
1

CHAPTER ONE

INTRODUCTION

2

CHAPTER ONE

INTRODUCTION

1.1 Preface

 The current network infrastructure known as the 'Internet' has settled

for more than a decade and has rooted deeply in our society. However,

enterprises and carriers are starting to realize the limitations of current state

with the rapidly evolving network technologies and the growing demands of

the users [1]. Also, the level of access network differentiation was not

foreseen in the development of basic network protocols. It was assumed, that

different applications could communicate with each other without any

restrictions in a global network. This assumption required an adjustment

quite quickly and there were developed specialized devices such as firewalls,

Intrusion Prevention Systems (IPS), network anti-viruses and Web

Application Firewalls (WAF) [2].

 To overcome this limitation and security problems, Software-Defined

Network (SDN) was suggested around 2005 as one of the most brilliant,

flexible and cost-efficient solutions. The idea of Software Defined

Networking (SDN) associated with OpenFlow protocol can provide a strong

solution to resolve the problem of network threats from host or end user level,

and from network level as well.

3

 This project focused on how to discover and prevent possible

vulnerability and recognize abnormal behavior in virtual network devices and

hosts that could be easily monitored and investigated without damage of the

real production environment. The proposed technique reduces the cost of

equipment, intellectual property and data recovering.

 The main contribution of this project, is to implement an easy, flexible

and cheaper firewall to secure virtual network environment based on an Open

Source and SDN technology and make network administration easier and

more effective. A basic network identifier that have the ability to recognize

the host activities when trying to connect to another network objects in the

local or external networks and how will be devolved.

1.2 Problem Statement

 There is need for a centralized, flexible, programmable and efficient

mechanism to handle the procedures of network access control and malicious

attack prevention. As well as, to achieve maximum leverage of network

devices such as switches, routers and firewalls and to eliminate usage of

expensive physical devices.

1.3 Proposed Solution

 An attractive solution for the mentioned problems is provided by

Open Source applications with user friendly interface and flexible

configuration. A well-known switch supporting OpenFlow protocol, which

4

is managed by SDN Controller with firewall module to control the

forwarding behavior of the switch will be implemented.

1.4 Research Aim and Objectives

 The aim of this research is to propose a new flexible, robust and cost-

efficient method for network threats detection and prevention instead of the

existing methods and solutions. As well as, to improve the network

performance and its efficiency.

 The detailed objectives of this research work are achieved through the

following steps:

▪ To establish a security algorithm running with SDN controller as a

virtual firewall for the network devices.

▪ To manage the forwarding behavior of the OpenFlow switch by SDN

controller and the established firewall module.

▪ To test the network performance and check wither any improvement

has been occurred or not.

1.5 Methodology

 This research work is based on SDN controller and OpenFlow protocol

which is a powerful solution that can be used to detect and control abnormal

and suspicious network behavior by using switches that support OpenFlow

protocol as network security appliances. The project introduces an

implementation of packet filtering and detection mechanism on SDN

5

controller and a comparison between the existing non-SDN controller

methods and the proposed solution.

 The research methodology contains different stages, these have been

illustrated in the following points:

▪ A virtual network environment of three hosts connected by OpenFlow

supporting switch have been implemented to test basic switch

functionality (Without SDN Controller).

▪ The switch has been managed with POX controller, reconfigured the

OpenFlow switch to hub module, switch module and vice versa (With

SDN controller and Without Firewall module).

▪ POX controller has configured with the firewall module (security

algorithm) which is a Paython_based Code. This algorithm added a

firewall functionality by providing traffic filtering and decision-

making mechanism.

▪ Hping3 is a free packet generator and analyzer for the TCP/IP protocol

and it is a type of network security tester. This tool has been used to

generate SYN flood - which is a kind of DoS attack - against the hosts

and find out wither the POX firewall able to detect and terminate this

kind of threat or not (First Scenario).

▪ Iperf tool which is a traffic generator tool has been used to generate

streams of TCP and UDP traffic that the POX controller was able to

identify them and made the appropriate actions as drop, allow or deny

traffic (Second Scenario).

▪ Traffic Performance tests have been applied on both non-SDN method

and the proposed methods and all the results have been written down.

https://en.wikipedia.org/wiki/Packet_generator
https://en.wikipedia.org/wiki/TCP/IP

6

1.6 Thesis Outlines

 In Chapter two, general overview of firewalls, SDN controller and

OpenFlow protocol technologies have been given. Also, some of the previous

studies in the same field have been mentioned to take the maximum benefits.

 In chapter three, the methodology of this work has been illustrated in

detail with all Operating Systems, software packets and commands that have

been used in the project.

 In Chapter four, the firewall modules (Paython_based codes) have

been used. Then, the traffic performance and penetration tests were applied

and the results from each scenario have been presented.

 In Chapter five, the conclusion has been obtained from all the results

that were drew. Some recommendations for the future work related to this

project are also proposed.

7

CHAPTER TWO

LITERATURE REVIEW

8

CHAPTER TWO

LITERATURE REVIEW

 In this chapter, a detailed background about SDN controller and

OpenFlow protocol with all different aspects that are related have been

mentioned. Also, some researches outcomes have been written down in this

chapter.

2.1 Background

2.1.1 Traditional Firewalls

 Firewalls are either software components or hardware devices that

enforce security policies in order to restrict unauthorized network access. The

security policies filter network traffic based on the information in one or more

of the Open Systems Interconnection (OSI) layers [2] [3]. Even though the

term firewall is widely used as a technical term, it was originally used by

Lightoler in 1764 to describe a wall that confined a potential fire from

spreading from one location to another [3]. The term was used also to

describe the iron walls behind the engine compartment of steam trains. These

iron walls were used to stop fire from spreading to the passenger

compartment.

 Routers were considered the first network firewalls in the late 1980s

because they were used to separate a network into different broadcast

domains. This separation limited problems from a domain or local area

network (LAN) from affecting the whole network. In addition, routers helped

9

isolating “chatty” protocols, which use broadcasts messages for

communication, from affecting the bandwidth of the rest of the network [3],

[4].

2.1.1.1 Needs of Firewalls

Firewalls can be used to enforce security policies for the following reasons:

▪ To secure the underlying operating systems by preventing some types

of communication, malware, attacks, etc. [3].

▪ To limit access to information on the Internet, an example of which is

the filtering rules mandated in the United States by the Children’s

Internet Protection Act (CHIPA) [3].

▪ Preventing the leakage of information to the outside of the network.

▪ Enforcing policy rules on network traffic.

▪ To provide auditing information for the network administrator [3].

2.1.1.2 Firewall Types in Historical Order

 In 1989, Jeffery Mogul described a solution that worked at the

application layer to decide whether or not to pass packets through a router

[3], [5]. His solution was to monitor the source address, destination address,

protocol type, and port numbers to make the decision to allow or deny

packets. However, Mogul’s solution considered neither the state of TCP

connections nor the pseudo-state of UDP traffic [5]. The first commercial

firewall was developed by Digital Equipment Corporation (DEC) and was

based on the technology proposed by Mogul. However, Marcus Ranum at

DEC rewrote the rest of the firewall code after inventing security proxies,

and the final firewall product was called DEC Secure External Access Link

(SEAL) [3], [4]. A chemical company was the first to have DEC SEAL on

10

June 13, 1991 [3], [4]. The DEC SEAL consisted of three devices, shown in

Figure 2-1: an application proxy server called Gatekeeper, a packet filtering

gateway called Gate, and an internal mail server called Mailgate.

 Traffic from inside to outside should pass through the Gate and then

to the Gatekeeper, which decided whether the traffic would be allowed to be

sent to the destination. Traffic was not allowed to be sent directly from the

source to the destination without passing through the Gatekeeper [3].

Figure 2-1: DEC SEAL - First Commercial Firewall

 Application level proxies such as DEC SEAL provide good security

and auditing capabilities because each packet is stopped at the proxy firewall,

then examined, and finally recreated if it passes the rules. However, one

drawback of this process is that a new application type requires a new

application proxy to be developed. Moreover, the client program must be

modified to account for the proxy in the network. A final drawback is

performance, as each packet must be encapsulated two times, one at the

Gatekeeper and one at the destination [3].

11

 During the same time DEC was working on SEAL, Cheswick and

Presotto at AT&T Bell Labs were designing a proxy-based firewall that

worked at the transport layer, rather than at the application layer proxy as in

DEC SEAL [6]. This design had the same issue that DEC SEAL had, which

is the lack of performance as each packet was required to cross the network

protocol stack two times [3]. Cheswick reported that the file transfer speed

without the proxy was around 60-90 Kbps, while it was around 17-44 Kbps

with the proxy. Furthermore, client programs need to be modified to account

for the proxy-like application layer proxies.

 In order to simplify the use of proxies, David Kolbas developed

Socket Secure protocol (SOCKS), which routes traffic between a server and

a client through a proxy. Some web browsers such as Netscape supported

SOCKS. Avolio and Ranum released the source code of the Trusted

Information Systems (TIS) Firewall Toolkit (FWTK) on October 1, 1993.

This toolkit supported Simple Mail Transfer Protocol (SMTP), Network

Transport Protocol (NTP), Telnet, File Transfer Protocol (FTP), and generic

circuit-level application proxies [7]. However, FWTK did not support User

Datagram Protocol (UDP) services. In 1994, Check Point introduced

Firewall-1, which had a user-friendly interface that simplified the installation

and administration of the firewall [4]. The TIS firewall became the Network

Associates Incorporation’s (NAI) Gauntlet Internet firewall after the merger

between TIS and NAI in 1998 [3].

 Packet filtering firewalls started with Mogul’s paper [3]. This type of

firewall is much faster than the application and transport layer proxies

because it does not require the packet to traverse the OSI network stack twice.

In addition, it does not require any changes on the user side. Packet Filtering

12

firewalls filter packets based on one or more of the following parameters:

source address, destination address, options in the packet header, options in

the segment header (TCP or UDP header), and the physical interface number

[3]. Even though packet filtering firewalls are faster compared to proxies,

there are disadvantages. First, configuring the filter rules is complex and

error-prone. Second, the IP addresses could be spoofed by attackers. Last, the

original packet filter firewalls were stateless, i.e. they did not keep track of

the state of the connections; therefore, an attacker might bypass the firewall

by claiming to be part of an existing TCP connection [3]. As a result, stateful

firewalls were developed to keep track of TCP sessions and to allow packets

coming from outside to access the network if they belonged to an active

session. Darren Reed was the first to implement that concept in his IP Filter

(IPF) version 3.0 in 1996 [3]; however, the first published peer-reviewed

paper was by Chow and Julkunen in 1998 [3].

 Network Address Translation (NAT) is a layer of protection like that

provided by proxies since the inside network is isolated from the outside

network through the router performing NAT. NAT device replaces the source

IP address of the outbound packet with its own IP address, and it might also

change the source port number of the packet to a random unused port number

above 1024 and map that into a table to keep track of each translation.

However, one drawback of NAT is that it might interfere with Internet

Protocol Security (IPsec) operation, which uses a set of cryptography

algorithms to ensure the integrity of Data [3], [8].

 In addition to the previous types, there are some packet filter firewalls

and proxies that work on the data link layer but still use the information in

layer 2 – 4 to filter the packets. Working on layer 2 makes a firewall / proxy

13

transparent at the network level, meaning that it could be placed anywhere in

the network and that it neither requires an IP address to operate (except for

management) nor changes to the host operating system; therefore, the

installation time could be minimal [3].

 Signature-based firewall, which might work at the user level as a

transparent proxy, monitors the payload for known malicious strings to

prevent an attack from happening. This approach is sometimes called

“fingerprint scrubber” or “application scrubbing” [3]. Snort is an intrusion

detection system that Hogwash firewall uses to drop packets that match the

rules [9].

 The emergence of new technologies such as Virtual Private Networks

(VPNs) and Peer-to-Peer (P2P) networking raise new challenges for previous

firewalls. For example. If the laptop’s security of a remote-user who uses

VPN to access the internal network of a company is breached, then the entire

inside network might be accessible by the attacker [3]. In addition, a software

bug in P2P programs such as Gnutella could be used by attackers to gain

access to the victim’s host [3].

2.1.2 Software Defined Networking (SDN)

 SDN is a network architectural paradigm that separates the control

plane, which is the logic that controls how traffic is forwarded from the data

plane of a networking device, which is the underlying system that forwards

traffic, such as a router or a switch [10], [11]. Proponents of SDN believe that

this separation provides the network operator with many advantages over the

conventional network architecture, such as promoting innovation and

features development. In addition, it provides the operator the ability to use

14

less expensive commodity switching hardware under the control of a

logically centralized programmatic control plane. This design uses elastic

less-expensive computing power instead of over-priced high-end routing and

switching products [12], [13]. Figure 2-2 illustrates the logical view of SDN

architecture. Even though the separation of the control and data planes is one

of the fundamental principles of SDN, it is also the most controversial [14].

The location of the control plane and how far away it could be located from

the data plane, whether all the functions in the control plane could be

relocated, and the number of instances needed to provide high-availability

are all highly debated topics [12].

Figure 2-2: Software-Defined Network Architecture

 There are three approaches to the distribution of the control and data

plane: the strictly centralized, the logically-centralized, and the full

distributed control plane [12]. In the first approach, the switching devices are

15

dumb yet fast devices under the control of a centralized controller, which is

considered the brain of the network. However, this extreme approach does

not scale well, and it introduces a single point of failure in the network [12].

In the second approach, logically-centralized control plane, the switching

devices retain some of the control plane functions, such as MAC addresses

learning or ARP processing while at the same time a centralized controller

can handle other functions that utilize the underlay network (switching

devices) [12]. The last approach is the classical distributed control plane that

each device has in addition to one or more data plane. These distributed

control planes must cooperate with each other to have a functional network

[12].

 The control plane is the brain of the device. It exchanges protocol

updates and system management messages [15]. It also maintains the routing

table, which is also called the routing information base (RIB), through

exchanging updates between other control plane instances in the network

(routing protocol updates) and the forwarding table [12]. The FIB, or

forwarding information base, is just a reformatting of the stable RIB table

into an ordered list with the most specific route for each IP prefix at the top

[16]. The control plane provides the data plane with an accurate up-to-date

forwarding table through an internal link [15]. The data plane could use

different types of technology to store the FIB tables, such as hardware-

accelerated software, application-specific integrated circuits (ASICS), field-

programmable gate array (FPGA), or any combination [12], [15]. In addition

to forwarding traffic, the data plane implements some advance features such

as policers, access control lists, and class of service (COS) [15]. All traffic is

compared against the FIB table entries once it enters an ingress port, and it is

16

forwarded out an egress port. However, if there is no entry for a packet’s

destination address, then the packet must be sent to the control plane for

further processing. In addition, the following conditions that might cause the

same behavior are [16]:

▪ Packets that are addressed to the router/switch, such as routing updates,

pings, and trace routes.

▪ Full FIB table.

▪ IP packets that have the IP options field enabled.

▪ Packets that require the Internet Control Message Protocol (ICMP) to

be generated.

▪ Packets that require compression or encryption.

▪ Packets in which the Time-To-Live (TTL) field has expired.

▪ Packets that require fragmentation due to exceeding the Maximum

Transmission Unit (MTU).

2.1.2.1 The Importance of the Separation

 The separation of the data plane from the control plane is not a new

idea. Network device manufacturers have applied the same concept to the

multi-slot routers and switches that they built in the last 10 years [12]. The

control plane is implemented on a dedicated card - Cisco usually calls it the

supervisor engine. To provide high availability, two supervisor engines are

required – and the forwarding plane is implemented on one or more cards

(line cards) independently, as shown in Figure 2-3 below [12]. However, the

high cost of this design, along with other components, discussed below, is

the motivation behind SDN.

17

Figure 2-3: Control and data plane example implementation

 First, I discuss the scaling issue of the service, forwarding, and control

cards. Service cards can support only a limited number of subscribers or

services state based on the generation of the embedded CPUs that they have.

It takes a great deal of time for equipment vendors to take advantage of a new

processor family in their service cards. In addition, the forwarding and

control cards suffer from the same issue, which is the limitation of the

embedded CPUs as well as the expensive memory that is limited in size [12].

Even though the SDN architecture still needs an upgrade in the control and

service plane to accommodate scale, this upgrade could take advantage of the

18

commercial off-the shelf (COTS) computing power that evolved dramatically

and was driven by cloud computing [12].

 Second, SDN will save large enterprises and service providers money

on capital expenditure (CAPEX) since the cost of commodity devices is low

in comparison to cost of high-end routes and switches from well-known

vendors [12], [17].

 Third, the separation of the control plane and data plane enables

innovations in both planes since network operators would be able to provide

new services by changing the software release independently from the

hardware. This will also promote competition between enterprises or service

providers to provide new services and features.

 Fourth, the separation would make the forwarding elements more

stable due to the smaller codebase required to implement the same network

functionality in comparison to the conventional way. It is common these days

to consider a smaller codebase more stable than a longer one that had many

feature upgrades, such as the Multiprotocol Label Switching (MPLS)

protocol [12].

 Finally, in conventional networks, the greater the number of control

planes, the more complex and fragile the system. That is, adding more

devices (control planes) will impact the scale of the network, i.e. convergence

time [12]. To address this issue, equipment vendors created the concept of

system clusters where elements of the cluster are connected (through an

external link) to create a single logical system controlled by a single control

plane. A distributed control plane in the cluster is also available to provide

load balancing. Even though this solution has characteristics of SDN, it does

19

not solve the programmability issues of the control plane. Thus, SDN

architecture is more flexible and provides a centralized control plane that

reduces the complexity of the system [12].

2.1.3 OpenFlow Protocol

 In 2008, a group of engineers from Stanford University developed an

open standard protocol called OpenFlow, which enables researchers to

evaluate and run experimental protocols in an existing production network

without exposing the internal network. To allow that, OpenFlow enabled

switch must be able to isolate experimental traffic from production traffic

through either applying Virtual Local Area Networks (VLANs) or

forwarding production traffic to the normal process of the switch [18].

OpenFlow protocol is a standard communications interface between the

controller and the forwarding plane of the underlying network devices that

allows network operators to manipulate the forwarding plane of these devices

[19].

 OpenFlow consists of a set of protocols and Application Programming

Interface (API). The protocols are divided into two parts, as shown in Figure

2-4 below:

▪ The OpenFlow protocol, also called the wire protocol. This defines a

message structure that enables the controller to add, update, and delete

flow entries in the OpenFlow Logical Switch flow tables as well as to

collect statistics [12], [20].

▪ The OpenFlow management and configuration protocol that defines an

OpenFlow enabled switch as an abstraction layer called an OpenFlow

20

Logical Switch. This enables high availability by allocating physical

switch ports to a controller [21].

Figure 2-4: Relationship between components defined in the specification, the OF-

CONFIG protocol and the OpenFlow protocol

2.1.3.1 OpenFlow Switch Components

 An OpenFlow-enabled switch consists of a group table and one or

more flow tables, one or more OpenFlow secure channels that connect the

switch to an external controller, and an OpenFlow protocol that defines the

control messages between the switch and the controller, as shown in Figure

2-5 below [22].

21

Figure 2-5: Main components of an OpenFlow switch

2.1.3.2 OpenFlow Ports

 An OpenFlow protocol has different port types that pass traffic

between OpenFlow processing and the rest of the network. The OpenFlow

standard ports are as follows:

▪ Physical ports, which correspond to a hardware interface such as

Ethernet switch port.

▪ Logical ports, which do not correspond to a hardware interface

directly, such as tunnels, loopback interfaces, and link aggregation

groups.

▪ Reserved ports, which are defined by the OpenFlow specification. The

* means mandatory port. They define forwarding actions as follows

[20]:

22

o ALL *: Represents all the switch ports except the packet ingress

port and ports configured with OFPPC_NO_FWD. It can be

used only as an egress port.

o CONTROLLER *: Represents the port to the OpenFlow

controller.

o TABLE *: Represents the beginning of the OpenFlow pipeline.

It used as an output action in the “packet-out” message’s action

list.

o IN_PORT *: Represents the ingress port of the packet.

o ANY *: Represents a wildcard value.

o LOCAL: Represents the management stack of the local switch.

o NORMAL: Represents the traditional layer 2 or layer 3

forwarding.

o FLOOD: Represents flooding using the traditional pipeline of

the switch to all ports except the ingress port and ports with

flooding disabled state.

2.1.3.3 Flow Table

 Each entry in the flow table is made of the following fields, as shown

in Figure 2-6 [20]:

▪ Match fields: The matching criteria used against packets. They could

be based on ingress port, packet headers, and metadata from the

previous flow table.

▪ Priority: Priority of the entry. The higher the number, the higher the

priority.

▪ Counters: This field increases when a packet matches an entry.

▪ Instructions: Actions applied to matching packets.

23

▪ Timeouts: This could be an idle-time or hard-time that specifies the

amount of time before an entry expires.

▪ Cookie: This is not used to process packets, but it might be used by the

controller to filter flows based on their types (statistics, modifications,

and deletion).

▪ Flags: This field changes how flow entries are managed; for example,

an entry with the flag OFPFF_SEND_FLOW_REM means that a flow

removed message will be sent to the comptroller once this entry is

removed.

Figure 2-6: Main components of a flow entry in a flow table

2.1.3.4 OpenFlow Message Types

 There are three main categories for message types and each category

has its own types. The main categories are: controller-to-switch,

asynchronous, and symmetric. The controller-to switch messages are

originated from the controller, and they might not require the switch to

respond to them. The asynchronous messages are originated from the switch

to notify the controller of a packet arrival, an error, or switch state change.

Last, the symmetric messages are created, without solicitation, by either the

controller or the switch [20]. The sub-types of each category are as follows:

24

❖ Controller-to-Switch Messages

▪ Features: Sent by the controller to request the identity and capabilities

of a switch that should reply with a feature reply message containing

the requested information.

▪ Configuration: Allows the controller to quest or sent configuration

parameters in the switch.

▪ Modify-State: Sent by the controller to add, delete, or modify flow

entries or a group of entries in the OpenFlow table as well as to set the

port properties of the switch.

▪ Read-State: Uses multipart messages to read the current configuration

and collect statistics and capabilities information from the switch.

▪ Packet-out: Used by the controller to send packets out a specific port.

This type of message should have either a full packet as raw data

created by the controller or the buffer ID of the packet stored in the

switch, which the controller received via Packet-in message.

Furthermore, it should have a list of actions. If the list of actions is

empty, the switch will drop the packet.

▪ Barrier: Used by controller to request and reply messages to either

receive notification once operations are completed or to confirm that

message requirements have been met.

▪ Role-Request: Used to set the OpenFlow channel’s role or query for it.

This is helpful when the switch is connected to multiple controllers to

provide redundancy [20] [21].

❖ Switch-to-Controller Messages

▪ Packet-in: Generated by the switch and sent to the controller for

processing. This can be triggered if there is no entry for the received

25

packet in the flow table, if the output action of the flow entry is to send

the packet to the controller, or if the packet needs other processing,

such as TTL processing. Switches that support internal buffering will

buffer the packet and send a configurable number of bytes, 128 bytes

by default, along with a buffer ID to the controller. However, if the

switch does not support internal buffering or if the buffer is full, it has

to send the full packet to the controller.

▪ Flow-Removed: Used to notify the controller about the removal of a

flow entry if that entry has the OFPFF_SEND_FLOW_REM flag.

▪ Port-status: Used to notify the controller when a change to the port

state or configuration occurs.

▪ Error: Used to notify the controller of a problem [20].

❖ Symmetric

▪ Hello: Exchanged between the controller and the switch during the

connection setup phase.

▪ Echo request/ reply: Used as keep-alive messages between the

controller and the switch. They might also be used to measure the

latency and bandwidth between them.

▪ Experimenter: Used to test new features [22].

2.1.3.5 Connection Setup

 After configuring the switch with the IP address of the controller, the

switch initiates a standard Transport Layer Security (TLS) or TCP connection

to the controller listening on TCP port number 6653 or a user-specified TCP

port. Once the TLS connection is established, each participant in the

26

connection must send an OFPT_HELLO message with the highest protocol

version supported by the sender in the version field. If the sent and received

Hello messages contain OFPHET_VERSIONBITMAP, the negotiated

version must be the highest version supported by both. Otherwise, the

smallest version should be supported [20].

 Upon successfully exchanging OFPT_HELLO messages and

negotiating the protocol version number, the connection setup is completed

and the OpenFlow messages described in the previous section can be

exchanged; for example, the controller should first send an

OFPT_FEATURE_REQUEST message to identify the Datapath ID of the

switch, as the left side of Figure 2-7 illustrates [20]. The right side of Figure

2-7 shows an example of exchanging different OpenFlow messages.

Figure 2-7: OpenFlow protocol messages

2.1.3.6 Multiple Controllers

 To provide redundancy, high-availability, and load balancing,

OpenFlow support multiple controllers that allow a switch to establish

27

communication with each one of them. However, the handover process

between the controllers is performed by the controllers themselves. The

default role of the controller is EQUAL “OFPCR_ROLE_EQUAL”, which

gives the controller full access to the switch. However, the role can be

changed to SLAVE (read-only) “OFPCR_ROLE_SLAVE” upon the request

of the controller [22].

2.1.3.7 Flow Match Fields

 As explained in previous that one of the main components of flow

entry in the flow table is the match fields. Table 2-1 illustrates the match

fields that must be supported by the OpenFlow-enabled switch in its pipeline.

Table 2-1: Required Match Fields [20]

2.1.3.8 Action Structure

 Table 2-2 summarizes the actions that the SDN controller could use

with each flow entry, packet, or group.

28

Table 2-2: Action Structure [20]

2.1.3.9 OF-Config Versions

 The OF-config protocol is structured around NETCONF protocol to set

information related to OpenFlow on the network elements. With OF-config,

the operator does not have to use other tools, such as FlowVisor to provide

switch virtualization [12], [23]. Table 2-3 compares OF-config versions [12].

Table 2-3: Capability progression of OF-Config [12]

29

2.1.3.10 OpenFlow Versions

 The Extensibility Working Group added new functionality and features

to OpenFlow protocol v1.0. When OpenFlow protocol v1.3 was released in

April 2012, the Open Networking Foundation (ONF) decided to slow down

releasing new versions to allow for higher adaption rate of OpenFlow v1.3

and to focus on bug-fix releases [12]. Table 2-4 below compares OpenFlow

v1.1– 1.3.

Table 2-4: The progression of enhancements to the OpenFlow pipeline from OF v1.1

through OF v1.3 [12]

2.1.4 SDN Controllers

 There are several open sources and commercial SDN controllers that

have been developed. NOX/ POX, Floodlight, and OpenDaylight are

30

examples of open source SDN controllers. On the other hand, Cisco OnePK

controller is a commercial controller that integrates multiple southbound

APIs. NOX is considered the first open source controller after being donated

by Nicira to the research community in 2008. NOX provides a C++ OF v 1.0

API and an event-based programming model [24], [25]. POX is the Python

version of NOX, and it supports the same graphical user interface (GUI) as

NOX [30]. Table 2-5 compares the features of some SDN controllers [10].

Table 2-5: Comparison among the controllers [10]

31

2.1.5 Northbound APIs

 Even though SDN provides a way to program the network, it does not

make it easy. SDN controllers such as NOX/ POX and Floodlight support a

low-level interface that forces the applications to deal with the state of

individual devices. Applications are developed as event handlers that respond

to packet arrivals event. Having only a low-level interface, also called

southbound interface, makes it extremely difficult to support multiple tasks/

module such as routing, switching, and firewall at the same time because the

rules generated by one task/ module might have a conflict with the others

(e.g., a rule to allow certain flow and another to deny it) [26].

 Frenetic is projected to increase the level of abstraction and make

developing applications for SDN much easier. It provides a suite of

abstractions for defining rules, querying the state of the network, and

updating rules in a consistent way [26].

 Pyretic is an SDN programming language embedded in Python, and it

is a member of the Frenetic family. It also provides powerful abstractions that

enable programmers to develop modular network applications as Figure 2-8

shows [27]. One of the main advantages of Pyretic over traditional OpenFlow

programming is that Pyretic offers parallel and sequential composition of

policies to perform multiple tasks without worrying about potential policy

conflicts. For example, in sequential composition, the output of the policy on

the left of the operator (>>) is the input of the policy on the right of the

operator, as shown in the Pyretic policy below [27]:

match(dstip’2.2.2.8’) >> fwd(1)

32

 On the other hand, in parallel composition the operator (+) combines

and applies two policies to the same packet, as shown in the routing policy R

below, and forwards packets destined to 2.2.2.8 out to port 1 and those

destined to 2.2.2.9 out to port 2 [27]:

R = (match(dstip=’2.2.2.8’) >> fwd(1)) + (match

(dstip=’2.2.2.9’) >> fwd(2))

Figure 2-8: Northbound API [27]

2.1.6 SDN Use Cases

 Since one of the main features of SDN is that it drives innovation [28],

it is hard to summarize and imagine all SDN use cases. SDN could be utilized

in campus, data center, cloud, and service provider networks [19].

 Network administrators in campus networks could use the SDN model

to enforce policies across the wireless and wired network consistently. In

addition, SDN ensures an optimal user experience by supporting automated

management of network resources and provisioning [19].

33

 SDN architecture supports network virtualization that enables

automated migration of virtual machine (VM) and hyper-scalability.

Furthermore, it saves costs by reducing energy use and provides a better

server utilization [19].

 SDN also enables cloud service providers to allocate network

resources in a very elastic way, which enhances provisioning. Moreover,

SDN provides businesses with tools to safely manage their VMs in order to

increase adaption of cloud services [19].

 Considering the features that SDN brings, it is much easier for service

providers to deploy resources optimally, to support multi-tenancy and to

reduce both operational expenditure (OPEX) and CAPEX [19]. In addition,

cellular service providers could utilize SDN to provide new services, such as

base transceiver station (BTS) virtualization, and to reduce handover latency

and many more [17], [29] – [30].

 Finally, SDN could be used to replace expensive Layer 4-7 firewalls,

load-balancers, and IPS/IDS with cost-effective high-performance switches

and a logically centralized controller.

34

2.2 Related Works

 In [31], it is introduced the SDN technology and systematically

investigated its usage for security. Although many people have interests in

this technology, until now, it is not yet well embraced by security researchers.

They believe that SDN can, in time, prove to be one of the most impactful

technologies to drive a variety of innovations in network security. They hope

this study can not only provide a quick introduction and systematic survey

but also give significant insights for using SDN for better security

applications and stimulate more future research in this important area.

 The authors in [32] had a surveyed research on security in SDN, a set

of topics for future research have been identified. A strong theme amongst

these topics is projection of potential security issues and automated response

for quick reaction to network threats. By implementing proven security

techniques from their current network deployments, resolving known

security issues in SDN, and further exploiting the dynamic, programmable,

and open characteristics of SDN, software-defined networks may well be

more secure than traditional networks. There is much work to do before this

vision is realized.

 The authors in [33] had undertaken a comprehensive review of

security-oriented research in software defined networks. They have classified

current work in two main streams: threat detection, remediation and network

correctness which simplify and enhance security of programmable networks,

and security as a service, which offers new innovative security functionality

to users, such as anonymity and specialized network management.

Furthermore, they discussed possible challenges and future directions for

35

security in SDN: these include the critical question of securing SDN itself, of

orchestrating security policies across heterogeneous networks, customizing

overlay networks to provide secure environments, and extending the

OpenFlow paradigm with customized hardware and network functions

virtualization and building a richer set of features in the forwarding path.

 In [1], it is figured out that the SDN is not only revolutionary in

making the control flexible and manageable, but also for firewalls to achieve

programmability by separating the firewall hardware and the control

software. An OpenFlow-based firewall with a straightforward UI that

integrates priority switching can bring another wave of innovation in the

Internet world.

 In [34], it was argued for the need to consider security and

dependability when designing Software Defined Networks. They have

presented several threats identified in these networks as strong arguments for

this need, together with a brief discussion of the mechanisms they are using

in building a secure and dependable SDN control platform. The novel

concepts introduced by SDN are enabling a revolution in networking

research. The know-how and good practices from several communities

(databases, programming languages, systems) are being put together to help

solve long-standing networking problems.

 The essential idea of the authors in [35] and [36] was to provide a

security kernel (e.g., by extending a controller like NOX) capable of ensuring

prioritized flow rule installation on switches. Applications were classified in

two types, one for security related applications and another for all remaining

36

applications. The first type represents specialized programs used to ensure

security control policies in the network, such as to guarantee or restrict

specific accesses to the network or take actions to control malicious data

traffic. Flow rules generated by security applications have priority over the

others. The security kernel is responsible for ensuring this behavior.

FRESCO [36] was an extension of that work which made it easy to create

and deploy security services in software-defined networks.

 In [37], NICE had been built which was a tool for automating the testing

of OpenFlow applications that combines model checking and concolic

execution in a novel way to quickly explore the state space of unmodified

controller programs written for the popular NOX platform. Further, it was

devised a number of new, domain-specific techniques for mitigating the

state-space explosion that plagues approaches. NICE had been contrasted

with an approach that applies off-the-shelf model checkers to the OpenFlow

domain, and it was demonstrated that NICE was five times faster even on

small examples. NICE had been applied to implementations of three

important applications, and found 11 bugs.

 The authors in [38] have shown that Software Defined Networks using

OpenFlow and NOX allow flexible, highly accurate, line rate detection of

anomalies inside Home and SOHO networks. One of the key benefits of this

approach is that the standardized programmability of SDN allows these

algorithms to exist in the context of a broader framework. They envision a

Home Operating System built using SDN, in which their algorithm

implementations would coexist alongside other applications for the home

network e.g. QoS and Access Control. The standardized interface provided

37

by a SDN would allow their applications to be updated easily as new security

threats emerge while maintaining portability across a broad and diverse range

of networking hardware.

 In [39], a set of attributes of a secure, robust, and resilient SDN

controller have been presented. The extent to which current state-of-the-art

open-source controllers support these attributes has been discussed. It is

promising that all except one of the defined security attributes is supported

by one or more controller. The missing feature is the management of multiple

application instances for application resilience. This must be a design

consideration for future controller developments. With the clear split between

high availability controllers and secure/resilient control layers, the next

evolution in SDN controller design must be a means to achieve the combined

goal of security, robustness, and resilience.

 The authors in [40] had presented a lightweight method for DDoS

attack detection. They showed that their technique extracts features of

interest with a low overhead when compared to approaches based on the

KDD-99 dataset. It is also able to monitor more than one observation point.

The method is also very efficient at detecting DDoS attacks. It uses Self

Organizing Maps, an unsupervised artificial neural network, trained with

features of the traffic flow. The detection rate obtained is remarkably good

as it is very close to other approaches.

38

CHAPTER THREE

 DETECTION OF NETWORK THREATS

USING SDN

39

CHAPTER THREE

 DETECTION OF NETWORK THREATS USING

SDN

 In this chapter, the methodology of the work has been discussed in

detail with all environment software, tools, configuration and technologies

that are used.

3.1 Preparation

 This project provides a brilliant solution that is based on SDN OpenFlow

protocol to monitor, identify, control and detect abnormal network behavior

in LAN by using OpenFlow supporting switch and SDN controller (POX

controller) as a network security appliance. An implementation of network

anomaly detection algorithm (Firewall module) on SDN controller has been

provided and a comparison between the existing non-SDN Open Flow

methods and the proposed solution has been done.

 To implement and test the provided theory, first, Mininet emulator -

which works based on Linux operating system - will be used. A simple SDN

OpenFlow based configuration which includes one POX controller, one

OpenFlow supporting switch and four hosts - as shown in Figure 3-1 - will

be built to implement behavioral network security on LAN networks. The

idea is that there is no need for the controller to inspect every packet. The

SDN OpenFlow controller applies distributed communication with switch to

detect performance and security problems in the LAN networks.

40

 Finally, traffic generator tools such as hping3 and iperf will be used.

The traffic generator will generate traffic with different protocols and rates,

then SDN OpenFlow controller will send specific commands to the switch

based on the behavioral algorithm, and the switch will deploy firewall flow

policy based on the received commands. A better understanding of how this

research works will be obtained from the upcoming explanations.

Host A

Host B

 Host C

 Host D

Figure 3-1: Simplified Project Topology

SDN OpenFlow

Switch

SDN (POX)

Controller

41

3.2 Research Activities

 Figure 3-1 illustrates an overview in general of how this project was

convened, in order to bring out the final implementation of a robust firewall

using SDN controller and OpenFlow Switch.

Figure 3-2: Flowchart of Research Activities

Setting up VMware Workstation

Setting up Ubuntu OS

Installing Mininnet Emiulator

Installing POX Controller

Project Design

Testing Under Various Scenarios

Using Iperf and Comparing Results

42

3.3 Setting up VMware Workstation

 VMware Workstation is a hosted hypervisor that runs on x64 versions

of Windows and Linux operating systems (an x86 version of earlier releases

was available); it enables users to set up virtual machines (VMs) on a single

physical machine, and use them simultaneously along with the actual

machine. Each virtual machine can execute its own operating system,

including versions of Microsoft Windows, Linux, BSD, and MS-DOS [41].

 Here in this project, VMware Workstation Pro.lnk was used to run

Ubuntu operating system in a physical machine (laptop).

3.4 Setting up Ubuntu OS

 Ubuntu is an open source operating system for personal computers and

network servers. It is a Linux distribution based on the Debian architecture.

 For this project, Ubuntu 14.04 LTS x64 had been chosen to provide an

environment for the virtual network to be formed.

3.5 Installing Mininet Emulator

 Mininet is a network emulator, or perhaps more precisely a network

emulation orchestration system. It runs a collection of end-hosts, switches,

routers, and links on a single Linux kernel. It uses lightweight virtualization

to make a single system look like a complete network, running the same

kernel, system, and user code [42].

 Mininet supports parametrized topologies. With a few lines of Python

code, you can create a flexible topology which can be configured based on

the parameters you pass into it, and reused for multiple experiments [42].

https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/X64
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/BSD
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Debian

43

 After opening the CLI (Command Line Interface), the following

commands should be running before starting to install the Mininet.

sudo apt-get update

 This command downloads the package lists from the repositories and

updates them to get information on the newest versions of packages and their

dependencies. It will do this for all repositories and PPAs. From [43]: Used

to re-synchronize the package index files from their sources. The indexes of

available packages are fetched from the location(s) specified

in /etc/apt/sources.list. An update should always be performed before an

upgrade or dist-upgrade [44].

sudo apt-get upgrade

 This Command will fetch new versions of packages existing on the

machine if APT knows about these new versions by way of apt-get update.

From [43]: Used to install the newest versions of all packages currently

installed on the system from the sources enumerated in /etc/apt/sources.list

[44].

Sudo apt-get install git

 Git is a version control system for tracking changes in computer

files and coordinating work on those files among multiple people. It is

primarily used for source code management in software development, but it

can be used to keep track of changes in any set of files. As a distributed

https://en.wikipedia.org/wiki/Version_control_system
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Source_code_management
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Distributed_revision_control

44

revision control system it is aimed at speed, data integrity, and support for

distributed, non-linear workflows [45] [46].

 After achieving these prerequisites, the following commands should

be done to implement the research test environment:

cd /home/

Sudo apt-get install mininet

 This command used to start installing the Mininet in the home

directory.

git clone git://github.com/mininet/mininet

 This command is executed to download a clone of the Mininet files

from github.com into the mininet directory that have been created in the

previous command.

cd /mininet

git tag

git checkout –b cs244-spring-2012-final

 These commands are used to switch the Mininnet clone to the latest

branch (version).

https://en.wikipedia.org/wiki/Distributed_revision_control

45

3.6 Installing POX controller

 POX controller can be installed by one of the two ways, either cloning

it directly from the github.com using the following command:

git clone http://github.com/noxrepo/pox

 Or it can be installed with all components of the Mininet utility that

are obtained using the following commands:

Cd ..

Mininet/util/install.sh –a

 Figure 3-3 shows the /home directory with all packages that have been

installed.

Figure 3-3: Installed Packages

 Finally, along with the POX controller, the previous command will

install the Wireshark which is a free and open source packet analyzer. It is

used for network troubleshooting, analysis, software and communications

http://github.com/noxrepo/pox
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Communications_protocol

46

protocol development, and education. Or it can be easily installed using the

following command:

apt-get installed wireshark

3.7 Project Design

 This project is based on two main parts: the basic configuration and

firewall implementation.

3.7.1 Basic Configuration

 First stage, a test environment of virtual network of four hosts

connected by a switch (OVSK) - as shown in Figure 3-4 - had been built to

test basic OpenFlow functionality. To verify the lab functionality, the

connectivity between hosts through the virtual switch has been tested using

Ping utility. The following commands were used.

sodu mn -- topo single,4 -- mac -- switch ovsk

mininet> pingall

 In the second stage, the OpenFlow switch was managed with POX

controller. Running POX controller with switch module to hub module and

vice versa. This test provides information about how to manage OpenFlow

switch, control traffic routing and deploy flows to the switch. The following

commands were used.

./pox.py log.level -- DEBUG forwarding.hub

https://en.wikipedia.org/wiki/Communications_protocol

47

./pox.py log.level -- DEBUG forwarding.l2_learning

sodu mn -- topo single,4 -- mac -- switch ovsk -- controller

remote

Figure 3-4: Project Topology in Mininet

3.7.2 Firewall Implementation

 To implement firewall functionality, threat detection, traffic filtering

and decision-making mechanisms have been added to POX controller. POX

is a Python-based SDN controller platform geared towards research and

education and allows flexibility in development. To identify malicious

activities, a POX based firewall has been developed that will notice any

abnormal network behavior in the virtual network.

48

 With a listing of different security concerns in Software Defined

Networks, one of the main security threats were concentrated upon in this

research work is on Denial-Of-Service. When a large number of packets are

forwarded to a network device with an intention to either stop the service or

affect the performance then such attacks are termed as Denial-of-service

attacks. This kind of attacks can be detected at an early stage by monitoring

few of packets based on the entropy changes. By applying entropy as a

detection method, it could be able to detect attacks on one host or a subnet of

hosts in a network and prevents the controller going down.

 Entropy is the randomness collected by an operating system or

application for use in cryptography or other uses that require random data.

The main reason for choosing entropy is its ability to measure randomness in

a network.

 If assumed that W is a set of data with n elements, and X is an event

in the set, then, the probability Pi of X can be calculated using the following

equation:

𝑃𝑖 =
𝑋𝑖

𝑛

Where Xi is one of the elements in W that is represented by equation 3.2:

𝑊 = {𝑋1, 𝑋2, 𝑋3, … … … … … , 𝑋𝑛}

The size of W is called the window size.

3.1

3.2

49

 To measure the entropy, referred to as H, the probability of all

elements in the set were calculated and gathered as shown in equation 3.3:

𝐻 = ∑ 𝑃𝑖 log 𝑃𝑖

𝑛

𝑖=1

 The entropy will be at its maximum if all elements have equal

probabilities. If an element appears more than others, the entropy will be

lower.

 So, after creating this firewall module, it can be executed using the

following commands.

./pox.py log.level -- DEBUG forwarding.POXFW1

sodu mn -- topo single,4 -- mac -- switch ovsk -- controller

remote

 To show the flexibility of developing a POX controller, second

module has been built as a firewall which can identify ICMP traffic to the

specific destination IP addresses 10.0.0.2 and 10.0.0.3. POX controller sends

specific rules to the OpenFlow switch to deny the specific flows from the

predefined hosts (h2 and h3) and allow them for other hosts.

 Also, this module can filter all TCP packets and identify those with

destination IP address 10.0.0.4 and deny them while allowing all other TCP

packets to other hosts.

3.3

50

 Finally, all UDP packets with destination IP address 10.0.0.1 will be

dropped while other UPD packets will be switched to their destination hosts.

After implementing this module, it can be executed using the following

commands.

./pox.py log.level -- DEBUG forwarding.POXFW2

sodu mn -- topo single,4 -- mac -- switch ovsk -- controller

remote

51

CHAPTER FOUR

RESULTS AND DISCUSSIONS

52

CHAPTER FOUR

RESULTS AND DISCUSSIONS

 In this chapter, the POX controller will be tested under various scenarios

and all the results will be captured and discussed. Also, different performance

tests will be done.

4.1 Mininet without POX Controller

 Figure 4-1 shows the Mininet devices that have been created and used

in this project and the result of the connectivity test which made using Ping

utility. This Mininet has been created without managing the OpenFlow

switch with a POX controller.

Figure 4-1: Mininet Devices and Connectivity Test Result

53

4.2 Mininet with POX Controller

 POX controller could be used with different modules to perform

several types of network devices tasks. In this research work some modules

will be undertaken.

4.2.1 POX controller Running Hub Module / Switch Module

 Figure 4-2 shows the Mininet topology that is configured to be

managed by a POX controller which will be operated with a hub module and

a switch module respectively. Also in both cases the connectivity is up

between all hosts and all of them can ping each other without any losses as

illustrated in Figure 4-3. If the Mininet would be managed with a POX

controller and no one of the connecting modules would be operated, the

connectivity between all hosts will be lost as show in Figure 4-4.

Figure 4-2: Mininet Devices Managed by POX controller

54

Figure 4-3: Connectivity Test Using Ping tool (With connecting Module)

Figure 4-4: Connectivity Test Using Ping tool (Without connecting Module)

4.2.2 POX controller Running Firewall Module

 In this research work, two emulation scenarios have been conducted.

These scenarios are explained in detail - including their working algorithms

and test results - in the upcoming sections.

55

4.2.2.1 First Emulation Scenario

 A POX based Firewall has been implemented which is able to detect

any DoS attack and take an action against this serious situation in the virtual

network based on the entropy value. Entropy can be calculated by certain

equations that are configured in the Firewall script (Python_based code). The

algorithm of this code is illustrated in Figure 4-5.

 Figure 4-5: First POXFW Algorithm

Start

Packet_In

Entropy <

Threshold

Keep count of Incoming Packets

Measure Entropy

Flow Modification and close Port

End

Yes

No

56

 When POX controller running with this module and using pingall to

make sure that the connectivity is up between hosts, it can be seen that the

Entropy value equal one which is - normal flood of traffic - as appears in

Figure 4-6.

Figure 4-6: Entropy Value before DoS Attack

 To test the efficiency of the developed firewall against DoS attack,

hping3 tool has been used to generate a SYN flood from h2 (10.0.0.2) on

port 80 of h4 (10.0.0.4) and it is clear from Figure 4-7 that that the Entropy

value has been decreased and thus led to stopping of this malicious activity

after 16 packets only from 4782938 packets as shown in Figure 4-8.

57

Figure 4-7: Entropy Value after DoS Attack

Figure 4-8: POXFW Stopping DoS Attack

 Also, the POX sends command to the OpenFlow switch to block the

malicious port (port of h2) until a further notice as illustrated in Figure 4-9

Figure 4-9: POXFW Blocked Port 2

58

4.2.2.2 Second Emulation Scenario

 To identify malicious activities, a POX based Firewall has been

devolved that will notice any abnormal network behavior in the virtual

network based on the predefined rules and policies that have been configured

in the Firewall script (Python_based code). The algorithm of this code is

illustrated in Figure 4-10.

 When testing the connectivity between all hosts in the Mininet using

pingall command, the results shows that all ICMP packets sent to h2 10.0.0.2

and h3 10.0.0.3 have been lost due to deny policy which configured in the

POX Firewall code and applied by the OpenFlow switch. Figure 4-11 shows

the losses that have been occured after applying the Firewall module.

59

Figure 4-10: Second POXFW Algorithm

Start

Run Mininet and POX Firewall

POX Controller send rules to OpenFlow Switch

Send traffic to destination host

If it is UDP & Des.IP 10.0.0.1

Deliver traffic to destination host

If it’s ICMP & Des.IP 10.0.0.2

If it’s ICMP & Des.IP 10.0.0.3

If it is TCP & Des.IP 10.0.0.4

End

Yes

No

No

No

No

Yes

Yes

Yes

60

Figure 4-11: POXFW Blocking ICMP Packets From h1 and h2

 Figure 4-12 and Figure 4-13 illustrate the OpenFlow switch behaviore

when UDP traffic flows in the network. The OpenFlow switch blocking any

UDP packet that has been sent to h1 10.0.0.1 and switch it to any other host

in the Mininet. To generate a stream of UDP packets, iperf tool has been

installed and used. It is used as a client on one host and as a server on the

other host to send parallel UDP streams.

61

Figure 4-12: POXFW Blocking UDP Packets to h1

Figure 4-13: POXFW Allowing UDP Packets to Other hosts

62

 Figure 4-14 shows that any TCP packets sent to h4 10.0.0.4 have been

blocked by the OpenFlow switch after applying the Firewall module while

other TCP packets that are sending to any other hosts in the Mininet will be

delivered to their destination as appears in Figure 4-15. Also in this test, iperf

tool has been used to generate a stream of TCP packets.

Figure 4-14: POXFW Blocking TCP Packets to h4

63

Figure 4-15: POXFW Allowing TCP Packets to Other hosts

4.3 Performance Results

 In this section, after firewall implementation and testing, a

performance evaluation has been done. It compares the performance of the

Firewall module with the performance of switch module and the traditional

switch (without POX controller). IPERF which is a tool for network

performance measurement, is used to analyze the performance.

 In the first test, IPERF tool is used as a client on one host and as a

server on the other host to generate a stream of UDP packets. Each time after

running IPERF tool, the controller process is killed and restarted to make

sure that the OpenFlow switch is ready for the next test and has no flow

entries. Figure 4-16 shows the test results of multiple parallel UDP streams

64

and different modes. It is obvious from Figure 4-16 that the POX controller

running with a Firewall module (the yellow line) introduces extra delay to

the UDP streams compared with the traditional switch (without POX) and

the case when POX controller running with switch module (the blue line).

 The reason is that the UDP implementation of the firewall module

expects a TCP-like handshake over UDP, which is not the case in IPERF,

which sends UDP packets in just one direction (client to server). As a result,

all the UDP packets will be forwarded to the controller, which has an upper

limit for packets coming from one direction to prevent a DOS attack against

itself. In addition, sending a flow entry to the switch to allow such behavior

will create a security hole. For example, an attacker might send multiple UDP

packets from one side in order to bypass the controller and then start sending

malicious traffic. In the end, it is a trade-off between performance and

security. So, it can be said that the firewall module suffers from a poor

performance for UDP packets due to its security policy.

Figure 4-16 : Comparison in Term of Jitter

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

J
it

te
r

(m
s)

 /
 1

0
0

Interval (Sec)

Comprarison in Term of Jitter

Without POX With POX & Switch Module With POX & Firewall Module

65

 In the second test, IPERF tool is used to send parallel TCP streams.

The throughput is calculated for traditional switch (the green line), switch

module (the blue line) and the firewall module (the yellow line), as shown in

Figure 4-17.This test proves that the switch module that is running with the

POX controller has a good TCP performance compared to the traditional

switch and that is due to the separation of data plane from control plane which

enhancing the device ability to perform its job without caring about decision

making which is the responsibility of the POX controller.

 Also, it can be noticed that switch module throughput is much better

than firewall module and this difference in throughput is due to the difference

in processing time and security policies that are applied by the OpenFlow

switch. For example, it takes time for the Openflow switch to process a new

flow before sending the packet out to the controller (for the first four TCP

packets only from each stream), and it takes time for the controller to process

the packet and send commands back to the OpenFlow switch.

Figure 4-17 : Comparison in Term of Throughput

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8 9 10 11 12

B
W

(G
b

it
s/

se
c)

Interval (Sec)

Comparsion in Term of Throughput

Without POX With POX & Switch Module With POX & Firewall Module

66

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

67

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

 In this chapter, the conclusion of this research work has been

mentioned with some recommendations for the future work.

5.1 Conclusion

 Firewall devices are fundamental in any network to apply security.

Despite of the remarkable firewalls that are available in the market, these

firewalls are expensive, their provisioning time is high, and most of them do

not have user friendly interface or provide programmability to the network

administrators. On the other hand, SDN technology allows the use of

commodity hardware, reduces provisioning time, and provides a huge

flexibility in programming the control plane.

 This research implemented an OpenFlow-based firewall module

running with POX controller and capable of detecting and preventing DOS

attack and any parallel streams of traffic such as TCP and UDP that could

affect or disrupt the performance of network devices.

 The performance analysis tests that have been done proved that the

firewall module performed well in handling TCP traffic compared with a

traditional switch while switch module provides much better throughput than

traditional switch and firewall module. On the other hand, some limitations

related to firewall module appears in terms of jitter delay and suffering from

68

poor performance of handling UDP packets due to security policy comparing

to traditional switch and switch module. So, the trade-off between the

security and performance is inevitable in any kind of network architecture.

5.2 Recommendations

 After the research work has been finished, some recommendations and

research issues can be provided for who wants to carry on from this point.

Future work on this topic can include:

▪ One of the further development of the provided idea could be include

the implementation of the self-study firewall that could dynamically

identify abnormal network activities and conventional traffic.

▪ Another important part, is the development of Graphical User

Interface (GUI) for POX controller and for modules such as switch

module and Firewall Module.

▪ This research implementation cannot detect encrypted traffic. So, the

future work could focus on this area as there are ways to analyze

encrypted traffic such as packet size, direction, and timing.

▪ Currently, this project design only looking at the header fields to

identify the action. For future work, developers can further improve

this logic by incorporating SDN capacities to improve network

security by observing the entire network flow and efficiently block the

network attacks in the early stage without having to perform deep

packet inspection.

69

▪ The firewall implementation in this research supports only one

OpenFlow switch. Therefore, future works could add more features

and support for multiple OpenFlow switches.

▪ Although OpenFlow protocol makes the network programmable, but

it does not make it easy. Therefore, more advanced northbound APIs

are highly required to produce an abstraction layer that makes the

programmer be able to run parallel and subsequent modules/

applications without caring about the buffer ID issue and policy

conflicts.

▪ Current OpenFlow switches allow only a fixed set of “Match-Action”

fields and their specifications define a limited set of action fields. So,

there is a need to support new protocols and higher layers. The future

work could focus on this area as well.

70

References

 [1] M. Suh, S. Park, B. Lee, S. Yang, “Building firewall over the software-

defined network controller,” in Advanced Communication Technology

(ICACT), 2014 16th International Conference on, 2014, pp. 744–748.

 [2] S. Khummanee, A. Khumseela, and S. Puangpronpitag, “Towards a new

design of firewall: Anomaly elimination and fast verifying of firewall rules,”

in Computer Science and Software Engineering (JCSSE), 2013 10th

International Joint Conference on, 2013, pp. 93–98.

 [3] K. Ingham and S. Forrest, “A history and survey of network firewalls,”

Univ. N. M. Tech Rep, 2002.

[4] F. Avolio, ‘Firewalls and Internet Security, the Second Hundred (Internet)

Years’. [Online]. Available:

http://www.cisco.com/web/about/ac123/ac147/ac174/ac200/about_cisco_ipj

_archive_article09186a00800c85ae.html. [Accessed: 12 - May - 2017, 07:30

PM].

[5] J. Mogul, “Using screend to implement IP/TCP security policies,” DTIC

Document, 1991.

[6] B. Cheswick, “The Design of a Secure Internet Gateway,” in in Proc.

Summer USENIX Conference, 1990, pp. 233–237.

[7] F. M. Avolio, M. J. Ranum, and M. D. Glenwood, “A network perimeter

with secure external access,” in Proceedings of the Internet Society

Symposium on Network and Distributed System Security, Glenwood,

Maryland, 1994.

71

[8] W. Odom, CCNA Routing and Switching 200-120 Official Cert Guide

Library, first edition. Cisco Press, 2013.

[9] M. Roesch, Snort: Lightweight Intrusion Detection for Networks, in

LISA, 1999, vol. 99, pp. 229–238.

[10] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based

Comparison and Selection of Software Defined Networking (SDN)

Controllers”, 2012.

[11] R. Bifulco, R. Canonico, M. Brunner, P. Hasselmeyer, and F. Mir, “A

Practical Experience in Designing an OpenFlow Controller”, in 2012

European Workshop on Software Defined Networking (EWSDN), 2012, pp.

7–12.

[12] T. D. Nadeau and K. Gray, SDN: Software Defined Networks, first

edition. O’Reilly Media, 2013.

[13] S. Azodolmolky, Software Defined Networking with OpenFlow,

Publishing, 2013.

[14] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel,

“SDN: Software Defined Networks”, 2008.

[15] P. Southwick, D. Marschke, and H. Reynolds, A Practical Guide to

Junos Routing and Certification, Second edition. Beijing: O’Reilly Media,

2011.

[16] D. Hucaby, CCNP SWITCH 642-813 Official Certification Guide, first

edition. Indianapolis, Ind: Cisco Press, 2010.

72

[17] L. E. Li, Z. M. Mao, and J. Rexford, “Toward Software-Defined Cellular

Networks,” in 2012 European Workshop on Software Defined Networking

(EWSDN), 2012, pp. 7–12.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in

campus networks,” ACM SIGCOMM Comput. Commun, pp. 69–74, 2008.

[19] “Software-Defined Networking: The New Norm for Networks.” ONF,

13-Apr-2012.

[20] “OpenFlow Switch Specification Version 1.3.3 (Protocol version

0x04).” ONF, 27-Sep- 2013.

[21] “OpenFlow Management and Configuration Protocol - OF-CONFIG

1.2.” ONF, 2014.

[22] “OpenFlow Switch Specification Version 1.4.0 (Wire Protocol 0x05).”

ONF, 14-Oct-2013.

[23] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N.

McKeown, and G. Parulkar, “Flowvisor: A network virtualization layer,”

OpenFlow Switch Consort. Tech Rep, 2009.

[24] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: towards an operating system for networks,” ACM

SIGCOMM Comput. Commun, pp. 105–110, 2008.

[25] U. Mustafa, M. M. Masud, Z. Trabelsi, T. Wood, and Z. Al Harthi,

“Firewall performance optimization using data mining techniques,” in

73

Wireless Communications and Mobile Computing Conference (IWCMC),

2013 9th International, 2013, pp. 934–940.

[26] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P. Katta,

C. Monsanto, J. Reich, J. Rexford, and C. Schlesinger, “Languages for

software-defined networks,” Commun. Mag. IEEE, vol. 51, no. 2, pp. 128–

134, 2013.

[27] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular

SDN Programming with Pyretic.”, USENIX; login, vol. 38, no. 5, pp. 128–

134, Oct. 2013.

[28] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation using

OpenFlow: ASurvey,” IEEE Commun. Surv. Tutor., vol. 16, no. 1, pp. 493–

512, First 2014.

[29] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Taking control

of cellular core networks,” ArXiv Prepr. ArXiv13053568, 2013.

[30] G. Hampel, M. Steiner, and T. Bu, “Applying Software-Defined

Networking to the telecom domain,” in 2013 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2013, pp. 133–138.

[31] S. Shin, Lei Xu, S. Hong, G. Gu, "Enhancing Network Security through

Software Defined Networking (SDN)", IEEE International Conference on

Computer Communication and Networks, Waikoloa, HI, USA, Aug., 2016.

[32] Scott-Hayward, S., Natarajan, S., & Sezer, S, "A Survey of Security in

Software Defined Networks", IEEE Communications Surveys & Tutorials,

vol. 18, no. 1, pp. 623–654, 2016.

74

[33] Syed Taha Ali, Vijay Sivaraman, Adam Radford and Sanjay Jha, "A

Survey of Securing Networks using Software Defined Networking", IEEE

2014.

[34] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and

dependable software-defined networks,” in Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking. ACM,

2013, pp. 55–60.

[35] P. Porras et al. “A security enforcement kernel for OpenFlow networks”.

In: HotSDN. ACM, 2012.

[36] S. Shin et al. “FRESCO: Modular Composable Secu- rity Services for

Software-Defined Networks”. In: In- ternet Society NDSS. 2013.

[37] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A NICE

way to test OpenFlow applications,” in Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation, 2012.

[38] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly

detection using software defined networking,” in Recent Advances in

Intrusion Detection. Springer, 2011, pp. 161–180.

[39] S. Scott-Hayward, “Design and deployment of secure, robust and

resilient SDN controllers,” in Proceedings of the 2015 IEEE Conference on

Network Softwarization (NetSoft). IEEE, 2015, pp. 1–5.

[40] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack

detection using NOX/OpenFlow,” in IEEE 35th Conference on Local

Computer Networks (LCN). IEEE, 2010, pp. 408–415.

75

[41] "Processor Requirements for Host Systems". VMware Workstation 9

Documentation Center. VMware. Retrieved 12 December 2012.

[42] B. Lantz, N. Handigol, B. Heller, and V. Jeyakuma, ‘Introduction to

Mininet’, [Online]. Available:

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet [Accessed:

10 - October - 2017, 04:00 PM].

[43] http://linux.die.net/man/8/apt-get, [Accessed: 22 - October - 2017, 01:30

PM].

[44]https://askubuntu.com/questions/94102/what-is-the-difference-between-

apt-get-update-and-upgrade, [Accessed: 12 – November - 2017, 03:30 PM].

[45] Scopatz, Anthony, Huff Kathryn D., “Effective Computation in

Physics”, O'Reilly Media, Retrieved 20 April 2016.

[46] Torvalds, Linus, " linux-kernel (Mailing list)”, [Accessed: 15 -

November - 2017, 10:15 PM].

https://pubs.vmware.com/workstation-9/index.jsp?topic=%2Fcom.vmware.ws.get_started.doc%2FGUID-BBD199AA-C346-4334-9F56-5A42F7328594.html
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
http://linux.die.net/man/8/apt-get
https://askubuntu.com/questions/94102/what-is-the-difference-between-apt-get-update-and-upgrade
https://askubuntu.com/questions/94102/what-is-the-difference-between-apt-get-update-and-upgrade
https://books.google.de/books?id=DYoNCgAAQBAJ&pg=PA351
https://books.google.de/books?id=DYoNCgAAQBAJ&pg=PA351
https://marc.info/?l=linux-kernel&m=111288700902396

76

Appendix

Appendix A POXFW1

 At this appendix, the python code of the POX Firewall that detects and

prevents DoS attack has been illustrated.

Copyright 2012-2013 James McCauley

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,

software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the License for the specific language governing permissions

and

limitations under the License.

"""

A stupid L3 switch

For each switch:

1) Keep a table that maps IP addresses to MAC addresses and switch

ports.

 Stock this table using information from ARP and IP packets.

2) When you see an ARP query, try to answer it using information in

the table

 from step 1. If the info in the table is old, just flood the

query.

3) Flood all other ARPs.

4) When you see an IP packet, if you know the destination port

(because it's

 in the table from step 1), install a flow for it.

"""

import datetime

from pox.core import core

import pox

from pox.lib.packet.ethernet import ethernet, ETHER_BROADCAST

from pox.lib.packet.ipv4 import ipv4

77

from pox.lib.packet.arp import arp

from pox.lib.addresses import IPAddr, EthAddr

from pox.lib.util import str_to_bool, dpid_to_str

from pox.lib.recoco import Timer

import pox.openflow.libopenflow_01 as of

from pox.lib.revent import *

import itertools

import time

#editing

from .detection import Entropy

diction = {}

ent_obj = Entropy()

set_Timer = False

defendDDOS=False

#blockPort=""

#end of editing

log = core.getLogger()

Timeout for flows

FLOW_IDLE_TIMEOUT = 10

Timeout for ARP entries

ARP_TIMEOUT = 60 * 2

Maximum number of packet to buffer on a switch for an unknown IP

MAX_BUFFERED_PER_IP = 5

Maximum time to hang on to a buffer for an unknown IP in seconds

MAX_BUFFER_TIME = 5

class Entry (object):

 """

 Not strictly an ARP entry.

 We use the port to determine which port to forward traffic out

of.

 We use the MAC to answer ARP replies.

 We use the timeout so that if an entry is older than ARP_TIMEOUT,

we

 flood the ARP request rather than try to answer it ourselves.

 """

 def __init__ (self, port, mac):

 self.timeout = time.time() + ARP_TIMEOUT

 self.port = port

 self.mac = mac

 def __eq__ (self, other):

 if type(other) == tuple:

 return (self.port,self.mac)==other

 else:

 return (self.port,self.mac)==(other.port,other.mac)

 def __ne__ (self, other):

78

 return not self.__eq__(other)

 def isExpired (self):

 if self.port == of.OFPP_NONE: return False

 return time.time() > self.timeout

def dpid_to_mac (dpid):

 return EthAddr("%012x" % (dpid & 0xffFFffFFffFF,))

class l3_switch (EventMixin):

 def __init__ (self, fakeways = [], arp_for_unknowns = False, wide

= False):

 # These are "fake gateways" -- we'll answer ARPs for them with

MAC

 # of the switch they're connected to.

 self.fakeways = set(fakeways)

 # If True, we create "wide" matches. Otherwise, we create

"narrow"

 # (exact) matches.

 self.wide = wide

 # If this is true and we see a packet for an unknown

 # host, we'll ARP for it.

 self.arp_for_unknowns = arp_for_unknowns

 # (dpid,IP) -> expire_time

 # We use this to keep from spamming ARPs

 self.outstanding_arps = {}

 # (dpid,IP) -> [(expire_time,buffer_id,in_port), ...]

 # These are buffers we've gotten at this datapath for this IP

which

 # we can't deliver because we don't know where they go.

 self.lost_buffers = {}

 # For each switch, we map IP addresses to Entries

 self.arpTable = {}

 # This timer handles expiring stuff

 self._expire_timer = Timer(5, self._handle_expiration,

recurring=True)

 core.listen_to_dependencies(self)

 def _handle_expiration (self):

 # Called by a timer so that we can remove old items.

 empty = []

 for k,v in self.lost_buffers.iteritems():

 dpid,ip = k

 for item in list(v):

79

 expires_at,buffer_id,in_port = item

 if expires_at < time.time():

 # This packet is old. Tell this switch to drop it.

 v.remove(item)

 po = of.ofp_packet_out(buffer_id = buffer_id, in_port =

in_port)

 core.openflow.sendToDPID(dpid, po)

 if len(v) == 0: empty.append(k)

 # Remove empty buffer bins

 for k in empty:

 del self.lost_buffers[k]

 # def dropDDOS ():

 # Called by a timer so that we can remove old items.

 #empty = []

 #for k,v in self.lost_buffers.iteritems():

 # dpid,ip = k

 # for item in list(v):

 # expires_at,buffer_id,in_port = item

 # if expires_at < time.time():

 # This packet is old. Tell this switch to drop it.

 # v.remove(item)

po = of.ofp_packet_out(buffer_id = buffer_id, in_port =

in_port)

core.openflow.sendToDPID(dpid, po)

 #if len(v) == 0: empty.append(k)

 # Remove empty buffer bins

 #for k in empty:

 # del self.lost_buffers[k]

 def _send_lost_buffers (self, dpid, ipaddr, macaddr, port):

 """

 We may have "lost" buffers -- packets we got but didn't know

 where to send at the time. We may know now. Try and see.

 """

 if (dpid,ipaddr) in self.lost_buffers:

 # Yup!

 bucket = self.lost_buffers[(dpid,ipaddr)]

 del self.lost_buffers[(dpid,ipaddr)]

 log.debug("Sending %i buffered packets to %s from %s"

 % (len(bucket),ipaddr,dpid_to_str(dpid)))

 for _,buffer_id,in_port in bucket:

 po = of.ofp_packet_out(buffer_id=buffer_id,in_port=in_port)

 po.actions.append(of.ofp_action_dl_addr.set_dst(macaddr))

 po.actions.append(of.ofp_action_output(port = port))

 core.openflow.sendToDPID(dpid, po)

 def _handle_openflow_PacketIn (self, event):

 dpid = event.connection.dpid

80

 inport = event.port

 packet = event.parsed

 global set_Timer

 global defendDDOS

 global blockPort

 timerSet =False

 global diction

 def preventing():

 global diction

 global set_Timer

 if not set_Timer:

 set_Timer =True

 #Timer(1, _timer_func(), recurring=True)

 #print"\n\n*********new packetIN************"

 if len(diction) == 0:

 print("Enpty diction ",str(event.connection.dpid),

str(event.port))

 diction[event.connection.dpid] = {}

 diction[event.connection.dpid][event.port] = 1

 elif event.connection.dpid not in diction:

 diction[event.connection.dpid] = {}

 diction[event.connection.dpid][event.port] = 1

 #print "ERROR"

 else:

 if event.connection.dpid in diction:

 # temp = diction[event.connection.dpid]

 #print(temp)

 #print "error check " ,

str(diction[event.connection.dpid][event.port])

 if event.port in diction[event.connection.dpid]:

 temp_count=0

 temp_count =diction[event.connection.dpid][event.port]

 temp_count = temp_count+1

 diction[event.connection.dpid][event.port]=temp_count

 #print "printting dpid port number and its packet

count: ", str(event.connection.dpid),

str(diction[event.connection.dpid]),

str(diction[event.connection.dpid][event.port])

 else:

 diction[event.connection.dpid][event.port] = 1

 print "\n",datetime.datetime.now(), ": printing diction

",str(diction),"\n"

 def _timer_func ():

 global diction

 global set_Timer

 if set_Timer==True:

 #print datetime.datetime.now(),": calling timer fucntion

now!!!!!"

 for k,v in diction.iteritems():

81

 for i,j in v.iteritems():

 if j >=50:

 print

"__

___________________________"

 print "\n",datetime.datetime.now(),"******* DDOS

DETECTED ********"

 print "\n",str(diction)

 print "\n",datetime.datetime.now(),": BLOCKED PORT

NUMBER : ", str(i), " OF SWITCH ID: ", str(k)

 print

"\n__

_____________________________"

 #self.dropDDOS ()

 dpid = k

 msg = of.ofp_packet_out(in_port=i)

 #msg.priority=42

 #msg.in_port = event.port

 #po = of.ofp_packet_out(buffer_id = buffer_id,

in_port = in_port)

 core.openflow.sendToDPID(dpid,msg)

 diction={}

 if not packet.parsed:

 log.warning("%i %i ignoring unparsed packet", dpid, inport)

 return

 if dpid not in self.arpTable:

 # New switch -- create an empty table

 self.arpTable[dpid] = {}

 for fake in self.fakeways:

 self.arpTable[dpid][IPAddr(fake)] = Entry(of.OFPP_NONE,

 dpid_to_mac(dpid))

 if packet.type == ethernet.LLDP_TYPE:

 # Ignore LLDP packets

 return

 if isinstance(packet.next, ipv4):

 log.debug("%i %i IP %s => %s", dpid,inport,

 packet.next.srcip,packet.next.dstip)

 ent_obj.statcolect(event.parsed.next.dstip)#editing

 print "\n***** Entropy Value = ",str(ent_obj.value),"*****\n"

 if ent_obj.value <0.5:

 preventing()

 if timerSet is not True:

 Timer(2, _timer_func, recurring=True)

 timerSet=False

 else:

 timerSet=False

82

 # Send any waiting packets...

 self._send_lost_buffers(dpid, packet.next.srcip, packet.src,

inport)

 # Learn or update port/MAC info

 if packet.next.srcip in self.arpTable[dpid]:

 if self.arpTable[dpid][packet.next.srcip] != (inport,

packet.src):

 log.info("%i %i RE-learned %s",

dpid,inport,packet.next.srcip)

 if self.wide:

 # Make sure we don't have any entries with the old

info...

 msg = of.ofp_flow_mod(command=of.OFPFC_DELETE)

 msg.match.nw_dst = packet.next.srcip

 msg.match.dl_type = ethernet.IP_TYPE

 event.connection.send(msg)

 else:

 log.debug("%i %i learned %s",

dpid,inport,packet.next.srcip)

 self.arpTable[dpid][packet.next.srcip] = Entry(inport,

packet.src)

 #nandan: getting source ip address from the packetIn

 #myPacketInSrcIP= packet.next.srcip

 #myPacketInSrcEth= packet.src

 #myPacketInDstIP= packet.next.dstip

 #myPacketInDstEth= packet.dst

 #print "switcID: "+str(dpid)+" ,Port: "+str(event.port)+"

,MAC address: "+str(myPacketInSrcEth)+" ,SrcIP: "+

str(myPacketInSrcIP)+", Dst Mac: "+str(myPacketInDstEth)+", Dst IP:

"+str(myPacketInDstEth)

 # Try to forward

 dstaddr = packet.next.dstip

 if dstaddr in self.arpTable[dpid]:

 # We have info about what port to send it out on...

 prt = self.arpTable[dpid][dstaddr].port

 mac = self.arpTable[dpid][dstaddr].mac

 if prt == inport:

 log.warning("%i %i not sending packet for %s back out of

the "

 "input port" % (dpid, inport, dstaddr))

 else:

 log.debug("%i %i installing flow for %s => %s out port

%i"

 % (dpid, inport, packet.next.srcip, dstaddr,

prt))

 actions = []

 actions.append(of.ofp_action_dl_addr.set_dst(mac))

83

 actions.append(of.ofp_action_output(port = prt))

 if self.wide:

 match = of.ofp_match(dl_type = packet.type, nw_dst =

dstaddr)

 else:

 match = of.ofp_match.from_packet(packet, inport)

 msg = of.ofp_flow_mod(command=of.OFPFC_ADD,

 idle_timeout=FLOW_IDLE_TIMEOUT,

 hard_timeout=of.OFP_FLOW_PERMANENT,

 buffer_id=event.ofp.buffer_id,

 actions=actions,

 match=match)

 event.connection.send(msg.pack())

 elif self.arp_for_unknowns:

 # We don't know this destination.

 # First, we track this buffer so that we can try to resend

it later

 # if we learn the destination, second we ARP for the

destination,

 # which should ultimately result in it responding and us

learning

 # where it is

 # Add to tracked buffers

 if (dpid,dstaddr) not in self.lost_buffers:

 self.lost_buffers[(dpid,dstaddr)] = []

 bucket = self.lost_buffers[(dpid,dstaddr)]

 entry = (time.time() +

MAX_BUFFER_TIME,event.ofp.buffer_id,inport)

 bucket.append(entry)

 while len(bucket) > MAX_BUFFERED_PER_IP: del bucket[0]

 # Expire things from our outstanding ARP list...

 self.outstanding_arps = {k:v for k,v in

 self.outstanding_arps.iteritems() if v > time.time()}

 # Check if we've already ARPed recently

 if (dpid,dstaddr) in self.outstanding_arps:

 # Oop, we've already done this one recently.

 return

 # And ARP...

 self.outstanding_arps[(dpid,dstaddr)] = time.time() + 4

 r = arp()

 r.hwtype = r.HW_TYPE_ETHERNET

 r.prototype = r.PROTO_TYPE_IP

 r.hwlen = 6

 r.protolen = r.protolen

 r.opcode = r.REQUEST

 r.hwdst = ETHER_BROADCAST

 r.protodst = dstaddr

 r.hwsrc = packet.src

84

 r.protosrc = packet.next.srcip

 e = ethernet(type=ethernet.ARP_TYPE, src=packet.src,

 dst=ETHER_BROADCAST)

 e.set_payload(r)

 log.debug("%i %i ARPing for %s on behalf of %s" % (dpid,

inport,

 r.protodst, r.protosrc))

 msg = of.ofp_packet_out()

 msg.data = e.pack()

 msg.actions.append(of.ofp_action_output(port =

of.OFPP_FLOOD))

 msg.in_port = inport

 event.connection.send(msg)

 elif isinstance(packet.next, arp):

 a = packet.next

 log.debug("%i %i ARP %s %s => %s", dpid, inport,

 {arp.REQUEST:"request",arp.REPLY:"reply"}.get(a.opcode,

 'op:%i' % (a.opcode,)), a.protosrc, a.protodst)

 if a.prototype == arp.PROTO_TYPE_IP:

 if a.hwtype == arp.HW_TYPE_ETHERNET:

 if a.protosrc != 0:

 # Learn or update port/MAC info

 if a.protosrc in self.arpTable[dpid]:

 if self.arpTable[dpid][a.protosrc] != (inport,

packet.src):

 log.info("%i %i RE-learned %s",

dpid,inport,a.protosrc)

 if self.wide:

 # Make sure we don't have any entries with the

old info...

 msg = of.ofp_flow_mod(command=of.OFPFC_DELETE)

 msg.match.dl_type = ethernet.IP_TYPE

 msg.match.nw_dst = a.protosrc

 event.connection.send(msg)

 else:

 log.debug("%i %i learned %s", dpid,inport,a.protosrc)

 self.arpTable[dpid][a.protosrc] = Entry(inport,

packet.src)

 # Send any waiting packets...

 self._send_lost_buffers(dpid, a.protosrc, packet.src,

inport)

 if a.opcode == arp.REQUEST:

 # Maybe we can answer

 if a.protodst in self.arpTable[dpid]:

 # We have an answer...

 if not self.arpTable[dpid][a.protodst].isExpired():

85

 # .. and it's relatively current, so we'll reply

ourselves

 r = arp()

 r.hwtype = a.hwtype

 r.prototype = a.prototype

 r.hwlen = a.hwlen

 r.protolen = a.protolen

 r.opcode = arp.REPLY

 r.hwdst = a.hwsrc

 r.protodst = a.protosrc

 r.protosrc = a.protodst

 r.hwsrc = self.arpTable[dpid][a.protodst].mac

 e = ethernet(type=packet.type,

src=dpid_to_mac(dpid),

 dst=a.hwsrc)

 e.set_payload(r)

 log.debug("%i %i answering ARP for %s" % (dpid,

inport,

 r.protosrc))

 msg = of.ofp_packet_out()

 msg.data = e.pack()

 msg.actions.append(of.ofp_action_output(port =

of.OFPP_IN_PORT))

 msg.in_port = inport

 event.connection.send(msg)

 return

 # Didn't know how to answer or otherwise handle this ARP, so

just flood it

 log.debug("%i %i flooding ARP %s %s => %s" % (dpid, inport,

 {arp.REQUEST:"request",arp.REPLY:"reply"}.get(a.opcode,

 'op:%i' % (a.opcode,)), a.protosrc, a.protodst))

 msg = of.ofp_packet_out(in_port = inport, data = event.ofp,

 action = of.ofp_action_output(port = of.OFPP_FLOOD))

 event.connection.send(msg)

def launch (fakeways="", arp_for_unknowns=None, wide=False):

 fakeways = fakeways.replace(","," ").split()

 fakeways = [IPAddr(x) for x in fakeways]

 if arp_for_unknowns is None:

 arp_for_unknowns = len(fakeways) > 0

 else:

 arp_for_unknowns = str_to_bool(arp_for_unknowns)

 core.registerNew(l3_switch, fakeways, arp_for_unknowns, wide)

86

Appendix B POXFW2

 This appendix illustrates the python code of the POX Firewall which

filters any packet based on its protocol number (protocol type) and

destination IP address.

Copyright 2012 James McCauley

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,

software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the License for the specific language governing permissions

and

limitations under the License.

"""

A super simple OpenFlow learning switch that installs rules for

each pair of L2 addresses.

"""

These next two imports are common POX convention

from pox.core import core

import pox.openflow.libopenflow_01 as of

from pox.lib.packet.ethernet import ethernet

Even a simple usage of the logger is much nicer than print!

log = core.getLogger()

This table maps (switch,MAC-addr) pairs to the port on 'switch'

at

which we last saw a packet *from* 'MAC-addr'.

(In this case, we use a Connection object for the switch.)

table = {}

To send out all ports, we can use either of the special ports

OFPP_FLOOD or OFPP_ALL. We'd like to just use OFPP_FLOOD,

but it's not clear if all switches support this, so we make

it selectable.

all_ports = of.OFPP_FLOOD

87

Handle messages the switch has sent us because it has no

matching rule.

def _handle_PacketIn(event):

 packet = event.parsed

 if packet.type == ethernet.IP_TYPE:

 if packet.payload.protocol == 17 and packet.next.dstip ==

'10.0.0.1':

 return

 if packet.type == ethernet.IP_TYPE:

 if packet.payload.protocol == 1 and packet.next.dstip ==

'10.0.0.2':

 return

 if packet.type == ethernet.IP_TYPE:

 if packet.payload.protocol == 1 and packet.next.dstip ==

'10.0.0.3':

 return

 if packet.type == ethernet.IP_TYPE:

 if packet.payload.protocol == 6 and packet.next.dstip ==

'10.0.0.4':

 return

 # Learn the source

 table[(event.connection, packet.src)] = event.port

 dst_port = table.get((event.connection, packet.dst))

 if dst_port is None:

 # We don't know where the destination is yet. So, we'll

just

 # send the packet out all ports (except the one it came in

on!)

 # and hope the destination is out there somewhere. :)

 msg = of.ofp_packet_out(data=event.ofp)

 msg.actions.append(of.ofp_action_output(port=all_ports))

 event.connection.send(msg)

 else:

 # Since we know the switch ports for both the source and

dest

 # MACs, we can install rules for both directions.

 msg = of.ofp_flow_mod()

 msg.match.dl_dst = packet.src

 msg.match.dl_src = packet.dst

 msg.match.dl_type = packet.type

 msg.idle_timeout = 2

 msg.hard_timeout = 0

 msg.actions.append(of.ofp_action_output(port=event.port))

 event.connection.send(msg)

 # This is the packet that just came in -- we want to

 # install the rule and also resend the packet.

 msg = of.ofp_flow_mod()

88

 msg.data = event.ofp # Forward the incoming packet

 msg.match.dl_src = packet.src

 msg.match.dl_dst = packet.dst

 msg.idle_timeout = 2

 msg.hard_timeout = 0

 msg.match.dl_type = packet.type

 msg.actions.append(of.ofp_action_output(port=dst_port))

 event.connection.send(msg)

 log.debug("Installing %s <-> %s" % (packet.src,

packet.dst))

def launch(disable_flood=False):

 global all_ports

 if disable_flood:

 all_ports = of.OFPP_ALL

 core.openflow.addListenerByName("PacketIn", _handle_PacketIn)

 log.info("Pair-Learning switch running.")

