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Abstract 

We extend a previous work where a nonlinear perturbation equation based on Generalized 

Field Equation was deduced assuming a flat universe. In this paper a more general nonlinear 

perturbation equation which can be utilized in both flat and non-flat universes was derived. 

It consists of nonlinear terms in density perturbation and its derivatives. The deduced fourth 

order nonlinear equation consists of terms that are supposed to be responsible of strong and 

weak gravitational fields. Thus the equation can be utilized to study density perturbations in 

the presence of either strong or weak fields. The equation was used to investigate the 

possibility of perturbation growth using different scales of expansion of the universe 

assuming the sole presence of matter energy density. The different scales of expansion were 

obtained from the solution of the contracted version of the Generalized Field Equation. 

Constant nonlinear density perturbations were obtained in a curved universe, while constant 

or decaying ones were obtained in a flat expanding universe, the obtained results were 

comparable with previous works. 
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Introduction 

The structures we observe in the universe 

nowadays, formed from the gravitational 

instability of initial perturbations in the 

matter density. This idea refers to the 1940s
 

[1]
. However, it was only in the early 1980s 

that a physical mechanism capable of 

producing small perturbations was 

identified. This is the mechanism of 

inflation, an idea due to Guth 
[2]

. 

For any small density perturbation, there 

will be competition between its self-gravity 

which is attempting to increase the density, 

and the general expansion of the universe 

which acts to decrease the growth rate of 

density fluctuations. This growth rate 

depends on the content of the universe and 

the values of the cosmological parameters. 

In a static space exponential growth of 

perturbations is observed, this gets reduced 

to only a power law behavior in time in an 

expanding space–time
[3]

.  

Over dense fluctuations expand linearly, at a 

retarded rate relative to the Universe as a 

whole, until eventually they reach a 

maximum size and collapse non-linearly to 

form an equilibrium object
[4]

. 

The  density contrast is δ  >>  1  today  and 

as the  equation  of  standard cosmology 

based on Einstein’s General Relativity (GR) 

can account only for δ  <<  1, the  derivation  

of  a nonlinear   equation that can  account 

for large perturbations  is  necessary. 

Several  attempts  were  performed  to  solve  

the  density  perturbation  problem
[5]

. 

Einstein’s General Relativity is widely 

accepted as a fundamental theory to describe 

the geometric properties of spacetime. 

However, some problems in general 

relativity, e.g., the non renormalizability of 

general relativity and the singularity 

problems in black hole physics and in the 

early universe, imply that general relativity 

may not be the final gravitational theory 
[6]

.General Relativity should be considered a 

special theory in the more general class of 

theories that one could consider
[7]

.   

As a result several new theories of gravity 

were introduced. Different approaches and 

models were proposed to solve these 

problems 
[8,9]

. Some of these models suggest 

to promote the Einstein tensor to a more 

general form able to account for  the tested 

predictions of Einstein model within the 

weak gravity of solar system scales and 

further to justify both inflationary and 

current acceleration of the Universe. 

One of these approaches is the Generalized 

Field Equations (GFE) 
[10]

  one of the 

recently known f(R) theories and the model 

based on it
[11]

.In contrast to previous works 

for example in Ref. 
[12]

 , the gravitational 

collapse of a uniform dust cloud in f(R) 

gravity was analyzed; the scale factor and 

the collapsing time were computed. In Ref. 
[13]

 , the junction conditions through the 

hypersurface separating the exterior and the 

interior of the global gravitational field in 

f(R) theory were derived. In Ref. 
[14]

, a 

charged black hole from gravitational 

collapse in f(R) gravity was obtained. Here 

we calculate the scale factor and investigate 

the possibility of perturbation growth 

numerically. 

In the next section of this  paper,  the 

contracted equation  of GFE was solved  

assuming  a power law of the scale factor 
ncta  [15] 

in an isotropic universe . In 

section 3 a nonlinear equation based on GFE 

for solving the perturbation problem in a 

non-flat universe was deduced. In section 4 

the resulting solution of the contracted 

equation of GFE was applied to the deduced 

nonlinear perturbation equation to 

investigate the possibility of perturbation 

growth. 

 The Model  
In this section the contracted version of GFE 

is utilized to get the possible allowed cases 

of the scale expansion dependence on time, 

assuming an isotropic and a homogeneous 

universe.  
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The  GFE  equation
[16]
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where L is the most general form of the Lagrangian ,L ,L  L   are its partial derivatives of 

the scalar curvature R. 

Equation(1) is contracted by   
g   to yield   
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where    2    is the  invariant  d’Alembertian  which  is  defined  by  

                          




;

;
2

R
x

R
gR 




                                                          (3) 

In (1) we have  the  only  non  vanishing  components  of the derivatives  R  in the spherical 

coordinates(r,  , φ) and time read as   

         RR t
;      ,      RR tt

;;      ,      rrrr gR
a

a
R 

;; 

                    gR
a

a
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;;        ,              gR
a

a
R 

;;                                      (4) 

where a is the cosmic scale factor and 

overdot stands for the derivative with time. 

Setting   RRL 2   as one choice of 

the  non linear  Lagrangian , ,    and   

are constants.   and  are assumed 

somehow to be responsible for strong and 

weak gravitational fields respectively and 

is supposed to stand for the total universe 

content of energy density. 

The following Robertson-Walker metric in a 

spatially homogeneous and isotropic 

 

universe was used: 










 )sin(

1

2222

2

2
2222  ddr

kr

dr
adtcds  

Using  the  coordinate  condition   0
   

[17]
  in  (2) yields 

                                     




6

2


R
R                                                              (5) 

Now equation(5) will be employed to describe the unperturbed  portion of the background 

universe reading 

                                               








36

00
0 




R
R                                     (6)  

 Also   was identified for  . 
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Writing R in terms of a differentiating R twice with respect to time, substituting and assuming 

k=0,1,-1 
[18]

 one gets 

 

       (7) 

  

The equation may  reduce to  
2

3

a

k
   in a 

static universe giving the same result as 

standard cosmology if 
G


8

1


[19] 

otherwise if  is set to zero it reduces to 

Friedman equations added together  if the 

pressure is neglected
[20]

. 

To solve equation (7) it was assumed that 

the energy density is made up of matter 

alone i.e. m  with no radiation or 

vacuum energy densities and this matter 

energy density scales as  
3am  [21]

. Also 

assuming  that 
ncta   where  c  is a 

constant, inserting this relationship and its 

derivatives in (7), one gets  
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                  (8)                                       

The above equation is satisfied for the following cases: 

Case1: n = 0 resulting in (i) a static flat 

universe with no matter: 0 kCm ,  or (ii) 

a  non-flat static universe in which 

cCm 3  for 1k . 

Case2: n = 2/3  resulting in  =k=0 , 

3

3

2
cCm  which is approximately the 

same result as that obtained within the 

frame work of general relativity. 

Case3: n = 1 the equation yields (i) 1c  
for 1k  ,or (ii) ic   for 1k , and 

0mC , i.e. the model describes an open 

universe in which the expansion rate scales 

with time or a closed universe in which the 

expansion rate is imaginary but with no 

matter in both cases. 

Case4: n = 1/2  the equation yields

0 kCm  both fields are present. 

Case5: n = 4/3 resulting in :  =k=0 , 
315800 cCm  . 

Deduction of the Nonlinear Perturbation 

Equation 
The  perturbation will be calculated 

using method 
[22]

. The equation 

                                               









36
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0 


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R
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describes  the  unperturbed  model ,  which  

we  shall take  to  be  the  background  

universe.   Consider  now  a  spherical 

region  of  the  universe,  which  at  time  

0t   has  a   radius  
0r where )(0 tlar  , and  

l  is  the  commoving  label of  the  

unperturbed  test  particle, here l is assumed 

to be a constant.   

Suppose  now we  make  a  small  positive  

perturbation,  so  that  the  same amount  of  

particles  originally in the radius  0r   is  

now  in  r,1rrr 0     is  the  

perturbed  radius  of  the sphere given by 

 )(1)( ttlar   , where    is  the  

commoving  perturbation. Hence the 

perturbed model will be given  by 
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R    (10)                                   

Using the scalar curvature R and its 

derivatives in terms of the scale factor a, for 

the perturbed and unperturbed models 

respectively and subtracting one gets the 

following nonlinear perturbation equation: 
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This is a fourth order nonlinear differential 

equation which can be treated as a 

generalization to the second order linear 

differential equation based on standard big 

bang model .It consists of  a term α  which 

is assumed to be attributed to strong 

gravitational fields, and it also consists of a 

term β that is assumed to be attributed to 

weak gravity.  The equation is supposed to 

describe density perturbations in a flat or a 

curved universe as it consists of the term k. 

The equation contains nonlinear terms in 

and its derivatives, thus    does not have to 

be small. Only the linear evolution of the 

density perturbations can be studied within 

standard cosmology. Therefore we 

hopefully think that the above equation will 

be also good for studying nonlinear 

perturbations.  

Here we assumed the unperturbed matter 

energy density is 
3

0

0
a

Cm

m   and the 

perturbation in the matter energy density 

was calculated to be  
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Multiplying  equation(11) by α 4)1(   , confining to terms without α  that accounts for a weak 

gravitational field only, linearizing and assuming 
G


8

1
 in a flat universe only, one obtains 

                                     0
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The above equation can be compared with 

the linear perturbation equation in standard 

cosmology
 [23]

 which can be used in a weak 

gravitational field only. Otherwise if we set 

k=0 in equation (11) it reduces to the 

nonlinear perturbation equation in a flat 

universe obtained in 
[24]

. 

 

Solution of the Nonlinear Perturbation 

Equation 



SUST Journal of Natural and Medical Sciences (JNMS) vol. 18 (2) 2017  
ISSN (Print): 1858-6805                                                                                                   e-ISSN (Online): 1858-6813 

 

36 
 

In this section the possibility of 

perturbation growth will be investigated 

using the different scales of expansion 

obtained from equation (8).This will be 

achieved by applying the results of equation 

(8) to (11). Hence: 

 

Case1i  

For a static flat Universe and 0mC , equation (11) yields 
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This equation is satisfied for a solution of 

the form 
nbt1 ,where b is a constant, 
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perturbation is either equal to  b1   

which is a constant or 2

1

11 tb which is 

growing with time much slower than  the 

exponential rate of growth obtained in the 

standard model in a static Universe .  

Case1ii  

The derivatives of the density perturbation 

were written in terms of the scale factor , 

hence the first derivative reads a
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Inserting this and the higher derivatives in 

equation (11), yields 
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For a static non flat Universe cCm 3  , 1k  from(8), the above equation was solved to 

give                      
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One can see that in this case the perturbation 

is a nonlinear constant  >>  1 for 0l . 

The density perturbation  in (16) was 

calculated for l=0 to be either  79.3 for 

the positive case or 79.0  for the 

negative case. Non-linearity of equation(11) 

is assumed to allow the growth of a 

perturbation and makes its growth faster 

than the linear case.

 Also as the universe is still static, the change 

from flat to curved geometry may be 

considered to slow the growth of density 

perturbations as the strength of the 

gravitational force is reduced 
[25]

. As a result 

the growing mode in case 1i above did not 

show up. 

                                                    

 

Case2: This case reduces to a version 

comparable with that obtained within 

standard cosmology based on general 

relativity. 

 Case3: Inserting cta   and its derivatives 

in (11) also 0  and 0mC  the same 

equation for both cases
  

(i) 1c  for 
1k  ,or (ii) ic   for 1k   was obtained, 

hence 
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where 1x  and its derivatives was used 

for simplification. We note that the same 

differential equation (17) governs both the k 

= +1 and the k = −1 cases .Assuming again a 

power law solution 
nbtx  the equation is 

found to be  satisfied for n=0, and b=-1, 

therefore 2 for both non flat cases . 

Hence the perturbation is a constant 

nonlinear perturbation.  

One notes here again that non-linearity 

enhances the growth of a perturbation and 

makes the growth faster when compared 

with linear one. On the other hand the 

expansion of the Universe slows the growth 

rate of perturbations. As a result of these 

two effects one supposes that the power-law 

in case 1i changed into a nonlinear constant. 

This case may be compared with the case in 

the standard model for an Open Universe, 

without a cosmological constant, where the 

scale factor evolves as ta   at late times 

when curvature dominates the dynamics. 

Because there is no matter density, 

perturbations have stopped growing 

altogether; hence here the perturbation is a 

constant 2 . 

It is also identified that the critical linear 

density 686.1c [26], above this value the 

object collapses. Full non-linear collapse 

will occur when the linear over-density 

reaches 1.7. The above two results may 

suggest that this fraction of space may have 
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separated from the rest of the expanding part of the Universe, and formed a galaxy. 

 

one obtains0k,0mCand its derivatives in (11),  2

1

cta Using  Case4: 
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In this case both   and  are present. 

Solving one gets 
  01 b  or 2

1

11



 tb  

for 0  i.e. when we switch off 

momentarily the strong gravitational field a 

constant or a decaying mode is  produced  in 

a weak gravitational field .The behavior is 

qualitatively the same as in the radiation-

dominated era: the decaying mode becomes 

negligible, and the amplitude of the non-

decaying mode remains constant. Otherwise 
if the strong gravitational is huge such that 

we can assume that 0  one obtains 

b1  or,
22.1

21  tb  which are again a 

constant ,and a decaying mode but with a 

different rate of growth. 

Comparing with  case 1i it seems that due to 

the expansion of the Universe the rate of 

growth of perturbations is lowered, so 

constant perturbations changed to decaying 

ones whereas growing modes changed to 

constant perturbations due to the Hubble 

drag. Also as there is no matter energy 

density no perturbation growth is predicted, 

that is why perturbations are either constant 

or decaying with time which is quite 

reasonable. The only difference between the 

presences of a weak or a strong field is 

associated with the rate of decay.  

  Case5: Using 3

4

cta   and its derivatives 

in (11) also  =k=0 , 
315800 cCm 
 
the 

equation yields
 

 i33
2

1
 . This case is 

rather interesting for two reasons: first, it is 

the only case in which the scale of 

expansion is accelerating in agreement with 

recent observations and second the resulting 

perturbation is a constant made up of a real 

part >>1 and an imaginary part which may 

suggest the presence of effects that may be 

unperceivable [27].  

Discussion and Conclusion  

Using the contracted GFE, different rates of 

expansions were obtained. In case1 the 

universe is static hence there is no 

expansion. In case3 the rate of expansion is 

constant ,which means there is no 

acceleration or deceleration, in cases 2 and 4 

the universe is decelerating whereas in case 

5 it is accelerating. As recent observations 

suggest that cosmic scale factor is 

accelerating
[28]

, 
3

4

cta   appears to be the 

most interesting result as it implies a 

positive second derivative of the scale of 

expansion a and further investigation of this 

case is needed.  

Also it can be noticed that the matter energy 

density dependence on time differs from one 

case to another. It changed from
2tm   

when 3

2

cta   to  
4tm   when 

3

4

cta  . 

As the universe expands the scale factor 
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increases, hence the density of matter 

decreases, whereas in a static universe, 

matter energy density was a constant which 

is quite reasonable
[29]

. 

The  deduced perturbation equation obtained 

from GFE is a fourth order nonlinear 

equation. As it is a non linear equation in 
and its derivatives it is expected to account 

for perturbations >>1 .In case3 ,for example, 

the calculated perturbation equals 2 . The 

equation seems able of describing structures 

in either strong or weak gravitational fields 

or both as it consists of the terms α and β 

that allow that possibility. Also it can 

describe density perturbations in a flat or a 

curved universe as it consists of the 

parameter k.  The equation was found to 

reduce to that based on GR when the strong 

gravitational field was set to zero and 

linearization was applied.  

Different possibilities of perturbation 

growth were obtained for different rates of 

expansion. In some cases constant, decaying 

or growing perturbations were obtained. In a 

static empty universe a perturbation that is 

growing with time is obtained. Its growth is 

much slower than the exponential rate of 

growth obtained in the standard model in a 

static universe . Of special interest are cases 

1ii and case3 which resulted directly in a 

nonlinear constant perturbation in a curved 

static Universe in which cCm 3  or a 

curved expanding empty Universe. Also 

case5 which yielded a complex constant 

nonlinear perturbation in a flat universe, if 

the gravitational field is strong. We believe 

that this case needs further investigation. 

Case4 resulted in decaying perturbations 

with different rates of decay in weak or 

strong gravitational fields in a flat empty 

expanding universe which can be accepted 

as expansion lowers the rate of growth. 

The obtained results in flat and curved 

universes were as follows. In a flat empty 

universe the perturbations where either 

constant or growing in a static universe, this 

rate of growth was lowered to either 

decaying or constant perturbations in a 

decelerating empty Universe whereas these 

perturbations changed to complex nonlinear 

ones in an accelerating non empty universe. 

In a curved universe only constant nonlinear 

perturbations were allowed whether the 

universe is non-empty and static or empty 

and expanding universe.  

Hence our conclusion is that within GFE 

nonlinear density perturbations are allowed 

in a curved non empty , static universe or an 

empty decelerating curved universe or in an 

accelerating non empty flat universe if 

matter energy density is present alone. No 

perturbation growth is allowed unless the 

universe is static and the obtained rate of 

growth is much slower than the exponential 

growth allowed within the standard model.    

Density perturbation growth if other kinds 

of energy densities are present together with 

matter energy density is open for 

investigation.  
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