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Appendices 

 
Appendix A: CFD procedures 
 

In  general,  a  CFD  analysis  is  typically  composed  of  three  phases:  pre-processing,  solving  and 

post-processing. Pre-processing consists of importing the building geometry from CAD, creating a 

computational domain, mesh generation, defining boundaries and initial conditions, and setting 

numerical  controls.  Once  the  computational  conditions  have  been  set,  the  analysis  will  proceed 

using commercial CFD codes such as STAR-CD and STAR CCM+ (CD-Adapco), FLUENT and 

CFX (ANSYS, Inc), OpenFOAM, or COVERFLOW. The results can take the form of color plots, 

contour plots, and numerical reports in the post-processing phase. The specific process involved in  

performing  a  CFD  analysis  is  outlined  in  detail  in  NPARC  Alliance  CFD  Verification  and 

Validation (2012):  

1) Formulate the Flow Problem    
 
2) Model the Geometry and Flow Domain  

 
3) Establish the Boundary and Initial Conditions    

 
4) Generate the Grid  

 
5) Establish the Simulation Strategy  

 
6) Establish the Input Parameters and Files  

 
7) Perform the Simulation  

 
8) Monitor the Simulation for Completion  

 
9) Post-Process the Simulation to get the Results  

 
10) Make Comparisons of the Results  

 
11) Repeat the Process to Examine Sensitivities  

 
12) Document 
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Appendix B: CFD fundamentals 

 

1. Governing equations 
 
According to the book Computational Fluid Dynamics: The Basics With Applications (Anderson,  

 

1995), CFD utilizes the fundamental governing equations of fluid dynamics as represented by the 

continuity, momentum, and the energy equations. These are based on three fundamental physical 

principals:    

(1) Mass is conserved;  
 

(2) F = ma (Newton’s second law); and  
 

(3) Energy is conserved (Anderson, 1995, p.38).  
 

 
These are summarized in the Navier–Stokes equations for incompressible flow:  
 

where xi (i = 1, 2, 3) are the three coordinate directions, ui (i = 1, 2, 3) are the velocities in these 

directions,  p  is  pressure,   is  density  and   is  viscosity.  Equation  1  expresses  the 

conservation of mass, while Equation 2 is a momentum equation where the first term on the left- 

hand side represents the variation with time and the second is the convection term; on the right- 

hand side the terms are the pressure gradient,  a diffusion term and the source term, respectively  

(Wainwright  &  Mulligan,  2004).  In  general,  the  Navier-Stokes  equations  comprise  a  system  of 

nonlinear partial differential equations and provide the highest level approximations for the flow 

physics approaching the continuum-mechanics based flow regime (Veress & Rohلcs, 2012).   
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2. Initial conditions 
 
At an early stage of the CFD process, the initial conditions must be determined. These conditions 

are  sensitive to  the selection  of the turbulence model  to  be utilized.  The  number  of  iterations  is 

set  up  for  steady  flow  problems,  but  for  the  case  of  unsteady  flow  problems,  time  steps  are 

needed.  A more detailed  explanation of how the turbulence model is selected is provided below 

in Section 5.    

3. Grid generation 
 
The  geometric  domain  to  be  modeled  using  CFD  must  be  divided  up  or  discretized  into  cells. 

The  combination  of  all  the  cells  is  regarded  as  the  grid  or  computational  domain.  For  example, 

three  dimensional  cells  are  usually  hexahedral  or  tetrahedral  in  shape  (Scott  et  al.,  2006).  The 

process  of  determining  the  grid  is  referred  to  as  grid,  or  mesh generation.  Anderson  (1995) 

pointed  out  that  the  grid  generation  is  a  significant  consideration  in  the  CFD  process  and  an 

appropriate  determination  of  the  type  of  grid  is  essential  if  a  valid  numerical  solution  is  to  be 

obtained.  This  process  has  a  significant  impact  on  the  efficiency  and  accuracy  of  CFD,  as  the 

element  or  cell  shape  and  size  influences  both  the  computation  speed  and  numerical  accuracy 

(Kortelainen, 2009).  

Based  upon  the  connectivity  of  the  mesh  or  on  the  type  of  elements  two  types  of  meshes, 

structured  and  unstructured,  have  been  defined  as  shown  in  Figure  1.  According  to  Bern  and 

Plassmann  (2000),  all  the  interior  vertices  of  a  structured  mesh  are  topologically  alike  and  the 

vertices of an unstructured mesh may be arbitrarily different for local neighborhoods. They also 

noted  that  a  hybrid  mesh  can  be  made  up  of  a  number  of  small  structured  meshes  in  an  overall 

unstructured pattern, as shown in Figure 2. While a structural mesh is simple and easy to access, 

an  unstructured  mesh  generally  provides  a  better  fit  for  complicated  domains  and  offers  more 

convenient  mesh  adaptivity  (Oliveira  et  al.,  2008).  A  high-quality  hybrid  mesh  can  take 

advantage  of  both  these  approaches.  In  addition,  both  structured  and  unstructured  meshes  must 
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remove  unnecessary  details  in  the  geometry  to  ensure  robustness  and  mesh  quality  (Oliveira  et  
 

al., 2008).    
 

 
 

 
 

a. Unstructured mesh                                             b. Structured mesh 

Figure 1 - The two different mesh types (Bosbach et al. ,2006)  

 
 

 
 

Figure 2 - Close-up view of a hybrid computational grid (Zhang & Wang, 2004)  
 

 
 
4. Discretization 

 
Once  the cell types have been determined, the next step is to divide the flow domain into small  

 

computational  volumes  called  elements  or  cells  that  cover  the  domain  completely  but  do  not  
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overlap  one  another  (Kortelainen,  2009).  Depending  upon  the  type  of  discretization  method 

utilized,  computational  grids  can  be  either  structured  or  unstructured.  Anderson    defined 

discretization as:  

 
 
the process by which a closed-form mathematical expression, such as a function or a differential 

or integral equation involving functions, all of which are viewed as having an infinite continuum 

of  values  throughout  some  domain,  is  approximated  by  analogous  (but  different)  expressions 

which prescribe values at only a finite number of discrete points or volumes in the domain (1995, 

p.125).  

 
 
Various  numerical  discretization  methods  have  been  developed  for  the  solution  of  non-linear 

Partial  Differential  Equations  (Uddin,  2008).  According  to  Veress  and  Rohلcs  (2012),  three 

discretization  methods  are  normally  used  in  commercial  CFD  codes:  the  Finite  Difference 

method, the Finite Element method and the Finite Volume method. Other discretization methods 

such  as  the  Spectral,  Boundary  element,  Vorticity  type  and  Lattice  gas  or  Lattice  Boltzmann 

methods have been rarely, if ever, used for this purpose.    

The  characteristics  of  the  three  most  frequently  used  methods  can  be  summarized  as  follows 

(Udoewa & Kumar, 2012; Veress & Rohلcs, 2012):    

1)  The  Finite  Difference  method  (FDM)  is  the  most  traditional  and  oldest  method  of  the  three 

and  is  only  suitable  for  structured  grids.  The  mesh  size  and  properties  such  as  stretch  ratio, 

aspect  ratio  and  skewness  have  a  significantly  impact  on  its  accuracy.  This  method  is  not 

widely  used  because  of  the  geometric  limitations  it  imposes  on  applications,  but  it  is  the 

easiest discretization method of the three.    

2)  The  Finite  Element  method  (FEM)  provides  greater  flexibility  for  dealing  with  complex 

geometries than the Finite Difference method. The mesh in the Finite Element method can be 

either  structured  or  unstructured.  While  this  method  is  more  stable  than  the  Finite  Volume  

method, it requires more computing memory than the Finite Volume method.    
 



249 
 

 

3)  The  Finite  Volume  method  (FVM)  calculates  the  partial  differential  equations  over  finite   

volumes created as parts of one or more cells that can be either overlapped or non-overlapped. In 

this method, it is possible to modify the shape and location of the control volumes to allow 

greater  freedom  in  the  choice  of  the  functional  representation  of  the  flow  field.  The  Finite 

Volume Method permits the use of irregular grids while retaining computational simplicity.  

As  shown  in  Figure  3,  while  FEM  separates  the  continuum  region  of  interest  into  a  number  of 

simply  shaped  regions,  FVM  subdivides  the  domain  of  interest  into  a  finite  number  of 

contiguous control volumes based on a grid (Molina-Aiz et al., 2010).    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. FEM                                                                  b. FVM  
 

Figure 3 - Structured meshes for the two main discretization methods (Molina-Aiz et al., 2010) 
 
5. Turbulence models 

 
A  fundamental  phenomenon  in  this  field  of  study  is  turbulence.  Generally,  turbulence  is  a 

complicated  phenomenon  that  occurs  over  a  wide  range  of  time  scales  and  length  scales.  Most 

CFD researchers deal with this by selecting a certain length scale and time scale for the range of 

turbulence  anticipated  since  turbulence  acts  over  such  a  wide  range  of  length  scales  and  its 

periodicity  manifests  over  similarly  wide  ranges  of  time  periods  (Udoewa  &  Kumar,  2012). 

Udoewa  and  Kumar  explained  that  resolving  turbulence  means  computing  and  calculating 
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turbulent quantities such as vorticity, velocities and pressures in turbulent regions and noted that 

modeling  turbulence  creates  the  effect  of  fully  resolved  turbulence  on  unknown  values  such  as 

velocity  and  pressure  based  on  the  effect  of  the  equation  to  which  an  expression  is  added. 

Turbulence  modeling  is  difficult  and  represents  the  most  important  challenge  facing  CFD 

(Wainwright  &  Mulligan,  2004)  and  successfully  modeling  turbulence  greatly  enhances  the 

quality of numerical simulations (Sodja, 2007).  

There  are  three popular  approaches  for  the  analysis  of a  turbulent  flow  problem,  namely  Direct 

Numerical  Simulation  (DNS),  Large  Eddy  Simulation  (LES)  and  models  based  on  Reynolds 

Averaged  Navier-Stokes  (RANS)  equations  (Udim,  2008).  The  characteristics  of  these  three 

approaches  are  summarized  by  Wainwright  &  Mulligan  in  their book  Environmental  Modeling: 

Finding Simplicity in Complexity as follows:  

For DNS, it is possible to predict all the eddy structures from the large ones down to the smallest 

but  it  requires  significant  computing  resources  for  practical  flows.  In  LES  approach,  it  uses  a 

length  scale  to  differentiate  between  larger  and  smaller  eddies.  The  larger  eddies  are  resolved 

directly  but  the  smaller  eddies  are  not  predicted  directly.  The  smaller  eddies  are  accounted  for 

through  a  subgrid-scale  model.  When  applying  this  approach,  appropriate  filter  or  grid  size 

should be considered in order to achieve accurate results. However it is less expensive than DNS, 

LES  still  requires  high  computing  power  and  needs  fine  grids  for  practical  flows.  On  the  other 

hand,  the  most  widely  used  approach  is  the  turbulence  models  based  on  RANS  equations.  The 

most  popular  option  is  the  k  -    model  which  is  usually  the  default  option  in  CFD  software.  k 

represents the kinetic energy in the turbulent fluctuations and    represents the rate of dissipation 

of k (2004, pp.338).  

In  addition,  Udim  (2008)  mentioned  that  the RANS  approach  predicts  only  the  mean  flow  field 

and  can  be  applied  to  achieve  a  sufficiently  accurate  prediction  in  many  cases.  However,  this 

does fail to represent the true flow physics.   
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In  sum,  although  both  the  DNS  and  LES  approaches  provide  better  results,  they  require  far 

greater computer resources than turbulence models based on RANS methods. Furthermore, there are  a  

number  of  different  versions  of  turbulence  models  based  RANS  methods  now  available 

commercially (Udoewa & Kumar, 2012).      

6. Solution algorithm 
 
CFD  simulations  are  constructed  around  numerical  algorithms  that  can  deal  with  fluid  flow 

problems.  For  example,  consider  the  numerical  algorithms  used  to  resolve  the  coupling  that 

arises  in  the  solution  of  Navier-Stokes  equations  between  velocity,  density  and  pressure 

(Moukalled  &  Darwish,  2000).  The  SIMPLE  (Semi-Implicit  Method  for  Pressure  Linked 

Equations) type of algorithm is commonly used in CFD studies (Patankar & Spalding, 1972), but over  

the  years,  a  number  of  modified  versions  of  the  SIMPLE  algorithm  have  been  suggested including 

the SIMPLER, SIMPLEC and PISO algorithms (Moukalled & Darwish, 2000).  

Versteeg and Malalasekera (1995) compared those four algorithms in their book  An Introduction to  

Computational  Fluid  Dynamics:  The  Finite  Volume  Method.  The  SIMPLE  algorithm  was 

originally  proposed  by  Patankar  and  Spalding  (1972)  and  is  essentially  a  guess-and-correct 

procedure  for  the  calculation  of  pressure  on  a  staggered  grid  arrangement.  This  method  is 

relatively  straightforward  and  has  been  successfully  used  in  numerous  CFD  procedures.  The 

SIMPLER  (SIMPLE-Revised)  algorithm  is  an  improved  version  of  the  SIMPLE  algorithm  that 

utilizes  pressure  corrections  only  to  correct  velocity  fields.  Consequently,  this  algorithm  is  very 

effective in calculating the pressure field correctly and solving the momentum equations while at the  

same  time  reducing  the  computing  resources  required.  The  book  also  introduces  the 

SIMPLEC  and  PISO  algorithms.  The  SIMPLEC  (SIMPLE-Consistent)  algorithm  follows  the same  

steps  as  the  SIMPLE  algorithm  but  defines  the  coefficients  in  the  pressure-correlation equation 

differently. The PISO  algorithm, where  the acronym PISO stands for Pressure  Implicit with  Splitting  

of  Operators,  and  implements  a  pressure velocity  calculation  procedure  for  the non-iterative  

computation  of  unsteady  compressible  flows.  Versteeg  and  Malalasekera  consider  

that  although  the  SIMPLEC  and  PISO  algorithms  have  proved  that  they  are  as  efficient  as  the  
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SIMPLER algorithm for certain types of flows, it is not clear whether they are better overall than  
 

the SIMPLER algorithm.    
 
7. Boundary conditions 

 
After choosing a suitable mathematical model for the physical phenomenon, boundary conditions 

must be chosen. For boundary-value problems, it is essential to assign values along the boundary 

of  the  domain  that  will  permit  the  problem  to  be  solved  throughout  the  entire  2D  or  3D  space. 

There are two types of boundary conditions, namely Dirichlet and Neumann boundary conditions. 

For a Dirichlet boundary condition, the fixed value of the unknown on the boundary is specified 

for some flow problems; this is referred to as a direct boundary condition. In contrast, when the 

value of a derivative of the unknown is specified, this  is called a Neumann or natural boundary 

condition. These boundaries are spatial boundaries (Udoewa & Kumar, 2012).  

According to Wainwright & Mulligan (2004), it is common for the velocity to be fixed at an inlet 

and  outlet.  For  an  inlet,  turbulence  quantities  must  be  correctly  specified  and  inlet  profiles 

consistent  with  the  definition  of  roughness  along  the  boundaries  of  the  domain.  For  the  outlet 

condition,  careful  consideration  must  be  given  to  the  question  of  whether  the  outflow  should 

equal  the  inflow  or  whether  the  flow  profile  should  be  uniform  along  the  stream  direction  in 

order to avoid poor convergence or solutions that are not physically feasible.      

8. Numerical parameters for controlling the calculation 

Numerical  parameters  must  be  specified  in  order  to  control  the  calculation  and  reduce  the 

computational  resources  needed.  These  parameters  include  the  relaxation  factor,  monitoring 

residuals, different numerical schemes, the number of iterations for steady flow, number of time 

steps for unsteady flow, and the choice between single and double precis
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Appendix C: Definitions of several CFD terms 
 

CFD  is  a  computer  based  mathematical  modeling  tool  that  is  based  upon  the  fundamental 

governing  equations  of  fluid  dynamics.  However,  terms  within  CFD  are  often  not  obvious  to 

non-experts  to  that  field  (Souza,  2005).  Thus,  it  is  important  to  introduce  and  describe  CFD 

terms  to  them.  While  the  most  commonly  used  parameters  of  CFD  will  be  introduced  in  this 

study, several terms of CFD simulation will be introduced briefly in this section.    

1. Aspect ratio  
 

This  is  ratio  of  longest  edge  length  to  shortest  edge  length  and  it  is  a  measure  of  quality  for  a 

computational grid. In order to avoid convergence problems, the cell aspect ratios should be kept 

as small as possible (Souza, 2005; STAR-CCM+ user guide 8.04).  

2. Boundary conditions  
 

The spatial or temporal specification of variable values or behavior to produce an unique solution 

(Souza, 2005).  

3. Convergence criteria  
 

Through the iterations, the magnitude of the velocity divergence is reduced below some absolute  
 

numerical value that tends to a single answer (Souza, 2005)  
 
4. Divergence  

 

The progression of a numerical scheme away from any single solution (Souza, 2005).  
 
5. Grid / mesh  

 

This is the outcome of discretizing the computational domain into a number of elements or cells  
 

defining the discrete points at which the numerical solution is computed (Souza, 2005).    
 
6. Grid density  
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This term means the number of cells in a given volume. A higher grid density should be applied in 

regions of interest where the variables change rapidly so that their gradients can be computed and  

represented  accurately.  In  the  case  of  lower  grid  density,  it  is  generally  used  where  the 

solution is changing less in order to reduce the computational resources (Souza, 2005).  

 
7. Invalid cell  

 

When  each  cell  interior  face  belongs  to  exactly  two  cells,  this  is  considered  as  valid  cell.  If  the 

arrays  storing  the  cell  connectivity  and  vertices  have  entries  that  make  reference  to  faces  or 

vertices  that  fall  outside  the  expected  range  of  values,  invalid  cells  occur  (STAR-CCM+  user 

guide 8.04).  

8. No-slip wall  
 

This term means that the fluid velocity at the wall equals the wall velocity. The wall can rest or a 

tangential wall velocity in the form of a velocity vector with respect to the laboratory coordinate 

system can be specified (STAR-CCM+ user guide 8.04).  

9. Schmidt number  
 

A dimensionless number that is the ratio of kinematic viscosity to diffusivity (STAR-CCM+ user  
 

guide 8.04).  

 

10. Skewness  
 

This term is an important measure of cell quality and it is designed to reflect whether the cells on 

either side of  a  face are  formed in  such  a  way  as  to  permit  diffusion  of quantities  without  these 

quantities becoming unbounded (STAR-CCM+ user guide 8.04).    

11. Slip wall    
 

This  term  means  that  the  fluid  velocity  at  the  wall  is  different  with  the  wall  velocity  (STAR- 

CCM+ user guide 8.04). 
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12. Structured grid  
 

This grid forms a regular pattern. Its grid lines are continuous across the domain and are usually 

aligned  with  the  co-ordinate  directions.  For  this  grid,  hexahedra  in  three  dimensions  or 

quadrilaterals in two dimensions are included (Souza, 2005).    

13. Unclosed cell  
 

Generally a topologically closed volume cell consists of edges that are connected to exactly two 

faces,  and  faces  with  normals  pointing  outwards.  When  a  cell  is  missing  a  face,  or  the  outward 

normals are inconsistent, it is regarded as unclosed mesh (STAR-CCM+ user guide 8.04).  

14. Unstructured grid  
 

Unlike  structured  grid,  this  grid  forms  an  irregular  pattern.  This  grid  allows  highly  complex  
 

geometries to be modeled with relative ease compared to structured grids (Souza, 2005).  
 
15. Wall functions  

 

This  function  has  been  used  to  describe  the  effects  of  turbulent  boundary  layers  in  the  region 

adjacent  to  a  wall,  without  resolving  details  of  the  near  wall  flow  and  eliminating  the  need  for 

high grid resolution in the viscous sub-layer (Souza, 
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Appendix D: The commercial CFD codes 
 
Many commercial CFD codes such as STAR-CD and STAR CCM+ (CD-Adapco), FLUENT and 

CFX (ANSYS,  Inc.)  or  OpenFOAM  have  been  used  to  simulate  physical  processes.  These 

commercial CFD packages include pre-processors to construct grids, and apply initial conditions, 

processing  algorithms  that  permit  segregated  or  coupled,  steady  or  unsteady  state  flows  and  a 

variety  of  turbulence  models,  and  post-processors  that  display  results  in  a  manner  that  enhance 

interpretation. Among commercial codes, the characteristics of FLUENT and STAR-CCM+ have 

been reviewed.    

 
1. FLUENT 
 
FLUENT  is  a  most  commonly  used  commercial  CFD  code.  FLUENT  solves  the  conservative 

form  of  the  Navier-Stokes  equations  using  the  finite  volume  method  on  an  unstructured,  non- 

orthogonal, curvilinear coordinate  grid system. Combinations of elements in a variety of shapes 

are permitted, such as quadrilaterals and triangles for 2-D simulations and hexahedra, tetrahedra, 

polyhedra,  prisms  and  pyramids  for  3-D  simulations.  Meshes  can  be  created  using  mesh 

generators  (GAMBIT)  or  by  several  third-party  CAD  packages.  FLUENT  allows  the  following 

file formats for importing are summarized in table 1 (ANSYS FLUENT, 12.0 User’s Guide). 
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Table 1 - File formats for importing into FLUENT (ANSYS FLUENT, 12.0 User’s Guide) 

ABAQUS .inp, .fil, and .odb files  

Mechanical APDL .inp, .cdb, .rst, .rmg, and .rfl files.  
 

ANSYS CFX .def and .res files 

CGNS files  

EnSight files  
 

ANSYS FIDAP Neutral files 

GAMBIT files 

HYPERMESH ASCII files. 

NASTRAN Bulk Data files 

PATRAN Neutral files.  

PLOT3D mesh and result files.  
 

 
 

Turbulent  flow  models  including  several  popular  k–epsilon  and  k–omega  models,  and  the 

Reynolds  stress  model  (RSM)  are  available.  Moreover,  large  eddy  simulation  (LES)  and  the 

more  economical  detached  eddy  simulation  (DES)  turbulence  models  can  be  employed  (ANSYS 

FLUENT, 12.0 User’s Guide).  

2. STAR-CCM+ 
 
STAR-CCM+  includes  the  general  characteristics  of  FLUENT.  In  addition,  STAR-CCM+  has  a 

single  environment  for  whole  CFD  process  such  as  solid  modeling,  mesh  generation,  post- 

processing,  etc.  Moreover,  STAR-CCM+  has  a  comprehensive  suite  of  geometry  creation  and 

preparation   tools.   For   meshing,   STAR-CCM+  employs   the   technology   of   hexahedral, 

dodecahedral  and  arbitrary  polyhedral  cells  and  produces  boundary  trimmed  meshes  that 

conform to geometry, as well as high quality prism layer meshes for accuracy. The following file 

formats  that  can  be  imported  into  STAR-CCM+  are  summarized  in  table  2  (STAR-CCM+  user 

guide 8.04



 

 

 


