & L*m(Q) and Ifmllia, = 1.
At is this point we can proceed as in [13]. For completeness, we recall here
their argument
Define the function f by

f@) = Z 2 (X), X € Q.
By (6) and Lemma (3.1.4) we obtaln

1l pe) < z 2 fllipeo < (1+19) Z 27 fllip, < 14191 < oo

On the other hand We obtain
_ _ hm =Xm — Ym
and according it (6) and to Lemma (3.1.4), we have

”f(x + hm) - f(x)”p(x) = (f(x + hm) = f(X))

XB(ymrm)

p(x)
= (| f(x+ hm)XB(ym,rm) ||p(x) B ”f(x)XB(ym'rm) ”p(x)
= f(y))(B(ym,Tm) ”P(J’—hm) B ||f(x)XB(ym'rm)| p(x)

< @A+ 1aD7 2™l — Ifllpee = -
Thus, the function
x = f(x+ hyp) = f(x)
does not belong to LP™(Q) and since h,, — 0, the function f is not p(x)-mean
continuous.
Lemma (3.1.10)[125]: Let p = p(x) € P(Q). The following inequality holds:
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f F O PP dx f 0PIy + .
9] QO

Proof.
j |fx)|P(x)dx :f |fx)|p(x)dx+f |fx)|p(x)q(x)dx
Q an{|f|<1} an{|f|>1}
<lwe:lf@Is DI+ | Ipopear
an{lfI1>1}

<o+ [ 1f PO,
Q

Corollary (3.1.11)[125]: Let p = p(x) € P(Q) and f € WP (Q) not constant a. e.
in Q. Then for each open set w cc Q, the following inequality holds:

f ( |Tuf () — £ ()| )m“‘”(""‘*")
o \(1F+[QDIRIIVE e
for every h € RY such that

dx,

w+thcQ vte]l01].

It is clear from the proofs that Theorem (3.1.7) and Corollary (3.1.11) hold
also if the cube Q is substituted by any open set of finite measure.

We will need an argument which uses an extension operator. The role of the
shape of the class of domains we consider is fundamental in this point. We need to
extend also the exponent p(x) € P(Q) in a new one which is not only defined in cube
in { containing Q,but is also in the class P ().

Lemma (3.1.12)[125]: Let p(x) € P(Q). Then exists a cube Q such that Q cc Q,
a function p(Q)) € P(Q) and a linear extension operator
E :wir®) Q) - wipX) (ﬁ)
such that
(i) P00 = P(x);
(i) (Ef)jo =f a.e.inQ;

2N
(i) lEfl peo(my = 277 1EF I oo gy

2N
(V) IVEP ooy = 27 1VF 1l ooy
Proof. The extension of the function f can be done by following the classical
argument (see e.g. [117]), consisting in a sequence of extensions made by the
reflection method. After 2N reflections, one extends a function f € WP™)(Q) into
a new function defined in a cube Q containing Q. The function p(x) must be
extended by using the same technique, but, since it is defined everywhere in the open
cube Q, we first extend on the boundary of Q setting it equal to p.., and then we
use the similar process, obtaining a function defined in Q. It is clear that the
extension p(x) is in P(Q): in fact it preserves obviously the infimum and the
supremum of p(x), preserves the lower semicontinuity and also condition (i).
Notice that the condition (i) is verified also on the boundary of Q because the
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exponent has been defined there as the infimum of p(x). To prove estimate (3), it

suffices to observe that
p(x) p(x)

E
ﬁ — f dx = ZZNJ N f dXSf
27N fllp 277N fllpay &

The proof of (4) is completely analogous.

With abuse of notation, in the following we will denote still by p(x) the
extension p(x) of the function p = p(x) outside €, constructed in the proof.

The purpose now is to extend (20) to the case of variable exponents. We begin
by proving that if f € WP™)(Q), then the double integral in (4) is finite when p
is replaced by minp(x,y). We will show later (see Proposition (3.1.16)) that
replacing p simply by p(x) the double integral can be o for all n € N. From this
point of view, next Theorem (3.1.13) represents a generalization of [118].
Theorem (3.1.13)[125]: Assume f € WP (Q), p(x) € P(Q) and let p € L1(RN),
p = 0. Then the following inequality holds:

j j If (x) — f(y)|minP&»)
Q JaQ

|x — ylmin p(x,y)

p(x)

f dx <1

I lp

p(x —y)dxdy

. 2N
< @+ 221907 lIpllyep, o (27 1 Vil ).

Proof. If f is constant ¢, then the assertion is trivial. Let Q, Q cc (, be a cube
obtained by the reflection method (see Lemma (3.1.20). We may therefore assume

 fEWYO@),  IfTllye # 0
with p(x) € P(Q). By Corollary (3.1.11) we have

f ( |Taf () = () )“““”(’“x*”

o \(L+ [ADIAIVE Nl oo @y

for all f € WP (Q), forall w cc §, for all A € RY such that

w+thcQ vte[o,1].
By Fubini’s theorem we have

j j If (x) — f(y)|minP&)
Q Ja

|x — y|minp@.y)

dx <1 (7)

p(x —y)dxdy
_ _ minp(x,x+h)
[ ) = fx = y|min
Q x—Q

|h| min p(x,y)

x) = f(x —h minp(x,x+h)
_ ih lfCx) — f( _ )] p(h)dx
a-Q (h+Q)NQ |h|mmp(x’y)

:f dhf ( T —~hf(x)—f(x)|
a-0  Jarna \(1 + |ADIANVS | oo @

~1yminp(x,x+h) ; ’
x(1+]2]) VAo " p(h)dx.

p(h)dh

>min p(x,x+h)

Observe that
heQ—-Q=>[(h+QQ)NQ]-thcQ—-thc3QcQ Vvtel0,1],
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where 3Q denotes the cube with the same center and triple sidelength (see an
example in Remark (3.1.14)). We can therefore apply (7) with w = (h+ Q) N Q
and th replaced by T — h. We get, by estimate of Lemma (3.1.12), (4),

If () = ()| minpGE)
L fn |x — y|minp(y) p(x —y)dxdy

< | a+22M0a)7 e, p (IfVllewe) p(R)dh
Q-0 * -
< (14 2°MADP lIpllyoy, e (27 1 VIlpeo )

The theorem is therefore proved.
Remark (3.1.14)[125]: Notice that in the statements of Theorem (3.1.20) and
Corollary (3.1.11) the assumption (5) appears in the place of the more restrictive
condition considered in (4). In the notation of the proof of the Theorem (3.1.13),
we considered the following hypothesis on w and h

w—thcQ vte[0,1] (8)
instead of

|h| < dist(w, Q). 9)
Assumption (8) allows “more w cc Q. We need (8) instead of (9) because we are
in a context whose prototype is the following. Set, in R?,

Q=]-22[x]-22[,
QO =]-10,6[x] —10,6[, (forinstance)
h = (8) € R?,
w=(h+Q)nQ=]1,2[x]1,2].
We have
|h| = 3V2,
dist(a), Cﬁ) = 4,
w —th =]1 — 3t,2 — 3t[x]1 — 3t,2 — 3],
w—h=]-2,-1[x]—-2,—1[;
therefore (8) is verified, while (9) is not.
Of course (3) holds also in the more general assumption (5).

Corollary (3.1.15)[125]: Assume f € WPX)(Q), p(x) € P(Q) and let p € L*(RV),
p =0, [|plly = 1. Then the following inequality holds:

f () = FO) e
Xy P yImrey)

LMinp(xY) (Ox Q)

ﬂ *
< 27" (1 + 222D P ([ f Vi) )-
Proof. For A positive parameter, let us apply Theorem (3.1.13) to function f/A. We

have
_ minp(x,y)
jﬂ jﬂ (If(;)x _J;(ly)l> S yydxdy

2N
27 £ Vllpeo
A

< (1+22V|ahP @, , p*
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and therefore

1
e

LminpxY)(OxQ)

2N
27" || f VI p(x
A

<inf{A>0:(1+2%N|QDP d,,p" <1

2N .
< 277 (1 + 22M[QDP P (I f Vil )-
The assertion is proved.
Let (p;,,) be a sequence of radial mollifiers, i.e.

1
pn(x) = pp(lx), pn =0, ijn(X)dx =1, suppp,CB (0%)-
R

We save this (standard) notation for all the sequel.
Next theorem states that the first “reasonable” generalization of (4) cannot
hold when p is a variable exponent.
Proposition (3.1.16)[125]: There exist f € WP™)(Q), p(x) € P(Q) and (p,) a
sequence of radial mollifiers such that
| f J f () = fFIP
lim
n—-oo |x — y|29(x)

pn(x — y)dxdy = co.

Proof. Set
1 nN
pn(x) = mxlg(o,%)(x) = a)_NXB(O%)(x)

for all n € N, take like in Proposition (3 1.9), and set
@) Z - |5y ()

||X _xml mXB(mem)( )”Wl)Lm(Q)

We can choose in the expressmn above the number (7,) so small that the balls
B( Xy, ), B(ym, 1) are disjoint, and therefore,

3 < |Xpm — 1| VmEN. (10)
We recall from Proposition (3.1.9) that, setting h,,, = (x,,, — 17,,), the function

Tnyf X = f(x = hp)

does not belong to LP™ (B( y,,,, 1;,)), for all m € N.
We observe that from the expression of f we deduce that also

Tof € LPO(B(ymTm)) VR E hy + B(0,73y) (11)
Now for each n € N let us choose m € N such that

R = [0 — Yl < o
and also, by (10)
1
XEB(ym;rm); yEB(xm,Zrm)=>|x—y|<%. (12)

By (12) we have
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— p(x)
j dxf lf(ﬁ_il(g(il) pn(x — y)dy

— p(x)
lf(Ti — jycl(py(il) pn(x —y)dy

v )~ fOIP®

d J p(x)
ON JB(ymrm)  IBCtmzrm) X VI
nN=p-

[ e - oy
Wy B(YmTm) B(xXm,2Tm)
At this point we observe that it is sufficient to prove that

f dx j FG) — fFOIPPdy =0 vmeN  (13)
B(Yym.Tm) B(xm,21m)
Since ty, f & LP®(B( . 1)) We have

(x)
| @ - ro)f P =
B(xm»rm)

and by (11) we have also

j /00

from which

f d
B(Ym. m) B( Xm,2Tm)
TlN

>

p(x)dx =o VhE€x, —y,+B(O,n,)

j dh If(x +h) — f(x)|PPdx = o .
Xm—Ym+B(0,7) B(xXm,Tm)
By Fubini’s theorem

f dxj If(x + h) — fF(x)|PXdh = .
B(Xm,m) Xm—Ym+B(0,rm)

Sitting y = x + h in the inner integral, we have
YEX+ Xy —Yn Tt B(O,Tm) = B(ym'rm) +Xm = Ym + B(O’Tm)
= B(xy, 21r,), VmEN
and therefore we get (13), from which the assertion follows.

Lemma (3.1.18)[125]: Let a(x), B(x),y(x) € P () be such that
a(x) < Bx) <yx), VxeQ
Then

Ifllog peny < A+ 1QDNf Ny ey  Vf € LY®(Q).
Proof: It suffices to prove the lemma in the case ||f ||, ) = 1, namely

Ifllogpecy <1+ 101 Vf € LY®DWQ) : Ifll, 0 = 1. (14)
By Lemma (3.1.1) we have [ |f(x)[Y™®dx < 1, and therefore

1f 1 )I

<t ). ma(FCII, IFCOIF) dx

74



< f If GOl dx + f |f<x>|ﬁ<x>dx>
1+ Q] ( an{lf]<1} an{|f1>1}

(lQl +f |f(x)|V(x)dx) <1
Q

<
1+ [Q]

Hence (14) holds.
Lemma (3.1.18)[125]: If f € C*(Q), and p(x) € C() N P (), then
lmsup|l 1l o < 1f 1l
n—oo

Proof. Fix o > 0. Note

ph(x) p*(x)

f(x) maxq f
Ifll,) +0 Ifllpey + 0
therefore the sequence (g,,) is constituted by functions uniformly bounded in n. The
continuity of p(x) implies that
pr(x) > p(x) Vx€EQ asn — oo,

gn(x) = < o,

<[t

and therefore
p(x)
f(x) e

1fllpeey + 0

lim | g,(x)dx = j
Q Q

n—oo

We deduce the existence of v € N such that

j gn(x)dx <1 Vn > v,
Q
i.e.
”f”p;"l(x) = ”f”p(x) +o0 Vn>v
from which
n—->oo

and therefore the lemma follows.
We have now all the background to prove the following
Theorem (3.1.19)[125]: Assume f € LP™)(Q), p(x) € C(Q) N P(Q). Then there
exist a constant ¢, depending on N and |Q| such that

@ -F o) 1

llm lnf |W[pn(x—y)] p(x,y) ||

n—->oo

> c||V :
Lminp(x,Y)(QxQ) - C“ f”p(x)

If the left hand side is finite, then in fact f € WP (Q).
Proof. let ¢ € C°(Q) (extended by outside ) and let e be unit vector in RN, As in
[118] we have

J = ¢G) — ()

fﬂ &) dx f( B e L

sjﬂ d"L lf(T))]:f(y)l l0)pn(x — y)dy

p
o axf FDlle) 222 g,
RN\Q supp @

ly — x|
= ]1,71 +]2,n-
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Since supp p,, € B (0, %) itis ), =0 vn> 1/dist(R¥\Q, supp ¢). Therefore we
need to estimate J; ,,.

By Hoider's inequality (see Lemma (3.1.2))

—_— _— 1
PRPICE

lx—yl Lminp(x,y)(ﬂxﬂ)
1
: ”pr(y)I[pn(x—y)]mi“p("'y)' , ) (15)
LIminpe)’ (ox0)
Let us show that
1
lim sup ||<p(y)|[pn<x—y)]minp(x'y>’ . ,
n—oo LIminpGe (0 x)
We have

1
P (¥) S minp(x,y) <pp(y) VO<|x—y|< -

1
[P (] < [minp(x,y)]" < [pr ()] VO<|x—y|< -

and therefore

[min p(x,y)]’
[16%]
| av[ (52 pux — y)dx
Q Q /1

()
= jﬂ dy jﬂ q’[p;(y)]',[p*n(y)l'( 1Y | Pa(x —y)dx

lo(¥)l
SupJ Pn(¥ = y)dx] U Pl [PV <T,y dy
YeQ Jq Q

lp(y)]
= fﬂ ‘D[pa]',[p*nl'( Y)W
from which, by Lemma (3.1.17)

<

1
|| lo()|[pn (x—y)]minpGy)’

<lleWMlle. , ©
[pf;l] '[p*n]

< @A+ 12D .0 = A+ QDN 1y 1,
By Lemma (3.1.18) we get (16).
Passing to the limit in the inequality

]n S]1,71 +]2,n
By (15) we get (for the limit of J,,, see [118])

|| oo dx
" || lf (x)—f )
[x—y|

LminpEN! (axq)

Kn

< liminf

n—->oo

1
-l
LminPY) (OxQ)
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I S
: H|<o(y>|[pn(x—y)]minﬂx’y)’ (17)

LminpG) (x0)

where K depends only on N. By (16) the liminf in the right hand side of (17) can be
majorzed:

@ -F 1
(1 + 19D 1@ llpgey- lim inf | LLLD gy, ooy ymimrtes

|| Lminp(x,y) (QXQ)
and this, together with (17), gives

(1+| )
Ky

Jdiminf

n—oo

||<P||p(x)’
|If( xX)—f I

1
o= y) [ ATPE) 18
[on(x=y)] ”Lminr’(m(axm (18)

foreach i =, ..., N. At this point we can consider the linear form
g
Li:g0€C§°(Q)—>f f = dx.
o = 0x;

Notice that €2 (Q) is dense in LP®' (Q) (by Lemma (3.1.5)) and that by (18) the linear
form L; is continuous for the norm in Lp(x)'(Q). By the Hahn-Banach theorem it can
be extended to a linear continuous form on LP®'(Q), which we can call again L;. By
Lemma (3.1.3) the form L; can be represented by a function g; € LP™)(Q):

(Li, p) = j gipdx.
Q
Therefore we have

f fgdx—j gipdx Vo € C2(Q)
l

and from this we deduce that g; = %, and by (18)

Sa+iap Iﬂl) - _ 1
” | lim inf | LSO oy o
axl p(x )) KN n—oo Lmlnp(x,y)(QxQ)
foreachi =, ... , N, and the Theorem is proved.

Section (3.2): Weighted LP™® Spaces

The investigation of the Lebesgue spaces LP()(Q) with variable exponent was
initiated in [133]. During the last two decades these spaces have intensively studied,
see [42], [58], [22]—[134]. The interest on these spaces comes from their mathematical
curiosity on the hand and their important in some applications (see [22], [25], [134])
on the other hand.

As the space LPO)(R™) is not invariant with respect to translations, convolution
operators do not behave well in these spaces. For example, the Young theorem is in
general not valid in these spaces; see [24]. Problem also arise for Mellin convolutions
(n = 1), since LPO(R1) is not invariant with respect to dilations. However, the failure
of the Young theorem does not prevent some convolution operators from being
bounded operators. Roughly speaking, a convolution operator is bounded in LP®) if its
kernel has singularity at the origin only
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There are two examples, whose importance is difficult to overestimate. One is
the convolution with the singular kernel k(x) = %(n = 1), that is, the well-known

singular operator, and the other is the related operator, although the latter is not a
convolution,

For the second operator over open bounded sets the problem of boundedness was
recently solved by L. Diening [3].

We prove weighted estimates for the maximal operator over bounded open sets
and for singular type operators with fixed singularity (of Hardy and Hankel type). We
give also weighted estimate for potential type operator of variable order a(x) and
show, that the Sobolev theorem with the limiting exponent

1 1 a(x)
pux) plx) n
Is valid. We also prove that the potential operator is compact in LPO)(Q).

The main result are formulated as in Theorems (3.2.1)—(3.2.5). Provides
necessary preliminaries and contain the proofs of Theorems (3.2.1)—(3.2.5).

Q is a open bounded set in R";
u(Q) = Q] is the Lebesgue meansure of Q;
B,(x)={y eR": |y—x|<r}

B, (x)] = Z-|s™1] is the volume of B, (x);

_ _Px oy — g
1) = L<p <e gt =1

po = inf p(x),P = supp(x);
xX€l) xeQ

= inf (x)=LQ=su (x) = Po
Po = 1201 p-1’ xegq po—1°

¢ may denote different positive constants.

Let Q be an open bounded set in R™, n > 1, and p(x) a function on Q satisfying the
conditions

1<py<p(x)<P<o, x€ (19)
and

1 _
lp(x) —pY)| < lx — ) <7 %Yy€el (20)

In_’
[x—yI

The condition (20) appears naturally in the theory of the spaces LPC)(Q), see
[133]—[134]. In [58] it was shown that this condition is fact necessary for boundedness
of the maximal operator in LP®)(Q). Condition (20) also appeared in [131] in case of
Holder spaces H*™®) with variable exponent A(x).
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1 lf ()
MBf(x) = |x — x,|? su —
/ o S TB, O e 1% — %olP

dy (21)

where x, € Q. We write M = M? in the case where § = 0.

In the case x, € 00 and when considering the necessity of boundedness
conditions, we shall make use of a restriction of the type

Q2 (xo) [~ (22)
where Q. (xo) ={y € Q:r < |y — x,| < 2r}.

Theorem (3.2.1)[137]: Let p(x) satisfy conditions (19), (20). the operator M# with
x, € Q is bounded in LPO(Q) if and only if

o) P < GGy

If x, € 0Q condition (23) is sufficient for the boundedness of M#.

If x, € 9Q and condition (22) is satisfied, then condition (23) is also necessary for the
boundedness of M~.

(23)

Let further
f)
a(x) —
[ f (x) fﬂ =y dy, 0<a(x)<n. (24)
Proof. We have to show that
B <
|MEA| S €

in some ball ||f]l,,y < R, which is equivalent to the inequality
Ip(Mﬁf) < c for ”f”p() <R.
We observe that
|x — x0|b’p(x) ~|x — x0|/3p(xo) (25)
in case p(x) satisfied the condition (20).

From (25) we obtain
p(x)

L,(MFf) <c f |x — xq|PP0)
Q

M (ﬂ) dx.
ly — xol#
Following the idea in [42], we represent this as

p(x)\ Po
L,(MPf) Scf (lx—xolﬁp("o) M(%) ) dx, (26)

Q
where r(x) = p(x)/p,-. In the sequel we distinguish between the cases f§ < 0and § >
0.

Estimate (80) with g = 0 says that
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M ® < c(1+M[prO](x)) 27)
f(x)

|X_XO|B

1Wll-¢y < aollfllr¢y,  ao = (diam Q)1
where we took into account that § < 0. From imbedding (63) we obtain

lWllrc) < ao-kllfllpy < aokR.

Therefore we choose R = ;1,( Then [[y]l.y < 1, so that (27) is applicable. From (26)
(lx — xOlﬂp(xO)

we now get
r(y)\ Po
L,(MPf) <c f ) dx.
By property (25), this yields
Do
fOIre
L(MFf)<c jﬂ {(lx — xo|FP*0) + M <|y mpwTZEn dx

Q
Do
<cte [ (MFOrO)” dr

For € L™O(Q) with |||,y < 1. For (x) = we have

f)
1+M(|)’_xo|ﬁ>

where

Y = Br(x,) = ,Bplfxo).

0

As is known [128], the weighed maximal operator MY is bounded in LPe with a constant

po If —— < ¥ < =, which is satisfied since — —— < 8 < 0. Therefore,
Do Do p(xo)

L) scre [ IFOIrOmdy =cte [ IF0IPD dy <
Q Q
We represent the functional ,(M# f) in the form
ro)*
Izo(MBf)=fQ (IMPreol™”) dy (28)

Where r(y) = @ > 1, A > 1, where A will be chosen in the interval 1 < A < p,. In
(28), we wish to use the pointwise weighted estimate (80):

IMP ()™ < c[1+ M(FrO) ()] (29)
This estimate is applicable according to Theorem (3.2.10) if || f]l,.) < c and
n
< . 30
P <TGor 50
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The condition [|f||.., < c is satisfied since r(x) < p(x). Condition (30) is fulfilled if
A< %p(xo). Therefore, under the choice

. n—p
1 <A < min (pO,T'p(xo)>
We may apply (29) to (28). This yields

L(MPF) < c+c f IMUFIr )| dy < c +c f (IF)IP®)" dx
Q Q

by the boundness of the maximal operator M in L*(€), 2 > 0. Here

L(MPf)<c+c j If () |P™® dx < c.
Q

Suppose that M# is bounded in LP™) (). Then, given a function f(x) such that
Lwf) <c;, wx) = |x — x| (31)
we have
I, (wMf) < c (32)
(for all f satisfying condition (31)) .
i) We choose f(x) = |x — x| withu > — — ﬁ. Then
0

|x — x0|([>’+u)29(x) dx < c .[ x| B+IP(0) gy,

|x|<r

L,(wf) <c j

|[x—xq|<T

Where the integral converges, so that we are in the situation (73). However,

L,(wMf) =c j lx — xo|PPX0) dx,
QNBy(x)

which diverges if Bp(x,) < —n; here we take into account Lemma (3.2.9) in the case
x, € Q. Therefore, from (32) it follows that 8 > —

q(xo)’
1) To show the necessity of the right-hand side bound in (23), suppose that, on

n

the contrary, § > ﬁ Let first 5 > prons We choose
1
fx) = m,
for which I, (wf) converges but M just does not exist. Let now f = - (’;O). We choose
fx) = ! <1n ! )Y |x—x|<1.
lx — x0[™ lx — xol/ =2
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Then L, (wf) exists under the chose V' < — ﬁ, but Mf just does not exist when ¥ >
0

1 . . .
—), we arrive at a contradiction.

—1. Thus, taking Y € (—1, ~ e
0

Let

uf(x,y) = 4 fle- t)CitH , ¥y>0,

IR (Je]? +y2)

Be the Poisson integral. Here

n+1
T 2

D)

The theorem below provides a weighted estimate for the non-tangential
supremum of the Poisson integral u,(x, y). We put

[,(x) ={¢&,y): |6 —x| <ay} withfixed a > 0.
Theorem (3.2.2)[137]: Under conditions (19), (20) and the conditions

infa(x) >0 and supa(x)p(x)<n (33)
XEN xeQ
The potential 1% is bounded from LP)(Q) into L™ (Q) with
1 1 a(x)

r() px) n
Proof. This theorem is an immediate consequence of Theorem (3.2.4) and Theorem
(3.2.7) (the latter for the case § = 0).

Theorem (3.2.3)[137]: Under conditions (19), (20) and the conditions irelga(x) > 0,
X

the operator 1%C) is compact in LPO)(Q).

For the weighted potential operator

If )

o 1x—xolFlx — y|r-e™

D) = lx = xo# dy, x €D (34

Proof. From Theorem (3.2.4) we already know that the operator 1™ is bounded in
LPO(Q)). To show its compactness, we respect it as

If )|dy f If O)ldy
lx —y[*me) e X — y e

e |

lx-yl|<e

= sf(x) = Tsf(x) (35)
under the usual assumption that f(x) = 0 for y & Q. As in the proof Theorem (3.1.4),
we have

d
Kf@l<y | JO <cemupe) (36
k=0"2%"

k+De<|x—y|<2-Ke |x — yln—a(x)
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with a, = irelga(x) > 0.
X

The compactness of the operator T, may be shown via direct approximation by
finite-dimensional operators. Indeed, denote t.(x,y) =1 if [x —y|=eand t, =0
otherwise. As is known, functions of the form

n

@) = ) @b,

k=1
where by (y) = xp,(¥), By are non-intersecting sets on Q, and a,,(x) € L (Q), forma

dense set in the mixed norm space LP[L?](Q x Q) for all constant exponents P and Q,
1 <P <o, 1< Q < oo. Therefore for the function t.(x,y) with any fixed € > 0,
there exists a sequence of function k,,(x, y) such that

lim [llte (6, y) = kn G M|, = 0. (37)
Then the finite dimensional operators

An(x) = f (e, Y)F )Y,

Q

which are compact in LP®)(Q), approximate the operator T, in the operator norm of
LPO(Q) as n — oo. Indeed, taking into account imbedding (63), we obtain

|(Te = ADF Ol < Ifllpy llknCe) = tCe) gy < cllfllpeyllkn(x,.) = te(x, llg
and then
I(Te = A fllgey < cllfllpey[[1Hen Ge) = tg(x,-)IIQllp-
Therefore, by the same imbedding (63)
I(Te = ANl o oo < |[llen = tellg|,, = 0
in view of (37). Consequently, the operators T. are compact in LPO) ().

It remains to observe that, by (35) and (36) and by the boundedness of the
maximal operator.

|1%¢) — Te||Lp(-)ﬁLp(.) = IK8|p0 00 < €®[IM]| p0, 00 = 0
So that 14 is a compact operator as well.
Theorem (3.2.4)[137]: Under conditions (19), (20) and the conditions ;Ielga(x) > 0,
the operator I[‘;(") is bounded in LPO)(Q) if

L < ﬂ < L 38
G <P <Gy (38)

Let now n=1, Q= (0,¢) with 0 < ¥ < oo and x, = 0. We consider the
weighed Hardy-type operators
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X £
HEf(x) = xﬁ‘lf %dt, Hff(x) = xP %dt
0 x

and the weighed Hardy-type operator

COf®

HIfG) =P o tAt+x)

Proof. We have

d
Iﬁa(x)f(x)zlx_xolﬁj |f(y)| y

[x—y|>1,y€Q |x - yln—a(x) |y — Xo |ﬁ
d
| S
|[x—y|<1,y€Q |X - Y| |y - x0|

=A1f(x) + Axf (x)

For the first term we have

If ldy

1A ()| < clx — xo|P
! 0 Q |y_x0|B

and the Holder inequality (60)

j If )ldy
Q

v — xo|P < clifllyey = C”f”p(-)”ly - x0|—B||q(.)

< {1, (ly = 2P IIfIL

Where 6 = % ifl,(--)<1land @ = qiotherwise. Obviously,
0

I(ly — x| 7#) < Cf ly — xo[F1%0) dy = ¢ < oo
Q

by property (25) and the condition Sq(x,) < n. Thus from (42)—(44) we get

1A f ()] < clx = xolP Il f llpeo-
For the term A, f (x) we have

If )ldy

A @I < lx=xolf Y | ,
2 ° =0 /2l Dg|x—y| <2k |x — y|"=eP |y — x,|#

where it is assumed that f(x) is continued as zero beyond Q if necessary.
For those x for which a(x) < n, we obtain

N 1
|A,f ()] < 2™|x — xo|F z 2kln-a()] 'Z_knzﬂf
k=0
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lf ()ldy
|x—y|<2~k |y - xol’B

(39)

(40)

(41)

(42)

(43)

(44)

(45)



< 2™x — x| Z 2-ka(x) pm <%>
e y 0

Therefore,

|ALf ()] < cMP f(x) (46)
withc = 2n Y% 27%% g, = irelga(x).

In the case a(x) = n, the pointwise estimate of A,(x) is the same as that for
A;(x). Consequently, for all x € Q by means of (45) and (46) we obtain

|59 F )| < cMPEG@) + clx = %0 Pl llpo- (47)

Therefore,

I/?(X)f”p(.) < cllMPrll, . + elll = 2ol [l - 1 Mo

It remain to apply Theorem (3.2.1) to the first term in (47) and to notice that
[12c = xolP|| . is finite, the latter being obtained as in (44).
Theorem (3.2.5)[137]: Suppose 1 < p(x) < P < oo for x € [0, ?].

(i) Let conditions (19), (20) be satisfied on a neighborhood [0, d] of the

origin,d > 0. If

p (48)

ORMNTO)

then the all operators H?, H? and 70 are bounded from LPO(Q) into LSO (Q) with
any s(x)suchthat 1 <s(x) <S<owfor0<x < ¥,

s(0) =p(x) and |s(x) —p(x)| < % ) 0<x<§, 6 >0. (49

(i) If p(x) < p(x), 0 < x < d, for some d > 0, then the same statement on

boundedness from LPO(Q) into L5 (Q) is true if the requirement of the validity of
conditions (19), (20) on [0, d] is replaced by the weaker assumption that

A 1
p(0)>1 and |[s(x) —p(0)] < 1 0 < x < min <£,§>. (50)
Proof. Part (i) Suppose as usual that || ||,y < 1. Let dy = min(d, §). We have

X t s(x)
%dt dx, (51)

! B s(x) do B s(x) 1 !
|H f(x)| dx < |H f(x)| dx+ﬁ
0 0 0 Jd,

where a = (1 — B)P.
The second term may be estimate via the Holder inequality:

0
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s(x)

LOwl ™ <uirtollerl,, <kl (52)

—dt

0
under the Dini-Lipschitz condition for p(x) on [0, d] and the assumption £q(0) < 1.

Foe the first term in (51) we observe that the operator H? is dominated by the
weighted maximal operator M# since

2X 1 xX+x
< fo F(©)ldt =~ f If(©)lde < 2MF (o),

X—X

1 X
- fo f(Odt

First we have to pass to the exponent p(x) in the first term. To this end, we observe
that

HEF )" <¢, 0<x<dy (lIflly < 1), (53)
where ¢ does not depend on x and f, if s(x) satisfies condition (49).
indeed, by Holder inequality (60),

[HPf @O < kP If o lle7P |l ) < e kaPH[e7F| ) = exPh (54)

q(0)
Hence

|H# f(x)|5(")‘p<x) < ¢S-1x(B-DIE®-p@)] (55)
which is observe bounded if x > .For 0 < x < min (do, ) from (54) we have
|HF f(x)|5<x>—p(x> < (51, B-DIE-p@]Ing _ ¢ < o0

s(x)

do
j HP £ (0" Pdx < cj |HP £ ()| (56)

It remains to apply theorem on [0, d,]. Then

d s(x)
j |[HPf(x)| dx <c
0

by (51), (52) and (56).

The operator H = (H™#)" may be regarded as the operator adjoint to H#

treated in L) ([0, 1]). However, we admit the possibility for g(x) to bounded beyond
a neighborhood of the point x = 0, and hence we should first proceed as in (51):

dg s(x) l 1 p(x)
. dx+cj <J |f (x)|dt dx
0 do X

IS(Hff)SJ
sjodO

assuming that || f{l,, < 1. similarly to (55),

p(x)
dx +c (57)

s(x)-p(x)
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s(x)-p(x)
<c 0<x<d,

HEf (x)
Which is shown as in (54) and (55)

l
H*Bf(x)| < xﬂ_ljo %;)dt etc.

Then from (57)
do p(x)
I (HEf)<c f (HfF@) dx+c (58)
0
It remains to use the duality argument for H” = (H=#)".

Part 1. We need only to estimate anew the first term in (51). In the case p(0) < p(x),
0 <x < d, we can avoid the passage to the maximal operator by observing that,
similarly to (53),
s(x)— (x)
[HEF " < e (Ifllpp < 1)
under the second condition in (49). Then the first term in (51) is dominated by

d d
[ 1ereoP® ax < [ IrGop® ax
0 0

by virtue of the boundedness of the weighted Hardy operator H? in LP(® with p(0) >

0 and _E <p < ? Therefore

d
j |Hﬁf(x)|p(0) dx < cj If () |P© dx

by imbedding (63)
For the operator H? we may again proceed as in (57), (58) and use the
boundedness of H? in LP©,

Let for simplicity f(x) be non-negative. We have

}[ﬁf(X)Sxﬁ‘lfx%dt+x giO, dt,

tB+1
that is,
HBf(x) < HPf (x) < + HP F(x).
Consequently, the boundedness of H# follows immediately from that of the operators
HP and HP.

Corollary (3.2.6)[137]: Let 1 < p(x) < P < oo on[—1,1]. The singular operator with
fixed singularity,

[xI? [t f(¢) dt
T J, t—xth’
87
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is bounded from LP®¥) ([0, 1]) into LP™)([—1,0]) if

(D px) >1;
(ii) p(x) satisfies condition (20) on [—4, §] for some § > 1;
1 1
(III) —E < ,3 < E
Proof. We have
0 1 PN f(t) p(=x)
[Jsereor = | @) o] e
-1 o /o X

Thus, it suffices to make use of theorem for the Hankel operator H#, choosing s(x) =
p(—x) in that theorem. The condition

A
Is() =P = Ip(=x) = p()| < <
[

of Theorem (3.2.1) is obviously satisfied.

The basics on the spaces LP®) may be found in [42], [13], [132], [24]—[132]. Here we
recall only some important facts and definitions.

Let Q be an open set in R™ and p(x) a function on Q such that
1<p(x)<P<o» x€N

By LP0)(Q)) we denote the space of measurable function f(x) on Q such that
b(P = [ IFEPDdx < oo (59)
This is a Banach space with respect to the norm

1f 1Ly = inf{l >0:1, (ﬁ—c) < 1}_
The Holder inequality holds in the form

j FCg(Ndx < Kl I llacy (60)
Q
x

The functional I,(f) and the norm ||f]l,, are simultaneously greater than one
and simultaneously less than 1:

Iflle < L) < NI, if Ifllpe <1 (61)

withk =— < g <
Po

and

I£1I58 < L) < NIfllpey if IIfllpe =1 (62)
The imbedding
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PO c PO 1 <r(x) <p(x) <P <
isvalid if |Q| < oo. In that case
If ey <= mllfllpey, m=a;+(1—ay)lQ], (63)

where a; = inf2* and a, = sup -2,
T = e 3N T SUP

We deal with LP™)-spaces on open sets in R™. We shall give some results on
boundedness of singular operator with fixed singularity on curves in the complex plane.
We only mention that the space LP™)(T") on a rectifiable simple curve

'={teC:t=t(s), 0<s<{¥}
where s is the are length, may be introduced in a similar way via the functional

f
L) = [ IF@POld = [ 17t as
r 0
Condition (20) may be imposed either on the function p(t):

1
TR |t1—t2|S§, ty,t; €T (64)

[t1-t2|

lp(t) —p(t)] <

or on the function p, = p[t(s)]:

A 1
|p.(s1) — p.(s2)| < T |s; — s3] <5 1,52 € [0,¢]. (64)

=7
[s1—s2|
Since |p(ty) — p(t)| < |s; — s3], (64) always implies (65). Conversely, (65) implies
(64) if there exists a A > 0 such that
Is; — s2l < clp(ty) — p(E)I

Therefore, conditions (64) and (65) are equivalent on curves satisfying the so-called
chord condition, for example.

Let
kf = [ () ror

where K (x) has a compact support in B (0). In [23], [134] the uniform estimate
IKef Nl poga,y < clfllpogqy (66)

where Qp = {x : dist(x, Q) < R}, was proved under the assumption that p(x) is
defined in Qy and satisfies conditions (19), (20) on Q.

For the potential type operator 1¢*) defined in (24), the following statement was
proved in [24] in the case of a bounded open set Q.

Theorem (3.2.7)[137]: Under assumptions (19), (20) and (25) the operator 190 is
bounded from LPO(Q) into L™ (Q),
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1 1 a(x)
r(x) px) n’
unconditionally if p(x) is constant, and under the condition that the maximal operator
M = M° is bounded in LP®)(Q) in the general case.

Let

M. f(x) = If ()ldy (67)

BT‘ (X) | Br(x)

denote the mean of the function f over the ball B,.(x). We also need the weighted
means

|x — xo” lf )l
1B (%) B, (%) ly — xol#

related to the weighted maximal operator (21). In (67), (68) we assume that f(y) = 0
fory ¢ Q.

Lemma (3.2.8)[137]: If 0 < B < n, the inequality

MPf(x) = dy (68)

— xa|B d
B |l — o] y
MF(1) =——— — _—<c¢ 69
A TN i P e ©9)
holds with ¢ > 0 not depending on x, r and x,.
Proof. Let
dy dy
e | = (70)
' y—xi<r Y = %ol Dy ymspytr Y1

Without loss of generality we may assume that x, = 0. The change of variables y =

|x|€ gives
dé du
Jr(x) = |x|"™* = |x|"™* (71)

x a r lul®
| _%|<m|f| u—ell<m| |

Where e; = (1,0,... ,0) and in the last equationwe made the rotation change of
variables

§=w, (W), [&]=lul,
where w, (w) is the rotation of R" w,(e;) = —.

| x|

From (71)

@ =k (). ew= > (72)

|| u—ey|<t 1Y%
To estimate g(t), we distinguish between the three cases,

1 1
O<tSE' t>2 and EStSZ.
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1
Inthecase 0 <t < Ewe have

1
|3’|=|}’_e1+e1|21_|)’_e1|Zl_tzz;

so that

g(t) < 2 f dy = 2%|B, (e;)] = 2%|B,(x)|. (73)

lg—eil<t
If t > 2, we obtain

dy dy dy
go=[ Ty B[ B
ly—eqi]|<2 |y| 2<|y—eq|<t |y| 2<|y|<t |y + 81|
Here
Iyl 1yl
—el>vl=1> v -2 =25
y—elzlyl-12lyl-=-=7
Therefore
a dy a n-1 n-1-a
git)y<c+2 W=c+2|s | p dp
2<|y|<t 1Y 2<|y|<t
=c+ct"™* <t ¢ (74)

Finally, if - < t < 2, we have g(t) < g(r) = c5. Thus, by (73), (74)

t", 0<t<1
g(t) S {tn—a’ t 2 1

Now we obtain from (72) that

n bt 4 <
J.(8) < c{r T <A _
ra, r=x<cr’x|"%

Hence (69) follows.

Lemma (3.2.9)[137]: Suppose that x, € dQ and condition (22) is satisfied. If the
function |y — x| is in L*(Q), then necessarily Y > —n.

Proof. Suppose that x, € dQ and |y — x,|¥ € L*(Q). We have
| esolrarz [ Iy - xoldr= 1§ - ol
Q Q,

where € € Q,. Since |§ — x,|Y ~ 7Y by (22) we obtain

J ly — xo|Ydx = cr'*™
)

T

which is only possible if ¥ +n > 0.
In what follows, Q is an open bounded set in R™ and x, € Q.
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Theorem (3.2.10)[137]: Let p(x) satisfy conditions (19) and (20). If

0S,8<q(x0), (75)

then

mere™ <1+ oo ay ) 76)

| B (x)] B, (x)

for all f € LPO(Q) such that ||f]l,n) < 1, where ¢ = (p,B) is a constant not
depending on x, r and x,.

Proof. From (77) and the continuity of p(x) we conclude that there existsa d > 0 such
that

Bq(x) <n forall |x —x,| < d. (77)
Without loss of generality we assume that d < 1. Let

pr(x) = | min_ p(y)

y—x|<r
and
1 1

_— =1 - —
qr (x) Pr(x)
From (75) it is easily seen that

d d
Lq,(x) <n if |x — x| SE and 0 <r SZ. (78)

Applying the Holder inequality with the exponents p,.(x) and q,(x) to the
integral on the right-hand side of the equality

- p(x)
() s, ()

ly — x0l#
and taking into account (77) we get

()

p(x)

p(x) p(x)

c (j O P )pr(x) < dy )CIr(x) (79)
< )|t dy . f .
rnp(x) B, (x) B, (x) |y — xO|BCIr(x)

T

Making use of the estimate (69), we obtain

p(x)

f(y) p(X) |y — X |_Bp(x) p‘r(x)

m, (ﬁ) < c—w f Fr@dy )
y X0 Tpr(x) By (x)

Here
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j FOP@dy < j dy + j FOPDdy,
Br(x) Br(x)n{y: |f(¥)|=1} B (x)

since q,-(x) < p(y) for y € B,(x). Since p(x) is bounded, we see that
p(x)

1 pr(x)
A f |f<y)|pr<x>dy] .
By (x)

p(x) — x| BP0
‘Mr( f) )| 3c1|y ol [

x| ()
[y = ol ey

since r < d/2 < 1/2 and the second term in the brackets is also less then or equal to
1/2, we arrive at the estimate

c
S np(x) [rn + j |f(y)|p(x)dy]
r () Br(x)

p(x)
MEf

npr(X) —-p(x)

1
<cr’ P [1 + |f (y)lp(x)dy]-

By (x)
From here (76) follows, since

Pr(0-p(0)
r ) <,

Indeed,

nPr)—p(x)

n 1
r pr® = ep—r[z?(x)—pr(x)] Inz

)

where

1
< nlp(x) —p(&)l ln;

n l 1
() = ()] In

T

with &, € B,.(x), and then by (20)

n 1 ln%
—[p(x) —p, ()] In=| L NA——— <14,
Pr r In 1
| _frl
since [x — &, | <.
This case is trivial, because
y—xo = x— x|~y —x| =222
Y — Xol 2 [X — Xg yx—z iy

B
Thus |y — x,|% = (%) .Since |y — x,|# < (diam Q)#, it follows that

MEF(x) < M, f (),
and one may proceed as above for the case § = 0 (the condition |y — x,| = % IS not
needed).

This case is also easy. It suffices to show that the left-hand side is bounded. We have
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c(diam Q)F lf ()l lf ()l
(%)n ’];y—xds%ly_x()lﬁ dy+ f|y—xo|2%|y_x0|ﬁ dy]

Here the first integral is estimated via the Holder inequality with the exponents

pa = min p(y) and qqa =p'a
8 ly-xol<g 5§ B

MPF(x) <

As in (79), which is possible since aqa < n. The estimate of second integral is trivial
8

since |y — x,| = d/8.
Corollary (3.2.11)[137]: Let0 < B < n/q(x,). If conditions (19), (20) are satisfied,
then

MEF@|" < e (1+M[IFOPO]@) (80)
forall £ € LPO(Q) such that [|fl,,¢y < 1.

Theorem (3.2.12)[137]: Let f(x) have a compact support in a bounded domain Q.
Under assumptions (19) and (20), for the weighted estimate

Ix —x0lf  sup  |up(€,y)|
(§,y)€la(x)

< cf|lx = %ol £y, BD)
LPOQ)

with an interior x, € Q to be valid, it is necessary and sufficient that —n/p(x,) < 8 <
n/q(xo)-
In the case x, € Q, this condition is sufficient for any x, and necessary if x,, satisfies
condition (22)
Proof. It suffices to refer to the fact that
sup  |ue (& y)| ~ Mf(x)

(§,y)€la(x)

(see [41]), and to make use of Theorem (3.2.1).

The following operators may be treated as operators with fixed singularity:

(i) the Hardy type operators (48) on [0, [];
(i) the Hankel operator (48) on [0, [];

(iii) singular operators on a curve I'; with the outer” variable on another curve I';.

The latter having a unique common point with I';; commentators of the singular
operator with the operators of multiplication by piece-wise continuous functions.

For such operators, in contrast to the maximal and potential operators, the
”global” Dini—Lipschitz condition (20) may be replaced by a “local” condition at the
point of the fixed singularity.
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Chapter 4

Approximate Identities
We give criteria for smooth functions to be dense in the variable Sobolev spaces,
and we give solutions of the Laplace equation and the heat equation with boundary
values in the variable LP spaces. We study Young type inequalities for convolution
with respect to norms in such spaces.

Section (4.1): Variable LP Spaces

Geven an open set Q c R™, and a measurable function p(+) : Q — [1, oo], the

variable LP space, LPC)(Q), is defined to be the Banach function space of measurable
functions f on Q such that for some A > 0,

pEOAFM = @O+ 1 Alosy, . <

MNOQp(),00

Where O,y = {x € Q: p(x) = oo}, with norm

Ifllpee=12>0:p(PC),Qf/A) < 1}

similarly, given a positive integer k, we define the variable Sobolev space
wkr0)(Q), to be the Banach space of measurable functions f such that for every multi-
index a with |a| < k, the derivatives D*f (defned in the sense of distributions) are in
1pC) (Q).

There has been a great deal of interest in the variable LP spaces, particularly for
their applications to PDEs and variational in tegrals. For more information on their
properties, see Kovacik and Rakosnik [13] or Harjulehto and Héasto [142]; for
applications, see [4, 27, 36].

We consider the problem of the convergence of approximate identities in variable
LP spaces. We give sufficient conditions for both pointwise and norm convergence.
There problems were considered previously by Diening [4], Samko [23] and
Sharapudinov [145]; the results have weaker hypotheses since we do not assume p(+)
is bounded away from 1. (Added in proof. approximate identities were also
considered by Almeida [138].) We show that smooth functions of compact support are
dense in the variable Sobolev spaces, and we give solutions to the Laplace equation
with boundary values in variable L?.

We begin by recalling the definition of approximate identities. Let ¢ be an
integrable function defined on R™such that [ ¢ dx = 1. For each t > 0, define the
function ¢, (x) = t "¢ (x/t). Note that by a change of variables, ||¢:|l; = ll@l|1. The
sequence {¢,} is referred to as an approximate identity. It is well-known (see Stein
[146] or Duoandikoetxea [40] that for 1 < p < oo, the sequence {¢, = f} converges
to fin LP(Q):

limllpe * f = fllpa = 0.

As a consequence, a subsequence of {gotk « f} converges to pointwise almost
everywhere.
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If we impose additional conditions on ¢ then the entire sequence converges
almost everywhere to f. Define the radial majorant of ¢ to be function

@ = sup |lp¥)l.
ly1=lx]
If @ is integrable, we will say that {¢.} is a potential-type approximate identity.

(This is the case, for example, if ¢ is a bounded function of compact support.) In this
case we have that for all x,

igglwt * O] < lgllaMf(x), (1)
where M is the (centered) Hardy—Littlewood maximal operator:
1
Mf(x) = sup Ifldy,

r>0 |Br(x)| Br(x)NQ
where Q is the domain of f. Since M is bounded on LP, 1 < p < oo, and satisfies a
weak (1) inequality, inequality implies that if {¢.} is a potential-type approximate
identity, then {¢,, * f} converges f almost everywhere. (Again see [10, 20] for
details.)

All of the results mentioned above remain true in the variable LP spaces,
provided that we impose continuity conditions on the exponent function p(-) and size
conditions on the ¢. Given an open set Q c R", define P(Q) to be the set of all
measurable functions p(-) : Q — [1,o0]. For p(*) € P(Q) and E < Q, let\

p_(E) = essinfp(x), p+(E) = esssupp(x)
XEE xEE
For brevity, we define p_ = p_(Q) and p, = p,(Q). We will often, but not always,
restrict ourselves to functions p(+) such that p, < oo,

We very often need to assume that p(-) satisfies two log-Hdélder continuity
conditions, one locally and one at infinity:
Cc

— < - _
P() —pWI S o Y E€Q Ix—yl<1/2 (2)
and
C
P =PI < (o XY EQ Wlz1yl (3

The importance of these conditions is that they are sufficient for the maximal operator

to be bounded on LPO)(Q) (which, as (1) shows, implies that potential-type convolution
operators are uniformly bounded).

Theorem (4.1.1)[35]: Given an open set Q and p(-) € P(Q), suppose that 1 < p_ <
p+ < oo and that either Q is bounded and (2) holds, or Q is unbounded and both (2) and
(3) hold. Then the Hardy-Littlewood maximal operator is bounded on LPC)(Q).

Theorem (4.1.1) was proved independently by Cruz—Uribe, Fiorenza and
Neugebauer [36], Nekvinda [20], and by Deining [4] when Q is bounded or with (3)
replaced by the stronger hypothesis that p(+) is constant outside of a large ball.
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The first main result shows that certain approximate identities converge
pointwise almost everywhere with no assumptions on the exponent function p(+). To
state it we need a definition. Given an exponent function p(-) € P () we define the
conjugate exponent function p’(-) by the equation

1 1
P00 PO
where we set 1/c0 = 0. By p/, we mean (p'(-))+, i.e., the supremum of the conjugate
exponent function. From the definition, we see that p’. and p_ are conjugate exponents.
Theorem (4.1.2)[35]: Given a set Q and p(-) € P (), let ¢ be such that either:

(1) {e.} is a potential-type approximate identity,

=1 x€q,

(i) ¢ has compact support and ¢ € LP+ Q).
Then for all £ € LPO(Q), {g; * f} converges to f pointwise almost everywhere.
Proof. Fix f € LPY(Q), and decompose f as f; + f>, where
X), x)| =1
= ol
Then f, € LP-0(Q) and £, € LP+O(Q).
If {p,} is a potential-type approximate identity, then it follows immediately from

Lemma (4.1.12) that for i = 1,2, ¢, * f; — f; pointwise almost everywhere. The
desired limit follows by linearly.

If @ € LP+ () and has compact support, then the proof is almost easy. Since
LP+ = (p_)’, and since (py)' < (p_)’, we have that ¢ € L®)'(Q) c L®9'(Q).

Therefore, again by Lemma (4.1.12), for i = 1,2, ¢, * f; = f; pointwise almost
everywhere.

In the case of Lebesgue spaces, Theorem (4.1.2) is well-known: see Stein [148];
for ¢ € LP it is due to Zo [65]. Theorem (4.1.2) is a consequence of these results.

A weaker version of Theorem (4.1.2) for potential-type approximate identities
was proved by Diening [4]; his proof required that the maximal function be bounded
on LPO)(Q). However, the assumption in Theorem (4.1.1) that p_ > 1 is necessary,
and examples show that (2) and (3) are essentially necessary. (See [36] for details.)
Therefore, Theorem (4.1.2) is substantially more general.

The second main result gives conditions for an approximate identity to converge in
norm.

Theorem (4.1.3)[35]: Given an open set Q, let p(*) € P(Q) be such that (2) and (3)
hold. Suppose that either:

(i) {¢,} is a potential-type approximate identity,
(ii) ¢ has compact support and ¢ € P+ Q).

Then forall t > 0,
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loe * fllpana < Clifllpeo (4)
and {¢, * f} converges to f in LP©)(Q) norm:

limlg; = fllpce .0 = 0. (5)
Proof. Fix f € LPO(Q). Since we can write f = f, — f_, where each Of f, is

nannegative and || £ ||p(x) o < If )., by linearity we may assume without loss

of generality that f is nonnegative. Further, by homogeneity assume that
”f”p(x),ﬂ = 1.

Define the function f;(x) = f (X)X (xeq:fx)=13 aNd f2(x) = f(x) — f1(x).
Then (depending on ¢) f; satisfies the hypotheses of either Lemma (4.1.15) or
Lemma (4.1.16), and f, satisfies the hypotheses of either Lemma (4.1.18).
Therefore,

90 * fL(OPDdx + C j lpc * f,(OIPPdx <
")

jﬂ 90+ FP@dx < C |

Q
Since p, < oo, by Lemma (4.1.9),
loe * fllpoa < C=Clifllyoa

Norm convergence follows from this by an approximation argument. Fix
€ > 0. Since bounded functions of compact support are dense in LP®(Q), fix such
a function g with [|f — g,y o < €. Then

loe * = fllpera < lloe* (f — Dllpera + loe g — gllpea < I — gllboe

<Ce+|lo:x9—9gllpro =0

Since € > 0 is arbitrary, if we take the limit as t — 0, then to complete the proof
it will suffice to show that

lim[lg; * g = gllpeya = 0.
g(x)

Since g is bounded, define g,(x) = el Then

loe(x —W)lgo(¥)|dy < Ilgolloof lo:(x —y)dy < |lgollco-
QO

10 * go ()] sf

Q
Therefore, [[@: * go — gollw < 2|lgollo < 1. Hence

t-0 Q
~ti [ @Gl 90(a) - (OO
Q
< @llglle + P lim | 100 * o) = go (P
Q
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< @llglle + 17 lim | 100 % 900 = go@ P
Q

Since g, € LP-(Q), the last integral converges to 0 as t — 0. This complete the
proof.

Deining [4] proved Theorem (4.1.3) for potential-type approximate
identities with the additional assumption that p_ > 1; he was required to assume
this since his proof requires the maximal operator to be bounded on LP(Q). (This
approach, however, is very elegant, and we give a version of his proof.) Samko [23]
proved Theorem (4.1.3) for ¢ € Lpi(ﬂ) when Q is bounded. In [24] he gave a
necessary condition for (4) to hold which shows that some additional hypotheses on
@ are required. Sharapudinov [145] proved a somewhat more general result on the unit
circle for convolution operators with L* kernels.

Theorems (4.1.2) and (4.1.3) are false if ¢ € LP+ (©)) but ¢ does not have compact
support. We give a counter-example below (Example (4.1.19)). We conjecture that
they remain true if we further assume that ¢ satisfies a gradient condition:

Clyl
lp(x — ) SW’ lyl > 2]yl.

This conjecture is motivated by the results of Zo [65] on the pointwise convergence of
approximate identities. This gradient condition is well-known from the study of
integrals; for the connection between singular integrals and maximal operators, see
[40].

This conjecture is true; it was proved as consequence of a much more general
result about extrapolation in the scale of variable LP spaces by Cruz-Uribe, Fiorenza,
Martell and Pérez [66]. It would be interesting to give a direct proof.

We give two sets of application of our results. The first consists of three theorems on
the density of smooth functions in the variable Sobolev spaces.

Theorem (4.1.4)[35]: Given an open set Q, let p(+) € P(Q) be such that p, < oo and
(2) holds. Then for k > 1, the set

C®(Q) N WkrL(Q)
is dense in W*PO) (Q).

In the case of classical Sobolev spaces, Theorem (4.1.4) is due to Meyers and
Serrin [143]. The proof is almost identical to the proof in the classical case, using
Theorem (4.1.3). (see, for example, Ziemer [66].) The proof, which depends on a
partition of the identity, uses ¢ with compact support and is applied on bounded sets
K. The case (3) holds automatically with a constant which depends on dim(K). Also,
the proof uses the monotone convergence theorem for Lebesgue spaces, but this
remains true in variable LP spaces since p, < co.

Let C;°(R™) denote the set of infinitely differentiable functions of compact support in
R™,
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Theorem (4.1.5)[35]: Let p(-) € P(R™) be such that p, < oo and (2) holds. Then for
k > 1, C®(R™) is dense in WkPO (R™),

The prof of Theorem (4.1.5) is essentially the same as the standard proof for
Lebesgue spaces, using Theorem (4.1.3) to get norm convergence. (See, Stein [146].)

Theorem (4.1.5) was first proved by Samko [23] using his weaker version of
Theorem (4.1.3). His proof has two steps. First, he shows that functions with compact

support are dense in WP (R™); given this, he can proceed as in the standard proof
but only needs norm convergence on compact sets.

Theorem (4.1.5) was also proved by Diening with the additional assumption that
p_ > 1 and that the maximal operator is bounded on LP®)(R™) (e.g., if (3) holds).

To state the next result, we need a definition. An open set £ has the segment
property if for every x € dQ there exists an open set V,, containing x, and a nonzero
vector v, such that if z € Q NV, then z + tv, € O, 0 < t < 1. This condition holds,
for example, if Q is boundary is locally a Lipschitz graph. (See Adams [28].)

Theorem (4.1.6)[35]: Given an open set Q which satisfies the segment property, let
p() € P(R™) be such that p, < oo and (2) holds. Then for k > 1, the set

C®(Q) N WkrO(Q)
is dense WkPO)(Q).

The proof of Theorem (4.1.6) again follows the proof for classical Sobolev spaces
(see Adams [28]). It first reduces to the case of functions of compact support, and then
uses a careful partition of unity. As in the proof of Theorem (4.1.4), Theorem (4.1.3)
is only used for ¢ with compact support and for bounded domains, so (3) holds
automatically. The proof also uses the fact that translation is continuous in norm. This
IS not true in general in variable LP spaces (see [13, 141]) but it is true for bounded
functions of compact support, which is all that is required to prove Theorem (4.1.6).

Theorem (4.1.6) was first proved by Diening [27] assuming that € is bounded
and has Lipschitz boundary, and p_ > 1. (i.e., that the maximal operator is bounded

on LPO(Q)).

The second set of applications consists of two solutions to classical boundary
value problems. On R%*1, let P,(x) denote the Poission kernel, and let W, (x) denote
the Gauss—Weierstrass kernel. (see [40].)

Theorem (4.1.7)[35]: Let p(-) € P(R™) be such that p, < o and (2) and (3) hold. If
f € LPO(R™), then u(x, t) = P, = f(x) is the solution of the boundary value problem

{Au(x, t)=0, (xt)€eR,
u(x,t) = f(x), x€R"

where the second equality is understood in the sense that u(x, t) converges to f(x) as
t — 0 pointwsie almost everywhere and in LP®)(R™) norm.
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Theorem (4.1.8)[35]: Let p(-) € P(R™) be such that p, < o and (2) and (3) hold.
Given f € LPO(R™), define u(x, t) = W, * f(x)and @(x, t) = w(x,V4nt). Then @
is the solution of the initial value problem

0w

E(x, t) — Aw(x,t) =0, (x,t) € R,

w(x,0)=f(x), x € R",
where the second equality is understood in the sense that w(x, t) converges to f(x) as
t — 0 pointwsie almost everywhere and in LP©)(R™) norm.

Since the Poisson kernel and the Gauss—\Weierstrass kernel are both potential-type
approximate identities, the proofs of Theorems (4.1.7) and (4.1.8) are identical to the
proofs of the corresponding results in Lebesgue spaces. (See [40].)

Sharapudinov [145] proved a version of Theorem (4.1.7) on the unit disk.

We state some basic properties of variable L? spaces, which will be used in the
subsequent sections. We prove Theorem (4.1.2) and make some remarks about dense

subsets in LPO(Q) connected to our original proof. We prove Theorem (4.1.3).
Finally, we make some observations about Young’s theorem in variable L? spaces.

We will always write p(+) instead p to denote an exponent function. Unless
otherwise specified, C and c will denote positive constants which will depend only on
the dimension n, the underlying set Q,the exponent function p(-), and the function ¢
but whose value may change at each appearance.

We state some basic properties of variable LP®) spaces. For further information,
including proofs of these results, see Kovacik and Rakosnik [13].

Given an open set Q, p(+) € P(Q) and a function f, let

Floca = f FOIPD dy.

Q\QP (),00

Note that if p, < oo (or even if | Q)| = 0), then p(P(), Q, f) = |f|p¢),0. We will
need the following properties relating |||,y o and the modular [-[,,() o.

Lemma (4.1.9)[35]: Given an open set Q,p(:) € P(Q), and f € LPO(Q), the
following are true.

@A) o0 < L then [flo0 < p(@CLQ ) < Ifllp0,0-
(II) If Py < 0, then ”f”p(.)’ﬂ <( if and only if |f|p(_)'Q < C,.

(iii) If p, < oo, then given a sequence {f,,} € LPO(Q), Iy, — fllp)0 — O if and
only if |[f — fulpcya = 0.
As a consequence of (iii), if p, < oo, and if f;, is an increasing to || f]l,¢)q- TO see
this, first note that since p, < oo, |[f(-)|P®) € L1(Q). Therefore,

£ () = fu(DIPO < IF()IPO(Q) € LH(Q).
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So by the dominated convergence theorem, |f — f,|,).q = 0 asn — oo. Therefore, by
(iii), llfn — fll,e — 0, and the desired conclusion follows from the triangle
inequality.

Lemma (4.1.10)[35]: Given an open set Q, |Q| < oo, and p(),q(*) € P(Q), p(x) <
q(x),x € Q, then

Ifllpere < @+ 12D N0

As a consequence of Lemma (4.1.10), if p, < oo, and u is abounded function of
compact support, then u(- +t) converges to u as t — 0 in LPO(Q). To see, fix such a
u. Then for all t, [t] < 1, there exists a compact set U such that supp(u(- +t)) cU.
Then, since translation is continuous on LP+(Q),

limfluC +) = ullp0 < (1+ UD limluC +6) = ull,, 0 = 0.

The final result we need is a version of Halder’s inequality for variable LP spaces.

Lemma (4.1.11)[35]: Givenaset Q and p(*) € P(Q), there exists C > 1 such that for
all function f € LPO(Q) and g € LP' O(q),

[ r@g@ldx < 1l
Q

The proof follows from known results in the classical Lebesgue spaces. We first
quickly state these results; see [65, 146] for proofs.

Lemma (4.1.12)[35]: Givenaset Q and p, 1 < p < oo, suppose f € LPO(Q). If ¢ is
such that either:

(i) {e;} is potential-type approximate identity,
(ii) ¢ has compact support and ¢ € LP'©O(Q),
then {¢; * f} converges to f pointwise almost everywhere.

Remark (4.1.13)[35]: The original proof of Theorem (4.1.2) was significantly more
complicated. It was modeled after the proof of Lemma (4.1.11) and used the modular
weak-type inequality due to Cruz—Uribe, Fiorenza and Neugebauer:

(46
(If(y)l> dy. ©)

t

{x € Q: Mf(x)>t}|SCf

Q

This result required the additional hypothesis that 1/p(-) € RH,. A nonnegative
function u on R™ isin RH,, if there exists a positive constant C such that for every ball
almost every x € B,

<><£f d
u(x =<1g] Buy y.

Note that if there exist positive constants A4, B such that A < u(x) < B,thenu € RH,,.
More generally, if u(x) = |x|%, a > 0, then u € RH,,. (For more information on the
class RH,,, see Curz—Uribe and Neugebauer [140] or [36].)
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It is note that while Theorem (4.1.2) requires no additional hypotheses on p(+), the
modular inequality (6) does. To see this on Q = [0,), let p(x) = e~¥/* and let
fa(x) = nx[o,1/m(x). Then a straightforward calculation shows that for n lage,

{x€Q: Mf(x) >t} =1,
1/n

F()PXdx < 2/n.
0

This suggests that while inequalities for the maximal operator will yield sufficient
hypotheses for extending a variety of results from classical harmonic analysis to
variable LPO) spaces, these may not always be sharp.

However, if p, < oo, then continuous functions of compact support need not be
dense, and we include two examples that show this. We first consider unbounded Q.
Let Q = [1, ) and let p(x) = x. Then, since for all A > 1.

co 1 X
=] dx < oo,
J, G)
the constant function f(x) = 1 is in LPO(Q). Now let g be any function of compact
support. Then supp(g) < [1, N] for some N > 1. But then, by the definition,

IF = glloa = inf {3 0+ [ (3)

the integral is finite only when A > 1, so we must have that [|f — gl[,¢)q = 1. Here,
no sequence of functions with compact support converges to f in LP©(Q).

X

del};

An example for bounded Q is equally straightforward. Let Q = (0, 1) and define
p():(0,1) = [1,00] by p(x) = 1/|x — 1/2|.
Let £ (x) = 7x(01,/2)(x). Then f € LPO(Q) since

p(x) 1/2
j @ dx = f 1ldx =1/2,
Q

7 N
and so || — gllp)0 < 7.

Now let ¢ be any constant function defined on Q. If ¢(1/2) = 7/2 such that if
x € (1/2,68), then ¢(x) > 3. If p(x) < 7/2, then there exists § < 1/2 such that if
x € (8,1/2),then ¢ (x) < 7/2. If either case, there exists an interval I. One of whose
endpoints is 1/2, such that on it, |f(x) — @ (x)| > 3. It follows that

f 00 — )PP dx > j 00 — )PP dx > j 3P0 dx > j p(x)dx
[9) 1 1 1

Therefore, either f — ¢ is not in LPO(Q), or it is and [|f — gll,()q = 1. Hence, no
sequence of continuous functions can converge to f in LPO(Q).
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Given an arbitrary function p(-) Such that p, < oo, it is an open problem to find
nontrivial dense subset of LPC)(Q), that is, sets A c L'(Q) N L®(Q) such that 4 is
dense in LPO)(Q) but not dense in L® (V).

As we noted, Theorem (4.1.3) has an elegant proof in the case of potential-type
approximate identities if we also assume p, > 1. For completeness we give it here. By
the hypotheses, the maximal operator is bounded on LP)(Q). Therefore, by (1), for all
t >0,

loe * fllpera < ClIMSllpea < Clifllpe.0-
Further, again by (1), since p, < oo,
lpe * f(x) = F(O)PPdx < CMf ()PP dx € L' (Q).

Theorem (4.1.2) we have that {¢, * f} converges to f pointwise almost everywhere.
Hence, by the dominated convergence theorem,

fimlge £ = Flocy = lim [ 100+ £G0 = F0IP@ax =0,
Q

Therefore, by Lemma (4.1.11), {¢, * f} converges to f in norm.

The proof of Theorem (4.1.3) in full generality requires five lemmas is due to
Diening [4]. ( Also see [66, 146].)

Lemma (4.1.14)[35]: Given a set Q and p(-) € P(Q) such that (2) holds, suppose
{o.} then for every ball B, and x € B,

1-p(x)
|B|P-(BND) < (.

Lemma (4.1.15)[35]: Given a set Q and p(-) € P(Q) such that (2) holds, suppose
{p.} is a potential-type approximate identity. If £ € LPO(Q), f(x) = 0 or f(x) > 1,
x € (),

lpe * FO)IPD < C(@ * F(IPO) ().
furthermore,

f|%*ﬂmmwhsc<m
9]

The proof of lemma is adapted from Nekvinda [146].
Proof. Note that since

e * fO)IPX < C(@, * ()P,
It will suffice to bound the right-hand term. Suppose first that

B0 = ) ais, () )

k
where each a; = 0 and each B, is a ball centered at the origin. Then
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p(x)

@e+ DEPD = ayxs, = £G)

k

1 p(x)
= (Z e |Bil 17 f(Y)dY> ;
K k1 J(x+By)

by Holder’s inequality, first for series and then for integrals,
p(x)
p()-1 1 p—((x+BE)NQ)
<(Qadsd) D adbid( ) @Bl | forOay ;
k K % klJ(x+Bp)nQ
since f(y) = 1and |@¢|pcy0 < 1,

(L”
~ — 1 p— (x+Bk)ﬂQ
< ||(pt||219(X) 1Zak|Bk| (Z ax |Bk| m f(y)p(Y)dy>

k k kIl J(x+Br)nQ

_ 1-px)

= CZ Ay |Bk|p‘((x+B")nQ) f(y)dy.
k (x+Br)NQ
By Lemma (4.1.14),
1-p(x) 1-p(x)

IBklp_((x+Bk)nQ) = |x + Bklp_((x+Bk)nQ) <C.
Therefore, we have that

(@ * PP < C (y)d
G * f)(x zk:akf( f(y)dy

X+Bp)NQ
=€ ay (x5, * FOPO) @)
k

= C(@¢ * f(OPO) ().
This is the desired inequality.

We now argue for general ¢. Since for each t > 0, @, is a radial, decreasing
function, it can be approximated by an increasing sequence of function of the form in
(7). Hence, by the monotone convergence theorem, we get the desired inequality.

Note that by Fubini's theorem,

f 9¢ * FOOIPPdx < C f (@ * FOP)dx < Cll@elllf I < C.
[9) 9]

Lemma (4.1.16)[35]: Givenaset Q and p(-) € P(Q) such that (2) holds, suppose ¢ €
LP+(Q) has compact support. Given f € LPO(Q) such that [|fll,(yq < 1 and f(x) =
Oorf(x)=1,x€Q,
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f lpc * FEOPDdx < € < oo,
9]

The proof of this lemma is based on ideas in Samko [23].
Proof. O = supp(f) = {x € Q : f(x) = 1}. Then by Lemma (4.1.9),

19| < Iflpera < Ifllpeya < 1. ®)
We first want to show that
los * f(x)| < Cmax(1,t™). 9)

By Holder’s inequality for variable LP spaces Lemma (4.1.11),

lpe * ()] < JQ | (x = MIfWdy < Clloe(x = Ilpreya, 1 llpora

< ClloeCx = Iy,
To estimate [[@:(x — )l ()0 . there are two cases.

Case 1: p} < oo. In this case, by Lemma (4.1.10) and inequality (8),

llpe(x — ')”p’('),ﬂf < lle (x — ')”"O'Qf ||Xﬂf||p’(-),ﬂf

<t Pllooa(1 + ]2 ||)(Qf||oo'ﬂf < Ct™

Case 2: p}, < oo. Again by Lemma (4.1.10) and (8)

n
lpeCx = Ilprya, < (14 ]9 llge(x - Mprera, =2t Pl 0
< Cmax(1,t™).
Hence, in either case (9) holds.

Let the support of ¢ be contained in a ball of radius R centered at origin. Fix t >
0; then the support of ¢, is contained in a ball of radius Rt centered at origin. Partition
Q into union of a countable number of disjoint sets {€; } such that each Q, is contained
in a ball B, with radius t. Let Q, be the intersection of Q with a ball with the same
center as By, and radius (R + 1)t. We will prove that

| 1o r@p@ax<cy [ lges P @dx (10)
Q — Jay

by showing that if x € Q,, then
lpe * fC)IPD -0 < .
If t > #2), this follows immediately form (9). If t < 2; then the distance

(R+ (R+2)’
between any two points in Q, is at most (R + 2)t < 1/2. Hence, by (2),
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0<p(x)—p_(Q) < Tlog((R+ 2)0)

so again by (9),
|, * f(x)[PO~P-() < ct—(P®)-r-W) < (.
Therefore, inequality (10) holds.

We now complete the proof. If x € Q,, then Supp(<pt(x — -)) c Q. Hence, by
Holder’s inequality,

~ p—(Qx)
e * f(x)|P-E) < (f |l (x — y)lf(y)dy>
[9)

p—(Qx) B
< <f | (x — y)Idy) ( o (x — y)If(y)p-(“k)dy>;
Q Qp

since f(x) =0or f(x) =1,

< ol [ 1o, (x = MIF ()PP dy
Qg

= C(lp:f ()PO) ().

Therefore, from this inequality and from inequality (10), we get Fubini's theorem that

| 1o r@p@ax<c Y [ (o= fPO)dx
Q — Joy,

= [ (loel* FOPO)@dx = Cllgelaalflycra < C
Q
A version of the next lemma appeared first in [36]. For completeness, we include the
proof here.

Lemma (4.1.17)[35]: Given a set G and two nonnegative functions r(-) and s(-),
suppose that for each y € G,

50) = S {e T o

where z(+) : G - R"™ is measurable. Then for every positive measure u and for every
function f such that |f(y)| <1,y € G,

r+(G)

f FOPdu() < C j FOEP du(y) + j Bz)) " ©duey),
G G G

where B(y) = (e + |(y))~*D.
Proof. Let G# = {y € G : |f(y)| = B(z(y))}. Then
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jlf(y)lr(”du(y)=f If(y)lr(y)du(y)+f lFOI"Pdu(y),
G GP G

\G#A
and we estimate each integral separately. Since ﬁ(z(y))l,

r+(G)

j FOI"Pdu(y) = f Bz)) P duly) + f du(y).
G\GP

G\GP G\G

BB(Z(y))

On the other hand, if y € G#, since |f(y)| < 1,
FOID = [fFDIPNfF IO < |F@)IFD|f () |70

-C
= |f(}’)|s(y),3(z(y))w < Clf )5,
The desired inequality now follows immediately.

Lemma (4.1.18)[35]: Given Q and p(*) € P(Q) such that (3) holds, and given any
approximate identity {¢,}, suppose f € LP©)(Q) is such that |f],¢qo <1 and 0 <
f(x) <1,x €. Thenfoeall x € Q,

lpe * FO)IPD < C(FOPO * @) () + C(le] * F(OPO) () + CBx),  (11)
where S(y) = (e + |(y)|)~™*D. Furthermore,

j lp: * F()|PPdx < C < oo. (12)
Q
Proof. Fix x € Q. Define the function z(*) : G - R™ by

Y, lxI>1yl,
VA =
0= Rz
Then condition (3) implies that for all x € Q,

C
lp(x) —pY)| < m-

Then by Hoélder’s inequality and Lemma (4.1.17) (applied with the functions r(y) =
p(¥),s(y) — p(y) and the measure du(y) = |o.(x — y)|dy),

p(x)-1
9 * FOOPD < ( j e Cx — y)|dy) ( f 9y — y)lf(y)p(")dy>
[9) [9)
<c fﬂ 0. (x = WIf PP dy + C fﬂ lo:(x — MIB ()PP dy
< C(lge] * FOPO)GO) + € jg 10:Cx = Y)IB(2()dy.

The last integral is bounded by C(|g;| * B)(x) + CB(x):
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fn lp:(x — MIB(z(y))dy

0 Cx — YIBGNdy + j 10:Cc — IBGOdy

-f;yEG=IxI2IyI} {vea:|x|<|yl}

< C(loel * BY(x) + CB(x).
This completes the proof of (11). To proof of (12) we integrate (11) on
Q:since B € LPO(Q) and |f|, 9 < 1, we can apply Fubini's theorem to get

j 0. (OIf COPD dy
QO

<C j (lge * FOPO) @y + € f (el * B dx + C j B(x)dx
[9) QO [9)

< Cllecllilflpeats Cllodlialflpoa + ClIBllLa < C.

Example (4.1.19)[35]: There exists p(:) € P(R) be such that (2) and (3) hold f €
LPO(R), and ¢ € LI(R), 1 < g < oo, such that

lir? soupllcot *f)llpey0 = o, (13)
and for all x in a set of positive measure,
lim sup|e, * (x)| = co. (14)
t—0

Proof. Define the function ¢ by

P = ) 00 = D Xnogjntn) (O,
n=1 n=1

Since Z% < oo, @ € L1(R), 1 < g < oo. Define the exponent function p(-) to be a

smooth function P(R) such that p(x) =pg, x < —landx = 2, p(x) =p;, 0 < x <
1. The exact values of p, and p; will be chosen below. Let

f(x) =x7%x10,11(x).
the exact value of a, 0 < a < 1/p,, will be chosen below so that f € LPO(R).
Forall t > 0 and all x,

1
oner f@) =7 |
[x+nt,x+nt+t/n2]n[0,1]

If —nt — t/(2n?) < x < —nt, then

vy %dy.

f()>1f ~ad & 1<t>1_a
k X) = — = —
gon’t t [O,t/(ZnZ)]y y 1 —Qa t 2n2

Fix t = 1/n and choose x in the given range. Then x < —1, and so
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p
[ 1ocs o> | (P * OO
R [-nt-t/(2n2),—nt]
C Po
_ 21—«
> [ta(Zn ) ] o

— Cnap0+2(a—1)p0—3.

If we let p, =10, p, = 11/10, and a = 9/10, then ap, + 2(a — 1)p, — 3 = 4.
Therefore,
limsup [ 1ge » fGPCdx = o

t—0 R
Since p, < oo, (13) follows at once.
Now fix x € [—2,—1]. Given n if t is such that

I

<t<—,
n+1/(2n?) n

then —nt — t/(2n?) < x < —nt. For each n, fix t,, in this range. Then t,, > 0 asn —
oo, ant 1/t,, = n/|x| = n/2. Therefore, the above calculation show that

C
Ptn * f(x) = Pntn * f(x) = t_a(ZnZ)a—l = Cn“.nz(“_l) = TL7/10.
n

It follows that (14) holds for all x in [—2, —1].

An open problem related to the study of approximate identities is the
generalization of Young's inequality to variable LP spaces. It is natural to conjecture
that p(+), q(+) and r(+) are exponent functions which satisfy (2) and (3), and are such
that

1 + 1 + - € )
- < = — " X ]
r(x) p(x) q(x)
then
lo * fllrya < Clloll,oa < Ifllre.a (15)

This is false in general: see Diening [4]. In the special case ¢ is radial and
decreasing, a careful examination of the constant involved in the proof of Theorem
(4.1.3) shows that we proved the following.

Corollary (4.1.20)[35]: Suppose Q and p(-) € P(Q) is such that p, < oo and (2) and
(3) holds. If f € L1(Q) is a positive, radially decreasing function, then there exists a
constant depending only on p(+) such that

o * fllpera < Cllellia < Ifllpe e

However, (15) does not hold in the full generality stated even for radial functions: we
give an example to show that

9 * fllwq < Cllollyrea < fllpe e
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Does not hold. Let Q = R, and let p(*) : R — [1, o) be smooth function such that
p(x) =10,x < 1,and p(x) = 2. Then p’(x) = 2, x = 2. Define

fO) =1x=31""3 x4
p(x) = |x|_9/11X[—1,1]-

Then f € LPO(Q) and ¢ € LP'O(Q). However, the function ¢ * f is bounded in
neighborhood of 3. To see this, let E, = [2,4] N [x —1,x + 1]. Then

%*f@)=f X — y| 1]y — 3]1/3qy,

Ex
and since —9/11 + 1/3 > 1, this integral diverges as x — 3.
Additional counter examples for various p(-) and g () were found by Samko [24].
The question of general hypotheses on ¢ for (15) to be true remains open. Here we

note that a weaker inequality holds. If we assume that ¢ € LP-O(Q) n LP+O(Q), then
by Hdlder’s inequality on variable LP spaces we have that

lo* fFO| < Cllplx =l allfllpee

< ClloCx = xgoo=ul Ifllper.a + ClloCGe = Dxgeeisul Ifllpe0

p'().Q p'().Q
< C(llellyr oy + @l ) I f llpo -
If ¢ has compact support, we get that there is a constant C (depending on |supp (¢)])
such that
lo * flloa < Cll@llpr 0 < Ifllpe)0-

We can interpolate between this inequality and the one in Corollary (4.1.20) by
adapting an argument due to Bennett and Sharpley (see [139]) to prove the following.

Theorem (4.1.21)[35]: Suppose Q and p(+) € P(L) is such that p, < oo and (2) and
(3) holds. Let ¢ € L1(Q) is a positive, radially decreasing function with compact
support. For each 6, 0 < 6 < 1, define g and r(+) by

1 1-6 1 0

r) p®’ q  po
Then there exists C depending on |supp (¢)| such that

lo * fllrma < Cllellga < Ifllpe.a-
This inequality is similar to one proved by Samko [24]. Details are left to the reader.
Section (4.2): Young Type Inequalities in Variable Lebesgue-Orlicz Spaces
LPO (log L)90)

Following Cruz-Uribe and Fiorenza [103], we consider two variable exponents
p(): R" - [1,0) and q(*) : R®" - R, which are continuous functions. Letting
Dy 0.009 (%, 8) = PP (log(cy + £))9™), we define the space LPO (log L)1 (Q) of all
measurable functions f on an open set () such that

111



If ()
f Pp)a0) (3" Ay )d <o
Q

for some A > 0; here we assume
(@) Ppy,q0-(x,7) Is convex on [0, o) for every fixed x € R™.

Note that () holds for some ¢, = e if and only if there is a positive constants K such
that

K(p(x) —1)+q(x) =0 forallx € R" (16)
Further, we see from (@) that t ~®,,(, ., (x, t) is nondecreasing in t. We define the

norm
If ()
1fllo, g0 = 1nf{/1>ojQ c1>p(.),q(.)(y, |y <1

for f € LPO(log L)90(Q). Note that LP©)(log L)10)(Q) is a Musielak—Orilicz space
[150]. Such that spaces have been studied in [103, 149, 151]. In case g(-) = 0 on R™,
LPO(log L)410(Q) is dented by LPO () ([13]).
We assume that the variable exponents p(-) and q(-) are continuous functions
on R™ satisfying:
(pD) 1=p:= inf p(x) < sup p(x) =: py <o

XERM

(P2) |p(x)—pW)| < m whenever x € R" and y € R";

[x=y|

(#3) ()~ )| < s whenever [y] 2 [x]/2

(ql) —o<g_:= inf q(x) < sup q(x) =: p; < o;
XERM xERN

C
log(e +log(e+

(q2) |q(x)—q()| < ) whenever x € R" and y € R"

[x=y|

for a positive constant C.

We choose p, = 1 as follows: we take p, = p_ if t7P-®,,( .y (%, t) is uniformly
almost increasing in t; more precisely, if there exists C >0 such that
STP-®,0 000 (x,8) S Ct7P-Dyyy y(x,t)  whenever 0<s<t and x€R"
Otherwise we choose 0 < p, < p_. Then note that t™Pod,, ,y(x,t) is uniformly
almost increasing in t in any case.

Let ¢ e integrable function on R™ for each t > 0, define the function ¢.by
@:(x) = t"(x/t). Note that by a change of variables, ||;|l;1 gn = [l@|l2 gn. We

say that the family {¢,} is an approximate identity if fRn @ (x)dx = 1. Define the
radial majorant of ¢ to be the function

@(x) = sup ).

ly[=[x|
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If @ is integrable, we say that the family {¢,} is potential-type.

Cruz-Uribe and Fiorenza [35] proved the following results:

Theorem (4.2.1)[153]: Let {¢,} be an approximate identity. Suppose that either
(i) {o,} is potential-type or
(i) @ € L®-)'(R™) and has compact support.

Then

sup ”(pt * f”LP('),Rn < ”f”LP('),Rn
o<t=1

and
tl_i)r_lr_lollgot *f - f”LP('),Rn =0
for all f € LPO(R™).
We extend their result to the space LP)(log L)?¢) (Q) of two variable exponents.

Theorem (4.2.2)[153]: Let {¢;} be potential-type approximate identity. If f €
LPO(log L) (R™), then {¢, * f} converges to f in LPO (log L)) (R™):

limllg; * f = flla, 08 = 0.
Proof. Given £ > 0, we find a bounded function g in LPO(log L)4®(R™) with
compact support such that || f — g||¢p(_)'q(_),Rn < €. By theorem (4.2.7) we have
lpe % f = Fllay g, oo
Slloex (f =Dllo, i gorr T 0¥ g = gllo, orr 10 = gllo, ) o r7
<Ce+lloc*g—gllo, ,rm
Since @ * gl < |l gll o rn,
lpe * g — Gllayg, mn < C'lloe* f = Glla, ) omn = 0
By Lemma (4.2.4) (Here C’ depends on |[|g ||« gr.) Hence

lim S(}'lp”(pt * f - f”CDp(.) q(.),Rn < CE;
t— ’

which complete the proof.
Theorem (4.2.3)[153]: Let {¢,} be potential-type approximate identity. Suppose that
@ € L®P)' (R™) and has compact support f € LPO(log L)40(R™), then {¢, * f}
converges to f in LPO (log L)4C) (R™):

ltl_l>r()1”<pt * f - f”d)p(.)rq(.),]Rn = 0.
Proof. Given ¢ > 0, choose a bounded function g with compact support such that
”f”q)p(_)’q(_)’]Rn < €. As in the proof of Theorem (4.2.2), using Theorem (4.2.12) this
time, we have

”(pt * f - f”q)p(.)'q(.),]Rn < Ce + “(pt *g — g”q)p(.)’q(.),]Rn'
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Obviously, LPe(R™). Hence by Lemma (4.2.9), ¢, * g — g almost everywhere in
R™. Since there is a compact set S containing all the support of ¢, * g,

”(pt * g - g”q)p(,)'q(.)']Rn S C,”(pt * g - glle++1'Rn
with C’' depending on |S|, and the Lebesgue convergence theorem implies
lo; * g — gllps+1gn = 0 @S t — c0. Hence

limsupllge * f = fllo, ) v < Cé,

t—0

which complete the proof.

We show by an example that the condition on ¢ are necessary.

We give some Young type inequalities for convolution with respect to the norms
in LPO (log L)2O (R™).

Let C denote various positive constants independent of the variables in question. Let
us begin with the following result due to Stein [152]

Lemma (4.2.4)[153]: Let 1 <p < oo and {¢,} be a potential-type approximate
identity. Then for every f € LPO(R™), {p, * f} converges to f in LPO(R™).

We denote by B(x,r) the ball centered at x € R™ and with radius » > 0. For a
measurable set E, we denote by |E| the Lebesgue measure of E.

Lemma (4.2.5)[153]: Let f be a nonnegative measurable function on R™ with
||f||¢p(_)'q(_),Rn < 1 such that f(x) = 0 or f(x) = 0 for each x € R". Set

J=]xrf) = f) dy

|B (x) T) | B(x,r)
and

L= L(X, T, f) = qu()q()(y,f(y)) dy

|B(x,7)] B(x,r)
Then
J < CLYP™) (log(cy + L))I/P),
where C > 0 does not depend on x, 1, f.
We need the following result.

Lemma (4.2.6)[153]: Let f be a nonnegative measurable function on R™ with
(1+|yD™ ! < f(y) < 1or f(x) = 0 for each x € R™. Set

J=]xrf) = f) dy

|B (xr T) | B(x,r)
and

L=L(xrf)= Dy3.490) (y,f(y)) dy.

|B(xl r)l B(x,r)
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Then

J < C{LYP® + (1 + |y,
where C > 0 does not depend on x, 7, f.
Proof. We have by Jensen's inequality

1 1/p(x)
< | — (y)POq >
! <|B(x,r)| sar)

1 1/p(x)
<|—— f (y)p(”dy>
(|B(x'r)| B(xINB(O,1x1/2)

1 1/p(x)
Y (- f(y)”(”dy>
(|B(X'r)| B(x\B(0,1x1/2)

=Lt/
We see (p3) that

1

1/p(x)
e o)

|B(x, 1) B(x,7)NB(0,|x]/2)
Similarly, setting E, = {y € R" : f(x) = (1 + |y])™™ 1}, we see from (p3) that

1/p(x)
Jo<C (— f (y)”(”dy>
? |BCx, 7)1 Jp (e rynB(0)x1/2)0E,

: 1/p(x)
+| —— (1+ |y|)_p(x)(n+1)dY>
<|B 6 B o,1x1/2)\E

1 1/p(x)
<\ TBa ()Pd ) + (1+ [y,
{(lB(xl r)l B(x,r)f Y Y Y

Since f(y) <1, f(PP < CDyyq0-(v, f (). Hence, we have the required
estimate.

By using Lemmas (4.2.5) and (4.2.6), we show the following theorem.
Theorem (4.2.7)[153]: Let {¢,} be potential-type, then
”(pt * f”q)p(.)’q(.),]Rn < C”@“Ll,Rn”f“cbp(.)rq(.),Rn
forall t > 0 and f € LPO(log L)10) (R™).

Proof. Suppose ||@][;1 g» = 1 and take a nonnegative measursble function f on
R™ such that ”f”q)p(_)q(_)’]Rn < 1. Write

f = Xyermron=13 T fXyer™ a+lyp1sro)<1} T fXyermroy=@+iyn=—n-1)
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=fith+fs
where y; denotes the characteristic function of a measurable set E ¢ R™.
Since @, is radial function, we write @, (r) for @,(x) when |x| = r. Note that

0 * F(0)] < f :(lx — yDAG) dy

RTI.

(0e] 1 R
=f0 <|B(x,r)| B(x,r)fl(”dy>|B(x»r)|d(—qot(r)),

So that Jensen's inequality and Lemma (4.2.2) yield
Dp)q0) (x, l@ * f1(0)])

- j " v [ fody ) 1BGDIA(=5. )
=, r(),q() "|B(x,7)] B(x,r) ! ' ‘

@ 1
SCL <|B(x ST p<->,q<->(%f1<y))dy)|B<x,r)|d(—¢t(r>)

= C(p: * g) (%),

where g(y) = @040 (y,f(y)). The usual Young inequality for convolution gives

j D,0,q0 & e * i) dx < C | (@ * 9)(x) dx
Rn

]RTL
< Cll@ellrgrllgll e gn < C.
Similarly, noting that =y fB(x " fo(y)dy <1 and applying Lemma (4.2.6),
we derive the same for f,.

Noting that |, * f3(x)| < Cll@¢ll;2 gn < C, we obtain

fRnch(-),q(-)(x» lor * f3(x)) dx < C | | * f3(x)] dx

]RTL
< Clloellp mellf3ll 2 e < C.
required.

As another application of Lemmas (4.2.5) and (4.2.6), we can prove the following
result, which is an extension of [36] and [149] (see also [148]).

Let Mf be Hardy—Littlewood maximal function of f.

Proposition (4.2.8)[153]: Suppose p_ > 1. Then the operator M is bounded from
LPO(log L)1 (R™) to LPO (log L)1V (R™).
Proof. Let f be a nonnegative measurable function on R™ such that || f ||q,p g RT S

1 and write f = f; + f, + f5 as in the proof of Theorem (4.2.7). Take 1 < p; < p_
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and applying Lemmas (4.2.5) and (4.2.6) with p(-) and q(-) replaced by p(-)/p; and
q(-)/p,, respectively. Then

Ppq0) (0 M) < C[Mgy (x)]P
and

Dpqy (6 ML (X)) < C{[Mg, ()P + (1 + [yD™"},
where g1 () = @y /p,,q0)/p, (¥, F(3))- As to f3, we have

Cpp(.)’q(.) (X, Mfs (X)) < C[Mf3 (X)]pl.
Then the bondedness of the maximal operator in LP:(IR™) proves the proposition.
If p_ > 1, then the function @, 4, is proper N-function and the Proposition
(4.2.8) implies that this function is of class A in the sense of Diening [149] (see [147,

Lemma (4.2.10)). It would be an interesting problem to see whether “class A” is
also a sufficient condition or not for the boundedness of M on LPO) (log L)40)(R™).

We know the following result due to Zo [65]; see also [35].

Lemma (4.2.9)[153]: Let 1 < p < oo, 1/p+ 1/p' =1 and {¢,} be an approximate

identity. Suppose that ¢ € LP (R™) has compact support. Then for every f €
LP(R™), {¢; * f} converges to f pointwise almost everywhere.

Set

p(x) =p)/pp and gx) = q(x)/po;
recall that p, € [1,p_] is chosen such that t7Pod,, . .y (x, t) is uniformly almost
increasing in t.
Lemma (4.2.10)[153]: Let f be a nonnegative measurable function on R™ such that
||f||¢p(_)'q(_),Rn <1 such that f(x) >1 or f(x) =0 for each x € R® and ¢ has

compact support in B(0, R) with ||f||L(,,0)r gn < 1. Set

F=F(Q,tf) =g * f(x)]
and

G=Gxt[f)=| lox—=0Pse a0 f () dy.

R‘n
Then
F < CGYP® (log(cy + G))PX/P(X)
forall 0 <t < 1, where C > 0 depends on R.

Proof. Let f a nonnegative measurable function on R™ with ||f||¢p(_)q(_),Rn < 1 such
that f(x) = 1 or f(x) = 0 for each x € R™ and let ¢ have compact support in B(0, R)

with ||<p||L(po)r,Rn < 1. By Hoélder's inequality, we have
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1/po
G <Nl wor gn ( qu’p(-).q(-) . f (y))dy> < tT/Po,

First consider the case when G > 1. Since G < t™"/Po_for x € B(x, tR) we have by
(p2)
G P < G-P)+C/loge+(tR) ™ NG < cG—PX
and by (q2)
(log(co + G))10) < (log(cy + G))1™,
Hence it follows the choice of p, that

F < GVP0) < (log(co + GO/ | gy (x =yl dy
Rn

£ -1
G1/P@) (log(c, + G))—ﬁ(x)/ﬁ(X)}

| (log(co + £ (1)) R

GT/P (log(cy + G))-aC/B@) Y
< CGYP™ < (log(cy + G))~AX/P()

(cf. the proof of [149]).

In case G < 1, noting from the choice of p, that f(y) < ®5¢)7¢) (v, f(y)) for
y € R", we find

F < CG < CGYP™ < CGYP™ (log(cy + G)) ™/,
Now the result follows.

Lemma (4.2.11)[153]: Suppose that ||¢|[» gn < 1 Let f be a nonnegative measurable
function on R™ with ”f”q)p(.)q(_),Rn < 1. Set

+ [ loe -yl don|

[=1(xtf)= f lp:(x —Y)f)dy

{yeR™: |y|>|x|/2}
and

H=Htf) = f 10 (= VP00 0 F ) .

]Rn
If A> 0and H < H,, then

F< C(Hl/p(x) + |x|—A/p(X))
for|x| >1and 0 <t < 1, where C > 0 depends on A and H,,.

Proof. Suppose that [[@]|;: gr < 1 Let f be a nonnegative measurable function on R"
Wlth ”f”q)p(.)’q(.),]Rn < 1.

Let [x| > 1. Inthe case H, > H > |x|™4 with A > 0, we have by (p3)
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H-P® < cG-P)—C/logle+lx]) < ¢ g—p®)
for |y| > |x|/2. Hence we find by (®)

1<C {Hl/P(@ + f lo:(x —WIf (y)dy
{yeR™ |y|>|x|/2}

q(y) \
{f(y }"(”‘1 {((log(60+f(y))} ] }
BHic, .

1 _1
Hr () klog <CO + HP(")))

< CHP®™
Next note from (p3) that
|x|PO) < |x|PGI+C/logletlx]) < | |P(X)

for |y| > |x|/2. Hence, when H < |x|~4, we obtain by (®)

1
1<C {IxIW) + f loe(x —YIf (y)dy
{yeR™: |y|>|x|/2}

{ f&) }WH { (log(co + () }"(” .
PRES log(co + [P0 %Y

< Clx|7P™,
which completes the proof.
Theorem (4.2.12)[153]: Suppose that ¢ € L®0)' (R™) has compact in B(0, R). Then
”(pt * f”q)p(.)’q(.),]Rn < C”(p”L(po),’Rn”f”q)p(.),q(.),Rn

forall 0 <t < 1 and LPO(log L) (R™), where € > 0 depends on R.

Proof. Let f a nonnegative measurable function on R™ such that ||fll¢, & <1
and let ¢ have compact support in B(0, R) with [[@]l, 4y pn < 1. Write

f = xyerrrozay T fXyerm: gy<ron<1y = i+ 12
We have by Lemma (4.2.10)

lp: * (O] < C("Pt| * g(x))pO/p(x)(log(CO + @, | * g(x)))
where g(y) = 50,000 (. F3)) = Ppiraer (0 F3)) 7

D000 [0 * (0D < C(lgel * ()™ dx.

Hence, since g € L®o)' (R™), the usual Young inequality for convolution gives

—q(x)/p(x)

. sothat

f Ppirae o x LD <C | (1l * g(0))dx
R" R™
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p
< C(llpellgnllgllpopn)™ < C.
Next we are concerned with f,. Write
fo= szB(o,R) + szB(o,R) =f;+17
Since |, * f,(x)| < C on R", we have

j Pprq0) (K loe * () < C.
B(0,2R)

Further, noting that ¢, * f, = 0 outside B(0, 2R), we find

Jmnq)p(-),q(-)(x' loe * f (x)]) < C.

Therefore it suffices to prove

j Ppraey Xl * f2' (D) < C.
R™\B(0,2R)

Thus, in the rest of the proof, we may assumethat 0 < f <1onR™and f = 0 on
B(0, R). Note that

j 0ex = Y)f () dy = 0
B(0,|x|/2)

for |x| > 2R. Hence applying Lemma (4.2.11), we have

o * FCOIP® < (] * h(x) + 1xI74)
for |x| > 2R, where h(y) = @, 4 (¥, f(¥)). Thus, the integration yields

j lpe * f()PX) < C,
R™\B(0,2R)

which compete the proof.
In Theorem (4.2.3) (and in Theorem (4.2.1)), the condition ¢ € L®-)'(R™)
cannot be weakened to ¢ € L1(R") for 1 < g < (p_)'. Forgiven p; >1and 1 <

q < (py)', we can find smooth exponent p(-) on R™ such that p_ = p,, f € LPO(R™)
and ¢ € L1(R™) having compact support for which

o * fll pe> gn =
For this, let a € R™ be a fixed point with |a| > 1 and let p, satisfy
1 1 1

+— <=
(p1) p2 q

Then choose a smooth exponent p(-) on R™ such that

1 1
p() =piforxeB(03),  p@ =p,forxeB(a3)
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p_ = p, and p(x) = const. outside B(0, |a| + 1). Take
n n

0 = %p@;y and @ =ji%pq -1y,  Jj=2,3 ..
Then
”(pj”Lq,]Rn =C( <o and ”f}”LP(')’]Rn = ||(pj||Lp1,B(O,1/2) = C < oo.

Note that if x € B(0,j~1), then
n n n n

@ * ;) = jTPi|B(a,j ) N B(x,j 7| = j4 P,
So that

j {(pj * fj(x)}P(x)dx > j {‘Pj % fj(X)}p(x)dx
R™ 5

(a,j 1)

el

¢ = Zj‘z @,; and f= ZJ"Z Py
j=2 =2

Then ¢ € L1(R™) f € LPO(R™). On the other hand

Note consider

(0 f@P@dr =i | {pyx fu@) ax

R™ B(a,j™1)
WO
> ¢j~4"" N\ w0 P2 5 o

as j — oo. Hence [l¢ * f|| p0) gn = 00.

By modifying their example, we can also find p(-) and ¢ € L®-)'(R), whose
support is not compact, such that

o * fllpo g < ClIfllpo g
does not hold, namely there exists fy(N = 1, 2, ...) such that ||fN||Lp(.)’R <1land
Allij{)lo”QD * full po g = .
For this purpose, choose p; > 1, p, > p, and a > 1 such that

—p2/p1—ap1 +2 >0,
and let p(-) be a smooth variable exponent on R
p(x) =p;forx <0, pkx)=p, forx>1
andp; < p(x) <p, for0 <x <1.Seto = XL, xj, Where x; = x[—j-j+j-a). Then
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fR p()dx = i | ;ﬁj_ax,-(x)qu = Z] < C(@) <o

for any g > 0. Further set fy = N‘l/pzx[l,,vﬂ]. Notethatfor1 —j 4+ <x <0
andj < N

x+j

IO j 2, = Y fu)dy = N/P2ja,

x+j—j~@

1

o p
fR {o* FO)PPdx = j=* j_ooo ;Xj *fu(x) ¢ dx

. (0
P1
= JZ=1 fl_j_j_a{xj * fy ()} dx

> N P1/P2 Zj_apl(j —j*-1)>
J

> CN P1/P2—ap1t2 5 o (N - ).

Cruz-Uribe and Fiorenza [35] conjectured that Theorem (4.2.1) remains true if ¢
satisfies the additional condition

|yl
lp(x —y) — ()| < PR when |x| > 2[y|. (17)

Noting that this condition implies
sup lp(x) — p(2)| < €27,

x,z€B(0,2/*1)\B(0,2/+1)

We see that |l}m ¢ (x) = 0since ¢ € L'(R™) and
X|—>00

lp()] < Clx|™ (18)
if ¢ satisfies (17). In this connection we show
Theorem (4.2.13)[153]: Let p_ > 1. Suppose that ¢ € L*(R™) n L®' (B(0,R)) and
¢ satisfies (18) for |x| = R. Then

19 % Fllogygmn < € (lollsgen + 12N w0y 5o p ) 1 lope g0 mn

for all f € LPO(R™) N (log L)7OL®)"( RM).
Proof. Let f a nonnegative measurable function on R™ such that || f ||q,p ok = 1.

Suppose that ¢ satisfies (18) for |x| = R and |||l gn + ”(p”L(pO),B(OR) <1.

Decompose ¢ = ¢’ + ¢, where ¢’ = @ xg(o,ry. We first note by Theorem (4.2.3) that
“(p, * f”CDp(.),q(.),Rn < C.
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Hence, it suffices to show that
”go *f”q)p(.),q(.),Rn < C.
For this purpose, write

f= fX{ye]R":f(y)Zl} + fX{yE]R":f(y)<1} =fi+ /2
As before. Then we have by (18) and ()

0" % ()] < C j X — Y™ ) dy

R™\B(0,R)

<CR™ | fi(y)dy
]Rn

R™
Noting that |¢"" * f,(x)| < 1, we obtain
j CDp(.),q(.)(x,q)” * fZ(X))dX <C.
B(O,R)
NOting, let q)p('),q(') (y,f(y)) Then
lp"| *h < CR‘”] h(y)dy < CR™.

Rn

If x € R™\B(0, R), then we have by (18) and Lemma (4.2.11)

I<p”(x—y)lf(y)dy+j lo" (x —WIf y)dy

R™\(0,]x1/2)

9"l < |

B(0,x1/2)

- . 1/p(x) _
S C{lxl ”J FONdy + (lo"1* (W) "7 + x| A/P(x)}
B(0,x1/2)

< c{MF@) + (10”1 = ()7 + x| 4r)

with A > n. Now it follows from Proposition (4.2.8) that

j Pp(,q0) (0 @7 * fo(x))dx
R™\B(0,R)
=C { J Dp,q0) (3 MS (2))dy
R

+ | lel*h()dy +J IxI‘A/p(x)dx} <C,
R" R™\(0,R)

as required.
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Remark (4.2.14)[153]: Theorem (4.2.13) does not imply an inequality
”got * f”CDp(.),q(.),]Rn < C”f“q)p(.)’q(.),Rn
with a constant C independent of t € (0, 1] even if ¢ satisfies (18) for all x, because

{”(pt”L(po)”B(O’R)}0<tSl|S not bounded.

Theorem (4.2.15)[153]: Let1 —p_/p, <0< 1,1 <p <p_,
lzl—g and ! =1_9
s p r(x)  plx)
Takev =p_/pif tp—/ﬁcbp(.)/ﬁ,q(.) (x, t) is uniformly almost increasing in t; other wise
choose 1 < v < p_/p. Suppose that @ € LX(R™) n L*(R™) n L** (B(0,R)) and ¢
satisfies

lp()| < Clx| ™/
for |x] = R. Then

19 % Fllo, ey gpin < € (@l g + Mol n + 19l o 5o o ) 1 Ny g en
for all f € (log L)1OL®)"(RM).

Proof. Suppose that [|@|[;1 g + ll@|l s ke + ll@ll < 1 and satisfies

LS"',B(O,R)
lp(x)| < Clx| ™/

for |[x| = R. Let f be a nonnegative measurable function on R™ such that
9lle, ) qr" < 1, and decompose

f=h+t
where fl = fX{yER”:f(y)zl}' Let
1 1-6 1 1 1
—=—— and —=1+-———,
r p- 51 T p,

By our assumption, s; = 1. It follows from Young's inequality for convolution that

o * follismn < l@llpsimn + (121l 1p2 g
Hence notethat 1 < s; < s,sothat ||@|[.s1 gr < ll@l[;2gr + ll@|[sgn < 1. Since 0 <
fi < L llollpsign < Cllglla, o mn < C. Thus, noting that |¢ « f,| < 1 and
1 1 _ 1-606 1-6

rx) r p(x) ps

—_ )

we see that
”go * f2 ”(I)T(.),q(.),ﬂ@n < C”(p * f2||Lr,Rn < C. (19)
On the other hand, we have by Hoider inequality
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lp * fo| < (jRnlqo(x - WIFAG)P dy) (fRnlqo(x -yI° dy>
a-9

B p
(f |f1<y)|ﬁdy) s(j |<p|5*ﬁ’<x>dy> (20)
R™ R™

Noting that |@|* € L'(R™) n L*'(B(0,R)), |¢|°® satisfies (18) for |x| =R and
A2, < €, we find by Theorem (4.2.13)

1—

Sl

= ©

p()/a¢)R"

s p
lo* £ ”%(-)/ﬁq(-)»ﬂ@" =C

Since (20) implies
P19, R 9 % f1()) < CPpyypq0) R (%, 191° * 7 (),
it follows that
”gD * fl ”(Dr(.),q(.),Rn <C.
Thus, together with (19), we obtain
”gD * f“('Dr(.),q(.),]Rn < C:
as required.

If p_ > 1, this conjecture was shown to be true by Cruz-Uribe, Fiorenza, Martell
and Pérez in [66], using an extrapolation theorem ([66]). Using Proposition (4.2.8), we
can prove the following extension of [66]:

Proposition (4.2.16)[153]: Let F be a family of ordered pairs (f, g) of nonnegative
measurable functions on R™. Since that for some 0 < p, < p~,

f(x)Pow dx < COJ gx)Pew dx

R R
forall (f,g) € F and for all A;-weighet w, where C, depends only on p, and the A;-
constant of w. Then

”f”(Dp(.),q(.),]Rn < C”g”‘fpr(.),q(.),ﬂgn < C
for all (f,g) € F such that f € LPO(log L)1 ( R™).
Then, as in [66], we can prove:

Theorem (4.2.17)[153]: Assume that p_ > 1. If ¢ is an integrable function on R"
satisfying (17), then

”(pt * f”(Dp(.),q(.),]Rn < C”f”d)r(.)rq(.),Rn
forallt > 0and f € LPO(log L) ( R™). If, in addition [ ¢(x)dx = 1, then

%g)%||¢t * f - f”fl)p(.),q(.),Rn = 0.
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Forp =1, q € Rand ¢ > e, we consider the function
d(t) = d(p,q,c;t) =tP(log(c +t))4, teE[0,).
We give a proof of the following:

Theorem (4.2.18)[153]: Let X be anon-empty set and let p(-) and q(-) be real valued
functions on X such that 1 < p(x) < p, < oo for all x € X. Then the following (i) and
(i) are equivalent to each other:

(i) There exists ¢ = e such that ®(p(x),q(x), cy; *) is a convex on [0, ) for every
x EX;
(ii) There exists K > 0 such that K(p(x) — 1) + q(x) = 0 forall x € X.

Proposition (4.2.19)[153]:
(i) If
(I1+logc)(p—1)+q =0,
Then & is convex on [0, o).

(if) Given p, > 1 and c = e, there exists K = K(p,, ¢) > 0 such that @ is not
convex on [0,) where 1 <p <pyandq < —K(p — 1).

Proof. By elementary calculation we have
@ (t) = tP72(c + t)"?(log(c + t))972G (¢).
with
G(t) =pp— 1 (c+t)*(og(c + t))* + 2pq(c + t) log(c + t) — gp?log(c + t)
+q(q — 1)?
fort > 0. ®(t) is convex on [0, o) if and only if G(t) = 0 for all t € (0, ).
(i) If g = 0, then
G(t) = qt2(c+t)—t)loglc+t) —qt? = qRpc+2(p—1t) =0
forall t € (0, o), so that @ is convex on [0, o).
If —(1+1logc)(p—1) <q <0,then

G(t) = p{,/p —1(c+t)log(c+1t) + \/%t}

t? —qt*log(c +t) + q(q — 1)?

—pq*

p—1

> (—q)t? (ngqu +logc — (q — 1))

= (—q)t> (qultz + logc + 1) >0

forall t € (0, o), so that @ is convex on [0, o).

(i) Ifp=1and g < 0, then
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G(t) = qt((t +2c)loglc + ) + (g — Dt) >
as t — oo. Hence @ is convex on [0, o).
Next, let1 < p <p,and g < —K(p — 1) with K > 0. Then

pG(Tt)l =p((c+t)log(c +t) — kt)2 + k(2log(c +t) — k + 1)t?

< ((c+t)loglc+1t) — kt)2 + k(log(c + t) — k + 1)t

LetA=1—-1/(2py). Then0 < A < 1. If k > (logc)/A, there is (unique) t, > 0
such that log(c — t;) = Ak. Note that t; /k — co. We have

G(t
I% = po((c — ty) Ak — ktk)2 + k(Ak — k + 1)t?

2 k 2 Zk
< ktZ{po((1—2) — 1)(1—A)k+1—2poc/1(1—l)a+poc A it
k

Since po(1 —4) —1 = —-1/2, it follows that there is k = k(c,py) > (logc)/A such
that G(t;,) < 0 whenever K > K. Hence & is not convex if 1 <p <p, and g <
—K(p—1).
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Chapter 5
Approximate Identities and Trudinger's Inequalities with Riesz Potentials

We give a Young type inequality for convolution with respect to the norm in
Musielak-Orlicz spaces. We are concerned with Trudinger's inequality for Riesz
potentials of function in Musielak-Orlicz spaces. We provide a number of useful
auxiliary results including a normalization of the ®-function and behavior under
duality.

Section (5.1): Young type Inequalities in Musielak-Orlicz Spaces

Let k be an integrable function on RY. for each t > 0, define the function k, by
k.(x) = t Vk(x/t). Note that by a change of variables, ”ktllLl(RN) = ”kllLl(RN).

We say that the family {k;};-, iS an approximate identity if fRN k(x) = 1. Define the
radial majorant of k to be function

k(x) = sup |k(0)].
lylz]x|

If % is integrable, we say that the family {k,},., is of potential-type.

It is well known (see, e.g., [157]) that if {k,},., potential-type approximate
identity, then k, = f - f in LP(RY) ast — 0 for every f € LP(RN) (p = 0).

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to
discuss nonlinear partial differential equations with non-standard growth
conditions (see [154]). Cruz-Uribe and Fiorenza [35] gave sufficient conditions for
the convergence of approximate identities in variable exponent Lebesgue spaces
LPO(RN) when p(-) is a variable exponent satisfying the log-Holder conditions on

RN, locally and at oo, as an extension of [147], [157], etc. In fact, they proved the
following:

Theorem (5.1.1)[158]: Let {k;};>, be an approximate identity. Suppose that either
(1) {k¢}¢>0 is of potential-type, or
(ii) k € L@ (RN) and has compact support, where p~ := xieanjV p(x)(=1)
and1/p~+1/(p7)' = 1.

Then

sup ||k, *f||Lp(-)(RN) =< ||f||Lp(-)(RN)
o<ts<1
and
lti_l}(}”kt * f _f”Lp(-)(RN) =0

for all f € LPO(RM).
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Theorem (5.1.1) was extended to the two variable exponents spaces

LPO (logL)?O(RN) in [153]. These spaces are special cases of the so-called
Musielak-Orlicz spaces ([150]).

To extend these result to the Musielak-Orlicz spaces L®(RM) (see the
definition of ®). As a related topic, we also give a Yonug type inequality for
convolution with respect to the norm in L2 (RM).

We consider a function
P(x,t) = t,(x,t) : RN x [0,00) — [0, )
satisfying the following conditions (1) — (®4):

(®1) (-, t) is measurable on R for each ¢ > 0 and ¢(x, t) is continuous on [0, o)
foreach x € RY;

(d2) there exists a constant on A; = 1 such that
AT < @p(x,1) < A, forallx € RY;

(@3) @(x,") is uniformly almost increasing, namely there exists a constanton A, > 0
such that

o(x,t) < A,p(x,s) forall x € RY whenever 0 < t < s;
(d4) there exists a constant on A; > 1 such that
©(x,2t) < Az¢(x,t) forallx e RV andt > 0.
Note that ($2), (®3) and (P4) imply

inf o(x,t) < sup ¢(x,t) < o
x€ERN x€ERN

foreacht > 0.

If ®(x,") is convex for each x € RY, then (®3) holds with A, = 1; namely
¢ (x,”) is non-decreasing for each x € RY.

If p1 (), P, (), q1(), and g, (+), are measurable function on RN such that

<p;:= i . < ) —: pt -
(P1) 1<pj:= inf p;(x) < feuRIz)va(x) pf<ow, j=1,2
and
QD) — o <gji= infq;(0) < sup () =: qf <o, j=12,
Then

d(x,t) = (1 + )@ (1 + 1/t) P2 (log(e + t))1:® (log(e + 1/t)) 92
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satisfies (®1), (®2) and (P4). It satisfies (®3) if p; > 1, j=1,2,0rp; =0,j =
1, 2. As a matter of fact, it satisfies (®3) ifand only if p;(-), q;(+) Satisfy the following

conditions:

(i) qj(x) = 0 atpoints x where p;(x) =1, j=12;

(ii) sup {min(qj(x), 0)log(p;(x) — Di<o, j=1,2,
x:pj(x)>1

Let (x,s) = sup ¢(x,s) and

Oss<t

t

D (x,t) =J o(x,r)dr

0

for x € R¥ and t > 0. Then ®(x,") Is convex and

1 _
—P(x,t) < P(x,t) <A, P(x,t)
24,

for all x € RN and t > 0. In fact, the first inequality is seen as follows:

t

D(x,t) > j

t 1
p(x,r)dr = =@p(x,t/2) = — P(x,t).
t/zq) St/ 24,

Corresponding to(®2) and ($4), we have by (1)
(24;43)71 < d(x,1) < A;4, and ®(x,2t) < 24;D(x, t)
forallx € RN and t > 0.

Given ®(x, t) as above, the associated Musielak-Orlicz space

L®(RY) = {f € Lipc (RY); j oy, |f () Ddy < 00}
RN

is a Banach space with respect to the norm (cf. [150]).

1 1o vy = inf{ﬂ > 0; f By, If )/ Ddy < 1}
RN

By (2), we have the following lemma (see [156]).
Lemma (5.1.2)[158]:

g

ey <2( [ B0 17D )

with 0 = log2/log(245), ||f||ch(sz) <1

We shall also consider the following conditions:
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(P5) orevery y > 0, there exists a constant B, = 1 such that

@(x,t) < Bypy,t)
where |x —y| <yt Nandt > 1;

(P6) there exists a function g € L1(RY) and a constant B,, = 1 suchthat 0 < g(x) <
1 and for x € R

Bild(x,t) < ®(x',t) < B, P(x,t)
whenever [x'| = |x|and g(x) <t < 1.
If d(x, t) satisfies (P5) (resp. (®6)), then so does P (x, t) with B, = 24,A3B,
in place of B, (resp.B., = 2A4,A3B, in place of B,).

Let ®(x,t) be a measurable function on RY. It satisfies (®5) if (P2) p,() is
log-Hdblder continuous, namely
C
p1() —p (| < —2—~  for [x—y| <
tog(f27)
with a constant C,, = 0,
and

(Q2) g, (*) is log-Hdlder continuous, namely

Cq

o 1o8( =57

2

1g1(x) —q: (V)| < for [x —y| < e~

with a constant C, = 0.
®(x, t) satisfies (P6) with g(x) = 1/(1 + |x] )N+ if
(P3) p,(*) is log-Hoblder continuous at co, namely

_ I} Cp,c0 /
[P2(¥) = Po(¥)| < 22 whenever |x'] > |x]

with a constant C,, ., = 0,
and

(Q3) q,(+) is log-Holder continuous at oo , namely

_ ! Cq,00 /
g, (x) — g, (x")| < Toa(etTog(e Al whenever |x'| = |x]|

with a constant C;, ., = 0.
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If 1/(1+ |xD¥* P <t <1, then (1+ O)P1@-PGDl <opi-1 141/
£)lP200-P2(N| < e WDl (Jog(e + £))1I~0:(D] < (log(e + 1)4+97  and
(log(e + 1/t))|92®-00 < (N, C, o) for |x'| = |x].

Let C denote various positive constant independent of the variables in question.
First, we recall the following classical result (see, e.g., Stein [157]).

Lemma (5.1.3)[158]: Let 1 < p < oo and {k;}:>( is of potential-type approximate
identity. Then, k, * f converges f in LP(RN) for every f € LP(RY).

We denote by B(x,r) the open ball centered at x € RY and with » > 0. For a
measurable set E, we denote |E| the Lebesgue measure of E.

For a nonnegative f € L} .(RY), x e RN and r > 0, let

loc

I(f;x,7r) = f)dy

|B(x) r)l B(x,r)

and

J(f;x,7) = Of (v, f(¥))dy.

|B(x) r)l B(x,r)
The following lemmas are due to [155].

Lemma (5.1.4)[158]: ([155, Lemma (5.1.2)], [155, Lemma (5.1.3)]). Suppose
®(x, t) satisfies (P5). Then there exists a constant € > 0 such that

Of (x,I1(f52,7)) < CJ(f;x,7)

forall x € RN and > 0 and for all nonnegative f € Lj,.(R") such that f(y) = 1 or
f(y) = 0 foreach y € RN and Ifllomyy < 1.

Lemma (5.1.5)[158]: ([155, Lemma (5.1.2)], [155, Lemma (5.1.4)]). Suppose
®(x, t) satisfies (P6). Then there exists a constant € > 0 such that

Of (x, I(f52,7)) < CY(f52,7) + g(x)}

for all x € RN and r > 0 and for all nonnegative f € Li,.(RY) such that g(y) <
f(y) <0orf(y) =0foreachy e RN, where g is the function appearing in (©6).

By using Lemmas (5.1.4) and (5.1.5), we show the following theorem.

Lemma (5.1.6)[158]: Suppose (®5) satisfies ($6). If {k;};>o is of potential-type,
then

ke * fll o gy < c||E||L1(RN)||f||L¢(RN)

forall t > 0 and f € L®(RM).
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Proof. Suppose ||I€||L1(RN) = 1 and let f be nonnegative umeaurable function on
RY such that 1l mvy < 1. Write

f= fX{ye]RN:f(y)zl} + fX{yeRN:g(y)<f(y)<1} + fX{yE]RN:f(y)sg(y)} =htht ]

where yr denotes the characteristic function of a measurable set E ¢ R and g is the
function appearing in ($6).

Since k, is radial function, we write k,(r) for k,(x) when |x| = r. First note that
ke * f;(0)] < le;t(lx —yDfi(dy = f 1(f;;%,7) 1BCe, )| d(—ke (1)),
R 0
j=1,2,and

|| ABCeIDA(F@) = [l gy = 1

so that Jensen’s inequality yields

Of (x, |ke * f;(0)]) < jo Of (x, I(f;x,7)) < |B(x,7)|d(—k:(r)),

j=1,2.
Hence, by Lemma (5.1.4)

Bf (x, ke * (D < € j J(fis %, mBCe T (ke () < C(k, + ),
0
where h(y) = ®(y, f(¥)). The usual Young inequality for convolution gives
[ #relics abaxsc [ Grmear
RN RN

< c||1€||L1(RN)||h||L1(RN) <C.

Similarly, noting that g € L1 (R") and applying Lemma (5.1.5), we derive the
same result for f£,.

Noting that |k, * f3(x)| < Cllk¢ll 1 gvy < 1, We obtain

[ #relics peonaxsc [ ks felax
RN RN

< CllktllLl(RN)llgllLl(sz) <C.
Thus
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f B (x, |ke * £OODdx < C,
]RN

which implies the required assertion.

Theorem (5.1.7)[158]: Suppose ®(x,t) satisfies(P5) and (P6). Let {k;};~ be a
potential-type, approximate identity. Then k, = f converges to f in L® (R"):

}:i_r)rolllkt *f _f”LCD(]RgN) =0
For every f € L*(RY).

Proof. Given € > 0, we find s bounded function h in L® (R") with compact support
such that|| f — hlchp(RN) < &. By Theorem (5.1.6) we have

ke * f = fll o @m
< llke * (h = Pllpo@wmy + |lke * h = hll o gy + If = hll 0@y

< (C|[k|, + 1) + |lke * h — hll o gy,

1(RN)

Since |k, x h| < ”h”Loo(RN), we have

j@f(x,lkt*f(x)l)deC’j |k, * h(x) — h(x)|dx <> 0
RN RN

as t » 0 by Lemma (5.1.3) (Here C’ depends on ”h”LOO(RN).) Hence ||k; * h —
h”Ld)(RN) — 0ast — 0byLemma (5.1.2), that

lim supllke * f = fllo @y < (ClIE]| s oy + De,
which completes the proof.

We know the following result due to Z,, [65]; see also [35].

Lemma (5.1.8)[158]: Let 1<p<oo, 1/p+1/p'=1 and {k;};~, be an

approximate identity. Suppose that k € LP'(]RK’V ) and has compact support. Then for
every f € LP(RM), k, * f converges to f pointwise almost everywhere as t — 0.

We take p, = 0 as follows. Let p be the setofall p = O suchthatt - t P d(x, t)
is uniformly almost increasing, and set § = sup P. Note that 1 € P by ($3), so that
p>0if p&P.Letp,=pifp e Pand1<p, <p otherwise.

For ®(x,t) and p = min{p;,p; },sothatp, =1ifpy =1or p; =1;and1 <
po < min{py,p;}ifp; > 1,j =1,2 (cf. [153)).

Since t~Pod(x, t) is uniformly almost increasing in t, there exists a constant A5, > 1
such that

t7Pod(x,t) < Ays Pod(x,s) forallx € RY whenever1 <t <s.
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Set
Do (x,t) = d(x,t)/Po,

Then @, (x, t) also satisfies all the conditions (®j),j = 1,2, ... ... ,6. In fact, it trivially
satisfies (®j) forj = 1, 2,4, 5, 6 with the same g for (®6). Since

Dy (x,t) = tey(x,t) with @o(x,t) = [t™Pod(x, t)]/Po,
d,(x, t) satisfies (P3) with A, replaced by 4, = (45)/Po,

Lemma (5.1.9)[158]: Suppose @(x,t) satisfies(P5). Let k have compact support
contained in B(0, R) and let ||k||L(p0)r(RN) < 1. Then there exists a constant C > 0,

which depends on R, such that

Do(x, ke x fF(X)]) < Cj

IRwlkt(x =Py, f(¥))dy

forall x € RY, 0 < t < 1 and for all nonnegative f € L},.(R") such that f(y) > 1
or f(y) = 0 for eachy € R" and 1fll o (mry < 1.

Proof. Given f as in the statement of the lemma, x e RV and 0 < t < 1, set

F=lk*f(x) and G= j ke (x — Y) | ®o (v, F (7)) dly.
RN

Note that ”f”Ld)(RN) < 1 implies

1/po
6 < Ikell oy g ( | Ncb(y,f(y))dy) < eV (245) 0 < (2A43) 1P
R

by Hoélder’s inequality and (1).

By (2), @3(y, f(¥)) = (4144) 7' f(¥), since f(y) = 1 or f(y) = 0. Hence
F <A;A,G.Thus,if G < 1, then

Do(x, F) < (A14,6)A4(A1A) 7P Pogp(x, A1 Ay)' P < CG.
Next, let G > 1. Since ®,(x,t) = oo as t — oo, there existsK > 1 such that
Dy(x,K) = dy(x, 1)G.
Then K < A,G, since ®,(x, K) = A;1K®y(x, 1). With this K, we have

NCHL6)
(pO (y; K) dy,

F < Kj ke — y)ldy +A4j ke Cc = MIFO)
RN RN

Since

1<K <A,G6 <A, (243)YPot=N < C(tR)7V,
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there is § > 0, independent of f, x, t, such that
0o(x,K) < Bpo(y,K) forall y € B(x,tR)
by (®5). Thus, we have

F = Kl + s [ VoG = DIF0I0a0, 0Ny

= K”k”Ll(]R{N) + A4,8

Yo (xK)

AuB
=K (”k”Ll(R’V) + <p0(4x,1))

< K (llkll gy + A1/ A4B) < CK.
Therefore by (®3), (P4), the choice of K and ($2),
Dy(x,F) < CPy(x,K) < CG
With constants C > 0 independent of f, x, t, as required.

Lemma (5.1.10)[158]: Suppose @(x,t) satisfies (P6). Let M > 1 and assume that
”kllLl(RN) < M. Then there exists a constant C > 0, depending on M, such that

JCALATIODE c{ f ke e =)Dy, f())dy + g(x)}
for all x € RN, t >0 and for all nonnegative f € L} ,.(RY) such that g(x) <
f(y) <1orf(y) =0foreachy € RN, where g is the function appearing in (®6).

Proof. Let f be as in the statement of the lemma, x € RY and t > 0. By (®4), there
is a constant ¢, = 1 such that ®(x, Mt) < ¢, ®(x,t) forall x € RN and t > 0. By
Jensen’s inequality, we have

_ — kt -
5c k700D < and ([ (FE2) roay)

< Geu/M) [ e = )13 F))dy.

If |x| = |y|, then ®(x, f(¥)) < Bo,®(y, f () by (96).
If x| < |yland g(x) < f(¥), ®(x, f(¥)) < B ®(x, f(¥)) by (®6) again.
If |x| < |y|and g(x) = f(y), then

P(x, f(¥) < P(x, g(x)) < g(x)P(x, 1) < A;4,9(x)

by (2)
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Hence,

O(x, f() < C{(y, f () + g()}
in any case. Therefore, we obtain the required inequality.

Theorem (5.1.11)[158]: Suppose ®(x, t) satisfies (®5) and (P6). Suppose that k €
L®)' (RV) and compact support in B(0, R) Then

e * fll o @y < CIEH oy gy 11l ey
forall0 <t < 1and f € L*(R"), where C > 0 depends on R.

Proof. Let f be a nonnegative measurable function on R" such that ||f||L¢(sz) <

1 and assume that ||k||L(p0)r(RN) = 1. Note that ||kl (gyy < |B(0, R)|*/Po by

Holder’s inequality.

Write

f= fX{yERN:f(y)z1} + fX{yE]RN:g(y)<f(y)<1} + fX{yE]RN:f(y)sg(y)} =fithtfa

where g is the function appearing in (®6). We have by (1) and Lemma (5.1.9),
B (x, [ke * fr(X)]) < AP0 (x, lkee * fLGADP0 < C(x, lke| * h(x))™,

Where h(y) = ®(y, f(y))¥/Po . Since ”hlligo(RN) < 2A5, the usual Young’s
inequality for convolution gives

facxwkt*fl(xmdxscj (lke] * hGO)Podax
RN RN

Do
< € (lkell 2yl ogamy ) < C.

Similarly, applying Lemma (5.1.11) with M = |B(0, R)|*/Po and noting that g €
L*(RM), we derive the same result for f,.

Since |k; * f3(x)]| < IIktllLl(Rw) < M, we obtain

j€><x,|kt*f3<x>|>dxscj ke * £ ()l dx
]RN ]RN

< Cllkell 2wy llgll 2 mvy < C.

Thus, we have shown that

j BCx, |ke * FO)Ddx < C,
]RN
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which implies the required result.

Theorem (5.1.12)[158]: Suppose @(x,t) satisfies (P5) and (P6). Let {k;};~o be
an approximate identity that k € ||k||L(p0)r(RN) and has compact support. Then k; *

f converges to f in L®(R"):
1ti_{%||kt *f = fllo@yy =0
for every f € L2(RM).

Proof. Let f € L*(RY). Given £ > 0, choose a bounded function h with compact
support such that || f — hIIch(RN) < €. As in the proof of Theorem (5.1.7), using

Theorem (5.1.11) this time, we have
lice = £ = fll oy < (CEI oy vy + 1) € + llee * b = Rll o).

Obviously, f € LPo(R"). Hence by Lemma (5.1.8), k, * h — h almost everywhere
in RV, and hence

P(x, [ky * h(x) —h(x)]) - 0

almost everywhere in R". Since {k, = h — h} is uniformly and there is a compact set
S containing all the supports of k, x h, {®(x, |k, x h(x) — h(x)])} is uniformly
bounded and S contains all the supports of ®(x, |k, * h(x) — h(x)|). Hence the
Lebesgue convergence theorem implies

j @ (x, |k * h(x) — h(x)])dx - 0
RN

ast — 0. Then, by Lemma (5.1.2), we see that ||k, * h — h||Lq>(RN) —-0ast— 0,
so that

lim supllke * f = fll0 vy < (ClIKll o gy + 1) &

t—0
which completes the proof.

Lemma (5.1.13)[158]: Suppose ®(x,t) satisfies (®5) and ($6). Letk € L*(RY) n
L®(RM) with k € L*(RN) < 1. For f € LI,.(RV), set

loc

I(Fix) = j k(x — Y)FO)ldy
RN\B(0,|x|/2)
and
J(f3 %) = jRN|k(x —DIBG, IF DD Y.

Then there exists a constant € > 0 (depending on ”k”Loo(RN)) such that
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®(x, I(f;2)) < CYf52) + g(x/2)}

for all x € RN and f € L®(R") with Il omny < 1, where g is the function
appearing (96).

Proof. Let k > 0. Since t — ®(x, t)/t is non-decreasing,
lk(x =W, If )
— dy.
RN\B(0,|x|/2) D(y, k)
If g(x/2) < k < 1,then ®(x, k) < CP(y, k) for |y| > |x|/2 by (®6). Hence

J(fi %) < kj k(x — y)ldy + k
RN

I(f;x) <k (%) whenever g (g) <k<1 4

Since J(f;x) < ”k”Loo(]RN), there exists k, € [0, 1] such that
J(f;%)
el Lo (mmvy
If k, = g(x/2), then taking k = k,, in (4), we have

Cllklo) _
d(x,1) )

D(x, k,) = d(x,1).

I1(f;x) Skx<1+

so that
®(x,1(f;x)) < ®(x, ky) < CJ(f; ).
If k, < g(x/2), then

D (x, k)

J(f; ky) = ||k||Lw(RN)m < ®(x, g(x/2)).

Hence, taking k = g(x/2) in (4) we have I(f;x) < Cg(x/2), so that
D(x,1(f;x)) < CP(x, ky) < Cg(f;x).
Hence, we have the assertion of the lemma.

We recall the following result on the boundedness of maximal operator
M on L*(RM) (see [155]):

Lemma (5.1.14)[158]: Suppose ®(x, t) satisfies (P5), (P6) and the other condition
®3* t +— t¥op(x,t) is uniformly almost on (0, c0) for some g, > 0.

Then the maximal operator M is bounded from L® (RM) into itself, namely
”Mf”LCD(]RN) < ”f”L(D(RN)

forall f € L*(RM).
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Theorem (5.1.15)[158]: Suppose @ (x, t) satisfies (P5), (P6) and (3%). Let p,

1+¢& (>0) and R > 0. Assume that k € L1(RV) n L&' (B(0,R)) and |k(x)| <
Ci|lx|™™ for |x| = R. Then there is a constant C > 0 such that

Ik fll ommy < CCIK 2 mvy + ”f”L(po)’(B(O’R)))”f”L‘b(RN)
forall f € L*(RM).
Proof. Let £ € L*(RY) and f > 0. Assume that Il o (ryy < 1 and
Well o mmy + 1A oy goryy = 1
Let ko = kXp(o,r) aNd ke = kXgrN\p(0,R)-
By Theorem (5.1.11),
ko * fll 1 (mrvy < C.

Hence, it is enough to show that

j (x, koo * £ (2))dx < C. )

]RN

Write

kol f@ = [ Jeule=NIF0Iy + [ ko Gt — I ) dy.
B(0,|x|/2) RN\B(0,|x|/2)

=L (x) + L(x).
Since koo (x — ¥)| < Cilx —y|™ and |x — y| = |x|/2 for |x| < |x]|/2,

FO)dy < 2VClx| ™ j FO)dy.

1) < 2VCylx]| ™ f
B(0,3|x]/2)

B(0,|x/2)

Hence,

f d(x, [L(x))dx < C
]RN

by Lemma (5.1.14).
on the other hand, Lemma (5.1.13),

P(x,I,(x)) < C{Ikool *h(x)+ g (;)},

where h(y) = ®(y, f(y)). Since
kool * Al 1 (mivy < llKoo Il 2 (mevy 1Al 2 gy < 1
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and g € L1(RY), it follows that

j ®(x,I,(x))dx < C.
RN

Hence, we obtain (5), and the proof is complete.

Corollary (5.1.16)[205]: Suppose (®5) satisfies (@6). If {k;,}e>—1 IS Of potential-

type, then
Z kive* f™
n

forall e > —1 and f™ € L®»(RM).

< ClIRll s gy Il
n

LQDn(RN)

Proof. Suppose ||E||L1(RN) = 1 and let f™ be nonnegative measurable function on
RY such that 2l /Ml ryy < 1. Write

an = z fn X{(x+6)€]RN;fn(x+e)21} + z fn X{(X+E)ERN=gn(x+6)<fn(x+e)<1}
n

n n

+ Z fn X{(X+E)ERN=f”(x+e)5g”(x+€)} = Zfln + Zfzn + zf3"
n —~ m -

where y; denotes the characteristic function of a measurable set E ¢ RY and g™ is the
function appearing in ($6).

Since ky,. is radial function, we write k,,.(1+ ¢€) for k;..(x) when |x| =
(1 + €). Note that

Doke 7| < | FacleDff (e + dCr + )
= joooz I (fjn;x, 1+ 6)) |B(x,(1+¢€))|d (_E1+e(1 + 6))
j=1,2,and

f (|B(x, (1 +€))|)d (—121+6(1 + e)) = ||/;||L1(RN) =1
RN

so that Jensen’s inequality yields

e

Kive * £ (0]) < f TN @ (1 (14 )

< [B(x, (1 + )| (—kppe(1 + ),
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j=1,2.
Hence, by Lemma (5.1.4)

> B e * RGO

<C n; , 1 B , 1 d _i{\ +€ 1
= J Z!(fl x,(1+ ) |B(x, (1 + )|d (~Frre(1 + )
< C(kype * h),

where h(x + €) = Y, ®,, ((x + €), f(x + €)). The usual Young inequality for
convolution gives

j > B f7 g * D < € j (Ryve * B) () dx
RN - ]RN

< c||/2||L1(RN)||h||L1(RN) <C.

Similarly, noting that g™ € L*(RY) and applying Lemma (5.1.4), we derive
the same result for f*.

Finally, noting that X, |k 1e * f3'] < Cllkytell 2 gyvy < 1, we obtain

jRNZn: Dy f7(x, ke * f31 () Ddx < CfRNZn:|k1+6 x fIV dx

< Cllkysell rmmyllg™ 2 (mvy < C.
Thus

fRNZ O f™(x, [kye * fH(X)Ddx < C,

which implies the required assertion.

Corollary (5.1.17)[205]: Suppose @, (x, (1 + €)) satisfies (®5) and (P6). Let
{ki+c}e>—1 be a potential-type, intensive approximate identity. Then k;,. * f™
converges to f™ in L®»(RY):

Jm, 3 s » £7 = Fllonca, = 0
n

for every f™ € L®»(RM).

Proof. Given £ > 0, we find a bounded function A in L®»(RM) with compact support
such that||f™ — k|l en gy < €. By Corollary (5.1.17) we have
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D Mhrie * £ = FPllonar
n

< Y llrse * (F = Dllgongay + Y lyre * b= hllongany
n n

+ U = hll oy < (-] + 1)

D Mlkyse + b= hll o)
n

Since |ky;e * h| < ”h”Loo(]RN), we have

| D @ lbre s 1D dx < € [ e s () = h@)ldx 0
RN RN
n
as € > —1 by Lemma (5.1.3) (Here C’ depends on ”h”Loo(RN).) Hence
l|kite ¥ h — h||L¢n(RN) — 0ase —» —1byLemma (5.1.2), that

limsup ) llevse * £ = F™ o, < ClEl]Ls gy + De,
€-—
n

which completes the proof.

Corollary (5.1.18)[205]: Suppose @, (x, (1 + €)) satisfies (d5). Let k have compact
support contained in B(0, R) and let ||k||L(1+E),(RN) < 1. Then there exists a constant

C > 0, which depends on R, such that

> @0 G e * f1 (D

<C fRNZmHe(en Z(cbn)o ((x+ ), f(x +)d(x + &)

for all x e RY, —1 <e <0 and for all nonnegative f™ € L} ,.(R") such that

f*(x+e€)=1or f*(x+e¢) =0 foreach (x + €) € R" and Zallf ™l pon(ryy < 1.

Proof. Given f™ as in the statement of the lemma, x € RN and —1 < € < 0, set
F= ) lkyye* f"(x)| and G=J lk1re(€)] ) (Pr)o ((x +€), fM(x +€))d(x +€).
Z e * fT@) an RNZ " Z 0 (Gc+), M+ )

Note that anlfnlchpn(sz) < 1 implies
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1

1+e
G < ”k1+6”L(1+e)'(RN) (jRNZ O, ((x+e)ft(x+e)d(x+ E))

<1+ e)‘%(zm1 + 26))ﬁ < (2(4, + 26))ﬁ(1 +e) ™V

by Hoélder’s inequality and (1).

By (#2), Zn(@n)o ((x +6), f(x + €)) = (41(4; +36)) T f(x +6),
since),, f"(x+e)=1orf*(x+¢€)=0.Hence F < A;(A; + 3¢€)G. Thus,if G <
1, then

D (@0 (0 F) < (43 (4 +366) (s +36) (A (A + 30 Y g (x, 44 (A +36)° < €6
Next, let G > 1. Since @,(x, (1 + €)) — o0 as € — oo, there exists K > 1 such that
D @0 (5 K) = Y (@), (x, DG,

n n

Then K < (4; +36)G, since Y, () (x,K) = (A7 +36)K X, (®,), (x,1).
With this K, we have

F< Kf ki ()]dCx + €)
]RN

#4439 [ Y lk@lfar oy ("’”)(‘;f(;“ Z(i)’f ;(’;5 Vv,
RN P oy n/o ’

Since

1<K < (A4, +36)G < (A, +36)(2(4; + 26))%"6(1 +e) N<c((1+eR)",

there is B > 0, independent of ", x, (1 + €), such that
D @0 (K < B ) (gdo (x,€),K) forall (x+¢) € BGx, (1+OR)

by (®5). Thus, we have

F < Kllkqi |l 2 (mmy
(A +3e)B
(oG KO Jgn
+e€))d(x +e¢€)

D lke(@IF e + ) gndo(Cx + ), F7(x
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(9n)o(x, K)
(A; +36)p
=K (“k”Ll(]R{N) + z (Pn)o(x, 1)>

1
S K(”k”Ll([R{N) +A1+E(A1 + 36)ﬁ> S CK

G
= Kllklla(ay + (41 +36)8 ) o

Therefore by (3), (®4), the choice of K and ($2),

D (@0 (6 F) < C ) (@) (6, K) < CG

With constants C > 0 independent of ", x, (1 + €), as required.

Corollary (5.1.19)[205]: Suppose @, (x, (1 + €)) satisfies (#6). Let M > 1 and
assume that ”k”Ll(RN) < M. Then there exists a constant C > 0, depending on M,

such that

Z D, (x, |kyte * fT()])

<c { . Dl e@In(Ge 4, £ o+ ) dx ) + 8GO

for all x € RY, e > —1 and for all nonnegative f™ € Li,.(R") such that g™(x) <

loc

So.ff(x+e)<1orY,f*(x+¢€) =0 for each (x + €) € RN, where g" is the
function appearing in (®6).

Proof. Let f™ be as in the statement of the corollary, x € RN and € > —1. By (®4),
there is a constant ¢,; > 1suchthat Y, @, (x, M(1 + €)) < ¢y Xy Pn(x, (1 + €)) for
all x € RN and e > —1. By Jensen’s inequality, we have

Z D, (x, |kyye * fHCODD

o[ (52 )

n

< (3 fRNZmHe(e)@n(x,fn(x +0)dG+o).

If |x| =[x +e€l, then T, P, (x, fM(x +€)) < B X Pn((x + ), fM(x +
e)) by ($6).

If |x|<|x+el and g"(x) <X f"(x+¢€), Yn®Pn(x, fMx+e))<
B, Y @n(x, f™(x + €)) by (P6) again.
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If [x|] < |x+€|and g"(x) = 3., f™(x + €), then

Z D, (x,ff(x+e) < Z @, (x,g™(x)) < g™(x) Z P, (x,1) < A4;(4; + ) g™ (x)

by (2)
Hence,

Z ®, (x, fM(x+e)) < CZ{CTDn((X +6), (%)) + g"(x)}

therefore, we obtain the required inequality.

Corollary (5.1.20)[205]: Suppose @, (x, (1 + €)) satisfies (®5) and ($6). Suppose
that k € LO+9"(RM) and compact support in B(0, R). Then

zk1+e*fn
n

forall -1 < e < 0 and anlfnlchpn(RN), where C > 0 depends on R.

< ClKllaver gy D Il om Gy
n

L®n(RN)

Proof. Let f™ be a nonnegative measurable function on RM such that
anlfnlqu:n(RN) < 1 and assume that ”k”L<1+6)’(RN) = 1. Note that ||k||L1(RN) <

|B(O0, R)|ﬁ by Hdlder’s inequality.
Write

an = anX{(x+6)E]RN;fn(x+e)Zl} + an X{(x+e)E]RN=gn(x+6)<fn(x+e)<1}

n n n
+ Z fr X{(x+e)E]RN:f”(x+e)sg”(x+e)} = z fln + Z on + Z f3n'
n n n n
where g™ is the function appearing in (®6). We have by (1) and Corollary (5.1.18),
D Bt lhere  LCOD S (Ay +€) ) (@) (&, e * D
n n

1+€

< C(x, |k1tel h(x))

1
where h(x + €) = Y, @, ((x + €), f™(x + €))**<. Since IIhII;’fE(RN) < 2(4; + 6),
the usual Young’s inequality for convolution gives

fRN Z By (X, [ky1e * [T (O] dx
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1+€

1+e€
< Cf (|k1+e| * h(x)) dx <C (”kl_'_E”Ll(RN)”h”L1+E(RN)) <C.
RN
1
Similarly, applying Corollary (5.1.19) with M = |B(0, R)|1+¢ and noting that
g™ € L1(RYN), we derive the same result for f3*.

Since Xn|k(ve) * 3 (0)| < Ik 14ell 1 (myvy < M, we obtain

'[RNZ Pn (6 llerse * 1D dx < € jRNZ“‘HE * f3H(x)| dx

< Cllkysell pmmyllg™ 2 mrvy < C.

Thus, we have shown that

jRNz ®n(x, lkyye * fH)) dx < C,

which implies the required result.

Corollary (5.1.21)[205]: Suppose @, (x, (1 + ¢€)) satisfies (#5) and ($6). Let
{ki+c}es—1 be an intensive approximate identity that k € ||k||L(1+6), (M) and has

compact support. Then k, .. * f™ converges to f™ in L®»(RN):
L e A R
n

for every f™ € L®»(RN).

Proof. Let f™ € L®~»(R"). Given £ > 0, choose a bounded function h with compact
support such that Y, ||f™ — hlchpn(RN) < €. As in the proof of Corollary (5.1.17),

using Corollary (5.1.20) this time, we have
D Merse = £ = FRllon )
n
< (ClKlarey gy + 1) €+ D Werse b= All ongany
n

Obviously, f™ € L'*¢(RN). Hence by Lemma (5.1.8), k; . *h — h almost
everywhere in RY, and hence

P, (x, [kye * R(x) — h(x)]) > 0

almost everywhere in R". Since {k,,. * h — h} is uniformly and there is a compact
set S containing all the supports of ki . xh, {®,(x,|kitc* h(x) — h(x)])} is
uniformly bounded and S contains all the supports of ®.,(x, |k, * h(x) — h(x)]).
Hence the Lebesgue convergence theorem implies
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j By (6, |Krse * R(x) — RGO dx — 0
]RN

as € » —1. Then, by Lemma (5.1.2), we see that ||k, * h — h”LCDn(RN) — 0 as
€ = —1, so that
limsup ) [lkyse * /" = "l onmy < (CIEI ooy gy + 1) €

e—>—1
n

which completes the proof.

Corollary (5.1.22)[205]: Suppose @, (x, (1 + €)) satisfies (®5) and (6). Let k €
L*(R¥) n L (RN) with k € LY(RY) < 1. For f™ € L},.(R"), set

DD = [ L D IkEf G+ Ol +e)
n B(O,%) n

and

D U@ = [ k@18, (Cx+ e 1F7Cx + ) + ).
n RN n

Then there exists a constant C > 0 (depending on ”k”Loo(RN)) such that

z D, (x, I(f™x)) < Cz {](f";x) +9" (g)}

for all x € RY and f™ € L®»(R") with ZallF ™l ongyy < 1, where g™ is the
function appearing (96).

Proof. Let k > 0. Since (1 +¢) - Pa(x(1+0)

1+e) IS non-decreasing,

DU <k [ Ik@lde+ e
n ]RN

k(€| (Cx + ), If"(x +€)l)
D) (G + O, K)
s(oEl) ™
If g™ (3) < k < 1, then £, ®,, (x, k) < € X By, (Cx + €), k) For |x + el >Elpy
(P6). Hence

Zn:l(f”;x) < k(l + ) %) whenever g" (;) <k<1. (6)

d(x + €).
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Since Y, J(f™x) < ”k”Loo(]RN), there exists k, € [0, 1] such that

I
Zcbn( o) = Z”k”m(RN) B, (x, 1).

If ke, > g™ (92_5) then taking k = k, in (6) ,we have

C k o0 N
Zl(f";x)skx<1+z !)”(; (f; )>Skx,

so that
D B I 0) < ) Bulek) <€ ).

If k, < g" (’Z—C) then

zj(f” >—||k||Lw<RN)Zq;((’;k1")) Zcﬁn<x,gn (g)).

Hence, taking k = g ( ) in (6) we have Y., I(f™";x) < Cg"™ ( ) so that
D B IT0) <€) Byl k) <C Y g,

Hence, we have the assertion of the corollary.

We recall the following result on the boundedness of maximal operator M
on L®»(RN) (see [157]) and [11]:

Corollary (5.1.23)[205]: Suppose @, (x, (1 + €)) satisfies (95), (®6) and (P3%).

Let (1+€)=14¢, (> 0)and R > 0. Assume that k € L*(RY) n LA+9'(B(0,R))
and [k(x)| < Ci|x|™N for |x| = R. Then there is a constant C > 0 such that

Z”k * fn“Lch(RN) < C(||k||L1(RN) + ZIIf”IILum'(B(O,R)))Z:Ilf”IIchn(RN)
n n n
forall f™ € L®»(RM).

Proof. Let f™ € L®»(RN) and (x + €) > 0. Assume that Zn”fn”Lch(]RN) <1and

n
el ey + D Il avey oy < T
n

Let ko == kXB(O,R) and koo == kX RN -

B(O,R)
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By Corollary (5.1.20),

<C.
LY(RN)

D kot fT

n

Hence it is enough to show that

jRNZ @, (x, kool * fM(x)) dx < C.

Write

' *Zn:f"(x) - j (O’g_l)me(eNf"(x FOd(x +e)

+j o D ke @I G+ Od(x + ).

s(o ) 7
= 1,(x) + L (x).

Since |k (€)]| < Cile|™ and |e] = "zc—lfor |x + €| < ad

2

I, (x) < ZNCklxl‘Nf I |)z:f"(x+e)d(x+e)
B(05) &

(012

< ZNCk|X|_Nf
B

(

Hence,

.[RNZ CT)n(x, Il(x))dx <C

by Lemma (5.1.14).
on the other hand, Corollary (5.1.22),

Y B () < € {kal +hGO + 9" (5)}

where h(x + €) = X, P,((x +€), f"*(x + €)). Since
kool * Al 2 (mivy < llKoo [l 2 (mmvy IRl 2 gy < 1

and g™ € LY(RY), it follows that
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fRNzn: cT)n(x' I, (x))dx <C.

Hence, we obtain (7), and the proof is complete.

Section (5.2): Riesz Potentials of Functions in Musielak—Orlicz spaces

A famous Trudinger inequality [173] insists that Sobolev functions in
WLIN(G) satisfy finite exponential integrability, where G is an open bounded set in
RY (see also [64, 159, 160, 172]). Great progress on Trudinger type inequalities
has been made for Riesz potentials of order @ (0 < a < N) in the limiting case ap =
N (see e.g. [162—163]). In [160,169] and [171], Trudinger type exponential
integrability was studied on Orlicz spaces, as extensions of [162, 163] and [165].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to
discuss nonlinear partial differential equations with non-standard growth conditions
(see [154]). Trudinger type exponential integrability on variable exponent Lebesgue

spaces LPO) was investigated in [104, 166] and [167]. For the two variable exponent's

space LPO) (log L)P1), see [168]. These spaces are special cases of so-called Musielak—
Orlicz spaces [111].

We give a general version of Trudinger type exponential integrability for Riesz
potentials of functions in Musielak—Orlicz spaces as an extension of the above results.

Let G be a bounded open set in RY. Let d; = diam G.
We consider a function
®(x,t) = to(x,t) : X [0,00) - [0, )
satisfying the following conditions (@) — (®):

(®1) (-, t) is measurable on G for each t > 0 and ¢(-, t) is continuous on [0, o) for
each x € G;

(®2) there exists a constant A; = 0 such that
ATt < p(x,1) < A, forall x € G;

(®3) @(x,7) is uniformly almost increasing, namely there exists a constanton A, > 0
such that

p(x,t) < A,p(x,s) forallx € G whenever 0 <t < s;
(®4) there exists a constant on A; > 1 such that
@(x,2t) < Azp(x,t) forallx € Gandt > 0.
Note that (©2), (3) and (®4) imply

0 < inf¢(x,s) <supp(x,s) < oo
XEG XEG

foreacht > 0.

If @(x,) is convex foreach x € G, then (@3) holds with A, = 1; namely ¢(x,.)
IS non-decreasing for each x € G.
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Let ¢(x,t) = sup ¢(x,s)and

0<ss<t

for x € G and t > 0. Then @(x,") is convex and

1 _
—P(x,t) S P(x,t) < A, D(x,t)
245

for x € G and t = 0. In fact, the first inequality is seen as follows:
t

1 1
p(x,r)dr = Ego(x, t) = —d(x,t).

5(x,t)2J Z 5

t/2

We shall also consider the following condition:

(®5) for every y > 0, there exists a constant on B, = 1 such that
o(x,t) < B,p(x,t)

whenever |x —y| <yt N and t > 1.

Letp()and q;(),j = 1,...... , k, be measurable function on G such that
(P1) 1<p =infp(x) < supplkx) =p* <o
XEG xX€EG
and
Q1) — o < q; = infq;(x) < supgq;(x) =:qf <o
XEG XEG

forallj =1, ...... k.

set L.(t) =log(c+t) for c=e and t =0, L(Cl)(t) = L.(t), L(Cl)(t) =
Le(LY™(8)) and

: 0\ I
®(x,t) = tv<x>1_[(Lc (t))
j=1

Then, @ (x, t) satisfies (1), (®2) and (P4). It satisfies (@3) if there is constant
K = 0suchthat K(p(x) —1) + qj(x) =0forallx e Gandj =1, ...... Sk ifp™ >1
orgf =0forallj=1,....k.

@ (x, t) satisfies (@5) if
(P2) p(®) is log-Holder continuous, namely

Ip() = pO)] < ——2
PO =PI =T 4/ =

with a constant €, =20 and

(Q2) q;(*) is j-log-Halder continuous, namely

152



Cq,
L9/ 1x - y))

|Qj(x) - Qj(Y)| =

withaconstant ¢, = 0,j =1, ...... k.
]

Given @(x, t) as above, the associated Musielak—Orlicz space

L*(6) = {f € L%OC(G);J e, If Dy < 00}
G

IS a Banch space with respect to the norm

£l ey = inf{A > 0; j B0, If@)/Ddy < 1 }
G

(cf. [111]).

Let C denote various constants independent of the variables in question and
C(a, b, ...) be a constant that depends on a, b, ... ...

We denote by B(x,r) the open ball centered at x of radius . For a measurable
set E, we denote by |E| the Lebesgue measure of E.

For a locally integrable function f on G, the Hardy—Littlewood maximal function
Mf is defined by

Mf(x) = sup 57—
r>0 IB(X, T')I B(x,r)NG
We know the following of maximal operator on L?(G).

Lemma (5.2.1)[174]: (See [155].) Suppose that @ (x, t) satisfies (¢5) and further
assume:

If()ldy.

(@3%) t — t%0(x, t) is uniformly almost on (0. c0) for some g, > 0.

Then the maximal operator M is bounded from L?(G) into itself, namely, there is a
constant C > 0 such that

IMfll 2y < Cllfll o
forall f € L?(G).
We consider the function
y(x,t):G X (0,d;) — [0.00)
satisfying the following conditions (y1) and (y2):

(y1) y(,, t) ismeasurable on G foreach 0 < t < d; and y(x,") is continuouson (0, d)
for each x € G;

(y2) there exists a constant B, = 0 such that
Byl <y(x,t) < Byt~ forallx € G whenever 0 < t < d;;.
further we consider the function
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I,(x,t):G x[0,00) = [0,0)
satisfying the following conditions (I"1) and (I"2):

(I't) I, (-, t) is measurable on G for each t > 0 and I, (x,") is continuous on [0, o) for
each x € G;

(I'2) I,(x,7) is uniformly almost increasing, namely there exists a constant B; > 1
such that

I,(x,t) < B;I,(x,s) forall x € G whenever0 <t <s;,
(I'3) there exists a constant a, > 0, B, = 1 and B; > 1 such that

t* N,y (x, )" < Byl (x, 1/1)
forall x € G and @ = a, whenever 0 < t < d; and
[RCDEETRAC
t

forallx e G,0<t<d;/2and a = a,.

Lemma (5.2.2)[174]: Suppose that @(x,t) satisfies (@5) and a, < a < N. Then
there exists a constant C > 0 such that

1
[ ey oy < of ()
G\B(x,5)

forall x € G, 0 < § < d;/2 and nonnegative f € L?(G) with If 26y < 1.

Proof. Let f be a nonnegative measurable function with [|f|,ey < 1. Since

9,y (xlx =y < B'o(y,y(x x —yD) .

with some constant B’ > 0 by (y2), (#3), (®#4),and (®5), we have by (#3), (I'2) and
(I'3)

j X = y1“ N FD)dy
G\B(x,8)

< f x — 1N F )Y (x x — yDdy
G\B(x,6)

o f)
o,y lx—yl))

4, j X =y V) dy
G\B(x,6)

< f ey (e, ) 2.
s P

+A,B’ f x — y1* oy, ¥ (e Ix —yD) T F (. f(3))dy
G\B(x,5)
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< CB3l,(x,1/6) + A,B,B,B'I;,(x,1/5) f (y, f(y))dy
G\B(x,6)

< (CB3; + A,B,B,B")I,(x,1/8).
Thus, we obtain the required results.

Lemma (5.2.3)[174]: Let @ = a,. Then there exists a constant C’ > 0 such that
I,(x,1/d;) = C' forall x € G.

Proof. By (I'3) and (y2),

dg dg

d i d
p“V(x'p)?pZBolBglf p L

(x.2/d5) = B | :
dg/2

dg/2
= By'B;la ld¥(1-2"%) = ('
for all x € G, as required.

Lemma (5.2.4)[174]: (See [170].) Suppose I, (x,t) satisfies the uniform log-type
condition:

(I1og) there exists a constant ¢ > 0 such that
il (x,s) < I,(x,5%) < crly(x,s)
forall x € G and s > 0.

Then for every ¢ > 1, then there exists C > 0 such that I;,(x,c s) < CI,(x,s) for all
x €Gands > 0.

For 0 < a < N, we define the Riesz potential of order « for a locally integrable
function f on G by

Iof () = f X — Y|V F () dy.
G

Theorem (5.2.5)[174]: Assume that @ (x, t) satisfies (&5) and (©3*). Suppose that
I (x, t) satisfies (I1pg). Foreach x € G, let y, (x) = supgol,(x,s). Suppose
Y, (x,t) : G X [0,00) - [0, oo] satisfies the following conditions:

(Y1) Y,(,t) is measurable on G for each f € [0,0); P, (x,.) is continuous on
[0, ) fort < s;

(Y,2) there is a constant B, = 1 such that ¥, (x,t) < Y,(x,B,s) for all x € G
whenever 0 < t < s;

(Y, 3) there are constants Bs, B; = 1 and t, > 0 such that ¥, (x, I, (x,t)/Bs) < Bgt
forallx € Gand t > t,.

Then there exists constants ¢;,c, > 0suchthat I, f(x)/c; < Y,(x) fora.e.x € G and

f Y, (x, Iaf(x)) dx < ¢,
G €1

forall @y < a < N and f = 0 satisfing | f| ) < 1.
155




Proof. Let f = 0 and ||f||#s) < 1. Note from Lemma (5.2.3) that

f Mf(x)dx < |G| + AlAzJ ®(x, Mf(y))dx < Cy (8)
G G

Fixx e G.For0 <6 <d;/2, Lemma (5.2.2) implies

lx — y|* N f()dy + f lx — y|* M f(¥)dy
G\B(x,6)

) = |

B(x,5)

1
< C{Mf(x) + I, (’“5)}
with constants C > 0 independent of x.
If Mf(x) < 2/dg, then we take § = d /2. Then, by Lemma (5.2.3)

1
f () < I (%5),
By Lemma (5.2.4), there exists C; > 0 indepentent x such that
Iof (x) < CiT(x,t0)  if Mf(x) <2/dg. 9)

Next, suppose 2/d; < Mf(x) < oo. Let m = supssz/a,xecla (X, 5)/s. BY (Tog),
m < oo, Define § by

= B e mp oo

Since I,(x, Mf (x))(Mf(x))" <m,0 < § < d;/2. Lemma (5.2.3)

60.’

1 -1 -z
5 < Cl(x, Mf(x)) *(Mf(x)) @

do\ "% 1 1
< (T, (x 7) (MF())® < (Mf(x)).
Hence, using (1j,¢) and Lemma (5.2.4), we obtain

L (r5) < CLulie (MFG)Y) < CL(MF G,

)

By Lemma (5.2.4) again, see that there exists a constant C; > 0 indepentent x such
that

Iaf(x)SCl*Fa<x,%Mf(x)> if 2/d; < Mf(x) < (10)

Now, let ¢; = B,Bs max(Cy, C3). Then, by (9) and (10),

I,f(x) < 1B maX{Fa(xr ty) + I, (x,%Mf(x))}

1 4D5

whenever Mf(x) < oo. Since Mf(x) <o for a.e.x € G by Lemma (5.2.1),

I,f(x)/c; <Yq(x)a.e.x €aq,by (yY,2)and (¥,3), we have
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0. (x Iaf (x)>

1

todg
< max {U’a(x» Fa’(xi tO)/BS)r 1/)0_’ <X, ra (x'TMf(x)> /B5>}

B t,d
= € Mf(x)

for a.e.x € G. Thus, we have by (6)
| B.t,d
j Y, <x, af(x)) dx < Bgty|G| + i Gf Mf(x)dx
G €1 2 G

B.t,d
< B6t0|G| + 620 ¢ = C2.

< Byt, +

Appling Theorem (5.2.5) to special @ given, we obtain the following corollary.
Corollary (5.2.6)[174]: Let & be as above:
(i) Suppose there exists an integer 1 < j, < k such that
and

inf(p(x) — q;, () —1) >0 (11)

sup(p(x) —q;(x) —1) <0 (12)
XEG
forall j < j, — 1 incase j, = 2. Then there exist constant ¢; ¢, > 0 such that
j o <Iaf(x))p(x)/(p(x)—qjo(x)—l)
E! L
G €1
k—Jo Qjo+i)/(p(x)—qj,(x)—-1)
N L f(x
<] (Lg> (ﬁ)) <o,
. €1
j=1
forall N/p~ < a < N and f = 0 satisfing ||f|| ey < 1, where E(¢) = e’ —e,
EU+HD(t) = exp(EP (t)) — e and max(EYP(t),0).

(i) If
sup(p(x) — qj(x) — 1) <0
XEG
forallj=1,.... , k, then there exist constant ¢; ¢, > 0 such that
p(x)/(p(x)—1)
j E(k+1)f (laf(x)> dx < c,
G J €1
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forall N/p™ < a <N and f = 0 satisfing || f{|,e ) < 1.
Proof. We show the case (i). In this case, set

Jo—1

y(x,t) = t=N/PE 1_[ [L(ej)(l/t]_l [L(ejo)(l/t]_
j=1

(@j,(x)+1)/p(x)

k
: —qj(x)/p(x)
x 1_[ L@/

St
and
()-ajy0)-1 . -
Fa(x,t)=[L(ej°)(1/t)](px oI HIP) 1_[ L 1/0)] e
jSjo+t

Here note that y (x, t) satisfies (y2) and I, (x, t) is uniformly almost increasing on
t and satisfies and (/},5) by (11). We have N /p~ < a and (12)

_ -1
t*Neo(x,y(x,1))
Jo—1
_N - ) p(x)—qj(x)-1
< Ct~N/P@ H[Le 1/t
j=1

k
; (P)=qj,(x)=1)/p(x) ; —q;(x)/p(x)
x L] [ [ [asm]

j=Jo+1

k
- (0 () -aj()—1)/p (%) - —q;()/p ()
< c[8” a0 ° 1_[ (L9 /)

j=jot1
=Cl,(x,1/t)

for all x € G and ay = N/p~ < a < N whenever 0 < t < d;. By (11), we find
&o > 0 such that infxEG{l —(q;, + 1)/p(x)} > g,. We see from N/p~ < a, (11)
and (12) that

[ ormm®
t p
Jo—1

dg . -1 . =(qj,(x)+1)/p(x)
<c| ([]lam]” | am] ™
t .
Jj=1

k
; —-q;(x)/p(x) \ d
(][ [2asm] i

J=iot1 P
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k
) 1-(qj, () +1)/p(x)—£o . —q(x)/p(x)
<c[iam] [] [2arm]

Jj=Jjo+1
% (17 $) 1) 1 G0 ~1tedp
<[] [am] | p2am] 2
t =1 p

< Cl,(x,1/t)
forall0 <t <d;/2and N/p~ < a < N. Hence, I,(x, t) satisfies (I'3).
Now, set
k—Jjo

W(x,t) = tPO/ @X)=ajo()-1) 1_[ [Lg)(l/p)
i=1

]qjo+i(x)/(p(x)—q,-0(x)—1)

forall x e G and t > 0. Then
(%, T (x,5)) < €LY (s)
fors > 0.

Since infyegp(x)/p(x) —q;, — 1)/p(x) > 0, there are constants 0 < 6 < 1
and C, = 1 such that

P(x,ct) < C,c®P(x,t) (13)

forallx € G,t > 0and 0 < ¢ < 1. Hence, choosing B = 1 such that C;C,B~% <
1, we have

Y0x, L (x,9)/B) < CB % (x, [, (x,5)) < ;B0 C1LYY (5) < L (5)
for s > 0. Thus,
EU (Y (x,I,(x,5)/B)) <s fors >0, (14)

Let u, > 0 be unique solution of equation e* — e = u. Then EM (u) > u, if
and only if u > u,. Choose t, > 0 such that ¥ (x, t) = u, for t = t, and define

EUIyY(x,t) for t=>t,,

= t
Yixt) Y(x, to)t— for 0 <t <t,.
0

Noting

Ylx,t) =y <X, Clies C21/95> <y (x, 621/95)

2

for 0 <t < s by (13), ¥(x, t) satisfies (P, 1), (P,2) (with B, = €,’°, say ) and
(¥,3), in view of (13) and (14)

Thus Theorem (5.2.5) implies the existence of constants c;, C; > 0 such that
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dg
f " <x, lof (x)) dx < C,

€1
forall N/p~™ < a <N and f = 0 satisfing ||f|| .» ) < 1, which shows the assertion
of (i).
In the case (ii), setting

k
1/p(x)

ro = [T[am]| " |[oam] ",

j=1
1-1/p(x)
I, t) = L8P (1/0)]

and

P(x, t) = tP/@X)-1)
the above discussion yields the required result.
Section (5.3): Generalized Orlicz spaces

Generalized Orlicz spaces L?) have been studied since the 1940’s. A major
synthesis of functional analysis in these spaces is given in Musielak [150] from 1983
and so the spaces have also been called Musielak—Orlicz spaces. These spaces are
similar to Orlicz spaces, but defined by a more general function ¢(x,t) which may
vary with the location in space: the norm is defined by means of the integral

| owlr@ba,
R

whereas in an Orlicz spaces ¢ would be independent of x, @ (|f(x)]). In the special
case @(t) = tP we obtain the Lebesgue space LP.

Minimization problems in the calculus of variations have had a similar course
of generalization (e.g. 184, 192]): from

minflvulzdx to minflvulpdx to minfgo(x,lvul)dx.
u u u

Usually, the function ¢ is assumed to have p-growth conditions, i.e. p(x,t) =~ tP
uniformly. This restriction means that the full complexity of the minimization problem
Is avoided.

The special case ¢(x,t) = tP®), so-called variable exponent spaces LP(), and
corresponding differential equations with non-standard growth have been studied [154,
181, 187]. The spaces were introduced by Orlicz already in 1931 [151], but the field lay
dormant for a long time. Some 70 years later, key results in harmonic analysis (e.g., [4,
36, 193]) and regularity theory (e.g., [2, 180]) were established.

To being a natural generalization, which covers results from both variable
exponent and Orlicz spaces, the study of generalized Orlicz spaces can be motivated
by applications to differential equations, image processing and fluid dynamics.
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Chen, Levine and Rao [73] introduced a model for image restoration based on a
particular type of generalized ®-function:

( 1
— 1), whent < 8

o0 t) =4 19 .
t—B+—=p9%), whent > p.

q(x)

Since they only consider a bounded domain, the space needed actually turns out to be
L* (or, more precisely, BV), see Proposition(5.3.13). In [188] we analyzed the LP®)-
variant of this model, Alaouia, Nabilab and Altanjia [175] have considered a general
structure PDE in the image processing context, but again work in BV

Wrdblewska-Kaminska [195] has studied fluid dynamics models with generalized
Orlicz-type structure conditions, and Swierczewska-Gwiazda [196] studied existence of
solutions to parabolic equations with generalized Orlicz growth. Giannetti and
Passarelli di Napoli [183] and Baroni, Colombo and Mingione [176, 177, 179] studied
the regularity of solutions to the minimization problems

minflvulp(x) log(e + |V,|) dx and min]lvulp + a(x)|V,|%dx,
u u

respectively. The regularity of minimizers depends on the regularity of the exponents
p and g, and the weight a.

Giannetti and Passarelli di Napoli studied a very special form of functional. Also
in the function space setting the first steps from LP() were ®-functions of type
tPO log(e + )10 which were studied, e.g., [114, 149]. Hopefully, the tools presented
in this will allow the research community to bypass the stage of special log-type variants
in the study of PDE and move directly to the general form, including, among others,
those studied by Colombo and Mingione.

A key tool for harmonic analysis is the (Hardy-Littlewood) maximal operator
M. Maeda, Mizuta, Ohno and Shimomura [174, 190, 191] were first to study it in L#®
, with somewhat heavy machinery. Their result on the boundedness of M was
generalized by Hasto [188] by removing unnecessary assumptions and simplifying the
proof.

The Sobolev embedding has been studied in generalized Orlicz spaces by Fan
[182]. He uses a reduction to the W1-case based on direct differentiation of the ®-
function. This leads to extraneous assumptions concerning the derivative ¢', we prove
the Sobolev embedding by Hedberg’s method, establishing the boundedness of the
Riesz potential. A similar approach was used in [190]. The proof is more versatile and
requires fewer assumptions than the previously known ones, and provide a new
perspective even in Orlicz spaces. We hope that our simple and clear results and
techniques will allow most of the results that have been derived in LP®) over the past 15

years to be established in L?) as well.
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The function f < g means that there exists a constant C > 0 such that f < Cg.
The notation f = g means that f < g < f. The space A N B is endowed with norm
Iflane = max{l|fll4 lIf|lg}. For areal function f we denote
)= lim fx—e) and f(xr*) = lim f(x +e).
By L°(R™) we denote the set of (Lebesgue) measurable functions on R™. The
(Hardy—Littlewood) maximal operator is defined for f € L°(R™) by

Mf(x) = sup j @y
B(x,r

r>0
where B(x,) is the open ball with center x and radius r, and fdenote the average
integral.
We recall some definitions pertaining to generalized Orlicz spaces. For proofs and
further properties see [154] and [150].
Definition (5.3.1)[196]: A convex function @ € C([0,);[0,]) with ¢(0) =
®(0*) =0, and lim @ (¢) = oo is called a ®-function. This set of ®-functions is

denoted by .

Instead of the usual left-continuity, we have assumed that every ®-function is
continuous in the compactification [0, 0]. This is not restriction as every function
satisfying the former condition is equivalent to one satisfying the latter, see [185].
Recall that two functions ¢ and y are equivalent, ¢ = 1y, equivalent if there exists L >

1 such that (%) < @(t) < yY(Lt) forrelevantall ¢. Equivalent ®-functions give rise
to the same space with comparable norms.

Note that every ®-function is increasing on [0,c0) and strictly increasing on
{x : @(x) € [0,2)}. By ¢! we denote the left-continuous inverse of ¢ € @,

@ (1) =inf {t = 0: @(t) = 1}.

It follows directly from this definition that ¢ ~*(¢(t)) < t and equality holds if ¢ is
strictly increasing. To be more precise, if t,:= max{t|p(t) =0} and t, =
max{t|p(t) < oo}, then

0, t<t,
e (D)) =it ty<t<te (15)
te, t=t.

Note (p‘1(<p(t)) =t if (t) € (0, 00). In the opposite order thing work better, since
the continuous of ¢ implies that
(9 (s)) =s. (16)
Note that ¢ ~ y ifand only if =1 ~ 1,
If ¢ =1, then by convexity ¢ =~ 1 we say that ¢ is doubling if ¢ (2t) < Ap(t)
for every t > 0. For a doubling ®-function = and ~ are equivalent. A ®-function can

be represented as
t

o(t) = f o' (s)ds

in the set {¢(t) < o}, where ¢’ is the right-continuous right-derivative of the convex
function ¢.
Definition (5.3.2)[196]: The set ®(R™) consists of ¢ : R™ X [0, 00) — [0, 00) with
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(i) ¢(y,’) € & for every y € R™; and
(ii) (-, t) € L°(R™) for every t > 0.

Also the function in ®(R™) will be called ®-functions. In sub- and superscripts
the dependence on x will be emphasized by ¢(): L?(Orlicz) vs L#O
(generalized Orlicz).
Properties and definitions of d-functions carry over to generalized ®-functions point-
wise. If

e 1(x, ) =inf {t >0: @(x,t) =1}

IS the left-continuous inverse with respect to the second parameter.
Definition (5.3.3)[196]: Let ¢ € ®(R™) and define the modular ¢, for f € L°(R™)

by
0oy (f) = jRnQD(X, |f (x)])dx.

The generalized Orlicz space, also called Musielak—Orlicz space, is defined as the set
LPO(RM) = {f € LO(R™): 1im 0,y (Af) = o}
equipped with the (Luxemburg) norm

. f
Ifllpc = inf {/1 >0: 040 (I) < 1}.
A problem when modifying ®-funcyions is that we easily move out of the domain of
convex functions. The next lemma often allows us to rectify this.
Lemma (5.3.4)[196]: (Lemma (5.3.6), [188]). Let ¢ : [0,00) = [0,0] be a left-

continuous function with ¢(0) = ¢(0*) =0, and tlim p(t)=oc. If s @

increasing, then ¢ is equivalent to a convex function ¥ € ®.
Define ¢z (t) == irelg @(x,t) and @i(t) :==sup@(x,t). We state three
X

XEB
assumption, which together imply the boundedness of the maximal operator [188].

(AOM) There exists g > 0 such that ¢(x, ) < 1 and ¢(x,1) = 1 forall f € R™.
(A1M) There exists § € (0, 1) such that
@5 (Bt) < @E (D)
forevery t € [1, (pp) 1 (ﬁ)] and every ball B with 1/|B| = ¢z (1).

(A2M) There exists > 0 and h € LY, .., (R™) n L®(R™) such that, for every t €
[0, 1],
o(x,pt) S @y, t) + h(x) + h(y).
Theorem (5.3.5)[196]: (Theorem (5.3.16), [188]). Let ¢ € ®(R") satisfying
assumptions (AOM)—( A2M), and assume that there exists y > 1 such that s —
s~ Y(x,s) is increasing for every x € R™. Then
M : L90) (R™) - LeCO) (R™)

IS bounded.

Note that the assumption that s —» s7Y¢@(x,s) is increasing, is a natural
generalization of the Lebesgue space condition p > 1.
Some examples of generalized ®-functions:

0,(x,t) = tPPlog(1+1t), @,(x,t) =tP +a(x)9, @3(x,t)=eP™t -1,
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The first and second ®-functions have been recently studied in [179, 183], while ¢5is
an example of non-doubling ®-function.

The boundedness of the maximal operator in [188] covers all of them, as do the
auxiliary result, including normalization and duality. For the Riesz potential we need

E—n

to assume that t "« ¢@(t) is decreasing. This is a natural generalization of the Lebesgue

space condition p < n, and it implies that ¢ is doubling (with constant 2%).
For the study of generalized Orlicz spaces, we need three main assumptions,
which are variants of (AxM).
(A0) o~ (x,1) = 1.
(A1) there exists B € (0,1) such that Bo~1(x,t) < @ 1(y,t) for every t € [1,%],

every x,y € B and every ball B with |B| < 1.
(A2) L?O(R™) N L*®(R™) = L?=(R™) — L*(R™), with ¢, = lim sup @(x, t).

2| >0

We elaborate on those and add some technical details. Recalling that ¢ =~ v if and only
if =1 =~ y~1, we establish the following invariance.
Lemma (5.3.6)[196]: These assumptions are invariant under equivalence of &-
funcyions, i.e. if ¢ = 1, then ¢ satisfies (Ax) if and only if ¥ does.

We convert in three steps the original ¢ function to an equivalent ®-funcyion ¢
which is more regular. Let us investigate each assumption in turn.

We study relation between (AOM) and (AO).
Lemma (5.3.7)[196]: Assumption (AOM) implies (AO).
Proof. By the definition of ¢!, the inequality ¢(x,1) =1 yield ¢71(x,1) < 1. If
o(x,B) <1, then o~ 1(x,1) = B. If p(x,B) = 1, then by convexity ¢(x,5/2) <1
and thus ¢~ (x,1) = B/2.

The converse is not true. If (A0) holds, so that ¢; < ¢~ 1(x,1) < c,, then
p(x,¢c;) <1and @(x,c,) = 1. But it is not necessary ¢(x,1) = 1 as the following

example shows: if (t) == t?/2, then ¢(x,1) = % <lbute'(x,1)=2.

We use the assumption (A0) to find an equivalent ®-funcyion that behaves
better than the original one. We set

P1 (x, t) = (P(x, (p—l(x, 1)t)
Then ¢, is equivalent to ¢ (x, 1) = ¢,(x, 1) = 1 (by (16)). The set of d-functions
with @71(x,1) =1 will be denoted @,(R"™). Note that every &,(R")-function
satisfies assumption (A1) implies (AOM).
Let us reformulating (A1) when ¢ € @, (R").
Lemma (5.3.8)[196]: Let ¢ € @, condition (A1) holds if and only if there exists § >
0 such that
p(x,Bt) < oy, t)

forevery t € [1,<p‘1 (y, é)] every x,y € B and every ball B with |B| < 1.

proof. Let the condition of the lemma hold and assume t € [1,%]. Then ¢~ 1(y,t) €

[1,go‘1 (y, é)] and so
o(x,Bp ) <oy ') =t
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Let t, and t, be as in (15) and abbreviate s :== Bo~1(y,t). If s(ty, to], then (A1)
follows from the previous inequality, since ¢~ 2(x, p(x,s)) = s. And if s > t,,, then
@(x,s) = o < t, acontradiction, so this is not possible. If s < t,, thens < ¢~ 1(x,t)
since @~ 1(x,t) > to(t > 0). Thus in each case (A1) holds.

Assume then that (A1) holds and let t € [1,%]. By (A1) and (16),

o(x, B0 D)) S p(x, 07 () =t =0(y, 07 (1, 1))

Let s:= ¢ 1(y,t). Thus @(x,Bs) < @(y,s) in the range of ¢~1(y,.), including
(to, tw). When s — tg, this gives that @(y, Bty) < ¢(y,t,) = 0, so the inequality
holds for s < t,, as well. Finally, if s > t., then @(y,s) = oo, so the inequality
certainly holds.

Corollary (5.3.9)[196]: If ¢ € &, (R™) satisfies (A1), then it satisfies assumption
(A1M).

Proof. Let B be a ball |B| < 1. We must show that ¢z (8t) < @z (t) when t €

—1N\— 1
|1 0zH 7 ()]
Suppose first that t is not the upper end-point of the interval. For such ¢, there
exists y; € B such that t € [1,<p‘1 (yi'é)] and @z (t) =lime(y;, t). Then by
J

Lemma (5.3.8)

o(x, Bt) < oy, t).
We let j — oo and take supremum over x € B to arrive (A1M).

It remains to consider t = (pz!)~! (ﬁ) Suppose first ¢ (Bt) < co. Lete > 0
and choose x € B such that ¢@z(Bt) < (1 + &)e(x,Bt). Since @(x,) Is left-
continuous, we can choose t’ < t such that ¢(x, ft) < (1 + €)@ (x, ft"). Combining
this with the previous case, we obtain that

5B < (1+&)2p(x,pt) < (1 +)?0(,t) < (1 + &)’ 1).
Taking infimum over y and letting € — 0, we obtain the desired inequality. The case
@z (Bt) = o is handled analogously.
When ¢(x,t) = tP™), (A1) corresponds to the local log-Hélder continuity

condition of %. Namely let x,y € R™ with |[x — y| < % Let B be such a ball that x, y €

B and diam(B) = 2|x — y|. By symmetry, we may assume that p(x) < p(y). Since
@ 1(x,t) = tV/PX) assumption (A1) reads B(w,|x —y|*)VPX) < (w,|x —

y|™M)~1/PX) | where w,, is the measure of the unit ball. In other words,
1 1

(wr*lx = y| )P PO < -

Taking the logarithm, we find that
1
11 log 1
— < < .
p(x) p(Q) ~ nlog(lx —y|™") —logw, ~log(e + |x —y|™")
Again, the assumption ¢ € @, (R") allows us to reformulate (A2).
Lemma (5.3.10)[196]: Let ¢ € ®,. If @ satisfies (A2), then it satisfies (A2M).
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Proof. By theorem of [154], LY (R™) c L?O(R™) if and only if there exist 8 > 0
and h € L*(R™) such that ¢(x, Bt) < ¥ (x,t) + h(x). Hence (A2) implies that for
every t, there exists g and h € L*(R™) such that
@(x,Bt) < ¢ (t) + h(x) and @u,(Bt) < @(x,t) + h(x)
forall t € [0, 1] (the restricted range of ¢ is due to the intersection with L= (R™) in the
assumption). From these we obtain that
@(x, B%t) < 9o (t) + h(x) < (¥, t) + h(y) + h(x)

for t € [0, 1]. Since ¢(x,1) = 1. So the inequality also holds when we replace h by
min{h, 1} € L}(R™) n L (R™), as required by (A2M).
Corollary (5.3.11)[196]: If ¢ € &, (R"™) satisfies (A0)—( A2) and there exists y > 0
such that s = s ¥@(x,s) is increasing for every x € R®, then M : L?O(R") -
L?O(R™) is bounded.
Proof. Asin (A0), we find ¢, € ®; with ¢; = ¢. then ¢, satisfies (AOM). by Lemma
(5.3.6), ¢, satisfies (A1) and (A2). A short calculation gives that s = sV ¢, (x,s) is
increasing. By Corollary (5.3.9) and Lemma (5.3.10), (A1M) and (A2M) hold.
Therefore by thus also on LY Ot (R™).

d-function are not totally well-behaved with respect to taking limits. Consider
for instance tP. As p — oo, the point-wise limit is 0y 1 ) + X{13, Which is not left-

continuous. For the equivalent ®-function % tP we have lim coy 4 o, Which is what we

want. Therefore, we need to chose the equivalent ®-function suitably to get a good
limit.

We are especially interested in the behavior of ¢, when t < 1. To this end we
define

) (xl t) = maX{(pl (x) t)) 2t — 1}

Clearly ¢, < ¢,. Fort < % @, = @,. Since ¢ € &, (R™) we have ¢,(x,1) = 1 and
@,(x,t) =t for t = 1 by convexity. Thus @,(x,t) < @,(x,1) =1 < @,(x,2t) for
t e E 1] and @, (x,t) < 2¢0,(x, t) < @,(x,2t) fort > 1. In sum, obtain ¢, = ¢, =
@ with @, (x,1) =1 = @;(x, 1).
Note that the right-derivative satisfies @5 (x, 17) € [1, 2]: here the lower bound follows
from convexity ¢5(x,1) = @,(x,t) =1 and the upper bound holds since if
@,(x,17) > 2,then ¢, (x,t) < 2t — 1 for some t < 1 contrary to construction of ¢.

We consider then limt(¢g,) (t) = limsup ¢, (x, t). Cleary (¢,)(0) = 0 and

[x|—00

(¢2)0(1) =1. For t € (0,1), (¢2)0(1) = (¢2)x(t) = 2t — 1 and hence (¢;)« Is
left-continuous at 1. By convexity of ¢,, ¢,(x,t) < te,(x,1) on [0,1] and hence

(2)0(0%) = 0. Since (¢,) o (t) =t for t = 1, we have tlgrgo(¢2)w(t) = 0.

To show that (¢,). isconvex let 0 <t, <t, and € € (0,1). Choose x; =
such that

(92)00(0t; + (1 —0)ty) = lilm @2 (x;, 0ty + (1 — 0)ty).
By convexity of ¢,
lilm @02 (x;, 0ty + (1 — 0)ty) < lilm[9<pz(xi, t1) + (1 —6)(x;,t7)]

< 0(92)00 (1) + (1 = 0)(92) o (L),
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Since (¢,) is convex and increasing on [0, 1], and left-continuous at 1, it is
actually continuous on [0, 1].

In the variable exponent setting, (A2) is equivalent to Nekvinda’s decay
condition (see [154]), which is weaker version of the log-Hb6lder condition.

Note that (A2) implies also the equivalence of norms: indeed, this is a general property
of solid Banach spaces, as the following well-known argument shows.
(Recall that a space is solid if | f| < |g| implies [|fIl < llgll) W IIfll4a £ lIf]l5, then we
can choose f; such that ||f;||, = 3¢ but ||f;|lz < 1. Now for g := Y, 27'|f;| we have
lglla = |27l = (3/2)! » oo
and ||lgllz = ¥; 27t =1 so that g € B\A. Hence A # B. The implication A = B =
Ill4 = |Il|g follows by contraposition.
Next we make the final normalization of ¢ satisfying (A0)—(A2) by setting
_ 20,(x,t) —1, if t=>1,
o 0) = {(goz)oo(t), if t<1.
Lemma (5.3.12)[196]: If ¢ € ®(R™) satisfies (A0)—(A2), then ¢ € &, (R").
Proof. For the convexity we have to show that the ¢’ (x,") is increasing for every x €
R™. We have
_, 205(x, t), if t=>1,
P nt) = {(<p2)go(t), if t<1.

By convexity each of the parts is increasing. At, 2¢5(x,1) =2 and
tllr{l_@pz)go(t) < 2 (see discussion regarding) (A2), so the right-derivative is
increasing also there.

The function ¢ is continuous since both ¢, and (¢,). are continuous and
©,(x,1) = (¢;)(17) = 1. Thus we have that ¢~1(x, 1) < 1. In the discussion on
( A2), we noted that ¢, (x,t) < t on [0, 1]. These together give ¢~ 1(x,1) = 1.

The conditions @(x,0) = @(x,07) = 0and th_)rg @(t) = oo follow from the same
continuous for ¢, and (¢,) «-

Proposition (5.3.13)[196]: If ¢ € ®(R™) satisfies (A0)—(A2), then L#O) = L?O) with
equivalent norms.
Proof. Since ¢ = ¢,, it suffices to show that L¥2() = L?0),

Let g € L?2O0(R™) and set f := g/llgll,,c)- We divide f into two parts f; =

Xri<y and f2 = xqr=13- By (A2), and since ||f |,y = 1,

1fillaey = fillppew = Nfillywarene

~ ||f1||L(<p2)oonL°° = max{”fl”(pz(-): “fl”oo} <L
If |f2(x)| = 1, then otherwise |f,(x)| = 0, and the inequality holds as well. Thus

Ifillzey S lf2llp,¢ < 1 and hence
”g/”g”(pz(-)||¢(_) = fllgey = lfillgey + 1 fallgy S 1,
sothat ||gllzcy S llglle,- the opposite inequality is proved similarly.
While the spaces in the previous proposition are the same, it is not necessary that
@ = @,. For instance, if ¢(x,t) := max {t . 0} then <p(0,§) = 0 yet @, (t) =

2+|x|’
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t > 0 for all t > 0. Then for every g € (0,2), #(0,B2) = B2 % ¢(0,2), so the ®-
function are not equivalent.
Corollary (5.3.14)[196]: If ¢ € ®(R™) satisfies (A0)—(A2) and there exists y > 1
such that s = s~ @(x, s) is increasing for every x € R*, M : L?O(R™) = L?O(R™)
is bounded.

Note the range of permissible values t in the following proposition, including
also [0, 1]. This is sometimes very useful, e.g. in Proposition (5.3.17).
Proposition (5.3.15)[196]: If ¢ € ®(R") satisfies (A0)—(A2), then there exists €
(0, 2) such that

o (x, ) <@ () (17)

foreveryt € [ Iﬁl] every x,y € B and every ball B.

Proof. If t < 1, then ¢ is independent of x, so the claim is trivial. Thus it remains only
to consider the case t > 1. Then by Lemma (5.3.8) the inequality holds if and only if
o(x,Bs) = @(y,s)
forevery t € [1 7 (y, Iﬁl) ] since ¢ = @,, such s satisfies s € [1 Q5 (y, Iﬁl) ] if

fBs = 1, then using Lemma (5.3.8) for ¢, we calculate

(ﬁ(x,ﬁs) = ZQDZ(X,BS) —-1< 2<p2(y,5) —-1= @(Y,S)
If Bs < 1,then @(x,Bs) < p(x,1) =1<¢@(y,1) < @(y,s), so the inequality holds
in both cases.

In view of the previous proposition and the observation, we make the following
definition. Note that a normalized ®-function satisfies assumptions (A0)—(A2).
Definition (5.3.16)[196]: We say that ¢ € ®(R") is normalized &-function if
@(x,t) = @ (t) for € [0,1] (1) € (0, ), and there exists f > 1 such that

o (x ) <7 (1)
forevery t € [ IBI] every x,y € B and every ball B.

Proposition (5.3.15) says that instead of studying ¢ € ®(R™) which satisfies
(A0)—(A2) we can study the normalized ®-function ¢@. This sometimes leads to great
simplifications in proofs, as the following result shows.

Proposition (5.3.17)[196]: Suppose that ¢ € ®(R™) is normalized. Let B 3 x be a
ball. Then

1
Ixelloq < - B%
P (x Iﬁl)

Proof. By assumption

w(y,&p‘l( |ﬁ|>> (y,lﬂp (yl%l))sﬁil

when x,y € B, and hence

000 (B (x |ﬁl))og) Lw(y,ﬂqo‘l(x,%O)dySL

In some regard, it is actually easier to study general normalized ®-function then
the special case of variable exponent spaces: the normalized allows us to omit error
term, which commonly appears in the variable exponent case. This is consequence of
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the fact ¢(x,t) = @, (t) in the normalized case for small ¢, whereas only t?®) <
tP~ + h(x) holds in the variable exponent case; the function h leads to the error term.
The conjugate ®-function of ¢ is defined by

@*(t) = sup(st — @(s)).
s>0
Note that ¢** = ¢ [156]. For y > 1, the HOlder conjugate y' is defined by% +% = 1.

If (t) = %t”("), and we get the usual Lebesgue duality. The dual is defined for

generalized ®-functions point-wise. Note that conjugating preserves equivalence. i.e.
if @ =, then " =~ P~ [156].
Differentiating st — ¢(s) to find the maximum, we obtain that ¢*(t) =
t(p)™r — o((¢")1(t)), where (¢")~1(¢) is the right-continuous inverse:
()71 (1) = sup{r = 0]¢’(z) < t}.
For duality arguments we often need function nicer than &-functions: N-

functions are those (continuous) ®-functions which satisfy ¢ (t) € (0,0) whent > 1,

lim 29 = 0 and lim £2 = . The set of N-functions is denoted by N. Note that N-

t-0t t t—oo

functions are strictly increasing. For example, if ¢ (t) = tP, then ¢ € N if and only if
p € (1,00).

We say that ¢ € ®(R™) is a (generalized) uniform N-function if there exists

n,€ € N such that

n(t) < (x,t) < &)
forevery x € R™ and t > 0. The set of uniform N-functions is denoted by N(R"). We
set N; (R™) :== @, (R™) n N(R").

In the variable exponent case, tP is uniform only 1 < p < oo point-wise. The
latter condition has turned out to be nearly useless in LPO)-research, so it is natural to
consider here only the uniform case.

Proposition (5.3.18)[196]: If ¢ € N(R") satisfies (A0)—(A2), then ¢ € N;(R™).
Proof. By Lemma (5.3.12), ¢ € &, (R™). We need to check that the normalizations do
not destroy the functions n and &. By (A0), there exists § € (0,1) such that g <
@ 1(x,1) < 1/p. First we set n,(t) := n(Bt) and &, (t) := é(t/B). Thenn; < ¢, <
&,. As before n,(t) = max{n,(t), 2t — 1}, similarly for ¢&. Then also n, < ¢, < &,
and we easily see that n, and &, are still N-functions. Furthermore, 7 =
max{n,, 2, — 1} is an N-function minorizing @, similarly for &.
Lemma (5.3.19)[196]: Let ¢ € N and y > 1. Then s » sV ¢(s) is increasing if and
only if s » s""<p*(s) Is decreasing.
Proof. We note that t = t™Y¢(t) is increasing if and only if D(t‘pr(t)) >0, ie.
te'(t) = ye(t). Since ¢ is continuous, we conclude from this that
to'(t7) = yp(t™) =ye(b).

On the other hand, as noted after the definition of ¢*, with t := (¢")71(s),

@*(s) =st—(t) = st — %tcp’(t‘).

By [156], t = (¢*)'(s) and by [156], ¢'(¢*) (s) < s for all £ > 0, so that
@' (¢t7) < s. In the previous inequality, this gives ¢*(s) = %st = %S((p*)’(s), which

is equivalent to D (s""cp*(s)) < 0, as was to be shown.
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Proposition (5.3.20)[196]: If ¢ € N;(R™) is normalized, then also ¢* € N(R™) is
normalized.
Proof. First we note that n*,&* € N by [154]. The inequalities n(t) < ¢(x,t) < &(t)
yield £ (t) < @™ (x,t) < n*(t) by [156], and thus ¢* € N(R").
By [154], t < Y~ 1(6)(y*) () < 2tforp € N. Letx,y E Band t < I_ Then
Byt < pt P
(@) (x 1) < D S oD S (@), B).
Furthermore, ¢(x,s) = ¢@(x,1)s = s when s > 1 (since ¢ is convex). When t <
1 and s > 1, it follows that st — @ (x,s) < s(t —1) < 0. Hence, for t < 1.

o (x,t) = sup(st —o(x, S)) = sup (St —o(x, S)) = sup (st — Qoo (s))
s>0 S€[0,1] S€E[0,1]

= @& ()

is independent of x. Since 0= lim 228 = iy 2=®
t—>0 t t—0*

sup (st — @, (s)) > 0. Therefore we have shown that it is a normalized N-function.
SE[0,1]

Let 0 < a < n. For measurable f we define I,f : R" = [0, o] by

_ lf )
Iof (x) = f]}an Wdy

The operator 1, is called the Riesz potential operator.
Lemma (5.3.21)[196]: For ¢ € ®(R™) we write p(x,t) :== ¢@* (x t¥). Assume that

M is bounded from L?O(R™) to itself. Let x € R®, § > 0, and f € LYV (R™) with
”f”q,() < 1. Then

n—-a
[ gy sseals o
R™\B(x,5) |x - _}7| ® ()
Proof. B := B(x,§). We start with Holder’s inequality and take into account that

we obtain @i (1) =

Ifllpe < 1
j If(y)nl_a dy < *
R™\B lx — v o ()
n—
< 2wl =1
Next we note that, for x € R™\B,
MIBITH () = f x5(2)|BI7"dz = |B(y,2|x —yDI™" = clx —y|™"

B(y.2|x-yl)
Therefore ygrm\ s (¥ |x — y|* < M(xg|B|~1)(y) forall y € R™. Combing the previous

estimates and using the boundedness of M, we find that

|f I e n-a
f —Ix—yln‘“dys IM(xz|B] 1)||¢,’g. IBI ”M(XB)”A
R™\B
n—a

n
SIBIT sl = 1B 7 Ixsllyre
Recall that a function is almost decreasing if f(x) < Qf (y) when x > y, for some
fixed Q € [1, o). Almost increasing defined analogously.
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Lemma (5.3.22)[196]: Let ¢ € N;(R™) be normalized and suppose that s+~
s a« @(x,s) is almost decreasing for every x € R™. Then

—-a
I.f S, Mf(X))™Mf(x) a.e.
forevery f € LYO(R™) with || fl ¢y < 1.
Proof. Let us B := B(x, §). We divide the Riesz-potential into two parts:
lf W)l lf (W)l

wi= [ O gy [ VO,

of (%) g lx—y|"« Y rm\g [X — y["7¢
In the first part we split the integration domain into annuli and use the definition of M:

[ i iy < Y 62y | FO)Idy

— n-a
|X yl =1 “k§<|x—y|<2~kt1s

< ) (8279 lf(n)ld
kz=1 J|x—y|<2‘k+15 Foldy

(00)

< 5% 279k Mf(x) = c|B[nMf (x).
n—-a I;I

Let (x,t) = " (x tT) be as is Lemma (5.3.21). By Proposition (5.3.20), ¢* is

normalized. Thus ¢* satisfies (40)—(A2). Further = 1(x,t) = ((¢*) 1 (x, t))ﬁ , and
so @ inherits (A0)—(A2) from ¢*.
Sety = % and define Y (x,t) := t¥ sup s~ @(x,s) for t = 0. Thus definition
st
directly implies that t ™Yy (x, t) is decreasing and ¥ = ¢. Since s7¥(x,s) is almost
decreasing by assumption, ¥ < Q¢, so ¢ = . By Lemma (5.3.19), t‘V't/)*(x, t) is

increasing, and since ¢* = y* it follows that t‘V'<p*(x, t) is almost increasing.

n—-a

Therefore withs =t n
_yn-a _,m-a n-a
t VT plx,t)=t" n <p*(x,t n )=s‘M<p*(x,s)
is almost increasing. A calculation yields that y :== y’ % > 1. Therefore ¢ equivalent

to d-function & with t='&(x, t) increasing (cf. [190]). Since ¢ = &, also (40)—(A2)
holds. By Corollary (5.3.11), M is bounded on L$®), and hence also on L?©).
Therefore, the assumptions of Lemma (5.3.21) hold, and follows that

If ) a-n
| ey S 1B sl 18)
R™\B

provided ||f [,y < 1.
We combine (18) with Proposition (5.3.17) and (5.3.20), and obtain

a-n
|

B| n

of () < [BIRMF() + |BI 7 llxslly ) < IBIRMFC) + .
ﬁ((p*)_l (x; m)
Now (¢*) 1(x,t) =t/ 1(x,t) by [156] and so
a a (1
Lef () S |BIRMY o) + 1BIng™ (777
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when Mf(x) < oo, we choose the radius & such that Mf(x) = ¢~ (x,i), l.e. |B| =

1/@(x, Mf(x)). Thus 1B

a
If (x) S @(x, Mf(x)) "Mf(x) a.e.
Lemma (5.3.23)[196]: Let a >0, @ € N(R") with t—t «@(x,t) strictly

decreasing to 0 for every x € R™ and let A(x,t) := teo(x,t) . Then ¢ o (A71) is
equivalent to convex ®-function.

By ¢ o (A1) we main the function (x, t) ~ ¢(x,A71(x,t)).
Proof. Since the claim is point-wise in nature, we drop the variable x for the rest of the
proof.

Let us denote ¥ :== @ o (A™1). Since t‘g @(t) » 0we findthat A(t) > o ast —
oo, Thus also ¥(t) = o as t — oo. The function

n Sn/a
)\(S)E =
@ (s)
is strictly increasing by assumption, so the same holds for A~1. Furthermore, with s =
A(t), the fraction

M) ot a
s o eer

Is increasing t (since ¢ is increasing), hence is s as well. Since t = @(t)/t is
increasing (due to convex of ¢ and ¢(0) this yields that

Y(©) _ (1)@
t AL t
IS increasing, we obtain tlirg1+ Y(t) = 0. Thus it follows

{10]
t
from Lemma (5.3.4)[196] that ¥ is equivalent to a convex function.

The previous lemma shows that the next definition makes sense.

Definition (5.3.24)[196]: Let a >0, ¢ € N(R™) with tn—>t‘§ @(x,t) strictly

decreasing to 0 for every fixed x. We define A(x, t) := t(x,t) = and let ¢} € ®(R™)
be a ®-function equivalent ¢ o (A~1) (which exists by Lemma (5.3.23).)
Lemma (5.3.25)[196]: If ¢ € ®(R™) satisfies assumptions (A0)—(A2) and t —
tYo(x,t),y <0, isdecreasing, t — t¥@(x,t) is almost decreasing.
Proof. We prove first t = t¥ ¢, (x, t) is almost decreasing. Since ¢ = ¢,, fors < t,

sY@a(x,s) =2 sY(x,s/L) = LY (s/L )Y p(x,s/L) = LY (t/L ) p(x,t/L)

> LY (Lt )Y (x, Lt) > LY (Lt ) @, (x,t) = L>tY @, (x, t).

Using this we obtain the same property for ¢: If0 < s <t < 1, then

sY@(x,s) = limsupsY@,(z,s) = L? limsup t? ¢,(z,t) = Lt (x, t),

|z]| >0 |z]|> 0

and 1 < s < t, then
sY@,(x,5) = sY(2¢,(x,5) = 1) = sY@,(x,5) = L7tV @, (x, 1)

1 1
> ELZVtV(Zgoz(x, s)—1) > ELZVthE(x, t).

Since the function is almost decreasing on (0, 1] and [1, o), it is almost decreasing on
the union as well.

is also increasing. Since
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Lemma (5.3.26)[196]: Let ¢ € N(R") satisfy assumptions (A0)—(A2) and let t —
t‘ggo(x, t) be strictly decreasing to 0. Then L& (R™) = [P0 (R™),
Proof. By Theorem of [154] such that LY (R™) < L*O(R™) if and only if there exist
£ > 0and h € L}(R™) such that ¢ (x, ft) < ¥(x,t) + h(x). This can be equivalently
written =2 (x,s) S ¢~ (x, s + h(x)).

Let us show that LPz0)(R™) c L920)(R™): the reverse implication follows
analogously. The inclusion is equivalent to the inequality

(@) (x,5) < () (x5 + h(x))
By Lemma (5.3.25), t = t «@(x, t) is almost decreasing which is equivalent to

t &>t a@p 1(x,t) being almost increasing. By the definition of @/ and the almost
increasing property, we obtain that
¢ '(xs) ¢ '(xs)

@700 = X774 00,5) = -
P (x9) ~ N7 (x,9)) i) 5T

- @~ (x,s + h(x))

~ a/n '’
(s + h(x))
Where A(x,t) = td(x, )%™ By Proposition (5.3.13), L¢® = L?0 so that
@ 1(x,s) S ¢ (x,s + h(x)). Using this in the inequality above, and reversing the
steps with ¢, we get
@10 s) < @~ 1(x,s + h(x)) - ¢~ 1(x,s + 2h(x))

(s + h(x))a/n (s + h(x))a/n
as required.

Theorem (5.3.27)[196]: Let ¢ € N(R™) satisfy assumptions (A0)—(A2) and suppose

that € > 0 is such that t » t=*&¢(x,t) is increasing and s = s @ @(x,s) is
decreasing for every x € R™. Then

||Iaf||<pg(-) S “f”(p(-)'
Note that ¢ is doubling with constant 2~ « sinces » s a @(x, s) is decreasing.

n-—&

Proof. Let us first note that since s » s« @(x,s) is decreasing t = t a@(x,t) IS
strictly decreasing to 0.

By Proposition (5.3.13) and Lemma (5.3.26), L?®) = L?0) and L#&0) = [Pz0)
with comparable norms. Thus it suffices to show that ||Iaf||¢g(_) S f Iz

By Propositions (5.3.15) and (5.3.18) ¢ € N;(R™) is normalized. By Corollary
(5.3.14), M : LPO(R™) - LPO(R™) is bounded. By Lemma (5.3.25), t -
t~a @(x,t) is almost decreasing. Thus, by Lemma (5.3.22), A™*(x,I,f(x)) S
Mf(x). Applying ¢ to both sides, we find that

Ph(x1af () = (1,17 (0 1 f () S @(x, MF(X)).
From this we deduce by the normal scaling argument that
Wafllgeey S IMflige = Ifllge-

It is well known that |u| < I;|Vu]| for u € C3°(R™). With this we directly obtain the
following result.

S (@D (x,s + 2h(x)),
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Corollary (5.3.28)[196]: (Sobolev inequality). Let ¢ € N(R™) satisfy assumptions
(A0)—(A2) and suppose that € > 0 is such that s = s~ &g (x, s) is increasing and

s = s « @(x,s) is decreasing for every x € R™. Then
lullyiy < IVllyey
for all u € C5°(R™).

If Q c R™ is John domain, then |u —uqg| < I;|Vu| by [180], and the same
arguments yields that

lu = ugll ey S 1Vullyey
for all u € WL1(Q). Here uq denotes the average of u over ().

Let « = 1 and @(x,s) = sP for some p € [1,00). Then s = s~ p(x,s) is
increasing if p > 1 and s > s~ ®g(x,s) is increasing p < n. Thus Theorem
(5.3.27) and Corollary (5.3.28) covers the parameter range p < p < n in which case
@?(s) = sP". The assumption 1 < p can probably be relaxed by weak-type estimate
(cf. [156]).

Let @ € N. Next we discuss the sharpness of . Let (7;,) be positive sequence
converging to zero. We set

v =1 (™),
for k = 1,2, ... Define v, € C5°(B(0,3r,)) such that it equals vy in B(0,7;) and
|Vuy | < :_i By a straightforward calculation we obtain that

| oavuhax s e () = 1
R™ Tk
fork = 1,2,.. Thus |[|[Vu]|, < 1. On the other hand,

| nGuehdx = enGrp™ )
for n € @. Thus we find that the Sobolev inequality [[u[[,, < [|[Vu]|, does not hold for
all u € W,"?(B(0,1)) if
limsup t"n(te~1(t™)) = oo.
t—0*
We consider the function n :== ¢ o ¥ ~1. With the substitution t = ()~ we
obtain

t"n(tp=1(t™)) —T (w [<p(1") nQ 1(90(T))D

1 e~ HAMD
o (W [re@r]) = -
<p(r) @(r)

If the Sobolev inequality holds, then by the previous argument the limit of this
qo(w;(?)(rm <M e [1,o)
when r > r, for some r,. Hence (Y 1[A(D)]) < Mo(r) < ¢(Mr) for some r >
ro-here the last inequality follows by the convexity of ¢ since M > 1. Consequently,
Y HA()] < Mr when r > r, so that Y ~1(t) < MA1(t) when t > A(1p). If @ is
doubling, this implies that n(t) < (MA~1(t)) S ¢¥ (¢). Hence we obtain the following
proposition.

expression (as t —» 0%,i.e.r - o) must be finite. Then
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Proposition (5.3.29)[196]: Let ¢ € N be doubling and let A be as in Definition
(5.3.24). Lety : [0, 0) = [0, o) be such that
lim ————= 1/)‘1(t)
oo A71(1)
Then there does not exists a constant ¢ > 0 such that
lull poy-1 < llflly
forall u € C5°(B(0,1)).
Corollary (5.3.30)[205]: Assumption (AOM) implies (A0).
Proof. By the definition of ¢ 1, the inequality ¢(x,,1) = 1 yield ¢~ 1(x,,1) < 1. If
o(x, (1+6) <1, then o 1(x,, 1) =(1+¢). If o(x,,(1+¢))=1, then by

convexity ¢ (xr, ) < 1and thus ¢~ (x,,1) > (128)

The converse is not true. If (A0) holds, so that ¢; < ¢~ 1(x,,1) < c,, then
¢(x,,¢c1) < 1and @(x,,c,) = 1. Butitis not necessary <p(xr, 1) = 1 as the following

example shows: if p(1 + &) = & *8) then ¢(x,, 1) =2 < 1 but ™' (x,, 1) = 2.

We use the assumption (AO) to find an equivalent CD function that behaves better

than the original one. We set
01 (xr, 1+ 8) = 9(x,, 7 (x, V(1 + &)

Then ¢, is equivalent to 1 1(x,, 1) = ¢,(x,,1) = 1 (by (16)). The set of ®-functions
with ¢7%(x,,1) =1 will be denoted ®,(R™). Note that every &®,(R™)-function
satisfies assumption (A1) implies (AOM).
Corollary (5.3.31)[205]: Let ¢ € &, condition (A1) holds if and only if there exists
€ > 0 such that

@Cr, (1 +8)%) < p((xr,8), (1 +¢))

-1 1
(p ((xT + 8)) |B|> H
with |B| < 1.

proof. Let the condition of the lemma hold and assume &> —1. Then
e H (e +8),(1+¢) € [1, o1 ((xr + s),é)] and so

) (xr, 1+ Y ((x+6), 1+ e))) <g ((xr +6),07 (x, + ), (1 + e)))
= (1+ ¢).
Let t, and (¢, + 2¢) be as in (15) and abbreviate (¢, +¢) = (1 + &) *((x, +
£),(1+¢)). If 1 <e < 2¢, then (A1) follows from the previous inequality, since
ot (xr,(p(xr, (to + e))) = (to +¢). And if € >0, then <p(xr, (to + 8)) = o0 <
(1+¢), a contradiction, so this is not possible. If €>0, then (t,+¢) <
@ (%, (1 + €)) since 9~ (x,, (1 + €)) > to(e = 0). Thus in each case (A1) holds.
Assume then that (A1) holds and let e > —1. By (A1) and (16),

) (xr, 1+ e ((x+e),(1+ s))) <@ (xr,go‘l(xr, (1+ e))) = (1+¢
=@ ((xr +6),07 ((x, + ), (1 + e))).

for every (1 +¢) < every x,, (x, + €) € B and every ball B
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Let (ty,+¢) = (p‘l((xr +¢&),(1+ s)). Thus go(xr, A+ e)(ty + e)) < go((xr +
£),(to +¢€)) in the range of ¢~ 1((x, +¢),), including (to, (t, + 2€)). When
(to + &) — t§, this gives that o ((x, + &), (1 + &)ty) < @((x, + €),t) = 0, so the
inequality holds for & > 0, as well. Finally, if £ > 0, then ¢((x, + €), (t, + 2¢)) =
oo, so the inequality certainly holds.

Corollary (5.3.32)[205]: If ¢ € ®,(R™) satisfies (A1), then it satisfies assumption
A1M).

I(Droof.)LetB be aball |[B| < 1. We must show that 51 (1 + £)?(8 < @5 (1 + £) when

(1+e) <[ ()]

|B|
Suppose first that (1 + €) is not the upper end-point of the interval. For such

ot (((x»i + e)ﬁ)] and
pp(1+¢) = lijr_n o(((x); + €), (1 + €)). Then by Corollary (5.3.31).

<p(xr' (1 + 8)2) < go(((xr)L + S); (1 + S))
We let j — oo and take supremum over x,- € B to arrive (A1M).

It remains to consider (t' + ) = (pz1)~?! (ﬁ) Suppose first <p§((1 +e)(t' +

g£)) <oo. Let £>0 and choose x, € B such that ¢f((1+e)(t' +¢)) < (1+
&)@ (x,, (1 +&)(t' + ¢)). Since ¢(x,,”) Is left-continuous, we can choose & < 0 such
that go(xr, 1+t + s)) <A+ 9e(x, (1+¢&)t"). Combining this with the
previous case, we obtain that
P14+t +8) <A +e)plx, (1+e)t)
<@+ %p((x,+8),t")
<A+ %p((x,+ &), (t +2)).
Taking infimum over (x, + €) and letting € — 0, we obtain the desired inequality. The
case o ((1+ &)(t' + €)) = oo is handled analogously.
Corollary (5.3.33)[205]: Let ¢ € ®,. If ¢ satisfies (A2), then it satisfies (A2M).
Proof. By theorem of [154], LY (R™) < L¢O(R™) if and only if there exist ¢ > 0 and
h € LY(R™) such that ¢ (x,, (1 + €)?) < ¢(x,, (1 + €)) + h(x,). Hence (A2) implies
that for every t, there exists (1 + &) and h € L*(R™) such that
0, (1+8)?) < po(1+e)+h(1+&) and @ (1 + €)?
< (p(xr, 1+ e)) + h(x,)
for all —1 < e < 0 (the restricted range of (1 + ¢) is due to the intersection with
L™ (R™) in the assumption). From these we obtain that
o(xr, (to +£)2(1+€)) < Yo (1 + €) + h(x,)
< (p((xr +¢&),(1+ e)) + h(x, + ¢€) + h(x,)
for 0 < & < 1. Since ¢(x,,, 1) = 1. So the inequality also holds when we replace h by
min{h, 1} € L}(R™) n L (R™), as required by (A2M).
Corollary (5.3.34)[205]: If ¢ € &, (R™) satisfies (A0)—( A2) and there exists e > 0
such that (¢, + &) P (to + &)~ (x,, (¢, + €)) is increasing for every x, € R,
then M : L?O(R™) - L*O(R™) is bounded.

(1+ ¢), there exists (x,.); + € € B such that (1 +¢) <
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Proof. Asin (A0), we find ¢, € &, with ¢, = ¢. Then ¢, satisfies (AOM). By Lemma
(5.3.6)[196], ¢, satisfies (A1) and (A2). A short calculation gives that (t, + €) =
(to + &)~ W*g, (x,, (t, + €)) is increasing. By Corollary (5.3.32) and Corollary
(5.3.33), (A1M) and (A2M) hold. Therefore by thus also on L (R™).

d-function are not totally well-behaved with respect to taking limits. Consider
for instance (1 + £)1*%. As ¢ - oo, the pointwise limit is ®¥ (1,000 + X{13» Which is not

left-continuous. For the equivalent d-function ﬁ(l + &)1*¢ we have lim ¥ (1,00)»

which is what we want. Therefore, we need to chose the equivalent d-function suitably
to get a good limit.
We are especially interested in the behavior of ¢, when € < 0. To this end we

define [196]
Q> <xr, (% — e)) = max {gal (xr, (% — e)) ,(1— 28)}.

Clearly ¢; < ¢,. Fore <0, ¢, = ¢;. Since ¢ € ®,(R") we have ¢,(x,,1) = 1 and
0, (xr, G — s)) > (% — s) for €>0 by convexity. Thus ¢,(x,, (1+¢))<
0%, 1) =1 < @y (x,,2(1 +¢))  for —% <e<0 and @u(x,(14+¢)<
201 (%, (1 +€)) < @1(x,2(1 + &) for € > 0. In sum, obtain ¢, = ¢, =~ ¢ with
P2 (xr, 1) =1 = 937 (%, 1).

Note that the right-derivative satisfies ¢, (x,, 17) € [1, 2]: here the lower bound
follows from convexity ¢;(x,, 1) = (pz(xr, 1+ g)) = 1 and the upper bound holds
since if @} (x,, 17) > 2, then ¢, (x,, (1 + €)) < (1 + 2¢) for some € < 0 contrary to

construction of ¢,.
We consider then limit(¢;)e (1 + &) = limsup ¢,(x,, (1 +¢)). Cleary

|| =00

(02)0(0) =0 and (p2)e(1) =1. For 0<e <1, (¢2)0(1) = (@)0(l+e) =
(14 2¢) and hence (¢,). is left-continuous at 1. By convexity of ¢,, @, (xr, (1+
s)) < (1+¢&)p,(x,,1)on[0,1] and hence (¢,)(0") = 0. Since (¢,)(1+ &) =
(14 ¢) fore = 0, we have lim (¢;) (1 + &) = oo,
£—>00

Corollary (5.3.35)[205]: If ¢ € ®(R") satisfies (A0)—(A2), then ¢ € &, (R™).
Proof. For the convexity we have to show that the ¢’ (x,.,") is increasing for every x,. €
R™. We have

_, 2§0§(xr, 1+ s)), if €=>0,

,(1+ =

70, (14 2) {(qaz);o(l —e),  if £<0.

By convexity each of the parts is increasing. At, 2¢5(x,,1)>2 and

(dir)n 1_(g02)fx,( 1+ €) < 2 (see discussion regarding) (A2), so the right-derivative is
E)—

increasing also there.
The function ¢ is continuous since both ¢, and (¢,). are continuous and
©,(x,,1) = (¢;)(17) = 1. Thus we have that =1 (x,, 1) < 1. In the discussion on

(A2), we noted that goz(xr,(1+s)) <(1+¢€) on [0,1]. These together give
o (x,,1) =1,
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The conditions @(x,,0) = @(x,,07) =0 and gh—>n; @(1+ &) = oo follow from
the same continuous for ¢, and (¢,) .
Corollary (5.3.36)[205]: If ¢ € ®(R™) satisfies (A0)—(A2), then L#O) = LPO) with
equivalent norms.
Proof. Since ¢ = ¢,, it suffices to show that L¥2() = [#0),

Let g € L?200(R™) and set f := 9/llglle,c. we divide f into two parts f; =

Xiri<y and fo = xqr1=13- BY (A2), and since ||l p,¢y) = 1,

Ifillzey = 1fill@ye < Wfilliwneone = fill@2re0n o
= max{l|fillp, ) Ifilleo} < 1.

If |f,(x,)| = 1, then
Otherwise |f;(x,)| = 0, and the inequality holds as well. Thus || fillz¢) S If2llg,¢) <
1 and hence

||-g/”.g”(p2(-)||¢(_) = fllagey = fillgey + fillgey S 1,
so that [[gllz) < llglly,¢)- the opposite inequality is proved similarly.
Corollary (5.3.37)[205]: If ¢ € ®(R™) satisfies (A0)—(A2), then there exists 0 <
€ < 1 such that

1-8¢  (x, (14+6) <o (x,+ &), (1 +9)) (19)
forevery e > —1, every x,, (r, + €) € B and every ball B.
Proof. If ¢ < 0, then ¢ is independent of x,, so the claim is trivial. Thus it remains
only to consider the case € > 0. Then by Corollary (5.3.31) the inequality holds if and
only if

o(xr, (L +&)(to+€) < @((xy + ), (6 + )

forevery (1+¢) < [@‘1 ((xr + e),l%l) ] since ¢ = ¢,, such s satisfies (t, + ¢€) €

[1, ;! ((xr + s),l%l) ] if (14 ¢)(ty,+ €) = 1, then using Corollary (5.3.31) for ¢,
we calculate
@(xr, A+ e)(t, + e)) = 2(p2(xr, A+ e)(ty, + e)) -1
<20, ((xr + ), (g + ) — 1
= (ﬁ((xr + &), (ty + e)).
If (1+e)(tp+e)<1, then @(x,(1+e)(to+e)<dplx,1)=1<d((x+
£),1) < @((x, + &), (¢, + €)), so the inequality holds in both cases.

Corollary (5.3.38)[205]: Suppose that ¢ € ®(R"™) is normalized. Let B 3 x, be a

ball. Then
1

1+t (xrﬁ)

Ixslloe <

Proof. By assumption
Y. » 1)) 1
7 ((xr +¢e),(1+¢e)e (xrm>> <@ ((xr +¢&),(1+ee ((xr + ¢€), |,3|)> < 7]

when x,., (x, + €) € B, and hence
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1

00 (1 + 0™ (5 ) 25) = | 0 ((xr +o),(1+e)g™! (xr,m))d(xr te) <1,
B

Corollary (5.3.39)[205]: If ¢ € N(R"™) satisfies (A0)—(A2), then ¢ € N;(R").
Proof. By Corollary (5.3.35), ¢ € ®;(R™). We need to check that the normalizations
do not destroy the functions n and &. By (A0), there exists 0 < € < 1 such that

1+8) <o (x,1) < ﬁ First we set n;(1+¢) :=n(1+¢)? and & (1 + &) :=
§(1). Then ny <@, <¢&. As before n,(1+¢)=max{n,(1+¢),(1+2¢)},
similarly for ¢&. Then also n, < ¢, < &,, and we easily see that , and &, are still N-
functions. Furthermore, 7 = max{n,,2n, — 1} is an N-function minorizing ¢,
similarly for &.

Corollary (5.3.40)[205]: Let ¢ € N and £ > 0. Then (¢, + &) = (to + &)~ Dp(t, +

1+¢

) isincreasing ifand only if (to + &) = (to +€) = @™ (t, + €) is decreasing.
Proof. We note that (14 ¢) = (1 + &)~ @& (1 + ¢) is increasing if and only if
D ((1 + &)1+ (1 + g)) >0,ie (1+&)e (1+&) = +e)e(l+e). Since ¢
is continuous, we conclude from this that
A+’ t) =20+t )=A+)e(1+¢).

On the other hand, as noted after the definition of ¢*, with (1 +¢) ==

(@)1 +e),
P (tg+e)=(y+e)(1+e)—p(1l+e)=(ty +e)(A +¢) — @' ().

By [154], (1 + &) = (¢*)'(ty + €) and by [154], @' (¢™) (t, + &) < (t, + €) for all
£>0, so that ¢'(t7) < (t; +¢€). This gives ¢@*(t,+¢) = e(t, +¢) = i(t0 +

+

g)(p*) (t, + ), which is equivalent to D <(to + s)_leggo*(to + e)) <0, as was be

shown.

Corollary (5.3.41)[205]: If ¢ € N;(R™) is normalized, then also ¢* € N(R") is
normalized.

Proof. First we note that n*,&* € N by [154]. The inequalities n(1+¢) <

o(x, (14+) <& +e) yield & (1+¢&) < @*(x,, (1 +&)) <n*(1 + &) by [154],
and thus ¢* € N(R™).
By [154], (1+ &) <y '(1+e)@) (1+e)<2(1+¢) for Y € N. Let
Xp,(x,+€)€EBand (1+¢) < é. Then
148, \_1 (1+¢)? (1+¢)
7 @) A re) < o~ (x, (1 +9)) = o1 (x,, (1 + )
< ((p*)_l((xr + ), 1+ e)).
Furthermore, ¢(x,, (1 +€)) = @(x,, 1)(1 + &) = (1 + &) when & > 0 (since ¢
is convex). When ¢ <0 and & >0, it follows that (14 &)? — @(x,, (1+¢)) <
(1+ ¢)(e) < 0. Hence, fore < 0.

o*(x, (1 +¢)) = £s>u_p1 ((1 +&)2—p(x, (1 + s)))
= sup ((1 +e)2—o(x, 1+ e)))

—1<e<0
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= sup ((1+€)? - pu(1+¢))

—1<e<0

= pu(l+e)
is independent of x,. Since 0 = lim olar@re) _ lim  222%9 \we obtain
1+e—0% 1+e (1+e)—-0t 1+¢
9%(1) = sup ((1+&)? —@u(1+¢€)) > 0. Therefore, we have shown that it is a

—1<e=<0

normalized N-function.

Corollary (5.3.42)[205]: For ¢ € ®(R™) we write ¢(x,, (1 +¢)) = ¢" (xr, (1+
e)ﬁ). Assume that M is bounded from L?O) (R™) to itself. Let x,. € R, § > 0, and
f € LPOR™) with ||f]l ¢y < 1. Then

|f (xr + &) e
j ——dy 5 |BG, DI xse sl . -
R”\B(xrﬁ) |x7' | ¢

Proof. B := B(x,,8). We start with Holder’s inequality and take into account that

Ifllpey < 1:
£ Gy + )]
[ e + o) < 2o sl =,
RTL\B X-rl (p

&

< 2lxmmg oy — 17| 2E2e
Next we note that, for x,, € R™\B,

MO BI D (x, + ) > j X5ty + 26)|BI71d(x, + 26)
B((xy+e),2]el)

= |B((xr + &), 2|eD]™" = cle] ™%
Therefore  ypmp(x, + &)|e]™?* < M(x5|BI™)(x, +&) for all (x, +¢&) €R™
Combining the previous estimates and using the boundedness of M, we find that

|f Cer + ) £ ¢ ¢
—_— < -1y 1+2e _ 1+2e
jRn\B I2]e d(x, + &) s [[M(xs|B] )||¢)(.) |B|T+2¢||M (x5)| 5

£ _£& €
S [BlT+zellxslI505° = 1BIT2E | xsll e -
Recall that a function is almost decreasing if f(x,) < Qf (x, + &) when ¢ < 0, for
some fixed Q € [1, ). Almost increasing defined analogously.
Corollary (5.3.43)[205]: Let ¢ € N;(R™) be normalized and suppose that (1 + ¢) ~

(1+ &)~ p(x,, (1 + &) is almost decreasing for every x, € R™. Then
—(1+¢)

Livef S (2, Mf(x,)) 1728 Mf(x,) a.e.
for every f € LYO(R™) with || f |l ¢y < 1.
Proof. Let us B := B(x,, ). We divide the Riesz-potential into two parts:
L fe) f POty sy s f G + )]
B el R™\B |€]
In the first part we split the integration domain into annuli and use the definition of M:

d(x, + €).
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|f (xr + ©)
f e + el

—k\—¢
e d(xr+s)SkZ;(62) FCo + ) dCx, + o)

2-k§<|e|<2—k+1s

AR G

< i+ Z 2-(+9K M (x,) = clBITFeM (x,).
keN
Let ¢(x,, (1+¢))=¢" (xr, (1+g)m) be as is Corollary (5.3.42). By
Corollary (5.3.41), ¢* is normalized. Thus ¢* satisfies (A0)—(A2). Further

1+2¢&

97 (2 (1+ ) = ((0) (3, (1 +2)) © , and 50 ¢ inherits (40)—(A2) from

*

Q.

Set € := 0 and define lp(xr, (1+ s)) = (1+ &)*¢sup(1 + )~ 1+9 (p(xr, (1+ e))
&

for € > 0. Thus definition directly implies that (1 + &)~ *&y(x,, (1+¢€)) is

decreasing and ¥ = ¢. Since (1 +&)~*9(x,, (14 ¢)) is almost decreasing by

(1+¢)
assumption, 1 < Qe, so ¢ = 1. By Corollary (5.3.41), (1 + &) = P (x, (1+¢)
is increasing, and since ¢* =~ y* it follows that (1 + e) e (p *(x, (1 + €)) is almost

increasing. Therefore with ¢ = (1 + e)1+2s
P(xr, 1+ ) =9"(x, 1) = (1 + &)~ Hp*(x, (1 + ©))

1+&

is almost increasing. A calculation yields that (1 + ¢€) = (%)“2‘E > 1. Therefore ¢

equivalent to &-function & with (1 + s)_%f(xr, (1 + &) increasing (cf. [188]). Since
® = &, also (A0)—(A2) holds. By Corollary (5.3.34), M is bounded on L¢), and hence
also on L?0).

Therefore, the assumptions of Corollary (5.3.42) hold, and follows that

fCer + )| —
j LG + ) 5 1Bl 20)
R™\B €l

provided ||f [,y < 1.
We combine (20) with Corollary (5.3.38) and (5.3.41), and obtain
1+¢ 1+¢
Liyef (xp) S |Bl1+2e(1 + &) f (%) + |BI1+2e] xpll vy

£
|B|1+2¢

(1+e)9) (% 757)

Now (go*)‘l(xr, 1+ e)) ~ (1 + e)/go'l(xr, 1+ e)) by [12] and so
1+¢& 1

hef () S [BIFF2e(1+ £)f (1) + B[22 (xp,722).

when (1+ ¢)f(x,) < oo, we choose the radius & such that (1+¢&)f(x,) =

-1 1) = -
® (x“ |B|)’ . |B| ¢ (xr (1+)f (xr) Thus
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1+&

Livef (6) S 0(xr, (1 +6)f (%)) P21+ )*f(x,) a.e.
Corollary (5.3.44)[205]: Let &>-1, @ € N(R") with (1+¢&)-(1+

1+¢€
&) "1+2e @(x,, (1 + €)) strictly decreasing to 0 for every x,. € R™ and let A(x,, (1 +

_te
€)= 1+ eep(x,, (1+¢)) 2. Then @ o (A1) is equivalent to convex -
function.
By ¢ o (A™1) we main the function (x,, (1 +¢)) » ¢ (xr,l‘l(xr, (1+ e))).

Proof. Since the claim is pointwise in nature, we drop the variable x,. for the rest of the
proof.
1+¢&

Let us denote 1 := ¢ o (A™1). Since (1 + &) 1+ze (1 + &) » 0 we find that

AM1+¢€) > oase — oo, Thus also Y (1 + &) - o as € — oo. The function
1+¢

(1+ g)1+2e

p(1+¢)
is strictly increasing by assumption, so the same holds for A~1. Furthermore, with

(1+¢&) =21+ ¢), the fraction

A1+ e) 1+¢ d+e

1+e A(l+¢) = (1 + etz

isincreasing (1 + ¢€) (since ¢ is increasing), hence is s as well. Since (1 + ¢) »
is increasing (due to convex of ¢ and ¢(0) = 0)this yields that

Y(A+e) oA +e))AIA +¢)
1+e A1+ ¢) 1+¢
pa+e) s increasing, we obtain  lim (1 + &) = 0. Thus

(1+&)-0*

AM1l+¢)=

@o(1+¢)
1+¢

is also increasing. Since

1+¢
it follows from Lemma (5.3.4) that ¥ is equivalent to a convex function (see [196]).
Corollary (5.3.45)[205]: If ¢ € ®(R™) satisfies assumptions (A0)—(A2) and

1+ (1—e)%p(x,(1—¢)), e<1, is decreasing, (1—¢&)m (1-
e)1¢@(x,, (1 — €)) is almost decreasing.

Proof. We prove first (1—¢) » (1 — e)l‘fgoz(xr, 1- e)) is almost decreasing.
Since ¢ = ¢,, fore > 0,

(1—2e)"*g,(x,, (1 —28)) = (1 —2&)' %9 (xr,
1-—2¢
=(1+2&)1 % (xr,—l " )

> (1) (x, 70 )
- "1+4¢
> ((1+ 821 -9) Fox,, (1 —2))
> ((1+8)?*(1-2) “s(x, (1 - &)
=1+ 91 - e)%(x,, (1 —&)).
Using this we obtain the same property for ¢: If € < 0, then
(1—-28)7¢p(x,, (1 — 2¢))

1—25)
1+¢
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= limsup (1 — 2&) ¢, ((x, + 2¢), (1 — 2¢))

|x,+2€|>00

> (1+¢)2079 limsup (1 — &) f,((x, + ), (1 —¢))

|xr+2£|—>oo
= (@ +e21-9) " 3(x, (1-2),
and € > 0, then
(1+ &)t %, (xr, (1+ e)) =1+ 8)1_8(2¢2(xr, (1+ e)) — 1)
> (1+ &) g,(x, (14 )
>(1+e?(1+ 28))1_8<p2(xr, (1+ 2¢))
1
=51+ £)31795(x,, (1 + 2¢)).
Since the function is almost decreasing on (0, 1] and [1, o), it is almost decreasing on
the union as well.
Corollary (5.3.46)[205]: Let ¢ € N(R"™) satisfy assumptions (A0)—(A2) and let
1+¢&
(14 2¢) » (1 + 2¢) vzep(x,, (1 4+ 2¢)) be strictly decreasing to 0. Then
L(Pfﬂ(') (]Rn) = L@fﬂ(]}gn)_
Proof. By Theorem of [154] such that LY (R™) c L*O(R™) if and only if there exist
g > —1and h € L*(R™) such that ¢ (x,, (1 + &)(1 + 2¢)) < P(x,, (1 + &) + h(x,).
This can be equivalently written Y ~1(x,, (1 + €)) S ¢~ *(x,, (1 + &) + h(x,)).
Let us show that L?1+0(R™) < L#1+O (R™); the reverse implication follows
analogously. The inclusion is equivalent to the inequality

-1 -1
(1::0)) (0 (1 +0) 5 (011:0)) (2, (1 + ) +R(x)
By Corollary (5.3.45), (1+2¢)+ (1+2¢)*@p(x,,(1+¢)) is almost
decreasing which is equivalent to (1 + 2&) » (14 2&)~*@~*(x,, (1 +¢)) being

almost increasing. By the definition of @, . and the almost increasing property, we
obtain that

(@tre)” (xr (1 + ) = X(@‘l(xr, (1+2))
@ (x, (1 + )

1+¢

(xr, ——1 x,,, ((1 +¢)+ h(x,,))))HZE
(ﬁ 1(xr, (1+ e)) 7 1(xr, (1+¢) + h(x,))

1+¢ S 14+¢

(1+ e)1+2e ((1+ &) + h(x,)) T2

1+€

Where A(x,, (1 + 2¢)) = (1 + 2e)@(x,, (1 + 2¢)) 2. By Corollary (5.3.36), L0 =
L%V, so that @ (x,, (1 +¢)) S ¢ (x,, (1 +&) +h(x,)). Using this in the
inequality above, and reversing the steps with ¢, we get

(#00) (o (1 4+ 0)) 5 LU B2 D HGA) 97 (0 A+ 0) + 20(x)

(1 + &) + h(x))t+2e (1 + &) + h(x,))T+2
S ((ﬁf+£)_1(xr, (1+ &) + 2h(x,)),
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as required.
Corollary (5.3.47)[205]: Let ¢ € N(R") satisfy assumptions (A0)—(A2) and suppose
that € > 0 is such that (1 + 2¢) » (1 + 2&)"*9g(x,, (1 + €)) is increasing and
(1+¢) - (1+¢&) tp(x,, (1+¢)) is decreasing for every x,, € R™. Then
||I1+sf”(p*1*+s(.) S ”f”(p(-)-
Note that ¢ is doubling with constant 27 since (1 + &) » (1 + &) *¢(x,, (1 + €))
IS decreasing.
Proof. Let us first note that since (1+ ¢) = (1 + &) t¢p(x,, (1 + €)) is decreasing
(142¢) » (1 +2¢) p(x,, (1 + ¢)) is strictly decreasing to 0.
By Corollary (5.3.36) and (5.3.47), L?O = L#O and LP1+0 = [#1+:0) with
comparable norms. Thus, it suffices to show that ||11+8f||¢¥+8(.) S 1f ey
By Corollary (5.3.37) and (5.3.39) @ € N;(R™) is normalized. By Corollary
(5.3.14), (1+¢):LPO@R™) —» LPO(R™) is bounded. By Corollary (5.3.45),
(1+28) - (1 + 25)_$<p(xr, (1+ 2¢)) is almost decreasing. Thus, by Corollary
(5.3.43), A" (x, 11 f (%)) S Mf(x,). Applying @ to both sides, we find that
tee (e e f06)) = @ (20, X7 (2 Liae f () ) S (3, (1 + ©)F ().
From this we deduce by the normal scaling argument that
Wsefllgr, oo S NQA+fllge S Ifllge-

1+¢&

It is well known that |u, | < I |Vu,| for u, € C°(R™).
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Chapter 6
Maximal Function and Operators

The result extends the resent work of Pick and Rlzicka [22], Diening [1] and
Nekvinda [21]. We also show that under much weaker assumptions on p(x), the
maximal operator satisfies a weak-type modular inequality. We include as special
cases the optimal condition for Orlicz spaces as well as the essentially optimal

conditions for variable exponent Lebesgue spaces and double-phase functional.

Section (6.1): Maximality and Variable LP Spaces

Given an open setQ c R™, and a measurable functionp:Q — [1,0),
let LP™)(Q) denote the Banach function space of measurable functions f on Q such
that for some 1 > 0,

)

p(x)
“f”p(x),ﬂ = inf{l >0: j (|f(ﬂ_@|) dx < 1}
Q

These spaces are a special case of the Musielak—Orlicz spaces (cf. Musielak [18]).
When p(x) = p, is constant, LP*) () becomes the standard Lebesgue space LPo(Q).

p(x)
dx < oo,

F@)
A

with norm

Functions in these spaces and the associated Sobolev spaces W*?®¥) (Q) have
been considered: see, for example, [27], [10]-[41], [15]-]123], [22], [23] and [25].
They appear in the study of variational integrals and partial differential equations with
non-standard growth conditions.

Some of the properties of the Lebesgue spaces readily generalize to the spaces

LP™)(Q): see, for example, Kovacik and Rakosnik [13]. On the other hand, elementary
properties, such as the continuity of translation, often fail to hold (see [13] or [125]).

We consider the Hardy-L.ittlewood maximal operator,

1
Mf(x) = sup — |f()ldy, (1D

B>x |B| BNQ

where the supremum is taken over all balls B which contain x and for which |B n
Q| > 0 Itis well known (cf. Duoandikoetxea [40]) that the maximal operator satisfies
the following weak and strong-type inequalities:

C
e oM@ >l [ IfPdy,  1sp<o,
Q

fo(y)pdy < Cflf(y)lpdy, 1<p<oo
Q Q

We show analogous inequalities for functions in LP® (().
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Strong-type inequalities have been studied recently. Pick and Ruzicka [21] constructed
examples which showed that the following uniform continuity condition on p(x) is

necessary (in some sense) for the maximal operator to be bounded on LP®¥ (Q):

1
lIp(x) —p)| < x,y €Q,|x -yl <z (2)

—loglx — yI’
This condition appears to be natural in the study of variable LP spaces; see [21], [27].

Diening [4] has shown that this condition is sufficient on bounded domains. To
state his result, let p, = inf{p(y) : y € Q},p* = sup{p(y) : y € Q}.

Theorem (6.1.1)[36]: (Diening). Let Q < R™ be an open, bounded domain, and let p :

Q — [1, 00) satisfy (2) and be such that 1 < p, < p* < oo. Then the maximal operator
is bounded on LPX(Q) : [|Mflp,0 < C@G, DIIfllpe.a-
Very recently, Diening [1] has extended Theorem (6.1.1) to all of R™ with the

additional assumption that p(x) is constant outside of a fixed ball. Further, Nekvinda
[20] has shown that this hypothesis can be weakened as follows.

Theorem (6.1.2)[36]: (Nekvinda). Let p : R™ — [1, o) satisfy (2) and be such that
1 < p, <p* < oo. Suppose further that there is a constant p,, > 1 such that p(x) =
P + P(x), where there exists R > 0 such that ¢(x) = 0 if |[x| > R, and 8 > 0 such
that

1
I TP dx < oo, 3
{xeR™:(x)>0}
Then the maximal operator is bounded on LP™) (R™).

(Added in proof). We have learned that Nekvinda has improved this result by
removing the requirement that ¢ be nonnegative.
Note that together, conditions (2) and (3) imply ¢(x) — 0as |x| = oo,

The result is the following theorem; it is similar to Theorem (6.1.3) since it is for
exponent functions p(x) of the same form (though ¢ need not be positive). Further, it
gives a pointwise characterization of how quickly ¢(x) must converge to zero at
infinity.

Theorem (6.1.3)[36]: Givenan openset Q c R™ ,letp : Q — [1, ) be suchthat 1 <
p. < p* < co. Suppose that p(x) satisfies (2) and

lp(x) —pW)| =< x,y €Q, |yl = |x|. (4)

log(e + |x])’
Then the Hardy—Littlewood maximal operator is bounded on LP®™) (().

Proof. Without loss of generality, we may assume that f is non-negative. We first show
there exists a constant C such that if[f[,yo <1, then [Mf],yq <C.

FiX f,[flpoa < 1. Letf = f; + f, , where
1) = FO) Xt p o213 ().
Thenfori=1,2,|filpc),a < 1. Since p* < o,
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jMf(Y)”(Y)dy < 2r jMfl(y)p(Y)dy 4 2P jMfz(Y)p(y)dy-
Q Q Q

We will show that each integral on the right-hand side is bounded by a constant.
Since |f,(x)| <1, by Lemma (6.1.11), f, satisfies inequality (9). Therefore, if we
integrate over Q we get that

Jp()
[Mporoay<c|m (f 2(; ) oy +C [atydy +¢ [ HEGPOay
Q Q Q Q
Since p, > 1, M is bounded on LP+(Q) and a(x) € LP+(Q), so

<C ffz(}’)p(y)dy +C+ CJHfz(y)p(”dy <C+ CJHfz(y)p(”dy.
Q Q Q

Given a function p, define its increasing, radial minorant i,, to be the function

ip(x) = |yi|§|fx | p(y).

Clearly, i,, is a radial, increasing function. Further, (4) implies that for all x € Q,

_ C
0=pt) =6l <y

Therefore, since f,(x) < 1and (i) = p. , by Lemmas (6.1.13) and (6.1.9),

j HE ()PP dy < C j Hf,(0)P0dy < C f )P dy
Q QO QO

< Csz(y)p(y)dy + Cfa(y)p*dy <C.
Q Q

Hence, [Mf,]px0.0 < C.
A very similar argument using Lemma (6.1.9) shows that [M f;|,x) o < C.

Therefore, we have shown that if ||, 0 < 1, then [Mf |, 0 < C . Since C >
1, it follows that

J (T MfG))PPax < 1,
Q

which in turn implies that
IMf )0 < C.
To complete the proof we fix a function g € LP™(Q), and let f(x) =
9 /Ngllp.- Then lIfllpo.0 < 1,50 [flp@.0 < 1. Hence,
IMgllpco.e = 19llpe.allMfllpe.a < Clglipe.a-

Condition (4) is the natural analogue of (2) at infinity. It implies that there is some
number p,, such that p(x) - p, as|x| = oo, and this limit holds uniformly in all
directions. It is also necessary (in some sense) on R, as the next example shows.
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Theorem (6.1.4)[36]: FiX P, 1 < pe, < o0, and let ¢ : [0,00) = [0, p,, — 1) be such
that ¢ (0) = 0, ¢ is decreasing on [1, ), ¢(x) = 0 as x — oo, and

lim ¢ (x)log(x) = co. (5)
X— 00
Define the functionp : R = [1, o) by
_ {poo, x <0,
p(¥) = Poo — @ (), x > 0;

then the maximal operator is not bounded on LP™) (R).

Proof. The proof is closely modeled on the construction given by Pick and Ruzicka in
[20].

By inequality (5), we have that

. Poo
1 1-— 1 = —
xg?o( p(Zx)) 0g(x)
which in turn implies that
1— Po
lim x~ p2x) =0,
X—00

Therefore, we can form a sequence {c, }y=1, Cn+1 < 2¢, < —1, such that

|Cn|1‘p<_2|cn|‘) <2

Letd, = 2c¢, < ¢, , and define the function f on R by

> 1
£O) = ) leal PHD (g 00 GO
n=1

We claim that |f],)r < 1 and [Mf|,u)r = oo; it follows immediately from
this that || f [,y r < 1 and [[Mf|,x)r = o0, SO the maximal operator is not bounded
on LP®)(R). First, we have that

2 ren _ ) 2 rcn P d 1—_Peo d
Flyeor = Z f lc,| P0dnDdx = zf lc,,| PUdnDdy = Z|Cn| pldn) < z 2 m =1,
n=1 dn n=1 dn n=1 n=1

On the other hand, if x € (|c,|, |d,]), then

1
ST

1 Cn e, 1
»dy = f (Ydy = ——— = —|c,,| PdnD,
fy y Zldnl dnfy y 2|dn| 4 n

|dnl

Therefore, since p(x) Is an increasing function and |c,| = 1,

|dn| _ p(x) |dn| n 1 «
Ml = 7 Z f ool 70D > — Z f eal P = 2> 1 = oo
4l ), - 4L
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The assumption in Theorem (6.1.3) that p* < oo again holds automatically: it
follows from (4). However, the assumption that p, > 1 is necessary, as the following
example shows.

Theorem (6.1.5)[36]: Let Q c R™ be open, and let p: Q — [1,00) be upper
semicontinuous. If p, = 1 then the maximal operator is not bounded on LP®™ (Q).

Proof of. Fix k = 1. Since p, = 1,0 is open and p is upper semi-continuous, there
exists x;, € Q and & > 0 such that B, = B,, (x;) € Q, and such that if € B, ,p(x) <

nk
1+ 1/k . We define the function f; (x) = |x; — x| **iyp, (x). Then f; € LPX(Q).
On the other hand, for x € By , letr = |x — x| ; then

Mfi(x) = m Br(xk)fk()’)dy = c(k + 1) fi (x).

Hence, [IMfi .0 = ¢k + Dl fillpio. ; Since we may take k arbitrarily large, the
maximal operator is not bounded on LP™) ().

We begin with a lemma which, intuitively, plays the role that Holder’s inequality
does in the standard proof that the maximal operator is weak (p, p).

We note that an immediate application of Theorem (6.1.3) has been given by
Diening [1]: he has shown that if dQ is Lipschitz, and the maximal operator is bounded

on LP®) (1), then C*®(Q) is dense in WP ().

Unlike the case of the strong-type inequalities, we appear to be prove an
analogue of the weak (p, p) inequality for the maximal operator. The weak-type result
IS somewhat surprising, since it requires no continuity assumptions on p(x), and it is
satisfied by unbounded functions. To state it, we need a definition. Given a non-
negative, locally integrable function u on R", we say that u € RH,, if there exists a
constant C such that for every ball B,

u(x) < i u(y)dy a.e. x € B.
1Bl Jg
Denote the smallest constant C such that this inequality holds by RH,(u). The RH,,
condition is satisfied by a variety of functions u: for instance, if there exist positive
constants A and B such that A < u(x) < B for all x. More generally, u € RH,,
if u(x) = |x|% a > 0, or if there exists r > 0 such that u™" is in the Muckenhoupt
class A;. For further information about RH,,, see Cruz-Uribe and Neugebauer [197].

Theorem (6.1.6)[36]: Given an open set Q, suppose the function p: Q — [1, o) can be
extended to R™ in such a way that 1/p € RH,,. Then for all f € LP®)(Q) and ¢t > 0,

p(¥)
<If(y)|> dy. ©)

t

{x € Q: Mf(x) >t} < CJ

Q
Proof. For each N > 0, define the operator My, by

1
Myf(x) = SUPE QIf ) ldy,
BN
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where the supremum is taken over all balls containing x such that |[B| < N . The
sequence {M, f(x)} is increasing and converges to Mf(x) for each x € Q. Thus, by
the monotone convergence theorem, for each t > 0,

{x € Q: Mf(x) >t} = Allim {x € Q: My f(x) > t}].
Therefore, it will suffice to prove (6) with M replaced by M, , and with a constant
independent of N.

Fix t >0 and let Ey = {x € Q: Myf(x) > t}. Then for each x € Ey , there
exists a ball B, containing x, |Bx| < N , such that

If ()ldy > t.
|Bx| J5nay

By a weak variant of the Vitali covering lemma (cf. Stein [60]), there exists a
collection of disjoint balls, {B;}, contained in {B, : x € Ey}, and a constant C
depending only on the dimension n, such that

|Enl < C E | B |-
K
Therefore, by Lemma (6.1.13),

1 [ dy\ " 1 (|f(y>|>”(” |
SZ(W ka(y)> p.(B) Jp,na\ ¢ v

since p,(B,)™ 1 = (%) (By), by the definition of RH,, ,

< QX[ (L) wec [(B2 o

We can give an alternative version of Theorem (6.1.6) which does not require
extending p(x) to all of R™ , but to do so we must replace the assumption that 1/p €
RH,, with the following condition: given any ball B, |[Bn Q| > 0,andx € Bn Q,

1 - C dy
p(x) ~ |B| Bnﬂp(y).

Note, however, that this condition need not hold if p(x) is constant, and so we
do not recapture the classical result.

In the case of the Lebesgue spaces, the strong-type inequality is deduced from
the weak-type inequality via the Marcinkiewicz interpolation theorem. It would be
interesting to generalize this approach to use Theorem (6.1.6) to prove Theorem
(6.1.3).
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We prove Theorem (6.1.3), Theorems (6.1.5) and (6.1.6), and Theorem (6.1.6).
The notation will be standard or defined as needed. In order to emphasize that we are
dealing with variable exponents, we will always write p(x) instead of p to denote an
exponent function. Given an open set Q and functionp(x),1 < p(x) < oo, define
the conjugate function q(x) to satisfy 1/p(x) + 1/q(x) = 1, where we take 1/c0 =
0. Given a set E, let|E| denote its Lebesgue measure, and letp,(F) =
in f{p(y) : y € E} and p*(E) = sup{p(y) : y € E}. For brevity, let p, = p.(Q) and
p* = p*(Q). Given a function f, let

Floma = fn O dy.

Finally, € and c will denote positive constants which will depend only on the
dimension n, the underlying set Q and the exponent function p(x), but whose value
may change at each appearance.

The proof of Theorem (6.1.3) requires a series of lemmas. Throughout this, let a(x) =
(e + [xD™™.

The first lemma is due to Diening [4]. For completeness, we include its short proof.

Lemma (6.1.7)[36]: Given an open set Q and a function p : Q — [1,0) which
satisfies (2), then for any ball B such that |[B n Q| > 0,

|B|p*(Bnﬂ)—p*(Bﬂﬂ) < C.

Proof. Since p,(B N Q) —p*(B N Q) < 0, we may assume that if r is the radius of B,
then r < i . But in that case, (2) implies that

p"(BNQ)—p,(BNAQ) < T~
log >

Therefore,
nc

D)
|B|p*(BnQ)—p*(BnQ) < Cr—n(p*(BnQ)—p*(BnQ)) < cr log(ﬁ) <C.

Lemma (6.1.8)[36]: Given a set G and two non-negative functions r(x) and s(x),
suppose that for each x € G,

0< S(x) —r(x) < m

Then for every function f,

f|f(x)|r(x)dx <cC fIf(x)ls(x)dx+fa(x)r*(c)dx.
G G G

Proof. LetG* = {x € G : |f(x)| = a(x)}. Then

j FOIr® dx = [ 1F0Ir®@dx + f FOOIr®dx,
G

G G\G*

and we estimate each integral separately. First, since a(x) < 1,
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f |f ()" dx SJ a(x)"Pdx < Ja(x)r*(ﬁ')dx.
G\G“% G\G“ G
On the other hand, if x € G%, then

Cc
FEOI™ = [FEIIFPfF )M ® < |f ()" P a(x) Pa+D < C|f (x)5X.
The desired inequality now follows immediately.

The next two lemmas generalize the key step in Diening’s proof of Theorem
(6.1.1) (see [4]).

Lemma (6.1.9)[36]: Given Q and p as in the statement of Theorem (6.1.3), suppose
that |f|,c)0 < 1,and [f(x)] = 1 or f(x) = 0,x € Q. Then forall x € Q,

Mf(x)P™ < CM (If(')l%> ()P + Ca(x)Pr, (7)
where a(x) = (e + |x|)™™.

Proof. Without loss of generality, we may assume that f is non-negative. Fix x € (,
and fix a ball B of radius r > 0 containing x such that |[B n Q| > 0. Let BQL = B N Q.
It will suffice to show that (2.1) holds with the left-hand side replaced by

1 p(x)
<|B| Bﬂf(y)dy> ,

and with a constant independent of B. We will consider three cases.

Casel: r < |x|/4. Define p(x) = p(x)/p.. Then p(x) =1, and (4) holds with p
replaced by p. By assumptionon , if y € B,

0<p (B —_— 8
Therefore, by Holder’s inequality and by Lemma (6.1.9) with r(x) replaced by the
constant p_(Bg) and s(x) by p(y), we have that

p(x)
p.(Bq)

1 p(x) 1 .
(IBI Bﬂf(y)dy> (IBI Bgf(y)” 0 dy>

_px)
a (y)ﬁ* (Ba) dy)p*(BQ)

<<C f(POdy + — !
B1 ), B,

since r < |x|/4and p(x)/p, (Bq) < p* < o,

p(x)

C p.(Ba)

<| g7 fOPdy + Ca(x)“B“)) i
Bg
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p(x)
1 _ p,(Ba) .
< 2P C<|B| f(y)p(y)dy> + 2P Ca(x)P™).
Bq

If |B| = 1, then by Hélder’s inequality and since |f|,) 0 < 1,
1 1

s ps
f(y)”(y)dy> S( f(y)p(”dY> S

=

f(y)Pd <<1
1B, =\,

Hence, since p(x)/p,(Bq) = p. and a(x) < 1, we have that

Bq

1 p(x) 1 p
<|B| Bf(y)dy> <C (IBI Bf(y)p(”dy> + Ca(x)P:

< CM(f(PO) ()P + Calx)P-.

If, on the other hand, |B| < 1, then, again since |f|,)a < 1,
1

_ 1 o
f(y)”(”dySIBng4< f(y)p(”dy> <1

Bq Bg
Therefore,

p(x)

1 p(x) __px) _ p.(Ba)
<|B| ; f(y)dy> < C|B| ”*(B“)< ) f('y)p(”dy> + Ca(x)
9 Q

< C|B| P.(B) <|B| f(y)p(y)dy> + Ca(x)P-.
Bq

Since |B| < 1, and since
“PC/p. (B + 9. = (-55) (0.B0) = () = (-22) (0. (B) =" (Bo)
by Lemma (6.1.8),

1 P+ )
s¢ <| 5] I (y)”(”dy) + Ca(x)P: < CM(f()PO) ()P + Ca(x)P-.

This is precisely what we wanted to prove.

Case 2: |x|] <1 and r = |x|/4. The proof is essentially the same as in the previous
case: since |x| < 1, a(x) = 1, so inequality (8) and the subsequent argument still hold.

Case3:|x| = 1andr = [x|/4.Since f(x) = 1,p, = 1and |f],a < 1,

1 p(x)
<|B| Bf(y)dy> < IBI"’(’”<

< Clx|™P < Ca(x)P- < CM(f(-)ﬁ('))(x)p* + Ca(x)P~.

p(x)
i f(y)”(”dy> < Crom@|Fpe)
Q

This completes the proof.
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Definition (6.1.10)[36]: Given a function f on £, we define the Hardy operator H by

HF(x) = B ()] f FO)1dy.

B|x|(0)ﬂﬂ

Lemma (6.1.11)[36]: Given Q and p as in the statement of Theorem (6.1.3), suppose
that |[f|,)0 < 1,and [f(x)| < 1,x € Q. Then forall x € Q,

©)
Mf(x)P™ < CM(If(')II;’_*(x)p* + Ca(x)P* + CHf (x)P®,  (9)
where a(x) = (e + |x|)™.

Proof. We may assume without loss of generality that f is non-negative. We argue
almost exactly as we did in the proof of Lemma (6.1.9). In that proof we only used the
fact that f(x) = 1 in Case 3, so it will suffice to fixx € Q,|x| = 1, and a ball B
containing x with radius r > |x|/4, and prove that

1 p(x) p()
(— f(y)dy) < CM(If(-)I z )(x)p* + CaoP + CHf (G)P®.

1Bl J;,
Since p* < oo, we have that

p(x)

f(y)dy> ;

1 p(x) 1 p(x) 1
= f(y)dy> <o (=] goay) (o
<|B| Bg |B| BQﬂB|x|(O) |B| B

since r > |x|/4,

p(x) p(x)
-1 1
=C (|B|x|(0)| fB |Jd(omlf (y)ldy> +C (ﬁ fB Q\lel(o)f (y)dy>

p(x)
= CHf (x)P® + ¢ (L f f (y)dy> :
Bq\B|x|(0)

Q\lel (0)

|B|

To estimate the last term, note that if y € By\B|,(0) then (8) holds and a(y) <
a(x), so the argument in Case 1 of the proof of Lemma (6.1.9) goes through. This
shows that

p(x)
1 140)
(7 | f(y)dy> < o (IFOI ) P + Catoy
1Bl J5o\By(0)

and this completes the proof.

Lemma (6.1.12)[36]: If i(x) is aradial, increasing function, i, > 1,and if [f(x)| < 1,
then

j HF )P dy < C(n,i()) j FO)Ody.
[9) Q

Proof. Without loss of generality, we may assume that f is non-negative. Also, for
clarity of notation, we extend f to all of R™ by setting it equal to zero on R™\Q.

194



We first assume only that i, > 1. Recall that |B),(0)| = |B,(0)||x|™. Let S denote

the unit sphere in R™. Then by switching to polar coordinates and making a change of
variables, we get that

HF ()@ = [ |B,(0)| x| ™ f

B|x|(0)

|x| i(x)
(I (0]~ 1le‘"ff fre)r™tdr d9>

i(x)
|B;(0)|~ 1 ff(lxlr@)r" 1drd9>

i(x)
f) dy)

i(x)
= <I31(0)|‘1 f(ley)dy>

B1(0)

< |B;(0)|™* fUxly)®dy,
B1(0)

by Holder’s inequality.

Now let r > 1; the exact value of r will be chosen below. By Minkowski’s
integral inequality, and again by switching to polar coordinates,

1

IHF OO gn < C< jRn < j (O)f(lxly)i(")dy> dx)

1

i T
<cC j < f<|x|y)”<x>dx> dy
B, (0) \/R"

1

1 T
= CJJ ( f(lxls@)”(x)dx> s"1ds dé
sJo \Urn

1
g i 4}
=Cff S r( f(x]8)""\s dx) s 1ds de,
sJo R™

by a change of variables in the inner integral. Since i is a radial increasing function,
i(x/s) = i(x);since f(|x|0) <1,

1 1

< CJ Jls—$ (JR f(IxIH)T"(x)dxys"‘lds de < cf (f f(|x|(9)”'<’0dx>F de.
SY0 n S R™

Since S has constant, finite measure, by Holder’s inequality,
1

sc(fj f(|x|9)ri<X>dxd9>F.
S JR"?
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Since i is a radial function, if we rewrite the inner integral in polar coordinates, we get
that

1

:c< f f f Oof(ue)”@)u,"—laludqsd@)F
S 7570

1 1
=C <f f fue)@Wyn-1dy d9>r = C< f(y)”(y)dy>r.
sJo R™

To complete the proof, we repeat the above argument with i(x) replaced by
i(x) =i(x)/i, and with r = i, since i, > 1.

While Theorem (6.1.3) shows that we must have p* < oo for the norm
inequality to be true in general, we do not need this assumption in restricted cases. If f

is a bounded, radial, decreasing function, then Mf(x) = Hf (x), and so it follows from
Lemma (6.1.12) that if p is a radial increasing function, ||Mf|[,cn0 < Cllfllpco.a -

Lemma (6.1.13)[36]: Given an open set (2, a function p : R™ — [1, ) such that 1/p
is locally integrable, f in LP®(Q) and t > 0, suppose that B is a ball such that

1
— dy > t.
31 fOldy

de 1 FHNY
Lp(x)ﬁp*(g) g< t ) Y

Proof. Fix a sequence of simple functions {s,,(x)} on B, such that s,,(x) = p.(B) and
such that the sequence increases monotonically to p(x) on B. For each u we have that

kn
Sn(x) = z an,jXAn,j (x)»
j=1
where the A4, ;’s are disjoint sets whose union is B. Let ¢, (x) be the conjugate function
associated to s, (x); then t,,(x) decreases to gq(x), the conjugate function of p(x).

Then

By Hoélder’s and Young’s inequalities,

Kn
anQ If(ty)ldy :;me If(ty)ldy
Kn, 1

- - 1
IFOINT |\ o
= Z (J ( t dy |Ap ;|
: An,]'ﬂﬂ

J=1

1 FON™ |4y
< Z —f ( > dy +-—-
an,]‘ An,an t C(n,j

j=1
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k
S FHN"Y dy
= z (p* (B) An,,.ng( t ) vt Ln,j tn(y)>

j=1

1 FON dy
Sp*(B) Bnn( t ) 4 +JBtn(J’).

Since this is true for all n, by the monotone convergence theorem,

F ) 1 FN'Y dy
L ¢ YL ® ( t ) d“L@'

Therefore,

dy o (4 [ U [dy 1 FOINY
Lp(y)_lBl JB‘I(Y)<LnQ e @ Lq(y)sp*(B) BnQ( t ) v

Section (6.2): Generalized Orlicz Spaces

Generalized Orlicz spaces L?() have been studied since the 1940's. A major
synthesis of this research is given in of Musielak [18] 1983, hence the alternative name
Musielak—Orlicz spaces. These spaces are similar to the better-known Orlicz spaces,
but defined by more general function ¢(x,t) which may vary with the location in
spaces: the norm is defined means of the integral

j (o [f D dx,
Rn

whereas in an Orlicz spaces ¢ would be independent of x, (| f (x)]).

The special case of variable exponent Lebesgue space LPO), i.e. ¢(x, t) == tPX),
was introduced by Orlicz [202] already 1931. However, in the beginning of the new
millennium, there was an explosion in the number of LPO). It was Diening [4] who
opened the floodgate by proving the boundedness of the maximal operator under
natural and essentially optimal conditions on the exponent (see also [20, 21, 36]). This
result allowed for the development of harmonic analysis and related differential
equations in the pP( setting.

Note that we present the analogue of this result for L¥©) with a streamlined
proof, which is a simplification even in the Orlicz case. Furthermore, this general result
has optimal or near optimal conditions in three important special cases:

(i) Orlicz spaces, where the optimal condition of Gallardo [200] is recovered;

(if) Variable exponent spaces, where the log-Holder condition is recovered (cf. [21]
regarding the optimalily);

(iii) The double phase functional ¢ (x, t) = tP 4+ a(x)t? of Mingine and collaborators
[176, 177, 179], where the sharp condition for the regularity of minimizers is

recovered, namely% < 1+=with a € C* (Theorem (6.2.11)).

The result and techniques will allow most of the result that have been derived
in LPO) over the past 15 years to be established in L) as well. With these techniques,
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the Riesz potential has been considered in [196] and the Dirichlet energy integral in
[185].

Maeda, Mizuta, Ohno and Shimomura [155, 158, 174] have also studied the
boundedness of the maximal operator in L#). Their results are special cases of ours,
as they deal only with doubling ¢ and have other restricting assumption as well.
Related differential equations have been studied recently by Baroni, Colombo and
Mingine [176, 177, 179] and Giannetti and Passarelli di Napoli [183].

Definition (6.2.1)[204]: A convex, left-continuous function ¢ : [0, ) — [0, o] with
p(0) = tlirgh p(t) =0, and tlir(g @(t) = oo is called a ®-function. The set of ®-

functions is defined by ®.

Definition (6.2.2)[204]: The set ®(R™) consists of those ¢ : R™ X [0,00) — [0, =]
with

@(y,") € & forevery y € R";
(-, t) € L°(R™), the set of measurable functions, for every t > 0.

Also the function in ®(R™) will be called ®-functions. In sub- and superscripts
the dependence on x will be emphasized by ¢(-):L? (Orlicz) vs L#O
(Musielak—0Orlicz).

Definition (6.2.3)[204]: Let ¢ € ®(R™) and define g, for f € L°(R™) by

o0y = | @uIfDdx
]R‘n
The generalized Orlicz space, also called Musielak—Orlicz space, is defined as the set
LPO(R™) = {f € LO(R™): 1im 0,5 (At) = 0}

equipped with the (Luxemburg) norm

A
Fllgy = inffa > 0 g (5) = 1}

Tow functions ¢ and vy are equivalent if there exists L > 1 such that i (x, %) <

o(x,t) < Y(x, Lt) for all x and t. Equivalent ®-functions give rise to the same space
with comparable norms. For further properties (see [179].)

The notation f < g means that there exists a constant C > 0 such that C < Cg.
The (Hardy-Littlewood) maximal operator is defined for f € L°(R"™) by

Mf(x) = sup f _ folay.

r>0

where B(x,r) is the with is the ball with center x and radius r, and f denotes the
average integral. For convex function ¢ Jensen's inequality states that

go( fA If(x)ldx> < fA o(If G)Ddx.
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The definition of ®-functions presupposes convexity, in contrast to that of [155,
158, 174]. However, theirs is an empty generalization, as we show that any ®-function
satisfying their conditions (®1)—(®5) is equivalent to a convex ®-function.

Lemma (6.2.4)[204]: Let ¢ : [0,00) — [0, oo] left-continuous function with ¢(0) =
t“%i @(t) =0, and tlim @(t) = . If s > s71p(s) is increasing, then there exists i €

® equivalent to ¢.
Proof. Let y be the greatest convex minorant of ¢. Since 0 < Y < ¢, it follows that
$(0) = lim y(t) =0,

Suppose that ¢@(s) > 0. Then ¢(t) = S(p(s) for t >s. Thus the function

G — 1) @(s) is a convex minorant of ¢ on [0, o) and since y is the greatest convex
minorant we conclude that

v 2 (c-1) 9.

It follows that tlim Y(t) = oo. Furthermore, this inequality implies that Y (2s) = ¢(s).
Since also i = ¢, we see that i =~ ¢.

Finally, since ¥ is convex, it is continuous except at the (possible) left-most point
t with y(s) = oo for s > t. We force y to be left-continuous by (re)defining Y (s) =
tlim Y(t). The properties above still hold: for ¥(2s) = ¢(s) we need the left-

continuity of ¢.

Lemma (6.2.5)[204]: Let ¢ € ® nad B > 1 be such that s = s=8p(s) is increasing.
Then there exists 1 € ® equivalent to ¢ such that 1/# is convex.

Proof. The function y'/# satisfies all the assumptions of Lemma (6.2.4). Hence there
exists & € @ such that & ~ /8. Setp = &F. Since B > 1,y € ® and further y = ¢,
as required.

Corollary (6.2.6)[204]: Let ¢ € ® and B > 1 be such that s = s~F(s) is increasing.
Then

M: L?(R™) - L?(R"™)
is bounded.

Proof. Let ¢ € ® be as in Lemma (6.2.5). It suffices to show that M : L¥(R") —
LY (R™). Since Y /7 is convex, it follows from Jensen's inequality that
14

1 4 1
Y(eMf) = (W(EMf)) < M(W(Ef))

Let f € L?(R™) and € := ||f|l;;" so that g, (ef) < 1. Since M is bounded in LY (R™),
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14

14
j M <1p71/(ef)> dx < f <¢%(ef)> dx = | Y(ef)dx <1.
Rn Rn Rn

Hence, gw(er) < 1, which implies that ||eMf]|,, < 1. Dividing by €, we find that
IMflly < == llIfly, which completes the proof.

For B c R" define @5 (t) = inf,c5 @(t) and @7 (t) := sup,ep @ (x,t). We will
use the following assumptions for some common constant o > 0. The second
corresponds in the LPO) case to local log-Hélder continuity.

(A0) there exists § > 0 such that ¢ (x,8) < 1 and ¢(x,0) = 1 for every x € R™.
(A1) there exists g € (0, 1) such that

@t (Bt) < @5 (1)
forevery f € [a, (pz)~ 1 ( )] and every ball B with — o 2 > @z (0).
(A2) there exists § > 0 and h € LY, .., (R™) N L*(R™) such that for every t € [0, o],

p(x,pt) < p(y,t) + h(x) + h(y).

From (A0) we obtain Y(x, B/L) < o(x,B) < landp(x,Lo) = ¢(o) = 1,50 ¢
satisfies (A0) with constant /L and o' := Lo in place of o. Suppose that t €

o ()] Ten
o (Lﬁzt) < @ (g t) < @5 (t)

since{ € [a, (pz)~ 1 (I I)] so that (A1) of ¢ could be used. Thus (A1) holds for v, as
well. For (A2) we estimate, when f € [0,0],

pt t
W Be/17) < 0 (1 7) < 0 (1.7) + R0 + hG) < 9,6 + A + )
Lemma (6.2.7)[204]: Let ¢ € ®(R™). Then ¢z satisfies the Jensen-type inequality

oi (3] rax)= [ winax
ws()

Proof. Let i be the greatest convex minorant ¢z. Since t = —— is increasing, we
conclude as in Lemma (6.2.4) that g5 (s) < ¥(2s). By Jensen's for Y,

oi (3] rax) < ([ rax)< [ winars [ s

Lemma (6.2.8)[204]: Let ¢ € ®(R™) satisfy assumptions (A0)—(A2). If B is a ball
and f € L?O(R™) with g, (fx(i51503) < 1, then
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w(x% J |f|dy)s(1+§) | 00.Pdy+ G+ | hGay

Proof. Fix a ball B. Assume without loss of generality that f > 0, and denote f; :=
fx(r>oy and f; == f — f;. Since ¢ is convex and increasing,

8 8
qo(x,z j fdy>s<p<x,§ j fldy>+<p(x.ﬂ j fde>-

Consider first part f; when é > @z (o) and define

_ __(e(x,0)t whent <o,
Pl t) = {go(x, o) whent > o.

Since @ < @ is convex, since f; € (0,0), (v, 1(¥)) = @(x, f1(y)). Therefore it
suffices to prove the second inequality in

w(x,ng fldy> < @(xéfB fldy) SL ¢, fdy =fB e, fi)dy.
Note that ¢ satisfies (A1) on all of [0, (pz) 1! (ﬁ)] By Lemma (6.2.7),

(1 _ 1
P5 (ﬂB fldY> SJB wg(fl)dySJB o, fdy <

Therefore we can use (A1) and Lemma (6.2.7) to conclude that

o(x5 [ nav)<os (5[ nav)<as (3] nav)< [ oonmar

Suppose then that é < @z (o). Now

jB fldijB ‘PE(U)dySfB e, f)dy < 1.

By convexity, (A0) and convexity again, we conclude that

<p<x,ﬁ [ ray)soem [ avs [ ovonty=[ oo

For f; we use the convexity of ¢(x,") and (A2):

go(x,ﬁ f fde>S f o, Bf,)dy < f o f)dy + [ RGO+ KAy,

B
Adding the estimate for f; and f,, we conclude the proof.
Taking the supremum over balls B in the previous lemma, and noting that h(x) <
Mh(x), we obtain the following corollary:
Corollary (6.2.9)[204]: Let ¢ € ®(R") satisfy assumptions (A0)—(A2) and let f €

L*O (R™) with (10) (fX{|f|>0'}) < 1, then
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7, (x,%Mf) s M(p(,f)) + Mh(x).

Theorem (6.2.10)[204]: Let ¢ € ®(R™) satisfy assumptions (A0)—(A2). Suppose that

B > 1issuchthat s =» s @(x, s) is in creasing for every x € R™. Then the maximal
operator is bouneded,

M: L9O (R") —» L‘p(')(Rn).
Proof. Let y(x,") € ® be related to ¢(x,-) as in Lemma (6.2.5), for every x € R™.

Since the ®-functions ¢ and v are equivalent, it suffices to showthat M : L*O(R") —
L?O(R™). Note that walso satisfies assumptions (A0)—(A2).

Let £ € L¥YO(R™) and also choose € > 0 such that oy (€f) < 1. Whent > o,

¥(x,t) = 1 by (A0) so that (x, t)'/Y < P(x,t). Thus 0yuv(y(ef xqfi>03) < 1 and
we can apply Corollary (6.2.9) to ef with ®-function y1/7:
1

Y (xéer(x))y S M (1,[)%(-, ef)) + Mh(x).

Raising both side to the power y and integrating, we find that

j Y (x»EEMf(X)> dx f M (1,011’(, Ef)) (x)Ydx+ | Mh(x)Ydx.
R 4 R R

Note that h € L} ... (R™) n L°(R™) c LY (R™) since M is bounded on LY (R™), we
obtain that

1 1
j ‘l)(x,EEMf(x)) dx Sf (wy(x,ef)) dx+j h(x)Ydx
- 4 o o
= 0y (ef) + IIRl}.

Hence oy (gef) < 1, and the proof is completed by a scaling argument like
Corollary (6.2.6).

As an example and application we consider the double-phase ®-function studied
by Baroni, Colombo and Mingine [176, 177, 179]. Note that bound % <1 +% is the
same as that obtained by these researchers (for some of their results, the strict inequality
IS required).

Theorem (6.2.11)[204]: Let Q < R™ be open and bounded and ¢(x,t) :=tP +
a(x)t?, g >p> 1. If a € C*(Q) is non-negative, then the maximal operator is
bounded on L#® () when % <1+ %

Proof. We extend a y McShane extension to function in C*(IR™). This extension can
be multiplied by a smooth cut-off function H € C,°(R™) with equals 1 in Q. Since g >
p>1landa = 0in R", it follows that t = t™P@(x, t) is increasing.
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We show that (A0)—(A2) hold with ¢ = 1. For (A0), we notethat1 < ¢(x, 1) <
1+ ||lalleoxk- If K is the support of H, then ¢ = t? in R™\K, so (A2) holds with h =

llalleoxi:

Let us show that also condition (A1) holds. Note first that ¢(x,t) =
max{t?,a(x)t?}. Denote a} := sup,cpa(z) and ag := inf,cp a(z). It suffices to
show that

max{t?, a;t?} < max{t?, azt?}

when @5 (t) < — We prove the inequality in the even greater range tP < ﬁ

The mequallty t? < max{t?,azt} is trivial, so we have to show that af <
max{tP~ 4, ag}. Using the upper bound on t, we see that it is sufficient to prove that

a-p a-p,
ag < max{lBl p ,ag} ~ diam (B) »  + aj.
In view of the definition of «a, this follows from the assumption a € C¢.

Note that the reverse implication does not hold, i.e. (A1) does imply that a €
C%(Q). Indeed, if we choose a = yq + yr foe some measurable E c Q, then a is
discontinuous but ¢z < 2¢5z. On the other hand, the assumption is sharp in the sense

that if% <1+ % then a € €% does not imply (A1), as show the example a(x) = |x|<.

In [155, 158, 174], Maeda, Mizuta, Ohno and Shimomura considered Musielak-
Orlicz spaces with six conditions on the ®-function. The first four conditions are, for
some constant D > 1:

(@1) ¢ : [0,00) = [0, 00) is continuous, ¢(0) = lim ¢(t) = co.

(®2) £ < ¢(x,1) < D.

<p(S)

(P3) —= ‘p( L is almost i increasing, i.e. 2= ‘p( ) for every s > t.

(®4) @ is doubling, i.e. p(2t) < D(p(t) for every s > t.

We note that assumption (®1) is ostensibly weaker than the assumption in this
note, since convexity is not assumed a priori. However, we show below that any
function satisfying these condition is equivalent to a convex function.

Assumption (®4) does not correspond to any assumption.

Assumption (®3) seems to be less stringent than the one used, since it follows from
convexity that @ Is increasing, not merely almost increasing.

Let ¢ satisfy assumption (®3) and define ¥ = s sup;< @. Clearly wgs) IS

increasing and ¢ < . By condition (®3), sup;<s "’(t) <D q”is). Therefore
P(s) <P(s) < p(s) < Dcp(S) < p(D?s),
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so the function are equivalent. Thus, there is no added generally in considering almost
increasing functions instead of increasing functions. Furthermore, since s = @ IS
increasing there exists a convex & € @ is equivalent to ¥ by Lemma (6.2.4).

Condition (®5) in [155, 158, 174] is essentially the same as (A1). However,
their decay condition (®6) seems more general, until we combine it with ($2), which
Is a stronger version of (A0). The former condition is as follows:

(®6) there exists a function g € L1(R™) and a constant B,, = 1 such that 0 < g(x) <
1 for all x € R™ and

Bilo(x,t) < o(x',t) < Boo(x,t)
whenever [x'| = |x] g(x) <t < 1.
Let us show how this related to condition (A2). First, we define
Poo (t) == limsup @ (x, t).

X—00

If te[g(x),1], then @(x,t) < Bo@s(t). If te[0,g(x)] then ¢@(x,t) <
Dp(x,1)t < DA(x) by condition ($2) and ($3). Hence

P(x,t) < Boo oo (t) + DAG(x)
for all x € [0, 1]. Similarly, we may establish

¥o(t) < B (y,t) + DAG(y),
and this we conclude that

o, t) S (¥, t) + g(x) + g()
as required assumption (A2).
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Symbol Page
whkp: Sobolev space 1
Lr: Lebesgue space 1
sup: supremum 2
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a.e: almost every where 70
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