

SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

COLLEGE OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Software-Defined Networking

for Datacenters

A THESIS SUBMITTED AS PARTIAL FULFILLMENT OF THE

REQUIREMENTSFOR THE DEGREE OF B.Sc. (HONORS) IN COMPUTER

SYSTEMS AND NETWORKS

OCTOBER 2017

 بسم الله الرحمن الرحيم

SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Software-Defined Networking

for Datacenters

PREPARED BY:

STUDENT: Khaled Fath-Alrhman Mohamed Ahmed

STUDENT: Obay Mohamed Al-Hassan Abadi

SUPERVISED BY:

Dr. Niemah Izzeldin Mohamed Osman

A THESIS SUBMITTED AS A PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE 0F B.Sc. (HONORS) IN COMPUTER

SYSTEMS & NETWORKS

SIGNATURE OF SUPERVISOR: DATE:

………………… …………………

 i

ةـــــــــــيالآ

 قاَلَ تَ عَالَ :

لِّ مِنَ الرَّحَْْةِ وَقُل رَّبِّ ارْحَْْهُمَا كَمَا رَب َّيَانِ صَغِيراً{ }وَاخْفِضْ لََمَُا جَنَاحَ الذُّ

 (42راء) الاس

 ii

 الاهداء :

سائليو ,ف أظير ةبالجواب الصحيح حير ىكل من اضاء بعلمو عق ل غيره او ىدالي
العارفين. ةتو تواضع العلماء وبرحابتو سماحبسماح

 iii

 شكر وعرف ان

اشكر الله ان جمعني بكم في ىذه الجامعة من معلمين ومربين يعجز لساني عن

ول من نكران جميلكم, كنتم لي خير معلمين فتعلمت منكم طشكركم وتستحي نفسي
صدركم وتفيمكم ولين جنبكم اقول: البال والصبر,وعرف انا مني بسعة

طان
ت حسن الخ ي ي اون

ن رة ولو ان ث عر والن
ي الش

طق ف در الن ت ن ي ن
***واف

كر
ت الش ر عن واح العج ا ب رف صرا *** ومعث

ول الا مق
عد الق ت ب لكن

علي و المحترمة الموقرة -عز الدين ة: نعم ةوجل الدكتور كر اولا بعد الله عزنش
 ىالمحترمين, عل -ةالاساتذجميع وجييات بخصوص ىذا المشروع ونشكر المعلومات والت

ان مساعدتيم لنا وكنتم عند حسن الظن بكم مشرفين ومعلميين واداريين ونتمني
.البحث حقو انكون قد اوفينا ىذ

 iv

Abstract

Software-Defined Networking (SDN) is a new networking design approach which is

spreading fast. This approach is based on the separation of data and control planes,

which offer the network operator certain advantages in terms of centralized

programmatic control. This centralized approach of management and control maintains

a global view of the network rather than managing tens of thousands of lines of

configuration scattered among thousands of network devices. Software-defined

networks aim to provide high flexibility to modify network state and behavior.

This thesis aims to explore the new emerging paradigm Software-Defined Networking

and test its implementation and demonstrate how to implement SDN concepts within a

datacenter network taking Sudan University of Science and Technology datacenter

network as a case study.The project also implements load balancing with the help of

software. The new SDN approach reduces the cost, offers flexibility in configuration,

reduces time to deploy, provides automation and facilitates building a network without

requiring the knowledge of any vendor-specific software/hardware.

The project uses Mininet emulation environment, and POX as a controller to control

this environment. The emulation components are integrated together to construct the

system. The output of this project is an SDN datacenter based network controlled by

the POX controller.

 v

 المستخلص

مفهوم جدٌد فً تصمٌم الشبكات ٌدعى الشبكات المعرفة برمجٌا. ٌعتمد هذا كبٌرةبسرعة مؤخراتطور

والذي ٌتٌح لمشغل الشبكة مزاٌا من حٌث التحكم فصل بٌن وحدتً البٌانات والتحكم،المفهوم علً ال

هذا النهج المركزي من حٌث الادارة والتحكم نظرة شاملة للشبكة بدلا عن ٌوفر البرمجً المركزي.

بكات المعرفة المنتشرة بٌن الالاف من أجهزة الشبكات. الش الضبطات الالاف من خطوط ادارة عشر

 تعدٌل حالة الشبكة وسلوكٌاتها فً توجٌه البٌانات.بالبرمجٌات تهدف الى اضافة قدر عالً من المرونة ل

كٌفٌة ستكشاف نموذج الشبكات المعرفة برمجٌا الناشئ حدٌثا وٌختبر وٌبٌن الى ا هذا البحث ٌهدف

السودان للعلوم والتكنلوجٌا تطبٌقها علً شبكات مراكز البٌانات، أخذآ شبكة مركز البٌانات فً جامعة

 تكلفة من الجدٌد النهج ٌقلل. البرمجٌات بمساعدة التحمٌل موازنة بتنفٌذ المشروع ٌقوم كما. كدراسة حالة

 شبكةال بناء وٌسهل الآلً التشغٌل وٌوفر للتشغٌل اللازم الوقت وٌقلل الضبط فً المرونة وٌتٌح الشبكة

 .الاجهزة أو البرمجٌات الخاصة بالمورد معرفةل الحاجة دون

للتحكم فً هذه (POXومتحكم) (لمحاكاة الاجهزة الحقٌقٌة،MININETبٌئة) المشروعٌستخدم هذا

. وٌتم التحكم بها باستخدام متحكم لنظامتكوٌن اأجزاء بٌئة المحاكاة من أجهزة مختلفة ل تم تجمٌع .البٌئة

بنهاٌة هذا المشروع تم الحصول علً شبكة مركز بٌانات معرف برمجٌآ ٌتم التحكم فٌها بواسطه خاص.

 .(POX)متحكم

 vi

Table of Contents

ABSTRACT ... IV

 V .. المستخلص

CHAPTER 1 INTRODUCTION ... 1

1.1 PREFACE .. 2

1.2 THE PROBLEM STATEMENT .. 3

1.3 PROPOSED SOLUTION .. 4

1.4 AIMS AND OBJECTIVES .. 4

1.5 SCOPE .. 5

1.6 METHODOLOGY ... 5

1.7 THESIS OUTLINE .. 5

CHAPTER 2 SOFTWARE-DEFINED NETWORKING .. 7

2.1 INTRODUCTION TO SDN .. 8

2.1.1 SDN Background ... 8

2.1.2 SDN Precursors ... 9

2.1.3 SDN Definition .. 9

2.1.4 Network Programmability ... 10

2.1.5 Control plane and data plane separation .. 10

2.1.6 SDN Motivation ... 11

2.2 SDN ARCHITECTURE ... 13

2.3 SDN CONTROLLERS ... 15

2.3.1 NOX: .. 16

2.3.2 POX: .. 16

2.3.3 Ryu: .. 16

2.3.4 Floodlight: .. 16

2.3.5 OpenDayLight: .. 17

2.4 OPENFLOW PROTOCOL .. 18

2.4.1 OpenFlow Structure ... 18

2.4.2 OpenFlow Switch .. 18

2.5 SDN IN DATACENTERS .. 20

2.6 SDN MIGRATION ... 22

2.6.1 Google legacy-to-hybrid migration ... 23

2.7 NETWORK VIRTUALIZATION .. 25

2.8 SUMMARY .. 26

CHAPTER 3 LITERATURE REVIEW, TOOLS AND TECHNIQUES 27

3.1 INTRODUCTION .. 28

3.2 LITERATURE REVIEW .. 28

3.2.1 Event-Driven Network Control Using Software-Defined Networking 28

 vii

3.2.2 Software Defined Networking based Data-Center Services 29

3.2.3 Programmable and Scalable Software-Defined Networking Controllers ... 29

3.2.4 Implementation of Remote Configuration Using SDN Approach 30

3.2.5 Comparing a Commercial and an SDN-Based Load Balancer in Campus

Network .. 30

3.2.6 Implementation of SDN in a Campus NAC Use Case 31

3.3 TOOLS AND TECHNIQUES .. 33

3.3.1 Oracle VM VirtualBox .. 33

3.3.2 Linux Operating System .. 33

3.3.3 Mininet ... 34

3.3.4 POX Controller .. 34

3.3.5 Python .. 35

3.3.6 Wireshark Network Analyzer .. 35

3.3.7 USB to Ethernet Adapter ... 36

3.4 SUMMARY .. 36

CHAPTER 4 DESIGN AND METHODOLOGY ... 37

4.1 INTRODUCTION .. 38

4.2 THE NETWORK TOPOLOGY .. 38

4.3 OPERATING SYSTEM .. 39

4.4 THE EMULATOR ... 40

4.5 THE CONTROLLER ... 41

4.6 LOAD BALANCING ... 42

4.6.1 Load balancing algorithms and methods ... 43

4.6.2 Round-Robin algorithm: .. 43

4.7 SOFTWARE CONFIGURATION ... 45

4.7.1 Mininet Installation .. 45

4.7.2 POX Controller Installation ... 48

4.7.3 The Servers .. 49

4.8 SUMMARY .. 50

CHAPTER 5 IMPLEMENTATION AND RESULTS ... 51

5.1 INTRODUCTION .. 52

5.2 IMPLEMENTATION .. 52

5.3 SIMULATION RESULTS ... 53

5.3.1 The Hub Scenario .. 54

5.3.2 The Switch Scenario .. 55

5.3.3 Load Balancer Scenario ... 56

5.4 EXTERNAL DEVICES RESULTS ... 57

5.4.1 Hub Connectivity ... 58

5.4.2 Switch Connectivity ... 59

5.4.3 HTTP Connectivity .. 60

 viii

5.4.4 FTP Connectivity ... 61

5.4.5 Load Balancer .. 62

5.5 SUMMARY .. 62

CHAPTER 6 CONCLUSIONS AND FUTURE WORK .. 63

6.1 CONCLUSIONS .. 64

6.2 FUTURE WORK ... 65

REFERENCES: .. 66

 ix

List of Figures

FIGURE 1.1 A FULLY CONNECTED HIERARCHICAL TOPOLOGY OF A DATACENTER

NETWORK ... 4

FIGURE 2.1 (A) TRADITIONAL NETWORK VIEW COMPARED WITH (B) SDN NETWORK

VIEW. .. 11

FIGURE 2.2 THE OPEN SDN ARCHITECTURE. .. 13

FIGURE 2.3 EXAMPLES OF THE MOST WELL-KNOWN SDN CONTROLLERS. 15

FIGURE 2.4 OPENFLOW PACKET MATCH FIELDS. ... 18

FIGURE 2.5 OPENFLOW SWITCH MODULES... 19

FIGURE 2.6 OPENFLOW CONTROLLER AND SWITCH. .. 20

FIGURE 2.7 THE HIERARCHICAL TOPOLOGY OF A DATACENTER NETWORK. 21

FIGURE 2.8 SDN MIGRATION STEPS. .. 23

FIGURE 2.9 GOOGLE B4 STARTING NETWORK. ... 24

FIGURE 2.10 GOOGLE B4 PHASED DEPLOYMENT MIXED NETWORK. 24

FIGURE 2.11 GOOGLE B4 TARGET NETWORK. ... 25

FIGURE 3.1 USB TO ETHERNET ADAPTER. .. 36

FIGURE 4.1 SUST DATACENTER NETWORK TOPOLOGY. 38

FIGURE 4.2 SERVICES INSIDE THE DMZ. ... 39

FIGURE 4.3 LOAD BALANCER. .. 42

FIGURE 4.4 ROUND-ROBIN ALGORITHM FLOWCHART. .. 44

FIGURE 4.5 UPDATING PACKAGES ON UBUNTU. .. 45

FIGURE 4.6 INSTALLING GIT. ... 46

FIGURE 4.7 INSTALLING MININET. ... 47

FIGURE 4.8 MINIEDIT. ... 47

FIGURE 4.9 RUNNING POX CONTROLLER. .. 48

FIGURE 4.10 DOCUMENT ROOT FOR SUST'S PAGE. ... 49

FIGURE 5.1 NETWORK TOPOLOGY WITH EXTERNAL DEVICES. 52

FIGURE 5.2 POX CONTROLLER GUI. .. 53

FIGURE 5.3 REQUESTING THE SERVICE IN HUB SCENARIOS. 54

FIGURE 5.4 BROADCASTING OF PACKETS IN THE HUB SCENARIOS. 54

FIGURE 5.5 REQUESTING THE SERVICE IN THE SWITCH SCENARIOS. 55

FIGURE 5.6 EXCHANGE OF PACKETS IN THE SWITCH SCENARIO. 55

FIGURE 5.7 RUN LOAD BALANCER. .. 56

FIGURE 5.8 DISTRIBUTING OF TRAFFIC AMONG SERVERS. 57

FIGURE 5.9 ICMP PING BY THE HUB. .. 58

FIGURE 5.10 BROADCASTING OF PACKETS IN THE HUB SCENARIO. 58

 x

FIGURE 5.11 ICMP PING BY SWITCH. .. 59

FIGURE 5.12 SOURCE AND DESTINATION EXCHANGE PACKETS IN THE SWITCH

SCENARIOS. ... 59

FIGURE 5.13 HTTP REQUEST. ... 60

FIGURE 5.14 EXCHANGE OF HTTP PACKETS. .. 60

FIGURE 5.15 FTP REQUEST. .. 61

FIGURE 5.16 EXCHANGE OF FTP PACKETS. ... 61

FIGURE 5.17 DISTRIBUTING OF TRAFFIC AMONG SERVERS. 62

 xi

List of Tables

TABLE 2.1 COMPARISON BETWEEN SDN AND CONVENTIONAL NETWORKING 12

TABLE 2.2 SUMMARY OF SOME PROPERTIES OF SOME CONTROLLERS. 17

TABLE 3.1 COMPARISON OF PREVIOUS WORK AND PROPOSED SYSTEM. 32

 xii

List of Abbreviations

ADC Application Delivery Controller

API Application Programming Interface

CLI Command-Line Interface

CPU Central Processing Unit

DNS Domain Name Server

DMZ Demilitarized Zone

E/IBGP External/Internal Border Gateway Protocol

FIB Forwarding Information Base

FTP File Transfer Protocol

ForCES Forwarding and Control Element Separation

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

IDS Intrusion Detection System

ICMP Internet Control Message Protocol

ISIS Intermediate System to Intermediate System

JVM Java Virtual Machine

NAT Network Address Translation

NAC Network Access Control

NEC Nippon Express Co., Ltd.

NVF Network Virtualization Function

NOS Networking Operating System

ONF Open Networking Foundation

OS Operating System

OVS Open Virtual Switch

OVSDB Open-vSwitch Database Management

Protocol
PCEP Path Computation Element Protocol

PHD Piled Higher and Deeper

QoS Quality of Service

RCP Routing Control Platform

SDN Software-Defined Networking

SNMP Simple Network Management Protocol

SSL Secure Sockets Layer

SUST Sudan University of Science and Technology

TCAM Ternary Content-Addressable Memory

TCO Total Cost of Ownership

 xiii

VM Virtual Machine

VMS Virtual Memory System

VLAN Virtual local Area Network

WAN Wide Area Network

1

Chapter 1 INTRODUCTION

1.1 Preface

1.2 The problem statement

1.3 Proposed Solution

1.4 Aims and Objectives

1.5 Scope

1.6 Methodology

1.7 Thesis Outline

2

This chapter provides a brief overview of SDN, problem statement and

the solution proposed, aims and objectives, and the technologies that are used to

develop the project, in addition to thesis outline.

1.1 Preface

In networking devices, there exist three planes: data plane, control plane and

management plane. Data plane refers to the hardware part where forwarding takes

place, while control plane refers to the software part where all network logic and

intelligence takes place. Typically, in networking devices, control plane consists of

firmware developed and maintained by vendors only. Management plane is typically a

part of control plane and is used for network monitoring and controlling purposes. In

this thesis, we focus on the data and control planes.

Software-defined networking (SDN) is a modern architectural approach that

optimizes and simplifies network operations by more closely binding the interaction

(i.e., provisioning, messaging, and alarming) among applications and network services

and devices, whether they are real or virtualized. Its common deployment model is by

employing a point of logically centralized network control which then orchestrates,

mediates, and facilitates communication between applications wishing to interact with

network elements and network elements wishing to convey information to those

applications. The controller then exposes and abstracts network functions and

operations via modern, application-friendly and bidirectional programmatic interfaces.

SDN changes the way of designing, configuring and managing networks. By

decoupling the control plane from the data plane the chance of providing secure

network is increased. And with a centralized controller the overall view and

management of a network becomes much easier. While SDN discusses the

centralization of the controller, Network Virtualization Function (NVF) in contrast

discusses the centralization of Services. It offers a new way to design, deploy and

3

manage networking services. NFV couples the network functions, such as NAT,

firewalling, IDS, DNS, and caching in a unified device that may be a real hardware or

a virtualized device (controller).

Among many benefits, SDN eliminates the rigidity present in traditional

network and make it easier to build applications for enterprise networks, datacenters,

Internet exchange points, home networks and backbone/WAN. Basically, because it

enables customizing the data plane to perform functions other than match-action like

traffic shaping [1].

1.2 The problem statement

Datacenter networks are designed for satisfying the data transmission demand

of densely interconnected hosts in the datacenter. The network topology and routing

mechanism can affect the performance and latency significantly. Network engineers

also adopt load balancing methods in the design of routing algorithms. However, the

requirement of load balancing routing in datacenter networks cannot be fully satisfied

by traditional approaches. The main reason is the lack of efficient ways to obtain

network traffic statistics from each network device.

4

Figure 1.1 A fully connected hierarchical topology of a datacenter network

1.3 Proposed Solution

As a solution, The OpenFlow protocol enables monitoring traffic statistics by a

centralized controller. To achieve high performance and low latency, we propose a

load balancer for OpenFlow based datacenter networks.

1.4 Aims and Objectives

The aim of this project is to test and examine the behavior of SDN environment

on datacenter topology and different types of packets (Control packets, Data packets,

etc.).

5

The objectives of this project are to:

 Develop a brief implementation of SDN on datacenter network.

 Implement load balancing on the SDN network.

 Test and evaluate the network connectivity.

1.5 Scope

The project deploys Software-Defined Networking in the Sudan University

datacenter. It implements three major datacenter functions: hub, switch and load

balancer in the datacenter network.

1.6 Methodology

In this project we simulate a datacenter network using Mininet network

simulator and this network is managed and controlled by POX controller. The

controller is developed using Python programming language to implement three

different scenarios: Hub, Switch and Load Balancer. We use round-robin algorithm to

apply load balancing and we use Wireshark network analyzer to test and evaluate the

connectivity. In addition, three actual servers are connected to the emulator through

external interfaces, and the connectivity of HTTP and FTP services are verified using

Wireshark.

1.7 Thesis Outline

This thesis approaches the aforementioned issues starting from the motivation

of this thesis and a broader definition of technologies and introduction to the

context, followed by a proposed system design, description of the

implementation tools and measurements analysis. Hereby, the work has been

structured in six main chapters as follows:

6

Chapter Two:

 The chapter presents some basic concepts of Software-Defined Networking

and some other concepts that are relevant to this thesis.

Chapter Three:

 This chapter reviews related works to SDN and describes the tools and

technologies used in the implementation phase.

Chapter Four:

 The chapter describe the implementation phase. Both network virtualization and

SDN tools were used. The test case scenarios are presented with explanation of

the commands used and detailed overview of the Mininet emulator and controller

architecture.

Chapter Five:

 This chapter shows the results obtained from the three network use cases Hub,

Switch and Load Balancer. It also introduces the expectations regarding the SDN

benefits to the applied use cases and consists of an evaluation of the obtained results.

Chapter Six:

 The chapter aims to draw the final remarks and conclusions of the presented

work. Proposed optimization and complementary future work are also presented.

7

Chapter 2 SOFTWARE-DEFINED

NETWORKING

2.1 Introduction to SDN

2.2 SDN Architecture

2.3 SDN controllers

2.4 OpenFlow Protocol

2.5 SDN in datacenters

2.6 SDN Migration

2.7 Network virtualization

8

2.1 Introduction to SDN

 The concept of Software-Defined Networking is not new and completely

revolutionary; rather it arises as the result of contributions, ideas, and development in

research networking. The three most important states in the evolution of SDN: Active

Networks (mid-90s to early 2000), separation of data and control planes (2001–2007),

and the OpenFlow API and networking operating systems "NOS" (2007–2010).

Recently, SDN has developed to become a major research topic for both

researcher and network industry. In this chapter, we describe the basic concepts of

Software-Defined Networking and some other concepts that are relevant to this thesis.

This includes SDN controllers, datacenter technology and OpenFlow protocol, SDN

migration and network virtualization.

2.1.1 SDN Background

Network configuration and installation requires highly skilled personnel to

adept the configuration of many network elements. Where interactions between

network nodes (switches, routers, etc.) are complex, a more systems-based approach

encompassing elements of simulation is required. With the current programming

interfaces on much of today‘s networking equipment, this is difficult to achieve. In

addition, operational costs involved in provisioning and managing large multivendor

networks covering multiple technologies have been increasing over recent years.

The term Software-Defined Networking (SDN) has been coined recently.

However, the concept behind SDN has been evolving since 1996, driven by the desire

to provide user-controlled management of forwarding in network nodes.

Implementations by research and industry groups include Ipsilon (proposed General

Switch Management protocol, 1996), the Tempest (a framework for safe, resource-

assured, programmable networks, 1998), Internet Engineering Task Force (IETF)

Forwarding and Control Element Separation, 2000, and Path Computation Element,

9

2004. Most recently, Ethane (2007) and OpenFlow (2008) have brought the

implementation of SDN closer to reality. Ethane is a security management architecture

combining simple flow-based switches with a central controller managing admittance

and routing of flows. OpenFlow enables entries in the Flow Table to be defined by a

server external to the switch. SDN is not, however, limited to any one of these

implementations, but is a general term for the platform [2].

2.1.2 SDN Precursors

SDN improved the flexibility of network control by simplifying the designed

network hardware. While SDN has received a large amount of attention from the

industry, it is worth noting that decoupling control logic and programmable network

ideas have been around for quite some time. In this section, we provide an overview of

early programmable networking efforts, precursors to the current SDN paradigm that

laid the foundation for many of the ideas we are seeing today.

The Open Signaling (OPENSIG) working group began in 1995. The core of

their proposal was to provide access to the network hardware via open, programmable

network interfaces. In the mid-1990s, the Active Networking initiative proposed the

idea of a network infrastructure that would be programmable for customized services.

The 4D project advocated the separation between the routing decision logic and the

protocols governing the interaction between network elements [3].

2.1.3 SDN Definition

The Open Networking Foundation (ONF) is a nonprofit consortium dedicated

to development, standardization, and commercialization of SDN. ONF has provided

the most explicit and well received definition of SDN as follows:

―Software-Defined Networking (SDN) is an emerging network architecture

where network control is decoupled from forwarding and is directly programmable‖

[4].

10

Per this definition, SDN is defined by two characteristics, namely decoupling of

control and data planes, and programmability on the control plane. Nevertheless,

neither of these two signatures of SDN is totally new in network architecture, as

detailed in the following.

2.1.4 Network Programmability

Several previous efforts have been made to promote network programmability.

One example is the concept of active networking that attempts to control a network in

a real-time manner using software. SwitchWare is an active networking solution,

allowing packets flowing through a network to modify operations of the network

dynamically. Similarly, software routing suites on conventional PC hardware, such as

Click, XORP, Quagga, and BIRD, also attempt to create extensible software routers by

making network devices programmable. Behavior of these network devices can be

modified by loading different or modifying existing routing software.

2.1.5 Control plane and data plane

separation

The concept of decoupling between control and data planes has been

proliferated during the last decade. In 2004, Caesar et al. presented a Routing Control

Platform (RCP) to replace BGP inter-domain routing with centralized routing control

to reduce complexity. In the same year, IETF presented the Forwarding and Control

Element Separation (ForCES) framework, to separate control and packet forwarding

elements [5].

11

2.1.6 SDN Motivation

SDN has the potential to simplify network management, and enable innovation

in the evolution of computer networks. It is based on the principle of separating the

control and data planes.

2.1.6.1 Networking the Old Way

In traditional networks, as shown in Figure 2.1(a), the control and data planes

are combined in a network node.

The control plane is responsible for the configuration of the node and

programming the paths to be used for data flows. Once these paths have been

determined, they are pushed down to the data plane. Data forwarding at the hardware

level is based on this control information. In this traditional approach, once the flow

management (forwarding policy) has been defined, the only way to make an

adjustment to the policy is via changes to the configuration of the devices. This has

proven restrictive for network operators who are keen to scale their networks in

response to changing traffic demands, increasing the use of mobile devices, and the

impact of ―big data.‖

Figure 2.1 (a) Traditional network view compared with (b) SDN network view.

12

2.1.6.2 Networking the SDN Way

From these service-focused requirements, SDN has emerged. Control is moved

out of the individual network nodes and into the separate, centralized controller. SDN

switches are controlled by a network operating system (NOS) that collects information

using the API shown in Figure 2.1(b) and manipulates their forwarding plane,

providing an abstract model of the network topology to the SDN controller hosting the

application. Table 2.1 compares SDN and conventional networking.

Table 2.1 Comparison between SDN and Conventional Networking

 SDN Traditional network

Features Decouple data and control plane,

and programmability.

A new protocol per problem,

complex network control.

Configuration Automated configuration with

centralized validation.

Error prone manual configuration.

Performance Dynamic global control with

cross layer information.

Limited information, and relatively

static configuration.

Innovation Easy software implementation

for new ideas, sufficient test

environment with isolation, and

quick deployment using software

upgrade.

Difficult hardware implementation

for new ideas, limited testing

environment, long standardization

process.

13

2.2 SDN Architecture

Figure 2.2 The Open SDN architecture.

Figure 2.2 depicts the SDN architecture. As shown in the figure, there are three

different layers:

 Application Layer: Encompasses solutions that focus on the expansion of

network services. These solutions are mainly software applications that

communicate with the controller.

 Control Plane Layer: Includes a logically-centralized SDN controller, which

maintains a global view of the network that takes requests through clearly

defined APIs from application layer and performs consolidated management

and monitoring of network devices via standard protocols.

 Infrastructure or Data-plane Layer: Involves the physical network

equipment, including Ethernet switches and routers. Provides programmable

and high speed hardware and software, which is compliant with industry

standards.

14

At the bottom layer, the physical network consists of the hardware forwarding

devices which store the forwarding information base (FIB) state of the network data

plane (e.g., Ternary Content-Addressable Memory TCAM Entries and configured port

speeds). Data plane interface or standards-based protocols, typically termed as

‗southbound protocols‘, define the control communications between the controller

platform and data plane devices such as physical and virtual switches and routers.

There are various southbound protocols such as Openflow, Path Computation Element

Protocol PCEP, Simple Network Management Protocol SNMP, Open-vSwitch

Database Management Protocol OVSDB, etc.

The control plane layer is the core of the SDN, and is realized by the controllers

of each domain, which collect the physical network state distributed across every

control domain. This component is sometimes called the Network Operating System

(NOS), as it enables the SDN to present an abstraction of the physical network state to

an instance of the control application (running in the Application Layer), in the form

of a global network view.

Northbound Open Application Programming Interface APIs refer to the

software interfaces between the software modules of the controller and the SDN

applications. These interfaces are published and open to customers, partners, and the

open source community for development. The application and orchestration tools may

utilize these APIs to interact with the SDN controller.

Application layer covers an array of applications to meet different customer

demands such as network automation, flexibility and programmability, etc. Some of

the domains of SDN applications include traffic engineering, network virtualization,

network monitoring and analysis, network service discovery, access control, etc. The

control logic for each application instance may be run as a separate process directly on

the controller hardware within each domain.

15

2.3 SDN controllers

 SDN controllers differ in their basic architecture, programming model, and

other concepts. Every controller has its own ideal situation and the choice of the

controller is affected by many considerations such as the choice of programming

language which can sometimes affect performance, and the learning curve of the

controller. The user base and community support is also a factor. Finally, the choice of

controller should consider the Southbound and Northbound interfaces (policy layer) it

supports and whether it is used for education, research or production environment.

Figure 2.3 Examples of the most well-known SDN controllers.

There are several popular SDN controllers written in different languages offering a

wide variety of services. The most well know controllers are shown in Figure 2.3,

summarized in Table 2.2 and include:

16

2.3.1 NOX:

Is a first-generation OpenFlow controller, it is one of the most widely used

controller because it is stable, open source and it supports OpenFlow. It is available in

two versions. The NOX-Classis which is implemented in C++ or Python but is no

longer supported, and a newer supported version of NOX which is implemented in

C++ only but with a cleaner code base and better performance.

2.3.2 POX:

Which is based on NOX and is a good choice for rapid development and for

developers who want to prototype network controller software. This controller is

written in Python. Its high-level SDN API allows developers to quickly turn their ideas

into reality and helps them to write their own OpenFlow controller.

2.3.3 Ryu:

Is an open-source Python controller that supports OpenFlow and Openstack. It

has relatively poor performance with respect to other commercial grade controllers.

2.3.4 Floodlight:

 An Apache-licensed OpenFlow Java-based controller that can be used for

controller development in enterprise networks. This controller is a derivative of

another Java-based controller named Beacon. Floodlight has been used in a

commercial product from Big Switch Networks as a core of their network controller

software.

17

2.3.5 OpenDayLight:

The OpenDayLight Project is a recent open-source project founded by some of

the big vendors such as: Big Switch Networks, Brocade, Cisco, Citrix, Ericsson, HP,

IBM, Juniper Networks, Microsoft, NEC, Red Hat and VMware. OpenDayLight is

developed as a modular, pluggable, and flexible controller platform. This controller is

completely programmed and integrated within its own Java Virtual Machine (JVM).

Hereby, it can be deployed on any hardware and operating system platform that has

Java environment installed.

Table 2.2 Summary of some properties of some controllers.

 NOX POX Ryu Floodlight OpenDayLight

Language C++ Python Python Java Java

Performance Fast Slow Slow Fast Fast

Distributed No No Yes Yes Yes

OpenFlow

version

1.0 1.0 1.0,1.1,1.3,

1.4

1.0 1.0, 1.3

Learning

Curve

Moderate Easy Moderate Steep Steep

18

2.4 OpenFlow Protocol

 In SDN standards, OpenFlow Protocol is defined as one of the communication

protocols which enable the SDN/OpenFlow controller to interact with the switching

infrastructure from multi-vendors. The network can better adapt to the changing

business requirements by adjusting the network using OpenFlow protocol. It is utilized

by SDN controller to install flows to the switch/router for implementing network

functions such as data forwarding, traffic partitioning, control flows, etc.[6].

2.4.1 OpenFlow Structure

OpenFlow provides the programming interface with better management of the

forwarding plane. It interacts with the switching infrastructure using a secure channel

to take efficient forwarding decisions. These decisions are given in the form of

instructions to the switching infrastructure to add/modify flow tables/entries.

2.4.2 OpenFlow Switch

OpenFlow switch is a switch that can communicate with the SDN controller

using OpenFlow protocol. Forwarding in OpenFlow switch is done using Flow tables,

Group tables and a Metering tables. Every flow table in a switch is designed to have a

set of flow entries where each flow has match fields, counters, and a set of instructions

that are applied on matching packets. Figure 2.4 illustrates matching fields in an

OpenFlow Packet.

Figure 2.4 OpenFlow Packet Match Fields.

19

Figure 2.5 illustrates the OpenFlow Switch. The switch consists of four main modules:

Figure 2.5 OpenFlow Switch Modules.

1. Secure Channel: to send commands and packets between the controller and

the Open Switch, OpenFlow Channels running over Secure Sockets Layer (SSL) is

utilized. Due to this reason, OpenFlow Channel is also referred to as Secure Channel.

2. Flow Table: which contains match fields, counters and a set of instructions to

apply on the matching flow. To find the corresponding flow rule, tables are looked up

from Table 0 to Table N. If no flow rule exists then the packet is sent to the controller

for decision on the action.

3. Group Table: contains group entries where each entry has a list of actions.

These actions are applied to packets which are sent to the group entries.

3. Meter Table: consists of meter entries which define per-flow meters. Various

simple QoS can be enabled in OpenFlow by utilizing Per-flow meters, for

example rate-limiting, and can be combined with per-port queues to implement

complex QoS frameworks, such as DiffServ.

20

Communication between the controller and switch when a new flow arrives is

illustrated in Figure 2.6.

Figure 2.6 OpenFlow Controller and Switch.

2.5 SDN in datacenters

 SDN is considered a mature technology in datacenters. A datacenter is a

centralized repository, either physical or virtual, and employs many host servers and

networking devices that process requests and interconnect to other hosts in the network

or to the public network Internet. The requests made to a data center range from web

content serving, email, distributed computation to many cloud-based applications. The

hierarchical topology of a data center network can be seen in Figure.

21

Figure 2.7 The hierarchical topology of a datacenter network.

A datacenter provides many applications simultaneously that are associated

with a publicly visible IP address. A load balancer acts as a relay, and performs

functions like NAT and firewall preventing direct interactions. So, all external requests

are first directed to a load balancer that distributes responses to the associated host

server(s), and balances the load across the host servers in the network.

SDN has attracted many datacenter operators. Google has deployed the SDN

approach into one of its backbone WANs known as an internal (G-scale) network that

carries traffic between datacenters. The deployed SDN network has been in operation

at Google, and has offered benefits including higher resource utilization, faster failure

handling and faster upgrade functionality. However, its challenges include fault

tolerant controllers, flow programming and slicing of network elements for a

distributed control. Similarly, Nippon Express Co., Ltd. NEC has also successfully

deployed SDN approaches in the datacenter and backbone network at its own software

factory, Nippon Express Co., Ltd. As well as Kanazawa University Hospital in Japan

[7].

22

2.6 SDN Migration

Open SDN has been well accepted by the networking industry as the way to

transform enterprise, datacenter, service provider, carriers and campus networks. The

objective of this SDN transformation is to enable differentiated new services faster

than ever before, simplify the network, and lower the total cost of ownership (TCO).

The key attributes for a network that has been migrated to SDN are programmability,

openness, heterogeneity, and maintainability. SDN will also facilitate the re-

architecture required to address the increasing demand on the network due to dynamic

connectivity.

As more network operators adopt open SDN, there is a need for best practices

to facilitate the migration of existing networks and services to SDN.

The key steps involved in an SDN migration:

 Identify and prioritize core requirements of the target network. Not all

requirements of the traditional starting network may be met, at least initially, by

the target SDN.

 Prepare the starting network for migration. The starting network might need

to be moved to a clean intermediate standard state from which the rest of the

migration can proceed.

 Implement a phased network migration. Migrating individual devices will

necessitate device-specific drivers and methods.

 Validate the results. Once migration is complete, the target network must be

validated against a documented set of requirements or expectations. Network

migration steps are shown in Figure 2.8.

23

Figure 2.8 SDN Migration steps.

2.6.1 Google legacy-to-hybrid migration

Google‘s OpenFlow Wide Area Network WAN is organized as two distinct

backbones, one carrying Internet-facing user traffic and another carrying internal

traffic between Google‘s global datacenters. The breadth of user requirements and the

broad scale of the project made Google‘s SDN OpenFlow migration a unique,

challenging use case demonstrating OpenFlow‘s flexibility.

The objective of Google‘s WAN migration was to improve scalability,

flexibility, and agility in managing the Internet-facing WAN fabric to enhance

Google‘s user-based services, including Google+, Gmail, YouTube, Google Maps, and

others.

Both of Google‘s WANs support thousands of individual applications,

tremendous traffic volumes, and latency sensitivities—all governed by different

overall priorities. Google‘s internal network that connects multiple datacenters today is

an OpenFlow-based network and a well-known SDN use case. This inter-data-center

network was built in a three-layer architecture: switch hardware layer, site controller

layer, and global control layer.

Google's SDN migration path moved in stages from a fully distributed

monolithic control and data plane hardware architecture to a physically decentralized

24

(though logically centralized) control plane architecture. The hybrid migration for the

Google B4 network proceeded in three general stages:

1. Starting network (Figure 2.9). In the initial stage, the network connected

datacenters through legacy nodes using External/Internal Border Getaway Protocol

(E/IBGP) and Intermediate System Intermediate System (ISIS) routing. Cluster

border routers interfaced the datacenters to the network.

Figure 2.9 Google B4 Starting network.

2. Phased deployment (Figure 2.10).In this mixed-network phase, a subset of the

nodes in the network were OpenFlow-enabled and controlled by the logically

centralized controller utilizing Paxos, an OpenFlow controller, and Quagga an open

source routing stack that Google adapted to its requirements.

Figure 2.10 Google B4 Phased deployment mixed network.

25

3. Target network (Figure 2.11).In this final phase, all nodes were OpenFlow-

enabled. In the target network, the controller controls the entire network. There is

no direct correspondence between the datacenter and the network. The controller

also has a TE server that guides the traffic engineering in the network.

Figure 2.11 Google B4 Target network.

2.7 Network virtualization

Network virtualization is the representation of one or more logical networks on

the same infrastructure. There are many different instantiations of network

virtualization, some of them emerged since 1990 like VLANs.

Network virtualization provides many benefits such as sharing and thus cost

reduction. However this requires resource isolation in CPU, memory, bandwidth,

forwarding tables and all other resources. It also provides customizability for different

users because they can see their network as a separate logical network and thus being

able to customize it in terms of running different routing and forwarding software on

that particular slice of the virtual network. The legacy of network virtualization for

SDN is quite rich. For example, the notion that a single physical infrastructure can

26

expose different logical network topologies has its roots in network virtualization.

Moreover, the idea of separating service providers from infrastructure providers,

which is very common in software defined networks today, has started in network

virtualization. In addition, the idea of using multiple controllers to control a single

switch and implementing multiple logical switches on a single physical switch has also

started with network virtualization.

2.8 Summary

In this chapter, a detailed survey of SDN has been introduced. The next chapter

overviews literature review, tools and techniques

27

Chapter 3 LITERATURE REVIEW,

TOOLS AND TECHNIQUES

3.1 Introduction

3.2 Literature Review

3.3 Tools and Techniques

28

3.1 Introduction

This chapter reviews related works to SDN, It also explains the techniques and

software products that are used in this project.

3.2 Literature Review

This section survey previous studies on SDN. A comparison with our proposed

system is provided in Table 3.1

3.2.1 Event-Driven Network Control Using

Software-Defined Networking

 This project explores SDN as an emerging paradigm and tests its

implementation in dynamic network environments .It also highlights the problem of

dynamic networks in terms of configurability and the need to look at SDN as an

approach or architecture to not only simplify the network but also make it more

reactive to the requirements of workload and services placed in the network. It also

covers some of the QoS and load balancing mechanisms and provides a validation for

those modules.

Technologies that have been used in this project were Mininet to emulate the

network topology and POX as a controller for an OpenFlow protocol, they also used a

programming language called Kinetic, which is a Python-embedded domain-specific

programming language for writing SDN control programs.

 The results for considered parameters concluded that SDN is a very attractive

technology for network operators in the market [8].

29

3.2.2 Software Defined Networking based Data-

Center Services

 This PhD dissertation deals with the question of how datacenter networks can

benefit from the integration of Software-Defined Networking. The thesis covered

network primitives, load balancing, QoS overlays and forwarding, and firewalls. It

also introduced new and innovative concepts to realize the usual ingress datacenter

network service chain.

 The scope was to collect isolated performance results and verify if this

approach in general can lead to an enhancement of todays predominated data-center

network designs. The tools they have used were OFELIA Control Framework and

TUB Island.

They evaluated the general opportunity of using SDN technology to deploy

these virtual network appliances such as firewall, load balancer, and QoS as network

services in data-center networks [9].

3.2.3 Programmable and Scalable Software-Defined

Networking Controllers

 The work in this PhD dissertation demonstrates that it is feasible to

arguably use the simplest possible programming model for centralized SDN policies,

in which the programmer specifies the forwarding behavior of a network by defining a

packet-processing function as an ordinary algorithm in a general-purpose language.

 The contribution of this dissertation was the development of a novel SDN

programming model, called algorithmic policies, that provides SDN programmers with

a convenient, high-level programming model for expressing network policies. SDN

programmers define their network policy by writing a function in a general-purpose

language that will be executed on every packet entering the network. This dissertation

introduces Maple, an SDN programming framework consisting of a domain specific

30

language that can be embedded into any programming language with appropriate

support.

 It demonstrated that Maple can be used to implement several realistic network

control algorithms, including L2 shortest path routing, declarative access control

policies, traffic monitoring, and policies that include run-time modifiable

administrative parameters [10].

 The Limitations in this work are:

o Maple applies a fully dynamic approach; i.e. it does not perform any

static analysis or static compilation. Instead, Maple must execute the

user‘s packet processing function on packets to generate flow tables.

o Any algorithm which changes system state on every packet will prevent

Maple from caching any decisions in flow tables.

3.2.4 Implementation of Remote Configuration

Using SDN Approach

 The purpose of this research was to take advantages of SDN and implement

remote configuration of virtual local area network (VLAN) from a single controlling

point. The case study that they had adopted is to balance the load between multiple

VLANs when one of these VLANs is facing more load than it can handle.

 They used GNS3 to emulate the topology and Visual Basic.NET programming

language [11].

3.2.5 Comparing a Commercial and an SDN-Based

Load Balancer in Campus Network

This project discussed the need for an SDN transport-level load balancing.

Their solution over UDP packets. The problem is that the existing load balancer does

not divide the load equally among the servers because it uses the source IP address to

31

divide the load, their solution was to load balance the data coming from the firewall

among servers using Software-Defined Networking, They developed three different

load balancing policies: Round-Robin, Random and Load-Based.

The tools they used were XenServer for server virtualization and to install and

manage all the needed virtual machines (VMs) on the physical machine, Mininet

network emulator and Open Virtual Switch (OVS) were used to provide switching for

hardware virtualizing platforms in a multilayer virtual switch. They also used Splunk

and Syslog to monitor and analyze machine-generated big data through its web

interface

The results of these experiments suggest that these SDN load balancing policies

are reliable enough to be used in a real production network with a high input data rate.

Their work proves that the SDN-based load balancer is competitive with the

commercial load balancer. Replacing the software OpenFlow switch with a hardware

switch is likely to further improve the results [12].

3.2.6 Implementation of SDN in a Campus NAC

Use Case

This project introduces and demonstrates how to implement software defined

networking concepts within a campus network taking Sudan University of Science and

Technology network as a case study. They use Mininet emulation environment, and

OpenDayLight as a controller to control this environment.

 The work was to set and run a few network access control polices (NAC) in

different locations in the network to demonstrate an aspect of network security on the

network. These polices are verified through several tests that testify reachability. The

reachability test is done on different protocols including (ICMP, HTTP, and FTP) [13].

32

Table 3.1 Comparison of previous work and proposed system.

Related Study Emulato

r

Tools Use case Results

SDN for

Datacenter

Mininet POX Controller SUST datacenter

network

Implement virtual

network appliances

including Hub, Switch

and Load Balancer.

SDN in NAC

use case

Mininet OpenDayLight

controller

SUST campus

network

Set and Run a few

network access control

polices.

Comparing a

commercial

SDN load

balancer

Mininet 1-XenServer for

server

virtualization

2- Splunk and

Syslog for

monitor

Campus network SDN load balancing

policies are reliable

enough to be used in a

real production

network.

Implementation

of Remote

Configuration

Using SDN

Approach

GNS3 ____ Remote

configuration of

virtual local area

network

Adopted is to balance

the load between

multiple VLANs when

one of these VLANs is

facing more load than

it can handle.

Software

Defined

Networking

based Data-

Center Services

__

OFELIA Control

Framework and

TUB Island.

Datacenter

network

Deploy virtual

network appliances

such as firewall, load

balancer, and QoS.

Event-Driven

Network Control

Using Software-

Defined

Networking

Mininet POX controller Dynamic

Network and Fat

tree topology

Explores some QoS

and load balancing

mechanisms and

provides a validation

for those modules.

33

3.3 Tools and Techniques

3.3.1 Oracle VM VirtualBox

VirtualBox is a cross-platform virtualization application. For one thing, it is

installed on the existing Intel or AMD-based computers, whether they are running

Windows, Mac, Linux or Solaris operating systems. Secondly, it extends the

capabilities of the computer so that it can run multiple operating systems (inside

multiple virtual machines) at the same time. VirtualBox is deceptively simple yet very

powerful. It can run everywhere from small embedded systems or desktop class

machines all the way up to datacenter deployments and even Cloud environments.

3.3.2 Linux Operating System

 Linux is an open source operating system (OS) for personal computers, servers

and many other hardware platforms that is based on the UNIX operating system. Linux

was originally created by Linus Torvalds as a free alternative operating system to more

expensive UNIX systems. Linux has grown since its creation due in part to its open

source roots. Open source software is freely licensed and users may copy and even

change the code. It is popular among technology savvy computer users because of its

efficiency and reliability. It is cross-platform compatible, working on desktops,

laptops, servers, mobile devices, and even game consoles, tablets and supercomputers.

Because of this, the Linux OS is found in a great variety of hardware platforms.

However, very few desktop and laptop PCs are installed with Linux as an operating

system. The most popular operating systems for personal computers are Microsoft

Windows and Apple's iOS.

https://www.lifewire.com/learn-how-linux-basics-4102692
https://www.lifewire.com/operating-systems-2625912

34

There are several operating systems that use the Linux kernel. These include

Ubuntu, Debian, RedHat, and Fedora.

3.3.3 Mininet

 Mininet is a network emulator which creates a network of virtual hosts,

switches, controllers, and links. Mininet hosts run on standard Linux network software

and can be used as a flexible network testbed for developing OpenFlow applications.

Mininet tool allows complex topology testing without any physical connections, only

using Python Application Programming Interface (API) and it also includes a

Command Line Interface (CLI) which is topology-aware. Mininet uses process-based

virtualization to run many (up to 4096) hosts and switches on a single Operating

System kernel. Mininet can create kernel or user-space OpenFlow switches, controllers

to control the switches, and hosts to communicate over the simulated network. Mininet

connects switches and hosts using virtual ethernet (veth) pairs. It can be downloaded

as a VM which comes along with an Ubuntu 13.04 image. The major Mininet

advantage is that it has developed its own controller, but it also allows the emulated

network. One feature of Mininet is Miniedit which allows editing and configuring the

topology through graphical user interface (GUI).

3.3.4 POX Controller

 POX is a networking software platform written in Python. It started life as an

OpenFlow controller, but can now also functionas an OpenFlow switch, and can be

useful for writing networking software in general. POX currently communicates with

OpenFlow 1.0 switches and includes special support for the Open vSwitch/Nicira

extensions. Pox.py boots up POX. It takes a list of module names on the command

line, locates the modules, calls their launch () function (if it exists), and then

transitions to the "up" state.

35

3.3.5 Python

 Python is an interpreter, object-oriented, high-level programming language with

dynamic semantics. Its high-level built in data structures, combined with dynamic

typing and dynamic binding, make it very attractive for Rapid Application

Development, as well as for use as a scripting or glue language to connect existing

components together. Python's simple, easy to learn syntax emphasizes readability and

therefore reduces the cost of program maintenance. Python supports modules and

packages, which encourages program modularity and code reuse. The Python

interpreter and the extensive standard library are available in source or binary form

without charge for all major platforms, and can be freely distributed.

3.3.6 Wireshark Network Analyzer

Wireshark is a network protocol analyzer for windows and UNIX; it offers

several benefits that make it appeal for everyday use. It is aimed at both the

journeyman and the expert packet analyst, and offers a variety of features to entice

each.

36

3.3.7 USB to Ethernet Adapter

Figure 3.1 USB to Ethernet adapter.

Because the laptop that contains the network does not have integrated Ethernet

ports, as an alternative, we turned to USB Ethernet adapters. These network adapters

connect an Ethernet port via the device's USB port to connect more than one device to

the network.

3.4 Summary

This chapter has explained the literature reviews, tools and techniques used in

the project. The following chapter illustrates the design and methodology of the

system.

37

Chapter 4 DESIGN AND

METHODOLOGY

4.1 Introduction

4.2 The Network Topology

4.3 Operating System

4.4 The Emulator

4.5 The Controller

4.6 Load Balancing

4.7 Software Configuration

38

4.1 Introduction

 This chapter demonstrates how SDN is implement using Mininet network

emulator and POX controller. It describes the network topology, operating system,

load balancing and software configuration.

4.2 The Network Topology

 Sudan University of Science and Technology (SUST) datacenter network

topology was selected to be implemented in this project. A clearance was needed in

order to collect information about the datacenter. Once this clearance was acquired,

several visits have been scheduled to the university‘s main network department and

datacenter. The result was acquiring SUST‘s main datacenter network topology, as

shown in Figure 4.1.

Figure 4.1 SUST Datacenter Network Topology.

39

 The university network contains one main core switch connecting the LAN

network with the Demilitarize Zone (DMZ) area. Inside the DMZ there is one server

with multiple services provided to the network as shown in Figure 4.2.

Figure 4.2 Services inside the DMZ.

This topology was edited in order to give a clear implementation of SDN

concepts and to meet load balancing main expectations which is distributing the traffic

to more than one server. The edited topology contains three basic legs: The DMZ area,

LAN, and the main switch.

4.3 Operating System

 After studying and testing different operating systems, Ubuntu as a stable,

reliable operating system was chosen to run the virtual topology using Mininet (the

emulator).

40

4.4 The Emulator

 Mininet was chosen for this project because it combines many of the best

features of emulators, hardware testbeds, and simulators. Compared to full system

virtualization based approaches, Mininet:

 Boots faster: seconds instead of minutes

 Scales larger: hundreds of hosts and switches vs. single digits

 Provides more bandwidth: typically 2Gbps total bandwidth on modest hardware

 Installed easily: a prepackaged Virtual Machine (VM) is available that runs on

VMware or VirtualBox for Mac/Win/Linux with OpenFlow v1.0 tools already

installed.

Compared to hardware testbeds, Mininet:

 Is inexpensive and always available

 Is quickly reconfigurable and restartable

Compared to simulators, Mininet:

 Runs real, unmodified code including application code, OS kernel code, and

control plane code (both OpenFlow controller code and Open vSwitch code)

 Easily connects to real networks

 Offers interactive interface.

41

4.5 The Controller

 There is a collection of SDN controllers available to implement OpenFlow

protocol to control the switches and act as the aggregated control plane. This collection

includes OpenDayLight, POX, and NOX, Floodlight … etc. The comparison between

all these controllers is discussed in Chapter two of this project. The output of this

comparison led to choosing POX, as the SDN controller in this project.

 In our topology we have one switch to direct the traffic to the servers. So the

controller will manage the switch to work as desired. Three secnarios will be

implemented and tested on the Open vSwitch in our network.

1. Hub:

A hub is a common connection point for devices in a network, it contains multiple

ports. When a packet arrives at one port, it is copied to the other ports so that all

segments of the LAN can see all packets.

2. Switch:

A switch manages the flow of data across a network by transmitting a

received network packet only to the one or more devices for which the packet is

intended. Each network device connected to a switch can be identified by its network

address, allowing the switch to regulate the flow of traffic

3. Load Balancer:

A load balancer is a device that acts as a reverse proxy and distributes network or

application traffic across a number of servers. Load balancers are used to increase

capacity (concurrent users) and reliability of applications. The following section

provides more information on load balancers.

https://en.wikipedia.org/wiki/Network_packet
https://en.wikipedia.org/wiki/Network_address
https://en.wikipedia.org/wiki/Network_address

42

4.6 Load Balancing

 Load balancing is an important networking feature generally performed by

multiple dedicated hardware devices known as Application Delivery Controllers

(ADCs). These load balancing devices distribute large amounts of inbound traffic

among a group of back-end servers hosting the same application content.

A load balancer device sits between the client and the server farm accepting

incoming network and application traffic and distributing the traffic across multiple

backend servers using various methods.

Figure 4.3 Load Balancer.

By balancing application requests across multiple servers, a load balancer

reduces individual server load and prevents any one application server from becoming

a single point of failure, thus improving overall application availability and

responsiveness. When one application server becomes unavailable, the load balancer

directs all new application requests to other available servers in the pool.

43

4.6.1 Load balancing algorithms and methods

Load balancing uses various algorithms, called load balancing methods, to

define the criteria that the appliance uses to select the service to which to redirect each

client request. Different load balancing algorithms use different criteria. The most

famous load balancing algorithms are:

1. The Least Connection Method

2. The Round Robin Method

3. Weighted Round Robin

4. Fastest Response

In this project, we implement the round robin algorithm, the following

subsection briefly explains it.

4.6.2 Round-Robin algorithm:

 Round-Robin one of the simplest methods for distributing client requests across

a group of servers. Going down the list of services in the group, the round-robin load

balancer forwards a client request to each server in turn. When it reaches the end of the

list, the load balancer loops back and goes down the list again (sends the next request

to the first listed server, the one after that to the second server, and so on).

The main benefit of round-robin load balancer is that it is extremely simple to

implement. The algorithm flowchart of the Round-Robin algorithm is shown in Figure

4.4.

44

Figure 4.4 Round-Robin Algorithm flowchart.

45

4.7 Software Configuration

 In this part all steps to build and integrate the system are explained.

4.7.1 Mininet Installation

Figure 4.5 Updating packages on Ubuntu.

 The highlighted command in Figure downloads the package lists from the

―repositories‖ and updates them to get information on the newest versions of packages

and their dependencies. After this command downloads all the dependences, the

command shown in Figure 4.6 is executed:

46

Figure 4.6 Installing git.

 Git is an open source, distributed version control system designed to handle

everything from small to very large projects with speed and efficiency. Every git clone

is a full-fledged repository with complete history and full revision tracking

capabilities, not dependent on network access or a central server.

 After installing git the following command is executed to download a clone of

Mininet emulator.

 #git clone http://github.com/mininet/mininet

 After this command all files of Mininet are stored in /home/mininet. Once the

files of Mininet are cloned, we execute the installation command is executed as shown

in Figure.

47

Figure 4.7 Installing mininet.

At this stage, the topologies are ready to be imported.

The SDN topology implemented using Miniedit is shown in Figure 4.8.

Figure 4.8 Miniedit.

48

4.7.2 POX Controller Installation

 POX is a lightweight OpenFlow controller that is written completely in

Python and is targeted for developers to spin up their own controllers. Python is

installed by default in Ubuntu and when executing ―sudo apt-get update‖ it will get

the newest version of python.

 POX is also found in git repositories and is implemented using the following

command:

 #git clone http://github.com/noxrepo/pox

 After this all configuration files of POX will be found in /home/POX and we

can test to find out if it is working or not by typing the command shown in Figure 4.9.

Figure 4.9 Running POX controller.

49

4.7.3 The Servers

Ubuntu OS was chosen to be the server and it had two services installed, HTTP

and FTP services.

The HTTP services run on apache server and it contains the webpage of SUST

as a default webpage (http://www.sust.com) as shown in Figure. The website design

and configuration is taken as an example from the original sustech.edu page. So it is

for demonstration purposes only.

Figure 4.10 Document root for SUST's page.

As for the FTP service, a default FTP site was made including several folders.

Configuration of the FTP role included configuring the IP address of the server and

selecting the default FTP.

50

4.8 Summary

This chapter has explained the network topology, operating system, emulator,

controller, load balancing and software configuration used in the design of the

network. The next chapter demonstrates the implementation and testing of the SDN.

51

Chapter 5 Implementation and Results

 5.1 Introduction

 5.2 Implementation

 5.3 Simulation Results

 5.4 External Devices Results

52

5.1 Introduction

This chapter demonstrates the implementation, testing and verification of the

SDN network. It shows the hub, switch and load balancer scenarios implemented using

the mininet simulator and external devices. A HTTP and FTP connectivity test is also

verified.

5.2 Implementation

The edited Topology of SUST‘s datacenter is implemented in mininet

containing two clients and three servers in the DMZ area as shown in Figure 5.1.

Figure 5.1 Network topology with external devices.

53

 The servers and the physical client are connected to the main laptop that

contains the network using an external interface.

POX controller is managed by the application window shown in Figure 5.2 to

perform three different scenarios on the Open-vSwitch, the hub, switch and load

balancer scenarios.

Figure 5.2 POX Controller GUI.

5.3 Simulation Results

This section demonstrates the results of the hub, switch and load balancer

scenarios, obtained from the Mininet simulation.

54

5.3.1 The Hub Scenario

Figure 5.3 Requesting the service in hub scenarios.

The box in Figure 5.3 contains the three servers that will serve the network and h4 is

the client who requests the service from server 1.

Figure 5.4 Broadcasting of packets in the hub scenarios.

55

Figure 5.4 show the results obtained from Wireshark packet analyzer, and as shown,

the request from h4 to server 1 is broadcasted to all nodes in the datacenter.

5.3.2 The Switch Scenario

Figure 5.5 Requesting the service in the switch scenarios.

In the switch scenario the request is made from h4 to server 2 as shown in Figure 5.5.

Figure 5.6 Exchange of packets in the switch scenario.

56

Figure 5.6 shown the results obtained from Wireshark, and as we can see the packets

are exchanged between the source h4 and the destination server 2 only.

5.3.3 Load Balancer Scenario

Figure 5.7 Run Load Balancer.

In the load balancer scenario the operator of the network will pass a list of IP servers,

and then a debug message notifies if all servers are up or if there is a problem.

57

Figure 5.8 Distributing of traffic among servers.

When h4 requests the service in the load balancer scenario, the traffic is randomly

directed to one of the servers. If there is another request from the same client or

another client, the traffic is directed to the next randomly selected server in the list, as

shown in Figure 5.8.

5.4 External Devices Results

In addition to implementing the SDN in a simulation environment, we connect

the network to external devices and test the connectivity of the implementation. Three

actual servers are connected to the emulator through external interfaces, and the

connectivity of HTTP and FTP services are verified using Wireshark.

58

5.4.1 Hub Connectivity

To verify the connectivity of the topology using a Programmable Hub, a

successful Internal Control Message Protocol (ICMP) echo and echo reply messages

(ICMP ping) is sent between the nodes as shown in Figure 5.9.

Figure 5.9 ICMP ping by the Hub.

To verify the hub mechanism is working, we can see in Wireshark that there is

a broadcast of ICMP packets inside the topology as shown in Figure 5.10.

Figure 5.10 Broadcasting of packets in the hub scenario.

59

5.4.2 Switch Connectivity

To verify that the connectivity of the topology using a Programmable Switch, a

successful ICMP echo and echo reply messages (ICMP ping) is sent between the

nodes as shown in Figure 5.11.

Figure 5.11 ICMP ping by switch.

As can be seen in Figure 5.12only the source and the destination of the ICMP

request exchange packets between each other. This validates the success of the switch

mechanism.

Figure 5.12 Source and destination exchange packets in the switch scenarios.

60

5.4.3 HTTP Connectivity

Simple test is made from the physical host to the server, by opening a web

browser in the host and typing http://www.sust.com.

Figure 5.13 HTTP request.

The HTTP protocol can also be verified from Wireshark as in Figure 5.14.

Figure 5.14 Exchange of HTTP packets.

http://www.sust.com/

61

5.4.4 FTP Connectivity

The File Transfer Protocol (FTP) can also be verified from the web browser of

the physical host, Figure 5.15shows a successful FTP access from host to server.

Figure 5.15 FTP request.

Wireshark can provide a better resolution that shows the source IP and the

destination IP. Figure 5.16 shows a snapshot captured from Wireshark.

Figure 5.16 Exchange of FTP packets.

62

5.4.5 Load Balancer

Figure 5.17 Distributing of traffic among servers.

In the load balancer scenario, packets exchanged won‘t be noticed because the

three servers are connected to the network through one external interface, so the

distributed traffic among the servers can‘t be verified by Wireshark interfaces as in

previous scenarios. But, if we install Wireshark in one of the servers the received

traffic can be seen. Figure 5.17 shows a snapshot from one of the server, where client

10.0.0.6 requested HTTP service. The response in the first time came from server

10.0.0.20 and in the second time came from server 10.0.0.10.

5.5 Summary

This chapter has demonstrated the implementation and results of the SDN

including all scenarios. The following chapter is conclusion and future work.

63

Chapter 6 CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

6.2 Future work

64

6.1 Conclusions

This thesis explores the implementation of SDN and the migration from a

traditional to SDN based datacenter network. The process starts with gathering

information about the traditional datacenter network, its design, implementation and

configuration. From that information, a sample from the network is taken to transform

it to an SDN based network. The sample consists of a main core switch connecting the

LAN network with the DMZ area, inside the DMZ there is one server with multiple

services. The topology is deployed in a Mininet emulator. The SDN network is

deployed by programming the POX controller.

The presented work also highlights the problem of datacenter networks in terms

of configurability and the need to look at SDN as an approach or architecture to not

only simplify the network but also make it more reactive to the requirements of

workload and services placed in the network. One of the main contributions was to

demonstrate that SDN presents a smooth solution for controlling and programming

datacenter networks.

The simulation environment is set running three different scenarios Hub,

Switch and Load Balancer. The round robin load balancer was successfully

implemented in a POX controller, and the software-based nature of a load balancer

helped reduce the cost of implementation for users. This provides flexibility in

configuration and deployment by allowing SUST to install the software on any white-

box or OpenFlow supported device. Thus, significantly reducing the period of time

required to deploy new services when compared to a traditional hardware-based

approach. The connectivity of these scenarios was performed to demonstrate an aspect

of network flexibility. These scenarios are verified through several tests that testify

reachability. The reachability test is done on different protocols including HTTP and

FTP.

65

6.2 Future work

 This thesis has provided a base for migration from traditional to SDN based

network. We recommend that future work should include using different types of

controllers which have advantages over the POX to compare which type is better for

datacenter networks. Also we believe that a thorough comparison between a traditional

network and an SDN based network is very important to observe the differences and

the best choice for datacenter.

Another important improvement is to add a redundant controller to the network.

Redundancy is crucial for SDN controllers to achieve lossless and low delay

performance. So the number of OpenFlow switches managed by one controller should

be limited. Also redundancy provides higher availability, so if one controller is down,

the network will keep running normally. Therefore, adding a redundant controller or

even several controllers is one of the important issues that should be addressed in

future work. In addition, the program can be modified to implement different load

balancing algorithms like weighted round robin or IP-based Hashing.

66

References:

[1] Nick Feamster, Jennifer Rexford and Ellen Zegura, "The Road to SDN: An

Intellectual History of Programmable Networks", acmqueue, 2013.

[2] SakirSezer, Sandra Scott-Hayward, P. K. Chouhan, et al. ―Are we ready for

SDN?‖ Implementation challenges for software-defined networks Communications

Magazine, IEEE, Vol. 51, No. 7. July 2013.

[3] Sridhar K. N. Rao, ―SDN AND ITS USE-CASES- NV AND NFV‖, NEC

Technologies India Limited, A State-of-the-Art Survey, White Paper, 2014.

[4] Open Networking Foundation, ―Software-defined networking: The New Norm for

Networks‖ ONF White Paper, Apr. 2012.

[5] Wenfeng Xia, Yonggang Wen, ChuanHengFoh, DusitNiyato, and HaiyongXie, ―A

Survey on Software-Defined Networking‖, IEEE Communication Surveys & Tutorial,

Vol. 17, No. 1, First Quarter 2015

[6] OpenFlow version 1.3 tutorial, [Online], available at

http://sdnhub.org/tutorials/openflow-1-3/ , date accessed: 15/5/2017.

[7] KHATRI VIKRAMAJEET, ―Analysis of OpenFlow Protocol in Local Area

Networks‖, Master of Science Thesis, 62 pages, 4 Appendix pages, TAMPERE

University of Technology, August 2013.

[8] Rufaida Ahmed Mahjoub, ―Event-Driven Network Control Using Software-

Defined Networking‖, University Of Khartoum, August 2015.

http://sdnhub.org/tutorials/openflow-1-3/

67

[9] Marc F. Körner,‖ Software Defined Networking based Data-Center Services‖,

Ph.D. dissertation, Univ. of BerlinzurErlangung, July 2015.

[10] Andreas Voellmy, ―Programmable and Scalable Software-Defined Networking

Controllers‖ Ph.D. dissertation, Univ. of Yale University, May 2014.

[11] Hind Amir Mohammed Salih, WeaamKamilAlbalola Ahmed, Yahia Mohammed

Elamin Ahmed, ―Implementation of Remote Configuration Using SDN Approach‖,

Sudan University of Science and Technology, September 2014.

[12] AshkanGhaarinejad, ―Comparing a Commercial and an SDN-Based Load

Balancer in a Campus Network‖, Arizona State University, May 2015.

[13] Mohammed AdilAbdelwahab Mohammed, Mohammed Omar Mohammed AL-

Hassan Akoud, MugahedIzzeldin Osman HajAhmed, Mustafa Khalid Mustafa

Abdelrahim, ―Implementation of SDN in a Campus NAC Use Case‖, Sudan

University of Science and Technology October 2016.

