

CHART 3-1: PROJECT COMPONENTS

Fourists in Sudan: -

in Tourists	0202	0200	0200	0200	0202
Sudan	126030	203122	241312	300562	552322

TABLE 3-1: TOURISTS IN SUDAN

Assuming 25% of tourists will visit the project

= 1071830x25%=267957per year

=730 🕯 🕅 visitors per day

Sudan's population will reach 41000000 by 2025\ if 5% of them visited the project

each year =2050000 visitors per year =5300 visitors per day 5300+

730= 6030 visitors per day

restrooms: 3 per 100 people. 6030÷100x3= 180 people Area
= 180x1.8= 325 sqm

Refreshment stands: each stand 4 sqm, each

exhibit has 2 stands so 2x4x4= 32sqm

Cafes & restaurants 25% of visitors=1507 1 m per visitor= 1507 sqm

Souvenir shops 5 shops 40 sqm each = 200 sqm

Mosque: for 15% of visitors= 904 x1= 904 sqm Total area = 2976 sqm

Employee facilities:

*XWorkshops:

(Gardening, water & electricity, Waste

management, general) **2** of each= 8 (30 seat) workshops, each one 150 sqm 8x150=**1200 sqm**

*Shops: 9*100= 900 sqm

Research facility: 310 **AREA STUDY: -**

Zone name	Total area
Exhibitions	11653m^2
Research	2837,5 m^2
Educational	5217m^2
Commercial	2837,5 m^2
Administrational	500m^2
Total site area	47815m^2

TABLE 3-2: AREA STUDY

CHART 3-4: AREA STUDY

16

Khartoum	State	Climate	Data:	-
----------	--------------	----------------	-------	---

	Avg. Min Temp	Avg. Max Temp	Avg. Rain (mm)	Relative Humidity (%)
January	16	32	0	21
February	17	34	0	16
March	19	37	0	13.0
April	23	40	1	13
May	26	42	5	14
June	27	42	7	18
July	26	38	48	31
August	25	36	72	42
September	25	38	27	30
October	25	40	4	20
November	21	36	0	21
December	17	33	0	23

Comparative Weather Analysis: -

To control the indoor environment, we must know the worst

possible outside environment then designs a system able to achieve stability even in that condition:

TABLE 3-3: Khartoum State Climate Data

Comparative Weather Analysis: -

To control the indoor environment, we must know the worst possible outside environment then designs a system able to achieve stability even in that condition

Solar Radiation Chart:

Max solar irradiance 2500 kwh/m² min solar irradiance 600 kwh/m²

FIGURE 3-1: Solar Radiation

Biome	Average	s in each	biome			Khartoum Comparison					
	Temper	ature	Avg. Rad.	Day light	Rain fall	Tempera e	ature	Radiati	ion	Day light	Rain
	max	min		hour		Max 42	Min 16	Max 2500	Min 1600	Avg 3664	Max 0.75
	37.5	12.5	2170	3250	300- 850	-4.5	-3.5	-329	1570	-414	778
polar	10	-25	1000	2800	-	-5.5	0.5	- 1500	-600	-864	-
temperate	30	19	1800	2800	0.75- 2.00	-3.5	3	-700	200	-864	0.75
tropical	34	16	2200.	2700	1.25- 6.00	-11	-3.5	-300	600	-964	2.25

Optimum Orientation: -

Depending on the amount of irradiance required each biome will be orientated towards the red side if more irradiance is needed and to the yellow if less is desired.

FIGURE 3-2: Optimum Orientation

Prevailing Winds: -

Optimum Orientation: -

from the climate analysis to

heating during the summer

for each exhibit is as shown

the need for mechanic

winter, the optimum

reduce

and

cooling and

orientation

in the table.

wind is need to remove hot air from the greenhouses, the most frequent winds blow at 45°NE with speeds from 10-20k.

FIGURE 3-3: WIND ROSE

climate	angle
Mediterranean climate	120°
Polar climate	150°
Temperate climate	90°
Tropical climate	60°

TABLE 3-5: Optimum Orientation

CHAPTER THORE A ANALYSIS}

CHART 3-5: FUNCTIONAL RALATIONS

Circulation Charts: -

General Circulation Chart: -

CHART 3-6: Circulation Charts

CHART 3-7: Users Movement

Bubbles Relations Diagram: -

CHART 3-8: Bubbles Relations Diagram

SITE SELECTION

FIGURE 3-4: PRPOSAL SITES LOCATION

FIGURE3-5: SITE LOCATION A The site is located in the east of the Nile in Sudan Smart (according to plan for the future) to the island o f alligator now

> **10.00 HICTARES** DISTANCE FROM CITY CENTER :10 km

FIGURE3-6: SITE LOCATION B Currently it can be reached through a large Totti Khartoum by public transport from the naval station, and according to plan for the future by a Tutti bridge Marine Tutti bridge Omdurman 5.00 HICTARES DISTANCE FROM CITY CENTER: 3.5 km

Nile river	north	
Nile river	south	Neighborhoods
Nile river	east	
Investment land _farm	west	

Nile river	north	
Nile river	south	Neighborhoods
Nile river	east	
Investment land _farm	west	

TABLE 3-6: SITE A Neighborhoods

TABLE 3-7: SITE B Neighborhoods

Benchmark	%	Tutti island site	Eltomsah island site
The nearest area of the project	15%	10%	13%
Site job	15%	13%	12%
Neighborhoods	8%	5%	7%
Accessibility	10%	5%	9%
The dimension of the city center	7%	4%	6%
Availability of infrastructure services	10%	8%	10%
Panoramic	20%	19%	20%
Cultural monuments	15%	0	15%
	100	64%	92%

TABLE 3-8: SITE COMPARATIVE

GENERAL SITE: -

ONDORNMENT ONDURINANT ONDURINANT ONDURINANT OTE ISLAN BHIRT BRIDET ODURD DURDET ODURD DURDET

FIGURE 3-7: GENARAL SITE LOCATION

- Distance from city center: 3 kilo meters
- total area: -4 HICTARES

Accessibleness: Currently the site can be accessed by public transport from the Arab market station either by future planning for the island Totti can access the site of bahri bridge Totti and Omdurman bridge Totti.

FIGURE 3-8: CHOSEN SITE LOCATION