
Sudan University of Science and Technology

Collage of Graduate Studies

College of Engineering

Scheduling Algorithm for Grid Computing

using Shortest Job First with Time Quantum

 خوارزمية الجدولة للحوسبة الشبكية بإستخدام العمليات الأقصر أولا مع الزمن الكمي

A thesis submitted in partial fulfillment of the requirements for the

degree of M.SC.in computer and networks engineering

 By:

Raham Hashim Yosuf

Supervised by:

Dr. Rania A. Mokhtar

August 2017

I

Initiation

 الأية

 ى:قال الله تعال

نْ هُوَ قَانِتٌ آنَاءَ اللَّيْلِ سَاجِداً وَقَائمًِا يَحْذرَُ الْْخِرَةَ وَيَرْجُو رَحْمَةَ رَب ِهِ قلُْ هَلْ { أمََّ

 }وَالَّذِينَ لَا يَعْلَمُونَ إنَِّمَا يتَذَكََّرُ أوُلوُ الْألَْبَابِ يَسْتوَِي الَّذِينَ يعَْلَمُونَ

 صدق الله العظيم

 (9سورة الزمر الْية)

II

Dedication

Dedicated to

My parents, my sisters

And to my friends

To everyone who tried to guide me to

A better life…..

With my love

III

Acknowledgement

My thanks for Allah

After that

I would like to thanks my university Sudan University of science and

Technology and my college of Graduate Studies Electronics Engineering

Department. And my teachers for inspiring me this project.

I owe my profound gratitude to my thesis supervisor Dr. Rania

A.Mokhtar for her valuable guidance, supervision and persistent

encouragement. Due to the approach adopted by her in handling my

thesis and the way she gave me freedom to think about different things,

I was able to do the constructive thesis. By working under her I have

gained priceless knowledge as to how to go about doing an effective

research. My greatest thanks to my parents who for their continuous

support.

IV

Abstract

One motivation of grid computing is to aggregate the power of widely

distributed resources and provide non trivial services to users. To

achieve this goal an efficient grid scheduling system is an essential part

of the grid. The scheduling of the processes can be implemented in

different ways with different scheduling algorithms. In this project we

use Shortest Job First [SJF] algorithm where it assigns highest priority to

shortest process. If processes are long, it suffers with a long waiting

time. When shortest process continues to arrive, the longer process may

never get a chance to schedule, this problem is called as Starvation. This

research proposes a use of Shortest Job First with time quantum

mechanism to overcome this issue. The MATLAB software is used to

implement the proposed algorithm, the algorithm achieves better results

than the original one in terms of delay time, resources utilization, fair

treatment for all the processes and degree of starvation.

V

 ملخص البحث

الهدف الأساسي من الحوسبة الشبكية هو الإستفاده القصوى من المصادر الموزعة وتقديم

الخدمات غير البديهية للمستخدمين ولتحقييق هذا الهدف فإن نظام الجدولة هو جزء ضروري

في الحوسبة الشبكية لأنه يعمل على جدولة العمليات بطرق مختلفة بناءا على العديد من

العمليات القصيرة أولًا والعمليات تنفيذ ى هذه الخوارزميات هي خوارزمية الخوارزميات وإحد

وعليه إذا إستمرت .الأطول تعاني من الإنتظار في الصف إلى أن يتم تنفيذ العمليات القصيرة

العمليات القصيرة في الوصول فإن العمليات الطويلة لا تستطيع الدخول في الجدولة حتى يتم

المشكلة بالتجويع ويقدم هذا البحث حلاً لهذه المشكلة عبر خوارزمية تنفيذها وتسمى هذه

العملية التي لها زمن تنفيذ أقل مع الزمن الكمي وتعمل هذه الخوارزمية على إختيار أسرع

مصدر لتنفيذ العمليات التي لها زمن تنفيذ أقل ثم بعد أن يتم تنفيذها تقوم بتحرير المصدر وذلك

أما إذا كان زمن تنفيذها أكبر من الزمن الزمن الكمي، ذها أقل من أو يساوي إذا كان زمن تنفي

الكمي فإنها تنفذ جزئياً ومن ثم يتم تقسيمها وتوزيعها علي المصادر الحرة الاخرى، أما إذا كانت

كل المصادر مشغولة فإنها تحجب وترجع الى اخر الصف وتستمر عملية التنفيذ إلى أن تنفذ كل

 .الموجودة في صف الإنتظارالعمليات

VI

TABLE OF CONTENTS

 I .………………...............………………………………………………الْية

DEDICATION…………………………………………................………. II

ACKNOWLEDGEMENT…………………... III

ABSTRACT…………………………………………..................……….. IV

 V .…………………..............……………………………………ملخص البحث

Table of content………………………................……………………….. VI

List of workspace……………………………..................……………….. IX

List OF figures ……………………………..................…………………. X

List of Tables ……………………………….................………………… XI

List of Abbreviations……………… ……………………………………. XII

Chapter one………………………………………………………………. 2

Introduction………………………………………………………………. 2

1.1 Preface……………………………………………………………..… 2

1.2 Problem statement…………………………………………………... 3

1.3 Proposed solution…………………………………………………….. 4

1.4 Objectives……………………………………………………............. 4

1.5 Scope……………………………………………………………….… 4

1.6 Methodology……………………………………………………….… 5

1.7 Research outlines ……………………………………………............ 5

Chapter two……………………………………………………………..... 7

2.1 Previous work………………………………………………………… 7

Chapter three……………………………………………………………… 14

3.1 Introduction ………………………………………………………….. 14

3.2 System algorithm ……………...………………………………….….. 14

3.3 Mathematical model …………………………………………….…… 15

Chapter four………………………………………………………….…… 18

4.1 Introduction…………………………………………………….…….. 18

4.2 Summary……………………………………………………………… 34

VII

Chapter five……………………………………………………………… 36

5.1 Conclusion……………………………………………………………. 36

5.2 Recommendation……………………………………………………... 37

References…………………………………………………………….….. 38

Appendix I………………………………………………………………... 40

Appendix II………………………………………………………………. 52

VIII

List of workspace

Workspace 4.1.1 Shortest Job First with time quantum ……………….. 19

Workspace 4.1.2Shortest Job First ……………………………………. 24

Workspace 4.1.3 Shortest Job First with time quantum when data rate is

different ………………………………………………………………….

27

Workspace 4.1.4 Shortest Job First when data rate is different.……….. 31

IX

List of Figures

Figure 4.1.1 Shortest Job First with time quantum …………..... 22

Figure 4.1.2 Shortest Job First ………………………………… 26

Figure 4.1.3 Shortest Job First with time quantum when data

rate is different ……………………………………………………

29

Figure 4.1.4 Shortest Job First when data rate is different …....... 33

X

List of Tables

Table 2.2 summary of related works……………………………..…… 11

Table 4.1.1 Shortest Job First time quantum …………………………. 21

Table 4.1.2 Shortest Job First ………………………………..……….. 25

Table 4.1.3 Shortest Job First with time quantum when data rate is

different……………………………………………………..………..…

28

Table 4-4 Shortest Job First when data rate is different……………...... 32

XI

Abbreviations

ABDRS: Agent Based Dynamic Resource Scheduling

BAJGS: Bandwidth Aware Job Grouping based Scheduling

B.T: Burst Time

CPU: Central Processing Unit

DJGBS: Dynamic Job Grouping Based Scheduling

D-MMLQ: Deadline based Modified Multi Level Queue

DR: Data Rate

DT: Delay Transmission

EDF: Earliest Deadline First

EDSRT: Earliest Deadline First with Shortest Remaining Time

ERD: Earliest Release Date

FCFS: First Come First Service

FF: First Fit

GBFJS: Grouping Based Fire grained Job Scheduling

GIS: Grid Information Service

HJS: Hierarchical Job Scheduling

HRN: Highest Response Next

LJF: Longest Job First

MFQS: Multilevel Feedback Queue Scheduling

ORC: Optimal Resource Constraint

RR: Round Robin

SCTP: Stream Control Transmission Protocol

SF: Starvation Free

SFBAJG: Scheduling Framework for Bandwidth Aware Job Grouping

SJF: Shortest Job First

SPN: Shortest Process Next

T.Q: Time Quantum

VCGRP: Virtual Computing Grid using Resource Pooling

Chapter one

Introduction

2

Chapter one

Introduction

1.1 Preface

Grid computing has emerged as a distributed methodology that

coordinates the resources that are spread in the heterogeneous distributed

environment[1].Grid computing is a type of parallel and distributed

system that enables the sharing, selection and aggregation of resources

distributed across multiple administrative domains based on their

availability, capability, performance, cost and user’s quality-of-service

requirements[2].Resources can be computers, storage space, instruments,

software applications, channels and data, all connected through the

Internet and a middleware software layer that provides basic services for

security, monitoring and resource management. Resources owned by

various administrative organizations are shared under locally defined

policies that specify what is shared, who is allowed to access what, and

under what conditions.

In most organizations, there are large amounts of underutilized

Computing resources. Grid computing provides a framework for

exploiting these underutilized resources and thus has the possibility of

substantially increasing the efficiency of resource usage. Grid computing

looks like a great answer to numerous problems without prodigious

management requirements [3].

3

Effective grid computing is possible, however, only if the resources are

scheduled well, the goal of the resource scheduler is to maximize the

resource utilization and minimize the processing time of the jobs.

The job scheduling system is responsible to select best suitable machines

in a grid for user jobs. Schedulers allocate resources to the jobs to be

executed using various algorithms such as First Come First Service

[FCFS], Longest Job First [LJF], Earliest Deadline First [EDF] and other

algorithms. One type of these algorithms is shortest job first [SJF] also

know as Shortest Job Next [SJN] or Shortest Process Next [SPN] the

scheduling technique that selects the smallest job.

If process is long, then this long process are suffers with a long waiting

time. When shortest jobs continue to arrive, longest jobs may never get a

chance to schedule. This problem is called as Starvation. The project

proposes a solution to overcome this issue with time quantum

mechanism. SJF with time quantum is based on the integration of round

robin and SJF scheduling algorithm. In this, priority is calculated on the

basis of shortest process and time quantum.

1.2 Problem Statement

 In SJF algorithm the resource is allocated to the smallest process. If

process is long, then this long process are suffers with a long waiting

time. If short Processes are always available to run; the long processes

ones never get chance to scheduled. This problem is called starvation.

4

1.3 Proposed solution:

The proposed solution is algorithm called shortest job first with time

quantum which is based on the integration of round robin [RR] and SJF

scheduling algorithm. This algorithm can overcome the starvation. In

this algorithm the resource is allocated to the shortest process. In this two

things can happen. First, the process may be less than or equal to the

time quantum. In this case, the process will execute and after completion

release the resource by itself. Second, the process may be greater than to

the time quantum. In this case, the process will execute for one time

quantum, divided and distributed to the free second resource, if resources

are busy the process is preempted. Then, the resource scheduler will

select the next shortest process to execute. The preempted process will

be put at the ready queue. This continues until the execution of all the

processes is completed.

1.4 objectives:

 To optimize the utilization of resources.

 To reduce end time of job.

 To enhance performance of job scheduling.

 To fair treatment for all the processes

1.5 Scope:

The scope of this project is to develop the approach for Shortest

Job First scheduling algorithm by using time quantum to reduce

the problem of starvation.

5

1.6 Methodology:

The proposed algorithm is shortest job first [SJF] with time quantum

which is based on the integration of round robin and Shortest Job First

scheduling algorithms. Firstly select fastest resources to allocate the

shortest process, if the process less than or equal to the time quantum. In

this case, the process will execute and after completion release the

resource by itself. Secondly if process is greater than to the time

quantum the Process will execute for one time quantum divided and

distributed to the free second resource. If resources are busy the process

is pre empted.

 Finally the resource scheduler will select the next shortest Process to

execute. That means the scheduler select the pre empted process because

it is the shortest process at the ready queue. The scheduler continues to

select processes until the execution of all the processes is completed. The

result is calculated using MATLAB.

1.7 Thesis outlines:

The thesis includes five chapters, chapter one provides introduction of

the project, determine the problem statement, proposed solution and

objectives. While chapter two covers the literature review which

includes theoretical background algorithms that have the relevant related

work.

In chapter three the methodology section, Explain the algorithms how it

implemented by MATLAB while chapter four presents the result of

implementation; furthermore, it also compares the results of the

proposed algorithm with other scenario of similar work. And chapter five

includes the conclusion and future work.

Chapter two

Literature review

7

Chapter two

Literature review

2.1 Previous work:

The job scheduling system is responsible to select best suitable machines

in a grid for user jobs. Schedulers allocate resources to the jobs to be

executed using various algorithms. This chapter describes the algorithms

and determines the difference between them.

In [4] one of the main challenges is resource or job scheduling in the

grid. They present such an algorithm which helps in scheduling

computational resource to the jobs in efficient way.

They use Earliest Deadline First with Shortest Remaining Time.

[EDSRTF] is a scheduling algorithm in which scheduling is done

according to the deadline of jobs and remaining time. The job with the

earliest deadline will get resource first while the job with large value of

deadline will have to wait irrespective of their execution time. by

Comparison of the proposed algorithm EDSRTF in terms of waiting and

turnaround time of jobs with two other algorithms First Come First Serve

[FCFS] and Longest Job First [LJF]. Average waiting time and average

turnaround time of proposed algorithm is less in comparison to other

scheduling algorithms so EDSRTF is best among them.

In [5] the main aim is to develop the new approach for SJF scheduling

algorithm which help to reduce the problem of starvation in a heavily

loaded computer system. The ASJF algorithm reduces the starvation

Problem of the simple SJF architecture. This ASJF algorithm is based on

8

SJF and multilevel feedback queue scheduling [MFQS] technique. They

made a comparative study of SJF and ASJF algorithm. It is concluded

That the ASJF algorithm is superior in terms of minimizing degree of

starvation, increasing fairness, decrease in response time and Timely

resource allocation to individual process. ASJF algorithm clearly shows

maximum CPU utilization and efficient handling of resources. As

 MFQS algorithm is merged with SJF, the technique of dividing the

processes to various queues and switching of processes among them will

further reduce the problem of starvation.

In [6] the proposed work is about to keep only the most required data

items in cache. The requirement depends on the frequency of the reuse of

data item. The work is about to identify the frequency of each data items

from previous history.

The improvement of algorithm using cache technique allows us to

reduce computational cost because the results calculated in previous

times not to be calculated in the progressive process.

In [7] they propose a scheduling technique which classifies the subtasks

based on the priority assigned by the user. Multi-level queue is used for

reducing starvation. The proposed Starvation Free [SF] Scheduling

algorithm can be applied widely and it helps in scheduling resources

efficiently, resulting in a starvation free grid environment.

Results from simulation experiments demonstrate that the algorithm

optimizes the resource nodes and resource utilization rate gets substantial

increase. The multi-level queue based scheduling Algorithm for the

heterogeneous grid environment has high performance as compared to

the other scheduling algorithms for the grid environment.

9

In [8] the proposed solution for scheduling the jobs using Deadline

based- Modified Multi-Level Queue [D-MMLQ] for multiprocessor

scheduling. The proposed algorithm fuses two vital concepts for

Handling job allocation and execution through multi-level queue. The

approach proposes that the starvation problem of low priority jobs or

jobs at lower end of queue, hence increasing the overall competence of

multiprocessor system. D-MMLQ algorithm is the better utilization of

resources than traditional EDF algorithm.

In [9] he is interested in two distinct functionalities: global scheduling

and local scheduling. He considers a model composed of global

scheduler with its global queue and local scheduler also with its queue.

The model focuses in increase the resource utilization at global queue

and decrease makespane time at local queue. The objective of this work

is to investigate the mechanisms of scheduling problems in grid

computing and to find whether scheduling algorithms used at global and

local queue are similar.

In [10] an algorithm is designed for an efficient job scheduling algorithm

to maximize the resource utilization and minimize processing time of the

jobs. They have proposed an efficient three scheduling algorithm

[Shortest Job First, First Come First Serve, Round Robin] for jobs and

Send to the queue. They have got some better performance in terms of

processing time than job scheduling on the FIFO algorithm. Also they

have implemented Shortest Job First algorithm along with all three

algorithms for performance analysis.

In [11] they are present an improved algorithm based on priority

scheduling which further reduces total time and hence maximizes

resource utilization. It is based upon grouping of algorithms on the basis

10

Of priority. And proposed an efficient four scheduling algorithm

[Shortest Job First, First Come First Serve, Round Robin and priority

Scheduling] for jobs and send to the queue to minimize processing time

of the jobs.

In [12] they are proposing a backfilling scheduling algorithm is proposed

to select many jobs to be backfilled from the waiting job queue. The

Main aim of their proposed work is to make develop scheduling jobs

based on priority using backfilling for grid computing.

In [13] they are proposing a backfilling scheduling algorithm is proposed

to select many jobs to be backfilled from the waiting job queue. The

Main aim of their proposed work is to make develop scheduling jobs

based on priority using backfilling for grid computing.

11

Table 2.2 summary of related works

NO Authors Paper Title and Year

Algorithms Overview and Results

4 Dipti

Sharma,

Mr.

Pradeep

Mittal

Job Scheduling

Algorithm for

Computational Grid

in Grid Computing

Environment,2013

EDSRTF The scheduling done

according to the deadline

of jobs and remaining

time. Average waiting

time and average

turnaround time is less

in comparison to other

scheduling algorithms

8 Manupriya

Hasija,

Akhil

Kaushik

D-MMLQ

Algorithm for Multi-

level Queue

Scheduling, 2014

D-MMLQ

The algorithm Handling

job allocation and

execution through multi-

level queue. it is better

utilization of Resources

than EDF

9 Mohamed

Eisa

Improving Grid

Computing

Scheduling using

Heuristic

Algorithms,2013

global

scheduling

and local

scheduling

It focuses in increase the

resource utilization at

global queue

12

No Authors Paper Title and

Year

Algorithm Overview and

Results

10 Pinky

Rosemarry,

Ravinder

Singh, Payal

Singhal and

Dilip Sisodia

Grouping

Based job

scheduling

algorithm

using priority

queue and

hybrid

algorithm in

grid

Computing,

2012

SJF,FCFS,RR It used three

algorithms to

maximize the

resource

utilization and

minimize

processing

time of the

jobs.

13 Sandip Fakira

Lokhande1,

Sachin D.

Chavhan, Prof.

S. R.

Jadhao,

Grid

Computing

Scheduling

Jobs Based on

Priority using

Backfilling,

2015

backfilling

scheduling

algorithm

To select many

jobs to be

backfilled

from the

waiting job

queue. the aim

is to make

develop

scheduling

jobs based on

priority

Chapter three

Methodology

14

Chapter three

Methodology

3.1 Introduction

This section covers techniques, tools which are chosen for calculation

delay time, end time of process and resources utilization.

3.2 System algorithm:

The algorithm is Shortest Job First [SJF] with time quantum. In this

algorithm the channel is allocated to the shortest process. In this two

things can happen. First, if process less than or equal to the time

quantum, then the process will be execute and after completion release

the channel by itself. Second. If process greater than time quantum, then

the process will execute for 1 time quantum, divided and distributed to

the free second channel, if channels are busy the process is preempted.

Then, the channel scheduler will select the next shortest Process to

execute. The preempted process will be put at the ready queue. This

continues until the execution of all the processes is completed. This

project is executed by MATLAB because it is a high performance

language for technical computing. It integrates computation,

visualization and programming environment. Furthermore MATLAB is

modern programming language environment it has sophisticated data

structures, contains built in editing and debugging tools and supports

object oriented programming. These factors make MATLAB excellent

tools for teaching and research. MATLAB has

Many advantages Compared to the conventional computer languages for

solving technical problems.

15

3.3 Mathematical model

The Mathematical Equations that’s used in simulation in MATLAB are:

3.3.1 Data rate [DR]

Average number of bits or data passing through a communication link in

a data transmission system from one channel to another .common data

rate units are multiples of bits per second (bit/S) and byte per

second(B/S).

3.3.2 Delay transmission [DT]:

 Amount of time required to push all of the packets bits onto the channel.

 Delay transmission can be mathematically expressed Equation (3.1)

calculate the Delay transmission [DT]

DT =
data

DR
 Equation (3.1)

Where:

DT = Delay transmission in (sec).

Data = data transmit in (bit).

DR = Data rate in (bit/sec).

3.3.3 End time:

The actual time at which a job finishes its processing unit (second).

16

3.3.4 Waiting time:

It is the amount of time a process waits in the ready queue unit (second).

3.3.5 Channel utilization:

The maximum use of channel when it is busy.

3.3.5 Time Quantum:

Time gives to job and interrupting the job if it is not completed by then

3.4 Sudo code:

3.4.1 Select channel.

3.4.2 Select shortest process from the ready queue.

3.4.3 Check, if process <= Time quantum (T.Q)

3.4.3. A If yes, then scheduler will allocate the channel to that process,

the process will complete its execution and will release the channel by

itself.

3.4.3. B If no, then scheduler will allocate the channel to the process;

the process will execute for one T.Q, divided and distributed to the free

second channel

3.4.4 If channels are busy the process is preempted.

3.4.5 Repeat step 3, if any process is available in ready queue.

3.4.6 Exit

Chapter four

Result and Discussion

18

Chapter four

Result and Discussion

4.1 Introduction:

The project used Shortest Job First with time quantum and Shortest Job

First algorithms when data rate is equal [60] and data rate is different

[2080 100].

Firstly arrange processes from minimum to maximum in the ready

queue the processes are [30 60 70 80 100 200 400 500]; it used short

process; medium process and long process; secondly calculate delay to

free to determine which channel work. Finally allocate the channel that

has minimum delay to the minimum process. The algorithms are used

three channels to allocated processes.

19

Workspace 4.1.1 Shortest Job First with time quantum when data rate is

equal [60] and time quantum is equal 180

This workspace [4.1.1] explains the algorithm [SJF] using time quantum.

Data rate value equal 60, time quantum equal 180, the channels are

20

[channel1, channel2, channel3] and the process is not arrange. After

arrange data all channels are free that means select minimum processes

[30 60 70] to allocated channel1, channel2 and channel3. Channel 1 is

became free because it is have minimum data and process 80 is allocated

in it and process 100 is allocated into channel 2 after process 80

complete its execution and release channel process 200 is greater than

time quantum [180] the process is divided to 180 and 20 and distributed

into channel 1 and channel 3, process 400 is also greater than time

quantum divided to 180, 180, 40 and distributed into channel 1,channel 2

and channel 3,process 500 is greater than time quantum divided to

180,180,140 distributed into channel 1 ,channel 3 and channel 2 .

End time of all processes that is the time when process is complete its

execution and release channel. For example process 30 is start its

execution at 0 and finish at 0.5000 second that means end time of

execution and delay to free calculate using the difference between the

waiting time and end time .

21

Table 4.1.1 Shortest Job First with time quantum

processes Waiting time End time Delay to free

30 0 0.5000 0.5000

60 0 1 1

70 0 1.167 1.167

80 0.5000 1.833 1.333

100 1 2.667 1.667

200 1.167 4.167 3

400 2.167 5.667 3.5

500 4.833 8.167 3.33

22

Figure 4.1 Shortest Job First with time quantum

0

1

2

3

4

5

6

7

8

9

30 60 70 80 100 200 400 500

Waiting time

End time

Delay to free

Process

Time

23

Average waiting time =∑ waiting time of processes ∕ number of

processes

0+0+0+0.5000+1+1.167+2.167+4.833/8

=
9.667

8
 = 1.208

Average end time= ∑end time of processes/number of processes

0.5000+1+1.167+1.833+2.667+4.167+5.667+8.167

 = 25.168/8 = 3.146

Average delay to free = ∑ delay to free of processes/number of processes

=0.5000+1.1.167+1.33+1.667+3+3.5+3.33

= 15.49/8 = 1.94

24

Workspace 4.1.2 Shortest Job First [SJF] when data rate is equal [60]

This workspace [4.1.2] explains the algorithm [SJF]. Data rate value

equal 60, the channels are [channel1, channel2, channel3] and the

process is not arrange. After arrange data all channels are free that means

select minimum processes [30 60 70] to allocated channel1, channel2

25

and channel3. Channel 3 is become free because it is have minimum data

and process 80 is allocated in it. When process complete execution it

release channel by itself. That means process 400 is allocated in

channel3, processes 100 and 500 is allocated in channel2 and process

200 is allocated in channel1

Table 4.1.2 Shortest Job First [SJF]

processes Waiting time End time Delay to free

30 0 0.5000 0.5000

60 0 1 1

70 0 1.1667 1.1667

80 0.5000 1.833 1.333

100 1 2.667 1.667

200 1.1667 4.5000 3.333

400 1.833 8.5000 6.667

500 2.667 11 8.333

26

Figure 4.1.2 Shortest Job First [SJF]

Average waiting time =∑ waiting time of processes ∕ number of

processes

 =
7.1667

8
 = 0.8959

End processes = ∑end time of processes/ number of processes =

31.1667= 3.896

Delay to free = ∑ Delay to free of processes/ number of processes

23.999 = 2.999

0

2

4

6

8

10

12

30 60 70 80 100 200 400 500

Waiting time

End time

Delay to free

Time

Processes

27

Workspace 4.1.3 Shortest Job First with time quantum when data rate is

different [20 80, 100]

28

This workspace [4.1.3] explains the algorithm [SJF] using time quantum

when data rate is different [20 80 100]. The channels are [channel1,

channel2, channel3] after arrange data all channels are free that means

select minimum processes [30 60 70] to allocated channel1, channel2

and channel3. When process complete execution it release channel by

itself.

Table 4.1.3 Shortest Job First with time quantum when data rate is

different

processes Waiting time End time Delay to free

30 0 1.5000 1.5000

60 0 0.7500 0.7500

70 0 0.7000 0.7000

80 0.7000 1.5000 0.8

100 0.7500 2 1.25

200 1.5000 10.5000 9

400 1.7000 4.2500 2.55

500 3.9000 7.1000 3.2

29

Figure 4.1.3 Shortest Job First with time quantum when data rate is

different

0

2

4

6

8

10

12

30 60 70 80 100 200 400 500

Waiting time

End time

Delay to free

Time

Processes

30

Average waiting time =∑ waiting time of processes ∕ number of

processes

=
8.55

8
 = 1.07

End time =∑end time of processes/ number of processes = 28.3= 3.54

Delay to free = ∑ Delay to free of processes/ number of processes 19.75

= 2.47

31

Workspace 4.1.4 Shortest Job First when data rate is different [20, 80,

100]

32

This workspace [4.1.4] explains the algorithm [SJF] when data rate is

different [20 80 100]. The channels are [channel1, channel2, channel3]

after arrange data all channels are free that means select minimum

processes [30 60 70] to allocated channel1, channel2 and channel3.all

processes are greater than time quantum must be divided and distributed

into free channels ,when process is complete execution it release channel

by itself.

Table 4.1.4 Shortest Job First when data rate is different

processes Waiting time End time Delay to

Transmission

30 0 1.5000 1.5000

60 0 0.7500 0.7500

70 0 0.7000 0.7000

80 0.7000 1.5000 0.8

100 0.7500 2 1.25

200 1.5000 11.5000 10

400 1.5000 5.5000 4

500 2 8.2500 6.25

33

Figure 4.1.4 Shortest Job First when data rate is different

Average waiting time =∑ waiting time of processes ∕ number of

processes

=
6.45

8
 = 0.806

End time = ∑end time processes/ number of processes = 31.7= 3.96

Delay to free = ∑ Delay to free of processes/ number of processes 25.25

= 3.16

0

2

4

6

8

10

12

14

30 60 70 80 100 200 400 500

waiting time

end time

delay to free

Time

Processes

34

4.2 Summary

From previous results when we compare between two algorithms we

find Shortest Job First with time quantum is better than Shortest Job First

in terms of end time process, resources utilization, delay to transmission

and Fair treatment for all the processes. But in term of waiting time

Shortest Job First is better, SJF doesn’t always minimize waiting time.

Chapter five

Conclusion and recommendations

36

Chapter five

Conclusion and recommendations

5.1 Conclusion

Grid computing can solve more complex tasks in less time and utilizes

the resources efficiently. To make grid work properly, best job

scheduling strategies have to be employed. Scheduling helps the jobs to

get resources properly. This project used proposed a scheduling

algorithm Shortest Job First with time quantum and also done its

comparison in terms of waiting time, end time and delay to transmission

of jobs with algorithm Shortest Job First [SJF]. Average waiting time,

average end time and average delay to transmission of jobs are also

calculated. The proposed algorithm has following benefits in comparison

to Shortest Job First algorithm [SJF]:

5.1.1 Low end time

5.1.2 Low delay to transmission

5.1.3 More resources utilization

5.1.4 Fair treatment for all the processes.

5.1.5 Minimizing degree of starvation.

So Shortest Job First with time quantum is the best.

37

5.2 Recommendations:

In future Shortest Job First with dynamic time quantum and will also be

using dynamic time quantum for ready queue, where time quantum will

be calculated every time a process enters or exits the queue. One may be

Able to increase the Performance, Throughput and decrease the end

Time by above solution.

38

References

[1] Mrs. Radha, Dr.V.Sumathy “A Detailed Study of Resource

Scheduling and Fault Tolerance in Grid”, 2011.

[2] N.A. Azeez1; A.P. idoye; A.O. Adesina; K.K. Agbele; Iyamu Tiko,

and I.M. Venter, “Peer to Peer Computing and Grid Computing:

Towards a Better Understanding”, 2011.

[3] Manisha Bhardwaj, Sandeep Kumar, A Two Way Scheduling

Approach for Effective Resource Scheduling in Grid, International

Journal of Computer Networks and Wireless Communications

(IJCNWC), Vol.3, No3,PP.243-246, June 2013

 [4] Dipti Sharma, Mr. Pradeep Mittal, Job Scheduling Algorithm for

Computational Grid in Grid Computing Environment, International

Journal of Advanced Research in Computer Science and Software

Engineering, PP. 735-743, 5, May 2013.

[5] Himani Aggarwal, Er. Shakti Nagpal, Augmented SJF algorithm

with reduced starvation, International Journal of Advanced Research in

Computer Science and Software Engineering, pp. 718-723, 6, June 2014.

[6] Er. Himanshu Jain, Kavita Khatkar, Process Scheduling Approach

for Starvation Improvement with Time Delay Analysis in Grid

Resources Allocation, International Journal of Advanced Research in

Computer and Communication Engineering, Vol. 4 PP. 197-201, , 8,

August 2015.

[7] Kumaresh.V.S, Prasidh.S, Arjunan.B, Subbhaash.S and

Sandhya.M.K, Multilevel Queue-Based Scheduling for Heterogeneous

Grid Environment, IJCSI International Journal of Computer Science

Issues,pp. 245-248, November 2012.

39

[8] Manupriya Hasija, Akhil Kaushik, Satvika Kaushik and Manoj

Barnela,

 D-MMLQ Algorithm for Multi-level Queue Scheduling, IJCSNS

International Journal of Computer Science and Network Security,

VOL.14, pp. 90-94, July 2014.

[9] Mohamed Eisa, Improving Grid Computing Scheduling using

Heuristic Algorithms, International Journal of Computer Applications,

Volume 78,pp. 14-17, September 2013.

[10] Pinky Rosemarry, Payal Singhal, Ravinder Singh, A Study of

Various Job & Resource Scheduling Algorithms in Grid Computing,

International Journal of Computer Science and Information

Technologies, pp. 5504-5507, 2012.

[11] Pinky Rosemarry, Ravinder Singh, Payal Singhal and Dilip Sisodia,

Grouping Based job scheduling algorithm using priority queue and

hybrid algorithm in grid Computing, International Journal of Grid

Computing & Applications (IJGCA), Vol.3,pp. 55-65, December 2012.

[12] Qudsia Mateen, Ujala Niazi, Marwah, Grouping based job

scheduling Algorithm Using Priority queue, Shortest Job First, Round

Robin and First Come First Serve, International Journal of Computer and

Communication System Engineering (IJCCSE), Vol. 2 (1), pp. 139-142,

2015.

[13] Sandip Fakira Lokhande1, Sachin D. Chavhan, Prof. S. R.

Jadhao,Grid Computing Scheduling Jobs Based on Priority Using

Backfilling, International Journal of Electrical Electronics & Computer

Science Engineering, pp. 68-72,(April, 2015).

40

Appendix I

Shortest Job First with quantum time:

clc , close all ,clear all

data = [100 200 60 80 70 30 400 500]; %Kbyte

index_data=[];

p=[];

process=[];

for n=1:length(data);

[min_data index]=min(data)

process=[process min_data]

p =[p index]

data(index)=1000;

end

data=process;

process=[]

channel1=[];

channel2=[];

channel3=[];

process_ch1=[];

process_ch2=[];

41

process_ch3=[];

delay_to_free1=[0]

delay_to_free2=[0]

delay_to_free3=[0]

DR1=[20]; %Mbps

DR2=[80];

DR3=[100];

delay1=data/DR1; %ms

delay2=data/DR2;

delay3=data/DR3;

free=[1 1 1];

data_process=data;

data_process_length=length(data);

n=0

quantum_time=sum(data)/length(data);

quantum_time=quantum_time

for x=0:.00001:50

%for n=1:data_process_length

 data_process_length=length(data);

 %if n<data_process_length

42

 if (free(1)==1 && free(2)==1 && free(3)==1)

 n=n+1

 delay1=data_process/DR1; %ms

 delay2=data_process/DR2;

 delay3=data_process/DR3;

 [mini_delay

index_mini_delay]=max([delay1(1),delay2(1),delay3(1)])

 if index_mini_delay==1

 if data_process(1)<=quantum_time

 process_ch1=[process_ch1 data_process(1)]

 data_process(1)=[]

 delay_to_free1=[delay_to_free1 mini_delay+max(delay_to_free1)]

 wait_count=1;

 else

 process_ch1=[process_ch1 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free1=[delay_to_free1

quantum_time/DR1+max(delay_to_free1)]

 end

 free(1)=0

 elseif index_mini_delay==2

43

 if data_process(1)<=quantum_time

 process_ch2=[process_ch2 data_process(1)]

 data_process(1)=[]

 delay_to_free2=[delay_to_free2 mini_delay+max(delay_to_free2)]

 else

 process_ch2=[process_ch2 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free2=[delay_to_free2

(quantum_time/DR2)+max(delay_to_free2)]

 end

 free(2)=0

 elseif index_mini_delay==3

 if data_process(1)<=quantum_time

 process_ch3=[process_ch3 data_process(1)]

 data_process(1)=[]

 delay_to_free3=[delay_to_free3 mini_delay+max(delay_to_free3)]

 else

 process_ch3=[process_ch3 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free3=[delay_to_free3

(quantum_time/DR3)+max(delay_to_free3)]

44

 end

 free(3)=0

 end

elseif (free(1)==1 & free(2)==1 & free(3)==0)

 n=n+1

 delay1=data_process/DR1; %ms

 delay2=data_process/DR2;

 [mini_delay index_mini_delay]=max([delay1(1),delay2(1)])

 if index_mini_delay==1

 if data_process(1)<=quantum_time

 process_ch1=[process_ch1 data_process(1)]

 data_process(1)=[]

 delay_to_free1=[delay_to_free1 mini_delay+max(delay_to_free1)]

 else

 process_ch1=[process_ch1 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free1=[delay_to_free1

(quantum_time/DR1)+max(delay_to_free1)]

 end

 free(1)=0

 elseif index_mini_delay==2

45

 if data_process(1)<=quantum_time

 process_ch2=[process_ch2 data_process(1)]

 data_process(1)=[]

 delay_to_free2=[delay_to_free2 mini_delay+max(delay_to_free2)]

 else

 process_ch2=[process_ch2 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free2=[delay_to_free2

(quantum_time/DR2)+max(delay_to_free2)]

 end

 free(2)=0

 end

elseif (free(1)==1 & free(2)==0 & free(3)==1)

 n=n+1

 delay1=data_process/DR1; %ms

 delay3=data_process/DR3;

 [mini_delay index_mini_delay]=max([delay1(1),delay3(1)])

 if index_mini_delay==1

 if data_process(1)<=quantum_time

 process_ch1=[process_ch1 data_process(1)]

 data_process(1)=[]

46

 delay_to_free1=[delay_to_free1 mini_delay+max(delay_to_free1)]

 else

 process_ch1=[process_ch1 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free1=[delay_to_free1

(quantum_time/DR1)+max(delay_to_free1)]

 end

 free(1)=0

 elseif index_mini_delay==2

 if data_process(1)<=quantum_time

 process_ch3=[process_ch3 data_process(1)]

 data_process(1)=[]

 delay_to_free3=[delay_to_free3 mini_delay+max(delay_to_free3)]

 else

 process_ch3=[process_ch3 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free3=[delay_to_free3

(quantum_time/DR3)++max(delay_to_free3)]

 end

 free(3)=0

 end

47

 elseif (free(1)==0 & free(2)==1 & free(3)==1)

 n=n+1

 delay2=data_process/DR2

 delay3=data_process/DR3

 [mini_delay index_mini_delay]=max([delay2(1),delay3(1)])

 if index_mini_delay==1

 if data_process(1)<=quantum_time

 process_ch2=[process_ch2 data_process(1)]

 data_process(1)=[]

 delay_to_free2=[delay_to_free2

mini_delay+max(delay_to_free2)]

 else

 process_ch2=[process_ch2 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free2=[delay_to_free2

(quantum_time/DR2)+max(delay_to_free2)]

 end

 free(2)=0

 elseif index_mini_delay==2

 if data_process(1)<=quantum_time

 process_ch3=[process_ch3 data_process(1)]

48

 data_process(1)=[]

 delay_to_free3=[delay_to_free3

mini_delay+max(delay_to_free3)]

 else

 process_ch3=[process_ch3 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free3=[delay_to_free3

(quantum_time/DR3)+max(delay_to_free3)]

 end

 free(3)=0

 end

elseif (free(1)==1 & free(2)==0 & free(3)==0)

 n=n+1

 delay1=data_process/DR1; %ms

 if data_process(1)<=quantum_time

 process_ch1=[process_ch1 data_process(1)]

 data_process(1)=[]

 delay_to_free1=[delay_to_free1 delay1(1)+max(delay_to_free1)]

 else

 process_ch1=[process_ch1 quantum_time]

 data_process(1)=data_process(1)-quantum_time

49

 delay_to_free1=[delay_to_free1

(quantum_time/DR1)+max(delay_to_free1)]

 end

 free(1)=0

elseif (free(1)==0 & free(2)==1 & free(3)==0)

 n=n+1

 delay2=data_process/DR2; %ms

 if data_process(1)<=quantum_time

 process_ch2=[process_ch2 data_process(1)]

 data_process(1)=[]

 delay_to_free2=[delay_to_free2 delay2(1)+max(delay_to_free2)]

 else

 process_ch2=[process_ch2 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free2=[delay_to_free2

(quantum_time/DR2)+max(delay_to_free2)]

 end

 free(2)=0

 elseif (free(1)==0 & free(2)==0 & free(3)==1)

 n=n+1

 delay3=data_process/DR3; %ms

50

 if data_process(1)<=quantum_time

 process_ch3=[process_ch3 data_process(1)]

 data_process(1)=[]

 delay_to_free3=[delay_to_free3 delay3(1)+max(delay_to_free3)]

 else

 process_ch3=[process_ch3 quantum_time]

 data_process(1)=data_process(1)-quantum_time

 delay_to_free3=[delay_to_free3

(quantum_time/DR3)+max(delay_to_free3)]

 end

 free(3)=0

 end

 % x

 if max(delay_to_free1)<=x

 free(1)=1

 end

 if max(delay_to_free2)<=x

 free(2)=1

 end

 if max(delay_to_free3)<=x

51

 free(3)=1

 end

 %end

 if length(data_process)==0

 break

 end

end

52

Appendinx II

Shortest Job Firs SJF]:

data = [100 200 60 80 70 30 400 500]; %Kbyte

index_data=[];

p=[];

process=[];

for n=1:length(data);

[min_data index]=min(data)

process=[process min_data]

p =[p index]

data(index)=1000;

end

data=process;

process=[]

channel1=[];

channel2=[];

channel3=[];

process_ch1=[];

process_ch2=[];

process_ch3=[];

53

delay_to_free1=[0]

delay_to_free2=[0]

delay_to_free3=[0]

DR1=[20]; %Mbps

DR2=[80];

DR3=[100];

delay1=data/DR1; %ms

delay2=data/DR2;

delay3=data/DR3;

free=[1 1 1];

data_process=data;

data_process_length=length(data);

n=0

for x=0:.00001:50

%for n=1:data_process_length

 if n<data_process_length

 if (free(1)==1 && free(2)==1 && free(3)==1)

 n=n+1

 delay1=data_process/DR1; %ms

 delay2=data_process/DR2;

54

 delay3=data_process/DR3;

 [mini_delay

index_mini_delay]=max([delay1(1),delay2(1),delay3(1)])

 if index_mini_delay==1

process_ch1=[process_ch1 data_process(1)]

 free(1)=0

 delay_to_free1=[delay_to_free1 mini_delay+max(delay_to_free1)]

 elseif index_mini_delay==2

process_ch2=[process_ch2 data_process(1)]

 free(2)=0

 delay_to_free2=[delay_to_free2

mini_delay+max(delay_to_free2)]

 elseif index_mini_delay==3

process_ch3=[process_ch3 data_process(1)]

 free(3)=0

 delay_to_free3=[delay_to_free3

mini_delay+max(delay_to_free3)]

 end

 data_process(1)=[]

 elseif (free(1)==1 & free(2)==1 & free(3)==0)

 n=n+1

55

 delay1=data_process/DR1; %ms

 delay2=data_process/DR2;

 [mini_delay index_mini_delay]=min([delay1(1),delay2(1)])

 if index_mini_delay==1

process_ch1=[process_ch1 data_process(1)]

 free(1)=0

 delay_to_free1=[delay_to_free1

mini_delay+max(delay_to_free1)]

 elseif index_mini_delay==2

process_ch2=[process_ch2 data_process(1)]

 free(2)=0

 delay_to_free2=[delay_to_free2

mini_delay+max(delay_to_free2)]

 end

 data_process(1)=[]

 elseif (free(1)==1 & free(2)==0 & free(3)==1)

 n=n+1

 delay1=data_process/DR1; %ms

 delay3=data_process/DR3;

 [mini_delay index_mini_delay]=max([delay1(1),delay3(1)])

 if index_mini_delay==1

56

process_ch1=[process_ch1 data_process(1)]

 free(1)=0

 delay_to_free1=[delay_to_free1

mini_delay+max(delay_to_free1)]

 elseif index_mini_delay==2

process_ch3=[process_ch3 data_process(1)]

 free(3)=0

 delay_to_free3=[delay_to_free3

mini_delay+max(delay_to_free3)]

 end

 data_process(1)=[]

 elseif (free(1)==0 & free(2)==1 & free(3)==1)

 n=n+1

 delay2=data_process/DR2

 delay3=data_process/DR3

 [mini_delay index_mini_delay]=max([delay2(1),delay3(1)])

 if index_mini_delay==1

process_ch2=[process_ch2 data_process(1)]

 free(2)=0

57

 delay_to_free2=[delay_to_free2

mini_delay+max(delay_to_free2)]

 elseif index_mini_delay==2

process_ch3=[process_ch3 data_process(1)]

 free(3)=0

 delay_to_free3=[delay_to_free3

mini_delay+max(delay_to_free3)]

 end

 data_process(1)=[]

 elseif (free(1)==1 & free(2)==0 & free(3)==0)

 n=n+1

 delay1=data_process/DR1; %ms

process_ch1=[process_ch1 data_process(1)]

 free(1)=0

 delay_to_free1=[delay_to_free1

delay1(1)+max(delay_to_free1)]

 data_process(1)=[]

 elseif (free(1)==0 & free(2)==1 & free(3)==0)

 n=n+1

 delay2=data_process/DR2; %ms

58

process_ch2=[process_ch2 data_process(1)]

 free(2)=0

 delay_to_free2=[delay_to_free2

delay2(1)+max(delay_to_free2)]

 data_process(1)=[]

 elseif (free(1)==0 & free(2)==0 & free(3)==1)

 n=n+1

 delay3=data_process/DR3; %ms

 process_ch3=[process_ch3 data_process(1)]

 free(3)=0

 delay_to_free3=[delay_to_free3

delay3(1)+max(delay_to_free3)]

 data_process(1)=[]

 end

 % x

 if max(delay_to_free1)<=x

 free(1)=1

 end

 if max(delay_to_free2)<=x

 free(2)=1

59

 end

 if max(delay_to_free3)<=x

 free(3)=1

 end

 end

 if length(data_process)==0

 % break

end

end

