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Abstract 

In this dissertation, the one-loop renormalization group equations for the 

gauge couplings in five and six dimensional models as well as 5D Minimal 

Super-symmetric Standard Model were derived. We considered different 

localization of matter fields that is, all fields propagate in the full space-time 

(bulk case), or some of the fields restricted in the brane (brane case). We 

studied the evolution of the inverse fine structure constants   , which is 

linked to the gauge couplings constant. We found that the three inverse fine 

structure constants approximately unified at some high-energy scale at   

           and             in five and six dimensional models 

respectively. We also compare the 5D SM result with 6D SM results, and we 

found that there is only one different which is, the running in 6D SM is faster 

than 5D SM. Furthermore, a successful unification of the three gauge 

couplings was achieved in 5D MSSM plus additional fields in both scenarios. 

We found a precise unification is achieved at energy scale           . 

   

 

 

 

 

 

 

 



V 
 

 ملخص البحث

  و 5Dفي ثوابت البنية الدقيقة حلقة واحدة لل المعايرةفي هذه الأطروحة، تم اشتقاق معادلات مجموعة 

 6D5في التناظر الفائق جنموذ في أبعاد وكذلكD   . لمجالات المادة  حيث تم اعتماد حالات مختلفة

 .أو بعض الحقول المقيدة (brane case)في الوقت والفراغ الكامل التي تمثل جميع الحقول المنتشرة 

ثوابت البنية  مقلوب وجد أن .للقويرتبط بثابت القياس الدقيقة والتي ت الثوابت التركيبية نشاةوتم دراسة 

  و              الدقيقة الثلاثة توحدت تقريبًا في بعض نطاق الطاقة العالية عند

، ووجد أن 6D SM مع نتائج 5D SMقورنت نتيجة  .أبعاد على التوالي D6و 5D في          

علاوة على ذلك، تم تحقيق توحيد .5D SMأسرع من  يهو   6D SM  تباو ثلا ةاشن في فلاتخاهناك 

وتم  .مجالات إضافية في كلا الحالتين اهيلا فاضم   5D MSSMناجح لثوابت المقياس الثلاثة في

 .           يد دقيق عند نطاق الطاقة ايجاد توح
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Chapter One 

Introduction 

1.1 Introduction: 

The standard model (SM) of particle physics is currently accepted theory and its 

predictions have been examined experimentally, however the standard model 

doesn’t answer many problems, such as the origin of fermion masses and their 

associated mixing angles, gauge couplings unification, hierarchy problem that is 

why there is a huge different between the weak scale and Planck scale, in other 

word why the weak scale is much smaller than Planck scale,. These issues require 

the existence of new physics beyond the standard model, among other model 

super-symmetry (SUSY) is assumed the best candidate for theory beyond the 

standard model. Super-symmetry it is minimal version called Minimal Super-

symmetric Standard Model (MSSM) naturally solve some issues with the SM. It 

solved the gauge couplings unification free and solves the hierarchy problem; 

furthermore, the lightest super-symmetry particle is a good candidate for dark 

matter.  

One of the advantage feature of extra-dimensional models is the effect of the huge 

number of KK modes on the renormalization group (RG) running of physical 

parameters. The RG running in extra-dimensional models has been investigated 

and studied see for example (N.~Maru, 2010) and reference therein. It has been 

proven that the RG evolution changes from the usual logarithmic running in four-

dimensional standard models to an effective power-law running at high energies in 

extra dimension. This means that a sizable running could take place at relatively 

low energy scales. As such extra space-time dimensions naturally lead to 

unification of gauge coupling constants at intermediate mass scales.  
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1.2 Problem of the study:  

Many unified theories have been proposed, but we need data to choose which, if 

any, of these theories describes nature.  In many grand unified theory the gauge 

couplings constants (which define the electromagnetic, weak and strong 

interactions or forces, are combined into one single force.) are predicted to meet at 

some high-energy unification scale. In the standard model the gauge; couplings do 

not meet at single point. However, the unification works very well in Super-

symmetry theory but at high scale approximately        , such a high-energy 

scale is beyond the reach of any present or future experiments. Extra dimensions 

offer power law running, that brings down the unification scale to low energy 

range (N.~Maru, 2010). 

 

1.3 Objectives of the Study:  

There are many different ways to build a realistic models with an extra 

dimensional space-time, the easiest one is the universal extra dimension (UED) 

model in which case all particles (bulk case) or some (brane case) do propagate in 

higher dimension space time. Therefore, we will study the unification of gauge 

coupling constants in various scenarios from the standard model all the way to six 

dimensional models. 
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1.4 Outline of the Study:  

The outline of the dissertation is as follow: 

We introduce in chapter one a general introduction of particle physics. Chapter two 

will discuss the theory of the standard model, super-symmetry and extra dimension 

models in five and six dimensional models. In chapter three, we will apply the 

technique of renormalization group equations to the evolution of gauge couplings 

for different field localization. Chapter four devoted to our numerical results, 

discussions and conclusions. 
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Chapter Two 

The Standard Model 

2.1 Introduction: 

In this chapter we shall introduce the standard model of elementary particle 

physics, and discuss of its related issues, we also present beyond the standard 

model, such as super-symmetric and extra dimension models. 

 

2.2 What is Standard Model? 

The SM is the theory that describes the interaction between elementary particles 

and based on gauge group theory. As we mentioned earlier that its predictions have 

been tested experimentally to a high level of accuracy, such as the structures of the 

neutral and charged current, which agree with experiments? The SM asserts that 

the material is made up of elementary fermions interacting through fields; the 

particles associated with interacting fields are called bosons mediator (Guigg, 

1983). 

The different kinds of elementary particles in the SM are given as follows: 

         
 
      

 
    

 
                                                                                                                                        

           
 
      

 
     

 
                                                                                                    

                                                                                                                                               

              

        
          
       

                              

 

Where         responsible of mass                       

The material in our universe is assumed to be built from small number of 

fundamental constituents, the quarks and the leptons, all of them are fermions, they 
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have electrical charges and spin (
 

 
   For each of these particles there is an 

antiparticle with the opposite value of electric charge and magnetic moment ,but 

with identical mass and lifetime.  

Quarks interact through strong interaction (with colors), weak interaction and 

electromagnetic (with charge) (L.F.Li, 1991). 

Leptons interact through weak interaction and electromagnetic interaction (with 

charge). 

Higgs boson have spin (0), is introduced by Higgs mechanism to give mass to 

elementary particles. The spontaneous symmetry breaking predicted it and must be 

scalar and neutral (Quigg, 2007).  

Gauge boson have spin (0 or 1), the two or more of them can exist in the same 

place at the same time unlike fermions also interact with the Higgs field. Some 

gauge bosons like    and    have mass while others such as photons do not have 

mass as we will see later (Falcone, 2002).  

Table 2.1: Building Blocks of elementary particles and some of their quantum 

number: 

Name Spin Baryon Number 

B 

Lepton Number 

L 

Charge Q 

Quarks     

U (up)  

 
 

 

 
 0   

  

D (down)  

 
 

 

 
 0   

  

Leptons 

e (electron) 

  (neutrino) 

 

 
 

 

 
 

 

0 

 

0 

1 

 

1 

-1 

 

0 

Gauge bosons 1 0 0 0 
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γ (photon) 

  , Z (weak 

bosons) 

g, (i=1,000,8 

gluons) 

 

1 

 

1 

 

0 

 

0 

 

0 

 

0 

 

 1,0 

 

0 

 

 

2.3 The Lagrangian of the Standard Model: 

The complete SM lagrangian, which is based on gauge group,               

      is given by: 

                                                                      

We shall now briefly present in details the contents of each sector of this 

lagrangian. 

2.3.1 Fermion Sector: 

The SM contains three copies of chiral fermions (called generations) with different 

gauge transformation. The fermion lagrangian follows the usual covariant Dirac 

form as: 

                  
                                                                                                      

With the covariant derivatives read as: 
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And 

             
                                                                                                             

  

Where    are the usual Dirac matrices,    is the coupling strength of the 

hypercharge interaction , Y is the hypercharge ,    are the generators of SU(    

(simply the three Pauli matrices ), and    are generators of SU(    (the eight Gell 

Mann matrices ) (Guigg, 1983). 

 

2.3.2 Gauge Boson Sector:  

The gauge boson sector contain 12 gauge fields which mediate the interactions 

among the fermion field the 

photon                                               , the three weak gauge 

bosons (   and Z) mediate the weak interactions and eight gluons (   ,  

          mediate the strong interactions (A.J.G.hey, 1993). The gauge field 

dynamics are embedded in the lagrangian in terms of field strength tensors as: 

        
 

 
   
      

 

 
   
       

 

 
    

                                                         

Where the first term is given by: 

   
      

      
      

     
   

                                                                             

Where    is the coupling strength of the strong interaction, A, B, C run from 1to 8 

and      are the (ant symmetric) structure constants of      . In addition, the 

second term represents  

   
       

        
           

    
                                                                     

       Run from 1 to 3and      is the very ant-symmetric three – index tensor 

with          is the coupling strength of the weak interaction.  
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While for the field strength of the        gauge boson has the same form as 

electromagnetism and given by:  

                                                                                                                        

 

2.3.3 The Higgs Mechanism: 

As was mentioned before, fermion mass term will violate the gauge symmetries of 

our standard model lagrangian. As such, we need some how to gives mass to the 

SM particles and keep the lagrangian invariant under gage symmetries. This can be 

achieved through the mechanism of spontaneous gauge symmetry  breaking  also 

known as the Higgs mechanism, this mechanism assumed the existence of a new 

complex scalar field Ф which is a doublet under the         group , and singlet 

with respect to SU     with hyper charge      (P.~W.~Higgs, 1964) 

    
 

  
   

      
      

                                                                                                  

Where            are real scalar. This new scalar Ф add extra terms to the SM 

lagrangain: 

            
 
                                                                                         

Where the covariant derivative   is defined as: 

       
  

 
     

  

 
  
                                                                                           

The most general gauge invariant renormalizable potential for the new scalar field 

Ф is given by: 

       
 

 
         

 

 
                                                                                                

We choose the vacuum expectation value (VEV) in the neutral direction as the 

photon is neutral, so Ф becomes: 
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With this particular choice of the ground state, the electroweak gauge group 

                 is broken to electromagnetism          

            
   
                                                                                                     

2.3.4 Yukawa Sector: 

Yukawa interactions represent the couplings between fermion doublets and the 

scalar field . Fermion masses originate from Yukawa interactions after the 

spontaneous symmetry breaking take place (Quigg, 2007) (P.~W.~Higgs, 1964). 

Yukawa coupling is uniquely fixed by gauge invariance and the lagrangian, as 

given by: 

           
   
     

     
     

 
    

   
     

 
                                                   

Where Y is 3    complex matrices, the so-called Yukawa coupling constants, h.c. 

means the Hermitian conjugate and    is defined by: 

    
  
     

  
                                                                                                                                

 

2.4 Problems with the Standard Model: 

Although not the most successfully theory of particles physics, the SM does not 

give enough explanation for number of theoretical and experimental observations 

(Majee, March, 2008). Some of them are mention below.  

 

2.4.1 Gravity is not included: 

Despite the fact that the unification of electromagnetic and weak interaction was a 

achieved in the SM and the strong interaction appears to be part of the unification, 

the SM does not include the effects of gravity, the gravity effect might be 
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important at energies of the order of the Planck scale,       
   GeV 

(J.donoghue, 1994). 

 

2.4.2 The Hierarchy Problem: 

The hierarchy problem is the equation of why there is such a huge difference 

between the electroweak scale                  and the Planck scale       

(    ) GeV. This is also known as the naturalness problem (Weinberg S. , 1996). 

 

2.4.3 Dark Matter: 

The SM explains about 5% of the energy present in the universe. About 26% 

should be dark matter, which would behave just like other matter, but only 

interacts via weak interaction with the SM. The SM does not supply any 

fundamental particles that are good dark matter candidates (Collaboration], 2011). 

 

2.4.4 Neutrino Masses: 

According to the SM, neutrinos are massless particles. However, neutrino 

oscillation experiments have shown that neutrinos do have mass (A.D.Martin, 

1984).  

 

2.4.5 Matter Antimatter Asymmetry: 

The SM predicts that matter and antimatter should have been created in equal 

amounts if the initial conditions of the universe in evolve disproportionate matter 

relative to antimatter. No mechanism sufficient to explain this problem (Veltman, 

2003). 
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2.5 Beyond the Standard Model  

Physics beyond the SM (BSM) refers to the theoretical developments needed to 

explain some unanswered issues in SM raised in previous section, such as super-

symmetric, extra dimensions or a combination between them 5D super-symmetric 

(H.~-U.~Yee, 2003). Here in this dissertation we will try to study all of them to 

search for unification.  

 

2.5.1 Super-symmetry: 

Super-symmetry is space-time symmetry, which relates the bosonic degrees of 

freedom to the fermion degrees of freedom, (Ammar Ibrahim Abdalgabar, May 

21,2014). The good idea of super-symmetric helps to solve the gauge hierarchy 

problem (J. Louis, 1998). 

In super-symmetric transformation a boson transform to a fermion and vice versa 

thus if Q is the generator transformation then: 
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Table 2.2: Super-symmetric partners with the SM members: 

Names Spin 0 Spin 
 

 
 SU (3),SU(2) ,U(1)Y 

Squares Q (      ) (      ) (3,2,
 

 
) 

Quarks Ũ   
 

   
 

 ( ,1,
  

 
) 

      
 
   

 
 ( ,1,

 

 
) 

S leptons L (      
 ) (    ) (1,2,

  

 
) 

Leptons     
     

 
 (1,1,1) 

Higgs    (  
 
   
 ) (  

     
  ) (1,2,

  

 
) 

Higgins    (  
    

 ) (  
     

  ) (1,2,
  

 
) 

  Spin 
 

 
 Spin 1  

Gluion,gluon      (8,1,0) 

Winos , w-

boson 

   ,     ,     

Bion, b-

boson 

        (1,1,0) 

 

2.5.2 Extra Dimensions: 

In the SM, the hierarch problem is arising due to the hug ratio of the Planck scale, 

    or GUT scale,    to the electroweak scale. In order to solve the hierarchy 

problem, if we incorporate any new physics it should appear around that scale to 

address the hug ratio. More recently, new kind of physics, Extra Dimension (ED), 

was introduced in particle physics. Historically, Kaluza and Klein dated this idea 
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back in 1920, to unify the electromagnetic interaction with the gravitational one by 

generating the photon from the extra components of the five dimensional metric 

(T.~Kaluza, 1921). 

 

2.5.3 Universal Extra Dimension (UED): 

A model in which all the SM particles are allowed to access the extra dimensions is 

known as the Universal Extra Dimension (UED) model also known as the ACD 

model after its proposers Appelquist, Cheng and Dobrescu (T.~Appelquist, 2001). 

The UED is model which place particles of the standard model in the bulk of one 

or more compactified extra dimension, also makes for an interesting TeV scale 

physic scenario, as it features a tower of Kaluza Klein (KK) state for each of the 

SM fields all of which have full access to the extended space time manifold (H.~-

U.~Yee, 2003). In next subsection, we will each particle lagrangian in this model. 

 

2.5.3.1 Scalar Particle in ED: 

In addition to the four space-time co-ordinates       , let us denote the extra 

space-type co-ordinate by y, compactified on circle of radius R. Thus, the lagragian 

of a free complex scalar        with mass m will be a function of both x and y co-

ordinates with a condition that at y=2πR, will match with that at y=0, i.e. it has a 

periodicity of 2πR along the y direction. So one can us Fourier series expansion 

       
 

    
        

 

   
  

      
         

  

 
    

        
  

 
                   

The five dimensional actions is given by  

  
  

 

 
          

              
                                                                 

With             
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With the use of equation        if we replace the scalar field   and integrate out 

the extra dimension y, then the action will correspond to large number Kaluza– 

Klein (KK) modes as  

  
  

 

 
                

          
 
    

    
       

        
        

     
                                               

Where the n-th KK state mass is given as 

  
  

     

  
                                                                                                                             

              

In four-dimensional effective theory, thus, in addition to the zero mode field, we 

are getting two different sets –one is even and another odd under the 

transformation    y of field when the extra space dimension is compactified on 

the circle    (H.~-U.~Yee, 2003).
 

2.5.3.2 Fermion Particle in ED: 

In some models, only the scalar bosons are allowed to access the extra dimensions 

while fermions are kept in a fixed point of the extra dimension, called “brane”. In 

such cases, the above compactification is quite natural but what happens if we 

intend to allow the fermions as well to have access the extra dimension. Do we 

have the same set of Kaluza-Klein states for the fermion fields or something else? 

Let us consider a fermion in the five-dimensional field, where the extra space 

dimension is compactified in the way as we discussed in previous section. The 

five-dimensional spinor can be written as a two component four-dimensional 

spinor: 

     
  
                                                                                                                                                                      

Note that in the five-dimensional field theory, one can construct the five    

matrices with 
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A=0, 1,2,3,5, from the usual four-dimensional ones as follows: 

               
                                                                                                          

In 5D, the fifth component of the    is constructed from the γ
5
 matrix, which is 

used, in four dimensions, to define the chiral operator            
  . So, in 

five-dimensions, and it is true for any odd number of dimensions, there is no chiral 

operator. To be clear, in      the Subscripts L and R are just two component 

notations only. 

Let us consider the action for a massless fermion as: 

                    
                  

                                    

                                                          

Due to the symmetry of the fermion field at the point y    0 and      , we 

can have the Fourier series expansion of the fermion field as: 

          

 

    
    
      

 

   
 
        

         
  

 
       

           
  

 
                                         

Once we put these fermions into eqn. (2.29), we end up with a few 

phenomenological problems. For instant, let us use the zero mode term in eqn. 

(2.29), then we have 

         
         

    
         

                                                                                                                                       

 

Thus, for each massless field in five-dimension we are having two massless zero 

modes in the four-dimensional effective theory. The four-dimensional fermion is 

thus vector like in nature. 

It is well known that fermions in the SM are chiral in nature, the left chiral part 

transforms as a doublet under       gauge transformations and the right chiral 
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part transforms trivially. If the dimensional reduction doubles the state, can we 

regain our chiral nature of the fermion in its zero modes. 

To regain the chiral nature we have to compactify on an 
  

  
 orbifold instead of a 

circle. The expansions of different kind of field for the 
  

  
 orbifold will be 

discussed. In that case, although the higher KK modes of the chiral fermion behave 

as vector but the zero modes remains a chiral one. 

2.5.3.3. Gauge fields and Gauge fixing in ED: 

The lagrangian for an Abelian gauge field and gauge fixing given by: 

                
 

 
       

 

  
    

         
                                      

Where   is the gauge fixing parameter and              . The gauge 

fixing term eliminates the mixing between   and the extra polarization   . 

In the Feynman-’t Hooft gauge    , the equations of motion for   can be 

obtained by subject the action under variation principle: 

 

   
    

                                                                                                                       

  
       

 

    
  
         

 

   
   
           

  

 
                                       

 

   

 

Where 

  
          

         
                                                                                   

The effective 4D lagrangian after integrating the fifth coordinate yield 
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Chapter Three 

Renormalization Group Equations (RGEs) For Gauge 

Coupling Constants 

3.1 Introduction: 

This chapter will discuss the Renormalization Group Equations (RGES) that will 

be used in our calculations. We will supply all our REGs for various models that 

are considered in this dissertation.  

 

3.2 Renormalization and Renormalization Group Equations: 

Before we calculate our desired RGEs, we want define the RGEs. The 

renormalization group in quantum field theory (GFT), tell us how different 

couplings change with energy. What is the renormalization? In QFT, the green 

function is a most important quantity to be calculated. In perturbative QFT, these 

quantities are divergent. The systematic to isolate these divergences is known as 

the renormalization. There are different methods to cancel the infinities. In order to 

renormalize the theory we need reference point to start with, which is also 

arbitrary. Different choices of this reference point will lead to different sets of 

parameters for the theory, but physics should not depend on the arbitrary choice of 

the reference point and must be invariant. This invariance leads to the 

renormalization group (Collins, 1984).  

In QFT, it is a useful to examine the behavior of physics parameter at different 

scale knowing the same at it other scale. Thus, measuring the observable will allow 

energy experiment, one can compare with the values predicted from a theory at 

higher scale, e.g. at the GUT scale and certify about the correctness of the theory 

(Weinberg S. , 1996). 
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3.3 RGEs for 4D SM Case: 

The renormalization group equations are:  

     
   
  

     
                                                                                                    

Where i stand for U     , SU     and SU     and the right-hand-side is known as 

the   function of corresponding coupling.  

 

   
  
  

 
      

 

 
       

 

 
                                                                              

Where    the number of Fermions and    the number of Higgs scalar, the      , 

C(R),   (R) refer to the gauge boson fermions ,and Higgs scalar contribution 

respectively. We will show below how to calculate equation (3.2) by using 

evaluating Feynman diagrams in figure below, the calculation of all these diagrams 

are similar, so we will do the detail calculation of figure (a) and we give the result 

for other diagrams as can be found in many text book and articles (L.~-X.~Liu A. 

a., 2011) and reference therein.  

 

Figure (3.1): show all diagrams contributing to self-gauge boson 
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We will calculate the contribution from figure (3.1 a) in details: Using Feynman 

rules (Guigg, 1983) and converts it to an integral we get: 

    
   

     

  

  

           
    

         
         

    

     
                 

    
          

   

     

  

  

   
     

         
 
     

     
                                    

Put: 

                                                                                            

Then equation (3.4) becomes: 

   
              

 

     
        

 

                  
 

  

  

                         

To calculate the above integral we using Feynman integral parameterization: 

 

  
    

 

           

 

 

                                                                                                

Now let us call: 

                                                                        

From equations (3.7) and equation (3.8) equation (3.6) becomes: 

   
              

 

     
      

 

                    
 

  

  

                           

Now let: 

                                                                                                        

Introduce new variable q: 

                                                                                                              

Then equation (3.10) can be written as: 



21 
 

                                                                                      

After a little algebra, the above equation simplified to: 

                                                                                            

Where: 

                                                                                                                      

Insert equation (3.13) in equation (3.9) we obtain: 

   
              

 

     
      

 

    
 

  

  

                                                                    

Using the standard integral of beta function: 

      
 

    
 
 

  

  

 
    

 

     
 

 
 

   
 

 

                                                                            

                                                                                                                

Substituting equation        in equation      , we get: 

      
 

    
 
 

 
     

 

  
 

 

 
 

 

  

  

      
 

  
 

 
   

 

    

 

 

                                          

We have also: 

  
 

 
  

 

 
     

 

    
 

 
                                                                                         

Then equation (3.18) becomes: 

      
 

    
       

 

  
 

 
       

 

 
       

 

 

  

  
      

 

   
 

 
               )  

 

Therefore, our figure        gives us: 

   
              

    
      

 

  
 

 
     

                
 

 
   

     
 

 

                

Other figures give us:  
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Therefore summing all these contributions yield:  

  
   

  

 
      

 

 
       

 

 
                                                                          

For the representation R;     ,      and       refer to the gauge bosons, 

Fermions and Higgs scalar contributions, respectively. Normally gauge bosons are 

in the adjoint representation of the group (for SU (N),       ). The fermions 

and the Higgs fields are in the fundamental representation; we choose for the 

fundamental representation in which            
 

 
. 

3.3.1. Numerical Coefficients   
  in the SM (                ): 

Consider first the strong interaction      , here which               

 

 
        and         because the Higgs fields does not carry color. Substitute 

these group factors in to equation (3.29), we get:  

    
  

 
   

 

 
                                                                     

Now for the weak interaction      ; we have which               

      
 

 
           ,         we obtain: 
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Finally we consider the                   here we set              

       
 

 
                     yields: 

    
 

 
      

 

 
 
 

    
 

 
 
 

     
 

 
 
 

       
 

 
 
 

       
 

 

 
 

 
  
 

 
 
 

    
  

 
                                                                              

                                                                         
 

 
  . 

Therefore: 

    
  

 
 
 

 
  

  

  
                                                                                                       

   
     

  

  
 
  

 
                                                                                                          

 

3.3.2. RGEs for Gauge Couplings in Five Dimensional (Bulk case) 

We shall consider places all SM particles in the bulk of one, or more compactified 

extra dimensions as result all the fields have KK expansions. The zero-mode will 

be associated as the standard model fields and the     will be the new excited KK 

modes and will contribute at energy    . 

The gauge coupling constants RGEs in ED generally will run with energy scale as 

    
   
  
   

    
            

    
                                                                            

The beta-function coefficients   
   are those of the usual SM given in (3.34), 

which are the contribution of the zero-mode, while the coefficients   
   originates 

from the     new excited KK modes and are given by   
    

  

  
  

 

 
 
 

 
  , and, 
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     ,  represent the sum of all new excited KK modes in the 

energy interval            (  is the cut-off scale in which the couplings 

constant unified). The contributions of new excited KK modes come from   
  

fields belonging to the adjoint representation as pictured in figure (3.2). Therefore, 

these new fields will modify our RGEs and change equation (3.29) to the following 

equation:  

  
    

  

 
      

 

 
       

 

 
        

 

 
                                                  

Where the first term is the contribution of   
  and the second term is the 

contribution of     
  (it is different from the zero mode by factor 2 this is because 

the fermions appear twice in Fourier expansion). The third term comes from the 

   Higgs bosons; the last term is originated from our new fields  
 .  

 

 

Figure (3.2): Contribution of KK states to the self-gauge bosons 

Similarly, we obtain the numerical coefficients in ED as:  

  
    

  

  
  
 

 
 
 

 
                                                                                                        

 

3.3.3. RGEs for Gauge Couplings in Five Dimensional (Brane case): 

Now for this case, we assumed some gauge and the Higgs live in the bulk and 

matter fields (fermions) live in the brane. The zero-mode will be associated as the 
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standard model fields (as usual) and the     will be the new excited KK modes if 

the particle live in the bulk. However, if the particles live in the brane the do not 

have KK modes and will not contributes to the ED. As such, our numerical 

coefficients generally in ED will be modified to  

  
    

  

 
      

 

 
      

 

 
         

 

 
                                                    

Where   is the number of fermions generations among interaction and takes the 

values (            Thus in ED the numerical coefficients is summarized into  

  
     

 

  
 
  

 
 
  

 
  

 

 
                                                                                        

Note that if we assume all the matter fields live in the bulk as well in which 

case     leads to equation (3.37).  So for the brane case      we get   
   

  
 

  
 
  

 
 
  

 
 . 

 

3.3.4. RGEs for Gauge Couplings in Six Dimensional Model (Bulk and Brane 

cases): 

In six dimensional models the theory is not that different from the five 

dimensional the only different that we can mention is that instead of   
  in five 

dimensional case will have two adjoint fields   
        

  and the way we 

compactify the six dimensional to yield the effective four dimensional SM. 

Therefore, the RGEs running in six dimensional model is similar to five 

dimensional models and will be in general: 

    
   
  
   

    
             

    
                                                                          

Where 
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The numerical coefficients   
   for the two scenarios bulk    , and for the 

brane case      

 

3.3.5. Numerical Coefficients   
  in the MSSM (                ): 

Now the calculation of the coefficients   in four dimensions MSSM is given 

by: 

  
      

  

 
      

 

 
      

 

 
       

 

 
       

 

 
       

 
 

 
                                                                                                  

Where first two terms present the SM gauge bosons and gauginos contributions 

respectively, the third and fourth terms is the contribution of the SM fermions and 

sfermions respectively, and the last two terms correspond to the Higgs and 

Higgsinos contributions respectively. Plugging the values of 

                    for each group into the above equation, we obtain 

  
       

  

 
                                                                                                       

 

3.3.6. Numerical Coefficients   
  in 5D MSSM (                ): 

The RGES for five dimensional MSSM (Brane and Bulk cases) follow: 

    
   
  
   

      
            

        
                                                              

  Where the numerical coefficients   
        is given by: 
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Here the first two terms is the gauge bosons and gauginos contributions 

respectively, the third is the contribution from the super-field   scalar and fermion, 

the fourth terms correspond to   generations of matter contribution and the last 

term is the Higgs super-field (mirror to 4D MSSM) and Higgs super-field    

contribution. Substituting the values of                     for each group into 

the above equation, we get: 

  
        

 

 
                                                                                                     

 

3.3.7. RGEs for 4D MSSM Case   
 

 
   : 

We assumed singlet particle named by   it has hypercharge    in 4D 

MSSM.  Calculate the coefficient  : 

    
  

 
      

 

 
      

 

 
   
 

 
   

 

 
   
 

 
   

 

 
   
 

 
   

 

 
   
 

 
   

  
  

 
 
  

 
      

  

 
                                                             

                                                                         
 

 
  

    
  

 
                                                                                                                        

   and    do not change.  
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Chapter Four 

Numerical Results, Discussions and Conclusions 

4.1 Numerical Results 

We employed the technique of the RGEs at on-loop level for inverse fine structure 

constants beyond the SM; we performed numerically the RGEs by using dedicated 

numerical packages Mathematical version 9. For our numerical evaluation, we 

have chosen the compactification scale to be           with the initial values 

adopted at the    scale as shown in table 4.1. In five dimensional and six 

dimensional models, we considered different possibilities of localization for the 

matter fields, such as the case of bulk or brane localized fields. We will discuss in 

both scenarios the evolution of the inverse fine structure constants, which is related 

to the gauge couplings by the relation          . Note that in brane case the 

SM chiral fermions are located on a boundary and do not have Kaluza-Klein (KK) 

states that contribute to our RGEs only zero mode will contributes. The SM Higgs 

live in the bulk and the gauge fields live in the bulk. We will also compare 5D and 

6D models. Furthermore, we also present the evolution of the inverse fine structure 

constants in 5D MSSM and its extensions with additional fields.  

 

Table 4.1 shows the initial values at    scale (where               used 

in our numerical results. Data is taken from Ref (Z.~-z.~Xing H. a., 2008). 

Parameter Value (90% CL) 
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4.2 Discussions 

 

Figure (4.1): present the unification of inverse fine structure constants in 5D 

standard model (brane case) as function of energy scale for compactification 

radius        . 

 Extra dimensions suggested the existence of new particle (KK particles) which 

contributes at energy     , as one cross the threshold energy      the KK 

particle will contribute to our RGEs for the gauge couplings constant and their 

effect are shown in figure 4.1 and figure 4.2 Note that, the three inverse fine 

structure constants approximately unify at some high-energy scale. Nevertheless, 

  
   unify approximately at            . The only different between brane and 

bulk case in five dimensions (see figure 4.1 and 4.2) is that the running of   
   is 

increased in brane localized matter field and decreases in the bulk scenario.  
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Figure (4.2) present the evolution of inverse fine structure constants in 5D 

standard model (bulk case) as function of energy scale for compactification 

radius        . 

 

We show in figure 4.3 and figure 4.4 the evolution of the inverse fine structure 

constants in the brane-localized fields and bulk fields scenarios for 

compactification scale       for the six extra-dimensional models. We can see 

that the three coupling constants, as expected in extra dimensional theories, unify 

at some value. As depicted in these figures, for       we see approximate 

unification at           .   
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Figure (4.3): the evolution of inverse fine structure constants in 6D standard 

model (brane case) as function of energy scale for compactification 

radius        . 

 

In comparison between the evolution of coupling constants in five and six 

dimensional models for a compactification scale of 1 TeV, we see that in both 

cases the coupling constants have similar behavior; however, in the six 

dimensional case we get asymptotes at lower             values, that is, a 

lower energy scale compare to five dimensional case where            . As 

such, the range of validity for the six dimensional models is less than the five 

dimensional models; this because of the       factor appeared in equation (3.25), 

there is only a linear dependence on five dimensional models. 
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Figure (4.4): the evolution of inverse fine structure constants in 6D standard 

model (bulk case) as function of energy scale for compactification 

radius        . 

 

We have studied also the super-symmetry in extra dimension plus additional field 

in order to have a precise unification that is all the couplings constants meet at 

single point-called the unification scale. We plot in figure 4.5 the evolution of 

inverse fine structure constants in          . As can be seen in this figure, 

the precise unification is achieved at energy scale           . 
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Figure (4.5): the evolution of inverse fine structure constants in 5D SSM+   

           

 

4.3 Conclusions:  

In conclusion, we studied the evolution of gauge coupling constants beyond the 

standard model. We derived the renormalization group equation at one loop for the 

gauge coupling constants in five and six dimensional model (bulk and brane cases) 

as well as 5D MSSM plus additional fields. We showed that the three inverse fine 

structure constants approximately unified at some high-energy scale at   

           and             in five and six dimensional models respectively. 

We also have studied the unification in 5DMSSM plus additional fields; we found 

a precise unification is achieved at energy scale           . 
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4.4 Recommendation: 

This work can be extended in a number of ways. One might suspect that higher-

loop corrections to the unification might be sizable. Therefore it is  important to 

confirm these results and conclusions made at one loop that are sensitive to this 

scale and are still consistent and under control at two (and higher) loops.  
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