o) o) il

Sudan University of Science and Technology

Faculty of computer science and information technology

Redesigning the States’ Budget Management
System Using Model View Controller to
Increase Maintainability

hai aladiady cily ol 45 5) ga 2t g Slae) aUAT ananali Bals)
diluall 4,118 330 3 (Model View Controller) axesaill

A Thesis submitted in partial fulfillment of the requirements for
the Degree of Master of Science in Information Technology

By:
Omer Abdelmajeed Idrees Mohammed
Supervisor:

Dr. Tariq Omer Fadl Elsid

July 2018

DEDICATION

To my father and my mother, my wife and children, my brothers and sisters,
and my second family abdeldayem’s family, who are the most valuable people in my
life, To all my friends my honest mirror. To all of you a lot of thanks and you will

always be remembered with your support and kindness.

ACKNOWLEDGEMENTS

First of all praise and thank to Almighty Allah the Lord of the universe before
and after, who granted me success to accomplish this study and for everything in my
life.

Second, I would like to thank Dr. Hisham Mansour for the great effort that he

done in teaching us new web technologies during this study.

I would like to express my appreciation to my supervisor Dr. Tariq Omer for

his support and guidance.

“Peace and Blessings be upon our Prophet Mohamed”

ABSTRACT

In 2013 the ministry of finance and economic established the budget
management system, following the Sudanese national plan toward the E-government,
this system is now absolutely outdated and hard to adapt any new changes as a result
for its poor design quality. A new version of the system is redesigned implementing
the Model View Controller (MVC) pattern. This new version of the system is
evaluated by comparing the architecture of the current and the redesigned versions of
the system in terms of their maintainability, this comparison is done by the Analysis
method for Software Architecture Modifiability (ASAM), analyzing the single
responsibility principal (SRP) for both versions and reporting any violations that any
version has. For the current system the study found that the current system is not
following a known design pattern, or was designed in ad-hoc pattern, after applying
the analysis scenario found that all current system components are violating the
SRP, the reason why is lacking for maintainability. For the redesigned version, the
study found that all its components following the SRP which is evaluating it to have
a higher maintainability. Further research is recommended to assess the system
Scalability, where the system is expected to experience a huge traffic and handling a
great load of data after is fully adopted.

il

Adaall T A3jlsal) 2y alae) HUas L@y 4lall 535 i 2013 Sl

sha) Lisral s Jlad pe mocal Uls ALl 130 L2005 S0 asSn gn Gy gl a5l
& Lol alaill (he B A3 sl a3 Aaganal Baga A dai @lldy agle e g
axifi 23 4 Gy L (MVC), [laia) Cig peally (Model View Controller) apasill Lacs
Op Al ehals il e L dailly lpasaral slaal) danall Ailuall LUE Luals
Saanill ilimapl Ay jlane LB Jilat Aiph aladinly st Anladl) o34y L agie JS dy)lere
Ilaia) 4 g yaally (Analysis method for Software Architecture Modifiability)
Single Responsibility) agyral) saalsl)l dlgpuall o Jidaty cllys ,(ASAM),
Tasall 13g) ClSlgms) (o) oy cpellaill e JSU (SRP). hlaia) Ciyedlls (Principal
My Aasasd b daad ol oy ¥) alall o Auhall Casg us Lagie) \ghany
Slls sanlsd) Al gpeall Tane i aili€a anan o) 2ny e il glin Guls
O bl Cany learanat sbeall daall Gl W LTS dlaall L6 apal cucaids)
e el Ala LG dlla Lol Lpanii 5 il g Baalgll Al ypacal) Tanad aiti 435S asan
ade Je bia cllia S ALlS 5y ol slde) & ol any . Il ol
Jea lesls e s il aUsil) 0L Gad 0d) 3aS 8 ST Camally Sl 536y il
o bl o Al &dlal) Jal) ol J< R gineg §yainny Bifives Bypar Jany allail

DY) saly

Table of Contents

DEDICATION. . . oottt e e e 1
ACKNOWLEDGEMENT ... e e nee e 111
ABSTRACT .o e v
B e PP P PPN v
TABLE OF CONTENT ..ot i e e e e V1
LIST OF TABLES ...ttt e et et Vi
LIST OF FIGURES ... e Vil
LIST OF ABBREVIATION ...t 1X
LIST OF APPENDICES ... e X
(0 o F=T o) =T ol SRR 2
1.1 27T =4 Lo 101 s Vo LA PP 2
1.2 Problem StatemeNt:........cooiiiiiiie e 3
1.3 FAY o] o] o ol o PSR 3
1.4 Research Aims and ObJECLIVEScoivcuiiieiiiiiicccree e e e 4
1.5 Scope and lIMItAtioN:c.eiie et e e e are e e e eare e e e eaes 4
1.6 Evaluation and RESUIES:eoiiiiiiieeeeee ettt 4
1.7 ThESIS SEIUCLUIE .eoueiiiieieteee ettt sttt et sbe e sae e st et e b e enees 5
(0 0 =T o1 =T o | PSP 6
2.1 Software Maintainability:cccoiieciiiiie e 6
2.2 Design Pattern and Maintainability Enhancement:..........cccccceeiiieeciiieeee e, 8
2.3 Complexity MEaSUIrEMENT:eeiiii et e e e e e e e e e e e e e arereees 8
2.3.1 Computational ComMPIEXItY . ..coueii ittt e earee e e 9
2.3.2 Psychological COMPIEXitY:c..eeccreeiiiiieiiee et 9
2.4 The Single Responsibility Principal:......cccccoeiiiioiiiiicee e 10
2.4.1 Responsibility definition: ... 10
2.4.2 The principal [Imitation: ... e 11
2.5 The M.V.C. architectural design pattern:.........cccccooeeeciiieeee e, 12
251 Model ReSPONSIDIITIEScccvveeeieiiiee e e e 13
2.5.2 View Responsibility:cocciiiiiiiei e 13
2.5.3 Controller Responsibility:......cccveeiiiiiiiecieeeecee e 13

2.6 How the MVC improves the maintainability:ccccocvireiriiiiiiic e 13

2.7 Architecture analysis Methods:ccceivviiiiiiiiiie e 14
(00 F=T o1 =T o 1 | SR 16
3.1 The Analysis software architecture for modifiability method (ASAM).................. 16
3.2 SCeNArio €liCItAtiON: ..ccc.iiiieiieie e 17
3.3 SCenario EVAlUQtioN:ciiiiiiiiie ettt 18
3.4 RESUILS EXPIrESSION: c.eeiiiii ittt ettt e e et e e s sbae e e s sbee e e s sbaaeessbaeeeesnnes 18
3.5 RESUILS INterpretation: ... 18
3.6 Architecture deSCriptioN:iicciee e et e e et e e e e e 19
3.6.1 Current system archit@CtUIe:coccvieeeiiieee e e e 19
3.6.2 Redesigned system archit@CtUre:.......cooeeiecieeeicciiee e 24

(0 0T o1 =T ol Y PPN 29
4.1 Elicited Change SCeNario SELS:uiiiiciiiiiiiiee e 29
4.2 CUIreNnt SYSTEM FESUIES: ..uiiiiiiiiee et e e e e e e st re e e esareeeeas 31
4.3 Re-designed SYStem reSUILS:ccuvii i are e e e 34
4.4 Current system vs Re-designed SYSteM:......ccvieieciieie et 38
(00T T o1 =T o PPN 39
5.0 CONCIUSION ...ttt sttt et n e e 39
5.2 ReCOMMENAALIONS: 1. .eiiiiiiiiiiee ettt s st e 39
REFEIEINCES ...ttt sttt et e b e s bt e st e s bt e bt e bt e sbeesmeeeaeeeneean 40

vi

List Of Tables

TABLE 1: ELICITATED CHANGE SCENARIO SETS 1..vvteeeuureresuueesesureeessssseeesssneesssseeeessssesessssesssnsseessssseeessssneessnseeess 29
TABLE 1V-2: CURRENT SYSTEM — SCENARIO EVALUATION ...eeeuveerureesueesreesseessreessueesseessseesssesssseessessssessssasssseesns 31
TABLE IV-3: CURRENT SYSTEM - DATA HANDLING RESPONSIBILITY TRUTH TABLEevvteereeeraiinrieeeeseseninreeeeeeesasannes 31
TABLE 1V-4: CURRENT SYSTEM - USER INTERACTION CONTROL RESPONSIBILITY TRUTH TABLEveeruveesiveesieeesireesneens 32
TABLE IV-5: CURRENT SYSTEM - VIEW REPRESENTATION RESPONSIBILITY TRUTH TABLE....uuvveeerurreeessireeesnanneessnnneeens 32
TABLE 1V-6: CURRENT SYSTEM - S.R.P. VIOLATIONS TRUTH TABLEveeruveeereesureesueesreesseesseesseessesssseessesssseesas 33
TABLE IV-7: REDESIGNED SYSTEM - SCENARIO EVALUATION ... uuvveeeeereeesnureeeesueeeessuseeessseesssssseessssseeesssnneessnssenes 34
TABLE 1V-8: REDESIGNED SYSTEM - DATA HANDLING RESPONSIBILITY TRUTH TABLE ...cevuveeeureerreeseeesreesveesreessneenns 34
TABLE IV-9: REDESIGNED SYSTEM - USER INTERACTION CONTROL RESPONSIBILITY TRUTH TABLE ...ceevenevreeerireeeesereenns 35
TABLE IV-10: REDESIGNED SYSTEM - VIEW REPRESENTATION RESPONSIBILITY TRUTH TABLE «.ceeeevveeeeerreesnneeeeesvveeens 36
TABLE 1V-11: REDESIGNED SYSTEM - S.R.P. VIOLATIONS TRUTH TABLE ..veeeuveerureeeueesreesneesreesseesseessessssaessseesns 36
TABLE IV-12: CURRENT SYSTEM VS RE-DESIGNED SYSTEM ..ceeeuvveeieureeesureeeesteeesassseeessseessssseessssseeessssesessnsseees 38

vii

List Of Figures

FIGURE 1: MCCALL SOFTWARE QUALITY FACTORS.vteeeurteesaureresaurteessseeesassseresassesssanseesasssesessssseeessnseesssssenesann 6
FIGURE 2:1SO 9126 SOFTWARE QUALITY FACTORS ..teeetuuurrtteeeseseuunttteeesesasaunseeteeeesesaanssseeeeesesssnsssseeeesssansnseeeees 7
FIGURE 3: MODEM INTERFACE, BY ROBERT C. MARTIN....ccctttiiiiieeeciieeeeiree e steeeestreeeeere e e seavaee e snveeean
FIGURE 4: ILLUSTRATES THE M.V.C. ARCHITECTURAL DESIGN PATTERN

FIGURE 5: ASAM DIFFERENT STAGES TECHNIQUES RELATIONSHIP...uuvvtieiiieeeenureeeseereeesireeessareeesanreeesanneeesssnneesas
FIGURE 6: ADD_ITEM.PHP COMPONENTeeitiurtternurreeesureeeessreeessssesssssseessssseeessnsseessssseessnsseesssssesesnssseesssseees
FIGURE 7: EDIT_ITEM.PHP COMPONENTteeeuteesuteeeseessreeesesssseessessssessseesssesssessssessssessssessssesssessssesssessssesnns
FIGURE 8: DELETE_ITEM.PHP COMPONENT .e.uveeruteesureessreesseessreesseessseesseessseesssessssesssseesssesssseessesssseessesssseesns
FIGURE 9: THE CURRENT SYSTEM’S ARCHITECTURE, ITEMS MANAGEMENT MODULE......cccoivieeeriieeenireeesnnreeesnneeens 23
FIGURE 10: ITEM COMPONENT......ttteteesuteesreesreesseessreesseessseessessssessssessssessnsessssesssessssessssesssessssessssesssseesns 25
FIGURE 11: ITEM_MODEL COMPONENT ...tteeetreteeeurreeesreeeeassreeesssseesssnsssessssseeesssssesssssssessssseesssssessssssneessnseees 26
FIGURE 12: INDEX.PHP COMPONENT .. vtetuttesureesureesseessreesseessseessessssessssessssesssessssesssseesssesssseesssessssessssesssseesns 26
FIGURE 132 VIEW.PHP COMPONENT...cceiuttteeeuretesatreeesreeeeessseeessssesssssssessssseeessssseesssssseessnsssesssssessssssseesssseeen 27
FIGURE 14: THE RE-DESIGNED SYSTEM ARCHITECTURE ..c..vveeeuveerereesuseessreesseessseesssessssesssseesssessssessnsessssessssessssessns 28

viii

file:///C:/Users/Omer/Desktop/Presentation/thesis/research%20v09.docx%23_Toc524465567
file:///C:/Users/Omer/Desktop/Presentation/thesis/research%20v09.docx%23_Toc524465568

List Of Abbreviations

Acronym Definition
M.V.C Model View Controller
S.R.P Single Responsibility Principal
AS.AM Analysis software architecture for
modifiability

List of Appendices

APPENDIX A: THE CURRENT SYSTEM (ITEMS MANAGEMENT MODULE) CODE
APPENDIX B: THE REDESIGNED SYSTEM (ITEMS MANAGEMENT MODULE) CODEcvucvivecvavcerseerenecisnensnans 55

CHAPTER |

INTRODUCTION

1.1 Background:

In Software Engineering, a software have many attributes, those attributes
determine its quality. Maintainability is the most interesting of these attributes, since
any future changes, enhancements and faults correction would be categorized under
the maintainability attribute. The software with a high maintainability will decrease
the cost of maintenance, which is a basic aim of the software quality programs
(Stavrinoudis, et al., August 1999).

The maintainability of software is the degree to which it can be understood,
corrected, adapted and/or enhanced (Pressman, 1997). Software maintenance is the
costliest phase of the software life cycle, where requirements are always changing to
add a new feature or to change the business logic. Since requirements are always
changing, the software would be in need to be continuously maintained.

It’s all about design. A software design quality plays a great role in
determining the software maintainability. For this reason the software design needs
to be as good as possible, and to accomplish this task there are many design patterns
defined to improve the software design. Furthermore, applying design patterns is also
considered good since design patterns can speed up the development process by
providing tested and proven development paradigm. As concluded by Farooq “good
maintainability can be achieved by implementation of Design Patterns in software
development” (Abdullah, 2017)

In this research, the Model-View-Controller (M.V.C.) pattern is used to
improve the current system maintainability by enhancing the Ease of Modification

measured by the Single Responsibility Principal.

1.2 Problem Statement:

The current system is badly designed, no design pattern was adopted. Hence
the system became hard and expensive to maintain (fixing bugs and adding new
Features). Furthermore, the current system seem to be violating the Single
Responsibility Principal—which also decreased the system maintainability. The
Implementation of the M.V.C. Designing Pattern was proposed to solve this problem

by eliminating those violations to increase the system’s maintainability.

1.3 Approach:

This research investigates the current system and the re-designed system
against the Single Responsibility Principal violations. Apply some changes on the
system and report the SRP violations status for each system in the Results and
discussion chapter. Finally, deciding which system has a higher maintainability by
comparing the number of SRP violations found in each one. For simplicity, the Items

Management Module in both systems only will be evaluated.

1.4 Research Aims and Objectives

The aim of this study is to redesign the budget management system to
enhance its maintainability. Given the problem statement presented previously, the
objectives of this study are to:

- Implement the MVC architectural design pattern.
- Apply the SRP principal.

- Compare the architecture of the current and the redesigned systems.

1.5 Scope and limitation:

This research was conducted to increase the maintainability of the “budget
Management System” of the “River Nile State” during the 2017 — 2018 year.

Only the single responsibility principal is studied to measure the system
maintainability, observing the interactions of the three responsibilities: data handling,
user interaction control and view representation.

For simplicity and clearance, only the Budget Items Management module is
studied.

1.6 Evaluation and Results:

This research evaluating the maintainability of the current and the redesigned
systems by comparing the architecture of both of them, adopting the SRP violation as
a comparison factor, analyzing each architecture by apply a scenario of changes and
reporting any violations found. Finally evaluating the system with the minimum

number of violations as the system with the higher maintainability.

1.7 Thesis Structure

This thesis comprises five chapters, followed by references and appendices.
Chapter 1: gives an introduction to the research subject.

Chapter 2: reviews the literature of maintainability, SRP principal, MVC
pattern and the Scenario-Based software architecture analysis.

Chapter 3: presents the research methodology.

Chapter 4: presents the results and discussions.

Chapter 5: presents the conclusions of the work and some recommendations.

CHAPTER II

LITERATURE REVIEW

Software maintainability enhancement is a very interesting topic in the
research community, since maintainability affects almost every stage of the software
development stages. What is really challenging is finding a model that covering a
wide range of the characteristics that affects the maintainability. In this chapter we
reviewing the software maintainability attribute, studying how design patterns
enhance maintainability covering the SRP principal, MVC pattern and the software

architecture analysis methods.

2.1 Software Maintainability:

Software maintainability is a software quality factor that defined as the
degree to which an application is understood, repaired, or enhanced.

McCall, Richards, and Walters defined many factors that affect the software
quality, categorized in many aspects of a software product: product operation,
product revision and product transition. These three categories and their related

factors are shown in Figure (1):

Maintainability Portability
Flexibility Reusability
Testability Interoperability

PRODUCT REVISION PRODUCT TRANSITION

PRODUCT OPERATION

Correctness Usability Efficiency
Reliability Integrity

Figure 1: McCall software quality factors

This model categorize the maintainability in line with flexibility and testability under
the product revision, where all those three factors at some point affected by the
developers’ abilities. Further, the maintainability is divided into four sub-attributes
according to the ISO 9126, shown in figure (2), they: Analyzability, Changeability,
Stability and Testability.

Analysability Testability
Changeability Stability

Maintaina-

Attractiveness IS

Operability

Ressource utilisation
Time behaviour

Learnability
Understandability

Suitability
Interoparability

Portability

+ Compliance

Regularity Adaptability
g;ztﬁ;y Replaceability
Installability

Co-existence

Fault tolerance Maturity

Recoverability

Figure 2: 1SO 9126 software quality factors

The sub-attribute changeability of the maintainability is the targeted quality factor
that needs to be addressed by this work, where the current system is hard and

expensive to be changed.

2.2 Design Pattern and Maintainability Enhancement:

Abdullah said that Design Patterns are known to provide more maintainable
and reusable code, as also in his research “Evaluating Impact of Design Patterns on
Software Maintainability and Performance” concluded that good maintainability can
be achieved by implementation of Design Patterns in software development
(Abdullah, 2017). Similarly, Bass claimed that: “an effective architecture is one in
which the most likely changes are also the easiest to make” (Bass, et al., 2003).
Moreover, Buschmann defines two patterns to help designing for change, as he said
that “Design for change is therefore a major concern when specifying the architecture
of a software system” (Buschmann, et al., 1996). Also Fredrik Hoffman claim that
M.V.C may enhance some aspects of maintainability, e.g. understandability, and
describing that the way of evaluating this aspects of maintainability “could be to use
a group of developers as subjects to experiment on” (Hoffman, 2001). All the
previous studies indicates that applying design patterns on the software development
improves software quality, specifically the software maintainability. Hence this work

conducted to redesign the current system following the M.V.C pattern.

2.3 Complexity Measurement:

Software maintainability is linked to the software complexity, as Zuse said:
“the term complexity measure is a misnomer. The true meaning of the term software
complexity is the difficulty to maintain, change and understand software. ”, which it
can be divided into two parts: 1) Computational complexity: “refers to algorithm
efficiency in terms of the time and memory needed to execute a program” and 2)
Psychological (or cognitive) complexity: “refers to the human effort needed to
perform a software task, or, in other words, the difficulty experienced in
understanding or performing such a task” (Zuse, 1991), the following is a list of
related work to the software complexity measurement, grouped based on Zuse’s

complexity classification:

2.3.1 Computational complexity:

Also known as Essential complexity (Brooks & Frederick, 1987), which
complexity that caused by the characteristics of the problem to be solved, the
following is a list of related work in this type of complexity:

- The Cyclomatic complexity (McCabe, 1976), introduce a quantitative
measure of the number of linearly independent paths through a
program'’s source code.

- Halstead complexity measures (Halstead & H., 1977), Introduced this
measures which are computed statically from the code.

- Software Structure Metrics Based on Information Flow (Henry & Kafura,
1981), introduced these metrics which measure the procedure complexity by
calculating number of local flows into that procedure plus the number of data
structures from which that procedure retrieves information and calculating the
number of local flows out of that procedure plus the number of data structures
that the procedure updates.

- A Metrics Suite for Object Oriented Design (Chidamber & Kemerer,
1994), introduced these metrics weighting methods per class, coupling
between object classes, response for a class, number of children, depth of
inheritance tree and lack of cohesion of methods.

2.3.2 Psychological complexity:

Also known as Accidental complexity (Brooks & Frederick, 1987), is
complexity that Relates to difficulties a developer faces, the following is a list of
related work in this type of complexity:

- The cognitive weight, introduced in 2003 (Shao & Yingxu Wang, APRIL

2003), which is defined as the is the degree of difficulty or relative time and

effort required for comprehending a given piece of software modelled by a

number of basic control structures.

- Task complexity model, introduced by Wood (R.E, n.d.), is generally

representative of task complexity and defined four theoretical frameworks: 1)

https://en.wikipedia.org/wiki/Source_code

task qua task, 2) task as behavior requirements, 3) task as behavior

description and 4) task as ability requirements.

2.4 The Single Responsibility Principal:

The Single Responsibility Principle (SRP), is one of the five design principles
intended to make software designs more understandable, flexible and maintainable
(Wikipedia, 2014). And this principal states that each component of the software
module must be responsible for only one responsibility. Robert C. Martin defines this
principle as following: "A class should have only one reason to change.” (Martin,
2005)

2.4.1 Responsibility definition:

The responsibility is defined as “a reason for change” according to Robert C.
Martin, Describing that a class or component with more than one motive for
changing is a class with more than one responsibility. As an example, Martin
considered a modem interface (Figure 1), has two responsibilities. The first is
connection management. And the second is data communication.

public interface Modem

{
public void Dial (string pno);
public wvoid Hangup () ;
public wvoid Send(char c);
public char Recwv() ;

Figure 3: Modem Interface, by Robert C. Martin

The dial and hangup functions manage the connection of the modem; the

send and recv functions communicate data.

10

https://en.wikipedia.org/wiki/Robert_C._Martin

2.4.2 The principal limitation:

The current S.R.P is concerned with the class or the software component
structure only (cohesion and coupling), based on the functionality of that class or
component. In this there may be a class or a component with only one functionality,
but it may requires more than one developing skills in multiple technologies, this
issue of having more than one development skills and technologies required to
develop the same class or component will lead to a complicated maintenance tasks,
where more communication needed, multiple-technologies developers and reducing
the chances of the paralleling development ability which leads to consume more time
in the development.

To get over this limitation this study extends the single responsibility
principal by defining another dimension to it. This dimension takes the required
development skills into consideration, this way responsibilities are defined also based
on the development abilities. Hence the extended SRP may be defined also as: “a
component should have only one reason to develop”. Where the responsibility now is
defined as “a reason for development”. This extension defines three types of
responsibilities that this work study, are: 1) data handling responsibility, 2) user
interaction control responsibility and 3) view representation responsibility. These
responsibilities are facilitated by the MVC architectural design pattern which is

presented in the following section.

11

2.5 The M.V.C. architectural design pattern:

@ Respone Controller @ Update
+ field: Type @
(>+ method(): Type Motify
- — F 3
: e O'e
User
@ provide|data Load Model
Request to view view
+ field: Type
I [+ method(): Type
View 1 View 2
NN
View 20| | Viewn

Figure 4: lllustrates the M.V.C. architectural design pattern

Database

The M.V.C. in short, is an architectural design pattern invented at Xerox Parc
in the 70's, probably by Trygve Reenskaug (Wiki, 2014). It divides a given
application into three interconnected parts (Burbeck, 1992). This is done to separate

the internal representations of information from the ways information is presented to

and accepted from the user (Reenskaug & James, 2009).

M.V.C. became one of the first approaches to describe and implement

software constructs in terms of their responsibilities (Wiki, 2014). In this approach,

each component has its own responsibility, these responsibilities are defined

according to Steve Smith (Smith, 2018) as following:

12

https://ardalis.com/

2.5.1 Model Responsibilities

The Model in an M.V.C. application represents the state of the application
and any business logic or operations that should be performed by it. Business logic
should be encapsulated in the Model, along with any implementation logic for

persisting the state of the application.

2.5.2 View Responsibility:

The View is responsible for presenting content through the user interface.
There should be minimal logic within the View. Otherwise, any logic in the View

should be related to presenting content.

2.5.3 Controller Responsibility:

The Controller is the component that handles user interaction, works with the
model, and ultimately selects a View to be rendered. In an M.V.C. application, the
View only displays information; the controller handles and responds to user input
and interaction. In the M.V.C. pattern, the controller is the initial entry point, and is
responsible for selecting which Model types to work with and which View to render.

Hence, its name the Controller; it controls how the app responds to a given request.

2.6 How the MVC improves the maintainability:

The MVC separates the responsibilities between the three parts, this
delineation of responsibilities increases the maintainability in terms of complexity
because it’s easier to code, debug, and test (i.e. the model, view, or controller) that

13

has a single job (that follows the Single Responsibility Principle) (Smith, 2018).
Furthermore, the MVC supports the extended SRP principal, by offering a solution
that best fits the system under study. Where the system components are supported by
the MVC as following:

- Data handling component supported by the Model layer

- User interaction component supported by the Controller layers

- View representation component supported by the View layer

2.7 Architecture analysis methods:

A software architecture describes the structure of a software system on an
abstract implementation independent level. (Zillighoven H., 2006). And to compare
alternative software architectures, the candidate architectures must be analyzed first,
and then using the analysis results in determining the architecture that is the best
choice. There are many methods serve this purpose, the earliest on is the architecture
tradeoff analysis (ATAM) method (Rick, et al., 2000), analyzing various quality
attributes and identifying a tradeoff points between them. Also, the Software
Architecture Analysis Method (SAAM) method (Kazman, et al., 2007), this method
is used to provide a method for determining which architecture supports an
organization’s needs. Moreover, the Software Architecture Comparison Analysis
Method (SACAM), which provides organizations with a rationale for an architecture
selection process by comparing the fitness of software architecture candidates being
used in envisioned systems, this method requires the availability of architectural
documentation to perform the comparison criteria analysis (Christoph, et al., 2003).
Furthermore, the Analysis of software architecture for maintainability (ASAM)
method (Bengtsson, et al., 2000) was proposed to analyze the software architecture
for modifiability. The first three methods ATAM, SAAM and SACAM are used to
analyze any quality attribute or attributes of interest. But ASAM is only specific for
the modifiability attribute. Hence, the ASAM method it will be used to compare the

architecture of the current and the redesigned systems in terms of maintainability.

14

In this chapter we looked deep in the maintainability attribute in both
“McCall” and the <1ISO 9126” models, identifying the correlated attributes and sub
attributes, as also managed to capture the knowledge of how design pattern improves
the maintainability. In terms of measurement we reviews both the computational and
psychological complexity measurements, extending the SRP principle to bet fits the
purpose of this study. Furthermore, we decided software architecture analysis is

works for this work

15

CHAPTER 111

RESEARCH METHODOLOGY

Software architecture analysis to predict quality attributes of the system under
design is a very important activity in every stage of the development. Most methods
used to predict quality attributes are based on code metrics, which it will makes the
prediction available after the code is present, which may discover problems too late.
Hence, scenario-based methods were proposed to address this limitation where they
can be conducted in the early stages of the development. In this chapter we will
present the ASAM method, determine the goal of the analysis, defining scenarios
elicitation, scenario evaluation, scenario result expression, scenario results

interpretation techniques and describe the software architecture.

3.1 The Analysis software architecture for modifiability method (ASAM):

This is a Scenario-Based architecture analysis method, proposed by
Bengtsson. That can be used for three different goals: cost prediction, risk
assessment and software architecture selection. Consisting of five steps: setting the
analysis goal, describing software architecture, eliciting scenarios, evaluating
scenarios and interpreting results. Using certain techniques in the following steps:
scenario elicitation, scenario evaluation and architecture description, based on the

relationship between those techniques, as shown in the figure (5).

16

Scenario
elicitation
technique

\

Goal of the

analysis

~

Architecture
description
technique

Scenario
evaluation

technique

—'
determines

Figure 5: ASAM different stages techniques relationship

Based on the goal of the analysis, a technique for scenario elicitation and the
scenario evaluation techniques are selected. Subsequently, architecture description
technique is selected. The goal that best fits the purpose of this study is the software

architecture selection, to find the architecture with the higher maintainability.

3.2 Scenario elicitation:

Change scenario elicitation is the process of finding and selecting the change
scenarios that are to be used in the evaluation step of the analysis. There are two
approaches for selecting a set of scenarios: top-down and bottom-up. This study use
the top-down approach, by using some predefined classification of change categories
to guide the search for change scenarios, those categories were derived from the
domain of interest, which is the component responsibility, concluded into three
categories:

- Data Handling (DH) category: where all changes classified under this
category are being developed to handle the system data.

- User Interaction (Ul) category: where all changes classified under this
category are being developed to affecting the control of the user interaction

with the system.

17

- View representation (VR) category: where all changes classified under this

category are affecting the way the user interface.

3.3 Scenario Evaluation:

As a subsequent to the scenario elicitation, the scenario effect on the
architecture should be evaluated. Since the change scenario sets were elicited
according to the SRP principal, we assume that there are no ripple effects, where
each change will affect only one component. This study evaluates the change

scenario by determining which component was effected by the change.

3.4 Results expression:

According to this study scope which is adopting only the SRP principal as
comparison criterion, we expressing the results of the scenario evaluation by ranking

the candidate architectures depending on their violations to the SRP principal.

3.5 Results Interpretation:

Since the goal is to compare candidate architectures, results interpretation is
aimed at deciding which candidate have higher maintainability. Whereas, the results
expression was ranking the candidate architectures, then based on the minimum
violation criterion we interpret that the candidate architecture with the minimum

violation is the candidate with the higher maintainability.

18

3.6 Architecture description:

To be possible to evaluate the scenario sets and make the comparison
between the current system and the redesigned, we need to describe both systems’
architectures, which should provide information about each component

decomposition and the relationships between the system components.

3.6.1 Current system architecture:

The current system is a web based application, built on html, css, php and sql
technologies, is running on apache web server and its database is running on a mysq|l

dbms. Consists of the following components:

Add_item.php component:

This component used to create a new item, and contains all steps required to do that
starting by retrieving the last ID and all available items from database, representing
the new item form view for the user to be able to enter the new item information,
receiving the submitted data which contains the item information, and make some
validations and security checks, retrieving the item data from the database using the
ID, saving the item information by saving the submitted data to the database and
representing the status message view which will show either success message when
the item inserted successfully or error message when system fails saving the item.
This description can be encoded into the following
Which is responsible for the following:

- Getting the next id from database (getNextldFromDatabase)

- Getting list of available items from database (getListOfAvailableltems)

- Represent the new item form view (representNewltemFormView)

- Receiving and processing submitted data

(receivingAndProcessingSubmittedData)
- Save the new item to database (saveltemToDatabase)

- Represent save status message view (representSaveStatusMessageView)

19

getNextldFromDatabase getListOfAvailableltems

Y

representNewltemFormView

\

receivingAndProcessingSubmittedData

\J

saveltemToDatabase

representSaveStatusMessageView

Figure 6: add_item.php component

20

Edit_item.php component:

This component used to update an existing item, and contains all steps
required to do that starting by retrieving all available items from database,
representing the list of items view for the user to be able to select which item to edit,
receiving the submitted data which contains the selected item ID, and make some
validations and security checks, retrieving the item data from the database using the
received ID, representing the edit form view for the user to be able to edit the item
information, receiving and make some validations and security checks on the
submitted data which is the update information of the selected item, updating the
item information by saving the submitted data to the database and representing the
status message view which will show either success message when the item updated
successfully or error message when system fails saving the updated item. This
description can be encoded into the following:

- Get list of available items from database (getListOfAvailableltems)

- Represent items list view (representltemsListView)

- Receiving and process submitted data (receivingAndProcessSubmittedData)

- Retrieving select item data (retreivingSelectltemData)

- Representing item edit form view (representingltemEditFormView)

- Receiving and processing received edited data

(receivingAndProcessingRecievedEditedData)

- Save edited item to database (saveEditedltemToDatabase)

- Represent update status message view (representUpdateStatusMessageView)

21

getListOfAvailableltems representltemsListView

y

receivingAndProcessSubmittedData retreivingSelectitemData

representingltemEditFormView

*_1

receivingAndProcessingRecievedEditedData saveEditedlitemToDatabase

Y

representUpdateStatusMessageView

Figure 7: edit_item.php component

Delete_item component:

This component used to delete an item, and contains all steps required to do that
starting by retrieving all available items from database, representing the list of items
view for the user to be able to select which item to delete, receiving the submitted
data which contains the item ID and make some validations and security checks,
deleting the item from the database using the received ID and representing the status
message view which will show either success message when the item deleted
successfully or error message when system fails deleting the item. This description
can be encoded into the following:

- Which is responsible for the following:Get list of available items

(getListOfAvailableltems)

- Represent items list view (representltemsListView)

- Receiving and process submitted data (receivingAndProcessSubmittedData)

- Delete selected item from database (deleteSelectedltemFromDatabase)

- Represent delete status message view (representDeleteStatusMessageView)

22

getListOfAvailableltems representltemsListView

\

receivingAndProcessSubmittedData deleteSelectedltemFromDatabase

Y

representDeleteStatusMessageView

Figure 8: delete_item.php component

There are no relationships between this module components, where each

component work isolated containing all the required logic to do its job as shown in

figure (9).

Items Management Module ‘

. Ej—b—b—B -

.
User
— Database

add_item.php edit_item.php delete_item.php
i |
Responsibilities|
h 4 h 4 h 4 A 4 ¥ A 4 ¥ ¥ ¥
View Representation Business Logic Controlling Data Handling

Figure 9: the current system’s architecture, Items Management Module

23

3.6.2 Redesigned system architecture:

The system components are a combination of Classes and PHP files those
grouped logically to form a module. As the (Figure 12) illustrates, that the Items

Management Module consists of the following four components:

Item component:

This component is classified as a controller, which described in the MVC
pattern in section (2.5.3). At the first time the user access the Item module this
component calls the “getAll” method which exposed by the Item model component
and loading the index.php and view.php components to the user interface passing
them the retrieved items. In addition, when the user enter ad submit new item
information this controller will receive the submitted data and make some validations
and security checks and then pass it to the “store” method that exposed by the
Item_model component, also when the user update or delete an item the data will be
passed to this controller and it will do the validations and security checks as usual
and then call the “update” method for the update action or the “delete” method for
the delete action, for modeling purposes this functionality will be encoded as
following:

- Receiving and processing Submitted data

(receivingAndProcessingSubmittedData)

- Passing new item data to the Item_model component

(passNewltemDataToltemModel)

- Retrieve available items from Item_model component

(retreiveAvailableltemsFromitemModel)

- Passing updated item data to Item_model component

(passUpdatedItemDataToltemModel)

- Pass deleted item data to Item_model component

(passDeletedItemDataToltemModel)

- Load index.php component and pass available items data

(loadIndexAndpassAvailableltemsData)

- Load view.php component and pass available items data

(loadViewAndpassAvailableltemsData)

24

receivingAndProcessingSubmittedData

retreiveAvailableltemsFromitemModel
passNewltemDataToltemModel

Y passUpdateditemDataToltemModel

loadIndexAndpassAvailableltemsData

passDeletedltemDataToltemMaodel

Y

loadViewAndpassAvailableltemsData

Figure 10: Item Component

Item_model component:

This component is classified as a Model, which described in the MVC pattern in
section (2.5.1), and is exposes the “store” method that receiving item data as
parameters and store this data in the database, “getAll” method that retrieves and
returns all items from database, “update” method that receives update parameters
(ID, field name and the new value) and update the item information on the
database and return either true when success or false when fails and the “delete”
method that receives an ID and deleting the item with that ID from the database,
for modeling purposes this functionality are encoded as following:

- Save item to database (saveltemToDatabase)

- Retrieve available items from database (rereiveAvailableltemsFromDatabase)
- Update item on database (updateltemOnDatabase)

- Delete item from database (deleteltemFromDatabase)

25

saveltemToDatabase

rereiveAvailableltemsFromDatabase

updateltemOnDatabase

updateltemOnDatabase

Figure 11: Item_model component

Index.php component:

This component is classified as a View in the MVC pattern, which described
in the MVC pattern in section (2.5.2), and is representing the new item form where
the user enter the new item information as also represent the view that display the
status message of adding new item, for the modeling purposes this functionality
encoded as following:

- Represent new item form view (representNewltemFormView)
- Represent item save status message view

(representltemSaveStatusMessageView)

representNewltemFormView

representltemSaveStatusMessageView

Figure 12: index.php component

view.php component:

26

This component is also classified as a View in the MVC pattern, which
described in the MVC pattern in section (2.5.2), and is represents the following
views: items list view, item edit form view, item delete form view, item update status
message view and the delete item status message view, for the modeling purposes
this functionality encoded as following:

- Represent items list view (representltemsListView)

- Represent item update form view (representltemUpdateFormView)

- Represent item delete form view (representltemDeleteFormView)

- Represent item update status message view

(representltemUpdateStausMessageView)

- Represent item delete status message view

(representltemDeleteStatusMesageiew)

representitemsListView representitemUpdateFormView

representitemUpdateFormView representltemUpdateStausMessageView

representitemDeleteStatusMesageiew

Figure 13: view.php component

27

Items Management Module

URI Request

=
() | N e

-I

Database

oO— URI Functicn ItemModel
Request Call
User M)
index.php view.php
Responsibilities
Y h 4 Y \
View Representation Business Logic Controlling Data Handling

Figure 14: the re-designed system architecture

As show in figure (14), there are many relationships among these

components, where the Item component calling the methods that exposed by

Item_model component and also load views to the user interface according to the

requested URI.

In this chapter we reviewed the ASAM method and selected the required

techniques required to conduct the comparison of the architecture of both current ad

redesigned systems. Furthermore, we described both systems’ architectures.

28

CHAPTER IV

RESULTS AND DISCUSSION

Deciding which system has the highest maintainability will help us to decide

if the redesigned system is increasing the maintainability. In this chapter the change

scenario sets are evaluated and their effects are presented and interpreted by using

simple logic rules, the decision is made according to the effects interpretation.

4.1 Elicited Change Scenario Sets:

Since the goal of the analysis is to compare different architectures, then the

scenario elicitation technique followed is, to concentrate on scenarios that highlight

differences between those candidates. A list of elicited scenarios shown in table (),

after following the selected technique.

Table 1: elicited change scenario sets

Code Description
Category
D1 | Adding a new field (created by) to store the creator’s user ID
OH D2 | Adding a new field (authority level) to store the authority
level to access this item
D3 | Adding a new field (last_update) to store the last (date and
time) for any update occurs on the item record
D4 | Changing the Database connectivity using the PDO connection
rather than the legacy mysql_connect
Ul | Change the business logic of creating a new item to consider
Ul storing the current (user_id) and the (item_authority level),

when adding a new item

29

U2 | Change the business logic of deleting items, to authorize or
prevent users from deleting items, according to the
(user_authority_level) for the current user

U3 | Change the business logic of retrieving items, to filter out the
list of items according to the (user_authority level) for the
current user

U4 | Logging the current event

V1 | Add a new field to the New Item form. to select the authority
level required to access the item under creation

VR V2 | Add a validation, to prevent the user from submitting Null
Values

V3 | Adding a confirmation message for updating item information

V4 | Change the response message to be able to handle the

authorization messages

30

4.2 Current system results:

Table IV-2: current system — scenario evaluation

add_item.php edit_item.php | delete_item.php

D1 True False False

D2 True True False
Data Handling D3 True True False

D4 True True True

Ul True False False

U2 False False True
User Interaction

U3 True True True

Control

U4 True True True

V1 True False False

V2 True True True

View

V3 False True False
Representation

V4 True True True

Table IV-3: Current System - Data Handling Responsibility truth table

D1 | D2 | D3 | D4 DH = (D1 + D2 + D3 + D4)

T T | T|T T
add_item.php

F T | T|T T
edit_item.php

31

delete_item.php

In the previous table, the add_item.php component was changed in D1, D2,
D3 and D4, when applied the logical OR, its final state was (Changed for the reason
DH). The edit_item.php component was changed in D2, D3 and D4, when applied
the logical OR its final state was (Changed for the reason DH). The delete_item.php
component was changed in D4, when applied the logical OR its final state was
(Changed for the reason DH).

Table IV-4: Current System - User Interaction Control Responsibility truth table

Ul | U2 |u3| u4 Ul = (UL + U2 + U3 + U4)
T F T T T
add_item.php
F F T T T
edit_item.php
F T T T T
delete_item.php

In the previous results the add_item.php component was changed in U1, U3
and U4, when applied the logical OR its final state was (Changed for the Reason Ul).
The edit_item.php component was changed in U3 and U4, when applied the logical
OR its final state was (Changed for the Reason Ul). The delete_item.php component
was also changed in U2, U3 and U4, when applied the logical OR the final state was
(Changed for the Reason Ul).

Table IV-5: Current System - View Representation Responsibility truth table

32

V1 | V2 V3 | V4 VR =(V1+V2+V3+V4)

T T|F | T T
add_item.php

F T | T | T T
edit_item.php

F T F | T T

delete_item.php

In the previous results the add_item.php component was changed in V1, V2
and V4, when applied the logical OR its final state was (Changed for the Reason
VR). The edit_item.php component was changed in V2, V3 and V4, when applied
the logical OR its final state was (Changed for the Reason VR). The delete_item.php
component was changed in V2 and V4, when applied the logical OR its final state

was (Changed for the reason VR).

Table IV-6: Current System - S.R.P. Violations truth table

SRP-V1 SRP-V2 SRP-V3

DH | Ul | VR
(DH.Ul) | (DH.VR) (ULVR)

T T T T T T
add_item.php

T T T T T T
edit_item.php

T T T T T T

delete_item.php

33

In the previous table we find that the add_item.php component is violating
the SRP principal in SRP-V1, SRP-V2 and SRP-V3. And the edit_item.php
component is violating the SRP principal in SRP-V1, SRP-V2 and SRP-V3. As also
the component delete_item.php component is violating the SRP principal in SRP-V1,
SRP-V2 and SRP-V3.

4.3 Re-designed system results:

Table IV-7: redesigned System - scenario evaluation

Items Items_model | index.php view.php
D1 False True False False
D2 False True False False
Data Handling | D3 False True False False
D4 False True False False
Ul True False False False
u2 True False False False
r Interaction
User Interactio U3 True False False False
Control
U4 True False False False
V1 False False True True
V2 False False True True
View
V3 False False False True
Representation
V4 False False True True

Table IV-8: redesigned System - Data Handling Responsibility truth table

34

D1 | D2 | D3 D4 DH = (D1 + D2 + D3 + D4)

F F|F F F
Items

T T | T | T T
Items_model

F F F|F F
Index.php

F F | F F F
View.php

In the previous table the ItemsModel component was changed in D1, D2, D3
and D4, its final state was (changed for the reason DH). The components Item,

Index.php and View.php not effected by those change scenarios.

Table IV-9: redesigned System - User Interaction Control Responsibility truth table

Ul | U2 U3 U4 Ul = (Ul + U2 + U3 + U4)

T | T /| T|T T
Items

F/ F | F F F
Items_model

F F F F F
Index.php

F F | F|F F
View.php

35

In the previous table the Item component was changed in U1, U2, U3 and U4,
its final state was (changed for the reason Ul). The components Item_model,

Index.php and View.php not effected by those change scenarios.

Table IV-10: redesigned System - View Representation Responsibility truth table

V1 V2 | V3 | V4 VR = (V1 + V2 + V3 + V4)
F F | F F F
Items
F F | F F F
Items_model

T T F T T

Index.php
T T T T T

View.php

In the previous table Index.php component was changed in V1, D2 and D4,
its final state was (changed for the reason VR). And the View.php component was
changed in V1, V2, V3 and V4, its final state is (changed for the reason VR). The

components Item and Item_model not effected by those change scenarios.

Table IV-11: redesigned System - S.R.P. Violations truth table

SRP-V1 SRP-V2 SRP-V3
DH | Ul | VR
(DH.UI) (DH.VR) (ULVR)
F T F F F F
Items
T F F F F F
Items_model

36

Index.php

View.php

37

In the previous table, we found that all components are following the SRP

principal with no violations.

4.4 Current system vs Re-designed System:

Table IV-12: Current system vs Re-designed System

Results Expression

Current System

Re-designed System

Total S.R.P Violations

3 0
S.R.P-V1

3 0
S.R.P-V1

3 0
S.R.P-V1

9 0

In this chapter all change scenario sets evaluated against candidate

architectures, and any SRP violations countered in each component was ranked, this

resulted in 9 violations in the current system and O violations in the redesigned

system. Since the current system has violations more than the redesigned system,

then the redesigned system

maintainability.

38

is evaluated as the system with the highest

CHAPTER YV

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion:

This study concludes that, successful implementation of MVC design pattern
made each component of the software domain focused and distributed the
development teams into three domains based on their skills (frontend developers,
backend developers and database developers). Hence, the developers work closely to
their skills and experience to produce a high quality components. Furthermore, the
separation of the software components based on developers’ skills that required to
develop making the parallel development easier and more efficient, which increases
the system maintainability.

The researcher found that “Laravel” framework is the most efficient PHP
framework, that fully providing stable scaffolding tools to generate M.V.C
applications out of the box.

5.2 Recommendations:

This study have increased one of the most important software attributes
(Maintainability), when the system also after the fully adoption will experience a
huge traffic and handling a great load of data, where the system Scalability will need

to be enhanced. We encourage more enhancement in the system scalability.

39

REFERENCES
Abdullah, F., 2017. Evaluating Impact of Design Patterns on Software Maintainability and
Performance, s.l.: s.n.

Bass, L., Clements, P. & Kazman, R., 2003. Software Architecture in Practice, Second Edition.
s.l.:Addison Wesley.

Bengtsson, P., Nico, L., Jan, B. & Hans, v. V., 2000. Analyzing Software Architectures for
Moadifiability, s.l.: s.n.

bishop, j., 2007. c# 3.0 design patterns: use the power of c# 3.0 to solve real-world
problems. s.l.:oreilly.

Brooks & Frederick, 1987. No Silver Bullet — Essence and Accident in Software Engineering,
s.l.:s.n.

Burbeck, S., 1992. How to use Model-View-Controller (MVC). s.l.:s.n.

Buschmann, F. et al., 1996. pattern oriented software architecture: A system of patterns.
s.l.:Chichester Wiley: Addison-Wesley.

Chidamber, S. & Kemerer, C., 1994. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6).

Christoph, S., Felix, B. & Chris, V., 2003. SACAM: The Software Architecture Comparison
Analysis Method, s.l.: s.n.

Halstead & H., M., 1977. Elements of Software Science. Amsterdam: Elsevier North-Holland.
s.l.:s.n.

Hazzan, O. & Hadar, I., 2008. Why and how can human-related measures support software
development processes?. The Journal of Systems and Software.

Henry, S. & Kafura, D., 1981. Software Structure Metrics Based on Information Flow. IEEE
Trans. Software Eng..

Hoffman, F., 2001. Architectural software patterns and maintainability: A case study.
s.l.:s.n.

Kazman, R., Len, B., Gregory, A. & Mike, W., 2007. SAAM: A Method for Analyzing the
Properties of Software Architectures, s.l.: Texas Instruments.

Martin, R. C., 2005. Agile Software Development, Principles, Patterns, and Practices. s.l.:s.n.
McCabe, 1976. A Complexity Measure. IEEE Transactions on Software Engineering.
Pressman, R., 1997. Software Engineering. A Practitioner’s Approach. s.|.:McGraw Hill.

R.E, W., n.d. Task Complexity: definition of the construct, organisational behaviour and
human decision processes. s.l.:s.n.

40

Reenskaug, T. & James, C., 2009. The DCI Arcitecture: A New Vision of Object-Orinted
Programming. [Online]

Available at: http://www.artima.com/articales/dci_vision.html

[Accessed 3 11 2017].

Rick, K., Mark, K. & Paul, C., 2000. ATAM: Method for Architecture Evaluation, s.l.: s.n.
Roads, B. D., 2003. Domain-Driven Design. s.l.:s.n.

Shao, J. & Yingxu Wang, APRIL 2003 . A new measure of software complexity based on
cognitive weights, s.l.: s.n.

Smith, S., 2018. Overview of ASP.NET Core MVC. [Online]
Available at: https://docs.microsoft.com/en-us/aspnet/core/mvc/overview
[Accessed 23 2 2018].

Smith, S., 2018. Overview of ASP.NET Core MVC. [Online]
Available at: https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnet
[Accessed 2 11 2017].

Stavrinoudis, D., Michalis Xenos & Dimitris Christodoulakis, August 1999. RELATION
BETWEEN SOFTWARE METRICS AND MAINTAINABILITY, s.l.: s.n.

Tarvainen, 2008. Adaptability Evaluation at Software Architecture Level. The Open Software
Engineering Journal, pp. 1-30.

Tran-Cao, D., Ghislain Lévesque & Jean-Guy Meunier , n.d. Software Functional Complexity
Measurement with the Task Complexity Approach. s.l.:s.n.

Wiki, 2014. Model View Controller History. [Online]
Available at: wiki.c2.com/?ModelViewControllerHistory
[Accessed 21 2 2018].

Wikipedia, 2014. SOLID. [Online]
Available at: https://www.en.m.wikipedia.org/wiki/SOLID
[Accessed 12 11 2017].

Zillighoven H., L. C. B. M., 2006. Software Architecture Analysis and Evaluation.
International Conference on the Quality of Software Architectures.

Zuse, H., 1991. Software Complexity Measures and Methods. s.l.:s.n.

41

Appendix A: The Current System (Items Management Module):

A-1: The “add_item.php” component:

<?php
session_start();include("connect.php");
include("user_style.php");
Sname=$_POST[name];
Sdata=mysqgl_query("
select max(id) from items
")
$no=mysql_fetch_array(Sdata);
Sho=$no[0]+1;
>
<html>
<head>
<title>last</title>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1256">
</head>
<body bgcolor="#FFFFFF" leftmargin="0" topmargin="0" marginwidth="0"
marginheight="0">
<form action='save_item.php' method="post'>
<table align='center' border="'1" dir="rt|">
<tr>
<?php
echo"
<th>aull &8 <th><input type='button' value='Sno'><tr>
<input type='hidden' name='no' value='Sno'><tr>
Sdata=mysqgl_query("
select * from items
");
echo"<th> i)l aulicth><select name='upper'>
<option value='0">«) 2u</option>
while(Sinfo=mysql_fetch_array(Sdata))
{
echo'<option value='Sinfo[id]">
}
echo'</select><tr>";
>
<th>aull aul<th><input type='text' name='name'><tr>
<th>2 Sli<th><input type="text' name='code'>
</table>
<input type='submit' value="4Lx|'></td>
</body>
</html>

.Sinfo[name]."</option>";

42

A-2: The “edit item.php” component:

<?php
session_start();include("../connect.php");include("../user_style.php");Sstep=S_GET[step];
>

<html>

<head>

<title>Edit Item</title>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1256">
</head>

<body bgcolor="#FFFFFF" leftmargin="0" topmargin="0" marginwidth="0" marginheight="0
<?php

echo"<center>";if(lisset(Sstep)){Sdata=mysql_query("select * from items");echo"
<form action='item_edit.php?step=1' method="post' name="myform' dir="rtl'>
<select name='"id" id="unit'>

<option value='0'>ISelect Item</optio>";

while(Sinfo=mysql_fetch_array(Sdata))

{

echo "<option value='Sinfo[id]'
style='backgroundcolor:black;color:white'>".Sinfo[name]."</option>";

}

echo"<input type='button' value="Continue” onclick="edit()'>";

lelse{

switch(Sstep){

case 1:

Sid=S_POSTIid];

Sdata=mysql_query("select * from items where id='$id"");
Sinfo=mysql_fetch_array($data);

echo"<form action='item_edit.php?step=2' method="post'>

<input type='hidden' name="id' value='Sid'>

<table dir="rtl' align="'center' border='1">

<tr><th>aull aul<th><input type='text' name='name' value='Sinfo[name]'>
<tr><th>2Slikth><input type="text' name="'code' value='Sinfo[code]'>

</table>

<input type='submit' value="cuSaxill Jada'>

break;

case 2:

Sid=S_POST[id];

Sname=$_POST[name];

Scode=S_POST[code];

Ssql=mysql_query("update items set name='Sname’',code='Scode' where id='Sid"");
if(Ssql)

{

Saccess_date=date("Y-m-d");

Saccess_time=date("h-i-s");

mysql_query("

insert into events_file values(",'S_SESSION[myuser]',11,'Sid",'Saccess_date','Saccess_time')
")

echo"<p dir="rtl" align='center'> <32l Lada 5
claic/b></p>";

}

43

else

{

echo"

<p dir="rtl' align="center'>
=baaill Lhéa 4 Wl</p>";
}

}//switch

}// if second step or more
>

</body>

</html>

44

A-3: The “delete item.php” component:

<?php

session_start();

include("../connect.php");

include("../user_style.php");

Sstep=$S_GET[step];?>

<html>

<head>

<title>Edit Iltem</title>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1256">
</head>

<body bgcolor="#FFFFFF" leftmargin="0" topmargin="0" marginwidth="0"
marginheight="0">
<?php

echo'<center>";

if(lisset(Sstep))

Sdata=mysql_query("select * from items");

echo"<form action='"item_del.php?step=1' method='post' name='myform’ dir="rtl'>
<select name='"id" id="unit'>

<option value='0">Select Item</optio>";

while(Sinfo=mysql_fetch_array(Sdata)){

echo "<option value='Sinfo[id]' style='background-
color:black;color:white'>".Sinfo[name]."</option>";

}

echo"<input type='button' value="3x" onclick='del()">";

lelse

{

$id=$_POSTI[id];

Ssql=mysql_query("delete from items where id='Sid"");

if(Ssql){

Saccess_date=date("Y-m-d");

Saccess_time=date("h-i-s");

mysql_query("insert into events_file
values(",'S_SESSION[myuser]',16,'Sid",'Saccess_date','Saccess_time')");

echo"<p dir="rtl' align="center'>zlai siall 2i</p>";
lelse{

echo'<p dir="rtl' align='center'>—all &4 al</p>";

}}// if second step or more

>

</body></html>

45

Appendix B: The redesigned System (Items Management Module):

B-1: The “ItemModel” component:

<?php
class ltemModel extends CI_Model {
Public Shame;
Public Scode;
Public Sparent;
private StableName;

public function __construct()

{
parent::__construct();
Sthis->tableName = "items";

}

public function create(Sname, Scode, Sparent) {
Sthis->name = Sname;
Sthis->code = Scode;
Sthis->parent = Sparent;
Sthis->status = 0;

if(Sthis->db->insert(Sthis->tableName,Sthis)) {
return Sthis->get(Sthis->db->insert_id());
}else {
return false;
}
}

public function update(Schanged_id, Sfield_name, Snew_value, Sdata_type) {
if(Sdata_type == 'varchar') {
Squery = "update ".Sthis->tableName." set ".Sfield_name." =
.Snew_value." where id=".Schanged_id;
}else {
Squery = "update ".Sthis->tableName." set ".Sfield_name." =
".Snew_value." where id=".Schanged_id;
}
return Sthis->db->simple_query(Squery);

}

public function delete(Sid) {
Squery = "delete from ".Sthis->tableName." where id=".Sid;
return Sthis->db->simple_query(Squery);

}

public function getAll() {
return Sthis->db->get(Sthis->tableName)->result();

}

public function getByld(Sid) {
Sthis->db->where('id',Sid);

46

return Sthis->db->get(Sthis->tableName)->row();

}

?>

B-2: The “Item” component:
<?php
class Item extends Cl_Controller {

private Spath;

public function __construct()

{

parent::__construct();

}

public function index()
{
Sthis->load->model('ltemModel','self');
Sdata['items'] = Sthis->self->getAll();
Sthis->load->view(Sthis->index, Sdata);
}

public function create()

{

Sthis->load->model('ltemModel’,'self');

Sname = Sthis->input->post('name’);
Scode = Sthis->input->post('code’');
Sparent = Sthis->input->post('parent’);

Snewld = Sthis->self->create(Sname, Scode, Sparent);

if(is_object(Snewld))
{
Sparms = Array('id'=>Snewld->id);
Sresponse = Array(
'success' => true,
'message’ => 'ltem created successfully!'

}

else

{

Sresponse = Array(
'success' => false,
'message’ => 'ltem was not created'

}

print_r(json_encode(Sresponse));

47

public function update()

{
Schanged_id = Sthis->input->post('changed_id');
Sfield_name = Sthis->input->post('field_name');
Snew_value = Sthis->input->post('new_value');
Sdata_type = Sthis->input->post('data_type');

Sthis->load->model('ltemModel','self');
Sresult = Sthis->self->update(Schanged_id, Sfield_name, Snew_value,
Sdata_type);

if(Sresult) {
Sresponse = Array(
'success' => true,
'message' => 'ltem updated successfully'

} else {
Sresponse = Array(
'success' => false,
'message' => 'ltem was not updated'

}
print_r(json_encode(Sresponse));
}
public function delete()
{
Sid = Sthis->input->post('id');
Sthis->load->model('ltemModel','self');
Sresult = Sthis->self->delete(Sid);
Sitems = Sthis->self->getAll();
if(Sresult == 1)
{
Sresponse = Array(
'success' => 'true’,
'message’ => 'ltem deleted successfully’,
'items' => Sitems
);
}
else
{
Sresponse = Array(
'success' => false,
'message’ => 'ltem was not updated’
);
}
print_r(json_encode(Sresponse));
}

48

B-3: The “index.php” component:

<?php
SitemsList ="";
foreach(Sitems as Sitem) {
SitemsList .= "<option value="".Sitem->id."">".Sitem->name."</option>";
}
>
<html>
<meta charset="utf-8"/>
<head>
<script language="javascript">
S(document).ready(function () {
loadView('../items/getAll');
1
</script>
</head>
<body>
<div class="panel panel-primary" style="position:fixed;left:0%;right:0%;top:33px;">
<div class="panel-heading" dir="rt|">
<h3 class="panel-title header-font" align="right">
<i class="glyphicon glyphicon-paperclip"></i> Items

<i class="glyphicon glyphicon-remove alone' style="float:left;"
onclick="$('#generalViewer').hide();" title="close"></i>

</h3>
</div>

<div class="panel-body" style="background-

color:rgba(162,162,211,0.8);overflow:auto;">
<div style="text-align:right;position:relative;width:100%;">
<div id="form" style="display:inline-block;width:57%;padding:0px;vertical-align:top;"
dir="rtl">
<div class="panel panel-primary" style="width:100%;">
<div class="panel-heading" dir="rtl">

<h3 class="panel-title header-font"><i onclick="loadView('../items/getAll');"
class="glyphicon glyphicon-list-alt"></i>

Current Items</h3>

</div>

<div class="panel-body" id="tank" style="background-color:rgba(0,0,0,0.2);">
<div>

<div id="viewLoader" dir="rtl"
style="height:400px;overflow:auto"></div>

</div>

</div>

</div>

</div>
<div id="form" style="display:inline-block;width:40%;padding:0px" dir="rtl">
<div class="panel panel-primary" style="width:100%;">
<div class="panel-heading" dir="rt|">
<h3 class="panel-title header-font">
<i class="glyphicon glyphicon-plus-sign"></i> New Item</h3>
</div>

49

<div class="panel-body" id="accountFormHolder" style="background-
color:rgba(0,0,0,0.2);">

<form>
<div class="form-group">
<input type="text" class="form-control" id="code" name="code" placeholder="Item
Code">
</div>
<div class="form-group">
<input type="text" class="form-control" id="name" name="name" placeholder="Item
Name">
</div>
<div class="form-group">
<select class="form-control" id="parent" name="parent" placeholder="Parent Item">
<option value="0">Select Parent Item</option>
<?php
echo SitemsList;
>
</select>
</div>
</form>

<div dir="rtl">
<div class="form-group">
<button id="add" class="btn btn-default button-font"
onclick="create('../items/create',",");">Save</button>
<button id="res" class="btn btn-warning button-font"
onclick="cancelCreation();">Cancel</button>
</div>
</div>
<div style="background-color:#fccc;" id="status"></div>
</div>
</div>
</div>
<div style="width:96%;text-align:right;margin-left:4%;" dir="rtl">
</div>
</div>
</div>
</div>
</div>

B-4: The “view.php” component:

<?php
Spath ="../items/update";
SdeletePath ="../items/delete";
>
<table class="table table-hover editableTable" width="80%" align="center" dir="rt|">
<tr style="background-color:#cadfdf;">
<td align="right">#
<td align="right">Code
<td align="right">Name

50

<td align="right">Parent
<td align="center" width="120px" colspan="2">Action
</tr>
<?php
foreach(Sobjects as Sobject) {
SitemsList ="";
foreach(Sitems as Sitem) {
if(Sitem->id == Sobject->id) {
SitemsList .="<option value="".Sobject->id.
}else {
SitemsList .="<option value="".Sobject->id.

selected>".Sobject->name."</option>";

"'>" Sobject->name."</option>";
1

}

echo"
<tr id="".Sobject->id."">

<td align="right'>".Sobject->id."</td>

<td align="right' ondblclick=\"editableTd(this,"".Spath."",'code’,"" .Sobject-
>id."",'varchar')\">".Sobject->code."</td>

<td align="right' ondblclick=\"editableTd(this,"".Spath."",'name’,"".Sobject-
>id."",'varchar')\">".Sobject->name."</td>

<td align="right'>
<select onchange=\"updateCell(this,"".Spath."",'parent’,".Sobject-
>id."","int',"".Sobject->parent."')\">";
<?=SitemList?>
echo"
</select>
</td>

<td width="60px' align="center'>
<i class="glyphicon glyphicon-remove alone'
onclick=\"deleteObject('".SdeletePath.",".Sobject->id.")\" title='Delete'></i>
</td>

n,
’

}

>
</table>

51

	Cover
	research

