
يمبسم الله الرحمن الرح

SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

COLLEGE OF GRADUATE STUDIES

Arduino Universal Serial Bus (USB) Interfacing

with MATLAB Control Toolbox

مع مكتبة التحكم في الماتلاب بواسطة الناقل للأردوينوالربط البيني

 التسلسلي العالمي

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of

M.Sc. in Mechatronics Engineering

 Prepared By:

Rufaidah Abdallah Ibrahim Mohammed

Supervised By:

Dr. Awadalla Taifour Ali Ismail

July 2018

i

َى:الَ عَ ت َ َالَ قَ

كَِدْن اََ﴿ كَ ذ لِك َأ خِيهِ َوِع اءِ َمِنْ َاسْت خْر ج ه ا َثمَُّ َأ خِيهِ َوِع اءِ َق بْل أ َبأِ وْعِي تِهِمْ ف ب د

اهَُفِيَ َأ خ َليِ أْخُذ كَ ان َم ا َأ نَْي ش اء َاللَّهَُن رْف عَُد ر ج اتٍَم نَْن ش اءَُليُِوسُف لِكَِإِلََّّ دِينَِالْم

كَُلِ َذِيَعِلْمٍَع لِيمَ ﴾َو ف وْق

 (76)الآيةي وسفََ:سورة

ََََََََََََََََََََََََ َََ

ii

Dedication

She gives me unconditional love, she support me, her love is the fuel for me to

go and try

 …................My mother.

He makes me feel like I can do anything

 My father.

 For my friends.

 For my teachers.

.......................For all everyone know me, I dedicate this research.

iii

Acknowledgement

In the Name of Allah, the Beneficent, the Merciful first praise is to Allah, the

Almighty, on whom ultimately we depend for sustenance and guidance.

I wish to express my deepest gratitude to my supervisor: Dr. Awadalla Taifour Ali

for his excellent guidance, encouragement and support were really valuable

throughout this research.

 This research would never have been possible without devotion, cooperation and an

endless will to help of Eng. Yassir Mohammed Alkasim, I would like to express my

deep and sincere gratitude for his continuous support me, guidance and academic

cooperation.

I also offer my regards to the faculty of engineering, Omdurman Islamic University,

its leadership and the staff for providing me with an academic base, which has

enabled me to take up this study. I deepest thanks and appreciation and gratitude to

the head of Electrical and Electronic Department Ust. Husam ELdin Alfadel.

Finally, I so thankful to express the profound gratitude to my family, teachers and

friends who supported me to complete the research successfully.

iv

Abstract

Nowadays, the Arduino are widely used in daily applications because it is easy

to be deal with. Besides, MATLAB software tool is proper tool be used as interface

with hardware such as Arduino. The main aim of this research is to design a Direct

Current (DC) motor speed controller circuit controlled and monitored by MATLAB

program designed in SIMULINK and Graphical User Interface (GUI) environment.

 This thesis focuses on the DC motor speed control by varying the duty cycle of

Pulse Width Modulation (PWM) signal via Arduino, which is used to generate PWM

signals assisted by MATLAB software. PWM speed control is desirable due to its

high power efficiency compare and with another method of speed control like

frequency control, current and voltage control. The motor averages the input duty

cycle into a constant speed which is directly proportional to the percent duty cycle.

The MATLAB sends PWM signal to Arduino through Universal Serial Bus (USB),

Arduino will boost the PWM signal to the driver to control the motor. Both

SIMULINK and GUI programs were able to control and monitor the motor speed

which is most important feature in engineering control applications as data

acquisition and research tools.

v

 لصــــــــــــــــــــمستخ

الى جانب .لسهولة التعامل معهالتطبيقات اليومية على نطاق واسع في أردوينوم ستخدي لوقت الحاضرفي ا

للربط البيني تستخدم التي مناسبة الالبرمجيات وأدوات البحث و أهم التطبيقات الهندسية من تلابالما يعتبر ذلك

 محركتصميم دائرة للتحكم في سرعة ث هو الرئيسي من هذا البحالهدف .أردوينو مثل الاخرى مع الأجهزة

واجهة المستخدم و السميولينكمن خلال واجهة الماتلاببرنامج ستخدامإبوعرض النتائج التيار المستمر

 . Graphical User Interface (GUI)ةــــــوميـــالرس

 بإستخدام(PWM) عرض النبضةإشارة عن طريق تغييروتركز هذه الأطروحة على التحكم في سرعة المحرك

 باستخدام تقنية التحكم في السرعة .الماتلاببمساعدة برنامج PWMتوليد إشارات بوالذي يقوم أردوينو

PWM ةسرع تحكم فيلل المستخدمة خرى الأ الطرق كفاءة العالية مقارنة مع لل نظرا امرغوب فيه طريقة يه

 أردوينو إلى PWMإشارة بإرسال الماتلابيقوم .والجهدلتحكم في التيار مثل التحكم في التردد، وا المحركات

 وبواسطة. Driver ناقل الحركة بواسطة (DC Motor) المحرك في سرعة تحكم(للUSB) وصلةمن خلال

أدوات من أهم وتعتبر هذه البرامج عرض النتائجالتحكم في سرعة المحرك و تم GUIو SIMULINKكل من

 .DAQ في تطبيقات التحكم الهندسي مثل الحصول على البيانات البحث

vi

Table of Contents

Contentes Page No.

يةالآ i

Dedication ii

Acknowledgement iii

Abstract English iv

 v مستخلص

Table Of Contents vi

List Of Figure vii

List Of Table ix

Abbreviation x

Chapter One: Introduction

1.1 General Review 1

1.2 Problem Statements 1

1.3 Objectives 1

1.4 Methodology 2

1.5 Research Layout 2

 Chapter Two: Literature Review

2.1 Introduction 3

2.1.1 Open loop and closed loop system 4

2.1.2 Classical and modern control system 4

2.2 Direct Current Motor 5

2.2.1 Advantages of DC motor 5

2.2.2 Disadvantages of DC motor 6

2.2.3 Classification of DC motor 6

2.2.4 Basic DC motor equation 6

2.2.5 Speed control of DC motor 7

2.3 Sensors 8

2.3.1 Sensor performance characteristics 9

2.3.2 Types of sensor 9

2.3.3 Photo sensor 10

2.4 Arduino 10

vii

2.4.1 Features of Arduino 11

2.4.2 Arduino characteristics 11

2.4.3 Types of Arduino 12

2.4.4 Arduino hardware 14

2.4.5 Arduino power supply 14

2.4.6 Arduino programming 14

2.4.7 Arduino board applications 15

2.5 SIMULINK 15

2.5.1 Simulink real time workshop 16

2.5.2 Features of real time workshop 17

2.6 Graphical User Interface 17

2.7 Literature Review 19

Chapter Three: System Description

3.1 Description of System Components 22

3.1.1 Arduino Uno 22

3.1.2 DC motor control using PWM 24

3.1.3 Photoelectric sensor LM393 IR sensor 25

3.1.4 Motor driver unit 25

3.2 System Design 27

3.2.1 Hardware design 27

3.2.2 Software consideration 28

Chapter Four: Experimental Results and Discussion

4.1 Results 32

4.2 Discussions 34

Chapter Five: Conclusion and Recommendations

5.1 Conclusion 35

5.2 Recommendations 35

References 36

Appendix 38

viii

List of Figures

Figure Title Page

No.

2.1 Open loop control system 4

2.2 Closed loop feedback system 5

2.3 The DC machine 7

2.4 Arduino boards 13

3.1 System block diagram 22

3.2 Arduino Uno board 23

3.3 Pulse width modulation waveforms 24

3.4 LM393 sensor board 26

3.5 L293D pin configuration 27

3.6 The DC motor design model 28

3.7 System flow chart 29

3.8 The SIMULINK model 30

3.9 GUI for the DC motor speed control 31

4.1 Motor driving signal and RPM feedback sensor measures (without Filter) 32

4.2 Motor driving signal and RPM feedback sensor measures (with Filter) 33

4.3 RPM sensor measurements 33

4.4 RPM sensor measurements and numeric value 34

ix

List of Tables

Table Title Page No.

3.1 Specification of Arduino Uno board 23

3.2 Specification of LM393 sensor 26

3.3 Specification of motor driver unit L293D 26

x

Abbreviation

Abbreviation Meaning

DC Direct Current

GUI Graphical User Interface

PWM Pulse Width Modulation

USB Universal Serial Bus

DAQ Data Acquisition

ODE Ordinary Differential Equation

IDE Integrated Development Environment

I/O Input/output

LCD Liquid Crystal Display

GPS Global Position System

GSM Global System for Mobile Communication

DSP Digital Signal Processing

ASCII American Standard Code for Information Interchange

API Application Program Interface

IR Infra-Red

RPM Revolutions Per Minute

IC Integrated Circuit

PC Personal Computer

GUIDE Graphical User Interface Development Environment

BLDC Brushless Direct Current

PID Proportional Integral Derivative

HIL Hardware In the Loop

TTL Transistor Transistor Logic

FRC Flat Ribbon Cable

LPF Low Pass Filter

Chapter One

Introduction

1

Chapter One

Introduction

1.1 General Review

 Data Acquisition (DAQ) systems are used by most engineers and scientists for

laboratory research, industrial control, test and measurement to input and output data

to and from computer. DAQ system is a system which acquires the data i.e.

input/output parameters from the field with the help of sensors associated with the

system, it analyses the data and generate control action required for operating and

also monitor the acquired data on computer. The DAQ system is basic need for

controlling and monitoring of a Mega system in modern industries.

The field of data acquisition encompasses a very wide range of activities. At its

simplest level, it involves reading electrical signals into a computer from some kind

of sensor. These signals may represent the state of a physical process i.e. position and

orientation of machine tools, furnace temperature, size and shape of a manufactured

component etc. The acquired data may have to be stored, printed or displayed. Often

the data have to be analyzed or processed in some way in order to generate further

signals for controlling external equipment or for interfacing to other computers [1].

1.2 Problem Statement

 Interfacing Arduino based microcontroller with DAQ software tool in MATLAB

in order to have maximum usability and applying a control theories. The DAQ

implementation in MATLAB /SIMULINK and GUI environments to make flexibility

in algorithm usage. These DAQ tools as well as the hardware circuits based on

Arduino microcontrollers as the challenges of this research, and the problem to be

solved.

1.3 Objectives

 To develop a low cost DAQ system for controlling and monitoring a

system using Arduino-UNO controller and MATLAB (SIMULINK and

GUI).

 To interface between the computer and DC motor using Arduino.

2

 To investigate the communication between Arduino-UNO board and

MATLAB (SIMULINK and GUI).

 To design control circuit to test for control operations such as control

experiments in the speed of DC motors.

1.4 Methodology

 Combined theoretical and practical methodologies were adopted in this

research. A theoretical investigation of control theory and applied control, besides

software implementation in both MATLAB and Arduino based microcontroller.

Practical implementation of DAQ circuit and MATLAB software tools.

1.5 Research Layout

 This thesis consists of five chapters including this chapter one. Chapter two

presents an introduction of control systems, theoretical background, and focuses on

the literature review. Chapter three explains and discusses the methodology that have

been used in order to complete this study, there are two parts in this chapter which are

the software development and hardware implementation. Chapter four discusses

about the result obtained and limitations of the study, all discussion are concentrating

on the result and performance of the developed system. Finally Chapter five states the

conclusion of the development of the study and discusses the recommendations for

future work.

Chapter Two

Literature Review

3

Chapter Two

 Literature Review

2.1 Introduction

 A control system is a collection of components working together under the

direction of some machine intelligence. In most cases electronic circuits provide the

intelligence and electromechanical components such as sensors and motors provide

the interface to the physical world. A good example is the modern automobile various

sensors supply the on-board computer with information about the engine’s condition.

The computer then calculates the precise amount of fuel to be injected into the engine

and adjusts the ignition timing. The mechanical parts of the system include the

engine, transmission, wheels, and so on. To design diagnose, or repair these

sophisticated systems, you must understand the electronics, the mechanics, and

control system principles. In days past, so-called automatic machines or processes

were controlled either by analog electronic circuits, or circuits using switches, relays,

and timers. Since the advent of the inexpensive microprocessor, more and more

devices and systems are being redesigned to incorporate a microprocessor controller.

Examples include copying machines, soft-drink machines, robots, and industrial

process controllers. Many of these machines are taking advantage of the increased

processing power that comes with the microprocessor and, as a consequence, are

becoming more sophisticated and are including new features. Taking again the

modern automobile as an example, the original motivation for the on-board computer

was to replace the mechanical and vacuum-driven subsystems used in the distributor

and carburetor. Once a computer was in the design, however, making the system

more sophisticated was relatively easy. For example, self-adjusting fuel/air ratio for

changes in altitude. Also features such as computer-assisted engine diagnostics could

be had without much additional cost. This trend toward computerized control will no

doubt continue in the future [2].

 The basic of control system consists of three components: input, logic operation and

output or decision device. Input is the cause parameter on which the control system

acts, the logic operation is the intended or desired operation to perform on the input

for generating a new output state, and the output is drive parameter which actuates

4

the end component to perform the desired task. These can be open loop or closed loop

control system depends on output feedback. Block diagram reduction helps in

analysis and simplification of control system.

2.1.1 Open loop and closed loop system

 There are two common classes of control systems, open loop control systems and

closed loop control systems. In open loop control systems output is generated based

on inputs. An open-loop control system utilizes an actuating device to control the

process directly without using feedback as shown in Figure 2.1.

Figure 2.1: Open loop control system

 In closed loop control systems current output is taken into consideration and

corrections are made based on feedback. A closed loop system is also called a

feedback control system. The human body is a classic example of feedback systems.

A closed-loop control system uses a measurement of the output as feedback of this

signal to compare it with the reference or command signal as illustrated in Figure 2.2.

Figure 2.2: Closed-loop feedback system

2.1.2 Classical and modern control system

 There are essentially two methods to approach the problem of designing a new

control system: the classical approach, and the modern approach. Classical and

modern control methodologies are named in a misleading way, because the groups of

Output Input Controller Process

Feedback

Controller

Actuator Process Output Input

5

techniques called “classical” were actually developed later than the techniques

labeled "modern". However, in terms of developing control systems, modern methods

have been used to great effect more recently, while the classical methods have been

gradually falling out of favor. Most recently, it has been shown that classical and

modern methods can be combined to highlight their respective strengths and

weaknesses. Classical methods are methods involving the Laplace transform domain.

Physical systems are modeled in the so-called "time domain", where the response of a

given system is a function of the various inputs, the previous system values, and time.

As time progresses, the state of the system and its response change. However, time-

domain models for systems are frequently modeled using high-order differential

equations which can become impossibly difficult for humans to solve and some of

which can even become impossible for modern computer systems to solve efficiently.

To counteract this problem, integral transforms, such as the Laplace transform and

the Fourier Transform, can be employed to change an Ordinary Differential Equation

(ODE) in the time domain into a regular algebraic polynomial in the transform

domain. Once a given system has been converted into the transform domain it can be

manipulated with greater ease and analyzed quickly by humans and computers like.

Modern control methods, instead of changing domains to avoid the complexities of

time-domain ODE mathematics, converts the differential equations into a system of

lower-order time domain equations called state equations, which can then be

manipulated using techniques from linear algebra.

2.2 Direct Current Motor

 DC motor is used in many industrial applications that require adjustable speeds.

In uses requiring quick stops, a DC motor can minimize the size of mechanical brake

or make it unnecessary. This is done by dynamic braking (motor generated energy fed

to a resistor grid), or by regenerative braking (motor generated energy returned to the

ac supply).

2.2.1 Advantages of DC motor

• Reasonably inexpensive

• Easy to control

• Adaptable

6

2.2.2 Disadvantages of DC motor

• Brushes eventually wear out

• Brushes create electrical interference

2.2.3 Classification of DC motor

 DC motors are commonly constructed with wound rotors and either wound or

permanent magnet stators. Wound-field motors use an electromagnet called the field

winding to generate the magnetic field. The only other way to generate a magnetic

field is with permanent magnets. DC motor can be classified according to the method

of connecting the field windings with the armature windings so the main types of DC

motors are:

• Series-wound DC motor

• Shunt-wound DC motor

• Compound-wound DC motor

2.2.4 Basic DC motor equation

 The DC motor consists of the field and an armature, the field being excited by

DC windings, which set up a magnetic flux (∅) linking the armature as shown in

Figure 2.3 part a. The function of the commutator and brushes is to ensure that the

current in armature conductors under any pole is in a given direction irrespective of

the speed of the armature. The commutator acts as mechanical frequency-changer to

change the alternating current in a given armature conductor to the direct in the brush

lead. The circuit diagram of a DC motor is shown in Figure 2.3 part b. When rotating,

an internal voltage (E) or back E.M.F (Eb) is generated in the armature by virtue of its

rotation in magnetic flux. The terminal armature voltage (V) will differ from E by the

internal voltage drop. The load torque will give rise to a current in the armature, the

current level being a function of the torque and magnetic flux values. The basic DC

motor equations are:

V = Eb + IaRa (2.1)

Eb = k1N∅ (2.2)

T = k2Ia∅ (2.3)

∅ = k3If (2.4)

7

Cross mechanical power = TN = EbIa (2.5)

Where T is the torque, Iaand If are the armature and field currents respectively, Ra is

the armature resistance, N is speed (rad/s), and k1, k2 and k3 are constants of

proportionality [3].

Figure 2.3: The DC machine

Brush

V

If Ia

Field

Armature

Shaft

Speed N

Torque T

(b) Circuit representation

N

N

S S

 ×
× ×

×

×
× × ×

•

•

•
•

•

•

•

•

Armature

conductors

Field winding

Flux Φ

(a) Construction (4-poles)

8

2.2.5 Speed control of DC motor

 Speed control of a motor refers to the intentional change of the motor speed to

a value needed for performing the required work. The natural change in speed due to

change in load on the shaft is not included in the concept of speed control. The speed

of wound-field motors is controlled by varying the voltage to the armature or field

windings. This particular series of motors is available from 0.25 to 1hp and at several

standard rated speeds. The rated speed of a motor is the speed when it is supplying

the rated horsepower when the motor is unloaded, it will go faster than the rated

speed. These motors are designed to run at 90Vdc because 90V is about what a

practical rectifier circuit can produce from standard 120 Vac. The speed can be

controlled by adjusting the rectified voltage. Based on the operating parameters, the

speed of DC motors governed by the equation:

N =
(Va − IaRac)

CE ∅
 (2.6)

 On the right hand side of Equation (2.6) there are three operating parameter, namely,

the voltage applied to the armature circuit (Va), the voltage drop in the armature

circuit (Ia Rac) and the useful flux per pole (Ф). Accordingly the different methods of

controlling the speed of DC motors are broadly classified as [3]:

(i) Flux control method by changing Ф.

(ii) Armature resistance control by changing Ia Rac drop.

(iii) Armature voltage control by changing Va.

2.3 Sensors

 A sensor is a device that converts a physical phenomenon into an electrical

signal. As such, sensors represent part of the interface between the physical world

and the world of electrical devices, such as computers. The other part of this interface

is represented by actuators, which convert electrical signals into physical phenomena.

In recent years, enormous capability for information processing has been developed

within the electronics industry. The most significant example of this capability is the

personal computer. In addition, the availability of inexpensive microprocessors is

having a tremendous impact on the design of embedded computing products ranging

from automobiles to microwave ovens to toys. In recent years, versions of these

9

products that use microprocessors for control of functionality are becoming widely

available. In automobiles, such capability is necessary to achieve compliance with

pollution restrictions. In other cases, such capability simply offers an inexpensive

performance advantage. All of these microprocessors need electrical input voltages in

order to receive instructions and information. So, along with the availability of

inexpensive microprocessors has grown an opportunity for the use of sensors in a

wide variety of products. In addition, since the output of the sensor is an electrical

signal, sensors tend to be characterized in the same way as electronic devices. The

data sheets for many sensors are formatted just like electronic product data sheets.

However, there are many formats in existence, and there is nothing close to an

international standard for sensor specifications. The system designer will encounter a

variety of interpretations of sensor performance parameters, and it can be confusing.

It is important to realize that this confusion is not due to an inability to explain the

meaning of the terms rather it is a result of the fact that different parts of the sensor

community have grown comfortable using these terms differently [4].

2.3.1 Sensor performance characteristics

 The following are some of the more important sensor characteristics:

 Transfer function

 Sensitivity

 Span or Dynamic Range

 Accuracy or Uncertainty

 Hysteresis

 Nonlinearity (often called linearity)

 Noise

 Resolution

 Bandwidth

2.3.2 Types of sensor

 Chemical sensors

 Capacitive and inductive displacement sensors

 Flow and level sensors

 Force, load and weight sensors

10

 Humidity sensors

 Machinery vibration monitoring sensors

 Optical and radiation sensors

 Position and motion sensors

 Pressure sensors

2.3.3 Photo sensor

 Photo sensor are classed by the physical quantity that is affected by the light,

and the main classes are photoresistors, photovoltaic materials and photomitters.

Historically, photomitters have been more important in unravelling the theory of the

effect of light on materials, but photovoltaic materials notably selenium, were in use

for some considerable time before the use of photoemission became practicable.

Since photoemission allows us to combine the description of a usable device with the

quantum effect, we will consider this type of sensor first, which can also be used to a

limited extent and transducer.

A photoelectric sensor is an electrical device that responds to a change in the intensity

of the light falling upon it. The first photoelectric devices used for industrial presence

and absence sensing applications took the shape of small metal barrels, with a

collimating lens on one end and a cable exiting the opposite end the cable connected

a photo resistive device to an external vacuum tube type amplifier. A small

incandescent bulb, protected inside a matching metal barrel, was the opposing light

source. These small, rugged incandescent sensors were the forerunners of today’s

industrial photoelectric sensors [5].

2.4 Arduino

 Arduino is a small microcontroller board with a USB plug to connect to your

computer and a number of connection sockets that can be wired up to external

electronics, such as motors, relays, light sensors, laser diodes, loudspeakers,

microphones, etc. They can either be powered through the USB connection from the

computer or from a 9V battery. They can be controlled from the computer or

programmed by the computer and then disconnected and allowed to work

independently. Arduino is an open-source design for a microcontroller interface

11

board, it is actually rather more than that, as it encompasses the software

development tools that you need to program an Arduino board, as well as the board

itself. There is a large community of construction, programming, electronics, and

even art enthusiasts willing to share their expertise and experience on the internet.

The first Arduino was introduced in 2005, aiming to provide a low cost, easy way for

novices and professionals to create devices that interact with their environment using

sensors and actuators. Common examples of such devices intended for beginner

hobbyists include simple robots, thermostats, and motion detectors.

2.4.1 Features of Arduino

 Designers and architects build interactive prototypes.

 Makers, of course, use it to build many of the projects example.

 Arduino is a key tool to learn new things.

 Anyone - children, hobbyists, artists, programmers - can start tinkering

just following the step by step instructions of a kit, or sharing ideas online

with other members of the Arduino community.

2.4.2 Arduino characteristics

 Inexpensive

 Arduino boards are relatively inexpensive compared to other microcontroller

platforms. The least expensive version of the Arduino module can be

assembled by hand, and even the pre-assembled Arduino modules cost less

than $50.

 Cross-platform

 The Arduino software Integrated Development Environment (IDE) runs on

Windows, Macintosh OSX, and Linux operating systems. Most

microcontroller systems are limited to Windows.

 Simple, clear programming environment

The Arduino software IDE is easy-to-use for beginners, yet flexible enough for

advanced users to take advantage of as well. For teachers, it's conveniently

based on the processing programming environment, so students learning to

12

program in that environment will be familiar with how the Arduino IDE

works.

 Open source and extensible software

The Arduino software is published as open source tools, available for

extension by experienced programmers. The language can be expanded

through C++ libraries, and people wanting to understand the technical details

can make the leap from Arduino to the AVR C programming language on

which it's based. Similarly, you can add AVR-C code directly into your

Arduino programs if you want to.

 Open source and extensible hardware

The plans of the Arduino boards are published under a creative commons

license, so experienced circuit designers can make their own version of the

module, extending it and improving it. Even relatively inexperienced users can

build the breadboard version of the module in order to understand how it

works and save money.

2.4.3 Types of Arduino board

 There are, in fact, several different designs of Arduino board, these are intended

for different types of applications, they can all be programmed from the same

Arduino development software, and in general, programs that work on one board

will work on all. The original Arduino hardware is manufactured by the Italian

company smart projects. Some Arduino-branded boards have been designed by

the American company SparkFun Electronics. Sixteen versions of the Arduino

hardware have been commercially produced to date listed below:

 Arduino Diecimila in Stoicheia

 Arduino Duemilanove (rev 2009b)

 Arduino UNO

 Arduino Leonardo

 Arduino Mega

 Arduino MEGA 2560 R3

https://en.wikipedia.org/wiki/SparkFun_Electronics
https://en.wikipedia.org/wiki/SparkFun_Electronics

13

 Arduino Nano

 Arduino Due (ARM-based)

 Lily Pad Arduino (rev 2007)

These are some of the various Arduino Input/ Output (I/O) board, clockwise from the

top left is Uno (great starter board), Lilypad (normally used for clothing applications),

a Pro (very small), a Mega (very powerful), and an Ethernet board as shown Figure

2.4. These boards all have analog and digital input/output. The Uno and Mega have

the USB programming interface included - the other boards need an additional board

to plug in (or solder in) to program.

Figure 2.4: Arduino boards

2.4.4 Arduino hardware

 There are two rows of connectors on the edges of the board, the row at the top

of the diagram is mostly digital (on/off) pins, and although any marked with

PWM can be used as analog outputs and the bottom row of connectors has useful

power connections on the left and analog inputs on the right. These connectors are

14

arranged to access shield boards. It is possible to buy ready-made shields for

many different purposes, including:

• Connection to Ethernet networks

• Liquid Crystal Display (LCD) displays and touch screens

• XBee (wireless data communications)

• Sound

• Motor control

• Global Position System (GPS) tracking

• And many more

2.4.5 Arduino power supply

 The power supply can be any voltage between 7 and 12 volts, so a small 9V

battery will work just fine for portable applications. Typically, while you are

making your project, you will probably power it from USB for convenience, when

you are ready, disconnect the USB lead you will want to power the board

independently, this may be with an external power adaptor or simply with 9V

battery connected to a plug to fit the power socket.

2.4.6 Arduino programming

 When you are making a project with an Arduino, you will need to download

programs onto the board using a USB lead between your computer and the

Arduino, this is one of the most convenient things about using an Arduino. Many

microcontroller boards use separate programming hardware to get programs into

the microcontroller. Serial communication with Arduino, it’s all contained on the

board itself, this also has the advantage that you can use the USB connection to

pass data back and forth between an Arduino board and your computer, For

instance, you could connect a temperature sensor to the Arduino and have it

repeatedly tell your computer the temperature.

2.4.7 Arduino board applications

• Wireless sensors networks

• Controlling robots

• Environment monitoring

15

• GPS tracking system

• Controlling motors

• Smart systems

• Global System for Mobile (GSM) communications

• Internet of thing applications

• Camera control and others

2.5 SIMULINK

 SIMULINK is a software package for modeling, simulating, and analyzing

dynamical systems. It supports linear and nonlinear systems, modeled in continuous

time, sampled time, or a hybrid of the two. Systems can also be multi rate, i.e., have

different parts that are sampled or updated at different rates. For modeling, Simulink

provides a GUI for building models as block diagrams, using click-and-drag mouse

operations. With this interface, you can draw the models just as you would with

pencil and paper (or as most textbooks depict them). This is a far cry from previous

simulation packages that require you to formulate differential equations and

difference equations in a language or program. Library of sinks, sources, linear and

nonlinear components, and connectors. You can also customize and create your own

blocks. For information on creating your own blocks, see the separate writing S-

Functions guide. Models are hierarchical, so you can build models using both top-

down and bottom-up approaches. You can view the system at a high level, then

double-click on blocks to go down through the levels to see increasing levels of

model detail. This approach provides insight into how a model is organized and how

its parts interact. After you define a model, you can simulate it, using a choice of

integration methods, either from the Simulink menus or by entering commands in

MATLAB’s command window. The menus are particularly convenient for interactive

work, while the command-line approach is very useful for running a batch of

simulations (for example, if you are doing Monte Carlo simulations or want to sweep

a parameter across a range of values). Using scopes and other display blocks, you can

see the simulation results while the simulation is running. In addition, you can change

parameters and immediately see what happens, for “what if” exploration. The

simulation results can be put in the MATLAB workspace for post processing and

visualization. Model analysis tools include linearization and trimming tools, which

16

can be accessed from the MATLAB command line, plus the many tools in MATLAB

and its application toolboxes. And because MATLAB and Simulink are integrated,

you can simulate, analyze, and revise your models in either environment at any point.

2.5.1 Simulink Real-Time Workshop

 The Simulink real-time workshop automatically generates C code directly from

Simulink block diagrams. This allows the execution of continuous, discrete-time, and

hybrid system models on a wide range of computer platforms, including real-time

hardware. Simulink is required. The real-time workshop can be used for:

• Rapid prototyping. As a rapid prototyping tool, the real-time workshop

enables you to implement your designs quickly without lengthy hand

coding and debugging. Control, signal processing, and dynamic system

algorithms can be implemented by developing graphical SIMULINK block

diagrams and automatically generating C code.

• Embedded real-time control. Once a system has been designed with

 Simulink, code for real-time controllers or digital signal processors can be

generated, cross-compiled, linked, and downloaded onto your selected

target processor. The real-time workshop supports Digital Signal

Processing (DSP) boards, embedded controllers, and a wide variety of

custom and commercially available hardware.

• Real-time simulation. You can create and execute code for an entire system

or specified subsystems for hardware-in-the-loop simulations. Typical

applications include training simulators (pilot-in-the-loop), real-time model

validation, and testing.

• Stand-alone simulation. Stand-alone simulations can be run directly on

your host machine or transferred to other systems for remote execution.

Because time histories are saved in MATLAB as binary or American

Standard Code for Information Interchange (ASCII) files, they can be

easily loaded into MATLAB for additional analysis or graphic display.

2.5.2 Features of real –time workshop

 Real-time workshop provides a comprehensive set of features and capabilities

that provide the flexibility to address a broad range of applications:

17

• Automatic code generation handles continuous-time, discrete-time, and

hybrid systems.

• Optimized code guarantees fast execution.

• Control framework Application Program Interface (API) uses customizable

make files to build and download object files to target hardware

automatically.

• Portable code facilitates usage in a wide variety of environments.

• Concise, readable, and well-commented code provides ease of

maintenance.

• Interactive parameter downloading from Simulink to external hardware

allows system tuning on the fly.

• A menu-driven, graphical user interface makes the software easy to use.

2.6 Graphical User Interface

 GUI is a particular case of user interface for interacting with a computer which

employs graphical images and widgets in addition to text to represent the information

and actions available to the user. Usually the actions are performed through direct

manipulation of the graphical elements. The first graphical user interface was

designed by Xerox Corporation's Palo Alto Research Center in the 1970s, but it was

not until the 1980s and the emergence of the Apple Macintosh that graphical user

interfaces became popular. One reason for their slow acceptance was the fact that

they require considerable CPU power and a high-quality monitor, which until

recently were prohibitively expensive. A GUI is a pictorial interface to a program, a

good GUI can make programs easier to use by providing them with a consistent

appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,

and so forth. A true GUI includes standard formats for representing text and graphics.

The GUI should behave in an understandable and predictable manner, so that a user

knows what to expect when he or she performs an action. For example, when a

mouse click occurs on a pushbutton, the GUI should initiate the action described on

the label of the button. Many DOS programs include some features of GUIs, such as

menus, but are not graphics based. Such interfaces are sometimes called graphical

character-based user interfaces to distinguish them from true GUIs. In MATLAB, a

GUI can also display data in tabular form or as plots, and can group related

18

components. The MATLAB graphical user interface development environment,

provides a set of tools for creating graphical user interfaces. These tools simplify the

process of laying out and programming GUIs. The basic tasks in process of

implementing a GUI is first, laying out a GUI where MATLAB implement GUIs as

figure windows containing various styles of user interface objects. The second task is

programming the GUI, where each object must be program to perform the intended

action when activated by the user of GUI. Each component, and the GUI itself, is

associated with one or more user written routines known as callbacks. The execution

of each callback is triggered by a particular user action such as, mouse click,

pushbuttons, toggle buttons, lists, menus, text boxes, selection of a menu item, or the

cursor passing over a component and so forth. Clicking the button triggers the

execution of a callback. For example, if a user clicks on a button, that event must

cause the MATLAB code that implements the function of the button to be executed.

The code executed in response to an event is known as a call back. This kind of

programming is often referred to as event-driven programming. The event in the

example is a button click. In event-driven programming, callback execution is

asynchronous, controlled by events external to the software. In the case of MATLAB

GUIs, these events usually take the form of user interactions with the GUI. The writer

of a callback has no control over the sequence of events that leads to its execution or,

when the callback does execute, what other callbacks might be running

simultaneously.

2.7 Literature Review

 This study [1] presents data acquisition system is a system which acquires the

data i.e. input/output parameters from the field with the help of sensors associated

with the system, it analyses the data and generate control action required for

operating and also monitor the acquired data on GUI. The DAQ system is basic need

for controlling and monitoring of a Mega system in modern industries. So the main

objective of this paper is to develop a low cost DAQ system for controlling and

monitoring a system using Arduino-Uno controller and LabVIEW GUI. In other way

if we want, we can also monitor the data on mobile phone with an Android

application.

19

 This study [6] describes a Simulink lab practice using Arduino as low cost

hardware. A shell must be developed in order to adapt Arduino signals to the real

plant, consist of a DC motor. With Arduino architecture and with open hardware a

cheap data acquisition card has been build. Several tests have been done to validate

de full system and a frequency study has been completed in order to know the

possibilities of the proposed architecture in the control of new other plants.

 This study [7] presents the DC motors are widely used for variable speed drive

system in industrial applications such as industrial automation, electric traction,

aircraft, military equipment, hard disk drives because of their high efficiency, silent

operation, compact, reliability and low maintenance. Due to the advancement of

wireless technology, there are several connections are introduced such as GSM, Wi-

Fi, ZIGBEE and Bluetooth. Each of the connection has their own unique

specifications and applications. Among these wireless connections, Bluetooth

technology often implemented. The speed control was implemented using Bluetooth

technology to provide communication access from smart phone. Communication

plays a major role in day today’s life and can be used as a better tool in control

system. It deals with wireless communication and voice recognition and is used to

control the motor speed. On the other hand we have Arduino-Uno platform that we

can use to quickly prototype electronic systems. It enables a person to work around

independently using a touch screen and voice recognition applications which is

interfaced with motors using Arduino-Uno microcontroller. This can also be

controlled through simple voice commands. In addition to this Infra-Red (IR) sensor

is used to sense the motor speed and in turn speed of the motor can be received via

Bluetooth to the android mobile.

 This study [8] presents a Precise, cheap control and monitoring the speed of DC

motor is ever hot area of work. In the present paper have attempted to implement

speed control and feedback monitoring for a 12 Volt/1000 Revolutions Per Minute

(RPM) rated motor. Speed control is done with help of PWM pins on Arduino/AVR

board and H-bridge Integrated Circuit (IC) L293D. Feedback speed monitoring is

based on IR pair based interrupt monitoring. Hence Sensing and calculation part of

process is handled by Arduino/AVR board. All of this is implemented with help of

20

Personal Computer (PC) based user interface developed in C#. In a typical user

interface speed control is achieved with help of track bar and speed monitoring with

help of text window, was we get direct readout of current speed in RPM.

 This study [9] presents a graphical user interface of motor control through

MATLAB Graphical User Interface Development Environment (GUIDE), interface

the MATLAB GUI with hardware via communication port and control the DC motor

through MATLAB GUI. By using MATLAB GUIDE, it provides a set of tools which

simplify the process of laying out and programming GUIs and interface with PIC via

serial communication port to control the DC motor. The PIC is used to control motor.

As a result, the DC motor is able to be controlled through MATLAB GUI and

interface the MATLAB GUI with PIC via serial communication port.

 This study [10] presents a Brushless DC (BLDC) motors are the most widely

used electrical drive in the industry. The development process of the drive is costly

and time-consuming. However, various methods can be used to reduce the

development time of the drive. This paper presents the model-based design technique

of BLDC motor using MATLAB/Simulink with Arduino support block set. The

model of BLDC motor is developed using black-box modeling approach; simulations

are performed based on real-time data and processed using MATLAB system

Identification tool box. The Proportional Integral Derivative (PID) controller is then

designed and tuned within the simulations to attain the drive performance. For real-

time application, the controller code is generated and uploaded into Arduino Mega

embedded controller. The results obtained from simulation and experiment is

discussed and compared. The performed works concludes that model-based design

technique can be applied in any control design application using low cost controller

such as Arduino embedded controller.

 This study [11] presents a DC motor is widely uses for speed control and load

characteristics, it's easy controllability provide effective and precise output so

application of DC motor is large for commercial purpose. Speed control of DC motor

is very crucial in application where required speed is precision and correcting signal

representing and to operate motor at constant speed, so we used PWM method which

21

are fulfill all requirements to speed control of DC motor. PWM based speed control

system consists of electronic components (integrated circuits, sensors etc.).

 This study [12] presents speed control mode of a DC motor without knowing the

specific parameters of the motor is discussed. The approximate mathematical model

of the control system is obtained by the system identification when the output of the

system is measured by loading the specific input signal. The PID control algorithm is

adopted and the P, I, and D parameters are obtained by auto tuning. Hardware In the

Loop (HIL) experiments are carried out on MATLAB and Arduino platform, in

which the experimental results demonstrate the feasibility of the proposal.

Chapter Three

System Description

22

Chapter Three

System Description

3.1 Description of System Components

 The block diagram of system as shown in Figure 3.1. The system components

are explained in detail.

Figure 3.1: System block diagram

3.1.1 Arduino Uno

 Arduino is an open hardware/software platform, The Arduino Uno is a

microcontroller board based on the ATmega328 is shown in Figure 3.2. Arduino

becomes a very fast development platform even for those how aren't into electronics’

world. Arduino programming becomes much faster because the graphical open-

source environment makes it easy to write code and upload it to the board.

Arduino is an open-source electronics prototyping platform based on flexible, easy-

to-use hardware and software. Arduino can sense the environment by receiving input

from a variety of sensors and can affect its surroundings. Arduino projects can be

stand-alone, or they can communicate with software running on a computer. In this

development, Arduino Uno is used as the main controller because it satisfies these

conditions as Table 3.1.

MATLAB Arduino DC

Motor

Speed Sensor

Driver

23

Figure 3.2: Arduino Uno board

Table 3.1: Specification of Arduino Uno board

Microcontroller

Specification

Operating Voltage 5V

Input Voltage

(recommended)

7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which 0.5KB used by boot

loader

EEPROM 1 KB (ATmega328)

Clock Speed

16 MHZ

24

3.1.2 DC motor control using PWM

 PWM signal consists of a train of voltages pulses such that the width of

individual pulses controls the effective voltage level. Pulse width modulation is an

entirely different approach to controlling the torque and speed of a DC motor. Power

is supplied to the motor in a square wavelike signal of constant magnitude but

varying pulse width or duty cycle. Duty cycle refers to the percentage of time the

pulse is high (per cycle). Figure 3.3 shows the waveforms for four different speeds.

For the slowest speed, the power is supplied for only one-quarter of the cycle time

(duty cycle of 25%). The frequency of the pulses is set high enough to ensure that the

mechanical inertia of the armature will smooth out the power bursts, and the motor

simply turns at a constant velocity of about one-quarter speed. For a 50% duty cycle

(power on one-half the time), the motor would turn at about half speed, and so on [2].

Figure 3.3: Pulse width modulation waveforms

 PWM control is a very commonly used method for controlling the power across

loads. This method is very easy to implement and has high efficiency. PWM signal is

essentially a high frequency square wave (typically greater than 1KHz). The duty

cycle of this square wave is varied in order to vary the power supplied to the load.

Duty cycle is usually stated in percentage and it can be expressed using the equation:

Duty Cycly =
Ton

Ton + Toff

∗ 100% (3.1)

25

Where Ton is the time for which the square wave is high and TOff is the time for which

the square wave is low. When duty cycle is increased the power dropped across the

load increases and when duty cycle is reduced, power across the load decreases.

3.1.3 Photoelectric sensor (LM 393 IR sensor)

 Photoelectric sensors detect objects that pass between the two arms. Because the

emitter and receiver are built into the same enclosure, optical axis alignment is not

necessary for accurate detection. These U-shaped photoelectric sensors are suitable

for positioning; cut-off mark and paper feed sensing needs. Photoelectric sensors are

designed for optimum value and sensing performance in a wide range of

manufacturing applications. They provide a variety of optical styles and electrical

configurations in small, easy-to-use, economical packages. With high speed and the

ability to work with many types of sensors, these devices are ideal for controlling

batch size, material length-cutting, punch/drill machinery and gas/liquid flow

applications. The LM393 sensor is a voltage comparators and photoelectric counting

sensor chip, used for counting (motor speed etc.) with three pins, the ground pin, the

voltage pin, and the output pin on board as shown in Figure 3.4 and specification as

Table 3.2.

3.1.4 Motor driver unit

 The motor driver unit L293D is available for providing user with ease and user

friendly interfacing for embedded application. L293D motor driver is mounted on a

good quality. The pins of L293D motor driver IC are connected to connectors for

easy access to the driver IC’s pin functions as shown in Figure 3.5 and specification

of driver as Table 3.3. The L293D is a dual full bridge driver that can drive up to 1A

per bridge. It can drive two DC motors, relays, solenoids, etc. The device is

Transistor Transistor Logic (TTL) compatible. Two H bridges of L293D can be

connected in parallel to increase its current capacity to 2A. L293D motor driver is

easily compatible with any of the system and easy interfacing through Flat Ribbon

Cable (FRC).

26

Figure 3.4: LM393 sensor board

Table 3.2: Specification of LM393 sensor

Specification

Input Supply Voltage 5v / 3.3v

Detection Distances Range 5 - 50 mm

Repeatability ± 0.1 - 0.2 mm

Output Low LED on (Nothing detected)

Output High LED off (Obstruction between the emitter and

receiver)

Size PCB (24 x15 mm)

Options Single and dual beam

Table 3.3: Specification of motor driver unit L293D

Specifications

Internal Power Supply 5V DC

External Power Supply 9V to 24V DC

Output Current Capability per Channel 600 mA

Temperature Range 44mm x 37mm x14mm (l x b x h)

Dimensional Size 0°C to +70 °C

27

Figure 3.5: L293D pin configuration

3.2 System Design

 The DC motor design model as shown in Figure 3.6. The control system designs

generally consist of Arduino Uno controller development board, DC motor driver,

DC motor, IR speed sensor and PC with MATLAB software. In system speed of the

DC motor is controlled through the Arduino Uno using MATLAB.

3.2.1 Hardware design

 The physical system is a DC motor connected to Arduino Uno board via a

motor driver.

1. Arduino board

 An Arduino board is used due to low cost, simplicity and flexibility.

2. Motor driver unit (IC L293D)

 Pins 2 and 7 of L293D are connected to PWM pins of Arduino (pins 3 and 4

respectively). This pins are used to control speed of rotation. Values written in the

range of 0-5 volt on this pin change the speed of motor from 0-max rated. Pin 8 is

connected to Vin pin of Arduino (supply voltage).

28

3. IR sensor

 IR sensor is used for speed measurement. VCC pin of module connected to 5V pin of

Arduino, the GND pin connected to the GND pin of Arduino and the output pin

connected to pin 2 of Arduino.

4. Motor Unit

 Motor is 12 volt/1000 RPM rated DC motor. Motor is connected to pins 3 and 6

of L293D.

Figure 3.6: The DC motor design model

3.2.2 Software consideration

 In system speed of the DC motor is controlled through the Arduino Uno using

MATLAB. Figure 3.7 shows flow chart of the system.

29

Figure 3.7: System flow chart

A. Simulink model

 Figure 3.8 shows the Simulink model. This model explains how to use

Simulink blocks to read analog signals from real world and how to use PWM output

signals to control of the DC motor. Arduino boards are usually programed by writing

C/C++ code in Arduino IDE window, but in this system it will be programmed using

MATLAB/SIMULINK package for Arduino. Simulink is a block diagram based

environment for simulating mathematical models and it can be used to program some

Start

Set Pin 3 and Pin 4 as output

Set Pin 2 as input

Set motor driving signal to Pin 3 and Pin 4

Read values in Pin 2

Calculate RPM

Plot RPM with time

End

30

of the Arduino boards. To use Simulink with Arduino a support package is needed.

The Arduino can easily interface with a host PC through Simulink with the Arduino

IO package provided by Mathworks. The Arduino IO package allows any blocks

developed in Simulink to quickly interface with an ATMega328 running an Arduino

IO server on the Arduino Uno. With the use of the real-time pacer block to match the

simulation clock to real time, models can run in real time with the physical system.

This simple block diagram provides real time communication between the board and

Simulink. The interface for the integration of control designs created in Simulink are

made fast and simple.

Figure 3.8: The Simulink model

B. Graphical User Interface

 GUIDE stands for graphical user interface development environment. It

provides a set of tools for creating GUI. GUI is useful for letting users input data

graphically and view results graphically, all in the same figure window. MATLAB

GUIDE, it provides a set of tools which simplify the process of laying out and

programming GUIs and interface with Arduino to control the DC motor.

31

The system present user can control speed of DC motor with help of a friendly user

interface as shown in Figure 3.9 and the m-file as shown in Appendix contains the

code to load the figure and call backs for each GUI element. User can select direction

of rotation viz. Clockwise/Anticlockwise at click of a button during any time of

operation. Can select speed of rotation with help of slider. Stop motor with button

click. And also monitor current speed (speed RPM) of speed sensor in text window.

The speed slider can be moved to the left or right of the center (zero) point depending

on the direction one wish the motor to rotate. Negative speed (left of the slider)

means the motor will rotate reverse clockwise, while positive speed (right of the

slider) means the motor will rotate clockwise. The motor can be stopped returning the

slider to zero. In addition, it can be stopped by pushing the Stop button.

Figure 3.9: GUI for the DC motor speed control

Chapter Four

Experimental Results and Discussions

32

Chapter Four

Experimental Results and Discussions

4.1 Results

 Regarding DAQ using SIMULINK model, where output to the Arduino and

motor has been driven using SIMULINK model as shown in Figure 3.7. Driving

signal (red colored) and feedback signal (blue colored) measuring RPM of the motor

without and with filter has been shown in Figures 4.1 and Figure 4.2 respectively.

Figure 4.1: Motor driving signal and RPM feedback sensor measures (without filter)

33

Figure 4.2: Motor driving signal and RPM feedback sensor measures (with filter)

When using GUI, the feedback reading are plotted is same window in the DAQ tool,

as shown in Figures 4.3 and Figure 4.4.

Figure 4.3: RPM sensor measurements

34

Figure 4.4: RPM sensor measurements and numeric value

4.2 Discussions

 Data acquisition software tool developed in this research, has a task that driving

a DC motor with a certain speed or signal waveform and measure the response of the

motor using IR speed sensor. The tool which developed in SIMULINK environment

has results which shown in Figure 4.1, shows that the motor responded for the input

signal, besides, the RPM measurements need be averaged over the time, response of

RPM signal showing follow up for driving signal up to 30 seconds, some sample after

this time are strange values of readings. Which has been shown in Figure 4.2, the

sensor values has passed through Low Pass Filter (LPF), where lag of response due to

the filter, and some peaks appeared following up driving signal. For GUI DAQ, the

motor derived using buttons in a GUI as shown Figure 3.9. The measured reading

from IR sensor shown in Figure 4.3, which is reading versus time. Although a

numerical value of the RPM written in text box as shown in Figure 4.4. Regarding

Figure 4.3 the measurements were averaged through time.

Chapter Five

Conclusion and Recommendations

35

Chapter Five

Conclusion and Recommendations

5.1 Conclusion

 This work proposed a low cost DAQ system using Arduino-UNO controller

and MATLAB (SIMULINK AND GUI). Using SIMULINK and Arduino is one of

the simplest ways to make satisfying controller for many purposes in variety of

technical systems. Tests in this research show that Arduino can be very flexible for

programming a control algorithms using MATLAB/SIMULINK. One purpose of this

kind of controller is using it in laboratory exercises where students can easily modify

controller’s parameters and see what is going on with output value of the system that

they are studying. Sample time of this controller can be changed and adapted to the

system requirements. The advantages of using Arduino controller with Simulink

Arduino target is an inexpensive, open source microcontroller board and allows the

creation of applications in the Arduino platform based on a visual programming

environment with block diagrams.

 The GUI can be extended to other purposes also and not only learning about the

DC motor. It can be used for learning induction motors, alternators, image processing

and other. The use of a GUI through MATLAB is quite extensive as it can be coupled

with other toolboxes in MATLAB quite effectively making it an appealing

prospective for students to learn about a new topic or area of interest.

5.2 Recommendations

1. Using more accurate RPM sensor such as incremental encoder sensors.

2. Enhance the averaging ability of the averaging filter, or design more optimal

filter, in order to increase the accuracy of RPM values.

3. Add PID tuning option for both GUI and SIMULINK.

36

References

[1] Nidhi Kanani and Manish Thakker, ‘‘Low Cost Data Acquisition System

Using LABVIEW’’, International Journal of Research and Scientific

Innovation (IJRSI), Vol. 3, Issue 1, December 2015.

[2] Kilian Delemar, "Modern Control Technology: Components and Systems",

2nd Ed., Cengage, 2005.

[3] K. Murugesh Kumar, "DC Machines and Transformers", 2nd Ed., New Delhi:

Vikas Pvt Ltd, 2003.

[4] Jon S. Wilison, "Sensor Technology Handbook", London: Elsevier Ltd,

2005.

[5] Lan R. Sinclair, "Sensor and Transducer", 3rd Ed. London: Butterworth-

Heinemann, 2001.

[6] R. Barber and M. Horra. J. Crespo, ‘‘Control Practices using Simulink with

Arduino as Low Cost Hardware’’, International Federation of Automatic

Control (IFAC), Vol. 47, Issue 17, 2013.

[7] B.Gokul1, K. Karthi, A. Thiyagaseelan and V. Santhosh Kumar, ‘‘Android

Based Closed Loop Speed Control of DC Motor Using Voice Recognition via

Bluetooth’’, International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering (IJAREEIE), Vol. 5, Issue 3,

March 2016.

[8] Prithviraj R. Shetti1 and Ashok G. Mangave, ‘‘DC Motor Speed Control with

Feedback Monitor Based ON C# Application’’, International Journal of

Research in Engineering and Technology (IJRET), Vol. 3, Issue 3, March

2014.

[9] Arpita Srivatava and Anil Kumar Chaudhary, ‘‘DC Motor Speed Control

Using ATMEGA89S52 and MATLAB GUI Application’’, International

Journal of Science and Research (IJSR), Vol. 5, Issue 12, December 2016.

37

[10] M. K. Hat, B. S. K. K. Ibrahim, T. A. T. Mohd and M. K. Hassan, ‘‘Model

Based Design of PID Controller for BLDC Motor with Implementation of

Embedded Arduino MEGA Controller’’, ARPN Journal of Engineering and

Applied Sciences, Vol. 10, Issue 19, October 2015.

[11] Khan Masoom Raza, Mohd. Kamil and Pushpendra Kumar, “Speed Control

of DC Motor by using PWM” , International Journal of Advanced Research in

Computer and Communication Engineering (IJARCCE), Vol. 5, Issue 4,

April 2016.

[12] Wei-Jie Tang, Zhen-Tao Liu and Qian Wang, “DC Motor Speed Control

Based on System Identification and PID Auto Tuning”, Dalian, China, 2017.

38

Appendix

M.file Code

function varargout = DC_Motor (varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name',mfilename, ...

 'gui_Singleton',gui_Singleton, ...

 'gui_OpeningFcn', @DC_Motor_OpeningFcn, ...

 'gui_OutputFcn', @DC_Motor_OutputFcn, ...

 'gui_LayoutFcn', [], ...

 'gui_Callback', []);

if nargin && ischar (varargin{1})

 gui_State.gui_Callback = str2func (varargin{1});

end

if nargout

 [varargout {1:nargout}] = gui_mainfcn (gui_State, varargin{:});

else

 gui_mainfcn (gui_State, varargin{:});

end

function DC_Motor_OpeningFcn (hObject, eventdata, handles, varargin)

handles.output = hObject;

guidata (hObject, handles);

function varargout = DC_Motor_OutputFcn (hObject, eventdata, handles)

varargout {1} = handles.output;

clc

clear all

global a;

global rpm;

global speed;

39

rpm = 0;

a = arduino

function ClockWise_Callback(hObject, eventdata, handles)

global a;

global rpm;

i = 0;

previous_time = 0;

keeplooping = true;

writeDigitalPin (a, 3,1);

writeDigitalPin (a, 4,0);

plot (rpm);grid;

title ('Sensor measurements')

xlabel ('Time (sec)')

ylabe l ('RPM')

while keeplooping

 val = readDigitalPin(a,2);

 rpm = [rpm i];

 i = rpm;

 plot (rpm);grid;

 title ('Sensor measurements')

 xlabel ('Time (sec)')

 ylabe l('RPM')

 if (val==1)

 t = clock;

 current_time = t(6);

 pulse_time = current_time - previous_time;

 rpm = (1/pulse_time)*60;

 previous_time = current_time;

 set (handles.rpm_value,'string',num2str(rpm));

 else

 rpm = 0;

 end

40

end

function ReverseClockWise_Callback(hObject, eventdata, handles)

global a;

global rpm;

i = 0;

previous_time = 0;

keeplooping = true;

writeDigitalPin (a, 3,0);

writeDigitalPin (a, 4,1);

while keeplooping

 val = readDigitalPin (a,2);

 rpm = [rpm i];

 i = rpm;

 plot (rpm);grid;

 title ('Sensor measurements')

 xlabel ('Time (sec)')

 ylabel ('RPM')

 if(val==1)

 t = clock;

 current_time = t (6);

 pulse_time = current_time - previous_time;

 rpm = (1/pulse_time)*60;

 previous_time = current_time;

 set(handles.rpm_value,'string',num2str(rpm));

 else

 rpm = 0;

 end

end

function Stop_Callback(hObject, eventdata, handles)

global a;

writeDigitalPin (a, 3,0);

writeDigitalPin (a, 4,0);

41

function slider1_Callback (hObject, eventdata, handles)

global a;

global rpm;

i = 0;

previous_time = 0;

keeplooping = true;

slider = get (hObject,'Value');

slider_1 = slider*20;

set(handles.SpeedValue, 'string', num2str(slider_1));

writePWMVoltage (a,3,slider);

guidata (hObject,handles);

while keeplooping

 val = readDigitalPin(a,2);

 rpm = [rpm i];

 i = rpm;

 plot (rpm);grid;

 title ('Sensor measurements')

 xlabel ('Time (sec)')

 ylabel ('RPM')

 if (val==1)

 t = clock;

 current_time = t (6);

 pulse_time = current_time - previous_time;

 rpm = (1/pulse_time)*60;

 previous_time = current_time;

 set (handles.rpm_value,'string',num2str(rpm));

 else

 rpm = 0;

 end

end

function slider1_CreateFcn (hObject, eventdata, handles)

42

if isequal (get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set (hObject,'BackgroundColor',[.9 .9 .9]);

end

function SpeedValue_Callback (hObject, eventdata, handles)

function SpeedValue_CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set (hObject,'BackgroundColor','white');

end

function rpm_value_Callback(hObject, eventdata, handles)

function rpm_value_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function set_speed_Callback(hObject, eventdata, handles)

global speed;

speed = get (hObject,'string');

speed = str2double (speed);

function set_speed_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set (hObject,'BackgroundColor','white');

end

function set_speed_button_Callback (hObject, eventdata, handles)

global a;

global rpm;

global speed;

i = 0;

previous_time = 0;

43

keeplooping = true;

writePWMVoltage (a,3,speed/40);

while keeplooping

 val = readDigitalPin (a,2);

 rpm = [rpm i];

 i = rpm;

 plot (rpm);grid;

 title ('Sensor measurements')

 xlabel ('Time (sec)')

 ylabel ('RPM')

 if (val==1)

 t = clock;

 current_time = t (6);

 pulse_time = current_time - previous_time;

 rpm = (1/pulse_time)*60;

 previous_time = current_time;

 set (handles.rpm_value,'string',num2str(rpm));

 else

 rpm = 0;

 end

end

