
 بسم الله الرحمن الرحيمئ 

 gySudan University of Science and Technolo 

Faculty of computer science and information technology 

 

 

Redesigning the States’ Budget Management 

System Using Model View Controller to 

Increase Maintainability 

 

موازنة الولايات بإستخدام نمط  وتنفيذ إعادة تصميم نظام إعداد

 لزيادة قابلية الصيانة (Model View Controllerالتصميم )

 

A Thesis submitted in partial fulfillment of the requirements for 

the Degree of Master of Science in Information Technology 

 

By: 

Omer Abdelmajeed Idrees Mohammed 

Supervisor: 

Dr. Tariq Omer Fadl Elsid 

 

July 2018 



i 
 

 

DEDICATION 

 

To my father and my mother, my wife and children, my brothers and sisters, 

and my second family abdeldayem’s family, who are the most valuable people in my 

life, To all my friends my honest mirror. To all of you a lot of thanks and you will 

always be remembered with your support and kindness.  

  



ii 
 

 

ACKNOWLEDGEMENTS 

 

First of all praise and thank to Almighty Allah the Lord of the universe before 

and after, who granted me success to accomplish this study and for everything in my 

life. 

 

Second, I would like to thank Dr. Hisham Mansour for the great effort that he 

done in teaching us new web technologies during this study. 

 

I would like to express my appreciation to my supervisor Dr. Tariq Omer for 

his support and guidance. 

 

―Peace and Blessings be upon our Prophet Mohamed‖ 

  



iii 
 

 

ABSTRACT 

In 2013 the ministry of finance and economic established the budget 

management system, following the Sudanese national plan toward the E-government, 

this system is now absolutely outdated and hard to adapt any new changes as a result  

for its poor design quality. A new version of the system is redesigned implementing 

the Model View Controller (MVC) pattern. This new version of the system is 

evaluated by comparing the architecture of the current and the redesigned versions of 

the system in terms of their maintainability, this comparison is done by the Analysis 

method for Software Architecture Modifiability (ASAM), analyzing the single 

responsibility principal (SRP) for both versions and reporting any violations that any 

version has. For the current system the study found that the current system is not 

following a known design pattern, or was designed in ad-hoc pattern, after applying 

the analysis scenario  found that all current system components are violating the 

SRP, the reason why is lacking for maintainability. For the redesigned version, the 

study found that all its components following the SRP which is evaluating it to have 

a higher maintainability. Further research is recommended to assess the system 

Scalability, where the system is expected to experience a huge traffic and handling a 

great load of data after is fully adopted. 

  



iv 
 

 المستخلص

دشنت وزارة المالية والإقتصاد نظام إعداد وتنفيذ الموازنة تحقيقاً لمخطة  3102في العام 

إجراء القومية السودانية نحو حكومة إلكترونية. ىذا النظام حالياً اصبح غير فعال نسبة لصعوبة 

أي تعديلات عميو وذلك نتيجة لتدني جودة تصميمو. تم تصميم نسخة جديدة من النظام بإتباع 

(. حيث انو تم تقييم MVC( والمعروف إختصاراً بـ)Model View Controllerنمط التصميم )

خاصية قابمية الصيانة لمنسخة المعاد تصميميا والنسخة الحالية من النظام بإجراء مقارنة بين 

معمارية كل منيم. وىذه المقارنة  تمت بإستخدام طريقة تحميل قابمية معمارية البرمجيات لمتعديل 

(Analysis method for Software Architecture Modifiability ًوالمعروفة إختصارا )

 Single Responsibility(, وذلك بتحميل مبدأ المسؤولية الواحدة المعروف )ASAMبـ)

Principal) وا(لمعرف إختصاراً بـSRP لكل من النظامين وتقرير اي إنتياكات ليذا المبدأ )

يحدثيا اي منيم. حيث وجدت الدراسة أن النظام الحالي لا يتبع أي نمط في تصميمو, وبعد 

تطبيق سناريو التحميل عميو وجد أن جميع مكوناتو تنتيك مبدأ المسؤولية الواحدة وبالتالي 

صيانة كثيراً. اما بالنسبة لمنسخة المعاد تصميميا وجدت الدراسة أن إنخفضت لديو قابمية ال

وبالتمي تم تقييميا بأنيا تممك قابمية صيانة أعمى من  تتبع لمبدأ المسؤولية الواحدةجميع مكوناتو 

عميو, عالي  سيكون ىنالك ضغطوبعد أن يتم إعتماد النظام بصورة كاممة  النظام الحالي.

ام بالبحث أكثر في كيفية رفع قيمة قابمية النظام لمتوسع والتي من شأنيا جعل وبالتالي يقترح القي

النظام يعمل بصورة مستقرة ومستمرة ومستوعبة لكل اعباء التشغيل الأضافية التي قد تطرأ مع 

 زيادة الإستخدام.

  



v 
 

 

Table of Contents 

 

DEDICATION…………………..…………………………………...…………….…….. ii 

ACKNOWLEDGEMENT …………...………………………………..…………….….. iii 

ABSTRACT ……………...…………………………………………………...……..…. iv 

……………………………………..….……….…………..……..…………….. vالمستخلص 

TABLE OF CONTENT …………..………………...………………………...……..….. vi 

LIST OF TABLES ……………………………….……………...…………….........… vii 

LIST OF FIGURES …………….…………………..……………………………..…....  viii 

LIST OF ABBREVIATION ………………………………………...………………...… ix 

LIST OF APPENDICES ………………………………………………...…………....… x 

 

Chapter I ...................................................................................................................................2 

 Background: ..............................................................................................................2 1.1

 Problem Statement: ..................................................................................................3 1.2

 Approach: ..................................................................................................................3 1.3

 Research Aims and Objectives ..................................................................................4 1.4

 Scope and limitation: ................................................................................................4 1.5

 Evaluation and Results: .............................................................................................4 1.6

 Thesis Structure ........................................................................................................5 1.7

Chapter II ..................................................................................................................................6 

 Software Maintainability: .........................................................................................6 2.1

 Design Pattern and Maintainability Enhancement: ..................................................8 2.2

 Complexity Measurement: .......................................................................................8 2.3

2.3.1 Computational complexity:...............................................................................9 

2.3.2 Psychological complexity: .................................................................................9 

 The Single Responsibility Principal:........................................................................ 10 2.4

2.4.1 Responsibility definition: ............................................................................... 10 

2.4.2 The principal limitation: ................................................................................. 11 

 The M.V.C. architectural design pattern:............................................................... 12 2.5

2.5.1 Model Responsibilities ................................................................................... 13 

2.5.2 View Responsibility: ....................................................................................... 13 

2.5.3 Controller Responsibility: ............................................................................... 13 



vi 
 

 How the MVC improves the maintainability: ........................................................ 13 2.6

 Architecture analysis methods: ............................................................................. 14 2.7

Chapter III .............................................................................................................................. 16 

 The Analysis software architecture for modifiability method (ASAM): ................. 16 3.1

 Scenario elicitation: ............................................................................................... 17 3.2

 Scenario Evaluation: .............................................................................................. 18 3.3

 Results expression: ................................................................................................ 18 3.4

 Results Interpretation: ........................................................................................... 18 3.5

 Architecture description: ....................................................................................... 19 3.6

3.6.1 Current system architecture: ......................................................................... 19 

3.6.2 Redesigned system architecture:................................................................... 24 

Chapter IV .............................................................................................................................. 29 

 Elicited Change Scenario Sets: ............................................................................... 29 4.1

 Current system results: .......................................................................................... 31 4.2

 Re-designed system results: .................................................................................. 34 4.3

 Current system vs Re-designed System: ................................................................ 38 4.4

Chapter V ............................................................................................................................... 39 

5.1 Conclusion: ................................................................................................................... 39 

5.2 Recommendations: ...................................................................................................... 39 

References ............................................................................................................................. 40 

 

  



vii 
 

List Of Tables 
TABLE 1: ELICITATED CHANGE SCENARIO SETS .................................................................................................. 29 

TABLE  IV-2: CURRENT SYSTEM – SCENARIO EVALUATION ................................................................................... 31 

TABLE  IV-3: CURRENT SYSTEM - DATA HANDLING RESPONSIBILITY TRUTH TABLE ................................................... 31 

TABLE  IV-4: CURRENT SYSTEM - USER INTERACTION CONTROL RESPONSIBILITY TRUTH TABLE ................................... 32 

TABLE  IV-5: CURRENT SYSTEM - VIEW REPRESENTATION RESPONSIBILITY TRUTH TABLE ........................................... 32 

TABLE  IV-6: CURRENT SYSTEM - S.R.P. VIOLATIONS TRUTH TABLE ...................................................................... 33 

TABLE  IV-7: REDESIGNED SYSTEM - SCENARIO EVALUATION ................................................................................ 34 

TABLE  IV-8: REDESIGNED SYSTEM - DATA HANDLING RESPONSIBILITY TRUTH TABLE ................................................ 34 

TABLE  IV-9: REDESIGNED SYSTEM - USER INTERACTION CONTROL RESPONSIBILITY TRUTH TABLE ............................... 35 

TABLE  IV-10: REDESIGNED SYSTEM - VIEW REPRESENTATION RESPONSIBILITY TRUTH TABLE ..................................... 36 

TABLE  IV-11: REDESIGNED SYSTEM - S.R.P. VIOLATIONS TRUTH TABLE ................................................................ 36 

TABLE  IV-12: CURRENT SYSTEM VS RE-DESIGNED SYSTEM ................................................................................. 38 

 

 

 
  



viii 
 

List Of Figures 
 

FIGURE 1: MCCALL SOFTWARE QUALITY FACTORS............................................................................................... 6 

FIGURE 2: ISO 9126 SOFTWARE QUALITY FACTORS ............................................................................................ 7 

FIGURE 3: MODEM INTERFACE, BY ROBERT C. MARTIN ......................................................................... 10 

FIGURE 4: ILLUSTRATES THE M.V.C. ARCHITECTURAL DESIGN PATTERN ................................................................. 12 

FIGURE 5: ASAM DIFFERENT STAGES TECHNIQUES RELATIONSHIP ........................................................................ 17 

FIGURE 6: ADD_ITEM.PHP COMPONENT ......................................................................................................... 20 

FIGURE 7: EDIT_ITEM.PHP COMPONENT ......................................................................................................... 22 

FIGURE 8: DELETE_ITEM.PHP COMPONENT ..................................................................................................... 23 

FIGURE 9: THE CURRENT SYSTEM’S ARCHITECTURE, ITEMS MANAGEMENT MODULE ................................................ 23 

FIGURE 10: ITEM COMPONENT..................................................................................................................... 25 

FIGURE 11: ITEM_MODEL COMPONENT ......................................................................................................... 26 

FIGURE 12: INDEX.PHP COMPONENT.............................................................................................................. 26 

FIGURE 13: VIEW.PHP COMPONENT............................................................................................................... 27 

FIGURE 14: THE RE-DESIGNED SYSTEM ARCHITECTURE ....................................................................................... 28 

 
  

file:///C:/Users/Omer/Desktop/Presentation/thesis/research%20v09.docx%23_Toc524465567
file:///C:/Users/Omer/Desktop/Presentation/thesis/research%20v09.docx%23_Toc524465568


ix 
 

 

List Of Abbreviations 
 

Acronym Definition 

M.V.C Model View Controller  

S.R.P Single Responsibility Principal 

A.S.A.M Analysis software architecture for 
modifiability 

 
  



x 
 

 

List of Appendices 
 

APPENDIX A: THE CURRENT SYSTEM (ITEMS MANAGEMENT MODULE) CODE ………………………………….… 51 

APPENDIX B: THE REDESIGNED SYSTEM (ITEMS MANAGEMENT MODULE) CODE ………………………………… 55 

 

 

  



2 
 

 

CHAPTER I  

INTRODUCTION 

 Background: 1.1

In Software Engineering, a software have many attributes, those attributes 

determine its quality. Maintainability is the most interesting of these attributes, since 

any future changes, enhancements and faults correction would be categorized under 

the maintainability attribute. The software with a high maintainability will decrease 

the cost of maintenance, which is a basic aim of the software quality programs 

(Stavrinoudis, et al., August 1999). 

The maintainability of software is the degree to which it can be understood, 

corrected, adapted and/or enhanced (Pressman, 1997). Software maintenance is the 

costliest phase of the software life cycle, where requirements are always changing to 

add a new feature or to change the business logic. Since requirements are always 

changing, the software would be in need to be continuously maintained. 

It’s all about design. A software design quality plays a great role in 

determining the software maintainability. For this reason the software design needs 

to be as good as possible, and to accomplish this task there are many design patterns 

defined to improve the software design. Furthermore, applying design patterns is also 

considered good since design patterns can speed up the development process by 

providing tested and proven development paradigm. As concluded by Farooq ―good 

maintainability can be achieved by implementation of Design Patterns in software 

development‖ (Abdullah, 2017) 

In this research, the Model-View-Controller (M.V.C.) pattern is used to 

improve the current system maintainability by enhancing the Ease of Modification 

measured by the Single Responsibility Principal. 



3 
 

 Problem Statement: 1.2

The current system is badly designed, no design pattern was adopted. Hence 

the system became hard and expensive to maintain (fixing bugs and adding new 

Features). Furthermore, the current system seem to be violating the Single 

Responsibility Principal—which also decreased the system maintainability. The 

Implementation of the M.V.C. Designing Pattern was proposed to solve this problem 

by eliminating those violations to increase the system’s maintainability. 

 Approach: 1.3

This research investigates the current system and the re-designed system 

against the Single Responsibility Principal violations. Apply some changes on the 

system and report the SRP violations status for each system in the Results and 

discussion chapter. Finally, deciding which system has a higher maintainability by 

comparing the number of SRP violations found in each one. For simplicity, the Items 

Management Module in both systems only will be evaluated. 

  



4 
 

 Research Aims and Objectives 1.4

The aim of this study is to redesign the budget management system to 

enhance its maintainability. Given the problem statement presented previously, the 

objectives of this study are to: 

- Implement the MVC architectural design pattern. 

- Apply the SRP principal. 

- Compare the architecture of the current and the redesigned systems.  

 Scope and limitation: 1.5

This research was conducted to increase the maintainability of the ―budget 

Management System‖ of the ―River Nile State‖ during the 2017 – 2018 year.  

Only the single responsibility principal is studied to measure the system 

maintainability, observing the interactions of the three responsibilities: data handling, 

user interaction control and view representation.   

For simplicity and clearance, only the Budget Items Management module is 

studied. 

 

 Evaluation and Results: 1.6

This research evaluating the maintainability of the current and the redesigned 

systems by comparing the architecture of both of them, adopting the SRP violation as 

a comparison factor, analyzing each architecture by apply a scenario of changes and 

reporting any violations found. Finally evaluating the system with the minimum 

number of violations as the system with the higher maintainability. 

. 



5 
 

 Thesis Structure 1.7

This thesis comprises five chapters, followed by references and appendices. 

Chapter 1: gives an introduction to the research subject.  

Chapter 2: reviews the literature of maintainability, SRP principal, MVC 

pattern and the Scenario-Based software architecture analysis. 

Chapter 3: presents the research methodology. 

Chapter 4: presents the results and discussions.  

Chapter 5: presents the conclusions of the work and some recommendations. 

 

 

  



6 
 

CHAPTER II  

LITERATURE REVIEW 

Software maintainability enhancement is a very interesting topic in the 

research community, since maintainability affects almost every stage of the software 

development stages. What is really challenging is finding a model that covering a 

wide range of the characteristics that affects the maintainability. In this chapter we 

reviewing the software maintainability attribute, studying how design patterns 

enhance maintainability covering the SRP principal, MVC pattern and the software 

architecture analysis methods. 

 Software Maintainability: 2.1

Software maintainability is a software quality factor that defined as the 

degree to which an application is understood, repaired, or enhanced. 

McCall, Richards, and Walters defined many factors that affect the software 

quality, categorized in many aspects of a software product: product operation, 

product revision and product transition. These three categories and their related 

factors are shown in Figure (1): 

 

Figure 1: McCall software quality factors 



7 
 

This model categorize the maintainability in line with flexibility and testability under 

the product revision, where all those three factors at some point affected by the 

developers’ abilities. Further, the maintainability is divided into four sub-attributes 

according to the ISO 9126, shown in figure (2), they: Analyzability, Changeability, 

Stability and Testability. 

 

Figure 2: ISO 9126 software quality factors 

 The sub-attribute changeability of the maintainability is the targeted quality factor 

that needs to be addressed by this work, where the current system is hard and 

expensive to be changed. 

  



8 
 

 Design Pattern and Maintainability Enhancement: 2.2

Abdullah said that Design Patterns are known to provide more maintainable 

and reusable code, as also in his research ―Evaluating Impact of Design Patterns on 

Software Maintainability and Performance‖ concluded that good maintainability can 

be achieved by implementation of Design Patterns in software development 

(Abdullah, 2017). Similarly, Bass claimed that: ―an effective architecture is one in 

which the most likely changes are also the easiest to make‖ (Bass, et al., 2003). 

Moreover, Buschmann defines two patterns to help designing for change, as he said 

that ―Design for change is therefore a major concern when specifying the architecture 

of a software system‖ (Buschmann, et al., 1996). Also Fredrik Hoffman claim that 

M.V.C may enhance some aspects of maintainability, e.g. understandability, and 

describing that the way of evaluating this aspects of maintainability ―could be to use 

a group of developers as subjects to experiment on‖ (Hoffman, 2001). All the 

previous studies indicates that applying design patterns on the software development 

improves software quality, specifically the software maintainability. Hence this work 

conducted to redesign the current system following the M.V.C pattern. 

 Complexity Measurement: 2.3

Software maintainability is linked to the software complexity, as Zuse said: 

―the term complexity measure is a misnomer. The true meaning of the term software 

complexity is the difficulty to maintain, change and understand software. ‖, which it 

can be divided into two parts: 1) Computational complexity: ―refers to algorithm 

efficiency in terms of the time and memory needed to execute a program‖ and 2) 

Psychological (or cognitive) complexity: ―refers to the human effort needed to 

perform a software task, or, in other words, the difficulty experienced in 

understanding or performing such a task‖ (Zuse, 1991), the following is a list of 

related work to the software complexity measurement, grouped based on Zuse’s 

complexity classification: 

  



9 
 

2.3.1  Computational complexity: 

Also known as Essential complexity (Brooks & Frederick, 1987), which 

complexity that caused by the characteristics of the problem to be solved, the 

following is a list of related work in this type of complexity: 

- The Cyclomatic complexity (McCabe, 1976), introduce a quantitative 

measure of the number of linearly independent paths through a 

program's source code. 

- Halstead complexity measures (Halstead & H., 1977), Introduced this 

measures which are computed statically from the code. 

- Software Structure Metrics Based on Information Flow (Henry & Kafura, 

1981), introduced these metrics which measure the procedure complexity by 

calculating number of local flows into that procedure plus the number of data 

structures from which that procedure retrieves information and calculating the 

number of local flows out of that procedure plus the number of data structures 

that the procedure updates. 

- A Metrics Suite for Object Oriented Design (Chidamber & Kemerer, 

1994), introduced these metrics weighting methods per class, coupling 

between object classes, response for a class, number of children, depth of 

inheritance tree and lack of cohesion of methods. 

2.3.2  Psychological complexity:  

Also known as Accidental complexity (Brooks & Frederick, 1987), is 

complexity that Relates to difficulties a developer faces, the following is a list of 

related work in this type of complexity: 

- The cognitive weight, introduced in 2003 (Shao & Yingxu Wang, APRIL 

2003 ), which is defined as the is the degree of difficulty or relative time and 

effort required for comprehending a given piece of software modelled by a 

number of basic control structures. 

- Task complexity model, introduced by Wood (R.E, n.d.), is generally 

representative of task complexity and defined four theoretical frameworks: 1) 

https://en.wikipedia.org/wiki/Source_code


10 
 

task qua task, 2) task as behavior requirements, 3) task as behavior 

description and 4) task as ability requirements. 

 The Single Responsibility Principal: 2.4

The Single Responsibility Principle (SRP), is one of the five design principles 

intended to make software designs more understandable, flexible and maintainable 

(Wikipedia, 2014). And this principal states that each component of the software 

module must be responsible for only one responsibility. Robert C. Martin defines this 

principle as following: "A class should have only one reason to change." (Martin, 

2005) 

2.4.1  Responsibility definition: 

The responsibility is defined as ―a reason for change‖ according to Robert C. 

Martin, Describing that a class or component with more than one motive for 

changing is a class with more than one responsibility.  As an example, Martin 

considered a modem interface (Figure 1), has two responsibilities. The first is 

connection management. And the second is data communication. 

 

The dial and hangup functions manage the connection of the modem; the 

send and recv functions communicate data. 

Figure 3: Modem Interface, by Robert C. Martin 

https://en.wikipedia.org/wiki/Robert_C._Martin


11 
 

2.4.2  The principal limitation: 

The current S.R.P is concerned with the class or the software component 

structure only (cohesion and coupling), based on the functionality of that class or 

component. In this there may be a class or a component with only one functionality, 

but it may requires more than one developing skills in multiple technologies, this 

issue of having more than one development skills and technologies required to 

develop the same class or component will lead to a complicated maintenance tasks, 

where more communication needed, multiple-technologies developers and reducing 

the chances of the paralleling development ability which leads to consume more time 

in the development.  

To get over this limitation this study extends the single responsibility 

principal by defining another dimension to it. This dimension takes the required 

development skills into consideration, this way responsibilities are defined also based 

on the development abilities. Hence the extended SRP may be defined also as: ―a 

component should have only one reason to develop‖. Where the responsibility now is 

defined as ―a reason for development‖. This extension defines three types of 

responsibilities that this work study, are: 1) data handling responsibility, 2) user 

interaction control responsibility and 3) view representation responsibility. These 

responsibilities are facilitated by the MVC architectural design pattern which is 

presented in the following section.   

  



12 
 

 The M.V.C. architectural design pattern: 2.5

The M.V.C. in short, is an architectural design pattern invented at Xerox Parc 

in the 70's, probably by Trygve Reenskaug (Wiki, 2014). It divides a given 

application into three interconnected parts (Burbeck, 1992). This is done to separate 

the internal representations of information from the ways information is presented to 

and accepted from the user (Reenskaug & James, 2009).  

M.V.C. became one of the first approaches to describe and implement 

software constructs in terms of their responsibilities (Wiki, 2014). In this approach, 

each component has its own responsibility, these responsibilities are defined 

according to Steve Smith (Smith, 2018) as following: 

  

Figure 4: Illustrates the M.V.C. architectural design pattern 

https://ardalis.com/


13 
 

2.5.1  Model Responsibilities 

The Model in an M.V.C. application represents the state of the application 

and any business logic or operations that should be performed by it. Business logic 

should be encapsulated in the Model, along with any implementation logic for 

persisting the state of the application. 

2.5.2  View Responsibility: 

The View is responsible for presenting content through the user interface. 

There should be minimal logic within the View. Otherwise, any logic in the View 

should be related to presenting content.  

2.5.3  Controller Responsibility: 

The Controller is the component that handles user interaction, works with the 

model, and ultimately selects a View to be rendered. In an M.V.C. application, the 

View only displays information; the controller handles and responds to user input 

and interaction. In the M.V.C. pattern, the controller is the initial entry point, and is 

responsible for selecting which Model types to work with and which View to render. 

Hence, its name the Controller; it controls how the app responds to a given request. 

 How the MVC improves the maintainability: 2.6

The MVC separates the responsibilities between the three parts, this 

delineation of responsibilities increases the maintainability in terms of complexity 

because it’s easier to code, debug, and test (i.e. the model, view, or controller) that 



14 
 

has a single job (that follows the Single Responsibility Principle) (Smith, 2018). 

Furthermore, the MVC supports the extended SRP principal, by offering a solution 

that best fits the system under study. Where the system components are supported by 

the MVC as following: 

- Data handling component supported by the Model layer 

- User interaction component supported by the Controller layers 

- View representation component supported by the View layer 

 Architecture analysis methods: 2.7

A software architecture describes the structure of a software system on an 

abstract implementation independent level. (Züllighoven H., 2006).  And to compare 

alternative software architectures, the candidate architectures must be analyzed first, 

and then using the analysis results in determining the architecture that is the best 

choice. There are many methods serve this purpose, the earliest on is the architecture 

tradeoff analysis (ATAM) method (Rick, et al., 2000), analyzing various quality 

attributes and identifying a tradeoff points between them. Also, the Software 

Architecture Analysis Method (SAAM) method (Kazman, et al., 2007), this method 

is used to provide a method for determining which architecture supports an 

organization’s needs. Moreover, the Software Architecture Comparison Analysis 

Method (SACAM), which provides organizations with a rationale for an architecture 

selection process by comparing the fitness of software architecture candidates being 

used in envisioned systems, this method requires the availability of architectural 

documentation to perform the comparison criteria analysis (Christoph, et al., 2003). 

Furthermore, the Analysis of software architecture for maintainability (ASAM) 

method (Bengtsson, et al., 2000) was proposed to analyze the software architecture 

for modifiability. The first three methods ATAM, SAAM and SACAM are used to 

analyze any quality attribute or attributes of interest. But ASAM is only specific for 

the modifiability attribute. Hence, the ASAM method it will be used to compare the 

architecture of the current and the redesigned systems in terms of maintainability.  

 



15 
 

In this chapter we looked deep in the maintainability attribute in both 

―McCall‖ and the ―ISO 9126‖ models, identifying the correlated attributes and sub 

attributes, as also managed to capture the knowledge of how design pattern improves 

the maintainability. In terms of measurement we reviews both the computational and 

psychological complexity measurements, extending the SRP principle to bet fits the 

purpose of this study. Furthermore, we decided software architecture analysis is 

works for this work  

 

  



16 
 

CHAPTER III  

RESEARCH METHODOLOGY 

Software architecture analysis to predict quality attributes of the system under 

design is a very important activity in every stage of the development. Most methods 

used to predict quality attributes are based on code metrics, which it will makes the 

prediction available after the code is present, which may discover problems too late. 

Hence, scenario-based methods were proposed to address this limitation where they 

can be conducted in the early stages of the development. In this chapter we will 

present the ASAM method, determine the goal of the analysis, defining scenarios 

elicitation, scenario evaluation, scenario result expression, scenario results 

interpretation techniques and describe the software architecture.  

 The Analysis software architecture for modifiability method (ASAM): 3.1

This is a Scenario-Based architecture analysis method, proposed by 

Bengtsson. That can be used for three different goals: cost prediction, risk 

assessment and software architecture selection. Consisting of five steps: setting the 

analysis goal, describing software architecture, eliciting scenarios, evaluating 

scenarios and interpreting results. Using certain techniques in the following steps: 

scenario elicitation, scenario evaluation and architecture description, based on the 

relationship between those techniques, as shown in the figure (5).  



17 
 

 

Figure 5: ASAM different stages techniques relationship 

Based on the goal of the analysis, a technique for scenario elicitation and the 

scenario evaluation techniques are selected. Subsequently, architecture description 

technique is selected. The goal that best fits the purpose of this study is the software 

architecture selection, to find the architecture with the higher maintainability. 

 Scenario elicitation: 3.2

Change scenario elicitation is the process of finding and selecting the change 

scenarios that are to be used in the evaluation step of the analysis. There are two 

approaches for selecting a set of scenarios: top-down and bottom-up. This study use 

the top-down approach, by using some predefined classification of change categories 

to guide the search for change scenarios, those categories were derived from the 

domain of interest, which is the component responsibility, concluded into three 

categories:  

- Data Handling (DH) category: where all changes classified under this 

category are being developed to handle the system data. 

- User Interaction (UI) category: where all changes classified under this 

category are being developed to affecting the control of the user interaction 

with the system. 



18 
 

- View representation (VR) category: where all changes classified under this 

category are affecting the way the user interface.  

 Scenario Evaluation: 3.3

As a subsequent to the scenario elicitation, the scenario effect on the 

architecture should be evaluated. Since the change scenario sets were elicited 

according to the SRP principal, we assume that there are no ripple effects, where 

each change will affect only one component. This study evaluates the change 

scenario by determining which component was effected by the change. 

 Results expression: 3.4

According to this study scope which is adopting only the SRP principal as 

comparison criterion, we expressing the results of the scenario evaluation by ranking 

the candidate architectures depending on their violations to the SRP principal. 

 Results Interpretation: 3.5

Since the goal is to compare candidate architectures, results interpretation is 

aimed at deciding which candidate have higher maintainability. Whereas, the results 

expression was ranking the candidate architectures, then based on the minimum 

violation criterion we interpret that the candidate architecture with the minimum 

violation is the candidate with the higher maintainability. 

  



19 
 

 Architecture description: 3.6

To be possible to evaluate the scenario sets and make the comparison 

between the current system and the redesigned, we need to describe both systems’ 

architectures, which should provide information about each component 

decomposition and the relationships between the system components.  

3.6.1  Current system architecture: 

The current system is a web based application, built on html, css, php and sql 

technologies, is running on apache web server and its database is running on a mysql 

dbms. Consists of the following components: 

Add_item.php component: 

This component used to create a new item, and contains all steps required to do that 

starting by retrieving the last ID and all available items from database, representing 

the new item form view for the user to be able to enter the new item information, 

receiving the submitted data which contains the item information, and make some 

validations and security checks, retrieving the item data from the database using the 

ID, saving the item information by saving the submitted data to the database and 

representing the status message view which will show either success message when 

the item inserted successfully or error message when system fails saving the item. 

This description can be encoded into the following 

Which is responsible for the following: 

- Getting the next id from database (getNextIdFromDatabase) 

- Getting list of available items from database (getListOfAvailableItems) 

- Represent the new item form view (representNewItemFormView) 

- Receiving and processing submitted data 

(receivingAndProcessingSubmittedData) 

- Save the new item to database (saveItemToDatabase) 

- Represent save status message view (representSaveStatusMessageView) 



20 
 

 

Figure 6: add_item.php component 

  



21 
 

Edit_item.php component:  

This component used to update an existing item, and contains all steps 

required to do that starting by retrieving all available items from database, 

representing the list of items view for the user to be able to select which item to edit, 

receiving the submitted data which contains the selected item ID, and make some 

validations and security checks, retrieving the item data from the database using the 

received ID, representing the edit form view for the user to be able to edit the item 

information, receiving and make some validations and security checks on the 

submitted data which is the update information of the selected item, updating the 

item information by saving the submitted data to the database and representing the 

status message view which will show either success message when the item updated 

successfully or error message when system fails saving the updated item. This 

description can be encoded into the following: 

- Get list of available items from database (getListOfAvailableItems) 

- Represent items list view (representItemsListView) 

- Receiving and process submitted data (receivingAndProcessSubmittedData) 

- Retrieving select item data (retreivingSelectItemData) 

- Representing item edit form view (representingItemEditFormView) 

- Receiving and processing received edited data 

(receivingAndProcessingRecievedEditedData) 

- Save edited item to database (saveEditedItemToDatabase) 

- Represent update status message view (representUpdateStatusMessageView) 



22 
 

 

Figure 7: edit_item.php component 

Delete_item component: 

This component used to delete an item, and contains all steps required to do that 

starting by retrieving all available items from database, representing the list of items 

view for the user to be able to select which item to delete, receiving the submitted 

data which contains the item ID and make some validations and security checks, 

deleting the item from the database using the received ID and representing the status 

message view which will show either success message when the item deleted 

successfully or error message when system fails deleting the item. This description 

can be encoded into the following: 

- Which is responsible for the following:Get list of available items 

(getListOfAvailableItems) 

- Represent items list view (representItemsListView) 

- Receiving and process submitted data (receivingAndProcessSubmittedData) 

- Delete selected item from database (deleteSelectedItemFromDatabase) 

- Represent delete status message view (representDeleteStatusMessageView) 



23 
 

 

Figure 8: delete_item.php component 

There are no relationships between this module components, where each 

component work isolated containing all the required logic to do its job as shown in 

figure (9). 

 

Figure 9: the current system’s architecture, Items Management Module 

  



24 
 

3.6.2  Redesigned system architecture: 

The system components are a combination of Classes and PHP files those 

grouped logically to form a module. As the (Figure 12) illustrates, that the Items 

Management Module consists of the following four components: 

Item component: 

This component is classified as a controller, which described in the MVC 

pattern in section (2.5.3). At the first time the user access the Item module this 

component calls the ―getAll‖ method which exposed by the Item_model component 

and loading the index.php and view.php components to the user interface passing 

them the retrieved items. In addition, when the user enter ad submit new item 

information this controller will receive the submitted data and make some validations 

and security checks and then pass it to the ―store‖ method that exposed by the 

Item_model component, also when the user update or delete an item the data will be 

passed to this controller and it will do the validations and security checks as usual 

and then call the ―update‖ method for the update action or the ―delete‖ method for 

the delete action, for modeling purposes this functionality will be encoded as 

following: 

- Receiving and processing Submitted data 

(receivingAndProcessingSubmittedData)  

- Passing new item data to the Item_model component 

(passNewItemDataToItemModel) 

- Retrieve available items from Item_model component 

(retreiveAvailableItemsFromItemModel) 

- Passing updated item data to Item_model component 

(passUpdatedItemDataToItemModel) 

- Pass deleted item data to Item_model component 

(passDeletedItemDataToItemModel) 

- Load index.php component and pass available items data 

(loadIndexAndpassAvailableItemsData) 

- Load view.php component and pass available items data 

(loadViewAndpassAvailableItemsData) 



25 
 

 

Figure 10: Item Component 

Item_model component: 

This component is classified as a Model, which described in the MVC pattern in 

section (2.5.1), and is exposes the ―store‖ method that receiving item data as 

parameters and store this data in the database, ―getAll‖ method that retrieves and 

returns all items from database, ―update‖ method that receives update parameters 

(ID, field name and the new value) and update the item information on the 

database and return either true when success or false when fails and the ―delete‖ 

method that receives an ID and deleting the item with that ID from the database, 

for modeling purposes this functionality are encoded as following: 

- Save item to database (saveItemToDatabase) 

- Retrieve available items from database (rereiveAvailableItemsFromDatabase) 

- Update item on database (updateItemOnDatabase) 

- Delete item from database (deleteItemFromDatabase) 



26 
 

 

Figure 11: Item_model component 

Index.php component: 

This component is classified as a View in the MVC pattern, which described 

in the MVC pattern in section (2.5.2), and is representing the new item form where 

the user enter the new item information as also represent the view that display the 

status message of adding new item, for the modeling purposes this functionality 

encoded as following: 

- Represent new item form view (representNewItemFormView) 

- Represent item save status message view 

(representItemSaveStatusMessageView) 

 

Figure 12: index.php component 

view.php component: 



27 
 

This component is also classified as a View in the MVC pattern, which 

described in the MVC pattern in section (2.5.2), and is represents the following 

views: items list view, item edit form view, item delete form view, item update status 

message view and the delete item status message view, for the modeling purposes 

this functionality encoded as following: 

- Represent items list view (representItemsListView) 

- Represent item update form view (representItemUpdateFormView) 

- Represent item delete form view (representItemDeleteFormView) 

- Represent item update status message view 

(representItemUpdateStausMessageView) 

- Represent item delete status message view 

(representItemDeleteStatusMesageiew) 

 

Figure 13: view.php component 

 



28 
 

 

Figure 14: the re-designed system architecture 

As show in figure (14), there are many relationships among these 

components, where the Item component calling the methods that exposed by 

Item_model component and also load views to the user interface according to the 

requested URI. 

 

In this chapter we reviewed the ASAM method and selected the required 

techniques required to conduct the comparison of the architecture of both current ad 

redesigned systems. Furthermore, we described both systems’ architectures. 

  



29 
 

CHAPTER IV  

RESULTS AND DISCUSSION 

Deciding which system has the highest maintainability will help us to decide 

if the redesigned system is increasing the maintainability. In this chapter the change 

scenario sets are evaluated and their effects are presented and interpreted by using 

simple logic rules, the decision is made according to the effects interpretation.  

 Elicited Change Scenario Sets: 4.1

Since the goal of the analysis is to compare different architectures, then the 

scenario elicitation technique followed is, to concentrate on scenarios that highlight 

differences between those candidates. A list of elicited scenarios shown in table (), 

after following the selected technique. 

Table 1: elicited change scenario sets 

Category 

Code Description 

DH 

D1 Adding a new field (created_by) to store the creator’s user ID 

D2 Adding a new field (authority_level) to store the authority 

level to access this item 

D3 Adding a new field (last_update) to store the last (date and 

time) for any update occurs on the item record 

D4 Changing the Database connectivity using the PDO connection 

rather than the legacy mysql_connect 

UI 

U1 Change the business logic of creating a new item to consider 

storing the current (user_id) and the (item_authority_level), 

when adding a new item 



30 
 

U2 Change the business logic of deleting items, to authorize or 

prevent users from deleting items, according to the 

(user_authority_level) for the current user 

U3 Change the business logic of retrieving items, to filter out the 

list of items according to the (user_authority_level) for the 

current user 

U4 Logging the current event 

VR 

V1 Add a new field to the New Item form. to select the authority 

level required to access the item under creation 

V2 Add a validation, to prevent the user from submitting Null 

Values 

V3 Adding a confirmation message for updating item information 

V4 Change the response message to be able to handle the 

authorization messages 

 

  



31 
 

 Current system results: 4.2

 

Table ‎IV-2: current system – scenario evaluation 

 

add_item.php edit_item.php delete_item.php 

Data Handling 

D1 True False False 

D2 True True False 

D3 True True False 

D4 True True True 

User Interaction 

Control 

U1 True False False 

U2 False False True 

U3 True True True 

U4 True True True 

View 

Representation 

V1 True False False 

V2 True True True 

V3 False True False 

V4 True True True 

 

Table ‎IV-3: Current System - Data Handling Responsibility truth table 

 

D1 D2 D3 D4 DH = (D1 + D2 + D3 + D4) 

add_item.php 

T T T T T 

edit_item.php 

F T T T T 



32 
 

delete_item.php 

F F F T T 

In the previous table, the add_item.php component was changed in D1, D2, 

D3 and D4, when applied the logical OR, its final state was (Changed for the reason 

DH). The edit_item.php component was changed in D2, D3 and D4, when applied 

the logical OR its final state was (Changed for the reason DH). The delete_item.php 

component was changed in D4, when applied the logical OR its final state was 

(Changed for the reason DH). 

 

Table ‎IV-4: Current System - User Interaction Control Responsibility truth table 

 

U1 U2 U3 U4 UI = (U1 + U2 + U3 + U4) 

add_item.php 

T F T T T 

edit_item.php 

F F T T T 

delete_item.php 

F T T T T 

In the previous results the add_item.php component was changed in U1, U3 

and U4, when applied the logical OR its final state was (Changed for the Reason UI). 

The edit_item.php component was changed in U3 and U4, when applied the logical 

OR its final state was (Changed for the Reason UI). The delete_item.php component 

was also changed in U2, U3 and U4, when applied the logical OR the final state was 

(Changed for the Reason UI). 

 

Table ‎IV-5: Current System - View Representation Responsibility truth table 



33 
 

 

V1 V2 V3 V4 VR = (V1 + V2 + V3 + V4) 

add_item.php 

T T F T T 

edit_item.php 

F T T T T 

delete_item.php 

F T F T T 

In the previous results the add_item.php component was changed in V1, V2 

and V4, when applied the logical OR its final state was (Changed for the Reason 

VR). The edit_item.php component was changed in V2, V3 and V4, when applied 

the logical OR its final state was (Changed for the Reason VR). The delete_item.php 

component was changed in V2 and V4, when applied the logical OR its final state 

was (Changed for the reason VR). 

 

 

 

Table ‎IV-6: Current System - S.R.P. Violations truth table 

 
DH UI VR 

SRP-V1 

(DH.UI) 

SRP-V2 

(DH.VR) 

SRP-V3 

(UI.VR) 

add_item.php 

T T T T T T 

edit_item.php 

T T T T T T 

delete_item.php 

T T T T T T 



34 
 

In the previous table we find that the add_item.php component is violating 

the SRP principal in SRP-V1, SRP-V2 and SRP-V3. And the edit_item.php 

component is violating the SRP principal in SRP-V1, SRP-V2 and SRP-V3. As also 

the component delete_item.php component is violating the SRP principal in SRP-V1, 

SRP-V2 and SRP-V3. 

 Re-designed system results: 4.3

 

Table ‎IV-7: redesigned System - scenario evaluation 

 

Items Items_model index.php view.php 

Data Handling 

D1 False True False False 

D2 False True False False 

D3 False True False False 

D4 False True False False 

User Interaction 

Control 

U1 True False False False 

U2 True False False False 

U3 True False False False 

U4 True False False False 

View 

Representation 

V1 False False True True 

V2 False False True True 

V3 False False False True 

V4 False False True True 

 

Table ‎IV-8: redesigned System - Data Handling Responsibility truth table 



35 
 

 

D1 D2 D3 D4 DH = (D1 + D2 + D3 + D4) 

Items 

F F F F F 

Items_model 

T T T T T 

Index.php 

F F F F F 

View.php 

F F F F F 

In the previous table the ItemsModel component was changed in D1, D2, D3 

and D4, its final state was (changed for the reason DH). The components Item, 

Index.php and View.php not effected by those change scenarios.  

Table ‎IV-9: redesigned System - User Interaction Control Responsibility truth table 

 

U1 U2 U3 U4 UI = (U1 + U2 + U3 + U4) 

Items 

T T T T T 

Items_model 

F F F F F 

Index.php 

F F F F F 

View.php 

F F F F F 



36 
 

In the previous table the Item component was changed in U1, U2, U3 and U4, 

its final state was (changed for the reason UI). The components Item_model, 

Index.php and View.php not effected by those change scenarios.  

 

Table ‎IV-10: redesigned System - View Representation Responsibility truth table 

 V1 V2 V3 V4 VR = (V1 + V2 + V3 + V4) 

Items 

F F F F F 

Items_model 

F F F F F 

Index.php 

T T F T T 

View.php 

T T T T T 

In the previous table Index.php component was changed in V1, D2 and D4, 

its final state was (changed for the reason VR). And the View.php component was 

changed in V1, V2, V3 and V4, its final state is (changed for the reason VR). The 

components Item and Item_model not effected by those change scenarios.  

 

Table ‎IV-11: redesigned System - S.R.P. Violations truth table 

 
DH UI VR 

SRP-V1 

(DH.UI) 

SRP-V2 

(DH.VR) 

SRP-V3 

(UI.VR) 

Items 

F T F F F F 

Items_model 

T F F F F F 



37 
 

Index.php 

F F T F F F 

View.php 

F F T F F F 



38 
 

In the previous table, we found that all components are following the SRP 

principal with no violations. 

 Current system vs Re-designed System: 4.4

 

Table ‎IV-12: Current system vs Re-designed System 

Results Expression Current System Re-designed System 

S.R.P-V1 

3 0 

S.R.P-V1 

3 0 

S.R.P-V1 

3 0 

Total S.R.P Violations 

9 0 

 

In this chapter all change scenario sets evaluated against candidate 

architectures, and any SRP violations countered in each component was ranked, this 

resulted in 9 violations in the current system and 0 violations in the redesigned 

system. Since the current system has violations more than the redesigned system, 

then the redesigned system is evaluated as the system with the highest 

maintainability. 

  



39 
 

CHAPTER V  

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion: 

This study concludes that, successful implementation of MVC design pattern 

made each component of the software domain focused and distributed the 

development teams into three domains based on their skills (frontend developers, 

backend developers and database developers). Hence, the developers work closely to 

their skills and experience to produce a high quality components. Furthermore, the 

separation of the software components based on developers’ skills that required to 

develop making the parallel development easier and more efficient, which increases 

the system maintainability. 

The researcher found that ―Laravel‖ framework is the most efficient PHP 

framework, that fully providing stable scaffolding tools to generate M.V.C 

applications out of the box. 

5.2 Recommendations: 

This study have increased one of the most important software attributes 

(Maintainability), when the system also after the fully adoption will experience a 

huge traffic and handling a great load of data, where the system Scalability will need 

to be enhanced. We encourage more enhancement in the system scalability.  



40 
 

REFERENCES 

Abdullah, F., 2017. Evaluating Impact of Design Patterns on Software Maintainability and 

Performance, s.l.: s.n. 

Bass, L., Clements, P. & Kazman, R., 2003. Software Architecture in Practice, Second Edition. 

s.l.:Addison Wesley. 

Bengtsson, P., Nico, L., Jan , B. & Hans , v. V., 2000. Analyzing Software Architectures for 

Modifiability, s.l.: s.n. 

bishop, j., 2007. c# 3.0 design patterns: use the power of c# 3.0 to solve real-world 

problems. s.l.:oreilly. 

Brooks & Frederick, 1987. No Silver Bullet – Essence and Accident in Software Engineering, 

s.l.: s.n. 

Burbeck, S., 1992. How to use Model-View-Controller (MVC). s.l.:s.n. 

Buschmann, F. et al., 1996. pattern oriented software architecture: A system of patterns. 

s.l.:Chichester Wiley: Addison-Wesley. 

Chidamber, S. & Kemerer, C., 1994. A metrics suite for object oriented design. IEEE 

Transactions on Software Engineering, 20(6). 

Christoph, S., Felix, B. & Chris, V., 2003. SACAM: The Software Architecture Comparison 

Analysis Method, s.l.: s.n. 

Halstead & H., M., 1977. Elements of Software Science. Amsterdam: Elsevier North-Holland. 

s.l.:s.n. 

Hazzan, O. & Hadar, I., 2008. Why and how can human-related measures support software 

development processes?. The Journal of Systems and Software. 

Henry, S. & Kafura, D., 1981. Software Structure Metrics Based on Information Flow. IEEE 

Trans. Software Eng.. 

Hoffman, F., 2001. Architectural software patterns and maintainability: A case study. 

s.l.:s.n. 

Kazman, R., Len, B., Gregory, A. & Mike, W., 2007. SAAM: A Method for Analyzing the 

Properties of Software Architectures, s.l.: Texas Instruments. 

Martin, R. C., 2005. Agile Software Development, Principles, Patterns, and Practices. s.l.:s.n. 

McCabe, 1976. A Complexity Measure. IEEE Transactions on Software Engineering. 

Pressman, R., 1997. Software Engineering. A Practitioner‘s Approach. s.l.:McGraw Hill. 

R.E, W., n.d. Task Complexity: definition of the construct, organisational behaviour and 

human decision processes. s.l.:s.n. 



41 
 

Reenskaug, T. & James, C., 2009. The DCI Arcitecture: A New Vision of Object-Orinted 

Programming. [Online]  

Available at: http://www.artima.com/articales/dci_vision.html 

[Accessed 3 11 2017]. 

Rick, K., Mark, K. & Paul, C., 2000. ATAM: Method for Architecture Evaluation, s.l.: s.n. 

Roads, B. D., 2003. Domain-Driven Design. s.l.:s.n. 

Shao, J. & Yingxu Wang, APRIL 2003 . A new measure of software complexity based on 

cognitive weights, s.l.: s.n. 

Smith, S., 2018. Overview of ASP.NET Core MVC. [Online]  

Available at: https://docs.microsoft.com/en-us/aspnet/core/mvc/overview 

[Accessed 23 2 2018]. 

Smith, S., 2018. Overview of ASP.NET Core MVC. [Online]  

Available at: https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnet 

[Accessed 2 11 2017]. 

Stavrinoudis, D., Michalis Xenos & Dimitris Christodoulakis, August 1999. RELATION 

BETWEEN SOFTWARE METRICS AND MAINTAINABILITY, s.l.: s.n. 

Tarvainen, 2008. Adaptability Evaluation at Software Architecture Level. The Open Software 

Engineering Journal, pp. 1-30. 

Tran-Cao, D., Ghislain Lévesque & Jean-Guy Meunier , n.d. Software Functional Complexity 

Measurement with the Task Complexity Approach. s.l.:s.n. 

Wiki, 2014. Model View Controller History. [Online]  

Available at: wiki.c2.com/?ModelViewControllerHistory 

[Accessed 21 2 2018]. 

Wikipedia, 2014. SOLID. [Online]  

Available at: https://www.en.m.wikipedia.org/wiki/SOLID 

[Accessed 12 11 2017]. 

Züllighoven H., L. C. B. M., 2006. Software Architecture Analysis and Evaluation. 

International Conference on the Quality of Software Architectures. 

Zuse, H., 1991. Software Complexity Measures and Methods. s.l.:s.n. 

 



42 
 

Appendix A: The Current System (Items Management Module): 

 

A-1: The ―add_item.php‖ component: 
 
<?php 
session_start();include("connect.php"); 
include("user_style.php"); 
$name=$_POST[name]; 
$data=mysql_query(" 

select max(id) from items 
"); 
$no=mysql_fetch_array($data); 
$no=$no[0]+1; 
?> 
<html> 
<head> 
<title>last</title> 
<meta http-equiv="Content-Type" content="text/html; charset=windows-1256"> 
</head> 
<body bgcolor="#FFFFFF" leftmargin="0" topmargin="0" marginwidth="0" 
marginheight="0">  
<form action='save_item.php' method='post'> 
<table align='center' border='1' dir="rtl"> 
<tr> 
<?php 
echo" 
<th>رقم البنذ<th><input type='button' value='$no'><tr> 
<input type='hidden' name='no' value='$no'><tr> 
"; 
$data=mysql_query(" 
select * from items 
"); 
echo"<th>البنذ الزئيسي<th><select name='upper'> 
<option value='0'>بنذ رئيسي</option> 
"; 
while($info=mysql_fetch_array($data)) 
{ 
echo"<option value='$info[id]'>".$info[name]."</option>"; 
} 
echo"</select><tr>"; 
?> 
<th>اسم البنذ<th><input type='text' name='name'><tr> 
<th>الكود<th><input type='text' name='code'> 
</table><br><input type='submit' value='إضافة'></td> 
</body> 
</html>  



43 
 

A-2: The ―edit_item.php‖ component: 

<?php 
session_start();include("../connect.php");include("../user_style.php");$step=$_GET[step]; 
?> 
<html> 
<head> 
<title>Edit Item</title> 
<meta http-equiv="Content-Type" content="text/html; charset=windows-1256"> 
</head> 
<body bgcolor="#FFFFFF" leftmargin="0" topmargin="0" marginwidth="0" marginheight="0 
<?php 
echo"<center>";if(!isset($step)){$data=mysql_query("select * from items");echo" 
<form action='item_edit.php?step=1' method='post' name='myform' dir='rtl'> 
<select name='id' id='unit'> 
<option value='0'>أSelect Item</optio>"; 
while($info=mysql_fetch_array($data))  
{ 
echo "<option value='$info[id]' 
style='backgroundcolor:black;color:white'>".$info[name]."</option>"; 
} 
echo"<input type='button' value=”Continue”  onclick='edit()'>"; 
}else{ 
switch($step){ 
case 1: 
$id=$_POST[id]; 
$data=mysql_query("select * from items where id='$id'"); 
$info=mysql_fetch_array($data); 
echo"<form action='item_edit.php?step=2' method='post'> 
<input type='hidden' name='id' value='$id'> 
<table dir='rtl' align='center' border='1'> 
<tr><th>اسم البنذ<th><input type='text' name='name' value='$info[name]'> 
<tr><th>الكود<th><input type='text' name='code' value='$info[code]'> 
</table> 
<input type='submit' value='حفظ التعذيلات'> 
"; 
break; 
case 2: 
$id=$_POST[id]; 
$name=$_POST[name]; 
$code=$_POST[code]; 
$sql=mysql_query("update items set name='$name',code='$code' where id='$id'"); 
if($sql) 
{ 
$access_date=date("Y-m-d"); 
$access_time=date("h-i-s"); 
mysql_query(" 
insert into events_file values('','$_SESSION[myuser]',11,'$id','$access_date','$access_time') 
"); 
echo"<p dir='rtl' align='center'><font color='green'><b> تم حفظ التعذيلات

 ;"<b></font></p/>بنجاح
} 



44 
 

else 
{ 
echo" 
<p dir='rtl' align='center'> 
<font color='red'><b>لم يتم حفظ التعذيلات</b></font></p>"; 
} 
}//switch 
}// if second step or more   
?> 
</body> 
</html>  



45 
 

A-3: The ―delete_item.php‖ component: 

<?php 
session_start(); 
include("../connect.php"); 
include("../user_style.php"); 
$step=$_GET[step];?> 
<html> 
<head> 
<title>Edit Item</title> 
<meta http-equiv="Content-Type" content="text/html; charset=windows-1256"> 
</head> 
<body bgcolor="#FFFFFF" leftmargin="0" topmargin="0" marginwidth="0" 
marginheight="0"> 
<?php 
echo"<center>"; 
if(!isset($step)){ 
$data=mysql_query("select * from items"); 
echo"<form action='item_del.php?step=1' method='post' name='myform' dir='rtl'> 
<select name='id' id='unit'> 
<option value='0'>Select Item</optio>"; 
while($info=mysql_fetch_array($data)){ 
echo "<option value='$info[id]' style='background-
color:black;color:white'>".$info[name]."</option>"; 
} 
echo"<input type='button' value='حذف'  onclick='del()'>"; 
}else 
{ 
$id=$_POST[id]; 
$sql=mysql_query("delete from items where id='$id'"); 
if($sql){ 
$access_date=date("Y-m-d"); 
$access_time=date("h-i-s"); 
mysql_query("insert into events_file 
values('','$_SESSION[myuser]',16,'$id','$access_date','$access_time')"); 
echo"<p dir='rtl' align='center'><font color='green'><b>تم الحذف  بنجاح</b></font></p>"; 
}else{ 
echo"<p dir='rtl' align='center'><font color='red'><b>لم يتم الحذف</b></font></p>"; 
}}// if second step or more 
?> 
</body></html> 
 

  



46 
 

Appendix B: The redesigned System (Items Management Module): 

B-1: The ―ItemModel‖ component: 
 
<?php 
class ItemModel extends CI_Model { 
 Public $name; 
 Public $code; 
 Public $parent; 
 private $tableName; 
  
 public function __construct() 
 { 
  parent::__construct(); 
  $this->tableName = "items"; 
 } 
  
 public function create($name, $code, $parent) { 
  $this->name = $name; 
  $this->code = $code; 
  $this->parent = $parent; 
  $this->status = 0; 
   
  if($this->db->insert($this->tableName,$this)) { 
   return $this->get($this->db->insert_id()); 
  } else { 
   return false; 
  }  
 } 
  
 public function update($changed_id, $field_name, $new_value, $data_type) { 
  if($data_type == 'varchar') { 
   $query = "update ".$this->tableName." set ".$field_name." = 
'".$new_value."' where id=".$changed_id; 
  } else { 
   $query = "update ".$this->tableName." set ".$field_name." = 
".$new_value." where id=".$changed_id; 
  } 
  return $this->db->simple_query($query); 
 } 
  
 public function delete($id) { 
  $query = "delete from ".$this->tableName." where id=".$id; 
  return $this->db->simple_query($query); 
 } 
  
 public function getAll() { 
  return $this->db->get($this->tableName)->result(); 
 } 
  
 public function getById($id) { 
  $this->db->where('id',$id); 



47 
 

  return $this->db->get($this->tableName)->row(); 
 } 
} 
?> 

 

B-2: The ―Item‖ component: 
<?php 
class Item extends CI_Controller { 
 
 private $path; 
  
 public function __construct() 
 { 
  parent::__construct(); 
 } 
  
 public function index() 
 { 
        $this->load->model('ItemModel','self'); 
        $data['items'] = $this->self->getAll(); 
  $this->load->view($this->index, $data); 
 } 
 
 public function create() 
 { 
  $this->load->model('ItemModel','self'); 
 
  $name = $this->input->post('name'); 
  $code = $this->input->post('code'); 
  $parent = $this->input->post('parent'); 
   
  $newId = $this->self->create($name, $code, $parent); 
   
  if(is_object($newId)) 
  { 
   $parms = Array('id'=>$newId->id); 
   $response = Array( 
                'success' => true, 
                'message' => 'Item created successfully!' 
            ); 
  } 
  else  
  { 
   $response = Array( 
                'success' => false, 
                'message' => 'Item was not created' 
            ); 
  } 
  print_r(json_encode($response)); 
   
 } 
     



48 
 

 public function update() 
 { 
  $changed_id = $this->input->post('changed_id'); 
  $field_name = $this->input->post('field_name'); 
  $new_value = $this->input->post('new_value'); 
  $data_type = $this->input->post('data_type'); 
  
  $this->load->model('ItemModel','self'); 
  $result = $this->self->update($changed_id, $field_name, $new_value, 
$data_type); 
   
  if($result) { 
   $response = Array( 
                'success' => true, 
                'message' => 'Item updated successfully' 
            ); 
  } else { 
   $response = Array( 
                'success' => false, 
                'message' => 'Item was not updated' 
            ); 
  } 
  print_r(json_encode($response)); 
 } 
  
 public function delete() 
 { 
  $id = $this->input->post('id'); 
   
  $this->load->model('ItemModel','self'); 
  $result = $this->self->delete($id); 
   
  $items = $this->self->getAll(); 
   
  if($result == 1) 
  { 
   $response = Array( 
     'success' => 'true', 
     'message' => 'Item deleted successfully', 
     'items' => $items 
     ); 
  } 
  else  
  { 
   $response = Array( 
     'success' => false, 
     'message' => 'Item was not updated' 
     ); 
  } 
  print_r(json_encode($response)); 
 } 
} 



49 
 

 

B-3: The ―index.php‖ component:  

<?php 
    $itemsList = ""; 
    foreach($items as $item) { 
        $itemsList .= "<option value='".$item->id."'>".$item->name."</option>"; 
    } 
?> 
<html> 
<meta charset="utf-8"/> 
<head> 
<script language="javascript"> 
$( document ).ready(function () {  
 loadView('../items/getAll'); 
}); 
</script> 
</head> 
<body> 
<div class="panel panel-primary" style="position:fixed;left:0%;right:0%;top:33px;"> 
<div class="panel-heading" dir="rtl"> 
 <h3 class="panel-title header-font" align="right"> 
 <i class="glyphicon glyphicon-paperclip"></i> Items 
 <i class='glyphicon glyphicon-remove alone' style="float:left;" 
onclick="$('#generalViewer').hide();" title="close"></i> 
 </h3> 
 </div> 
  <div class="panel-body"  style="background-
color:rgba(162,162,211,0.8);overflow:auto;"> 
<div style="text-align:right;position:relative;width:100%;"> 
<div id="form" style="display:inline-block;width:57%;padding:0px;vertical-align:top;" 
dir="rtl"> 
<div class="panel panel-primary" style="width:100%;"> 
   <div class="panel-heading" dir="rtl"> 
  <h3 class="panel-title header-font"><i onclick="loadView('../items/getAll');" 
class="glyphicon glyphicon-list-alt"></i>  
  Current Items</h3> 
   </div> 
   <div class="panel-body" id="tank"  style="background-color:rgba(0,0,0,0.2);"> 
  <div> 
   <div id="viewLoader" dir="rtl" 
style="height:400px;overflow:auto"></div> 
  </div> 
   </div> 
 </div> 
</div> 
<div id="form" style="display:inline-block;width:40%;padding:0px" dir="rtl"> 
<div class="panel panel-primary" style="width:100%;"> 
 <div class="panel-heading" dir="rtl"> 
  <h3 class="panel-title header-font"> 
  <i class="glyphicon glyphicon-plus-sign"></i> New Item</h3> 
  </div> 



50 
 

  <div class="panel-body" id="accountFormHolder"  style="background-
color:rgba(0,0,0,0.2);"> 
      
<form> 
<div class="form-group"> 
    <input type="text" class="form-control" id="code" name="code" placeholder="Item 
Code"> 
</div> 
<div class="form-group"> 
    <input type="text" class="form-control" id="name" name="name" placeholder="Item 
Name"> 
</div> 
<div class="form-group"> 
    <select class="form-control" id="parent" name="parent" placeholder="Parent Item"> 
        <option value="0">Select Parent Item</option> 
        <?php 
            echo $itemsList; 
        ?> 
    </select> 
</div> 
</form> 
     
<div dir="rtl"> 
    <div class="form-group"> 
    <button id="add" class="btn btn-default button-font" 
onclick="create('../items/create','','');">Save</button>  
    <button id="res" class="btn btn-warning button-font" 
onclick="cancelCreation();">Cancel</button> 
    </div> 
</div> 
<div style="background-color:#ccc;" id="status"></div> 
</div> 
</div>   
</div> 
<div style="width:96%;text-align:right;margin-left:4%;" dir="rtl"> 
</div> 
</div> 
</div> 
</div> 
</div> 
 

B-4: The ―view.php‖ component: 

<?php  
$path = "../items/update"; 
$deletePath = "../items/delete"; 
?> 
<table class="table table-hover editableTable" width="80%" align="center" dir="rtl"> 
 <tr style="background-color:#cadfdf;"> 
    <td align="right"># 
    <td align="right">Code 
    <td align="right">Name 



51 
 

    <td align="right">Parent 
    <td align="center" width="120px" colspan="2">Action 
 </tr> 
<?php  
foreach($objects as $object) { 
    $itemsList = ""; 
    foreach($items as $item) { 
        if($item->id == $object->id) { 
            $itemsList .="<option value='".$object->id."' selected>".$object->name."</option>"; 
        } else { 
            $itemsList .="<option value='".$object->id."'>".$object->name."</option>"; 
        } 
    } 
 echo "  
 <tr id='".$object->id."'> 
     
  <td align='right'>".$object->id."</td> 
  <td align='right' ondblclick=\"editableTd(this,'".$path."','code','".$object-
>id."','varchar')\">".$object->code."</td> 
  <td align='right' ondblclick=\"editableTd(this,'".$path."','name','".$object-
>id."','varchar')\">".$object->name."</td> 
       
     <td align='right'> 
  <select onchange=\"updateCell(this,'".$path."','parent','".$object-
>id."','int','".$object->parent."')\">"; 
        <?=$itemList?> 
 echo" 
  </select> 
  </td>  
      
  <td width='60px' align='center'> 
   <i class='glyphicon glyphicon-remove alone' 
onclick=\"deleteObject('".$deletePath."',".$object->id.")\" title='Delete'></i>   
  </td> 
 ";  
} 
?> 
</table> 
 


	Cover
	research

