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ABSTRACT 
 
Had been calculate the charge carriers concentration(ni) and energy gap (Eg), by indication of change 
temperature(T) ,know resistance(R0),unknow resistance(Rt)and lengths(L1,L2),where it was found that 
whenever increase temperature decreased concentration and energy gap. 
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Chapter One 
1-1 Introduction: 

In physics,a charge carrier is particle free to move, carrying on electric 

charge, especially the particles that carry electric charges in electrical 

conductors. Examples are  electrons ,ions and holes .In conducting medium, 

an electric field can exert force on these free particles ,causing a net motion of 

the particles through the medium; this is what constitutes an electric current 

.In different conducting media, different particles serve to carry charge : 

In metal, the charge carriers are electron one or two of the valence electrons 

from each atom is able to move about freely with in the crystal structure of 

the metal. The free electrons are referred to as conduction electrons and the 

cloud of free electron is called a Fermi gas. 

Inelectrolyte, such as salt water, the charge carriers are ions, atoms or 

molecules that have gained or lost electrons so they are electrically charged. 

Atoms that have gained electrons so they are negatively charged are called 

anions;atoms that have lost electronsso they are positively charged are called 

cations. cations and anions of dissociated liquid also serve as charge carriers 

in melted ionic solid.  Proton conductors are electrolytic conductors 

employing positive hydrogen ions carriers. 

In plasma, an electrically charged gas which is found in electric arcs through 

air, neon signs, and the sun and stars, the electrons and Cation's of ionized gas 

act as charge carriers. 

In a vacuum, free electron can act as charge carriers. These are sometimes 

called cathode rays. Invacuum tube, the mobile electron cloud is generated by 

a heated metal cathode, by a process called thermo ionic emission. 

In semiconductors : the material used to make electronic components like 

transistors and integrated circuits ,  in addition to electrons ,the travelling  
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vacancies in the valence –band electron population called (holes) , act as 

mobile positive charges and  are treated as charge carriers. 

Electrons and holes are charge carriers in semiconductors. 

It can be seen that in some conductors such as ionic solution and plasmas, 

they are both positive and negative charge carriers, so and electric current in 

them consist of the two polarities of carrier moving in opposite direction .in 

other conductors, such as metals, there are only charge carriers of one 

polarity, so an electric current in them just consists of charge carriers moving 

in one direction.[4] 

1.2 Objective 

This study aims to examine semiconductors and setting charge 

carriers(electrons, holes). 
 

1.3 Problem: 

After making this study it was found that problem lies in the 

following :  

-Charge carriers have not only taught references. 

- There's a special semiconductors laboratory only. 

1.4 Previous studies: 
Sami hanafi  mohmud  allam perform  message titled nonlinear optical 

properties of  semiconductor bullet holes. focuses  on the study of movement 

and charge carriers state within quantitative wells raster in the for ground are 

introduced the concept of semiconductor quantum wells manufacturing 

method ,and also , as in the 2nd chapter as solved  schrodinger equation in the 

three direction  for each the electron and hole  inside the wells and then get 

ground energy level .and the first two excited states to study influence of the 

dimensions and concentration of (Al) in the article (AlGaAs ) on the energy 

level within the wells .and in the chapter three schrodinger  is resolved 
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llaxiton  trapped inside  the wells  , allaxiton  binding energy were calculated 

.and in the 4th chapter  study of nonlinear optical properties  has been allaxiton  

inside the well was optical susceptibility manufactor and effect dimension of 

wells. 

1.5 Thesis Lay out 

Research consists of four chapters the first chapter an introduction, Chapter 

two semiconductor, the third chapter talks about the charge carriers in 

semiconductors, Chapter four the practical.   
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Chapter Two 
Semiconductors 

 
2.1 Introduction: 
A semiconductor is defined as a solid crystalline material whose electrical 

conductivity is intermediate between that of a metal and an insulator. 

Semiconductors have been studied for a long time, since 1920, but were 

recognized as wonder materials only after the transistor was invented by 

Schokkttey ,Bardeen and Brattain in 1940. 

The bonding between atoms in the solids accounts for the wide range of 

electrical conductivity. Metallic bonding produces delocalized electrons 

which are able to move in response to an electric field. Therefore, such 

materials form electrical conductors. In other types of bonding such as 

covalent bonding, the valence electrons are bound to a pair of atoms. Such 

materials should therefore form insulators. The electrical conductivity of 

solids ranges from 10ସ − 10ିଵଵohmିଵmିଵ in case of semiconductors while 

its optimum value for a good conductor is 10and minimum value for a good 

insulator is 10ିଵଽohmିଵmିଵ. Figure 1.1 presents the conductivity of a few 

selected solids on a logarithmic scale at room temperature(~293	ܭ). 

We find from this figure that the conductivity of the best conductors, such as 

copper and silver, is almost 10 times higher than the best insulator (say 

sulphur). It is due to this vast difference between the good conductors and 

insulators that we are able to safely use electricity. Some interesting, although 

puzzling features of the bonding model raise the following questions. 

Such questions are addressed adequately by the energy band theory as 

described partially in some preceeding chapters[1]. 
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Figure 2.1 the conductivity of a few selected solids at room temperature. 

2.2 Conduction in Semiconductors: 

Electric current is caused due to the motion of electrons, although under some 

conditions, such as high temperatures, the motion of ions may be important as 

well. The basic distinction between conduction in metals and semiconductors 

arises from the energy bands occupied by the conduction electrons. This can 

be explained better if we take into account the case of an isolated carbon atom 

which contains six electrons (two each in the ݏܫ,  levels) as shown in	and2	ݏ2

Fig. 2.2. 

If we plot the energies of the 2s and 2p energy levels for a group of (say ݊) 

carbon atoms as a function of atomic separation (ݎ)we Find interaction 

between two sets of energy levels as shown in Fig. 1.3. 
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Figure 2.2 (a) Energy level occupation in case of an isolated carbon atom. (b) 

The energy bands in a diamond crystal. 

 

 

 

 

 

Figure 2.3 Energy levels-separation plot for a group of ݊ carbon atoms. 

At equilibrium separation, the states are split into two bands (each being a 

mixture of 2s- and 2p- like states), which are known as valence (the lower 

one) and conduction band (the upper one). These bands are separated by an 

energy range in which there are no allowed energy levels. This is called band 

gap (ܧ)which is quite crucial to our understanding of the electrical 

properties of semiconductors and insulators. 

We have also learnt from the band theory of solids that only a partially filled 

electronic band contributes to electric current. Completely filled bands and 

completely empty bands do not contribute to electrical conductivity and a 

material which has only completely full and completely empty bands is 
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therefore an insulator. If ܧ~1	eV, then the finite width of the region over 

which Fermi distribution changes rapidly, has observable consequences at 

moderate and high temperatures. A very small fraction of the states in the 

upper edge of the valence band is unoccupied and the corresponding electrons 

are found in the conduction band. The simplest band structure of a 

semiconductor is shown in Fig. 2.4. 

The energy of the conduction band (ܧ)is characterized by the equation 

(݇)ܧ = ܧ +
ℏଶℜଶ

2݉
																																																																																									(2.1) 

Here ݇is the wave vector and ݉is the effective mass of the electron. The 

expression for energy of the valence band (ܧ௩) shall have the form 

(݇)௩ܧ =
−ℏଶℜଶ

2݉
																																																																																																			(2.2)	

Here ݉is the effective mass of the hole. The negative sign is due to the 

inverted valence band where the mass at the top is negative. 

 

Figure 2.4Band structure of a semiconductor 

The most significant property of semiconductor materials, which is not found 

in metals, is that their electrical conductivity can be changed by a large 

magnitude by simply adding small quantities of other substances. The entire 

field of solid state electronics relies on this unique property. Also, it is this 
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property that makes semiconductors scientifically useful and technologically 

viable[1] . 

2.3 Intrinsic Semiconductors: 

We understand that conduction in a semiconductor is entirely due to the 

motion of charge carriers, i.e., electrons and holes, which are generated by 

thermal excitations from the valence band to the conduction band. This 

process arises from the thermal disruption of the covalent bonds. The 

materials which exhibit this phenomenon are known as intrinsic 

semiconductors. The essential properties of an intrinsic semiconductor are: 

1. The number of free carriers (electrons and holes) should be equal. 

2. The impurity content should be less than 1 part in 100 million parts of the 

semiconductor. 

In order to explain the concept of intrinsic semiconductors, let us take the 

example of a crystal of Si which has no impurities and no defects. A two-

dimensional depiction of such an intrinsic semiconductor (silicon) is shown in 

Fig. 2.5. 

Such a crystal at 0 K will have all the electrons tightly bound in the bonds; 

thus turning the material into an insulator. Figure 2.5 illustrates the creation of 

a free electron by breaking a covalent bond at position ܺ. The vacancy thus 

created by the broken bond leaves a net positive charge on the atomic core. 

This vacancy behaves like a particle of positive charge having mass equal to 

that of an electron. When an electric field is applied, the conduction electrons 

drift opposite to the field and holes drift along the field. This is why the holes 

are supposed to have positive charge and they are equally capable of moving, 

through the crystal. The movement of this positively charged particle (hole) 

under the influence of thermal motion is depicted in Fig. 2.6. 
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Figure 2.5A silicon crystal (two-dimensional representation) depicting the 

atom cores and valence electrons ,thermal generation of an electron-hole pair. 

 

Figure 2.6Motion of an electron-hole pair (from location X to Y) in a two-

dimensional schematic representation of a silicon crystal 

In this figure it is demonstrated how an electron from a covalent bond at the 

adjacent site Y makes a transition (jump) and fills the vacancy created at A". 

This process results in the creation of a hole at Y. This indicates that the 

electron and hole have independent movement in the crystal. 

Note that the electron-hole pair formation due to the thermal vibration of 

lattice atoms is known as the thermal generation process. This process is 

reversible, in the sense that a freely moving electron loses Its ionization 

energy by entering the broken covalent bond. This is known as the 
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recombination process. Hence, we conclude that when conduction in 

materials takes place due to the same number of electrons and holes, such 

materials are known as intrinsic semiconductors. 

 

Figure 2.7  (a) A two-dimensional representation of germanium crystal at 

ܶ =  a vacancy created-corresponds to an incomplete bond; (c) an (b) ;ܭ	0

electron moving to fill the vacant site when an electric field is applied; and (d) 

the hole moving towards the negative end of the germanium crystal. 

We can also describe intrinsic semiconductors based on a two-dimensional 

representation of a germanium crystal at T= 0 K (Fig. 2.7a). At room 

temperature the energy required to break a covalent bond is not very large. 

For example, energy required to break a bond in silicon and germanium is 

1,1,and 0.72 ܸ݁. 

If we apply energy to the lattice of a germanium crystal, a vacancy in the 

covalent bond is created by a free electron which is depicted in Fig. 2.7b. 

Upon the application of electric field to the crystal, t e vacant site offers an 

opportunity to one of the electrons to move closer to the positive end of the 
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crystal(Fig. 2.7c). This creates a new vacant site and if this process is allowed 

to continue (Fig. 2.7d), we shall have a situation in which the electron moves 

towards the positive end of the crystal (or that the vacant state moves towards 

the negative end of the crystal). This vacant state is what we call a hole which 

carries the same amount of charge as that of an electron (but has the opposite 

sign)[1] . 

2-4 Conductivity of charge carriers: 

The number of electrons and holes in a semiconductor is not very important 

but the density of charge carriers (the number of carriers per unit volume) is 

significant. If ݊is the number of electrons and  the number of holes, then for 

an intrinsic semiconductor 

݊ = ݊ = 	(2.3)																																																																																																															

Here ݊is the carrier concentration in an intrinsic (pure) semiconductor which 

varies with temperature and is different for different semiconductors. 

Let us compute the specific conductance of an intrinsic semiconductor. If ߪis 

the conductivity due to free electrons and ߪdue to holes, then specific 

conductanceߪ) is given by the expression 

ߪ = ߪ + 	(2.4)																																																																																																											ߪ

Since ݊	and	 are the number of electrons and holes having charge݁, their 

corresponding mobility’s are ߤ andߤ, respectively. Therefore, Eq. 1.4 

becomes 

ߪ = ߤ݁݊ + 	(2.5)																																																																																												ߤ݁

Since ݊ =  = ݊, Eq. 1.5 can be rewritten as 

ߪ = ݊݁	൫ߤ + 	(2.6)																																																																																															൯ߤ
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Since it has already been stated that the mobility of charge carriers depends 

on temperature, the power law (1ߙߤ/ܶଷ/ଶ) in case of the mobility of 

electrons and holes plays a role, i.e., 

ߤ = ߤଷ/ଶandିܶߙ =  ଷ/ଶିܶߚ

So, (ߤ + (ߤ 	= 	 ߙ) +  ଷ/ଶିܶ(ߚ

or  

ߤ)  + (ߤ 	= ିܶߛ
య
మ																																																																																					(2.7)	

whereߙand ߚare constant of proportionality and ߛ is equal to (ߙ +  .(ߚ

Substituting this equation in Eq. 1.6, we get 

ߪ = ܶ(݁݊)ߛ
ିయమ																																																																																																						(2.8)	

On using certain equations for deriving the intrinsic (semiconductor) carrier 

concentration, we get 

݊ = 4.83 × 10ଶଵܶଷ/ଶ exp ൬
ܧ−
2݇ܶ

൰																																																																			(2.9)	

Using this expression in Eq. 1.8 we find 

ߪ = ݁ߛ × 4.83 × 10ଶଵ exp ൬
ܧ−
2݇ܶ

൰ 

Therefore,

ߪ  = expܣ ቀ ିாౝ
ଶಳ்

ቁ																																																																																				(2.10) 

whereܣis equal to 4.83 × 10ଶଵ݁ߛ. This becomes an expression for the 

conductivity of an intrinsic semiconductor. The reciprocal of conductivity 

gives us resistivity which is expressed as 

ߩ =
ୣ୶୮	(ாౝ/ଶಳ்


																																																																																																				(2-11) 
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Figure 2.8(a) A plot of resistivity versus temperature [1/ܶ(ܭ)] on a 

logarithmic scale, (b) Conductivity versus1/ܶ(ܭ). 

= ܤ exp ൬
ܧ

2݇ܶ
൰																																																																																																	(2.12) 

Where B is reciprocal of A. Taking logarithm of Eq. 2.12, we get 

logߩ =
ܧ

2݇ܶ
+ log 																																																																																						ܤ (2.13)	

Here ܧis energy gap of an intrinsic semiconductor. Equation 2.13 shows that 

the conductivity of intrinsic semiconductor varies exponentially with increase 

in temperature. Figure 2.8 presents a plot of intrinsic resistivity (Fig. 2.8a) 

and conductivity (Fig. 2.8b) at different temperatures. The slope of the; curve 

shown in Fig. 2.8 is given as 

ܧ
2݇ܶ

																																																																																																																									(2.14) 

From this equation we can determine the energy gap for an intrinsic 

semiconductor. 

The above discussion leads us to the following conclusions about intrinsic 

semiconductors: 

1. The resistivity (or conductivity) of an intrinsic semiconductor is dependent 

on the concentration of charge carriers (electrons and holes). 

2. The conductivity of charge carriers is a function of their mobilitys. 
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3. The mobility of electrons and holes is influenced by the presence of 

impurity atoms (detects). 

4. The conductivity also depends upon the number of charge carriers which 

are in thermal equilibrium[1] . 

2.5 Carrier Concentration in Intrinsic Semiconductors: 

We know now that the particles responsible for carrying the electric current in 

semiconductors are electrons and holes which are also called as free carriers. 

The electrical conductivity of a semi-conducting material depends only upon 

the number of free carriers it contains. In order to understand the basics of 

carrier concentration in intrinsic semiconductors, let us study carrier 

concentration in thermal equilibrium. 

The charge carriers in semiconductors are regarded as free carriers which are 

actually electrons and holes. The carrier concentration in thermal equilibrium 

condition is the steady-state condition at a given temperature without any 

external conditions (such as light, pressure or electric field). Thermal agitation 

at a given temperature increases the excitation potential of electrons. This 

results in the excitation of electrons from the valence band to the conduction 

band and subsequent creation of an equal number of holes in the valence 

band. An intrinsic semiconductor is one that contains relatively small amounts 

of impurities as compared to the thermally generated electrons and holes. 

In order to determine the number of free carriers, we need to make use of 

some basic results of statistical physics. The probability that an electron 

occupies an electronic state with energy ܧis given by the Fermi-Dirac 

distribution function given in Eq. 2.15. 

(ܧ)ܨ =
1

1 + ୣ୶୮(ாିாಷ)
ಳ்

																																																																																							(2. 15)	
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This is also known as the Fermi distribution function which gives the 

probability that an energy level ܧ. is occupied by an electron when the system 

is at temperature  ܶ. In this expression ܧிis the energy of the Fermi level, ݇ 

is the Boltzmann constant, ܶis the absolute temperature (in Kelvin). The 

Fermi energy is the energy at which the probability of occupation by an 

electron is exactly one-half. The Fermi distribution for different temperatures 

is illustrated in Fig. 2.9. 

The Fermi distribution function which is symmetrical around the Fermi 

energy can thus be approximated by the following simpler expressions: 

(ܧ)ܨ = exp
ܧ) − (ிܧ
݇ܶ

for(ܧ − (ிܧ > ݇ܶ																																																				(2.16)	

and 

(ܧ)ܨ = exp
ܧ) − (ிܧ
݇ܶ

for(ܧ − (ிܧ < ݇ܶ																																																				(2.17)	

Equation 2.16 can be regarded as the probability that a hole occupies a state 

located at energy ܧ. 

To determine the electron density in an intrinsic semiconductor, it is 

important to evaluate first the electron density in an incremental energy range 

 is defined as the product of the density of allowed(ܧ)݊ This density .ܧ݀

energy states [ܰ(ܧ)]per 
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Figure 2.9 The Fermi distribution function (ܧ)ܨversus (ܧ −  ி)at variousܧ

temperatures 

energy range per unit volume, and by, the probability of occupying that 

energy range (ܧ)ܨ[as given by Eq. 2.14]. Thus the electron density in the 

conduction band is expressed by integrating ܰ(ܧ)	(ܧ)ܨ	ܧ݀from bottom to 

top of the conduction band: 

݊ = න (ܧ)ܰ

ாమ

ாభ

	(2.18)																																																																																ܧ݀(ܧ)ܨ	

Here ݊is in ܿ݉ିଷ and ܰ(ܧ)is in (ܿ݉ଷܸ݁)ିଵ and ܧభand ܧమare the bottom 

and top of the conduction band. 

Figure 1.10 illustrates the band diagram, the density of states ܰ(ܧ), the Fermi 

distribution function (ܧ)ܨ, and the carrier concentration for an intrinsic 

semiconductor. 

By using Eq. 2.17, a graphical representation of the carrier concentration in 

terms of the product of ܰ(ܧ)(Fig. 2.10b) and (ܧ)ܨ(Fig. 2.10c) results in an 

 curve (Fig. 2.10d) in which the shaded areaܧ versus(ܧ)and(ܧ)݊

corresponds to the electron density. Using Eq. 2.15 in Eq. 2.17 and also some 

expressions used in the band theory, the electron density equation becomes 

݊ =
1
ଶߨ2

൬
2݉

ℏଶ
൰
ଷ/ଶ

exp
ிܧ
݇ܶ

න(ܧ − )ଵ/ଶܧ
∞

ாౝ

exp−
ܧ
݇ܶ

 (2.19)																								ܧ݀
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In order to understand the term ܧ, please go through the text given in italics. 

The simplest band structure of a semiconductor is shown in Fig. 2.11. The 

energy of the conduction band has the form ܧ(݇) = ܧ + ℏଶ݇ଶ/2݉
∗ where 

k is the wave vector and ݉
∗ the effective mass of the electron. The energy ܧ 

represents the energy gap. 

Solving Eq. 2.18 gives us the expression for carrier concentration which is 

	݊ = 2 ൬
݉݇ܶ
ℏଶߨ2

൰
ଷ/ଶ

exp
ிܧ
݇ܶ

exp−
ܧ
݇ܶ

																																																								(2.20)	

 

Figure 2.10 (a) Band diagram for an intrinsic semiconductor; (b) the density 

of states, (c) tie distribution function; and (d) the carrier concentration for an 

intrinsic semiconductor 

 

 

Figure 2.11Depicting conduction band energy in the band structure of a 

semiconductor. 
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Since we assume holes also to be charge carriers, we can write a similar 

expression for hole concentration 

 = ൬
݉݇ܶ
ℏଶߨ2

൰
ଷ/ଶ

exp
ிܧ−
݇ܶ

																																																																																(2.21) 

Looking at Eqs . 2.19 and 2.20 it seems that holes and electrons are 

independent quantities. But, in fact, these two quantities are equal to each 

other because the electrons in the conduction band are due to excitations from  

Eq. 2.22 becomes very small as compared with the first one, and the Fermi 

energy level gets close to the middle of the energy gap. This result is in 

agreement with the theory that the bottom of the conduction band and the top 

of the valence band are far from the Fermi level.  

If we use Eq. 2.22 in Eq. 2.19, we find that the valence band across the energy 

gap and for each electron thus excited, a hole is created in the valence band. 

Hence, 

݊ = ܲ																																																																																																																						(2.22)	

If we equate Eqs. 2.19 and 2.20 with reference to Eq. 2.21, we find an 

expression for the unknown quantity, i.e., Fermi energy 

ிܧ =
1
2
ܧ +

3
4
݇ܶ log ൬

݉

݉
൰																																																																											(2.23) 

Since݇ܶ ≪  under ideal conditions, the second term on the rightܧ

side of 

݊ = 2 ൬
݇ܶ
ℏଶ൰ߨ2

ଷ/ଶ

(݉݉)ଷ/ସ exp
ܧ−
2݇ܶ

																																																								(2.24) 

The most important feature of this equation is that n varies rapidly 

(exponentially) with temperature. Hence it is concluded that a large number of 

electrons are excited across the energy gap when the temperature is raised. If 
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we substitute ܧ = 1	ܸ݁,݉ = ݉ = ݉,and ܶ =  In Eq. 2.23, we .ܭ	300

find that 

݊ ≃ 10ଵହelectrons		cmିଷ																																																																																		(2.25) 

This number is the characteristic value of charge carrier (electron) 

concentration in semiconductors. This analogy holds good for holes as well. 

This is so because the above discussion is based on the premise of a pure 

semiconductor and whenever the concentration of electrons and holes is 

equal, we refer to it as an intrinsic semiconductor. 

Based on the discussion we had about the carrier concentration in intrinsic 

semiconductors and their nature, the following conclusions can be made: 

1. The number of electrons in the conduction band is equal to the number of 

holes in the valence band. 

2. The carrier concentration, in equilibrium, is equal, i.e., 

݊ =  = ݊																																																																																																																																																										(2-26)	

where݊is cailed the intrinsic carrier density. 

3. The Fermi level (ܧி) lies in the energy gap (ܧ) between the valence and 

conduction band, i.e., 

ிܧ =
ாౝ			
ଶ
																																																																																																																		(2-27)	

4. The electron and hole can behave as a bound pair which is usually referred 

to as an exciton. 

5. Intrinsic semiconductors are not of much practical use because their 

conductivity is very low, i.e., only one atom in 10ଽ contributes to electrical 

conduction. Therefore, we look for the ways to introduce impurity energy 

levels[3] . 
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2.6 Extrinsic Semiconductors: 

On finding low conductivity in intrinsic semiconductors, researchers tried to 

add some suitable impurity. atoms in the semiconductor to see if this process 

could yield appreciable conduction. It was found that the presence of 

impurities even to the extent of 1 in 109 changes significantly the conduction 

of Ge and Si. Thus it was accepted that adding appropriate impurities to a 

semiconductor leads to a change in -existing quantum states, i.e., one or more 

new energy levels may appear in the band structure of semiconductors. The 

resulting material is known as an extrinsic semiconductor. The process of 

adding impurity is called doping and the impurity is called dopant. The 

extrinsic semiconductors are also referred to as doped or impure 

semiconductors which sometimes contain either only electrons or holes. 

Almost a the semiconductor devices employ extrinsic semiconductors and 

these are of two types: 

1. In which the impurity (dopant) contributes additional electro-ns in the 

conduction band. 

2. In which the dopant contributes additional holes in the valence band. 

To explain it further, let us assume that atoms like phosphorus or arsenic from 

group V of the periodic table are added to the molten silicon or germanium. 

Crystallization takes place when the melt is cooled into a position usually 

occupied by a silicon or germanium atom. It is important that the impurity 

occupies a substitutional position rather than an interstitial position. 

Essentially, this is so because after the four covalent bonds are formed (as 

demanded by the structure), an extra valence electron is e which may occupy 

one of the states in the conduction band. Escape of this electron to large 

distances leaves the impurity atom with a net positive charge. At finite 

separations, the positive charge exerts an attractive force on the electron and 

leads to the existence of a bound state for the electron. With such a charged-

impurity plus electron system, we can estimate the strength of this binding by 
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adapting the standard result for the energy levels to allow for the fact that the 

electron is moving through a crystal rather than vacuum. 

If ݉is assumed as the mass of electron and ∈ is the relative permittivity 

(dielectric constant) of the crystal, then the express-ion for energy becomes 

ܧ = −
݉݁ସ

2 ∈ଶ ℏଶ݊ଶ(4ߨ ∈)ଶ
																																																																													(2.28) 

The radius of the corresponding orbits (Eq. 2.26) as given by the Bohr Theory 

is used for the estimation of the spatial extent of the bound state wave 

functions. 

ݎ =
∈ ݊ଶℏଶ

݉݁ଶ
ߨ4 ∈ 																																																																																										 (2.29) 

Using values of effective mass of Ge = 0.2 electron masses, and dielectric 

constant = 15.8 in Eqs. 2.25 and 2.26 we get the following values 

ଵܧ = −0.01	ܸ݁	andݎଵ ≃ 40Å																																																																							(2.30) 

Here ܧଵis the ground state binding energy of an extra electron and ݎଵ, is the 

radius of the corresponding orbit. A combination of small effective mass and 

large dielectric constant thus gives rise to the weak binding of the extra 

electron to the impurity, and an extended wave function for the bound state. 

As the bound state wave function is extended over many atomic diameters, 

the approximation of using an effective mass and (macroscopic) dielectric 

constant should work very well If we visualize the energy level diagram for 

the electron (Fig. 2.12) the bound state will be referred to as a donor impurity 
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Figure 2.12Electron energy states depicting the bound state and donor and 

acceptor impurities the dispersion relations for electrons near the top of the 

valence band and the bottom of the conduction band. 

 

 

Figure 2.13Acceptor impurity level for a hole which is (0.01 ܸ݁) below the 

bottom of the hole valence band. 

level because it is capable of giving an electron to the conduction band. The 

donor level is represented by a dotted horizontal line in Fig. 2.12. 

If we generate a similar situation (as described above for group V impurities) 

for group III impurities (e.g., boron or aluminum), there are fewer electrons to 

form the four covalent bonds as demanded by the diamond structure of silicon 

or germanium. Thus, the missing electron forms a hole in the valence band 

with a tendency to be bound to the ܤ or Al ion. This results in the appearance 
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of an acceptor impurity level for a hole about 0.01 ܸ݁ below the bottom of the 

hole valence band as depicted in Fig. 2.13. 

Based on the above discussion, the following observations can be made 

1. Adding an impurity does not change the total number of electron energy 

levels. Rather, levels are detached from the conduction and valence bands to 

form the donor and acceptor impurity levels. 

2. When small amounts of tetravalent (valence four) or pentavalent (valence 

five) impurity is added during crystal formation of a semiconductor, the 

impurity atoms lock into the crystal lattice since they are not much different 

in size from germanium or silicon atom, and the crystal is not unduly 

distorted.   

Depending on the nature of the impurity (dopant), the extrinsic 

semiconductors can be classified into two types[3] . 

 :Type semiconductors - 2.6.1

To explain an «-type semiconductor, let us imagine that a very small amount 

of phosphorus is added to a pure crystal of silicon, The impurity atom 

(phosphorus) occupies a lattice site which is host to a silicon atom (Fig. 2.14). 

In this figure, it is shown that the impurity atom phosphorus has five 

electrons, of which four are i involved in covalent bonding while the fifth one 

is bound to the impurity atom by weak electrostatic forces. This electron 

(possessing a relatively small binding energy) requires a very small amount of 

energy to get ionized to become a conduction electron at a moderate 

temperature. The impurity is called donor impurity as it donates electron and 

the crystal is called n- type semiconductor. 

In order to understand what exactly happens to the fifth electron, let us see the 

figure in which the electrons are shown at their average distance from the 

nucleus (Fig. 2.15). 
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Donor electron 

 

 

 

 

 

Figure 2.14A donor impurity (phosphorus) atom in a silicon crystal. 

 

 

 

 

(a)                              (b) 

Figure 2.15(a) Electronic arrangement associated with phosphorus impurity in 

silicon; (b) a collection of 14 electrons as a single positive charge. 

There are a total of 10 electrons in the two filled shells closest to the nucleus. 

Four more take part in the bonds with neighboring silicon atoms and so we 

place them farther from the nucleus,  finally, we have the fifth valence 

electron, which is referred to as the donor electron. This electron is not 

involved in any of the bonds, so it is assumed that it is the farthest electron 

from the nucleus and has the smallest binding energy. Figure 2.15a holds 

good if we assume that the donor electron is screened from most of the 

nuclear charge by the presence of the other fourteen electrons. This suggests 

that on average the donor electron counts the nucleus and the collection of 

other 14 electrons as just a single positive charge, as shown in Fig. 2.15b. 

This situation resembles the system of a hydrogen atom. 
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In order to calculate the binding energy of the donor electron, we may use 

Bohr's theory for hydrogen atom. The following two modifications must be 

made: 

1. The mass of the electron to be replaced by the effective mass, ݉
∗. 

2. The electron in a hydrogen atom is assumed to move in a vacuum and so 

we used the dielectric constant (∈) for vacuum. In this instance, the electron 

is in a silicon crystal and so we should use the dielectric constant for silicon, 

which can be written as ∈∈, where ∈= 11.7. 

 

Figure 2.16A pictorial representation of the energy band implying that the 

donor electron is in the band gap (ܧௗ ≪  .(ܧ

Using these two modifications in the expression for binding energy for donor 

electron, the experimental measurements show that the binding energy of a 

donor electron in silicon is typically between about 40-50 meV depending on 

the type of donor impurity. 

The next step in understanding the ݊-type semiconductors is to find out how 

the donor electron fits into the energy band picture. The electron does not take 

part in bonding, so there is no place for it in the valence band. It cannot 

belong to the conduction band either since it is weakly attached to the 

phosphorus atom. However, if we supply the small amount of energy to let 

the fifth electron liberate from the impurity atom (phosphorus), then it will be 

able to take part in conduction. This implies that the donor electron must 

occupy a state at the energy ܧௗbelow the conduction band edge, as shown in 

Fig. 2.16. 



26 
 

This representation of the energy band implies that the donor electron is in the 

band gap where there are no allowed states. This statement is contradictory in 

itself. Now, we know that there are no allowed states in the band gap of a 

perfect crystal. But if an impurity is present then the crystal is no longer 

perfect and hence it is quite reasonable for a state associated with the impurity 

to be located in the band gap. 

While discussing the location of donor electron in the band structure, we must 

also try to find out as to where the Fermi energy is in this case. In ݊-type 

semiconductor, the Fermi level goes down in energy as the temperature is 

increased. The Fermi energy also depends on the concentration of donor 

impurities, i.e., it gives rise to two situations: 

1. When the donor concentration is very low, then the Fermi energy is near 

the center of the band gap at moderate temperatures because the number of 

intrinsic carriers is comparable with the number of donor electrons. 

2. When the donor concentration is quite high, then the intrinsic carrier 

concentration is negligible even at temperatures close to the melting point, 

and so the Fermi energy never moves far below the conduction band edge. 

The variation of Fermi energy with temperature and doping concentration is 

shown in Fig. 2.17. 

Now that we know about the Fermi energy in this case, let us find out how the 

presence of donor impurity affects the conductivity of a semiconductor. We 

also know that the number of intrinsic carrier concentration is given by Eq. 

2.9 where the energy term is −ܧ/2݇ܶ. Under the new circumstances, this 

term in the exponent is replaced by 

݊ = ܥ exp−
ܧ) − (ிܧ
݇ܶ

																																																																																					(2.31) 
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Figure 2.17Variation of Fermi energy with temperature. 

Here ܥis a constant. In Fig. 2.17, we can see that for an ݊-type semiconductor 

the Fermi energy is generally much closer to the conduction band edge than it 

is to the valence band edge, i.e., 

൫ܧ − ி൯ܧ ≪
ܧ
2
																																																																																															(2.32) 

Hence, this results in an exponential increase in the number of carriers in the 

doped case[3] . 

 :Type semiconductors- 2.6.2

 type semiconductors can be described in a manner similar to the n-type-

semiconductors. The fundamental difference is that in -type semiconductors, 

a trivalent impurity (having three electrons in the outermost orbit), such as 

iridium, aluminum, or boron, is added to a germanium or silicon (intrinsic) 

semiconductor. When the impurity atoms are injected into the material, the 

germanium atoms will be displaced in the crystal during its formation. This 

phenomenon is depicted in Fig. 2.18. In this case only three out of the four 

possible covalent bonds are filled while the fourth bond is vacant (hole). 

The presence of an incomplete bond means that we have a hole in the valence 

band. This, however, is not true because the hole is bound to the trivalent 

acceptor impurity, just like the extra electron is bound to the donor impurity. 

In order to create a hole which can move through the valence band, we need 
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to excite a valence electron into this incomplete bond and so ionize the 

acceptor impurity. This makes the acceptor state go above the valence band 

Thus, the trivalent edge. It is shown in the energy band diagram (Fig. 2.19). 

impurity (also known as acceptor or -type impurity) injects billions of holes 

into the crystal and the majority carriers become the holes which eventually 

become responsible for the conductivity of the crystal. For this reason such 

crystals are called -type semiconductors or simply -type crystals. 

The position of Fermi energy can also be obtained using a similar argument as 

݊-type semiconductors. At absolute zero the highest energy occupied state is 

at the top of the valence band and the lowest vacant state is the acceptor level, 

so the Fermi energy can be assumed to be at an energy level of ܧ/2above the 

valence band edge. At higher temperatures, the effect of the intrinsic carriers 

is to push the Fermi energy upwards towards the middle of the band gap, but 

at room temperature we can assume that the Fermi energy is much closer to 

the valence band than to the conduction band. 

 

 

 

 

 

 

 

Figure 2.18 Germanium atom getting displaced due to the insertion of 

impurity (indium) in a -type semiconductor 
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Figure 2.19 The acceptor state at energy ܧ ≪  type-  for aܧ

semiconductorat ܶ =  .ܭ	0

The concentration of holes in a doped semiconductor (p-type) can be 

determined account the probability that a state with energy E is occupied at 

temperature T.The probability is represented by the Fermi-Dirac distribution. r 

(ܧ)ܨ = ൜exp
ܧ) − (ிܧ
݇ܶ

ൠ + 1൨
ିଵ

																																																																					(2.33) 

Since we have defined the zero energy to coincide with the top of the valence 

band the number of electrons at the valence band edge is proportional to the 

Fermi-Dirac distribution (Eq. 2.30) with ܧ = 0  

(0)ܨ = ൜exp−
ிܧ
݇ܶ

ൠ + 1൨
ିଵ

																																																																											(2.34)	

Since a hole is a state which is not occupied by an election, the probability of 

finding a hole at the valence band edge is 

1 − (0)ܨ = 1 − ൜exp−
ிܧ
݇ܶ

ൠ + 1൨
ିଵ

 

or 
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1 − (0)ܨ =
exp− ாಷ

ಳ்

ቀexp− ாಷ
ಳ்

ቁ + 1
																																																																												(2.35)	

Since the Fermi energy is typically much larger than the thermal energy 

݇ܶ(except at very high level of -type doping), the exponent is large and 

negative . 

exp−
ிܧ
݇ܶ

≪ 1																																																																																																					(2.36)	

Therefore, 

or 

(0)ܨ = ቄexp− ாಷ
ಳ்

ቅ + 1																																																																																						(2-37) 

Hence, the concentration of holes is given by the expression 

 = 	ܥ exp−
ிܧ
݇ܶ

																																																																																																(2.38)	

where Cis a constant. 

2-7Charge carrier density in extrinsic semiconductors: 

So far we have demonstrated the nature and role of charge carriers (electrons 

and holes) in both ݊- and -type of semiconductors. We also know that the 

introduction of impurities in pure semiconductors increases the density of one 

type or another type of charge carriers. The product of holes and electrons in a 

semiconductor is constant depending on the width of energy gap and 

temperature and hence the introduction of the impurities results in an increase 

in the density of one type of carriers and reduction in the density of other type 

of carriers. 

In an extrinsic semiconductor, the carriers introduced by the impurities are 

called majority carriers and minority carriers. Note that the low value for 
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minority carrier density is due to added recombination. Let ݊ௗbe the donor 

impurity density, ݊the acceptor impurity density,  the density of holes and 

݊the density of electrons in an extrinsic semiconductors. 

From the condition of charge neutrality, we have 

݊ௗ +  = ݊ + ݊																																																																																																			(2-39) 

or݊ = (݊ௗ − ݊) +  (2.40)																																																																																									

Since from Eq. 2.3 ݊ = ݊ଶ, Eq. 2.35 can be rewritten as 

݊ = (݊ௗ − ݊) +

మ


																																																																																														(2-41) 

or݊ଶ − (݊ௗ − ݊)݊ − ݊ଶ = 0																																																																											(2.42) 

Solving this quadratic in ݊, we get 

݊ =
(ିೌ)±ට(ିೌ)మାସ

మ

ଶ
																																																																																		(2-

43) 

or݊ = (݊ௗ − ݊) when (݊ௗ − ݊) ≫ ݊                                                      

(2.44) 

Equation 2.37 implies that the electron density in the ݊-type semiconductor 

equals the difference in the donor and acceptor impurity densities when they 

are large compared to the intrinsic density. A similar equation 

 = ݊ = (݊ − ݊ௗ)when(݊ − ݊ௗ) ≫ ݊																																																																											(2.45) 

can be deduced for determining the density of holes in a semiconducting 

material[2] . 
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2.8Motion of Carriers in Electric and Magnetic Fields: 

The transport properties exhibited by the charge carriers can be explained if 

we take into account the following two aspects related to their mobilities due 

to electric and magnetic fields. 

 Electrical conductivity 

The Newton's law for particles of mass ݉(the subscript ݊represents an 

electron) and charge −݁is expressed as 

݉
ݒ݀
ݐ݀

= ܧ݁− − ܸ݁ × 	(2.46)																																																																																				ܤ

In the absence of an applied magnetic field, Eq. 2.39 predicts that a DC 

electric field will cause a constant acceleration of the electrons, giving a 

steadily increasing electrical current. This does not happen in practice because 

the electrons suffer collisions with thermal vibrations of the ion cores and 

with imperfections in the crystal such as impurity atoms. We allow for 

collisions by modifying Eq. 2.39 as 

݉
ݒ݀
ݐ݀

+
ݒ
߬

= ܧ݁− − ݁ ܸ 	(2.47)																																																																					ܤ×

The effect of the additional term (ݒ/߬) is to cause ݒ to decay exponentially 

to zero with a time constant ߬on removal of the applied field; ݒis therefore 

interpreted as the drift velocity of the electrons. The drift velocity is the 

additional velocity associated with the departure from the thermal equilibrium 

state given by the Fermi-distribution function. 

The corresponding equation of motion for a hole is written as 

݉ ቆ
ݒ݀
ݐ݀

+
ݒ
߬
ቇ = ܧ݁+ + ݁ ܸ ×  (2.48)																																																																		ܤ

When (only) a dc electric field is present, the solution for Eq , 2.40 and 2.41 

becomes 
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ݒ = −
݁߬
݉

ܧ =  (2.49)																																																																																				ܧߤ−

ݒ = −
݁߬
݉

ܧ =  (2.50)																																																																																											ܧߤ

Here fin and fj, fare the electron and hole mobilities in the steady-state. The 

resulting current density can be obtained by summing up the electron and hole 

contributions . 

ܬ = ݒ݁݊− + ݒ݁ = ቆ
݊݁ଶ߬
݉

+
ଶ߬݁
݉

ቇܧ

= 	 ൫݊݁ߤ

+ 	(2.51)																																																																																																														ܧ൯ߤ݁	

or ܬ = (2.52)																																																																																																									ܧߪ

                                                                               

This is an expression for Ohm's law with an electrical conductivity ߪgiven by 

Eq. 2.5, i.e., 

ߪ = ߤ݁݊ + ߤ݁	 																																																																																																(2-53) 

Since the electron and hole mobilities are usually comparable, the relative 

carrier densities determine the relative contribution of the electrons and holes 

to the conductivity. Table 2.1 lists mobility for various semiconductors.[5] 
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Table 2.1 Mobilities for various semiconductors at room temperatures 

Crystal 

 ଵି(ݏܸ)ଶ݉ܿ	ߤ

Electron Hole 

C 1800 1600 

Si 1350 475 

Ge 3900 1900 

GaAs 5800 400 

Ga P 110 75 

GaSb 4000 1400 

In ܣ௦ 33000 460 

In P 4600 150 

In Sb 80000 750 

Cds 340 18 

Cd Se 600 - 

Cd Te 300 65 

ZnS 120 5 

ZnSe 530 16 

Zn Te 530 900 
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Figure 2.20Temperature dependence of conductivity of three samples of 

germanium containing arsenic donor impurity. 

In the intrinsic region the two contributions are usually similar but in the 

extrinsic region the conductivity is normally dominated by the majority 

carrier. 

To explain it further, Fig. 2.20, which is based on the research carried out by 

Debye and Conwell (1954), presents a graph plotted between temperature and 

conductivity for three samples of germanium containing arsenic donor 

impurities with the approximate concentrations indicated. 

The temperature dependence of the conductivity for arsenic-doped ݊-type 

germanium can be explained as follows: 

1. The steep increase in ߪ(conductivity) at high temperatures, given by the 

broken line on the left, which has been observed in the purest specimen only, 

represents the increase in electrons and holes associated with the transition to 

intrinsic behavior. 
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2. The fall in conductivity at low temperatures on the right of the figure for 

the two purest specimens is associated with the freezing out of electrons on 

the donor levels; since the slopes of these two curves differ approximately by 

a factor of 2, it is interesting to associate the upper curve with Eq. 2.46 

݊ = ඥ݊݊ௗ exp−
ிܧ
2݇ܶ

																																																																																					(2.54) 

where݊is the number of electrons in the conduction band, and ݊ௗis the 

number of donor e and the lower curve with Eq. 2.47 

݊ ≈ 	݊ exp−
ிܧ
݇ܶ

																																																																																															(2.55) 

3. At intermediate temperature the donors are fully ionized. The observed 

decrease in conductivity with rising temperature results from the decrease in 

electron mobility caused by increased scattering from thermally excited lattice 

vibrations[3] . 

 The Hall effect: 

We have discussed so far the motion of charge carriers in an electric field. Let 

us imagine a situation in which a magnetic field is applied perpendicular to 

the electric field. This scenario was used in an experiment by Edwin Hall in 

1879. He stated that the carrier concentration in a semiconductor may be 

different from the impurity concentration, because the ionized impurity 

density depends on the temperature and the impurity energy level. 

The Hall method is one of the most convincing and acceptable techniques to 

demonstrate the existence of holes as charge carriers. To explain this 

technique, let us consider a situation (as shown in Fig. 2.21) in which a -type 

semiconductor having thickness ݐis subjected to an electric field ܧ௫along the 

 .axis-ݖ ௭along theܤ axis and a magnetic field-ݔ
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From electromagnetic theory we know that the electrons are deflected in the 

direction which is perpendicular to both the applied electric and magnetic 

fields. This leads to an accumulation of negative charge on one side of the 

sample, and hence produces an electric field (ܧு)in the ݕ-direction. Since 

there is net current flow along the ݕ-direction in the steady state, the electric 

field along the ݕ-axis exactly balances the Lorentz force (ܨ), 

ܨ = ݒ)݁ × (ܤ = ௭ܤ௫ݒ݁ 																																																																																								(2-

56) 

ுܧ݁ =  (2-57)																																																																																																										௭ܤ௫ݒ݁

ுܧ =                                                                                                             ௭ܤ௫ݒ

(2.58) 

This force which is due to the magnetic field will exert an average upward 

force on the holes flowing the ݔ-direction. Once the electric field 

 direction -ݕ ௭no net force along theܤ௫ݒ becomes equal to(ுܧ)

 

Figure 2.21an experimental setup for the Hall effect. The electric field (ܧ)is 

applied along ݔ-axis and magnetic field (ܤ௭) along the ݖ-axis of a 

semiconductor specimen having thicknessݐ. 

Is experienced by the holes as they drift along the ݔ-direction, the 

establishment of the electric field is known as the Hall Effect. 
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The Hall field (ܧு) is found to be proportional to the strength of the magnetic 

field, ܤ௭, and the current density flowing in the ݔ-dircction along the sample, 

 so we can writeܬ

ுܧ − ܴுܬܤ௭																																																																																																									(2.59)	

Where ܴுis known as the Hall coefficient and ܬis the hole current density. 

The Hall coefficient can also be represented as 

ܴு =
1
݁
																																																																																																																(2.60)	

A similar result can be obtained for ݊-type semiconductor, except that the 

Hall coefficient is negative 

ܴு = −
1
݁݊																																																																																																												(2.61)	

Equation 2.51 is quite useful in practice. Since ܴுis inversely proportional to 

the electron concentration (݊), we can determine ݊by measuring the Hall 

field. This makes the Hall effect the standard technique for determining 

electron concentration. The technique is particularly valuable because, apart 

from ݊, the only other quantity on which ܴுdepends is the charge on the 

electron, which is a fundamental physical constant whose precise value is 

known. 

The terminal voltage associated with the Hall experiment can be computed as 

ுܸ = 	(2.62)																																																																																																														ݐுܧ

Here ݐis the thickness of the sample. A measurement of the Hall voltage ( ுܸ) 

for a known current and magnetic field yields 

	 =
1
ܴ݁ு

=
௭ܤܬ
ுܧ݁

																																																																																																	(2.63)	
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Replacing ܬ by (ܣ/ܫ)	(A is the area, ܫis the current) and ܧுby ( ுܸ݈௧),Eq. 

2.53 can be rewritten as 

	 =
௭ܤ௧ܫ
ܣ	݁ ுܸ

																																																																																																											(2.64) 

All quantities on the right side of this equation can be measured. Hence, the 

carrier concentration and carrier type can be obtained directly from the Hall 

measurement. The above analysis shows that the Hall effect is a very 

interesting aspect of the transport process in the presence of a magnetic 

field[3] . 

2.9 Carrier Diffusion: Einstein Relation: 

We know that when an electric field is applied, the transport of carriers takes 

place and it gives drift current .Let us assume a situation where spatial 

variation of carrier concentration in the semiconductor takes place. In that 

case the carriers will move from a region of high concentration to a region of 

low concentration. This movement or transport of the carrier will give rise to 

charge diffusion or diffusion current. 

 

Figure 2.22 Electron concentrations versus distance. 

To understand the process of diffusion current, let us assume an electron 

density that varies with distance (a:) (Fig. 2.22) 

Since the semiconductor is held at a uniform temperature, the average thermal 

energy of electrons does not vary with ݔ. It is only the density ݊(ݔ)which 
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varies. Let us now assume the number of electrons crossing the plane at ݔ = 0 

per unit time per unit area. Since the temperature is taken as finite, the elec-

trons will have random thermal motion with a thermal velocity (ݒ௧) and 

mean free path (ߣ) which is expressed as 

ߣ = ߬ݒ௧ 																																																																																																															(2.65)	

Here ߬, is the mean free time of the electrons. 

The electrons at ݔ =  will have (one mean free path away on the left side) ߣ−

equal chances of moving left or right; and in a mean free time ߬, one half of 

them will move across the plane ݔ = 0. The average rate of electron flow per 

unit area of electrons crossing the plane ݔ = 0 from the left is given by an 

equation 

ଵ݂ =
ଵ
ଶ
(ߣ−)݊ ఒ

ఛ
																																																																																																						(2-66) 

ଵ݂ =
1
2
 (2.67)																																																																																										௧ݒ(ߣ−)݊

On the basis of a similar analogy, the average rate of electron flow per unit 

area of electrons at ݔ = ݔ crossing the plane ߣ = 0	from the right can be 

expressed as 

ଶ݂ =
1
2
 (2.68)																																																																																																						௧ݒ(ߣ)݊

The net rate of carrier flow from left to right is 

݂ = ଵ݂ − ଶ݂ =
1
2
(ߣ−)݊]௧ݒ −  (2.69)																																																															[(ߣ)݊

Approximating the densities at 	ݔ =  by the first two terms of a Taylor ߣ±

series expansion, we get an expression 

݂ = ܦ−
݀݊
ݔ݀

																																																																																																									(2.70) 
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Where 

ܦ = ௧ݒߣ 																																																																																																											(2.71) 

is known as the diffusion coefficient or diffusivity. 

Since each electron carries a charge−݁, the carrier flow gives rise to a current 

ܬ = −݂݁ = ܦ݁
݀݊
ݔ݀ 																																																																																											(2.72)	

Equation 2.61 suggests that the diffusion current is proportional to the spatial 

derivative of the electron density. 

If we use the theorem for equipartition of energy, Eq. 2.61 for a one-

dimensional case can be written as 

1
2
݉(ݒ௧)ଶ =

1
2
݇ܶ																																																																																														(2.73)	

Making use of the equation for mobility(ߤ), Eqs, 2.59 and 2.62, and the 

relationߣ =  ௧߬, we get an expression for the diffusion coefficientݒ

ܦ = ൬
݇ܶ
݁ ൰ 	(2.74)																																																																																																							ߤ

Equation 2.63 is known as the Einstein relation ,which relates diffusivity and 

mobility. This is how the carrier transport by diffusion and drift is 

characterized in a semiconductor. The Einstein relation is true only for non-

degenerate semiconductors and is found to be extremely useful in current 

flow problems in a number of semiconductor devices[3] . 

2.10 Semiconductor Devices: 

A semiconductor device is a unit which consists, partially or wholly, of 

semiconducting materials and which can perform useful functions in 

electronics and solid state research. A complete understanding of this topic 

can be made on the basis of an illustration as presented in Fig. 2.23. 
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Let us assume that two dissimilar metals ܺ and ܻ have work functions ߶௫ and 

߶௬respectively, and that 

߶௫ < ߶௬																																																																																																																	(2.75) 

 

Figure 2.23 (a) Two isolated metals, ܺ and ܻ, with work functions ߶௫ and ߶௬; 

(b) electrons flow from ܺ to ܻ when both metals are in contact; and (c) for the 

lower energy states in metal ܻ, the electron flow continues till the Fermi 

energies attain a state of equilibrium on both sides of the metallic junction. 

The electrons in metal ܺ have higher energy states as compared to that in 

metalܻ. When we bring these two metals in contact with each other, the 

movement of electrons from higher energy states to lower energy states takes 

place till a state of (near) equilibrium is achieved, i.e., the Fermi energy levels 

become the same. This gives rise to a contact between two metals whose 

contact potential depends upon the difference between their work functions. 

߶ = ߶௬ − ߶௫																																																																																																									(2.76) 

The idea of placing two metals in contact is useful because it enables us to see 

how the equilibrium stage is achieved. This can be explained better by way of 

making a junction between two types of extrinsic semiconductors[2] . 

2-11The p-n junction: 

The above illustration can be extended to the - and ݊-type of 

semiconductors. If these two types of semiconductors are brought in contact 

with each other, then, initially it is presumed that electrons and holes will stay 

in their respective compartments. This situation is unlikely to last for long 
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because the conduction electrons move about at random, and some of them 

find their way into the -type material. This happens due to the process of 

diffusion as already discussed in Section 2.7. Similarly, some of the holes 

diffuse into the ݊-type region. However, this process is complicated by the 

fact that the electrons and holes can recombine with one another (Fig. 2.24). 

Let us imagine a situation where a single conduction electron diffuses across 

the junction from the ݊-type layer to the -type region. As it crosses the 

junction the electron sees a large concentration of holes. This gives quite high 

probability of electron recombining with a hole before it travels deep in the -

region. Now when the number of electrons crossing the junction increases, its 

recombination with holes also increases. Hence, the number of carriers in the 

junction region is reduced. This gives rise to a layer on either side of the 

junction which has a relatively lower carrier concentration as compared to the 

rest of the crystal. This is known as the depletion layer(Fig. 2.25). 

 

 

Figure 2.24A - and n-type semiconductors exhibiting Fermi energy near 

valence band and conduction band edges, respectively 

 

Figure 2.25 Depletion layer caused by the diffusion of the carries when the p- 

and n-type regions are brought in contact. 
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Figure 2.26 the distribution of charge at -݊junction produces a contact 

potential ߶across the junction. The conduction band edge on the -side of the 

junction is at an energy ݁߶ greater than that on the ݊-side. 

In this figure the negative charge is shown to have accumulated on the ݊-type 

side and positive charge on the -type side. The build-up of this charge on an 

energy band diagram is shown in Fig. 2.26. This figure indicates that the 

energy of the conduction band edge is more on the -type side than on the ݊-

type side. The energy required to excite an electron across the contact 

potential ߶is written as 

ܧ = ݁߶																																																																																																														(2.77)	

The contact potential energy (ܧ)is equal to the difference between the 

Fermi energies in two materials (݊- and -type), i.e., 

ܧ = ிܧ − ிܧ 																																																																																																		(2.78)	

It is at this energy (or equilibrium state) that the Fermi energy alignment is 

achieved which acts as a key to the formation of a -݊junction. 

The answer to these questions is not easy as it involves the Poisson's equation. 

Therefore, the following direct expressions are given for determining various 

parameters:  

The magnitude of contact potential ߶is given by the expression 

߶ =
݁

݁ ∈∈
൫݀ܮଶ + ܽܮଶ ൯																																																																															(2.79) 
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Here ∈ is the dielectric constant of the material, ݀is the number of donors, 

ܽis the number of acceptors, and ܮand ܮrepresent the depletion layer 

whose extent lies between 

ݔ = to		ܮ− +  (2.80)																																																																																																	ܮ

The expression for depletion layer width on the -side is given as 

ܮ = 
2߶݀ ∈∈

݁ܽ(ܽ + ݀)
൨ 																																																																																									(2.81) 

If we replace ݀by ܽin Eq. 1.70, we get a similar expression for depletion 

layer width on the ݊-side. 

The expression for the determination of contact potential is written as 

߶ =
݇ܶ
݁

ln 
ܽ݀
݊

൨ 																																																																																														(2.82) 

This expression relates the contact potential to the concentration of acceptors 

(ܽ),donors (݀),and intrinsic carriers (݊). It is also independent of the width 

of the depletion layer. 

By making use of typical values of the parameters in microelectronic devices, 

it has been reported that for a silicon -݊junction the contact potential[3] . 

߶~0.7	ܸ݁ 

And the depletion layer widths are 

ܮ , ~0.1ܮ −  ݉ߤ	1.0

2-12 Current-voltage characteristics of -junction: 

A symbolic representation of the -݊junction in the form of an arrow is 

shown in Fig. 2.27. The arrowhead defines the -region of the material. It also 

shows the direction of flow of holes (or conventional current). If we apply 

some potential to the junction, its plotted projection (ܸversus ܫ) will give rise 
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to a situation in which the current increases linearly as the bias voltage is 

increased (Fig. 2.28). 

 

Figure 2.27 Representation 

of p-n junction.  

 

 

Figure 2.28Current-voltage characteristics of a -݊junction diode. 

This makes the junction a linear device over a large portion of its operating 

voltage. The shaded area near the origin of the graph shows a non-linear 

behavior because the overall current comprises of majority and minority 

carrier. Since the majority carriers are low energy carriers, majority current 

starts first, and then as the voltage is raised, minority current adds in giving 

rise to non-linear rise in current. Further increase in voltage gives rise to a 

linear curve as the minority carriers whose number is small get saturated. 

When reverse bias is applied, a slight reverse current flows. As the bias 

voltage increases, the increase in reverse current is quite negligible. But a 

sudden rise in current is observed which takes place due to the covalent bonds 

of the material breaking down in substantial numbers. This breakdown 

potential is termed Zener voltage which is very useful in some special 

voltage-regulating circuits. 

On the basis of the observations from the forward and reverse bias, we can 

see that the characteristics of the junction vary enormously, depending upon 

the polarity of the applied voltage. In the former case - also known as forward 

݊
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bias - the current increases exponentially with the voltage, whereas in the 

latter case-known as reverse bias, the current remains very small regardless of 

the magnitude of the voltage. We can safely assume that a -݊junction only 

allows current to flow one way, and so one use of a -݊junction is as a 

rectifier to change alternating current into direct current. However, the 

properties of -݊ junctions are exploited in a wide range of other electronic 

devices[3] . 

2.13 The Transistor: 

A transistor is a solid state device which is capable of performing the 

following primary functions: 

1. It can amplify an electrical signal (i.e., as an amplifier). 

2. It serves as a switching device ('ON' or 'OFF') which allows computers to 

process and store the information. 

Both types of transistors can be used in amplifying and switching modes .We 

shall concentrate on the bimodal(bipolar) and field effect transistors 

(FETs)[3] . 

2-14Bimodal (bipolar) junction transistor (BJT): 

A bimodal transistor consists of two -݊junctions configured back to back in 

either ݊--݊or-݊-mode. The charge carrier in it has negative as well as 

positive polarity and so the nomenclature bimodal (or bipolar) junction 

transistor (BJT) is used. 

 

Figure 2.29 A bimodal (bipolar) junction transistor: (a) ݊--݊and (b) -݊-

 .transistor
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Figure 2.30 (a) Energy band structure of an ݊--݊bipolar transistor with no 

applied bias and (b) when the voltage is applied the emitter is made negative 

with respect to the collector. 

Alternatively, it is defined as a sandwich of three alternately doped layers of 

semiconductor. The middle layer is referred to as the base (B)and the other 

two layers as the emitter (E)and the collector (C). A picture of a bimodal 

transistor is shown in Fig. 2.29. 

Let us try to understand the working of a -݊-and ݊--݊bipolar transistor, 

on the basis of a energy band diagram shown in Fig. 2.30. 

Since the emitter is more heavily doped than the base and collector, we note 

that the contact potential between the emitter and base is greater than that 

between the base and collector. From Fig. 2.30b it may be seen that the 

emitter-base junction is forward-biased and the collector-base junction is 

reverse-biased. This means that a sizable number of the conduction electrons 

in the emitter can flow into the base region. 

Since the base region is quite small (narrow) and the doping concentration is 

much lower than that of the emitter, only a small proportion of these electrons 

recombine with the holes in the base. The remaining electrons are swept down 

into the lower energy states in the collector. Hence, in this process a 

substantial amount of electronic current flows from the emitter to the base. 

When the emitter-base junction is forward-biased, the current enters the 

transistor through the emitter terminal for a -݊-transistor and leaves the 

transistor through the emitter terminal for an ݊--݊transistor. In both the 
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cases, the emitter current (ܫ), base current (ܫ)and collector currents (ܫ)are 

assumed positive when the currents go into the transistor. This is shown in 

Fig 1.31. The symbols ܸ , ܸ  and ܸ Present respectively the emitter-base, 

collector-base and collector-emitter voltages. These are assumed positive 

when the terminal marked by the first subscript is positive with respect to the 

terminal marked by the second subscript. Transistors are generally fabricated 

with the following techniques: 

1. Growth 

2. Diffusion 

3. Epitaxial 

4. Fused technique 

 

Figure 2.31 Schematic presentation of current symbols with reference to the 

current direction and voltage polarities for: (a) -݊-and (b) ݊--݊	transistor 

[3] . 

2-15Field effect transistor (FET): 

FET is quite similar to the BJT in that it consists of three distinct regions with 

alternate doping. The current in an FET is carried predominantly by one type 

of carrier while in BJT, there are two types of carriers, i.e., electrons and 

holes. Therefore, an FET is also known as unipolar  (or un junction) transistor 

(UJT). These are of many types but by far the most common are junction field 
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effect transistor (JFET) and Metal Oxide Semiconductor Field Transistor 

(MOSFET). 

The principle of operation in both these types is through three regions which 

are known as the source, drain and gate. Figure 2.32 presents a schematic 

picture of an ݊-channel JFET. 

In this type of transistor the semiconductor bar is ݊-type. Therefore, 

depending upon the type of bar (or ݊)it is known as either or ݊-channel 

JFET. Two sides of the semiconductor bar are doped with impurities which 

are opposite to that of the bar. In an ݊-channel JFET, we term all the three 

regions, i.e., source, drain and gate as ା, ݊ andା(+ represents the impurity 

current loaded heavily). If we apply a potential ௗܸௗbetween the ends of the 

semiconductor bar, the current starts flowing along the length of the bar. The 

central ݊-region, through which the electrons flow from the source to the 

collector or drain, (݀)is known as the channel. The ାregions form the gate. 

At each of the ݊-junctions there is a depletion layer extending into the ݊- 

region. These layers penetrate to a large extent as the reverse bias ( ܸ)is 

increased. This allows the control of flow of electrons in the channel, i.e., the 

drain current (ܫௗ) ischecked. Figure 2.33 presents the current-voltage 

characteristics of an ݊-channel JFET. 

When the drain current (ܫௗ)	increases from zero (at constant gate-source 

potential, ܸୱ), the increase initially remains linear, conforming to Ohm's law. 

Further increase in drain-source voltage	( ௗܸ௦)results in the current attaining a 

saturation  level. This level is known as pinch-off region.  

The name field effect is used for the device because the transverse field 

produced by the gate gives the effect of controlling the drain current. The 

most popular mode of operation of a device of this kind is a switch. Since the 

input 
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Figure 2.32the basic structure of an ݊-channel JFET 

 

Figure 2.33Current-voltage (ܫௗ − ௗܸ௦)characteristics of an ݊-channel JFET. 

Resistance of JFET is quite high; a lower switching time in switching devices 

can be achieved. 

Another type of a field effect transistor is MOSFET, in which the metal 

contact above the gate region is separated from the semiconductor substrate 

by a thin oxide layer (usually silicon dioxide) which acts as an electrical 

insulator. A line-diagram depicting the structure of an ݊-channel MOSFET is 

shown in Fig. 2.34a. 

Let us visualize what happens when a voltage is applied to the metal contact 

above the gate. Following are the possibilities: 

1. When the gate voltage is positive then the holes in the -type 

semiconductor directly below the gate are repelled from the surface, and at 
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the same time the minority carrier (conduction electrons) in the -type 

material are attracted to the surface. It is depicted in Fig. 2.34b. 

 

Figure 2.34 (a) The structure of an ݊-channel MOSFET. 

 
 

Figure 2.34 (b) When a positive voltage is applied to the gate, the holes in the 

 type semiconductor are repelled from the surface and the minority carrier-

conduction electrons are attracted to the surface. 

 

Figure 2.34 (c) When the gate voltage exceeds the threshold value then an 

inversion layer is created near the surface. 
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2. When the gate voltage crosses the threshold then in a region close to the 

surface, the concentration of conduction electrons exceeds the concentration 

of holes. It is shown in Fig. 2.34c.  

Although the material is doped with acceptor, it behaves as if it is an ݊-type 

semiconductor. This region is known as an inversion layer which can be 

explained better on the basis of the energy band structure at the metal-oxide-

semiconductor (M-O-S) interface in a MOSFET (Fig. 2.35). 

 

Figure 2.35 the energy band structure at the M-O-S interface in a MOSFET. 

In this figure, for a -type semiconductor at a distance well below the 

interface with the oxide layer, the Fermi energy is expectedly close to the 

valence band edge. However, the electron energies, closer to the surface of 

the semiconductor, are lowered by the presence of the positive charge on the 

other side of the oxide layer. This is termed as band bending .In this region 

the semiconductor exhibits ݊-type behaviour if the Fermi energy is closer to 

the conduction band than to the valence band, and hence, the degree of band 

bending determines whether or not inversion takes place. 

Based on the same principle we can make a -type MOSFET in which the 

current is carried by the holes if we make the gate w-type and source and 

drain -type. Generally, ݊-type MOSFETs are preferred because of the fact 

that the mobility due to electrons in a semiconductor is much higher than that 

of the holes.[3] . 
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Chapter Three 
Charge Carriers in Semiconductors 

3-1 Introduction: 

Current is the rate at which charge flows. 

In a semiconductor, two types of charge carrier, the electron and the hole, can 

contribute to a current. 

Since the current in a semiconductor is determined largely by the number of 

electrons in the conduction band and the number of holes in the valence band, 

an important characteristic of the semiconductor is the density of these charge 

carriers[1] 

3.1-1Equilibrium Distribution of Electrons and Holes: 

The distribution (with respect to energy) of electrons in the conduction band 

is given by the density of allowed quantum states times the probability that a 

state is occupied by an electron. 

This statement is written in equation form as 

(	ܧ)݊ = 	݃(ܧ) ி݂(ܧ)																																																																																													(3.1)	

Where ݃(ܧ)is the density of quantum states in the conduction band and 

ி݂(ܧ) is the Fermi-Dirac probability function. The total electron 

concentration per unit volume in the conduction band is found by integrating 

Equation (3.1) over the entire conduction-band energy. The distribution (with 

respect to energy) of holes in the valence band is the density of allowed 

quantum states in the valence band multiplied by the probability that a state is 

not occupied by an electron: 

(ܧ) = 	݃௩(ܧ)[1	 − 	 ி݂(ܧ)]																																																																															(3.2)	
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The total hole concentration per unit volume is found by integrating this 

function over the entire valence-band energy. To find the thermal-equilibrium 

electron and hole concentrations, we need to determine the position of the 

Fermi energyܧி, with respect to the bottom of the conduction-band energy 

 .௩ܧ and the top of the valence-band energyܧ

To address this question, we will initially consider an intrinsic semiconductor. 

An ideal intrinsic semiconductor is a pure semiconductor with no impurity 

atoms and no lattice defects in the crystal (e.g., pure silicon). 

For an intrinsic semiconductor at ܶ =  all energy states in the valence ,ܭ	0

band are filled with electrons and all energy states in the conduction band are 

empty of electrons. 

The Fermi energy must, therefore, be somewhere between ܧand ܧ௩. 

The Fermi energy does not need to correspond to an allowed energy. As the 

temperature begins to increase above 0	ܭ, the valence electrons will gain 

thermal energy. 

A few electrons in the valence band may gain sufficient energy to jump to the 

conduction band. 

As an electron jumps from the valence band to the conduction band, an empty 

stale, or hole, is created in the valence band. 

In an intrinsic semiconductor, then, electrons and holes are created in pairs by 

the thermal energy so that the number of electrons in the conduction bond is 

equal to the number of boles in the valence band. 

Figure 3.1 shows a plot of the density of states function in the conduction 

band ݃(ܧ), the density of states function in the valence band ݃௩(ܧ), and the 

Fermi-Dirac probability function for ܶ >  ி is approximatelyܧ when ܭ	0

halfway between ܧ and ܧ௩. 
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If we assume, for the moment, that the electron and hole effective masses are 

equal, then ݃(ܧ) and ݃௩(ܧ) are symmetrical functions about the midgap 

energy. We noted previously that the function ி݂(ܧ) for ܧ > ிܧ  is 

symmetrical to the function 1 − ி݂(ܧ) for ܧ < ிܧ  about the energy ܧ = ிܧ . 

This also means that the function ி݂(ܧ)for ܧ = ிܧ +  is equal to theܧ݀

function 1 − ி݂(ܧ)for ܧ = ிܧ −  .ܧ݀

 

Figure 3.1(a) Density of states functions, Fermi-Dirac probability function, 

and areas representing electron and hole concentrations for the case when ܧி  

is near the midgap energy energy. (b) Expanded view near the conduction 

band energy, and (c) expanded view near the valence band energy. 

Figure 3.1b is an expanded view of the plot in Figure 3.1, showing ி݂(ܧ) an 

݃(ܧ) above the conduction band energy ܧ . 

The product of ݃(ܧ) and ி݂(ܧ) is the distribution of electrons ݊(ܧ) in the 

conduction band given by Equation (3.1). 

This product is plotted in Figure 3.1a. 
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Figure 3.1c is an expanded view of the plot in Figure 3.1a showing [1 −

ி݂(ܧ)] and ݃௩(ܧ) below the valence band energy ܧ௩. The product of ݃௩(ܧ) 

and [1 − 	[ ி݂(ܧ)] is the distribution of holes (ܧ) in the valence band given 

by Equation (2). 

This product is also plotted in Figure1a. 

The areas under these curves are then the total density of electrons in the 

conduction band and the total density of holes in the valence band. 

From this we see that if ݃(ܧ) and ݃௩(ܧ) are symmetrical, the Fermi  energy 

must be at the mid gap energy in order obtain equal electron and hole 

concentrations 

If the effective masses of the electrons and hole are not exactly equal, then the 

effective density of states functions ݃(ܧ) and ݃௩(ܧ) will not be exactly 

symmetrical about the mid gap energy. 

The Fermi energy for the intrinsic semiconductor will then shift slightly from 

the mid gap energy in order to obtain equal electron and hole 

concentrations[1]. 

3.2The ݊and Equations: 

We will assume initially that the Fermi level remains within the band gap 

energy. 

 The equation for the thermal-equilibrium concentration of electrons may be 

found by integrating Equation 1 over the conduction band energy, or 

݊ = න݃(ܧ) ி݂(ܧ)݀ܧ 																																																																																									(3.3)	

The lower limit of integration is ܧ  and the upper limit of integration should 

be the top of the allowed conduction band energy. 
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However, since the Fermi probability function rapidly approaches zero with 

increasing energy as indicated in Figure1a, we can take the upper limit of 

integration to be infinity. 

We are assuming that the Fermi energy is within the forbidden-energy band 

gap. 

For electrons in the conduction band, we have ܧ ≫ ܧ . 

If (ܧ − (ிܧ ≫ ݇ܶthen (ܧ − (ிܧ ≫ ݇ܶ, so that the Fermi probability 

function reduces to the Boltzmann approximation, which is 

ி݂(ܧ) =
1

1 + exp ாିாಷ
்

≈ exp
ܧ)− − (ிܧ

݇ܶ
																																																				(3.4) 

Applying the Boltzmann approximation to Equation (3.3), the thermal-

equilibrium density of electrons in the conduction band is found from 

݊ = න
2݉)ߨ4

∗ )ଷ/ଶ

ℎଷ
ஶ

ா
ඥܧ − ܧ exp 

ܧ)− − (ிܧ
݇ܶ

൨  (3.5)																																			ܧ݀

The integral of Equation (3.5) may be solved more easily by making a change 

of variable: 

ߟ =
ܧ − ܧ
݇ܶ 																																																																																																														(3.6) 

Then Equation (3.5) becomes 

݊ =
2݉)ߨ4

∗݇ܶ)ଷ/ଶ

ℎଷ
exp 

ܧ)− − (ிܧ
݇ܶ

൨න ଵ/ଶߟ exp(−ߟ)݀ߟ
ஶ


																						(3.7) 

The integral is the gamma function, with a value of 

න ଵ/ଶߟ exp(−ߟ)݀ߟ
ஶ


=
1
2ඥߟ																																																																															(3.8) 

Then Equation (3.7) becomes 
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݊ = 2൬
݉ߨ2

∗݇ܶ
ℎଶ

൰
ଷ/ଶ

exp 
ܧ)− − (ிܧ

݇ܶ
൨																																																									(3.9) 

We may define a parameter ܰ  as 

ܰ = 2 ൬
݉ߨ2

∗݇ܶ
ℎଶ ൰

ଷ/ଶ

																																																																																				(3.10) 

The value of ݊ 

Thermal-equilibrium electron concentration in the conduction band 

݊ = ܰ exp 
ܧ)− − (ிܧ

݇ܶ ൨																																																																																(3.11) 

The parameter ܰ  is called the effective density of states function in the 

conduction band. 

If ݉
∗ = ݉ then the value of the effective density of states function at 

ܶ = is ܰܭ	300 = 2.5 × 10ଵଽcmିଷ, which is the order of magnitude of ܰ 

for most semiconductors. 

If the effective mass of the electron is larger or smaller than ݉ then the value 

of the effective density of states function changes accordingly, but is still of 

the same order of magnitude. 

Example 3.1 Calculate the probability that a state in the conduction band is 

occupied by an electron and calculate the thermal equilibrium electron 

concentration in Silicon at ܶ =  ܸ݁	Assume the Fermi energy is 0.25 .ܭ	300

below the conduction band. The value of ܰ  for silicon at ܶ =  isܭ	300

ܰ = 2.8	 × 10ଵଽܿ݉ିଷ. 

ி݂(ܧ) =
1

1 + expቀாିாಷ
்

ቁ
≈ exp 

ܧ)− − (ிܧ
݇ܶ ൨ 

or 
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ி݂(ܧ) = exp ൬
−0.25
0.0259൰ = 6.43 × 10ିହ 

Example 3.2, the electron concentration is given by 

݊ = ܰ exp 
ܧ)− − (ிܧ

݇ܶ ൨ = (2.8 × 10ଵଽ) exp ൬
−0.25
0.0259൰ 

or 

݊ = 1.8 × 10ଵହܿ݉ିଷ 

The probability of a state being occupied can be quite small, but the fact that 

there are a large number of states means that the electron concentration is a 

reasonable value. 

The thermal-equilibrium concentration of holes in the valence band is found 

by integrating Equation (3.2) over the valence band energy, or 

 = න݃௩(ܧ)[1 − ி݂(ܧ)]݀ܧ																																																																											(3.12) 

We may note that 

1 − ி݂(ܧ) =
1

1 + exp ቀாಷିா
்

ቁ
																																																																												(3.13) 

For energy states in the valence band E < Ev. 

If (ܧி − (௩ܧ ≫ ݇ܶ then we have slightly different form of the Boltzmann 

approximation : 

1 − ி݂(ܧ) =
1

1 + exp ቀாಷିா
்

ቁ
	≈ exp ቈ

ிܧ)− − (ܧ
݇ܶ

																																					(3.14) 

Applying the Boltzmann approximation of Equation (3.14) to Equation 

(3.12), we find the thermal-equilibrium concentration of holes in the valence 

band is 
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 = න
2݉)ߨ4

∗ )ଷ/ଶ

ℎଷ
ாೡ

ିஶ
ඥܧ௩ − ܧ exp 

ிܧ)− − (ܧ
݇ܶ

൨݀ܧ																																(3.15) 

where the lower limit of integration is taken as minus infinity instead of the 

bottom of the valence band. 

The exponential term decays fast enough so that this approximation is valid. 

Equation (3.15) may be solved more easily by again making a change of 

variable: 

ᇱߟ =
௩ܧ − ܧ
݇ܶ 																																																																																																									(3.16) 

the Equation (3.15) becomes 

 =
2݉)ߨ4−

∗݇ܶ)ଷ/ଶ

ℎଷ
exp 

ிܧ)− − (௩ܧ
݇ܶ

൨න ଵ/ଶ(ᇱߟ) exp(−ߟᇱ)݀ߟᇱ						


ାஶ
(3.17) 

where the negative sign comes from the differential ݀ܧ =  .ᇱߟ݀ܶ݇−

Note that the lower limit of ߟᇱbecomes +∞when ܧ = −∞.  

If we change the order of integration, we introduce another minus sign.  

From Equation (3.8), Equatio n (3.17) becomes 

 = 2ቆ
݉ߨ2

∗݇ܶ
ℎଶ ቇ

ଷ/ଶ

exp 
ிܧ)− − (௩ܧ

݇ܶ ൨																																																						(3.18) 

We may define a parameter ௩ܰ as 

௩ܰ = 2ቆ
݉ߨ2

∗݇ܶ
ℎଶ

ቇ
ଷ/ଶ

																																																																																							(3.19) 

The value of is 

Thermal-equilibrium holes concentration in the valence band 

 = ௩ܰ exp 
ிܧ)− − (௩ܧ

݇ܶ
൨																																																																																(3.20) 
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The parameter ௩ܰ is called the effective density of states function in the 

valence band. 

The magnitude of ௩ܰ is also on the order of 10ଵଽܿ݉ିଷ at ܶ =  for most ܭ	300

semiconductors. 

The effective density of states functions, ܰand ௩ܰ, are constant for a given 

semiconductor material at a fixed temperature . 

Table 3.1 gives the values of the density of states function and of the effective 

masses for silicon, gallium arsenide and germanium. 

Note that the value of ܰ  for gallium arsenide is smaller than the typical 

10ଵଽܿ݉ିଷ value. This difference is due to the small electron effective mass in 

gallium arsenide[1] . 

 Table 3.1: Effective density of states function and effective mass values 

 ܰ  (ܿ݉ିଷ) ܰ  (ܿ݉ିଷ)  

 

݉
∗ /݉ ݉

∗/݉ 

Silicon 2.8 x 1019 1.04 x 1019 1.08 0.56 

Gallium Arsenide 4.7 x 1017 7.0 x 1018 0.067 0.48 

Germanium 1.04 x 1019 6.0 x 1018 0.55 0.37 

 

3.3 The Intrinsic Carrier Concentration:  

For an intrinsic semiconductor, the concentration of electrons in the 

conduction band is equal to the concentration of holes in the valence band. 

We may denote ݊ and as the electron and hole concentrations, respectively 

. in the intrinsic semiconductor. 
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These parameters are usually referred to as the intrinsic electron concentration 

and the intrinsic hole concentration. 

However ݊ =   so normally we use only the parameter ݊ which refer to

either intrinsic electron or hole concentration. 

The Fermi energy level for the intrinsic semiconductor is called the intrinsic 

Fermi energy, or ܧி = ிܧ . 

 If we apply Equations (3.11) and (3.20) to the intrinsic semiconductor, then 

we can write 

݊ = ݊ = ܰ exp 
ܧ)− − (ிܧ

݇ܶ
൨																																																																					(3.21) 

and 

 =  = ݊ = ௩ܰ exp 
ிܧ)− − (௩ܧ

݇ܶ
൨																																																									(3.22) 

If we take the product of Equations (3.21) and (3.22), we obtain 

݊ଶ = ܰ ௩ܰ exp 
ܧ)− − (ிܧ

݇ܶ
൨ exp 

ிܧ)− − (௩ܧ
݇ܶ

൨																																						(3.23) 

or 

݊ଶ = ܰ ௩ܰ exp 
ܧ)− − (௩ܧ

݇ܶ ൨ = ܰ ௩ܰ exp 
ܧ−
݇ܶ ൨																																							(3.24) 

whereܧ is the bandgap energy. 

For a given semiconductor material at a constant temperature, the value of ݊ 

is a constant, and independent of the Fermi energy. The intrinsic carrier 

concentration for silicon at ܶ =  may be calculated by using the ܭ	300

effective density of states function values from Table 3.1. 

The value of ݊ calculated from Equation (3.24) for ܧ = 1.12	ܸ݁is ݊ =

6.95 × 10ଵଽܿ݉ିଷ. 
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The commonly accepted value of n for silicon at T = 300 K is approximately 

1.5 × 10ଵܿ݉ିଷ. This discrepancy may arise from several sources. 

First, the values of the effective masses are determined at a low temperature 

where the cyclotron resonance experiments are performed. 

Since the effective mass is an experimentally determined parameter, and since 

the effective mass is a measure of how well a particle moves in a crystal, this 

parameter may be a slight function of temperature. Next, the density of states 

function for a semiconductor was obtained by generalizing the model of an 

electron in a three-dimensional infinite potential well. 

This theoretical function may also not agree exactly with experiment. 

However, the difference between the theoretical value and the experimental 

value of ݊ is approximately a factor of 2, which, in many cases, is not 

significant. Table 3.2 lists the commonly accepted values of ݊ for silicon, 

gallium arsenide, and germanium at ܶ =  .ܭ	300

The intrinsic carrier concentration is a very strong function of temperature. 

Table 3.2: Commonly accepted values of at ࢀ = 	ࡷ. 

Silicon 

Gallium Arsenide 

Germanium 

1.5 × 10ଵܿ݉ିଷ 

1.8 × 10ܿ݉ିଷ 

2.4 × 10ଵଷܿ݉ିଷ 

Figure 3.2 is a plot of n from Equation (3.24) for silicon, gallium arsenide, 

and germanium as a function of temperature. 

As seen in the figure, the value of ݊ for these semiconductors may easily 

vary over several orders of magnitude as the temperature changes over a 

reasonable range[1] . 
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Figure 3.2: The intrinsic carrier concentration as a function of temperature. 

3.4   The Intrinsic Fermi-Level Position: 

We have qualitatively argued that the Fermi energy level is located near the 

center of the forbidden band gap for the intrinsic semiconductor. 

We can specifically calculate the intrinsic Fermi- Ievel  position. 

Since the electron and hole concentrations m equal, setting Equations (3.21) 

and (3.22) equal to each other, we have 

ܰ exp 
ܧ)− − (ிܧ

݇ܶ
൨ = 	 ௩ܰ exp 

ிܧ)− − (௩ܧ
݇ܶ

൨																																										(3.25)	

If we take the natural log of both sides of this equation and solve for ܧி we 

obtain 

ிܧ =
1
2
ܧ) + (௩ܧ +

1
2
݇ܶ ln ௩ܰ

ܰ
																																																																							(3.26)	
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From the definitions for ܰ  and ௩ܰgiven by Equations (3.10) and (3.19) 

Equation (3.26) may be written as 

ிܧ =
1
2
ܧ) + (௩ܧ +

3
4
݇ܶ ln

݉
∗

݉
∗ 																																																																						(3.27)	

so that 

Intrinsic Fermi level 

ிܧ = ௗܧ +
3
4݇ܶ ln

݉
∗

݉
∗ 																																																																												(3.28)	

If the electron and hole effective masses are equal so that ݉
∗ = ݉

∗  then the 

intrinsic Fermi level is exactly in the center of the band gap. 

If ݉
∗ > ݉

∗ the intrinsic Fermi level is slightly above the center, and if 

݉
∗ < ݉

∗ , it is slightly below the center of the bandgap. The density of states 

function is directly related to the carrier effective mass; thus a larger effective 

mass means a larger density of stales function. 

The intrinsic Fermi level must shift away from the band with the larger 

density of states in order to maintain equal numbers of electrons and holes[1] . 

3.5 Dopant Atoms and Energy Levels: 

The intrinsic semiconductor may be an interesting material, but the real power 

or semiconductors is realized by adding small, controlled amounts of specific 

dopant, or impurity, atoms. 

The doped semiconductor, called an extrinsic material, is the primary reason 

we can fabricate the various semiconductor devices[3] . 
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3.5.1  Qualitative Description:  

In the previous chapter we discussed the covalent bonding of silicon and 

considered the simple two-dimensional representation of the single-crystal 

silicon lattice as shown in Figure. 

Now consider adding a group ܸ element, such as phosphorus, as a 

substitutional impurity. The group ܸ element has five valence electrons. 

Four of these will contribute to the covalent bonding with the silicon atoms, 

leaving the fifth more loosely bound to the phosphorus atom. 

This effect is schematically shown in Figure 3.4. We refer to the fifth valence 

electron as a donor electron. The phosphorus atom without the donor electron 

is positively charged. 

 

Figure 3.3 Two-dimensional representation of the intrinsic silicon lattice. 
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Figure 3.4 Two-dimensional representation of the silicon lattice doped with a 

phosphorus atom. 

At very low temperatures, the donor electron is bound to the phosphorus 

atom. 

However, by intuition, it should seem clear that the energy required to elevate 

the donor electron into the conduction band is considerably less than that for 

the electrons involved in the covalent bonding. 

Figure 3.5 shows the energy-band diagram that we would expect. 

The energy level, ܧௗ, is the energy state of the donor electron. If a small 

amount of energy, such as thermal energy, is added to the donor electron, it 

can be elevated into the conduction band, leaving behind a positively charged 

phosphorus ion. 

The electron in the conduction band can now move through the crystal 

generating a current, while the positively charged ion is fixed in the crystal. 

This type of impurity atom donates an electron to the conduction band and so 

is called a donor impurity atom. 
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Figure 3.5the energy-band diagram showing (a) the discrete donor energy 

state and (b) the effect of a donor state being ionized. 

The donor impurity atom adds electrons to the conduction band without 

creating holes in the valence band. 

The resulting material is referred to as an ݊-type semiconductor (݊ for the 

negatively charged electron). Now consider adding a group III element, such 

as boron, as a substitution impurity to silicon. The group III element has three 

valence electrons, which are all taken up in the covalent bonding. As shown 

in Figure 6a, one covalent bonding position appears to be empty. 

If an electron were to occupy this empty position its energy would have to be 

greater than that of the valence electrons, since the net charge state of the 

boron atom would now be negative.    However the electron occupying 
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Figure 3.6 Two dimensional representation of a silicon lattice (a) doped with 

A boron atom and (b) showing the ionization of the boron atom resulting in a 

hole 

This empty position does not have sufficient energy to be in the conduction 

band, so its energy is far smaller than the conduction-band energy. 

Figure 6b shows how valence electrons may gain a small amount of thermal 

energy and move about in the crystal. 

The "empty" position associated with the boron atom becomes occupied, and 

other valence electron positions become vacated. 

These other vacated electron positions can be thought of as holes in the 

semiconductor material. 

Figure 3.7 shows the expected energy state of the "empty" position and also 

the formation of a hole in the valence band. The hole can move through the 

crystal generating a current, while the negatively charged boron atom is fixed 

in the crystal. 
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Figure 3.7 the energy-band diagram showing (a) the discrete acceptor energy 

states and (b) the effect or an acceptor state being ionized. 

The group III atom accepts an electron from the valence band and so is 

referred to as an acceptor impurity atom. 

The acceptor atom can generate holes in the valence band without generating 

electrons in the conduction band .This type of semiconductor material is 

referred to as a -type materi-al (p for the positively charged hole). 

The pure single-crystal semiconductor material is called an intrinsic material. 

Adding controlled amounts of dopant atoms, either donors or acceptors, 

creates a material called an extrinsic semiconductor. 

An extrinsic semiconductor will have either a preponderance of electrons 

(݊ −type) or a preponderance of holes ( p- type)[3] . 

3.6 The Extrinsic Semiconductor: 

We defined an intrinsic semiconductor as a material with no impurity atoms 

present in the crystal. 

An extrinsic semiconductor is defined as a semiconductor in which controlled 

amounts of specific dopant or impurity atoms have been added so that thermal 

equilibrium electron and hole concentrations are different from the intrinsic 

carrier concentration. 
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One type of carrier will predominate in an extrinsic semiconductor[3] . 

3.6.1 Equilibrium Distribution of Electrons and Holes: 

Adding donor or acceptor impurity atoms to a semiconductor will change the 

distribution of electrons and holes in the material. 

Since the Fermi energy is related to the distribution function, the Fermi 

energy will change as dopant atoms are added. If the Fermi energy changes 

from near the mid gap value, the density of electrons in the conduction band 

and the density of holes in the valence band will change. These effects are 

shown in Figures 3.8 and 3.9. 

Figure 3.8 shows the case for ܧி >  ிand Figure 3.9 shows the case forܧ

ிܧ < ிܧ . 

Whenܧி >  ி, the electron concentration is larger than the holeܧ

concentration, and when ܧி <  ி, the hole concentration is larger thanܧ

electron concentration. When the density of electrons is greater  than the 

density of holes, the semiconductor is ݊ type; donor impurity atoms have 

been added. 
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Figure 3.8 Density of states functions, Fermi-Dirac probability function, and 

areas representing electron and hole concentrations for the case when ܧிis a 

bove  the intrinsic Fermi energy. 

 

Figure 3.9 Density of states functions, Fermi-Dirac probability function, and 

areas representing electron and hole concentrations for the case when ܧி  is 

below the intrinsic Fermi energy. 

When the density of holes is greater than the density of electrons, the semi-

conductor is -type; acceptor impurity atoms have been added. 

The Fermi energy level in a semiconductor changes as donor and acceptor 

impurity are added. The expressions previously derived for the thermal-

equilibrium concentration electrons and holes, given by Equations (3.11) and 

(3.20) are general equations for ݊and  in terms of the Fermi energy. 

These equations are again 

݊ = ܰ exp 
ܧ)− − (ிܧ

݇ܶ
൨																																																																																(3.29) 

And 
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 = ௩ܰ exp 
ிܧ)− − (௩ܧ

݇ܶ ൨																																																																																(3.30) 

In an ݊-type semiconductor, electrons are referred to as the majority carrier 

and holes as the minority carrier. In a -type semiconductor it will be the 

inverse. 

We may derive another form of the equations for the thermal-equilibrium 

concentrations of electrons and holes. If we add and subtract an intrinsic 

Fermi energy in the exponent of Equation (3.11), we can write 

݊ = ܰ exp ቈ
ܧ)− − (ிܧ + ிܧ) − (ிܧ

݇ܶ
																																																					(3.31) 

or 

݊ = ܰ exp ቈ
ܧ)− − (ிܧ

݇ܶ
 exp ቈ

ிܧ)− − (ிܧ
݇ܶ

																																											(3.32) 

The intrinsic carrier concentration is given by 

݊ = ܰ exp ቈ
ܧ)− − (ிܧ

݇ܶ 																																																																(3.33) 

so that the thermal-equilibrium electron concentration can be written as 

Thermal-equilibrium electron concentration (expressed in terms of intrinsic 

concentration) 

݊ = ݊ exp 
ிܧ)− − (ிܧ

݇ܶ ൨																																																																															(3.34) 

Similarly, if we add and subtract an intrinsic Fermi energy in the exponent of 

Equation (3.20) we obtain 

Thermal-equilibrium hole concentration (expressed in terms of intrinsic 

concentration) 
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 = ݊ exp 
ிܧ)− − (ிܧ

݇ܶ ൨																																																																															(3.35) 

As we will see, the Fermi level changes when donors and acceptors are added, 

but Equations (3.34) and (3.35) show that, as the Fermi level changes from 

the intrinsic Fermi level, ݊ and  change from the ݊ value. 

If ܧி > ி then we will have ݊ܧ > ݊and  < , thus ݊ >  .

Similarly, in a -type semiconductor, ܧி < ிܧ  so that  > ݊and ݊ < ݊, 

thus  > ݊[1] . 

3.6.2The ݊product: 

We may take the product of the general expressions for ݊ and  as given in 

Equations (3.11) and (3.20), respectively: 

݊ = ܰ ௩ܰ exp 
ܧ)− − (ிܧ

݇ܶ ൨ exp 
ிܧ)− − (௩ܧ

݇ܶ ൨																																				(3.36)	

which may be written as 

݊ = ܰ ௩ܰ exp 
ܧ−
݇ܶ

൨																																																																																									(3.37)	

As Equation (3.37) was derived for a general value of Fermi energy, the 

values of ݊ and  are not necessarily equal. 

However, Equation (3.37) is exactly the same as Equation (3.24), which we 

derived for the case of an intrinsic semiconductor. 

We then have that, for the semiconductor in thermal equilibrium, 

݊Equation 

݊ = ݊ଶ																																																																																																														(3.38) 

Equation (3.38) states that the product of n0and p0is always a constant for a 

given semiconductor material at a given temperature. 
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Although this equation seems very simple, it is one of the fundamental 

principles of semiconductors in thermal equilibrium. 

It is important to keep in mind that Equation (3.38) was derived using the 

Boltzmann approximation. 

If the Boltzmann approximation is not valid, then Equation (3.38) is not valid. 

An extrinsic semiconductor in thermal equilibrium does not, strictly speaking, 

contain an intrinsic carrier concentration, although some thermally generated 

carriers are present. 

The intrinsic electron and hole carrier concentrations are modified by the 

donor or acceptor impurities[1] . 

3.6.3 Degenerate and No degenerate Semiconductors: 

In our discussion of adding do-pant atoms to a semiconductor, we have 

implicitly assumed that the concentration of do-pant atoms added is small 

when compared to the density of host or semiconductor atoms. 

The small number of impurity atoms are spread far enough apart so that there 

is no interaction between donor electrons for example in an ݊-type material . 

We have assumed that the impurities introduce discrete no interacting donor 

energy states in the ݊-type semiconductor and discrete, non interacting 

acceptor states in the -type semiconductor. 

These types of semiconductors are referred to as non degenerate 

semiconductors. If the impurity concentration increases, the distance between 

the impurity atoms decreases and a point will be reached when donor 

electrons, for example, will begin to interact with each other. 

When this occurs, the single discrete donor energy will split into a band of 

energies. As the donor concentration further increases, the band of donor 

states widens and may overlap the bottom of the conduction band. 
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This overlap occurs when the donor concentration becomes comparable with 

the effective density of states. 

When the concentration of electrons in the conduction band exceeds the 

density of states ܰ , the Fermi energy lies within the conduction band. 

This type of semiconductor is called a degenerate ݊-type semiconductor. In a 

similar way, as the acceptor doping concentration increases in a -type 

semiconductor, the discrete acceptor encegy states will split into a band of 

energies and may overlap the top of the valence band. 

The Fermi energy will lie in the valence band when the concentration of holes 

exceeds the density of states ௩ܰ. 

This type semiconductor is called a degenerate -type semiconductor. 

Schematic models of the energy-band diagrams for a degenerate ݊-type and 

degenerate -type semiconductors are shown in Figure 3.10. 

 

Figure 3.10 Simplified energy-band diagrams for degenerately doped (a) ݊-

type and (b) -type semiconductors. 

The energy states below ܧி are mostly filled with electrons and the energy 

state above ܧி are mostly empty. 

In the degenerate ݊-type semiconductor, the states between ܧி and ܧ are 

mostly filled with electrons, thus, the electron concentration in the conduction 

band is very large. 
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Similarly, in the degenerate p-type semiconductor, the energy states between 

 are mostly empty thus, the hole concentration in the valence band isܧ ௩andܧ

very large[3] . 

3.7 Statistics of Donors and Acceptors: 

We discussed the Fermi-Dirac distribution function, which give the 

probability that a particular energy state will be occupied by an electron. 

We need to reconsider this function and apply the probability statistics to the 

donor and acceptor energy states[3] . 

3.7.1    Probability Function: 

One postulate used in the derivation of the Fermi-Dirac probability function 

was the Pauli Exclusion Principle, which states that only one particle is 

permitted in quantum state. 

The Pauli Exclusion Principle also applies to the donor and acceptor states. 

Suppose we have ܰ electrons and ݃ quantum states, where the subscript ݅ 

indicates the ith energy level. 

There are ݃ ways of choosing where to put the first particle. 

Each donor level has two possible spin orientations for the donor electron: 

thus each donor level has two quantum states. 

The insertion of an electron into one quantum state, however, precludes 

putting an electron into the second quantum state. By adding one electron, the 

vacancy requirement of the atom is satisfied, and the addition of a second 

electron in the donor level is not possible. 

The distribution function of donor electrons in the donor energy states is then 

slightly different than the Fermi-Dirac function.   The probability function of 

electrons occupying the donor state is 
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݊ௗ =
ௗܰ

1 + ଵ
ଶ
expቀாିாಷ

்
ቁ
																																																																																					(3.39)	

where݊ௗ is the density of electrons occupying the donor level and ܧௗ is the 

energy of the donor level. The factor 1/2 is a direct result of the spin factor 

just mentioned. 

The 1/2 factor is sometimes written as 1/݃ where ݃ is called a degeneracy 

factor. Equation (3.39) can also be written in the form 

݊ௗ = ௗܰ − ௗܰ
ା																																																																																																						(3.40)	

where ௗܰ
ା is the concentration of ionized donors. 

In many applications we will be interested more in the concentration of 

ionized donors than in the concentration of electrons remaining in the donor 

state. 

If we do the same type of analysis for acceptor atoms .we obtain the 

expression 

 =
ܰ

1 + ଵ

exp ቀாಷିாೌ

்
ቁ
= ܰ − ܰ

ି																																																																	(3.41	

where ܰ is the concentration of acceptor atoms, ܧ is the acceptor energy 

level, is the concentration of holes in the acceptor states and ܰ
ି is the 

concentration of ionized acceptors . A hole in an acceptor state corresponds to 

an acceptor atom that is neuturally charged and still has an "empty" bonding 

position. 

The parameter ݃ is, again a degeneracy factor. 

The ground state degeneracy factor ݃ is normally taken as four for the 

acceptor level in silicon and gallium arsenide because of the detailed band 

structure. 
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3.7.2Complete Ionization and Freeze-Out: 

The probability function for electrons in the donor energy state was just given 

by Equation (3.39). 

If we assume that ܧௗ − ܧ ≫ ݇ܶthen 

݊ௗ ≈
ௗܰ

ଵ
ଶ
exp ாିாಷ

்

= 2 ௗܰ exp
ௗܧ)− − (ிܧ

݇ܶ 																																																					(3.42) 

If (ܧௗ − (ிܧ ≫ ݇ܶ, then the Boltzmann approximation is also valid for the 

electrons in the conduction band so from Equation (3.11): 

݊ = ܰ exp ቈ
ܧ)− − (ிܧ

݇ܶ
																																												(3.43) 

We can determine the relative number of electrons in the donor state 

compared with the total number of electrons, therefore we can consider the 

ratio of electrons in the donor state to the total number of electrons in the 

conduction band plus donor state. 

Using the expressions of Equations (3.43) and (3.11), we write 

݊ௗ
݊ௗ + ݊

=
2 ௗܰ exp ቂ

ି(ாିாಷ)
்

ቃ

2 ௗܰ exp ቂ
ି(ாିாಷ)

்
ቃ + ܰ exp ቂ

ି(ாିாಷ)
்

ቃ
																																				(3.44) 

Dividing by the numerator term we obtain: 

݊ௗ
݊ௗ + ݊

=
1

1 + ே
ଶே

exp ቂି(ாିா)
்

ቃ
																																																																			(3.45) 

The factor ܧ −  ௗ is just the ionization energy of the donor electrons. Atܧ

room temperature, then, the donor states are essentially completely ionized. 

At room temperature, there is also essentially complete ionization of the 

acceptor atoms. 
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This ionization effect and the creation of electrons and holes in the conduction 

band and valence band, respectively, are shown in Figure 3.11.  The opposite 

of complete ionization occurs at ܶ =  all electrons are :ܭ	0

 

Figure 3.11: Energy-band diagrams showing complete ionization of (a) donor 

states and (b) acceptor states. 

in their lowest possible energy state; that is, for an ݊-type semiconductor, 

each donor state must contain an electron. Therefore ݊ௗ = ௗܰor ௗܰ
ା = 0. 

We must have, then, from Equation (3.39) that exp(ܧௗ − (ிܧ /݇ܶ = 0. 

Since ܶ = (∞−)this will occur for exp ,ܭ	0 = 0, which means that ܧ >  .ௗܧ

The Fermi energy level must be above the donor energy level at absolute zero. 

In the case of a -type semiconductor at absolute zero temperature, the 

impurity atom will not contain any electrons, so that the Fermi energy level 

must be below the acceptor energy state. 



82 
 

 

Figure 3.12 Energy-band diagrams at ܶ =  type- for (a) ݊-type and (b) ܭ	0

semiconductors. 

The distribution of electrons among the various energy states, and hence the 

Fermi energy, is a function of temperature. A detailed analysis shows that at 

ܶ =  ௗ for the ݊-typeܧ  andܧ the Fermi energy is halfway between ܭ	0

material and halfway between ܧand ܧ௩for the -type material. 

Figure 3.12 shows these effects. 

No electrons from the donor states are thermally elevated into the conduction 

band; this effect is called freeze-out. 

Similarly, when no electrons from the valance band are elevated into the 

acceptor states, the effective also called freeze-out. 

Between ܶ = ܶ freeze-out, and ,ܭ	0 =  complete ionization, we have ,ܭ	300

partial ionization of donor or acceptor atoms[3] . 

3.8 Charge Neutrality: 

In thermal equilibrium the semiconductor crystal is electrically neutral. 

The electrons are distributed among the various energy stats, creating 

negative and positive charges, but the net charge density is zero. 
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This charge-neutrality condition is used determine the thermal-equilibrium 

electron and hole concentrations as a function of the impurity doping 

concentration[3] . 

3.8.1 Compensated Semiconductor: 

A compensated semiconductor is one that contains both donor and acceptor 

impurity atoms in the same region. 

A compensated semiconductor can be formed. for example. by diffusing 

acceptor impurities into an ݊-type material or viceversa. 

An ݊-type compensated semiconductor occurs when ௗܰ > ܰand a -type 

compensated semiconductor occurs when ܰ > ௗܰ. 

If ௗܰ = ܰwe have a completely compensated semiconductor that has, as we 

will show, the characteristics of an intrinsic material[3] . 

3.8.2Equilibrium Electron and Hole Concentrations: 

Figure 3.13 shows the energy-band diagram of a semiconductor when both 

donor and acceptor impurity atoms are added to the same region to form a 

compensated semiconductor.    The figure shows how the electrons and 
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Figure 3.13 Energy-band diagram of a compensated semiconductor showing 

ionized and un-ionized donors and acceptors. 

holes can be distribute among the various states. The charge neutrality 

condition is expressed by equating the density of negative charges to the 

density of positive charges: 

݊ + ܰ
ି =  + ௗܰ

ା																																																																																												(3.46) 

or 

݊ + ( ܰ − ( =  + ( ௗܰ − ݊ௗ)																																																																	(3.47) 

where݊ and  are the thermal-equilibrium concentrations of electrons and 

holes in the conduction band and valence  band. 

The parameter ݊ௗ is the concentration of electrons in the donor energy states, 

so ௗܰ
ା = ௗܰ − ݊ௗ is the concentration of positively charged donor states. 

Similarly, is the concentration of holes in the acceptor states, so ܰ
ି =

ܰ −  .is the concentration of negatively charged acceptor states
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We have expressions for ݊, , ݊ௗ and  in terms of the Fermi energy and 

temperature. If we assume complete ionization, ݊ௗ and  are both zero, and 

Equation (3.47) becomes 

݊ + ܰ =  + ௗܰ 																																																																																													(3.48) 

we express  as ݊ଶ/݊ then Equation (3.48) can be written as 

݊ + ܰ =
݊ଶ

݊
+ ௗܰ 																																																																																													(3.49) 

which in turn can be written as 

݊ଶ − ( ௗܰ − ܰ)݊ − ݊ଶ = 0																																																																													(3.50) 

The electron concentration no can be determined using the quadratic formula  

Equilibrium electron concentration in compensated semiconductor 

݊ =
ௗܰ − ܰ

2
+ ඨ൬ ௗܰ − ܰ

2
൰
ଶ

+ ݊ଶ																																																					(3.51) 

The positive sign in the quadratic formula must be used, since, jn the limit of 

an intrinsic semiconductor when ܰ = ௗܰ = 0, the electron concentration 

must be a positive quantity or ݊ = ݊. Equation (3.51) is used to calculate 

the electron concentration in an ݊-type semiconductor, or when ௗܰ > ܰ. 

Although Equation (3.51) was derived for a compensated semiconductor, the 

equation is also valid for ܰ = 0. The concentration of electrons in the 

conduction band increases above the intrinsic carrier concentration as we add 

donor impurity atoms. 

At the same time, the minority carrier hole concentration decreases below the 

intrinsic carrier concentration as we add donor atoms. 
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We must keep in mind that as we add donor impurity atoms and the 

corresponding donor electrons, there is a redistribution of electrons among 

available energy stales. 

Figure ??shows a schematic of this physical redistribution. 

 

Figure 3.14: Energy-band diagram showing the redistribution of electrons 

when donors are added. 

A few of the donor electrons will fall into the empty states in the valence band 

and, in doing so, will annihilate some of the intrinsic holes. 

The minority carrier hole concentration will therefore decrease. 

At the same time, because of this redistribution, the net electron concentration 

in the conduction band is not simply equal to the donor concentration plus the 

intrinsic electron concentration. We have seen that the intrinsic carrier 

concentration n is a very strong function of temperature. 

As the temperature increases, additional electron-hole pairs are thermally 

generated so that the ݊ଶ term in Equation (3.51) may begin to dominate. 

The semiconductor will eventually lose its extrinsic characteristics. 



87 
 

Figure 3.15 shows the electron concentration versus temperature in silicon 

doped with 5 x 1014 donors per cm3. As the temperature increases, we can see 

where the intrinsic concentration begins to dominate. 

Also shown is the partial ionization, or the onset of freeze-out, at the low 

temperature. For the case of holes we obtain in an analogous way 

Equilibrium hole concentration in compensated semiconductor 

 =
ௗܰ − ܰ

2
+ ඨ൬ ௗܰ − ܰ

2
൰
ଶ

+ ݊ଶ																																																														(3.52) 

where the positive sign must be used. 

Equation (3.52) is used to calculate the thermal equilibrium majority carrier 

hole concentration in a -type semiconductor, or when ܰ > ௗܰ. 

 

Figure 3.15 Electron concentration versus temperature showing the three 

regions: partial ionization, extrinsic and intrinsic. 

This equation also applies for ௗܰ = 0. Equations (3.51) and (3.52) are used to 

calculate the majority carrier electron concentration  in an n-type 

semiconductor and majority carrier hole concentration in a -type semi 

conductor. 
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The minority carrier hole concentration an ݊-type semicon-ductor could 

theoretically be calculated from Equation (3.52). However we would be sub 

stracting  two numbers two big numbers which from a practical point of view 

is not possible. 

The minority carrier concentrations are calculated from ݊ = ݊ଶ once the 

majority carrier concentration   has been determined[1] . 

3.9 Position of the Fermi Energy Level: 

We discussed how the electron and hole concentrations change as the Fermi 

energy level moves through the band gap energy. 

We calculated the electron and hole concentrations as a function of donor and 

acceptor impurity concentrations. 

We can now determine the position of the Fermi energy level as a function of 

the doping concentrations and as a function of temperature[3] . 

3.9.1   Mathematical Derivation: 

If we assume the Boltzmann approximation to be valid, then from Equation 

(3.11) we have ݊ = ܰ exp[−(ܧ −  .[ܶ݇/(ிܧ

We can solve for ܧ −  ி from this equation and obtainܧ

ܧ − ிܧ = ݇ܶ ln ൬ ܰ

݊
൰																																																																																								(3.53) 

where݊ is given by Equation (3.51).  

If we consider an ݊-type semiconductor in which ௗܰ ≫ ݊ then ݊ ≈ ௗܰ so 

that 

ܧ − ிܧ = ݇ܶ ln ൬ ܰ

ௗܰ
൰																																																																																								(3.54) 
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We may note that if we have a compensated semiconductor, then the ௗܰ term 

in Equation (3.54) is simply replaced by ௗܰ − ܰ or the net effective donor 

concentration. 

We may develop a slightly different expression for the position of the Fermi 

level. We had from Equation (3.34) that ݊ = ݊ଶ exp[(ܧி −  ி)/݇ܶ]. Weܧ

can solve for ܧி −  ி asܧ

ிܧ − ிܧ = ݇ܶ ln ൬
݊
݊
൰																																																																																							(3.55) 

Equation (55) can be used specifically for an ݊-type semicon-ductor, where no 

is given by Equation (3.51) to find the difference between the Fermi level and 

the intrinsic Fermi level as a function of the donor concentration. 

We may note that, if the net effective donor concentration is zero, that is, 

ௗܰ − ܰ = 0 then ݊ = ݊and ܧி = ிܧ . 

A completely compensated semiconductor has the characteristics of an 

intrinsic material in terms of carrier concentration and Fermi level position. 

For the case of a -type semiconductor we obtain in a similar way the formula  

ிܧ − ௩ܧ = ݇ܶ ln ൬ ௩ܰ


൰																																																																																					(3.56) 

which, in the case ܰ ≫ ݊becomes 

ிܧ − ௩ܧ = ݇ܶ ln ൬ ௩ܰ

ܰ
൰																																																																																								(3.57) 

It’s have also 

ிܧ − ிܧ = ݇ܶ ln ൬

݊
൰																																																																																						(3.58) 

These results are schematically shown in figure 3.16 
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Figure 3.16 Position of Fermi level for an (a) ݊-type ( ௗܰ > ܰ) and (b) -

type ( ܰ > ௗܰ) semiconductor[3] . 

3.9.2Variation of ࡲࡱwith Doping Concentration and Temperature : 

We may plot the position of the Fermi energy level as a function of the 

doping concentration. 

Figure 3.17 shows the Fermi energy level as a function of donor concentration 

(݊-type) and as a function of acceptor concentra-tion (p-type) for silicon at 

ܶ =  .ܭ	300

As the doping level increases the Fermi energy level moves closer to 

conduction band for the ݊-type material and closer to the valence band for the 

 type material. The intrinsic carrier concentration is a strong function of-

temperature, so that ܧி is a function of temperature also. 

Figure 3.18 shows the variation of the Fermi energy level in silicon with 

temperature for several donor and acceptor concentrations. 

As the temperature increases, n2 increases and EF moves closer to the intrinsic 

Fermi level. At high temperature the semiconductor material begins to lose its 

extrinsic characteristics and begins to behave more like an intrinsic 

semiconductor. 
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Figure 3.17 Position of Fermi level as a function of donor concentration (݊-

type) and acceptor concentration (-type). 

 

Figure 3.18 Position of Fermi level as a function of temperature for various 

doping concentrations. 
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At the very low temperature freeze-out occurs: the Boltzmann approximation 

is no longer valid and the equations we derived for the Fermi-level position 

no longer apply. 

At the low temperature where freeze-out occurs the Fermi level goes above 

 .type material- for theܧ ௗ for the ݊-type material and belowܧ

3.9.3 Relevance of the Fermi Energy : 

An important point is that in thermal equilibrium, the Fermi energy level is a 

constant throughout a system. 

We will not prove this statement. but we can intuitively see its validity by 

considering the following example. 

Suppose we have a particular material, A, whose electrons are distributed in 

the energy states of an allowed band as shown in Figure 3.19a. 

Most of the energy states below ܧிcontain electrons and most of the  energy 

states above ܧிare empty of electrons. 

 

Figure 3.19 The Fermi energy of (a) material A in thermal equilibrium, (b) 

material B in thermal equilibrium, (c) materials A and B at the instant they are 

placed in contact and (d) materials A and B in contact at thermal 

equilibrium[3] . 



93 
 

Chapter four 

Experiment 
4.1 Introduction: 

In a material whose electrical conduction results from migration of a 

unique charge carrier species, Either electrons or ions, the electrical 

conductivity ߪ = ݊݁ߤ,where݊ is the effective charge carrier 

concentration, (e) is the charge for the single  

In the case of ion conductive glasses ,the absence of experimental 

data on  ne and µ leads to different interpretation, assuming that  

either all the ions move simultaneously with a low mobility or only 

a small fraction of them move with a higher mobility at any time . 

The charge carrier concentration of most electronic conductors such 

as semiconductors can be determined separately by measuring both 

Hall's coefficient .however, in ionic conductors, the mobility of ions 

is lower than that of electrons in semiconductors.[5] 

4.2Aim of experiment: 

Calculate concentration of charge carriers and the energy gab in 

semiconductor. 

4.3 The Theory: 

In semiconductors the resistance is given by: 

ࢀࡾ 	 = ࡾ ∗ ࢞ࡱ ൬−
ࢍࡱ
 ∗  ൰ࢀࡷ

ࢀࡾࡸ = ࡾܖۺ ൬−
ࢍࡱ

൰ ∗


ࢀ
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From this relation we find the concentration: 

 = −)࢞ࡱ	
ࢍࡱ
ࢀࡷ

)	 

ࢀࡾ =  		࢚ࢇ࢚࢙࢙ࢋ࢘	࢛࢝	ࢋࢎ࢚

ࡾ 	 =  		࢚ࢇ࢚࢙࢙ࢋ࢘	࢝

ࢀࡾ


=



 

ࢀࡾ = 



 

 			࢚ࢇࢎ࢚	࢙

 =
	


 

 		࢚ࢇ࢚࢘ࢋࢉࢉ	࢙							

 =  															ࢋ࢘࢝	ࢌ	ࢎ࢚ࢍࢋ	ࢋࢎ࢚

4.4 The Apparatus: 

_sample of semiconductor(as shown figure below) place within a glass tube 

thin walls installed on the base metal, resistance of this sample(200Ω) in the 

degree(20 0c). 

_bridge: the bridge consist of the unknown resistance(the sample)and 

known resistance 100 ohm(resistor tray) and two resistance both 

wire and installed on a ruler and holder of three stalls. 

Variable resistors tray (0-1111Ω)._ 

Thermometer its range from zero to 300℅. 
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Empire scale 

 

Figure 4-1 the sample 
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Figure 4-2 the bridge 

 

 

 

 

 

 

 

 

Figure 4-3 the oven 
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~glvanomitr  light that indicates the balance of the bridge 

~ oven for heating: is the electric oven being able to(200W) 

contains a cylindrical chamber heated length (10cm)in 

diameter(3.7cm) closing the  gap nozzle holder metal sample. And 

also it contains slot backdrop diameter (1.5) hole to put the heat 

balance to measure the temperature and the cable feeding. 

~connecting wires 

4.5Results: 

ni Eg×10-20 Ns Ni L2 L1 T 

-2.492×10-38 2.09 9968.4 51.51 66 34 303 

-2.616×10-38 2.159 10465.9 69.49 59 41 313 

-2.743×10-38 2.228 10971.4 100 50 50 323 

-2.871×10-37 2.298 11484.9 138.09 42 58 333 

-3.002×10-38 2.366 12006.1 194.1 34 66 343 

-3.134×10-38 2.435 12534.9 257.1 28 72 353 

-3.268×10-36 2.505 13071.4 354.5 22 78 363 

-3.404×10-36 2.574 13615.2 455.6 18 82 373 

-3.542×10-36 2.643 14166.4 525 16 84 383 

-3.681×10-36 2.712 14724.8 614.3 14 86 393 

-3.824×10-36 2.781 15290.4 733.3 12 88 403 

-3.969×10-36 2.849 15863.1 1150 8 92 413 

-4.111×10-36 2.919 16442.7 2400 4 96 423 
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Figure (4.4) relation between concentration & temperature 

4.6 Calculation: 

The intrinsic charge carrier concentration: 

ܰ = ௦ܰݔܧ൫−ܧ/2ܶܭ൯																																																																					(4.1) 

Then: 

Ns = the number per unit volume of effectively available state. 

Eg = energy gap. 

K= Boltzmann constant.(1.38×10-23J/Kelvin). 
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ܶܭ =
ܧ
5 																																																																																													(4.2) 

ܧ = 5 ∗ ݇ܶ																																																																																								(4.3) 

 

So that: 

ݏܰ = 2൬݉ ∗
݇ܶℎ2
ߨ2

൰
ଵ.ହ

= (݉∗/݉)ଵ.ହ ∗ ൬
ܶ

ܭ300
൰
ଵ.ହ

2.5 ×
10ଵଽ

	ଷ݉ܥ
(4.4) 

Effective mass = ݉∗  

m = The electron mass.(for silicon the rate of effective mass and 

electron mass is equal to 0.543). 

 Then: 

ݏܰ = [0.543]ଵ.ହ 
ܶ
300൨

ଵ.ହ

× 2.5 × 10ଶହ 

= 0.400 
1
300൨

ଵ.ହ

ܶଵ.ହ × 2.5 × 10ଶହ

= 0.400 × 1.89 × 10_ସ × 2.5 × 10ଶହ 	

= 1.89ܶଵ.ହ																																																																																																											(4.5) 

4.7 Conclusion: 

After  conduct  this  study  we  conclusion : 

-The concentration of electrons in the conduction band is equal to the 

concentration of holes in the valence band. 

-Whenever increase the temperature decreased in the concentration and 

energy gap. 
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4.8 Recommendation: 

Recommend advanced research in this area and  find an easy 

alternative  methods to calculated charge carriers concentration. 
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