الآية بسم الله الرحمن الرحيم قال الله تعالى : هُوَالَّذِي جَعَلَ الشَّمْسَ ضِياً، وَالْقَمَرُ نُوَرًا وَقَدَّرُهُ مُنَازِلُ لِنُعْلَمُواْعَدَدُالسِّينِينَ وَٱلْحِسَابَ مَاخَلُقَ ٱللَّهُ ذَلِكَ إِلَّا بِٱلْحَقِّ يُفْصِّلُ ٱلْأَبْحَتِ لِقَوْمِ يَعْلَمُونَ ٢

صدق الله العظيم سورة يونس آية (5)

DEDICATION

Thankful appreciation for support, encouragement and understandings to our beloved mothers, fathers, brothers and sisters.

ACKNOWLEDGEMENT

First and foremost, we would like to express our gratitude to the most Gracious and Most Merciful **ALLAH** for helping us to complete this research.

It has been an honor and pleasure to have Ust. Galal Abd Alrahman Mohammed as our supervisor. We are grateful to him for the time given to us to make this requirement and for his valued suggestion. In addition to his huge knowledge and experience. We enjoyed his support and patience during the very tough moment of the research work and writing of the research.

Lastly but certainly not least, we would like to deeply acknowledge our beloved parents for their untiring efforts in providing moral and financial assistance that inspired to finish this work and also to all our friends that's been really helpful in providing us some help along with their kind opinion.

Abstract

The human deal with many problem and risks in any fields like: industrial fields, chemical laboratories and nuclear industries. These risks which mentioned above happen because the human doing it manually , because of that hand simulator control system has been built , to avoid that risks by doing what the human was do.

Hand simulator control system has been implemented to do work with high efficiency in fields mentioned above.

المستخلص

يتعرض الإنسان للعديد من المشاكل و الأخطار في شتى المجالات, مثل : المجالات الصناعية والمعامل الكيميائية والصناعات النووية. تلك الأخطار السابق ذكرها بسبب الاعمال اليدوية التي يقوم بها الانسان ؛ لذلك يتم تصميم نموذج لمحاكاة حركة ذراع الإنسان لتفادي تلك المخاطر بان تقوم الذراع الألية بما كان يقوم به الإنسان. وقد تم تصميم نموذج للذراع بما يحقق العمل بكفاءة في المجالات السابق ذكرها .

TABLE OF CONTENTS

الآية	Ι
Dedication	II
Acknowledgement	III
Abstract	IV
المستخلص	V
Table of contents	VI
List of tables	Х
List of figures	IX
List of abbreviations	XI
CHAPTER ONE INTRODUCTION	
1.1 Background	1
1.2 Research Problem	1
1.3 Research Objectives	1
1.4 Research Methodology	2
1.5 Research Outlines	2
CHAPTER TWO Hand Simulator	
2.1 Introduction	3
2.2 Hand Simulator Control System Applications	6

CHAPTER THREE	
Control System	
3.1 Introduction	13
3.2Closed-Loop Control Versus Open-Loop Control	13
3.3 Microcontroller	16
3.4 Arduino	19
CHAPTER FOUR	
APPLICATION	
4.1 Introduction	21
4.2 System Components	22
4.2.1 Gloves	22
4.2.2 Arduino Mega328 (UNO)	23
4.2.3 Slide Linear Potentiometer	27
4.2.4 Signal flow Potentiometer	28
4.2.5 Servo motor	30
4.3 System Operation	44
4.4 Code explanation	44
CHAPTER FIVE	
CONCLUSION AND RECOMONDATIONS	

5.1 Conclusion	48
5.2 Recommendations	48
REFRENCESES	49
APPENDICES	51

LIST OF FIGURES

Figure	Title	Page
3.1	The difference between microprocessor and microcontroller	17
3.2	The Harvard architecture	18
3.3	The Von Neuman architecture	18
3.4	Arduino mega 328 (UNO(20
4.1	Glove construction	23
4.2	Controlling Servos with a Potentiometer or Sensor	26
4.3	Slide linear potentiometer	29
4.4	Continuous rotation servo motor SM-S4315R	32
4.5	Standard servo motor construction	37
4.6	Servo speed representation	39
4.7	Servo power connection	42
4.8	Servo power connections	43
4.9	R/C servo connection	44

LIST OF TABLES

Table	Title	Page
4.1	Arduino mega 328 technical specifications	27
4.2	Slide linear potentiometer electrical characteristics	29
4.3	Servo power details	43

LIST OF ABBREVIATIONS

AC	Alternating Current
CPU	Central Processing Unit
DC	Direct Current
3D	Three-dimensional
EP	Emergency Procedure
IDE	Integrated Development Environment
IED	Improvised Explosive Device
LED	Light Emitting Diode
LEV	local exhaust ventilation
PWM	Pulse Width Modulation
PPE	Personal Protective Equipment
RAM	Random Access Memory
ROM	Read Only Memory
RPE	Respiratory Protective Equipment
SDS	Safety Data Sheet
USB	Universal Serial Bus