
i

SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

COMPUTER SCIENCE AND INFORMATION SYSTEM DEPARTMENT

COMPARING THE PERFORMANCE OF APACHE

SPARK AND APACHE HADOOP MAPREDUCE

ON BIG DATA PROCESSING

THESIS SUMITTED AS A PARTIAL FULFILLMENT OF B.Sc. (HONOR) DEGREE

IN COMPUTER SECINCE AND INFORMATION SYSTEM

 OCTOBER 2017

ii

 الرحمن الرحيم بسم الله

SUDAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

COMPUTER SCIENCE AND INFORMATION SYSTEM

DEPARTMENT

COMPARING THE PERFORMANCE OF APACHE

SPARK AND APACHE HADOOP MAPREDUCE ON BIG

DATA PROCESSING

PREPARED BY:

ALAA ISMAIEL IBRAHIM SHUMO.

ESRA ADIL GALAL SALIH.

SAJDA LOTFY AHMED KHALED.

SARA HASSABO ABDALLAH ALBASHEER.

SUPERVISOR:

AHMED HAMZA ABDL-MONIEM HAMZA

SIGNATURE OF SUPERVISOR: DATE:

…………………………………………… ……………….

iii

 الآية

 قال تبارك وتعالى:

ناَ بنَي ۞وَلقدَ م نَ ق ناَهُم ر وَرَزَ آدَمَ وَحَمَل ناهَُم في ال برَ وَال بحَ كَرَّ م

ن خَلقَ ناَ تَ ل ناَالطَّي باتَ وَفضَّ مَّ يلا ف هُم عَلىَٰ كَث يرٍ م ۞ ض

 (70 –الإسراء)

iv

 لله الحمد
الحمد لله عالم السر والجهر، وقاصم الجبابرة بالعز والقهر، مُحْصي قطرات الماء وهو

أوقات الدهر، فهو المتفرد بإيجاد يجري في النهر، فضَّل بعض المخلوقات على بعض حتى

 .حد بإدرار رزقهوخَلْقه، المت

لمه عبسرالعبد وسامعُ نطقه، ومقدر عالمٌ ه، القديم فالسَّبْق لسبقه، الكريم فما قام مَخلوقٌ بحق

لُّ ار فالكذنبه وكذبه وصدقه، المالك القهَّ وعمله وعمره وفعله وخلقه، ومجازيه على عيبه و

سحاب تخُاف صواعقه ويطُمع قه، أرسل اللحليم الستار فالخلق في ظ ل رفْ ه، اقرأسْر في

س سراجًا والقمر نورًا بيْنَ جعل الشمرواعده، ويكاد سنا بَرْقه، عج القلوب زفي وَدقَه، ي

 . قهغرْبه وشرْ

ه، قْ وفتَ قهريك له في رَتقه، وأشهد أن لا إله إلا الله وحده لا شرنحْمده على الهدى وتسهيل ط

قه، صلى الله عليه وسلم وعلى آله أرسله والضلال عامٌّ فمحاه بمَحْ وأنَّ مُحمداً عبدهُ ورسولهُ،

ن اكسْرَى بتدبيره و حذْقه، وعلى عثمصدْقه، وعلى عمر كاسر السابق ب وصحابه أبي بكر

ٍّ واعذروناجامع القرآن بعد تبديده في رَقه، وعلى عل قه، وعلى عمه العباس في عشْ ي

 .مشاركةً في أصله و عرْقه

v

 الإهداء

إلى من نذرت عمرها في أداء رسالة صنعتها من أوراق الصبر وطرزتها في ظلام الدهر

 رسالة تعلم العطاء كيف يكون العطاء وتعلم الوفاء كيف يكون الوفاء إليك

 "أمي"

أهدي هذه الرسالة وشتان بين رسالة ورسالة جزاك الله خيراً.. وأمد في عمرك بالصالحات

 فأنت زهرة الحياة ونورها.

لى سعادة إت أنامله ليقدم لنا لحظة ارغاً ليسقيني قطرة حب إلى من كلإلى من جرع الكأس ف

 من حصد الأشواك عن دربي ليمهد لي طريق العلم إلى القلب الكبير.

 "أبي"

إلى من كانوا يضيئون لي الطريق ويساندوني ويتنازلون عن حقوقهم لإرضائي والعيش في

 هناء، أحبكم حبا لو مر على أرض قاحلة لتفجرت منها ينابيع المحبة.

 "صديقاتي ورفيقاتي في الحياه"

 من ساندنا بالكلام او الفعل من قريب او البعيد.إلى كل

 2013إلى كل طلبة السنة الرابعة تخصص نظم المعلومات والشبكات دفعة

 إلى كل من سقط من قلمي سهوا

 أهدي هذا العمل

vi

شكر و عرفان

الحمدُ لله رب العالمين، والصلاة والسلام على أشرف الخلق والمرسلين نبينا محمد صلى الله

 عليه وسلم وعلى آله الطيبين الطاهرين.

نا طسبحانه وتعالى، الذي أحا (الله)جل أول الشكر وآخره نتقدم به إلى المنعم الباري عزَّ و

همنا الصبر والقوة في شق طريقنا نحو سر لنا كل عسير، وألبرعايته الإلهية العظيمة، وي

البحث العلمي. نتقدم بخالص الشكر الجزيل والعرفان بالجميل والاحترام والتقديرلمن

ي فقد كان قبس الضياء ف غمرنا بالفضل واختصنا بالنصح للأستاذ المشرف/أحمد حمزه ،

ا لا نعدو الحقَ ج الدراسة المتلاطم ولعلنو، كما كان قبطان مركب العلم في هعتمة البحث

الوقور ونعم الأخ الحليم أفاض علينا إذ نقول أنه كان لنا نعم الناصح الأمين ونعم الأب

دخر م يا بفضله وسماحته ، منحنا الثقة وغرس في نفوسنا قوة العزيمة ولبعلمه وشملن

ه بما اينا أبقاه الله ذخراً لطلبة العلم وجعل ذلك في ميزان حسناته وأرضجهداً، ولم يبخل عل

قسم له. ولا ننسي أن نتقدم بجزيل الشكرللمهندس/محمد عبدالرحيم الذي قام بتوجيهنا طيلة

 هذه الدراسة.

وفاء ً وتقديرا ً وإعترافا ً منا بالجميل نتقدم بجزيل الشكر لكل الاساتذه المخلصين الذين لم

لفضل في توجيهنا يألوا جهداً في مساعدتنا في مجال البحث العلمي ، والذين كان لهم ا

ومساعدتنا في تجميع المادة البحثية، و نخُصُ بالشكر و العرفان : د. هويده على عبد القادر ،

 أ. هشام ، أ.وفاء فيصل ، أ.نفيسه و أ.غاده على شمو، فجزاهم الله كل خير.

وأخيراً ، نتقدم بجزيل شكرنا إلي كل من مدوا لنا يد العون والمساعدة في إخراج هذه

 لدراسة علي أكمل وجه. ا

 إلى انفسنا التي لاقت من الصعوبات ما لاقت ، والتي لم تتخطاها سوى بحسن الظن وقوه

 التوكل على الله وحده.

vii

Abstract

Imagine the massive volume of data in the world, and the rapid

growth of it every moment and every second, these data that carry many

useful values, which help companies to succeed and increase a

competitive advantage, is called 'Big Data', due to its sheer Volume,

Variety, Velocity and Veracity. Most of this data is unstructured, structured

or semi structured.

The large amounts of data created a need for new frameworks for

processing. The “Apache Hadoop MapReduce" model is a framework for

processing large-scale datasets with parallel and distributed algorithms.

The “Apache Hadoop MapReduce“allows for the distributed processing of

large data sets across clusters of computers using simple programming

models.

Recently a framework called Apache Spark has emerged, focused

on micro-batch data processing. In addition the main feature of Spark is

the in-memory computation.

 In this research, we perform a comparative study on the performance

of these two frameworks. Additionally we use bigdatabench (tool) to load

dataset up to 420 million records. Experimental results show that Spark has

better performance and overall lower runtimes than Apache Hadoop

MapReduce.

viii

 المستخلص

تخيل ذلك الحجم الهائل من البيانات في العالم، والنمو السريع في كل لحظة وكل ثانية، وأن هذه

 البيانات تحمل العديد من القيم المفيدة، والتي تساعد الشركات على النجاح وزيادة ميزتها التنافسية، هذه

تنوعها وسرعتها ومدى صحتها البيانات نطلق عليها مصطلح "البيانات الكبيرة"، نظرا لحجمها الهائل، و

 ،ومعظم هذه البيانات مهيكله أو شبه مهيكله او غير مهيكله.

 Hadoopعمل جديدة لمعالجة تلك البيانات الكبيره، منها إطار أطُرلذلك وجدت الحاجة الماسة إلى ظهور

MapReduce يرة على المدى وهو إطاريستخدم الخوارزميات الموزعه والمتوازيه لمعالجة البيانات الكب

(باستخدام clustersالواسع، وايضأ يسمح بتوزيع المعالجة على البيانات لمجموعه من أجهزة الكمبيوتر)

 نماذج برمجة بسيطة.

 micro-batch data، ركز على Apache Sparkز إطار يسمى في الآونة الأخيرة برَ

processing بالإضافه إلى ان الميزه الرئيسية ل .Apache Spark .هي المعالجة في الذاكرة

 في هذا البحث، قمنا بإجراء مقارنة عن أداء هذين الإطارين. بالإضافة إلى ذلك استخدمنا

BigDataBench مليون سجل. وأظهرت النتائج التجريبية أن 420لتحميل بيانات تصل إلىApache

Spark كان أداءه أفضل، و زمن تنفيذه أقل منHadoop MapReduce .

ix

Table of Contents

CHAPTER ONE: INTRODUCTION 1

1.1 INTRODUCTION 2

1.2 PROBLEM STATEMENT 3

1.3 OBJECTIVES 3

1.4 RESEARCH SIGNIFICANCE 4

1.5 PROPOSED SOLUTION 4

1.8 THESIS STRUCTURE 5

CHAPTER TWO: THEORETICAL BACKGROUND 7

2.1 INTRODUCTION 8

2.2 DETAILS ABOUT BIG DATA SCIENCE 8

2.3 HISTORICAL BACKGROUND 9

2.4 BIG DATA PROCESSING TYPES 10

 2.4.1 BATCH PROCESSING 10

 2.4.2 REAL-TIME DATA PROCESSING 12

 2.4.2.1 IN-MEMOREY COMPUTING 12

 2.4.2.2 REAL-TIME QUERIES OVER BIG DATA 13

 2.4.3 STREAMING BIG DATA 13

 2.5 OTHER BIG DATA FRAMEWORKS 15

 2.5.1 APACHE STORM 15

 2.5.2 APACHE FLINK 15

 2.6 SUMMARY 16

x

 CHAPTER THREE: LITERATURE REVIEW 17

3.1 INTRODUCTION 18

 3.2 PREVIOUS STUDIES 18

 3.2.1 COMPARISON BETWEEN FRAMEWORKS IN

 PERFORMANCE

18

 3.2.2 PRPCESSING 20

 3.2.3 BENCHMARKING 21

 3.3 SUMMARY 24

CHAPTER FOUR: TOOLS, TECHNIQUES AND RECEARCH

METHODOLOGY

25

4.1 INTRODUCTION 26

 4.2 TOOLS

 AND TECHNIQUES
26

 4.2.1 APACHE HADOOP 26

 4.2.2 APACHE SPARK 28

 4.2.3 APACHE HIVE 29

 4.2.4 BIG DATABENCH 30

4.3 RESEARCH METHODOLOGY 31

 4.3.1 SURVEY 31

 4.3.1.1 SURVEY PURPOSES 31

 4.3.1.2 SAMPLE DISTRIBUTION AND FILLING UP 31

 4.3.1.3 SURVEY QUESTIONS 32

 4.3.1.4 SURVEY RESULTS 32

 4.3.2 PREPARE THE ENVIROMENT 39

 4.3.3 CONFIGURES CONNECTION BETWEEN MACHINES 40

xi

 4.3.3.1 CONFIGURING “HADOOP”

AND “SPARK” AND “HIVE” IN ALL MACHINES

41

 4.3.3.2 DATA GENERATION 43

 4.3.4 RUNNING JOBS 46

 4.3.4.1 Run Word-Count Workload on

Hadoop cluster consist of one NameNode and two DataNodes

46

 4.3.4.2 Run “select” query on The E-

Commerce data set (described above) using Hadoop

and Spark cluster consist of one NameNode and

3 DataNodes

48

 4.4 SUMMARY 53

CHAPTER FIVE: RESULTS AND RECOMMENDATIONS 54

5.1 INTRODUCTION 55

5.2 RESULTS 55

 5.2.1 PERFORMANCE RESULTS OF

“WORD-COUNT” JOB ON HADOOP CLUSTER

55

 5.2.2 PERFORMANCE MEASUREMENTS RESULTS

OF “select” QUERY IN HADOOP CLUSTER

 56

 5.2.3 RESULTS OF “select” QUERY IN SPARK CLUSTER 57

 5.2.4 COMPARISON RESULT BASED ON TIME OF

PROCESSING

58

5.3 RECOMMENDATIONS 60

 References 61

APPENDICES 64

APPENDIX (A) 65

xii

CONFIGURATION OF FRAMEWORKS 65

APPINDEX (B) 88

BIG DATA IN SUDAN QUESIONNAIRE 88

List of Figures
Figure 2.1: illustrate processing in Spark ... 15

Figure 4.1: Architecture of MapReduce execution... 28

Figure 4.2: illustrate Question 1... 32

Figure 4.3: illustrate Question 2... 33

Figure 4.4: illustrate Question 3... 33

Figure 4.5: illustrate Question 4... 34

Figure 4.6: illustrate Question 5... 34

Figure 4.7: illustrate Question 6... 35

Figure 4.8: illustrate Question 7... 35

Figure 4.9: illustrate Question 8... 36

Figure 4.10: illustrate Question 9 ... 36

Figure 4.11: illustrate Question 10 ... 37

Figure 4.12: illustrate Question 11 ... 37

Figure 4.13: illustrate Question 12 ... 38

Figure 4.14: illustrate Question 13 ... 38

Figure 4.15: SSH steps ... 40

Figure 4.16: format NameNode.. 41

Figure 4.17: Successfully formatted... 42

Figure 4.18: Starting Hadoop daemon ... 43

Figure 4.19: generated 30-gigabyte data .. 44

Figure 4.20: ORDERS.txt file.. 45

Figure 4.21: ORDERS _ITEM.txt file ... 46

Figure 4.22: Run_Microbenchmarks.sh file .. 47

Figure 4.23: start JobHistory service ... 48

Figure 4.24: JobHistory UI .. 48

Figure 4.25: create a folder in HDFS called Hive... 49

xiii

Figure 4.26: created table in hive ... 49

Figure 4.27: Select Query in hive ... 50

Figure 4.28: MapReduce started doing the select job ... 50

Figure 4.29: Start Spark shell.. 51

Figure 4.30: write queries and interact with hive “metastore” using “HiveQL” 51

Figure 4.31: Spark context value ... 52

Figure 4.32: load the data stored in “ORDERS_ITEM.txt” ... 52

Figure 4.33: store the result on “resu” variable .. 52

Figure 5.1: measurements was saved in “JobHistory” .. 56

Figure 5.2: result measurements in “SparkJobs”.. 58

xiv

List of Tables
Table 1: Table 3.1 illustrate our opinion.. 24

Table 2: Table 5.1 illustrate comparison result... 58

xv

List of Abbreviations
Term Description

1 BDGS Big Data Generate Suite

2 HDFS Hadoop Distributed File System

3 BI Business Intelligence

4 RDD Resilient Distributed Dataset

5 ETL Extract, Transform, Load

6 RDBMS Relational Database Systems

7 GFS Google File System

8 DStream Discretized Stream

9 JVM Java Virtual Machine

https://en.wikipedia.org/wiki/Extract,_transform,_load
https://en.wikipedia.org/wiki/Extract,_transform,_load

1

CHAPTER ONE

INTRODUCTION

2

1.1 INTRODUCTION

 In 2010 year the 'Big Data' was virtually unknown, but by mid-2011 it was being

diffuse widely as the hot trend, the term has today been adopted by everyone, from

product vendors to large-scale outsourcing and cloud service providers intensive to

promote their offerings. But what really is Big Data?

Big Data is about quickly deriving business value from a range of new and

emerging of new technologies, devices and communication means like social network

sites, which led to a noticeable increase of the amount of data produced every year, even

every day. In addition, traditional algorithms and technologies are inefficient to process,

analyze and store this vast amount of data. [1]

 And much more besides we can defining Big Data by the 3V models) volume,

velocity, variety), then, with the development of the large data, a new feature called

"veracity" was added, which is then called 4 V's of big data. Which we will explain each

of these characteristics by the next chapters. Also Big Data is about how these data can

be stored, processed, and comprehended such that it can be used for predicting the future

course of action with a great precision and acceptable time delay.

On the other hand big data has a lot of challenges, so we want to touch these

challenges of big data, and try to enumerate some of these challenges, but not limited

to. One of these challenges is storage and retrieval of vast amount of structured as well

as unstructured data which leads to time lag, another challenge is regarding to handle

and process vast amount of data with the traditional storage techniques, these challenges

is the main reason that led to emergence the term Big Data[2]. So these challenges will

require treated solutions, we must support and encourage fundamental research towards

addressing these technical challenges if we are to achieve the promised benefits of Big

Data [3].

3

In this research we need to address the challenge of data processing on Big Data,

data processing is common part of processes inside every organization. Critical

challenges of these days came with Big Data processing. Although new technologies

appeared, traditional data sources and processes require variety of different approaches

[4].

In this research, we focus on studying two kind of very popular and most used

frameworks in Big Data field, they are Hadoop MapReduce and Spark. To illustrate how

these frameworks can service the data processing in well format. When it comes to

processing Big Data, Hadoop MapReduce and Spark must be the first choices, but they

aren't the only options. (Hadoop MapReduce) is actually quite simple. If your data can

be processed in batch, split into smaller processing jobs, spread across a cluster, and

their efforts recombined, hadoop will probably work just fine for you.

Spark differs from Hadoop MapReduce in that it works in-memory, speeding up

processing times [5].

1.2 PROBLEM STATEMENT

We take performance on data processing over Big Data as a problem on the one

hand, data processing is common part of processes and activities inside every

organization. “Critical challenges on these days came with Big Data processing.

On the other hand, we have chosen two big data solution frameworks, they are

Hadoop MapReduce and Spark, and saw the problem of how to choose one of them,

based on company’s resources, company’s needs, and company’s big data.

4

1.3 OBJECTIVES

• Implement a “Word-Count” Example on Unstructured data set using Hadoop

MapReduce, and get the performance measurements, consist of: time

performance, CPU spent time, RAM consumptions.

• Execute a “test” query on structural big data set using Hadoop MapReduce

and Spark, to compare between them considering the time performance and

error handling.

• Find the cases which Hadoop MpaReduce is the best than Spark and vice

versa.

• Help company’s decision makers (e.g. top manager) to know the better big

data solution (Hadoop or Spark) that should use according to his needs.

1.4 RESEARCH SIGNIFICANCE

Big data has many processing solutions, this solutions have been already

built by large companies like Apache. Because companies which have big data

or unfortunately suffering from big data processing problem, big data

frameworks are needed.

 But in Sudan these solutions are not implemented yet (according to the

survey was done in the research).

Decision-maker of these companies can choose solution that requires very high

capacity of rams or disks and pay a lot of money, although there is no need to pay

all that money! Because another solution is suitable for him and solve his problem

without big lose, so decision-maker must know all solutions of big data, and this

is very hardly job. He requires an implemented comparison between the big data

solutions and clean road map to make his decision.

5

Reports and quires and business intelligence are built over data processing, so

when data processing takes a lot of time; it is also cause a delay in production

time of reports and queries, so this problem leads to time and money consuming.

e.g. When there is company (x) started to generate a report that will be useful to

it, and it uses a traditional database techniques to generate this report, and there

is a competitor company (y) generates this report using big data framework

before company (x); it will be useless report for company (x) and it consumes its

resources on the air.

1.5 PROPOSED SOLUTION

This research will focus on two big data processing frameworks to compare

between them based on three criteria’s: time performance, configuration method, and

error and exception handling, they are Hadoop MapReduce and Spark, understand

functionality and use of each framework, how and where they are store and process

data, and so on.

Then will execute some work on each framework, and then obtain the resources

consumptions of machines when running this work on the same data set and on the

same cluster using each framework, after that a simple comparison will be made

between these two frameworks based on time performance and implementing way

and clearness of error and exceptions on each framework.

1.6 RESEARCH SCOPE

The scope of this research is implementation and comparison of two processing

frameworks Hadoop MapReduce and Spark, and their role in processing data. This

comparison will based on time performance of query, the configuration way of two

framework, and error and exception handling.

6

Also the scope will include measure CPU time spent, memory usage and running

time of the Hadoop cluster, but not for Spark.

1.7 RESEARCH METHODOLOGY

The methodology for this research will be include:

• Work survey to find out the importance of this research and causes of needing

big data frameworks.

• Generate unstructured data from “BigDataBench” suite as text data set,

contains Wikipedia entries on search engine and this data is will be uploaded

on Hadoop file system to store it there.

• Working model “workload” called “Word Count” will be executed on this

data by Hadoop MapReduce framework.

• When the workload has been completed the performance criteria “time

performance, CPU time spent and RAM usage” must be computed.

• This research will address generation of another type of data, it is structured

data contains 420,000,000 record, and a simple query job will be implemented

using Hadoop MapReduce and Spark frameworks, after that, a comparison

will be done between these two frameworks (Hadoop MapReduce and Spark)

based on configuration methods and errors handling and time performance of

the query.

1.8 THESIS STRUCTURE

In addition to this chapter this research contains another four chapters:

• Chapter two: include the theoretical Background about sciences (big data

and its frameworks and also big data processing).

7

• Chapter three: include literature review and related works.

• Chapter four: include the tools and techniques that used in our research,

and also include the methodology and the activities that we did in our

project implementation.

• Chapter five: include results and recommendations.

8

CHAPTER TWO

THEORETICAL

BACKGROUND

9

2.1 INTRODUCTION

Since big data has its own characteristics such as size, diversity and speed of

growth, it makes it difficult to process and manage them in traditional ways such as

relational database management system. In this chapter we talk about:

• Details about Big Data science.

• Some big data processing types.

• Some frameworks of big data.

2.2 DETAILS ABOUT BIG DATA

SCIENCE

 The term big data is refers to: "datasets which have size that outside the capabilities

of traditional database software tools to capture, store, manage, and analyze". [4] It can

be structured, semi structured, and unstructured data based on context.

There are four key properties that define big data:

• Volume: The volume of data indicates to the size of data which controlled by the

system. Data which is to some degree habitually generated tends to be big. For

example data which generated by sensors in manufacturing or processing plants,

data which generates from scanning equipment looks like smart and credit card

readers, also data from measurement devices like soundtrack devices and the

data which generated from the internet of things is huge data because these billion

of devices which connected to the Internet generate data constantly.

10

• Velocity: It’s about the speed at which data is generated, collected, ingested, and

processed. High velocity is attributed to data when we consider the typical speed

of transactions on normal exchanges; this speed touches billions of transactions

per day on certain days. For example in twitter Velocity is useful in discovering

trends among people that are making million tweets every three minutes.

• Variety: Data is generated from different types of sources and these sources

have extended and contain for example Internet data like social media, research

data surveys, location data like mobile device data, images like satellites and

video data YouTube inserts hundreds of minutes of video every minute Big data

contains many kinds of data first, structured data are in the form of tables

containing rows and columns second, and semi structured data which data doesn’t

all have to track a static predefined structure. The third kind is unstructured data

which haven’t recognizable formal construction this kind of data establishes the

main challenge in today’s big data systems.

• Veracity: Veracity has two fixed features: the reliability of the source, and the

appropriateness of data for its target listeners. [6]

2.3 HISTORICAL BACKGROUND

Big data can cause a huge problem for large companies when this

company doesn’t make use of it. Google which is the most widely used search

engine has the first idea to solve big data problems, and gathers huge amount of

data every day. Google find out two key technologies to handle this amount of

data they want to store and analyze it.

Google first established Google File System which is a distributed storage

model, and became the underlining storage architecture for the large volume of

data which need to store. GFS runs on a large array of cheap hardware. The paper

of Google File System is published in 2003 by Google, after that in 2004, they

published extra paper on their distributed computing system called MapReduce.

11

Hadoop was made as an open source version as a result of these two basic

technologies from Google the google technologies. And we will talk about it in

chapter 4. In 2009 Additional framework called Spark was first established in

the” AMPLab”, and also we will talk about it in chapter 4. [7]

2.4 BIG DATA PROCESSING TYPES

This section described these popular types of data processing: Batch processing,

real-time data processing and Streaming Big Data.

2.4.1 BATCH PROCESSING

Batch processing is a technique that enables processes data in one large group,

instead of individually groups. MapReduce is one of famous solution model that using

big data batch processing. It is introduced and used by Google. [8]

MapReduce has three major Characteristics in its single package. These

Characteristics are: simple and easy programming model, automatic and linear

scalability, and built-in fault tolerance.

Google published its MapReduce framework with three major components: a

MapReduce execution engine, distributed file system called GFS, and a distributed

NoSQL database called BigTable. After Google’s published its MapReduce

Framework, Apache foundation started some open source execution projects on

MapReduce framework. Such as: [9]

• HDFS: is a distributed file system which delivers high-throughput access to

application data.

• Hadoop YARN: is a framework used to schedule the jobs and cluster

resource management.

12

• Hadoop MapReduce: is a system based on YARN for parallel processing of

large data sets. [10]

The MapReduce framework has made complex large-scale data processing simple

and efficient. From this despite MapReduce is designed for batch processing of large

volumes of data, and it is not fit for recent demands like real-time and online processing.

MapReduce is considered for high throughput batch processing of big data that take

several hours and even days.

There are many systems which are implemented the distributed system via the

MapReduce method like: Apache Hadoop, Disco from Nokia, HPCC from LexisNexis,

Dryad from Microsoft, and Sector/Sphere. However, Hadoop is the most well-known

and popular open source implementation of MapReduce.

Apache Hadoop is one of the big data open source frameworks which implemented

the distributed system by using the MapReduce techniques. Apache has many projects

which related to Hadoop and these projects are:

• Ambari: is a tool based on web which used for provisioning, managing,

and observing Apache Hadoop clusters which includes support for Hadoop

HDFS, Hadoop MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie,

Pig and Sqoop. In addition Apache Ambari delivers a dashboard for

showing cluster health such as heatMaps and ability to view MapReduce,

Pig and Hive applications visually along with features to diagnose their

performance characteristics in a user-friendly manner.

• Avro: a data serialization system.

• Cassandra: climbable multi-master database with no single points of

failure.

• Chukwa: for data gathering used to manage large distributed systems.

http://incubator.apache.org/ambari/
http://incubator.apache.org/ambari/
http://incubator.apache.org/chukwa/
http://incubator.apache.org/chukwa/

13

• HBase: scalable, distributed database that supports structured data storage

for large tables.

• Hive: data warehouse arrangement that provides data summarization and ad

hoc querying.

• Mahout: scalable machine learning and data mining archive.

• Pig: A top data-flow language and implementation framework for parallel

computation.

• Spark: fast and general compute engine for Hadoop data. Spark provides a

simple and expressive programming model that provides a extensive range

of applications, including ETL, machine learning, stream processing, and

graph computation.

• Tez: generalized data-flow programming framework, constructed on

Hadoop YARN, which delivers a powerful and elastic engine to execute an

arbitrary DAG of tasks to process data for both batch and communicating

use-cases. Tez is being adopted by Hive, Pig and other frameworks in the

Hadoop ecosystem, and also by other commercial software (e.g. ETL tools),

to replace Hadoop MapReduce as the underlying execution engine.

• ZooKeeper: A high-performance coordination service for distributed

applications. [10]

2.4.2 REAL-TIME DATA PROCESSING

Can be classified into two major ways:

• Solutions that try to reduce the overhead of MapReduce and make it faster to

enable execution of jobs in less than seconds.

• Solutions that focus on providing a means for real-time queries over structured

and unstructured big data using new optimized approaches.

http://hbase.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://pig.apache.org/

14

2.4.2.1 IN-MEMOREY COMPUTING

 There are two problems that cause slowness in Hadoop:

• The first problem in starting execution of jobs, is that it is not

optimized for fast execution, scheduling, task assignment, code

transfer to slaves. Beside job startup procedures are not designed

and programmed to finish in less than seconds, because Hadoop is

based on batch processing. To solve this problem job startup and

task execution modules are redesigning.

• The second problem is in HDFS: it designed for high throughput

data I/O rather than high performance I/O, and the HDFS is stored

very large data blocks on hard disk drives and the Hadoop transfer

rates between 100 and 200 megabytes per second (this mean even

a simple search over the data will take minutes rather than seconds).

And the solution to this problem is: In memory computing solution

and it is used to solve distributing data among machines and reduce

the time of reading data. This main memory has many features and

some of this features is higher bandwidth, and Access latency is

also much better. There are few in-memory computing solutions

available like: Apache Spark GridGain, and XAP. And the Spark

is both open source and free, but others are commercial.

“In-memory computing” does not mean the whole data

should be kept in-memory, but means a distributed pool of

memory. If this distributed pool of memory is available, then

framework can use this memory for caching frequently used data.

There for the whole job execution performance can be improved

significantly.

15

Efficient caching can be effective when an iterative job is being

executed. Both Spark and GridGain support this caching paradigm.

Spark uses RDD and the RDD is primary abstraction means

distributed collection of items. Spark can be easily combined with

Hadoop and RDDs can be generated from data sources like HDFS

and HBase. The in-memory computing feature of Spark enables it

to compute data batches quicker than Hadoop.

In-memory caching can also help handling huge streaming data that

can easily choke disk-based storages. [9]

2.4.2.2 REAL-TIME QUERIES OVER BIG DATA

Real time in big data is focused on interactivity rather than

milliseconds response, but the real-time queries should respond in

order of seconds and minutes rather than batch jobs which finish in

hours and days.

2.4.3 STREAMING BIG DATA

Data streams now has many common examples such as, log streams, click

streams, message streams, and event streams. However, the standard MapReduce

like Hadoop framework is based on batch processing, and that means before the

computation is started, all of the input data must be completely available on an

input store, like, HDFS. After the framework process the input data, the output

result is been available only when all of this computation is not done that means

a MapReduce job execution is not continuous.

Today more application need to run continuously such as, query that

detects some special anomalies from incoming events. This means today’s

applications need more streams. Unfortunately this stream processing is not

available in MapReduce, but rather, this technique can partially handle streams

16

known as micro-batching. The idea is to give the stream as a form of sequence

of small batch chunks of data. On small breaks, the incoming stream is full to a

chunk of data and is delivered to batch system to be processed. There are some

examples of MapReduce model especially realtime that support streaming

processing like spark and GridGain.

In Spark the concept DStream support streaming which is represented as a

sequence of RDDs. The architecture of stream processing in Spark is given in Figure

(2.1).

Figure 2.1: illustrate processing in Spark

 Spark technique is not support full streaming process, and there are a limited

stream processing frameworks that are inherently designed for big data streams. The

most two famous frameworks are Storm from Twitter, and S4 from Yahoo. Both

frameworks using JVM and both process keyed streams. [9]

2.5 OTHER BIG DATA FRAMEWORKS

There are many open source data processing frameworks are being used

today, in addition of Apache Hadoop and spark frameworks which we were

implemented in this project we will talk about them and also we took randomly

another two of Apache open source frameworks for processing big data and give

short identification about them.

17

2.5.1 APACHE STORM

Apache Storm is” a free and open source distributed real time computation

system”, Storm makes it easy to reliably process boundless streams of data, the

same thing which Hadoop do for batch processing storm do for real time

processing and it can be used with any programming language.

Storm can be used in many cases like: real time analytics, online machine

learning, continuous computation, and more. It is fast: over a million tuples

processed per second per node. Also storm is scalable, fault-tolerant, assurances

your data will be processed, and is easy to set up and work. [11]

2.5.2 APACHE FLINK

 “Is an open-source stream processing framework for distributed, high

performing, always-available, and accurate data streaming applications”

Apache Flink has many features:

1- It is continuously processes datasets that are added to it constantly.

2- It runs on thousands of nodes with efficient and good latency.

3- The result which is delivered by Apache Flink is precise, even in the case of

unordered or late arriving data.

4- It is fault-tolerant and “stateful” which it means can maintain a combination

or summary of data that has been processed over time.

5- Can recover from failures while maintaining exactly-once application state

[12].

2.6 SUMMARY

This chapter focused on Details about the Big Data science, some of big data

processing types, and some examples of frameworks of big data.

18

Next chapter will show the previous studies and table illustrate that what studies

agree with our research and what do not agree, and our opinion in each study.

19

CHAPTER THREE

LITERATURE REVIEW

20

3.1 INTRODUCTION

This chapter includes the previous studies, which related to this research,

and table illustrate that what studies agree with this research and what do not

agree, and our opinion in each study.

3.2 PREVIOUS STUDIES

3.2.1 FRAMEWORKS PERFORMANCE

3.2.1.1 ABOUT HDFS IN READ/WRITE

The traditional tools for processing and analyzing data, found it

difficult to process and capture big data. Hadoop architecture consist of a

file system called Hadoop Distributed File System (HDFS) which is an

architecture used to store data. The paper focused on which kind of read

and write way or technology would be selected and depending on what.

The paper talk about Hadoop and its two versions and concentrated

on YARN, also talk about Apache Avro framework and its reliability on

schemas. After that the paper explained the Sequence Files and its types,

then it put the light on HBase and shows its major architectural

components and the kind of its data store is a column-oriented, also the

paper represents the HDFS and HBase properties.

As a result of paper, sequential file is used to deal with flat files and

extract data form and put into them, and it is slower than normal file

system. Also HDFS files regard as write-once and read-many files, and

HBase is scale in terms of writes as well as total volume of data. Also it is

good for structural data and the need of extraction in column manner rather

than row by row. [13]

21

3.2.1.2 SPARK PERFORMANCE AND USABILITY

This paper talks about a group of people in Databricks who improve

Spark performance and usability, so they deploy Spark to a wide range of

organizations, they describe the challenges in Spark, also they show the

needs of Spark users, and lastly they improve Spark based on users report.

 Some of Spark challenges that they mentioned are: debugging and

profiling, memory management …etc.

To solve these challenges they describes three areas of works that

tackle these challenges, these areas are: Engine Improvements, debugging

tools.

They develop a more declarative API. This API is based on

dataFrames. They also have outgoing work to improve Spark performance

and usability. [14]

3.2.1.3 DATA PROCESSING USING HADOOP

FRAMEWORK

According to this paper the author talk about big data and its

characteristics and focuses on Hadoop framework which is used for

capture, processing and analyzing big data .and also focus on two major

components of Hadoop which are MapReduce and HDFS. Hadoop

MapReduce framework is difficult to understand and it Needs time for

execution. These problems solved by implemented Pig and Hive, so the

author also talk about them. After that he discusses the modeling of

Hadoop framework and its future work.

 In conclusion the author presents the use of Hadoop in some

domains. [16]

22

3.2.2 FRAMEWORKS PRPCESSING

3.2.2.1 BATCH AND STREAM PROCESSING ON SPARK

AND FLINK FRAMEWORKS

The paper is focus in compare between batch API and stream API

in both framework, Apache Spark and Flink. By performing repeated

experiments for both and then extraction the result from the experiments.

Then the author reviewed related work and he suggested some

recommendation to future work, he used Tera-sort benchmark tool for

comparison and compare between the two frameworks in network usage

and disk usage.

He found in network usage comparison that is Apache Flink have

fixed rate in network data traffic and Apache Spark does not have this

fixed rate in network traffic. In contrast when compared to the disk usage

he found the attitude of the disk also reverses on attitude of the network ,

so Spark don’t use the network at the beginning for reading data, so it

caused late in the reading. Then used random bitstrings for streaming

compared, and found that is the response time of Apache Flink is

minimum than the response time of Apache Spark.

In conclusions he found that the Apache Flink framework is best in

the streaming processing because it based on the concept of streaming, and

Spark is better in the batch processing because it based on the concept of

micro-batch processing. [15]

23

3.2.2.2 COMPARISON BETWEEN MICRO-BATCH AND

STREAMING PROCESSING

The paper is about benchmarking between two open source

platform for batch processing as well as streaming processing engine by

using Amazon data ,also discuss these big data frameworks and show the

limitations of Spark as the existing system and the advantages of Flink as

the new system also talk about Spark streaming and Flink streaming .After

that the author compare between Apache Spark and Apache Flink in many

features and show the infrastructure statistics and data statistics which is

used for comparison , the paper presents the performance of Flink

streaming Vs Spark streaming, monthly distribution of reviews on

Amazon Data, monthly average ratings of new Amazon reviews

In conclusion the author found that both Spark and Flink supply

local connection with Hadoop and NoSQL Databases and able to process

HDFS data. Also the author find Spark is slower than ”Flink” but Spark is

more famous and has strong community support and contributors,

according to Amazon data he found Spark is 179.5% better than “Flink”,

and average time for processing With “Flink” is

240.3sec and Spark is 60.4sec. [17]

 3.2.3 BENCHMARKING

3.2.3.1 COMPARING IN PERFORMANCE USING

BENCHMARKS BETWEEN HADOOP, SPARK AND

HAMAR:

According to this paper, author use benchmark to compare

HADOOP, SPARK and HAMAR performances. He selected and ran

PageRank, Word-Count, Sort, Tera-Sort, K-means and Naive Bayes

24

benchmarks on Hadoop and Spark runtime systems, and ran PageRank and

Word-Count on HAMR runtime system.

 And data generators provided in HiBench Benchmark suite. He

measured the running time, maximum and average memory, CPU, usage

and the throughput to compare the performances difference among these

platforms for the six benchmarks.

 As a result, the author found that Spark has brilliant performance

on machine learning applications including K-means and Naive Bayes.

For PageRank, Spark runs faster with small input size. Spark is faster on

Word-Count. For Sort and Tera-Sort, Spark runs faster with large input.

However, Spark consumes more memory capacity and the performance

for Spark is restricted by the memory. HAMR is faster than Hadoop for

both two benchmarks with improvements on CPU and memory usage. [7]

3.2.3.2 USING BENCHMARKING FOR

 STREAMING SYSTEMS:

By Looking at the paper in (Dec, 2015) the Yahoo Company made

benchmark tool for comparing between the big data frameworks that based

on streaming processing, that frameworks which represented is: Apache

Storm - Apache Flink - Apache Spark.

Apache Storm and Flink, they similar that both of them based on

the real-time streaming processing, but Apache Spark based on microbatch

streaming processing.

Based on the comparison results made by Yahoo, it was found that

the company used in the current status the Apache Storm framework,

because the storm is very useful when it need the fast real-time system and

high response time, conversely if you want a high throughput but you have

delay in this case can use Apache Spark framework. [18]

25

 THE FOLLOWING TABLE SHOWS OUR IMPRESSION OF

THE PAPERS THAT ARE RELEVANT TO OUR RESEARCH

Study name

 Our Opinion

 About HDFS

read and write.

We agree with the author, the methodology of

read and write depends on the dataset or the

case which will process, and sequential files are

slower and must be selected when the

requirement required sequential processing

only.

 Spark

performance and

usability.

They do great work to improve Spark

performance, usability and API, and they

worked on really challenges and important

areas, these areas was problems that faces many

developers who wanted to implement Spark to

make use of their data and have less time to get

their result, and achieve Spark power which

concentrated in: in-memory processing and

simple API.

This paper is from 2015, and these

improvements have been done on Spark 1.2,

but now Spark 2 is available with more

improvements and features.

26

 Data processing

using Hadoop

Framework

We don’t agree with author in his Opinion on

Hadoop MapReduce, because it is not difficult

to understand MapReduce job, and it takes

more time in some cases.

 Batch and

stream

processing on

spark and Flink

frameworks.

The author adopted in the comparison on data

processing of the Spark in the disk, while

instead of that he could have benefited from the

feature of the Spark in-memory-processing.

 Comparison

between micro-

Batch and

streaming

processing.

The results of the experiment is contradictory

with the conclusion of the author because he

said Flink is faster than Spark and the result

shows the opposite.

 Comparing in

performance

using

benchmarks

between

Hadoop, Spark

and Hamar.

This paper different from our project in two

things:

•They compare HADOOP, SPRK and

HAMAR, but we compare HADOOP and

SPARK only.

• They use HiBench Benchmark suite regarding

workloads and we use BigBench Benchmark

suite for generate structure data (E-commerce)

and using it.

27

 Using

benchmarking

for streaming

systems.

We like to mention the uses of frameworks

based on what is company need and the volume

and kind of data.

Table 1: Table 3.1 illustrate our opinion.

3.3 SUMMARY

This chapter focused on related or previous studies in term of Big Data and

Benchmark and processing. The next chapters will show the research methodology and

tools and techniques used to develop the research’s framework.

28

CHAPTER FOUR

TOOLS, TECHNIQUES

AND

RECEARCH METHODOLOGY

29

4.1 INTRODUCTION

This chapter consists of two sections, the first section concerns the tools and

techniques used and the second section relates to the research methodology.

4.2 TOOLS AND TECHNIQUES

4.2.1 APACHE HADOOP

The Apache Hadoop software library is “a framework that allows for the

distributed processing of large data sets across clusters of computers using simple

programming models.” .Apache Hadoop ecosystem contain many component.

This research focused on using two components from Apache Hadoop

ecosystem, they are Hadoop Distributed File System (HDFS) and Hadoop

MapReduce framework.

 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System is a distributed file system designed to

run on commodity machines. HDFS is a high degree of fault-tolerant and it

designed to be installed on low-cost hardware. Also it provides high data access

to application data and is appropriate for applications that have big data sets. [19]

 Hadoop MapReduce

• MapReduce is a programming paradigm, and it is the heart of Hadoop,

it is a system for parallel processing on Big Data.

• The MapReduce has two basic functions: map and reduce. These two

functions take the input and exit the output, the input is a set of

key/value pairs, and the output is a list of key/value pairs (possibility

30

to be empty).The Execution of a MapReduce program involves two

phases, first phase : each input pair is given to map function and a set

of input pairs is produced with key and value, second phase :

aggregated all the intermediate values that have the same key into a

list, and then these list are given to a reduce function.

• To distribute MapReduce is implemented using architecture

master/slave. The master machine role is assign tasks and controlling

the slave machines. The master machine role is assignment of tasks

and controlling the slave machines. The graphic in Figure (3.1)

demonstrates the structure of MapReduce job: The input file is stored

in a shared store (such as a distributed file system) and it split into

chunks. First the implementation starts by giving copies of map and

reduce functions code, then the master assigns all map and reduce tasks

to workers. Any map worker reads the corresponding input split, and

sends all of its pairs to map function and writes the results of the map

function into intermediate files. After map phase is finished, the

reducer workers read intermediate files, and send the intermediate pairs

to reduce function, and finally write the pairs of result which has been

produced by reduce tasks into final output files.

 REASONS OF CHOOSING (HDFS) FOR STORING AND

(MAPREDUCE) FOR PROCESSING

Hadoop is the most common and popular implementation of MapReduce.

Hadoop uses master/slave architecture that illustrate in Figure (4.1) by default,

Hadoop stores input and output files on its distributed file system (HDFS). For

example, it can also use NoSQL databases like HBase and Cassandra and even

relational databases instead of HDFS. We have chosen HDFS because it is default

file system of Hadoop, and our data is one big table which is not an entire database,

and HDFS fits to our data. [9]

31

Figure 4.1: Architecture of MapReduce execution

4.2.2 APACHE SPARK

Apache Spark “is a fast and general engine for large-scale data processing

“[20]. It provides applications that reuse set of data through parallel operations

.In addition Spark support scalability and fault tolerance looks like Hadoop

MapReduce [7].

Users take benefit of memory-centric computing structural design, which

is provided in Spark. In addition extra intelligent optimization of user programs

is enabled [21].

• RESILIENT DISTRIBUTED DATASET(RDD)

It is the fundamental concept and data structure of Spark, which is a group

of fixed, distributed elements that can be worked in parallel [22].

When a job is assigned to Spark, the data is read from HDFS or other

distributed file systems, and it is then cached in memory .RDD helps to reduce

32

reading from and writing to disk which participates in speeding up the processing,

RDD could not update so any changes leads to create a new partition. Apache

Spark runs APIs in Java, Scala, Python and R shells.

• RUNNING THREE CLUSTER MANAGER USING SPARK

- Standalone mode: in easy way can be used in single node, in this mode

the cluster can lunched by hand or by launch script, this mode supported by Spark

distribution

- Mesos mode: Mesos: is delivered by Apache designed to manage the

clusters

- YARN mode: requires Hadoop2.0 or any Hadoop version after

Hadoop2.0. [7]

• APACHE SPARK AS A BEST CHOISE

It is first a competitor to Hadoop MapReduce and it solved latency in Hadoop

MapReduce, and it’s approximate that always against it.

4.2.3 APACHE HIVE

It is a software for data warehouse that helps reading, writing, and

managing large datasets, that located in a distributed storage. It is build to work

on top of Apache Hadoop.

Apache Hive provides tools to allow easy access to data via SQL, so as to

support data warehousing jobs such as extract/transform/load (ETL), and

reporting. It enable enable access to files stored in Apache HDFS, or another data

storage system like HBase.

Apache Hive execute queries by Hadoop MapReduce, so as allows user to

get used with SQL by HiveQL in data query. Also programmers who are familiar

with Hadoop MapReduce framework can be able to connect their own mappers

and reducer to execute more advanced analysis by HiveQL that may not be

provided by natural skills of language [23].

33

 THE CHOISE OF APACHE HIVE

Hive provides an SQL like interface called HiveOL, which makes your

work and even query easier. With this interface you can create tables in Hive and

store data in it, and even run an operations on tables created [24].

In our research we used Apache Hive to execute queries over data that has

been processed by Hadoop MapReduce and Spark.

 4.2.4 BIGDATABENCH

BigDataBench offers several (parallel) big data generation tools-BDGS-

to generate big data, from small-scale real-world data while preserving their

original characteristics. For example, on an 8-node cluster system, BDGS

generates 10 TB data in 5 hours. For the same workloads [25].

THE PROPERITES OF BIGDATABENCH SUITE

 In our research we used BigDataBench because it has many properties:

• There is a need to be specific when use Bigdatabench.

• It had eight real scalable data sets that are extracted from real-

world data sets.

• For the same workload specification, diverse implementations

using competitive techniques are provided, such as Hadoop and

Spark

• It has six workload types, include: Streaming, Offline

Analytics.

• There are 42 workloads in the specification in Bigdatabench.

34

Bigdatabench properties that we mentioned are increasing

by updating the versions of Bigdatabench [26].

In our research we used BDGS to generate Amazon data, as

structural nature, and search engine data as an example for

unstructured data.

4.3 RESEARCH METHODOLOGY

Here you will found the steps and activities that we have done to reach our

objectives:

• Survey.

• Prepare the environment.

• Configuring Hadoop and Spark in all machines.

• Formatting name-node in master node.

• Starting Hadoop and Spark and hive Services.

• Data generation.

• Running jobs.

4.3.1 SURVEY

4.3.1.1 SURVEY PURPOSES

• To prove there is big data in Sudan.

• To investigate whether there is big data and how it existence could

make real problem in companies.

• To find out whether big data solutions have been used in Sudan.

35

4.3.1.2 SAMPLE DISTRIBUTION AND FILLING UP

We divided Sudan into three sectors: services sector,

telecommunication sector and banks sector. We have chosen these sectors

because companies belonging to these sectors may have big data. We took

a random sample of companies from these sectors. Then we design the

questionnaire by google form. And ask the employee of this companies to

help us getting information needed. Finally the questionnaire has been

filled up and discussed with those employees.

4.3.1.3 SURVEY QUESTIONS

As shown in appendix (B), the questions were very clear and most

of them cannot accept multiple answers.

 We ask about latency in question 5 to see if the companies suffer

from its big data, for example in decision making or reports generating.

We also asked about batch processing and parallel processing, to see the

most one used in Sudan if existing. There are two questions that aim to

know the mechanism of storage in companies. There are also some

questions that aim to know which framework is used to process this big

data, if it exist.

4.3.1.4 SURVEY RESULTS

These are the questions and the result of each one:

36

Figure 4.2: illustrate Question 1

Figure 4.3: illustrate Question 2

37

Figure 4.4: illustrate Question 3

Figure 4.5: illustrate Question 4

38

Figure 4.6: illustrate Question 5

Figure 4.7: illustrate Question 6

39

40

Figure 4.8: illustrate Question 7

Figure 4.9: illustrate Question 8

41

Figure 4.10: illustrate Question 9

Figure4.11: illustrate Question 10

42

Figure 4.12: illustrate Question 11

Figure 4.13: illustrate Question 12

43

Figure 4.14: illustrate Question 13

HINT:

 According to these survey results and interviews that we done, we discovered

that a big data is really a big problem in some companies, especially in

telecom companies, and found that these companies are starting to address

big data concept this year, but they suffer from decrease of knowledge and

team practice and expertness, based on this results, we do our research to learn

and implement two big data solutions framework (Hadoop MapReduce and

Spark) to help these companies to implement big data solutions and make use

of their big data.

4.3.2 PREPARE THE ENVIROMENT

 In this research the work was configured in 2 environments:

44

• Multi-node cluster in a distributed environment consist of 3

machines(nodes):

a. Master node (Containing Name-Node and Data-Node):

• Processor: dual core, 2.10GHz, 2.10 GHz.

• Installed memory (RAM): 4.00 GB.

• Disk: 298.09 GB.

b. slave node (Containing DataNode):

• Processor: core i3, 1.80GHz, 1.80 GHz.

• Installed memory (RAM): 4.00 GB.

• Disk: 465.75 GB.

c. slave node (Containing DataNode):

• Processor: dual core, 2.20GHz, 2.20 GHz.

• Installed memory (RAM): 4.00 GB.

• Disk: 465.75 GB.

• Multi-node cluster in a distributed environment consist of 2

machines(nodes):

a. Master node (Containing Name-Node and Data-Node):

• Processor: core i3, 1.80GHz, 1.80 GHz.

• Installed memory (RAM): 4.00 GB.

• Disk: 465.75 GB.

b. Slave node (containing DataNode):

• Processor: dual core, 2.10GHz, 2.10

GHz.

• Installed memory (RAM): 4.00 GB.

• Disk: 298.09 GB.

45

4.3.3 CONFIGUREING MACHINES

 CONNECTION

In cluster mode implementation we connect machines with

Ethernet network. Firstly, we mapped nodes by editing (hosts) file in “etc”

folder in all machines, by specifying IP address for each machine followed

by hostname of the machine.

Secondly configure SSH login in each node, so that each machine can enter

to another one without password, by commands shown in figure (4.15).

Figure 4.15: SSH steps

Configuring SSH in each node must be done before configuring Hadoop and

Spark frameworks, because master node must have access to all slave nodes, so

it can distribute data and work in slave nodes.

4.3.3.1 CONFIGURING “HADOOP”, “SPARK” AND “HIVE”

We wrote documents and share videos on YouTube for the

right and easiest way to configure “Hadoop” and “Spark”, and the

preinstalled programs needed by “Hadoop” and “Spark”. These

documents and videos are found in appendix (A).

• FORMATING NAMENODE IN MASTER NODE :

46

It is an important step when configuring Hadoop. It empties

Hadoop file system from any data. We formatted it using command as

shown in figure (4.16), and the feedback after command is shown on figure

(4.17)

 Figure 4.16: format NameNode

Figure 4.17: Successfully formatted

• STARTING HADOOP AND SPARK AND HIVE SERVICES

Master node is responsible for starting Hadoop and Spark services (see

chapter two).

We cannot do any job in “Hadoop” or “Spark” without starting these services.

Figure (4.18) showing starting these services.

47

Figure 4.18: Starting Hadoop daemon

4.3.3.2 DATA GENERATION

We try to use data set from real case in Sudan, but we did not succeed

for the following reasons:

• Big data trend is novel in Sudan, and just big companies started

thinking of it. Unfortunately no company has a complete

implementation of real big data solution for its big data.

• In Sudan big companies are afraid of giving students its data.

• We have requested big data set from (X) company, at the

beginning they have accepted our request, but later they decided

to reject our request because of data sensitivity.

In this research we have generated E-commerce data as structural

data, and search engine data as unstructured data.

• DATA DESCRIPTION

48

1. Search engine data set

o Text data has been generated, which is Wikipedia

Entries.

o Its one-gigabyte data.

2. E-commerce data set

o Table data has been generated, which is E-commerce

Transaction Data.

o Its 30-gigabyte data as shown in figure(4.19)

Figure 4.19: generated 30-gigabyte data

o This data is divided into two text files, ORDERS.txt

and ORDERS_ITEMS.txt.

49

o ORDERS.txt file: consist of 3 attributes, order_id

(integer), buyer_id (integer) and create_date (string).

This file has 420,000,000 record.

o Figure (4.20) shows the format of the file

ORDERS_ITEMS.txt as it downloaded.

Figure 4.20: ORDERS.txt file

o ORDERS_ITEMS.txt file: consist of 3 attributes,

item_id (integer), order_id (integer), goods_id

(integer), goods_number (double), goods_price

(double) and goods_amount (double). This file has

420,000,000 record also.

o Figure (4.21) shows the format of the file

ORDERS_ITEMS.txt as it downloaded.

50

Figure 4.21: ORDERS _ITEM.txt file

4.3.4 RUNNING JOBS

 Two jobs have been run on that data generated, these jobs are:

Word-Count on Hadoop cluster and select query on Hadoop and Spark.

By these jobs, data processing concept has been implemented on Hadoop

and Spark.

4.3.4.1 Running Word-Count Workload on Hadoop cluster

Word-Count is a workload from Microbenchmarks suite, its

function is to count the appearance of each word in the input file,

and it work on text file as an input. This workload is a script file as

shown in the figure (4.22).

51

Figure 4.22: Run_Microbenchmarks.sh file

WordCount Functionality Description

To implement the wordCount Functionality, The first step NameNode stores

the input in HDFS on the background. Secondly word-count job is performed, to

operate map reduce job on Hadoop cluster. The last step is to collect result and store

it in a file in HDFS.

Machines performance data were collected while the word-count job is

running. We choose running time, physical memory consumption and CPU time

spent as operators, because they are the standard measurements to show the

performance of each job. A performance data are collected using JobHistory user

interface, which is a Hadoop service used to track MapReduce jobs. The first

JobHistory service in Hadoop is started as shown in figure (4.23), and then open it

in the browser. It is started in port 19888 as shown in figure (4.24).

52

Figure 4.23: start JobHistory service

Figure 4.24: JobHistory UI

4.3.4.2 Run “select” query on E-Commerce data set (described

above) using Hadoop MapReduce and Spark

This “select” job was implemented on the same cluster, when using the

two frameworks.

 “Select” Query in Hadoop

The first step was to store the input files in “HDFS” using

commands as shown in figure (4.25). Figure (4.25) show that, firstly create

a folder in HDFS called Hive and create 2 folders inside it, item and order

53

folder, then bring the text files from path where it stored through

generation step, and put the ORDERS.txt file in order file on the HDFS,

and the ORDERS_ITEMS.txt file in items file on the HDFS.

Figure 4.25: create a folder in HDFS called Hive

Then by using Hive we have created a table called items_hadoop

consists of 6 columns (item_id, order_id, goods_id, goods_number,

goods_price and goods_amount), with hiveQl command as shown in

figure (4.26).

Figure 4.26: created table in hive

The next step was to do the select Query over “items_hadoop”

table, using hiveOL command as shown in figure (4.27).

54

Figure 4.27: Select Query in hive

Then MapReduce started doing the select job, as shown in figure (4.28).

Figure 4.28: Hadoop MapReduce started doing the select job

Finally the result was fetched, and the job information was saved

in “jobHistory” interface, you will see these results in chapter 5.

 Select query in Spark

Firstly starting “Spark-shell” application, as shown in figure (4.29)

which is an application in Spark framework that enables you to write an

application to be performed by Spark using Scala, java, or R languages.

On this research we used Scala to write a program in Spark to do

the select Query.

Secondly we created “SparkContext” to initialize “hiveContext” in

Spark shell, which enable to write queries and interact with hive

“metastore” using “HiveQL” shown in figure (4.30)

Then used the Spark context value to create table called

“items_Spark” with attributes: (item_id (integer), order_id (integer),

goods_id (integer), goods_number (double), goods_price (double) and

goods_amount (double)), as shown in figure (4.31), the system

automatically create a folder called “Sparkwarehouse” to store tables on

55

it. Then we load the data stored in “ORDERS_ITEM.txt” file as shown in

figure (4.32). After that we wrote select query on table “items_Spark” and

stored the result on “resu” variable, shown in figure (4.33).

Finally showing the result using “show () “method, and then went

to “SparkJobs” interface and tracked this job information, it is started

when we start Spark services, in port “4040”.

 Figure 4.29: Start Spark shell

 Figure 4.30: write queries and interact with hive

56

 Figure 4.31: Spark context value

 Figure 4.32: load the data stored in “ORDERS_ITEM.txt”

Figure 4.33: store the result on “resu” variable

After this “select” job, we searched a lot for tool that measure

machines performance while the job is running on the background, we

tried “collect and Graphana” tool, which is used for monitoring machine

resources (processor, RAM, Disk) performance, but we found that it

monitor a single machine, and we are doing our job on a “cluster” consist

of 3 machines. Then we tried “htop” service on Ubuntu, which read the

measurements of machine while “processes” is running, but we discovered

that when map Reduce or Spark run a job; this job started multiple

processes in Ubuntu, it executed many java script files, for that reason we

could not track jobs using this service (htop) because “htop”, giving results

to single running process. For these reasons we used Hadoop service

“JobHistory” to track MapReduce job, and “SparkJobs” interface to track

Spark job.

57

 4.4 SUMMARY

This chapter shows the main tools and techniques that have been used to

achieve the goals of this project, and explained the research methodology that

used to achieve goals. In next chapter we will show you the results has been

collected from two jobs (Word-Count and select Query), and the comparison

results.

58

CHAPTER FIVE

RESULTS

AND

RECOMMENDATIONS

59

5.1 INTRODUCTION

Last chapter describes the work that have been done and the tools and

techniques used, it describes the two jobs (“Word-Count” and “Select” query)

that have been done on the cluster using Hadoop MapReduce and Spark. This

chapter will show you results that have collected when applying the two Jobs to

Hadoop MapReduce and Spark, then the comparison results between the two

frameworks. And also shows the recommendations.

5.2 RESULTS

These are the results that have collected when running jobs on Hadoop

MapReduce and Spark.

 5.2.1 PERFORMANCE RESULTS OF

“WORD-COUNT” JOB ON ‘Hadoop

MapReduce’ CLUSTER

After running (Word-Count) on Hadoop cluster using Hadoop

MapReduce framework, the result is stored in output file in the (HDFS),

the output was in format of lines, and each line shows the word and its

appearance in the text input file. Then get the resources measurements

from “JobHistory” interface, we have chosen these three measurements to

be shown in this chapter, but actually “JobHistory” interface gives many

other measurements.

60

The result of “Word-Count” job take these consumptions while

running: (Running time = 4 mins, 22 sec, Physical memory (bytes) =

2738606080, CPU time spent (ms) = 580,700)

5.2.2 PERFORMANCE RESULTS OF “Select”

 QUERY USING HADOOP MAPREDUCE

Resources measurements have get from “JobHistory” interface while the “select” job

is running as shown in figure (5.1).

Figure 5.1: measurements was saved in “JobHistory”

 RESULTS SNAPSHOT OF “select”

QUERY

Running time: 1mins, 42sec

CPU time spent (ms):

61

o Map job takes = 51,240

o Reduce job takes = 0

o AVG= 51,240

Physical memory (bytes):

o Map job used = 456,957,952

o Reduce job used = 0

o AVG=456,957,952

Virtual memory (bytes) snapshot:

o Map job used = 1,495,048,192

o Reduce job used = 0

o AVG= 1,495,048,192

5.2.3 RESULTS OF “select” QUERY IN SPARK

CLUSTER

These results have get from “SparkJobs” interface, which shows

the job id, stages, submitted time, and job duration, as shown in figure

(5.2).

62

 Figure 5.2: result measurements in “SparkJobs”

We could not get performance measurements of machines in spark,

because “sparkJobs” interface does not show them, and we did not find another

interface that show these measurements.

5.2.4 COMPARISON RESULT BASED ON TIME

OF PROCESSING

Table 2: Table 5.1 illustrate comparison result

 Date records

Framework

420,000,000

Hadoop MapRed uce 1 mins, 42sec

Spark 5 Sec

63

According to this table:

When implementing “select” query job, we found that

“Hadoop MapReduce” takes a lot of time to do this job,

but spark gives you the result per “Enter press”, as you see

above by numbers. Although this is very simple job but

Hadoop MapReduce takes time greater than spark time, it

takes more than doubled time compare with spark. This

result is because Spark do its processing and store part of

input data in memory not in disk, but Hadoop MapReduce

do it’s processing in disk, and absolutely access to memory

is very fast than access to disk.

5.2.5 COMPARISON RESULTS

• As a comparison between Hadoop ecosystem configuration and spark

configuration; we found that Hadoop has very complex configuration,

but “Spark” has simple and clear configuration.

• “Hadoop” has clear error messages, and problems caused on it can be

understood easily, but spark gives unclear exceptions, we took a lot of

time to understand cause of problem or exceptions.

• Hadoop MapReduce has great support on the internet, many

communities show questions and answers which help us very much,

but Spark has poor support over the internet, because Spark is new

technology which appear in 2014.

64

5.3 CONCLUSION:

From the experimental work, we found Spark overcomes Hadoop

MapReduce performance in all cases. We conclude that several factors can give

a rise to a significant performance difference. First, Spark pipelines resilient

distributed datasets (RDDs) transform and keep persistent RDDs in memory by

default, but Hadoop mainly concentrates on high throughput of data rather than

on job execution performance, such that MapReduce results in overheads due to

data replication, disk I/O, and serialization, which can dominate application

execution times. Finally, yet importantly, Spark has more optimizations, such as

the number of disk accesses per second, memory bandwidth utilization and IPC

rate, than Hadoop, so that it provides a better performance, Spark is sure to be the

best fit.

5.4 RECOMMENDATIONS

• We recommend to do the “select” query job multiple times in “Spark” and

“Hadoop MapReduce”, and each time of running, increase one of machine

resources such as, CPU cores, RAM used, or Disk space, to find that which

resource affect the job performance in, and in which case “Spark” has better

performance than “Hadoop MapReduce” and the opposite also.

• Use more complex query rather than select query, when the machines has big

disk space and large memory.

• Design an intelligent system that can help to choose a platform and the

configuration parameters, based on the applications and the input data sizes to

get the optimized performance.

65

References

[1] UK , Fujitsu ; , Irelan;, BigDataThe definitive guide to therevolution in business analytics, 2012.

[2] Bhadani, Abhay Kumar ; Jothimani , Dhanya ;, "Big Data: Challenges, Opportunities and Realities,"

in Effective Big Data Management and Opportunities for, India, Indian Institute of Technology

Delhi, 2015.

[3] "Challenges and Opportunities with Challenges BigData," A community white paper developed

by leading researchers across the United States, 2015.

[4] . N. Samal and N. Mishra, "Big Data Processing: Big Challenges and Opportunities," Journal of

Computer Sciences and Applications, vol. 3, pp. 177-180, 2015.

[5] . M. Mayo and . K. , "Top Big Data Processing Frameworks," 2016. [Online]. Available:

https://www.kdnuggets.com/201*****************************6/03/top-big-data-

processing-frameworks.html. [Accessed 16 10 2017].

[6] Elmasri, Ramez ; Navathe, Shamkant B;, FUNDAMENTALS OF Database Systems SEVENTH

EDITION, Texas : Department of Computer Science and EngineeringThe University of Texas at

Arlington, 2016, 2011, 2007.

[7] Liu; Lu;, "Performance comparison by running benchmarks on Hadoop, Spark, and HAMR," no.

2015, 2016.

[8] C. Hope, "Batch processing," 10 2 2017. [Online]. Available:

https://www.computerhope.com/jargon/b/batchpro.htm. [Accessed 17 10 2017].

[9] S. Shahrivari, "Beyond Batch Processing: Towards Real-Time and Streaming Big Data," computers,

2014.

[10] T. A. S. Foundation., "Welcome to Apache™ Hadoop®!," 4 10 2017. [Online]. Available:

http://hadoop.Apache.org/. [Accessed 18 10 2017].

[11] A. S. Foundation., "Apache Storm," [Online]. Available: http://storm.Apache.org/. [Accessed 18

10 2017].

66

[12] T. A. S. Foundation, "Apache Flink® is an open-source stream processing framework for

distributed, high-performing, always-available, and accurate data streaming applications.,"

[Online]. Available: https://flink.Apache.org/. [Accessed 18 10 2017].

[13] S , Sunil Kumar ; G , Sanjeev Kanabargi;, "Challenges for HDFS to Read and Write Using Different

Technologies," International Journal of Science and Research (IJSR) , pp. 1-6, 2013.

[14] Armbrust, Michael; Das, Tathagata; Davidson, Aaron ; Ghodsi, Ali ; Or, Andrew ; Rosen, Josh ;

Stoica, Ion; Wendell, Patrick ; Xin, Reynold ; Zaharia, Matei ;, "Scaling Spark in the Real World,"

Proceedings of the VLDB Endowment - Proceedings of the 41st International Conference on Very

Large Data Bases, Kohala Coast, Hawaii, vol. 8, no. 12, pp. 1840-1843 , 2015.

[15] Kevin , Jacobs; Kacper, Surdy; CERN. Geneva. IT Department;, "Apache Flink: Distributed Stream

Data Processing," 2016.

[16] Francis, Navya ; K, Sheena Kurian ;, "Data Processing for Big Data Applications," International

Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 8, 2015.

[17] Kaur, Dilraj ; Chadha, Raman ; Verma, Nitin, "COMPARISON OF MICRO - BATCH AND STREARMING

ENGINE ON REAL TIME DATA," INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES &

RESEARCHTECHNOLOGY, no. 2277-9655, 2017.

[18] R. Sliberman, "A benchmarking tool for Streaming systems," Big Data Architect, 2015.

[19] D. Borthakur, "The Hadoop Distributed File System:Architecture and Design.," The Apache

Software Foundation, 2007.

[20] [Online]. Available: http://spark.Apache.org/.

[21] "Apache Spark Primer," in databricks, 2017.

[22] [Online]. Available:

http://spark.Apache.org/docs/0.8.1/api/core/org/Apache/spark/rdd/RDD.html.

[23] "Apache Hive," Apache Community Development Project., 2017. [Online]. Available:

http://projects.Apache.org/project.html?hive.

67

[24] "StackOverFlow," 12 january 2016. [Online]. Available:

https://stackoverflow.com/questions/13911501/when-to-use-hadoop-hbase-hive-and-pig.

[Accessed 19 10 2017].

[25] Prof; Zhan, Jianfeng ;, BigDataBench User Manual, ICT, Chinese Academy of Sciences.

[26] C. A. o. S. ICT, "BigDataBench," 16 february 2017. [Online]. Available:

http://prof.ict.ac.cn/#WhyBigDataBench. [Accessed 19 10 2017].

[27] [Online]. Available: https://www.ibm.com/analytics/us/en/technology/Hadoop/MapReduce/.

[28] Office of the Vice President for Management and Budget University of Virginia , "Benchmarking

in higher education".

68

APPENDICES

69

APPENDIX (A)

CONFIGURATION OF FRAMEWORKS

70

INTRODUCTION
To insure that the frameworks or the environment working well, we introduce the

steps of Hadoop , Spark and BigBench installations and configurations and also we

show some snapshots of the important steps that shows result when executed.

HADOOP CONFIGURATION
Before install Hadoop framework we have Prerequisite:

First, you must install ssh server:

* SSH, or Secure Shell, is a protocol used to securely log onto remote systems.

It is the most common way to access remote Linux and Unix-like servers.

Fire this command to do this:

$ sudo apt-get install openssh-server

then to make your machine communicate with one another without any prompt

for password:

this command to generate key between machines via:

 $ ssh-keygen -t rsa this

command to copy the id via:

 $ ssh-copy-id -i ~/.ssh/id_rsa.pub ubuntu@master this

command to change the mod:

 $ chmod 0600 ~/.ssh/authorized_keys then

reboot or restart the machine:

 $ sudo reboot

Second, install java:

71

*Java is the main prerequisite for Hadoop, here We install java 7. first

check if Java is not already installed, fire this:

$ java -version if it not

exist install it via:

$ sudo apt-get install default-jre

$ sudo apt-get install default-jdk

Thirdly, download and install Apache Hadoop source file, using the following

commands.:

*First thing you must sure that the ip address of master and slaves write in the

/etc/hosts via:

$ sudo gedit /etc/hosts

Checking for the IP address.

*Download Hadoop From

http://www-eu.Apache.org/dist/Hadoop/common/

*here, you can find the latest version and latest modification.

*we download Hadoop-2.7.0.tar.gz and extract it in /usr/local via this command:

http://www-eu.apache.org/dist/hadoop/common/
http://www-eu.apache.org/dist/hadoop/common/
http://www-eu.apache.org/dist/hadoop/common/
http://www-eu.apache.org/dist/hadoop/common/

72

$ sudo tar -xvf Hadoop-2.7.0.tar.gz

Extract Hadoop file.

• Fourthly, then give the Hadoop file permission and privileges after you download

it via these steps:

$ sudo chown ubuntu:root /usr/local/Hadoop-2.7.0

$ sudo chmod 777 /usr/local/Hadoop-2.7.0/*

*ubuntu: is the user name in you machine.

*root: is group that had the permission and privilage.

• Fifthly, create Hadoop_tmp/hdfs :

$ sudo mkdir -p /usr/local/Hadoop_tmp/hdfs

* And then give it permission and privileges via:

73

$ sudo chown ubuntu:root /usr/local/Hadoop_tmp

$ sudo chmod 777 /usr/local/Hadoop_tmp/*

• We need to Update .bashrc file :

*.bashrc is a shell script that Bash runs whenever it is started interactively. You

can put any command in that file that you could type at the command

prompt.You put commands here to set up the shell for use in your particular

environment, or to customize things to your preferences.

• Fire via:

$ sudo gedit .bashrc

• in file .bashrc we write the java home and Hadoop home in the end of the file :

-- HADOOP ENVIRONMENT VARIABLES START -- #

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

export HADOOP_HOME=/usr/local/Hadoop-2.7.0 export

PATH=$PATH:$HADOOP_HOME/bin export

PATH=$PATH:$HADOOP_HOME/sbin export

HADOOP_MAPRED_HOME=$HADOOP_HOME export

HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export

HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

74

-- HADOOP ENVIRONMENT VARIABLES END -- #

Write java path in .bashrc file.

 Sixthly, Configuration files :

1. Hadoop-env.sh its location in we Update JAVA_HOME variable:

/usr/local/Hadoop-2.7.0/etc/Hadoop

*fire this command:

$ sudo gedit Hadoop-env.sh

*and write:

JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

75

2. core-site.xml:

$ sudo gedit core-site.xml

*Paste these lines into <configuration> tag

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:9000</value>

</property>

3. hdfs-site.xml:

$ sudo gedit hdfs-site.xml

*Paste these lines into <configuration> tag

<property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

 <property>

 <name>dfs.namenode.name.dir</name>

 <value>/usr/local/Hadoop_tmp/hdfs/namenode</value>

 </property>

 <property>

 <name>dfs.datanode.data.dir</name>

 <value>/usr/local/Hadoop_tmp/hdfs/datanode</value> </property>

76

4. yarn-site.xml:

$ sudo gedit yarn-site.xml

*Paste these lines into <configuration> tag

<property>

 <name>yarn.nodemanager.aux-services</name>

 <value>MapReduce_shuffle</value>

</property>

<property>

 <name>yarn.nodemanager.auxservices.MapReduce.shuffle.class</name>

 <value>org.Apache.Hadoop.mapred.ShuffleHandler</value>

</property>

5. mapred-site.xml:

*Copy template of mapred-site.xml.template file via:

$ sudo cp /usr/local/Hadoop-2.7.0/etc/Hadoop/mapred-site.xml.template

/usr/local/Hadoop-2.7.0/etc/Hadoop/mapred-site.xml

*To edit file, fire the below given command

$ sudo gedit mapred-site.xml

*Paste these lines into <configuration> tag

<property>

 <name>MapReduce.framework.name</name>

 <value>yarn</value>

77

</property>

*Format Namenode in Hadoop-2.7.0 master:

*Hadoop NameNode is the centralized place of an HDFS file system which keeps the

directory tree of all files in the file system, and tracks where across the cluster the file

data is kept. In short, it keeps the metadata related to datanodes. When we format

namenode it formats the meta-data related to data-nodes. By doing that, all the

information on the datanodes are lost and they can be reused for new data.

* fire via:

$ bin/Hadoop namenode -format

Format namenode

78

Formatted namenode successfully

• if namenode don’t started in master:

• you must sure that if the Hadoop_tmp that contain namenode and datanode :

• Delete and recreate Hadoop_tmp/hdfs :

$ sudo rm -rf /usr/local/Hadoop_tmp $ sudo

mkdir -p /usr/local/Hadoop_tmp/hdfs

• have the Hadoop user owner:

$ sudo chown ubuntu:root /usr/local/Hadoop_tmp

• give privileges:

$ sudo chmod 777 /usr/local/Hadoop_tmp/*

• and then:

• Start all Hadoop daemons :

* Used to start and stop Hadoop daemons all at once. Issuing it on the master

79

machine will start/stop the daemons on all the nodes of a cluster. Deprecated as

you have already noticed.

• Fire via:

 $ sbin/start-all.sh

Start Hadoop daemons

• Last thing to grantee you work is done correctly fire jps:

$ jps

• That must show:

jps to show the daemons of Hadoop

80

*then open the namenode site:

localhost:50070

Namenode site

81

and the yarn site:

localhost:8088

Yarn site

SPARK CONFIGURATION
Before install Spark framework we have Prerequisite:

• First, like Hadoop framework we must do the same command before install Spark

framework ,we must install ssh server via following commands:

$ sudo apt-get install openssh-server

$ ssh-keygen -t rsa

$ ssh-copy-id -i ~/.ssh/id_rsa.pub ubuntu@master

$ chmod 0600 ~/.ssh/authorized_keys

• Then reboot the machine:

82

$ sudo reboot

• Secondly, install java:

• first check if Java is not already installed:

$ java -version

• if it not exist install it via:

$ sudo apt-get install default-jre $

sudo apt-get install default-jdk

• Thirdly, download Spark via these steps:

*First thing you must sure that the IP address of master and slaves write in the /etc/hosts

via:

$ sudo gedit /etc/hosts

83

Checking for the IP address.

• In next step install git, Spark build depends on git:

$ sudo apt-get install git

• Fourthly, in next step is install Scala, follow the following instructions to set up

Scala. First download the Scala from:

https://scala-lang.org/download/

• Here we install scala-2.12.3.tgz Extract it via:

$ sudo tar -xvf scala-2.12.3.tgz

• And then give it permission and privilege via:

$ sudo chown ubuntu:root /usr/local/scala-2.12.3

$ sudo chmod 777 /usr/local/scala-2.12.3/*

https://scala-lang.org/download/
https://scala-lang.org/download/
https://scala-lang.org/download/
https://scala-lang.org/download/

84

Extract Scala file.

• In the next step, install the source of Apache Spark from:

https://Spark.Apache.org/downloads.html

• Here we install Spark-2.2.0 Extract it via:

$ sudo tar -xvf Spark-2.2.0-bin-Hadoop2.7.tgz

• And then give it permission and privilege via:

$ sudo chown ubuntu:root /usr/local/Spark-2.2.0-bin-
Hadoop2.7

$ sudo chmod 777 /usr/local/Spark-2.2.0-bin-Hadoop2.7/*

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html

85

Extract Spark file.

• Then configure these Files:

• Edit the .bashrc file by write:

$ sudo gedit .bashrc

• And write in it:

• the Scala home:

export SCALA_HOME=/usr/local/scala-2.12.3 export

PATH=$SCALA_HOME/bin:$PATH

• And Spark home:

export SPARK_HOME=/usr/local/Spark-2.2.0-bin-Hadoop2.7

export PATH=$SPARK_HOME/bin:$PATH

86

Edit .bashrc file.

• Copy the following files, and can find it in /Spark/conf/:

• fire these command:

1. slaves file:

$ cp slaves.template slaves

$ sudo gedit slaves

• And then type inside file :

localhost

87

The slaves file.

2. Spark-default.conf file:

$ cp Spark-defaults.conf.template Spark-defaults.conf

$ sudo gedit Spark-defaults.conf

• And then type inside file :

Spark.master Spark://localhost:7077

88

The Spark-default.conf file.

3. Spark-env.sh file:

$ cp Spark-env.sh.template Spark-env.sh

$ sudo gedit Spark-env.sh

• And then type inside file :

export SCALA_HOME=/usr/local/scala-2.12.3

89

The Spark-env.sh file.

• Lastly start all Spark daemons:

$ sbin/start-master.sh

$ sbin/start-slaves.sh

• if these command not run, fire this:

$ sbin/start-all.sh

90

start all Spark daemons.

• To guarantee that was working type :

$ jps

jps to show the daemons of Spark

• open Spark sites:

localhost:8080

91

Spark website

HINT:

To clarify more, we have done work a channel with videos explaining for frameworks

configuration can found it in this link:

https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg

https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg
https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg
https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg
https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg

92

APPINDEX (B)

BIG DATA IN SUDAN QUESIONNAIRE

93

INTRODUCTION:

Big data in Sudan survey is a survey which targeted many

companies in many sectors in Sudan.

SURVEY QUESTIONS:

Company Name?

…………………………………………………..

Employee name?

…………………………………………………..

Department name?

 ……………………………………………………

Did your company has big data (e.g Billion record or 1 Tera volume

of data)?

• Y

es

• N

o

Did this big data make latency in company’s decision(e.g delaying

report or delaying decision …etc)

• Y

es

• N

o

Which techniques do you use to process this data?

94

……………………………………………………

Did you use Batch processing?

• Y

es

• N

o

Did you use parallel processing?

• Y

es

• N

o

Where you store this big data?

• D

istributed

• C

entral

Did you store data in HDFS?

• Y

es

• N

o

Did you use Hadoop MapReduce to implement this big data?

• Y

es

• N

o

Did you hear about Apache Spark?

• Y

es

95

• N

o

Did you use Apache Spark to implement this big data?

• Y

es

• N

o HINT:

THIS IS THE SITE OF SURVEY:

https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58wNY55Ll33mB8apI1BKjwkt6No

cWcLDA/viewform

https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58-wNY55Ll33mB8apI1BKjwkt6NocWcLDA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58-wNY55Ll33mB8apI1BKjwkt6NocWcLDA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58-wNY55Ll33mB8apI1BKjwkt6NocWcLDA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58-wNY55Ll33mB8apI1BKjwkt6NocWcLDA/viewform

