Dedication

I

To my father's soul

To my mother

To my brothers& sisters

II

To my colleagues

To you

Ш

IV

V

Acknowledgement

After thanking Allah for inspiring me to accomplish this work, I would like to express my faithful indebtedness to Prof. Dr. Nafie A.

VI

AL Muslet for his supervision of this work, encouragement, guidance, advice, and patience.

Thank also extends to all the staff of the Institute of Laser-Sudan University for Science and Technology.

VII

My deepest gratitude goes to my family and to everybody who helped me during this work.

VIII

IX

Х

ABSTRACT

The objective of this research was the utilization of laser induced breakdown spectroscopy (LIBS) technique in investigation of elements in three different

XI

kinds of gasoline. Q-switched-Nd: YAG Laser with 10 (ns) pulse duration, 23.4 (mJ) energy per pulse, 0.5 Hz repetition rate was used and focused on the sample to achieve high power density leads to very high temperature in the focal volume and then undergo a number of reactions resulting in formation of a plasma for the sample with discrete emission lines which represent fingerprints of the atoms and ions constitute the sample. A spectrometer connected to PC was used to

XII

collect and record the emission spectra of the samples plasma. The recorded spectra were processed by subtracting the dark current, pumping flashlamp spectra and background radiation. The elements were identified from the emitted lines after referring to the atomic spectra database. A comparison was done between the sample contents. The results showed that there are elements found

XIII

in all the three samples with different amounts while there are some elements that not found in all the three kinds of gasoline.

XIV

XV

المستخلص

الهدف من هذا البحث هو استخدام تقنية مطيافيـة الانهيـار الكهربـائي المسـتحث بالليزر لإستكشاف العناصر الموجـودة فـى ثلاث عينـات مختلفـة مـن الجـازولين.

XVI

استخدم ليزر النيوديميوم- ياق ذي التشغيل المفتاحي النبضي بزمن نبضة مقداره 10 نانو ثانية وبطاقة نبضة مقدارها 23.4 (ملـي جـول) و بتكراريـة مقـدارها 0.5 هيرتز. جمعت حزمة الليزر على العينة للحصول على كثافة قدرة عالية تؤدى الـى ارتفاع في درجات حرارة الجزيئات عند بؤرة الحزمة عندها تحصل عـدة تفـاعلات تؤدى الى تكون البلازما من العينة لها خطوط إنبعاث طيفيـة مميـزة تمثـل بصـمة تعرف بها الذرات والايونات المكونة للعينة. استخدم جهاز مطياف مربـوط بجهـاز XVII الحاسب لتسجيل الإنبعاثات ومعالجتها عبر برنامج اسبيكتراسويت للتخلص من طيف المصباح المستخدم في ضخ الليـزر وتيـار الظلام و الإشـعاع مـن الوسـط المحيط. تم تحديد العناصر الموجودة فـي كـل عينـة بواسـطة الخطـوط الطيفيـة المنبعثة وذلك بعد الرجوع الى قاعدة بيانات الاطياف الذريـة للـذرات و الايونـات. تمت المقارنة بين محتويات كل عينة. اوضحت النتائج ان هنالـك بعـض المكونـات

XVIII

موجودة في كل العينات الثلاث بكميات متفاوتـة فـي حيـن ان بعـض المكونـات لا توجد في كل العينات.

XIX

CONTENTS

ΧХ

Article	Page
	No.
الأية	
Dedication	I
Acknowledgement	II
Abstract	III
المستخلص	IV
XXI	

Contents	V
List of figures	VII
List of tables	IX
CHAPTER ONE	
INTRODUCTION AND BASIC CONCEPTS	
1.1 INTRODUCTION	1
1.2. ABSORPTION AND EMISSION OF RADIATION	2

XXII

1.2.1. Absorption	2
1.2.2. Spontaneous emission	3
1.2.3. Stimulated emission	4
1.3. PRINCIPLES OF SPECTROSCOPY	4
1 A LASER SPECTROSCOPY	6
1.4. LASLA SI LETROSCOT I	U
1.4.1. Absorption spectroscopy	7
1.4.1. Absorption spectroscopy 1.4.2. Laser-induced molecular dissociation	7 8

XXIII

1.4.4. Hyper Raman spectroscopy	10
1.4.5. Coherent anti-Stokes Raman scattering spectroscopy	11
1.4.6. Laser Stark (or laser electronic resonance) spectroscopy	12
1.4.7. Laser induced fluorescence (LIF)	13
1.4.8. Cavity ring-down spectroscopy(CRDS)	14
1.4.9. Light detection and ranging (LIDAR)	15
1.5. LASER INDUCED BREAKDOWN SPECTROSCOPY (LIBS)	16
1.6. BASIC COMPONENTS OF LIBS AND THE PHYSICAL	19

XXIV

PROCESSES	
1.6.1. Lasers for LIBS	19
1.6.2.Basic Physical Principles	21
1.6.3. Characteristics of LIBS	23
1.6.3.1. The LIBS method	23
1.6.3.2. The physics and chemistry of the laser plasma	25
1.6.3.3. Forming the LIBS plasma in a liquid	29
1.7. LIBS AS AN ANALYTICAL TECHNIQUE	30

XXV

1.8. THE AIM OF THE WORK	30
1.9. LITERATURE REVIEW	31
CHAPTER TWO	
THE EXPERIMENTAL PART	
2.1. INTRODUCTION	34
2.2. EXPERIMENTAL SETUP	34
2.2.1. The laser	35

XXVI

2.2.2. The spectrometer	37
2.2.3. Optical fiber	40
2.2.4. The software	41
2.3.MATRIALS	42
2.4. EXPERIMENTAL PROCEDURE	44
CHAPTER THREE	
RESULTS AND DISCUSSION	

XXVII

3.1. INTRODUCTION	46
3.2. LIBS RESULTS	46
3.3. CONCLUSIONS	57
3.4. FUTURE WORK	58
REFERENCES	59

XXVIII

XXIX

LIST OF FIGURES

Figure	
	No
Figure (1-1): Schematic illustration of the three processes: (a) spontaneous	3

XXX

emission, (b) stimulated emission, (c) absorption.	
Figure (1-2): Linear laser-absorption spectroscopy using tunable laser	7
(a) Direct absorption. (b) opto-acoustic method using a microphone.	
Figure (1-3): Schematic representation of laser photolysis by three methods.	8
Figure (1-4): Energy-level diagram for spontaneous Raman scattering.	9
Figure (1-5): The hyper Raman spectrum of ethane	10
Figure (1-6): Experimental arrangement for coherent anti-Stokes Raman	12

XXXI

scattering	
Figure (1-7): Laser Stark spectroscopy with the sample inside the cavity. G,	13
grating; S, Stark electrodes; W, window; M, mirror; D, detector	
Figure (1-8): Schematic diagram showing how a cavity ring-down	14
absorption spectrum is obtained	
Figure (1-9): A LIDAR device using a Cassagrain telescope	15
Figure (1-10): A schematic of a simple apparatus for laser-induced	17

XXXII

XXXIII	
which emissions from different species predominate.	
Figure (1-13): The important time periods after plasma formation during	25
Figure (1-12): Diagram of a typical laboratory LIBS apparatus	24
different	
inductively coupled plasma, and a laser-induced spark. The size scales are	
Figure (1-11): Photographs of a conventional electrode spark, an	18
breakdown spectroscopy illustrating the principal components	

Figure (1-14): Life cycle diagram showing main events in the LIBS	26
DTOCASS	
process.	
Figure (1-15): Air plasma temperature as a function of time after plasma	27
8 (), F F F	_ ·
formation	
Figure (1-16): Electron density in the air plasma as a function of time after	28
	_
plasma formation	
Figure (2.1): The experimental setup	34
	ļ.

XXXIV

35
36
37
37
38
39
41

XXXV

Figure (2.9): SpectraSuite software screen	42
Figure (3.1): LIBS emission spectrum of sample No 1	47
Figure (3.2): LIBS emission spectrum of sample No 2	49
Figure (3.3): LIBS emission spectrum of sample No 3	52

XXXVI

XXXVII

LIST OF TABLES

Contents

Page No.

XXXVIII

Table (2-1) the laser energy as a function of the applied	35
voltage	
Table (3-1) analysis of emission spectrum for sample No 1	47
Table (3-2) analysis of emission spectrum for sample No 2	50
Table (3-3) analysis of emission spectrum for sample No 3	52
Table (3-4) comparison between the atoms of the three	56

XXXIX

samples	
Table (3-5) comparison between ions of the three samples	56

XL