

Sudan University of Science and Technology

College of Graduate Studies

An Energy Efficient -aware Fog - enabled Cloud of

Things Model for Healthcare

للرعاية (Fogالضباب)سحابة أشياء مبني على تقنية ل طاقة فعال نموذج

 الصحية

A thesis Submitted in partial fulfillment for the Requirements

of the Degree of Doctor Philosophy in computer science

By

Mukhtar Mohamed Edris Mahmoud

Supervised by

Prof. Dr. Joel J. P. C. Rodrigues

August 2018

ii

DEDICATION

To my Lovely parents, Wife,
and Daughters.

iii

ACKNOWLEDGEMENTS

All praise to Allah (s.w.t) the most Gracious and most Merciful, by

whose grace and blessing this work has been completed. I would like to

take this opportunity while relying on the instruction of the Prophet to

the effect that “whoever does not thank people does not thank Allah” to

express my thanks and gratitude to those who have contributed in one

way or another through their advice, criticism, and support in

strengthening the quality of this work. I would like to express my

gratitude to those who have helped me in my pursuit for knowledge.

 I would especially like to express my deep and sincere gratitude to my

supervisor Prof. Dr. Joel J. P. C. Rodrigues, for hiscontinuous

guidance and endless support throughout the length of this study. He has

greatly helped me in a lot of ways I needed to go through this study. I

am grateful to him for giving his wide knowledge, time and guidance to

help me overcome the challenges in my study. I am also immensely

grateful to Prof Elzzedin M Osman for his kind cooperation, as well as

to all staff of Sudan University who extended their best cooperation

during my study and their professionalism of tackling my personal

obstacles.

 My deepest thanks go to my parents, brothers, and sisters. Their

influence made me realize the importance of education from a very

early age. I also offer the deepest gratitude to my sweet hearts – my

wife, my little girls (Daniah&Muzen) – for bearing my ignorance

towards them during the journey of this study.

iv

PUBLICATIONS

Most of the research work done during the PhD has been presented in the

following papers:

1. Towards energy-aware fog-enabled cloud of things for healthcare

Mukhtar M. E. Mahmoud,Joel J. P. C. Rodrigues, Saleem, K., Al-

Muhtadi, J., Kumar, N. and Korotaev, V.

 Computers & Electrical Engineering, Elsevier, Vol. 67, 2018, pp.58-

69.

2. Enabling Technologies on Cloud of Things for Healthcare

Mukhtar M. E. Mahmoud, Joel J. P. C. Rodrigues, Syed H. Ahmed,

Sayed C. Shah, Jalal Al-Muhtadi, Valery Korotaev, Victor H.

Albuquerque

DOI: 10.1109/ACCESS.2018.2845399, IEEE Access,(Early

Access)2018.

3. A Critical Analysis of Healthcare Applications Over Fog

Computing Infrastructures

Vilela, Pedro H., Joel JPC Rodrigues, Luciano R. Vilela, Mukhtar ME

Mahmoud, and Petar Solic.

In 2018 3rd International Conference on Smart and Sustainable

Technologies (SpliTech), pp. 1-5. IEEE, 2018.

v

ABSTRACT

The Internet-of-Things (IoT) represents the next groundbreaking change in

information and communication technology (ICT) after the Internet. IoT is

concerned with making everything connected and accessible through the

Internet. However, IoT objects (things) are characterized by constrained

computing and storage resources. Therefore, the Cloud of Things (CoT)

paradigm that integrates the Cloud with IoT is proposed to meet the IoT

requirements. This combination generates a new paradigm for pervasive

and ubiquitous computing. In CoT, the IoT capabilities (e.g., sensing) are

provisioned as services. Unfortunately, the two-tier CoT model is not

efficient in the use cases sensitive to delays and energy consumption (e.g.,

in healthcare). Consequently, Fog Computing is proposed to support such

IoT services and applications. This research analyses CoT architectures and

platforms, as well as the implementation of CoT in the context of smart

healthcare. Subsequently, the research explains some related issues of CoT,

including the lack of standardization. Moreover, it focuses on energy

efficiency with an in depth analysis of the most relevant proposals available

in the literature. Furthermore, it proposes an energy-aware allocation

algorithm for placing application modules (tasks) on Fog devices. Finally,

the performance of the proposed strategy is evaluated in comparison with

the default allocation and Cloud-only policies, using the iFogSim

simulator. The proposed solution was observed to be more energy-efficient,

saving approximately 2.72% of the energy compared to Cloud-only and

approximately 1.6% of the energy compared to the Fog-default.

vi

 المستخلص

(التغيير القادم والرائد في تكنولوجيا المعلومات Internet of Thingsيمثل إنترنت الأشياء)

شئ)إنسان، حيوان، أجهزة، (بعد الإنترنت. يهتم إنترنت الأشياء بجعل كل ICTوالإتصالات)

كائنات إنترنت الأشياء أن وصول إليه عبر الإنترنت. إلا حساسات، ... إلخ(متصلا كما يمكن ال

(Things تتميز بموارد)(معالجة وتخزين محدودة. لذلك ظهر نموذج سحابة الأشياءCloud of

Thingsة متطلبات إنترنت الأشياء (الذي يدمج الحوسبة السحابية مع إنترنت الأشياء لتلبي

كالتخزين والمعالجة. في سحابة الأشياء، يتم تقديم إمكانيات إنترنت الأشياء)مثل الإستشعار(

(Two-tier CoTكخدمات عند الطلب. لسوء الحظ، فإن نموذج سحابة الأشياء ثنائي الطبقات)

ل الرعاية الصحية لذوي الحساسة للتأخير وإستهلاك الطاقة)مث الخدماتغير فعال في حالات

(لدعم مثل هذه الخدمات. Fog Computingظهر نموذج الـ). لهذا السبب، الأمراض المزمنة(

يقوم هذا البحث بتوضيح وتحليل المفاهيم الأساسية لحوسبة الأشياء، كما يوضح تطبيق سحابة

سحابة الأشياء والتي الأشياء في مجال الصحة الذكية. أيضا ، يناقش البحث بعض القضايا في مجال

ما زالت تمثل قضايا بحثية مفتوحة كفعالية الطاقة وإدارة وتحليل البيانات الكبيرة. علاوة على ذلك،

كطبقة وسيطة بين طبقتي إنترنت Fogبإضافة طبقة الـ يقترح البحث نموذج ثلاثي الطبقات

و وضع المهام)الوحدات كما يقترح أيضا خوارزمية لتخصيص أ الأشياء والحوسبة السحابية،

بطريقة فعالة للطاقة. أخيرا ، يتم تقييم Fogعلى أجهزة المعالجة الموجودة في طبقة الـ البرمجية(

طبقة الحوسبة Fogأداء الخوارزمية مقارنة بالسياسات الإفتراضية المستخدمة في طبقة الـ

. من خلال النتائج، لوحظ أن الحل المقترح أكثر iFogSimالسحابية، بإستخدام برنامج المحاكاة

من الطاقة مقارنة بالحوسبة السحابية فقط، %2..2كفاءة في حفظ الطاقة، حيث يوفر حوالي

، كما أنه يوفر حوالي Fogمن الطاقة مقارنة بالسياسة الإفتراضية في طبقة الـ %6.1وحوالي

 لوحدها. Fogمن الطاقة في طبقة الـ 8%

vii

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

PUBLICATIONS ... iv

ABSTRACT .. v

 vi .. المستخلص

TABLE OF CONTENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF SYMBOLS/ABBREVIATIONS ... xii

CHAPTER I .. 1

INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Background of Problem .. 3

1.3 Problem Statement and its Significance .. 5

1.4 Research Question/Hypothesis/Philosophy ... 6

1.4.1 Research Question ... 6

1.4.2 Research Hypothesis ... 6

1.4.3 Research Philosophy ... 6

1.5 Research Objectives .. 6

1.6 Research Scope ... 7

1.7 Research Methodology .. 7

1.8 Expected Contributions ... 8

1.9 Thesis Organization .. 8

CHAPTER II ... 10

LITERATURE REVIEW ... 10

2.1 Introduction ... 10

2.2 Background ... 10

2.3 Background studies and related Technologies .. 12

2.3.1 Cloud of Things... 12

2.3.2 Two-tier Cloud of Things .. 14

2.3.3 Fog Computing.. 16

2.3.4 Fog-enabled Cloud of Things .. 17

2.3.5 Cloud of Things Architectures .. 18

2.3.6 Cloud of Things Platforms .. 21

viii

2.4 Cloud of Things in Healthcare .. 23

2.5 Energy Efficiency Proposals ... 28

2.6 Discussion and Open Issues .. 47

2.6.1 Discussion ... 47

2.6.2 Open Issues ... 50

2.7 Summary ... 54

CHAPTER III ... 55

METHODOLOGY .. 55

3.1 Introduction ... 55

3.2 The Proposed Energy-Aware Model ... 57

3.2.1 System Model.. 57

3.2.2 Proposed Algorithm .. 58

3.3 Summary ... 61

CHAPTER IV ... 62

SIMULATION TOOL AND THE IMPLEMENTATION ... 62

4.1 Introduction ... 62

4.2 Simulation Tool ... 62

4.3 Case Study Scenario .. 62

4.4 Summary ... 64

CHAPTER V ... 65

RESULTS ANALYSIS AND EVALUATION .. 65

5.1 Introduction ... 65

5.2 Performance Evaluation .. 65

5.2.1 Energy Consumption ... 67

5.2.2 End-to-End Latency Average .. 68

5.2.3 Network Usage .. 69

5.3 Summary ... 70

CHAPTER VI ... 71

CONCLUSION AND FUTURE WORK .. 71

6.1 Overview ... 71

6.2 The Proposed Method ... 71

6.3 Contribution of the Research .. 71

6.4 Future Work .. 72

6.5 Summary ... 73

REFERENCES .. 74

ix

Appendix A ... 99

Appendix B ... 129

x

LIST OF TABLES

Table 2.1: Features of IoT, Cloud, and CoT ... 14

Table 2.2: Features And Technology Used In The Selected Cot Platforms 22

Table 2.3: Summary of the most relevant proposals regarding energy efficiency 44

Table 2.4: A comparison among the available energy efficiency proposals 48

Table 4.1: Description of inter-module edges in the RPM application 64

Table 4.2: Configuration of fog devices for RPM application 64

Table 4.3: Configuration of sensors for RPM application .. 64

Table 5.1: Description of network links for RPM application 66

Table 5.2: Main simulation parameter values ... 66

xi

LIST OF FIGURES

Figure 1.1.An illustration of the Cloud of Things concept, in which IoT objects are

deployed and shared through smart APIs. .. 3

Figure 2.1.Current trend on Cloud, IoT, and CoT (source: Google 11

Trends). ... 11

Figure 2.2. An illustration of the two-tier CoT model, in which IoT data of different

types and volumes are handled by the Cloud (this is impractical). 15

Figure 2.3.The three-tier CoT model, in which IoT data are handled by the proper Fog

instance or forwarded to the Cloud after preprocessing operations. 18

Figure 2.2.The Listener-based Graph Cloud Architecture Concept. 19

Figure 2.3.Illustration of the CloudThings architecture concept. 20

Figure 2.4.Illustration of an IoT cloud architecture. ... 21

Figure 2.5.Illustration of IoT, Fog, and Cloud integration architecture. 28

Figure 3.1.An illustration of Fog-integrated CoT-based healthcare architecture. 56

Figure 3.2. The three-tier CoT system model, in which data and tasks are handled in the

appropriate place either Fog or Cloud. ... 58

Figure 4.1. The application model of the RPM scenario depicted as a directed acyclic

graph. .. 63

Figure 5.1. Application modules placements according to a) Cloud-only, b) Fog-default,

and c) Fog-proposed strategies. .. 66

Figure 5.2. The energy consumed by different devices (mobile phones, edge devices,

and the Cloud) under various policies (the proposed policy, the default policy and the

Cloud-only policy). ... 67

Figure 5.3. The total energy consumed in the RPM scenario under various allocation

policies (the proposed policy, the default policy, and the Cloud-only policy). 68

Figure 5.4. The end-to-end average latency of the RPM application loop under various

allocation policies. .. 69

Figure 5.5. The network usage of the RPM application under various allocation policies.

 .. 70

xii

LIST OF SYMBOLS/ABBREVIATIONS

API Application Programming Interface

AAL Ambient Assisted Living

CABAN Cloud-Assisted Body Area Networks

CoT Cloud of Things

CMN Community Medical Network

DC Data Center

D2D Device-to-Device

DVFS Dynamic Voltage and Frequency Scaling

e-Health electronic Health

ECG Electrocardiography

ICT Information and Communication Technology

IaaS Infrastructure as a Service

IoT Internet of Things

IRR Improved Round Robin

BSN Body Sensor Network

BAN Body Area Network

M2M Machine-to-Machine

MQTT Message Queuing Telemetry Transport

nDC nano Data Center

OpenFog RA OpenFog Reference Architecture

OLA Opportunistic Large Array

WSN Wireless Sensor Network

WBAN Wireless Body Area Network

QoS Quality of Service

PoE Power-over-Ethernet

PaaS Platform as a Service

RA Reference Architecture

RFID Radio Frequency Identification

SOA Service Oriented Architecture

SLA Service Level Agreement

SenaaS Sensing as a Service

xiii

SaaS Software as a Service

SPHERE Sensor Platform for Healthcare in a Residential Environment

VCC Virtual Cloud Carer

VM Virtual Machine

VO Virtual Objects

6LoWPAN IPV6 over Low-Power Wireless Personal Area Networks

1

CHAPTER I

INTRODUCTION

1.1 Introduction

The advancements in information and communications technology (ICT) has in

recent years led the healthcare community to progressively use such technologies

to enhance the quality of existing service and to reduce their costs(Hans et al.,

2010; Avancha, Baxi and Kotz, 2012; Jara et al., 2012; Mohammed et al., 2014;

Sebestyen et al., 2014; Catarinucci et al., 2015). Alvarez (Alvarez, 2002) defines

e-Health as “e-Health is a consumer-centered model of health care where

stakeholders collaborate, utilizing ICTs, including Internet technologies to

manage health, arrange, deliver and account for care, and manage the health care

system”. E-Healthcare offers an excellent opportunity for patients to improve the

quality of their lives by allowing them to carry on with their daily activities

normally, while the physicians are monitoring them and providing them with

consultation and health advice(Jara, Zamora-Izquierdo and Skarmeta, 2013; Lu,

Lin and Shen, 2013).

Due to the rapid increasing of chronic diseases – particularly in developing

countries – the use of ICT is crucial for early detection and prevention of these

diseases besides reducing the expenditure on healthcare, which would protect

healthcare budgets of these developing countries (Lu, Lin and Shen, 2013; Hamdi

et al., 2014; Hassanalieragh et al., 2015). Community healthcare monitoring, for

example, is very useful project in which an IoT-based network is established in a

limited area or local community to promote healthcare services remotely to

reduce the risks of chronic diseases(Riazul Islam et al., 2015). Most of the

proposed cloud-based IoT healthcare monitoring frameworks have three major

components: data acquisition for using wearable sensors, data transmission which

2

is responsible for real-time sending the captured data to the data center of the

healthcare organization in a secure manner, and cloud processing for data storage,

analytics, and visualization(Hassanalieragh et al., 2015). Generally, the e-

Healthcare monitoring system is composed of: (i) Set of sensors, either smart or

otherwise sensors, for capturing physiological parameters of the patients; (ii)

Wireless Body Area Network (WBAN) based IoT communication to allow

Machine-to-Machine (M2M) communication among Things or enabling

physicians to remotely interact with medical server; (iii) Medical server on the

Cloud for data storage, processing, and analytics; and (iv) Clinical stations refer

to physicians (e.g., doctors) who have the ability to get information remotely

from the medical server in the Cloud (Sawand et al., 2015).

Nowadays, the research in this field is heading towards the integration of Cloud

Computing and Internet of Things (Distefano, Merlino and Puliafito, 2012;

Koubaa and Shakshuki, 2015). This amalgamation is referred to as Cloud of

Things (CoT), which is a new paradigm that exploits the integration of two

different and popular technologies – the Internet of Things and the Cloud – to

promote Future Internet applications (Botta, De Donato, et al., 2016). Although

both IoT and Cloud are two different and independent technologies, there is a

need to integrate them to complement each other and be able to support pervasive

and ubiquitous computing (Rohokale, Prasad and Prasad, 2011; Suciu, Suciu and

Fratu, 2013). Since the Things interconnected to the Internet are expected to

reach 50 billion by 2020, there is a fast growing need to deal with massive

amounts of data generated by these smart objects regarding storage and

processing (Doukas and Maglogiannis, 2012; Al-Fuqaha et al., 2015). CoT aims

to reveal Things as a service through APIs, and make them available to other IoT

applications (Kim and Kim, 2015; Díaz, Martín and Rubio, 2016b), which will

enable those applications to exploit and deploy smart things to build smart

integrated services without deploying their things as shown in Figure1. Reliable

CoT-based services (particularly, for delay-sensitive services like e-Healthcare)

3

require energy efficient CoT architectures. Although many solutions have been

proposed for energy efficient architectures, most of them have been made on IoT

and Cloud separately (Al-Fuqaha et al., 2015).

Highly delay-sensitive services such as healthcare services need reliable CoT

architectures. Energy efficient CoT architectures can increase the Sensor Network

lifetime, which improves the quality of the existing services(Chang, 2014).

Figure 1.1.An illustration of the Cloud of Things concept, in which IoT objects are deployed

and shared through smart APIs.

1.2 Background of Problem

Energy consumption plays a vital role when dealing with IoT-based

healthcare monitoring. Therefore, many platforms and healthcare monitoring

architecture are built in order to preserve better healthcare services in terms

of energy consumption.

Vandana Milind Rohokale et al (Rohokale, Prasad and Prasad, 2011)

proposed IoT-based cooperative approach for monitoring and controlling the

essential human being’s healthcare parameters (i.e. blood pressure, blood

sugar, hemoglobin, etc) in rural areas. The approach is based on

opportunistic large array (OLA) which represents a cluster of network of

4

nodes with active scattering mechanism for the received signals from the

source. Due to the flexibility and scalability of OLA, the simulation results

show that the cooperative approach is reliable and saving about 57% of

energy. However, this approach didn’t gain the benefits of integrating IoT

with Cloud.

In (You, Liu and Tong, 2011), a community medical network (CMN) is

proposed for local medicine and health system based on GSM/3G/WBAN

infrastructures. The main objectives of CMN are supporting mobility, and

reducing time and cost of diagnosis and treatment of diseases. CMN uses a

gateway that utilizes smart relay for connecting WBAN with mobile

network. The results show that the CMN is efficient in terms of economical

and social. However, this architecture ignores the energy consumption issue.

An energy efficient architecture based on intelligent gateway is proposed in

(Granados et al., 2014) for pervasive healthcare. This architecture composed

of: Power-over-Ethernet (PoE) enabled switch, cloud computing based

platform for broadcasting and big data management, and web clients. The

gateway receives commands that are proxies to sensors and actuators. After

that, the gateway translates these commands to the convenient sensor

application and network layer protocols. The results show that the

architecture is efficient when evaluated in terms of sampling rate, latency,

cost and convenience. In addition, the proposed gateway can serve as

power/data source for wired sensors.

In (Benharref and Serhani, 2014), a framework for healthcare monitoring is

proposed based on Cloud and service oriented architecture (SOA). This

framework makes use of wearable biosensors for gathering vital data from

patients. Then, these data are stored on the Cloud, and it will be accessed

easily for authorized users. The experimental test bed on iOS and Android

prove that suitable and the monitoring overhead is somewhat low even in

5

case of data in mobile. However, the framework has scalability problem and

needs more components to ensure security and QoS-SLA guarantee.

Charalampos Doukas et al. (Doukas and Maglogiannis, 2012) introduce a

platform based on IoT and Cloud for mobile and wearable healthcare sensors

management. The proposed system composed of two parts: 1) sensors for

capturing and submitting body signals, and 2) Cloud infrastructure for

storing and managing the captured data. The major features of this platform

architecture are scalability, interoperability, and light access. However, the

proposed platform didn’t consider the energy consumption and needs further

work to address this issue.

1.3 Problem Statement and its Significance

In Cloud of Things (CoT), obtaining energy efficiency in both data

processing and transmission is an important open issue. However, most of

the proposed solutions emphasized on the Cloud and IoT, separately.

Therefore, CoT require more efficient solutions (for obtaining energy

efficiency in both data processing and transmission). Energy efficiency

plays a vital role in preserving such an improved healthcare services. Thus,

proposing and energy-aware CoT-based model for Healthcare is crucial for

improving medical coverage. By doing so, many lives can be saved by

providing timely diagnosis and medical advice for patients, especially in

rural areas. Moreover, economical benefits for developing countries can be

achieved by reducing financial costs.

6

1.4 Research Question/Hypothesis/Philosophy

1.4.1 Research Question

The main question that will be addressed in this research is how to preserve

efficient healthcare monitoring based on Cloud of Things. Also, there are

some additional questions such as follows:

1. Is the proposed model has more energy efficiency when compared

with other relevant models or proposals?

2. Is the proposed model works properly and preserve acceptable

performance in terms of energy consumption, latency, and network

bandwidth?

1.4.2 Research Hypothesis

The proposed Cloud of Things based model can preserve efficient healthcare

monitoring in terms of energy consumption and latency.

1.4.3 Research Philosophy

The philosophy of the proposed solution is based on exploiting the integration

among Cloud Computing, Fog Computing, and Internet of Things in order to

reduce the energy consumption. Then, proposing an energy-aware allocation

algorithm for the placement of application modules (tasks) on Fog so as to

obtain more optimized energy efficiency at Fog devices.

1.5 Research Objectives

The main objective of this research is to propose a new energy efficient CoT-

based model for Healthcare (in terms of data processing and transmission). To

reach this main objective, the following partial objectives were defined:

7

1. Review the state of the art of Cloud of Things, Cloud-based IoT

healthcare services, applications, strategies, and mechanisms with

focusing on energy efficiency

2. Performance assessment of a healthcare service that will be used to

evaluate and validate the proposed cloud of things based healthcare

model

3. Design and construction of a new cloud of things based model for

healthcare

4. Performance evaluation and validation of the proposed model in

comparison with other available solutions in the literature. The

experiments will be performed through simulation.

1.6 Research Scope

This research is mainly focus on investigating and proposing an energy-

aware Cloud of Things based model for healthcare monitoring so as to

provision timely diagnosis and treatment for patients with diabetes disease.

This model will be implemented in the Fog gateway in order to select the

suitable fog device for allocating application modules on it. After that, the

proposed model is compared with other relevant ones to evaluate its

efficiency.

1.7 Research Methodology

First, the research investigates the state of the art of IoT-based Healthcare

monitoring, by reviewing the most recent related contributions in order to

determine the open issues and gaps that are not filled yet. Second, a new

solution will be proposed to address the energy consumption issue. Third,

the proposed solution will be experimented on use case for remote patient

monitoring system of patients with diabetes disease. Finally, a comparison

between the proposed solution and the most well known relevant solutions

8

will be made in terms of energy consumption, latency, and network

bandwidth using simulation.

1.8 ExpectedContributions

The expected contributions can be described as follow:

1. Proposing an energy-aware Cloud of Things based model for

Healthcare.

2. Publishing papers that add some related information to the body of

knowledge.

1.9 Thesis Organization

This thesis is organized into six chapters that show as follow:

-Chapter 2, Literature Review: this chapter investigate and review the

state-of-the-art of CoT and its role in providing efficient e-Healthcare

monitoring services, especially regarding energy efficiency. An overview

of the survey in the research areas is covered by this chapter. This chapter

also discusses and analyzes the open issues in CoT with the focus on the

proposed solutions in energy efficiency.

-Chapter 3, Methodology: this chapter describes the methodology used

to achieve the objectives of this research. It also specifying the

operational framework and discussing the proposed model and the

allocation strategy to reduce energy consumption at Fog devices.

-Chapter 4, Simulation Tool and the Implementation: this chapter

describes the simulation tool used and why we chosen it. It also

describes the use case for evaluating the proposed model

-Chapter 5, Analysis of Results: this chapter covers the analysis and

discussion of the obtained results.

9

-Chapter 6, Conclusion and Future Work: this chapter discusses and

highlights the contributions and findings of the research work and

presents suggestions and recommendations for future study.

10

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter investigates and reviews the state-of-the-art of Cloud of Things

(CoT) and its role in providing efficient e-Healthcare monitoring services,

especially regarding energy efficiency. An overview of the survey in the

research areas is covered by this chapter. This chapter also discusses and

analyzes the open issues in CoT with the focus on the proposed solutions in

energy efficiency.

2.2 Background

The Internet of Things (IoT) is a promising and innovative paradigm in the future

Internet, which deals with connecting everything (i.e., physical and virtual

objects) over the Internet with sensing/actuating functions for gathering data (Rao

et al., 2012; Riazul Islam et al., 2015). These interconnected things (smart

objects) have the ability to interact with each other to perform different tasks such

as sharing information, and decision coordination in a self-configurable fashion

without human intervention (i.e., machine-to-machine interaction) (Al-Fuqaha et

al., 2015; Li, Xu and Zhao, 2015; Pandya and Champaneria, 2015; Whitmore,

Agarwal and Da Xu, 2015).

The term Internet of Things was coined by Kevin Ashton in 1999 (Khodadadi,

A.V. and R., 2016), when he said: “Internet of Things has the potential to change

the world just as the Internet did, maybe even more so”. The advancements in

technology made sensors smaller, cheaper and enable large scale deployment.

Therefore, many sensors, that is billions, are currently deployed, and this number

11

will multiply rapidly in the near future. The data captured by these sensors are not

useful without understanding it, so context-aware computing is necessary to solve

this challenge and to promote the IoT paradigm (Perera et al., 2014; Al-Fuqaha et

al., 2015). IoT can be applied in many domains such as industry, environment,

and society. An essential component of IoT is a sensor network (SN) which is a

network of interconnected sensor nodes using either wired or wireless

technology. SN represents the backbone of the IoT, i.e., it does not exist without

it (Perera et al., 2014). However, IoT devices have constrained capabilities

mainly in terms of storage, processing power, and energy efficiency (C. S. and N.

K, 2015; Gia, Jiang, et al., 2015; Díaz, Martín and Rubio, 2016a). In order to

achieve energy efficiency, a lot of interconnected devices require techniques and

algorithms for enhancing node sensing processing, and sink node communication

(Prasad and Ieee, 2012).

Figure 2.1.Current trend on Cloud, IoT, and CoT (source: Google

Trends).

By 2020, a vast number of heterogeneous devices will be connected to our

environment, which as a consequence will increase the volume of the produced

data as well as the network traffic. Therefore, finding effective solutions to

address the process of collecting, analyzing, managing, and storing for such huge

and diverse quantities of data is crucial (Cavalcante et al., 2016a).

12

In turn, the Cloud Computing (CC) is a promising paradigm for on-demand

access to a shared set of resources such as networks, servers, storage, and services

(Doukas and Maglogiannis, 2012; Botta et al., 2014). Cloud Computing allows

us to access those shared resources in an efficient and convenient manner (i.e.,

virtualization) without the need to maintain hardware resources (Pradhan, Behera

and Ray, 2016). Cloud Computing appears as an urgent response to addressing

the shortcomings of grid computing, such as the inability of resource access and

its attachment to computing and data centers (Martinovic and Zoric, 2012). Cloud

preserves ubiquitous computing capabilities, especially in terms of storage and

processing power (Aazam et al., 2014; Botta et al., 2014; Al-Fuqaha et al., 2015).

From a complementary viewpoint, cloud computing can fulfill the main

drawbacks of IoT.These drawbacks promote the trend towards integrating IoT

with Cloud, which is known as Cloud of Things (CoT) (Díaz, Martín and Rubio,

2016a). Figure 2 explains the concerns related to the Cloud, IoT, and CoT.

Despite the great benefits of Cloud, energy efficiency represents one of the

important issues that needs appropriate solutions. Providing efficient scheduling

schemes of virtual machines can significantly improve the energy efficiency of

Cloud data centers when dealing with resource-intensive applications (Duan et

al., 2016).

2.3 Background studies and related Technologies

2.3.1 Cloud of Things

The Cloud of Things (CoT) is a new term that was coined by some researchers to

refer to the integration between the cloud and the IoT (Aazam et al., 2014). CoT

paradigm aimed at bringing the IoT to the Cloud, in which, all IoT devices and

capabilities can be accessed as a service through the Cloud (e.g. sensing as a

service SenaaS). In CoT, Cloud acts as a middleware that makes the interaction

between things and users/applications transparent (i.e., eliminates the complexity

13

which facilitates the development of applications that deal with smart objects)

(Cavalcante et al., 2016a). Cloud can benefit IoT with its virtually unlimited

storage and computing resources, whereas IoT gives the Cloud the chance of

extending its services to real world things (Babu, Lakshmi and Rao, 2015). Many

efforts have been made to promote the trend toward this integration. Sensor-

Cloud is one of the most important of these efforts, and is about blending sensors

into the data center of the cloud and providing service-oriented access to sensor

data and resources (Suciu, Suciu and Fratu, 2013). Many benefits can be tangible

when exploiting the integration between Cloud and IoT such as follows.

 Efficient storage for IoT big data by exploiting the Cloud storage nature,

i.e., On-demand, virtually unlimited and low-cost (Rohokale, Prasad and

Prasad, 2011; Botta et al., 2014).

 Regarding computation, the integration with Cloud enhances IoT

processing and computation by adding more capabilities which are not

allowed at the IoT end, and energy saving by enabling task offloading

(Rohokale, Prasad and Prasad, 2011; Botta et al., 2014; Fortino,

Guerrieri, et al., 2014; Babu, Lakshmi and Rao, 2015). In other words,

the Cloud model satisfies the processing needs of IoT through its virtually

unlimited processing and on-demand usage, which enables easier real-

time analysis of IoT data.

 Cloud offers an efficient and low-cost solution to enable IoT to keep track

and manage objects anywhere at any time without a need to communicate

through expensive dedicated hardware. Moreover, it provides an efficient

solution for managing the generated data of Things (Botta, De Donato, et

al., 2016).

 IoT has limitations in many areas such as scalability, interoperability and

efficiency due to the high heterogeneity on its devices, technologies, and

protocols. Cloud can facilitate the flow of IoT data collection and

processing as well as ease the process of integration of new things while

14

reducing the cost of deployment and complex data processing (Botta, De

Donato, et al., 2016).

 In terms of scope, CoT promotes new smart services and applications that

leverage the extension of Cloud through things, which opens new

opportunities as well as new open issues (Babu, Lakshmi and Rao, 2015;

Botta, De Donato, et al., 2016).

The integration of Cloud with IoT generates a new promising paradigm in which

all of the Cloud and IoT characteristics are absorbed as shown in Table 2.1.

Table 2.1: Features of IoT, Cloud, and CoT

IoT Cloud CoT

Pervasive in terms of

resources placement from

anywhere

Ubiquitous in terms of

accessing resources from

everywhere

Pervasive and ubiquitous

in terms of placement and

accessing of resources

Deals with real world

objects (things)

Deals with virtual resources Deals with real-world

objects as well as virtual

resources

Constrained capabilities

in terms of storage and

computing

Virtually unlimited storage

and computing capabilities

Virtually unlimited

storage and computing

capabilities

2.3.2 Two-tier Cloud of Things

The Cloud of Things (CoT) (Botta, de Donato, et al., 2016; Díaz, Martín and

Rubio, 2016b) is a promising computing model in which IoT capabilities are

preserved as on-demand services. In CoT, the Cloud and IoT complement each

other. For instance, IoT can overcome resource constraints by taking advantage

of virtually unlimited resources of the Cloud (Cavalcante et al., 2016b). The

Cloud can also augment its services (i.e., the scope of implementation) by

interacting with things in the physical world. Furthermore, CoT simplifies the

management of IoT devices/things by using the Cloud as a middleware between

end-users/applications and things, reducing complexity and hence helping

promote the development of smart services, such as pervasive healthcare.

15

In general, the two-tier CoT model (Li et al., 2017) includes the IoT-tier (the

Things-tier) and the Cloud-tier, as shown in Figure3.2. On the one hand, the IoT-

tier comprises a plethora of physical things equipped with sensing/actuating

functions. The IoT-tier contains a set of protocols for organizing things that

share the same geographical region or behavior into clusters, as well as

providing appropriate access (direct or indirect) to such things (e.g., mobile

things). On the other hand, the Cloud-tier is responsible for storing and

processing big data generated by the IoT-tier due to the extensive storage

capacity and computing capability of the former. Various challenges have arisen

in the currently existing two-tier CoT model, such as inefficient use of

computing resources, unnecessary data redundancy, unpredictable latency, a lack

of mobility support and energy consumption. Thus, the three-tier CoT model is

introduced, in which Fog computing acts as an intermediate layer between the

IoT and Cloud environments (Li et al., 2017).

Figure 2.2. An illustration of the two-tier CoT model, in which IoT data of different types and

volumes are handled by the Cloud (this is impractical).

16

2.3.3 Fog Computing

Due to the rapid growth of IoT services, the sole reliance on the Cloud is not

adequate for meeting the requirements of such services, e.g., scalability and

latency. To this effect, the Fog computing paradigm is introduced to enable a

collaboration with the Cloud to fulfill the needs of IoT services (Chiang and

Zhang, 2016). While being similar to the Cloud, the Fog provides storage and

computing resources at the network edge rather than the core. Such proximity of

Fog to end users and IoT devices (i.e., being closer to data consumers and

producers) represents the proper way to provision IoT services that are

computationally intensive or have real-time requirements. Fog resources (called

Fog-nodes) can be constrained-resource devices (e.g., end devices) or powerful-

resource devices (e.g., Cloudlets) (Shi, Ding, Wang, Roman, et al., 2015).

Despite the benefits of the Fog paradigm, several questions need to be addressed,

such as efficient management of Fog resources and the optimal placement of IoT

services/applications on Fog devices. Few existing studies attempt addressing

such questions individually. One of the most significant contributions that will

influence the Fog significantly is the OpenFog Reference Architecture (OpenFog

RA), proposed by the OpenFog Consortium (Consortium and Working, 2017).

OpenFog RA aims to support the Fog community (including businesses,

developers, etc.) with a set of rules and guidance on various aspects, such as

scalability and security. Following such guidelines, efficient and robust Fog

applications can be created according to the desired objectives.

17

2.3.4 Fog-enabled Cloud of Things

As mentioned above, the two-tier CoT model fails to enable IoT services that

require predictable latency. Moreover, extensive communications with the Cloud

consume network bandwidth and energy, in addition to increasing the load on a

Cloud datacenter. Integrating Fog as a Middleware layer with CoT can

successfully produce a new efficient architecture that satisfies the requirements

of IoT services. In a Fog-enabled CoT model (see Fig. 3), the Fog and the Cloud

operate interchangeably to execute service tasks according to whether the

demanded response is delay-sensitive (Shi, Ding, Wang, Roman, et al., 2015; Li

et al., 2017). Instead of providing real-time task execution and temporary

storage, Fog can eliminate the redundant data and send only the filtered data to

the Cloud for sophisticated analysis or permanent storage (Shi, Ding, Wang,

Roman, et al., 2015). To this end, smart gateways can choose to execute requests

locally at the edge or forward them to the Cloud after filtering. Data filtering by

the Fog reduces the amount of data transmitted, conserving energy and network

bandwidth.

Several studies (Deng et al., 2016; V. B. C. Souza et al., 2016; V. B. Souza et

al., 2016; Xuan-Qui Pham and Eui-Nam Huh, 2016) investigated the interplay

between the Fog and the Cloud. Some of the cited proposals presented new

approaches to creating efficient solutions for scheduling and allocation of tasks

and Fog resources, while the others analyze such interplay theoretically.

18

Figure 2.3.The three-tier CoT model, in which IoT data are handled by the proper Fog

instance or forwarded to the Cloud after preprocessing operations.

2.3.5 Cloud of Things Architectures

 The combination of IoT and Cloud (CoT) represent the ongoing trend for

the next generation of IoT smart services. The data collected through IoT smart

objects will be processed and analyzed on Cloud data centers to produce valuable

information. However, the available Cloud architecture requires enhancements to

be more efficient and convenient for IoT real-time services in terms of energy

consumption and end-to-end delays. For this reason, Cloud architectures going to

be distributed closer to the network edge (i.e., fog nodes, micro-cloud, and

Cloudlets). Based on these distributed architectures, CoT networks can be more

efficient and flexible regarding resource allocation, mobility support, low latency,

reliability, and scalability (Barcelo et al., 2016).

19

 Several contributions introduce new CoT-based architectures that focus on

gaining the benefits of integrating the Cloud with the IoT as well as addressing

the major challenges that are arising such as data transmission (Cavalcante et al.,

2016a). This subsection summarizes the more relevant of these architectures.

 L. Belli et al. (Belli et al., 2015) introduced listener-based Graph Cloud

architecture that intended to manage IoT Big Stream applications such as e-

Health and Smart Cities. This architecture aimed at reducing data dispatching

latency to consumers and enhancing resource allocation. The architecture (see

Figure 3) composed of (i) Acquisition module, which is responsible for collecting

raw data from the IoT objects and makes them available for other architecture

blocks; (ii) Normalization Module, which normalizes the incoming data in a

convenient format for processing; (iii) Graph Framework, which is a set of

listeners represented by a node in the graph; (iv) Application Register for

recording the interests of the listeners.

Figure 2.2.The Listener-based Graph Cloud Architecture Concept.

20

 The architecture exploits the consumer-oriented data flow for data

retrieval. The listener or consumer can determine the type of the incoming data

(i.e., from Cloud service) either in a raw or processed format according to its

registered interest. Furthermore, Cloud services can work as extra listeners that

can be consumed by other end-users. The results show that the architecture is

cost-effective for Cloud services regarding data dispatching latency and resource

allocation.

 In (Zhou et al., 2013), an online platform architecture is proposed known

as CloudThings. The architecture facilitates the development, deployment,

operation, and composition of IoT applications by adapting the three Cloud

models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS) as shown in Figure 4. These adaptations, enable

users to operate IoT-based applications on Cloud hardware (through CloudThings

IaaS), ease the process of application development and decrease the expenditures

of management and maintenance (through CloudThing PaaS), and facilitate

storing, sharing, and managing things and events (through CloudThings SaaS).

Figure 2.3.Illustration of the CloudThings architecture concept.

21

 The authors of (Hou et al., 2016) proposed an IoT Cloud architecture

which combined with HTTP and MQTT servers to provide services to end-users

and ensure real-time communication of a lot of connected devices respectively.

The architecture is composed of IoT infrastructure, IoT Cloud for virtualizing

IoT infrastructure as shown in Figure 5. The experimental results show that the

architecture improves the performance in terms of transmission latency.

Figure 2.4.Illustration of an IoT cloud architecture.

2.3.6 Cloud of Things Platforms

 The literature shows various efforts that have been made in order to

develop a platform architecture that deals with the new Cloud of Things

paradigm. These platforms, open sources or proprietary, are concerned about

addressing heterogeneity issues related to both Cloud and IoT by implementing

two middleware: the one on Cloud side and the other on the Things side, in

addition to offering an API for interaction with applications. In this subsection,

we review the most common of these platforms.

22

 IoTCloud (Botta, De Donato, et al., 2016) is an open source platform for

integrating IoT objects with the Cloud as well as offering an API

interface for applications to interact with the data of IoT objects.

 OpenIoT (Wang and Wu, 2009; Belli et al., 2015; Botta, De Donato, et

al., 2016; Díaz, Martín and Rubio, 2016b) is also an open source platform

that acts as middleware for deploying and managing Cloud-IoT

infrastructures. OpenIoT is about providing efficient organization of data

collection and transmission to the Cloud regarding mobility and energy

consumption. Furthermore, it facilitates the process of handling mobile

sensors and related quality of service factors. Semantic interoperability is

one of the key features that distinguishes OpenIoT from other CoT

platforms (Soldatos et al., 2015).

 NimBits (Zhou et al., 2013; Botta, De Donato, et al., 2016)is an open

source platform based on a Cloud architecture that helps users deal with

sensor data (i.e., record or share data) as well as enabling connection

among things based on data points. With NimBits, compression and

calculations can be achieved on data received from IoT devices using

built-in mechanisms.

A comparison between the most relevant CoT platforms is summarized in Table

2.2.

Table 2.2: Features And Technology Used In The Selected Cot Platforms
Platform Integration Connection and data

collection methods

Security

techniques

Analytics

types

Energy

efficient?

Open

source?

OpenIoT Through

REST API

X-GSN (extension of

Global Sensor

Networks)

oAuth 2.0 Not determined Yes (especially

in data

collection)

Yes

Xively Through

REST API

MQTT, Sockets,

WebSockets, and

HTTP(S)

Link encryption

using SSL/TLS

Not determined No No

NimBits Through

REST API

RESTful interfaces oAuth 2.0 and

keys

N/A No Yes

thingSpeak Through

REST API

HTTP and ZigBee API keys Allow

analytics with

MATLAB

No Yes

CloudPlugs Through

REST API

PlugNet, MQTT,

WebSocket.

(ZigBee and Bluetooth

end-to-end

security using

PlugNet and

Allow

analytics but

unknown

Yes (reduce the

communication

)

No

23

4 and Wi-Fi for local

connections)

SSL,

ParStream UDX-based

API

MQTT Unknown Real-time and

Batch analytics

Yes (uses

highly

parallelized

hardware

architecture

and

compressed

mode)

No

EVRYTHNG Through

REST API

MQTT, CoAP, and

WebSockets

Link encryption

using TLS, and

oAuth 2.0,

token-based API

keys for services

interaction

Real-time

analytics

Yes (through

THNGHUB

gateway which

reduces

communication

latency)

No

ThingWrox Through

REST API

Two-way non-polled

communications

through REST API or

MQTT

end-to-end

security, roles

for permissions

Real-time

anomaly

detection and

predictive

analytics

Unknown No

2.4 Cloud of Things in Healthcare

 The convergence of Cloud Computing (CC) and the Internet of Things

(IoT) have significantly changed the information technology industry. On the one

hand, Cloud computing has helped in constructing efficient applications

regarding scalability, virtualization, reliability and cost expenses. On the other

hand, IoT with its innovative elements such as RFID (Radio Frequency

Identification) and sensors could be successfully helps in realizing the world

objects to achieve pervasive monitoring and management in a scalable region.

Currently, Cloud and IoT are extensively applied in a large number of

information technology applications. However, the ongoing research in

healthcare toward the combination of Cloud and IoT does not meet the

requirements. Bringing this integration in the context of healthcare can

significantly contribute to building efficient healthcare applications for managing

and monitoring hospitals and patients in an efficient manner regarding resource

sharing and cost expenditures. Based on Cloud and IoT, remote healthcare

monitoring and management information services can successfully provide early

detection and treatment of chronic diseases that have a significant impact on

people's health. That is, IoT body sensors (i.e., implantable or wearable) gather

24

the required information from a person, and then the information can be analyzed

and processed in Cloud (Luo and Ren, 2016).

 The use of CoT in healthcare domain offers new opportunities to medical

IT infrastructure, and can enhance healthcare services (Catarinucci et al., 2015).

Moreover, CoT improves the healthcare processes and the quality of the actual

healthcare services by simplifying the process of gathering patients’ vital data

and delivering them to a medical center on Cloud for storage and processing

purposes (Botta, De Donato, et al., 2016). In other words, the use of CoT in Body

Sensor Network (BSN)-based healthcare helps in the process of storing gathered

data, as well as processing and analyzing them in a scalable fashion (Fortino et

al., 2013). With CoT, healthcare sensors can be managed efficiently in a

transparent manner as well as make any dealing with delay-sensitive healthcare

services more efficient (Aazam and Huh, 2014). To achieve efficient healthcare

services regarding delay-sensitive and energy consumption, fog computing can

play a vital role by lowering the burden on Cloud as well as acting as a local

storage for IoT devices and its ability to do some processing on the data (Sarkar,

Chatterjee and Misra, 2015; Shi, Ding, Wang, Eduardo Roman, et al., 2015;

Ramalho et al., 2016).

Because patients' data are sensitive, regulations do not allow them to be

processed outside the healthcare organization (Kraemer et al., 2017). Thus, Fog

Computing is required to fill this gap by bringing processing capabilities closer to

the healthcare providers (e.g., hospital). By doing this, a lot of benefits can be

obtained, such as reduced latency and reduced energy consumption as well as

improved bandwidth usage and data privacy. By using Fog-enabled CoT, the

collected sensory data can be processed and analyzed in the local gateway (smart

gateway) whereas physicians are able to access the results through the Cloud

remotely. Following this approach reduces data transmission and execution times

as well as saves energy. The types of healthcare device used depend on the

application deployment scenario. For instance, in the mobile patient monitoring

25

deployment scenario, Smartphones can be used as a WPAN gateway for enabling

direct connection to the WAN via cellular networks. In this scenario, the sensor

devices, i.e., wearable or implantable, communicate with the WPAN through the

gateway (i.e., the Smartphone). The connectivity of healthcare devices with the

Cloud also depends on the healthcare application deployment scenario. For

example, some scenarios may connect directly to the WLAN via Wi-Fi

communication while in others it may connected using WPAN via Bluetooth

(Kraemer et al., 2017).

Besides the recognition and detection of patients' state changes, smartphone-

based gateways can successfully offer transparent communication among IoT

devices and the Internet as well as IoT devices management. For instance, work

(Aloi et al., 2017) proposed a high-level design of a smartphone-centric

opportunistic gateway architecture to support flexible and transparent

interoperability.

 Due to the increased rate of chronic diseases in both developed and

developing countries, the concern about developing healthcare projects based on

ICT technologies for providing healthcare service has grown. For instance,

Virtual Cloud Carer (VCC) [52] is a CoT-based project funded by Spanish

National R&D intended to provide innovative healthcare services for dependent

and elderly people with chronic diseases. By using CoT, the VCC project aims to

gain social and technological objectives that enhance the quality of the new

services being offered to the elderly. These objectives range from creating

platform architecture – that is responsible for gathering physiological parameters

of the elderly from anywhere and deploy them to the Cloud for storage and

processing purposes – to helping the elderly do their physical training exercises

and to support caregivers to track and monitor the elderly remotely in an efficient

manner.

26

In (Luo and Ren, 2016), another CoT-based architecture model for remote

monitoring and managing health was proposed. The proposed architecture aimed

to provide effective healthcare monitoring and management along with improved

performance and energy consumption. To reach this goal, the architecture

proposed an algorithm (PSOSAA) based on the combination of two algorithms:

the particle swarm optimization (PSO) and simulated annealing (SA). The

simulation results showed the efficiency of the proposed algorithm in terms of

energy efficiency and performance when compared with PSO and SA applied

separately.

 The authors of (Gia, Jiang, et al., 2015) proposed an improved CoT-based

healthcare monitoring system. The proposed system is based on a smart gateway

which takes advantage of Fog Computing. It is clear that Fog in association with

Cloud can improve the IoT-based applications/services regarding latency,

location awareness, interoperability, and scalability. The proposed system is

experimented on an ECG signals and the results reveal the role of Fog in

providing an efficient healthcare monitoring system, in terms of bandwidth and

low-latency by moving most of the processes to the network edge.

 Although BSNs are intended to monitor the human body activities and

capture vital signs, they cannot efficiently accomplish all these tasks due to their

constrained resources. To address this, new infrastructures that integrate between

BSNs and the Cloud are proposed and referred to as Cloud-Assisted Body Area

Networks (CABAN) (Fortino, Di Fatta, et al., 2014). With CABAN, BSN tasks

can be achieved efficiently in terms of interoperability, scalability (in processing,

data collection, and data storage), and ubiquitous access to resources. For

instance, work (Fortino, Parisi, et al., 2014), proposed a novel general-purpose

system architecture, named BodyCloud, that exploits the combination of BSN

and the Cloud to provision BSN-based applications as services such as storage,

27

processing, and management of sensor data streams. To achieve these goals,

BodyCloud uses four decentralized parts: (i) Body: uses mobile devices to send

the data captured, by wearable sensors, to the Cloud. (ii) Cloud: the core part

which is responsible for providing a full support for particular applications from

data collection to visualization.(iii) Viewer which enables advanced visualization

of analysis results in a Web browser. (iv) Analyst: helps in developing

BodyCloud-based applications. With BodyCloud, fast prototyping scalable,

customizable, and interoperable Cloud-enabled BSN applications can be

accomplished.

 Also, in (Gravina et al., 2017), a framework, named Activity-aaService,

built on top of the BodyCloud architecture (Fortino, Parisi, et al., 2014) is

proposed to enable online/offline monitoring and recognition of individuals or

communities activity (even in mobility). By taking the advantages of BodyCloud,

Activity-aaService can allow a flexible creation of rapid prototyping activity-

assisted applications. The evaluation of Activity-aaService is taken to measure

the performance of high- and low-profile BSN coordinator devices in the Body-

side only of BodyCloud platform. The results showed the efficiency of high-

profile devices in terms of interoperability and reliability, while low-profile

devices are not appropriate in the case of computation-intensive tasks.

 SPHERE (Sensor Platform for Healthcare in a Residential Environment)

Project (Zhu et al., 2015) is a healthcare platform designed for monitoring and

tracking patients at home (AAL). It improves healthcare detection and

management through the use of valuable datasets that were extracted from the

data gathered by the sensors. The SPHERE project architecture employs a

cluster-based approach that is composed by (i) Ambient sensor network for

gathering data of the patient, (ii) Home gateway for collecting data gathered by

each sensor cluster besides supporting time synchronization and data privacy, and

(iii) SPHERE data hub for storing the collected data in the home gateway, in

addition, to supporting analytics. SPHERE project concerns about supporting the

28

healthcare community with a rich dataset that supports in enhancing the field of

healthcare.

Most of the current efforts in healthcare (Fratu et al., 2015; Ahmad et al., 2016;

Andriopoulou, Dagiuklas and Orphanoudakis, 2017), try to integrate Fog, IoT,

and Cloud together and to gain the advantages of Fog such as low-latency and

mobility support to improve the performance of the actual healthcare services.

The combination of these technologies creates more efficient healthcare system

architecture as explained in Figure 6.

Figure 2.5.Illustration of IoT, Fog, and Cloud integration architecture.

2.5 Energy Efficiency Proposals

Energy efficiency represents one of the key issues that affect IoT services

availability, reliability, and quality of service (QoS). This section summarizes the

proposed solutions regarding energy efficiency.

Riccardo Petrolo et al. (Petrolo et al., 2016) introduced a gateway architecture for

Cloud of Things based on lightweight virtualization technologies. The gateway

29

can manage Things and works as a middleware between real-time data and

consumer applications. Furthermore, the gateway uses prediction algorithms on

data production to eliminate unnecessary communications between the gateway

and Things, which reduces energy consumption. The results show that leveraging

the combination of these technologies enhances service deployment, service

management, and resource allocation. However, this gateway still needs further

adoptions in prediction algorithms on data production to decrease the

communication between the gateway and Things.

In (Chang, 2014), an energy-efficient scheme based upon distributed cluster

computing is presented. By using a suitable routing structure, the scheme

improves energy efficiency and increase the network lifetime by decreasing data

transmission distance amongst sensor nodes (things). Typically, the operation has

two phases, the setup and the steady-state. The setup phase is responsible for

creating the cluster routing structure and selection of one node to act as the

cluster head node (CH) according to the calculated center of gravity among the

cluster nodes. In the steady-state phase, the CH node compresses the received

data, i.e., from non-CH nodes, into a unique signal by performing signal

processing. Subsequently, i.e., after data compression, the CH node sends the

signal to the base station (BS). Obviously, compressing the data in the CH node

reduces the amount of information transmitted. The scheme repeats these two

phases for each round. The simulation results show the suitability of the scheme

in gaining acceptable performance in terms of energy efficiency and network

lifetime in wireless sensor networks and large-scale IoT-based systems. However,

the main drawback of this scheme is the additional overhead in cluster head node

selection.

An energy-efficient architecture for IoT is proposed in (Kaur and Sood, 2015).

By using a sleep mode, the architecture reduces the energy consumption based on

30

switching sensors to sleep mode according to three cases: i) the necessity of

sensing a targeted environment in a specific interval of time; ii) when the

coverage area size exceeds the battery power, and iii) the battery level situation.

Accordingly, whenever sensors switched to sleep mode, all the allocated cloud

resources related to them are re-provisioned. Principally, the architecture design

focuses on improving energy efficiency along the processes of sensing and

transmission, extracting meaningful information from sensed data, and using the

extracted data in a specific field. The results show that the proposed architecture

is energy-efficient, scalable, and has proper performance when compared with

other relevant schemes.

The authors of (Mohsen Nia et al., 2015) introduced an energy-efficient scheme

for long-term continuous personal health monitoring. Initially, the authors

specified the requirements of the process of continuous personal health

monitoring, by determining a sample resolution on each sensor. Subsequently,

they proposed a CS-based (Compressive Sampling) scheme that composes of

data collection, data transmission, and storage mechanisms. The results show the

energy efficiency of the scheme. However, the scheme does not take into account

the advantage of efficient storage and processing of the Cloud.

In (Mangali and Kota, 2015), the authors proposed a cluster-based scheme for e-

health monitoring. This scheme divided the Whole wireless sensor network into

Clusters including cluster-head and body-head nodes for routing data amongst

them. Moreover, particular tasks could be assigned to cluster heads and to body

heads, which significantly improve the efficiency of the whole monitoring system

regarding scalability and energy efficiency. The results of the mathematical

analysis show the energy efficiency of the scheme besides increasing the network

lifetime. However, the scheme focuses only on lowering energy consumption in

31

the WSN part and ignores the Cloud part which affects energy consumption

significantly.

The authors of (Granados et al., 2014) proposed an IoT healthcare architecture

based on a smart gateway that uses the Power over Ethernet (PoE) standard. By

taking advantage of the PoE cable, the smart gateway can effectively transmit the

data as well as supply IoT-enabled devices with power. Furthermore, the gateway

can connect IoT medical sensors with the Cloud and process the gathered health

data, which reduces the burden on IoT sensors. The results show that the gateway

is an energy-efficient and cost-effective solution for healthcare. However, the

gateway is efficient in the case of wired sensors and fixed scenarios, therefore, it

needs further modifications to be suitable for wireless sensors and unfixed

scenarios.

In (Gia, Thanigaivelan, et al., 2015), the authors discussed the role of effective

customization of 6LoWPAN (IPV6 over low power wireless area networks) in

gaining energy efficiency and reliable IoT-based e-Health applications. With this

architecture, patients’ physiological data, such as ECG signals can be monitored,

analyzed and transmitted in an efficient manner through the customized

6LoWPAN. Typically, the architecture composed of the customized 6LoWPAN

network intended to deal with health data, a gateway for routing generated

packets of Things to a remote server on the Internet based on tunneling, and a

WebSocket server for analyzing health data in the Cloud. The experimental

results show the efficiency of the proposed architecture regarding energy

consumption, effectiveness and quality of service for IoT-based healthcare

applications. However, it needs further improvements for data filtering and

compression in the IoT part to gain better energy efficiency.

32

The authors of (Rault et al., 2014) proposed an energy-efficient scheme for

monitoring patients’ health. The scheme focuses on reducing energy consumption

at both the sensors and the users’ mobile phones by using ZigBee and Bluetooth

communications. Regularly, the sensors, select the suitable communication

interface (i.e., either ZigBee or Bluetooth). If ZigBee interface is selected, then

Bluetooth interface is switched off on the mobile phone side, which saves its

energy. Meanwhile, the mobile phone runs Bluetooth scan regularly to detect

sensors that need to communicate with it when there is no ZigBee

communication. The simulation results show that the scheme improves energy

efficiency without negatively affecting the performance. However, the scheme

did not consider the communication with the Cloud, which also needs more

solutions to achieve better energy efficiency and performance.

In (Papageorgiou, Zahn and Kovacs, 2014), a novel framework based on auto-

configuration for Cloud-based IoT platforms is proposed. In fact, the framework

benefits from the integration of system parameters, power consumption, in

addition to auto-configuration algorithms. The results show the efficiency of the

framework in terms of performance and energy consumption. However, the

framework focuses only on using auto-configurations and other issues that affect

energy consumption such as data transmission are not considered.

The authors of (Li et al., 2017) proposed three-tier system architecture that

composed of Things Tier, Fog Tier, and Cloud Tier. The Fog Tier is responsible

for bringing processing and storage near to the IoT edge which reduces the

communication overhead. Generally, the architecture aims to decrease the

transmission latency, and bandwidth overhead by using Fog as a middleware

between the Cloud and IoT. The results show the positive effect of Fog for

gaining an efficient CoT system architecture regarding performance,

communication latency, and energy consumption.

33

In (Dubey et al., 2015), a service-oriented TeleHealth architecture based on Fog

Data is presented. The use of Fog Data simplifies the process of gathering,

storing and analyzing patients’ vital data. The Fog computer is responsible for

analyzing and filtering – i.e., trimming unnecessary raw data – the gathered data

before transmitting them to the Cloud which significantly decreases the volume

of the data that has to be stored and deployed to the Cloud, and at the same time

improve the energy efficiency. The experimental results show that the

architecture has made substantial improvements in energy consumption by

reducing the communication and the amount of data between the Fog and Cloud

as well as increasing the efficiency of the overall healthcare system.

Rani et al. (Rani et al., 2015) proposed a novel scheme for an energy efficient

IoT-based on Wireless Sensor Networks. Generally, the scheme focuses on

reducing the energy consumption by leveraging the clustering concept, in which

the whole network is subdivided into clusters of equal size. Direct

communication with the upper cluster layers and between cluster nodes is not

allowed except through cluster heads (CH) and cluster coordinators (CCO). The

scheme also uses two algorithms: one for conserving energy by orchestrating the

communication between the CCOs, and the other for optimizing the energy

parameters. In other words, the scheme focuses on reducing the communication

distance amongst the IoT objects to conserve energy, so the network lifetime is

increased. The simulation results show that the scheme is a scalable and more

energy efficient than the more popular schemes such as LEACH, SEP, and

MODLEACH. However, the scheme requires further improvements in data

transmission techniques and end-to-end delay so as to achieve greater efficiency.

The authors of (Huang et al., 2014) introduced an energy-efficient deployment

scheme for placing wireless sensor nodes (i.e., Things) in IoT. In this scheme, an

algorithm for energy optimization is proposed based on the clustering concept

and Steiner tree algorithm. The scheme increases the network lifetime by moving

34

the burden of direct communication to the relay nodes instead of sensing nodes.

The results of the experiment reveal that the scheme is preferable to achieve

green IoT deployment regarding network lifetime and energy consumption.

However, the scheme ignores the application of compressed sensing approaches

in gaining more energy efficiency, so further improvements are required.

The authors of (Abedin et al., 2015) presented a system model for energy-

efficient communications among IoT objects. The proposed system model

employs the Cloud for IoT services deployment. Furthermore, the system model

includes an energy efficient algorithm based on scheduling the activities of IoT

sensors by using three major phases. The on-duty phase, in which the sensor

works with its full capability, the pre-off duty phase to switch between on-duty

and off-duty phases, and the off-duty phase, which is responsible for conserving

energy based on three states: hibernate, sleep, and power off. The experimental

results in a real IoT test-bed environment showed the efficiency of the system

model regarding energy consumption and performance. However, the system

model does not consider data transmission between sensors and the Cloud. Thus,

further improvements are required, such as integration with Fog for more energy

efficiency.

The authors in (Mao et al., 2005) proposed a novel cluster-based approach known

as EECS for saving energy and extends the wireless network lifetime. The EECS

scheme increases energy efficiency during data gathering applications at regular

intervals of time by selecting nodes with more remaining energy as cluster heads

in a way that ensures optimal distribution of cluster heads. Furthermore, the

EECS has a novel method for load balancing between the cluster heads. The

simulation results show that EECS scheme prolongs the network lifetime by

more than 35% when compared with LEACH.

35

In (Mehmood et al., 2015), A. Mehmood et al. introduced a cluster-based

mechanism, called EEMDC (energy-efficient multi-level and distance-aware

clustering), for conserving energy in WSN. EEMDC divides the WSN region into

three layers in a hierarchical structure according to the count-hop based distance

from the base station. In EEMDC, idle listening is required due to the

implementation of the levels in the clustering, thus, the cluster nodes turn to the

active mode only when the control arrives at its level. The simulation results

show that EEMDC is energy-efficient and it consumes less energy than other

common cluster-based communication schemes (e. g. LEACH, MTE, and

DDAR).

In (Praveena and Prabha, 2014), an approach for increasing energy efficiency

based on level-k clustering hierarchy and single-hop communication (i.e., link-

correlation) among nodes within the cluster is proposed. In this approach, the

level-k cluster represents the top level while {k-1, k-2, … ,-2} represent the

clusters of the underneath levels. Moreover, each node communicates with the

corresponding cluster head that lies on the upper level in the hierarchy by using

single-hop communication, while the cluster heads in level-k communicate

through multi-hop communication. The proposed approach solves the problem of

the bottleneck zone, the nodes that surround the sink node, thus they consume the

energy due to their heavy traffic by letting these nodes create the level-k cluster

head. The level-k cluster head represents the TDMA (Time Division Multiple

Access) time slots for the corresponding level k-1 and likewise for the following

levels of the cluster hierarchy. The TDMA technique helps create an organized

cluster-based architecture which enhances the energy efficiency. The simulation

results show the efficiency of this approach compared with LEACH, SEP, and

DEEC in terms of stability, message delivery, and network lifetime. However,

this approach works properly only in medium-sized WSN, so further

improvements are required to be suitable for large-sized WSN as well as when

integrating IoT-based WSN with the Cloud.

36

The authors of (Tang et al., 2014) introduced a novel scheme for efficient data

collection and aggregation called ECH-tree (Energy-efficient Hierarchical

Clustering index tree). In general, ECH-tree splits the domain of the sensor

network into even cell grids. Subsequently, the cell grids are clustered into sub-

domains, which minimize the message broadcasting distance amongst them, and

as a consequence reduce the energy consumption. Furthermore, the ECH-tree

scheme contains a time-correlated querying method which answers end-user

queries in a reduced power consumption manner. Moreover, ECH-tree eliminates

data redundancy by changing the sensor data based on frequent time intervals,

which allow the sink node to collect the query answers from the grid cell tables

immediately. The experimental results confirm the energy efficiency of the ECH-

tree scheme.

In (Yaacoub, Kadri and Abu-Dayya, 2012), a cooperative multi-hop approach for

saving energy during data transmission is proposed. This approach organizes the

whole sensor network into clusters that communicate with each other through

multi-hop short range links, and the last cluster only communicates with the base

station (BS) through a long range wireless link for conveying the aggregated

multi-hop data. The simulation results show that significant energy efficiency

could be attained by using an efficient multi-hop cooperation approach.

In (Etelapera, Vecchio and Giaffreda, 2014), a new approach is proposed for

enhancing IoT energy efficiency based on re-configuring virtual objects (VOs) at

runtime. In this approach, VOs are used as an abstraction to describe the

semantics of ICT objects and the

related physical objects. In particular, the approach focuses on reducing energy

consumption at transmission time by comparing the three types of compression

modes, i.e., uncompressed, lossy, and lossless. The experimental results on

37

sample data captured from wireless weather stations show the ability of this

approach to reducing the total energy consumption by up to 47.9% when

changing the compression mode from uncompressed to lossy at runtime.

However, this approach increases the latency of the provisioned service which

affects the performance negatively.

A new method that improves the network lifetime using mobile sink nodes

combined with the traveling salesman problem (TSP) algorithm is proposed in

(Yu, Kim and Lee, 2013). In this method, the hotspot problem is solved, which

consumed the energy of the sensor nodes that surrounded the sink, especially

when using multi-hop communication because they act as a sensor and relay

nodes at the same time, so the whole network collapses. By using a mobile sink

with one hop communication, the transmission times can be reduced due to the

wide range of coverage by each node. The simulation results show the efficiency

of this method in improving the network lifetime and the energy efficiency of

relay nodes.

In (Wankhade and Choudhari, 2016), an energy-efficient modified election-based

Protocol (MEP) is proposed to increase the network lifetime. With MEP, sink

nodes have the ability to decide which sensor nodes can represent the cluster

heads (CHs) according to their additional energy, the remaining energy, and the

node location. Besides, the CHs communicate with sink using the shortest path

based on a congested link. Moreover, MEP is concerned by addressing the trade-

off between energy efficiency and the QoS requirements. The simulation results

show that MEP ensures energy-efficient routing in WSN as well as extending the

network lifetime. However, further improvements are still required to gain energy

efficiency in the whole IoT network regarding data transmission and processing.

38

Although there are different viewpoints about the energy consumption of Fog

computing, the energy consumption of Cloud data centers can be reduced by

using nano data centers (nDC) in Fog, especially in IoT applications (Jalali,

Hinton, et al., 2016). Based on this, the authors of (Jalali, Hinton, et al., 2016)

proposed two models, a flow-based and time-based model for shared and

unshared network resources, respectively, after identifying the more exact

scenarios for achieving better energy efficiency when using nDC in Fog rather

than centralized DC. The experimental results revealed that nDC can help in

achieving energy efficiency, according to the arguments of the designed system

such as the type of applications and the amount of data preloading. However, this

solution only works properly in specific applications such as in video surveillance

wherethe number of accesses to nDC is not enormous.

In (Barcelo et al., 2016), the authors propose a mathematical network and service

models for optimizing the distribution of CoT-based services. The simulation

results show the efficiency of this model for providing efficient IoT smart

services in terms of low latency, flexibility, reliability and reducing the overall

energy consumption by more than 80% when compared with other relevant

proposals.

In (Alduais et al., 2016), an approach for reducing data transmission time and

size in IoT-based WSN is introduced. The approach benefits from the fact that in

WSN, data transmission degrades energy efficiency more than performing

instructions. To overcome this situation, the authors proposed a method to control

the transmit (ON/OFF) radio frequency (RF) according to the current and last

state values. Furthermore, an algorithm based on the relative differences between

(single or multiple) current and last gathered value of sensors is proposed for

minimizing the number of data packets transmitted. The simulation results

showed that the efficiency of this approach to improve the performance and

reduce the energy consumption as well as extend the network lifetime.

39

The work (Kaur et al., 2017) proposed a container-based layered architecture,

namely CoESMS, for the management of services at the Fog level. The primary

objective is to increase the energy efficiency of the Fog nano data centers (nDC)

by efficiently scheduling tasks on containers as well as migrating containers

when desirable. To achieve this objective, the authors used two concepts,

containers and game theory. Containers are distributed among various VMs, and

tasks are scheduled to the appropriate containers based on the cooperative game

theory. In this scheme, service tasks are scheduled on containers at Fog if they are

marked as real-time tasks and if there are an adequate number of containers for

processing. Further, to minimize energy consumption, internal and external

migration of containers is accomplished when the upper or lower thresholds are

violated. Compared to a container-based scheme that does not use CoESMS, the

results showed that this scheme significantly reduces the energy consumption of

nDC, and it ensures an acceptable service level agreement (SLA) to users.

Service composition is a concept that deals with integrating a number of services

to fulfill a user's or application's request when a single service is not adequate to

accomplish the job. However, the exchange of large amounts of data between

these services has a negative impact on energy efficiency. To mitigate this, the

authors in (Baker et al., 2017) proposed an energy-aware service composition

algorithm, E2C2, to select the optimal plan which has the least energy

consumption without violating the user service level agreement (SLA). The

algorithm focuses on finding the plan with the fewer services composition in

order to minimize data transmission in a multi-cloud environment. Compared

with other algorithms, such as All Clouds, the experimental results showed the

efficiency of E2C2 in terms of energy consumption and performance.

Scheduling, load balancing and data replication are well-known energy-saving

techniques. The purpose of scheduling (Fang, Wang and Ge, 2010) is to allocate

40

application/service tasks to suitable computing resources (i.e., in the Cloud or

Fog environments) for execution. Load balancing (Oueis, Strinati and

Barbarossa, 2015) focuses on keeping workloads balanced among all hosts or

virtual machines to ensure that hosts/virtual machines are neither overloaded nor

underutilized. The data replication (Verma, Sagar and Yadav, Aran Kumar and

Motwani, Deepak and Raw, RS and Singh, 2016) concept focuses on bringing a

copy of original data near end users (requests), to increase the system

performance and fault tolerance, as well as decrease the burden on the servers

and use of network bandwidth. Furthermore, server and tasks consolidation

(Singh et al., 2016) are used to save energy by offloading tasks from an

underutilized server to another, followed by powering the former off, and

accumulating tasks into a group followed by assigning such a group to a minimal

number of virtual machines, respectively.

This section reviews the most important proposals for energy saving in both

Cloud and Fog environments based on such resource management techniques, as

task scheduling and load balancing. In (V. B. Souza et al., 2016), a service

allocation strategy model for Fog-to-Cloud (F2C) architecture is introduced. In

the proposed model, the total capacity of Fog is divided into slots, while services

are decomposed into atomic services; afterwards, such atomic services are

allocated to the available slots. Furthermore, each slot is connected to one of the

underlying devices for executing service requests. The model focuses on the

allocation of services to Fog nodes to optimize service delays, processing loads

and power consumption.

The authors of (Alnowiser et al., 2014) introduced a mechanism for energy

saving in a Cloud environment. They combined the dynamic voltage and

frequency scaling (DVFS) technology with the reuse of virtual machines (VMs),

live migration, and an enhanced weighted round-robin scheduling algorithm. To

minimize energy use, the authors proposed three different algorithms for

scheduling tasks, allocating/reusing VMs, and adjusting the CPU frequency. The

41

simulation results of different scenarios showed the appropriateness of the

proposed mechanism to reducing the consumed energy and resource utilization.

A dynamic load balancing and consolidation algorithm for reducing the energy

consumption and resource utilization in a Cloud environment is presented in

(Sahu, Pateriya and Gupta, 2013). The authors designed an algorithm based on

dynamic thresholds combined with a "compare-and-balance" technique. Using

this technique, the algorithm performs either load balancing among hosts, or VM

migration from one host to another. The simulation results showed the proposed

algorithm’s efficiency in energy consumption and resource utilization.

A systematic framework for solving the tradeoff between energy consumption

and delays in a Fog-Cloud system is proposed in (Deng et al., 2016). It

calculates the power consumption and delays separately at Fog devices, Cloud

servers, and WAN. Then, the total is obtained by aggregating such sub-

components. The simulation results showed that the energy consumption by Fog

devices increased due to increasing workload, whereas the computation delay of

Cloud servers rose due to an increase in WAN communications. Therefore, an

optimal workload is required to attain efficient load balancing with respect to

energy consumption and delays.

In (Xuan-Qui Pham and Eui-Nam Huh, 2016), an algorithm for scheduling tasks

in a Fog-Cloud computing environment is introduced. This algorithm performs

scheduling by determining the priorities of tasks and then specifying the proper

node for execution of each task. The experimental results showed the algorithm

to be appropriate for balancing the tradeoff between performance and cost.

However, the algorithm did not consider the energy consumption.

An algorithm combining data replication with load balancing is presented for a

Fog-Cloud environment in (Verma, Sagar and Yadav, Aran Kumar and

Motwani, Deepak and Raw, RS and Singh, 2016). According to this algorithm,

user requests are processed at Fog-tier or Cloud-tier according to data

availability. When the data are not available at Fog-tier, the request is forwarded

42

to the nearest Cloud server at Cloud-tier, which responds to the request in

addition to replicating the requested data at the active Fog server for future use.

A comparison of the proposed algorithm’s results with those of other Cloud

techniques (e.g., round-robin) showed this approach to perform efficiently;

however, it was expensive.

A combination of Fog computing and microgrids equipped with local battery

storage was applied to weather forecasting for renewable energy estimation

(Jalali, Vishwanath, et al., 2016). The IoT gateway decides to schedule the

execution of tasks either in the Fog or the Cloud, according to the remaining

energy in the local battery and the weather forecast status. For instance, if an IoT

application requires intensive processing, the IoT gateway checks if the local

energy is adequate for executing the process locally by awaking a local Fog

device or sends the process to the Cloud otherwise. Moreover, the IoT gateway

can perform the intensive tasks of sensors, reducing the energy consumed by

sensors. The experimental results showed the combined use of Fog and

microgrids to be energy-efficient. However, the desired efficient and dynamic

energy management strategy will take advantage of such technologies to select

the lowest power consumption choice of executing IoT applications in the Fog or

the Cloud.

The authors of (Wang et al., 2016) proposed a scheme, named CachinMobile,

for caching frequently requested data at mobile phones of end users to improve

the energy efficiency of Fog nodes. The scheme exploited the concept of social

networks and device-to-device (D2D) communication to reduce the energy

consumption of data transmission due to the use of short-range communications.

To achieve this based on Evolved Node B (eNodeB)-gathered information, the

authors selected end users with high social centrality (i.e., meeting a threshold

value) to be the edge nodes for caching data. Subsequently, they applied a

genetic algorithm to determine the optimal data placement. The simulation

43

results showed that the scheme was more efficient in energy consumption and

performance than other related non-caching and randomly caching schemes.

The work presented in (Wen et al., 2017) proposed a Fog orchestration

framework based on a parallel genetic algorithm (GA-Par). The framework

focused on guaranteeing the best optimization for selection and placement of fog

resources and IoT appliances to organize an application workflow, while

ensuring quick response times and quality of service (QoS). The simulation

results showed GA-Par to be more efficient than a standalone genetic algorithm

(SGA). However, the framework faced a scalability challenge when dealing with

an increased number of Fog devices and requests.

An algorithm for the optimal cluster creation and load balancing in Fog

computing is proposed in (Oueis, Strinati and Barbarossa, 2015). First, the local

computing resources are allocated to small cells, i.e., Fog resources, to serve

mobile users' requests locally. Subsequently, small-cell Cloud clusters are

created to process requests that require resources exceeding those available in

small cells of the Fog. Moreover, the authors designed three types of the

algorithm with metrics varying according to the design objective, such as latency

or energy efficiency. The analytical results showed that the proposed algorithm

was more effective than non-clustering and static clustering techniques, while

ensuring the user's satisfaction (i.e., QoS).

Based on proposals available in the related literature, a new energy-aware

allocation strategy for placing application modules (tasks) on fog devices is

proposed in the next section.

All of the solutions mentioned above to improve the energy efficiency issue are

summarized in Table 2.3.

44

Table 2.2: Summary of the most relevant proposals regarding energy efficiency

Reference Method Description Benefits

Limitation

Petrolo et

al. [63]

Gateway

architecture

The gateway is based on the

combination of virtualization

technologies and prediction

algorithms on data

production

Energy efficient and

enhanced CoT-based

service deployment,

management, and

allocation

Further adoptions in

prediction algorithms on

data production to

decrease the

communication among

the gateway and Things

are needed

Chang et

al. [22]

Distributed

cluster-

based

scheme

The scheme utilizes the

concept of distributed

clusters to increase the

network lifetime by reducing

the data transmission

distance among sensor nodes

Improving energy

efficiency, network

lifetime, and

performance

Additional overhead in

cluster head (CH) node

selection.

Did not consider

communication with the

Cloud.

Kaur et al.

[64]

Energy-

efficient

architecture

for IoT

Architecture focuses on

reducing energy

consumption on IoT by

using efficient sleep mode

Energy-efficient IoT

regarding sensing,

transmission, analytics,

and sharing info with

apps.

Further adoptions are

needed to address

downstream traffic

scheduling issue which

degrades user service.

Mohsen

Nia et al.

[65]

Energy-

efficient

scheme for

health

monitoring

The scheme is based upon

compressive sampling for

efficient continuous personal

health monitoring

Energy efficiency in

data collection,

transmission, and

storage

The scheme did not

consider the Cloud side,

so further adoptions are

needed

Mangali et

al. [66]

Energy-

efficient

scheme for

eHealth

monitoring

Cluster-based scheme, in

which WSN is divided into

clusters, each cluster has a

cluster head for routing and

executing specific tasks.

Energy efficiency and

increases the WSN

lifetime

The scheme ignores the

Cloud side which is also

affects power

consumption negatively,

so further adoptions are

needed

Granados

et al. [67]

IoT

Healthcare

architecture

The architecture is based on

smart gateways that use

thePower over Ethernet

(PoE) standard for effective

data transmission and to

supply IoT sensors

 with power

Energy-efficient

solution for healthcare

and improves the

performance by moving

the process from IoT

sensors to the Cloud via

the smart gateway

Efficient only in the case

of wired sensors and

fixed scenarios, so it

needs further

modification to be

suitable for wireless

sensors and unfixed

scenarios

Gia et al.

[68]

IoT eHealth

architecture

based on

customized

6LoWPAN

The architecture benefits

from the effective

customization of 6LoWPAN

for improving the energy

efficiency and reliability of

IoT-based eHealth

applications

Efficient regarding

energy consumption,

effectiveness, and QoS

It needs further

improvements regarding

data filtering and

compression in the IoT

part to gain better energy

efficiency

Rault et al.

[69]

Health

monitoring

scheme

based on

ZigBee and

Bluetooth

The scheme focuses on

reducing energy

consumption at both sensors

and user mobile phones, by

using ZigBee and Bluetooth

communications

Improves energy

efficiency without

negatively affecting the

performance

It ignores the

communication with the

Cloud which also needs

more solutions to

achieve better energy

efficiency and

performance

Papageorgi

ou et al.

[70]

A novel

framework

based on

efficient

auto-

The framework benefits

from the integration of

system parameters, power

consumption, in addition to

auto-configuration

The framework is

efficient regarding

energy consumption

and performance

It only focuses on

exploiting efficient auto-

configurations, and other

issues that affect energy

consumption such as

45

configuratio

n for Cloud-

based IoT

platforms

algorithms data transmission were

not consider

Li et al.

[71]

Three-tier

CoT system

architecture

The architecture aimed to

decrease the transmission

latency and bandwidth

overhead by using Fog as a

middleware between the

Cloud and IoT

Significant efficiency

regarding performance,

communication latency,

and energy

consumption.

It focuses only on

reducing communication

overhead and ignores the

process of data

collection in the IoT part

Dubey et

al. [72]

Service-

oriented

TeleHealth

architecture

based on

Fog Data

Uses Fog Data to simplify

the process of gathering,

storing and analysis of

patients’ vital data

Substantial

improvements in energy

consumption by

reducing the

communication and the

amount of data between

the Fog and Cloud.

Increases the efficiency

of the overall healthcare

system

Further improvements in

the IoT-tier are required

S. Rani et

al. [73]

A novel

cluster-

based

scheme for

energy

efficient IoT

Subdivides the IoT network

into equal size clusters.

Then, uses two algorithms to

orchestrate CCO

communications and

optimize the energy

efficiency parameters

Provides scalability and

energy efficiency

Further improvements in

data transmission and

end-to-end delay to

increase energy

efficiency

J. Huang et

al. [74]

Energy-

efficient

deployment

scheme

Scheme for placing wireless

sensor nodes in IoT based

upon algorithm for energy

optimization

Provides green IoT

regarding network

lifetime and energy

efficiency

Did not consider

applying compressed

sensing approaches for

more energy efficiency

S. F.

Abedin et

al. [75]

System

model for

energy

efficient

communicati

ons among

IoT objects

Exploits the Cloud for IoT

services deployment.

Besides using algorithms to

schedule IoT sensor

activities to save energy

Improves energy

efficiency and

performance

Further improvements in

data transmission

between IoT sensors and

the Cloud

M. Ye et

al. [76]

A novel

cluster-

based

scheme

EECS

Selects CHs according to the

remaining energy and

ensures optimal distribution

for CHs and load balancing

amongst them

Prolongs the network

lifetime

Did not consider the

communication with the

Cloud

A.

Mehmood

et al. [77]

Cluster-

based

Approach

EEMDC

Conserves energy efficiency

in WSN by dividing it into

three hierarchical layers

based on the count-hop

More energy efficient

than cluster-based

communication

schemes

Did not consider the

communication with the

Cloud

N. G.

Praveena

and H.

Prabha

[78]

Level-k

Clustering

based

energy

efficiency

scheme

Uses level-k clustering

hierarchy besides single-hop

communication among

nodes in the cluster and

multi-hop communication

among CHs in level-k

Efficient regarding

stability, message

delivery, and network

lifetime

Works properly in

medium-sized WSN and

requires integration with

the Cloud

J. Tang et

al. [79]

Novel

scheme

(ECH-tree)

for data

aggregation

and

collection

Minimizes the message

broadcasting distance by

splitting the SN into

clustered sub-domains

Reduces energy

consumption and

eliminates data

redundancy

Did not consider the

scenario of integration

with the Cloud

46

E.

Yaacoub et

al. [80]

Cooperative

multi-hop

approach

Organizes SN into clusters

that communicate via multi-

hop short-link range and the

last cluster communicates

with sink through a long

range wireless link

Provides significant

energy efficiency

Did not consider the

scenario of integration

with the Cloud

M.

Eteläperä

[81]

A new

approach for

enhancing

IoT's energy

efficiency

Approach based on re-

configuring virtual objects at

runtime and focuses on

reducing energy at

transmission time

Reduces energy

consumption up to

47.9%

Increases latency which

degrades the

performance

J. Kim and

J. Lee [82]

A new

approach for

increasing

network

lifetime

Uses mobile sink nodes

combined with a TSP

algorithm

Improves network

lifetime and energy

efficiency of relay

nodes

Did not consider the

scenario of integration

with the Cloud

N. R. W.

Prof and

D. N.

Choudhari

[83]

An energy-

efficient

modified

election-

based

Protocol

(MEP)

MEP allows sink nodes to

choose the CHs according to

specific criteria. Also, sink

nodes communicate with

CHs using the shortest path

Energy efficient routing

in WSN, increases

network lifetime

Further improvements to

gain energy efficiency in

the whole IoT network

regarding data

transmission and

processing

F. Jalali et

al. [84]

A Fog-based

approach for

reducing

energy

consumption

of Cloud

data centers

Utilizes nano data centers in

Fog by exploiting flow-

based and time-based models

Achieves energy

efficiency at centralized

DCs according to some

criteria of the designed

system

Only works properly in

specific applications or

services

M. Barcelo

et al. [41]

A

mathematica

l network

and service

models

Mathematical models to

solve service distribution

problem based on linear

programming

Efficient services

regarding low-latency,

reliability, flexibility,

and reduces the overall

energy consumption

Further improvements

are required such as

computational

complexity issues

Alduais, N

A M; et al.

[85]

A method

for reducing

number of

packet

transmission

s and their

size in IoT-

based WSN

An approach based on

relative differences among

current sensors values and

last gathered values to

switch RF transmit to

ON/OFF

Improves energy

efficiency and

performance as well as

network lifetime

Did not consider data

transmission to the

Cloud

K. Kaur et

al. [86]

A container-

based

layered

architecture

(CoESMS)

An architecture to manage

services at the Fog level by

using efficient task

scheduling based on game

theory

Increases energy

efficiency at Fog nano

datacenters.

Acceptable Service

Level Agreement

(SLA) to users

T. Baker et

al. [87]

An energy-

aware

service

composition

algorithm

(E2C2)

The algorithm selects the

optimal plan which has the

least energy consumption

without violating the user's

service level agreement.

Efficient in terms of

energy consumption

and performance

47

2.6 Discussion and Open Issues

Although CoT paradigm offers new opportunities for IoT-based smart services,

several new challenges or open issues have arisen. The most important issues as

explained in (Botta, De Donato, et al., 2016; Cavalcante et al., 2016a; Díaz,

Martín and Rubio, 2016b) are energy efficiency, the lack of standardization (for

architecture as well as data and services), efficient big data management and

analytics, security and privacy, Fog computing, scalability, and mobility support.

However, this research mainly focuses on the energy efficiency, so all of the

remaining issues will be explained in brief.

2.6.1 Discussion

In this subsection, a comparison regarding the energy efficiency of the works

mentioned in Section 2.6. Table 2.4 summarizes the comparison parameters: the

techniques used, place of executing the scheme, renewable energy, traffic

overhead, performance, scalability, and quality of service (QoS) for each

analyzed proposal. As seen in Table 2.4, the techniques used range from

clustering concept to Fog-based approaches. The recent works, such as (Kaur et

al., 2017) tried to tackle the service migration in an energy efficient manner at the

Fog level. However, this trend is still immature and needs further research.

Furthermore, the comparison of the results shows that some of the proposed

solutions concerned the WSN part while the others tried to reduce the energy

consumption only in Cloud datacenters. Therefore, energy-efficient schemes that

increase the energy efficiency of the whole system are required. Moreover, the

comparison of the results also reveals that most of the proposed approaches

48

focused on reducing energy consumption and ignored the other important

metrics, such as scalability.

In summary, all of the aforementioned schemes show the importance of energy

efficiency in gaining efficient CoT-enabled services and applications regarding

availability, reliability, and performance. Moreover, most of the proposals tried to

tackle the energy efficiency issue only in the IoT part and ignored the

communication with Cloud scenarios. Therefore, the energy efficiency issue

needs further efforts, particularly in delay-sensitive services such as smart

Healthcare.

Table 03: A comparison among the available energy efficiency proposals

Refere

nce

Used techniques Scheme

place

Renewabl

e energy

Traffic

overhea

d

Performanc

e

Scalabil

ity

QoS

Petrolo

et al.

[63]

Virtualization

technologies, and

prediction algorithms

Gateway No No Acceptable Yes Yes

Chang

et al.

[22]

Distributed

clustering, and Data

compression

WSN No No Acceptable

with small

overhead

Yes Yes

Kaur et

al. [64]

Sleep mode IoT sensors No No Acceptable Yes Low, so

further

adoptions

are

needed.

Mohsen

Nia et

al. [65]

Compressive

sampling

WBAN No No Acceptable Yes Low

Mangali

et al.

[66]

Clustering WSN No No Acceptable Yes Low

Granad

os et al.

[67]

Power over Ethernet Gateway No No Acceptable No Yes

Gia et

al. [68]

Customized

6LoWPAN

WAN No No Acceptable Yes Yes

Rault et

al. [69]

ZigBee and Bluetooth WAN No No Acceptable No Yes

Papage

orgiou

et al.

[70]

Auto-configuration

algorithms

IoT

platform

No No Acceptable Yes Yes

Li et al.

[71]

Fog computing as a

middleware tier

Whole

system

architecture

No No Very good Yes Yes

Dubey

et al.

[72]

Fog Data Whole

system

architecture

No No Very good Yes Yes

49

S. Rani

et al.

[73]

Clustering and

orchestration

algorithms

IoT

network

No No Acceptable Yes Yes

J.

Huang

et al.

[74]

Clustering and

Steiner tree algorithm

WSN No No Acceptable Yes Yes

S. F.

Abedin

et al.

[75]

System model with

scheduling

algorithms

Whole

system

model

No No Acceptable Yes Yes

M. Ye

et al.

[76]

Clustering and load

balancing algorithm

Wireless

network

No No Acceptable Yes Yes

A.

Mehmo

od et al.

[77]

Clustering WSN No No Acceptable Yes Yes

N. G.

Praveen

a and H.

Prabha

[78]

Level-k Clustering

and TDMA (Time

Division Multiple

Access) technique

WSN No No Acceptable No Yes

J. Tang

et al.

[79]

Clustering index tree

and time-correlated

querying technique

WSN No No Acceptable Yes Yes

E.

Yaacou

b et al.

[80]

Cooperative multi-

hop approach and

clustering

WSN No No Acceptable No Yes

M.

Eteläper

ä [81]

Re-configuring

virtual objects and

compression

technique

IoT

network

No No Acceptable No Low

J. Kim

and J.

Lee

[82]

Mobile sink nodes

combined with

traveling salesman

problem (TSP)

algorithm

WSN No No Acceptable Yes Yes

N. R.

W. Prof

and D.

N.

Choudh

ari [83]

Election-based

method for choosing

the optimal sink node

to be the CH node

WSN No No Acceptable Yes Yes

F. Jalali

et al.

[84]

Fog computing

combined with flow-

based and time-based

models

Fog nano

datacenters

No No Very good No Yes

M.

Barcelo

et al.

[41]

Mathematical

network and service

models

Network No No Acceptable Yes Yes

Alduais,

N A M;

et al.

[85]

A method to control

radio frequency

transmission and

algorithm to reduce

the transmitted data

packets

WSN No No Acceptable Yes Yes

K. Kaur Containers migration Fog level No No Very good Yes Yes

50

et al.

[86]

and game theory

based task scheduling

T.

Baker et

al. [87]

Service composition

algorithm (E2C2)

Multi-

cloud

environme

nt

No No Acceptable Yes Yes

2.6.2 Open Issues

Lack of Standardization

The absence of standardization is considered as one of the most critical issues

that face CoT. This issue is due to the lack of standards in both IoT and Cloud

computing models (Fortino et al., 2018). Indeed, the currently used web-based

APIs (e.g. RESTful APIs) only facilitate the communication between the Things

and Cloud, however, they are not designed to deal with M2M (machine-to-

machine) interactions (Botta, De Donato, et al., 2016; Cavalcante et al., 2016b).

Furthermore, the literature shows that the majority of relevant CoT-based

proposals do not adhere to a unified standard in the process of development due

to the lack of standardized architecture. In this context, reference architecture

(RA) (Botta, De Donato, et al., 2016), which defines the standards and rules that

developers should follow for building CoT-based solutions, can help alleviate the

complexity of development. Moreover, RA can help the deployment of efficient

CoT standards that are capable of supporting smart services with optimized M2M

communications (Cavalcante et al., 2016b).

Security and Privacy

This issue is inherited from security and privacy in the Cloud and IoT, besides the

newly arisen vulnerabilities from the integration between them. From the Cloud

point of view, to obtain transparent access to stored data in Cloud requires a

third-party, which represents a threat that may exploit the data for malicious

purposes. Meanwhile, IoT devices implement simple security techniques due to

51

their constrained resources, thus, they represent an easy target for intruders.

These security breaches ranging from unauthorized changes of sensor data to

service denial (DoS attack) [15], [33], [34], [37]. Specifically, CoT-based

healthcare requires a strong protection for patient health data, which are highly

sensitive. Therefore, it is important to protect health information in different

layers, i.e., IoT devices layer, Network layer, and Cloud layer. In this context,

using distributed security architecture with lightweight cryptography schemes

may help to achieve protected health information in the IoT environment as well

as Cloud (Ben Ida, Jemai and Loukil, 2016). Finally, security and privacy

represent a continuous challenge that needs efficient solutions, in which the

consumers of CoT-based services can trust, so keeping the flourish of such

services.

Big Data Management and Analytics

Despite the ability of the Cloud to manage big data due to its virtually unlimited

storage and processing capabilities, dealing with IoT generated big data still

represent a challenge regarding the Cloud shortcomings in support of IoT

devices. Most of the proposed solutions to tackle this issue reveal their

inappropriateness regarding data handling and performance efficiency [15], [59].

Furthermore, handling a massive amount of data generated by IoT sensors in the

Cloud is inconvenient regarding the constrained bandwidth, intolerable delay, and

security. Therefore, efficient solutions based on innovative paradigms, e.g. Fog

computing, that work in collaboration with the Cloud are necessary (Zhang et al.,

2017).

Fog Computing

Although the Cloud of Things paradigm successfully solves the majority of the

IoT-related issues totally or partially, there are still issues that represent a

52

challenge, such as mobility support and low latency [21]. From this point of

view, Fog Computing can effectively help to meet such requirements (Díaz,

Martín and Rubio, 2016b; Masip-Bruin et al., 2016). In fact, Fog Computing is

an innovative and distributed computing model, through which all the smart

services are executed at the network edge. In Fog Computing, edge devices (Fog

nodes) are equipped with more storage and processing capabilities, besides

functionalities such as edge analytics (Masip-Bruin et al., 2016). However, there

are several issues with the IoT, Fog, and Cloud layered architecture (i.e., three-

tier CoT architecture) regarding optimized scheduling, fog networking

management, security and privacy (Stojmenovic, 2015; Yi, Li and Li, 2015).

Quality of Service Assurance

Ensuring an acceptable level of QoS for CoT-based applications is still

challenging due to the combination of different and heterogeneous technologies.

To achieve QoS, it is crucial to precisely identify the QoS metrics at each CoT

layer. Furthermore, CoT-based real-time applications/services require end-to-end

QoS. Therefore, QoS-aware CoT architecture represents an open issue that needs

efficient solutions (Aazam et al., 2014; Botta, De Donato, et al., 2016; Shah et

al., 2016).

Unpredictable Latency

Unpredictable latency is one of the most significant challenges, that is, intolerable

for delay-sensitive services, e.g. healthcare, that require timely response (Nan et

al., 2016). In fact, this latency appears due to the massive communications with

the Cloud for data storage or processing purposes. Moreover, the latency also has

a negative impact on QoS. To address this issue, the authors of [31], [47]

proposed to exploit the strategic position of smart gateways by integrating them

with Fog paradigm, in order to provide end users with services at the network

edge. Finally, Fog proved its suitability in solving latency, however, additional

53

efforts are required to carry out a performance evaluation of the whole Fog-

enabled smart gateway CoT system model.

Energy Efficiency

Energy efficiency is a great concern, especially in smart things and data centers,

due to its negative effect on quality of service (QoS), operating costs, and the

environment (Dabbagh et al., 2015; Hassanalieragh et al., 2015). For such

reasons, effective solutions that minimize energy consumption in both data

centers and Things as much as possible are required. Furthermore, reducing the

communication (i.e., trimming unnecessary communication) and data

transmission between Things and Cloud datacenters can lower energy

consumption

significantly (Chang, 2014; Dabbagh et al., 2015). Effective scheduling

techniques can also be utilized to achieve energy efficient IoT communications

(Prasad and Kumar, 2013). Some solutions mentioned that effective sleep mode

implementation, besides using a smart gateway that utilizes Fog computing to

bring Cloud resources near to IoT objects, can enhance energy efficiency

(Koubaa and Shakshuki, 2015). In this context, Fog is used to store Things data,

whereas the gateway decides either to submit data to the Cloud or not according

to the acknowledgment of the consumer application or service (Aazam and Huh,

2014; Koubaa and Shakshuki, 2015). In addition, heavyweight security schemes

for authentication, Key establishment and distribution have a significant impact

on energy consumption of IoT resource-constrained devices, so lightweight

security schemes are required (Saied et al., 2014). Furthermore, game theory can

be used as a mechanism for analyzing WSN, in the case of the interaction

between wireless sensor nodes with the competitive nature for acquiring the

constrained network resources. With various types of models (i.e., non-

cooperative games and cooperative-enforcement games), game theory can

efficiently reduce the consumed energy of data aggregation processes without

54

affecting the network lifetime negatively (Alskaif, Guerrero Zapata and Bellalta,

2015). However, energy efficiency is still an open challenge that needs further

research.

2.7 Summary

Currently, Cloud and IoT are extensively applied in several information

technology applications such as healthcare and smart cities. However, reliable

CoT-based services – particularly, highly delay-sensitive services such as

Healthcare – require energy-efficient CoT architectures. This chapter surveyed

CoT architectures, platforms, and their implementation in Healthcare.

Furthermore, the chapter explained the CoT related issues, in brief, since it

mainly investigated the energy efficiency issues with the more relevant proposals

in detail. This investigation showed that the majority of the proposals were not

concerned about energy efficiency when dealing with IoT Cloud scenarios.

Therefore, efficient solutions for obtaining energy efficiency in both data

processing and transmission are still required. Moreover, the new solutions

should balance the trade-offs amongst energy efficiency, quality of service (QoS),

and performance.

55

CHAPTER III

METHODOLOGY

3.1 Introduction

The convergence of the Cloud and IoT (CoT) represents a vision of the future

Internet and supports a new and richer portfolio of smart services. However,

such combination does not fit services with real-time, delay-sensitive and energy

efficiency requirements due to the inherent limitations of these aspects of the

Cloud. To this end, Fog computing was proposed by Cisco for providing such

services at the network edge (Cisco Systems, 2016). Many benefits can be

attained by using Fog computing, such as reducing the energy consumption and

the load on data centers, in addition to conserving the network bandwidth (V. B.

Souza et al., 2016; Li et al., 2017).

A recently proposed integration of Fog computing with IoT-based healthcare,

see Figure3.1, represents a new trend in innovative e-health solutions. This

combination enables healthcare services with improved latency, energy

consumption, mobility, and Quality of Service (QoS). Such improvements result

from the key characteristics of Fog, such as (i) proximity to end-users/IoT

devices, and (ii) Mobility support of end-users, enabled by a geographically

distributed architecture. The proximity to end users supports real-time responses

and reduces latency, whereas mobility significantly promotes ubiquitous

healthcare by enabling patients to obtain healthcare services efficiently

regardless of location. As a Fog server can process the data gathered from IoT

devices without reliance on the Cloud, it can effectively save the network

bandwidth and cloud storage for vital data and processes (Shi, Ding, Wang,

Roman, et al., 2015; Andriopoulou, Dagiuklas and Orphanoudakis, 2017).

56

Figure 3.1.An illustration of Fog-integrated CoT-based healthcare architecture.

 To achieve an efficient scheduling and resource allocation in a Fog-

enabled CoT system, suitable metrics should be considered according to

the required objectives, such as application types, user mobility, and

energy efficiency. Accordingly, the scheduling strategy should determine

the location where applications or tasks are offloaded, either the Fog or

the Cloud. It also determines the priority of applications’ execution at a

particular Fog instance according to the respective delay constraints.

Furthermore, the scheduling strategy should consider various possible

scenarios of application tasks execution, taking the primary objectives

into account (Bittencourt et al., 2017). The primary contribution of this

chapteris to propose a Fog-enabled CoT system model along with an

allocation strategy to reduce the energy consumption of Fog devices (i.e.,

Fog servers) based on the remaining CPU capacity and available stored

energy, while ensuring efficient performance of real-time task execution.

Based on proposals available in the related literature, a new energy-aware

allocation strategy for placing application modules (tasks) on fog devices is

proposed in the next section.

57

3.2 The Proposed Energy-Aware Model

The approaches mentioned in the literatureshowed the significance of energy

efficiency in obtaining reliable IoT services. This section briefly describes the

system model and proposes an energy-aware allocation policy for placing

application modules in Fog devices (Fog computing devices). The policy selects

energy-efficient Fog devices more frequently than energy-inefficient ones.

3.2.1 System Model

As mentioned in (Li et al., 2017), the Fog-enabled CoT system model is

composed of Things-tier, Fog-tier and Cloud-tier. The Things-tier comprises

heterogeneous physical entities organized into clusters according to geographic

regions. The physical objects are provisioned as services through virtual entities

allocated in Fog and Cloud tiers. The Fog-tier includes geographically

distributed Fog instances (FIs) located alongside the Cloud and the continuum of

things as depicted in Fig. 3.2. Such FIs communicate with IoT-tier and Cloud-

tier through IoT gateways and Fog (Fog-to-Cloud) gateways, respectively.

Finally, the Cloud-tier is composed of heavy-duty datacenters for processing and

persistent storage.

The application model is illustrated by a directed acyclic graph (DAG), where

vertices (V) denote the tasks or application modules, while edges (E) denote the

dependencies among application tasks. Each application task has a type (e.g.,

sensing, actuating and processing) and workload. The workload identifies the

resources required to execute the task, such as the CPU capacity. The optimal

place for application task deployment should be specified accordingly, i.e., the

Fog or the Cloud.

58

Figure 3.2. The three-tier CoT system model, in which data and tasks are handled in the

appropriate place either Fog or Cloud.

3.2.2 Proposed Algorithm

The proposed approach (shown in Algorithm 1) is an energy-efficient strategy

that allocates the incoming application modules (tasks) to Fog devices based on

the remaining CPU capacity and energy consumption. The default placement

strategy, called edge-wards, considers CPUs available for placement. For

instance, if the current Fog device in the path does not meet the application

module processing demands, the edge-wards strategy forwards it upwards until it

finds a suitable Fog device or reaches the root, i.e., the Cloud. The main

objective of the proposed allocation strategy is to increase the energy efficiency

at Fog devices by allocating application tasks based on improved round robin

(IRR) and dynamic voltage and frequency scaling (DVFS) algorithms. In other

words, it places the application module on a Fog device that ensures a minimum

59

increment of energy consumption. The policy selects energy-efficient fog

devices more frequently than energy-inefficient ones. The DVFS technology is

used to adjust the CPU frequency of Fog computing devices (Fog servers) in a

way that guarantees a reduction in energy consumption. Furthermore, the

strategy tries to use Fog devices efficiently. In other words, it allocates the

workload among Fog devices in a balanced way that ensures that a Fog device is

neither underused nor overloaded. To this end, the strategy works together with

the edge-ward placement strategy to guarantee that delay-sensitive tasks are

placed in Fog devices as much as possible.

Algorithm 1: Energy-aware allocation of application modules

Input: fogDevicesList, modulesToPlaceList

Output: placedModulesList in an energy efficient manner

1. Fog devices (Fog servers) implement DVFS to adjust their CPUs frequencies

2. allocatedDevice = NULL

3. for each fogDevice in fogDevicesList do

4. for each module in modulesToPlaceList do

5. estimateConsumedEnergyAfterAllocation (fogDevice, module)

6. if fogDevice is suitable for module then

7. allocatedDevice = fogDevice

8. else

9. search for fogDevice upwards

10. end

11. place module on allocatedDevice

12. end

13. end

60

Algorithm 2: Adjusting CPU frequency using DVFS

Input: Tasks = { t1 , t2 , t3 ,......, tn}

Number of instructions = {(NOI)1 , (NOI)2, (NOI)3,....,(NOI)n}

Deadline for each task { d1 , d2 , d3 , , dn}

FrequencySet{ } = the discrete values of the CPU frequency.

Output: Adjust the CPU frequency (cpuF) to the optimal frequency

1. For i = 0 to N do

2.Calculate the Optimal Frequency (OF)i for ti

3. (OF)i = (NOI)i / di

4. if (OF)i є FrequencySet{ }then

5. cpuF = (OF)i

6. else

7.for k = 0 to M do

8. If ((OF)i< (FrequencySet)k)then

9. cpuF = (FrequencySet)k

10.endfor

11. endfor

61

Algorithm 3:Estimate the ConsumedEnergyAfterAllocation

Input: fogDevicesList, modulesToPlaceList

Output: the most suitable fogDevice for module allocation

1. for each fogDevice in fogDevicesList do

2. for each module in modulesToPlaceList do

3. calculate the potential utilization MIPS when allocating the module on the

fogDeviceby adding the previous utilization MIPS to the current utilization

MIPS

4. calculate the potential energy consumed on fogDevicebased onthe potential

utilization MIPS

5. return the potential energy consumed byfogDevice

6. end

7. end

3.3 Summary

This chapter studied the importance of the interplay between Fog computing

and the two-tier CoT paradigm for achieving reduced latency and energy

consumption. It also proposed an energy-aware allocation policy for

placement of application modules (tasks).

62

CHAPTER IV

SIMULATION TOOL AND THE IMPLEMENTATION

4.1 Introduction

This chapter briefly describes the simulation tool used to evaluate the

performance of the proposed approach. It also describes the case study scenario

used to perform the study and depicts it as a directed acyclic graph.

4.2 Simulation Tool

Fog-enabled CoT scenarios can be simulated using available tools, e.g.,

DEVS (discrete event system specification) (Etemad, Aazam and St-Hilaire,

2017), SimPy (Li et al., 2017), and iFogSim (Gupta et al., 2017). As stated in [6,

25], iFogSim is the most suitable tool for simulating application environments

that combine IoT, Fog, and Cloud. Such suitability arises from the following

features of iFogSim:

 It is implemented on top of CloudSim, a popular tool for simulating

Cloud environments, extending its most relevant components, such as the

datacenter and Cloudlets.

 It is the first simulator of IoT objects, such as sensors, connecting them to

Fog nodes and the Cloud in a hierarchical architecture.

 It is suitable for studying and evaluating such various aspects of Fog-

enabled CoT applications, as latency, mobility and energy efficiency.

4.3 Case Study Scenario

Remote patient monitoring (RPM) is used as a case study to evaluate the energy

efficiency of the proposed placement strategy. In fact, RPM shifts the traditional

hospital-centric approach to monitoring patients with chronic diseases to a more

63

efficient patient-centric one. As a consequence, patients can independently

obtain care regardless of location, while their families and caregivers are

engaged remotely. In general, an RPM system comprises three primary modules:

data acquisition, diagnostics (concentrator), and visualization. To acquire data,

the patient is equipped with wearable or implantable body sensors, i.e., using

body area networks (BANs). After being acquired by a sensor, the collected data

are sent through the patient's smart phone to the diagnostic module for

processing. Finally, the calculated results or analytics are displayed in an

understandable form by the visualization module. In this case study, the focus is

on RPM for monitoring patients with diabetes. In this scenario, patients'

physiological parameters, such as blood pressure (BP), blood glucose (BG) or

Glycaemia, and weight scale (WS) should be collected by the appropriate

sensors. The application model of this scenario is depicted as a directed acyclic

graph, as shown in Figure 4.1. For simplicity, the patient is only equipped with

the blood glucose sensor. In the RPM use case, The configurations of the inter-

module edges, fog devices, sensors are described in Table 4.1, Table 4.2, Table

4.3, respectively.

Figure 4.1. The application model of the RPM scenario depicted as a directed acyclic graph.

64

Table 4.1: Description of inter-module edges in the RPM application

Table 4.2: Configuration of fog devices for RPM application

Device type CPU (GHz) RAM (GB) Energy consumption (W)

Cloud VM 3.0 4 107.339(M) 83.433(I)

Wi-Fi gateway 3.0 4 107.339(M) 83.433(I)

Smartphone 1.6 1 87.53(M) 82.44(I)

ISP gateway 3.0 4 107.339(M) 83.433(I)

M = the energy consumed when modules placed on devices

I = the energy consumed in devices without modules placement.

Table 4.3: Configuration of sensors for RPM application

Sensor Tuple CPU length Average inter-arrival time (ms)

Blood glucose (BG) 2000 million instructions 10

4.4 Summary

In this chapter, energy-aware Fog-enabled Cloud of Things modelalong

with allocation algorithm for placement of application modules on Fog devices

have been proposedfor healthcare. Furthermore, the simulation tool and the use

case have been also identified.

Tuple type CPU length (MIPS) N/W length

BG 2000 500

_SENSOR 3500 500

DIAGNOSIS_RESULT 14 500

SELF_ STATE_ UPDATE 1000 500

65

CHAPTER V

RESULTS ANALYSIS AND EVALUATION

5.1 Introduction

This chapter analyses the results obtained in the above case study simulation

scenario, with and without the proposed allocation policy and with and without

Fog (i.e., using a two-tier CoT). The analysis recognizes the efficiency aspects of

energy consumption, latency and network bandwidth usage. To obtain more

accurate results, the following four physical topology configurations with

different workloads are considered: i) 2 Fog devices and 4 smartphones; ii) 4

Fog devices and 4 smartphones; iii) 4 Fog devices and 8 smartphones, and iv) 4

Fog devices and 16 smartphones.

5.2 Performance Evaluation

In this section, the environment of Fog-enabled CoT remote patient monitoring

system is simulated. Then, the efficiency of three placement strategies (Cloud-

only, Fog-default, and Fog-proposed) as shown in Fig. 5.1 are evaluated in terms

of energy consumption, latency, and network usage.The network links for RPM

application and the main simulation parameters are described in Table 5.1 and

Table 5.2, respectively.

66

Table 5.1: Description of network links for RPM application

Source Destination Latency (ms)

Blood glucose (BG) Smartphone 6

Smartphone Wi-Fi gateway 2

Wi-Fi gateway ISP gateway 4

ISP gateway Cloud DC 100

Table 5.2: Main simulation parameter values

Parameter Value

Simulation time 400 seconds

Cloud energy usage 150 - 400 W

Fog energy usage 70 - 130 W

Data sensing interval 5 ms

Figure 5.1. Application modules placements according to a) Cloud-only, b) Fog-default, and

c) Fog-proposed strategies.

67

5.2.1 Energy Consumption

The energy consumed by the mobile devices, the Fog devices, and the Cloud

datacenter is measured under three different strategies (the proposed allocation

policy, the default policy, and Cloud-only policy). As shown in Figure 5.2, the

proposed policy reduces the energy used by Fog devices by 8.27% compared to

the default policy (already considered in iFogSim). The total energy consumed

by various devices of the RPM scenario considering the proposed policy, the

default policy, and without Fog integration is depicted in Figure 5.3. The

proposed policy is observed to be more energy-efficient than the other two

policies, saving approximately 2.72% of the energy compared to Cloud-only and

1.61% of the energy compared to the Fog-default.

Figure 5.2. The energy consumed by different devices (mobile phones, edge devices, and the

Cloud) under various policies (the proposed policy, the default policy and the Cloud-only

policy).

68

Figure 5.3. The total energy consumed in the RPM scenario under various allocation policies

(the proposed policy, the default policy, and the Cloud-only policy).

5.2.2 End-to-End Latency Average

In the RPM scenario we consider, the end-to-end latency is represented by the

loop from collecting the blood glucose state to displaying the results on the

patient's smartphone, i.e., the client graphical user interface (GUI). It is

reasonable that a high or unpredictable latency negatively affects the patient's

health and the quality of service. As shown in Figure5.4, the use of Fog devices

for processing can significantly reduce the latency compared to processing at a

Cloud datacenter. Compared to the default allocation policy of application

modules, the proposed policy has a lower latency, particularly in configurations

three and four, as shown in Figure5.4.

69

Figure 5.4. The end-to-end average latency of the RPM application loop under various

allocation policies.

5.2.3 Network Usage

In general, the use of Fog computing reduces the amount of data transmitted

over the network. This reduction arises from allocating most application modules

to the network edge, avoiding the need to communicate with the Cloud.

Therefore, a Fog-enabled CoT application scenario results in lower network

usage than the two-tier CoT. Figure5.5illustrates the network usage, showing

that the default allocation policy is slightly better than the proposed policy in

configurations i) and ii), while the proposed policy is better in configurations iii)

and iv) (i.e., heavy workloads).

70

Figure 5.5.The network usage of the RPM application under various allocation policies.

5.3 Summary

This chapter evaluates the performance of the proposed Model along with the

energy-aware allocation algorithm compared to the edge-ward placement and the

default allocation policies. The results showed that the proposed policy is more

energy-efficient.

71

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Overview

This chapter summarizes the contributions and findings of the research work

and presents suggestions and recommendations for future study. This research

primarily investigates the importance of energy efficiency for achieving

efficient healthcare services.

6.2 The Proposed Method

The proposed method to tackle the energy efficiency in CoT-based healthcare

by allocating application modules in the energy-efficient Fog devices rather

than the inefficient ones. It also balances the load between Fog devices which

helps in achieving improved performance. The aim of this research is to propose

energy-aware Fog-enabled Cloud of Things model for healthcare.

6.3 Contribution of the Research

As mentioned above in the previous section. The main goal of this thesis is to

propose an energy-aware Fog-enabled Cloud of Things model for healthcare

sector. The highlight of this thesis is that Fog layer was added, between the IoT

and Cloud tiers, to reduce the data transmission and communication of IoT

devices with the Cloud which significantly reduces the energy consumed. After,

to achieve more energy efficiency, the thesis propose a strategy for allocating

application modules in balanced and energy efficient manner. Therefore, this

study reaches a number of contributions for energy efficiency especially on

72

healthcare. Major activities corresponding to contributions are summarized as

follows:

i. Identify theimportance of energy efficiency in gaining efficient and

delay-sensitive healthcare services/applications.

The importance of energy efficiency is identified by investigating and analyzing

more than 25 recent proposals. Surveying the state of the art in this issue

especially in the context of healthcare was helped successfully to propose new

model for energy efficient CoT-based healthcare model.

ii. Design an energy-aware Fog-enabled CoT model for healthcare

depending on the results obtained on the first step (i).

subsequent to conducting a comprehensive literature review and related work to

same area of energy-efficient healthcare we have proposed a three-tier CoT

model to be used in this thesis. Also, an algorithm for allocating application

modules on Fog devices is proposed. To evaluate the efficiency of the proposed

model, a comparison with Cloud-only and the Fog-default strategies in iFogsim

simulator is done. The proposed model saving approximately 8% of the energy

consumed at Fog devices. The simulation results showed that the proposed

model is more energy efficient than the Cloud-only and the Fog-default.

6.4 FutureWork

The thesis achieved all the objectives of the study by determining the

significant factors that affect energy efficiency in Cloud of things model such as

data transmission and heavy communication with the Cloud.Based on these

factors, a new Fog-enabled CoT model is proposed in order to obtain improved

CoT-based healthcare services.However, several research opportunities still

exist and further research can be conducted into them.

73

The future work will be achieved as the following objectives:

 To study the significance of energy efficiency in patient's mobility

scenarios.

 To identify the role of Fog computing in support improved healthcare

services in terms of latency, energy efficiency, and privacy with

considering different healthcare deployment scenarios.

 To study the significance of smart gateways (Fog gateways) in

performing sophisticated analytics on patients health records without

violating regulations.

6.5 Summary

This chapter presents the summaries of the proposed model that has been done

in this research. This study also proposes strategy for allocation of application

modules in Fog devices which believed to affect the performance of Fog-

enabled CoT-based healthcare in terms of energy consumption, latency, and

network bandwidth. The results showed that the research objectives have been

achieved. Furthermore, this research discusses the plan for future work to

improve and extend the current work and how it will be applied to another CoT

applications such as smart cities.

74

REFERENCES

1. Aazam, M. and Huh, E. N. (2014) ‘Fog computing and smart

gateway based communication for cloud of things’, Proceedings

- 2014 International Conference on Future Internet of Things

and Cloud, FiCloud 2014, pp. 464–470. doi:

10.1109/FiCloud.2014.83.

2. Aazam, M., Khan, I., Alsaffar, A. A. and Huh, E. (2014) ‘Cloud

of Things: Integrating Internet of Things and cloud computing

and the issues involved’, in Proceedings of 2014 11th

International Bhurban Conference on Applied Sciences &

Technology (IBCAST) Islamabad, Pakistan, 14th - 18th

January, 2014. IEEE, pp. 414–419. doi:

10.1109/IBCAST.2014.6778179.

3. Abedin, S. F., Alam, M. G. R., Haw, R. and Hong, C. S. (2015)

‘A system model for energy efficient green-IoT network’, in

International Conference on Information Networking, pp. 177–

182. doi: 10.1109/ICOIN.2015.7057878.

4. Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T.

and Lee, S. (2016) ‘Health Fog: a novel framework for health

and wellness applications’, Journal of Supercomputing. Springer

US, 72(10), pp. 1–19. doi: 10.1007/s11227-016-1634-x.

5. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and

Ayyash, M. (2015) ‘Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications’, IEEE

75

Communications Surveys and Tutorials, 17(4), pp. 2347–2376.

doi: 10.1109/COMST.2015.2444095.

6. Alduais, N. A. M. ., Abdullah, J., Jamil, A. and Audah, L.

(2016) ‘An Efficient Data Collection and Dissemination for IOT

based WSN’, in Information Technology, Electronics and

Mobile Communication Conference (IEMCON), 2016 IEEE 7th

Annual. IEEE, pp. 1–6.

7. Alnowiser, A., Aldhahri, E., Alahmadi, A. and Zhu, M. M.

(2014) ‘Enhanced Weighted Round Robin (EWRR) with DVFS

Technology in Cloud Energy-Aware’, in 2014 International

Conference on Computational Science and Computational

Intelligence. IEEE, pp. 320–326. doi: 10.1109/CSCI.2014.62.

8. Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo,

W. and Savaglio, C. (2017) ‘Enabling IoT interoperability

through opportunistic smartphone-based mobile gateways’,

Journal of Network and Computer Applications. Elsevier,

81(October), pp. 74–84. doi: 10.1016/j.jnca.2016.10.013.

9. Alskaif, T., Guerrero Zapata, M. and Bellalta, B. (2015) ‘Game

theory for energy efficiency in Wireless Sensor Networks:

Latest trends’, Journal of Network and Computer Applications,

pp. 33–61. doi: 10.1016/j.jnca.2015.03.011.

10. Alvarez, R. C. (2002) ‘The promise of e-Health - a

Canadian perspective.’, Ehealth international, 1(1), p. 4. doi:

10.1186/1476-3591-1-4.

11. Andriopoulou, F., Dagiuklas, T. and Orphanoudakis, T.

76

(2017) ‘Integrating IoT and Fog Computing for Healthcare

Service Delivery’, in Keramidas, G., Voros, N., and Hübner, M.

(eds) Components and Services for IoT Platforms, Springer

International Publishing Switzerland. Cham: Springer

International Publishing, pp. 213–232. doi: 10.1007/978-3-319-

42304-3.

12. Avancha, S., Baxi, A. and Kotz, D. (2012) ‘Privacy in

mobile technology for personal healthcare’, ACM Computing

Surveys (CSUR), 45(1), pp. 1–56. doi:

10.1145/0000000.0000000.

13. Babu, S. M., Lakshmi, A. J. and Rao, B. T. (2015) ‘A

study on cloud based Internet of Things: CloudIoT’, in 2015

Global Conference on Communication Technologies (GCCT).

IEEE, pp. 60–65. doi: 10.1109/GCCT.2015.7342624.

14. Baker, T., Asim, M., Tawfik, H., Aldawsari, B. and

Buyya, R. (2017) ‘An energy-aware service composition

algorithm for multiple cloud-based IoT applications’, Journal of

Network and Computer Applications. Elsevier Ltd, 89, pp. 96–

108. doi: 10.1016/j.jnca.2017.03.008.

15. Barcelo, M., Correa, A., Llorca, J., Tulino, A., Lopez

Vicario, J. and Morell, A. (2016) ‘IoT-Cloud Service

Optimization in Next Generation Smart Environments’, IEEE

Journal on Selected Areas in Communications, 8716(c), pp. 1–1.

doi: 10.1109/JSAC.2016.2621398.

16. Belli, L., Cirani, S., Davoli, L., Melegari, L., Mónton, A.

77

and Picone, M. (2015) ‘An Open-Source Cloud Architecture for

Big Stream IoT Applications’, Interoperability and Open-

Source Solutions for the Internet of Things. Springer

International Publishing, pp. 73–88. doi: 10.1007/978-3-319-

16546-2.

17. Benharref, A. and Serhani, M. A. (2014) ‘Novel cloud and

SOA-based framework for E-health monitoring using wireless

biosensors’, IEEE Journal of Biomedical and Health

Informatics, 18(1), pp. 46–55. doi:

10.1109/JBHI.2013.2262659.

18. Bittencourt, L. F., Diaz-Montes, J., Buyya, R., Rana, O. F.

and Parashar, M. (2017) ‘Mobility-Aware Application

Scheduling in Fog Computing’, IEEE Cloud Computing, 4(2),

pp. 26–35. doi: 10.1109/MCC.2017.27.

19. Botta, A., De Donato, W., Persico, V. and Pescape, A.

(2014) ‘On the integration of cloud computing and internet of

things’, Proceedings - 2014 International Conference on Future

Internet of Things and Cloud, FiCloud 2014, pp. 23–30. doi:

10.1109/FiCloud.2014.14.

20. Botta, A., de Donato, W., Persico, V. and Pescapé, A.

(2016) ‘Integration of Cloud computing and Internet of Things:

A survey’, Future Generation Computer Systems. Elsevier B.V.,

56, pp. 684–700. doi: 10.1016/j.future.2015.09.021.

21. Botta, A., De Donato, W., Persico, V. and Pescapé, A.

(2016) ‘Integration of Cloud computing and Internet of Things:

78

A survey’, Future Generation Computer Systems, 56, pp. 684–

700. doi: 10.1016/j.future.2015.09.021.

22. C. S., M. and N. K, S. (2015) ‘Internet of Things

Challengies and Apportunities’, Smart Sensors, Measurement

and Instrumentation, 42(3), pp. 287–307. doi:

10.1201/9781420052824.ch13.

23. Catarinucci, L., De Donno, D., Mainetti, L., Palano, L.,

Patrono, L., Stefanizzi, M. L. and Tarricone, L. (2015) ‘An IoT-

Aware Architecture for Smart Healthcare Systems’, IEEE

Internet of Things Journal, 2(6), pp. 515–526. doi:

10.1109/JIOT.2015.2417684.

24. Cavalcante, E., Pereira, J., Alves, M. P., Maia, P., Moura,

R., Batista, T., Delicato, F. C. and Pires, P. F. (2016a) ‘On the

interplay of Internet of Things and Cloud Computing: A

systematic mapping study’, Computer Communications.

Elsevier B.V., 89–90, pp. 17–33. doi:

10.1016/j.comcom.2016.03.012.

25. Cavalcante, E., Pereira, J., Alves, M. P., Maia, P., Moura,

R., Batista, T., Delicato, F. C. and Pires, P. F. (2016b) ‘On the

interplay of Internet of Things and Cloud Computing: A

systematic mapping study’, Computer Communications.

Elsevier B.V., 89–90, pp. 17–33. doi:

10.1016/j.comcom.2016.03.012.

26. Chang, J. Y. (2014) ‘A Distributed Cluster Computing

Energy-Efficient Routing Scheme for Internet of Things

79

Systems’, Wireless Personal Communications. Springer US, pp.

757–776. doi: 10.1007/s11277-014-2251-8.

27. Chiang, M. and Zhang, T. (2016) ‘Fog and IoT: An

Overview of Research Opportunities’, IEEE Internet of Things

Journal, 3(6), pp. 854–864. doi: 10.1109/JIOT.2016.2584538.

28. Cisco Systems (2016) ‘Fog Computing and the Internet of

Things: Extend the Cloud to Where the Things Are’,

Www.Cisco.Com, p. 6.

29. Consortium, O. and Working, A. (2017) ‘OpenFog

Reference Architecture for Fog Computing’, (February), pp. 1–

162.

30. Dabbagh, M., Hamdaoui, B., Guizani, M. and Rayes, A.

(2015) ‘Toward energy-efficient cloud computing: Prediction,

consolidation, and overcommitment’, IEEE Network, 29(2), pp.

56–61. doi: 10.1109/MNET.2015.7064904.

31. Deng, R., Lu, R., Lai, C., Luan, T. H. and Liang, H. (2016)

‘Optimal Workload Allocation in Fog-Cloud Computing

Toward Balanced Delay and Power Consumption’, IEEE

Internet of Things Journal, 3(6), pp. 1171–1181. doi:

10.1109/JIOT.2016.2565516.

32. Díaz, M., Martín, C. and Rubio, B. (2016a) ‘$$\lambda $$

-CoAP: An Internet of Things and Cloud Computing Integration

Based on the Lambda Architecture and CoAP’, in International

Conference on Collaborative Computing: Networking,

Applications and Worksharing. Springer International

80

Publishing, pp. 195–206. doi: 10.1007/978-3-319-28910-6_18.

33. Díaz, M., Martín, C. and Rubio, B. (2016b) ‘State-of-the-

art, challenges, and open issues in the integration of Internet of

things and cloud computing’, Journal of Network and Computer

Applications. Elsevier, 67, pp. 99–117. doi:

10.1016/j.jnca.2016.01.010.

34. Distefano, S., Merlino, G. and Puliafito, A. (2012)

‘Enabling the cloud of things’, Proceedings - 6th International

Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing, IMIS 2012, pp. 858–863. doi:

10.1109/IMIS.2012.61.

35. Doukas, C. and Maglogiannis, I. (2012) ‘Bringing IoT and

cloud computing towards pervasive healthcare’, Proceedings -

6th International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing, IMIS 2012, pp. 922–926.

doi: 10.1109/IMIS.2012.26.

36. Duan, H., Chen, C., Min, G. and Wu, Y. (2016) ‘Energy-

aware scheduling of virtual machines in heterogeneous cloud

computing systems’, Future Generation Computer Systems, pp.

1–25. doi: 10.1016/j.future.2016.02.016.

37. Dubey, H., Yang, J., Constant, N., Amiri, A. M., Yang, Q.

and Makodiya, K. (2015) ‘Fog Data: Enhancing Telehealth Big

Data Through Fog Computing’, Proceedings of the ASE

BigData & SocialInformatics 2015, p. 14:1--14:6. doi:

10.1145/2818869.2818889.

81

38. Etelapera, M., Vecchio, M. and Giaffreda, R. (2014)

‘Improving energy efficiency in IoT with re-configurable virtual

objects’, in 2014 IEEE World Forum on Internet of Things, WF-

IoT 2014, pp. 520–525. doi: 10.1109/WF-IoT.2014.6803222.

39. Etemad, M., Aazam, M. and St-Hilaire, M. (2017) ‘Using

DEVS for modeling and simulating a Fog Computing

environment’, in 2017 International Conference on Computing,

Networking and Communications (ICNC). IEEE, pp. 849–854.

doi: 10.1109/ICCNC.2017.7876242.

40. Fang, Y., Wang, F. and Ge, J. (2010) ‘A Task Scheduling

Algorithm Based on Load Balancing in Cloud Computing’, In:

Wang F.L., Gong Z., Luo X., Lei J. (eds) Web Information

Systems and Mining. WISM 2010. Lecture Notes in Computer

Science. Springer, 6318, pp. 271–277. doi: 10.1007/978-3-642-

16515-3_34.

41. Fortino, G., Di Fatta, G., Pathan, M. and Vasilakos, A. V.

(2014) ‘Cloud-assisted body area networks: state-of-the-art and

future challenges’, Wireless Networks, 20(7), pp. 1925–1938.

doi: 10.1007/s11276-014-0714-1.

42. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P.

and Jafari, R. (2013) ‘Enabling effective programming and

flexible management of efficient body sensor network

applications’, IEEE Transactions on Human-Machine Systems,

43(1), pp. 115–133. doi: 10.1109/TSMCC.2012.2215852.

43. Fortino, G., Guerrieri, A., Russo, W. and Savaglio, C.

82

(2014) ‘Integration of agent-based and Cloud Computing for the

smart objects-oriented IoT’, in Proceedings of the 2014 IEEE

18th International Conference on Computer Supported

Cooperative Work in Design (CSCWD). IEEE, pp. 493–498.

doi: 10.1109/CSCWD.2014.6846894.

44. Fortino, G., Parisi, D., Pirrone, V. and Di Fatta, G. (2014)

‘BodyCloud: A SaaS approach for community Body Sensor

Networks’, Future Generation Computer Systems, 35, pp. 62–

79. doi: 10.1016/j.future.2013.12.015.

45. Fortino, G., Savaglio, C., Palau, C. E., de Puga, J. S.,

Ganzha, M., Paprzycki, M., Montesinos, M., Liotta, A. and

Llop, M. (2018) ‘Towards Multi-layer Interoperability of

Heterogeneous IoT Platforms: The INTER-IoT Approach’, in,

pp. 199–232. doi: 10.1007/978-3-319-61300-0_10.

46. Fratu, O., Pena, C., Craciunescu, R. and Halunga, S.

(2015) ‘Fog computing system for monitoring Mild Dementia

and COPD patients - Romanian case study’, 2015 12th

International Conference on Telecommunications in Modern

Satellite, Cable and Broadcasting Services, TELSIKS 2015, pp.

123–128. doi: 10.1109/TELSKS.2015.7357752.

47. Gachet, D., De Buenaga, M., Aparicio, F. and Padr??n, V.

(2012) ‘Integrating internet of things and cloud computing for

health services provisioning: The virtual cloud carer project’,

Proceedings - 6th International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing, IMIS

83

2012, pp. 918–921. doi: 10.1109/IMIS.2012.25.

48. Gia, T. N., Jiang, M., Rahmani, A.-M., Westerlund, T.,

Liljeberg, P. and Tenhunen, H. (2015) ‘Fog Computing in

Healthcare Internet of Things: A Case Study on ECG Feature

Extraction’, in 2015 IEEE International Conference on

Computer and Information Technology; Ubiquitous Computing

and Communications; Dependable, Autonomic and Secure

Computing; Pervasive Intelligence and Computing. IEEE, pp.

356–363. doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.51.

49. Gia, T. N., Thanigaivelan, N. K., Rahmani, A. M.,

Westerlund, T., Liljeberg, P. and Tenhunen, H. (2015)

‘Customizing 6LoWPAN networks towards Internet-of-Things

based ubiquitous healthcare systems’, in NORCHIP 2014 - 32nd

NORCHIP Conference: The Nordic Microelectronics Event, pp.

1–6. doi: 10.1109/NORCHIP.2014.7004716.

50. Granados, J., Rahmani, A.-M., Nikander, P., Liljeberg, P.

and Tenhunen, H. (2014) ‘Towards Energy-Efficient

HealthCare: an Internet-of-Things Architecture Using Intelligent

Gateways’, in Proceedings of the 4th International Conference

on Wireless Mobile Communication and Healthcare -

‘Transforming healthcare through innovations in mobile and

wireless technologies’. ICST, pp. 279–282. doi:

10.4108/icst.mobihealth.2014.257394.

51. Gravina, R., Ma, C., Pace, P., Aloi, G., Russo, W., Li, W.

and Fortino, G. (2017) ‘Cloud-based Activity-aaService cyber–

84

physical framework for human activity monitoring in mobility’,

Future Generation Computer Systems. Elsevier B.V., 75, pp.

158–171. doi: 10.1016/j.future.2016.09.006.

52. Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K. and Buyya,

R. (2017) ‘iFogSim: A toolkit for modeling and simulation of

resource management techniques in the Internet of Things, Edge

and Fog computing environments’, Software: Practice and

Experience, pp. 1–22. doi: 10.1002/spe.2509.

53. Hamdi, O., Chalouf, M. A., Ouattara, D. and Krief, F.

(2014) ‘EHealth: Survey on research projects, comparative

study of telemonitoring architectures and main issues’, Journal

of Network and Computer Applications. Elsevier, 46, pp. 100–

112. doi: 10.1016/j.jnca.2014.07.026.

54. Hans, L., Hr, Sadeghi, A.-R. and Winandy, M. (2010)

‘Securing the e-health cloud’, Proceedings of the 1st ACM

International Health Informatics Symposium, pp. 220–229. doi:

10.1145/1882992.1883024.

55. Hassanalieragh, M., Page, A., Soyata, T., Sharma, G.,

Aktas, M., Mateos, G., Kantarci, B. and Andreescu, S. (2015)

‘Health Monitoring and Management Using Internet-of-Things

(IoT) Sensing with Cloud-Based Processing: Opportunities and

Challenges’, Proceedings - 2015 IEEE International Conference

on Services Computing, SCC 2015, pp. 285–292. doi:

10.1109/SCC.2015.47.

56. Hou, L., Zhao, S., Xiong, X., Zheng, K., Chatzimisios, P.,

85

Hossain, M. S. and Xiang, W. (2016) ‘Internet of Things Cloud:

Architecture and Implementation’, IEEE Communications

Magazine, 54(12), pp. 32–39. doi:

10.1109/MCOM.2016.1600398CM.

57. Huang, J., Meng, Y., Gong, X., Liu, Y. and Duan, Q.

(2014) ‘A Novel Deployment Scheme for Green Internet of

Things’, IEEE Internet of Things Journal, PP(99), pp. 1–1. doi:

10.1109/JIOT.2014.2301819.

58. Ben Ida, I., Jemai, A. and Loukil, A. (2016) ‘A survey on

security of IoT in the context of eHealth and clouds’, in 2016

11th International Design & Test Symposium (IDT). IEEE, pp.

25–30. doi: 10.1109/IDT.2016.7843009.

59. Jalali, F., Hinton, K., Ayre, R., Alpcan, T. and Tucker, R.

S. (2016) ‘Fog computing may help to save energy in cloud

computing’, IEEE Journal on Selected Areas in

Communications, 34(5), pp. 1728–1739. doi:

10.1109/JSAC.2016.2545559.

60. Jalali, F., Vishwanath, A., de Hoog, J. and Suits, F. (2016)

‘Interconnecting Fog computing and microgrids for greening

IoT’, in 2016 IEEE Innovative Smart Grid Technologies - Asia

(ISGT-Asia). IEEE, pp. 693–698. doi: 10.1109/ISGT-

Asia.2016.7796469.

61. Jara, a J., Zamora-Izquierdo, M. a and Skarmeta, a F.

(2013) ‘Interconnection Framework for mHealth and Remote

Monitoring Based on the Internet of Things’, Ieee Journal on

86

Selected Areas in Communications, 31(9), pp. 47–65. doi:

10.1109/jsac.2013.sup.0513005.

62. Jara, A. J., Fernández, D., López, P., Zamora, M. A.,

Marin, L. and Skarmeta, A. F. G. (2012) ‘YOAPY: A Data

Aggregation and Pre-processing Module for Enabling

Continuous Healthcare Monitoring in the Internet of Things’, in

Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), pp. 248–255. doi: 10.1007/978-3-642-35395-

6_34.

63. Kaur, K., Dhand, T., Kumar, N. and Zeadally, S. (2017)

‘Container-as-a-Service at the Edge: Trade-off between Energy

Efficiency and Service Availability at Fog Nano Data Centers’,

IEEE Wireless Communications, 24(3), pp. 48–56. doi:

10.1109/MWC.2017.1600427.

64. Kaur, N. and Sood, S. K. (2015) ‘An Energy-Efficient

Architecture for the Internet of Things (IoT)’, IEEE Systems

Journal, pp. 1–10. doi: 10.1109/JSYST.2015.2469676.

65. Khodadadi, F., A.V., D. and R., B. (2016) Internet of

things principles and paradigms. Elsevier.

66. Kim, S. H. and Kim, D. (2015) ‘Enabling Multi-Tenancy

via Middleware-Level Virtualization with Organization

Management in the Cloud of Things’, IEEE Transactions on

Services Computing, 8(6), pp. 971–984. doi:

10.1109/TSC.2014.2355828.

87

67. Koubaa, A. and Shakshuki, E. (2015) ‘Cloud of Things:

Integration of IoT with Cloud Computing’, Robots and Sensor

Clouds, 36, pp. 77–94. doi: 10.1007/978-3-319-22168-7.

68. Kraemer, F. A., Braten, A. E., Tamkittikhun, N. and

Palma, D. (2017) ‘Fog Computing in Healthcare–A Review and

Discussion’, IEEE Access, 5, pp. 9206–9222. doi:

10.1109/ACCESS.2017.2704100.

69. Li, S., Xu, L. Da and Zhao, S. (2015) ‘The internet of

things: a survey’, Information Systems Frontiers, 17(2), pp.

243–259. doi: 10.1007/s10796-014-9492-7.

70. Li, W., Santos, I., Delicato, F. C., Pires, P. F., Pirmez, L.,

Wei, W., Song, H., Zomaya, A. and Khan, S. (2017) ‘System

modelling and performance evaluation of a three-tier Cloud of

Things’, Future Generation Computer Systems. Elsevier B.V.,

70, pp. 104–125. doi: 10.1016/j.future.2016.06.019.

71. Lu, R., Lin, X. and Shen, X. (2013) ‘SPOC: A Secure and

Privacy-Preserving Opportunistic Computing Framework for

Mobile-Healthcare Emergency’, IEEE Transactions on Parallel

and Distributed Systems, 24(3), pp. 614–624. doi:

10.1109/TPDS.2012.146.

72. Luo, S. and Ren, B. (2016) ‘The monitoring and managing

application of cloud computing based on Internet of Things’,

Computer Methods and Programs in Biomedicine. Elsevier

Ireland Ltd, 130, pp. 154–161. doi:

10.1016/j.cmpb.2016.03.024.

88

73. Mangali, N. K. and Kota, V. K. (2015) ‘Health monitoring

systems: An energy efficient data collection technique in

wireless sensor networks’, in 2015 International Conference on

Microwave, Optical and Communication Engineering

(ICMOCE). IEEE, pp. 130–133. doi:

10.1109/ICMOCE.2015.7489707.

74. Mao, Y., Chengfa, L., Guihai, C. and Wu, J. (2005)

‘EECS: an energy efficient clustering scheme in wireless sensor

networks’, Performance Computing and Communications

Conference 2005 IPCCC 2005 24th IEEE International,

3(November), pp. 535–540. doi: 10.1109/PCCC.2005.1460630.

75. Martinovic, G. and Zoric, B. (2012) ‘E-health framework

based on autonomic cloud computing’, Proceedings - 2nd

International Conference on Cloud and Green Computing and

2nd International Conference on Social Computing and Its

Applications, CGC/SCA 2012, pp. 214–218. doi:

10.1109/CGC.2012.36.

76. Masip-Bruin, X., Marín-Tordera, E., Tashakor, G., Jukan,

A. and Ren, G.-J. (2016) ‘Foggy clouds and cloudy fogs: a real

need for coordinated management of fog-to-cloud computing

systems’, IEEE Wireless Communications, 23(5), pp. 120–128.

doi: 10.1109/MWC.2016.7721750.

77. Mehmood, A., Khan, S., Shams, B. and Lloret, J. (2015)

‘Energy-efficient multi-level and distance-aware clustering

mechanism for WSNs’, International Journal of

89

Communication Systems, 28(5), pp. 972–989. doi:

10.1002/dac.2720.

78. Mohammed, J., Lung, C.-H., Ocneanu, A., Thakral, A.,

Jones, C. and Adler, A. (2014) ‘Internet of Things: Remote

Patient Monitoring Using Web Services and Cloud Computing’,

2014 IEEE International Conference on Internet of

Things(iThings), and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom), (iThings), pp. 256–263. doi:

10.1109/iThings.2014.45.

79. Mohsen Nia, A., Mozaffari-Kermani, M., Sur-Kolay, S.,

Raghunathan, A. and Jha, N. (2015) ‘Energy-Efficient Long-

term Continuous Personal Health Monitoring’, IEEE

Transactions on Multi-Scale Computing Systems, 1(2), pp. 1–1.

doi: 10.1109/TMSCS.2015.2494021.

80. Nan, Y., Li, W., Bao, W., Delicato, F. C., Pires, P. F. and

Zomaya, A. Y. (2016) ‘Cost-effective processing for Delay-

sensitive applications in Cloud of Things systems’, in 2016

IEEE 15th International Symposium on Network Computing and

Applications (NCA). IEEE, pp. 162–169. doi:

10.1109/NCA.2016.7778612.

81. Oueis, J., Strinati, E. C. and Barbarossa, S. (2015) ‘The

Fog Balancing: Load Distribution for Small Cell Cloud

Computing’, in 2015 IEEE 81st Vehicular Technology

Conference (VTC Spring). IEEE, pp. 1–6. doi:

90

10.1109/VTCSpring.2015.7146129.

82. Pandya, H. B. and Champaneria, T. A. (2015) ‘Internet of

things: Survey and case studies’, International Conference on

Electrical, Electronics, Signals, Communication and

Optimization, EESCO 2015. doi:

10.1109/EESCO.2015.7253713.

83. Papageorgiou, A., Zahn, M. and Kovacs, E. (2014)

‘Efficient auto-configuration of energy-related parameters in

cloud-based IoT platforms’, 2014 IEEE 3rd International

Conference on Cloud Networking, CloudNet 2014, pp. 236–241.

doi: 10.1109/CloudNet.2014.6968998.

84. Perera, C., Zaslavsky, A., Christen, P. and

Georgakopoulos, D. (2014) ‘Context aware computing for the

internet of things: A survey’, IEEE Communications Surveys

and Tutorials, 16(1), pp. 414–454. doi:

10.1109/SURV.2013.042313.00197.

85. Petrolo, R., Morabito, R., Loscrì, V. and Mitton, N. (2016)

‘The design of the gateway for the Cloud of Things’, Annals of

Telecommunications. doi: 10.1007/s12243-016-0521-z.

86. Pradhan, P., Behera, P. K. and Ray, B. N. B. (2016)

‘Modified Round Robin Algorithm for Resource Allocation in

Cloud Computing’, in Procedia Computer Science. Elsevier

Masson SAS, pp. 878–890. doi: 10.1016/j.procs.2016.05.278.

87. Prasad, S. S. and Ieee, S. M. (2012) ‘An Energy Efficient

and Reliable Internet of Things’, In Communication,

91

Information & Computing Technology (ICCICT), 2012

International Conference on IEEE, pp. 1–4.

88. Prasad, S. S. and Kumar, C. (2013) ‘A Green and Reliable

Internet of Things’, Communications and Network, 05(01), pp.

44–48. doi: 10.4236/cn.2013.51B011.

89. Praveena, N. G. and Prabha, H. (2014) ‘An efficient multi-

level clustering approach for a heterogeneous wireless sensor

network using link correlation’, EURASIP Journal on Wireless

Communications and Networking, 2014(1), pp. 1–10. doi:

10.1186/1687-1499-2014-168.

90. Ramalho, F., Neto, A., Santos, K., Filho, J. B. and

Agoulmine, N. (2016) ‘Enhancing eHealth smart applications: A

Fog-enabled approach’, in 2015 17th International Conference

on E-Health Networking, Application and Services, HealthCom

2015, pp. 323–328. doi: 10.1109/HealthCom.2015.7454519.

91. Rani, S., Talwar, R., Malhotra, J., Ahmed, S., Sarkar, M.

and Song, H. (2015) ‘A Novel Scheme for an Energy Efficient

Internet of Things Based on Wireless Sensor Networks’,

Sensors, 15(11), pp. 28603–28626. doi: 10.3390/s151128603.

92. Rao, B. B. P., Saluia, P., Sharma, N., Mittal, a and

Sharma, S. V (2012) ‘Cloud computing for Internet of Things &

sensing based applications’, Sensing Technology (ICST), 2012

Sixth International Conference on, pp. 374–380. doi:

10.1109/ICSensT.2012.6461705.

93. Rault, T., Bouabdallah, A., Challal, Y. and Marin, F.

92

(2014) ‘Energy-efficient architecture for wearable sensor

networks’, in 2014 IFIP Wireless Days (WD). IEEE, pp. 1–8.

doi: 10.1109/WD.2014.7020803.

94. Riazul Islam, S. M., Daehan Kwak, Humaun Kabir, M.,

Hossain, M. and Kyung-Sup Kwak (2015) ‘The Internet of

Things for Health Care: A Comprehensive Survey’, IEEE

Access, 3, pp. 678–708. doi: 10.1109/ACCESS.2015.2437951.

95. Rohokale, V. M., Prasad, N. R. and Prasad, R. (2011) ‘A

cooperative Internet of Things (IoT) for rural healthcare

monitoring and control’, 2011 2nd International Conference on

Wireless Communication, Vehicular Technology, Information

Theory and Aerospace and Electronic Systems Technology,

Wireless VITAE 2011. doi:

10.1109/WIRELESSVITAE.2011.5940920.

96. Sahu, Y., Pateriya, R. K. and Gupta, R. K. (2013) ‘Cloud

Server Optimization with Load Balancing and Green Computing

Techniques Using Dynamic Compare and Balance Algorithm’,

in 2013 5th International Conference on Computational

Intelligence and Communication Networks. IEEE, pp. 527–531.

doi: 10.1109/CICN.2013.114.

97. Saied, Y. Ben, Olivereau, A., Zeghlache, D. and Laurent,

M. (2014) ‘Lightweight collaborative key establishment scheme

for the Internet of Things’, Computer Networks. Elsevier B.V.,

64, pp. 273–295. doi: 10.1016/j.comnet.2014.02.001.

98. Sarkar, S., Chatterjee, S. and Misra, S. (2015) ‘Assessment

93

of the Suitability of Fog Computing in the Context of Internet of

Things’, IEEE Transactions on Cloud Computing, PP(99), pp.

1–1. doi: 10.1109/TCC.2015.2485206.

99. Sawand, A., Djahel, S., Zhang, Z. and Nait-Abdesselam,

F. (2015) ‘Multidisciplinary approaches to achieving efficient

and trustworthy eHealth monitoring systems’, 2014 IEEE/CIC

International Conference on Communications in China, ICCC

2014, pp. 187–192. doi: 10.1109/ICCChina.2014.7008269.

100. Sebestyen, G., Hangan, A., Oniga, S. and Gal, Z. (2014)

‘eHealth solutions in the context of internet of things’,

Proceedings of 2014 IEEE International Conference on

Automation, Quality and Testing, Robotics, AQTR 2014. doi:

10.1109/AQTR.2014.6857876.

101. Shah, T., Yavari, A., Mitra, K., Saguna, S., Jayaraman, P.

P., Rabhi, F. and Ranjan, R. (2016) ‘Remote health care cyber-

physical system: quality of service (QoS) challenges and

opportunities’, IET Cyber-Physical Systems: Theory &

Applications, 1(1), pp. 40–48. doi: 10.1049/iet-cps.2016.0023.

102. Shi, Y., Ding, G., Wang, H., Eduardo Roman, H. and Lu,

S. (2015) ‘The fog computing service for healthcare’, 2015 2nd

International Symposium on Future Information and

Communication Technologies for Ubiquitous HealthCare, Ubi-

HealthTech 2015, pp. 70–74. doi: 10.1109/Ubi-

HealthTech.2015.7203325.

103. Shi, Y., Ding, G., Wang, H., Roman, H. E. and Lu, S.

94

(2015) ‘The fog computing service for healthcare’, in 2015 2nd

International Symposium on Future Information and

Communication Technologies for Ubiquitous HealthCare (Ubi-

HealthTech). IEEE, pp. 1–5. doi: 10.1109/Ubi-

HealthTech.2015.7203325.

104. Singh, S., Swaroop, A., Kumar, A. and Anamika (2016)

‘A survey on techniques to achive energy efficiency in cloud

computing’, in 2016 International Conference on Computing,

Communication and Automation (ICCCA). IEEE, pp. 1281–

1285. doi: 10.1109/CCAA.2016.7813915.

105. Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M.,

Calbimonte, J. P., Riahi, M., Aberer, K., Jayaraman, P. P.,

Zaslavsky, A., ??arko, I. P., Skorin-Kapov, L. and Herzog, R.

(2015) ‘OpenIoT: Open source internet-of-things in the cloud’,

in Interoperability and Open-Source Solutions for the Internet of

Things. Springer International Publishing, pp. 13–25. doi:

10.1007/978-3-319-16546-2_3.

106. Souza, V. B. C., Ramirez, W., Masip-Bruin, X., Marin-

Tordera, E., Ren, G. and Tashakor, G. (2016) ‘Handling service

allocation in combined Fog-cloud scenarios’, in 2016 IEEE

International Conference on Communications (ICC). IEEE, pp.

1–5. doi: 10.1109/ICC.2016.7511465.

107. Souza, V. B., Masip-Bruin, X., Marin-Tordera, E.,

Ramirez, W. and Sanchez, S. (2016) ‘Towards Distributed

Service Allocation in Fog-to-Cloud (F2C) Scenarios’, in 2016

95

IEEE Global Communications Conference (GLOBECOM).

IEEE, pp. 1–6. doi: 10.1109/GLOCOM.2016.7842341.

108. Stojmenovic, I. (2015) ‘Fog computing: A cloud to the

ground support for smart things and machine-to-machine

networks’, in 2014 Australasian Telecommunication Networks

and Applications Conference, ATNAC 2014, pp. 117–122. doi:

10.1109/ATNAC.2014.7020884.

109. Suciu, G., Suciu, V. and Fratu, O. (2013) ‘Big Data

Processing for E-Health Applications using a Decentralized

Cloud M2M System’, Latest Trends on Systems, II, pp. 232–

237.

110. Tang, J., Zhou, Z., Niu, J. and Wang, Q. (2014) ‘An

energy efficient hierarchical clustering index tree for facilitating

time-correlated region queries in the Internet of Things’,

Journal of Network and Computer Applications. Elsevier, 40(1),

pp. 1–11. doi: 10.1016/j.jnca.2013.07.009.

111. Verma, Sagar and Yadav, Aran Kumar and Motwani,

Deepak and Raw, RS and Singh, H. K. (2016) ‘An efficient data

replication and load balancing technique for fog computing

environment’, in Computing for Sustainable Global

Development (INDIACom), 2016 3rd International Conference

on, IEEE. IEEE, pp. 2888–2895.

112. Wang, S., Huang, X., Liu, Y. and Yu, R. (2016)

‘CachinMobile: An energy-efficient users caching scheme for

fog computing’, in 2016 IEEE/CIC International Conference on

96

Communications in China (ICCC). IEEE, pp. 1–6. doi:

10.1109/ICCChina.2016.7636852.

113. Wang, Y. H. and Wu, I. C. (2009) ‘Achieving high and

consistent rendering performance of java AWT/Swing on

multiple platforms’, Software - Practice and Experience, 39(7),

pp. 701–736. doi: 10.1002/spe.

114. Wankhade, N. R. and Choudhari, D. N. (2016) ‘Novel

Energy Efficient Election Based Routing Algorithm for

Wireless Sensor Network’, Procedia Computer Science.

Elsevier Masson SAS, 79, pp. 772–780. doi:

10.1016/j.procs.2016.03.101.

115. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J. and

Rovatsos, M. (2017) ‘Fog Orchestration for Internet of Things

Services’, IEEE Internet Computing, 21(2), pp. 16–24. doi:

10.1109/MIC.2017.36.

116. Whitmore, A., Agarwal, A. and Da Xu, L. (2015) ‘The

Internet of Things???A survey of topics and trends’, Information

Systems Frontiers, 17(2), pp. 261–274. doi: 10.1007/s10796-

014-9489-2.

117. Xuan-Qui Pham and Eui-Nam Huh (2016) ‘Towards task

scheduling in a cloud-fog computing system’, in 2016 18th

Asia-Pacific Network Operations and Management Symposium

(APNOMS). IEEE, pp. 1–4. doi:

10.1109/APNOMS.2016.7737240.

118. Yaacoub, E., Kadri, A. and Abu-Dayya, A. (2012)

97

‘Cooperative wireless sensor networks for green internet of

things’, in Proceedings of the 8h ACM symposium on QoS and

security for wireless and mobile networks, p. 79. doi:

10.1145/2387218.2387235.

119. Yi, S., Li, C. and Li, Q. (2015) ‘A Survey of Fog

Computing’, in Proceedings of the 2015 Workshop on Mobile

Big Data - Mobidata ’15. New York, New York, USA: ACM

Press, pp. 37–42. doi: 10.1145/2757384.2757397.

120. You, L., Liu, C. and Tong, S. (2011) ‘Community Medical

Network (CMN): Architecture and implementation’, 2011

Global Mobile Congress, GMC 2011. doi:

10.1109/GMC.2011.6103930.

121. Yu, S., Kim, J. and Lee, J. (2013) ‘Lifetime improvement

method using mobile sink for IoT service’, in PE-WASUN 2013

- Proceedings of the 10th ACM Symposium on Performance

Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous

Networks, Co-located with ACM MSWiM 2013, pp. 145–149.

doi: 10.1145/2507248.2507273.

122. Zhang, Y., Ren, J., Liu, J., Xu, C., Guo, H. and Liu, Y.

(2017) ‘A Survey on Emerging Computing Paradigms for Big

Data’, Chinese Journal of Electronics, 26(1), pp. 1–12. doi:

10.1049/cje.2016.11.016.

123. Zhou, J., Leppanen, T., Harjula, E., Ylianttila, M., Ojala,

T., Yu, C. and Jin, H. (2013) ‘CloudThings: A common

architecture for integrating the Internet of Things with Cloud

98

Computing’, Proceedings of the 2013 IEEE 17th International

Conference on Computer Supported Cooperative Work in

Design, CSCWD 2013, pp. 651–657. doi:

10.1109/CSCWD.2013.6581037.

124. Zhu, N., Diethe, T., Camplani, M., Tao, L., Burrows, A.,

Twomey, N., Kaleshi, D., Mirmehdi, M., Flach, P. and

Craddock, I. (2015) ‘Bridging e-Health and the Internet of

Things: The SPHERE Project’, IEEE Intelligent Systems, 30(4),

pp. 39–46.

99

Appendix A

Use Case (Remote Patient Monitoring) Simulation Code:

package org.fog.test.perfeval;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import org.cloudbus.cloudsim.DatacenterBroker;

import org.cloudbus.cloudsim.Host;

import org.cloudbus.cloudsim.Log;

import org.cloudbus.cloudsim.Pe;

import org.cloudbus.cloudsim.Storage;

import org.cloudbus.cloudsim.VmSchedulerTimeShared;

import org.cloudbus.cloudsim.core.CloudSim;

import

org.cloudbus.cloudsim.power.PowerVmAllocationPolicySingleThres

hold;

import org.cloudbus.cloudsim.power.PowerHost;

import org.cloudbus.cloudsim.power.PowerVmSelectionPolicy;

import

org.cloudbus.cloudsim.power.PowerVmSelectionPolicyMinimumUtili

zation;

import

org.cloudbus.cloudsim.power.models.PowerModelSpecPower_BAZAR;

import org.cloudbus.cloudsim.provisioners.BwProvisionerSimple;

import org.cloudbus.cloudsim.provisioners.PeProvisionerSimple;

100

import

org.cloudbus.cloudsim.provisioners.RamProvisionerSimple;

import

org.cloudbus.cloudsim.sdn.overbooking.BwProvisionerOverbooking

;

import

org.cloudbus.cloudsim.sdn.overbooking.PeProvisionerOverbooking

;

import org.cloudbus.cloudsim.xml.CloudletDatas;

import org.cloudbus.cloudsim.xml.DatacenterDatas;

import org.cloudbus.cloudsim.xml.DvfsDatas;

import org.cloudbus.cloudsim.xml.HostDatas;

import org.cloudbus.cloudsim.xml.SimulationXMLParse;

import org.cloudbus.cloudsim.xml.VmDatas;

import org.fog.application.AppEdge;

import org.fog.application.AppLoop;

import org.fog.application.Application;

import org.fog.application.selectivity.FractionalSelectivity;

import org.fog.entities.Actuator;

import org.fog.entities.FogBroker;

import org.fog.entities.FogDevice;

import org.fog.entities.FogDeviceCharacteristics;

import org.fog.entities.Sensor;

import org.fog.entities.Tuple;

import org.fog.placement.Controller;

import org.fog.placement.ModuleMapping;

import org.fog.placement.ModulePlacementEdgewards;

import org.fog.placement.ModulePlacementMapping;

import org.fog.policy.AppModuleAllocationPolicy;

101

import org.fog.policy.AppModuleAllocationPolicyWRR;

import org.fog.scheduler.StreamOperatorScheduler;

import org.fog.utils.FogLinearPowerModel;

import org.fog.utils.FogLinearPowerModelDVFS;

import org.fog.utils.FogUtils;

import org.fog.utils.TimeKeeper;

import org.fog.utils.distribution.DeterministicDistribution;

/**

 * Simulation setup for case study 1 - BG Beam Tractor Game

 * @author Harshit Gupta

 *

 */

public class RPM22 {

 static List<FogDevice> fogDevices = new

ArrayList<FogDevice>();

 static List<Sensor> sensors = new ArrayList<Sensor>();

 static List<Actuator> actuators = new

ArrayList<Actuator>();

 static boolean CLOUD = false;

 static int numOfDepts = 2; //4

 static int numOfMobilesPerDept = 4; //Number of mobile

users

 static double BG_TRANSMISSION_TIME = 5.1;

 static double GC_TRANSMISSION_TIME = 5.1;

102

 //static double BG_TRANSMISSION_TIME = 10;

 //added variables

 /*

 private static int DCNumber;

 private static int hostsNumber;

 private static int vmsTotalNumber;

 private static int no_cur_vm=0;

 private static int cloudletsTotalNumber;

 private static int no_cur_cloudlet=0;

 private static ArrayList<DatacenterBroker> vect_dcbroker

;

 private static ArrayList<DatacenterDatas> vect_dcs ;

 private static ArrayList<HostDatas> vect_hosts ;

 private static ArrayList<VmDatas> vect_vms ;

 private static ArrayList<CloudletDatas> vect_cls ;

 private static DvfsDatas ConfigDvfs;

 private static SimulationXMLParse ConfSimu;

 */

 public static void main(String[] args) {

 Log.printLine("Starting RPM System...");

 /*vect_dcs = new ArrayList<>();

 vect_hosts = new ArrayList<>();

103

 vect_vms = new ArrayList<>();

 vect_cls = new ArrayList<>();*/

 try {

 Log.disable();

 /* Configuration Variables*/

 /* XML configuration file Parsing*/

 /*ConfSimu = new

SimulationXMLParse(System.getProperty("user.dir")+"/Experience

.xml");

 vect_dcs = ConfSimu.getArrayListDCS();

 vect_hosts =

vect_dcs.get(0).getArrayListHosts();

 vect_vms = ConfSimu.getArrayListVMS();

 vect_cls = ConfSimu.getArrayListCLS();

 DCNumber = vect_dcs.size();

 cloudletsTotalNumber = vect_cls.size();

 hostsNumber = vect_hosts.size();

 vmsTotalNumber = vect_vms.size();*/

 int num_user = 1; // number of cloud users

 Calendar calendar = Calendar.getInstance();

 boolean trace_flag = false; // mean trace

events

 CloudSim.init(num_user, calendar, trace_flag);

 String appId = "rpm"; // identifier of the

application

104

 String appId2 = "rpm2"; // identifier of the

application

 FogBroker broker = new FogBroker("broker");

 FogBroker broker2 = new FogBroker("broker2");

 Application application =

createApplication(appId, broker.getId());

 Application application2 =

createApplication(appId2, broker2.getId());

 application.setUserId(broker.getId());

 application2.setUserId(broker2.getId());

 createFogDevices(broker.getId(), appId);

 createFogDevices2(broker2.getId(), appId2);

 ModuleMapping moduleMapping =

ModuleMapping.createModuleMapping(); // initializing a module

mapping

 //App1

 if(CLOUD){

 // if the mode of deployment is cloud-

based

 /*moduleMapping.addModuleToDevice("client_GUI", "cloud",

numOfDepts*numOfMobilesPerDept); // fixing all instances of

the client_GUI module to the Cloud

105

 moduleMapping.addModuleToDevice("diagnostic_calculator",

"cloud", numOfDepts*numOfMobilesPerDept); // fixing all

instances of the DIAGNOSIS_RESULT Calculator module to the

Cloud

*/

 //moduleMapping.addModuleToDevice("client_GUI", "cloud");

// fixing all instances of the client_GUI module to the Cloud

 moduleMapping.addModuleToDevice("diagnostic_calculator",

"cloud"); // fixing all instances of the DIAGNOSIS_RESULT

Calculator module to the Cloud

 }else{

 // if the mode of deployment is cloud-

based

 //.addModuleToDevice("client_GUI",

"cloud", numOfDepts*numOfMobilesPerDept); // fixing all

instances of the client_GUI module to the Cloud

 //moduleMapping.addModuleToDevice("diagnostic_calculator"

, "cloud"); // fixing all instances of the client_GUI module

to the Cloud

 // rest of the modules will be placed by

the Edge-ward placement policy

 for(FogDevice device : fogDevices){

 if(device.getName().startsWith("m")){

 //moduleMapping.addModuleToDevice("client",

device.getName(), 1); // fixing all instances of the Client

module to the Smartphones

 moduleMapping.addModuleToDevice("client_GUI",

device.getName()); // fixing all instances of the Client

module to the Smartphones

106

 }

 if(device.getName().startsWith("d")){

 //moduleMapping.addModuleToDevice("client",

device.getName(), 1); // fixing all instances of the Client

module to the Smartphones

 moduleMapping.addModuleToDevice("diagnostic_calculator",

device.getName()); // fixing all instances of the Client

module to the Smartphones

 }

 }

 }

 //App2

 if(CLOUD){

 // if the mode of deployment is cloud-

based

 /*moduleMapping.addModuleToDevice("client_GUI", "cloud",

numOfDepts*numOfMobilesPerDept); // fixing all instances of

the client_GUI module to the Cloud

 moduleMapping.addModuleToDevice("diagnostic_calculator",

"cloud", numOfDepts*numOfMobilesPerDept); // fixing all

instances of the DIAGNOSIS_RESULT Calculator module to the

Cloud

*/

 //moduleMapping.addModuleToDevice("client_GUI", "cloud");

// fixing all instances of the client_GUI module to the Cloud

107

 moduleMapping.addModuleToDevice("diagnostic_calculator2",

"cloud"); // fixing all instances of the DIAGNOSIS_RESULT

Calculator module to the Cloud

 }else{

 // if the mode of deployment is cloud-

based

 //.addModuleToDevice("client_GUI",

"cloud", numOfDepts*numOfMobilesPerDept); // fixing all

instances of the client_GUI module to the Cloud

 //moduleMapping.addModuleToDevice("diagnostic_calculator"

, "cloud"); // fixing all instances of the client_GUI module

to the Cloud

 // rest of the modules will be placed by

the Edge-ward placement policy

 for(FogDevice device : fogDevices){

 if(device.getName().startsWith("m2")){

 //moduleMapping.addModuleToDevice("client",

device.getName(), 1); // fixing all instances of the Client

module to the Smartphones

 moduleMapping.addModuleToDevice("client_GUI2",

device.getName()); // fixing all instances of the Client

module to the Smartphones

 }

 if(device.getName().startsWith("d2")){

 //moduleMapping.addModuleToDevice("client",

108

device.getName(), 1); // fixing all instances of the Client

module to the Smartphones

 moduleMapping.addModuleToDevice("diagnostic_calculator2",

device.getName()); // fixing all instances of the Client

module to the Smartphones

 }

 }

 }

 Controller controller = new Controller("master-

controller", fogDevices, sensors,

 actuators);

 controller.submitApplication(application, 0,

 (CLOUD)?(new

ModulePlacementMapping(fogDevices, application,

moduleMapping))

 :(new

ModulePlacementEdgewards(fogDevices, sensors, actuators,

application, moduleMapping)));

 controller.submitApplication(application2, 0,

 (CLOUD)?(new

ModulePlacementMapping(fogDevices, application2,

moduleMapping))

 :(new

ModulePlacementEdgewards(fogDevices, sensors, actuators,

application2, moduleMapping)));

 TimeKeeper.getInstance().setSimulationStartTime(Calendar.

getInstance().getTimeInMillis());

109

 CloudSim.startSimulation();

 CloudSim.stopSimulation();

 Log.printLine("RPM System finished!");

 } catch (Exception e) {

 e.printStackTrace();

 Log.printLine("Unwanted errors happen");

 }

 }

 /**

 * Creates the fog devices in the physical topology of

the simulation.

 * @param userId

 * @param appId

 */

 private static void createFogDevices(int userId, String

appId) {

 FogDevice cloud = createFogDevice2("cloud", 44800,

40000, 100, 10000, 0, 0.01, 16*103, 16*83.25); // creates the

fog device Cloud at the apex of the hierarchy with level=0

 cloud.setParentId(-1);

 FogDevice proxy = createFogDevice2("proxy-server",

10000, 4000, 10000, 10000, 1, 0.0, 107.339, 83.4333); //

creates the fog device Proxy Server (level=1)

 proxy.setParentId(cloud.getId()); // setting Cloud

as parent of the Proxy Server

110

 proxy.setUplinkLatency(100); // latency of

connection from Proxy Server to the Cloud is 100 ms

 fogDevices.add(cloud);

 fogDevices.add(proxy);

 for(int i=0;i<numOfDepts;i++){

 addGw(i+"", userId, appId, proxy.getId()); //

adding a fog device for every Gateway in physical topology.

The parent of each gateway is the Proxy Server

 }

 }

 private static void createFogDevices2(int userId, String

appId2) {

 FogDevice cloud = createFogDevice2("cloud", 44800,

40000, 100, 10000, 0, 0.01, 16*103, 16*83.25); // creates the

fog device Cloud at the apex of the hierarchy with level=0

 cloud.setParentId(-1);

 FogDevice proxy = createFogDevice2("proxy-server",

10000, 4000, 10000, 10000, 1, 0.0, 107.339, 83.4333); //

creates the fog device Proxy Server (level=1)

 proxy.setParentId(cloud.getId()); // setting Cloud

as parent of the Proxy Server

 proxy.setUplinkLatency(100); // latency of

connection from Proxy Server to the Cloud is 100 ms

 fogDevices.add(cloud);

 fogDevices.add(proxy);

111

 for(int i=0;i<numOfDepts;i++){

 addGw2(i+"", userId, appId2, proxy.getId()); //

adding a fog device for every Gateway in physical topology.

The parent of each gateway is the Proxy Server

 }

 }

 private static FogDevice addGw(String id, int userId,

String appId, int parentId){

 FogDevice dept = createFogDevice("d-"+id, 10000,

4000, 10000, 10000, 1, 0.0, 107.339, 83.4333);

 fogDevices.add(dept);

 dept.setParentId(parentId);

 dept.setUplinkLatency(4); // latency of connection

between gateways and proxy server is 4 ms

 for(int i=0;i<numOfMobilesPerDept;i++){

 String mobileId = id+"-"+i;

 FogDevice mobile = addMobile(mobileId, userId,

appId, dept.getId()); // adding mobiles to the physical

topology. Smartphones have been modeled as fog devices as

well.

 mobile.setUplinkLatency(2); // latency of

connection between the smartphone and proxy server is 2 ms

 fogDevices.add(mobile);

 }

 return dept;

 }

 private static FogDevice addGw2(String id, int userId,

String appId2, int parentId){

112

 FogDevice dept = createFogDevice("d2-"+id, 10000,

4000, 10000, 10000, 1, 0.0, 107.339, 83.4333);

 fogDevices.add(dept);

 dept.setParentId(parentId);

 dept.setUplinkLatency(4); // latency of connection

between gateways and proxy server is 4 ms

 for(int i=0;i<numOfMobilesPerDept;i++){

 String mobileId = id+"-"+i;

 FogDevice mobile = addMobile2(mobileId, userId,

appId2, dept.getId()); // adding mobiles to the physical

topology. Smartphones have been modeled as fog devices as

well.

 mobile.setUplinkLatency(2); // latency of

connection between the smartphone and proxy server is 2 ms

 fogDevices.add(mobile);

 }

 return dept;

 }

 private static FogDevice addMobile(String id, int userId,

String appId, int parentId){

 FogDevice mobile = createFogDevice2("m-"+id, 1000,

1000, 10000, 270, 3, 0, 87.53, 82.44);

 mobile.setParentId(parentId);

 Sensor bgSensor = new Sensor("s-"+id, "BG", userId,

appId, new DeterministicDistribution(BG_TRANSMISSION_TIME));

// inter-transmission time of BG sensor follows a

deterministic distribution

 sensors.add(bgSensor);

 Actuator display = new Actuator("a-"+id, userId,

appId, "DISPLAY");

 Actuator alertActuater = new Actuator("a-"+id,

userId, appId, "ALERT_CALL");

113

 actuators.add(display);

 actuators.add(alertActuater);

 bgSensor.setGatewayDeviceId(mobile.getId());

 bgSensor.setLatency(6.0); // latency of connection

between BG sensors and the parent Smartphone is 6 ms

 display.setGatewayDeviceId(mobile.getId());

 alertActuater.setGatewayDeviceId(mobile.getId());

 display.setLatency(1.0); // latency of connection

between Display actuator and the parent Smartphone is 1 ms

 alertActuater.setLatency(1.0);

 return mobile;

 }

 private static FogDevice addMobile2(String id, int

userId, String appId2, int parentId){

 FogDevice mobile = createFogDevice2("m2-"+id, 1000,

1000, 10000, 270, 3, 0, 87.53, 82.44);

 mobile.setParentId(parentId);

 Sensor gcSensor = new Sensor("s2-"+id, "GC", userId,

appId2, new DeterministicDistribution(GC_TRANSMISSION_TIME));

// inter-transmission time of BG sensor follows a

deterministic distribution

 sensors.add(gcSensor);

 Actuator display = new Actuator("a2-"+id, userId,

appId2, "DISPLAY");

 Actuator alertActuater = new Actuator("a2-"+id,

userId, appId2, "ALERT_CALL");

 actuators.add(display);

 actuators.add(alertActuater);

 gcSensor.setGatewayDeviceId(mobile.getId());

 gcSensor.setLatency(6.0);

 display.setGatewayDeviceId(mobile.getId());

114

 alertActuater.setGatewayDeviceId(mobile.getId());

 display.setLatency(1.0); // latency of connection

between Display actuator and the parent Smartphone is 1 ms

 alertActuater.setLatency(1.0);

 return mobile;

 }

 /**

 * Creates a vanilla fog device

 * @param nodeName name of the device to be used in

simulation

 * @param mips MIPS

 * @param ram RAM

 * @param upBw uplink bandwidth

 * @param downBw downlink bandwidth

 * @param level hierarchy level of the device

 * @param ratePerMips cost rate per MIPS used

 * @param busyPower

 * @param idlePower

 * @return

 */

 private static FogDevice createFogDevice(String nodeName,

long mips,

 int ram, long upBw, long downBw, int level,

double ratePerMips, double busyPower, double idlePower) {

 List<Pe> peList = new ArrayList<Pe>();

 // 3. Create PEs and add these into a list.

115

 peList.add(new Pe(0, new

PeProvisionerOverbooking(mips))); // need to store Pe id and

MIPS Rating

 // added three Pe to be Quad-core

 peList.add(new Pe(1, new

PeProvisionerOverbooking(mips)));

 peList.add(new Pe(2, new

PeProvisionerOverbooking(mips)));

 peList.add(new Pe(3, new

PeProvisionerOverbooking(mips)));

 int hostId = FogUtils.generateEntityId();

 long storage = 1000000; // host storage

 int bw = 10000;

 double maxPower;

 double staticPowerPercent;

 List<Host> hostList = new ArrayList<Host>();

 //added code

 boolean enableDVFS; // is the Dvfs enable on the

host

 ArrayList<Double>freqs ; // frequencies available by

the CPU

 HashMap<Integer,String> govs; // Definition of Dvfs

Governor , and redefine specifics values

 /*

 HostDatas tmp_host = vect_hosts.get(0);

 ConfigDvfs = tmp_host.getDvfsDatas();

116

 maxPower = tmp_host.getMaxP();

 staticPowerPercent = tmp_host.getStaticPP();

 mips = tmp_host.getMips();

 ram = tmp_host.getRam();

 storage = tmp_host.getStorage();

 bw = tmp_host.getBw();

 freqs = tmp_host.getCpuFrequencies();

 govs = tmp_host.getHTGovs();

 enableDVFS = tmp_host.isDvfsEnable();

 //List<Pe> peList = new ArrayList<Pe>();

 int nb_pe = tmp_host.getCpus();

 for(int pe=0 ; pe < nb_pe ; pe++)

 {

 peList.add(new Pe(pe, new

PeProvisionerSimple(mips),freqs,govs.get(pe), ConfigDvfs));

 }*/

 //peList.add(new Pe(0, new

PeProvisionerSimple(mips),null,null, null));

 PowerHost host = new PowerHost(

 hostId,

 new RamProvisionerSimple(ram),

 new BwProvisionerOverbooking(bw),

117

 storage,

 peList,

 new StreamOperatorScheduler(peList),

 //new FogLinearPowerModel(busyPower,

idlePower)

 //new FogLinearPowerModelDVFS(busyPower,

idlePower,peList)

 new PowerModelSpecPower_BAZAR(peList)

);

 hostList.add(host);

 String arch = "x86"; // system architecture

 String os = "Linux"; // operating system

 String vmm = "Xen";

 double time_zone = 10.0; // time zone this resource

located

 double cost = 3.0; // the cost of using processing

in this resource

 double costPerMem = 0.05; // the cost of using

memory in this resource

 double costPerStorage = 0.001; // the cost of using

storage in this

 // resource

 double costPerBw = 0.0; // the cost of using bw in

this resource

 LinkedList<Storage> storageList = new

LinkedList<Storage>(); // we are not adding SAN

 // devices by now

118

 FogDeviceCharacteristics characteristics = new

FogDeviceCharacteristics(

 arch, os, vmm, hostList, time_zone, cost,

costPerMem,

 costPerStorage, costPerBw);

 FogDevice fogdevice = null;

 try {

 fogdevice = new FogDevice(nodeName,

characteristics,

 new

AppModuleAllocationPolicy(hostList), storageList, 10, upBw,

downBw, 0, ratePerMips);

 } catch (Exception e) {

 e.printStackTrace();

 }

 fogdevice.setLevel(level);

 return fogdevice;

 }

// Create Cloud DC device method

 private static FogDevice createFogDevice2(String

nodeName, long mips,

 int ram, long upBw, long downBw, int level,

double ratePerMips, double busyPower, double idlePower) {

 List<Pe> peList = new ArrayList<Pe>();

 // 3. Create PEs and add these into a list.

119

 peList.add(new Pe(0, new

PeProvisionerOverbooking(mips))); // need to store Pe id and

MIPS Rating

 //added three Pe to be Quad-core

 peList.add(new Pe(1, new

PeProvisionerOverbooking(mips)));

 peList.add(new Pe(2, new

PeProvisionerOverbooking(mips)));

 peList.add(new Pe(3, new

PeProvisionerOverbooking(mips)));

 int hostId = FogUtils.generateEntityId();

 long storage = 1000000; // host storage

 int bw = 10000;

 double maxPower;

 double staticPowerPercent;

 List<Host> hostList = new ArrayList<Host>();

 //added code

 boolean enableDVFS; // is the Dvfs enable on the

host

 ArrayList<Double>freqs ; // frequencies available by

the CPU

 HashMap<Integer,String> govs; // Definition of Dvfs

Governor , and redefine specifics values

 /*

 HostDatas tmp_host = vect_hosts.get(0);

120

 ConfigDvfs = tmp_host.getDvfsDatas();

 maxPower = tmp_host.getMaxP();

 staticPowerPercent = tmp_host.getStaticPP();

 mips = tmp_host.getMips();

 ram = tmp_host.getRam();

 storage = tmp_host.getStorage();

 bw = tmp_host.getBw();

 freqs = tmp_host.getCpuFrequencies();

 govs = tmp_host.getHTGovs();

 enableDVFS = tmp_host.isDvfsEnable();

 //List<Pe> peList = new ArrayList<Pe>();

 int nb_pe = tmp_host.getCpus();

 for(int pe=0 ; pe < nb_pe ; pe++)

 {

 peList.add(new Pe(pe, new

PeProvisionerSimple(mips),freqs,govs.get(pe), ConfigDvfs));

 }*/

 //peList.add(new Pe(0, new

PeProvisionerSimple(mips),null,null, null));

 PowerHost host = new PowerHost(

 hostId,

 new RamProvisionerSimple(ram),

121

 new BwProvisionerOverbooking(bw),

 storage,

 peList,

 new StreamOperatorScheduler(peList),

 new FogLinearPowerModel(busyPower,

idlePower)

 //new FogLinearPowerModelDVFS(busyPower,

idlePower,peList)

 //new PowerModelSpecPower_BAZAR(peList)

);

 hostList.add(host);

 String arch = "x86"; // system architecture

 String os = "Linux"; // operating system

 String vmm = "Xen";

 double time_zone = 10.0; // time zone this resource

located

 double cost = 3.0; // the cost of using processing

in this resource

 double costPerMem = 0.05; // the cost of using

memory in this resource

 double costPerStorage = 0.001; // the cost of using

storage in this

 // resource

 double costPerBw = 0.0; // the cost of using bw in

this resource

 LinkedList<Storage> storageList = new

LinkedList<Storage>(); // we are not adding SAN

 // devices by now

122

 FogDeviceCharacteristics characteristics = new

FogDeviceCharacteristics(

 arch, os, vmm, hostList, time_zone, cost,

costPerMem,

 costPerStorage, costPerBw);

 FogDevice fogdevice = null;

 PowerVmSelectionPolicy powerVmSelectionPolicy = new

 PowerVmSelectionPolicyMinimumUtilization();

 try {

 fogdevice = new FogDevice(nodeName,

characteristics,

 new

AppModuleAllocationPolicyWRR(hostList), storageList, 10, upBw,

downBw, 0, ratePerMips);

 } catch (Exception e) {

 e.printStackTrace();

 }

 fogdevice.setLevel(level);

 return fogdevice;

 }

// end of method

 /**

 * Function to create the BG Tractor Beam game

application in the DDF model.

 * @param appId unique identifier of the application

 * @param userId identifier of the user of the

application

123

 * @return

 */

 //@SuppressWarnings({"serial" })

 private static Application createApplication(String

appId, int userId){

 Application application =

Application.createApplication(appId, userId); // creates an

empty application model (empty directed graph)

 /*

 * Adding modules (vertices) to the application

model (directed graph)

 */

 //application.addAppModule("client", 10); // adding

module Client to the application model

 application.addAppModule("client_GUI", 10); //

adding module client_GUI to the application model

 application.addAppModule("diagnostic_calculator",

10); // adding module DIAGNOSIS_RESULT Calculator to the

application model

 /*

 * Connecting the application modules (vertices) in

the application model (directed graph) with edges

 */

 //if(BG_TRANSMISSION_TIME==10)

 // application.addAppEdge("BG", "client_GUI",

2000, 500, "BG", Tuple.UP, AppEdge.SENSOR); // adding edge

from BG (sensor) to Client module carrying tuples of type BG

 //else

124

 application.addAppEdge("BG", "client_GUI", 3000,

500, "BG", Tuple.UP, AppEdge.SENSOR);

 application.addAppEdge("client_GUI",

"diagnostic_calculator", 3500, 500, "_SENSOR", Tuple.UP,

AppEdge.MODULE); // adding edge from Client to

DIAGNOSIS_RESULT Calculator module carrying tuples of type

_SENSOR

 application.addAppEdge("diagnostic_calculator",

"client_GUI", 100, 1000, "DIAGNOSIS_RESULT", Tuple.DOWN,

AppEdge.MODULE); // adding periodic edge (period=1000ms) from

DIAGNOSIS_RESULT Calculator to client_GUI module carrying

tuples of type PATIENT_STATE

 //application.addAppEdge("diagnostic_calculator",

"client", 14, 500, "DIAGNOSIS_RESULT", Tuple.DOWN,

AppEdge.MODULE); // adding edge from DIAGNOSIS_RESULT

Calculator to Client module carrying tuples of type

DIAGNOSIS_RESULT

 //application.addAppEdge("client_GUI", "client",

100, 28, 1000, "GLOBAL_PATIENT_STATE", Tuple.DOWN,

AppEdge.MODULE); // adding periodic edge (period=1000ms) from

client_GUI to Client module carrying tuples of type

GLOBAL_PATIENT_STATE

 application.addAppEdge("client_GUI", "DISPLAY",

1000, 500, "SELF_STATE_UPDATE", Tuple.DOWN, AppEdge.ACTUATOR);

// adding edge from Client module to Display (actuator)

carrying tuples of type SELF_STATE_UPDATE

 /*

 * Defining the input-output relationships

(represented by selectivity) of the application modules.

 */

 application.addTupleMapping("client_GUI", "BG",

"_SENSOR", new FractionalSelectivity(0.9)); // 0.9 tuples of

type _SENSOR are emitted by Client module per incoming tuple

of type BG

125

 application.addTupleMapping("client_GUI",

"DIAGNOSIS_RESULT", "SELF_STATE_UPDATE", new

FractionalSelectivity(1.0)); // 1.0 tuples of type

SELF_STATE_UPDATE are emitted by Client module per incoming

tuple of type DIAGNOSIS_RESULT

 application.addTupleMapping("diagnostic_calculator",

"_SENSOR", "DIAGNOSIS_RESULT", new

FractionalSelectivity(1.0)); // 1.0 tuples of type

DIAGNOSIS_RESULT are emitted by DIAGNOSIS_RESULT Calculator

module per incoming tuple of type _SENSOR

 /*

 * Defining application loops to monitor the latency

of.

 * Here, we add only one loop for monitoring :

BG(sensor) -> Client -> DIAGNOSIS_RESULT Calculator -> Client

-> DISPLAY (actuator)

 */

 final AppLoop loop1 = new AppLoop(new

ArrayList<String>(){{add("BG");add("client_GUI");}});

 final AppLoop loop2 = new AppLoop(new

ArrayList<String>(){{add("client_GUI");add("diagnostic_calcula

tor");add("client_GUI");add("DISPLAY");}});

 List<AppLoop> loops = new

ArrayList<AppLoop>(){{add(loop1);add(loop2);}};

 application.setLoops(loops);

 return application;

 }

private static Application createApplication2(String appId2,

int userId){

126

 Application application2 =

Application.createApplication(appId2, userId); // creates an

empty application model (empty directed graph)

 /*

 * Adding modules (vertices) to the application

model (directed graph)

 */

 //application.addAppModule("client", 10); // adding

module Client to the application model

 application2.addAppModule("client_GUI2", 10); //

adding module client_GUI to the application model

 application2.addAppModule("diagnostic_calculator2",

10); // adding module DIAGNOSIS_RESULT Calculator to the

application model

 /*

 * Connecting the application modules (vertices) in

the application model (directed graph) with edges

 */

 //if(BG_TRANSMISSION_TIME==10)

 // application.addAppEdge("BG", "client_GUI",

2000, 500, "BG", Tuple.UP, AppEdge.SENSOR); // adding edge

from BG (sensor) to Client module carrying tuples of type BG

 //else

 application2.addAppEdge("GC", "client_GUI", 3000,

500, "GC", Tuple.UP, AppEdge.SENSOR);

 application2.addAppEdge("client_GUI2",

"diagnostic_calculator2", 3500, 500, "_SENSOR", Tuple.UP,

AppEdge.MODULE); // adding edge from Client to

DIAGNOSIS_RESULT Calculator module carrying tuples of type

_SENSOR

127

 application2.addAppEdge("diagnostic_calculator2",

"client_GUI2", 100, 1000, "DIAGNOSIS_RESULT", Tuple.DOWN,

AppEdge.MODULE); // adding periodic edge (period=1000ms) from

DIAGNOSIS_RESULT Calculator to client_GUI module carrying

tuples of type PATIENT_STATE

 //application.addAppEdge("diagnostic_calculator",

"client", 14, 500, "DIAGNOSIS_RESULT", Tuple.DOWN,

AppEdge.MODULE); // adding edge from DIAGNOSIS_RESULT

Calculator to Client module carrying tuples of type

DIAGNOSIS_RESULT

 //application.addAppEdge("client_GUI", "client",

100, 28, 1000, "GLOBAL_PATIENT_STATE", Tuple.DOWN,

AppEdge.MODULE); // adding periodic edge (period=1000ms) from

client_GUI to Client module carrying tuples of type

GLOBAL_PATIENT_STATE

 application2.addAppEdge("client_GUI2", "DISPLAY",

1000, 500, "SELF_STATE_UPDATE", Tuple.DOWN, AppEdge.ACTUATOR);

// adding edge from Client module to Display (actuator)

carrying tuples of type SELF_STATE_UPDATE

 /*

 * Defining the input-output relationships

(represented by selectivity) of the application modules.

 */

 application2.addTupleMapping("client_GUI2", "GC",

"_SENSOR", new FractionalSelectivity(0.9)); // 0.9 tuples of

type _SENSOR are emitted by Client module per incoming tuple

of type BG

 application2.addTupleMapping("client_GUI2",

"DIAGNOSIS_RESULT", "SELF_STATE_UPDATE", new

FractionalSelectivity(1.0)); // 1.0 tuples of type

SELF_STATE_UPDATE are emitted by Client module per incoming

tuple of type DIAGNOSIS_RESULT

 application2.addTupleMapping("diagnostic_calculator2",

"_SENSOR", "DIAGNOSIS_RESULT", new

FractionalSelectivity(1.0)); // 1.0 tuples of type

128

DIAGNOSIS_RESULT are emitted by DIAGNOSIS_RESULT Calculator

module per incoming tuple of type _SENSOR

 /*

 * Defining application loops to monitor the latency

of.

 * Here, we add only one loop for monitoring :

BG(sensor) -> Client -> DIAGNOSIS_RESULT Calculator -> Client

-> DISPLAY (actuator)

 */

 final AppLoop loop1 = new AppLoop(new

ArrayList<String>(){{add("GC");add("client_GUI2");}});

 final AppLoop loop2 = new AppLoop(new

ArrayList<String>(){{add("client_GUI2");add("diagnostic_calcul

ator2");add("client_GUI2");add("DISPLAY");}});

 List<AppLoop> loops = new

ArrayList<AppLoop>(){{add(loop1);add(loop2);}};

 application2.setLoops(loops);

 return application2;

 }

}

129

Appendix B

Application Module Allocation Algorithm Code:

package org.fog.policy;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Set;

import org.cloudbus.cloudsim.Host;

import org.cloudbus.cloudsim.Log;

import org.cloudbus.cloudsim.Vm;

import org.cloudbus.cloudsim.VmAllocationPolicy;

import org.cloudbus.cloudsim.core.CloudSim;

import org.cloudbus.cloudsim.power.PowerHost;

import org.cloudbus.cloudsim.power.PowerVmAllocationPolicyAbstract;

public class AppModuleAllocationPolicyWRR extends PowerVmAllocationPolicyAbstract {

 private final Map<String, Host> vm_table = new HashMap<String, Host>();

 private final CircularHostList hosts;

 public AppModuleAllocationPolicyWRR(List<? extends Host> list) {

 super(list);

 this.hosts = new CircularHostList(list);

130

 }

 //added method

 public PowerHost findHostForVm(Vm vm, CircularHostList hosts) {

 double minPower = Double.MAX_VALUE;

 PowerHost allocatedHost = null;

 for (PowerHost host : this.<PowerHost> getHostList()) {

 if (hosts.contains(host)) {

 continue;

 }

 if (host.isSuitableForVm(vm)) {

 try {

 double powerAfterAllocation =

estimateConsumedEnergyAfterAllocation (host, vm);

 if (powerAfterAllocation != -1) {

 double powerDiff =

powerAfterAllocation - host.getPower();

 if (powerDiff < minPower) {

 minPower = powerDiff;

 allocatedHost = host;

 }

 }

 } catch (Exception e) {

 }

 }

 }

131

 return allocatedHost;

 }

 /**

 * Gets the power after allocation.

 *

 * @param host the host

 * @param vm the vm

 *

 * @return the power after allocation

 */

 protected double estimateConsumedEnergyAfterAllocation (PowerHost host,

Vm vm) {

 double power = 0;

 try {

 power =

host.getPowerModel().getPower(getMaxUtilizationAfterAllocation(host, vm));

 } catch (Exception e) {

 e.printStackTrace();

 System.exit(0);

 }

 return power;

 }

 protected double getMaxUtilizationAfterAllocation(PowerHost host, Vm vm)

{

 double requestedTotalMips = vm.getCurrentRequestedTotalMips();

 double hostUtilizationMips = host.getPreviousUtilizationMips();

 double hostPotentialUtilizationMips = hostUtilizationMips +

requestedTotalMips;

132

 double pePotentialUtilization = hostPotentialUtilizationMips /

host.getTotalMips();

 return pePotentialUtilization;

 }

 // end of added method

 @Override

 public boolean allocateHostForVm(Vm vm) {

 if (this.vm_table.containsKey(vm.getUid())) {

 return true;

 }

 boolean vm_allocated = false;

 Host host = this.hosts.next();

 if (host != null) {

 vm_allocated = this.allocateHostForVm(vm, host);

 }

 return vm_allocated;

 }

 @Override

 public boolean allocateHostForVm(Vm vm, Host host)

 {

 host = findHostForVm(vm, this.hosts);

 if (host != null && host.vmCreate(vm))

133

 {

 vm_table.put(vm.getUid(), host);

 Log.formatLine("%.4f: VM #" + vm.getId() + " has been allocated to

the host#" + host.getId() +

 " datacenter #" + host.getDatacenter().getId() + "(" +

host.getDatacenter().getName() + ") #",

 CloudSim.clock());

 return true;

 }

 return false;

 }

 @Override

 public List<Map<String, Object>> optimizeAllocation(List<? extends Vm> vmList)

{

 return null;

 }

 @Override

 public void deallocateHostForVm(Vm vm) {

 Host host = this.vm_table.remove(vm.getUid());

 if (host != null) {

 host.vmDestroy(vm);

 }

 }

 @Override

134

 public Host getHost(Vm vm) {

 return this.vm_table.get(vm.getUid());

 }

 @Override

 public Host getHost(int vmId, int userId) {

 return this.vm_table.get(Vm.getUid(userId, vmId));

 }

}

