
October 2018

Sudan University of Science and

Technology

College of Engineering

Electrical Engineering

SERVO ROBOTIC-ARM USING

SMART CAR

 ذراع آلية بإستخدام عربة ذكية
A Project Submitted in Partial Fulfillment for the Requirements of the

Degree of B.Sc. (Honor) In Electrical Engineering (control)

Prepared by:

1. Abdalla Osama Abdalla Ouda.

2. ABBAS HAG ADAM BABIKER HAG ADAM.

3. Mojahid Noureldeen Hussein Hassan.

4. MUSTAFA ALA ELDIN ABD ALSALAM ELTAHIR.

Supervised by:

U. Hanaa gaafer

i

 الآية

 :قال تعالى

ُ نافْسًا إِّلَه) بهناا لَا لَا يكُال ِّفُ اللَّه ا اكْتاساباتْ ۗ را ا ما لايْها عا ا كاساباتْ وا ا ما ا ۚ لاها وُسْعاها

لْتاه ُۥ عالاى ما ا حا لايْناآ إِّصْرًا كاما لْ عا لَا تاحْمِّ بهناا وا يناآ أاوْ أاخْطاأنْاا ۚ را ذْناآ إِّنْ نهسِّ اخِّ تؤُا

ا لَا طا لْناا ما م ِّ لَا تحُا بهناا وا نْ قابْلِّناا ۚ را ينا مِّ اغْفِّرْ لاناا الهذِّ اعْفُ عانها وا اقاةا لاناا بِّهّۦِ ۖ وا

) ينا وْلٰىناا فاانْصُرْناا عالاى الْقاوْمِّ الْكٰفِّرِّ مْناآ ۚ أانْتا ما ارْحا وا

(286سورة البقرة الَية)

ii

DEDICATION

To those who give us love and tenderness…to

the symbols of love and healing balm…to the

pure white hearts…to the grace of god in the

earth our mothers to the lights that illuminate

our life paths to those who taught us to endure

no matter how the circumstances change our

dear fathers to each one whose mind`s light

illuminate the minds of others or given the

correct answer to the confusion of his clients

and he showed with his grace the humility of

the scholars to friend who stands with us till

end Ali Mohammed and Mustafa Mohammed

to our university and teachers lastly.

 to all of you

iii

ACKNOWLEDGMENT

Our skies are always shining stars, this light

does not fade from us for one moment, we look

forward to it and we delight in its brightness

in our skies every hour and it is fitting that it

should be lifted up in our eyes with all love and

fulfillment and the thinnest words of thanks

and praise. It is the hearts filled with

brotherhood. words of praise for your right

thank you for your offers.

iv

ABSTRACT

The linchpin examines the typical structure of designing and

programming a robot, which consist of an arm, car, and a

process links it with a phone to control its motion.

The arm has been designed according to three degrees of

freedom, the care to ease the movement and locomotion, and

all requirements to fulfill the small missions in a precise way.

For example, the swift material of the arm is provided by

“servo engine” which links the arms, additionally the

performance of the arm movements, also the care-made of

aluminum pointed as countrified mildness that reduces the

countrified- has been provided by continues motor stream to

give the wanted motion.

The controller that drives all motors has ability to refit the

situation where interpreting process is on “Raspberry Pi”

controller where “Python” is what has been programed by, and

the robot is controlled by “Android” device.

In the world of today, the machinery arm fetches the republic

use, besides robots. This kind of robots is designed by the

available applications in different fields.

v

 المستخلص

بوت ؛ الذي يحتوي علي ذراع الية وعربة وعملية و ر الالدراسة حول تصميم وبرمجة تتمحور

 تربط بين الربوت وجهاز الهاتف للتحكم في حركته .

لية وفقا لثلاث درجات حرية , عربة لتسهيل الحركة والانتقال , وكل تم تصميم الذراع الآ

المطلوبات لتفيذ المهام الصغيرة بصورة دقيقة , كمثال المادة الخفيفة التي تصنع منها الذراع

 ضافة الى أداء حركة الذراع لذي يربط بين أجزاء الذراع , بالإالالية مزودة بمحرك "سيرفو" ا
الذي يمتاز بخفة وزنه مما يخفف الوزن المصنوعة من مادة الألمونيوم –وتم تصميم العربة

 عن طريق محرك التيار المستمر لاعطاء الحركة المطلوبة. -الكلي

المتحكم الذي يقود جميع المحركات له القدرة على اصلاح الوضع حيث تتم عمليات الترجمة

" , بالاضافة لاستخدام "بايثون" كلغة برمجية , ويتم باي-والتفسير على متحكم "الراسبيري

 التحكم في الربوت باستخدام جهاز اندرويد.

دام العام بجانب الروبوتات. جالبة للمنافع الإستخ تقنية الذراع الالية بين أن يوم , تففي عالم ال

 تم تصميم هذا النوع من الربوتات عن طريق برامج متاحة في جميع المجالات .

vi

TABLE OF CONTENTS

 Content Page

 I الَية

DEDICATION Ii

ACKNOWLEDGMENT Iii

ABSTRACT Iv

 V المستخلص

TABLE OF CONTENTS Vi

LIST OF FIGURES Xi

LIST OF ABBREVIATIONS xiii

 CHAPTER ONE

INTRODUCTION

1.1 General concepts 1

1.2 Problem statement 1

1.3 Objectives 1

1.4 Methodology 2

1.4.1 Robotic arm case 2

vii

1.4.2 Building a robotic car with camera 2

1.4.3 Programming and assembling the subsystems 2

1.5 Project layout 3

 CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction 4

2.2 Advantage and disadvantage of robotic arm 4

2.2.1 The advantage 4

2.2.2 The disadvantage 5

2.2.3 Knowledgebase for robotics 5

2.3 Internet of things(IOT) 6

2.3.1 History OF IOT

6

2.3.2 Work of IOT 8

2.3.3 Benefit of IOT 8

2.4 Raspberry pi controller 9

2.5 L293D Driver 10

2.6 Theory of DC Servo Motor 11

viii

2.7 Power supply 14

2.8 Compass Sensor 15

2.9 RPI camera 16

 CHAPTER THREE

RASPBERRY PISUBSYSTEM AND INTERFACE

3.1. System interface 18

3.2. Raspberry pi controller 18

3.2.1 Technical Specification 19

3.2.2 Feature of Raspberry Pi 19

3.2.3 The GPIO 22

3.3 Port subsystems 22

3.3.1 L293D Driver 23

3.3.2 Compass Sensor 25

3.3.3 Servo motor 26

3.4 Smart phone application 27

3.5 Raspberry pi operating system 28

3.5.1 Linux 28

 CHAPTER FOUR

ix

MAIN CIRCUIT DESIGN AND PROGRAMMING

4.1 System structure 30

4.2 Block Diagram 31

4.2.1 Raspberry pi 32

4.2.2 Motors 32

4.2.3 The Camera 32

4.2.4 Compass Sensor 32

4.2.5 Power supply 32

4.3 Wiring diagram 32

4.4 Design 33

4.4.1The arm design 33

4.4.2 Control unit 36

4.4.3The car design 37

4.5 Robot Workspace 38

4.6 Python 41

4.6.1 Software quality 42

4.6.2 Developer productivity 42

4.6.3 Program portability 42

x

4.6.4 Support libraries 43

4.6.5 Component integration 43

4.7 Procedure 44

 CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion 45

5.2 Recommendations 45

5.3 References 46

5.4 Appendix A 47

5.5 Appendix B 55

5.6 Appendix C 57

xi

LIST OF FIGURES

Figure NO Title Page NO

2.1 Internet of things 6

2.2 Raspberry pi controller 10

2.3 L293D driver pin diagram 11

2.4 Servo motor and wire color

diagram
14

2.5 Compass Sensor (HMC5883L) 15

3.1 Raspberry pi controller 18

3.2 Broadcom BCM2835 SOC 20

3.3 HDMI 20

3.4 RCA 20

3.5 Jack 20

3.6 USB 21

3.7 SD card 21

3.8 Ethernet 21

xii

3.9 RPI Pins 21

3.10 GPIO 22

3.11 Driver L293D 23

3.12 Compass Sensor (HMC5883L) 25

3.13 Servo motor and wire color

diagram
27

3.14 Application in the smart phone 31

4.1 System block diagram 33

4.2 Wiring diagram 29

4.3 Show free body diagram of the
robot arm

35

4.4 Show the arm parts 35

4.5 show the arm design 36

4.6 Show the control unit 37

4.7 the car design 38

4.8 Work region of the robotic arm 39

4.9 Force diagram of robot arm 39

xiii

LIST OF ABBREVIATIONS

IOT internet of things

UIDS unique identifiers

RFID radio frequency ID

MEMS microelectromechanical systems

IT information technology

OT operational technology

M2M machine-to-machine

DC Direct Current

IC integrated circuit

ATX Advanced Technology extended

GND ground

USB Universal Serial Bus

DOF Degree of freedom

PWM Pulse Width Modulation

OOP Object Oriented Programming

1

CHAPTER ONE

INTRODUCTION

1.1 General Concepts

Robotic arm can be used for various tasks such as welding, drilling,

spraying and many more. A robotic arm car is fabricated by using components

like controller, sensors and actuators. This increases the speed of operation,

easy to control and reduces complexity. It also increases productivity. The

main part of the design is Raspberry pi controller which coordinates and

controls the product’s position. This specific controller is used in various

types of embedded applications.

1.2 Problem Statement

Implementing of manipulating robotic arm with smart car using

smartphone orientation sensor over internet to web server offer the

opportunity to facilitate controlling of arm with less effort and equipment and

also helpful in tasks that are considered too dangerous to be performed by

humans.

1.3 Objectives

 To design a robotic arm with a smart cart.

 To implement the robot.

 To build a connection between robot and android smartphone.

2

1.4 Methodology

The project is practical application of easy control, over internet and

smartphone angles, the design steps are:

1.4.1 Robotic arm case:

 Studying the mechanism of smartphone angles.

 Studying the mechanical movements of robotic-arm.

 Studying the mechanism of compass sensor.

 Implementing between android smartphone and compass sensor to

give the right angles of the arm robot.

1.4.2 Building a robotic car with camera:

 Design a smart car to carry the weight of the robotic arm and the

component of application.

 Studying the mechanism of controlling smart car over the internet

using android.

 Connect the camera to give to easy the control.

1.4.3 Programming and assembling the subsystems:

 Programming each of the subsystems in Python.

 Assembling the subsystem into a Python package.

 Building a controller program for the manipulating robotic arm and

smart car.

3

1.5 Project Layout

This project consists of five chapters: Chapter One gives an

introduction to the project. Chapter Two discusses the theoretical background

of robot’s internet of things, motors, raspberry pi controller and electrical

sensors. Chapter Three describes the system fabrication, control circuit,

software and hardware. Chapter Four handles the system implementation and

the experimental results. Finally, Chapter Five provides the conclusions,

recommendations.

4

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

A Robot is a virtually intelligent agent capable of carrying out tasks

robotically with the help of some supervision. Practically, a robot is basically

an electro-mechanical machine that is guided by means of computer and

electronic programming. Robots can be classified as autonomous,

semiautonomous and remotely controlled. Robots are widely used for variety

of tasks such as service stations, cleaning drains, and in tasks that are

considered too dangerous to be performed by humans. A robotic arm is a

robotic manipulator, usually programmable, with similar functions to a human

arm. The robots interact with their environment, which is an important

objective in the development of robots. This interaction is commonly

established by means of some sort of arm and gripping device or end effectors.

In the robotic arm, the arm has a few joints, similar to a human arm, in addition

to shoulder, elbow, and wrist, coupled with the finger.

2.2 Advantage and disadvantage on robotic arm

2.2.1 The advantage

 Increase productivity.

 Use equipment effectively.

 Reduce working costs.

 Flexibility at work.

5

 Get the job done in the shortest time.

 Provide good returns on investment, Better accuracy in performance.

 Ability to work in risky ways and make it more safe. [5]

 2.2.2 The disadvantage

 Cause unemployment for manual workers.

 High initial cost.

 designed Arm to perform specific tasks and not comparable to the

human hand.

 Difficulty programmed to perform Accurate tasks.

 Needed a large number of sensors and high accuracy to perform the

Complex tasks.

 And other technical problems, "especially in the fields of artificial

intelligence and Machine vision".

 When the Robotic arm break down the production line will go off in

the factories. [5]

2.2.3 Knowledgebase for robotics

Typical knowledgebase for the design and operation of robotics systems

are [2]:

 Dynamic system modeling and analysis.

 Feedback control.

 Sensors and signal conditioning.

 Actuators (muscles) and power electronics.

 Hardware/computer interfacing.

 Computer programming.

6

2.3 Internet OF Things (IOT)

The internet of things, or(IOT), is a system of interrelated computing

devices, mechanical and digital machines, objects, animals or people that are

provided with unique identifiers (UIDs) and the ability to transfer data over a

network without requiring human-to-human or human-to-computer

interaction.

Figure 2.1: Internet of things

2.3.3 History OF IOT

Kevin Ashton, co-founder of the Auto-ID Center at MIT, first

mentioned the internet of things in a presentation he made to Procter &

Gamble (P&G) in 1999. Wanting to bring radio frequency ID (RFID) to the

attention of P&G's senior management, Ashton called his presentation

"Internet of Things" to incorporate the cool new trend of 1999: the internet.

MIT professor Neil Gershenfeld's book, When Things Start to think, also

appearing in 1999, didn't use the exact term but provided a clear vision of

where IOT was headed. IOT has evolved from the convergence of wireless

https://internetofthingsagenda.techtarget.com/definition/unique-identifier-UID

7

technologies, microelectromechanical systems (MEMS), micro services and

the internet. The convergence has helped tear down the silos between

operational technology (OT) and information technology (IT), enabling

unstructured machine-generated data to be analyzed for insights to drive

improvements. Although Ashton's was the first mention of the internet of

things, the idea of connected devices has been around since the 1970s, under

the monikers embedded internet and pervasive computing. The first internet

appliance, for example, was a Coke machine at Carnegie Mellon University

in the early 1980s. Using the web, programmers could check the status of the

machine and determine whether there would be a cold drink awaiting them,

should they decide to make the trip to the machine. IOT evolved from

machine-to-machine (M2M) communication, i.e., machines connecting to

each other via a network without human interaction. M2M refers to

connecting a device to the cloud, managing it and collecting data. Taking

M2M to the next level, IOT is a sensor network of billions of smart devices

that connect people, systems and other applications to collect and share data.

As its foundation, M2M offers the connectivity that enables IOT. The internet

of things is also a natural extension of SCADA (supervisory control and data

acquisition), a category of software application program for process control,

the gathering of data in real time from remote locations to control equipment

and conditions. SCADA systems include hardware and software components.

The hardware gathers and feeds data into a computer that has SCADA

software installed, where it is then processed and presented it in a timely

manner. The evolution of SCADA is such that late-generation SCADA

systems developed into first-generation IOT systems. The concept of the IOT

ecosystem, however, didn't really come into its own until the middle of 2010

https://internetofthingsagenda.techtarget.com/definition/micro-electromechanical-systems-MEMS
https://searchmicroservices.techtarget.com/definition/microservices
https://internetofthingsagenda.techtarget.com/definition/pervasive-computing-ubiquitous-computing
https://internetofthingsagenda.techtarget.com/definition/machine-to-machine-M2M
https://whatis.techtarget.com/definition/SCADA-supervisory-control-and-data-acquisition

8

when, in part, the government of China said it would make IOT a strategic

priority in its five-year plan.

2.3.2 Work of IOT

An IOT ecosystem consists of web-enabled smart devices that use

embedded processors, sensors and communication hardware to collect, send

and act on data they acquire from their environments. IOT devices share the

sensor data they collect by connecting to an IOT gateway or other edge device

where data is either sent to the cloud to be analyzed or analyzed locally.

Sometimes, these devices communicate with other related devices and act on

the information they get from one another. The devices do most of the work

without human intervention, although people can interact with the devices --

for instance, to set them up, give them instructions or access the data. The

connectivity, networking and communication protocols used with these web-

enabled devices largely depend on the specific IOT applications deployed.

2.3.3 Benefit of IOT

The internet of things offers a number of benefits to organizations,

enabling them to:

i. monitor their overall business processes.

ii. improve the customer experience.

iii. save time and money.

iv. enhance employee productivity.

v. integrate and adapt business models.

vi. make better business decisions.

vii. Generate more revenue.

https://internetofthingsagenda.techtarget.com/definition/IoT-device

9

2.4 Raspberry pi controller

The Raspberry Pi is a series of small single-board computers developed in

the United Kingdom by the Raspberry Pi Foundation to promote the teaching

of basic computer science in schools and in developing countries. The

original model became far more popular than anticipated, selling outside

its target market for uses such as robotics. It does not include peripherals

(such as keyboards and mice) and cases. However, some accessories have

been included in several official and unofficial bundles. Raspberry pi

controller represents a complement computer made of single electronic chip

consist of traditional computer component which it’s data processor or

omnidirectional central processing unit with 700 MH speed, binuclear

Graphical user interface with 250 MH speed fit to play HD movies and 3D

games with Random Access Memory till 512 Mbyte. Additionally, digital

output control have an ability to control on electrical and electronic pieces like

Microcontrollers all that known as system on chip this tiny computer works

with Linux open source systems. raspberry pi have 40 pin extended General

Purpose Input Output, 4 x USB 2 ports, 4 pole Stereo output and Composite

video port, Full size HDMI, CSI camera port for connecting the Raspberry Pi

camera, display port for connecting the Raspberry Pi touch screen display and

Micro SD port for loading your operating system and storing data.

i. Application of raspberry pi

Raspberry pi used as any traditional computer to check out the internet,

sending e-mails and even edit liber office bundles also used to convert any TV

you have to an entertainment home system connected to internet and also you

can make fascinating electronic control project and use raspberry as a very

developed alternative instead of microcontroller.

https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Raspberry_Pi_Foundation
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Developing_countries
https://en.wikipedia.org/wiki/Target_market
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Keyboard_(computing)
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Computer_case

10

 Smart Home Automation.

 Making Robots, ROV and UAV.

 Remote Monitor.

 Smart streamers.

 Smart TV.

 Supercomputers.

 Balloon Satellites (weather balloon).

 Figure 2.2: Raspberry pi controller

2.5 L293D Driver

L293D is a dual H-bridge motor driver integrated circuit (IC). Motor

drivers act as current amplifiers since they take a low-current control signal

and provide a higher-current signal. This higher current signal is used to drive

the motors.

L293D contains two inbuilt H-bridge driver circuits. In its common

mode of operation, two DC motors can be driven simultaneously, both in

forward and reverse direction. The motor operations of two motors can be

controlled by input logic at pins 2 & 7 and 10 & 15. Input logic 00 or 11 will

http://www.engineersgarage.com/electronic-circuits/h-bridge-motor-control

11

stop the corresponding motor. Logic 01 and 10 will rotate it in clockwise and

anticlockwise directions, respectively.

Enable pins 1 and 9 (corresponding to the two motors) must be high for

motors to start operating. When an enable input is high, the associated driver

gets enabled. As a result, the outputs become active and work in phase with

their inputs. Similarly, when the enable input is low, that driver is disabled,

and their outputs are off and in the high-impedance state. The figure shows

pin diagram.

Figure 2.3: L293D driver pin diagram

2.6 Theory of DC Servo Motor

As we know that any electrical motor can be utilized as servo motor if it is

controlled by servomechanism. Likewise, if we control a DC motor by means

of servomechanism, it would be referred as DC servo motor.

So we can define a servo motor as a type of motor who's the output shaft can

be moved to specific angular position by sending coded signal. The servo

mechanism that use position feedback to control of motion and final position.

The measured position of output by sensor is compared to the command signal

12

and be input to the controller. If the output position differs from required, an

error signal is generated which then causes the motor rotate to bring the output

shaft to appropriate position. The servo motor which is DC or AC motor

depends on the power supplied to it. The DC servo motor consists of

separately excited DC motor or permanent magnet DC motor and the armature

is designed to have large resistance so that torque-speed characteristics are

linear and have a large negative slope. The motors which are utilized as DC

servo motors, generally have separate DC source for field winding and

armature winding. The control can be archived either by controlling the field

current or armature current. Field control has some specific advantages over

armature control and on the other hand armature control has also some specific

advantages over field control. Which type of control should be applied to the

DC servo motor, is being decided depending upon its specific applications.

i. Field Controlled DC Servo Motor

The direction of rotation can be changed by changing polarity of the

field. The direction of rotation can also be altered by using split field DC

motor, where the field winding is divided into two parts, one half of the

winding is wound in clockwise direction and other half in wound in

anticlockwise direction. The amplified error signal is fed to the junction point

of these two halves of the field as shown below. The magnetic field of both

halves of the field winding opposes each other. During operation of the motor,

magnetic field strength of one half dominates other depending upon the value

of amplified error signal fed between these halves. Due to this, the DC servo

motor rotates in a particular direction according to the amplified error signal

voltage.

13

i. Servo motor operation

A servo consists of a motor (DC or AC), a potentiometer, gear

assembly and a controlling circuit. First of all, we use gear assembly to

reduce RPM and to increase torque of motor. Say at initial position of servo

motor shaft, the position of the potentiometer knob is such that there is no

electrical signal generated at the output port of the potentiometer. Now an

electrical signal is given to another input terminal of the error detector

amplifier. Now difference between these two signals, one comes from

potentiometer and another comes from other source, will be processed in

feedback mechanism and output will be provided in term of error signal.

This error signal acts as the input for motor and motor starts rotating. Now

motor shaft is connected with potentiometer and as motor rotates so the

potentiometer and it will generate a signal. So as the potentiometer’s angular

position changes, its output feedback signal changes. After sometime the

position of potentiometer reaches at a position that the output of

potentiometer is same as external signal provided. At this condition, there

will be no output signal from the amplifier to the motor input as there is no

difference between external applied signal and the signal generated at

potentiometer, and in this situation motor stop rotating.

ii. DC servo motor (MG 996R)

Direct Current servo motor (MG 996R) as shown in Figure 2.4, is a

heavy-duty metal gear, digital servo with 180°wide angle, high torque

power, improved stability and durability. The servo is able to work with

6V and deliver a strong torque power of over 9.4Kg. This (MG 996R)

servo demonstrates a maximum torque of 11Kg without much vibration or

14

Figure 2.4: Servo motor and wire color diagram

2.7 Power supply

A power supply is an electronic device that supplies electric energy to

an electrical load. The primary function of a power supply is to convert one

form of electrical energy to another and, as a result, power supplies are

sometimes referred to as electric power converters. Some power supplies are

discrete, stand-alone devices, whereas others are built into larger devices

along with their loads. All power supplies have a power input, which receives

energy from the energy source, and a power output that delivers energy to the

load. shows some information about Advanced Technology extended ATX

computer power supply which used as power supply for feeding the circuit.

The ATX is the most common supply out there and is in use in most desktop

computers today.

15

2.8 Compass Sensor

The Compass Module is designed for low-field magnetic sensing with a

digital interface and perfect to give precise heading information. This

compact sensor fits into small projects such as UAVs and robot navigation

Figure 2.5: Compass Sensor (HMC5883L)

systems. The sensor converts any magnetic field to a differential voltage

output on 3 axes. This voltage shift is the raw digital output value, which can

then be used to calculate headings or sense magnetic fields coming from

different directions.

i. Specifications

• Power 3V-5V DC.

• Chipset HMC5883L.

• Communication via I2C protocol.

• Measuring range: ± 1.3-8 Gauss.

• Dimensions 14.8 x 13.5 x 3.5mm.

16

ii. Pin Configuration

 VCC: 3V-5V DC.

 GND: ground.

 SCL: analog input (A5).

 SDA: analog input (A4).

 DRDY: not connected.

2.8.3 RPI camera

The Raspberry Pi Camera Board plugs directly into the CSI connector on

the Raspberry Pi. It's able to deliver a crystal clear 5MP resolution image, or

1080p HD video recording at 30fps! Latest Version 1.3! Custom designed and

manufactured by the Raspberry Pi Foundation in the UK, the Raspberry Pi

Camera Board features a 5MP (2592?1944 pixels) Omni vision 5647 sensor

in a fixed focus module. The module attaches to Raspberry Pi, by way of a 15

Pin Ribbon Cable, to the dedicated 15-pin MIPI Camera Serial Interface

(CSI), which was designed especially for interfacing to cameras. The CSI bus

is capable of extremely high data rates, and it exclusively carries pixel data to

the BCM2835 processor. The board itself is tiny, at around 25mm x 20mm x

9mm, and weighs just over 3g, making it perfect for mobile or other

applications where size and weight are important. The sensor itself has a

native resolution of 5 megapixels, and has a fixed focus lens onboard. In terms

of still images, the camera is capable of 2592 x 1944-pixel static images, and

also supports 1080p @ 30fps, 720p @ 60fps and 640x480p 60/90 video

17

recording. The camera is supported in the latest version of Raspbian, the

Raspberry Pi's preferred operating system. The Raspberry Pi Camera Board

Features:

 Fully Compatible with Both the Model A and Model B Raspberry Pi

5MP Omnivision 5647 Camera Module

 Still Picture Resolution: 2592 x 1944

 Video: Supports 1080p @ 30fps, 720p @ 60fps and 640x480p 60/90

Recording

 15-pin MIPI Camera Serial Interface - Plugs Directly into the

Raspberry Pi Board

 Size: 20 x 25 x 9mm

 Weight 3g

 Fully Compatible with many Raspberry Pi cases

18

CHAPTER THREE

RASPBERRY PI SUBSYSYEM AND

INTERFACE

3.1. System interface

In this chapter the study was tackled the system communication of each

component with the raspberry pi, discus about port subsystems according to

the given specification of each component. motors, drivers, sensors, power

supply and also the controller itself in case of detail.

3.2. Raspberry pi controller

The Raspberry pi is a series of small single-board computers used to

control the dc motors in the car, and the servo motors in the arm according to

the signals received from the mobile and also the readings of compass sensor

signals

Figure3.1: Raspberry pi controller

https://en.wikipedia.org/wiki/Single-board_computer

19

3.2.1.Technical Specification

 Broadcom BCM2837 64bit ARMv7 Quad Core Processor powered

Single Board Computer running at 1.2 GHz.

 1GB RAM.

 BCM43143 Wi-Fi on board.

 Bluetooth Low Energy (BLE) on board.

 40pin extended GPIO.

 4 x USB 2 ports.

 4 pole Stereo output and Composite video port.

 Full size HDMI.

 CSI camera port for connecting the Raspberry Pi camera.

 DSI display port for connecting the Raspberry Pi touch screen display.

 Micro SD port for loading your operating system and storing data.

 Upgraded switched Micro USB power source (now supports up to 2.4

Amps).

 Expected to have the same form factor has the Pi 2 Model B, however

the LEDs will change position.

3.2.2. Feature of Raspberry Pi

i. Broadcom BCM2835 SOC

Multimedia processor which it contain CPU (central processing unit)

acts as a brain of the raspberry pi controller and give the whole actions and

operation to the other devices that connected to, the CPU specifications are

ARM 1176JZF-S (armv6k) 700MHz, RISC Architecture and low power draw

and Not compatible with traditional PC software.

20

The graphical user interface GPU which it’s specification are broad com

Video IV and specialized graphical instruction sets. The Broadcom BCM2835

SOC also contain random access memory RAM 512MB (Model B rev.2) 256

MB (Model A, Model B rev.1)

Figure 3.2: Broadcom BCM2835 SOC

ii. Connecting a Display and Audio

1. HDMI

 – Digital signal

 – Video and audio signal

 – DVI cannot carry audio signal Figure 3.3:HDMI

 – Up to 1920x1200 resolution

2. Composite RCA

 – Analog signal

 – 480i, 576i resolution Figure 3.4: RCA

3. Audio jack

3.5mm

 The Audio Jack is a 3.5 mm standard

 Figure 3.5: Jack

21

iii. Universal Serial Bus

 • Two USB 2.0 ports in RPI.

 • Buy a powered USB hub

 Figure 3.6: USB

iv. Storage: Secure Digital (SD)

 • Form factor

 – SD, Mini SD, Micro SD

 • Types of Card Figure 3.7: SD card

 – SDSC (SD): 1MB to 2GB

 – SDHC: 4GB to 32 GB

 – SDXD up to 2TB

v. Networking – wireless

1. Protocols

 - 802.11 b, up to 11Mbps

 - 802.11 g, up to 54Mbps

 - 802.11 n, up to 300Mbps Figure 3.8: Ethernet

 - 802.11 ac (draft), up to 1Gbps

2. Frequency band

- 2.4GHz, 5GHz.

iv. Low Speed Peripherals

 Which content 40 Pins.

 •General Purpose Input/output (GPIO)

 Figure 3.9: RPI Pins

22

Figure 3.10: GPIO

3.2.3 The GPIO

Pins can be configured to be input/output, Reading from various

environmental sensors Writing output to dc motors, LEDs for status.

• 3.3V Pins (1,17)

• 5V Pins (2,4).

• GND Pins (6,9,14,20,30,39).

• Sending 5V to a pin may kill the Pi.

• Maximum permitted current draw from a 3.3V Pin is 50mA.

3.3 Port subsystems

In port subsystem we define the branch of devices connected to the

raspberry pi processor which are:

23

3.3.1 L293D Driver

There are sixteen pins in Driver L293D. Pin (1, 8, 16 and 9) represent

the Enable1, VCC1, VCC2 and Enable2 of the driver and it’s connected to the

power supply (High voltage) (5 volt) , pin(4, 5, 12 and 13) represent the

ground of the driver it’s connected to the power supply ground pin (Low

voltage) (0 volt) ,pin(3, 6, 11 and 14) represent the output of the driver and

the input of motors at same time, pin (3 and 6) connected to first motor and

pin (11 and 14)) connected to second motor, pin(2, 7, 10 and 15) represent

the input of the driver and connected to the output of raspberry pi, pin (2 and

7) connected to pin(11 and 13) in Raspberry Pi and Pin (10 and 15) connected

to pin(16 and 18) in Raspberry Pi to give the specification of control on the

motors and reverse it’s movement of it.

Figure 3.11: Driver L293D

24

i. Pin Description

 Pin

No

 Function Name

1 Enable pin for Motor 1; active high Enable 1,2

2 Input 1 for Motor 1 Input 1

3 Output 1 for Motor 1 Output 1

4 Ground (0V) Ground

5 Ground (0V) Ground

6 Output 2 for Motor 1 Output 2

7 Input 2 for Motor 1 Input 2

8 Supply voltage for Motors; 9-12V (up to 36V) VCC 2

9 Enable pin for Motor 2; active high Enable 3,4

10 Input 1 for Motor 1 Input 3

11 Output 1 for Motor 1 Output 3

12 Ground (0V) Ground

13 Ground (0V) Ground

14 Output 2 for Motor 1 Output 4

15 Input2 for Motor 1 Input 4

16 Supply voltage; 5V (up to 36V) VCC 1

Table 3.1: Pin Description of Driver L293D

25

3.3.2 Compass Sensor

The compass sensor Module shown in figure is designed for low-field

magnetic sensing with a digital interface and perfect to give precise heading

information. This compact sensor fits into small projects such as UAVs and

robot navigation systems. The sensor converts any magnetic field to a

differential voltage output on 3 axes (x, y and z). This voltage shift is the raw

digital output value, which can then be used to calculate headings or sense

magnetic fields coming from different directions. Compass sensor contain

five pins which are (VCC, GND, SCL, SDA and DRDY). The VCC pin

connected to pin (1) in Raspberry Pi which represent the 3.3 volt . The GND

pin connected to pin (6 or 9 or 14 or 20 or 39) in Raspberry Pi. The SCL

connected to pin (5) in Raspberry Pi. The SDA connected to pin (3) in

Raspberry Pi, and the DRDY is not connected.

The compass pin description are power 3V-5V DC, Chipset HMC5883L

Communication via I2C protocol, Measuring range: ± 1.3-8 Gauss.

Dimensions 14.8 x 13.5 x 3.5mm. and the Pin Configuration of compass

sensor are VCC: 3V-5V DC GND: ground SCL: analog input (A5) SDA:

analog input (A4) DRDY: not connected

Figure 3.12: Compass Sensor (HMC5883L)

26

3.3.3 Servo motor

The Servo Robotic Arm has three servo motors. The first one used for

a roller movement of the arm which is connected to Pin (12) in Raspberry Pi,

the ground and to power supply. The second servo motor used for horizontal

movement of the arm, which is connected to ground and power supply but the

signal terminal connected to Pin (22) in Raspberry Pi. The third servo motor

used for gripper (to collect things) which is connected to ground and power

supply but the signal terminal connected to Pin (7) in Raspberry Pi.

Figure 3.13: Servo motor and wire color diagram

i. Specifications

 Weight: 55 g

 Dimension: 40.7 x 19.7 x 42.9 mm approx.

 Stall torque: 9.4 kgf.cm (4.8 V), 11 kgf.cm (6 V)

27

 Operating speed: 0.17 s/60º (4.8 V), 0.14 s/60º (6 V)

 Operating voltage: 4.8 V a 7.2 V

 Running Current 500 mA – 900 mA (6V)

 Stall Current 2.5 A (6V)

 Dead band width: 5 µs

 Stable and shock proof double ball bearing design

 Temperature range: 0 ºC – 55 ºC

3.4 Smart phone application

The smart phone application designed with special programming

language like java script, PHP and web design language which are HTML and

CSS to give the desired buttons and phone sensors reading to be able to send

over the web to the raspberry pi controller to recognize and then gives the

order to the devices connected to it to give us the motion and control over

robot with easy way.

Figure 3.14: Application in the smart phone

28

3.5 Raspberry pi operating system

3.5.2 Linux

 GNU-Linux is a modular Unix-like operating system, deriving much of

its basic design from principles established in Unix during the 1970’s and

1980’s It is a well-known and tested free and open source operating system.

Many of today OS’s such as Ubuntu, Fedora, Android - are derived from

GNU-Linux, which are called (Distributions). There are several Operating

Systems developed specifically for the Raspberry Pi Computer such as:

i. Raspbian OS

 Raspbian is the official OS for the Raspberry Pi, it is derived from

Linux Debian.

 It is supported by the Raspberry Pi Foundation and its online

community.

 Its backed with a large collection of programs available at

raspbian.org

ii. Openelec

 Is a special OS for media and home entertainment.

 It is based on the XBMC media manager.

 And it facilitates hacking the Raspberry Pi into a media center.

iii. Adafruit

 A special OS for controlling advanced control applications

29

iv. Kali Linux

 Kali-linux is the strongest OS used for Network security and

hacking.

 It provides tools to hack computer networks and websites as well as

wireless networks.

v. ROC

• Robotics Operating System is used especially for robotics applications.

• It contains collections of programs preinstalled on ubuntu and Debian

OS’s

vi. Arch Linux

 Arch Linux is a fast OS specialized for Linux experts who are

welling to control every little and great in their Linux

distributions.

 It is also one of the smallest Linux Distributions.

vii. NOOBS

 NOOBS is a collection of 6 raspberry pi operating systems

contained in a single image, it is made to help beginners to easily

install a Raspberry Pi OS.

viii. RISC OS

 RISC OS is not a Linux Distribution, and it is designed to be

lightweight to run on ARM architecture.

30

CHAPTER FOUR

MAIN CIRCUIT DESIGN AND

PROGRAMMING

4.1 System structure

The first step of designing a robotic arm with a car is to detect the

dimension and workspace configuration according to the requirements. The

next step is to decide the specification of each actuator [4]. The robot arm was

designed with three degrees of freedom and talented to accomplish accurately

simple tasks, such a slight material handling.

 The structure of the robotic arm and the car is built with aluminum in order

to decrease the overall weight of the robot. The arm is attached to the base of

the car. All parts of the robot and the car including the parts for shoulder,

gripper and etc., were cut accurately. Some processes where applied to the

aluminum to make the necessary holes and cuts to connect the parts to each

other and to keep the actuators tightly. Physical movement of the robot is done

by using servo motors and DC motors for the car. All the parts were cut and

drilled properly according to the design template.

It is important to mention that the base ought to have considerably heavy

weight in order to maintain the general balance of the robotic arm in case of

grabbing an object.

31

4.2 Block Diagram

Figure 4.1 show the block diagram of the project.

Figure 4.1: System block diagram

-The different components involved in our project are:

32

4.2.1 Raspberry pi

Is used to control the DC motors in the car, and the servo motors in

the arm according to the signals received from the mobile and also reads

compass sensor signals

4.2.2 Motors

The DC motors used to move the car forward and backward and to

change the direction to the left or the right, and the servo motors used in the

arm for the movement up and down and left or right allowing the arm to move

toward the object, and one for the gripper to pick and drop the object.

4.2.3 The Camera

It is used to observe the object which the arm is going to pick, and to

supervise the road for the car as well.

4.2.4 Compass Sensor

It is chipset HMC5883L it designed for low-field magnetic sensing with

a digital interface; it is used as a compass to determine the car direction

4.2.5. Power supply

A regulated power supply is an electronic circuit, it is function to supply

a stable voltage to the system components. This is used to supply the power

to the microcontroller and the motors.

4.3 Wiring diagram

 The wiring diagram below in figure 4.2 describes how the wires

connected between the raspberry and the other components:

33

Figure 4.2: Wiring diagram

4.4 Design

The design of the model consists of three parts, the robotic arm,

Controlling unit, and the car. The design of each of the arm, the control unit

and the car will be specified as follow:

4.4.1The arm design

The mechanical design of the robot arm is based on a robot manipulator

with similar functions to a human arm.

It consists of:

1. Three servo motors.

2. Aluminum links.

3. End effectors (Gripper).

34

in constructing the arm, we made use of three servo motors (including the

gripper).there is a servo motor at the base , which allows for angular

movement of the whole structure ; and the second to allow the upward and

downward movement of the arm ,while the last one for gripping the object.

a motor is toggled in the aluminum links as the body of the arm; the reason of

choosing the aluminum because of it's lightweight and it is also strong enough

to keep and hold the whole parts tightly together, the lighter the body is the

more less load the motors will bear. The degree of freedom, or DOF, is a very

important term to understand. Each degree of freedom is a joint on the arm, a

place where it can bend or rotate or translate. You can typically identify the

number of degree of by the number of actuators on the robot arm. Now this is

very important- when building a robotic arm you need as few degrees of

freedom allowed for the application; because each degree of freedom requires

a motor, and that exponentially the cost. In this model there are three degrees

of freedom, and three actuators (servo motors). These three degrees of

freedom make controlling the arm more accurate, but it make the movement

of the arm in the arm workspace freer than the two degree of freedom. The

workspace or sometimes known as reachable space is all places that the end

effector (gripper) can reach. The workspace is dependent on the DOF

angle/translation limitations, the arm link strength, the angle oat which

something must be picked up at, etc. The workspace is highly dependent on

the arm configuration. The end effector in this project is a gripper, this gripper

acts like the fingers of a human hand. The actuator of the gripper is a servo

motor linked with a rope that causes the movement of the gripper. The rope

transfer the rotation of the motor to linear movement, when the motor rotate

in the clockwise the two parts of the gripper close, and when it rotate anti

35

clockwise the two parts open. So controlling the gripper is by controlling the

angle of the servo motor using the microcontroller.

Figure 4.3: Show free body diagram of the robot arm

Figure 4.4: Show the arm parts

36

Figure 4.5: Show the arm design

4.4.2 Control unit

The control unit is the board that control the robotic arm, and it

consist of the microcontroller. The microcontroller used in this project is

raspberry pi which controls the motors in the arm and the motor that controls

the car using the mobile phone. The servo motor has three pins, the red and

the black pins are for the power and the yellow one is for the signal, this

signal pin is connected directly to one of PWM (pulse width modulation)

pins as an output from the microcontroller.

The control ling of each motor in the arm is achieved by a program stored in

the memory of the microcontroller. This program sets the angle of the servo

motor to move the arm to the desired point in the work space.

The figure 4.6 below shows the control unit.

37

Figure 4.6: Show the control unit

4.4.3 The car design

In constructing the car, we made use of two DC motors. There is a DC

motor in the back of the car for the movement forward and backward, and the

other one placed in the front and it is used for the direction either left or right

. The body of the car is made of aluminum because of it is light weight and

strength, there are two pieces one over the other and there is a gap between

them where we put the controller (the raspberry), and the bread board which

consist the driver for the DC motors and the wires for connection. On the top

of the car we have the compass sensor and the robotic arm.

38

.

Figure 4.7: The car design

4.5 Robot Workspace

The workspace of a robotic manipulator is the total volume swept out

by the end effector as the manipulator executes all possible motions. The

workspace is determined by the geometry of the manipulator and the limits of

the joint motions. It is more specific to define the reachable workspace as the

total locus of points at which the end effector can be placed and the dexterous

workspace. [8]

It should be noted that it does not include the DOF which controls the wrist

orientation as the workspace is independent of orientation variable.

The shoulders rotate a maximum of 90 degrees. To determine the workspace,

trace all locations that the end effector (gripper) can reach as in the image

below. Now rotating that by the base joints another 180 degrees. This creates

a workspace of a shelled quarter sphere as shown below.

If you change the link lengths you can get very different sizes of workspaces,

but this would be the general shape. Any location outside of this space is a

39

location the arm can’t reach. If there are objects in the way of the arm, the

workspace can get even more complicated.

Figure 4.8: Work region of the robotic arm

The arm is a three degree of freedom system. Two DOF control the position

of the arm in the Cartesian space, and the third servo for actuating gripper.

The robot features in the control GUI or teach pendant are base rotation,

shoulder, and a functional gripper. The base of the robotic arm and the links

are made up of Aluminum.

Servo motors serve as the actuators at various joint. These motors feature 180

degree rotation in clockwise direction. The motors are controlled by raspberry

pi board upon receiving commands from a host mobile via internet.

Figure 4.9: Force diagram of robot arm

40

The values used for the torque calculations:

WC =0.020 kg (weight of link CD)

WB = 0.020 kg (weight of link BC)

WA = 0 .020kg (weight of link AB)

WL = 0.25 kg (load)

Dm = 0.055 kg (weight of motor)

LAB = 0.1 m (length of link AB)

LBC = 0.1 m (length of link BC)

LCD = 0.1 m (length of link CD)

Performing the sum of forces in the Y axis, using the loads as shown in Figure,

and solving for CY and CB, see Equations (1). (4). Similarly, performing the

sum of moments around point C, Equation (5), and point B, Equation (6), to

obtain the torque e in C and B, Equations (7) and (8), respectively

∑Fy= (WL+WC+DM)*g - Cy=0 (1)

CY= (0.325 kg) 9.8m/s^2= 3.185 N (2)

∑Fy=(WL+ WC+DM+WB+WA)*g – BY=0 (3)

BY= (0.365 kg) 9.8m/s^2= 3.577 N (4)

∑Mc = -WC (LCD/2)-WL (LCD) +MC=0 (5)

 ∑MA=-WL (LAB+LBC+LCD)-WC(LAB+LBC+LCD/2)

 -WA (LAB/2)-DM (LAB+LBC)-WB (LAB+LBC/2) =0 (6)

41

MC= 0.026 Nm

MA= 0.095Nm

The servo motor that was selected, based on the calculations, is the

TOWARDPRO MG996R, which has a torque of 2Nm this motor was

recommended because it is much cheaper than any other motor with

same specifications.[4]

4.6 Python

Python is a general-purpose programming language that is often

applied in scripting roles. It is commonly defined as an object-oriented

scripting language a definition that blends support for OOP with an overall

orientation toward scripting roles. If pressed for a one-liner, I’d say that

Python is probably better known as a general purpose programming language

that blends procedural, functional, and object oriented paradigms a statement

that captures the richness and scope of today’s Python.

Python comes with standard Internet modules that allow Python programs to

perform a wide variety of networking tasks, in client and server modes. Scripts

can communicate over sockets; extract form information sent to server-side

CGI scripts; transfer files by FTP; parse and generate XML and JSON

documents; send, receive, compose, and parse email; fetch web pages by

URLs; parse the HTML of fetched web pages; communicate over XML-RPC,

SOAP, and Telnet; and more. Python’s libraries make these tasks remarkably

simple and because our systems use IOT python was the perfect programming

language beside these features: [3]

42

4.6.1 Software quality

For many, Python’s focus on readability, coherence, and software

quality in general sets it apart from other tools in the scripting world. Python

code is designed to be readable, and hence reusable and maintainable much

more so than traditional scripting languages. The uniformity of Python code

makes it easy to understand, even if you did not write it. In addition, Python

has deep support for more advanced software reuse mechanisms, such as

object-oriented (OO) and function programming. [3]

4.5.2 Developer productivity

Python boosts developer productivity many times beyond compiled or

statically typed languages such as C, C++, and Java. Python code is typically

one-third to one-fifth the size of equivalent C++ or Java code. That means

there is less to type, less to debug, and less to maintain after the fact. Python

programs also run immediately, without the lengthy compile and link steps

required by some other tools, further boosting programmer speed.

4.5.3 Program portability

Most Python programs run unchanged on all major computer platforms.

Porting Python code between Linux and Windows, for example, is usually

just a matter of copying a script’s code between machines. Moreover, Python

offers multiple options for coding portable graphical user interfaces, database

access programs, web based systems, and more. Even operating system

interfaces, including program launches and directory processing, are as

portable in Python as they can possibly be. [3]

43

4.6.4 Support libraries

Python comes with a large collection of prebuilt and portable

functionality, known as the standard library. This library supports an array of

application-level programming tasks, from text pattern matching to network

scripting. In addition, Python can be extended with both homegrown libraries

and a vast collection of third-party application support software. Python’s

third-party domain offers tools.

For website construction, numeric programming, serial port access, game

development, and much more (see ahead for a sampling). The NumPy

extension, for instance, has been described as a free and more powerful

equivalent to the Mat lab numeric programming system. [3]

4.6.5 Component integration

Python scripts can easily communicate with other parts of an

application, using a variety of integration mechanisms. Such integrations

allow Python to be used as a product customization and extension tool. Today,

Python code can invoke C and C++ libraries, can be called from C and C++

programs, can integrate with Java and NET components, can communicate

over frameworks such as COM and Silverlight, can interface with devices

over serial ports, and can interact over networks with interfaces like SOAP,

XML-RPC, and CORBA. It is not a standalone tool. [3]

44

4.7 Procedure

When connecting the power supply to the raspberry, servo motors in

the arm, and the dc motors in the car starting the application on the mobile

phone, the camera will work and he view in front of the car will appears on

the mobile screen, then the system will be ready to pick up any object.

The control operation is as follows the car move forward, backward, left, or

right according to the button pushed on the mobile screen when pushing any

button, a signal will be send to the raspberry and the dc motor in the car will

work and this will move the car to the object location, once the object is in the

workspace of the arm the button should be released and the car will stop. Then

we can start controlling the arm throw moving the mobile , and it is different

from the car control because here we use the mobile angles instead of buttons

so when we left the mobile up the raspberry read the angels of the phone and

the arm goes up with the same amount and if we move the mobile to the right

the arm moves right and so on , once the arm in the right position to pick the

object there is a button on the screen for the gripper which allows us to pick

the object , after that we move the car to the desired position and there is

another button to release the object on the desired place.

45

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The main aims of the project is to design and implement the robot and

build the connection between the robot and the android smart phone The focus

of this work was to design and programming robotic arm. the robot arm was

designed with three degrees of freedom and talented to accomplish accurately

simple tasks, such as light material handling. The robot arm is equipped with

several servo motors which do links between arms and perform arm

movements. The controller drives the servo motors and the car with the

capability of modifying position. The programming is done on Raspberry pi

controller using python programming language. The compass sensor is also

used to detect the angles of rotation and compare the signals between the

phone and the car to modulate the right position and show the video on the

screen.

5.2 Recommendations

 Use artificial neural network to train and program this project instead

of giving the orders by your self’s.

 Using smart phone screen to view video’s of raspberry pi camera

instead of showing it on personal computer screen.

46

5.3 References

[1] H. Bunke, “FUNDAMENTALS OF ROBOTICS”, Bern, Switzerland,

2003.

[2] Fareed Shakhatreh, “THE BASICS OF ROBOTICS”, Syksy, 2011.

[3] Mark Lutz, “Learning Python”, O’Reilly Media, Inc., 1005 Graven stein

Highway North, Sebastopol, CA 95472, United States of America.

[4] Park, I. D., Park, C., Do, H., Choi, T., Kyung, J., "Design And Analysis of

Dual Arm Robot Using Dynamic Simulation" IEEE 10th International

Conference on Ubiquitous

[5]Robots and Ambient Intelligence (URAI), pp. 681-682, 2013

[6]John J. Craig “ Introduction to Robotics”, Third Edition © 2005 Pearson

Education, Inc. United States of America.

[7]Abdallah Ali Abdallah “Simply raspberry pi” © 2010.

[8] Bruno Siciliano, Oussama Khatib (Eds.),”Springer Handbook of

Robotics”, Springer-Verlag Berlin Heidelberg,2008

47

5.4 Appendix A

Raspberry pi motors code

from flask import Flask, abort, request

import json

import ast

from subprocess import call

import time

from threading import *

import smbus

import math

SL=1

speed=100

app = Flask(__name__)

def forward(forward_hold):

 call (["echo P1-11={}% > /dev/servoblaster".format(speed)], shell=True)

 call (["echo P1-13=0% > /dev/servoblaster"], shell=True)

48

 if not(forward_hold):

 time.sleep(SL)

 call (["echo P1-11=0% > /dev/servoblaster"], shell=True)

 call (["echo P1-13=0% > /dev/servoblaster"], shell=True)

def backward(forward_hold):

 call (["echo P1-13={}% > /dev/servoblaster".format(speed)], shell=True)

 call (["echo P1-11=0% > /dev/servoblaster"], shell=True)

 if not(forward_hold):

 time.sleep(SL)

 call (["echo P1-13=0% > /dev/servoblaster"], shell=True)

 call (["echo P1-11=0% > /dev/servoblaster"], shell=True)

def right():

 call (["echo P1-16=80% > /dev/servoblaster"], shell=True)

 call (["echo P1-18=0% > /dev/servoblaster"], shell=True)

 time.sleep(0.15)

 call (["echo P1-16=0% > /dev/servoblaster"], shell=True)

49

 call (["echo P1-18=0% > /dev/servoblaster"], shell=True)

def left():

 call (["echo P1-18=80% > /dev/servoblaster"], shell=True)

 call (["echo P1-16=0% > /dev/servoblaster"], shell=True)

 time.sleep(0.15)

 call (["echo P1-18=0% > /dev/servoblaster"], shell=True)

 call (["echo P1-16=0% > /dev/servoblaster"], shell=True)

def applyAngle(angle,pin):

 if angle>180:

 angle=180

 if angle<0:

 angle=0

 us=500+(2100-500)/180*angle

 call("echo P1-{}={}us > /dev/servoblaster".format(pin,us) , shell=1)

@app.after_request

def after_request(response):

 response.headers.add('Access-Control-Allow-Origin', '*')

 response.headers.add('Access-Control-Allow-Headers', 'Content-

Type,Authorization')

50

 response.headers.add('Access-Control-Allow-Methods',

'GET,PUT,POST,DELETE')

 return response

@app.route('/foo', methods=['POST'])

def foo():

 if 'yaw' in request.json:

 global imu_event

 imu_event.wait()

 global c

 r=request.json['yaw']

 p=request.json['pitch']

 if c<=90 and (r>=270 and r<=360):

 servo1Angle=90-(180-(r-270)-(90-c))

 applyAngle(servo1Angle,12)

 elif r<=90 and (c>=270 and c<=360):

 servo1Angle=90-(180-(c-270)-(90-r))

 applyAngle(180-servo1Angle,12)

 else:

 servo1Angle=r-c+90

 applyAngle(180-servo1Angle,12)

 applyAngle(-1*(p+5),22)

 if 'x' in request.json and request.json['x']=='h':

 global isClosed

 if isClosed:

 applyAngle(180,7)

51

 else:

 applyAngle(0,7)

 isClosed=not isClosed

 # if (request.json['yaw']<120)and(request.json['yaw']>40):

 # us=(120-float(request.json['yaw']))*1000/80+700

 # print us

 # call (["echo 4="+str(us)+"us > /dev/servoblaster"], shell=True)

 # else:

 # donothing=4

 # if (request.json['pitch']>-90)and(request.json['pitch']<10):

 # us1=2000+(float(request.json['pitch'])-10)*1000/100

 # print us1

 # call (["echo 3="+str(us1)+"us > /dev/servoblaster"], shell=True)

 # else:

 # donothing=4

 return json.dumps({"hi":5})

def imu(imu_event):

 global c

 bus = smbus.SMBus(1)

 address = 0x0d

 print "working"

52

 while 1:

 def read_byte(adr): #communicate with compass

 return bus.read_byte_data(address, adr)

 def read_word(adr):

 low = bus.read_byte_data(address, adr)

 high = bus.read_byte_data(address, adr+1)

 val = (high<< 8) + low

 return val

 def read_word_2c(adr):

 val = read_word(adr)

 if (val>= 0x8000):

 return -((65535 - val)+1)

 else:

 return val

 def write_byte(adr,value):

 bus.write_byte_data(address, adr, value)

 write_byte(11, 0b00000001)

 write_byte(10, 0b00100000)

 write_byte(9, 0b00000000|0b00000000|0b00001100|0b00000001)

 scale = 0.92

 x_offset = -10

 y_offset = 10

53

 x_out = (read_word_2c(0)- x_offset+2) * scale #calculating x,y,z

coordinates

 y_out = (read_word_2c(2)- y_offset+2)* scale

 z_out = read_word_2c(4) * scale

 bearing = math.atan2(y_out, x_out)+.48 #0.48 is correction value

 if(bearing < 0):

 bearing += 2* math.pi

 c=math.degrees(bearing)-15

 if c<0:

 c+=360

 c=c+90

 if c>360:

 c=c-360

 print c

 imu_event.set()

 imu_event.clear()

 print "Bearing:", c

 # print "x: ", x_out

 # print "y: ", y_out

 # print "z: ", z_out

 time.sleep(0.2)

global isClosed

isClosed=True

global imu_event

imu_event=Event()

54

th=Thread(target=imu,kwargs={'imu_event':imu_event})

th.start()

applyAngle(110,15)

applyAngle(0,7)

print "hi"

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000, debug=False)

 call (["sudo ~/PiBits/ServoBlaster/user/./servod --min=0% --max=100%"],

shell=True)

55

5.5 Appendix B

Stream client raspberry pi code

"""

Reference:

PiCamera documentation

https://picamera.readthedocs.org/en/release-1.10/recipes2.html

"""

import io

import socket

import struct

import time

import picamera

create socket and bind host

client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client_socket.connect(('192.168.1.100', 8000))

connection = client_socket.makefile('wb')

try:

 with picamera.PiCamera() as camera:

 camera.resolution = (320, 240) # pi camera resolution

 camera.framerate = 10 # 10 frames/sec

56

 time.sleep(2) # give 2 secs for camera to initilize

 start = time.time()

 stream = io.BytesIO()

 # send jpeg format video stream

 for foo in camera.capture_continuous(stream, 'jpeg', use_video_port =

True):

 connection.write(struct.pack('<L', stream.tell()))

 connection.flush()

 stream.seek(0)

 connection.write(stream.read())

 if time.time() - start > 600:

 break

 stream.seek(0)

 stream.truncate()

 connection.write(struct.pack('<L', 0))

finally:

 connection.close()

 client_socket.close()

57

5.6 Appendix C

Stream server test pc code

__author__ = 'zhengwang'

import numpy as np

import cv2

import socket

class VideoStreamingTest(object):

 def __init__(self):

 self.server_socket = socket.socket()

 self.server_socket.bind(('192.168.1.100', 8000))

 self.server_socket.listen(0)

 self.connection, self.client_address = self.server_socket.accept()

 self.connection = self.connection.makefile('rb')

 self.streaming()

 def streaming(self):

 try:

 print "Connection from: ", self.client_address

 print "Streaming..."

 print "Press 'q' to exit"

58

 stream_bytes = ' '

 while True:

 stream_bytes += self.connection.read(1024)

 first = stream_bytes.find('\xff\xd8')

 last = stream_bytes.find('\xff\xd9')

 if first != -1 and last != -1:

 jpg = stream_bytes[first:last + 2]

 stream_bytes = stream_bytes[last + 2:]

 #image = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8),

cv2.CV_LOAD_IMAGE_GRAYSCALE)

 image = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8),

cv2.CV_LOAD_IMAGE_UNCHANGED)

 cv2.imshow('image', image)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 finally:

 self.connection.close()

 self.server_socket.close()

if __name__ == '__main__':

 VideoStreamingTest()

	Sudan University of Science and uefu
	face on
	Final

