Sudan University of Science and Technology

Collage of Graduate Studies

College of Engineering

Scheduling Algorithm for Grid Computing

using Shortest Job First with Time Quantum

=S a3l e Vsl V) Cilleal) aladtiody ASEl A pall A sl A 5)53

A thesis submitted in partial fulfillment of the requirements for the

degree of M.SC.in computer and networks engineering

By:
Raham Hashim Y osuf
Supervised by:

Dr. Rania A. Mokhtar

August 2017

Initiation
Y
s las L) JU8
Do B ai) dad) A5 55aY) S s el S Gl 2B 5 G
{9 Sl 2R W) & salag ¥ Gl & il Gl (5 ik
adaall &) 33a

(9) A1 a3l 5y 5m

Dedication

Dedicated to
My parents, my sisters
And to my friends
To everyone who tried to guide me to
A better life.....

With my love

Acknowledgement

My thanks for Allah
After that

| would like to thanks my university Sudan University of science and

Technology and my college of Graduate Studies Electronics Engineering
Department. And my teachers for inspiring me this project.

| owe my profound gratitude to my thesis supervisor Dr. Rania
A.Mokhtar for her valuable guidance, supervision and persistent
encouragement. Due to the approach adopted by her in handling my

thesis and the way she gave me freedom to think about different things,

| was able to do the constructive thesis. By working under her | have
gained priceless knowledge as to how to go about doing an effective
research. My greatest thanks to my parents who for their continuous

support.

Abstract

One motivation of grid computing is to aggregate the power of widely
distributed resources and provide non trivial services to users. To
achieve this goal an efficient grid scheduling system is an essential part
of the grid. The scheduling of the processes can be implemented in
different ways with different scheduling algorithms. In this project we
use Shortest Job First [SJF] algorithm where it assigns highest priority to
shortest process. If processes are long, it suffers with a long waiting
time. When shortest process continues to arrive, the longer process may
never get a chance to schedule, this problem is called as Starvation. This
research proposes a use of Shortest Job First with time quantum
mechanism to overcome this issue. The MATLAB software is used to
implement the proposed algorithm, the algorithm achieves better results
than the original one in terms of delay time, resources utilization, fair

treatment for all the processes and degree of starvation.

Eadl Gadle

i g Ae sall aladl) (e g saaill sy sa AN duusall e ilud) Caagll
Gosma e on Alpaall et (8 Caagll 1aa Gaudaily (peddiuall gl e Clersl)
oe sl e el diliie 3ok clled) Alaa Jlo Jary 4 S8 Gl 3
Cilalall 5 Y 5l 3 il Clalaal) 385 A3)l 55 (o Cilaa) 53l 038 (s3a] 5 eyl 53
s i) 1) e 5 5 ppmil) Clilaall 25 3y o Y Caaall b UEY) (e et Y
i Asaall 3 Jaal wkind Y AL shll Glleall G Jgeasll (8 5 il Cilileall
Laolsa e ASEA) o3g) Dla Caadl 138 adlyy aosailly ACIA o3 candy Ladud
goml sl e daa ol sal) ode Jexiy (oS el qe S8 2 (g Led A Aleal
Ay praall y e o A ol Gl s 8 S 2 e) Led (Al lileall 28] jaias
Gl O ST e (ga 3 OIS 1) Wl e ST a3l (g s 5f (g JBT adudis gy S 1Y)
alS 130 Ll es AV 5l jliadl e gny 555 5 Lpasni o o5 (305 L 285 Lgild oS0
JS 35 o) i) dlee aady cauall DAL) ga iy o Ll Al e palad) S

JUSEY) Coa 33 5 sall Cililaal)

TABLE OF CONTENTS

Y ———— e I
DEDICATION. .. .ot e I
ACKNOWLEDGEMENT.......... Il
ABSTRACT ... e v
Canall Gadla e \Y
Table of content........ ..ot e Vi

List of WOrKSPace......covvvvviiiii i ieieeieeiiie e e X

List OF f1gUIES «..vvintiiii i e e X
T A 21 o) 1< Xl
LiSt OFf Abbreviations.cooiiut ittt e e XII
(O] 1 F:1 0] 1< o) § (ST 2
INrOdUCHION. ... 2
LT Preface. ..o 2
1.2 Problem statement.............o.oouiiiiitiii i 3
1.3 Proposed SOIUtION.oouiiiiiii e e, 4
i @ o) o1 5 <SRRI 4
BB T T 0 o1 4
1.6 Methodology......oooneiiii e 5
1.7 Research outlinesooooiiiiiiiii e e 5
(] 010173 g A J 7
2.1 Previous WOrK.ooiiiii i 7
Chapter three.o e 14
L INtrOdUCTION ..o, 14
3.2Systemalgorithm ... 14
3.3 Mathematical model ... 15
Chapter fOUT. ...t 18
/o I 1 (o L1 i £ [o] o PN 18
A.2 SUMIMAIY ...ttt e e et e e e e et e e et e e e e ae e eaeeeanaens 34

Chapter fIVe. .ottt e 36

ST CONCIUSION. .. .euttt ettt 36
5.2 Recommendation...........oouuiiuiinnii i 37
RefeIeNCeS. .. e e 38
AppendiX L. ..o e 40
Appendix IL.o 52

VIl

List of workspace

Workspace 4.1.1 Shortest Job First with time quantum 19
Workspace 4.1.2Shortest Job First ... 24
Workspace 4.1.3 Shortest Job First with time quantum when data rate is

different ..o 27

Workspace 4.1.4 Shortest Job First when data rate is different............ 31

VIl

List of Figures

Figure 4.1.1 Shortest Job First with time quantum
Figure 4.1.2 Shortest Job First ...,
Figure 4.1.3 Shortest Job First with time quantum when data

rateisdifferent

Figure 4.1.4 Shortest Job First when data rate is different

List of Tables

Table 2.2 summary of related works.................cooiiiiiiiiiiinn. ... 11
Table 4.1.1 Shortest Job First time quantum 21
Table 4.1.2 Shortest Job Firstccoovviiiiiiiiiiiii i, 25

Table 4.1.3 Shortest Job First with time quantum when data rate is
different. ... o 28
Table 4-4 Shortest Job First when data rate is different.................... 32

Abbreviations
ABDRS: Agent Based Dynamic Resource Scheduling
BAJGS: Bandwidth Aware Job Grouping based Scheduling
B.T: Burst Time
CPU: Central Processing Unit
DJGBS: Dynamic Job Grouping Based Scheduling
D-MMLQ: Deadline based Modified Multi Level Queue
DR: Data Rate

DT: Delay Transmission

EDF: Earliest Deadline First

EDSRT: Earliest Deadline First with Shortest Remaining Time
ERD: Earliest Release Date

FCFS: First Come First Service

FF: First Fit

GBFJS: Grouping Based Fire grained Job Scheduling
GIS: Grid Information Service

HJS: Hierarchical Job Scheduling

HRN: Highest Response Next

LJF: Longest Job First

MFQS: Multilevel Feedback Queue Scheduling
ORC: Optimal Resource Constraint

RR: Round Robin

SCTP: Stream Control Transmission Protocol

SF: Starvation Free

SFBAJG: Scheduling Framework for Bandwidth Aware Job Grouping
SJF: Shortest Job First

SPN: Shortest Process Next

T.Q: Time Quantum

VCGRP: Virtual Computing Grid using Resource Pooling

Xl

Chapter one

Introduction

Chapter one

Introduction
1.1 Preface

Grid computing has emerged as a distributed methodology that
coordinates the resources that are spread in the heterogeneous distributed
environment[1].Grid computing is a type of parallel and distributed
system that enables the sharing, selection and aggregation of resources
distributed across multiple administrative domains based on their
availability, capability, performance, cost and user’s quality-of-service
requirements[2].Resources can be computers, storage space, instruments,
software applications, channels and data, all connected through the
Internet and a middleware software layer that provides basic services for
security, monitoring and resource management. Resources owned by
various administrative organizations are shared under locally defined
policies that specify what is shared, who is allowed to access what, and

under what conditions.

In most organizations, there are large amounts of underutilized
Computing resources. Grid computing provides a framework for
exploiting these underutilized resources and thus has the possibility of
substantially increasing the efficiency of resource usage. Grid computing
looks like a great answer to numerous problems without prodigious

management requirements [3].

Effective grid computing is possible, however, only if the resources are
scheduled well, the goal of the resource scheduler is to maximize the

resource utilization and minimize the processing time of the jobs.

The job scheduling system is responsible to select best suitable machines
in a grid for user jobs. Schedulers allocate resources to the jobs to be
executed using various algorithms such as First Come First Service
[FCFS], Longest Job First [LJF], Earliest Deadline First [EDF] and other
algorithms. One type of these algorithms is shortest job first [SJF] also
know as Shortest Job Next [SIN] or Shortest Process Next [SPN] the

scheduling technique that selects the smallest job.

If process is long, then this long process are suffers with a long waiting
time. When shortest jobs continue to arrive, longest jobs may never get a
chance to schedule. This problem is called as Starvation. The project
proposes a solution to overcome this issue with time quantum
mechanism. SJF with time quantum is based on the integration of round
robin and SJF scheduling algorithm. In this, priority is calculated on the

basis of shortest process and time quantum.
1.2 Problem Statement

In SJF algorithm the resource is allocated to the smallest process. If
process is long, then this long process are suffers with a long waiting
time. If short Processes are always available to run; the long processes

ones never get chance to scheduled. This problem is called starvation.

1.3 Proposed solution:

The proposed solution is algorithm called shortest job first with time
quantum which is based on the integration of round robin [RR] and SJF
scheduling algorithm. This algorithm can overcome the starvation. In
this algorithm the resource is allocated to the shortest process. In this two
things can happen. First, the process may be less than or equal to the
time quantum. In this case, the process will execute and after completion
release the resource by itself. Second, the process may be greater than to
the time quantum. In this case, the process will execute for one time
quantum, divided and distributed to the free second resource, if resources
are busy the process is preempted. Then, the resource scheduler will
select the next shortest process to execute. The preempted process will
be put at the ready queue. This continues until the execution of all the

processes is completed.
1.4 objectives:
% To optimize the utilization of resources.
% To reduce end time of job.
s To enhance performance of job scheduling.

% To fair treatment for all the processes
1.5 Scope:

The scope of this project is to develop the approach for Shortest
Job First scheduling algorithm by using time quantum to reduce

the problem of starvation.

1.6 Methodology:

The proposed algorithm is shortest job first [SJF] with time quantum
which is based on the integration of round robin and Shortest Job First
scheduling algorithms. Firstly select fastest resources to allocate the
shortest process, if the process less than or equal to the time quantum. In
this case, the process will execute and after completion release the
resource by itself. Secondly if process is greater than to the time
quantum the Process will execute for one time quantum divided and
distributed to the free second resource. If resources are busy the process

IS pre empted.

Finally the resource scheduler will select the next shortest Process to
execute. That means the scheduler select the pre empted process because
it is the shortest process at the ready queue. The scheduler continues to
select processes until the execution of all the processes is completed. The
result is calculated using MATLAB.

1.7 Thesis outlines:

The thesis includes five chapters, chapter one provides introduction of
the project, determine the problem statement, proposed solution and
objectives. While chapter two covers the literature review which
includes theoretical background algorithms that have the relevant related

work.

In chapter three the methodology section, Explain the algorithms how it
implemented by MATLAB while chapter four presents the result of
implementation; furthermore, it also compares the results of the
proposed algorithm with other scenario of similar work. And chapter five

includes the conclusion and future work.

Chapter two

Literature review

Chapter two

Literature review

2.1 Previous work:

The job scheduling system is responsible to select best suitable machines
in a grid for user jobs. Schedulers allocate resources to the jobs to be
executed using various algorithms. This chapter describes the algorithms

and determines the difference between them.

In [4] one of the main challenges is resource or job scheduling in the
grid. They present such an algorithm which helps in scheduling

computational resource to the jobs in efficient way.

They use Earliest Deadline First with Shortest Remaining Time.
[EDSRTF] is a scheduling algorithm in which scheduling is done
according to the deadline of jobs and remaining time. The job with the
earliest deadline will get resource first while the job with large value of
deadline will have to wait irrespective of their execution time. by
Comparison of the proposed algorithm EDSRTF in terms of waiting and
turnaround time of jobs with two other algorithms First Come First Serve
[FCFS] and Longest Job First [LJF]. Average waiting time and average
turnaround time of proposed algorithm is less in comparison to other

scheduling algorithms so EDSRTF is best among them.

In [5] the main aim is to develop the new approach for SJF scheduling
algorithm which help to reduce the problem of starvation in a heavily
loaded computer system. The ASJF algorithm reduces the starvation
Problem of the simple SJF architecture. This ASJF algorithm is based on

SJF and multilevel feedback queue scheduling [MFQS] technique. They
made a comparative study of SJF and ASJF algorithm. It is concluded

That the ASJF algorithm is superior in terms of minimizing degree of
starvation, increasing fairness, decrease in response time and Timely
resource allocation to individual process. ASJF algorithm clearly shows

maximum CPU utilization and efficient handling of resources. As

MFQS algorithm is merged with SJF, the technique of dividing the
processes to various queues and switching of processes among them will

further reduce the problem of starvation.

In [6] the proposed work is about to keep only the most required data
items in cache. The requirement depends on the frequency of the reuse of
data item. The work is about to identify the frequency of each data items

from previous history.

The improvement of algorithm using cache technique allows us to
reduce computational cost because the results calculated in previous

times not to be calculated in the progressive process.

In [7] they propose a scheduling technique which classifies the subtasks
based on the priority assigned by the user. Multi-level queue is used for
reducing starvation. The proposed Starvation Free [SF] Scheduling
algorithm can be applied widely and it helps in scheduling resources

efficiently, resulting in a starvation free grid environment.

Results from simulation experiments demonstrate that the algorithm
optimizes the resource nodes and resource utilization rate gets substantial
increase. The multi-level queue based scheduling Algorithm for the
heterogeneous grid environment has high performance as compared to

the other scheduling algorithms for the grid environment.

In [8] the proposed solution for scheduling the jobs using Deadline
based- Modified Multi-Level Queue [D-MMLQ] for multiprocessor
scheduling. The proposed algorithm fuses two vital concepts for
Handling job allocation and execution through multi-level queue. The
approach proposes that the starvation problem of low priority jobs or
jobs at lower end of queue, hence increasing the overall competence of
multiprocessor system. D-MMLQ algorithm is the better utilization of

resources than traditional EDF algorithm.

In [9] he is interested in two distinct functionalities: global scheduling
and local scheduling. He considers a model composed of global
scheduler with its global queue and local scheduler also with its queue.
The model focuses in increase the resource utilization at global queue
and decrease makespane time at local queue. The objective of this work
Is to investigate the mechanisms of scheduling problems in grid
computing and to find whether scheduling algorithms used at global and

local queue are similar.

In [10] an algorithm is designed for an efficient job scheduling algorithm
to maximize the resource utilization and minimize processing time of the
jobs. They have proposed an efficient three scheduling algorithm
[Shortest Job First, First Come First Serve, Round Robin] for jobs and

Send to the queue. They have got some better performance in terms of
processing time than job scheduling on the FIFO algorithm. Also they
have implemented Shortest Job First algorithm along with all three

algorithms for performance analysis.

In [11] they are present an improved algorithm based on priority
scheduling which further reduces total time and hence maximizes

resource utilization. It is based upon grouping of algorithms on the basis

Of priority. And proposed an efficient four scheduling algorithm
[Shortest Job First, First Come First Serve, Round Robin and priority

Scheduling] for jobs and send to the queue to minimize processing time

of the jobs.

In [12] they are proposing a backfilling scheduling algorithm is proposed
to select many jobs to be backfilled from the waiting job queue. The
Main aim of their proposed work is to make develop scheduling jobs

based on priority using backfilling for grid computing.

In [13] they are proposing a backfilling scheduling algorithm is proposed
to select many jobs to be backfilled from the waiting job queue. The
Main aim of their proposed work is to make develop scheduling jobs

based on priority using backfilling for grid computing.

10

Table 2.2 summary of related works

NO | Authors Paper Title and Year | Algorithms | Overview and Results
4 Dipti Job Scheduling EDSRTF | The scheduling done
Sharma, Algorithm for according to the deadline
M. Computational Grid of jobs and remaining
in Grid Computing time. Average waiting
Pradeep _ ,
Environment,2013 time and average
Mittal turnaround time is less
in comparison to other
scheduling algorithms
8 Manupriya | D-MMLQ D-MMLQ | The algorithm Handling
Hasija, Algorithm for Multi- job allocation and
Akhil level Queue execution through multi-
Kaushik Scheduling, 2014 level queue. it is better
utilization of Resources
than EDF
9 Mohamed | Improving Grid global It focuses in increase the
Eisa Computing scheduling | resource utilization at
Scheduling using and local global queue
Heuristic scheduling
Algorithms,2013

11

No Authors Paper Title and Algorithm Overview and
Year Results
10 Pinky Grouping SJF,FCFS,RR | It used three
Rosemarry, Based job algorithms to
Ravinder scheduling maximize the
Singh, Payal algorithm resource
Singhal and using priority utilization and
Dilip Sisodia | queue and minimize
hybrid processing
algorithm in time of the
grid jobs.
Computing,
2012
13 Sandip Fakira | Grid backfilling To select many
Lokhandel, Computing scheduling jobs to be
Sachin D. Scheduling algorithm backfilled
Chavhan, Prof. | Jobs Based on from the
S.R. Priority using waiting job

Jadhao,

Backfilling,
2015

queue. the aim
IS to make
develop
scheduling
jobs based on

priority

12

Chapter three

Methodology

Chapter three

Methodology

3.1 Introduction

This section covers techniques, tools which are chosen for calculation

delay time, end time of process and resources utilization.
3.2 System algorithm:

The algorithm is Shortest Job First [SJF] with time quantum. In this
algorithm the channel is allocated to the shortest process. In this two
things can happen. First, if process less than or equal to the time
qguantum, then the process will be execute and after completion release
the channel by itself. Second. If process greater than time quantum, then
the process will execute for 1 time quantum, divided and distributed to
the free second channel, if channels are busy the process is preempted.
Then, the channel scheduler will select the next shortest Process to
execute. The preempted process will be put at the ready queue. This
continues until the execution of all the processes is completed. This
project is executed by MATLAB because it is a high performance
language for technical computing. It integrates computation,
visualization and programming environment. Furthermore MATLAB is
modern programming language environment it has sophisticated data
structures, contains built in editing and debugging tools and supports
object oriented programming. These factors make MATLAB excellent
tools for teaching and research. MATLAB has

Many advantages Compared to the conventional computer languages for
solving technical problems.

14

3.3 Mathematical model

The Mathematical Equations that’s used in simulation in MATLAB are:

3.3.1 Data rate [DR]

Average number of bits or data passing through a communication link in
a data transmission system from one channel to another .common data
rate units are multiples of bits per second (bit/S) and byte per
second(B/S).

3.3.2 Delay transmission [DT]:

Amount of time required to push all of the packets bits onto the channel.

Delay transmission can be mathematically expressed Equation (3.1)

calculate the Delay transmission [DT]

T_data Equati 3.1
= TR quation (3.1)

Where:
DT = Delay transmission in (sec).
Data = data transmit in (bit).

DR = Data rate in (bit/sec).

3.3.3 End time:

The actual time at which a job finishes its processing unit (second).

15

3.3.4 Waiting time:

It is the amount of time a process waits in the ready queue unit (second).
3.3.5 Channel utilization:

The maximum use of channel when it is busy.

3.3.5 Time Quantum:

Time gives to job and interrupting the job if it is not completed by then

3.4 Sudo code:

3.4.1Select channel.
3.4.2 Select shortest process from the ready queue.
3.4.3Check, if process <= Time quantum (T.Q)

3.4.3. A If yes, then scheduler will allocate the channel to that process,
the process will complete its execution and will release the channel by
itself.

3.4.3. B If no, then scheduler will allocate the channel to the process;
the process will execute for one T.Q, divided and distributed to the free

second channel
3.4.4 If channels are busy the process is preempted.
3.4.5 Repeat step 3, if any process is available in ready queue.

3.4.6 Exit

16

Chapter four

Result and Discussion

Chapter four
Result and Discussion

4.1 Introduction:

The project used Shortest Job First with time quantum and Shortest Job
First algorithms when data rate is equal [60] and data rate is different
[2080 100].

Firstly arrange processes from minimum to maximum in the ready
queue the processes are [30 60 70 80 100 200 400 500]; it used short
process; medium process and long process; secondly calculate delay to
free to determine which channel work. Finally allocate the channel that
has minimum delay to the minimum process. The algorithms are used

three channels to allocated processes.

18

Workspace 4.1.1 Shortest Job First with time quantum when data rate is

equal [60] and time quantum is equal 180

duimonw 8§ 7 T 18 T 1 ook
Re i fov Gghs Do hadk Dy Windw Heb

D0 AN WT2 0 e Climliilety U8

Shatrss 7 HowinAdd 7 Whetc e

AN e Dosne -
Yake e M2

= =

il b
i 8
il bl

=

FANAMML Y S
[l

[2 poces by § Pt
3 ezt
1B)
i 5
I aEahil SER
AussERE 1 ¢
MR,) T
g LA
i Pk
(
1 11
P 0w
1 11
B R
Bnn 1§
0l
.0
pomy @ m
RUILCT S S|
m B o®
1 11
S S

This workspace [4.1.1] explains the algorithm [SJF] using time quantum.

Data rate value equal 60, time quantum equal 180, the channels are

19

[channell, channel2, channel3] and the process is not arrange. After
arrange data all channels are free that means select minimum processes
[30 60 70] to allocated channell, channel2 and channel3. Channel 1 is
became free because it is have minimum data and process 80 is allocated
in it and process 100 is allocated into channel 2 after process 80
complete its execution and release channel process 200 is greater than
time quantum [180] the process is divided to 180 and 20 and distributed
into channel 1 and channel 3, process 400 is also greater than time
quantum divided to 180, 180, 40 and distributed into channel 1,channel 2
and channel 3,process 500 is greater than time quantum divided to
180,180,140 distributed into channel 1 ,channel 3 and channel 2.

End time of all processes that is the time when process is complete its
execution and release channel. For example process 30 is start its
execution at 0 and finish at 0.5000 second that means end time of
execution and delay to free calculate using the difference between the

waiting time and end time .

20

Table 4.1.1 Shortest Job First with time quantum

processes Waiting time End time Delay to free
30 0 0.5000 0.5000

60 0 1 1

70 0 1.167 1.167

80 0.5000 1.833 1.333

100 1 2.667 1.667

200 1.167 4.167 3

400 2.167 5.667 3.5

500 4.833 8.167 3.33

21

Time

30 60 70

80 100 200 400 500

B Waiting time
B End time

1 Delay to free

Process

Figure 4.1 Shortest Job First with time quantum

22

Average waiting time =) waiting time of processes / number of

processes

0+0+0+0.5000+1+1.167+2.167+4.833/8

9.667

——=1.208
8

Average end time= Y end time of processes/number of processes

0.5000+1+1.167+1.833+2.667+4.167+5.667+8.167

= 25.168/8 = 3.146

Average delay to free =)_ delay to free of processes/number of processes

=0.5000+1.1.167+1.33+1.667+3+3.5+3.33

=15.49/8 =1.94

23

Workspace 4.1.2 Shortest Job First [SJF] when data rate is equal [60]

s T
Re B or G D Pk Deiip Vidor
D2 AR290 BT 2 0 toethe Climshinomssiin + L8

Stods & HowiaAdd 7 Whtshee
lill@“ S e [Poeaemnpt v
s e W Ma
¥ r o2
4 O |
1 mwom
Il
MANMMML D W
Il
1] a3 procss feng.. & R |
110 b 3
£5% £50 65
(5 U
psmue 0 LSW
105 % T R V.
ILUINAC L R U
o 11
3 i
Il
1 b5
) 0o
i now
3 il
Byt
Il
b I M
Rmm & W
mas % oW
10 S 51008

This workspace [4.1.2] explains the algorithm [SJF]. Data rate value
equal 60, the channels are [channell, channel2, channel3] and the
process is not arrange. After arrange data all channels are free that means

select minimum processes [30 60 70] to allocated channell, channel2

24

and channel3. Channel 3 is become free because it is have minimum data
and process 80 is allocated in it. When process complete execution it
release channel by itself. That means process 400 is allocated in
channel3, processes 100 and 500 is allocated in channel2 and process

200 is allocated in channell

Table 4.1.2 Shortest Job First [SJF]

processes Waiting time End time Delay to free
30 0 0.5000 0.5000

60 0 1 1

70 0 1.1667 1.1667

80 0.5000 1.833 1.333

100 1 2.667 1.667

200 1.1667 4.5000 3.333

400 1.833 8.5000 6.667

500 2.667 11 8.333

25

Time

12
10
8
B Waiting time
6
HEnd time
 Delay to free
4
2
0 - Processes
30 60 70 80 100 200 400 500

Figure 4.1.2 Shortest Job First [SIF]

Average waiting time =) waiting time of processes / number of

processes

_ 71667

= 0.8959

End processes = Yend time of processes/ number of processes =
31.1667=3.896

Delay to free =) Delay to free of processes/ number of processes
23.999 = 2.999

26

Workspace 4.1.3 Shortest Job First with time quantum when data rate is
different [20 80, 100]

s B 7 T A0 W TS i
Fle bt Yew Gastic g Pacld Detisp Wadow Heb
OC ER20 B0 2 0 Gt Cliochhnllety <8

Sotits A HowtoAdd 7 What'shew
+ g_‘ 1Y

TSN ofie - Pocamnp -
Ve e Ma
3 32
b BN
» m oW
1l
[l
i
PENEMML. X W
1

s proces g § 3ok

1 mas, I
1 Lot
149 0 1
Bimism 0 U
PATO2ANNES. 0 S0
REDDLSBLA. 0TI
By 0k
i 3ok
1l
1 1 1
bl Wow
i .
i B 8
Esuyg 1k
[l
B Iow
B 8 W
1 [REIROTENT 1

Boamime 3 n oW
1 11
)] ST S0

27

This workspace [4.1.3] explains the algorithm [SJF] using time quantum
when data rate is different [20 80 100]. The channels are [channell,

channel2, channel3] after arrange data all channels are free that means

select minimum processes [30 60 70] to allocated channell, channel2

and channel3. When process complete execution it release channel by

itself.

Table 4.1.3 Shortest Job First with time quantum when data rate is

different

processes Waiting time End time Delay to free
30 0 1.5000 1.5000

60 0 0.7500 0.7500

70 0 0.7000 0.7000

80 0.7000 1.5000 0.8

100 0.7500 2 1.25

200 1.5000 10.5000 9

400 1.7000 4.2500 2.55

500 3.9000 7.1000 3.2

28

Time

12
10
8
B Waiting time
6
M End time
 Delay to free
4
2
O -
30 60 70 80 100 200 400 00 Processes

Figure 4.1.3 Shortest Job First with time quantum when data rate is
different

29

Average waiting time =) waiting time of processes / number of

processes

=8 _107
8

End time =) end time of processes/ number of processes = 28.3= 3.54

Delay to free = Y Delay to free of processes/ number of processes 19.75
=2.47

30

Workspace 4.1.4 Shortest Job First when data rate is different [20, 80,
100]

i N TN . R W VD ek
Be G Ye Guic Dbg ek sy Yidw b
D2 N2 8T 2 ¥ Corenoe ClishuniDetip g

- Shotess HHowinkdd 7 Whe's e
oy § ik
i2al b it
il B 158 1
#a 21z 1R 1B
dahied MMUERME.) R
Hexsid pUGSES 0§
dynid UGB TER
e bl [
jre i T
%fﬁ.ﬁi 1
nde ey | 11
mm W% W
nigy 1 11
1 3 B B
; EBung Lk
e {0
sl BRXEE Y N
émﬁ pose @ W
pesdd AN 0§ B
petngne W B B
éam 1 11
! S S

31

This workspace [4.1.4] explains the algorithm [SJF] when data rate is
different [20 80 100]. The channels are [channell, channel2, channel3]
after arrange data all channels are free that means select minimum
processes [30 60 70] to allocated channell, channel2 and channel3.all
processes are greater than time quantum must be divided and distributed
into free channels ,when process is complete execution it release channel

by itself.

Table 4.1.4 Shortest Job First when data rate is different

processes Waiting time End time Delay to
Transmission

30 0 1.5000 1.5000

60 0 0.7500 0.7500

70 0 0.7000 0.7000

80 0.7000 1.5000 0.8

100 0.7500 2 1.25

200 1.5000 11.5000 10

400 1.5000 5.5000 4

500 2 8.2500 6.25

32

~ Time

14
12
10
8 . .
B waiting time
H end time
6 m delay to free
4
2
0 - Processes
30 60 70 80 100 200 400 500

Figure 4.1.4 Shortest Job First when data rate is different

Average waiting time =) waiting time of processes / number of

processes
=% _ .806
8

End time = Y end time processes/ number of processes = 31.7=3.96

Delay to free = Y Delay to free of processes/ number of processes 25.25
=3.16

33

4.2 Summary

From previous results when we compare between two algorithms we
find Shortest Job First with time quantum is better than Shortest Job First
in terms of end time process, resources utilization, delay to transmission
and Fair treatment for all the processes. But in term of waiting time

Shortest Job First is better, SJF doesn’t always minimize waiting time.

34

Chapter five

Conclusion and recommendations

Chapter five

Conclusion and recommendations

5.1 Conclusion

Grid computing can solve more complex tasks in less time and utilizes
the resources efficiently. To make grid work properly, best job
scheduling strategies have to be employed. Scheduling helps the jobs to
get resources properly. This project used proposed a scheduling
algorithm Shortest Job First with time quantum and also done its
comparison in terms of waiting time, end time and delay to transmission
of jobs with algorithm Shortest Job First [SIF]. Average waiting time,
average end time and average delay to transmission of jobs are also
calculated. The proposed algorithm has following benefits in comparison
to Shortest Job First algorithm [SJF]:

5.1.1 Low end time

5.1.2 Low delay to transmission

5.1.3 More resources utilization

5.1.4 Fair treatment for all the processes.

5.1.5 Minimizing degree of starvation.

So Shortest Job First with time quantum is the best.

36

5.2 Recommendations:

In future Shortest Job First with dynamic time quantum and will also be
using dynamic time quantum for ready queue, where time quantum will
be calculated every time a process enters or exits the queue. One may be
Able to increase the Performance, Throughput and decrease the end

Time by above solution.

37

References

[1] Mrs. Radha, Dr.V.Sumathy “A Detailed Study of Resource
Scheduling and Fault Tolerance in Grid”, 2011.

[2] N.A. Azeezl; A.P. idoye; A.O. Adesina; K.K. Agbele; lyamu Tiko,
and I.M. Venter, “Peer to Peer Computing and Grid Computing:
Towards a Better Understanding”, 2011.

[3] Manisha Bhardwaj, Sandeep Kumar, A Two Way Scheduling
Approach for Effective Resource Scheduling in Grid, International
Journal of Computer Networks and Wireless Communications
(NCNWC), Vol.3, No3,PP.243-246, June 2013

[4] Dipti Sharma, Mr. Pradeep Mittal, Job Scheduling Algorithm for
Computational Grid in Grid Computing Environment, International
Journal of Advanced Research in Computer Science and Software
Engineering, PP. 735-743, 5, May 2013.

[5] Himani Aggarwal, Er. Shakti Nagpal, Augmented SJF algorithm
with reduced starvation, International Journal of Advanced Research in

Computer Science and Software Engineering, pp. 718-723, 6, June 2014.

[6] Er. Himanshu Jain, Kavita Khatkar, Process Scheduling Approach
for Starvation Improvement with Time Delay Analysis in Grid
Resources Allocation, International Journal of Advanced Research in
Computer and Communication Engineering, Vol. 4 PP. 197-201, , 8,
August 2015.

[7] Kumaresh.V.S, Prasidh.S, Arjunan.B, Subbhaash.S and
Sandhya.M.K, Multilevel Queue-Based Scheduling for Heterogeneous

Grid Environment, IJCSI International Journal of Computer Science
Issues,pp. 245-248, November 2012.

38

[8] Manupriya Hasija, Akhil Kaushik, Satvika Kaushik and Manoj

Barnela,

D-MMLQ Algorithm for Multi-level Queue Scheduling, 1JCSNS
International Journal of Computer Science and Network Security,
VOL.14, pp. 90-94, July 2014.

[9] Mohamed Eisa, Improving Grid Computing Scheduling using
Heuristic Algorithms, International Journal of Computer Applications,
Volume 78,pp. 14-17, September 2013.

[10] Pinky Rosemarry, Payal Singhal, Ravinder Singh, A Study of
Various Job & Resource Scheduling Algorithms in Grid Computing,
International Journal of Computer Science and Information
Technologies, pp. 5504-5507, 2012.

[11] Pinky Rosemarry, Ravinder Singh, Payal Singhal and Dilip Sisodia,
Grouping Based job scheduling algorithm using priority queue and
hybrid algorithm in grid Computing, International Journal of Grid
Computing & Applications (IJGCA), Vol.3,pp. 55-65, December 2012.

[12] Qudsia Mateen, Ujala Niazi, Marwah, Grouping based job
scheduling Algorithm Using Priority queue, Shortest Job First, Round
Robin and First Come First Serve, International Journal of Computer and
Communication System Engineering (IJCCSE), Vol. 2 (1), pp. 139-142,
2015.

[13] Sandip Fakira Lokhandel, Sachin D. Chavhan, Prof. S. R.
Jadhao,Grid Computing Scheduling Jobs Based on Priority Using
Backfilling, International Journal of Electrical Electronics & Computer
Science Engineering, pp. 68-72,(April, 2015).

39

Appendix |

Shortest Job First with quantum time:
clc, close all ,clear all

data = [100 200 60 80 70 30 400 500]; %Kbyte
index_data=[];

p=[l;

process=[];

for n=1:length(data);

[min_data index]=min(data)
process=[process min_data]

p =[p index]

data(index)=1000;

end

data=process;

process=[]

channell=[];

channel2=[];

channel3=[];

process_chl1=[];

process_ch2=[];

40

process_ch3=[];

delay to freel=[0]

delay to free2=[0]

delay to free3=[0]

DR1=[20]; %Mbps

DR2=[80];

DR3=[100];

delayl=data/DR1; %ms

delay2=data/DR2;

delay3=data/DR3;

free=[11 1];

data_process=data;

data_process_length=length(data);

n=0

quantum_time=sum(data)/length(data);

quantum_time=quantum_time

for x=0:.00001:50

%for n=1:data_process_length
data_process_length=length(data);

%if n<data_process_length

41

iIf (free(1)==1 && free(2)==1 && free(3)==1)
n=n+1
delayl=data_process/DR1; %ms
delay2=data_process/DR2;
delay3=data_process/DR3;

[mini_delay
index_mini_delay]=max([delayl(1),delay2(1),delay3(1)])

if index_mini_delay==1
if data_process(1)<=quantum_time
process_chl=[process_chl data process(1)]
data_process(1)=[]
delay to freel=[delay to freel mini_delay+max(delay to freel)]
wait_count=1;
else
process_chl=[process_chl quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to freel=[delay to freel

quantum_time/DR1+max(delay_to_freel)]
end
free(1)=0
elseif index_mini_delay==

42

if data_process(1)<=quantum_time

process_ch2=[process_ch2 data_process(1)]

data_process(1)=[]

delay to free2=[delay to free2 mini_delay+max(delay to free2)]
else

process_ch2=[process_ch2 quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to free2=[delay to free2
(quantum_time/DR2)+max(delay_to_free2)]

end

free(2)=0

elseif index_mini_delay==

if data_process(1)<=quantum_time

process_ch3=[process_ch3 data_process(1)]

data_process(1)=[]

delay to free3=[delay to free3 mini_delay+max(delay to free3)]
else

process_ch3=[process_ch3 quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to free3=[delay to free3
(quantum_time/DR3)+max(delay_to_free3)]

43

end
free(3)=0
end

elseif (free(1)==1 & free(2)==1 & free(3)==0)
n=n+1

delayl=data_process/DR1; %ms
delay2=data_process/DR2;
[mini_delay index_mini_delay]=max([delay1(1),delay2(1)])
If index_mini_delay==1
If data_process(1l)<=quantum_time
process_chl=[process_chl data process(1)]
data_process(1)=[]
delay to freel=[delay to freel mini_delay+max(delay to freel)]
else
process_chl=[process_chl quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to freel=[delay to freel
(quantum_time/DR1)+max(delay to_freel)]

end
free(1)=0

elseif index_mini_delay==
44

If data_process(1)<=quantum_time

process_ch2=[process_ch2 data_process(1)]

data_process(1)=[]

delay to free2=[delay to free2 mini_delay+max(delay to free2)]
else

process_ch2=[process_ch2 quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to free2=[delay to free2
(quantum_time/DR2)+max(delay_to_free2)]

end
free(2)=0
end

elseif (free(1)==1 & free(2)==0 & free(3)==1)
n=n+1
delayl=data process/DR1; %ms
delay3=data_process/DR3;
[mini_delay index_mini_delay]=max([delay1(1),delay3(1)])
if index_mini_delay==1
if data_process(1)<=quantum_time
process_chl=[process_chl data_process(1)]

data_process(1)=[]
45

delay to freel=[delay to freel mini_delay+max(delay to freel)]
else

process_chl=[process_chl quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to freel=[delay to freel
(quantum_time/DR1)+max(delay_to_freel)]

end

free(1)=0

elseif index_mini_delay==

If data_process(1l)<=quantum_time

process_ch3=[process_ch3 data_process(1)]

data_process(1)=[]

delay to free3=[delay to free3 mini_delay+max(delay to free3)]
else

process_ch3=[process_ch3 quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to free3=[delay to free3
(quantum_time/DR3)++max(delay_to_free3)]

end
free(3)=0
end

46

elseif (free(1)==0 & free(2)==1 & free(3)==1)
n=n+1
delay2=data_process/DR2
delay3=data_process/DR3
[mini_delay index_mini_delay]=max([delay2(1),delay3(1)])
If index_mini_delay==1
If data_process(1)<=quantum_time
process_ch2=[process_ch2 data_process(1)]
data_process(1)=[]

delay to free2=[delay to free2

mini_delay+max(delay _to free2)]
else
process_ch2=[process_ch2 quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to free2=[delay to free2
(quantum_time/DR2)+max(delay_to_free2)]

end

free(2)=0

elseif index_mini_delay==

If data_process(1)<=quantum_time

process_ch3=[process_ch3 data_process(1)]

47

data_process(1)=[]

delay to free3=[delay to free3

mini_delay+max(delay _to free3)]

else

process_ch3=[process_ch3 quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to free3=[delay to free3
(quantum_time/DR3)+max(delay_to_free3)]

end
free(3)=0
end
elseif (free(1)==1 & free(2)==0 & free(3)==0)
n=n+1
delayl=data_process/DR1; %ms
If data_process(1)<=quantum_time
process_chl=[process_chl data process(1)]
data_process(1)=[]
delay to freel=[delay to freel delayl(1l)+max(delay to freel)]
else
process_chl=[process_chl quantum_time]

data_process(1)=data_process(1)-quantum_time

48

delay to_freel=[delay to freel
(quantum_time/DR1)+max(delay_to_freel)]

end
free(1)=0

elseif (free(1)==0 & free(2)==1 & free(3)==0)

n=n+1
delay2=data_process/DR2; %ms
if data_process(1)<=quantum_time
process_ch2=[process_ch2 data_process(1)]
data_process(1)=[]
delay to free2=[delay to free2 delay2(1)+max(delay to_ free2)]

else
process_ch2=[process_ch2 quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to free2=[delay to free2
(quantum_time/DR2)+max(delay_to_free2)]

end
free(2)=0
elseif (free(1)==0 & free(2)==0 & free(3)==1)
n=n+1
delay3=data_process/DR3; %ms

49

If data_process(1)<=quantum_time
process_ch3=[process_ch3 data_process(1)]
data_process(1)=[]

delay to free3=[delay to free3 delay3(1)+max(delay to free3)]
else
process_ch3=[process_ch3 quantum_time]
data_process(1)=data_process(1)-quantum_time

delay to free3=[delay to free3
(quantum_time/DR3)+max(delay to free3)]

end
free(3)=0
end
% X
if max(delay to freel)<=x

free(1)=1

end

if max(delay _to free2)<=x
free(2)=1

end

If max(delay_to_free3)<=x
50

free(3)=1

end

%end

if length(data_process)==0
break

end

end

51

Appendinx |1

Shortest Job Firs SJF]:
data = [100 200 60 80 70 30 400 500]; %Kbyte
index_data=[];

p=[l;

process=[];

for n=1:length(data);
[min_data index]=min(data)
process=[process min_data]
p =[p index]
data(index)=1000;

end

data=process;

process=[]

channell=[];

channel2=[];

channel3=[];
process_chl1=[];
process_ch2=[];

process_ch3=[];

52

delay to freel=[0]
delay to_free2=[0]
delay to free3=[0]
DR1=[20]; %Mbps
DR2=[80];
DR3=[100];
delayl=data/DR1; %ms
delay2=data/DR2;
delay3=data/DR3;
free=[11 1];
data_process=data;
data_process_length=length(data);
n=0
for x=0:.00001:50
%for n=1:data_process_length

if n<data_process_length

if (free(1)==1 && free(2)==1 && free(3)==1)

n=n+1
delayl=data process/DR1; %ms

delay2=data_process/DR2;

53

delay3=data_process/DR3;

[mini_delay
index_mini_delay]=max([delayl(1),delay2(1),delay3(1)])

if index_mini_delay==1
process_chl=[process _chl data_process(1)]
free(1)=0
delay to freel=[delay to freel mini_delay+max(delay to freel)]
elseif index_mini_delay==2
process_ch2=[process_ch2 data_process(1)]
free(2)=0

delay to free2=[delay to free2

mini_delay+max(delay to free2)]
elseif index_mini_delay==3
process_ch3=[process_ch3 data_process(1)]
free(3)=0

delay to free3=[delay to free3

mini_delay+max(delay to free3)]
end
data_process(1)=[]
elseif (free(1)==1 & free(2)==1 & free(3)==0)

n=n+1

54

delayl=data process/DR1; %ms
delay2=data_process/DR2;
[mini_delay index_mini_delay]=min([delay1(1),delay2(1)])
if index_mini_delay==1
process_chl=[process _chl data_process(1)]
free(1)=0

delay to freel=[delay to freel

mini_delay+max(delay to freel)]
elseif index_mini_delay==2
process_ch2=[process_ch2 data_process(1)]
free(2)=0

delay to free2=[delay to free2

mini_delay+max(delay to free2)]

end

data_process(1)=[]

elseif (free(1)==1 & free(2)==0 & free(3)==1)

n=n+1

delayl=data_process/DR1; %ms
delay3=data_process/DR3;
[mini_delay index_mini_delay]=max([delay1(1),delay3(1)])
if index_mini_delay==1

55

process_chl=[process_chl data_process(1)]
free(1)=0

delay to freel=[delay to freel

mini_delay+max(delay to freel)]
elseif index_mini_delay==2
process_ch3=[process_ch3 data_process(1)]
free(3)=0

delay to free3=[delay to free3

mini_delay+max(delay to free3)]

end

data_process(1)=[]

elseif (free(1)==0 & free(2)==1 & free(3)==1)

n=n+1

delay2=data_process/DR2
delay3=data_process/DR3
[mini_delay index_mini_delay]=max([delay2(1),delay3(1)])
if index_mini_delay==1

process_ch2=[process_ch2 data_process(1)]

free(2)=0

56

delay to free2=[delay_to_free2
mini_delay+max(delay_to_free2)]

elseif index_mini_delay==2
process_ch3=[process_ch3 data_process(1)]
free(3)=0

delay to free3=[delay to free3

mini_delay+max(delay to free3)]
end
data_process(1)=[]
elseif (free(1)==1 & free(2)==0 & free(3)==0)
n=n+1
delayl=data_process/DR1; %ms

process_chl=[process_chl data process(1)]

free(1)=0

delay to freel=[delay to freel
delayl(1)+max(delay to freel)]

data_process(1)=[]

elseif (free(1)==0 & free(2)==1 & free(3)==0)

n=n+1

delay2=data_process/DR2; %ms

57

process_ch2=[process_ch2 data_process(1)]
free(2)=0

delay to free2=[delay to free2
delay2(1)+max(delay_to_free2)]

data_process(1)=[]
elseif (free(1)==0 & free(2)==0 & free(3)==1)
n=n+1
delay3=data_process/DR3; %ms
process_ch3=[process_ch3 data_process(1)]
free(3)=0

delay to free3=[delay to free3
delay3(1)+max(delay to free3)]

data_process(1)=[]
end

% X

if max(delay to freel)<=x
free(1)=1

end

If max(delay_to_free2)<=x
free(2)=1

58

end
If max(delay _to free3)<=x
free(3)=1

end

end

if length(data_process)==0
% break

end

end

59

