قال تعالي :

((وأخفض لهما جناح الذل من الرحمة وقل ربي أرحمهما كما ربياني صغيرا)) صدق الله العظيم

I

Dedication

This dissertation is dedicated to my late father, **HAMID** who never lived to see this success. To the warmest heart my mother

To my Husband, YASAR, for overwhelming support, encouragement and belief in me

To my dear daughters **YARA** and **SAMA** who were deprived of fatherly love and care while I worked on this thesis.

To My sister: AFRAA

To My brothers: WADAH & KEFAH

To My all family, friends and to all people those I love and respect

ACKNOWLEDGMENT

The author is deeply indebted to numerous individuals and instructions without whose help this work would have been more difficult. I wish to express gratitude to the supervisor who made this study possible **PROF: MOHAMMED ELFADIL** Who gave constructive a devise and suggestions and guided me throughout the study. I fully thank him for being patient with me during the reviews of the thesis text which is much improved because of their critical suggestions and for thoughts and suggestions concerning the writing of this thesis and for being my supervisor.

In particular thanks must be extended to the **MODERN MEDICAL CENTRE &OMDURMAN MILITARY HOSPITAL** staff for their help and support. I wish sincerely thank my mother, husband, lovely daughters, my sister and my brothers.

I would wish to express my sincere thanks to our heavenly GOD for have the opportunity to achieve this goal.

Abstract

Multiple Sclerosis (MS) is the most common chronic autoimmune demyelinating inflammatory disease of the central nervous system, which can be diagnosed by magnetic resonance imaging (MRI) by evidence of multiple patches Wight of scar tissue in different parts of the central nervous system on T1 weighted images, T2 weighted image and FLAIR. Texture analysis evaluates interpixel relationships that generate characteristic organizational patterns in an image, many of which are beyond the ability of visual perception. The aim of this study was to characterize MS plaques in MR images using Texture analysis which facilitate pattern recognition that might not visible to human eye. This study is an analytical study, which conducted at Modern medical Centre and Omdurman military hospital in a period from December 2015 to March 2018.

The sample of this study was consisted from 200 MR brain (T1, T2 and FLAIR) images selected conveniently from patient with MS.

Computer based software Interactive Data Language (IDL) and stepwise linear discriminant analysis were used to generate a classification score and to select the most discriminant features that can be used in the classification of normal and abnormal brain tissues.

The results reveal that the MS areas were very different from the CSF, bones, white matter and gray matter. However, plaques can be identified and classified using textural analysis with high sensitivity of 90.9% for first order statistics and 96.9% using higher order statistics. In conclusion, textural feature can be used with some confidences to pin point the areas of MS in MRI brain images. Generation of image processing unit in each hospital is recommended to decrease the misdetection rate.

LIST OF CONTENTS:

Content	Page
الأية	Ι
Dedication	II
Acknowledgment	III
Abstract	IV
Abstract (Arabic)	V
list of contents	Х
List of tables	IX
List of figures	VII
List of Abbreviations	VI
Chapter One	
1.1 Introduction	1
1.2 Problem of the study	1
1.3 Objectives	2
1.4 Significant of the study	2
1.5 Hypothesis of the study	
1.6 Overview of the study	3
Chapter two	
2.1 Anatomy	4
2.2 Physiology	13
2.3 Pathology	15
2.4 MRI Physics	20

2.5 MRI Technique	27
2.6 Deferential Diagnoses of MS	30
2.7 Texture Analysis	31
2.8 Previous Studies	34
Chapter Three	
3.1. Study design	41
3.2. Study population	41
3.3 Study area and duration	41
3.4. Sample size and type	41
3.5. Method of Data collection and analysis	41
3.6. Ethical approval	42
Chapter four	
Results	43
Chapter five	
5.1 Discussion	52
5.2 Conclusion	54
5.3 Recommendations	55
References	56
Appendix	59

LIST OF TABLES:

Name of tables	Page
Table 4-1: Cross-tabulation table show the classification results tissues	43
using linear discriminate analysis on T1 images for MS patients	
Table 4-2: Cross-tabulation table show the classification results tissues	44
using linear discriminate analysis on T2 images for MS patients	
Table 4-3: Cross-tabulation table show the classification results tissues	49
using linear discriminate analysis on FLAIR images for MS patients	
Table 4-4: Cross-tabulation table show the classification results tissues	50
using linear discriminate analysis on higher order statistic for MS patients	

LIST OF FIGURES:

Figure name	Page
Fig (2-1): shown the three divisions of the brain	
Fig (2-2): lobes of the brain (A)superior view &(B) lateral view	
Fig (2-3): A section of brain tissue through the cerebral hemispheres	
Fig (2-4): The Meninges	
Fig (2-5): The Neuron	
Fig (2-6): Circle Of Willis.(Kelley2007)	
Fig (2-7): Venous Drainage.(Kelley2007)	
Fig (2-8): protons under the magnet they align with the magnetic field (A) and precess or —wobblel(B)	
Fig (2-9): T1 (A) and T2 (B) relaxation curves	24
Fig (2-10): action of both phase & frequency Encoding Gradients	
Fig (2-11): Sagittal SE T1 weighted mid-line slice of the brain showing slice prescription boundaries	
and orientation for axial/oblique imaging	
Fig (2-12): Sagittal SE T1 weighted image showing slice prescription boundaries and orientation for	29
coronal imaging.	
Fig (2-13): Axial/oblique FLAIR image of the brain. Peri ventricular abnormalities will have a high	29
signal intensity in contrast to the low signal of CSF which has been nulled using a long TI	
Fig (2-14) Eight nearest-neighbour pixels used in the GTSDM framework	
Fig (2-15) Simple example demonstrating the formation of a co-occurrence matrix	
from an image	
Fig(2-16) Simple example demonstrating the formation of a GLRLM	
Fig (4-1): Scatter plot show the classification of brain tissues using linear discriminate analysis on T1	
images for MS patients	
Fig (4-2): Scatter plot show the classification of brain tissues using linear discriminate analysis on T2	44
images for MS patients	
Fig (4-3): Scatter plot show the classification of brain tissues using linear discriminate analysis on T2	
images for MS patients	
Fig (4-4): Error bar plot show the discriminate power of the mean textural feature distribution for the	45
selected classes onT1 images for MS patients	

Fig (4-5): Error bar plot show the discriminate power of the mean textural feature distribution for the	
selected classes on T2 images for MS patients	
Fig (4-6): Error bar plot show the discriminate power of the mean textural feature distribution for the	45
selected classes on FLAIR images for MS patients	
Fig (4-7): Error bar plot show the discriminate power of the Energy textural feature distribution	46
for the selected classes on T1images for MS patients	
Fig (4-8): Error bar plot show the discriminate power of the Energy textural feature distribution	
for the selected classes on T2images for MS patients	
Fig (4-9): Error bar plot show the discriminate power of the Energy textural feature distribution	46
for the selected classes on FLAIR images for MS patients	
Fig (4-10): Error bar plot show the discriminate power of the Entropy textural feature distribution for the	47
selected classes on T1images for MS patients	
Fig (4-11): Error bar plot show the discriminate power of the Entropy textural feature distribution for the	47
selected classes on T2 images for MS patients	
Fig (4-12): Error bar plot show the discriminate power of the Entropy textural feature distribution for	48
the selected classes on FLAIR images for MS patients	
Fig(4-13)show Scatter plot generated using discriminate analysis function for four	48
classes represents: Multiple Sclerosis, White Matter, Grey Matter and CSF for higher	
Fig (4-14)error bar plot for the SRE selected by the linear stepwise discriminate function	49
as a discriminate feature	
Fig (4-15) show error bar plot for the CI LRE textural features that selected by the	50
linear stepwise discriminate function	
Fig(4-16) show error bar plot for the CI GLN textural features that selected by the	50
linear stepwise discriminate function	
Fig(4-17)show error bar plot for the CI RLN textural features that selected by the	51
linear stepwise discriminate function	
Fig(4-18)Show error bar plot for the CI HGRE textural features that selected by the	51
linear stepwise discriminate function	
Fig(4-19)Show error bar plot for the Cl LRHGE textural features that selected by the	51
linear stepwise discriminate function	

LIST OF ABBREVIATIONS:

1H	Hydrogen
ADEM	Acute Disseminated Encephalomyelitis
B0	the magnetic field strength
CE	Contrast Enhanced
CIS	Clinical Isolated Syndrome
CM	Cerebral Microangipathy
CNS	Central Nerves System
CSF	Cerebro Spinal Fluid
CT	Computed Tomography
DICOM	Digital Imaging And Communication In Medicine
EPI	Echo Planer Imaging
FLAIR	Fluid Attenuation Inversion Recovery
FSE	Fast Spin Echo
GLCM	Gray Level Co-occurrence matrix
GLN	Gray-Level Nouniformity
GLRLM	Gray Level Run Length Matrix
GRE	Gradient Echo
HGLRL	High Gray-Level Run Emphasis
HN	Histogram Normalization
IDL	Interactive Data Language
LDA	Linear Discriminant Analysis
LGLRE	Low Gray-Level Run Emphasis
LR	Logistic Regression
LRE	Long Run Emphasis
LRHGLE	Long Run High Gray-Level Emphasis
LRLGLE	Long Run Low Gray-Level Emphasis
MHz	Mega Heartez
MRI	Magnetic Resonance Imaging
MS	Multiple Sclerosis
Mz	Magnetization
NAWM	Normal Appearing White Matter
NDA	Nonlinear Discriminant Analysis
NWM	Normal White Matter
PD	Proton Density
RDA	Raw Data Analysis
RF	Radio Frequency
RLN	Run Length Nouniformity
ROC	Receiver operating characteristic
ROI	Region Of Interest

i.

RP	Run Percentage
SE	Spin Echo
SPSS	Statistical Package Social Science
SRE	Short Run Emphasis
SRHGLE	Short Run High Gray-Level Emphasis
SRLGLE	Short Run Low Gray-Level Emphasis
SS	Single Shot
SVD	Small vessel disease
T1	T1-Weighted MR Imaging
T2	T2-Weighted MR Imaging
TIFF	Tagged Image File Format