SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY
COLLEGE OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Software-Defined Networking
for Datacenters

A THESIS SUBMITTED AS PARTIAL FULFILLMENT OF THE
REQUIREMENTSFOR THE DEGREE OF B.Sc. (HONORS) IN COMPUTER
SYSTEMS AND NETWORKS

OCTOBER 2017

SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY
FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Software-Defined Networking
for Datacenters

PREPARED BY::
STUDENT: Khaled Fath-Alrhman Mohamed Ahmed
STUDENT: Obay Mohamed Al-Hassan Abadi

SUPERVISED BY:

Dr. Niemah lzzeldin Mohamed Osman

A THESIS SUBMITTED AS A PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF B.Sc. (HONORS) IN COMPUTER
SYSTEMS & NETWORKS

SIGNATURE OF SUPERVISOR: DATE:

{ e Gl WS LR &5 s 1890 o JA0) g L (i)

(24) o)

: 95)9 ﬁ)

ally adila By goamll sslpally gma glaget Jos aaley claal ga J& @t
osoplell aalam agylapeg elalell gealys agalamy

olssty sl

ot @ilal Jamy assas sealea g Bralillaina @8 0Ly izas olail sl
1Jg9l adagia (saly atsaiy pdynm drag qia Llosey. spmlly JUll

o /"” ;}J"ﬁ 3D 7 oy a2
P oo Rugym 18 990 0 S

@le dagiaall g dxpgall —pgmll 32 dasi : Bygidanll Jag 32 alll mry Yol pduag

Qe sparinall ~auiladl gean sy Zosiall e mpminy slagagilly slagleall
ol iaiiy gapslaly gaaleag essia 0y Ghll (s s g5iag Bl pagaslas
s s Loyl s 9

Abstract

Software-Defined Networking (SDN) is a new networking design approach which is
spreading fast. This approach is based on the separation of data and control planes,
which offer the network operator certain advantages in terms of centralized
programmatic control. This centralized approach of management and control maintains
a global view of the network rather than managing tens of thousands of lines of
configuration scattered among thousands of network devices. Software-defined

networks aim to provide high flexibility to modify network state and behavior.

This thesis aims to explore the new emerging paradigm Software-Defined Networking
and test its implementation and demonstrate how to implement SDN concepts within a
datacenter network taking Sudan University of Science and Technology datacenter
network as a case study.The project also implements load balancing with the help of
software. The new SDN approach reduces the cost, offers flexibility in configuration,
reduces time to deploy, provides automation and facilitates building a network without

requiring the knowledge of any vendor-specific software/hardware.

The project uses Mininet emulation environment, and POX as a controller to control
this environment. The emulation components are integrated together to construct the
system. The output of this project is an SDN datacenter based network controlled by
the POX controller.

Oaldial)

e adiny Lisa y A8 el GISAN Leny GISU aaal (B 20a o sefe b€ Ao juny | A%e sk
Satl G e Ui e A8 Jail il 315 oSy ULl aay o deadl) o o seial
e Vap A AL 500 oSadll s 50V Cum (e oSl el 13 i (5 3Ssal ae
1) a3 eal e YY) G s i) dasal) e ghd e YY) G yEe 5
) 4 5 S sl s A0l s Qe D gyl g Mo 508 Al) Cangd Syl

LS Cpmg ity Wos (30 Lise pr 48 pmall QIS 23 g csliSiu)) Eaall 13a Caagy
LUl o glall o gudl daadls & bl S 5o S0 TAAT el S0 50 S0 e Ll
RS e panll el JB lima) 83 Lieay Jaantl 5 31 5o i & gyl p gy LS Alla Al S
A el Jemny Y Jialial) g9 Joandiall 0 53U i gl) Jlay 5 Jasuall 8 A3 g pall iy 9 A0S

) sall Aalall lae il ol 3 jeal) 48 jaal dalall (50

o3 & oSaill (POX) pSadiay cdiiall 3 5ea¥) 8Saal (MININET) 4w g sodall 128 axdiny
aSaie aladiuly Ly aSall g alaill oy oS3 Aaliae 3 jeal (o BlSlaall Ly ol Jal aaand &3 Aanl)
a3 b Sl 5 L yy e iy S e 350 e Jpmmall 1 g 5 phal) 138 gy ald

(POX) aSaia

Table of Contents

ABSTRACT .ttt et e et et et e e re e e beere et e te e e e renreenes v
OAIAIMAL |ttt bbbttt et et ettt rere s \Y
CHAPTER 1 INTRODUCTION......ccuiiiiiiieii it 1
1.1 PREFACE ..ottt ettt ettt e e b e e e e e e e nnneas 2
1.2 THE PROBLEM STATEMENT ..coiutiiitieiitiesteeesieeaieesteessteesiseesseeesseesseesnsessnneessneenes 3
1.3 PROPOSED SOLUTION ...ceuiitiiiienieiesteestestesseeseesiesseeseessessesseessesseaseessessessesssessesnes 4
1.4 AIMS AND OBIECTIVEStiitiiiieiesiisieesiesiesteeseestesteesesstessessesseessesnesstesneesesseesneenes 4
1.5 SCOPE ...ttt bbbt nnae e nene e 5
1.6 METHODOLOGY ...utiiiuiieiiiieieeaieeasteesiteesiteesteeasseessbeesssesssseessseebeesnbeesssesssseessneenes 5
1.7 THESIS OUTLINE ..uvitiitietiesiesteeee e ste et siesse e ettt sreeseesbesbeeneesbesneeneesnesneanes 5
CHAPTER 2 SOFTWARE-DEFINED NETWORKINGccoovviiiniiniienieniieiens 7
2.1 INTRODUCTION TO SDIN ...ooiiiiiiiiieiiieiiie ettt 8
2.1.1 SDN BacCKgroUNd.........cceiiuiiiiiiiiiiiie et 8
2.1.2 SDIN PIECUISOIS ...uvviiutieitiesitee sttt e site st ettt st e et et et essbeesnaeennee e 9
2.1.3 SDIN DefiNITION ...c.vviiiie ettt nne e 9
2.1.4 Network Programmabilitycccoooviriiieiic e 10
2.1.5 Control plane and data plane Separation............ccccvvvevieiiniieesieesineseeseenienn 10
2.1.6 SDN MOUIVALION.....coiiiiiiiiieiiesie ettt reesre e re e 11
2.2 SDN ARCHITECTURE ...cuttittitieriestesteeiestesteeseestesseeseessessessesssessessesssessesseessessennes 13
2.3 SDIN CONTROLLERSccttttiteesiestesteeiestesteeseestesseeseessessessesssessesssessessesseessessennes 15
2.3.1 INO X ettt ettt e nre e enes 16
2.3.2 POX ittt 16
2.3.3 RYU i 16
2.3.4 FIOOAIGNT:o 16
2.3.5 OPeNDAYLIGNL: ..o e 17

2.4 OPENFLOW PROTOCOLciuiiiiiiiiieitiesieesieesieesieesseesseessessesnsesssesssesnsesssesssessesssns 18
2.4.1 OPENFIOW STIUCTUIE ..ot 18
2.4.2 OPENFIOW SWILCH ..o s 18

2.5 SDN IN DATACENTERS ...oittitierietesteeiestesieeseestesseesesssessessesssessessesssessesseessessennes 20
2.6 SDIN MIGRATIONciiiiiitieitiie sttt ettt et st sbeessb e e srneesnee e e 22
2.6.1 Google legacy-to-hybrid migrationcccoceveiiiinieneninee e 23

2.7 NETWORK VIRTUALIZATION ...ceittiitieiiiesieesitesteesseesseesseesesssesssesssesssessssssssssessses 25
2.8 SUMMARY ..ttt eitie ettt ettt ettt ettt e bt e et e e s bt e e e bb e ek et e bt e e nbe e anbe e anb e e nane e nnne e e 26
CHAPTER 3 LITERATURE REVIEW, TOOLS AND TECHNIQUES 27
3.1 INTRODUCTION ...ttiuiiiuieisteettesteesieesteesteestaessaessaessaeseeseenseanseansesnsesnsesseesseessanssns 28
3.2 LITERATURE REVIEWooiviiiiiiieie sttt sttt 28
3.2.1 Event-Driven Network Control Using Software-Defined Networking....... 28

\

3.2.2 Software Defined Networking based Data-Center Servicesccccceeu.... 29
3.2.3 Programmable and Scalable Software-Defined Networking Controllers ... 29

3.2.4 Implementation of Remote Configuration Using SDN Approach 30
3.2.5 Comparing a Commercial and an SDN-Based Load Balancer in Campus
N L= 010 SRR 30
3.2.6 Implementation of SDN in a Campus NAC Use Case........ccceevvrvereeiveennns 31
3.3 TOOLS AND TECHNIQUEScoeuviiiiiieieiesieesiestesseesiestessessesstessessesseesseeseessesseenes 33
3.3.1 Oracle VM VirtualBOXccooiiiiieiiiiiiesieseee s 33
3.3.2 LinuxX Operating SYSEMccciiveiieieeie et 33
3.3.3 IMININEL....oeci e et e e e ee e sre e e nreeenree s 34
3.3.4 POX CONIOIET ...t 34
3.3.5 PYINON e s 35
3.3.6 Wireshark Network ANalyzer.........coceeve e 35
3.3.7 USB t0 Ethernet Aapter........cccoiviiieiiiiecie s 36
34 SUMMARY ..ttt sttt ettt e et e et e e st e e s bt e e be e e sbe e e b e e nbe e e abe e enb e e nhee e nnne e 36
CHAPTER 4 DESIGN AND METHODOLOGYcccooiiiiieieneieeie e 37
4.1 INTRODUCTION w.titiiiiitiatieiesttaseestesseeseessesseasesssessesseessessesseessessesssessessesseessessenns 38
4.2 THE NETWORK TOPOLOGY ...viitieiiiriariesiesteaseesiesseseessesseasssssessesseessessesssessessenns 38
4.3 OPERATING SYSTEM ..iiitiiiiiiitieiiiesitee sttt esieeesteessteestessnbeesiaeessaeessseessnesnseesnsens 39
A4 THE EMULATOR ..ottt ittt ettt snbe e ne e e nneeas 40
4.5 THE CONTROLLERocttitieiestiasiestesteaseestessesseessessesseessessessesssessessssssessessesssessenns 41
4.6 LOAD BALANCINGociiiiieitieiesie sttt sttt sttt sttt s e nne e 42
4.6.1 Load balancing algorithms and methods...........cccoccevivevie e 43
4.6.2 Round-Robin algorithm:cocooiiiiiie s 43
4.7 SOFTWARE CONFIGURATIONcoitiitiarieiesteestestesteestestessaessessessaessessesseessessesneens 45
4.7.1 Mininet INStallation............coove i 45
4.7.2 POX Controller Installationccccooveiii e 48
A.7.3 THE SEIVEIS ...ttt se et e et e et e e e s te e st e e s bae e beeebaesaeesneas 49
4.8 SUMMARY ...oouviiiitiiieiteettesteste e e e steste e st et e s te e st e besbeeseesteebeessesreete e b e sbeaneeseenreeneens 50
CHAPTER 5 IMPLEMENTATION AND RESULTS ..ot 51
5.1 INTRODUCTION ..utitiitieniestesteeseestesteeseestesseeseessesseesesssessessesssessessssssessesseessessennes 52
5.2 IMPLEMENTATION. c.ttttteuteitesteeseestesteeseestesseeseestesseeseessessessesssesseesesssessessesssessenses 52
5.3 SIMULATION RESULTS ...oeitiitieieteiteeitestesteete e stee e stestaeaestessaessestesnaensesresnaenes 53
5.3.1 The HUD SCENANIOcveeivieiiieieceee e 54
5.3.2 The SWILCh SCENAIOeeiiieiie e 55
5.3.3 Load BalanCer SCENAIIOcciveeiie et ce e e sae e snee e nnee s 56
5.4 EXTERNAL DEVICES RESULTS .cuiitieieitiiieeiesiesieeie st sta et sre e sre e 57
5.4.1 HUD CONNEBCHIVITYovieiiiieiiieie ettt 58
5.4.2 SWILCh CONNECLIVITY....c.ooiiiiiiiiiiisieie e s 59
5.4.3 HTTP CONNECHIVITY.....eeiiieiiie ettt snae e nneeennee s 60

5.4.4 FTP CONNEBCLIVITY ...coiuiiiiiiiiieitiesieesieeie ettt 61

S R o T (o [= T 1 - g (o= SO 62
T TS 10 Y 1Y = 220 TR 62
CHAPTER 6 CONCLUSIONS AND FUTURE WORK ...coovvieeeeeeeeeeeee e 63
0 R 000] N[of B 5] 0] N 1S TR 64
5.2 FUTURE WORK ..eevttttieie e eeeeeeeeste s s aeeeasssesasasasseesseseesssssnssssesssesssssannsreeeessensnns 65
REF E R EN CES : ...ttt et e ettt et ettt r e et e et et ee s b e e e eeeeeeeessnrns 66

viii

List of Figures

FIGURE 1.1 A FULLY CONNECTED HIERARCHICAL TOPOLOGY OF A DATACENTER

NETWORK ...uuutttirieteeeeeessieiisssreseeeesessssassssssssseeessessssasastsssseresesssssasssrssssseeseeesanns 4
FIGURE 2.1 (A) TRADITIONAL NETWORK VIEW COMPARED WITH (B) SDN NETWORK

VIEW . 1 tttttttee et e e e e e s s es ettt e e e e e e e e e e et e s ab b e b e e e eeeeeeessaa b b bbb e e eeeeeeeeeaanababrrerereeaeeeeeanrares 11
FIGURE 2.2 THE OPEN SDN ARCHITECTURE.cooittttiiiiieeeeeseesitirrreeeeee e e e s eeannens 13
FIGURE 2.3 EXAMPLES OF THE MOST WELL-KNOWN SDN CONTROLLERS. 15
FIGURE 2.4 OPENFLOW PACKET MATCH FIELDS.vvvvviiiiieeeiiciiiiirireeee e 18
FIGURE 2.5 OPENFLOW SWITCH MODULES.........cocoittiiiiieeeeeeseectirrree e 19
FIGURE 2.6 OPENFLOW CONTROLLER AND SWITCH. .1vvvviiieieiiiiiiiiiireeeeeeeeesenennnnes 20
FIGURE 2.7 THE HIERARCHICAL TOPOLOGY OF A DATACENTER NETWORK. 21
FIGURE 2.8 SDN MIGRATION STEPS. ..uvtttiiiiieeeeiiiiiiisrrreeeereeeessesssssssseeeseesessssssssnes 23
FIGURE 2.9 GOOGLE B4 STARTING NETWORK.ccccuvrrrireeeeeeeieiiirinrreeeeeesessensnnnnnns 24
FIGURE 2.10 GOOGLE B4 PHASED DEPLOYMENT MIXED NETWORK.cceeunnnne. 24
FIGURE 2.11 GOOGLE B4 TARGET NETWORK.......cccitttrrereeeeeesieiiirsnrreeeeeesessenasnnnns 25
FIGURE 3.1 USB TO ETHERNET ADAPTER.ccceiiiiiitttiiiieeeeee e s essinnsrseeeseeeessennnnnnns 36
FIGURE 4.1 SUST DATACENTER NETWORK TOPOLOGY.ocovetrrrriireieeeee s, 38
FIGURE 4.2 SERVICES INSIDE THE DMZ....ccoooiiiiiiiieee e, 39
FIGURE 4.3 LOAD BALANCER.oiiiitttttiiiiiee ettt e s e e s ssibbbrree e s e e e e e s eannnes 42
FIGURE 4.4 ROUND-ROBIN ALGORITHM FLOWCHARTuuuutiiiiiiinnnnnnnnnnnnns 44
FIGURE 4.5 UPDATING PACKAGES ON UBUNTU. ...cccvviiiiiiieeee et 45
FIGURE 4.6 INSTALLING GlIT. eeviiiiiiiiiiiiiiiiieiei e e e e s s e esissrrreees e s e e s s essasssssesssseessssssnsnnns 46
FIGURE 4.7 INSTALLING MININET. ...ciiitttrteteieeeesseiinssrrrereeessessesssssssssseseesssssnssnnens 47
FIGURE 4.8 IMIINIEDIT . ..uuutitiiiiiiee e e s e e ettt ee e e e e e e e s s e e eababa e e e e e e s e e s s e ssabbbbbseeeseeeessessssnees 47
FIGURE 4.9 RUNNING POX CONTROLLER.ccceiiiiiitittiiieeee e e e seeeibrrrreee s e e e e s s e eennsnns 48
FIGURE 4.10 DOCUMENT ROOT FOR SUST'S PAGE.vvvviiieeeeiiiiiiirireeeeeee e 49
FIGURE 5.1 NETWORK TOPOLOGY WITH EXTERNAL DEVICES.uuuiinnnnnnnnnnnnns 52
FIGURE 5.2 POX CONTROLLER GUI. ...ovviiiiiiiiiiiiicie e, 53
FIGURE 5.3 REQUESTING THE SERVICE IN HUB SCENARIOS.cccvvvrrerereeeeeseiinnnnnes 54
FIGURE 5.4 BROADCASTING OF PACKETS IN THE HUB SCENARIOS.ooiiiiiiiiinnnnns 54
FIGURE 5.5 REQUESTING THE SERVICE IN THE SWITCH SCENARIOS.cccceovernnnne. 55
FIGURE 5.6 EXCHANGE OF PACKETS IN THE SWITCH SCENARIO.uuuuiiininnnnnns 55
FIGURE 5.7 RUN LOAD BALANCER.ttttiiiiiieeiiiiiiiiitieeeee e e essrsrrree e e e e e nannes 56
FIGURE 5.8 DISTRIBUTING OF TRAFFIC AMONG SERVERS.cccciuvririreeeeeeeseiinnnnes 57
FIGURE 5.9 ICMP PING BY THE HUB.uutiiiiiii e 58
FIGURE 5.10 BROADCASTING OF PACKETS IN THE HUB SCENARIO.cccveeeeeiiiinnnnne, 58

iX

FIGURE 5.11 ICMP PING BY SWITCH. et ettt et e e e e e e e e e e e e e eneeeenneeennaens 59
FIGURE 5.12 SOURCE AND DESTINATION EXCHANGE PACKETS IN THE SWITCH

SCENARIOS. ... e 59
FIGURE 5.13 HT TP REQUEST . ..evvttttiiiieieeeieieestsiiisssesesssessssssssssessssssssssssssnnssssssssees 60
FIGURE 5.14 EXCHANGE OF HT TP PACKETS. ...uuuiiiiiiii e 60
FIGURE 5.15 FTP REQUEST. coiitiittttiiiie i e e eeetee st s e s e e e e e st estabans s e s e s s s seesaassnssseeeeeees 61
FIGURE 5.16 EXCHANGE OF FTP PACKETS....ccciiiiiiiiititiiie e e e s eeeiirrrree e s e e e e s ssannns 61
FIGURE 5.17 DISTRIBUTING OF TRAFFIC AMONG SERVERS.cccccvviiieereeeeeieiinnnnne 62

List of Tables

TABLE 2.1 COMPARISON BETWEEN SDN AND CONVENTIONAL NETWORKING 12
TABLE 2.2 SUMMARY OF SOME PROPERTIES OF SOME CONTROLLERS.ccvuveeen... 17

TABLE 3.1 COMPARISON OF PREVIOUS WORK AND PROPOSED SYSTEM......ccvuvveenn. 32

Xi

List of Abbreviations

ADC Application Delivery Controller

API Application Programming Interface

CLI Command-Line Interface

CPU Central Processing Unit

DNS Domain Name Server

DMZ Demilitarized Zone

E/IBGP External/Internal Border Gateway Protocol

FIB Forwarding Information Base

FTP File Transfer Protocol

ForCES Forwarding and Control Element Separation

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

IDS Intrusion Detection System

ICMP Internet Control Message Protocol

ISIS Intermediate System to Intermediate System

JVM Java Virtual Machine

NAT Network Address Translation

NAC Network Access Control

NEC Nippon Express Co., Ltd.

NVF Network Virtualization Function

NOS Networking Operating System

ONF Open Networking Foundation

0S Operating System

OVS Open Virtual Switch

OVSDB Open-vSwitch Database = Management
Protocol

PCEP Path Computation Element Protocol

PHD Piled Higher and Deeper

QoS Quality of Service

RCP Routing Control Platform

SDN Software-Defined Networking

SNMP Simple Network Management Protocol

SSL Secure Sockets Layer

SUST Sudan University of Science and Technology

TCAM Ternary Content-Addressable Memory

TCO Total Cost of Ownership

xii

VM Virtual Machine

VMS Virtual Memory System
VLAN Virtual local Area Network
WAN Wide Area Network

xiii

Chapter 1 INTRODUCTION

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Preface

The problem statement
Proposed Solution
Aims and Objectives
Scope

Methodology

Thesis Outline

This chapter provides a brief overview of SDN, problem statement and
the solution proposed, aims and objectives, and the technologies that are used to

develop the project, in addition to thesis outline.

1.1 Preface

In networking devices, there exist three planes: data plane, control plane and
management plane. Data plane refers to the hardware part where forwarding takes
place, while control plane refers to the software part where all network logic and
intelligence takes place. Typically, in networking devices, control plane consists of
firmware developed and maintained by vendors only. Management plane is typically a
part of control plane and is used for network monitoring and controlling purposes. In

this thesis, we focus on the data and control planes.

Software-defined networking (SDN) is a modern architectural approach that
optimizes and simplifies network operations by more closely binding the interaction
(i.e., provisioning, messaging, and alarming) among applications and network services
and devices, whether they are real or virtualized. I1ts common deployment model is by
employing a point of logically centralized network control which then orchestrates,
mediates, and facilitates communication between applications wishing to interact with
network elements and network elements wishing to convey information to those
applications. The controller then exposes and abstracts network functions and

operations via modern, application-friendly and bidirectional programmatic interfaces.

SDN changes the way of designing, configuring and managing networks. By
decoupling the control plane from the data plane the chance of providing secure
network is increased. And with a centralized controller the overall view and
management of a network becomes much easier. While SDN discusses the
centralization of the controller, Network Virtualization Function (NVF) in contrast

discusses the centralization of Services. It offers a new way to design, deploy and

2

manage networking services. NFV couples the network functions, such as NAT,
firewalling, IDS, DNS, and caching in a unified device that may be a real hardware or

a virtualized device (controller).

Among many benefits, SDN eliminates the rigidity present in traditional
network and make it easier to build applications for enterprise networks, datacenters,
Internet exchange points, home networks and backbone/WAN. Basically, because it
enables customizing the data plane to perform functions other than match-action like

traffic shaping [1].

1.2 The problem statement

Datacenter networks are designed for satisfying the data transmission demand
of densely interconnected hosts in the datacenter. The network topology and routing
mechanism can affect the performance and latency significantly. Network engineers
also adopt load balancing methods in the design of routing algorithms. However, the
requirement of load balancing routing in datacenter networks cannot be fully satisfied
by traditional approaches. The main reason is the lack of efficient ways to obtain

network traffic statistics from each network device.

Tier-1 switches

7

b
4
)

TOR switches

[J) Wy
LY
iy

i

iy

i

Server racks

A
Lo o g

LITLTLITCT) Y

. -

= o e e T

-

T T

i R Y T =
B N e oy
e e e e

.
=
X
ﬁﬁl‘.u,llh L9

T R

il

RRRARIRARAN]:;

4

Figure 1.1 A fully connected hierarchical topology of a datacenter network

1.3 Proposed Solution

As a solution, The OpenFlow protocol enables monitoring traffic statistics by a
centralized controller. To achieve high performance and low latency, we propose a

load balancer for OpenFlow based datacenter networks.

1.4 Aims and Objectives

The aim of this project is to test and examine the behavior of SDN environment
on datacenter topology and different types of packets (Control packets, Data packets,

etc.).

The objectives of this project are to:

e Develop a brief implementation of SDN on datacenter network.
e Implement load balancing on the SDN network.

e Test and evaluate the network connectivity.

1.5Scope

The project deploys Software-Defined Networking in the Sudan University
datacenter. It implements three major datacenter functions: hub, switch and load

balancer in the datacenter network.
1.6 Methodology

In this project we simulate a datacenter network using Mininet network
simulator and this network is managed and controlled by POX controller. The
controller is developed using Python programming language to implement three
different scenarios: Hub, Switch and Load Balancer. We use round-robin algorithm to
apply load balancing and we use Wireshark network analyzer to test and evaluate the
connectivity. In addition, three actual servers are connected to the emulator through
external interfaces, and the connectivity of HTTP and FTP services are verified using
Wireshark.

1.7 Thesis Outline

This thesis approaches the aforementioned issues starting from the motivation
of this thesis and a broader definition of technologies and introduction to the
context, followed by a proposed system design, description of the
implementation tools and measurements analysis. Hereby, the work has been

structured in six main chapters as follows:

Chapter Two:

The chapter presents some basic concepts of Software-Defined Networking

and some other concepts that are relevant to this thesis.

Chapter Three:

This chapter reviews related works to SDN and describes the tools and

technologies used in the implementation phase.

Chapter Four:

The chapter describe the implementation phase. Both network virtualization and
SDN tools were used. The test case scenarios are presented with explanation of
the commands used and detailed overview of the Mininet emulator and controller

architecture.

Chapter Five:

This chapter shows the results obtained from the three network use cases Hub,
Switch and Load Balancer. It also introduces the expectations regarding the SDN

benefits to the applied use cases and consists of an evaluation of the obtained results.

Chapter Six:

The chapter aims to draw the final remarks and conclusions of the presented

work. Proposed optimization and complementary future work are also presented.

Chapter 2 SOFTWARE-DEFINED
NETWORKING

2.1 Introduction to SDN
2.2 SDN Architecture

2.3 SDN controllers

2.4 OpenFlow Protocol
2.5 SDN In datacenters
2.6 SDN Migration

2.7 Network virtualization

2.1 Introduction to SDN

The concept of Software-Defined Networking is not new and completely
revolutionary; rather it arises as the result of contributions, ideas, and development in
research networking. The three most important states in the evolution of SDN: Active
Networks (mid-90s to early 2000), separation of data and control planes (2001-2007),
and the OpenFlow API and networking operating systems "NOS" (2007-2010).

Recently, SDN has developed to become a major research topic for both
researcher and network industry. In this chapter, we describe the basic concepts of
Software-Defined Networking and some other concepts that are relevant to this thesis.
This includes SDN controllers, datacenter technology and OpenFlow protocol, SDN

migration and network virtualization.

2.1.1 SDN Background

Network configuration and installation requires highly skilled personnel to
adept the configuration of many network elements. Where interactions between
network nodes (switches, routers, etc.) are complex, a more systems-based approach
encompassing elements of simulation is required. With the current programming
interfaces on much of today’s networking equipment, this is difficult to achieve. In
addition, operational costs involved in provisioning and managing large multivendor
networks covering multiple technologies have been increasing over recent years.

The term Software-Defined Networking (SDN) has been coined recently.
However, the concept behind SDN has been evolving since 1996, driven by the desire
to provide user-controlled management of forwarding in network nodes.
Implementations by research and industry groups include Ipsilon (proposed General
Switch Management protocol, 1996), the Tempest (a framework for safe, resource-
assured, programmable networks, 1998), Internet Engineering Task Force (IETF)

Forwarding and Control Element Separation, 2000, and Path Computation Element,
8

2004. Most recently, Ethane (2007) and OpenFlow (2008) have brought the
implementation of SDN closer to reality. Ethane is a security management architecture
combining simple flow-based switches with a central controller managing admittance
and routing of flows. OpenFlow enables entries in the Flow Table to be defined by a
server external to the switch. SDN is not, however, limited to any one of these

implementations, but is a general term for the platform [2].

2.1.2 SDN Precursors

SDN improved the flexibility of network control by simplifying the designed
network hardware. While SDN has received a large amount of attention from the
industry, it is worth noting that decoupling control logic and programmable network
ideas have been around for quite some time. In this section, we provide an overview of
early programmable networking efforts, precursors to the current SDN paradigm that
laid the foundation for many of the ideas we are seeing today.

The Open Signaling (OPENSIG) working group began in 1995. The core of
their proposal was to provide access to the network hardware via open, programmable
network interfaces. In the mid-1990s, the Active Networking initiative proposed the
idea of a network infrastructure that would be programmable for customized services.
The 4D project advocated the separation between the routing decision logic and the

protocols governing the interaction between network elements [3].

2.1.3 SDN Definition

The Open Networking Foundation (ONF) is a nonprofit consortium dedicated
to development, standardization, and commercialization of SDN. ONF has provided

the most explicit and well received definition of SDN as follows:

“Software-Defined Networking (SDN) is an emerging network architecture

where network control is decoupled from forwarding and is directly programmable”

[4].

Per this definition, SDN is defined by two characteristics, namely decoupling of
control and data planes, and programmability on the control plane. Nevertheless,
neither of these two signatures of SDN is totally new in network architecture, as

detailed in the following.

2.1.4 Network Programmability

Several previous efforts have been made to promote network programmability.
One example is the concept of active networking that attempts to control a network in
a real-time manner using software. SwitchWare is an active networking solution,
allowing packets flowing through a network to modify operations of the network
dynamically. Similarly, software routing suites on conventional PC hardware, such as
Click, XORP, Quagga, and BIRD, also attempt to create extensible software routers by
making network devices programmable. Behavior of these network devices can be

modified by loading different or modifying existing routing software.

2.1.5 Control plane and data plane
separation

The concept of decoupling between control and data planes has been
proliferated during the last decade. In 2004, Caesar et al. presented a Routing Control
Platform (RCP) to replace BGP inter-domain routing with centralized routing control
to reduce complexity. In the same year, IETF presented the Forwarding and Control
Element Separation (ForCES) framework, to separate control and packet forwarding

elements [5].

10

2.1.6 SDN Motivation

SDN has the potential to simplify network management, and enable innovation
in the evolution of computer networks. It is based on the principle of separating the

control and data planes.

2.1.6.1 Networking the Old Way

In traditional networks, as shown in Figure 2.1(a), the control and data planes
are combined in a network node.

The control plane is responsible for the configuration of the node and
programming the paths to be used for data flows. Once these paths have been
determined, they are pushed down to the data plane. Data forwarding at the hardware
level is based on this control information. In this traditional approach, once the flow
management (forwarding policy) has been defined, the only way to make an
adjustment to the policy is via changes to the configuration of the devices. This has
proven restrictive for network operators who are keen to scale their networks in

response to changing traffic demands, increasing the use of mobile devices, and the

b (15 b 2
impact of “big data.
' u
i T
0s os SDN stack
%
Applications | Applications |
Application AP e -
programmin
Control plane interface (API Control plane
Network topology ACLs, Metwork topology ACLs,
forwarding and routing forwarding and routing
Qos, link management Qos, link management
Tam Tae
r
Data plane Data plane
Link, switching, Link, switching,
forwarding, routing forwarding, routing
Network noda Metwork node)
(a) (b)

Figure 2.1 (a) Traditional network view compared with (b) SDN network view.
11

2.1.6.2 Networking the SDN Way

From these service-focused requirements, SDN has emerged. Control is moved

out of the individual network nodes and into the separate, centralized controller. SDN

switches are controlled by a network operating system (NOS) that collects information

using the API shown in Figure 2.1(b) and manipulates their forwarding plane,

providing an abstract model of the network topology to the SDN controller hosting the

application. Table 2.1 compares SDN and conventional networking.

Table 2.1 Comparison between SDN and Conventional Networking

SDN

Traditional network

Features

Decouple data and control plane,

and programmability.

A new protocol per problem,

complex network control.

Configuration

Automated configuration with

centralized validation.

Error prone manual configuration.

Performance Dynamic global control with | Limited information, and relatively
cross layer information. static configuration.
Innovation Easy software implementation | Difficult hardware implementation

for new ideas, sufficient test
environment with isolation, and
quick deployment using software

upgrade.

for new ideas, limited testing
environment, long standardization

process.

12

2.2SDN Architecture

APPLICATION LAYER

m\(((%» Network Functions

t
(o] Northbound Network Function
n Openstack a :PI : Virtualization (NFV)

CONTROL LAYER

%qg Control Layer
=] § Componentization

Vg W

INFRASTRUCTURE
LAYER

Figure 2.2 The Open SDN architecture.

Figure 2.2 depicts the SDN architecture. As shown in the figure, there are three

different layers:

e Application Layer: Encompasses solutions that focus on the expansion of
network services. These solutions are mainly software applications that
communicate with the controller.

e Control Plane Layer: Includes a logically-centralized SDN controller, which
maintains a global view of the network that takes requests through clearly
defined APIs from application layer and performs consolidated management
and monitoring of network devices via standard protocols.

e Infrastructure or Data-plane Layer: Involves the physical network
equipment, including Ethernet switches and routers. Provides programmable
and high speed hardware and software, which is compliant with industry

standards.
13

At the bottom layer, the physical network consists of the hardware forwarding
devices which store the forwarding information base (FIB) state of the network data
plane (e.g., Ternary Content-Addressable Memory TCAM Entries and configured port
speeds). Data plane interface or standards-based protocols, typically termed as
‘southbound protocols’, define the control communications between the controller
platform and data plane devices such as physical and virtual switches and routers.
There are various southbound protocols such as Openflow, Path Computation Element
Protocol PCEP, Simple Network Management Protocol SNMP, Open-vSwitch
Database Management Protocol OVSDB, etc.

The control plane layer is the core of the SDN, and is realized by the controllers
of each domain, which collect the physical network state distributed across every
control domain. This component is sometimes called the Network Operating System
(NQOS), as it enables the SDN to present an abstraction of the physical network state to
an instance of the control application (running in the Application Layer), in the form
of a global network view.

Northbound Open Application Programming Interface APIs refer to the
software interfaces between the software modules of the controller and the SDN
applications. These interfaces are published and open to customers, partners, and the
open source community for development. The application and orchestration tools may
utilize these APIs to interact with the SDN controller.

Application layer covers an array of applications to meet different customer
demands such as network automation, flexibility and programmability, etc. Some of
the domains of SDN applications include traffic engineering, network virtualization,
network monitoring and analysis, network service discovery, access control, etc. The
control logic for each application instance may be run as a separate process directly on

the controller hardware within each domain.

14

2.3SDN controllers

SDN controllers differ in their basic architecture, programming model, and
other concepts. Every controller has its own ideal situation and the choice of the
controller is affected by many considerations such as the choice of programming
language which can sometimes affect performance, and the learning curve of the
controller. The user base and community support is also a factor. Finally, the choice of
controller should consider the Southbound and Northbound interfaces (policy layer) it

supports and whether it is used for education, research or production environment.

o

Project 7%
Floodllght

CLCLL
.. OU
PON NOX
Trema

Full-Stack OpenFlow

Figure 2.3 Examples of the most well-known SDN controllers.

There are several popular SDN controllers written in different languages offering a
wide variety of services. The most well know controllers are shown in Figure 2.3,

summarized in Table 2.2 and include:

15

2.3.1 NOX:

Is a first-generation OpenFlow controller, it is one of the most widely used
controller because it is stable, open source and it supports OpenFlow. It is available in
two versions. The NOX-Classis which is implemented in C++ or Python but is no
longer supported, and a newer supported version of NOX which is implemented in

C++ only but with a cleaner code base and better performance.

2.3.2 POX:

Which is based on NOX and is a good choice for rapid development and for
developers who want to prototype network controller software. This controller is
written in Python. Its high-level SDN API allows developers to quickly turn their ideas

into reality and helps them to write their own OpenFlow controller.

2.3.3 Ryu:

Is an open-source Python controller that supports OpenFlow and Openstack. It

has relatively poor performance with respect to other commercial grade controllers.

2.3.4 Floodlight:

An Apache-licensed OpenFlow Java-based controller that can be used for
controller development in enterprise networks. This controller is a derivative of
another Java-based controller named Beacon. Floodlight has been used in a
commercial product from Big Switch Networks as a core of their network controller

software.
16

2.3.5 OpenDayL.ight:

The OpenDayLight Project is a recent open-source project founded by some of

the big vendors such as: Big Switch Networks, Brocade, Cisco, Citrix, Ericsson, HP,
IBM, Juniper Networks, Microsoft, NEC, Red Hat and VMware. OpenDayL.ight is

developed as a modular, pluggable, and flexible controller platform. This controller is

completely programmed and integrated within its own Java Virtual Machine (JVM).

Hereby, it can be deployed on any hardware and operating system platform that has

Java environment installed.

Table 2.2 Summary of some properties of some controllers.

NOX POX Ryu Floodlight | OpenDayL.ight
Language C++ Python Python Java Java
Performance | Fast Slow Slow Fast Fast
Distributed No No Yes Yes Yes
OpenFlow 1.0 1.0 1.0,1.1,1.3, |1.0 1.0,1.3
version 1.4
Learning Moderate Easy Moderate | Steep Steep
Curve

17

2.4 OpenFlow Protocol

In SDN standards, OpenFlow Protocol is defined as one of the communication
protocols which enable the SDN/OpenFlow controller to interact with the switching
infrastructure from multi-vendors. The network can better adapt to the changing
business requirements by adjusting the network using OpenFlow protocol. It is utilized
by SDN controller to install flows to the switch/router for implementing network

functions such as data forwarding, traffic partitioning, control flows, etc.[6].

2.4.1 OpenFlow Structure

OpenFlow provides the programming interface with better management of the
forwarding plane. It interacts with the switching infrastructure using a secure channel
to take efficient forwarding decisions. These decisions are given in the form of

Instructions to the switching infrastructure to add/modify flow tables/entries.

2.4.2 OpenFlow Switch

OpenFlow switch is a switch that can communicate with the SDN controller
using OpenFlow protocol. Forwarding in OpenFlow switch is done using Flow tables,
Group tables and a Metering tables. Every flow table in a switch is designed to have a
set of flow entries where each flow has match fields, counters, and a set of instructions
that are applied on matching packets. Figure 2.4 illustrates matching fields in an

OpenFlow Packet.

ETHERNET IP LAYER TP upp
i T
Port ETHER bosbucad Source Destination Source Destination
SA DA TYPE SA DA SA DA Port Port Port Port

Figure 2.4 OpenFlow Packet Match Fields.

18

Figure 2.5 illustrates the OpenFlow Switch. The switch consists of four main modules:

Controller

OpenFlow

Protocol
GROUP METER
Secure Channel TABLE TABLE
FLOW SR —— FLOW
TABLE 1 TABLE n

Pipeline Processing

Figure 2.5 OpenFlow Switch Modules.

1. Secure Channel: to send commands and packets between the controller and
the Open Switch, OpenFlow Channels running over Secure Sockets Layer (SSL) is

utilized. Due to this reason, OpenFlow Channel is also referred to as Secure Channel.

2. Flow Table: which contains match fields, counters and a set of instructions to
apply on the matching flow. To find the corresponding flow rule, tables are looked up
from Table O to Table N. If no flow rule exists then the packet is sent to the controller

for decision on the action.

3. Group Table: contains group entries where each entry has a list of actions.

These actions are applied to packets which are sent to the group entries.

3. Meter Table: consists of meter entries which define per-flow meters. Various
simple QoS can be enabled in OpenFlow by utilizing Per-flow meters, for
example rate-limiting, and can be combined with per-port queues to implement

complex QoS frameworks, such as DiffServ.

19

Communication between the controller and switch when a new flow arrives is
illustrated in Figure 2.6.

Controller decide what to do »| sendbackto
with the packet = switch
A
Switch No forward to
controller
PacketIn o parse matching entry in
packet flow table ?
\ 4

| executed associated @
Vod i action g

Figure 2.6 OpenFlow Controller and Switch.

2.5SDN In datacenters

SDN is considered a mature technology in datacenters. A datacenter is a
centralized repository, either physical or virtual, and employs many host servers and
networking devices that process requests and interconnect to other hosts in the network
or to the public network Internet. The requests made to a data center range from web
content serving, email, distributed computation to many cloud-based applications. The

hierarchical topology of a data center network can be seen in Figure.

20

S
% Border router

> .
(=) 7=, | Access router
~) -
L d ‘\: j
Z E Tier-1 switches E .
B] B] Load balancer
>4 <4 > 4 B A rier-2 swi
n = = Tier-2 switches
= EH EH EF EA EH EH EH EA ER EH £ EH EF) EH EF TOR swirch
— " i A —A il = —A —| —| 1 —A —i =i —
EEEEEEEEEEEEE = IS |= -
— | — S — gl — g' —El —sl | We— — N — _g' | —
— 1 —4 — 4 1 —17 A A A = /A g 1 —]
— — — — el A A = = A — A — i W —
— El —¥ —?! E — ﬁl —El —Fl —;l —?l I | I — —?l | —El
—] L e e s LS o e i i i U —
— — = = = T = = = N o P i —

Figure 2.7 The hierarchical topology of a datacenter network.

A datacenter provides many applications simultaneously that are associated
with a publicly visible IP address. A load balancer acts as a relay, and performs
functions like NAT and firewall preventing direct interactions. So, all external requests
are first directed to a load balancer that distributes responses to the associated host

server(s), and balances the load across the host servers in the network.

SDN has attracted many datacenter operators. Google has deployed the SDN
approach into one of its backbone WANSs known as an internal (G-scale) network that
carries traffic between datacenters. The deployed SDN network has been in operation
at Google, and has offered benefits including higher resource utilization, faster failure
handling and faster upgrade functionality. However, its challenges include fault
tolerant controllers, flow programming and slicing of network elements for a
distributed control. Similarly, Nippon Express Co., Ltd. NEC has also successfully
deployed SDN approaches in the datacenter and backbone network at its own software
factory, Nippon Express Co., Ltd. As well as Kanazawa University Hospital in Japan
[7].

21

2.6 SDN Migration

Open SDN has been well accepted by the networking industry as the way to
transform enterprise, datacenter, service provider, carriers and campus networks. The
objective of this SDN transformation is to enable differentiated new services faster
than ever before, simplify the network, and lower the total cost of ownership (TCO).
The key attributes for a network that has been migrated to SDN are programmability,
openness, heterogeneity, and maintainability. SDN will also facilitate the re-
architecture required to address the increasing demand on the network due to dynamic

connectivity.

As more network operators adopt open SDN, there is a need for best practices

to facilitate the migration of existing networks and services to SDN.

The key steps involved in an SDN migration:

e Identify and prioritize core requirements of the target network. Not all
requirements of the traditional starting network may be met, at least initially, by
the target SDN.

e Prepare the starting network for migration. The starting network might need
to be moved to a clean intermediate standard state from which the rest of the
migration can proceed.

e Implement a phased network migration. Migrating individual devices will
necessitate device-specific drivers and methods.

e Validate the results. Once migration is complete, the target network must be
validated against a documented set of requirements or expectations. Network

migration steps are shown in Figure 2.8.

22

—

~ R
£ N /—'-*\

f \
A]
' N -
Device |

Starting Network Phased Migration Target Network

Figure 2.8 SDN Migration steps.

2.6.1 Google legacy-to-hybrid migration

Google’s OpenFlow Wide Area Network WAN is organized as two distinct
backbones, one carrying Internet-facing user traffic and another carrying internal
traffic between Google’s global datacenters. The breadth of user requirements and the
broad scale of the project made Google’s SDN OpenFlow migration a unique,

challenging use case demonstrating OpenFlow’s flexibility.

The objective of Google’s WAN migration was to improve scalability,
flexibility, and agility in managing the Internet-facing WAN fabric to enhance
Google’s user-based services, including Google+, Gmail, YouTube, Google Maps, and

others.

Both of Google’s WANSs support thousands of individual applications,
tremendous traffic volumes, and latency sensitivities—all governed by different
overall priorities. Google’s internal network that connects multiple datacenters today is
an OpenFlow-based network and a well-known SDN use case. This inter-data-center
network was built in a three-layer architecture: switch hardware layer, site controller

layer, and global control layer.

Google's SDN migration path moved in stages from a fully distributed
monolithic control and data plane hardware architecture to a physically decentralized
23

(though logically centralized) control plane architecture. The hybrid migration for the

Google B4 network proceeded in three general stages:

1. Starting network (Figure 2.9). In the initial stage, the network connected
datacenters through legacy nodes using External/Internal Border Getaway Protocol
(E/IBGP) and Intermediate System Intermediate System (ISIS) routing. Cluster

border routers interfaced the datacenters to the network.

IBGRISISto

Em BT Em Tt

[convo TR corves O v RO v

Starting Metwork

2BGF

Data Center
Metwork

Figure 2.9 Google B4 Starting network.

2. Phased deployment (Figure 2.10).In this mixed-network phase, a subset of the
nodes in the network were OpenFlow-enabled and controlled by the logically
centralized controller utilizing Paxos, an OpenFlow controller, and Quagga an open

source routing stack that Google adapted to its requirements.

a - ~— iIBGRISISto
£ -y remole sites
Data Center ,M
Metwork | Y
 cortrol [Conret
| Cevice R Ceice |
| Device |

Fhased Deploymeant

Figure 2.10 Google B4 Phased deployment mixed network.

24

3. Target network (Figure 2.11).In this final phase, all nodes were OpenFlow-
enabled. In the target network, the controller controls the entire network. There is
no direct correspondence between the datacenter and the network. The controller

also has a TE server that guides the traffic engineering in the network.

Site Controllers

2EFISIS o
remote sites

Central TE
Senver

Data Center
Metwork

Target Network

Figure 2.11 Google B4 Target network.

2.7 Network virtualization

Network virtualization is the representation of one or more logical networks on
the same infrastructure. There are many different instantiations of network
virtualization, some of them emerged since 1990 like VLANS.

Network virtualization provides many benefits such as sharing and thus cost
reduction. However this requires resource isolation in CPU, memory, bandwidth,
forwarding tables and all other resources. It also provides customizability for different
users because they can see their network as a separate logical network and thus being
able to customize it in terms of running different routing and forwarding software on
that particular slice of the virtual network. The legacy of network virtualization for

SDN is quite rich. For example, the notion that a single physical infrastructure can

25

expose different logical network topologies has its roots in network virtualization.
Moreover, the idea of separating service providers from infrastructure providers,
which is very common in software defined networks today, has started in network
virtualization. In addition, the idea of using multiple controllers to control a single
switch and implementing multiple logical switches on a single physical switch has also

started with network virtualization.

2.8 Summary

In this chapter, a detailed survey of SDN has been introduced. The next chapter

overviews literature review, tools and techniques

26

Chapter 3 LITERATURE REVIEW,
TOOLS AND TECHNIQUES

3.1 Introduction
3.2 Literature Review
3.3 Tools and Techniques

27

3.1 Introduction

This chapter reviews related works to SDN, It also explains the techniques and

software products that are used in this project.

3.2 Literature Review

This section survey previous studies on SDN. A comparison with our proposed

system is provided in Table 3.1

3.2.1 Event-Driven Network Control Using
Software-Defined Networking

This project explores SDN as an emerging paradigm and tests its
implementation in dynamic network environments .1t also highlights the problem of
dynamic networks in terms of configurability and the need to look at SDN as an
approach or architecture to not only simplify the network but also make it more
reactive to the requirements of workload and services placed in the network. It also
covers some of the QoS and load balancing mechanisms and provides a validation for

those modules.

Technologies that have been used in this project were Mininet to emulate the
network topology and POX as a controller for an OpenFlow protocol, they also used a
programming language called Kinetic, which is a Python-embedded domain-specific

programming language for writing SDN control programs.

The results for considered parameters concluded that SDN is a very attractive

technology for network operators in the market [8].

28

3.2.2 Software Defined Networking based Data-
Center Services

This PhD dissertation deals with the question of how datacenter networks can
benefit from the integration of Software-Defined Networking. The thesis covered
network primitives, load balancing, QoS overlays and forwarding, and firewalls. It
also introduced new and innovative concepts to realize the usual ingress datacenter
network service chain.

The scope was to collect isolated performance results and verify if this
approach in general can lead to an enhancement of todays predominated data-center
network designs. The tools they have used were OFELIA Control Framework and
TUB Island.

They evaluated the general opportunity of using SDN technology to deploy
these virtual network appliances such as firewall, load balancer, and QoS as network

services in data-center networks [9].

3.2.3 Programmable and Scalable Software-Defined
Networking Controllers

The work in this PhD dissertation demonstrates that it is feasible to
arguably use the simplest possible programming model for centralized SDN policies,
in which the programmer specifies the forwarding behavior of a network by defining a
packet-processing function as an ordinary algorithm in a general-purpose language.

The contribution of this dissertation was the development of a novel SDN
programming model, called algorithmic policies, that provides SDN programmers with
a convenient, high-level programming model for expressing network policies. SDN
programmers define their network policy by writing a function in a general-purpose
language that will be executed on every packet entering the network. This dissertation

introduces Maple, an SDN programming framework consisting of a domain specific

29

language that can be embedded into any programming language with appropriate
support.

It demonstrated that Maple can be used to implement several realistic network
control algorithms, including L2 shortest path routing, declarative access control
policies, traffic monitoring, and policies that include run-time modifiable

administrative parameters [10].

e The Limitations in this work are:
o Maple applies a fully dynamic approach; i.e. it does not perform any
static analysis or static compilation. Instead, Maple must execute the

user’s packet processing function on packets to generate flow tables.

o Any algorithm which changes system state on every packet will prevent

Maple from caching any decisions in flow tables.

3.2.4 Implementation of Remote Configuration
Using SDN Approach

The purpose of this research was to take advantages of SDN and implement
remote configuration of virtual local area network (VLAN) from a single controlling
point. The case study that they had adopted is to balance the load between multiple
VLANSs when one of these VLANS is facing more load than it can handle.

They used GNS3 to emulate the topology and Visual Basic.NET programming
language [11].

3.2.5 Comparing a Commercial and an SDN-Based
Load Balancer in Campus Network

This project discussed the need for an SDN transport-level load balancing.
Their solution over UDP packets. The problem is that the existing load balancer does

not divide the load equally among the servers because it uses the source IP address to
30

divide the load, their solution was to load balance the data coming from the firewall
among servers using Software-Defined Networking, They developed three different
load balancing policies: Round-Robin, Random and Load-Based.

The tools they used were XenServer for server virtualization and to install and
manage all the needed virtual machines (VMs) on the physical machine, Mininet
network emulator and Open Virtual Switch (OVS) were used to provide switching for
hardware virtualizing platforms in a multilayer virtual switch. They also used Splunk
and Syslog to monitor and analyze machine-generated big data through its web
interface

The results of these experiments suggest that these SDN load balancing policies
are reliable enough to be used in a real production network with a high input data rate.
Their work proves that the SDN-based load balancer is competitive with the
commercial load balancer. Replacing the software OpenFlow switch with a hardware

switch is likely to further improve the results [12].

3.2.6 Implementation of SDN in a Campus NAC
Use Case

This project introduces and demonstrates how to implement software defined
networking concepts within a campus network taking Sudan University of Science and
Technology network as a case study. They use Mininet emulation environment, and

OpenDayL.ight as a controller to control this environment.

The work was to set and run a few network access control polices (NAC) in
different locations in the network to demonstrate an aspect of network security on the
network. These polices are verified through several tests that testify reachability. The
reachability test is done on different protocols including (ICMP, HTTP, and FTP) [13].

31

Table 3.1 Comparison of previous work and proposed system.

Related Study | Emulato Tools Use case Results
r
SDN for Mininet | POX Controller SUST datacenter | Implement virtual
Datacenter network network appliances
including Hub, Switch
and Load Balancer.
SDN in NAC Mininet | OpenDayL.ight SUST campus Set and Run a few
use case controller network network access control
polices.
Comparing a Mininet | 1-XenServer for | Campus network | SDN load balancing
commercial server policies are reliable
SDN load virtualization enough to be used in a
balancer real production
2- Splunk and network.
Syslog for
monitor
Implementation | GNS3 _ Remote Adopted is to balance
of Remote configuration of | the load between
Configuration virtual local area | multiple VLANSs when
Using SDN network one of these VLANS is
Approach facing more load than
it can handle.
Software OFELIA Control | Datacenter Deploy virtual
Defined Framework and network network appliances
Networking . TUB Island. such as firewall, load
based Data- balancer, and QoS.
Center Services
Event-Driven Mininet POX controller Dynamic Explores some QoS

Network Control
Using Software-
Defined
Networking

Network and Fat
tree topology

and load balancing
mechanisms and
provides a validation
for those modules.

32

3.3 Tools and Techniques

3.3.1 Oracle VM VirtualBox

VirtualBox is a cross-platform virtualization application. For one thing, it is
installed on the existing Intel or AMD-based computers, whether they are running
Windows, Mac, Linux or Solaris operating systems. Secondly, it extends the
capabilities of the computer so that it can run multiple operating systems (inside
multiple virtual machines) at the same time. VirtualBox is deceptively simple yet very
powerful. It can run everywhere from small embedded systems or desktop class

machines all the way up to datacenter deployments and even Cloud environments.

3.3.2 Linux Operating System

Linux is an open source operating system (OS) for personal computers, servers
and many other hardware platforms that is based on the UNIX operating system. Linux
was originally created by Linus Torvalds as a free alternative operating system to more
expensive UNIX systems. Linux has grown since its creation due in part to its open
source roots. Open source software is freely licensed and users may copy and even
change the code. It is popular among technology savvy computer users because of its
efficiency and reliability. It is cross-platform compatible, working on desktops,
laptops, servers, mobile devices, and even game consoles, tablets and supercomputers.
Because of this, the Linux OS is found in a great variety of hardware platforms.
However, very few desktop and laptop PCs are installed with Linux as an operating
system. The most popular operating systems for personal computers are Microsoft
Windows and Apple's iOS.

33

https://www.lifewire.com/learn-how-linux-basics-4102692
https://www.lifewire.com/operating-systems-2625912

There are several operating systems that use the Linux kernel. These include
Ubuntu, Debian, RedHat, and Fedora.

3.3.3 Mininet

Mininet is a network emulator which creates a network of virtual hosts,
switches, controllers, and links. Mininet hosts run on standard Linux network software
and can be used as a flexible network testbed for developing OpenFlow applications.
Mininet tool allows complex topology testing without any physical connections, only
using Python Application Programming Interface (API) and it also includes a
Command Line Interface (CLI) which is topology-aware. Mininet uses process-based
virtualization to run many (up to 4096) hosts and switches on a single Operating
System kernel. Mininet can create kernel or user-space OpenFlow switches, controllers
to control the switches, and hosts to communicate over the simulated network. Mininet
connects switches and hosts using virtual ethernet (veth) pairs. It can be downloaded
as a VM which comes along with an Ubuntu 13.04 image. The major Mininet
advantage is that it has developed its own controller, but it also allows the emulated
network. One feature of Mininet is Miniedit which allows editing and configuring the

topology through graphical user interface (GUI).

3.3.4 POX Controller

POX is a networking software platform written in Python. It started life as an
OpenFlow controller, but can now also functionas an OpenFlow switch, and can be
useful for writing networking software in general. POX currently communicates with
OpenFlow 1.0 switches and includes special support for the Open vSwitch/Nicira
extensions. Pox.py boots up POX. It takes a list of module names on the command
line, locates the modules, calls their launch () function (if it exists), and then

transitions to the "up" state.

34

3.3.5 Python

Python is an interpreter, object-oriented, high-level programming language with
dynamic semantics. Its high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid Application
Development, as well as for use as a scripting or glue language to connect existing
components together. Python's simple, easy to learn syntax emphasizes readability and
therefore reduces the cost of program maintenance. Python supports modules and
packages, which encourages program modularity and code reuse. The Python
interpreter and the extensive standard library are available in source or binary form

without charge for all major platforms, and can be freely distributed.

3.3.6 Wireshark Network Analyzer

Wireshark is a network protocol analyzer for windows and UNIX; it offers
several benefits that make it appeal for everyday use. It is aimed at both the
journeyman and the expert packet analyst, and offers a variety of features to entice
each.

35

3.3.7 USB to Ethernet Adapter

Figure 3.1 USB to Ethernet adapter.

Because the laptop that contains the network does not have integrated Ethernet
ports, as an alternative, we turned to USB Ethernet adapters. These network adapters
connect an Ethernet port via the device's USB port to connect more than one device to

the network.

3.4 Summary

This chapter has explained the literature reviews, tools and techniques used in
the project. The following chapter illustrates the design and methodology of the

system.

36

Chapter 4 DESIGN AND

METHODOLOGY
4.1 Introduction
4.2 The Network Topology
4.3 Operating System
4.4 The Emulator
4.5 The Controller
4.6 Load Balancing
4.7 Software Configuration

37

4.1 Introduction

This chapter demonstrates how SDN is implement using Mininet network
emulator and POX controller. It describes the network topology, operating system,

load balancing and software configuration.
4.2 The Network Topology

Sudan University of Science and Technology (SUST) datacenter network
topology was selected to be implemented in this project. A clearance was needed in
order to collect information about the datacenter. Once this clearance was acquired,
several visits have been scheduled to the university’s main network department and
datacenter. The result was acquiring SUST’s main datacenter network topology, as

shown in Figure 4.1.

Internet

DMZ Servers N,
! S Fw

Figure 4.1 SUST Datacenter Network Topology.

38

The university network contains one main core switch connecting the LAN
network with the Demilitarize Zone (DMZ) area. Inside the DMZ there is one server

with multiple services provided to the network as shown in Figure 4.2,

DHCP

MAIL

DMZ services

Figure 4.2 Services inside the DMZ.

This topology was edited in order to give a clear implementation of SDN
concepts and to meet load balancing main expectations which is distributing the traffic
to more than one server. The edited topology contains three basic legs: The DMZ area,
LAN, and the main switch.

4.3 Operating System

After studying and testing different operating systems, Ubuntu as a stable,
reliable operating system was chosen to run the virtual topology using Mininet (the

emulator).
39

4.4 The Emulator

Mininet was chosen for this project because it combines many of the best
features of emulators, hardware testbeds, and simulators. Compared to full system

virtualization based approaches, Mininet:

e Boots faster: seconds instead of minutes

e Scales larger: hundreds of hosts and switches vs. single digits

e Provides more bandwidth: typically 2Gbps total bandwidth on modest hardware

e Installed easily: a prepackaged Virtual Machine (VM) is available that runs on
VMware or VirtualBox for Mac/Win/Linux with OpenFlow v1.0 tools already

installed.
Compared to hardware testbeds, Mininet:

e |s inexpensive and always available

e Is quickly reconfigurable and restartable
Compared to simulators, Mininet:
e Runs real, unmodified code including application code, OS kernel code, and
control plane code (both OpenFlow controller code and Open vSwitch code)

e Easily connects to real networks

e Offers interactive interface.

40

4.5 The Controller

There is a collection of SDN controllers available to implement OpenFlow
protocol to control the switches and act as the aggregated control plane. This collection
includes OpenDayL.ight, POX, and NOX, Floodlight ... etc. The comparison between
all these controllers is discussed in Chapter two of this project. The output of this

comparison led to choosing POX, as the SDN controller in this project.

In our topology we have one switch to direct the traffic to the servers. So the
controller will manage the switch to work as desired. Three secnarios will be

implemented and tested on the Open vSwitch in our network.

1. Hub:

A hub is a common connection point for devices in a network, it contains multiple
ports. When a packet arrives at one port, it is copied to the other ports so that all

segments of the LAN can see all packets.

2. Switch:

A switch manages the flow of data across a network by transmitting a
received network packet only to the one or more devices for which the packet is
intended. Each network device connected to a switch can be identified by its network

address, allowing the switch to regulate the flow of traffic

3. Load Balancer:

A load balancer is a device that acts as a reverse proxy and distributes network or
application traffic across a number of servers. Load balancers are used to increase
capacity (concurrent users) and reliability of applications. The following section

provides more information on load balancers.

41

https://en.wikipedia.org/wiki/Network_packet
https://en.wikipedia.org/wiki/Network_address
https://en.wikipedia.org/wiki/Network_address

4.6 Load Balancing

Load balancing is an important networking feature generally performed by
multiple dedicated hardware devices known as Application Delivery Controllers
(ADCs). These load balancing devices distribute large amounts of inbound traffic
among a group of back-end servers hosting the same application content.

A load balancer device sits between the client and the server farm accepting
incoming network and application traffic and distributing the traffic across multiple

backend servers using various methods.

Clients Servers

e Load

Balancer

Figure 4.3 Load Balancer.

By balancing application requests across multiple servers, a load balancer
reduces individual server load and prevents any one application server from becoming
a single point of failure, thus improving overall application availability and
responsiveness. When one application server becomes unavailable, the load balancer

directs all new application requests to other available servers in the pool.

42

4.6.1 Load balancing algorithms and methods

Load balancing uses various algorithms, called load balancing methods, to
define the criteria that the appliance uses to select the service to which to redirect each
client request. Different load balancing algorithms use different criteria. The most

famous load balancing algorithms are:

1. The Least Connection Method
2. The Round Robin Method

3. Weighted Round Robin
4

. Fastest Response

In this project, we implement the round robin algorithm, the following

subsection briefly explains it.

4.6.2 Round-Robin algorithm:

Round-Robin one of the simplest methods for distributing client requests across
a group of servers. Going down the list of services in the group, the round-robin load
balancer forwards a client request to each server in turn. When it reaches the end of the
list, the load balancer loops back and goes down the list again (sends the next request

to the first listed server, the one after that to the second server, and so on).

The main benefit of round-robin load balancer is that it is extremely simple to
implement. The algorithm flowchart of the Round-Robin algorithm is shown in Figure
4.4,

43

(=

h

/ List of Servers /

h 4

Fick Random Server

Y

/ Yes
- erver is dow

No

Send flow to server

Yes

Last server in the list

v

v

MNext server takes Server #1 takes
the place the place

Figure 4.4 Round-Robin Algorithm flowchart.

44

4.7 Software Configuration

In this part all steps to build and integrate the system are explained.

4.7.1 Mininet Installation

”
o
a

e @ 1 4)) 12:29PM {' SDN

1<)
Q.
9
3]
&Y
®
%
3

Figure 4.5 Updating packages on Ubuntu.

The highlighted command in Figure downloads the package lists from the
“repositories” and updates them to get information on the newest versions of packages
and their dependencies. After this command downloads all the dependences, the

command shown in Figure 4.6 is executed:

45

nte|

e @ 1 4)) 12:31PM 3% SDN

]
¢
)
)
®
.‘{
=

Figure 4.6 Installing git.
Git is an open source, distributed version control system designed to handle
everything from small to very large projects with speed and efficiency. Every git clone
is a full-fledged repository with complete history and full revision tracking

capabilities, not dependent on network access or a central server.

After installing git the following command is executed to download a clone of
Mininet emulator.

#git clone http://github.com/mininet/mininet

After this command all files of Mininet are stored in /home/mininet. Once the

files of Mininet are cloned, we execute the installation command is executed as shown
in Figure.

46

- XD 41)) 12:51PM 3 SDN

datacent

@
]
¢
9
)
]
&Y
L4
5
1

Figure 4.7 Installing mininet.

At this stage, the topologies are ready to be imported.

The SDN topology implemented using Miniedit is shown in Figure 4.8.

G
—
—
File Edit Run Help
(3 |
; — L
E Host 1
-
) = §
e— @ =
Q = C | =
— OV-switch POX
N / \
[
D Host 3
Host 2

Figure 4.8 Miniedit.

47

4.7.2 POX Controller Installation

POX is a lightweight OpenFlow controller that is written completely in
Python and is targeted for developers to spin up their own controllers. Python is
installed by default in Ubuntu and when executing “sudo apt-get update” it will get
the newest version of python.

POX is also found in git repositories and is implemented using the following
command:

#qgit clone http://github.com/noxrepo/pox

After this all configuration files of POX will be found in /home/POX and we

can test to find out if it is working or not by typing the command shown in Figure 4.9.

® @ O 1ty B) 1235PM L sDN

@
E‘
¢
<}
”
=
<
L2
§

Figure 4.9 Running POX controller.

48

4.7.3 The Servers

Ubuntu OS was chosen to be the server and it had two services installed, HTTP

and FTP services.

The HTTP services run on apache server and it contains the webpage of SUST
as a default webpage (http://www.sust.com) as shown in Figure. The website design
and configuration is taken as an example from the original sustech.edu page. So it is

for demonstration purposes only.

8:04AM {it

SUST
[var www html susT

Places

© Recent ‘

1 Home Sudan University of index.html
Science and
[Desktop technology_files

[) Documents

¥ Downloads

dd Music

[Pictures

H videos

1 Trash
Devices

[a] Floppy Disk

|§| Computer
Network

Q2 Browse Network

B connect to Server

54
-
2
7
||

Figure 4.10 Document root for SUST's page.

As for the FTP service, a default FTP site was made including several folders.
Configuration of the FTP role included configuring the IP address of the server and

selecting the default FTP.

49

4.8 Summary

This chapter has explained the network topology, operating system, emulator,
controller, load balancing and software configuration used in the design of the

network. The next chapter demonstrates the implementation and testing of the SDN.

50

Chapter 5 Implementation and Results

5.1
5.2
5.3
5.4

Introduction
Implementation
Simulation Results
External Devices Results

51

5.1 Introduction

This chapter demonstrates the implementation, testing and verification of the
SDN network. It shows the hub, switch and load balancer scenarios implemented using

the mininet simulator and external devices. A HTTP and FTP connectivity test is also

verified.

5.2 Implementation

The edited Topology of SUST’s datacenter is implemented in mininet

containing two clients and three servers in the DMZ area as shown in Figure 5.1.

Real Client

%\ SDN Network

DMZ area

- em wm e e o e e e e o mm e =

Figure 5.1 Network topology with external devices.

The servers and the physical client are connected to the main laptop that

contains the network using an external interface.

POX controller is managed by the application window shown in Figure 5.2 to
perform three different scenarios on the Open-vSwitch, the hub, switch and load

balancer scenarios.

- 0O X
POXGUI
Path to directorty containing pox.py | | BROWSE
Select log level | v|

O Hub
O Switch

O Load Balancer

RUN SCRIPT TERMINATE EXIT

Figure 5.2 POX Controller GUI.

5.3Simulation Results

This section demonstrates the results of the hub, switch and load balancer

scenarios, obtained from the Mininet simulation.

53

5.3.1 The Hub Scenario

= B 3) »12:59 3 obey

flde File Edit R

Serverl Server2 Server3

R TTRLTEE

|

1

ol

Figure 5.3 Requesting the service in hub scenarios.

The box in Figure 5.3 contains the three servers that will serve the network and h4 is

the client who requests the service from server 1.

£
H
2
5
8
=

1y % 4) e 1:01 1% obey

il File Edit

) bluetootho

flnflog

I nfqueue

@s1-eth1 fe80::d8e0:40ff:feb0:860
s1-eth2 FeB0::a487:f6fF.Fed8:43d7
g#ls1-eth3 FeB0::28f5:b3ff:fe58:68c5
frs1-ethd fe80::a0b2:8eff:fe02:48e9

Interfac

e Live list of the| —
(counts incomi ##/s1-eths fe80::8414:62fF:fe37:7214

st fe80::a87d:8cff:fe8s:727d
Blany

2o 1 Files on the wikly

Start

Choose one or

& etho

© bluetootho

#/nflog

] nfqueue

2s1-eth

#]s1-ethz

2]s1-eth3
Ready to load or capture No Packets

Help Options

DR Ime

il

l

Figure 5.4 Broadcasting of packets in the hub scenarios.

54

Figure 5.4 show the results obtained from Wireshark packet analyzer, and as shown,

the request from h4 to server 1 is broadcasted to all nodes in the datacenter.

5.3.2 The Switch Scenario

1y B % «) ~1:02 3% obey

bl File Edit _Run_Help

AN -4
Serverl Server2 Server3

Figure 5.5 Requesting the service in the switch scenarios.

In the switch scenario the request is made from h4 to server 2 as shown in Figure 5.5.

Wwireshark 13 B 3 «) -1:00 3% obey

Telej

le Is
Wireshark: Capture Interfaces.

Device Description P Packets Packets/s |y
f2] etho 172.27.130.216 983 34
© bluetootho
gl nflog
@] nFqueue
s1-etht fe80::d8e0:40ff:Feb0:860
s1-eth2 fe80::a487:f6ff:fed8:43d7 D
s1-eth3 Fe80::28F5:b3fF.Fe58:68c5
s1-eth4 fe80::a0b2:8eff:fe02:48e9 D
s1-eths Fe80::8414:62fF.Fe37:7214

| s1 fe80::a87d:8cff:fe85:727d

as
] etho le capture files on the wil
O bluetq
&1 nflog
&1 nFquel
s 1-eth
5 1-eth2
&1s1-eth3

Ready to load or capture No Packets

any

[=d
[=d
[=d
[=d
=3
[=d
=3
[=d

lo 127.0.0.1

e
o
b

Options

Figure 5.6 Exchange of packets in the switch scenario.

55

Figure 5.6 shown the results obtained from Wireshark, and as we can see the packets

are exchanged between the source h4 and the destination server 2 only.

5.3.3 Load Balancer Scenario

Mono Ru FilenEdit riview) Search Terminal Help 1 $ W) o112 L obey

-

 Terminal

python/home/obey/pox/pox.py log.level --DEBUG misc.ip_loadbalancer --ip=10.0.1.1
--servers=10.6.0.1,10.0.0.2,10.0.0.3 openflow.keepalive

POX 0.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.

Select log level DEBUG 2 DEBUG:core:POX ©.2.0 (carp) going up...

DEBUG:core:Running on CPython (2.7.6/0ct 26 2016 20:30:19)
DEBUG:core:Platform is Linux-4.4.0-75-generic-x86_64-with-Ubuntu-14.04-trusty
INFO:c :POX 0.2.0 (carp) is up.

DEBUG:openflow.of_01:Listening on 8.0.06.0:6633
INFO:openflow.of_01:[00-00-00-00-00-01 1] connected

INFO:1plb:IP Load Balancer Ready.

INFO:iplb:load Balancing on [00-00-00-00-00-81 1]

Path to directory containing pox.py; homefobeyfpox/ _ Browse

" Hub

 Switch

@ Load balancer INFO:1plb.00-00-00-00-00-01:Server 10.0.0.1 up
INFO:iplb.08-00-06-60-00-0 ver 10.0.8.2 up
[[r00.011000.2100.03 | INFO:1plb.00-0-00-09-09-01:Server 10.0.9.3 up

uuuuuu

i y L 0
No NetFlow targets specif i #

N
No sFlow targets specifieq

- B

Thesis 123.pdf

AN -
Serverl Server2 Server3

FEQ DR DD OO0

2

I

L
|
|

N
E—
s
f

Figure 5.7 Run Load Balancer.

In the load balancer scenario the operator of the network will pass a list of IP servers,

and then a debug message notifies if all servers are up or if there is a problem.

56

i 3 @) p1:19 % obey

#| No NetFlowpython/home/obey/pox/pox.py log.level --DEBUG misc.ip_loadbalancer --ip=16.6.1 EHTTP
No sFlow t --servers=16.0.0.1,10.0.0.2,10.0.0.3 openflow.keepalive
S x** StoppiPOX 0.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.
c@ DEBUG:core:POX 0.2.0 (carp) going up...
*** StoppiDEBUG:core:Running on CPython (2.7.6/0ct 26 2016 20:30:19)
StoppiDEBUG:core:Platform is Linux-4.4.0-75-generic-x86_64-with-Ubuntu-14.04-trusty
INFO:core:POX 8.2.0 (carp) is up.
*** StoppiDEBUG:openflow.of _@1:Listening on 0.0.0.0:6633
s1 INFO:openflow.of_01:[00-00-00-00-00-01 1] connected
*** StopplINFO:iplb:IP Load Balancer Ready.
h4 Server2INFO:iplb:Load Balancing on [008-00-00-00-80-01 1]
% Done INFO:iplb.00-00-00-00-00-01:Server 10.0.0.1 up
Getting HoINFO:iplb.60-00-00-00-00-01:Server 10.0.0.2 up
Getting cqINFO:inlb.00-00-00-00-00-01:Server _10.0.0.3 un
Getting L{DEBUG:iplb.00-00-00-00-00-01:Directing traffic to 10.0.0.1
*%% Confi¢DEBUG:iplb.00-00-00-00-00-01:Directing traffic to 10.8.08.3
h4a serveriDEBUG:iplb.00-00-00-00-00-01:Directing traffic to 10.0.0.2
e Star'g‘EBUG:iplh.00—00—00—aﬂ—@@—ﬂl:Dire(ting traffic to 10.6.06.1
c@
FREdd Startu
s1

screen

Figure 5.8 Distributing of traffic among servers.

When h4 requests the service in the load balancer scenario, the traffic is randomly
directed to one of the servers. If there is another request from the same client or
another client, the traffic is directed to the next randomly selected server in the list, as

shown in Figure 5.8.

5.4 External Devices Results

In addition to implementing the SDN in a simulation environment, we connect
the network to external devices and test the connectivity of the implementation. Three
actual servers are connected to the emulator through external interfaces, and the

connectivity of HTTP and FTP services are verified using Wireshark.

57

5.4.1 Hub Connectivity

To verify the connectivity of the topology using a Programmable Hub, a
successful Internal Control Message Protocol (ICMP) echo and echo reply messages

(ICMP ping) is sent between the nodes as shown in Figure 5.9.

™ @ sdn@datacenter: ~

Figure 5.9 ICMP ping by the Hub.

To verify the hub mechanism is working, we can see in Wireshark that there is

a broadcast of ICMP packets inside the topology as shown in Figure 5.10.

=) wWwireshark: Capture Interfaces

Device Description 1P Packets Packets/s

2 wlano

gr| etho FeB80::2225:64FfF:Fe18:d830 191 2
| nfFlog

g*| nfFqueue

erl ech1 Fe80::210:13FFFe50:b141 247 3
g*| s1-eth3 Fe80::404d:6dff:Fe33:2aB8e 229

grl s FeB0::4F2:FBFF:-Fe7F:cb98 164

& any 2155 26
gl lo 127.0.0.1 1324 16
Help Options Close

Figure 5.10 Broadcasting of packets in the hub scenario.
58

5.4.2 Switch Connectivity

To verify that the connectivity of the topology using a Programmable Switch, a
successful ICMP echo and echo reply messages (ICMP ping) is sent between the

nodes as shown in Figure 5.11.

& @ sdn@datacenter: ~

Figure 5.11 ICMP ping by switch.

As can be seen in Figure 5.12only the source and the destination of the ICMP
request exchange packets between each other. This validates the success of the switch

mechanism.

wireshark: Capture InterfFaces

Device Description 1P Packets Packelks/s

| 2 wlano

| etho Fe80::2225:64FF-Fe18:dB830

=*| nfFlog

x| nFqueue

e* | ecth1 FeB80::210:13FFFe50:b141 385 2

| s1-eth3 Fe80::404d:6dffF:Fe33:2a8e 352 2

el s1 Fe80::4F2:FBFF:-Fe7F.cbo8

& any 2934 4

&l lo 127.0.0.1

Help Options Close

Figure 5.12 Source and destination exchange packets in the switch scenarios.

59

5.4.3 HTTP Connectivity

Simple test is made from the physical host to the server, by opening a web

browser in the host and typing http://www.sust.com.

Sudan University of Science and technology - Chromium 9 1 m €) 5:29PM it SDN
=y Sudan Universityc x \\ | emmy |
— c 0 | ofwwwsust.com ‘ = o0
—_—
E i Apps G Google [Ej Facebook € YouTube [E3 Facebook W Twitter @ WhatsApp [Welcome! | Link: Twitter Symbols Download lates: [Movies & Torren »
= s - pancas
',%4}\4&. _‘.“/? -.)-/.m:-l AN\
= e = ACanas Ve s A~ % [= I'® } conactus = Enter your keywords fl
D SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY
\ = ‘ * Humel
B
®
_

Queen Elizabeth visit to the College of arts in 1965...

A
-
= [onc 8

Figure 5.13 HTTP request.

The HTTP protocol can also be verified from Wireshark as in Figure 5.14.

Capturing from etho [Wireshark 1.10.6 (v1.10.6 from master-1.10)]

Edit ture A v)

® @ L] Q< >3 F7 & [BE @ w

Filter: | v | Expression... Clear Apply Save

No. Time Source Destination Protocol Lengtlt Info
9 2.1455607000 10.0.8.6 16.8.8.5 TCP 66 http = 52371 [SYN, ACK] S
18 2.145791000 1©.0.0.5 16.6.6.6 TCP 608 52371 > http [ACK] Seg=1 .
12 2.146926000 10.0.0.6 18.8.8.5 TCP 60 http > 52371 [ACK] Seg=1 .
13 2.148639000 10.0.0.6 19.8.8.5 HTTP 634 HTTP/1.1 200 0K (text/hti
14 2.1860583000 10.0.0.5 10.0.0.6 HTTP 435 GET /icons/blank.gif HTTP,
15 2.181809000 10.0.0.6 19.8.8.5 HTTP 232 HTTP/1.1 304 Not Modified
16 2.234377000 10.0.0.5 10.0.0.6 TCP 60 52371 > http [ACK] Seg=72

» Frame 11: 398 bytes on wire (3184 bits), 398 bytes captured (3184 bits) on interface ©

» Ethernet II, Src: 6c:c2:17:ea:5e:14 (6c:c2:17:ea:5e:14), Dst: 50:65:13:48:a2:64 (50:65:13:48:a2:64)
» Internet Protocol Version 4, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

»Transmission Control Protocol, Src Port: 52371 (52371), Dst Port: http (88), Seq: 1, Ack: 1, Len: 344

0pe8 508 65 f3 48 a2 64 6C c2 17 ea 5e 14 88 80 45 00 Pe.H.dl. .."~...E.

0010 01 80 3e Ge 40 00 80 ©6 a7 5T 0a 00 00 05 Ba 0O PR N R
0020 00 06 cc 93 00 50 a8 b8 b5 7b fa ba 38 d9 50 18 P.. .{..8.P.
B30 01 60 6a 60 00 08 47 45 54 28 2f 28 48 54 54 58 ..j...GE T /f HTTP
ARAR 2Ff 21 2?2 21 Ad Aa AR AT T2 74 A 20 1 _IA _Da IA £1.1 Hn =t- 1A A
@ ® etho: <live capture in progress> ... Packets: 41 - Displayed: 41 (100.0%) Profile: Default

Figure 5.14 Exchange of HTTP packets.

60

http://www.sust.com/

5.4.4 FTP Connectivity

The File Transfer Protocol (FTP) can also be verified from the web browser of

the physical host, Figure 5.15shows a successful FTP access from host to server.

Index of /- Chromium

5 [Index of / x N ey |
- € C 0 D fpy/1001.1 T « = 0
E i Apps G Google [i Facebook ® YouTube [Ki Facebook W Twitter & whatsApp [Welcome!|Link: [E3 Twitter Symbol: [l Download late<: @ Movies & Torrer »
Index of /
-
Le J Name Size Date Modified
Desktop/ 10/10/2017, 14:52:00
g Documents/
Downloads/
— GNS3/
" Music/
Pictures/
P PlayOnLinux’s virtual drives 0B
. Public/ /042017,
ﬁ) PycharmProjects/ 19/04/2017, 20:35:00
Templates/ 04/04/2017, 03:00:00
Untitled Document 702B :10:
fmll Uniited Document~ 702 B
- Videos/
7 VirwalBox VMs/
L o
2 cliec 1.2kB
[examples.desktop 88kB
— log/
7@1 loxigen/ 05/04/2017, 03:00:00
mininet/ 05/04/2017, 03:00:00
LU oflops/ 05/04/2017, 03:00:00
- oftest/ 05/04/2017, 03:00:00
[=1 openflow/ 05/04/2017, 03:00:00
= pox/ 18/05/2017, 13:10:00
53 recearch/ 03/1012017, 17:45:00
— test.axt 10B 18/09/2017, 12:59:00
e vmware/ 20/08/2017, 15:55:00
-

Figure 5.15 FTP request.

Wireshark can provide a better resolution that shows the source IP and the

destination IP. Figure 5.16 shows a snapshot captured from Wireshark.

Capturing from eth0 [Wireshark 1.10.6 (v1.10.6 from master-1.10)]

le Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
® m & x Q< >3 F & EHE oW .

v\I Expression... Clear Apply Save

No. Time Source Destination Protocol Lengtl Info

8 7.734342000 6c:c2:17:ea:5e:14 Broadcast ARP 60 Who has 10.8.8.87 Tell 1i
9 8.082079000 10.0.0.5 10.0.0.6 FTP 68 Request: PASV
.132347000 .8.8. .8.8. 101 Response: 227 Entering Pa

.133859000 -8.8. 8.8 61 Request: CWD /

.134572000 .8.8. .8.8. 91 Response: 258 Directory si
14 8.135500000 10.0.0.5 10.90.0.6 FTP 60 Request: LIST

»Frame 10: 101 bytes on wire (888 bits), 181 bytes captured (808 bits) on interface ®

» Ethernet II, Src: 50:65:f3:48:52:64 (50:65:13:48:a82:64), Dst: 6c:c2:17:ea:5e:14 (6c:c2:17:ea:5e:14)
»Internet Protocol Version 4, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.8.5 (10.0.0.5)

B Transmission Control Protocol, Src Port: ftp (21), Dst Port: 52364 (52364), Seq: 1, Ack: 7, Len: 47

iFile Transfer Protocol {FrPi

00060 6C c2 17 ea 5e 14 50 65 T3 48 a2 64 08 00 45 00 1...~.Pe .H.d..E.
001 00 57 cd c3 40 00 40 06 58 d3 Oa 00 00 6 Aa 6O W..@.@. Xo......

0e28 08 85 88 15 cc 8c d7 9a 5a e5 1f 95 59 51 58 18 Z...YQP.
Be38 08 e5 cb 9f 80 8@ 32 32 37 20 45 6e 74 65 72 69 22 7 Enteri
@ ® etho: <live capture in progress= ... Packets: 81 - Displayed: 81 (100.0%) Profile: Default

Figure 5.16 Exchange of FTP packets.
61

5.4.5 Load Balancer

Wireshark 1y 3 3:50AM %

*etho [Wi .12.1 (Git Rev Unknown from unknown)]
File Edit View Go Ca Analyze Statistics Telephony Tools Internals Help
) P T 4 BFE
©® 4 m - % C Q 3T &
Filter: v Expression... Clear Apply
No. Time Source Destination Protocol Lengtl Info
173 5.7302826000 [10.0.0. HTTP || 588 GET /Sudan
174 5.730354000 10.0. TCP 66 80-55036 [
175 5.7307146000 10. HTTP 634 HTTP/1.1 4
176 5.7320276000 _10. TCP 66 55036-80 [

6
2
0.0.2
0.0.6 i
177 5.760978000 §10.60.0.6 .0.0. TCP | 66 55010-80 [
178 5.760990000 10.0.0.0 66 5501680 [
0.0.6
0.0.2
0.0.6

179 5.7747686000 10.
180 5.775120000 10.
181 5.776413000 10.

0.
0.
0.
0.
0.
0. L 524 GET /js/bx
0.20 .0.0. 586 HTTP/1.1 4
0. 66 55036-80 [
»Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (486 bits) on interface @
»Ethernet II, Src: 00:00:00 00:00:01 (00:00:00:00:00:01), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
»Address Resolution Protocol (request)

ff ff ff ff ff ff 00 60 00 60 00 01 68 66 00 O1
08 00 06 04 00 01 00 66 ©0 00 00 ©1 Oa 066 61 01
ff ff ff ff ff ff 6a 60 00 14 55 55 55 55 55 55
55 55 55 55 55 55 55 55 55 55 55 55 S IVIVVIV VRV LYV IV

<

O™ File: "/tmp/wireshark_pcapng_... Packets: 200- Displ... Profile: Default

=
)
B
0
2
7
=

Figure 5.17 Distributing of traffic among servers.

In the load balancer scenario, packets exchanged won’t be noticed because the
three servers are connected to the network through one external interface, so the
distributed traffic among the servers can’t be verified by Wireshark interfaces as in
previous scenarios. But, if we install Wireshark in one of the servers the received
traffic can be seen. Figure 5.17 shows a snapshot from one of the server, where client
10.0.0.6 requested HTTP service. The response in the first time came from server

10.0.0.20 and in the second time came from server 10.0.0.10.

5.5Summary

This chapter has demonstrated the implementation and results of the SDN

including all scenarios. The following chapter is conclusion and future work.

62

Chapter 6 CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions
6.2 Future work

63

6.1 Conclusions

This thesis explores the implementation of SDN and the migration from a
traditional to SDN based datacenter network. The process starts with gathering
information about the traditional datacenter network, its design, implementation and
configuration. From that information, a sample from the network is taken to transform
it to an SDN based network. The sample consists of a main core switch connecting the
LAN network with the DMZ area, inside the DMZ there is one server with multiple
services. The topology is deployed in a Mininet emulator. The SDN network is

deployed by programming the POX controller.

The presented work also highlights the problem of datacenter networks in terms
of configurability and the need to look at SDN as an approach or architecture to not
only simplify the network but also make it more reactive to the requirements of
workload and services placed in the network. One of the main contributions was to
demonstrate that SDN presents a smooth solution for controlling and programming

datacenter networks.

The simulation environment is set running three different scenarios Hub,
Switch and Load Balancer. The round robin load balancer was successfully
implemented in a POX controller, and the software-based nature of a load balancer
helped reduce the cost of implementation for users. This provides flexibility in
configuration and deployment by allowing SUST to install the software on any white-
box or OpenFlow supported device. Thus, significantly reducing the period of time
required to deploy new services when compared to a traditional hardware-based
approach. The connectivity of these scenarios was performed to demonstrate an aspect
of network flexibility. These scenarios are verified through several tests that testify
reachability. The reachability test is done on different protocols including HTTP and
FTP.

64

6.2 Future work

This thesis has provided a base for migration from traditional to SDN based
network. We recommend that future work should include using different types of
controllers which have advantages over the POX to compare which type is better for
datacenter networks. Also we believe that a thorough comparison between a traditional
network and an SDN based network is very important to observe the differences and

the best choice for datacenter.

Another important improvement is to add a redundant controller to the network.
Redundancy is crucial for SDN controllers to achieve lossless and low delay
performance. So the number of OpenFlow switches managed by one controller should
be limited. Also redundancy provides higher availability, so if one controller is down,
the network will keep running normally. Therefore, adding a redundant controller or
even several controllers is one of the important issues that should be addressed in
future work. In addition, the program can be modified to implement different load

balancing algorithms like weighted round robin or IP-based Hashing.

65

References:

[1] Nick Feamster, Jennifer Rexford and Ellen Zegura, "The Road to SDN: An

Intellectual History of Programmable Networks", acmqueue, 2013.

[2] SakirSezer, Sandra Scott-Hayward, P. K. Chouhan, et al. “Are we ready for
SDN?” Implementation challenges for software-defined networks Communications
Magazine, IEEE, Vol. 51, No. 7. July 2013.

[3] Sridhar K. N. Rao, “SDN AND ITS USE-CASES- NV AND NFV”, NEC
Technologies India Limited, A State-of-the-Art Survey, White Paper, 2014.

[4] Open Networking Foundation, “Software-defined networking: The New Norm for
Networks” ONF White Paper, Apr. 2012.

[5] Wenfeng Xia, Yonggang Wen, ChuanHengFoh, DusitNiyato, and HaiyongXie, “A
Survey on Software-Defined Networking”, IEEE Communication Surveys & Tutorial,
Vol. 17, No. 1, First Quarter 2015

[6] OpenFlow version 1.3 tutorial, [Online], available at
http://sdnhub.org/tutorials/openflow-1-3/ , date accessed: 15/5/2017.

[7] KHATRI VIKRAMAIJEET, “Analysis of OpenFlow Protocol in Local Area
Networks”, Master of Science Thesis, 62 pages, 4 Appendix pages, TAMPERE
University of Technology, August 2013.

[8] Rufaida Ahmed Mahjoub, “Event-Driven Network Control Using Software-
Defined Networking”, University Of Khartoum, August 2015.

66

http://sdnhub.org/tutorials/openflow-1-3/

[9] Marc F. Korner,” Software Defined Networking based Data-Center Services”,

Ph.D. dissertation, Univ. of BerlinzurErlangung, July 2015.

[10] Andreas Voellmy, “Programmable and Scalable Software-Defined Networking
Controllers” Ph.D. dissertation, Univ. of Yale University, May 2014.

[11] Hind Amir Mohammed Salih, WeaamKamilAlbalola Ahmed, Yahia Mohammed
Elamin Ahmed, “Implementation of Remote Configuration Using SDN Approach”,

Sudan University of Science and Technology, September 2014.

[12] AshkanGhaarinejad, “Comparing a Commercial and an SDN-Based Load

Balancer in a Campus Network™”, Arizona State University, May 2015.

[13] Mohammed AdilAbdelwahab Mohammed, Mohammed Omar Mohammed AL-
Hassan Akoud, Mugahedlzzeldin Osman HajAhmed, Mustafa Khalid Mustafa
Abdelrahim, “Implementation of SDN in a Campus NAC Use Case”, Sudan
University of Science and Technology October 2016.

67

