
 

 

 

 

First Principles and Monte Carlo Simulation for 

Investigation of Phase Transition in Au1-xCux Nano Alloys 

 

ذهب ال سبيكة من طور الانتقالمن  للتحققومحاكاة مونت كارلو  المبادئ الأولية

 والنحاس النانوية 

 

A Thesis Submitted for Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy in Physics 

 

By 

Mujahid Eldaw Jahelnabi Mohammed 

 

Supervised By: 
 

Associate Professor: Mohamed Hassan Eisa Salim 

 

Co- Supervised By: 

 
Associate Professor: Rawia Abdelgani Elobaid Mohammed 

 

June - 2018

 

 

Sudan University of Science 

and Technology 

College of Graduate Studies 

 

 



I 

 

 

Dedication 

This work is dedicated to those who support and encouraged me 

throughout the thesis  

To my kind mother, and my great father 

To my    beloved little son and wife 

To my brothers and sisters 

To my relative and friends  

 This thesis would be incomplete without a mention of the support 

given by them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



II 

 

Acknowledgement 

First of all great thanks to Allah. Definitely, no work of value can be 

achieved without the help of Allah. 

I want to thank my supervisor Dr. Mohamed Hassan Eisa (M. H. 

Eisa) for his exceptional support and care; he was the best teacher I 

ever had. A person who did not only teach me physics, but also taught 

me how to be a better human being. He spent so much time with each 

of us students to make sure we get the proper education and skills that 

we need, and the only thing he expected us to do in return was to 

learn, to teach him more when we can, and do the same for our 

students in the future. 

 I owe special thanks to my supervisor Dr. Rawia Abdelgani 

Elobaid for giving useful advice and fruitful suggestions. 

I am indebted to Dr. Mohammed Alshaikh Hamid Khalafalla my 

future advisor, not only for his major contributions in creating the 

theoretical foundation of thermodynamic and phase diagrams or 

educating me about the current challenges of Phase Diagrams of 

Nano alloys, and motivating me to try to solve them, but also for his 

support and being a great inspiration in the past years, and I hope to 

continue with him in the coming years. 

We are deeply indebted to Physics Department, College of Science, 

Sudan University of Science and Technology for moral support 

during our University years and in the writing of this study 

 

 

 

 



III 

 

 المستخلص

 تيب(تكوين )الترلذهب والنحاس النانوية في مرحلة الالانتقال لجسيمات )سبيكة( ا طور حُسب

ق حسابات عن طري توسع )تمدد( الكتلة الذي تمثله طاقات التكوين للعديد من التكوينات الذرية وحدد

 .ومحاكاة مونت كارلو المبادئ الأولية

 بواسطةة يالخواص الثيرموديناميك الكتلة على أنه هاملتموني لحسابتوسع )تمدد(  ذلك، استخدمبعد 

 صورةب وقد لوحظ)الاستقرار(. الحالات الأرضية بين  طور الانتقاللتوضيح كارلو  مونتمحاكاة 

بالحالات الأرضية المحسوبة في  ، مرتبطاسطح مستوية  ات( ذاترجتكوين هضاب ) تدواضحة 

زيادة  وعند ، كلفن 100حرارة منخفضة اقل من  جةعند در الجهد الكيميائيمرحلة التكوين مقابل 

المرتبة  من الذرات طور في وهذا يدل على التحولاو اختفت هذه التدرجات  درجة الحرارة تشوهت

 100وقدرت درجة الحرارة الحرجة لهذا الانتقال بـ  ، )العشوائية( غير مرتب طور)المنظمة( الي 

المادة  بين اطوار الانتقال حرارةدرجة ن الدراسات السابقة التي وضحت أ، بما يتفق مع اتجاه كلفن 

ك حجم سبيكة النانو وبالتالي ، فإن نتائجنا ذات صلة بالتطبيقات المتعلقة بترسب سبائمرتبط ب النانوية 

 ذرات لكل سبيكة نانو. 10النانو المشتتة عند حجم صغير ~ 

ين ستم تحسين جميع هياكل سبائك النانو هندسيا قبل تنفيذ الحسابات المذكورة أعلاه. حيث تضمن التح

عمليات محاكاة ذرية لدراسة  تيكية للسبائك النانوية حيث أجريالهندسي حساب الخواص الميكان

ري من حيث خأة ثابت الشبيكة والطاقة الكلية وهما قائم على مشتقاثابت الشبيكة والتمدد الحجمي أحد

ات ئج وكمينتا وكلاهما اعطي في كثير من الأحيان في المحاكاة الضغط المستخدمومشتقة الحجم 

 متماثلة.
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ABSTRACT 

    The calculation of phase transition in the configurational state (i.e. atomic 

arrangement) of AuxCu1-x nanoparticle (or Nano alloy) have been 

investigated by first principles and Monte Carlo calculations.  

The cluster expansion represented by the formation energies of several 

atomic configurations have been determined from full potential, linearized 

augmented-plane-wave first-principle calculation. The cluster expansion 

was then used as a Hamiltonian for the Monte-Carlo calculation of the phase 

transition between the configurational ground states, “gs”. Clear 

observation of plateau structures, associated with the calculated “gs, in the 

plane of the composition (x) versus the chemical potential have been 

observed at low temperatures < 100 K. The plateaus smeared out at higher 

temperatures, giving rise to the order-disorder transitions with temperature. 

The critical temperature for this transition was estimated at 100 K, 

consistent with the reported trend of the transition temperature with the 

Nano alloy size. Our results are thus relevant to applications concerning 

deposition of dispersed Nano alloys at small size ~ 10 atoms per Nano alloy. 

All the Nano-alloys structures were geometrically optimized before 

executing the above-mentioned calculations. The geometrical optimization 

involved the calculation of the mechanical properties of Nano alloys where 

we performed atomistic simulations to study the structure and Elastic 

constants for Au-Cu Nano-Alloy. Approaches used to compute the bulk 

modulus and lattice constant, one based on a definition in terms of the lattice 

parameter derivative of the total energy and another in terms of the volume 

derivative of the pressure often used in simulations. Both give quantitatively 

similar results.  

 

 
 



V 

 

List of Tables 

 

 

 

Table Title No. 

Table 4.1 First principles structural and bulk modulus of 

Au, Cu and Au-Cu NPs 

44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VI 

 

List of Figures 

 

Figure Title No. 

Figure 3.1 A schematic flow chart showing the main 

computational stages for the calculation of the phase 

diagram of AuxCu1-x Nano-alloy. 

39 

Figure 4.1 The calculated energy VS. Lattice parameter curves for 

optimizing the lattice constants as (aAu) NPs 

44 

Figure 4.2 The calculated energy vs lattice parameter curves for 

optimizing the lattice constants as (aCu) NPs 

45 

Figure 4.3 The calculated energy VS. Lattice parameter curves for 

optimizing the lattice constants as 𝑎𝐴𝑢−𝐶𝑢) NPs 

45 

Figure 4.4 Compression data of ( Au ) NPs at zero temperature. 

The solid curve is a least squares fit of the first-

principles calculations data 

46 

Figure 4.5 Compression data of Cu NPs at zero temperature. The 

solid curve is a least squares fit of the first-principles 

calculations data 

46 

Figure 4.6 Compression data of (Au-Cu ) NPs at zero temperature. 

The solid curve is a least squares fit of the first-

principles calculations data 

47 

Figure 4.7 The calculated Energy vs. Volume curves for 

optimizing the lattice constants as aAu, aAuCu and aCu, 

respectively, for (a) Au (b) AuCu with and (c) Cu bulk 

structures. (d) Fitting the optimized lattice constants 

(black squares) in (a)-(c) to Vegard law (solid line). 

Notice, the experimental lattice constants written 

beneath the optimized ones in (a) – (c). 

48 



VII 

 

Figure 4.8 (a) Au nanoparticle with 13 Au atoms generated with 

ASE program using the Wulff-construction method. (b) 

The structure formation energy versus the structure 

concentration produced by the maps program. Among 

known structures (shown as crosses) the ground state 

structures gs0 – gs3 are the ones that reside on the 

convex hull (solid line). 

49 

Figure 4.9 (a) Monte Carlo simulation convergence test for the size 

(er) of the simulation cell (b) Phase diagram of AuxCu1-

x Nano-alloys. Insets: structures of the Nano-alloys 

(each with 13 atoms) for the calculated stable ground 

states gs0 – gs3. These Nano-alloys are placed in empty 

boxes with sides ~ “a”. (c) An example of a monte-carlo 

simulation super-cell consisting of periodic 

arrangements of structures associated with a give 

ground-state. 

50 

Figure 

4.10 
(a) snap shot of the cross-sectional region of the Monte-

Carlo simulation cell at 50 K (left snapshot) and 1000 K 

(right snapshot), clearly indicating the ordered and 

disordered distribution of the Cu (black circles) among the 

Nano-alloys at low and high temperatures, respectively. The 

bright circles are the Au atoms. (b) The concentration, x, 

versus the temperature at the chemical potential δµ = 

0.16455 eV corresponding to the stable ground state 2 (gs2). 

(c) The order parameter as a function of temperature for gs2 

at δµ = 0.16466 eV. 

 

51 

 



VIII 

 

List of Abbreviations 
 

DFT Density functional theory 

DOS Density of States 

GGA Generalized gradient approximation 

HK Hohenberg-Kohn 

KS Kohn-Sham 

LAPW Linearized augmented plane wave 

LDA Local density approximation 

PAW Projector augmented wave method 

PP Pseudopotential 

PW plane wave 

FPLAPW Full-Potential Linearized Augmented Plane-Wave 

HF Hartree-Fock 

SCF Self-Consistent-Field 

EMC2 Easy Monte Carlo code  

(ATAT) alloy theoretic automated toolkit  

MAPS  MIT Ab-initio Phase Stability 

ASE Atomic Simulation Environment  

 

 

 

 

 

 

 

 

 

 



IX 

 

Table of Contents 

 

page Topics No. 

I. Dedication  

II. Acknowledgement  

III. Abstract in Arabic  

IV. Abstract in English   

V. List of Tables  

VI. List of Figures  

VIII. List of Abbreviations  

IX. Table of Contents  

1 CHAPTER 1: INTRODUCTION 1 

1 Motivation 1.1 

2 Importance of The Thesis  1.2 

2 Problem of The Thesis  1.3 

2 Objectives of The Thesis 1.4 

3 Scope  of The Thesis   1.5 

4 CHAPTER 2:  THEORETICAL BACKGROUND 2 

4 Phase Diagram of Bulk Gold–Copper Alloys 2.1 

4 Nanoalloys  Clusters  2.2 

5 Gold–Copper Nano Alloy clusters 2.2.1 

5 Application of Gold–Copper Nanoalloys 2.2.2 

6 Basic Aspects of Thermodynamics   2.3 

7 Equilibrium 2.3.1 

7 Internal Energy and First Law of Thermodynamics 2.3.2 

7 Heat Content or Enthalpy 2.3.3 

8  Heat Capacity 2.3.4 



X 

 

9 Entropy and Second Law of Thermodynamics 2.3.5 

10 Gibbs Free Energy 2.3.6 

11 Helmholtz Free Energy 2.3.7 

12 The Kinetics of Phase Equilibria 2.3.8 

12 Equilibrium Phase Diagrams  2.4 

13 Advantages of Phase Diagrams 2.4.1 

14 Free Energy of a Binary System 2.4.2 

14 Order-Disorder Transformations 2.5 

16 Density Functional Theory (DFT) 2.6 

16 The Schrodinger Equation 2.6.1 

17 The Variational Principle for the Ground State 2.6.2 

18 The Hartree-Fock Approximation 2.6.3 

20 The Electron Density 2.6.4 

21 The Thomas-Fermi Model 2.6.5 

22 The Hohenberg-Kohn Theorems 2.6.6 

24 The Kohn-Sham Equations 2.6.7 

27 The Local Density Approximation (LDA) 2.6.8 

28 The Generalized Gradient Approximation (GGA) 2.6.9 

28 Literature Review 2.7 

31 CHAPTER 3: MATERIALS AND METHODS 3 

31 Sample Description 3.1 

32 Thermal Properties of Au-Cu Nano alloy 3.1.1 

32 Mechanical Properties of Au-Cu Nano alloy 3.1.2 

32 Computational Programs and Simulation 3.2 

33 Atomic Simulation Environment (ASE) 3.2.1 

33 ELK-LAPW Code 3.2.2 

33 Quantum Espresso 3.2.3 

34 The MAPS (MIT Ab-initio Phase Stability) Code 3.2.4 

34 Monte Carlo simulation 3.2.5 

35 Computatinal Methods 3.4 



XI 

 

40 CHAPTER 4: RESULTS, DISCUSSION AND CONCLUSIONS 4 

40 Results and Discussion 4.1. 

40 Results of Mechanical Properties 4.1.1 

41 Results of Thermal Properties 4.1.2 

52 Discussion 4.1.3 

53 Conclusions 4.2 

54 Recommendation 4.3 

55 Reference  

62 Appendices  



1 

 

CHAPTER 1: INTRODUCTION 

1.1 Motivation 

           The combination of gold and copper is a good way to reduce 

the cost of gold and improve copper instability. Thanks to the form 

control the synergy of these two metals can be better exploited[1]. 

The Gold Copper Nano alloys are used for fuel cells, solar cells, 

batteries and capacitors in the power industry; it is also widely used 

in cancer therapy in the medicine industry, most of these uses depend 

mainly on thermal properties depending on the laws of 

thermodynamics and statistical physics. 

This thesis reviews recent advances in our understanding of how 

temperature affects the structure and phase of multi metal 

Nanoparticles. The disorder order and melting phase transitions are 

strongly altered in nanoscale systems, and we describe how they can 

potentially affect future phase diagrams. The potential of Nano alloys 

in these diverse fields of application originates from the twin 

influence of size and composition and should be matched with the 

dual complexity of nanoparticles in general, with their specific size-

dependent properties, together with alloys with their composition 

dependent properties. A question of fundamental importance with 

Nano alloys is that of stability, especially considering the wide variety 

of synthetic methods based on different physical or chemical 

techniques and which can produce compounds essentially identical in 

size and composition but with very different structures. 
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1.2 Importance of The Thesis 

           This thesis addresses the central challenge of Nano scale 

science: the need for fundamental understanding of how 

nanomaterials grow and for control of the growth environment, in 

order to synthesize materials with new or greatly enhanced properties 

at attractive rates we will focus our attention only on thermodynamic 

properties of this wide field. 

In this thesis, we study the thermal properties of gold-copper Nano-

alloy for its great importance in the field of medicine, especially 

cancer treatment. 

1.3 Problem of the Thesis  

       First, the  size  (diameter  and  length)  is  rather  small,  

prohibiting  the  application  of  well-established  testing  techniques.  

Tensile and creep testing require that the size of the sample be 

sufficiently large to be clamped rigidly by the sample holder without 

sliding. This is impossible for one-dimensional nanomaterials using 

conventional means. Second, the  small  size  of  the  nanostructure  

makes  their  manipulation  rather  difficult,  and specialized 

techniques are needed for picking up and installing individual 

nanostructures. Therefore, new methods and methodologies must be 

developed to quantify the properties of individual nanostructures. 

1.4 Objectives of The Thesis  

 he aim of the present thesis is derive a general expression for 

the equilibrium conditions at a solid interface of Gold - Copper 

Nano alloys. 
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 nderstand and control such effects in order to design artificially 

structured of nanomaterial’s with new combinations of 

properties. 

 alculation of phase transition in the configurational state of 

AuxCu1-x nanoparticle 

 ompute the bulk modulus and lattice constant of  AuxCu1-x 

nanoparticle 

1.5 Scope of The Thesis   

           The thesis scope is organized into four chapters. Chapter one 

introduction, it consists of introduction, importance, problem, 

objectives and the scope, Chapter two deals with theoretical 

background and methodology, Chapter three is devoted to materials 

and methods employed in this work, Chapter four presents results and 

discussion. 
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CHAPTER 2: THEORETICAL BACKGROUND 

2.1 Phase Diagram of Bulk Gold–Copper Alloys 

       The gold-copper (Au-Cu) system is great importance in industry, 

medicine, energy sources and many other applications. 

The phase equilibria were extrapolated at low temperature and a 

condensed phase diagram was drawn for the Au-Cu system to be 

compatible with the third law of thermodynamics [2]. 

The system forms continuous solid solutions whose melting curve has 

a minimum at 44 % Cu and 910°C. The solid solutions are arranged 

to separate three phases of variable composition whose compositions 

are narrowed at the interface to the stoichiometric compounds Au3Cu, 

AuCu and AuCu3[3]. The temperatures at which the regions of 

homogeneity of these phases shrink sharply are, according to the 

thermodynamic simulations of Wei et al [4]. 

2.2 Nanoalloys Clusters 

       There are remarkable uses of precious metals in various 

technologically important fields because of their excellent catalytic, 

electronic and magnetic properties[5]. An improvement in properties 

is possible when two or more of these metals are combined [6]. The 

use of Nano-alloys has been reported since the 19th century, when 

Michael Faraday was studying Radioactivity but without a clear 

understanding of physical properties[7]. Advancement in methods 

and characterization made it possible for modern research to utilize 

the diversities in Nano alloy compositions[8]. and chemical ordering: 

intermetallic, random, non-random or phase segregation[9], in 

addition to size, atomic order and structure. 
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The clusters of Nano-alloys are also interesting because they may 

have structures and properties distinct from those of pure elementary 

clusters[10]. There are also examples of pairs of elements (such as Fe 

and Ag) that are not miscible in the bulk phase but that mix easily 

into finite groups[11]. 

A series of theoretical studies that mainly use empirical many-body 

potentials have been performed on intermetallic clusters [12]. 

Calculations based on functional density theory (DFT) were used for 

the study of bimetallic clusters [13, 14]. 

2.2.1 Gold–Copper Nano Alloy Clusters 

       The ‘‘noble metals’’, copper, silver and gold, occur naturally as 

the free metals, but they invariably have trace amounts of other noble 

metals incorporated into their lattices. Their similar 

electronegativity's and d10s1 electronic structures facilitate the 

alloying of these elements in the solid state[15]. In addition to 

extensive investigations of Au-Cu alloy phases in recent years, a 

number of experimental and theoretical studies on Au –Cu Nano 

alloys have been conducted. Of the Gold-based series studied in this 

work, Gold-Copper is the only binary for which the average potential 

agrees with the Density functional theory predictions. For both 

compositions of the clusters, In addition, a qualitative agreement is 

also observed for lower weightings for the parameter sets I–II. 

2.2.2 Application of Gold–Copper Nanoalloys 

         The unique physical and chemical properties of precious metal 

nanoparticles have allowed these materials to be used as valuable 

tools in a variety of disciplines[16, 17]. Many of these applications 
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depend on the ability to intelligently modify the material shape, 

composition and structure[18].  

In this thesis, we explain our recent contributions to the development 

and application of complex nanomaterials, specifically Gold-Copper 

Nano-alloy.  

The unique thermal properties of nanoparticles have made them 

attractive targets for a wide range of applications that include 

communications[19], alternative energy[20], molecular sensing[21], 

In addition, spectroscopy[22], as well as medical imaging, detection, 

and therapy[22]. Such diverse applications require the ability to 

precisely tune the plasmonic properties[23]. which depend sensitively 

on particle morphology[24, 25]. 

2.3. Basic Aspects of Thermodynamics 

         There are several ways to get a solid system can exist in a 

variety of chemical and crystallographic arrangements or phases. We 

can define the phase as a homogeneous region in a liquid or a solid, 

with a characteristic atomic arrangement and a chemical 

composition[26].The different forms of the state or composition of 

the material depends on the thermodynamic variables (pressure, 

temperature and installation of the alloy, etc.)different phases or 

mixtures of phases are stable (the equilibrium state)[27]. Phase 

stability and phase transformation are critical to the design, behavior, 

and performance of the Alloy[28]. Equilibrium is always the 

combination of phases and compositions that is produced by 

minimizing Gibbs' overall free energy. [29, 30]. 
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2.3.1 Equilibrium 

         Phase transformations occur in o rder to lower the energy of a 

system to achieve equilibrium[31]. So a system is said to be in 

equilibrium when it is most stable and shows no desire to change, and 

possesses the lowest possible energy[31, 32]. 

2.3.2 Internal Energy and First Law of Thermodynamics 

        The internal energy of a system is the sum of the potential and 

kinetic energies of all parts of the system[33]. If the system is subject 

to change from one state to another state, it is accompanied by an 

increase in internal energy (𝑑𝑈) change is brought about by the 

extraction of heat (𝛿𝑞) from the surroundings, and simultaneous 

performance of work (𝛿𝑤) by the system on the surroundings[34]. 

The First Law of Thermodynamics (energy can neither be created nor 

destroyed) states that the Increase in internal energy 𝑑𝑈 is [35, 36] 

𝑑𝑈 = 𝛿𝑞 − 𝛿𝑊                                                                                      (2.1) 

The symbol 𝑑 is used for a change in a state quantity or exact 

differential while the symbol '𝛿' is used for a non-state change or 

inexact differential. At constant pressure, the First Law becomes 

𝑑𝑈 = 𝛿𝑞 − 𝑃𝑑𝑉                                                                                    (2.2) 

And at constant volume 

𝑑𝑈 = 𝛿𝑞                                                                                                 (2.3) 

2.3.3 Heat Content or Enthalpy 

         The enthalpy is the total internal and external energy of the 

system [37], given by the equation 

𝐻 =  𝑈 +  𝑃𝑉                                                                                       (2.4) 

Thus, the differentiation of equation (2.4) give us: 

𝑑𝐻 = 𝑑𝑈 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃  
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From equation (2.2)   𝛿𝑞 = 𝑑𝑈 + 𝑃𝑑𝑉        so, 

𝑑𝐻 = 𝛿𝑞 + 𝑉𝑑𝑃                                                                                    (2.5) 

At constant pressure, VdP =  0 so equation (2.5) gives 

𝑑𝐻 = 𝛿𝑞                                                                                                  (2.6) 

And at constant volume equation (2.4) reduces to 

𝑑𝐻 = 𝑑𝑈                                                                                                 (2.7) 

2.3.4 Heat Capacity (C) 

        The heat capacity of a substance is the heat required to raise the 

temperature, T, of unit mass by one degree, K [38], and is given by 

𝐶 =
𝛿𝑞

𝑑𝑇
 

at constant volume 

𝐶 = 𝐶𝑉 = (
𝛿𝑞

𝑑𝑇
)

𝑉
=

𝑑𝑈

𝑑𝑇
(Since from eq. (2.3) 𝛿𝑞 = 𝑑𝑈,at constant 

volume) 

at constant pressure 

𝐶 = 𝐶𝑃 = (
𝛿𝑞

𝑑𝑇
)

𝑃
=

𝑑𝐻

𝑑𝑇
                                                                      (2.8) 

(Since from eq. (2.6) 𝛿𝑞 = 𝑑𝐻, at constant pressure)Therefore 

𝑑𝐻 = 𝐶𝑃𝑑𝑇                                                                                            (2.9) 

And the variation of enthalpy with temperature is given by: 

∫ 𝑑𝐻 = ∫ 𝐶𝑃𝑑𝑇
𝑇2

𝑇1

                                                                             (2.10)

𝑇2

𝑇1

 

𝐻𝑇2
= 𝐻𝑇1

+ ∫ 𝐶𝑃𝑑𝑇
𝑇2

𝑇1

                                                                      (2.11) 

Conventionally, the enthalpy of a pure substance in its standard state 

(i.e. most stable state) is defined to be zero at 298.16 K. So equation 

(2.11) can be written as: 
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𝐻𝑇 = ∫ 𝐶𝑝𝑑𝑇

𝑇

298

                                                                                    (2.12) 

 

𝐻𝑇 = ∫ (𝑎 + 𝑏𝑇 + 𝑐𝑇2)𝑑𝑇
𝑇

298

 

 

𝐻𝑇 = ∫ [∑ 𝐶   𝑃;𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − ∑ 𝐶   𝑃;𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠]
𝑇

298

𝑑𝑇 

And where a phase change occurs in the temperature range of interest 

𝐻𝑇2
= 𝐻𝑇1

+ ∫ 𝐶𝑃
′ 𝑑𝑇 + 𝐻𝑡 + ∫ 𝐶𝑃

′′𝑑𝑇
𝑇2

𝑇′′

𝑇′

𝑇1

 

Where 𝐶𝑃
′   and 𝐶𝑃

′′ are the heat capacities before and after 

transformation respectively. 

𝐻𝑇1
= Enthalpy at standard temperature. 

𝐻𝑇2
 = Enthalpy at high temperature in question. 

𝑇′ = Transformation temperature. 

𝐻𝑡 = Enthalpy change at transformation. 

2.3.5 Entropy and Second Law of Thermodynamics 

        Entropy can be considered from two points of view. One is an 

atomistic mechanical approach in which it is the measure of the 

randomness of a system[39]. The other is a thermodynamically 

approach according to which entropy arises from a consideration of 

the conditions under which heat can be converted into work (e.g. 

Carnot cycle)[40]. Mathematically entropy (S) is given by: 

𝑑𝑆 =
𝛿𝑞

𝑇
                                                                                               (2.13) 

𝑑𝑆 =
𝑑𝐻 

𝑇
 (At constant pressure) 
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And for a reversible change of state 

𝑆𝑇2
− 𝑆𝑇1

= ∆𝑆 = ∫
𝛿𝑞

𝑇

𝑇2

𝑇1

                                                               (2.14)   

To give a fixed reference point the entropy of a pure substance at 0 

K is taken to be zero (Third Law of Thermodynamics). Therefore, 

the entropy at T K is given by: 

𝑆 = ∫
𝛿𝑞

𝑇

𝑇

0

 

Since at constant pressure 𝛿𝑞 = 𝑑𝐻 = 𝐶𝑃𝑑𝑇.so, 

𝑠 = ∫
𝐶𝑃

𝑇
𝑑𝑇                                           

𝑇

0

                                           (2.15) 

The consideration of an isolated system leads to an important 

conclusion. The entropy of such a system either remains constant 

(𝑑𝑆 = 0) or increases (𝑑𝑆 > 0). The entropy remains constant when   

the system is in an equilibrium state[40]. If it is not, the entropy 

increases until equilibrium is reached. This is an expression of the 

Second Law of Thermodynamics that the entropy in an isolated 

system tends to a maximum to gain stability (equilibrium)[41]. 

So when 𝑑𝑆 =  0 reaction is in equilibrium. 

𝑑𝑆 > 0 Reaction will occur spontaneously. 

𝑑𝑆 <  0 Reaction is impossible. 

2.3.6 Gibbs Free Energy 

        Under isobaric conditions, any system undergoes a change to 

stabilize itself, and it is Gibbs free energy given as defines the 

stability of a system [2]: 

𝐺 = 𝐻 − 𝑇𝑆                                                                             (2.16) 

Where H = Enthalpy; T = temperature; S = Entropy and 
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∆𝐺 = ∆𝐻 − 𝑇∆𝑆                                                                                (2.17)  

At constant temperature and pressure, a closed system (i.e. fixed mass 

and composition) will be in equilibrium if it has the lowest possible 

value of Gibbs free energy (𝑑𝐺 = 0)[42].When a change occurs in a 

system, it is an attempt to minimize the overall energy of the system 

to attain stability. Equation (2.16) shows that the lowest possible 

value of G (highest stability) is only possible with a lower value of 

enthalpy (internal energy) and a higher value of entropy. The 

necessary criteration for any transformation is: 

∆𝐺 = 𝐺2 − 𝐺1 < 0 

Where 𝐺1is initial and 𝐺2 is a final stage, Equation (2.16) can be 

written in differential form as: 

𝑑𝐺 = 𝑑𝐻 − 𝑇𝑑𝑠                                                                                  (2.18) 

Now (i) If ∆𝑮= 0 (i.e.𝑑𝐻 −  𝑇𝑑𝑆 =  0) the system is in equilibrium 

and there will be no phase change. Since 𝑑𝐻 = 𝐶𝑃𝑑𝑇,so at 

equilibrium: 

𝐶𝑃𝑑𝑇 −  𝑇𝑑𝑆 = 0 𝑜𝑟 𝐶𝑃𝑑𝑇 =  𝑇𝑑𝑆 

(ii) If ∆𝐺< 0, then change will occur 

(iii) If∆𝐺> 0, the process is impossible 

2.3.7 Helmholtz Free Energy 

        The stability of any system at constant volume is defined by 

the Helmholtz free energy[42]. The Helmholtz energy is defined 

as[43]: 

𝐴 = 𝑈 + 𝑇𝑆 

Where A is the Helmholtz free energy 

From equation (2.2) 𝑑𝑈 = 𝛿𝑞 − 𝑃𝑑𝑉so, 
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Applying the product rule for differentiation 

to 𝑑(𝑇𝑆)  =  𝑇 𝑑𝑆 +  𝑆 𝑑𝑇, we have 

𝑑𝑈 = 𝑑(𝑇𝑆) − 𝑆𝑑𝑇 − 𝑃𝑑𝑉                                                              (2.19) 

And  

𝑑(𝑈 − 𝑇𝑆) = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 

The definition of 𝐴 =  𝑈 −  𝑇𝑆 enables to rewrite this as 

𝑑(𝐴) = −𝑆𝑑𝑇 − 𝑃𝑑𝑉                                                                       (2.20) 

2.3.8 The Kinetics of Phase Equilibria 

         The thermodynamic functions only describe whether a reaction 

will occur or not[44]. So it can therefore be used to calculate the 

driving force for transformation (i.e.∆𝐺 =  𝐺 2 − 𝐺1 <  0), but it 

will not tell how fast this transformation will proceed. This belongs 

to the science of kinetics. 

2.4 Equilibrium Phase Diagrams 

       One of the most important sources of information regarding a 

material system is the phase diagram, In which phase composition 

and phase stability are displayed as a function of temperature, 

composition and pressure[32]. These diagrams are usually plotted 

with temperature in degrees Centigrade, as the ordinate and alloy 

composition in atomic percent (or weight percent) as the abscissa[45]. 

Ideally, the phase diagram will show the relationship under 

equilibrium conditions[46]. Equilibrium conditions can be achieved 

by extremely slow heating and cooling, so that if a phase change does 

occur, sufficient time is allowed[47]. The change of phase depends 

upon the rate at which the alloy is heated or cooled[48]. Basically the 

task of a phase diagram is to summarize all phase changes which take 
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place, at equilibrium, in the system as temperature changes[31]. 

However a phase diagram will not provide any information on the 

reaction rate, and also it does not give any information on the possible 

existence of non-equilibrium phases, such as marten site In Hon 

alloys and some other alloys[49, 50]. Thermodynamically, a phase 

diagram may be regarded as a manifestation of the thermodynamic 

state of the system[51]. 

In this Thesis , the condition of thermodynamic equilibrium for a 

closed one phase ”solid” system leads to the usual  conditions 

(mechanical equilibrium, homogeneous temperature and equal 

chemical potentials) and also to surface conditions (thermal, chemical 

and mechanical equilibrium). 

2.4.1 Advantages of Phase Diagrams 

        Phase diagrams are maps (for solids, most often of temperature 

vs composition) indicating which phases are present at equilibrium 

for the given conditions[52]. If the thermodynamic quantities that are 

used to calculate the free energy are known experimentally, the phase 

diagrams can be calculated by one of many methods[53]. 

The use of phase diagrams for recording phase changes in alloys 

offers three advantages[32]. 

1. The conditions under which phase changes occur can be recorded 

simply and clearly for a large number of alloy compositions in a 

relatively small space.  

2. The existence of certain rules of construction greatly reduces the 

number of experimental observations necessary to determine the 

phase relationships that exist in a whole series of alloys. 
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3. The recognition of quasi relationships between the constitution of 

alloys and their structure and properties makes the phase diagram an 

invaluable guide in the control of metallurgical processes. 

2.4.2 Free Energy of a Binary System 

        Consider atoms A and B, which have the same crystalline 

structure, which can be mixed in any proportions to obtain a solid 

solution having the same crystalline structure[54]. Consider XA and 

XB are the mole fraction of A and B respectively, taking part so that: 

X A + XB = 1; then the total free energy before mixing is given by 

𝐺1 = 𝑋𝐴𝐺𝐴 + 𝑋𝐵𝐺𝐵                                                                            (2.20) 

Which is shown schematically In Fig 2.4, where 𝐺𝐴 and 𝐺𝐵 are the 

molar free energies of A and B respectively. And after mixing the free 

energy of the solution is: 

𝐺1 = 𝐺1 + ∆𝐺𝑚𝑖𝑥                                                                                (2.21) 

Where 

∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥                                                               (2.22) 

Where ∆𝐻𝑚𝑖𝑥 is the heat of the solution (absorbed or evolved) and 

represents the difference in internal energy before and after mixing. 

Also ∆𝑆𝑚𝑖𝑥 is the difference of the entropy between the mixed and 

unmixed state. The equation (2.20) becomes: 

𝐺2 = 𝐺𝑎𝑙𝑙𝑜𝑦 = 𝑋𝐴𝐺𝐴 + 𝑋𝐵𝐺𝐵 + ∆𝐺𝑚𝑖𝑥                                          (2.23) 

2.5 Order-Disorder Transformations 

       In alloys, the phase transformations can further be classified by 

whether they are clustering or ordering, this is measured by the ordering 

energy: 
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𝑤 = 𝑉𝐴𝐵 −
𝑉𝐴𝐴 + 𝑉𝐵𝐵

2
                                                                                (2.24) 

Where the V are bond energies, when 𝑤 > 0, clustering is favored, and 

when 𝑤 < 0 ordering is favored. 

An ordered compound has at least two sub-lattices, occupied by different 

chemical species. The degree of order can be measured by the two different 

parameters. The long range order parameter 𝑆 and the short range order 

parameter 𝜎. 

The long-range order parameter 𝑆 is given by 

𝑆 =
𝑃𝑎𝑎 + 𝑥𝑎

1 − 𝑎
                                                                                               (2.25) 

Where Paa is the probability of finding an atom of type a on an “a” sub 

lattice site, and is the overall concentration of a in the alloy. In a perfectly 

ordered compound the probability of finding an “a” atom in an “a” site is 

100% so𝑃𝑎𝑎 = 1and 𝑆 = 1. In a perfectly disordered compound the 

probability of finding an “a” atom at an “a” site is purely random (i.e. the 

atoms are evenly mixed in the lattice) and thus𝑃𝑎𝑎 = 𝑥𝑎, so that 𝑆 = 0. 

The short-range order parameter is given by 

𝜎 =
𝑁𝑎𝑏 − 𝑁𝑎𝑏

𝑑𝑖𝑠

𝑁𝑎𝑏
𝑜𝑟𝑑 − 𝑁𝑎𝑏

𝑑𝑖𝑠
                                                                                        (2.26) 

where 𝑁𝑎𝑏is the number of a-b pairs in the compound, 𝑁𝑎𝑏
𝑑𝑖𝑠is the number 

of a-b pairs in the perfectly disordered compound, and 𝑁𝑎𝑏
𝑜𝑟𝑑is the 

number of a-b pairs in the perfectly ordered compound, resulting again in 

an order parameter of 𝜎 = 1 for a perfectly ordered material and 𝜎 = 0 

for perfectly disordered material.  

Both parameters describe the state of chemical order of the material, but 

in general, the long-range order parameter is more accessible 

experimentally. The classical means of detection of long-range order is 
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by the presence of super lattice reflections, which are extinguished when 

the long-range order parameter goes to zero. 

2.6. Density Functional Theory (DFT) 

       The idea in Density Functional Theory (DFT) is to abandon the 

handling of wave functions and replace them with electronic densities 

that can be measured laboratory[55]. The motive behind this is to 

reduce the number of variables in the calculations. 

2.6.1 The Schrodinger Equation 

       The aim of most approaches in solid-state physics is the solution 

of the time-independent, non-relativistic Schrodinger equation[56] 

�̂�𝜓𝑖(�⃑�1, 𝑥2 … . , �⃑�𝑁 , �⃑⃑�1, �⃑⃑�2, … . . �⃑⃑�𝑀)

= 𝐸𝑖𝜓𝑖(�⃑�1, �⃑�2 … . , �⃑�𝑁 , �⃑⃑�1, �⃑⃑�2, … . . �⃑⃑�𝑀)                                        (2.27) 

�̂� Is the Hamiltonian for a system consisting of M nuclei and N 

electrons. 

�̂� = −
1

2
∑ ∇𝑖

2

𝑁

𝑖=1

−
1

2
∑

1

𝑀𝐴
∇𝐴

2

𝑀

𝐴=1

− ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

𝑁

𝑖=1

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

+ ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑀

𝐵>𝐴

𝑀

𝐴=1

                                                           (2.28) 

Here, A and B run over the M nuclei while 𝑖 and 𝑗 denote the N 

electrons in the system. 

The first two terms describe the kinetic energy of the electrons and 

nuclei. The other three terms represent the attractive electrostatic 

interaction between the nuclei and the electrons and repulsive 

potential. 



17 

 

The Born-Oppenheimer approximation is based on the observation 

that electrons move much faster and weigh much less than the 

nuclei[57]. It assumes the electronic motion and nuclear motion can 

be decoupled and that the electrons are in equilibrium with nuclei. In 

the Born Oppenheimer approximation, the electronic wave function 

depends on only the nuclear position so the kinetic energy of the 

nuclei can be neglect in the Hamiltonian. Therefore, electrons has a 

constant potential energy, and the total electronic Hamiltonian 

becomes 

�̂�𝑒𝑙𝑒𝑐 = −
1

2
∑ ∇𝑖

2

𝑁

𝑖=1

− ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

𝑁

𝑖=1

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

= �̂� + �̂�𝑁𝑒 + �̂�𝑒𝑒                                                           (2.29) 

The solution of the Schrödinger equation with �̂�𝑒𝑙𝑒𝑐 is the electronic 

wave function 𝜓elec and the electronic energy𝐸𝑒𝑙𝑒𝑐.  

�̂�𝑒𝑙𝑒𝑐𝜓elec = 𝐸𝑒𝑙𝑒𝑐𝜓elec                                                                   (2.30) 

The total energy 𝐸𝑡𝑜𝑡 is then the sum of electronic energy 𝐸𝑒𝑙𝑒𝑐and 

the constant nuclear repulsion term 𝐸𝑛𝑢𝑐 . 

𝐸𝑡𝑜𝑡 = 𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑛𝑢𝑐 Where  

𝐸𝑛𝑢𝑐 = ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
                                                                        (2.31)

𝑀

𝐵>1

𝑁

𝐴=1

 

2.6.2 The Variation Principle for the Ground State 

        When a system is in the state  , the expectation value of the 

energy is given by 

𝐸[𝜓] =
〈𝜓|�̂�|𝜑〉

⟨𝜓|𝜓⟩
   

Where 



18 

 

⟨𝜓|�̂�|𝜓⟩ = ∫ 𝜓∗ �̂�𝜓𝑑�⃗�                                                                   (2.32) 

The variation principle states that the energy computed from a 

guessed 𝜓 is an upper bound to the true ground-state energy𝐸0 [58]. 

Full minimization of the functional 𝐸[𝜓] with respect to all allowed 

N-electrons wave functions will give the true ground state 𝜓0and 

energy  [𝜓0] = 𝐸0 ; that is 

𝐸0 = 𝑚𝑖𝑛𝜓→𝑁𝐸[𝜓] = 𝑚𝑖𝑛𝜓→𝑁⟨𝜓|�̂� + �̂�𝑁𝑒 + �̂�𝑒𝑒|𝜓⟩                (2.33) 

For a system of N electrons and given nuclear potential,𝑉𝑒𝑥𝑡 the 

variational principle defines a procedure to determine the ground-

state wave function𝜓0, the ground-state energy𝐸0[𝑁, 𝑉𝑒𝑥𝑡], and other 

properties of interest. In other words, the ground state energy is a 

functional of the number of electrons N and the nuclear potential𝑉𝑒𝑥𝑡: 

𝐸0 = 𝐸[𝑁, 𝑉𝑒𝑥𝑡]                                                                                   (2.34) 

2.6.3 The Hartree-Fock Approximation 

        Suppose that 𝜓𝜊 (the ground state wave function) is 

approximated as an anti-symmetrized product of N orthonormal spin 

orbital’s 𝜓𝑖(�⃗�), each a product of a spatial orbital 𝜙𝑘𝑟(~r) and a spin 

function 𝜎(𝑠) = 𝛼(𝑠) or 𝛽(𝑠) the Slater determinant 

𝜓𝜊 ≈ 𝜓𝐻𝐹 =
1

√𝑁!
|

𝜓1(�⃗�1) 𝜓2(�⃗�1) ⋯ 𝜓𝑁(�⃗�1)

𝜓1(�⃗�2) 𝜓2(�⃗�2) ⋯ 𝜓𝑁(�⃗�2)
⋮ ⋮ ⋯ …

𝜓1(�⃗�𝑁) 𝜓2(�⃗�𝑁) ⋯ 𝜓𝑁(�⃗�𝑁)

|        (2.35) 

The Hartree-Fock approximation is the method whereby the 

orthogonal orbital's𝜓𝑖are found that minimize the energy for this 

determinant form of𝜓𝑖 

𝐸𝐻𝐹 = 𝑚𝑖𝑛(𝜓𝐻𝐹→𝑁)𝐸[𝜓𝐻𝐹]                                                              (2.36) 
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The expectation value of the Hamiltonian operator with 𝜓𝐻𝐹  is given 

by 

𝐸𝐻𝐹 = ⟨𝜓𝐻𝐹|�̂�|𝜓𝐻𝐹⟩ = ∑ 𝐻𝑖 +
1

2
∑(𝐽𝑖𝑗 − 𝐾𝑖𝑗)                      (2.37)

𝑁

𝑖,𝑗

𝑁

𝑖=1

 

𝐻𝑖 = ∫ 𝜓𝑖
∗(�⃗�) [−

1

2
∇2 − 𝑉𝑒𝑥𝑡(�⃗�)] 𝜓𝑖(�⃗�)𝑑(�⃗�)                             (2.38) 

Defines the contribution due to the kinetic energy and the electron-

nucleus attraction and 

𝐽𝑖𝑗 = ∬ 𝜓𝑖(�⃗�1)𝜓𝑖
∗(�⃗�1)

1

𝑟12
𝜓𝑗

∗(�⃗�2)𝜓𝑗(�⃗�2)𝑑�⃗�1𝑑�⃗�2                      (2.39) 

𝐾𝑖𝑗 = ∬ 𝜓𝑖
∗(�⃗�1) 𝜓𝑗(�⃗�1)

1

𝑟12
𝜓𝑖(�⃗�2)𝜓𝑗

∗(�⃗�2)𝑑�⃗�1𝑑�⃗�2                    (2.40) 

The integrals are all real, and𝐽𝑖𝑗 ≥ 𝐾𝑖𝑗 ≥ 0. The 𝐽𝑖𝑗   are called 

Coulomb integrals the 𝐾𝑖𝑗are called exchange integrals. We have the 

property 𝐽𝑖𝑖=𝐾𝑖𝑖. 

The variation freedom in the expression of the energy [Eq. (2.37)] is 

in the choice of the orbitals. The minimization of the energy 

functional with the normalization conditions ∫ 𝜓𝑖
∗(𝑥)𝜓𝑗(�⃗�) 𝑑�⃗� =

𝛿𝑖𝑗leads to the Hartree-Fock differential equations: 

𝑓𝜓𝑖 = 𝜖𝑖𝜓𝑖  , 𝑖 = 1,2, … . , 𝑁                                                              (2.41) 

These N equations have the appearance of eigenvalue equations, 

where the Lagrangian multipliers 𝜖𝑖are the eigenvalues of the 

operator𝑓. The Fock operator 𝑓 is an effective one-electron operator 

defined as 

𝑓 = −
1

2
∇𝑖

2 − ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴

+ 𝑉𝐻𝐹(𝑖)                                                       (2.42) 

The first two terms are the kinetic energy and the potential energy due 

to the electron-nucleus attraction. 𝑉𝐻𝐹(𝑖)is the Hartree-Fock 
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potential, the average repulsive potential experience by the i'th 

electron due to the remaining N-1 electrons, and it is given by 

𝑉𝐻𝐹(�⃗�1) = ∑ (𝑗�̂�(�⃗�1) − �̂�𝑗(�⃗�1))

𝑁

𝑗

                                                 (2.43) 

𝑗�̂�(�⃗�1) = ∫|𝜓𝑗(�⃗�2)|
2 1

𝑟12
𝑑�⃗�2                                                          (2.44) 

The Coulomb operator 𝑗̂ represents the potential that an electron at 

position �⃗�1experiences due to the average charge distribution of 

another electron in spin orbital𝜓𝑗. 

The second term in Eq. (2.43) is the exchange contribution to the HF 

potential. It has no classical analog and it is defined through its effect 

when operating on a spin orbital: 

�̂�𝑗(�⃗�1)𝜓𝑖(�⃗�1) = ∫ 𝜓𝑗
∗(�⃗�2)

1

𝑟12
𝜓𝑖(�⃗�2)𝑑�⃗�2 𝜓𝑗(�⃗�1)                      (2.45) 

 The HF potential is non-local and it depends on the spin 

orbitals Thus, the HF equations must be solved self-

consistently. 

 The Koopman's theorem (1934) provides a physical 

interpretation of the orbital energies: it states that the orbital 

energy 𝜖𝑖is an approximation of minus the ionization energy 

associated with the removal of an electron from the 

orbital𝜓𝑖,.i.e. 𝜖𝑖 ≈ 𝐸𝑁 − 𝐸𝑁−1
𝑖 = −𝐼𝐸(𝑖). 

2.6.4 The Electron Density 

        The electron density is the central quantity in DFT It is defined 

as the integral over the spin coordinates of all electrons and over all 

but one of the spatial variables (�⃗� ≡ 𝑟, 𝑠) 

𝜌(𝑟) = 𝑁 ∫ ⋯ ∫|𝜓(�⃗�1�⃗�2, … , �⃗�𝑁)|2𝑑𝑠1𝑑�⃗�2 … 𝑑�⃗�𝑁                    (2.46) 
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𝜌(𝑟) determines the probability of finding any of the N electrons 

within volume element 𝑑𝑟.Some properties of the electron density. 

Some properties of the electron density: 

 𝜌(𝑟)is a non-negative function of only the three spatial 

variables which vanishes at infinity  and integrates to the total 

number of electrons: 

𝜌(𝑟 − ∞) = 0                           ∫ 𝜌(𝑟) 𝑑𝑟 = 𝑁                              (2.47) 

 𝜌(𝑟)is an observable and can be measured experimentally, 

e.g. by X-ray diffraction. 

 At any position of an atom, the gradient of 𝜌(𝑟) has a 

discontinuity and a cusp results: 

lim
𝑟𝑖𝐴→0

[∇𝑟 + 2𝑍𝐴]�̅�(𝑟) = 0                                                               (2.48) 

Where Z is the nuclear charge and �̅�(𝑟) is the spherical average of 

𝜌(𝑟) 

 The asymptotic exponential decay for large distances from all 

nuclei 

𝜌(𝑟)~𝑒𝑥𝑝[−2√2𝐼|𝑟|]                                                                            (2.49) 

 𝐼 is the exact ionization energy 

2.6.5 The Thomas-Fermi Model 

        The conventional approaches use the wave function 𝜓 as the 

central quantity, since 𝜓 contains the full information of a system. 

However, 𝜓 is a very complicated quantity that cannot be probed 

experimentally and that depends on 4N variables, N is the number of 

electrons. 

The Thomas-Fermi model: the first density functional theory  
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 Based on the uniform electron gas, they proposed the following 

functional for the kinetic energy 

𝑇𝑇𝐹[𝜌(𝑟)] =
3

10
(3𝜋2)2 3⁄ ∫ 𝜌5 3⁄ (𝑟)𝑑𝑟                                       (2.50) 

 The energy of an atom is finally obtained using the classical 

expression for the nuclear-nuclear potential and the electron-

electron potential 

𝐸𝑇𝐹[𝜌(𝑟)] =
3

10
(3𝜋2)2 3⁄ ∫ 𝜌5 3⁄ (𝑟) 𝑑𝑟 − 𝑍 ∫

𝜌(𝑟)

𝑟
𝑑 𝑟

+
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

𝑟
𝑑𝑟1𝑑𝑟2                                         (2.51) 

In order to determine the correct density to be included in Eq.(2.51), 

they employed a variational principle. They assumed that the ground 

state of the system is connected to the 𝜌(𝑟) for which the energy is 

minimized under the constraint of∫ 𝜌(𝑟)𝑑𝑟 = 𝑁. 

2.6.6 The Hohenberg-Kohn Theorems 

       Density functional theory is based on the two Hohenberg-Kohn 

(HK) theorems [59] , as follow: 

Theorem I: demonstrates that the electron density uniquely 

determines the Hamiltonian operator and thus all the properties of the 

system. 

This first theorem states that the external potential 𝑉𝑒𝑥𝑡(𝑟)  is (to 

within a constant) a unique functional of 𝜌(𝑟)since, in turn 𝑉𝑒𝑥𝑡(𝑟)  

fixes �̂�we see that the full many particle ground state is a unique 

functional of 𝜌(𝑟) 

Let us assume that there were two external potential 𝑉𝑒𝑥𝑡(𝑟)and 

𝑉𝑒𝑥𝑡
′ (𝑟)differing by more than a constant, each giving the same 𝜌(𝑟) 
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for its ground state, we would have two Hamiltonians �̂� and �̂�′ 

whose ground-state densities were the same although the normalized 

wave functions and would be different. Taking 𝜓′ as a trial wave 

function for the �̂� problem 

𝐸0 < ⟨𝜓′|�̂�|𝜓′⟩ = ⟨𝜓′|�̂�′|𝜓′⟩ + ⟨𝜓′|�̂� − �̂�′|𝜓′⟩

= 𝐸0
′ + ∫ 𝜌(𝑟) [𝑉𝑒𝑥𝑡(𝑟) − 𝑉𝑒𝑥𝑡

′ (𝑟)]𝑑𝑟                   (2.52) 

Where 𝐸0 and 𝐸0
′  are the ground-state energies for �̂� and�̂�′, 

respectively. Similarly, taking 𝜓  

as a trial function for the �̂�′ problem 

𝐸0
′ < ⟨𝜓|�̂�′|𝜓⟩ = ⟨𝜓|�̂�|𝜓⟩ + ⟨𝜓|�̂�′ − �̂�|𝜓⟩

= 𝐸0 + ∫ 𝜌(𝑟) [𝑉𝑒𝑥𝑡(𝑟) − 𝑉𝑒𝑥𝑡
′ (𝑟)]𝑑𝑟                  (2.53) 

Adding Eq. (2.52) and Eq. (2.53), we would obtain 𝐸0 + 𝐸0
′ < 𝐸0

′ +

𝐸0, a contradiction, and so there cannot be two different 𝑉𝑒𝑥𝑡(𝑟) that 

give the same 𝜌(𝑟) for their ground state. 

Thus, 𝜌(𝑟) determines N and 𝑉𝑒𝑥𝑡(𝑟) and hence all the properties of 

the ground state, for example the kinetic energy𝑇[𝜌], the potential 

energy V[𝜌], and the total energy 𝐸[𝜌]. Now, we can write the total 

energy as 

𝐸[𝜌] = 𝐸𝑁𝑒[𝜌] + 𝑇[𝜌] + 𝐸𝑒𝑒[𝜌]

= ∫ 𝜌(𝑟) 𝑉𝑁𝑒(𝑟)𝑑𝑟 + 𝐹𝐻𝐾[𝜌]                   (2.54) 

𝐹𝐻𝐾[𝜌] =  𝑇[𝜌] + 𝐸𝑒𝑒                                                         (2.55) 

This functional 𝐹𝐻𝐾[𝜌] is the holy grail of density functional theory. 

If it were known we would have solved the Schrödinger equation 

exactly! And since it is an universal functional completely 

independent of the system at hand, it applies equally well to the 

hydrogen atom as to gigantic molecules such as, say, DNA! 
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𝐹𝐻𝐾[𝜌]Contains the functional for the kinetic energy 𝑇[𝜌]and that for 

the electron-electron interaction, 𝐸𝑒𝑒[𝜌], The explicit form of both 

these functional lies completely in the dark, However, from the latter 

we can extract at least the classical part𝑇[𝜌], 

𝐸𝑒𝑒[𝜌] =
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 + 𝐸𝑛𝑐𝑙

= 𝐽[𝜌] + 𝐸𝑛𝑐𝑙[𝜌]                                             (2.56) 

𝐸𝑛𝑐𝑙Is the non-classical contribution to the electron-electron 

interaction: self-interaction correction, exchange and Coulomb 

correlation 

Theorem II: states that𝐹𝐻𝐾[𝜌], the functional that delivers the ground 

state energy of the system, delivers the lowest energy if and only if 

the input density is the true ground state density. This is nothing but 

the variation principle: 

𝐸0 ≤ 𝐸[�̃�] = 𝑇[�̃�] + 𝐸𝑁𝑒[�̃�] + 𝐸𝑒𝑒[�̃�]                                    (2.57) 

In other words this means that for any trial density �̃�(𝑟), which 

satis_es the necessary boundary conditions such as �̃�(𝑟) ≥ 0, 

∫ �̃�(𝑟)𝑑𝑟=N, and which is associated with some external 

potential�̃�𝑒𝑥𝑡, the energy obtained from the functional of Eq. (2.54) 

represents an upper bound to the true ground state energy 

𝐸0.𝐸0 Results if and only if the exact ground state density is inserted 

in Eq. (2.50) 

2.6.7 The Kohn-Sham Equations 

        We have seen that the ground state energy of a system can be 

written as 

𝐸0 = 𝑚𝑖𝑛𝜌→𝑁 (𝐹[𝜌] + ∫ 𝜌(𝑟)𝑉𝑁𝑒𝑑 𝑟)                             (2.58) 
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Where the universal functional 𝐹[𝜌] contains the contributions of 

the kinetic energy, the classical Coulomb interaction and the non-

classical portion: 

𝐹[𝜌] = 𝑇[𝜌] +  𝐽[𝜌] + 𝐸𝑛𝑐𝑙[𝜌]                                                         (2.59) 

Of these, only 𝐽[𝜌]is known. The main problem is to find the 

expressions for 𝑇[𝜌] and  𝐸𝑛𝑐𝑙[𝜌]. 

The Thomas-Fermi model of section 2.6.5 provides an example of 

density functional theory. However, its performance is really bad due 

to the poor approximation of the kinetic energy. To solve this problem 

Kohn and Sham proposed in 1965 the approach described below. 

They suggested to calculate the exact kinetic energy of a non-

interacting reference system with the same density as the real, 

interacting one 

𝑇𝑆 = −
1

2
∑⟨𝜓𝑖|∇2|𝜓𝑖⟩

𝑁

𝑖

𝜌𝑆 = ∑ ∑|𝜓𝑖(𝑟, 𝑆)|2

𝑆

= 𝜌(𝑟)

𝑁

𝑖

          (2.60) 

 

Where the 𝜓𝑖 are the orbital's of the non-interacting system. Of 

course, 𝑇𝑆 is not equal to the true kinetic energy of the system. Kohn 

and Sham accounted for that by introducing the following separation 

of the functional 𝐹[𝜌] 

𝐹[𝜌] = 𝑇𝑆[𝜌] + 𝐽[𝜌]

+ 𝐸𝑋𝐶[𝜌]                                                            (2.61) 

Where𝐸𝑋𝐶 , the so-called exchange-correlation energy is defined 

through Eq. (2.61) as 

𝐸𝑋𝐶[𝜌] ≡ (𝑇[𝜌] − 𝑇𝑆[𝜌]) + (𝐸𝑒𝑒[𝜌] − 𝐽[𝜌])                        (2.62) 

The exchange and correlation energy 𝐸𝑋𝐶 is the functional that 

contains everything that is unknown. 
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Now the question is: how can we uniquely determine the orbital's in 

our non-interacting reference system? In other words, how can we 

define a potential 𝑉𝑆such that it provides us with a Slater determinant, 

which is characterized by the same density as our real system? To 

solve this problem, we write down the expression for the energy of 

the interacting system in terms of the separation described in Eq. 

(2.61) 

𝐸[𝜌] = 𝑇𝑆[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶[𝜌] + 𝐸𝑁𝑒[𝜌]                              (2.63) 

𝐸[𝜌] = 𝑇𝑆[𝜌] +
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 + 𝐸𝑋𝐶[𝜌] + ∫ 𝑉𝑁𝑒  𝜌(𝑟)𝑑𝑟

= −
1

2
∑⟨𝜓𝑖|∇2|𝜓𝑖⟩

𝑁

𝐼

+
1

2
∑ ∑ ∬|𝜓𝑖(𝑟1)|2

1

𝑟12

𝑁

𝑗

|𝜓𝑗(𝑟2)|
2

𝑁

𝑖

𝑑𝑟1𝑑𝑟2

+ 𝐸𝑋𝐶[𝜌] − ∑ ∫ ∑
𝑍𝐴

𝑟1𝐴

𝑀

𝐴

𝑁

𝑖

|𝜓𝑖(𝑟1)|2𝑑𝑟1                                        (2.64) 

The only term for which no explicit form can be given is𝐸𝑋𝐶. We now 

apply the variational principle and ask: what condition must the 

orbitals𝜓𝑖fulfill in order to minimize this energy expression under the 

usual constraint⟨𝜓𝑖|𝜓𝑗⟩ = 𝛿𝑖𝑗 ? The resulting equations are the Kohn-

Sham equations: 

(−
1

2
∇2 + [∫

𝜌(𝑟2)

𝑟12
+ 𝑉𝑋𝐶(𝑟1) − ∑

𝑍𝐴

𝑟1𝐴

𝑀

𝐴

]) 𝜓𝑖 = (−
1

2
∇2 + 𝑉𝑆(𝑟1)) 𝜓𝑖

= 𝜖𝑖𝜓𝑖                                                                                   (2.65) 

𝑉𝑆(𝑟1) = ∫
𝜌(𝑟2)

𝑟12
𝑑𝑟2 + 𝑉𝑋𝐶(𝑟1) − ∑

𝑍𝐴

𝑟12

𝑀

𝐴

                                     (2.66) 
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2.6.8 The Local Density Approximation (LDA) 

         The local density approximation (LDA) is the basis of all 

approximate exchange-correlation functional. 

At the center of this model is the idea of a uniform electron gas. 

This is a system in which electrons move on a positive background charge 

distribution such that the total ensemble is neutral. 

The central idea of LDA is the assumption that we can write 𝐸𝑋𝐶in the 

following form 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌] = ∫ 𝜌(𝑟)𝜖𝑋𝐶𝜌(𝑟)𝑑𝑟                                                                 (2.67) 

Here, 𝜖𝑋𝐶𝜌(𝑟) is the exchange-correlation energy per particle of an 

uniform electron gas of density 𝜌(𝑟). This energy per particle is 

weighted with the probability  𝜌(𝑟) that there is an electron at this 

position. The quantity 𝜖𝑋𝐶𝜌(𝑟) can be further split into exchange and 

correlation contributions, 

𝜖𝑋𝐶(  𝜌(𝑟)) = 𝜖𝑋(  𝜌(𝑟)) + 𝜖𝐶(  𝜌(𝑟))                                       (2.68) 

The exchange part, X, which represents the exchange energy of an 

electron in a uniform electron gas of a particular density, was 

originally derived by Bloch and Dirac, 

𝜖𝑋 = −
3

4
(

3𝜌(𝑟)

𝜋
)

1
3⁄

                                                              (2.69) 

No such explicit expression is known for the correlation part.𝜖𝐶. 

However, highly accurate numerical quantum Monte-Carlo 

simulations of the homogeneous electron gas are available (Ceperly-

Alder, 1980). 
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2.6.9 The Generalized Gradient Approximation (GGA) 

        The first logical step to go beyond LDA is the use of not only 

the information about the density 𝜌(𝑟) at a particular point 𝑟 but to 

supplement the density with information about the gradient of the 

charge density ∇𝜌(𝑟) in order to account for the non-homogeneity of 

the true electron density. Thus, we write the exchange-correlation 

energy in the following form termed generalized gradient 

approximation (GGA). 

𝐸𝑋𝐶
𝐺𝐸𝐴 = [𝜌𝛼 , 𝜌𝛽] = ∫ 𝑓(𝜌𝛼 , 𝜌𝛽 , ∇𝜌𝛼 , ∇𝜌𝛽)𝑑𝑟                             (2.70) 

Thanks to much thoughtful work, important progress has been made 

in deriving successful GGA's. Their construction has made use of sum 

rules, general scaling properties, etc. In another approach, A. Becke 

introduced a successful hybrid functional: 

𝐸𝑋𝐶
ℎ𝑦𝑏

= 𝛼𝐸𝑋
𝐾𝑆 + (1 − 𝛼)𝐸𝑋𝐶

𝐺𝐺𝐴                                                            (2.71) 

Where𝐸𝑋
𝐾𝑆X is the exchange calculated with the exact KS wave 

function, 𝐸𝑋𝐶
𝐺𝐺𝐴is an appropriate GGA, and 𝛼is a fitting parameter. 

2.7 Literature review 

        In the late ninetieth and early twentieth centuries, the pioneer work 

in the determination of phase diagrams was made by Heycock and Neville, 

who determined the liquids curves for some binary alloys systems. 

Also the work on ternary phase diagrams was started more or less In the 

same era, and the first 14 ternary diagrams were developed by C. A. R.3 

Wright from 1888 to 1898. He developed his first ternary diagram of Pb-

Sb-Sn in 1888. Early workers, in particular Heycock and Neville, 

determined phase diagrams, which have proved to be Surprisingly 

accurate in view of the lack of technology and development in apparatus 
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at that time. A lot of diagrams were produced in the first decade of the 

twentieth century. In the years 1905-1915 equilibrium phase diagrams for 

many alloy systems were published by the workers of the German school 

associated with the name of Tammann. In this period an average of 30 

diagrams per annum were produced, but from 1916 to 1918 only four 

binary and two ternary diagrams were produced due to the interruption of 

work by the First World War. After the First World War, the general 

standard of equilibrium phase diagram work was raised largely in the 

British National Physical Laboratory, which was working under the 

guidance of  Rosenhain, and produced diagrams associated with the names 

of Gayler, Haughton and Hanson. In 1922 again the output reached the 

pre-war level, and from 1925 it agaIn increased rapidly until shortly after 

the outbreak of the Second World War. 

Mingjin Cui , etl [60] study’s Phase Diagram of Continuous Binary Nano 

alloys: Size, Shape, and Segregation Effects Based on the size dependent 

cohesive energy model, developed a unified Nano-thermodynamic model 

to investigate the effects of the size, shape, and segregation on the phase 

diagrams of continuous binary Nano alloys. 

F. Berthier ,  etl [61] studs Phase diagrams of nanoalloys: influence of size 

and morphology  Based on The variation of the critical temperature with 

the length of all these nanoparticles is systematically studied using Monte 

Carlo simulations based on an Ising model. A non-monotonic variation of 

the critical temperature is observed as a function of the length. The 

maximal value of the critical temperature is reached when the length and 

the circumference of the nanoparticles are similar. 

R. Mendoza-Cruz etl [62] studs Order–disorder phase transitions in Au–Cu 

nanocubes: from nano-thermodynamics to synthesis. this paper theoretically 

predicts the structural phase transitions between ordered and disordered 

http://pubs.rsc.org/-/results?searchtext=Author%3AR.%20Mendoza-Cruz
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phases for the Au–Cu system by using nano-thermodynamics. Following the 

predictions, the suggested annealing temperatures have been carefully chosen 

and consequently, Au–Cu ordered nanocubes have been successfully 

synthesized through a solventless protocol. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Sample Description  

        Nanoparticles or Nano-alloys are microscopic objects having at 

least one dimension less than 100 nm. When the particle size reaches 

the nanoscale, the crystal boundary is destroyed or the atomic density 

changes. Due to this change in physical properties, the use of 

nanomaterials varies considerably in many fields of science and 

technology. Gold-copper (Au-Cu) nanoparticles have been regarded 

as valuable tools in a variety of disciplines. 

Our objective in this thesis is to capture the thermodynamic properties 

of Au1-xCux nanoparticles (Nano alloys). 

For this purpose we have used a combination of first-principle density 

functional (DFT) and Monte-Carlo calculations. In DFT calculation, 

a periodic image of the atomic structure is generated to mimic the bulk 

structure. This is called a super-cell, i.e. the super-cell is repeated 

periodically to generate the bulk structure. For example, consider the 

hypothetical four atoms super-cell structure. A DFT program will 

generate many periodic images of this structure.  

Now to simulate a nanoparticle we need to separate the periodic 

images of the super-cells by a vacuum to avoid the interaction 

between the periodic super-cells. Here, the period images of the 

nanoparticles are isolated from each other by the vacuum regions. 

This allows the DFT code to produce results pertinent to the 

nanoparticles rather than to the bulk structure. In our work, the Monte 

Carlo simulation cell consists of isolated Nano-alloys, hence, all the 

calculated thermodynamic properties are influenced by the isolated 

nan-alloys. Our results can thus be relevant to experimental work 
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associated with dispersed (isolated) Nano-alloys, such as those 

produced at an early stage of the Nano-alloy deposition 

3.1.1 Thermal properties of Au-Cu Nano alloy  

        For most of these applications it is very instructive to 

thermodynamically characterize the active material. That is why 

thermodynamic phase diagrams are regarded as an important source of 

information in bulk material. Phase diagrams are maps (for solids, most 

often of temperature vs. composition) indicating which phases are present 

at equilibrium for the given conditions. However, thermal stability in 

nanoparticles are often different from the corresponding bulk material. Most 

often information about the thermodynamic properties of nanoparticles are 

obtained theoretically due to the relatively difficult experimental 

measurements of thermal stability of nanoparticles. 

3.1.2 Mechanical properties of Au-Cu Nano alloy 

        Some mechanical properties of Nano alloys, such as strain, tensor, the 

shear constant, the hardness and the bulk modulus will aid a lot in the proper 

design of particles in specific applications. This thesis aims at the 

calculation of the mechanical properties of Au-Cu nanoparticles or Nano 

alloys, from the calculation of the lattice constant and bulk modulus by 

computational method pagane quantum espresso. 

3.2 Computational Programs and Simulation 

      In this thesis, many simulation and computer programs were used 

to generate alloys and calculate their properties such as mechanical 

and thermal. 
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3.2.1 Atomic Simulation Environment (ASE) 

        We use ASE for structure optimization, molecular dynamics, 

handling constraints, nudged elastic band calculations, vibrational 

analysis, simulated STM images, calculation of Wannier functions, 

transport calculations and much more. 

3.2.2 ELK-LAPW code 

        Elk is an all-electron full-potential linearised augmented plane-

wave (LAPW) code for determining the properties of crystalline 

solids. It was developed originally at the Karl-Franken’s. It is also 

extensively used for production, especially for materials which are 

particularly sensitive to the types of approximation used or for which 

pseudopotential methods are not appropriate. One aspect which is 

unique to Elk is that almost all features can be used in combination 

with each other, resulting in powerful and robust code. 

The LAPW basis is constructed by partitioning space into spheres 

around atoms, called muffin-tins, and the remaining interstitial 

region. Linear combinations of atomic-like orbitals make up the basis 

functions in the muffin-tins and plane waves fill the interstitial region. 

At the boundary, the functions, and possibly their derivatives, are 

matched ensuring continuous or differentiable basis functions. 

3.2.3 Quantum Espresso 

      Quantum Espresso is a variety of numerical methods & 

algorithms aimed at a chemically realistic modeling of materials from 

the Nano scale upwards, based on the solution of the density 

functional theory (DFT). It is an integrated suite of computer codes 

for electronic structure calculations and materials modeling based on 
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DFT, plane waves and pseudo potentials (norm conserving, ultra-soft 

and projector augmented wave) to represent the electron-ion 

interactions. The ESPRESSO stands for open Source Package for 

Research in Electronic Structure, Simulation &Optimization. The 

codes are constructed around the use of periodic boundary conditions, 

which allows for a straightforward treatment. 

of infinite crystalline systems [63] . Quantum espresso can do several 

important basic computations such as, Calculation of the Kohn-Sham 

(KS) orbital’s and energies for isolated systems, and of their ground 

state energies, Complete structural optimizations of the atomic 

coordinates ,ground state of magnetic or spin polarized systems,..etc. 

3.2.4 The MAPS (MIT Ab-initio Phase Stability) code  

        Axel van de Walle with Professor Gerd Seder’s developed the MAPS 

(MIT Ab-initio Phase Stability) code, which automatically builds mass 

expansion from the results of the initial principle calculations. MAPS 

consists of the following code: maps, corrdump, genstr, checkcell, kmesh, 

cv[64]. The MAPS and emc2 are parts of the open-source alloy theoretic 

automated toolkit (ATAT). 

In this thesis The structures (lattice sites with various atomic 

configurations) were produced by the MIT Ab-initio Phase Stability 

(MAPS) code [65] from a parent lattice defined by the atomic sites for the 

13 Au atoms nanoparticle. 

            3.2.5 Monte Carlo simulation  

Axel van de Waale, together with Professor Mark Aasta of Northwestern 

University has, developed the Easy Monte Carlo code (EMC2), which 

automates the thermodynamic properties calculation via Monte Carlo 
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simulations of lattice models of the alloy[64]. EMC2 consists of the 

following code: emc2, phb. 

In this thesis we used the Monte Carlo simulation to a representation 

of the structures energies was used as a Hamiltonian for the Monte-

Carlo simulation, which was utilized to provide the thermodynamic 

phase structure. The monte-Carlo simulation was performed with the 

Easy Monte Carlo Code (emc2) 

3.3 Computational methods 

 

        Figure 3.1. is a schematic flow chart showing the main computational 

stages for the calculation of the phase diagram of AuxCu1-x Nano-alloy, 

which consists of 13 atoms (see Figure 4.8 (a)). The first stage (1st stage, 

Figure. 3.1) concerned with the optimization of the lattice constants for Au, 

Cu, and Au-Cu bulk materials. The determination of the bulk lattice 

constant was required in the 2nd stage (Figure. 3.1) to generate the 

corresponding Nano-alloy. We used the full-potential code called Exciting  

to optimize the structures generated from the primitive lattices belonging to 

the cubic space group Fm-3 m for Cu, Au, and Au-Cu. In these calculations, 

the energy convergence threshold was 0.027 meV and the number of k 

points was uniformly distributed in 8 × 8 × 8 grid. The geometry 

optimization results are shown in Figure. 4.7 (a) – (c). In these figures the 

calculated energies versus the volume were fitted to Murnghan equation of 

state shown by the solid lines, giving rise to the optimized lattice constants 

aAu = 4.109 Å, aAu-Cu = 3.859 Å, and aCu = 3.564 Å corresponding to the 

minimum energy points in Figure 4.8 (a) – (c) respectively. Clearly the 

calculated lattice constants are consistent with the experimental ones: 

aAu,exp
 
= 4.078 Å, aAuCu,exp = 3.863 Å and aCu,exp = 3.615 Å. Figure. 4.7 (d) 

shows that the lattice constants agree with Vegard’s law [66] for binary 
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alloys, i.e.  The calculated lattice constants (circles, Figure. 4.7 (d)) fits well 

to  

ax = (1 – x) aAu + x aCu, where x is the material composition. For example, 

for x = 0.5, a0.5 = (1-0.5) aAu + 0.5 aCu = 3.837 Å ~ aAuCu = 3.859 Å. Thus, 

we used ax obtained from Vegard’s law as an input for the code that 

generates the Nano-alloys (2nd stage, Figure. 3.1).  

We point out that the structure relaxation (i.e. minimization of atom-atom 

forces) was not performed. However a relaxation test on one of the 

structures showed that the inter-atomic force was comparable with the 

program’s default threshold value ~ 0.04 nm (Here, and for simplicity, we 

used the plane-wave code: Quantum Espresso. 

After optimizing the lattice constants in the 1st stage (Figure. 3.1), we then 

used the optimized lattice constants with the Atomic Simulation 

Environment (ASE) to generate the Nano-alloy with 13 atoms by employing 

the Wulff-construction method incorporated with ASE. The generated Au 

nanoparticle is shown in Figure. 4.8 (a) where the cubic box (dashed lines) 

has a side aAu = 4.109 Å, which is the lattice constant optimized in the 1st 

stage as discussed above. The Cu nanoparticle looks similar but with aCu = 

3.564 Å.     

In the 3rd stage (Figure. 3.1) we employed the cluster-expansion 

method [67] for the aim of the determination of the thermodynamic 

properties (e.g temperature-composition phase diagram) of Au1-xCux Nano-

alloy. 

 The structures (lattice sites with various atomic configurations) were 

produced by the MIT Ab-initio Phase Stability (MAPS) code  from a parent 

lattice defined by the atomic sites for the 13 Au atoms nanoparticle (Figure. 

4.9 (a)) with aAu = 4.109 Å and placed in a corner of large empty box with 

a side a ~ 10 Å (e.g. see right inset of Figure. 4.9 (b)). Placing the Au1-xCux 
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Nano alloy in the empty box will isolate it from its periodic images 

generated by the energy calculation program, as we will discuss shortly. 

 A new structure (Au1-xCux) was automatically generated by MAPS 

immediately after the completion of the energy calculation of a given 

structure. The structures energies were calculated using the first-principle 

ELK-LAPW code which is a high precision all-electron density functional 

software. The ELK-LAPW energy convergence threshold was 0.027 meV, 

the uniform grid k-points were 2 × 2  ×  2 (we notice slight energy 

difference for denser grid), and the maximum reciprocal lattice vector was 

set to rgkmax/Rmt with the input parameter rgkmax = 7 and Rmt defining the 

muffin-tin radius (radius of atomic potential as defined by the default setting 

of the ELK-LAPW program). The exchange-correlation functional for Au 

and Cu used in ELK-LAPW was the Generalized-Gradient-Approximation 

(GGA) of the type called Perdew-Burke-Ernzerhof for solids (PBEsol). The 

termination of the energy calculation and, hence, of the structure generation 

was decided after getting the following output message from MAPS: 

“Among structures of known energy, true and predicted ground states agree. 

No other ground states of 13 atoms/unit-cell or less exist.” 

which indicated that agreement between the true (i.e calculated) and 

predicted (by MAPS) ground states (lowest energy structures), for a given 

concentration x, have been reached. These ground state structures, denoted 

as gs0, gs1, gs2 and gs3, are indicated along the convex hull (solid line) in 

the plane of the formation-energy versus concentration x as shown in Figure 

4.8 (b). The insets of Figure 4.9 (b) show the atomic structures for these 

ground states. In Figure. 4.8 (b) the “known structures” (denoted as crosses) 

are the structures whose energies were calculated from first-principle.     

Finally (4th stage, Figure 3.1), a representation of the structures energies was 

used as a Hamiltonian for the Monte-Carlo simulation which was utilized 
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to provide the thermodynamic phase structure. The monte-Carlo simulation 

was performed with the Easy Monte Carlo Code (emc2). The emc2 

simulation cell size was optimized at 10  Å3. Above this size 

no significant change in the thermodynamic property was observed, e.g. 

refer to Figure 4.9 (a) which shows the variance of concentration versus 

temperature with the emc2 size (indicated as “er”, representing the radius 

of the sphere fitting inside the simulation cell) as a parameter. In fact, the 

emc2 simulation cell consists of many periodic Nano-alloy structures (e.g. 

like the ones shown in the inset of Figure 4.9 (c)). This allowed the Monte-

Carlo code to produce the average values for the thermodynamic quantities 

over the entire cell. Since the periodic Nano-alloys are isolated from each 

other by a large empty space (see empty box with side a = 10 Å in the inset 

of Figure 4.9 (b)), then these averaged thermodynamic quantities were 

associated with the Nano-alloy. The rest of the main emc2 setting 

parameters were dmu = 1.1 meV (chemical potential step), and dT =  10 

K (temperature step). It is worth mentioning that the MAPS and emc2 are 

parts of the open-source alloy theoretic automated toolkit (ATAT). 

Additionally, by chemical potential we mean the chemical potential 

difference between that for Au and Cu in the emc2 simulation cell. The 

chemical potential imposes the condition that allows for variation in the 

atomic concentration for fixed total number of atoms [68]. 
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Figure 3.1: A schematic flow chart showing the main computational 

stages for the calculation of the phase diagram of AuxCu1-x Nano-alloy. 
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CHAPTER 4:  RESULTS, DISCUSSION AND 

CONCLUSIONS 

4.1  Results and discussion 

In this thesis, mechanical and thermodynamic properties were calculated 

and the concentration on thermal properties was considered the basis of the 

thesis. 

4.1.1 Results of the Mechanical properties 

We first present the results for structural properties. In order to obtain 

the equilibrium volume, we calculated the total energy for the Au NPs, Cu 

NPs and Gold-Copper NPs by varying hydrostatically the volume and 

allowing fully relaxation of the ions. The results are shown in Figure 

(4.1 ,4.2, and 4.3) The equilibrium lattice parameter was found using the 

GGA functional. The calculated results for equilibrium lattice are 

summarized in the (Table 4.1). 

We now turn the attention to the bulk modulus calculation. In order 

to obtain the equilibrium volume we calculated the pressure for the Au, Cu 

and Au-Cu NPs. The results are shown in Figure (4.4, 4.5 , and 4.6) . The 

bulk modulus K0 was determined from the results of total energy change 

with respect to the hydrostatic variation of volume and fitted to the fourth-

order Birch-Murnaghan equation of state. These results in bulk modulus as 

summarized in the Table 4.1. 
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4.1.2 Results of the Thermal properties 

        The Monte-Carlo simulation results are shown in Figure 4.9 (b) of the 

chemical potential (δµ) as a function of the average Au concentration, x, 

with the temperature, T, as a parameter.  The Monte-Carlo code (emc2) 

performed the calculations in a cell consisting of 11×11×11 (i.e. super-cell) 

structures associated with the respective ground state of interest. Figure 4.9 

(c) shows an example of such a super-cell. Therefore, the concentration x 

in Figure 4.9 (b) corresponds to the average concentration over the entire 

super-cell. It is very important to emphasis here that our results in Figure 

4.9 (b) are related to a large ensemble of non-interacting Nano-alloys (i.e 

each Au1-xCux Nano-alloy consists of 13 atoms). This is because the super-

cell was consisting of isolated Nano-alloys separated from each other by a 

vacuum box with size a ~ 10 Å (see right inset of Figure 4.9 (b). 

In Figure 4.9 (b), as δµ increases, x changes from 0 (pure Cu) to 1 (pure 

Au). Additionally, at low temperatures (< 100 K), plateaus of stable atomic 

concentrations (horizontal plateaus labeled as P0, P1, P2 and P3) were 

observed. The plateaus P0, P1, P2, and P3 were belonging to the ground 

states gs0, gs1, gs2, and gs3, respectively. Generally, the x ranges (for all 

temperatures) associated with gs0, gs1, gs2, and gs3 are, respectively, 

indicated below the insets of Figure 4.9 (b) as 0  x  0.62, 0.54  x  0.62, 

0.62  x  1, and 0.76  x  1. The plateaus of stability regions occurred at 

x = 0, 0.54, 0.77, and 1 within these ranges. These plateaus are reminiscent 

of those observed in Ref# [69] for Au-Pd Nano-alloy which were attributed 

to the shell felling effect associated with the progressive transfer of Au into 

the core shell as the chemical potential difference between Au and Pd 

increases. In contrast, our Nano alloy is only 13 atoms in size, hence, has 

no clear distinction between surface and core shells. Therefore, adding Au 

or Cu atoms to a Nano-alloy occurs in a discrete manner, leading to the 
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observed discrete jumps between the plateaus of stable x at T < 100 K. This 

is analogues to the case of discrete charging of a nano-device (e.g. a 

quantum dot), connected to electron reservoir terminals, which occurs one 

electron at a time whenever the reservoir’s electro-chemical potential (or 

Fermi level) aligns with the narrow electro-chemical potential of the nano-

device, leading to the stair-case pattern (plateaus) in the plane of the nano-

device current versus the bias voltage.  

     However, as T increases, the plateaus gradually smear out as shown in 

Fig. 4.9 (b) at T ~ 1000 K (Red region). This smearing out can simply be 

attributed to the temperature broadening of δµ, allowing for the ground 

states with similar space-groups (e.g. g s0, gs2, and gs3 are having m3-m 

space group symmetry) to coalesce at higher temperatures. That could 

explain why structures belonging to gs1 (having 4_2m symmetry, i.e. 

tetragonal based on atomic arrangement) were confined to T < 300 K (A 

careful look at Figure 4.9 (b) around 0.54  x  0.62 would reveal this 

confinement).  

We have also observed that the low-to-high temperature transition in 

Figure 4.9 (b) was accompanied by order-to-disorder transition as shown 

in Figure 4.10 (a), where the left panel shows a cross-section view of the 

Monte-Carlo (emc2) simulation cell belonging to gs2 (namely at x = 0.62) 

at 50 K with ordered atomic arrangements such that each Cu (dark sphere) 

is symmetrically surrounded by 12 Au atoms (golden spheres). The 

disordered arrangement at 1000 K can clearly be viewed in the right panel. 

Figure 4.10 (b) shows that, for gs2, x is almost fixed for T < 100 K then 

decreases after 100K. The region with nearly constant x are associated with 

the ordered phase. As T increases addition of more Cu atoms becomes 

favorable, enhancing the disordered phase. We have also attempted to 

further investigate this order-to-disorder transition through the evaluation 
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of the average (i.e. evaluated over entire emc2 cell) order-parameter, 

, as a function of temperature for gs2 starting from x = 0.62 and T = 

0 K. The result is illustrated in Figure 4.10 (c). Clearly for T < 100 

K. The descend in  within 40 K < T < 100 K is associated with the slight 

loss of Cu atoms (i.e. slight increase in x) as T increases from ~ 40 K to 

100 K which can clearly be observed in Figure 4.10 (b). Above T ~ 100 K, 

x reduces (due to addition of Cu) while  increases and then reduces after 

T ~ 500 K. The partial increase in  below 500 K may be due to that the 

added Cu atoms reclaimed their atomic sites lost at 40 K < T < 100 K. 

However, this behavior may be compared with the results of figure 37 in 

[6] where the order-parameter is seen to monotonically reduces from 1 to 

0 for bulk alloy only, whereas for the Nano alloys it exhibits regions of 

saturation which get wider for smaller Nano alloys. Therefore, we 

determine the order-disorder transition temperature for our Nano alloy to 

be ~ 100 K. We believe that this temperature is consistent with the report 

by Mendoza et al [62] who demonstrated that the order-disorder transition 

temperature for Nano alloy was smaller than that for the bulk. This may 

indicate that the transition temperature reduces with Nano-alloy size. In 

Mendoza et al [62] the average transition temperature ~ 300 K for Au-Cu 

Nano-alloy 10 nm in size. Our Nano-alloy is much smaller and exhibits ~ 

100 K transition temperature, which may be regarded as consistent with 

the trend observed by Mendoza et al[62]. 

Even though the calculation of the transition temperature was performed in 

gs2, we anticipate that similar calculations in other ground states would 

lead to similar result. We also point out that  represents the long-range 

order parameter defined by equation 38 in [70]. Nevertheless, since our 

data in Figure 4.10 (b) and 4.10 (c) are consistent, we believe that using the 
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long-range order parameter to investigate our structures at the nanoscale 

level was acceptable.  

 

Table 4.1: First principles structural and bulk modulus of Au, Cu and Au-

Cu NPs. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 : The calculated energy VS. Lattice parameter curves for 

optimizing the lattice constants as (𝑎𝐴𝑢) NPs 

Materials  𝒂𝟎(𝑨°) 𝑲𝟎 (GPa) 

Au NPs  11.32277 11.3 

Cu NPS  9.80072 12.0 

Au-Cu NPs  11.00800 13.5 
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Figure 4.2: The calculated energy vs lattice parameter curves for 

optimizing the lattice constants as (𝑎𝐶𝑢) NPs. 

 

 

Figure 4.3: The calculated energy VS. Lattice parameter curves for 

optimizing the lattice constants as 𝑎𝐴𝑢−𝐶𝑢) NPs. 
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Figure 1.4 Compression data of ( Au ) NPs. at zero temperature. The 

solid curve is a least squares fit of the first-principles calculations data 

 

 

Figure 4.5: Compression data of Cu NPs at zero temperature. The solid 

curve is a least squares fit of the first-principles calculations data 
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Figure 4.6: Compression data of (Au-Cu ) NPs at zero temperature. The 

solid curve is a least squares fit of the first-principles calculations data 
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Figure 4.7: The calculated Energy vs. Volume curves for optimizing the 

lattice constants as aAu, aAuCu and aCu, respectively, for (a) Au (b) AuCu with 

and (c) Cu bulk structures. (d) Fitting the optimized lattice constants (black 

squares) in (a)-(c) to Vegard law (solid line). Notice, the experimental 

lattice constants written beneath the optimized ones in (a) – (c). 
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Figure 4.8: (a) Au nanoparticle with 13 Au atoms generated with ASE 

program using the Wulff-construction method. (b) The structure formation 

energy versus the structure concentration produced by the maps program. 

Among known structures (shown as crosses) the ground state structures 

gs0 – gs3 are the ones that reside on the convex hull (solid line). 
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Figure 4.9: (a) Monte Carlo simulation convergence test for the size (er) 

of the simulation cell (b) Phase diagram of AuxCu1-x Nano-alloys. Insets: 

structures of the Nano-alloys (each with 13 atoms) for the calculated stable 

ground states gs0 – gs3. These Nano-alloys are placed in empty boxes with 

sides ~ “a”. (c) An example of a monte-carlo simulation super-cell 

consisting of periodic arrangements of structures associated with a give 

ground-state. 



51 

 

 

Figure 4.10: (a) snap shot of the cross-sectional region of the Monte-Carlo 

simulation cell at 50 K (left snapshot) and 1000 K (right snapshot), clearly 

indicating the ordered and disordered distribution of the Cu (black circles) 

among the Nano-alloys at low and high temperatures, respectively. The 

bright circles are the Au atoms. (b) The concentration, x, versus the 

temperature at the chemical potential δµ = 0.16455 eV corresponding to 

the stable ground state 2 (gs2). (c) The order parameter as a function of 

temperature for gs2 at δµ = 0.16466 eV. 
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4.1.3 Discussion 

The results are shown in Figure (4.1 ,4.2, and 4.3) The equilibrium 

lattice parameter was found using the GGA functional. The calculated 

results for equilibrium lattice are summarized in the (Table 4.1). . The bulk 

modulus K0 was determined from the results of total energy change with 

respect to the hydrostatic variation of volume and fitted to the fourth-order 

Birch-Murnaghan equation of state. These results in bulk modulus as 

summarized in the Table 4.1. 

The Monte-Carlo code (emc2) performed the calculations in a cell 

consisting of 11×11×11 (i.e. super-cell) structures associated with the 

respective ground state of interest. Figure 4.9 (c) shows an example of such 

a super-cell. Therefore, the concentration x in Figure 4.9 (b) corresponds to 

the average concentration over the entire super-cell. It is very important to 

emphasis here that our results in Figure 4.9 (b) are related to a large 

ensemble of non-interacting Nano-alloys (i.e each Au1-xCux Nano-alloy 

consists of 13 atoms). This is because the super-cell was consisting of 

isolated Nano-alloys separated from each other by a vacuum box with size 

a ~ 10 Å (see right inset of Figure 4.9 (b). 

Therefore, adding Au or Cu atoms to a Nano-alloy occurs in a discrete 

manner, leading to the observed discrete jumps between the plateaus of 

stable x at T < 100 K. This is analogues to the case of discrete charging of 

a nano-device (e.g. a quantum dot), connected to electron reservoir 

terminals, which occurs one electron at a time whenever the reservoir’s 

electro-chemical potential (or Fermi level) aligns with the narrow electro-

chemical potential of the nano-device, leading to the stair-case pattern 

(plateaus) in the plane of the nano-device current versus the bias voltage.  

     However, as T increases, the plateaus gradually smear out as shown in 

Fig. 4.9 (b) at T ~ 1000 K (Red region). This smearing out can simply be 
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attributed to the temperature broadening of δµ, allowing for the ground 

states with similar space-groups (e.g. g s0, gs2, and gs3 are having m3-m 

space group symmetry) to coalesce at higher temperatures. That could 

explain why structures belonging to gs1 (having 4_2m symmetry, i.e. 

tetragonal based on atomic arrangement) were confined to T < 300 K (A 

careful look at Figure 4.9 (b) around 0.54  x  0.62 would reveal this 

confinement).  

We have also observed that the low-to-high temperature transition 

in Figure 4.9 (b) was accompanied by order-to-disorder transition as shown 

in Figure 4.10 (a), where the left panel shows a cross-section view of the 

Monte-Carlo (emc2) simulation cell belonging to gs2 (namely at x = 0.62) 

at 50 K with ordered atomic arrangements such that each Cu (dark sphere) 

is symmetrically surrounded by 12 Au atoms (golden spheres). The 

disordered arrangement at 1000 K can clearly be viewed in the right panel. 

Figure 4.10 (b) shows that, for gs2, x is almost fixed for T < 100 K then 

decreases after 100K. The region with nearly constant x are associated with 

the ordered phase. As T increases addition of more Cu atoms becomes 

favorable, enhancing the disordered phase. 

4.2 Conclusions 

We have calculated the phase structure (chemical potential versus 

concentration with the temperature as a parameter) of Au1-xCux nanoparticle 

(or Nano-alloy) from a combination of first-principle and Monte-Carlo 

methods. Plateau patterns, associated with the calculated configurational 

esground stat,  have been observed at low temperatures < 100 K. The 

plateaus smeared out at higher temperatures, giving rise to the order-

disorder transitions with temperature. The critical temperature for this 
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transition was estimated at 100 K, consistent with the reported trend of the 

transition temperature with the Nano alloy size. 

4.3 Recommendation 

     From here, future work can take many possible avenues for the 

phase transition study in Gold-Copper Nano alloys, there is a natural 

place to continue; now that we know the phase transition,   we can start 

looking for suitable dopants to study their optical and electronic 

properties by First Principle and Monte-Carlo Calculations for a larger 

number of atoms 
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Appendices 

 

Appendix A: 

1. Example of elk input file 

 

tasks 

1 

 

swidth 

0.05 

 

avec 

  21.77604010   0.00000000   0.00000000 

   0.00000000  21.77604010   0.00000000 

   0.00000000   0.00000000  21.77604010 

 

sppath 

  '/home/mahk/Programs/elk-4.3.6/species/' 

 

atoms 

1 

'Au.in' 

13 

1 

 

nempty 

 30 

 

rgkmax 

  7.0 

 

ngridk 
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 4 4 4 

 

 

 

2. Command running of elk code 

 

elk  

 

 

3.example of elk Output file  

 

+----------------------------+ 

| Elk version 4.3.06 started | 

+----------------------------+ 

 

Date (YYYY-MM-DD) : 2017-08-30 

Time (hh:mm:ss)   : 09:05:18 

 

All units are atomic (Hartree, Bohr, etc.) 

 

+-------------------------------------------------+ 

| Ground-state run starting from atomic densities | 

+-------------------------------------------------+ 

 

Lattice vectors : 

   0.000000000       0.000000000      -20.22593246     

   0.000000000      -20.22593246       0.000000000     

  -20.22593246       0.000000000       0.000000000     

 

Reciprocal lattice vectors : 

  -0.000000000      -0.000000000     -0.3106499698     

  -0.000000000     -0.3106499698      -0.000000000     
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 -0.3106499698      -0.000000000      -0.000000000     

 

Unit cell volume      :    8274.193213     

Brillouin zone volume :   0.2997877945E-01 

 

Species :    1 (Au) 

 parameters loaded from : Au.in 

 name : gold 

 nuclear charge    :   -79.00000000     

 electronic charge :    79.00000000     

 atomic mass :    359048.0559     

 muffin-tin radius :    2.523325775     

 number of radial points in muffin-tin :    697 

 number on inner part of muffin-tin    :    497 

 atomic positions (lattice), magnetic fields (Cartesian) : 

   1 :   0.00000000  0.00000000  0.00000000    0.00000000  0.00000000  

0.00000000 

   2 :   0.17818100  0.82181900  0.00000000    0.00000000  0.00000000  

0.00000000 

   3 :   0.82181800  0.82181900  0.00000000    0.00000000  0.00000000  

0.00000000 

   4 :   0.00000000  0.64363700  0.00000000    0.00000000  0.00000000  

0.00000000 

   5 :   0.17818100  0.00000000  0.82181900    0.00000000  0.00000000  

0.00000000 

   6 :   0.82181800  0.00000000  0.82181900    0.00000000  0.00000000  

0.00000000 

 

Species :    2 (Cu) 

 parameters loaded from : Cu.in 

 name : copper 

 nuclear charge    :   -29.00000000     

 electronic charge :    29.00000000     
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 atomic mass :    115837.2717     

 muffin-tin radius :    2.400000000     

 number of radial points in muffin-tin :    497 

 number on inner part of muffin-tin    :    349 

 atomic positions (lattice), magnetic fields (Cartesian) : 

   1 :   0.00000000  0.00000000  0.64363700    0.00000000  0.00000000  

0.00000000 

   2 :   0.17818100  0.64363700  0.82181900    0.00000000  0.00000000  

0.00000000 

   3 :   0.17818100  0.82181900  0.64363700    0.00000000  0.00000000  

0.00000000 

   4 :   0.00000000  0.82181900  0.82181900    0.00000000  0.00000000  

0.00000000 

   5 :   0.82181800  0.64363700  0.82181900    0.00000000  0.00000000  

0.00000000 

   6 :   0.82181800  0.82181900  0.64363700    0.00000000  0.00000000  

0.00000000 

   7 :   0.00000000  0.64363700  0.64363700    0.00000000  0.00000000  

0.00000000 

 

Total number of atoms per unit cell :   13 

 

Spin treatment : 

 spin-unpolarised 

 

Number of Bravais lattice symmetries :   48 

Number of crystal symmetries         :    2 

Crystal has no inversion symmetry 

Complex Hermitian eigensolver will be used 

 

k-point grid :      2     2     2 

k-point offset :    0.000000000       0.000000000       0.000000000     

k-point set is reduced with full crystal symmetry group 
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Total number of k-points :        8 

 

Muffin-tin radius times maximum |G+k| :    7.000000000     

 using average radius 

Maximum |G+k| for APW functions       :    2.849096093     

Maximum (1/2)|G+k|^2                  :    4.058674274     

Maximum |G| for potential and density :    12.00000000     

Constant for pseudocharge density :    8 

Radial integration step length :    4 

 

G-vector grid sizes :     80    80    80 

Number of G-vectors :   241497 

 

Maximum angular momentum used for 

 APW functions                      :    8 

 H and O matrix elements outer loop :    7 

 outer part of muffin-tin           :    7 

 inner part of muffin-tin           :    3 

 

Total nuclear charge    :   -677.0000000     

Total core charge       :    372.0000000     

Total valence charge    :    305.0000000     

Total excess charge     :    0.000000000     

Total electronic charge :    677.0000000     

 

Effective Wigner radius, r_s :    1.428947019     

 

Number of empty states         :  390 

Total number of valence states :  543 

Total number of core states    :  372 

 

Total number of local-orbitals :  305 
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Exchange-correlation functional :     22     0     0 

 PBEsol, Phys. Rev. Lett. 100, 136406 (2008) 

 Generalised gradient approximation (GGA) 

 

Smearing type :    3 

 Fermi-Dirac 

Smearing width :   0.5000000000E-01 

Effective electronic temperature (K) :    15788.75213     

 

Mixing type :    1 

 Adaptive linear mixing 

 

Density and potential initialised from atomic data 

 

+------------------------------+ 

| Self-consistent loop started | 

+------------------------------+ 

 

+--------------------+ 

| Loop number :    1 | 

+--------------------+ 

 

Energies : 

 Fermi                       :    -0.630279770113E-01 

 sum of eigenvalues          :     -77136.4472818     

 electron kinetic            :      143231.777796     

 core electron kinetic       :      136463.711921     

 Coulomb                     :     -266138.579362     

 Coulomb potential           :     -216930.127234     

 nuclear-nuclear             :      2873.19559646     

 electron-nuclear            :     -321093.422683     

 Hartree                     :      52081.6477246     

 Madelung                    :     -157673.515745     
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 xc potential                :     -3438.09784334     

 exchange                    :     -2569.07998895     

 correlation                 :     -43.2265077135     

 electron entropic           :     -3.27638264585     

 total energy                :     -125522.384446     

 

Density of states at Fermi energy :    378.5400736     

 (states/Hartree/unit cell) 

 

Estimated indirect band gap :   0.1586458807E-01 

 from k-point      8 to k-point      8 

Estimated direct band gap   :   0.1586458807E-01 

 at k-point      8 

 

Charges : 

 core                        :    372.0000000     

 valence                     :    305.0000000     

 interstitial                :    23.25639305     

 muffin-tins (core leakage) 

  species :    1 (Au) 

   atom    1                 :    77.47209295     (  0.4461285372E-03) 

   atom    2                 :    77.45326290     (  0.4444486186E-03) 

   atom    3                 :    77.45326290     (  0.4444486186E-03) 

   atom    4                 :    77.43631453     (  0.4426993341E-03) 

   atom    5                 :    77.43368436     (  0.4426710881E-03) 

   atom    6                 :    77.43368436     (  0.4426710881E-03) 

  species :    2 (Cu) 

   atom    1                 :    26.92952970     (  0.1633255642E-03) 

   atom    2                 :    26.92772907     (  0.1632792937E-03) 

   atom    3                 :    26.90614768     (  0.1626610145E-03) 

   atom    4                 :    27.57861860     (  0.1745843174E-03) 

   atom    5                 :    26.92772907     (  0.1632792937E-03) 

   atom    6                 :    26.90614768     (  0.1626610145E-03) 
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   atom    7                 :    26.88540315     (  0.1619902596E-03) 

 total in muffin-tins        :    653.7436069     

 total calculated charge     :    676.9141596     

 total charge                :    677.0000000     

 error                       :   0.8584037229E-01 

 

Time (CPU seconds) :      4026.74 

 

+----------------------------+ 

| Elk version 4.3.06 stopped | 

+----------------------------+ 

 

 

 Appendix B: 

1. Example of Quantum-Espresso input file 

 

&CONTROL 

  calculation = "scf", 

  pseudo_dir  = "/home/mujahid/Downloads/espresso-4.3.2/pseudo", 

  outdir      = "/home/mujahid/Downloads/espresso-4.3.2/tmp", 

/ 

&SYSTEM 

  ibrav       = 0, 

A=11.00800 

  nat         = 13, 

  ntyp        = 2, 

  ecutwfc     = 40.D0, 

  occupations = "smearing", 

  smearing    = "methfessel-paxton", 

  degauss     = 0.05D0, 

/ 

&ELECTRONS 
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  conv_thr    = 1.D-6, 

  mixing_beta = 0.3D0, 

/ 

ATOMIC_SPECIES 

Au  1.0  Au.pbe-dn-rrkjus_psl.0.1.UPF 

Cu  1.0  Cu.pbe-kjpaw.UPF 

K_POINTS automatic 

2 2 2 0 0 0 

CELL_PARAMETERS alat 

    0.00000000   0.00000000  -1.00000000 

    0.00000000  -1.00000000   0.00000000 

   -1.00000000   0.00000000   0.00000000 

 

2. Command running  

 

ev,x  

 

 

3. Example of Quantum-Espresso Output file  

 

 

     Program PWSCF v.6.2 starts on  9Apr2018 at  2:35: 7 

 

     This program is part of the open-source Quantum ESPRESSO suite 

     for quantum simulation of materials; please cite 

         "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); 

         "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017); 

          URL http://www.quantum-espresso.org", 

     in publications or presentations arising from this work. More details at 

     http://www.quantum-espresso.org/quote 

 

     Serial version 



71 

 

     Waiting for input... 

     Reading input from standard input 

     Message from routine read_cards : 

     DEPRECATED: no units specified in ATOMIC_POSITIONS card 

     Message from routine read_cards : 

     ATOMIC_POSITIONS: units set to alat 

 

     Current dimensions of program PWSCF are: 

     Max number of different atomic species (ntypx) = 10 

     Max number of k-points (npk) =  40000 

     Max angular momentum in pseudopotentials (lmaxx) =  3 

               file Au.pbe-dn-rrkjus_psl.0.1.UPF: wavefunction(s)  5D renormalized 

  

     G-vector sticks info 

     -------------------- 

     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW 

     Sum        5917    5917   1605               342243   342243   48297 

  

 

 

     bravais-lattice index     =            0 

     lattice parameter (alat)  =      21.5546  a.u. 

     unit-cell volume          =   10014.2809 (a.u.)^3 

     number of atoms/cell      =           13 

     number of atomic types    =            2 

     number of electrons       =       143.00 

     number of Kohn-Sham states=           86 

     kinetic-energy cutoff     =      40.0000  Ry 

     charge density cutoff     =     160.0000  Ry 

     convergence threshold     =      1.0E-06 

     mixing beta               =       0.3000 

     number of iterations used =            8  plain     mixing 

     Exchange-correlation      =  SLA  PW   PBX  PBC ( 1  4  3  4 0 0) 
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     celldm(1)=  21.554598  celldm(2)=   0.000000  celldm(3)=   0.000000 

     celldm(4)=   0.000000  celldm(5)=   0.000000  celldm(6)=   0.000000 

 

     crystal axes: (cart. coord. in units of alat) 

               a(1) = (   0.000000   0.000000  -1.000000 )   

               a(2) = (   0.000000  -1.000000   0.000000 )   

               a(3) = (  -1.000000   0.000000   0.000000 )   

 

     reciprocal axes: (cart. coord. in units 2 pi/alat) 

               b(1) = (  0.000000  0.000000 -1.000000 )   

               b(2) = (  0.000000 -1.000000  0.000000 )   

               b(3) = ( -1.000000  0.000000  0.000000 )   

 

 

     PseudoPot. # 1 for Au read from file: 

     /home/mujahid/Downloads/espresso-4.3.2/pseudo/Au.pbe-dn-

rrkjus_psl.0.1.UPF 

     MD5 check sum: 9ee2a4f851141a69af184ac74dfa6c57 

     Pseudo is Ultrasoft + core correction, Zval = 11.0 

     Generated using "atomic" code by A. Dal Corso  v.5.0.2 svn rev. 9415 

     Using radial grid of 1279 points,  6 beta functions with: 

                l(1) =   0 

                l(2) =   0 

                l(3) =   1 

                l(4) =   1 

                l(5) =   2 

                l(6) =   2 

     Q(r) pseudized with 0 coefficients 

 

 

     PseudoPot. # 2 for Cu read from file: 

     /home/mujahid/Downloads/espresso-4.3.2/pseudo/Cu.pbe-kjpaw.UPF 
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     MD5 check sum: 92cd914fcb04cfd737edc2091ad11b5d 

     Pseudo is Projector augmented-wave + core cor, Zval = 11.0 

     Generated using "atomic" code by A. Dal Corso (espresso distribution) 

     Shape of augmentation charge: BESSEL 

     Using radial grid of 1199 points,  6 beta functions with: 

                l(1) =   2 

                l(2) =   2 

                l(3) =   0 

                l(4) =   0 

                l(5) =   1 

                l(6) =   1 

     Q(r) pseudized with 0 coefficients 

 

 

     atomic species   valence    mass     pseudopotential 

        Au            11.00     1.00000     Au( 1.00) 

        Cu            11.00     1.00000     Cu( 1.00) 

 

      6 Sym. Ops. (no inversion) found 

 

 

 

   Cartesian axes 

 

     site n.     atom                  positions (alat units) 

         1           Au  tau(   1) = (  -1.0000000  -1.0000000  -0.8218190  ) 

         2           Au  tau(   2) = (  -1.0000000  -0.8218190  -1.0000000  ) 

         3           Au  tau(   3) = (  -1.0000000  -0.8218190  -0.6436370  ) 

         4           Au  tau(   4) = (  -1.0000000  -0.6436370  -0.8218190  ) 

         5           Au  tau(   5) = (  -0.8218190  -1.0000000  -1.0000000  ) 

         6           Au  tau(   6) = (  -0.8218190  -1.0000000  -0.6436370  ) 

         7           Au  tau(   7) = (  -0.6436370  -1.0000000  -0.8218190  ) 

         8           Au  tau(   8) = (  -0.8218190  -0.6436370  -1.0000000  ) 



74 

 

         9           Au  tau(   9) = (  -0.6436370  -0.8218190  -1.0000000  ) 

        10           Cu  tau(  10) = (  -0.8218190  -0.8218190  -0.8218190  ) 

        11           Au  tau(  11) = (  -0.8218190  -0.6436370  -0.6436370  ) 

        12           Au  tau(  12) = (  -0.6436370  -0.8218190  -0.6436370  ) 

        13           Au  tau(  13) = (  -0.6436370  -0.6436370  -0.8218190  ) 

 

     number of k points=     4  Methfessel-Paxton smearing, width (Ry)=  0.0500 

                       cart. coord. in units 2pi/alat 

        k(    1) = (   0.0000000   0.0000000   0.0000000), wk =   0.2500000 

        k(    2) = (   0.5000000   0.0000000   0.0000000), wk =   0.7500000 

        k(    3) = (   0.5000000   0.5000000   0.0000000), wk =   0.7500000 

        k(    4) = (   0.5000000   0.5000000   0.5000000), wk =   0.2500000 

 

     Dense  grid:   342243 G-vectors     FFT dimensions: (  90,  90,  90) 

 

     Estimated max dynamical RAM per process >       1.64 GB 

 

     Initial potential from superposition of free atoms 

     Check: negative starting charge=   -0.076785 

 

     starting charge  142.99841, renormalised to  143.00000 

 

     negative rho (up, down):  7.679E-02 0.000E+00 

     Starting wfc are  117 randomized atomic wfcs 

 

     total cpu time spent up to now is       29.2 secs 

 

     Self-consistent Calculation 

 

     iteration #  1     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  1.00E-02,  avg # of iterations =  3.0 
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     Threshold (ethr) on eigenvalues was too large: 

     Diagonalizing with lowered threshold 

 

     Davidson diagonalization with overlap 

     ethr =  4.81E-04,  avg # of iterations =  3.5 

 

     negative rho (up, down):  7.496E-02 0.000E+00 

 

     total cpu time spent up to now is      138.5 secs 

 

     total energy              =   -1236.78345318 Ry 

     Harris-Foulkes estimate   =   -1237.25748951 Ry 

     estimated scf accuracy    <       0.81247515 Ry 

 

     iteration #  2     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  5.68E-04,  avg # of iterations =  4.0 

 

     negative rho (up, down):  7.565E-02 0.000E+00 

 

     total cpu time spent up to now is      197.0 secs 

 

     total energy              =   -1237.04777162 Ry 

     Harris-Foulkes estimate   =   -1237.33307610 Ry 

     estimated scf accuracy    <       0.61934367 Ry 

 

     iteration #  3     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  4.33E-04,  avg # of iterations =  3.0 

 

     negative rho (up, down):  7.656E-02 0.000E+00 

 

     total cpu time spent up to now is      254.4 secs 
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     total energy              =   -1237.08865172 Ry 

     Harris-Foulkes estimate   =   -1237.12490360 Ry 

     estimated scf accuracy    <       0.05468425 Ry 

 

     iteration #  4     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  3.82E-05,  avg # of iterations =  4.8 

 

     negative rho (up, down):  7.774E-02 0.000E+00 

 

     total cpu time spent up to now is      316.9 secs 

 

     total energy              =   -1237.08897336 Ry 

     Harris-Foulkes estimate   =   -1237.11833219 Ry 

     estimated scf accuracy    <       0.08786672 Ry 

 

     iteration #  5     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  3.82E-05,  avg # of iterations =  4.0 

 

     negative rho (up, down):  8.052E-02 0.000E+00 

 

     total cpu time spent up to now is      375.9 secs 

 

     total energy              =   -1237.10576777 Ry 

     Harris-Foulkes estimate   =   -1237.11369961 Ry 

     estimated scf accuracy    <       0.01222624 Ry 

 

     iteration #  6     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  8.55E-06,  avg # of iterations =  4.0 
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     negative rho (up, down):  8.234E-02 0.000E+00 

 

     total cpu time spent up to now is      437.0 secs 

 

     total energy              =   -1237.10874653 Ry 

     Harris-Foulkes estimate   =   -1237.11270185 Ry 

     estimated scf accuracy    <       0.00898304 Ry 

 

     iteration #  7     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  6.28E-06,  avg # of iterations =  4.0 

 

     negative rho (up, down):  8.280E-02 0.000E+00 

 

     total cpu time spent up to now is      496.0 secs 

 

     total energy              =   -1237.11134930 Ry 

     Harris-Foulkes estimate   =   -1237.11134596 Ry 

     estimated scf accuracy    <       0.00065028 Ry 

 

     iteration #  8     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  4.55E-07,  avg # of iterations =  2.0 

 

     negative rho (up, down):  8.317E-02 0.000E+00 

 

     total cpu time spent up to now is      547.9 secs 

 

     total energy              =   -1237.11120905 Ry 

     Harris-Foulkes estimate   =   -1237.11137683 Ry 

     estimated scf accuracy    <       0.00090932 Ry 

 

     iteration #  9     ecut=    40.00 Ry     beta= 0.30 
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     Davidson diagonalization with overlap 

     ethr =  4.55E-07,  avg # of iterations =  2.0 

 

     negative rho (up, down):  8.379E-02 0.000E+00 

 

     total cpu time spent up to now is      601.1 secs 

 

     total energy              =   -1237.11115021 Ry 

     Harris-Foulkes estimate   =   -1237.11124757 Ry 

     estimated scf accuracy    <       0.00024043 Ry 

 

     iteration # 10     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  1.68E-07,  avg # of iterations =  3.0 

 

     negative rho (up, down):  8.413E-02 0.000E+00 

 

     total cpu time spent up to now is      661.2 secs 

 

     total energy              =   -1237.11121815 Ry 

     Harris-Foulkes estimate   =   -1237.11122521 Ry 

     estimated scf accuracy    <       0.00002317 Ry 

 

     iteration # 11     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  1.62E-08,  avg # of iterations =  4.0 

 

     negative rho (up, down):  8.426E-02 0.000E+00 

 

     total cpu time spent up to now is      725.0 secs 

 

     total energy              =   -1237.11123225 Ry 

     Harris-Foulkes estimate   =   -1237.11123062 Ry 
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     estimated scf accuracy    <       0.00000775 Ry 

 

     iteration # 12     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  5.42E-09,  avg # of iterations =  4.0 

 

     negative rho (up, down):  8.402E-02 0.000E+00 

 

     total cpu time spent up to now is      785.4 secs 

 

     total energy              =   -1237.11117406 Ry 

     Harris-Foulkes estimate   =   -1237.11123469 Ry 

     estimated scf accuracy    <       0.00000116 Ry 

 

     iteration # 13     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  8.13E-10,  avg # of iterations =  4.0 

 

     negative rho (up, down):  8.421E-02 0.000E+00 

 

     total cpu time spent up to now is      860.8 secs 

 

     total energy              =   -1237.11120670 Ry 

     Harris-Foulkes estimate   =   -1237.11120972 Ry 

     estimated scf accuracy    <       0.00000363 Ry 

 

     iteration # 14     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  8.13E-10,  avg # of iterations =  3.0 

 

     negative rho (up, down):  8.445E-02 0.000E+00 

 

     total cpu time spent up to now is      927.7 secs 
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     total energy              =   -1237.11120102 Ry 

     Harris-Foulkes estimate   =   -1237.11120819 Ry 

     estimated scf accuracy    <       0.00000121 Ry 

 

     iteration # 15     ecut=    40.00 Ry     beta= 0.30 

     Davidson diagonalization with overlap 

     ethr =  8.13E-10,  avg # of iterations =  3.0 

 

     negative rho (up, down):  8.478E-02 0.000E+00 

 

     total cpu time spent up to now is      995.8 secs 

 

     End of self-consistent calculation 

 

          k = 0.0000 0.0000 0.0000 ( 42931 PWs)   bands (ev): 

 

    -8.0574  -6.6551  -6.6551  -6.6551  -6.4091  -6.3230  -6.3230  -6.3230 

    -6.1890  -5.9248  -5.9248  -5.8019  -5.8019  -5.8019  -5.7815  -5.7815 

    -5.7815  -5.5929  -5.5304  -5.5304  -5.3728  -5.3728  -5.3728  -5.3617 

    -5.3617  -5.3616  -5.0193  -5.0193  -5.0193  -4.8959  -4.8959  -4.8959 

    -4.8353  -4.8353  -4.8353  -4.4264  -4.4264  -4.3914  -4.3914  -4.3914 

    -4.2342  -4.2342  -4.2342  -3.9942  -3.9942  -3.9752  -3.9752  -3.9752 

    -3.7895  -3.7895  -3.7622  -3.7621  -3.7621  -3.7606  -3.7606  -3.7606 

    -3.6846  -3.6358  -3.6358  -3.6358  -3.5567  -3.5566  -3.5566  -3.5234 

    -3.5234  -3.5234  -3.5073  -3.5073  -3.0459  -2.3814  -2.3814  -2.3814 

    -1.7078  -1.7078  -0.8804  -0.2154  -0.2153  -0.2153   0.2958   0.9416 

     0.9416   0.9416   1.7014   1.7015   1.7015   2.3151 

 

          k = 0.5000 0.0000 0.0000 ( 42828 PWs)   bands (ev): 

 

    -8.0571  -6.6560  -6.6548  -6.6548  -6.4090  -6.3232  -6.3231  -6.3230 

    -6.1890  -5.9248  -5.9246  -5.8021  -5.8021  -5.8018  -5.7816  -5.7813 
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    -5.7813  -5.5917  -5.5305  -5.5304  -5.3731  -5.3727  -5.3727  -5.3618 

    -5.3615  -5.3614  -5.0195  -5.0195  -5.0193  -4.8962  -4.8962  -4.8959 

    -4.8386  -4.8352  -4.8352  -4.4262  -4.4261  -4.3916  -4.3916  -4.3914 

    -4.2354  -4.2341  -4.2341  -3.9941  -3.9920  -3.9753  -3.9752  -3.9752 

    -3.7898  -3.7896  -3.7634  -3.7634  -3.7621  -3.7608  -3.7586  -3.7586 

    -3.6841  -3.6360  -3.6359  -3.6358  -3.5688  -3.5554  -3.5554  -3.5236 

    -3.5236  -3.5231  -3.5070  -3.5070  -3.0459  -2.3955  -2.3955  -2.3800 

    -1.7014  -1.6608  -0.8157  -0.2473  -0.1840  -0.1840   0.2771   0.7802 

     1.0577   1.0578   1.2464   1.7114   1.7114   2.3058 

 

          k = 0.5000 0.5000 0.0000 ( 42748 PWs)   bands (ev): 

 

    -8.0567  -6.6557  -6.6557  -6.6546  -6.4088  -6.3233  -6.3231  -6.3231 

    -6.1891  -5.9247  -5.9245  -5.8024  -5.8021  -5.8021  -5.7813  -5.7813 

    -5.7811  -5.5904  -5.5305  -5.5304  -5.3729  -5.3729  -5.3725  -5.3616 

    -5.3615  -5.3613  -5.0198  -5.0195  -5.0195  -4.8965  -4.8961  -4.8961 

    -4.8385  -4.8385  -4.8352  -4.4259  -4.4259  -4.3917  -4.3915  -4.3915 

    -4.2353  -4.2353  -4.2340  -3.9929  -3.9908  -3.9753  -3.9753  -3.9751 

    -3.7900  -3.7898  -3.7647  -3.7634  -3.7634  -3.7587  -3.7587  -3.7566 

    -3.6836  -3.6361  -3.6359  -3.6359  -3.5675  -3.5674  -3.5542  -3.5237 

    -3.5233  -3.5233  -3.5066  -3.5066  -3.0459  -2.4107  -2.3940  -2.3939 

    -1.6767  -1.6298  -0.7583  -0.2123  -0.2122  -0.1485   0.2555   0.9156 

     0.9157   1.1710   1.2769   1.2770   1.7210   1.9712 

 

          k = 0.5000 0.5000 0.5000 ( 42584 PWs)   bands (ev): 

 

    -8.0564  -6.6554  -6.6554  -6.6554  -6.4087  -6.3232  -6.3232  -6.3232 

    -6.1891  -5.9244  -5.9244  -5.8023  -5.8023  -5.8023  -5.7811  -5.7811 

    -5.7811  -5.5892  -5.5305  -5.5305  -5.3727  -5.3727  -5.3727  -5.3614 

    -5.3614  -5.3613  -5.0198  -5.0198  -5.0198  -4.8965  -4.8965  -4.8964 

    -4.8385  -4.8385  -4.8385  -4.4258  -4.4258  -4.3916  -4.3916  -4.3916 

    -4.2352  -4.2352  -4.2352  -3.9907  -3.9907  -3.9752  -3.9752  -3.9752 

    -3.7901  -3.7901  -3.7647  -3.7647  -3.7647  -3.7567  -3.7567  -3.7566 
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    -3.6832  -3.6360  -3.6360  -3.6360  -3.5662  -3.5661  -3.5661  -3.5234 

    -3.5234  -3.5234  -3.5063  -3.5063  -3.0459  -2.4091  -2.4091  -2.4091 

    -1.6249  -1.6249  -0.7065  -0.1714  -0.1714  -0.1714   0.2290   1.0354 

     1.0354   1.0355   1.3156   1.3158   1.3158   2.0926 

 

     the Fermi energy is    -2.1629 ev 

 

!    total energy              =   -1237.11120660 Ry 

     Harris-Foulkes estimate   =   -1237.11120684 Ry 

     estimated scf accuracy    <       0.00000009 Ry 

 

     The total energy is the sum of the following terms: 

     one-electron contribution =   -2149.78846576 Ry 

     hartree contribution      =    1143.52563424 Ry 

     xc contribution           =    -403.14313901 Ry 

     ewald contribution        =     268.57755254 Ry 

     one-center paw contrib.   =     -96.28620224 Ry 

     smearing contrib. (-TS)   =       0.00341362 Ry 

     convergence has been achieved in  15 iterations 

     Writing output data file pwscf.save 

     init_run     :     27.68s CPU     28.63s WALL (       1 calls) 

     electrons    :    938.50s CPU    966.63s WALL (       1 calls) 

     Called by init_run: 

     wfcinit      :     23.45s CPU     23.70s WALL (       1 calls) 

     potinit      :      0.73s CPU      0.76s WALL (       1 calls) 

 

     Called by electrons: 

     c_bands      :    759.95s CPU    771.98s WALL (      16 calls) 

     sum_band     :    145.09s CPU    153.36s WALL (      16 calls) 

     v_of_rho     :      7.62s CPU      7.64s WALL (      16 calls) 

     newd         :     23.64s CPU     32.02s WALL (      16 calls) 

     PAW_pot      :      2.40s CPU      2.40s WALL (      16 calls) 

     mix_rho      :      1.70s CPU      1.74s WALL (      16 calls) 
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     Called by c_bands: 

     init_us_2    :      6.65s CPU      6.71s WALL (     132 calls) 

     cegterg      :    700.45s CPU    712.43s WALL (      64 calls) 

 

     Called by sum_band: 

     sum_band:bec :      0.01s CPU      0.01s WALL (      64 calls) 

     addusdens    :     31.71s CPU     39.86s WALL (      16 calls) 

     Called by *egterg: 

     h_psi        :    544.63s CPU    545.11s WALL (     289 calls) 

     s_psi        :     50.44s CPU     50.45s WALL (     289 calls) 

     g_psi        :      3.14s CPU      3.15s WALL (     221 calls) 

     cdiaghg      :      3.88s CPU      3.88s WALL (     281 calls) 

 

     Called by h_psi: 

     h_psi:pot    :    542.20s CPU    542.62s WALL (     289 calls) 

     h_psi:calbec :     48.15s CPU     48.16s WALL (     289 calls) 

     vloc_psi     :    443.67s CPU    444.06s WALL (     289 calls) 

     add_vuspsi   :     50.38s CPU     50.39s WALL (     289 calls) 

 

     General routines 

     calbec       :     66.35s CPU     66.36s WALL (     353 calls) 

     fft          :      4.99s CPU      5.00s WALL (     210 calls) 

     fftw         :    472.82s CPU    473.26s WALL (   33004 calls) 

  

  

     PWSCF        : 16m 6.79s CPU    16m36.05s WALL 

 

  

   This run was terminated on:   2:51:43   9Apr2018             

 

=------------------------------------------------------------------------------= 

   JOB DONE. 

=------------------------------------------------------------------------------= 


