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Chapter 1 

Spectral Properties and Invariant Subspaces 

       We show that if an invariant subspace 𝐽 contains a function that is bounded away from 0 

on some neighborhood of a point 𝜆  on the unit circle 𝕋 , then the spectrum of 𝑧[𝐽] , 

multiplication by 𝑧, when regarded as operating on the quotient space 𝐿𝑎
2 (𝔻) 𝐽⁄ , does not 

contain the point 𝜆. A consequence of this result is that the spectrum associated with the 

invariant subspace of all functions vanishing on a prescribed Bergman space zero sequence 
coincides with the closer of the sequence. 

Section (1.1): Invariant Subspaces in the Bergman Space 

    Let 𝐿𝑎
2 (𝔻) denote the standard Bergman space of all holomorphic functions on the open 

unit disc 𝔻 in the complex plane ℂ that satisfy the integrability condition  

 ‖𝑓‖𝐿2 = (∫|𝑓(𝑧)|
2𝑑𝑆(𝑧)

 

𝔻

)

1
2⁄

< ∞                                                        (1) 

Here, 𝑑𝑆 denotes area measure in  ℂ, normalized by a constant factor  

𝑑𝑆(𝑧) =
𝑑𝑥𝑑𝑦

𝜋⁄ ,    𝑧 = 𝑥 + 𝑖𝑦 

A closed subspace 𝐽 of  𝐿𝑎
2 (𝔻) is said to be 𝑧-invariant, or just invariant, proved the product 

𝑧𝑓  belongs to 𝐽 whenever 𝑓 ∈ 𝐽. Here, we use the standard notation 𝑧 for the coordinate 

function 

𝑧(𝜆) = 𝜆,   𝜆 ∈ 𝔻 

The structure of the lattice of invariant subspace in 𝐿𝑎
2 (𝔻) has attracted a lot of attention from 

operator theorists as well as function theorists , but most results have been disappointing, in 

the sense that one realizes that no simple characterization such as is known for the Hardy 

space 𝐻2(𝔻) is possible for the Bergman space. The famous theorem on the invariant 

subspace of  𝐻2(𝔻) is due to Arne Beurling [2], and it asserts that every z-invariant subspace 

𝐽 of 𝐻2(𝔻), analogously defined as for the Bergman space, is either trivial, that is,  𝐽 = {0},or 

has the form 𝐽 = 𝑢𝐻2(𝔻) ,where u is an inner function, that is, a bounded analytic function 

on 𝔻 with non-tangential boundary values having modulus 1 almost everywhere . 

Given an invariant subspace 𝐽 of Bergman space 𝐿𝑎
2 (𝔻), consider the operator 𝑧[𝐽]:𝐿𝑎

2 (𝔻) ∕
𝐽 → 𝐿𝑎

2 (𝔻) ∕ 𝐽 defined by the relation  

 𝑧[𝐽](𝑓 + 𝐽) = 𝑧𝑓 + 𝐽,   𝑓 ∈ 𝐿𝑎
2 (𝔻)                                                                (2) 

We write 𝜎(𝑧[𝐽]) for the spectrum of the operator 𝑧[𝐽], which consists of those 𝜆 ∈ ℂ for 

which the operator 𝜆 − 𝑧[𝐽], acting on 𝐿𝑎
2 (𝔻) ∕ 𝐽,is not invertible. It is well known that the 

spectrum 𝜎(𝑧[𝐽]) is a compact subset of the closed unit disc  �̅� . Because the lattice of 

invariant subspace of the Bergman space is very rich, it is appropriate to also consider another 
spectral notation (we may call it the weak spectrum): 𝜎′(𝑧[𝐽]) denote the collection of all 𝜆 ∈
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ℂ for which the operator 𝜆 − 𝑧[𝐽]:𝐿𝑎
2 (𝔻) ∕ 𝐽 → 𝐿𝑎

2 (𝔻) ∕ 𝐽 is not onto. What can go wrong is 
that 𝜆 − 𝑧[𝐽] need not be one-to-one even if it is onto; this occurs precisely (for 𝜆 ∈ 𝔻) when 

the invariant subspace fails to have what Richter[3] calls the codimension 1 property. It is not 

difficult to see that the set 𝜎′(𝑧[𝐽]) is also a compact subset of  �̅�, and clearly we have the 

inclusion 𝜎′(𝑧[𝐽]) ⊂ 𝜎(𝑧[𝐽]). There are cases when 𝜎(𝑧[𝐽]) = �̅� and 𝜎′(𝑧[𝐽]) = 𝕋; for an 
example [4]. 

The weak spectrum �́�(𝑧[𝐽]) is as follows: if 𝜆 is a complex number, we have 𝜆 ∈ ℂ ∖ 𝜎′(𝑧[𝐽]) 
if and only if   

(𝜆 − 𝑧)𝐿𝑎
2 (𝔻)+ 𝐽 = 𝐿𝑎

2 (𝔻)                                                         (3) 

The work on spectra associated with invariant subspaces in the Bergman space can be found 
in [3,5,6]. 

Theorem (1.1.1)(Richter):[1]    Let 𝐽 be an invariant subspace of 𝐿𝑎
2 (𝔻), other than the 

trivial subspace {0}, if 𝐽 has the codimension 1 property  𝜎′(𝑧[𝐽]) = 𝜎(𝑧[𝐽]). If, on the other 

hand, 𝐽 does not have the codimension 1 property, then 𝜎(𝑧[𝐽]) = �̅�, and 𝜎′(𝑧[𝐽]) ⊃ 𝕋. 

Lemma (1.1.2):[1]   Every invariant subspace of 𝐽 of the Bergman space 𝐿𝑎
2 (𝔻), other than 

{0}, contains a non-identically vanishing function 𝐺𝐽 ,which extends to a holomorphic 

function on the region  

{𝑧 ∈ ℂ: 1 ∕ �̅� ∉ 𝜎(𝑧[𝐽])} 

and has |𝐺𝐽(𝑧)| ≥ 1 on the union of arcs 𝕋 ∖ 𝜎(𝑧[𝐽]). 

Proof:    The assertion is void if  𝜎(𝑧[𝐽]) = �̅�, so we may as well assume that 𝐽 has the 

codimension 1 property, by Theorem (1.1.1). then the subspace 𝑧𝐽 also has the codimension 

1 property [3], so by Theorem (1.1.1)  𝜎(𝑧[𝑧𝐽]) = 𝜎′(𝑧[𝑧𝐽]). We show that  

    𝜎(𝑧[𝑧𝐽]) = 𝜎(𝑧[𝐽]) ∪ {0}                                                                      (4) 

It is sufficient to prove this equality with the 𝜎(. )’s replaced by 𝜎′(. )’s. By definition, if 𝐼is 

an invariant subspace, 𝜆 ∈ ℂ ∖ 𝜎(𝑧[𝐼]) if and only if  

(𝜆 − 𝑧)𝐿𝑎
2 (𝔻)+ 𝐼 = 𝐿𝑎

2 (𝔻) 

Clearly, the weak spectrum has the monotonicity property that 𝜎′(𝑧[𝐼′]) ⊃ 𝜎′(𝑧[𝐼])  if 𝐼′ is 
another invariant subspace with 𝐼′ ⊂ 𝐼. From this we see that   𝜎′(𝑧[𝑧𝐽]) ⊃ 𝜎′(𝑧[𝐽]), and it is 

not difficult to see that 0 ∈ 𝜎′(𝑧[𝑧𝐽]) directly from the definition. For these reasons, to verify 

(4) we just need to show  𝜎′(𝑧[𝑧𝐽]) ⊂ 𝜎′(𝑧[𝐽])⋃{0}. To this end, let us take a 𝜆 ∈ ℂ ∖
𝜎′(𝑧[𝐽]) ∖ {0}, and try to show that 𝜆 ∈ ℂ ∖ 𝜎′(𝑧[𝑧𝐽]).  By the definition of the spectrum, we 

have that  

(𝜆 − 𝑧)𝐿𝑎
2 (𝔻)+ 𝐽 = 𝐿𝑎

2 (𝔻), 

So by multiplying both sides by 𝑧, we have in particular  

(𝜆 − 𝑧)𝐿𝑎
2 (𝔻)+ 𝑧𝐽 ⊃ 𝑧𝐿𝑎

2 (𝔻) 
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There are functions in (𝜆 − 𝑧)𝐿𝑎
2 (𝔻) that do not vanish at 0, for instance the function 𝜆 − 𝑧 

itself, so that since 𝑧𝐿𝑎
2 (𝔻) has codimension 1  in 𝐿𝑎

2 (𝔻), we must in fact have 

(𝜆 − 𝑧)𝐿𝑎
2 (𝔻)+ 𝑧𝐽 = 𝐿𝑎

2 (𝔻). 

This show that 𝜆 ∈ ℂ ∖ 𝜎′(𝑧[𝑧𝐽]), as asserted. 

We prove the assertion of the Lemma. Let 𝐺𝐽 ∈ 𝐽⊝ 𝑧𝐽  have norm 1  then the kernel 

representation formula  

𝐺𝐽(𝜆) = 〈𝐺𝐽, (1 − �̅�𝑧)
−2〉𝐿2 ,    𝜆 ∈ 𝔻, 

generalizes to  

𝐺𝐽(𝜆) = 〈𝐺𝐽 + 𝑧𝐽, (1 − �̅�𝑧[𝑧𝐽])
−2
(1+ 𝑧𝐽)〉 𝐿𝛼2 ∕𝑧𝐽, 

where  1+ 𝑧𝐽  denotes the coset containing the constant function 1 in the quotient space   

𝐿𝛼
2 (𝔻) ∕ 𝑧𝐽 , and we see that the expression on the right-hand side is a well-defined 

holomorphic function in the variable 𝜆 on the set  

{𝑧 ∈ ℂ: 1 �̅�⁄ ∉ 𝜎(𝑧[𝑧𝐽])}, 

which coincides with 

{𝑧 ∈ ℂ: 1 �̅�⁄ ∉ 𝜎(𝑧[𝐽])}, 

because the additional point 0 in (4) now corresponds to the point at infinity. The functions 

𝐺𝐽  were studied in [7], for instance, it is clear that 𝐺𝐽  has modulus ≥ 1 at every boundary 

point to which it extends continuously.  

Lemma (1.1.3): [1]     Let   𝑓 ∈ 𝐿𝑎
2 (𝔻) be such that on an open disk 𝐷(𝑧0,𝜌), centered at 

𝑧0 ∈ 𝕋, with radius  𝜌 > 0, we have  

|𝑓(𝑧)| > 𝜀,       𝑧 ∈ 𝔻 ∩ 𝐷(𝑧0 ,𝜌), 

for some constant 𝜀 > 0. Then the exists a bounded analytic function 𝑔 on 𝔻 such that  

1

2
< |𝑓(𝑧)𝑔(𝑧)| < 2,        𝑧 ∈ 𝔻∩ 𝐷(𝑧0,𝜌′), 

for some smaller radius 𝜌′, 0 < 𝜌′< 𝜌 . 

Proof:    Consider the function 1 𝑓⁄ , which is homomorphic, zero-free, and bounded on  𝔻∩
𝐷(𝑧0 ,𝜌), we are now in the whole unit disk 𝔻. On the region  𝔻∩ 𝐷(𝑧0 ,𝜌), we are now in a 

situation where we may apply the standard  Nevanlinna  theory, to show that the harmonic 
function  log|𝜀 𝑓⁄ | has boundary values in the sense of distribution theory on  𝔻 ∩ 𝐷(𝑧0 ,𝜌), 
and these boundary values form a negative Borel measure 𝜇. We may then pick a slightly 

smaller radius 𝜌′′, 0 < 𝜌′′ < 𝜌, and let 𝜑 be the Poisson extension to the whole disk 𝔻 

corresponding to the part of the measure 𝜇   that falls upon the arc  𝕋 ∩ 𝐷(𝑧0 ,𝜌′′). The 

negative measure 𝜇 is finite on that arc, because we can map 𝔻 ∩ 𝐷(𝑧0,𝜌) conformally onto 
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𝔻, and on 𝔻, and the mapped measure on 𝕋 corresponding to 𝜇 must be bounded; the rest is 

an exercise in conformal mapping. we now find a bounded holomorphic function 𝑔 on 𝔻 

having  |𝑔| = 𝜀−1 exp(𝜑 ) on 𝔻,and by construction and the Schwarz reflection principle 
, 𝑓𝑔 extends holomorphically across the arc 𝕋 ∩ 𝐷(𝑧0,𝜌′′), and has modulus 1 on it. The 

function 𝑓𝑔 clearly meets the assertion, for some small radius 𝜌′. 

Theorem (1.1.4):[1]    Let   𝐽   be an invariant subspace of 𝐿𝑎
2 (𝔻). Then  𝜎′(𝑧[𝐽]) = 𝑍∗(𝐽). 

Proof:    Richter [3] has shown that 

𝜎′(𝑧[𝐽]) ∩ 𝔻 = 𝑍∗(𝐽) ∩ 𝔻 

By Lemma (1.1.2) 𝑍∗(𝐽) ∩ 𝕋 is contained within 𝜎(𝑧[𝐽]) ∩ 𝕋. this entails that 𝑍∗(𝐽) ∩𝕋 ⊂
𝜎′(𝑧[𝐽]) ∩𝕋, for the following reasons. if 𝐽 fails to have the codimension  1 property, then 

by Theorem (1.1.1)  𝜎′(𝑧[𝐽]) ⊃ 𝕋, which makes the assertion trivial. If, on the other hand, 𝐽 
dose have the codimension 1 property, then  𝜎(𝑧[𝐽]) = 𝜎′(𝑧[𝐽]), and all is well. 

The rest of the proof is devoted to obtaining the reverse inclusion  

𝑍∗(𝐽) ∩ 𝕋 ⊃ 𝜎′(𝑧[𝐽]) ∩ 𝕋. 

Let 𝑓  be a function in 𝐽, and suppose there exists a point 𝜆 ∈ 𝕋 such that for some disk 

centered at 𝜆 with radius 𝑅 > 0, 

𝐷(𝜆, 𝑅) = {𝑧 ∈ ℂ: |𝑧 − 𝜆| < 𝑅}, 

we have  

1 2⁄ < |𝑓(𝑧)| < 2, 𝑧 ∈ 𝐷(𝜆, 𝑅)∩ 𝔻, 

Such a function 𝑓 exists in 𝐽 if and only if 𝜆 ∈ 𝕋 ∖ 𝑍∗(𝐽), by Lemma(1.1.3). we need to show 

that 𝜆 ∉ 𝜎′(𝑧[𝐽]); this amounts to proving that 

(𝜆 − 𝑧)𝐿𝑎
2 (𝔻)+ 𝐽 = 𝐿𝑎

2 (𝔻). 

In other words, we need to show that for every 𝑔 ∈ 𝐿𝑎
2 (𝔻) and ℎ ∈ 𝐿𝑎

2 (𝔻) can be found such 

that  

(𝜆 − 𝑧)ℎ − 𝑔 ∈ 𝐽. 

Fix three real parameters 𝑟1 , 𝑟2 , 𝑟3  with 0 < 𝑟1 < 𝑟2 < 𝑟3 < 𝑅, and let  

𝐷(𝜆,𝑟𝑗) = {𝑧 ∈ ℂ: |𝑧 − 𝜆| < 𝑟𝑗} ,      𝑗 = 1,2,3, 

Be the disk around 𝜆  with radius 𝑟𝑗 . Let 𝜒𝜆  be an infinitely differentiable compactly 

supported function on ℂ with values between 0 and 1, which vanishes off the disk 𝐷(𝜆, 𝑟2) 

and has value 1 on the smaller disk  𝐷(𝜆, 𝑟1). Let the function 𝑞𝜆 solve the �̅�-problem 

  �̅�𝑞𝜆(𝑧) =
𝑔(𝑧)�̅�𝜘𝜆(𝑧)

(𝜆 − 𝑧)𝑓(𝑧)
,       𝑧 ∈ 𝔻;                                                       (5) 
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just put  

 𝑞𝜆(𝑧) = ∫
𝑔(𝜁)�̅�𝜘𝜆(𝜁)

(𝜆− 𝜁)(𝑧 − 𝜁)𝑓(𝜁)
𝑑𝑆(𝜁)

 

𝔻

,    𝑧 ∈ ℂ.                                                (6) 

Note that since the right-hand side of (5) is in 𝐿2(𝔻,𝑑𝑆), and since we are in fact considering 

the convolution of that 𝐿2(𝔻,𝑑𝑆) function with the �̅� − ker(𝜋𝑧)−1  , which locally belongs to 

𝐿𝑞 for every 𝑞 < 2, we see that 𝑞𝜆, as defined by (6), belongs to 𝐿𝑝 (𝔻,𝑑𝑆) for all 𝑝 < ∞. 

One more thing that is immediate is that  𝑞𝜆 is holomorphic off the closure of 𝐷(𝜆, 𝑟2) ∩ 𝔻, 

and in particular bounded on  ℂ ∖ 𝐷(𝜆, 𝑟3) (𝑞𝜆(𝑧) tends to 0 as |𝑧| → ∞). We consider the 

function  

𝑃𝜆(𝑧) = −𝑔(𝑧)𝜘𝜆(𝑧) 𝑓(𝑧)⁄ + (𝜆 − 𝑧)𝑞𝜆(𝑧),     𝑧 ∈ 𝔻, 

which belongs to 𝐿2(𝔻,𝑑𝑆), because 𝑓  is bounded away from 0  on the support of  𝜘𝜆 . 

Moreover, 𝑃𝜆  is holomorphic on 𝔻, since 

�̅�𝑃𝜆(𝑧) = −𝑔(𝑧)�̅�𝜘𝜆(𝑧) 𝑓(𝑧)⁄ + (𝜆 − 𝑧)�̅�𝑞𝜆(𝑧) = 0,    𝑧 ∈ 𝔻, 

Let us assume that we know that 𝑓𝑃𝜆 belongs to 𝐽. We then put  

ℎ(𝑧) = 𝑔(𝑧)
1 − 𝜘𝜆(𝑧)

𝜆 − 𝑧
+ 𝑓(𝑧)𝑞𝜆(𝑧),       𝑧 ∈ 𝔻,                                                  (7) 

and note that 𝑓 is bounded on 𝐷(𝜆, 𝑅)∩ 𝔻, and 𝑞𝜆 is bounded on ℂ ∖𝐷(𝜆,𝑟3 )  and belongs 

to 𝐿2(𝑑𝑆) on 𝔻, so that the product 𝑓𝑞𝜆 clearly is in 𝐿2(𝔻,𝑑𝑆). The function ℎ thus belongs 

to 𝐿2(𝔻,𝑑𝑆), and since  

�̅�ℎ(𝑧) = −𝑔(𝑧)�̅�𝜘𝜆(𝑧) (𝜆− 𝑧)⁄ + 𝑓(𝑧)�̅�𝑞𝜆(𝑧) = 0,    𝑧 ∈ 𝔻, 

ℎ belongs to 𝐿𝑎
2 (𝔻). To check that the function ℎ dose what we set out for it to do, observe 

that 

(𝜆 − 𝑧)ℎ(𝑧) − 𝑔(𝑧) = −𝜘𝜆(𝑧)𝑔(𝑧)+ (𝜆 − 𝑧)𝑓(𝑧)𝑞𝜆(𝑧) = 𝑓(𝑧)𝑃𝜆(𝑧), 

so that the assertion is immediate once we know that 𝑓𝑃𝜆 is in 𝐽. The way 𝑃𝜆  is constructed, 

this function is bounded on 𝔻 ∖𝐷(𝜆,𝑟3 ), and 𝐿2(𝑑𝑆) on 𝔻∩𝐷(𝜆, 𝑟3). The properties of 

function 𝑓  complement those of 𝑃𝜆:𝑓  is bounded on 𝐷(𝜆,𝑅), and 𝐿2(𝑑𝑆) on 𝔻 ∖𝐷(𝜆, 𝑅). 
Using this information, it is not difficult to show that 

𝑓(𝑧)𝑃𝜆(𝜌𝑧) → 𝑓(𝑧)𝑃𝜆(𝑧),       𝑎𝑠 1 > 𝜌 → 1; 

in the norm of 𝐿𝑎
2 (𝔻). Since the function  𝑓(𝑧)𝑃𝜆(𝜌𝑧) belong to 𝐽, for all 𝜌 with 0 < 𝜌 < 1, 

we see that 𝑓𝑃𝜆 ∈ 𝐽.  

Corollary (1.1.5):[1]  Let 𝐴 be a zero sequence in  𝔻 for a function in 𝐿𝑎
2 (𝔻), and consider 

the associated invariant subspace  

ℐ(𝐴) = {𝑓 ∈ 𝐿𝑎
2 (𝔻):𝑓 = 0 on 𝐴}; 



 
6 

counting multiplicities when necessary. Then 𝜎(𝑧[ℐ(𝐴)]) = �̅�, the closure of 𝐴 in �̅�. 

Proof:     Invariant subspace of the type ℐ(𝐴) always have the codimension 1 property [3], 
and consequently 𝜎(𝑧[ℐ(𝐴)]) = 𝜎′(𝑧[ℐ(𝐴)]), by Theorem(1.1.1) so, by Theorem (1.1.4) all 

we need to do is show that 𝑍∗(ℐ(𝐴)) = �̅�. Clearly,  𝑍∗(ℐ(𝐴)) ⊃ �̅�; in [7], there exists a 

function 𝐺𝐴 which vanishes precisely on 𝐴 in 𝔻, extends holomorphically across the set 𝕋 ∖
�̅�, and has modulus ≥ 1 there.  

Section (1.2): Bergman Space Having the Codimension Two Property 

 Following  Kristion Seip [7,8,10],we say that a sequence 𝐴 = {𝑎𝑗}𝑗  is a sampling 

sequence for 𝐿𝑎
2 (𝔻) provided we can find positive constants 𝐾1 ,𝐾2 such that 

𝐾1∫|𝑓(𝑧)|
2𝑑𝑆(𝑧)

 

𝔻

≦∑(1 − |𝑎𝑗|
2
)
2

|𝑓(𝑎𝑗)|
2

𝑗

≦ 𝐾2∫|𝑓(𝑧)|
2𝑑𝑆(𝑧)

 

𝔻

 

holds for all 𝑓 ∈ 𝐿𝑎
2 (𝔻), the sequence 𝐴 is said to be an interpolating sequence for 𝐿𝑎

2 (𝔻), 
provided that to every 𝑙2 sequence {𝑤𝑗}𝑗 ,there exists a function 𝑓 ∈ 𝐿𝑎

2 (𝔻) having  

(1 − |𝑎𝑗|
2
)𝑓(𝑎𝑗) = 𝑤𝑗             for all 𝑗. 

If 𝑓 is a holomorphic function on 𝔻, we write 𝑍(𝑓) for the sequence of zero 𝑓, counting 

multiplicities, provided 𝑓  does not vanish identically. If 𝑓  vanishes identically, we write 
𝑍(𝑓) = 𝔻. A sequence of points in 𝔻 is called a Bergman space zero sequence provided it 

coincides with 𝑍(𝑓)  for some nonidentically vanishing function 𝑓 ∈ 𝐿𝑎
2 (𝔻) . Every 

interpolating sequence 𝐴 for 𝐿𝑎
2 (𝔻) is also a Bergman space zero sequence: just take an 

interpolant for the sequence 𝑤1 = 1,𝑤𝑗 = 0 for all other j, and multiply this function by 𝑧 −
𝑎1 to get a non identically vanishing function that vanishes on the sequence  𝐴. This actually 

only shows that 𝐴 must be a subsequence of a Bergman space zero sequence, but it is well 

known, and not too hard to show, that every subsequence of Bergman space zero sequence is  
itself a zero sequence  [7,8,9]. However, the union of two zero sequence need not be a zero 
sequence [9]; in fact, it may be so far away from being a zero sequence as to be a sampling 

sequence, as we shall see in Theorem(1.2.1). 

Theorem (1.2.1):[4]    There exists a sampling sequence for 𝐿𝑎
2 (𝔻) which is the union of two 

disjoint zero sequences. 

   If ℋ1 and ℋ2 are tow Hilbert spaces, it is standard to denote by  ℋ1⨁ℋ2 their direct sum, 

that is, the linear space of all pairs (𝑥1,𝑥2), with 𝑥1 ∈ ℋ1 and 𝑥2 ∈ ℋ2, supplied with the 

norm  

‖(𝑥1,𝑥2)‖ℋ1⨁ℋ2 = (‖𝑥1‖ℋ1
2 + ‖𝑥2‖ℋ2

2 )
1
2 , 

which makes ℋ1⨁ℋ2 a Hilbert space. If ℋ1 and ℋ2 are closed subspaces of a bigger Hilbert 

space ℋ , one can consider their sum ℋ1 +ℋ2 , and in case ℋ1  and ℋ2  are orthogonal 
subspace, one then replaces the plus sign(+) with a direct plus (⨁) sign. We shall take the 

liberty to write ℋ1⨁ℋ2  provided the closed subspaces ℋ1 and ℋ2 have ℋ1 ∩ℋ2 = {0}, 
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and the direct sum norm on ℋ1⨁ℋ2 is equivalent to the restriction of the ℋ-norm to ℋ1 +
ℋ2,given that ℋ1 ∩ℋ2 = {0}, this last property is equivalent to requiring the sum ℋ1+ℋ2 

to be closed in ℋ, by the closed graph theorem. 

Proposition (1.2.2):[4]    Let 𝐴 and 𝐵  be two disjoint zero sequences whose union is a 
sampling sequence. Then ℐ(𝐴) ∩ ℐ(𝐵) = {0}, and the subspace  ℐ(𝐴) + ℐ(𝐵) is closed in 

𝐿𝑎
2 (𝔻), allowing us to write ℐ(𝐴)⨁ℐ(𝐵) instead of ℐ(𝐴) + ℐ(𝐵).the subspace ℐ(𝐴)⨁ℐ(𝐵) is 

z-invariant, and it has the codimension 2 property. 

Proof:  Write 𝐶 = 𝐴 ∪ 𝐵 , with 𝐶 = {𝑐𝑗}𝑗 , and let 𝑓 ∈ ℐ(𝐴) and 𝑔 ∈ ℐ(𝐵)  be arbitrary. 

Clearly, a sampling sequence cannot be a zero sequence, and hence  ℐ(𝐴)∩ ℐ(𝐵) = {0}. our 

next job is to check that the subspace ℐ(𝐴) + ℐ(𝐵) is closed in 𝐿𝑎
2 (𝔻). Denote by 𝐾1 ,𝐾2 the 

positive constants associated with the sampling property of the sequence  𝐶. 

𝐾1∫|𝑓(𝑧)|
2𝑑𝑆(𝑧)

 

𝔻

≦∑(1 − |𝑐𝑗|
2
)
2

|𝑓(𝑐𝑗)|
2

𝑗

≦ 𝐾2∫|𝑓(𝑧)|
2𝑑𝑆(𝑧)

 

𝔻

. 

Let 𝑓 ∈ ℐ(𝐴) and 𝑔 ∈ ℐ(𝐵) be arbitrary. Then for every point 𝑐𝑗 in the sequence  𝐶, we have 

|𝑓(𝑐𝑗) + 𝑔(𝑐𝑗)|
2
= |𝑓(𝑐𝑗)|

2
+ |𝑔(𝑐𝑗)|

2
 

so that if we use the sampling property of sequence 𝐶, we get 

‖𝑓 + 𝑔‖𝐿2
2 = ∫|𝑓(𝑧) + 𝑔(𝑧)|2𝑑𝑆(𝑧)

 

𝔻

≧ 𝐾2
−1∑(1− |𝑐𝑗|

2
)
2

|𝑓(𝑐𝑗) + 𝑔(𝑐𝑗)|
2

𝑗

=  𝐾2
−1∑(1 − |𝑐𝑗|

2
)
2

(

𝑗

|𝑓(𝑐𝑗)|
2
+ |𝑔(𝑐𝑗)|

2
) ≧ 𝐾1  𝐾2

−1(‖𝑓‖𝐿2
2 + ‖𝑔‖𝐿2

2 ). 

The property we shall focus on is that with 𝜀 = 𝐾1  𝐾2
−1 > 0 

‖𝑓 + 𝑔‖𝐿2
2 ≧ 𝜀(‖𝑓‖𝐿2

2 + ‖𝑔‖𝐿2
2 ),     𝑓 ∈  ℐ(𝐴),   𝑔 ∈ ℐ(𝐵). 

It implies the assertion that ℐ(𝐴) + ℐ(𝐵) is a closed subspace of 𝐿𝛼
2 (𝔻), justifying the change 

of notation to ℐ(𝐴)⨁ℐ(𝐵). Since the subspaces ℐ(𝐴) and ℐ(𝐵) are 𝑧-invariant, their(direct) 

sum ℐ(𝐴)⨁ℐ(𝐵) is 𝑧-invariant as well. What remains to be done is to demonstrate that the 
codimension of  𝑧(ℐ(𝐴)⨁ℐ(𝐵)) in  𝑓 ∈ ℐ(𝐴)  and 𝑔 ∈ ℐ(𝐵)  is 2. Note that if 𝑓 ∈ ℐ(𝐴) and 

𝑔 ∈ ℐ(𝐵), then  

𝑧(𝑓 + 𝑔) = 𝑧𝑓 + 𝑧𝑔 ∈ 𝑧ℐ(𝐴)⨁𝑧ℐ(𝐵). 

So that 

𝑧(ℐ(𝐴)⨁ℐ(𝐵)) = 𝑧ℐ(𝐴)⨁𝑧ℐ(𝐵). 

The direct sum sign is justified because 𝑧ℐ(𝐴) and 𝑧ℐ(𝐵) are closed subspace of ℐ(𝐴) and 

ℐ(𝐵), respectively. The subspaces 𝑧ℐ(𝐴) and 𝑧ℐ(𝐵) have codimension 1  in the spaces ℐ(𝐴) 



 
8 

and ℐ(𝐵) [3], respectively and consequently, their direct sum 𝑧ℐ(𝐴)⨁𝑧ℐ(𝐵) must have 

codimension 2 in ℐ(𝐴)⨁ℐ(𝐵).  

Corollary (1.2.3):[4]   There exist a 𝑧 -invariant subspace of 𝐿𝑎
2 (𝔻)  which has the 

codimension 2 property. Moreover, this z-invariant subspace can be of the form  𝐽 = ℐ(𝐴)+
ℐ(𝐵), where 𝐴 and 𝐵 are tow disjoint Bergman space zero sequences. 

Theorem (1.2.4):[4]   Let 𝐴 and 𝐵 be two disjoint Bergman spaces zero sequences. Then the 

smallest 𝑧 -invariant subspace of 𝐿𝑎
2 (𝔻)   containing both  ℐ(𝐴)  and ℐ(𝐵)  having the 

codimension 1 property is 𝐿𝑎
2 (𝔻)  itself. 

Proof:   Let us for convenience denote by 𝐽  the smallest invariant subspace of 𝐿𝑎
2 (𝔻) 

containing  ℐ(𝐴) and ℐ(𝐵) with the codimension 1 property; the assertion we wish to prove 

is that 𝐽 = 𝐿𝑎
2 (𝔻).  

    Only one of sequences 𝐴 and 𝐵 can contain the point 0, since they are disjoint. Let 𝐴 =
{𝑎𝑗}𝑗=1

∞  be the one that does not contain 0. We may then consider the extremal function 𝐺𝐴 

for the problem 

sup{ 𝑅𝑒 𝑓(0):𝑓 = 0 on 𝐴, ‖𝑓‖𝐿2 ≦ 1} 

which has the property of vanishing only on the sequence 𝐴, among other things, according 

to [7]. Let 𝐴𝑁 be the finite subsequence 𝐴𝑁 = {𝑎𝑗}𝑗=1
𝑁 , and let𝐺𝐴𝑁  be the extremal function 

associated with zero sequence 𝐴𝑁. We know from [7] that 𝐺𝐴𝑁 is a rational function whose 

poles are located at the reflected points  {1 ∕ �̅�𝑗}𝑗=1
𝑁  ; it vanishes precisely at 𝐴𝑁 in the unit 

disk 𝔻 , has |𝐺𝐴𝑁(𝑧)| ≧ 1  on the circle 𝕋 , has ‖𝐺𝐴𝑁‖𝐿2
= 1 , and moreover, it has the 

expansive property   

 ‖𝑓‖𝐿2 ≦ ‖𝐺𝐴𝑁𝑓‖𝐿2
       𝑓 ∈ 𝐿𝑎

2 (𝔻)                                                       (8) 

      Denote by 𝑍(𝐽) the common zero set in 𝔻 of the functions in 𝐽. Since the sequences 𝐴 

and 𝐵 are disjoint, we have 𝑍(𝐽) = 𝜙. Richter [3] has shown that if a 𝑧-invariant subspace 𝐼 
has the codimension 1 property, then if 𝜆 ∈ 𝔻 is any point which does not belong to the 
common zero set 𝑍(𝐼) of  𝐼, and 𝑓 ∈ 𝐼 has 𝑓(𝜆) = 0, the function 𝑓(𝑧) (𝑧 − 𝜆)⁄   also belongs 

to 𝐼. Let us apply this argument repeatedly to the invariant subspace 𝐽, and the function 𝐺𝐴. 

We then obtain as a conclusion that 𝐺𝐴 ∕ 𝐺𝐴𝑁 also belongs to 𝐽, for every positive integer 𝑁. 

But as  𝑁 → ∞,𝐺𝐴 ∕𝐺𝐴𝑁 → 1 pointwise in 𝔻, and by (8),with 𝑓 = 𝐺𝐴 ∕ 𝐺𝐴𝑁,we have  

‖𝐺𝐴 ∕ 𝐺𝐴𝑁‖𝑳𝟐
≦ ‖𝐺𝐴‖𝑳𝟐 = 1 

So that, by [7], 𝐺𝐴 ∕ 𝐺𝐴𝑁 → 1 in norm as 𝑁 → ∞. Hence the constant function 1 has to belong 

to 𝐽  as well. But the  constant function 1  generates, as an invariant subspace, to whole 

Bergman space 𝐿𝑎
2 (𝔻), and we arrive at the function 𝐽 = 𝐿𝑎

2 (𝔻). 

Corollary (1.2.5):[4]   Let 𝐴 and 𝐵 be two disjoint Bergman spaces zero sequences. If one 

of the sequences 𝐴 and 𝐵 does not accumulate at every point of the unit circle 𝕋, then ℐ(𝐴) +
ℐ(𝐵) is dense in 𝐿𝑎

2 (𝔻). 
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Proof:   Let 𝐽 be the norm closure of sum ℐ(𝐴) + ℐ(𝐵), which is an invariant subspace in 

𝐿𝑎
2 (𝔻). In [1,3], the concept of the weak spectrum 𝜎′(𝑧[𝐽]) associated with an invariant 

subspace 𝐼 as introduced, and by [1], we see that for our particular choice 𝐼 = 𝐽, we have 

𝜎′(𝑧[𝐽]) ⊂ 𝐴 ̅ ∩ �̅�. 

       Note that by assumption, the set 𝐴 ̅ ∩ �̅� is a proper closed subset of the unit circle 𝕋. But 
Richter [1,3] has shown that weak spectra associated with invariant subspace not having the 
codimension 1  property must contain the whole unit circle ,and therefore, the invariant 

subspace 𝐽 must necessarily have the codimension 1 property. 

     The pseudohyperbolic metric on  𝔻 given by the expression 

𝜚(𝑧, 𝜁) = |
𝜁 − 𝑧

1− 𝜁̅𝑧
| ,    𝑧, 𝜁 ∈ 𝔻. 

     A sequence (or set) of points 𝐴 = {𝜆𝑗}𝑗  in 𝔻, finite or infinite, is said to be uniformly 

discrete provided that  

inf{𝜚(𝑎𝑗, 𝑎𝑘):𝑗 ≠ 𝑘} > 0. 

     Clearly, a uniformly discrete sequence has to consist of distinct points, and for finite 
sequence, this is the only restriction. 

     If 𝐴 is a sequence of points in the unit disk 𝔻, and 𝜁 ∈ 𝔻 an arbitrary point, let 𝐴𝜁 denote 

the image of  𝐴 under the conformal automorphism of the unit disk  

𝜑𝜁(𝑧) =
𝜁 − 𝑧

1− 𝜁̅𝑧
,   𝑧 ∈  𝔻.  

     Associate with the sequence  𝐴𝜁 the function 𝑛(𝑟, 𝐴𝜁), which counts the number of points 

of 𝐴𝜁 contained with the disk 

{𝑧 ∈  𝔻 ∶ |𝑧| < 𝑟}. 

     Moreover, we shall need the definite integral 

𝑁(𝑟,𝐴𝜁) = ∫ 𝑛(𝑟,𝐴𝜁)𝑑𝑡

𝑟

0

,0 < 𝑟 < 1. 

     If 𝐴(𝑟) now stands for the function  

𝐴(𝑟) = log
1+ 𝑟

1− 𝑟
,   0 < 𝑟 < 1, 

Seip defines his upper density of 𝐴 as 

𝐷+(𝐴) = lim sup
1>𝑟→1

sup
𝜁∈𝐷

𝑁(𝑟, 𝐴𝜁)

𝐴(𝑟)
, 
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and this lower density of 𝐴 as  

𝐷−(𝐴) = lim inf
1>𝑟→1

inf
𝜁∈𝐷

𝑁(𝑟,𝐴𝜁)

𝐴(𝑟)
. 

     For the special case of the un weighted Bergman space. 

Theorem (1.2.6)(Siep):[4]   A sequence 𝐴 of distinct points in 𝔻 is sampling for  𝐿𝑎
2 (𝔻) if 

and only if it can be expressed as a finite union of uniformly discrete sets and it contains a 

uniformly discrete subsequence 𝐴′ for which  𝐷−(𝐴′) > 1 2⁄ . 

Theorem (1.2.7)(Siep):[4]   A sequence 𝐴 of distinct points in 𝔻 is interpolating for 𝐿𝑎
2 (𝔻) 

if and only if it is  uniformly discrete and 𝐷+(𝐴) < 1 2⁄ . 

Theorem (1.2.8):[4]  The exists a sampling sequence 𝐶 for 𝐿𝑎
2 (𝔻)  which is the union of two  

disjoint interpolating sequences 𝐴 and 𝐵 for 𝐿𝑎
2 (𝔻). 

Proof:    The upper half plane 

𝕌 = {𝑧 ∈ ℂ: Im 𝑧 > 0} 

is mapped conformally onto the unit disk 𝔻 by the Moebius mapping  

𝜑(𝑧) = (𝑧 − 𝑖) (𝑧 + 𝑖)⁄ , 𝑧 ∈ ℂ ∖ {−𝑖}. 

We will construct three sequences 𝐴′ ,𝐵′ , and 𝐶′in 𝕌 , and then define 𝐴 = 𝜑(𝐴′) , 𝐵 =
𝜑(𝐵′), and 𝐶 = 𝜑(𝐶′). Fix two real-valued parameters 𝛽, 𝛽 > 1, and  𝛾, 𝛾 > 0, with the 

property that 

2𝜋 < 𝛾 log𝛽 < 4𝜋. 

The sequence 𝐶′ will consist of all points in the upper half plane 𝕌 of the from 

𝑐𝑗,𝑘 = 𝛽
𝑗(𝑘𝛾 + 𝑖), 

where 𝑗, 𝑘 range over the integers, and 𝑖, as always, is the square root of −1. The subsequence 

𝐴′ will consist of all points 

𝑎𝑗,𝑘 = 𝛽
𝑗(2𝑘𝛾+ 𝑖), 

with 𝑗, 𝑘 ranging over the integers, and �́� will be the sequence of all points 

𝑏𝑗,𝑘 = 𝛽
𝑗((2𝑘+ 1)𝛾+ 𝑖), 

again with 𝑗, 𝑘  ranging over the integers, the sequences 𝐴  and 𝐶  are very regular, and 

Siep[10] has already computed their densities: 

𝐷+(𝐶) = 𝐷−(𝐶) =
2𝜋

𝛾 log𝛽
> 1 2⁄ , 
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and 

𝐷+(𝐴) = 𝐷−(𝐴) =
𝜋

𝛾 log𝛽
< 1 2⁄ . 

The sequence 𝐵 is also very regular, although it does not fit the class of regular sequences for 

which Seip has calculated the densities, and it is in fact possible verify that 

𝐷+(𝐵) = 𝐷−(𝐵) =
𝜋

𝛾 log 𝛽
< 1 2⁄  

By Theorem (1.2.6) and (1.2.7)  𝐴 and 𝐵 are interpolating sequences, and 𝐶 is a sampling 
sequence. 

   To carry out a construction of an invariant subspace 𝐼 of  𝐿𝑎
2 (𝔻) having the codimension 𝑛 

property, that is, 𝑧𝐼 should  have codimension 𝑛 in 𝐼, along the lines, we need to find invariant 

subspaces 𝐼1 , 𝐼2 , … , 𝐼𝑛, all having the codimension 1 property, 

  ‖𝑓1 +⋯+ 𝑓𝑛‖𝐿2 ≧ 𝜀(‖𝑓1‖𝐿2 + …+ ‖𝑓𝑛‖𝐿2 )                                                 (9) 

holds for some 𝜀 > 0 and for all 𝑓1 ∈ 𝐼1 ,𝑓2 ∈ 𝐼2 ,… , 𝑓𝑛 ∈ 𝐼𝑛 . Then the (direct) sum  

𝐼 = 𝐼1⨁𝐼2⊕…⊕ 𝐼𝑛  

has the codimension 𝑛 property. There are several ways to get such a collection of invariant 
subspace; the one outlined here was suggested to me by Boris Korenbllum [11]. 

   Let the sequence 𝐶′ be the regular sequence in the upper half plane 𝕌 appearing in the proof 

of Theorem (1.2.8). only this time the parameters 𝛽, 𝛽 > 1, and 𝛾, 𝛾 > 0, must be chosen 

such that 

4𝜋(𝑛− 1) 𝑛⁄ < 𝛾 log𝛽 < 4𝜋. 

Let 𝐵1
′ ,… , 𝐵𝑛

′  be subsequences of 𝐶′, the sequence 𝐵𝑚(𝑚 = 1,… , 𝑛) consisting  of all the 

points 

𝑏𝑗,𝑘
𝑚 = 𝛽𝑗((𝑛𝑘+𝑚)𝛾 + 𝑖), 

with 𝑗, 𝑘  ranging over the integers. Let 𝐴′ 𝑚 = 𝐶
′ ∖ 𝐵′ 𝑚 𝑓𝑜𝑟 𝑚 = 1,… , 𝑛 and put 𝐴𝑚 =

𝜑(𝐴′ 𝑚), where 𝜑 is the Moebius mapping 

𝜑(𝑧) = (𝑧 − 𝑖) (𝑧+ 𝑖)⁄ ,     𝑧 ∈ ℂ ∖ {−𝑖}, 

which sends 𝕌 onto 𝔻. Note that by the regular nature of the sets 𝐴𝑚, it can in fact be shown 
that  

𝐷+(𝐴𝑚) = 𝐷
−(𝐴𝑚) =

2(𝑛 − 1)𝜋

𝑛𝛾 log 𝛽
< 1 2⁄ , 
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so that by Seip’s Theorem (1.2.6) 𝐴𝑚  is interpolating for 𝐿𝑎
2 (𝔻), for each 𝑚. Since the 

sequence 𝐶 = 𝜑(�́�) is sampling, an argument analogous to the one used in the proof of 
Proposition (1.2.2) now shows that the invariant subspaces 

𝐼𝑚 = ℐ(𝐴𝑚),    𝑚 = 1,… , 𝑛, 

meet condition (9) for some constant  𝜀 > 0. 
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Chapter 2 

Spectra and Index of Invariant Subspaces 

      We consider 𝑀𝑧−invariant subspaces ℳ ⊆ 𝐻𝑑
2(𝒟). The fiber dimension of ℳ is defined 

to be sup
λ∈𝔹d

dim{𝑓(𝜆): 𝑓 ∈ℳ}. We show that if ℳ has finite positive fiber dimension 𝑚, then 

the essential Taylor spectrum of  𝑀𝑧|ℳ, 𝜎𝑒(𝑀𝑧|ℳ), equals 𝜕𝔹d plus possibly a subset of the 

zero set of a nonzero bounded analytic function on 𝔹d  and ind𝑀𝑧 − 𝜆|ℳ = (−1)𝑑𝑚 for 

every 𝜆 ∈  𝔹d\𝜎𝑒(𝑀𝑧|ℳ). As a Corollary we show that if 𝑇 = (𝑇1 , . . , 𝑇𝑑) is a pure 𝑑-

contraction of finite rank, then 𝜎𝑒(𝑇) ∩ 𝔹d is contained in the zero set of a nonzero bounded 

analytic function and (−1)𝑑 in d(𝑇 − 𝜆) = 𝑘(𝑇) for all λ ∈ 𝔹d\𝜎𝑒(𝑇). Here 𝑘(𝑇) denotes 
Arveson’s curvature invariant. We also show that for 𝑑 > 1 there are such d-contractions 

with 𝜎𝑒(𝑇) ∩ 𝔹d ≠ ∅. These results answer a question of Arveson, [19]. We also show 

related results for the Hardy and Bergman spaces of the unit ball and unit poly disc of ℂ𝑑 . 

Section (2.1):   Translation Invariant Spaces 

     Let 𝑙2(−∞,∞) be the classical Hilbert space of complex valued functions  defined on the 

discrete group of integers, and let 𝐿2(−∞,∞)  be the Hilbert space of complex valued square-

integrable functions defined on the continuous group of real numbers. We use the symbol �̃�𝑑 

to denote the subspace of all functions in the discrete space 𝑙2(−∞,∞)  which vanish for 

negative values of their argument, and the symbol �̃�𝑐 to denote the subspace of all functions 

in the continuous space 𝐿2(−∞,∞) which vanish for negative values of their argument. Let 

�̃� be any subspace of �̃� which is invariant with respect to left translation, i.e., ℎ̃(𝑥) in �̃� 

implies that the projection of ℎ̃(𝑥 + 𝜏) on �̃� belongs to �̃� for all positive 𝜏. Let 𝜏 denote the 
restriction of the left unit shift operator to the nonnegative integers or real numbers, i.e.,  

(𝑇ℎ̃)(𝑥) = {ℎ̃(𝑥 + 𝜏)       for 𝑥 ≥ 0
0                  otherwise

 

and let 𝜎(𝑇) denote the spectrum of T acting on �̃�. 𝜎(𝑇) is defined to be the set of all complex 

numbers 𝜆 for which (𝑇 − 𝜆)−1 does not exist as a bounded linear operator, and the point 

spectrum of T, denoted by 𝜎𝑝(𝑇) is taken to be the set of complex numbers 𝜆 for which (𝑇 −

𝜆) is not one-to-one.[2] 

Theorem(2.1.1):[12]    Every nontrivial closed 𝑅 space is of the form 𝐺𝐻, where 𝐺(𝑧) is an 
analytic function in the interior of the unit disc and |𝐺(𝑧)|  ≤ 1 there. For 𝑧 restricted to the 

unit circle, |𝐺(𝑧)| =  1  almost everywhere. The function 𝐺(𝑧) is uniquely determined by the 

space 𝑅, except for multiplication by a complex constant of modulus 1. 

Let �̃� denote the Hilbert space of one sided sequences ℎ = {ℎ𝑛}0
∞ with inner product 

(ℎ,𝑔) =∑ℎ𝑛𝑔𝑛
∗

∞

𝑛=0

< ∞, 

where the asterisk which appears is used to denote complex conjugation. 

The Fourier transform of ℎ, denoted by 𝐹(ℎ), is taken to be the function 
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ℎ(𝑧) =∑ ℎ𝑛𝑧
𝑛

∞

𝑛=0

= 𝐹(ℎ), 

which is holomorphic in the interior of the unit disc and satisfies the inequality 

1

2𝜋
∫ |ℎ𝑟𝑒𝑖𝜃|

2
𝑑𝜃

2𝜋

0

≤ ‖ℎ‖2      0 ≤ 𝑟 < 1, 

According to well-known properties, the radial limit 

ℎ(𝑒𝑖𝜃) = lim
𝑟→1−0

ℎ(𝑟𝑒𝑖𝜃) 

exists almost everywhere and 

‖ℎ‖2 =
1

2𝜋
∫ |ℎ(𝑒𝑖𝜃)|

2
𝑑𝜃

2𝜋

0

. 

Let 𝐻 denote the Fourier transform of the space �̃� equipped with inner product 

(ℎ,𝑔) =
1

2𝜋
∫ ℎ(𝑒𝑖𝜃)𝑔∗(𝑒𝑖𝜃)𝑑𝜃

2𝜋

0

. 

Under these conditions the Fourier transform is a unitary mapping of �̃� onto 𝐻. It is easy to 

see that the orthogonal complement 𝐻⊥ of 𝐻 with respect to the space of square integrable 
functions on the unit circle is given by 

𝐻⊥ =  𝑧∗𝐻∗, 

and every function in 𝐻⊥  can be analytically continued into the complement of the closed 

unit disc. 

   Let �̃� be any subspace of �̃� which is invariant under right translation, i.e. whenever the 

sequence (ℎ0 ,ℎ1,… ) belongs to 𝑅 we require that the sequence (0,0,… , ℎ0 ,ℎ1,… )  with  𝑛 

initial zeros should also belong to 𝑅  for all positive 𝑛 . Let �̃�   denote the orthogonal 

complement of 𝑅 with respect to �̃� and let 𝑇: �̃� → �̃�  be the unit left translation operator 

defined by 

𝑇(ℎ𝑛) = ℎ𝑛+1    𝑛 ≥ 0. 

If we set �̃� = 𝐹𝑇𝐹−1 an easy computation shows that �̃� is expressed by the equation 

(�̃�ℎ)(𝑧) =
ℎ(𝑧) − ℎ(0)

𝑧
 

Since 𝐹  is unitary, the spectrum of 𝑇  acting on �̃�  may be determined directly from the 

spectrum �̃� acting on 𝐿.  
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Lemma (2.1.2):[12]    Let 𝑓(𝑧) be analytic in the interior of the unit disc. Then 𝑓(𝑧) belong 

to 𝐿 if and only if it is square integrable on |𝑧| = 1 and the function 𝐺(𝑧)𝑧∗𝑓∗(𝑧)  can be 

continued as an analytic function throughout the interior of the unit disc.  

Proof:    Notice that 𝑓(𝑧) belongs to 𝐿 if and only if it is square integrable on the unit  circle 

and satisfies the condition (𝐺∗𝑓,𝐻)  =  0. This means that 𝑓(𝑧) belongs to 𝐿 if and only if 

there is a function 𝑘(𝑧) in 𝐻 with the property that 

𝐺∗(𝑧)𝑓(𝑧) = 𝑧∗𝑘∗(𝑧)                                                                             (1) 

when |𝑧| = 1. Taking the complex conjugate of (1), we see that 𝑓(𝑧) belongs to 𝐿 if and only 
if the function 𝐺(𝑧)𝑧∗𝑓∗(𝑧) is square integrable on |𝑧| = 1 and can be analytically continued 

as a function 𝑘 in 𝐻, i.e.throughout the interior of the unit disc. 

Theorem (2.1.3):[12]    Let 𝜆 be any complex number whose modulus is less than 1. Then 

 𝜆 ∉ 𝜎(𝑇) if and only if 𝐺(𝜆∗) ≠ 0. 

Proof:   We first show that the condition 𝐺(𝜆∗) ≠ 0 implies that the equation 

  
𝑓(𝑧) − 𝑓(0)

𝑧
− 𝜆𝑓(𝑧) = 𝑙(𝑧)                                                             (2) 

has a unique solution 𝑓(𝑧) in 𝐿 for every 𝑙(𝑧) in 𝐿. It will then follow from the interior 

mapping principle [14] that 𝜆 ∉ 𝜎(𝑇). 

Solving (2) formally, we find 

   𝑓(𝑧) =
𝑧𝑙(𝑧) − 𝑓(0)

1 − 𝜆𝑧
                                                                          (3) 

which is valid when |𝑧| = 1. Since we assumed that 𝑙(𝑧) belongs to 𝐿, it follows from 

Lemma (2.1.2) that the function 

 𝑚(𝑧) =  𝐺(𝑧)𝑧∗𝑙∗(𝑧)                                                                          (4) 

defined for |𝑧| = 1 can be analytically continued throughout the interior of the unit disc as a 

function in 𝐻. Taking the complex conjugate of (3), multiplying both sides by 𝑧∗𝐺(𝑧), and 

then substituting (4) into the resulting expression, we finally obtain the relation 

  𝐺(𝑧)𝑧∗𝑓∗(𝑧) =
𝑚(𝑧) + 𝐺(𝑧)𝑓∗(0)

𝑧 − 𝜆∗
                                                 (5)  

which is valid a.e. whenever |𝑧| = 1.  

The right hand side of (5) is an analytic function throughout the interior of the unit disc 

whose 𝐿2 norm is bounded on the unit circle if and only if 

  𝑓∗(0) = −
𝑚(𝜆∗)

𝐺(𝜆∗)
                                                       (6)  
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Using the fact that 𝐺(𝜆∗) ≠ 0, we may define 𝑓∗(0) by (6) and substitute this value into the 

right hand side of (5) to obtain a function in 𝐻. Since the left hand side of (5) agrees with this 

function whenever |𝑧| = 1, it follows that the left hand side of (5) can be extended as a 

function in 𝐻 as well. We conclude that 𝜆 ≠ 𝜎(𝑇).  

Conversely, if 𝐺(𝜆∗) = 0, we may express 𝐺(𝑧) as 

𝐺(𝑧) =
𝑧 − 𝜆∗

1− 𝜆𝑧
𝐺1(𝑧), 

where |𝐺1(𝑧)| = 1 a.e. |𝑧| = 1. From this factorization it follows that 

𝑧∗

(1− 𝜆𝑧)∗
𝐺(𝑧) =

𝐺1(𝑧)

1 − 𝜆𝑧
 

whenever |𝑧| = 1. Consequently, we deduce from Lemma (2.1.2) that 𝐿 already contains the 

eigenfunction (1 − 𝜆𝑧)−1. This means that 𝜆 ∈ 𝜎𝜌(𝑇). 

Lemma (2.1.4):[12]     Let 𝑢(𝑧) belong to the space 𝐻 and let 𝑣(𝑧) be analytic in any domain, 

𝒟, contained in the complement of the unit disc whose boundary contains the circular arcΓ =

{eiθ : θ1 < 𝜃 < θ2}. Assume that no inner point of Γ is the limit point of boundary points of 

𝒟 which do not belong to Γ. If 

lim
𝑟→1−0

𝑢(𝑟𝑒𝑖𝜃) − 𝑣(𝑟−1𝑒𝑖𝜃) = 0     𝑓𝑜𝑟 θ1 < 𝜃 < θ2  

and 

∫|𝑢(𝑟𝑒𝑖𝜃) − 𝑣(𝑟−1𝑒𝑖𝜃)|
2
𝑑𝜃

𝜃2

𝜃1

≤ 𝑀  for 0 < 𝑟0 < 𝑟 < 1 

then 𝑢(𝑥) and 𝑣(𝑧) are analytic continuations of each other across Γ. 

Proof:     Let 𝐶(𝑟2) be the boundary of the circular sector whose vertices are {𝑟𝑘𝑒
𝑖𝛾𝑗 }𝑘,𝑗−1,2  

and let �̃�(𝑟2) be the boundary of the sector whose vertices are {𝑟𝑘
−1𝑒𝑖𝛾𝑗 }𝑘,𝑗−1,2 where 𝜃1 <

𝛾1 < 𝛾2 < 𝜃2 and 𝑟0 < 𝑟1 < 𝑟2 < 1. Since 𝑢(𝑧) belongs to 𝐻, we may assume without loss 

of generality that it has a finite radial limit at the points 𝑒𝑖𝛾1  and 𝑒𝑖𝛾2 .If 𝑧 is any point inside 

𝐶(𝑟2) we may write 

𝑢(𝑧) =
1

2𝜋𝑖
∮
𝑢(𝜉)𝑑𝜉

𝑧 − 𝜉

 

𝐶(𝑟2)

+
1

2𝜋𝑖
∮
𝑣(𝜉)𝑑𝜉

𝑧 − 𝜉

 

𝐶(𝑟2)

. 

     Now pass to the limit as 𝑟2  goes to 1. By virtue of the conditions stated in the hypothesis, 

we may apply Schwarz’s inequality and the Lebesgue dominated convergence theorem to 
obtain the relation 
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lim
𝑟2→1−0

∫
𝑢(𝑟2𝑒

𝑖𝜃) − 𝑣(𝑟2
−1𝑒𝑖𝜃)

𝑟2𝑒
𝑖𝜃 − 𝑧

𝛾2

𝛾1

𝑑𝜃 = 0. 

This implies that 𝑢(𝑧) can be expressed in the form 

𝑢(𝑧) =
1

2𝜋𝑖
∮
𝑤(𝜉)𝑑𝜉

𝑧 − 𝜉

 

𝐶(𝑟1)

                                                                       (7) 

where 𝐶(𝑟1) is the sector whose vertices are {𝑟1𝑒
𝑖𝛾𝑗}𝑗=1,2  and {𝑟1

−1𝑒𝑖𝛾𝑗 }𝑗=1,2  while  

𝜔(𝜉) = {
𝑢(𝜉)        if |𝜉| ≤ 1 

𝑣(𝜉)        if |𝜉| > 1.
 

A similar argument shows that 𝑣(𝑧) may also be represented by (7). Thus 𝑢(𝑧) and 𝑣(𝑧) are 

analytic continuations of each other across Γ. 

Theorem (2.1.5):[12]   Let 𝜆 be any complex number such that |𝜆| = 1. If there exists a 𝛿 >
0 such that |𝐺(𝑧)| > 𝛿 in the intersection of some neighborhood of 𝜆∗  with the interior of the 

unit disc, then 𝜆 ∉ 𝜎(𝑇). 

Proof:    Let �̅�(𝑧)  and �̅�(𝑧)  be analytic continuations of the functions 1/𝐺∗(𝑧)  and 

𝑧∗𝑙∗(𝑧)/𝐺∗(𝑧)  defined for |𝑧| = 1 , into the complement of the closed unit disc. Since 
|𝐺(𝑧)| > 𝛿 in the intersection of some neighborhood of 𝜆 with the unit disc, it follows from 

Lemma (2.1.4) that the functions �̅�(𝑧) and �̃�(𝑧)  are analytic continuations of 𝐺(𝑧) and 

𝑚(𝑧) defined in Theorem (2.1.3) throughout some circular neighborhood of 𝜆∗ .As in the 

proof of Theorem (2.1.3), if we set 

𝑓∗(0) = −
𝑚(𝜆∗)

𝐺(𝜆∗)
 

and substitute this value into (5), it is evident that the right hand side of (5) is a function in 
𝐻. Using our previous reasoning, this means that the left hand side of (5) can also be extended 

as a function in 𝐻. 

Theorem (2.1.6):[12]  Let 𝜆 be any complex number of modulus 1 with the property that 

lim
𝑧→𝜆∗

inf|𝐺(𝑧)| = 0 

when  |𝑧| = 1. Then  𝜆 ∈ 𝜎(𝑇). 

Proof:   Let 𝜆𝑛 → 𝜆 be any sequence of complex numbers having modulus less than 1 for 

which lim
𝑛→∞

|𝐺(𝜆𝑛
∗ )| = 0. It remains to be shown that 𝜆 ∈ 𝜎(𝑇).  

We first consider the identity 

 
1 − |𝜆𝑛|

2

1 − 𝜆𝑛𝑧
= (1− |𝜆𝑛|

2)
1− 𝐺∗(𝜆𝑛

∗ )𝐺(𝑧)

1− 𝜆𝑛𝑧
+ (1− |𝜆𝑛|

2)
𝐺∗(𝜆𝑛

∗ )𝐺(𝑧)

1 − 𝜆𝑛𝑧
.        (8) 
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According to the Theorem(2.1.1) , the second function on the right hand side of (8) belongs 
to 𝑅; the first function, on the other hand, belongs to 𝐿 by virtue of Lemma (2.1.2). Call these 

two functions 𝑟𝑛(𝑧) and 𝑙𝑛(𝑧) respectively, so that (8) may be written in the form 

  
1 − |𝜆𝑛|

2

1 − 𝜆𝑛𝑧
= 𝑙𝑛(𝑧) + 𝑟𝑛(𝑧),                                                                    (9) 

where 𝑙𝑛(𝑧) ∈ 𝐿 and 𝑟𝑛(𝑧) ∈ 𝑅. 

Using the fact that |𝐺(𝑧)| = 1 when |𝑧| = 1, we may compute norms to obtain the relation 

  ‖𝑙𝑛(𝑧)‖
2 = 1− |𝐺(𝜆𝑛

∗ )|2  ,                                                                    (10) 

because 𝑟𝑛(𝑧) and 𝑙𝑛(𝑧) are mutually orthogonal. 

   Applying the operator 𝑇 −  𝜆 to both sides of (9) and using the fact that 

  ‖(𝑇 −  𝜆)
1− |𝜆𝑛|

2

1 − 𝜆𝑛𝑧
‖ = |𝜆 − 𝜆𝑛|,                                                              (11) 

we obtain the inequality 

‖(𝑇 −  𝜆)𝑙𝑛(𝑧)‖ ≤ |𝜆 − 𝜆𝑛| + |𝐺(𝜆𝑛
∗ )|‖𝑇 −  𝜆‖ 

  ≤ |𝜆 − 𝜆𝑛| + (1+ |𝜆|)|𝐺(𝜆𝑛
∗ )|.                                             (12) 

Passing to the limit as 𝑛 → ∞, we conclude from (12) that 

  lim
𝑛→∞

‖(𝑇 −  𝜆)𝑙𝑛(𝑧)‖ = 0.                                                                     (13) 

But (10) implies 

 lim
𝑛→∞

‖𝑙𝑛(𝑧)‖ = 1,                                                                                 (14) 

We therefore deduce from (13) and (14) that 𝑇 −  𝜆 cannot have abounded inverse. 

Theorem (2.1.7) Paley-Wiener:[12]   Every function ℎ in 𝐻 can be extended as a regular 
analytic function into the upper half-plane in such a way that 

∫ ℎ∗(𝑠+ 𝑖𝑡)ℎ(𝑠 + 𝑖𝑡)𝑑𝑠

∞

−∞

≤ constant 

for all positive values of 𝑡. Conversely, the restriction to the real axis of any such function 

belongs to 𝐻 [15]. 

   For fixed 𝑡 , ℎ(𝑠 +  𝑖𝑡) is the Fourier transform of 𝑒−𝑥𝑡ℎ̃(𝑥) ; since ℎ̃(𝑥)  vanishes for 

negative values of 𝑥 , the 𝐿2 , norm of 𝑒−𝑥𝑡ℎ̃(𝑥)  decreases with increasing 𝑡 . Hence, by 

Parseval’s theorem, we have the following. 
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Corollary (2.1.8):[12]   If ℎ(𝜎) belongs to 𝐻, its 𝐿2, norm along the line Im𝜎 = 𝑡, 𝑡 ≥ 0, 

decreases with increasing 𝑡. 

The orthogonal complement of �̃� with respect to the space of square integrable functions on 

the entire real axis is the space of square integrable functions which vanish for 𝑥 positive. 

The Fourier transforms of these functions form the orthogonal complement �̃�⊥  of �̃� . 

Functions in �̃�⊥ can be continued analytically into the lower half plane. It is easy to check 

that �̃�⊥ is the conjugate of �̃�, i.e. 

�̃�⊥ = �̃�∗. 

Let �̃� be any right translation invariant subspace of �̃� and let 𝑅 be its Fourier transform. Such 

an 𝑅-space can be characterized intrinsically by the property that 𝑒𝑖𝑎𝑎𝑅 is contained in 𝑅 for 

all positive 𝑎. 

Lemma (2.1.9):[12]    The function 

𝑔(𝑠)  = (𝑠 −  𝑖) (𝑠 +  𝑖)−1 

can be uniformly approximated on every compact subset of the real line by a sequence of 
trigonometric polynomials of the form 

𝑡𝑛(𝑠) =∑𝑐𝑘(𝑛)𝑒
𝑖𝑏𝑘(𝑛)𝑠

𝑁𝑛

𝑘=0

 

where 𝑏𝑘(𝑛) ≥ 0  and  |𝑡𝑛(𝑠)| ≤ 𝑀. 

Proof:    Define 

𝑔𝑛(𝑠) = 1− 2∫𝑒
−(1−𝑖𝑠)𝑥𝑑𝑥

𝑛

0

 

and observe that the 𝑔𝑛’s converge uniformly to 𝑔 on the real axis. Replacing the integral by 

its Riemann sum, we may write 

𝑔𝑛(𝑠) = 1− lim
𝑘→∞

𝑔𝑛𝑘(𝑠) 

where 

𝑔𝑛𝑘(𝑠) =
2

𝒦
∑exp[−

𝑗𝑛

𝒦
(1− 𝑖𝑠)]

𝑘

𝑗=0

 

Using the summation formula for a geometric series, it is easy to verify that the 𝑔𝑛𝑘 ’s are 

uniformly bounded and converge uniformly to 𝑔𝑛, on every compact subset of the real line. 

Theorem (2.1.10):[12]   Every nonempty closed 𝑅-space is of the form 𝐺𝐻, where 𝐺(𝜎) is a 

regular analytic function in the upper half plane and |𝐺(𝜎)| ≤ 1 there. For 𝜎 restricted to the 
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real axis, |𝐺(𝜎)| = 1 almost everywhere. The function 𝐺(𝜎) is uniquely determined by the 

space 𝑅, except for multiplication by a complex constant of modulus 1. 

Proof:    Let �̃�𝑑be the discrete space of sequences, and let 𝐻𝑑 be the Fourier transform of �̃�𝑑.  

The mapping 𝑈 ∶  𝐻𝑑 →  𝐻 defined by 

(𝑈𝑓)(𝜎) =  
1

√2(𝜎+ 𝑖)
𝑓 (
𝜎 − 𝑖

𝜎 + 𝑖
) = 𝑓(𝜎)                                                       (15) 

has an inverse which may be expressed in the form 

 (𝑈−1𝑓)(𝑧) =
2√2

𝑖(𝑧 − 1)
�́� (

𝑧 + 1

𝑖(𝑧 − 1)
) = 𝑓(𝑧)                                                      (16) 

and satisfies the relation 

∫ |𝑓(𝑒𝑖𝜃)|
2

2𝜋

0

𝑑𝜃 = ∫|𝑓(𝑠)|
2

∞

−∞

𝑑𝑠. 

We therefore conclude that 𝑈 is an isometry from 𝐻𝑑 onto 𝐻. 

   Let 𝑅 be any closed 𝑅-space of 𝐻. Then 𝑒𝑖𝑎𝑠𝑅 ⊂ 𝑅 for all positive 𝑎, and this implies that 

multiplication by any trigonometric polynomial with positive exponents maps  𝑅 into itself. 

Let 𝑉𝑛: 𝑅 → 𝑅 be defined by 

(𝑉𝑛𝑓)(𝜎) = 𝑡𝑛(𝜎)𝑓(𝜎). 

According to Lemma (2.1.9), the operators 𝑉𝑛 converge strongly to the operator 𝑉 defined by 

(𝑉�́�)(𝜎) = (
𝜎 − 𝑖

𝜎 + 𝑖
)𝑓(𝜎) 

Since 𝑅 is closed, 𝑉(𝑅)  ⊂  𝑅. If we set 𝑈−1𝑉𝑈= �̂�, a computation using (15) and (16) 

shows that �̃� is expressed by 

(�̂�𝑓)(𝑧) = 𝑧𝑓(𝑧). 

Therefore, 

�̂�𝑈−1(𝑅) = 𝑧𝑈−1(𝑅) = 𝑈−1𝑉(𝑅) ⊂ 𝑈−1(𝑅), 

and we conclude that 𝑈−1  maps 𝑅 spaces onto 𝑅𝑑 spaces because multiplication by 𝑧 maps 

𝑈−1(𝑅) into itself. 

   According to Beurling’s Theorem, we may write 

𝑈−1(𝑅)= 𝐺(𝑧)𝐻𝑑. 

Applying 𝑈 to both sides of this identity yields the relation 
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𝑅 = 𝐺 (
𝜎 − 𝑖

𝜎 + 𝑖
)𝐻 

which proves the theorem. 

Lemma (2.1.11):[12]    The function 𝑓(𝜎) belong to the space 𝐿 if and only if it is analytic 
in the upper half plane, square integrable on the real axis, and the function 𝐺(𝜎)𝑓∗(𝜎) can be 

continued into the upper half plane as an analytic function in such a way that its 𝐿2, norm is 

uniformly bounded on every line parallel to the real axis. 

Proof:    Notice that 𝑓(𝜎) belongs to 𝐿 if and only if it is square integrable on the real axis, 
can be continued into the upper half plane as an analytic function in such a way that its norm 

is uniformly bounded on every line parallel to the real axis, and further satisfies the condition 
that (𝐺∗𝑓,𝐻) = 0.This implies that 𝑓(𝜎) belongs to 𝐿 if and only if there is a function 𝑘(𝜎) 
in 𝐻 with the property that 

𝐺∗(𝜎)𝑓(𝜎) = 𝑘∗(𝜎)                                                                             (17) 

when 𝜎 is real. Taking the complex conjugate of (16), we see that 𝑓(𝜎) belongs to 𝐿 if and 

only if the function 𝐺(𝜎) 𝑓∗(𝜎) can be analytically continued into the upper half plane as a 

function in 𝐻, i.e. in such a way that its 𝐿2, norm is uniformly bounded on every line parallel 
to the real axis. 

Corollary (2.1.12):[12]     Let 𝜆 be any complex number in the upper half plane. Denote by 

𝑑𝜆  the distance of the normalized exponential function 

�̃�𝜆 (𝑥) = {
√2 Im 𝜆𝑒𝑖𝜆𝑥     for 𝑥 ≥ 0
0                      otherwise

 

from the space �̃�. Then it follows that 

𝑑𝜆 = |𝐺(−𝜆
∗)|                       (18) 

Proof:     Consider the identity 

𝑖√2Im𝜆

𝜎 + 𝜆
= 𝑖√2Im𝜆

𝐺∗(−𝜆∗)𝐺(𝜎)

𝜎 + 𝜆
+ 𝑖√2Im𝜆

1− 𝐺∗(−𝜆∗)𝐺(𝜎)

𝜎 + 𝜆
.            (19) 

The function appearing on the left hand side of (19) is the Fourier transform of √2𝜋�̃�𝜆(𝑥). 
According to the Theorem (2.1.1), the first function on the right hand side of (19) belongs to 

𝑅. Using Lemma (2.1.9) and the fact that 𝐺(𝜎) has modulus equal to 1 along the real axis, it 

is easy to verify that the second function on the right belongs to 𝐿. Formula (18) may be 

derived immediately by computing norms. 

Lemma (2.1.13):[12]     Let 𝜇 be any complex number in the upper half plane  Im(𝜎) >  0 

and let 𝑚(𝜎) be an arbitrary function in 𝐻. Then the sequence  {𝑚(𝜇 + 2𝑘𝜋)}−∞
∞ belongs to 

𝑙2(−∞,∞). 

Proof: Using the analyticity of 𝑚(𝜎) we may write 



 
22 

𝑚(𝜎) =
1

2𝜋
∫ 𝑚(𝜎 + 𝜌𝑒𝑖𝜙)

2𝜋

0

𝑑𝜙, 

from which it follows that 

𝑚(𝜎)
𝛿2

2
=
1

2𝜋
∫ ∫𝑚(𝜎 + 𝜌𝑒𝑖𝜙)𝜌 𝑑𝜌𝑑𝜙

𝛿

0

2𝜋

0

 

for some sufficiently small 𝛿 > 0. 

An application of Schwarz’s inequality to this last expression yields  

|𝑚(𝜎)|2 ≤
1

𝜋𝛿2
∫∫ |𝑚(𝜎 + 𝜌𝑒𝑖𝜙)|

2
𝜌 𝑑𝜌 𝑑𝜙

2𝜋

0

𝛿

0

. 

Changing from polar to rectangular coordinates and replacing the domain of integration by a 

square centered at 𝜎, we obtain the relation 

|𝑚(𝑠 + 𝑖𝑡)|2 ≤
1

𝜋𝛿2
∫ ∫ |𝑚(𝑢 + 𝑖𝑣)|2 𝑑𝑢 𝑑𝑣

𝑠+𝛿

𝑠−𝛿

𝑡+𝛿

𝑡−𝛿

                                     (20) 

Since 

∫|𝑚(𝑢 + 𝑖𝑣)|2  𝑑𝑢

∞

−∞

≤ 𝑀 < ∞ 

for all 𝑣 >  0, (20)  implies that 

∑ |𝑚(𝜇 + 2𝑛𝜋)|2 

∞

𝑛=−∞

≤
1

𝜋𝛿2
∫ ∫|𝑚(𝑢 + 𝑖𝑣)|2 𝑑𝑢 𝑑𝑣

∞

−∞

Im 𝜇+𝛿

Im 𝜇−𝛿

 

We thus have 

∑ |𝑚(𝜇 + 2𝑘𝜋)|2  

∞

𝑘=−∞

≤
2𝑀

𝜋𝛿
 

which means that the sequence {𝑚(𝜇 + 2𝑘𝜋)}−∞
∞  belongs to 𝐿2(−∞,∞). 

Theorem (2.1.14):[12]     Let 𝜆 be any complex number such that 0 < |𝜆| < 1.Then   𝜆 ∈
𝜎(𝑇) if and only if there exists a 𝛿 >  0 such that 

|𝐺(2𝜋𝑛− 𝑖𝑙𝑛 𝜆∗)| > 𝛿 
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for all 𝑛 =  0,± 1,…. 

Proof:   We will first demonstrate that the condition |𝐺(2𝜋𝑛 − 𝑖𝑙𝑛 𝜆∗)| > 𝛿  for all 𝑛 =
 0,± 1,…. implies that the functional equation 

 𝑓(𝑥 + 1) − 𝜆𝑓(𝑥) = 𝑙(𝑥)                                                        (21) 

has a unique solution𝑓(𝑥) in �̃� for every 𝑙(𝑥) in�̃�. It will then follow from the interior 

mapping principle that 𝜆 ∉ 𝜎(𝑇). 

    We begin by taking the Fourier transform of both sides of (21) to get 

𝑒−𝑖𝜎[𝑓(𝜎) − 𝑓1 (𝜎)] − 𝜆𝑓(𝜎) = 𝑙(𝜎)                                               (22) 

where 𝑓(𝑥)  is the Fourier transform of 𝑓(𝑥)restricted to the interval (0,l). 

Solving,‘) for 𝑓(𝜎), we obtain 

  𝑓(𝜎) =
𝑙(𝜎) + 𝑒−𝑖𝜎𝑓1 (𝜎)

𝑒−𝑖𝜎 − 𝜆
                                                                      (23) 

which is yalid for all real 𝜎. 

      Since 𝑙(𝜎) belongs to 𝐿, it follows from Lemma(2.1.10) that the function 

 𝑚(𝜎) = 𝐺(𝜎)𝑙∗(𝜎)       (𝜎 𝑟𝑒𝑎𝑙)                                                             (24) 

can be analytically continued into the upper half plane as a function in 𝐻.Taking complex 

conjugates, multiplying both sides of (23) by 𝐺(𝜎) and applying (24), we get 

  𝐺(𝜎)𝑓∗(𝜎) =
𝑚(𝜎) + 𝑒𝑖𝑣𝐺(𝜎)𝑓1

∗(𝜎)

𝑒𝑖𝜎 − 𝜆∗
                                            (25) 

for 𝜎 real. 

Both the numerator and the denominator of the right hand side of (25) are analytic functions 

in the upper half plane; consequently, the left hand side has an analytic continuation into the 
upper half plane if and only if 

 

  𝑓1 (2𝑛𝜋 + 𝑖 ln𝜆) = −
𝑚∗(2𝑛𝜋− 𝑖 ln 𝜆∗ )

𝜆𝐺∗(2𝑛𝜋 − 𝑖 ln𝜆∗)
.                                             (26) 

Since 𝑚(𝜎)  belongs to 𝐻  and since the sequence{𝐺(2𝑛𝜋− 𝑖 ln𝜆∗)}−∞
∞  is bounded away 

from zero by 𝛿, we may invoke Lemma (2.1.13) to conclude that the right hand side of (26) 

belongs to 𝐿2(−∞,∞).Thus, according to the Riesz-Fisher Theorem, there exists a unique 

square integrable function, �̃�(𝑥), whose support is contained in the interval (0,l) having the 

property that 
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 −
𝑚∗(2𝑛𝜋 − 𝑖 ln 𝜆∗  )

𝜆𝐺∗(2𝑛𝜋− 𝑖 ln 𝜆∗)
=

1

√2𝜋
∫ �̃�(𝑥)𝑒2𝜋𝑖𝑛𝑥

1

0

𝑑𝑥                                        (27) 

Define 

   𝑓1 (𝜎) =
1

√2𝜋
∫[�̃�(𝑥)𝑒ln𝜆𝑥]𝑒𝑖𝜎𝑥

1

0

𝑑𝑥                                                         (28) 

and observe that 𝑓1(𝜎) is the Fourier transform of a square integrable function whose support 
is also contained in (0,l). Furthermore, 𝑓1(𝜎) agrees with the right hand side of (26) on the 

points 𝜎 = 2𝑛𝜋+ 𝑖 ln 𝜆. If we substitute (28) back into (25), we see that the right hand side 

of (25) is now an analytic function in the upper half plane whose 𝐿2, norm is uniformly 

bounded on every line parallel to the real axis. Applying the Paley-Wiener Theorem, this 
means that the left hand side of (25) can be analytically continued into the upper half plane 

as a function in 𝐻 - which is exactly what is wanted to prove.  

Lemma (2.1.15):[12]    Let 𝑢(𝜎) belong to 𝐻 and let 𝑣(𝜎)  be analytic in any domain,𝒟 

contained in the lower half plane whose boundary contains the interval Γ = (𝑠1 , 𝑠2). Assume 

that no inner point of Γ is the limit point of boundary points of 𝒟 which do not belong to Γ. 
If 

lim
𝑡→0+

𝑢(𝑠 + 𝑖𝑡)− 𝑣(𝑠 − 𝑖𝑡) = 0      𝑓𝑜𝑟 𝑠1 < 𝑠 < 𝑠2 , 

and  

∫|𝑢(𝑠 + 𝑖𝑡)− 𝑣(𝑠 − 𝑖𝑡)|2

𝑠2

𝑠1

≤ 𝑀         𝑓𝑜𝑟 0 < 𝑡 < 𝑡0 , 

then 𝑢(𝜎) and 𝑣(𝜎) are analytic continuations of each other across Γ. 

Theorem (2.1.16):[12]   Let 𝜆 be any complex number such that|𝜆| = 1. If there exists a 𝛿 >
0 such that |𝐺(𝜎)| > 𝛿 in an 𝜖-neighborhood of every point 𝜎𝑛 = 2𝑛𝜋− 𝑖 ln 𝜆

∗   then  𝜆 ∉
𝜎(𝑇). 

Proof:   If |𝐺(𝜎)| > 𝛿 in an 𝜖-neighborhood of every point  𝜎𝑛 = 2𝑛𝜋− 𝑖 ln𝜆
∗, it follows 

from Lemma (2.1.15) that the functions 1/𝐺∗(𝜎∗)  and  𝑙∗(𝜎∗)/𝐺∗(𝜎∗)   are analytic 

continuations of the functions 𝐺(𝜎) and 𝑚(𝜎) defined in Theorem (2.1.14) throughout an 𝜖-
neighborhood of every point  2𝑛𝜋− 𝑖 ln𝜆∗. By Lemma (2.1.13), we further note that the 

sequence  {𝐺(2𝑛𝜋− 𝑖 ln𝜆∗)}−∞
∞   belongs to  𝐿2(−∞,∞). 

Thus, as in the proof of Theorem (2.1.13), there exists a unique square integrable function, 

�̃�(𝑥), whose support is contained in the unit interval and which has the property that 

−
𝑚∗(2𝑛𝜋 − 𝑖 ln𝜆∗ )

𝜆𝐺∗(2𝑛𝜋 − 𝑖 ln 𝜆∗)
=

1

√2𝜋
∫�̃�(𝑥)𝑒2𝜋𝑖𝑛𝑥

1

0

𝑑𝑥   
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If we again set 

𝑓1 (𝜎) =
1

√2𝜋
∫[�̃�(𝑥)𝑒ln𝜆𝑥]𝑒𝑖𝜎𝑥

1

0

𝑑𝑥 

and substitute this value into (25), the resulting expression is still an analytic function whose 
𝐿2, norm is uniformly bounded on every line parallel to the real axis. This means that the left 

hand side of (25) belongs to 𝐻. 

Theorem (2.1.17):[12]   If 𝜆  is any complex number of modulus 1  which satisfies the 

condition 

inf
−∞<𝑛<∞

{ lim
𝜎→2𝑛𝜋−𝑖

inf
ln 𝜆∗
|𝐺(𝜎)|} = 0,   Im 𝜎 > 0  

then 𝜆 ∈ 𝜎(𝑇). 

Proof:      Suppose the condition stated in the theorem is satisfied. Then there exists a 

sequence of integers {𝑛𝑗}1
∞ and a sequence of complex numbers {𝜎𝑗}1

∞ in the upper half plane 

with the property that 

lim
𝑗→∞

𝜎𝑗 − 2𝑛𝑗𝜋+ 𝑖 ln 𝜆
∗ = 0  and   lim

𝑗→∞
|𝐺(𝜎𝑗)| = 0. 

Consider the normalized exponential function 

�̃�𝑗(𝑥) = {
√2Im 𝜎𝑗𝑒

−𝑖𝜎𝑗𝑥                          𝑖𝑓 𝑥 ≥ 0

0                                         otherwise   

 

and let �̃�𝑗(𝑥) and 𝑙𝑗(𝑥) be its projections onto the spaces 𝑅 and �̃� respectively. 

We then have 

 �̃�𝑗(𝑥) = �̃�𝑗(𝑥)+ 𝑙𝑗(𝑥)                                                                            (29) 

where 

‖�̃�𝑗(𝑥)‖ = |𝐺(𝜎𝑗)|                                                                           (30) 

by (18) and 

                                      ‖𝑙𝑗(𝑥)‖ = √1− ‖�̃�𝑗(𝑥)‖
2
                                                    (31) 

by virtue of the orthogonality between  �̃�𝑗(𝑥)  and  𝑙𝑗(𝑥). Using the fact that 

(𝑇 − 𝜆)�̃�𝑗(𝑥) = (𝑒
𝑖𝜎𝑗 − 𝜆)�̃�𝑗(𝑥) 

and applying the operator 𝑇 − 𝜆 to both sides of (33), we obtain the inequality 
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‖(𝑇 − 𝜆)𝑙𝑗(𝑥)‖ ≤ |𝑒
−𝑖𝜎𝑗 − 𝜆| + (1+ |𝜆|)‖�̃�𝑗(𝑥)‖          

                    ≤ |𝑒−𝑖𝜎𝑗 − 𝜆| + (1+ |𝜆|)|𝐺(𝜎𝑗)| 

By hypothesis, this implies 

lim
𝑗→∞

‖(𝑇 − 𝜆)𝑙𝑗(𝑥)‖ = 0 

However, it follows from (34) and (35) that 

lim
𝑗→∞

‖𝑙𝑗(𝑥)‖ = 1 

We therefore conclude that (𝑇 − 𝜆) cannot have a bounded inverse. 

Theorem (2.1.18):[12]    Let 𝜆 be any complex number such that 0 < |𝜆| ≤ 1. Then  𝜆 ∈
𝜎𝑝(𝑇) if and only if 

𝐺(2𝜋𝑛0 − 𝑖 ln 𝜆
∗ ) = 0 

for some integer 𝑛0. 

Proof:    Clearly,𝑓𝜆(𝑥) is an eigenfunction corresponding to the eigenvalue 𝜆 if and only if 

 𝑓𝜆 (𝑥) = 𝜆
[𝑥]𝑓(𝑥)                                                                                (32) 

where [𝑥] denotes the largest integer in 𝑥  and𝑓(𝑥) is the periodic continuation of an 𝐿2, 
function whose support is contained in the interval (0,1). Equation (32) implies that there are 

no points in 𝜎𝑝(𝑇) which have modulus =  1 because the associated eigenfunctions would 

not be square integrable. Let 0 < |𝜆| < 1, and assume that there is a non-zero eigenfunctions 

𝑓𝜆(𝑥) in the space �̃�. We will show that 𝐺(2𝜋𝑛 − 𝑖 ln𝜆∗ ) vanishes for some value of 𝑛. 

Rewrite (32) in the form 

  𝑓𝜆(𝑥) = (𝜆)
𝑥𝑓(𝑥)                                                                   (33) 

where  

 𝑓(𝑥) = 𝜆[𝑥]−𝑥𝑓(𝑥) 

     Since 𝑓(𝑥) is square integrable over the unit interval and has period 1, we may represent 

it by its Fourier series: 

𝑓(𝑥)∼ ∑ 𝑓𝑛𝑒
2𝜋𝑖𝑛𝑥

∞

𝑛=−∞

 

where 
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𝑓𝑛 = ∫𝑓(𝑥)𝑒
−2𝜋𝑖𝑛𝑥

1

0

𝑑𝑥. 

Observe from (33) that 𝑓(𝑥) vanishes if and only if 𝑓(𝑥) also vanishes. Consequently, for 

some 𝑛0, we have 𝑓𝑛 , 𝑓𝑛 ≠ 0. It is well known from classical theory that the closed subspace 

spanned by the left translates of �́�(𝑥) in the 𝐿2(0,1) topology contains the exponential 

𝑒2𝜋𝑖𝑛0𝑥. This means that, for any 𝜖 > 0, there exist constants 𝑐1 , 𝑐2,… , 𝑐𝑘 (all distinct from 

zero) and positive numbers 𝑡1 ,𝑡2 ,… , 𝑡𝑘 such that 

∫ |𝑒2𝜋𝑖𝑛0𝑥 −∑𝑐𝑛𝑓(𝑥 + 𝑡𝑛)

𝐾

𝑛=1

|

21

0

𝑑𝑥 ≤ 𝜖2. 

Define new constants 𝑑𝑛 = 𝑐𝑛𝜆
−𝑡𝑛 and notice that 

∫ |𝜆𝑥𝑒2𝜋𝑖𝑛0𝑥 −∑𝑑𝑛𝜆
𝑥+𝑡𝑛𝑓(𝑥+ 𝑡𝑛)

𝐾

𝑛=1

|

2∞

0

𝑑𝑥 

  ≤ ∫|𝜆|2𝑥 |𝑒2𝜋𝑖𝑛0𝑥 −∑ 𝑐𝑛𝑓(𝑥 + 𝑡𝑛)

𝐾

𝑛=1

|

2∞

0

𝑑𝑥 ≤
𝜖2

1− |𝜆|2
 

 

This last inequality implies that the exponential 𝑒𝑥𝑝 [(2𝜋𝑖𝑛0 + ln𝜆) 𝑥] belongs to the space 

�̃�. Thus, from formula (18), it follows that 

𝐺(2𝜋𝑛0 − 𝑖 ln 𝜆
∗ ) = 0 

Conversely, if 

𝐺(2𝜋𝑛0 − 𝑖 ln 𝜆
∗ ) = 0 

it follows from the same formula that an eigenfunctions of the form 

𝑓𝜆(𝑥) = exp(2𝜋𝑛0 + ln 𝜆)𝑥 

is already in �̃�.  

Theorem (2.1.19):[12]     The origin belongs to 𝜎𝑝(𝑇) if and only if there exists an 𝑎 > 0 

such that |𝑒−𝑖𝑎𝜎𝐺(𝜎)| ≤ 1in the upper half plane. 

Proof:     Assume that the origin belongs to 𝜎𝑝(𝑇). Then there exists a nonzero function 

𝑙(𝑥) ∈ �̃� whose support is contained in the interval  (0,1). Let 𝑎 be the smallest number such 

that the support of 𝑙(𝑥) is contained in (0,𝑎). According to the well-known Titchmarsh 

convolution theorem [16], �̃� contains the space of all square integrable functions whose 

supports are contained in (0,𝑎). This can occur if and only if every function in 𝑅 vanishes 
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for 𝑥 <  𝑎. Let 𝑅1 be the right translation invariant space obtained from a by translating every 

function in 𝑅 a units to the left. From the Theorem(2.1.1) it follows that 

𝑒−𝑖𝑎𝜎𝐺(𝜎)𝐻 = 𝑅1 ⊂ 𝐻. 

Since multiplication by 𝑒−𝑖𝑎𝜎𝐺(𝜎)  maps 𝐻  into 𝐻 , multiplication by any power of 

𝑒−𝑖𝑎𝜎𝐺(𝜎) also maps 𝐻 into 𝐻. It is clear that the 𝐿2 norm on the real axis is preserved in 

this multiplication, so it follows from the Paley-Wiener theorem that it cannot be increased 

on any line parallel to the real axis. This is the case if and only if |𝑒−𝑖𝑎𝜎𝐺(𝜎)| ≤ 1 in the 

upper half plane. 

Conversely, if |𝑒−𝑖𝑎𝜎𝐺(𝜎)| ≤ 1 in the upper half plane, it follows that 

𝑅 = 𝑒𝑖𝑎𝜎𝑅1. 

Taking inverse Fourier transforms, this implies that every function in 𝑅 vanishes for 𝑥 < 𝑎. 

Consequently, �̃� contains all square integrable functions whose supports are contained in 

(0,𝑎). This means that the origin must belong to 𝜎𝑝(𝑇). 

  Using the information at hand, we will now construct an �̃� space for which 𝜎(𝑇) is the closed 
unit disc, but which nevertheless has a void point spectrum. 

To this end let �̃� be the space whose characteristic function is the convergent infinite product 

𝐺(𝜎) =∏𝑒−𝑖𝑛 𝜎−2𝜋𝑛3⁄

∞

𝑛=1

 

If 𝑎 is any real number greater than zero, we then have 

lim
𝑡→∞

|𝑒𝑎𝑡𝐺(𝑖𝑡)| = lim
𝑡→∞

exp [(𝑎−∑
𝑛

4𝜋2𝑛6 + 𝑡2

∞

𝑛=1

)𝑡] = ∞. 

According to Theorem (2.1.19), this implies that {0} ∉ 𝜎𝑝(𝑇); moreover, since 𝐺(𝜎) never 

vanishes in the upper half plane, we may invoke Theorem (2.1.18) to justify the assertion that 

𝜎𝑝(𝑇) = 𝜙. 

let 𝜆 be any complex number such that 0 < |𝜆| < 1 and let 𝑘𝑗 = 𝑗
3  for 𝑗 =  1,2, … . Then 

log|𝐺(2𝜋𝑘𝑗 − 𝑖 ln 𝜆
∗ )| =∑

𝑛 ln 𝜆

|2𝜋(𝑗3 − 𝑛3)− 𝑖 ln 𝜆∗|2

∞

𝑛=1

, 

and, by setting 𝑗 =  𝑛, we obtain the inequality 

log|𝐺(2𝜋𝑗3− 𝑖 ln 𝜆∗ )| < 𝑗
ln|𝜆|

|ln 𝜆∗|2
. 

A passage to the limit yields the relation 
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lim
𝑗→∞

𝐺(2𝜋𝑗3 − 𝑖 ln 𝜆∗  ) = 0, 

from whence it follows that 𝜆 ∈ 𝜎(𝑇) by Theorem (2.1.13).[14]. 

Section (2.2): Spaces of Analytic Functions of Several Complex Variables 

 Let  𝑑 ≥ 1, let Ω  be a region in ℂ𝑑  with 0 ∈ Ω , and let ℋ be a Hilbert space of analytic 
functions on Ω . We will be particularly interested in the cases where ℋ equals one of the 

usual Hardy or Bergman spaces of the ball,  𝔹𝑑 = {𝑧 ∈ ℂ
𝑑 : |𝑧| < 1}, or the polydisc,   𝔻𝑑 =

{𝑧 ∈ ℂ𝑑 : |𝑧𝑖| < 1 for 𝑖 = 1, . . . , d} , or where  ℋ = 𝐻𝑑
2   where 𝐻𝑑

2  is the Hilbert space of 

analytic functions on 𝔹𝑑  determined by the reproducing kernel  𝑘𝜔(𝑧) =
1

1−〈𝑧,𝜔〉
, where 

〈𝑧, 𝜔〉 = ∑ 𝑧𝑖�̅�𝑖
𝑑
𝑖=1 . 

   Associated with each such space ℋ we have a multiplier algebra 𝑀(ℋ) consisting of all 
analytic functions 𝜑 on Ω such that 𝜑𝑓 ∈ ℋ for each 𝑓 ∈ ℋ. It is easy to see that each 

multiplier gives rise to a bounded operator 𝑀𝜑:ℋ → ℋ, 𝑓 → 𝜑𝑓, and the multiplier norm 

‖𝜑‖𝑀  is defined to be the operator norm of 𝑀𝜑 . One always has 𝑀(ℋ) ⊆ 𝐻∞(Ω), the 

algebra of bounded analytic functions on Ω, and it is well-known that for the Hardy and 

Bergman spaces we have 𝑀(ℋ) = 𝐻∞(Ω). It is also known that 𝑀(𝐻𝑑
2) ⊊ 𝐻∞(Ω)  ([18]). 

We will assume that  𝑀(ℋ) ⊆ ℋ, and that for each 𝑖 = 1, . . . , 𝑑 the 𝑖-th coordinate function 

𝑧𝑖  is a multiplier of ℋ. We will write 𝑀𝑧  for the d-tuple (𝑀𝑧1 , . . . , 𝑀𝑧𝑑  ) of commuting 

operators on ℋ. 

    A subspace ℳ of ℋ is called multiplier invariant if 𝜑𝑓 ∈ ℳ  for each 𝑓 ∈ ℳ and 𝜑 ∈
𝑀(ℋ). We will investigate the Fredholm spectrum and Fredholm index of 𝑀𝑧|ℳ  for 

nonzero multiplier invariant subspaces of  ℋ.[19]. 

   Assume 𝑑 = 1. Then the index of an invariant subspace ℳ of ℋ is defined to be the 
dimension of  ℳ/𝑧ℳ. If we assume that for each 𝜆 ∈ Ω  that 𝑀𝑧 − 𝜆 is a Fredholm operator 

on ℋ , then it follows that (𝑀𝑧 − 𝜆)|ℳ  is bounded below for each multiplier invariant 

subspace ℳ  of ℋ . Thus, (𝑀𝑧 − 𝜆)|ℳ  is a semi-Fredholm operator and the continuity 

properties of the Fredholm index imply the following stability of the index of an invariant 
subspace: ind ℳ= dimℳ/𝑧ℳ = − ind 𝑀𝑧|ℳ = − ind (𝑀𝑧 − 𝜆)|ℳ = dimℳ/(𝑧 −
𝜆)ℳ for all 𝜆 ∈ Ω.[4,20,21,22,23]. 

Let 𝑑 ≥ 1 again, and let ℳ be an invariant subspace of ℋ. By analogy with the situation in 

𝑑 = 1 one would like to consider 

dimℳ/((𝑧1− 𝜆1)ℳ+ ⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) 

for 𝜆 = (𝜆1,… , 𝜆𝑑) ∈ Ω. 

    However two problems arise. The first is if we assume that (𝑧1− 𝜆1)ℋ+⋯+ (𝑧𝑑 −
𝜆𝑑)ℋ  is closed in ℋ it is not clear that the same is true for an arbitrary invariant subspace. 

The second is for very simple examples dimℳ/((𝑧1 − 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ)  will 

depend on the choice of the point 𝜆. Indeed, if ℋ is the Hardy or Bergman space of the ball 

or poly disc, or ℋ = 𝐻𝑑
2 , and if  ℳ = {𝑓 ∈ ℋ:𝑓(0) = 0}, then one easily checks that 
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dimℳ/(𝑧1ℳ+⋯+ 𝑧𝑑ℳ) = 𝑑  while  dimℳ/((𝑧1− 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) = 1 

for all 𝜆 ∈ 𝔹𝑑\{0}. The second problem in this case is connected to the fact that all functions 

in ℳ are zero at 𝜆 = 0. It is well-known that one obtains a more stable definition of index if 
one uses the Fredholm index of the tuple (𝑀𝑧  − 𝜆)|ℳ, where 𝜆 ∈ 𝔹𝑑\𝜎𝑒(𝑀𝑧|ℳ), to define 

the index of an invariant subspace. Here we set 𝑀𝑧 – 𝜆 = (𝑀𝑧1 − 𝜆1𝐼, … ,𝑀𝑧𝑑 − 𝜆𝑑𝐼) and we 

use 𝜎𝑒(𝑇) to denote the essential Taylor spectrum of the operator tuple 𝑇; the Fredholm index 

of 𝑇  is defined to be the alternating sum of the Betti numbers of the Koszul complex 

associated with 𝑇 - we shall give the full definitions. It will still turn out that for 𝑑 > 1 and 

for all the spaces ℋ  mentioned above there are invariant subspaces ℳ  of ℋ  such that 

𝜎𝑒(𝑀𝑧|ℳ)∩ 𝔹𝑑  is nonempty. Thus in general the Fredholmness of (𝑀𝑧  − 𝜆)|ℳ  may 

depend on the base point 𝜆 ∈ Ω. 

Theorem (2.2.1):[17]      Let ℋ be the Hardy or Bergman space of the ball or polydisc of ℂ𝑑 , 

or let ℋ = 𝐻𝑑
2. 

If an invariant subspace ℳ of ℋ contains a nonzero multiplier  𝜑, then 

𝜎𝑒(𝑀𝑧|ℳ)∩ Ω ⊆ Z(𝜑) 

and for every 𝜆 ∈ Ω\𝜎𝑒(𝑀𝑧|ℳ) the tuple (𝑀𝑧 − 𝜆)|ℳ has Fredholm index (−1)𝑑. In fact, 

for all 𝜆 ∈ Ω\Z(𝜑) we have  

dimℳ/((𝑧1 − 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) = 1. 

Proof:    For 𝑑 = 1 a similar argument was given in [3,27]. Recall that if  ℬ is a Banach space 
of analytic functions on Ω , then one says that one can solve Gleason’s problem for ℬ if 

whenever 𝑔 ∈ ℬ and 𝜆 ∈ Ω  then there are functions 𝑔1 , . . . , 𝑔𝑑 ∈ ℬ such that  𝑔 − 𝑔(𝜆) =
∑ (𝑧𝑖 − 𝜆𝑖)𝑔𝑖
𝑑
𝑖=1  [29]. We may assume that the multiplier 𝜑 ∈ ℳ satisfies 𝜑(𝜆) = 1 . Let  

𝑓 ∈ ℳ. Then  

𝑓 = 𝑓(𝜆)𝜑 + 𝜑(𝑓− 𝑓(𝜆)) − (𝜑 − 1)𝑓. 

Now, if we assume that one can solve Gleason’s problem for both the space ℋ and the 

multiplier algebra  ℳ( ℋ) , then there are functions 𝑓1 , … , 𝑓𝑑 ∈ ℋ  and multipliers 

𝜑1 , … , 𝜑𝑑 ∈ 𝑀(ℋ) such that 

𝑓 = 𝑓(𝜆)𝜑 +∑(𝑧𝑖 − 𝜆𝑖)(𝜑𝑓𝑖 − 𝜑𝑖𝑓)

𝑑

𝑖=1

. 

It is clear that for each 𝑖 the function 𝜑𝑖𝑓 is in the multiplier invariant subspace  ℳ, and the 

same is true for 𝜑𝑓𝑖 , if one assumes for example that the multipliers are dense in ℋ. Thus 

dimℳ/((𝑧1 − 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) = 1  provided all the assumptions are satisfied. 

We will show that one can solve Gleason’s problem for the multiplier algebra of  𝐻𝑑
2 . All the 

other assumptions are already known to be true for the spaces mentioned in the theorem.  

   If  𝒟 is a separable complex Hilbert space, then we denote by ℋ𝒟 the space of  𝒟-valued 

ℋ-functions. It is the set of all analytic functions 𝑓:Ω → 𝒟  such that for each 𝑥 ∈ 𝒟  the 

function 𝑓𝑥(𝜆) = 〈𝑓(𝜆),𝑥〉𝒟 defines a function in ℋ and such that 
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‖𝑓‖2 =∑‖𝑓𝑒𝑛‖
2

∞

𝑛=1

< ∞ 

for some orthonormal basis {𝑒𝑛}𝑛≥1  of 𝒟 . One shows that the above expression is 
independent of the choice of orthonormal basis. In particular, one has for 𝑓 ∈ ℋ, 𝑥 ∈ 𝒟 that 

the function 𝑓𝑥: 𝜆 → 𝑓(𝜆)𝑥 is in ℋ𝒟 and ‖𝑓𝑥‖ = ‖𝑓‖‖𝑥‖𝒟. If 𝑓 ∈ ℋ𝒟,𝑥 ∈ 𝒟, and 𝜆 ∈ 𝔹𝑑 

we have 〈𝑓(𝜆),𝑥〉𝒟 = 〈𝑓, 𝑘𝜆𝑥〉, where we have used 𝑘𝜆 ∈ ℋ to denote the reproducing kernel 

for ℋ at 𝜆. There is an obvious identification of the tensor product ℋ⨂𝒟 with ℋ𝒟, where 

one identifies the elementary tensors 𝑓⨂𝑥 with the functions 𝑓𝑥. Considering the definition 

of the norm in ℋ𝒟, one may also think of ℋ𝒟 as a direct sum of dim𝒟 copies of the scalar 

valued space ℋ. 

   Each (scalar valued) multiplier 𝜑 ∈𝑀(ℋ) defines an operator on ℋ𝒟 of the same norm, 

and we shall also denote this operator by 𝑀𝜑. We shall say that a subspace ℳ of ℋ𝒟 is scalar 

multiplier invariant if 𝑀𝜑ℳ ⊆ℳ for each 𝜑 ∈ 𝑀(ℋ). 

   Let ℳ be a scalar multiplier invariant subspace of ℋ𝒟 . For 𝜆 ∈ Ω  we write 

ℳ𝜆 = clos{𝑓(𝜆): 𝑓 ∈ℳ}, 

and we define the fiber dimension of ℳ to be sup
𝜆∈Ω

dimℳ𝜆 . We will be interested in invariant 

subspaces with finite fiber dimension  𝑚. In this case we write  𝑍(ℳ) = {𝜆 ∈ Ω: dimℳ𝜆 <
𝑚}. Note that for the scalar case this agrees with the earlier definition of  𝑍(ℳ). 

   Let  𝜆0 ∈ Ω\Z(ℳ) , then if 𝑚 < ∞  the set {𝑓(𝜆0):𝑓 ∈ ℋ𝒟}  is closed, and there are 

𝑓1 , … , 𝑓𝑚 ∈ ℳ such that 𝑓1(𝜆0),… , 𝑓𝑚(𝜆0) forms an orthonormal basis for ℳ𝜆0
 . Then 

𝑔(𝜆) = det(〈𝑓𝑖(𝜆),𝑓𝑗(𝜆0)〉)1≤𝑖,𝑗≤𝑚
 

is an analytic function on Ω, and it is a standard fact from linear algebra that dimℳ𝜆 = 𝑚 

whenever 𝑔(𝜆) ≠ 0. Thus, the family of vector spaces {ℳ𝜆}𝜆∈Ω\Z(ℳ)  defines a vector bundle 

over  Ω\Z(ℳ) and Z(ℳ) is the intersection of at most a countably infinite number of zero 

sets of analytic functions. In particular Ω\Z(ℳ) is connected and it is dense in Ω. 

Theorem (2.2.2):[17]    Let 𝒟 be a separable Hilbert space and let ℳ be a nonzero scalar 

multiplier invariant subspace of  𝐻𝑑
2(𝒟) with finite fiber dimension 𝑚. Then 

𝜕𝔹𝑑 ⊆ 𝜎𝑒(𝑀𝑧|ℳ) ⊆ 𝜕𝔹𝑑 ∪ 𝑍(ℳ) 

and for every 𝜆 ∈ 𝔹𝑑\𝜎𝑒(𝑀𝑧|ℳ) the tuple (𝑀𝑧− 𝜆)|ℳ  has Fredholm index (−1)𝑑𝑚. 

In fact for all 𝜆 ∈ 𝔹𝑑\𝑍(ℳ) we have 

dimℳ/((𝑧1− 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) = 𝑚. 

Proof: If 𝒩 ⊂ℳ are two invariant subspaces of 𝐻𝑑
2(𝒟), then the fiber dimension of  𝒩 is 

less than or equal to the fiber dimension of ℳ, so the theorem implies an inequality between 
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ind(𝑀𝑧 − 𝜆)|𝒩  and ind(𝑀𝑧 − 𝜆)|ℳ  for 𝜆 ∈ 𝔹𝑑\(𝑍(ℳ)∪ 𝑍(𝒩) . Thus for 𝑑 = 1   our 

theorem recaptures a well-known fact [30]. 

    Recall from [18] that a commuting tuple 𝑇 = (𝑇1 , … , 𝑇𝑑)  of operators on a Hilbert space 

𝒦  is called a d-contraction if ‖𝑇1𝑥1 +⋯+𝑇𝑑𝑥𝑑‖
2 ≤ ‖𝑥1‖

2 +⋯+ ‖𝑥𝑑‖
2  for all 

𝑥1 ,… , 𝑥𝑑 ∈𝒦. This condition is equivalent to ∑ 𝑇𝑖𝑇𝑖
∗𝑑

𝑖=1 ≤ 𝐼 (see [25]). One then defines the 

defect operator ∆𝑇= (𝐼 − ∑ 𝑇𝑖𝑇𝑖
∗𝑑

𝑖=1 )
1

2, the defect space  𝒟 = 𝑐𝑙𝑜𝑠 ∆𝑇𝒦, and one says that 𝑇 

has finite rank if 𝒟 is finite dimensional. Furthermore, associated to each 𝑑-contraction is a 

completely positive map Ψ:𝐵(𝒦) → 𝐵(𝒦) defined by Ψ(𝑋) = ∑ 𝑇𝑖𝑋𝑇𝑖
∗𝑑

𝑖=1   [31] . The d-

contraction is called pure if lim
𝑛→∞

Ψ𝑛(I) = 0  in the strong operator topology. In [18] it is 

shown that every pure 𝑑 -contraction is the compression of (𝑀𝑧, 𝐻𝑑
2(𝒟))  to the 

orthocomplement of some scalar multiplier invariant subspace of 𝐻𝑑
2(𝒟) [31,32] . 

   The curvature invariant 𝑘(𝑇) of a pure 𝑑-contraction of finite rank was defined in [24]. First 

we need to define a ℬ(𝒟)-valued function on 𝔹𝑑 by 

𝑘(𝜆) = (1− |𝜆|2)∆𝑇(𝐼 − 𝑇(𝜆)
∗)−1(𝐼 − 𝑇(𝜆))

−1
∆𝑇, 

where 𝑇(𝜆) = ∑ �̅�𝑖𝑇𝑖
𝑑
𝑖=1 . Arveson shows that for 𝜎 − 𝑎. 𝑒. 𝑧 ∈ 𝜕𝔹𝑑  the nontangential limit 

of 𝑘(𝜆) exists in the strong operator topology as 𝜆 approaches 𝑧. Here we have used 𝜎 to 
denote the rotationally invariant probability measure on 𝜕𝔹𝑑. We call this limit 𝑘(𝑧) and 

define the curvature invariant of 𝑇 by 

𝑘(𝑇) = ∫ trace 𝑘(𝑧)𝑑𝜎(𝑧)

 

𝜕𝔹𝑑

. 

It is clear that 0 ≤ 𝑘(𝑇) ≤ dim𝒟.  [33], it was shown that 𝑘(𝑇) is always an integer, in fact 

that 

𝑘(𝑇) = inf
λ∈𝔹𝑑

dim⋂ker(𝑇𝑖
∗ − �̅�𝑖)

𝑑

𝑖=1

, 

and that for 𝜎 − 𝑎. 𝑒 . 𝑧 ∈ 𝔹𝑑  𝑘(𝑇) = trace 𝑘(𝑧) . Furthermore, if we write  𝐾𝜆 =

⋂ ker(𝑇𝑖
∗ − �̅�𝑖)

𝑑
𝑖=1 , and 𝐸𝑇 = {λ ∈ 𝔹𝑑: dim𝐾𝜆 > 𝑘(𝑇) = inf

z∈Bd
dim𝐾𝑧}, then it follows from  

[33] that 𝐸𝑇 is contained in the zero set of a bounded analytic function. In Theorem (2.2.20) 
we will obtain the following new information about the value of 𝑘(𝑇) along with some 

spectral information of 𝑇. We write 𝜎(𝑇) for the Taylor spectrum and  𝜎𝑝(𝑇
∗)∗ for the set of 

𝑑-tuples of complex conjugates of eigenvalues corresponding to the common eigenvectors of  

𝑇1
∗ ,… , 𝑇𝑑

∗ . 

Theorem (2.2.3):[17]   If 𝑇 is a pure 𝑑-contraction with finite rank, then 𝜎𝑒(𝑇) ∩ 𝔹𝑑 ⊆ 𝐸𝑇 
and for 𝜆 ∈ 𝔹𝑑\𝜎𝑒(𝑇), 

𝑘(𝑇) = (−1)𝑑ind(𝑇 − 𝜆). 
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Furthermore, we have 𝜎(𝑇) ∩𝔹𝑑 =  𝜎𝑝(𝑇
∗)∗ .  Thus, if 𝑘(𝑇) = 0 , then  𝜎(𝑇) ∩ 𝔹𝑑 =

  𝜎𝑝(𝑇
∗)∗ = 𝐸𝑇. 

 We note that this theorem implies that if 𝑆 and 𝑇 are two pure d-contractions of finite rank 

such that 𝑆𝑖 − 𝑇𝑖  is a compact operator for each  𝑖 =  1, . . . , 𝑑, then 𝑘(𝑇) = 𝑘(𝑆) even though 

𝑇 and 𝑆 may have different rank. We also mention that if each Ti is essentially normal, then 

one can show that 𝜎𝑝(𝑇) ∩ 𝔹𝑑 = ∅, thus our theorem implies in this case that  𝑘(𝑇) =
(−1)𝑑ind(𝑇). However, we will see that there are examples of pure finite rank 𝑑-contractions 

that are not Fredholm (i.e.0 ∈ 𝜎𝑒(𝑇)).[19,20,34,35]. 

Theorem (2.2.4):[17]   Let ℋ denote the Hardy or Bergman space of the ball or polydisc, let 

𝒟 be a separable Hilbert space, and let ℳ be an invariant subspace of ℋ𝒟 of finite fiber 

dimension 𝑚. 

   If 𝜆 ∈ Ω   and there are bounded functions 𝑓1 , … , 𝑓𝑚 ∈ ℳ  such that the set 
{𝑓1 (𝜆),… , 𝑓𝑚(𝜆)} is linearly independent, then the tuple (𝑀𝑧 − 𝜆)|ℳ is Fredholm with index 

(−1)𝑑𝑚. In fact, for all such 𝜆 we have  

dimℳ/((𝑧1− 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) = 𝑚. 

See [19,37,38]. 

Lemma (2.2.5):[17]     Let 𝑇 = (𝑇1 , . . . , 𝑇𝑑) and 𝑆 = (𝑆1 ,. . . , 𝑆𝑑) be commuting tuples of 
operators on Hilbert spaces ℋ  and 𝒦  respectively and let 𝑋:𝒦 → ℋ  and 𝑌:𝒦 → ℋ  be 

bounded linear operators. If there exists an operator 𝐵  on Λ(ℋ) such that for each 𝑝 =

0, . . . , 𝑑 we have 𝐵(Λp(ℋ))⊆ Λp−1(ℋ) and  

𝜕𝑇𝐵 +𝐵𝜕𝑇 = 𝐼⨂𝐸0 −𝑋𝑌⨂𝐸0 

and if there exists an operator 𝐶 on  Λ(𝒦) such that for each 𝑝 = 0,… , 𝑑 we have  

𝐶(Λp(𝒦)) ⊆ Λp−1(𝒦) and  

𝜕𝑆𝐶 + 𝐶𝜕𝑆 = 𝐼⨂𝐸0−𝑌𝑋⨂𝐸0. 

then for each 𝑝 = 0, . . . , 𝑑  the cohomology spaces 𝐻𝑝(𝑇) and 𝐻𝑝(𝑆) are isomorphic as 
vector spaces. 

   In particular, if 𝑇 is a Fredholm tuple, then 𝑆 is a Fredholm tuple and ind𝑇 = ind𝑆. 

   If ℋ  is a Hilbert space of analytic functions on Ω  such that for each 𝑖 = 1, . . . , 𝑑 

multiplication  by the coordinate functions defines a bounded linear operator on ℋ, then for 
each 𝜆 ∈ Ωwe will be interested in the Koszul complex 𝐾(𝑀𝑧 − 𝜆) for the 𝑑-tuple 𝑀𝑧 − 𝜆. 

The standard hypothesis on ℋ will be that this complex is exact at every stage except at the 

last one, where its cohomology is one dimensional. This can be restated as saying that the 

augmented complex 

𝐾(𝑀𝑧 − 𝜆, ℂ): 0 → Λ
0(ℋ)

∂0
→Λ1(ℋ)

∂1
→…

∂d−1
→  Λd(ℋ)

δλ
→ℂ → 0 
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is exact at every stage. Here we have written, for 𝑘 =  0, . . . , 𝑑 − 1,∂𝑘 = ∂𝑀𝑧−𝜆,𝑘, and δλ is 

the evaluation map, δλ(𝑓⨂e1 ∧…∧ ed) = 𝑓(λ). 

   Similarly, if ℋ  is as above, 𝒟  is a separable Hilbert space, and ℳ⊆ℋ𝒟  is a scalar 

multiplier invariant subspace, then we will be interested in the augmented complex 

𝐾((𝑀𝑧− 𝜆)|ℳ,ℳ𝜆): 0 → Λ
0(ℳ)

∂0
→Λ1(ℳ)

∂1
→…

∂d−1
→  Λd(ℳ)

δλ
→ℳ𝜆 → 0 

where as above, for 𝑘 =  0, . . . , 𝑑 − 1,∂𝑘 = ∂(𝑀𝑧−𝜆)|ℳ,𝑘, and δλ is the evaluation map, 

δλ(𝑓⨂e1 ∧… ∧ ed) = 𝑓(λ),𝑓 ∈ ℳ. The purpose of introducing the augmented complex is 

that it will allow for a simple statement of the main results. We note that if 𝜆 ∈ Ω\Z(ℳ), 
then dimℳ/((𝑧1 − 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ)  equals the fiber dimension of ℳ  is 
equivalent to saying the augmented Koszul complex is exact at the penultimate stage.  

Lemma (2.2.6):[17]       If 𝜆 ∈ Ω  and ℳ is a scalar multiplier invariant subspace of 𝐻𝒟 of 

finite fiber dimension, then dimℳ/((𝑧1 − 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) = dimℳ𝜆  if and 

only if the augmented Koszul complex 𝐾((𝑀𝑧 − 𝜆)|ℳ,ℳ𝜆) is exact at the penultimate 

stage. 

If the augmented complex 𝐾((𝑀𝑧− 𝜆)|ℳ,ℳ𝜆)  is exact, then   𝜆 ∉ 𝜎𝑒(𝑀𝑧|ℳ)  and 

ind((𝑀𝑧− 𝜆)|ℳ) = (−1)
𝑑dimℳ𝜆 = dimℳ/((𝑧1 − 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) . 

Proof:      Let 𝑘 = dimℳ𝜆  and ℎ1, . . , ℎ𝑘 ∈ℳ   such that ℳ𝜆  equals the linear span of 
ℎ1(𝜆), . . . , ℎ𝑘(𝜆) . It is clear that the cosets of  ℎ1 , . . , ℎ𝑘   are linearly independent in 

ℳ/((𝑧1 − 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ. It follows that  dimℳ/((𝑧1− 𝜆1)ℳ+⋯+ (𝑧𝑑 −

𝜆𝑑)ℳ) = dimℳ𝜆 , if and only if every 𝑓 ∈ℳ  is of the form  𝑓(𝑧) = ∑ 𝑎𝑖ℎ𝑖(𝑧)
𝑘
𝑖=1 +

∑ (𝑧𝑖 − 𝜆𝑖)𝑔𝑖(𝑧)
𝑑
𝑖=1  for some 𝑎1 , . . ,𝑎𝑘 ∈ ℂ and 𝑔1 ,. . . 𝑔𝑑  ∈ ℳ. Also note that for 𝑓 ∈ ℳ we 

have 𝑓⨂e1 ∧… ∧ ed ∈ ran ∂𝑑−1  if and only if 𝑓(𝑧) = ∑ (𝑧𝑖 − 𝜆𝑖)𝑔𝑖(𝑧)
𝑑
𝑖=1  for some 

𝑔1 , . . . 𝑔𝑑  ∈ ℳ. 

   Suppose  dimℳ/((𝑧1 − 𝜆1)ℳ+⋯+ (𝑧𝑑 − 𝜆𝑑)ℳ) = dimℳ𝜆 , and let  𝑓⨂e1 ∧…∧
ed ∈ ker δλ. Then 𝑓(𝜆) = 0 and the hypothesis implies that there are  𝑔1 , . . . 𝑔𝑑  ∈ℳ such 

that 𝑓(𝑧) = ∑ (𝑧𝑖 − 𝜆𝑖)𝑔𝑖(𝑧)
𝑑
𝑖=1 . Hence ker δλ = ran ∂𝑑−1, i.e. the augmented complex is 

exact at this stage. 

   Conversely, suppose that the augmented complex is exact at this stage, i.e.  ker δλ =
ran ∂𝑑−1 . Let 𝑓 ∈ℳ, then since ℎ1(𝜆), . . . , ℎ𝑘(𝜆)  is a basis for ℳ𝜆 , there are 𝑎1, . . , 𝑎𝑘 ∈ ℂ 

such that 𝑓(𝜆) = ∑ 𝑎𝑖ℎ𝑖(𝜆)
𝑘
𝑖=1 . Set 𝑓1 = 𝑓 −∑ 𝑎𝑖ℎ𝑖

𝑘
𝑖=1 , then 𝑓⨂e1 ∧…∧ ed ∈ ker δλ =

ran ∂𝑑−1 . Hence there are   𝑔1 , . . . 𝑔𝑑  ∈ℳsuch that  𝑓1(𝑧) = ∑ (𝑧𝑖 − 𝜆𝑖)𝑔𝑖(𝑧)
𝑑
𝑖=1 , and this 

implies 𝑓(𝑧) = ∑ 𝑎𝑖ℎ𝑖(𝑧)
𝑘
𝑖=1 +∑ (𝑧𝑖 − 𝜆𝑖)𝑔𝑖(𝑧)

𝑑
𝑖=1 . 

Lemma (2.2.7):[17]     Let 𝑇 be a 𝑑-tuple of commuting operators on a Hilbert space ℋ, let 

𝐴 = (𝑎𝑖𝑗)  be an invertible 𝑑 × 𝑑 matrix, and set 𝑆 = (𝑆1 , . . . , 𝑆𝑑),𝑆𝑖 = ∑ 𝑎𝑖𝑗𝑇𝑗
𝑑
𝑗=1 . 

   Then the Koszul complex for 𝑇 is isomorphic to the Koszul complex for 𝑆. Thus 𝑇 is a 

Fredholm tuple if and only if 𝑆 is a Fredholm tuple. 
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Proof:    We have 𝜕𝑆 = ∑ 𝑆𝑖⨂𝐸𝑖
𝑑
𝑖=1 = ∑ 𝑎𝑖𝑗𝑇𝑗⨂𝐸𝑖

𝑑
𝑖,𝑗=1 = ∑ 𝑇𝑗⨂𝐷𝑗

𝑑
𝑗=1 , where 𝐷𝑗 =

∑ 𝑎𝑖𝑗𝐸𝑖
𝑑
𝑖=1 , and it is a standard fact that there is an invertible linear map 𝐿: Λ → Λ such that 

each Λp is reducing for 𝐿 and 𝐿𝐷𝑖 = 𝐸𝑖𝐿 for 𝑖 = 1, . . . , 𝑑 [39]. Thus for each 𝑝 the space 

Λp(ℋ) is reducing for  𝐼⨂𝐿 and (𝐼⨂𝐿)𝜕𝑆  = 𝜕𝑇(𝐼⨂𝐿).  

Lemma (2.2.8):[17]      Let 𝑇 be a 𝑑-tuple of commuting operators on a Hilbert space ℋ and 
let 𝜆 ∈ 𝔹𝑑  such that 𝐼 − 〈𝑇, 𝜆〉 , is invertible. Then the Koszul complexes of  𝑇 − 𝜆  and  

𝜑𝜆(𝑇) are isomorphic. Thus 𝑇 − 𝜆 is a Fredholm tuple if and only if 𝜑𝜆(𝑇) is a Fredholm 

tuple. 

Proof:     We note that 𝐴𝜆  is invertible on ℂ𝑑 . Hence it is easy to see that an isomorphism 

𝐾(𝑇− 𝜆) →  𝐾(𝜑𝜆(𝑇))  is given by 𝑈 = (𝐼 − 〈𝑇, 𝜆〉)−1⨂𝐿𝜆, where 𝐿𝜆 is the isomorphism 

from the proof of Lemma (2.2.7) applied with 𝑇 − 𝜆 and the matrix for 𝐴𝜆 . 

   For any 𝑑-tuple 𝑇 of commuting operators on ℋ and for any 𝜆 ∈ 𝔹𝑑 the one-dimensional 
spectrum of the operator 〈𝑇, 𝜆〉 is contained in the disc of radius |𝜆| whenever the Taylor 

spectrum of 𝑇 is contained in clos 𝔹𝑑. This follows from the spectral mapping property of 

the Taylor spectrum [38] since the function 𝑓(𝑧) = 〈𝑇, 𝜆〉 maps 𝔹𝑑 into the disc of radius  

|𝜆|. 

   The spaces  𝐻𝑑
2 , the Hardy, and Bergman spaces of the ball 𝔹𝑑 are members of a family of 

Hilbert spaces of analytic functions. For 𝛼 > 0 we let 𝒦𝛼 be the space of analytic functions 

on 𝔹𝑑 with reproducing kernel 𝑘𝜆 (𝑧) =
1

(1−〈𝑧,𝜆〉)𝛼
  . Obviously, 𝒦1 = 𝐻𝑑

2, and it is also well-

known that 𝒦𝑑 = 𝐻
2(𝔹𝑑) is the Hardy space and 𝒦𝑑+1 = 𝐿𝑑

2 (𝔹𝑑)is the Bergman space of 

the ball  [40]. We shall need some spectral information about these three spaces and it will be 

convenient to treat all values of 𝛼 > 0 simultaneously. 

Lemma (2.2.9):[17]      Let 𝛼 > 0, and ℋ =𝒦𝛼 . Then for each 𝑖 = 1, . . , 𝑑  the self 

commutator 𝑀𝑧𝑖
∗ 𝑀𝑧𝑖−𝑀𝑧𝑖𝑀𝑧𝑖

∗   is compact (i.e. 𝑀𝑧𝑖 is essentially normal) and ∑ 𝑀𝑧𝑖
∗ 𝑀𝑧𝑖

𝑑
𝑖=1 =

1+ 𝐾 for some compact operator  𝐾. Furthermore,  𝜎(𝑀𝑧) ⊆ clos 𝔹𝑑. 

Proof:  Let 𝑗 = (𝑗1 , 𝑗2 , . . . , 𝑗𝑑) be a multiindex of nonnegative integers, then |𝑗| = 𝑗1 + 𝑗2 +

⋯+ 𝑗𝑑 , 𝑗!  = 𝑗1!𝑗2!… 𝑗𝑑! , and for  𝜆 = (𝜆1, 𝜆2 , … , 𝜆𝑑) ∈ ℂ
𝑑 , 𝜆𝑗 = 𝜆1

𝑗1𝜆2
𝑗2 …𝜆𝑑

𝑗𝑑  , and the 

multinomial formula implies that for 𝑧, 𝜆 ∈ 𝔹𝑑 and 𝑛 ≥ 0 

〈𝑧, 𝜆〉𝑛 = ∑
|𝑗|!

𝑗!
𝑧𝑗 �̅�𝑗

 

|𝑗|=𝑛

. 

Thus if we write  𝑘𝜆(𝑧) =
1

(1−〈𝑧,𝜆〉)𝛼
= ∑ 𝑎𝑛(〈𝑧, 𝜆〉)

𝑛∞
𝑛=0 , where 𝑎0 = 1 and for 𝑛 ≥ 1  

𝑎𝑛 =
𝛼(𝛼+1)…(𝛼+𝑛−1)

𝑛!
, then 𝑘𝜆(𝑧) = ∑ 𝑎|𝑗|

|𝑗|!

𝑗!𝑗  𝑧𝑗 �̅�𝑗  , where the sum is taken over  all 

multiindices 𝑗 with entries in the integers. Since 𝑘𝜆(𝑧) = 〈𝑘𝜆 , 𝑘𝑧〉 it follows that monomials 

in 𝒦𝛼 are mutually orthogonal and 

‖𝑧𝑗‖
2
=

𝑗!

𝑎|𝑗||𝑗|!
=

𝑗!

𝛼(𝛼 + 1)…(𝛼 + |𝑗| − 1)
. 
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Now for 1 ≤ 𝑖 ≤ 𝑑 let 𝑆𝑖  denote the self-commutator of  𝑀𝑧𝑖, i.e.  𝑆𝑖 = 𝑀𝑧𝑖
∗ 𝑀𝑧𝑖−𝑀𝑧𝑖𝑀𝑧𝑖

∗ , 

and let 𝑃𝑛  denote the projection of 𝒦𝛼  onto the subspace of all polynomials of total degree 

less than  𝑛 . We will show that ‖𝑆𝑖 − 𝑃𝑛𝑆𝑖𝑃𝑛‖ → 0 𝑎𝑠 𝑛 → ∞ . It is clear that 𝑆𝑖  is 

diagonalized by the monomials so that 𝑆𝑖𝑧
𝑗 = 𝑐𝑖,𝑗𝑧

𝑗   for each multiindex 𝑗 and some  𝑐𝑖,𝑗 ∈

ℝ. Hence it will suffice to show that sup
|𝑗|≥𝑛

|𝑐𝑖,𝑗 | → 0 as 𝑛 → ∞. 

 We write 𝑒𝑖  for the multiindex with a 1 in the 𝑖-th  spot and 0’s otherwise. Then for any 

multiindex 𝑗  and any 1 ≤ 𝑖 ≤ 𝑑  we have 𝑀𝑧𝑖
∗ 𝑧𝑗 = 0  if 𝑗𝑖 = 0  and 𝑀𝑧𝑖

∗ 𝑧𝑗 =
‖𝑧𝑗‖

2

‖𝑧𝑗−𝑒𝑖‖
2𝑧𝑗−𝑒𝑖  

otherwise. Hence if  𝑗𝑖 =  0 we obtain  〈𝑆𝑖𝑧
𝑗 , 𝑧𝑗〉 =

1

𝛼+|𝑗|
‖𝑧𝑗‖

2
, while for 𝑗𝑖 > 0 we compute 

〈𝑆𝑖𝑧
𝑗 , 𝑧𝑗〉 = (

‖𝑧𝑗+𝑒𝑗‖
2

‖𝑧𝑗‖2
−
‖𝑧𝑗‖

2

‖𝑧𝑗−𝑒𝑖‖2
)‖𝑧𝑗‖

2
 =

𝛼 + |𝑗| − 𝑗𝑖 − 1

(𝛼 + |𝑗|)(𝛼 + |𝑗| − 1)
‖𝑧𝑗‖

2
. 

Thus, if 𝑛 > 1 and |𝑗| = 𝑛, then  

|〈𝑆𝑖𝑧
𝑗 , 𝑧𝑗〉| ≤

𝛼 + 2𝑛

(𝛼 + 𝑛)(𝛼+ 𝑛 − 1)
‖𝑧𝑗‖

2
≤

2

𝛼+ 𝑛 − 1
‖𝑧𝑗‖

2
. 

Hence, for |𝑗| ≥ 𝑛 we have |𝑐𝑖,𝑗| =
|〈𝑆𝑖𝑧

𝑗 ,𝑧𝑗〉|

‖𝑧𝑗‖
2 ≤

2

𝛼+𝑛−1
→ 0 as 𝑛 → ∞. This implies that 𝑆𝑖  is 

compact and 𝑀𝑧𝑖 is essentially normal. 

Similarly, we compute 

〈∑𝑀𝑧𝑖
∗ 𝑀𝑧𝑖𝑧

𝑗, 𝑧𝑗
𝑑

𝑖=1

〉 =∑‖𝑧𝑖𝑧
𝑗‖
2

𝑑

𝑖=1

= (1 +
𝑑 − 𝛼

𝛼 + |𝑗|
)‖𝑧𝑗‖

2
. 

This implies that ∑ 𝑀𝑧𝑖
∗ 𝑀𝑧𝑖

𝑑
𝑖=1 − 𝐼 is compact. 

   Finally we show that 𝜎(𝑀𝑧) ⊆ clos 𝔹𝑑, or equivalently that the spectral radius of 𝑀𝑧 is less 

than or equal to 1 . We set 𝜓(𝑋) = ∑ 𝑀𝑧𝑖
∗ 𝑋𝑀𝑧𝑖

𝑑
𝑖=1 ,𝑋 ∈ ℬ(𝒦𝛼) . By the spectral radius 

formula, [41], we must show that lim supn→∞‖𝜓
𝑛(𝐼)‖

1

2𝑛 ≤ 1. It is easy to see that 𝜓𝑛(𝐼) is 

diagonalized by the monomials, and one calculates that for any multiindex 𝑗 

〈𝜓𝑛(𝐼)𝑧𝑗, 𝑧𝑗 〉 = ∑ ‖𝑀𝑧𝑖1…𝑀𝑧𝑖𝑛‖
2

𝑑

𝑖1,…,𝑖𝑛=1

=∏(1+
𝑑 − 𝛼

𝛼 + |𝑗| + 𝑘
)

𝑛−1

𝑘=0

‖𝑧𝑗‖
2
. 

Thus for 𝛼 ≥ 𝑑 we see that || 𝜓𝑛(𝐼)|| ≤ 1 and for 0 < 𝛼 ≤ 𝑑 we have that  || 𝜓𝑛(𝐼)|| ≤

∏ (1+
𝑑−𝛼

𝛼+𝑘
)𝑛−1

𝑘=0 . [37]. 

Proposition(2.2.10):[17]    Let 𝛼 > 0, and ℋ =𝒦𝛼. Then 𝜎(𝑀𝑧) = clos 𝔹𝑑,𝜎(𝑀𝑧) = 𝜕𝔹𝑑 , 

and for each 𝜆 ∈ 𝔹𝑑 the augmented Koszul complex for 𝑀𝑧 − 𝜆 is exact. 



 
37 

Proof:    We know from Lemma (2.2.9) that 

𝜎𝑒(𝑀𝑧) ⊆ 𝜎(𝑀𝑧) ⊆ clos 𝔹𝑑. 

   Next we let  𝜆 = 0, and we proceed as in the proof of [42], we know that 𝑀𝑧 is a Fredholm 

tuple. Hence the operator 𝜕𝑀𝑧  has closed range. Observe that ℋ =ℋ0⊗ℋ1⨂… , where 

ℋ𝑛 is the space of homogeneous polynomials of degree 𝑛. Thus, for each 𝑝 we get  Λp(ℋ) =
Λ𝑝(ℋ0)⊗Λ

𝑝(ℋ1) ⨂…  . The definition of  𝜕 = 𝜕𝑀𝑧  implies that for each 𝑝 and 𝑛𝜕𝑝 takes 

Λp(ℋ𝑛)  into  Λp+1(ℋ𝑛+1). 

   Now let 0 ≤ 𝑝 ≤ 𝑑 and 𝑥 ∈ ker 𝜕𝑝. Then 𝑥 = ∑ 𝑥𝑛
∞
𝑛=0   for  𝑥𝑛 ∈ Λ

p(ℋ𝑛), and it is clear 

that 𝑥𝑛 ∈ ker 𝜕𝑝 for each 𝑛. We must show that 𝑥 ∈ ran 𝜕𝑝. We already know that ran 𝜕𝑝−1 

is closed, so it is enough to show that each 𝑥𝑛 ∈ ran 𝜕𝑝−1 . This is equivalent to exactness of 

the Koszul complex at stage 𝑝 for the polynomial ring  ℂ[𝑧1 , . . . , 𝑧𝑑], and that is well known  

[43]. 

   Similarly, the exactness of the augmented complex at the last stage is clear, because 1 ∈ ℋ. 

   Next we claim that 𝒦𝛼 is automorphism invariant, i.e. for each 𝜆 ∈ 𝔹𝑑 composition with 

𝜑𝜆  defines a bounded invertible operator on  𝒦𝛼. Fix 𝜆 ∈ 𝔹𝑑 , and  choose a branch of  

𝑓(𝑢) = (1− |𝜆|2)−
𝛼

2(1− 𝑢)𝛼  that is analytic for 𝑢 ∈ 𝔻. For 𝑧 ∈ 𝔹𝑑   set 𝑔(𝑧) = 𝑓(〈𝑧,𝜆〉). 
It follows from Lemma (2.2.9) preceding it that 𝜎(〈𝑧, 𝜆〉) ⊆ 𝔻. Thus it is clear that the 

operator  𝑓(〈𝑀𝑧, 𝜆〉)  as defined by the Riesz-Dunford functional calculus equals the 

multiplication operator 𝑀𝑔 , i.e. 𝑔  is a multiplier of 𝒦𝛼 . Notice that the well-known 

transformation formula for ball automorphism [29], shows that 𝑘𝜑𝜆(𝜔)(𝜑𝜆(𝑧)) =

𝑔(𝑧)𝑔(𝜔)̅̅ ̅̅ ̅̅ ̅𝑘𝜔(𝑧)  for all 𝑧, 𝜔 ∈ 𝔹𝑑 . Thus the linear transformation 𝑇  defined on the 

reproducing kernels by 𝑇𝑘𝜔 = 𝑘𝜑𝜆(𝜔)  extends to be a bounded operator of norm ‖𝑀𝑔
∗‖ . 

Hence 𝑇∗ is also bounded, and it is easy to verify that 𝑇∗ is the operator of composition with  

𝜑𝜆 . 

   The automorphism invariance of 𝒦𝛼 implies that the tuples 𝑀𝑧  and 𝜑𝜆(𝑀𝑧) are similar, 
and the result about the exactness of the augmented complex follows from Lemma (2.2.8). 

This implies that 𝜎(𝑀𝑧) = clos 𝔹𝑑  and  𝜎𝑒(𝑀𝑧) ∩𝔹𝑑 = ∅ ;. It also implies that the index of 

𝑀𝑧 − 𝜆  is (−1)𝑑  for each  𝜆 ∈ 𝔹𝑑 . Thus the continuity property of the index on the 

components of the complement of the essential spectrum implies that 𝜎𝑒(𝑀𝑧) = 𝜕𝔹𝑑  [37,43].  

Let ℋ be a Hilbert space of complex-valued analytic functions on the open, connected and 

nonempty set Ω ⊆ ℂ𝑑 . We assume 1 ∈ ℋ. Then 𝑀(ℋ) ⊆ ℋ . We use 𝑘𝜆  to denote the 

reproducing kernel of ℋ. For 𝜆 ∈ Ω it is defined by the relation 𝑓(𝜆) = 〈𝑓, 𝑘𝜆〉 for every  𝑓 ∈
ℋ. In the scalar-valued version of the main theorem we assume that the invariant subspace 

ℳ contains a multiplier 𝜙 (see Theorem (2.2.1)). For the vector-valued versions it will be 
convenient to use operator-valued multipliers. 

    Let 𝒟 and ℰ be two separable Hilbert spaces, and let 𝜙:𝔹𝑑 → ℬ(ℰ,𝒟)  be an operator 

valued analytic function. For 𝜆 ∈ 𝔹𝑑 and 𝑓 ∈ ℋℰ we define (Φ𝑓)(λ) = 𝜙(λ)𝑓(λ). Then  Φ𝑓 

is a 𝒟 -valued analytic function. If  Φ𝑓 ∈ℋ𝒟  for every  𝑓 ∈ ℋℰ  , then Φ𝑓  is called an 

operator-valued multiplier, and the closed graph theorem shows that the associated 
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multiplication operator  Φ:ℋℰ →ℋ𝒟 is bounded. One hypothesis on the invariant subspace 

ℳ of ℋ𝒟 in the main theorem will be that there exists a separable Hilbert space E and a 

multiplication operator Φ ∈ ℬ(ℋℰ ,ℋ𝒟) such that ran Φ ⊆ℳ. We will then see that the 

augmented complex  𝐾((𝑀𝑧− 𝜆)|ℳ,ℳ𝜆) is exact at every 𝜆 ∈ Ω\𝑍(ℳ) with ran 𝜙(λ) =

ℳ𝜆 . It is known that every scalar multiplier invariant subspace ℳ of 𝐻𝑑
2(𝒟) is of the form 

ℳ = ranΦ  for some multiplication operator Φ[24,25]. It is easy to construct a multiplication 

operator Φ with ranΦ ⊆ℳ for a scalar multiplier invariant subspace ℳ of the Hardy or 
Bergman space whenever ℳ contains some bounded functions (see the proof of Theorem 

(2.2.21)). 

   We start  Lemma 3.1 of [33]. For the rest  we let ℳ be a scalar multiplier invariant subspace 

of ℋ𝒟 of finite fiber dimension  𝑚, i.e. 

𝑚 = sup
𝜆∈Ω

dimℳ𝜆 < ∞, 

and we let Φ ∈ ℬ(ℋℰ ,ℋ𝒟) be a multiplication operator with associated operator valued 
analytic function 𝜙:𝔹𝑑 → ℬ(ℰ,𝒟) . We assume that ranΦ ⊆ℳ  and that   

sup
𝜆∈𝔹𝑑

dimran 𝜙(𝜆) = 𝑚.  

    For 𝜆 ∈ Ω  write 𝒟𝜆 = ranΦ ⊆ 𝒟. Then since 𝒟𝜆 ⊆ℳ𝜆  we have  dim𝒟𝜆0 = dimℳ𝜆 ,  

and 𝒟𝜆 =ℳ𝜆  whenever dim𝒟𝜆 = 𝑚. We fix a 𝜆0 ∈ Ω with  dim𝒟𝜆0 = 𝑚. Let {𝑒𝑛 }𝑛=1
𝑚   be 

an orthonormal basis for ker𝜙(𝜆0)
⊥ ⊆ ℰ, and {𝑑𝑘}𝑘=1

𝑚  be an orthonormal basis for 𝒟𝜆0 =

ran𝜙(𝜆0) ⊆ 𝒟. We define the 𝑚×𝑚 matrix 

𝑀(𝜆) = (〈𝜙(𝜆)𝑒𝑛 ,𝑑𝑘 〉𝒟)1≤𝑛,𝑘≤𝑚
, 

and the analytic function 𝜑, 

𝜑(𝜆) = det𝑀(𝜆). 

The choice of 𝜆0 implies that 𝜓(𝜆0) ≠ 0. It is easy to check that all entries of the matrix 𝑀 

are multipliers of ℋ, and it follows that 𝜙 is a multiplier of ℋ also. Finally, we write 𝑃𝒟𝜆 for 

the orthogonal projection of 𝒟 onto 𝒟𝜆. 

Lemma (2.2.11):[17]   If 𝑓 ∈ ℳ is such that for each 𝜆 ∈ Ω  we have  𝑃𝒟𝜆0(𝑓
(𝜆)) = 0, then 

𝑓 = 0. 

Proof:    Let 𝑓 ∈ ℳ be as in the hypothesis. We will show that 𝜑(𝜆)𝑓(𝜆) = 0 for all 𝜆 ∈ Ω. 
Since 𝜑 ≠ 0  this will imply that 𝑓 = 0. Let 𝜆 ∈ Ω  such that  𝜑(𝜆) ≠ 0. We must show  

𝑓(𝜆) = 0.  

 Since  𝜑(𝜆) ≠ 0, the matrix 𝑀(𝜆) has full rank and the set of vectors 

{𝜙(𝜆)𝑒1 ,… , 𝜙(𝜆)𝑒𝑚} 

is linearly independent in 𝒟𝜆. Thus, dim𝒟𝜆 = 𝑚 and 𝑓(𝜆) ∈ℳ𝜆 = 𝒟𝜆 = ran𝜙(𝜆). Hence 

there must be 𝑎1(𝜆),𝑎2(𝜆),… ,𝑎𝑚(𝜆) ∈ ℂ such that 𝑓(𝜆) = ∑ 𝑎𝑛(𝜆)𝜙(𝜆)𝑒𝑛
𝑚
𝑛=1 . 
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 Now the hypothesis on 𝑓 implies that for each 𝑘 = 1,2,… ,𝑚 we have  

0 = 〈𝑓(𝜆),𝑑𝑘 〉 =∑ 𝑎𝑛(𝜆)

𝑚

𝑛=1

〈𝜙(𝜆)𝑒𝑛, 𝑑𝑘 〉. 

Thus  (𝑎1(𝜆),𝑎2(𝜆),… , 𝑎𝑚(𝜆))𝑀(𝜆) = 0 . But  𝑀(𝜆) has full rank, hence  𝑎1(𝜆) = ⋯ =

𝑎𝑚(𝜆) = 0, and it follows that 𝑓(𝜆) = 0. 

Lemma (2.2.12):[17]    If 𝑥 ∈ 𝒟𝜆0 then there is a 𝑔𝑥 ∈ ranΦ ⊆ ℳ ⊆ℋ𝒟 such that  

𝑃𝒟𝜆0(𝑔
(𝜆)) = 𝜑(𝜆)𝑥 for all 𝜆 ∈ Ω ,                                                            (34) 

ℎ𝑔𝑥 ∈ ℳ for all   ℎ ∈ ℋ                                                                        (35) 

Proof:     For 𝜆 ∈ Ω and 1 ≤ 𝑖, 𝑗 ≤ 𝑚 and 𝑚 ≥ 2 we let 𝑏𝑖,𝑗(𝜆) equal (−1)𝑖+𝑗   times the 

determinant of the (𝑚− 1) × (𝑚− 1) matrix obtained from 𝑀(𝜆) by deleting the j-th row 

and the i-th column. If 𝑚 = 1, we set 𝑏1,1(𝜆) = 1. Then each 𝑏𝑖 ,𝑗 is a multiplier of  ℋ, and 

the matrix 𝑀+(𝜆) = (𝑏𝑖,𝑗(𝜆))
1≤𝑖,𝑗≤𝑚

 is the adjoint matrix of 𝑀(𝜆). It satisfies 

𝑀+(𝜆)𝑀(𝜆) = 𝑀(𝜆)𝑀+(𝜆) = 𝜑(𝜆)𝐼𝑚, 

where 𝐼𝑚 denotes the 𝑚×𝑚 identity matrix. 

   Now let 𝑥 ∈ 𝒟𝜆0 and set 𝑓𝑥(𝜆) = ∑ 𝑏𝑗 ,𝑖(𝜆)
𝑚
𝑖,𝑗=1 〈𝑥, 𝑑𝑗〉𝑒𝑖 for 𝜆 ∈ Ω. Since 𝑀(ℋ) ⊆ ℋ, it is 

clear that 𝑓𝑥 ∈ ℋℰ. Thus we may set 𝑔𝑥 = Φ𝑓𝑥 ∈ ranΦ and we claim that   𝑃𝒟𝜆0(𝑔𝑥
(𝜆)) =

𝜑(𝜆)  for all 𝜆 ∈ Ω. 

   Since {𝑑𝑛} is an orthonormal basis for 𝒟𝜆0 we have  

𝑃𝒟𝜆0(𝑔𝑥
(𝜆)) =∑〈𝑔𝑥(𝜆),𝑑𝑛〉𝑑𝑛

𝑚

𝑛=1

=∑〈𝜙(𝜆)𝑓𝑥(𝜆),𝑑𝑛〉𝑑𝑛

𝑚

𝑛=1

 

= ∑ 〈𝜙(𝜆)𝑏𝑗,𝑖(𝜆)〈𝑥,𝑑𝑗〉𝑒𝑖 , 𝑑𝑛〉𝑑𝑛

𝑚

𝑛,𝑖,𝑗=1

 

= ∑ 〈𝑥, 𝑑𝑗〉∑𝑏𝑗 ,𝑖(𝜆)〈𝜙(𝜆)𝑒𝑖 , 𝑑𝑛〉𝑑𝑛

𝑚

𝑖=1

𝑚

𝑛,𝑗=1

 

= ∑ 〈𝑥,𝑑𝑗〉𝜙(𝜆)𝛿𝑛,𝑗𝑑𝑛

𝑚

𝑛,𝑗=1

= 𝜙(𝜆)𝑥.    

Thus, 𝑔𝑥 satisfies (34). 
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If ℎ ∈ ℋ , then ℎ𝑓𝑥 = ∑ ℎ𝑏𝑗,𝑖(𝜆)
𝑚
𝑖,𝑗=1 〈𝑥, 𝑑𝑗〉𝑒𝑖 ∈ ℋℰ . Thus, for each 𝜆 ∈ Ω  we have 

ℎ(𝜆)(Φ𝑓𝑥)(𝜆) = ℎ(𝜆)Φ(𝜆)𝑓𝑥(𝜆) = Φ(𝜆)(ℎ𝑓𝑥)(𝜆) , ℎ𝑔𝑥 = Φ(ℎ𝑓𝑥) ∈ ranΦ ⊆ℳ  and (35) 

follows. 

   If  𝜆 ∈ Ω , then 𝒟𝜆 ⊆ 𝒟 so we can think of ℋ𝒟𝜆
 as a subspace of  ℋ𝒟. We will write 𝑃𝜆  for 

the orthogonal projection of ℋ𝒟 onto  ℋ𝒟𝜆
. It satisfies (𝑃𝜆  𝑓)(𝑧) = 𝑃𝒟𝜆(𝑓(𝑧)) for every 𝑓 ∈

ℋ𝒟  and every 𝑧 ∈ Ω. Thus it is clear that 𝑃𝜆  intertwines every scalar multiplication operator 

and Lemma (2.2.11) says that 𝑃𝜆0is 1− 1 when restricted to ℳ.  

Lemma (2.2.13):[17]     Let ℋ be a Hilbert space of holomorphic functions on  Ω ⊆ ℂd  with 

1 ∈ℋ, let ℰ and 𝒟 be separable Hilbert spaces, and let ℳ be a scalar multiplier invariant 

subspace of ℋ𝒟 with finite fiber dimension 𝑚. 

   If Φ ∈ ℬ(ℋℰ ,ℋ𝒟) is a multiplication operator with associated operator-valued multiplier 

𝜙 such that ranΦ ⊆ℳ and if  𝜆0 ∈ Ω\Z(ℳ) such that  rank𝜙(𝜆0) = 𝑚, , then there exists 

a 𝜑 ∈ 𝑀(ℋ) with 𝜑(𝜆0) = 1 and there is a multiplication operator Ψ ∈ ℬ(ℋ𝒟λ0 ,ℋ𝒟) with  

ranΨ ⊆ℳ and such that 

𝑃𝜆0Ψ𝑓 = 𝑀𝜑𝑓 for every 𝑓 ∈ ℋ𝒟λ0
, and Ψ𝑃𝜆0𝑓 = 𝑀𝜑𝑓  for all 𝑓 ∈ ℳ.    

Proof:    We fix 𝜆0 ∈ Ω\Z(ℳ) such that  rank𝜙(𝜆0) = 𝑚,, and we note that it is sufficient 
to construct a function 𝜑 and an operator Ψ  that satisfy the conclusions of the lemma with 

the weaker condition 𝜑(𝜆0) ≠ 0  instead of  𝜑(𝜆0) = 1. 

   We will continue to use the notation that was introduced before Lemma (2.2.11) and in 
Lemma (2.2.12). In particular, we already have the function 𝜑 ∈𝑀(ℋ) with  𝜑(𝜆0) ≠ 0. In 

order to construct Ψ  let 𝑔1 ,𝑔2 , . . . , 𝑔𝑚 ∈ ℋ𝒟  satisfy conditions (38) and (39) of Lemma 

(2.2.12) with  𝑥 = 𝑑1 ,𝑑2 , . . . , 𝑑𝑚. For 𝜆 ∈ Ω  we set   𝜓(𝜆) = ∑ 𝑔𝑛(𝜆)⨂𝑑𝑛
𝑚
𝑛=1 , and if  𝑓 ∈

ℋ𝒟λ0
 , then 

(Ψ𝑓)(𝜆) = 𝜓(𝜆)𝑓(𝜆) =∑〈𝑓(𝜆),𝑑𝑛〉𝑔𝑛(𝜆)

𝑚

𝑛=1

. 

Equation (39) of Lemma (2.2.12) implies that Ψ𝑓 ∈ ℳ for each 𝑓 ∈ ℋ𝒟λ0
 and a simple 

argument with the closed graph theorem shows that Ψ is bounded. Thus Ψ is a multiplication 

operator with ranΨ ⊆ℳ. 

   If 𝑓 ∈ ℋ𝒟λ0
, then 𝑓(𝜆) = ∑ 〈𝑓(𝜆), 𝑑𝑛〉𝑑𝑛

𝑚
𝑛=1  . Hence the choice of the 𝑔𝑛 ’𝑠  and condition 

(38) of Lemma (2.2.12) imply that  𝑃𝜆0Ψ𝑓 = 𝜑𝑓. Finally, if 𝑓 ∈ ℳ, then the function ℎ =

𝜑𝑓 −Ψ𝑃𝜆0𝑓  satisfies ℎ ∈ ℳ and 

ℎ(𝜆) = 𝜑(𝜆)𝑓(𝜆)−∑〈𝑓(𝜆), 𝑑𝑛〉𝑔𝑛(𝜆)

𝑚

𝑛=1

. 
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Hence it follows from condition (38) of Lemma (2.2.12) and the fact that {𝑑𝑛} forms an 

orthonormal basis for 𝒟λ0  that 𝑃𝒟λ0(ℎ
(𝜆)) = 0 for each 𝜆 ∈ Ω.  

Theorem (2.2.14):[17]     Let ℋ be a Hilbert space of holomorphic functions on  Ω ⊂ ℂ𝑑  
with the properties that 1 ∈ ℋ, the coordinate functions 𝑧𝑖  are multipliers, one can solve 

Gleason’s problem in the multiplier algebra of ℋ, and 𝑀𝑧 − 𝜆 is a Fredholm tuple with exact 

augmented Koszul complex 𝐾(𝑀𝑧− 𝜆) for all 𝜆 ∈ Ω . 

   Let 𝒟 be a separable Hilbert space and let ℳ be a nonzero scalar multiplier invariant 
subspace of ℋ𝒟 of finite fiber dimension 𝑚 such that there is a Hilbert space ℰ and a bounded 

multiplication operator Φ ∈ ℬ(ℋℰ ,ℋ𝒟) with associated operator valued multiplier 𝜙 such 

that ranΦ ⊆ℳ. 

   Then for every 𝜆 ∈ Ω\Z(ℳ) such that rank  𝜙(𝜆) = 𝑚 the augmented complex 

𝐾((𝑀𝑧− 𝜆)|ℳ,ℳ𝜆) 

is exact. 

In particular, we have 

𝜎𝑒(𝑀𝑧|ℳ)∩ Ω ⊆ {λ ∈ Ω:rank 𝜙(𝜆) < 𝑚}, 

and the tuple (𝑀𝑧 − 𝜆)|ℳ  is Fredholm with index (−1)𝑑𝑚  for every 𝜆 ∈ Ω\𝜎𝑒(𝑀𝑧) 
whenever  {λ ∈ Ω\Z(ℳ):rank 𝜙(𝜆) = 𝑚}  is nonempty. 

Proof:     Note that whenever  {λ ∈ Ω\Z(ℳ):rank 𝜙(𝜆) = 𝑚}  is nonempty, then it must be 
connected and dense in Ω. Hence the statement in the last sentence follows from the exactness 

of the augmented complex and Lemma (2.2.6). 

   Let 𝜆0 = (𝜆01,… ,𝜆0𝑑) ∈ Ω\Z(ℳ) be such that rank 𝜙(𝜆0) = 𝑚. We must show that the 

augmented Koszul complex 𝐾 ((𝑀𝑧 − 𝜆0)|ℳ,ℳ𝜆0
) is exact. 

   The definition and finite-dimensionality of ℳ𝜆0
 imply that 𝛿𝜆0 is onto, and the complex is 

exact at the last stage. 

   The hypothesis implies that  𝒟𝜆0 =ℳ𝜆0
 . Also note that since ℋ𝒟𝜆0

 is isomorphic to a 

direct sum of 𝑚 copies of ℂ the augmented Koszul complex 𝐾 ((𝑀𝑧 − 𝜆0) |ℋ𝒟𝜆0
, 𝒟𝜆0) is 

isomorphic to a direct sum of 𝑚 copies of the augmented complex  𝐾(𝑀𝑧 − 𝜆0 ,ℂ). Hence it 

is exact. Since ℳ and ℋ𝒟𝜆0
 are  𝑀𝑧-invariant subspaces of ℋ𝒟 it follows that the boundary 

maps for the Koszul complexes  𝐾((𝑀𝑧− 𝜆0)|ℳ)  and 𝐾 ((𝑀𝑧 − 𝜆0)|ℋ𝒟𝜆0
)  are the 

restrictions to Λ(ℋ) and Λ(ℋ𝒟𝜆0
) of the boundary map 𝜕𝑀𝑧−𝜆 for the complex 𝐾((𝑀𝑧−

𝜆0)|ℋ𝒟). We will write 𝜕 in all cases. 
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   We will use the multiplier 𝜑 and the operator Ψ from Lemma (2.2.13). The function 1 −𝜑 

is a multiplier that vanishes at 𝜆0. Since we assume that one can solve Gleason’s problem in 

the multiplier algebra, there are 𝜑1 , … , 𝜑𝑑 ∈ 𝑀(ℋ) such that 

1 −𝜑(𝑧) =∑(𝑧𝑖 − 𝜆0𝑖)𝜑𝑖(𝑧)

𝑑

𝑖=1

. 

We define an operator 𝐴 on  Λ(ℋ𝒟) by 𝐴 = ∑ 𝑀𝜑𝑖⨂𝐸𝑖
∗ 𝑑

𝑖=1 . Then by the anticommutation 

relations of the creation operators one can see that 

𝜕𝐴 + 𝐴𝜕 = ∑ 𝑀(𝑧−𝜆0)𝑖𝑀𝜑𝑖⨂(𝐸𝑖𝐸𝑗
∗+𝐸𝑗

∗𝐸𝑖)

𝑑

𝑖,𝑗=1

         

=∑𝑀(𝑧−𝜆0)𝑖𝑀𝜑𝑖⨂𝐸0

𝑑

𝑖=1

= (𝐼 −𝑀𝜑)⨂𝐸0                                          (36) 

We will now apply Lemma (2.2.5) with 𝑇 = 𝑀𝑧−𝜆0|ℳ and  𝑆 = 𝑀𝑧−𝜆0 |ℋ𝒟𝜆0
. We set  𝐵 =

𝐴 |Λ (ℋ𝒟𝜆0
)  and since ℳ is multiplier invariant we can let 𝐶 = 𝐴|Λ(ℳ). Furthermore, we 

take 𝑋 = Ψ and 𝑌 = 𝑃𝜆0 |ℳ. Then it follows from Lemma (2.2.13) and equation (40) that the 

hypotheses of Lemma (2.2.5) are satisfied. Therefore, the cohomology spaces corresponding 

to 𝐾 ((𝑀𝑧−𝜆0)|ℳ) and 𝐾((𝑀𝑧−𝜆0) |ℋ𝒟𝜆0
)  are isomorphic as vector spaces. Since we have 

shown that 𝐾 ((𝑀𝑧 − 𝜆0)|ℋ𝒟𝜆0
)  is exact at all but the last stage we also have that  

𝐾((𝑀𝑧− 𝜆0)|ℳ) is exact at all but the last stage. This means that we have now shown that 

the augmented complex 𝐾 ((𝑀𝑧−𝜆0)|ℳ,ℳ𝜆0
) is exact at all stages except perhaps at the 

penultimate stage. 

     To show exactness at the penultimate stage we must show that ran𝜕𝑑−1 = ker𝛿𝜆0  where 

the maps are understood to act on  Λ(ℳ). Since we know that ran𝜕𝑑−1 ⊆ ker 𝛿𝜆0  it suffices 

to show that 

dim
Λd(ℳ)

ker 𝛿𝜆0
= dim

Λd(ℳ)

ran𝜕𝑑−1
. 

It is clear that dim
Λd(ℳ)

ker 𝛿𝜆0
= dimℳ𝜆0

= 𝑚, the fiber dimension of ℳ. Lemma (2.2.6) and the 

exactness of the augmented complex 𝐾 ((𝑀𝑧 − 𝜆0) |ℋ𝒟𝜆0
, 𝒟𝜆0)  imply that 𝑚 =

dim
Λd(ℋ(𝒟𝜆0))

ran𝜕𝑑−1
 ,  hence by the earlier part of the proof it follows that dim

Λd(ℳ)

ran𝜕𝑑−1
= 𝑚 as well. 

Corollary (2.2.15):[17]     Let ℋ be a Hilbert space of holomorphic functions on  Ω ⊂ ℂ𝑑  
with the properties that 1 ∈ ℋ, the coordinate functions 𝑧𝑖  are multipliers, one can solve 
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Gleason’s problem in the multiplier algebra of ℋ, and 𝑀𝑧 − 𝜆 is a Fredholm tuple with exact 

augmented Koszul complex 𝐾(𝑀𝑧− 𝜆,ℂ) for all 𝜆 ∈ Ω . 

     Let 𝒟 be a finite dimensional Hilbert space and let ℳ be a nonzero scalar multiplier 
invariant subspace of ℋ𝒟 of finite fiber dimension 𝑚 such that there is a Hilbert space ℰ and 

a bounded multiplication operator Φ ∈ ℬ(ℋℰ ,ℋ𝒟)  with associated operator valued 

multiplier 𝜙 such that ran Φ ⊆ ℳ. 

Let 𝑆 ≔ 𝑀𝑧|ℳ and 𝑇:= 𝑃ℳ⊥𝑀𝑧|ℳ
⊥. Then if  𝜆 ∈ Ω\Z(ℳ)  and  ℳ𝜆 = ran𝜙(𝜆), the 

tuple 𝑇 − 𝜆 is Fredholm with index (−1)𝑑 (dim𝒟 −𝑚) and 

0 → 𝐾(𝑇 − 𝜆)
𝛿𝜆
→ℳ𝜆

⊥ → 0 

is an exact complex, where 𝛿𝜆 : Λ
𝑑(ℳ⊥) → ℳ𝜆

⊥  is defined by 𝛿𝜆(𝑓⨂𝑒1 ∧…∧ 𝑒𝑑 ) =
𝑃ℳ𝜆

⊥𝑓(𝜆).  

If 𝜆 ∈ Ω ∩ Z(ℳ), then dim⋂ ker(𝑇𝑖
∗− �̅�𝑖)

𝑑
𝑖=1 > dim𝒟−𝑚 . In particular it follows that  

𝑍(ℳ) ⊆ 𝜎𝑝(𝑇
∗)∗. 

Proof:      Let 𝜆 ∈ Ω . We first note that 

0 → 𝐾(𝑇 − 𝜆)
𝛿𝜆
→ℳ𝜆

⊥ → 0 

can be identified with the quotient of the complexes 𝐾(𝑆 − 𝜆,ℳ𝜆) and 𝐾(𝑀𝑧− 𝜆,𝒟) and is 

therefore a complex which we will denote by 𝐾(𝑇− 𝜆,ℳ𝜆
⊥). 

For 𝑝 =  0,1, . . . , 𝑑  let 𝑙𝑝 : Λ
p(ℳ) → Λp(ℋ𝒟) and  𝑙𝑑+1:ℳ𝜆 →𝒟  be the natural inclusion 

maps. Similarly let 𝜋𝑝 : Λ
p(ℋ𝒟) → Λ

p(ℳ⊥) and 𝜋𝑑+1: 𝒟 → ℳ𝜆
⊥ be the natural projections. 

With these definitions of  𝑙 and 𝜋 one can easily check that  

0 → 𝐾(𝑆 − 𝜆,ℳ𝜆)
𝑙
→𝐾(𝑀𝑧 − 𝜆,𝒟)

𝜋
→𝐾(𝑇 − 𝜆,ℳ𝜆

⊥) → 0 

is a short exact sequence of Hilbert space complexes. Therefore, by the Fundamental Theorem 
of Homological Algebra, [39], , there exists an induced long exact sequence of cohomology 
spaces. The argument at the beginning of the proof of Theorem (2.2.14) shows that 

𝐾(𝑀𝑧− 𝜆,𝒟)  is exact. This means all of the corresponding cohomology spaces of this 

complex are  {0}. 

   Now assume that 𝜆 ∈ Ω\Z(ℳ)  and  ℳ𝜆 = ran𝜙(𝜆). From Theorem (2.2.14) we know that 
𝐾(𝑆 − 𝜆,ℳ𝜆) is exact, hence its corresponding cohomology spaces are {0}. So we have that 

for each 𝑝 = 0,1,… , 𝑑, 𝑑 + 1 

… → 0 →
ker 𝜕𝑝

ran𝜕𝑝−1
→ 0 → ⋯ 

is part of a long exact sequence. Therefore, these cohomology spaces are also all equal to {0}. 

This means that 𝐾(𝑇 − 𝜆,ℳ𝜆
⊥)  is exact and since ℳ𝜆

⊥ is finite dimensional, it follows that 

𝑇 − 𝜆 is Fredholm and ind(𝑇 − 𝜆) = (−1)𝑑(dim𝒟 −  𝑚). 
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   Finally, we assume 𝜆 ∈ Ω ∩ Z(ℳ). Then  dimℳ𝜆 < 𝑚, hence dimℳ𝜆
⊥ > dim𝒟 −  𝑚. 

The statement follows, because 

ℳ𝜆
⊥ = {𝑥 ∈ 𝒟: 〈𝑓(𝜆), 𝑥〉 = 0 ∀𝑓 ∈ℳ} 

      = {𝑥 ∈ 𝒟: 〈𝑓, 𝑘𝜆𝑥〉 = 0 ∀𝑓 ∈ℳ} 

= {𝑥 ∈ 𝒟: 𝑘𝜆𝑥 ∈ ℳ
⊥}              

and this is isomorphic to  {𝑘𝜆𝑥 ∈ ℳ
⊥} = ⋂ ker(𝑇𝑖

∗ − �̅�𝑖)
𝑑
𝑖=1 . 

    Let ℋ = 𝐻𝑑
2  be the Hilbert space of analytic functions on the unit ball of ℂ𝑑  defined by 

the kernel 𝑘𝜆(𝑧) =
1

1−〈𝑧,𝜆〉
. If 𝒟 is a separable Hilbert space, then we will write 𝐻𝑑

2  (𝒟) = ℋ𝒟 

for the space of 𝒟-valued  𝐻𝑑
2 -functions see [18,24,25,33]. Tn particular, the polynomials are 

dense in 𝐻𝑑
2    and each coordinate function 𝑧𝑖 is a multiplier. The tuple  𝑀𝑧 = (𝑀𝑧1  , . . . , 𝑀𝑧𝑑  )  

on 𝐻𝑑
2  (𝒟) is called the 𝑑-shift of multiplicity dim𝒟. We note that each subspace that is 

invariant for 𝑀𝑧 is in fact a scalar multiplier invariant subspace of 𝐻𝑑
2 (𝒟)   [33]. 

   It was shown in [42] that the augmented Koszul complex for (𝑀𝑧,𝐻𝑑
2) is exact, and in 

Proposition (2.2.10) we have used that argument to show that the same is true for 
(𝑀𝑧 − 𝜆,𝐻𝑑

2) ) for each 𝜆 ∈ 𝔹𝑑. Arveson showed that for every scalar multiplier invariant 

subspace ℳ  of 𝐻𝑑
2  (𝒟)  there exists a Hilbert space ℰ  and a bounded multiplier  Φ ∈

ℬ(𝐻𝑑
2(ℰ),𝐻𝑑

2(𝒟))  such that ran Φ= ℳ  [25]. 

We show that Gleason’s problem for the multiplier algebra of 𝐻𝑑
2 can be solved one will have 

verified all the hypotheses of Theorem (2.2.14) for ℋ = 𝐻𝑑
2 , Ω = 𝔹𝑑 , and ℳ any nonzero 

𝑀𝑧-invariant subspace of 𝐻𝑑
2  (𝒟).[30,31,45,46,47]. 

Theorem (2.2.16):[17]      Let ℰ,ℱ  and 𝒢  be complex Hilbert spaces and let 𝑆 ⊆ 𝔹𝑑   
arbitrary. Suppose that 𝛼: 𝑆 → 𝐵(ℱ, 𝒢)  and 𝛽: 𝑆 → 𝐵(ℰ, 𝒢)  are given operator-valued 

functions. Then there is a multiplier   𝜓:𝔹𝑑 → 𝐵(ℰ, ℱ)  with associated multiplication 

operator Ψ such that 

‖Ψ‖
ℬ(𝐻𝑑

2(ℰ),𝐻𝑑
2(ℱ))

≤ 1     and    𝛼(𝑧)𝜓(𝑧) = 𝛽(𝑧)   𝑧 ∈ 𝑆 

if and only if the mapping 

𝐾𝛼,𝛽: 𝑆 × 𝑆 → ℬ(𝒢),   𝐾𝛼,𝛽(𝑧,𝜔) =
𝛼(𝑧)𝛼(𝜔)∗ −𝛽(𝑧)𝛽(𝜔)∗

1 − 〈𝑧, 𝜔〉
 

is positive definite. 

Corollary (2.2.17):[17]      Let 𝜆 ∈ 𝔹𝑑 and 𝜙 ∈ 𝑀(𝐻𝑑
2) with 𝜙(𝜆) = 0. Then for each 𝑖 =

1,… , 𝑑 there exists 𝜓𝑖 ∈ 𝑀(𝐻𝑑
2) such that  

𝜙(𝑧) =∑(𝑧𝑖 − 𝜆𝑖)

𝑑

𝑖=1

𝜓𝑖(𝑧) 
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for all 𝑧 ∈ 𝔹𝑑 , i.e. one can solve Gleason’s problem for 𝑀(𝐻𝑑
2). 

Proof:   We will first prove the theorem for the case that 𝜆 = 0, and we shall assum that 

‖𝜙‖𝑀(𝐻𝑑
2) ≤ 1. We will use Theorem (2.2.16) with 𝛼:𝔹𝑑 → ℬ(ℂ

𝑑 , ℂ), 𝛼(𝑧)(𝑐1,… , 𝑐𝑑) =

𝑧1𝑐1 ,…𝑧𝑑𝑐𝑑, and 𝛽:𝔹𝑑 → ℬ(ℂ, ℂ),     𝛽(𝑧) = 𝜙(𝑧). Then we have 

𝐾𝛼,𝛽(𝑧, 𝜔) =
𝛼(𝑧)𝛼(𝜔)∗ −𝛽(𝑧)𝛽(𝜔)∗

1− 〈𝑧, 𝜔〉
 =
〈𝑧, 𝜔〉− 𝜙(𝑧)𝜙(𝜔)̅̅ ̅̅ ̅̅ ̅

1 − 〈𝑧, 𝜔〉
=
1 −𝜙(𝑧)𝜙(𝜔)̅̅ ̅̅ ̅̅ ̅

1 − 〈𝑧, 𝜔〉
− 1. 

Since 𝜙 is a multiplier of norm 1 we know that the kernel 

𝑘𝜔(𝑧) =
1 −𝜙(𝑧)𝜙(𝜔)̅̅ ̅̅ ̅̅ ̅

1 − 〈𝑧, 𝜔〉
 

is positive definite, and since 𝜙(0) = 0  we have 𝑘0(𝑧) = 1 . Hence there exists a Hilbert 

space ℋ with kernel 𝑘𝜔(𝑧) and an orthonormal basis {𝑘0}⋃{𝑒𝑖}𝑖≥1   of  ℋ such that 

𝑘𝜔(𝑧) = 1 +∑𝑒𝑗(𝑧)𝑒𝑗(𝜔)̅̅ ̅̅ ̅̅ ̅

𝑗≥1

. 

This implies that 𝐾𝛼,𝛽(𝑧, 𝜔) = 𝑘𝜔(𝑧) − 1  is a positive definite kernel. Thus by Theorem 

(2.2.16) there are functions  𝜓𝑖(𝑧) such that  𝜓:𝔹𝑑 → ℬ(ℂ, ℂ
𝑑) defined by 

𝜓(𝑧) ≔ (
𝜓1 (𝑧)
⋮

𝜓𝑑(𝑧)
) 

is a multiplier in ℬ(𝐻𝑑
2 ,𝐻𝑑

2(ℂ𝑑))   of norm less than or equal to 1  and with  𝜙(𝑧) =

∑ 𝑧𝑖
𝑑
𝑖=1 𝜓𝑖 (𝑧). It is then clear that 𝜓𝑖 is a multiplier of norm ≤ 1, in fact for 𝑓 ∈ 𝐻𝑑

2 we have 

∑ ‖𝜓𝑖𝑓‖
2𝑑

𝑖=1 ≤ ‖𝑓‖2. 

 If 𝜆 ∈ 𝔹𝑑 is arbitrary we use the ball automorphism 𝜑𝜆  which takes 𝜆 to 0. We have already 

noted  that composition with 𝜑𝜆  defines a bounded invertible operator on 𝐻𝑑
2 ;  [42]. Thus 

since 𝜙 is a multiplier it follows that 𝜙 ∘ 𝜑𝜆
−1  is a multiplier with (𝜙 ∘ 𝜑𝜆

−1)(0)≠ 𝜙(𝜆) = 0. 

Hence from the first part of the proof we obtain multipliers 𝑔𝑖  such that  (𝜙 ∘ 𝜑𝜆
−1)(𝑧) =

∑ 𝑧𝑖𝑔𝑖(𝑧)
𝑑
𝑖=1 . 

Now recall that the 𝑖th component of 𝜑𝜆(𝑧) can be written as 

(𝜑𝜆(𝑧))𝑖 =∑(𝑧𝑗 − 𝜆𝑗)
𝑎𝑖𝑗

1− 〈𝑧, 𝜆〉

𝑑

𝑗=1

 

for some 𝑎𝑖𝑗 ∈ ℂ. Therefore, 

𝜙(𝑧) =∑(𝜑𝜆(𝑧))𝑖𝑔𝑖(𝜑𝜆
(𝑧))

𝑑

𝑖=1
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=∑∑(𝑧𝑗 − 𝜆𝑗)
𝑎𝑖𝑗

1− 〈𝑧, 𝜆〉

𝑑

𝑗=1

 𝑔𝑖(𝜑𝜆(𝑧))

𝑑

𝑖=1

 

=∑(𝑧𝑗 − 𝜆𝑗)𝜓𝑗(𝑧)

𝑑

𝑗=1

                                  

where the functions𝜓𝑗  are multipliers of 𝐻𝑑
2 .  

Theorem (2.2.18):[17]    Let 𝒟 be a separable Hilbert space and let ℳ be a scalar multiplier 

invariant subspace of 𝐻𝑑
2(𝒟)  with finite fiber dimension 𝑚 . Then 𝜎𝑒(𝑀𝑧|ℳ) ∩𝔹𝑑 ⊆

𝑍(ℳ), and for every 𝜆 ∈ 𝔹𝑑\𝑍(ℳ) the tuple (𝑀𝑧 − 𝜆)|ℳ  has index (−1)𝑑𝑚 and the 
augmented complex 

𝐾((𝑀𝑧− 𝜆)|ℳ,ℳ𝜆) 

is exact. 

Proof:     This follows directly from Theorem (2.2.14) since we have ℳ = ranΦ for some 

multiplication operator Φ [24,25]. It is thus clear that {𝜆 ∈ 𝔹𝑑:rank𝜙(𝜆) < 𝑚 } = 𝑍(ℳ).  

We will take 𝑑 =  2  and 𝒟 = ℂ . We claim that we have the isometric and orthogonal 

decomposition 

𝐻2
2 = 𝐻2(𝔻)⨁𝑧2 𝐿𝑎

2⨁𝑧2
2𝒦,  

where 𝒦 is some Hilbert space of analytic functions on 𝔹2. One can check this either by 

computing the norms of monomials in 𝐻𝑑
2 as in Lemma (2.2.9) or as follows. Note that for 

𝑥 ≠ 1 and 𝑥 + 𝑦 ≠ 1 we have 

1

1 − (𝑥 + 𝑦)
=

1

1 − 𝑥
+

𝑦

(1− 𝑥)2
+

𝑦2

(1− 𝑥)2(1− (𝑥 + 𝑦))
. 

Thus the reproducing the kernel of 𝐻2
2 is of the form 

𝑘𝜔 (𝑧) =
1

1− 〈𝑧, 𝜔〉2
= 𝑘𝜔1

1 (𝑧1)+ 𝑧2𝜔2̅̅̅̅ 𝑘𝜔1
2 (𝑧1)+ (𝑧2𝜔2̅̅̅̅ )

2𝑘𝜔
3 (𝑧), 

where 𝑘𝜔1
1 (𝑧1) =

1

1−�̅�1𝑧1
 is the Szeg¨o kernel and 𝑘𝜔1

2 (𝑧1) =
1

(1−�̅�1𝑧1)
2
 is the Bergman kernel 

on the open unit disc, and 𝑘3  is some positive definite kernel on the ball 𝔹2. It now follows 
from standard results about reproducing kernels that this decomposition of the kernel implies 

the decomposition of the space, because it is clear that the orthogonal summands have (0) as 

their intersection  [48] . 

 Let 𝒩 be an invariant subspace of the Bergman space such that dim𝒩⊖ (𝑧 − 𝜆)𝒩 is 

infinite for every  𝜆 ∈ 𝔻. It is well known that such subspaces exist [20,22] . Set 

ℳ = {0}⨁𝑧2𝒩⨁ 𝑧2
2𝒦.  
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It is clear that ℳ is a closed invariant subspace of 𝐻2
2 and that 𝑍(ℳ) = {(𝑧1,0): |𝑧1| < 1}. 

We will now show that for no (𝜆,0) ∈ 𝑍(ℳ) is the tuple (𝑀𝑧1 − 𝜆,𝑀𝑧2)|ℳ  Fredholm. In 

fact for 𝜆 ∈ 𝔻 we will see that the defect dimension at the last stage of the Koszul complex 

for  (𝑀𝑧1 − 𝜆,𝑀𝑧2)|ℳ is infinite. We will accomplish this by showing that whenever  𝑓 ∈

 𝒩⊖ (𝑧 − 𝜆)𝒩 , then the function 𝑔  defined by 𝑔(𝑧1 , 𝑧2) = 𝑧2𝑓(𝑧1) is orthogonal to  

(𝑧1  − 𝜆)ℳ+ 𝑧2ℳ. The result will follow, since 𝒩⊖ (𝑧 − 𝜆)𝒩 is infinite dimensional. 

Since 𝑔 ∈ 𝑧2𝒩  it is clear that 𝑔  is orthogonal to 𝑧2ℳ⊆ 𝑧2
2𝒦 . Let ℎ ∈ ℳ . Then  

ℎ(𝑧1, 𝑧2) = 𝑧2𝑓1(𝑧1)+ 𝑧2
2𝑘(𝑧1 , 𝑧2) for some 𝑓1 ∈ 𝒩 and 𝑘 ∈ 𝒦, and we see 

〈𝑔,(𝑧1 − 𝜆)ℎ〉𝐻22 = 〈𝑧2𝑓1 , (𝑧1− 𝜆)𝑓1 〉𝐻22 + 〈𝑔,𝑧2
2(𝑧1− 𝜆)𝑘〉𝐻22 = 〈𝑓, (𝑧1− 𝜆)𝑓1 〉𝐿𝑎2 = 0 . 

Theorem (2.2.19):[17]  ([19]).     Let 𝑇 = (𝑇1 , . . . , 𝑇𝑑) be a 𝑑-contraction on ℋ with defect 

operator  Δ𝑇 = (𝐼 − ∑ 𝑇𝑖𝑇𝑖
∗𝑑

𝑖=1 )
1

2  and defect space 𝒟 = Δ𝑇ℋ̅̅ ̅̅ ̅̅ . Let 𝑀𝑧  be the 𝑑 -shift 

associated to the space 𝐻𝑑
2  (𝒟). Then there exists a spherical unitary tuple 𝑍 = (𝑍1 , . . . , 𝑍𝑑 ) 

on a Hilbert space 𝒦 , an (𝑀𝑧
∗⨁𝑍∗)-invariant subspace ℳ⊥ of 𝐻𝑑

2  (𝒟)⨁𝒦, and a unitary 

operator 𝑈:ℳ⊥ → ℋ such that 

𝑈∗𝑇𝑖𝑈 = 𝑃ℳ⊥(𝑀𝑧𝑖⨁𝑍𝑖)|ℳ
⊥ 

for all 𝑖 = 1, . . . , 𝑑. If 𝑇 is a pure 𝑑-contraction then 𝒦 = {0}.[19]. 

Theorem (2.2.20):[17]   If 𝑇 is a pure 𝑑-contraction with finite rank with representation 𝑇𝑖 =
𝑃ℳ⊥𝑀𝑧𝑖 |ℳ

⊥  for ℳ⊆ 𝐻𝑑
2(𝒟),dim𝒟 < ∞,then  𝜎𝑒(𝑇) ∩ 𝔹𝑑 = 𝜎𝑒(𝑀𝑧|ℳ)∩ 𝔹𝑑 ⊆ 𝑍(ℳ) 

and 𝜎(𝑇) ∩ 𝔹𝑑 = 𝜎𝑃(𝑇
∗)∗. 

If  𝜆 ∈ 𝔹𝑑\𝜎𝑒(𝑇), then  

𝑘(𝑇) = (−1)𝑑ind (𝑇 − 𝜆)                                                                (37) 

Furthermore, if 𝑘(𝑇) ≠ 0, then 𝜎(𝑇) ∩ 𝔹𝑑 = 𝜎𝑃(𝑇
∗)∗ = 𝔹𝑑 and if 𝑘(𝑇) = 0, then 𝜎(𝑇) ∩

𝔹𝑑 = 𝜎𝑃(𝑇
∗)∗ = 𝑍(ℳ). 

Proof:   Let  𝜆 ∈ 𝔹𝑑. As in the proof of Corollary (2.2.15) we use the natural inclusion and 

projection maps to obtain a short exact sequence of  Koszul complexes 

0 → 𝐾((𝑀𝑧 − 𝜆)|ℳ)→ 𝐾(𝑀𝑧− 𝜆) → 𝐾(𝑇− 𝜆) → 0. 

Thus, as 𝑀𝑧 − 𝜆  is a Fredholm tuple, it follows from the Fundamental Theorem of 
Homological Algebra [40] that 𝑇 − 𝜆 is Fredholm if and only if  (𝑀𝑧 − 𝜆)|ℳ is Fredholm. 

Thus,  𝜎𝑒(𝑇) ∩𝔹𝑑 = 𝜎𝑒(𝑀𝑧|ℳ)∩ 𝔹𝑑. 

From Theorem (2.2.18) we have that for 𝜆 ∈ 𝔹𝑑\𝑍(ℳ) the augmented Koszul complexes 

𝐾(𝑀𝑧− 𝜆,𝒟) and 𝐾((𝑀𝑧− 𝜆)|ℳ,ℳ𝜆) are exact. So we can apply the results of Corollary 

(2.2.15) to obtain that 𝑇 − 𝜆  is Fredholm and ind(𝑇 − 𝜆) = (−1)𝑑(rank𝑇 −𝑚) . Thus 

Equation (37) follows by use [33], which states that for  𝜆 ∈ 𝔹𝑑\𝑍(ℳ),𝑘(𝑇) = rank(𝑇) −
𝑚, where 𝑘(𝑇) is the curvature invariant of 𝑇. Finally it follows that Equation (41) holds for 
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all 𝜆 ∈ 𝔹𝑑\𝜎𝑒(𝑇) , since the index of 𝑇 − 𝜆  is constant on connected components of  

ℂ\𝜎𝑒(𝑇). 

   Finally, we prove the last part of the Theorem. First we recall from Corollary (2.2.15) that  
𝑍(ℳ) ⊆ 𝜎𝑃(𝑇

∗)∗ ⊆ 𝜎(𝑇) ∩ 𝔹𝑑. If 𝑘(𝑇) ≠ 0 and 𝜆 ∈ 𝔹𝑑\𝑍(ℳ), then by the first part of the 

proof ℳ𝜆
⊥ ≠ (0). Thus, as in the proof of Corollary (2.2.15) we see that 𝜆 ∈ 𝜎𝑃(𝑇

∗)∗. Hence 
𝜎𝑃(𝑇

∗)∗ = 𝜎(𝑇) ∩ 𝔹𝑑 = 𝔹𝑑  in this case. If 𝑘(𝑇) = (0) and 𝜆 ∈ 𝔹𝑑\𝑍(ℳ), then the first 

part of the proof implies that ℳ𝜆
⊥ = 0 and 𝐾(𝑇 − 𝜆) is exact, hence 𝜆 ∉ 𝜎(𝑇). Thus, 

 𝜎(𝑇) ∩ 𝔹𝑑 = 𝜎𝑃(𝑇
∗)∗ = 𝑍(ℳ). 

Corollary (2.2.21):[17]   Let ℋ denote the Hardy or Bergman space of the ball or polydisc, 

or  ℋ =𝒦𝛼 ,𝛼 ≥ 𝑑, let 𝒟 be a separable Hilbert space, and let ℳ be an invariant subspace 

of ℋ𝒟 of finite fiber dimension  𝑚. 

   If 𝜆 ∈ Ω  and there are bounded functions 𝑓1 , . . . , 𝑓𝑚 ∈  ℳ  such that the set 
{𝑓1 (𝜆), . . . , 𝑓𝑚(𝜆)}  is linearly independent, then the tuple (𝑀𝑧 − 𝜆)|ℳ  is Fredholm with 

index (−1)𝑑𝑚, and the augmented complex 𝐾((𝑀𝑧− 𝜆)|ℳ,ℳ𝜆) is exact.[49,50]. 

Proof:  We know from Proposition (2.2.10)  all the spaces ℋ  satisfy the hypothesis of 
Theorem (2.2.14). The multipliers are either 𝐻∞ of the ball or the polydisc and in both cases 

it is known that one can solve Gleason’s problem [29]. 

   We let ℰ = ℂ𝑚 and for 𝑔 = (𝑔1 , . . . , 𝑔𝑚) ∈  ℋℰ we set  Φ𝑔 = ∑ 𝑓𝑖𝑔𝑖
𝑚
𝑖=1 . It is clear that Φ 

is a multiplication operator. Thus the corollary follows from Theorem (2.2.14). 

   If ℋ is the Bergman space of a bounded region Ω in ℂ𝑑 , then it easily follows from a 

theorem of Bercovici in [28] that there are invariant subspaces where Ω̅ is contained in the 

essential spectrum. 

   In the case 𝑑 = 1 the existence of invariant subspaces with high index on the whole disc is 

connected with the nonexistence of nontangential limits of the functions in the space [23]. 
Thus, as far as we know, it is conceivable that for every invariant subspace ℳ of the Hardy 

spaces on the ball or polydisc of ℂ𝑑 , 𝑑 > 1, (𝑀𝑧 − 𝜆)|ℳ  is a Fredholm tuple for all 𝜆  in a 

large subset of the region. That the situation is more complicated than for 𝐻𝑑
2  can be 

illustrated by constructions that are similar to what we have done for 𝐻2
2. 

   Indeed, the reproducing kernel for the Hardy space of 𝜕𝔹2 is  

1

(1 − 〈𝑧, 𝜔〉)2
=

1

(1− �̅�1𝑧1)
2
+ �̅�2𝑧2𝑘𝜔(𝑧) 

for some positive definite kernel 𝑘 on 𝔹2. Hence as before 𝐻2(𝜕𝔹2) = 𝐿𝑎
2⨁𝑧2𝒦 for some 

space 𝒦 of analytic functions on  𝔹2, and one can proceed as above and consider invariant 

subspaces of the type ℳ=𝒩⨁𝑧2𝒦 . The new feature is that the set of common zeros of ℳ 

may be empty, and we note that in this case the essential Taylor spectrum of 𝑀𝑧|ℳ has a part 

in the ball but outside the set of common zeros of functions in ℳ. 
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   Similarly, for the Hardy space 𝐻2(𝔻2) of the bidisc we consider the map 𝑃: 𝑓 → 𝑔, where 

𝑔(𝑧) =  𝑓(𝑧, 𝑧). [26], it is well known that this is a partial isometry of 𝐻2(𝔻2) onto 𝐿𝑎
2 . It 

then follows easily that for every invariant subspace 𝒩 of 𝐿𝑎
2  the space ℳ = 𝑃∗𝒩+ker𝑃 

is an invariant subspace of 𝐻2(𝔻2). Furthermore, if dim𝒩⊝ 𝑧𝒩 is infinite, then one shows 
that every 𝜆 on the diagonal of 𝔻2 is contained in the essential Taylor spectrum of 𝑀𝑧|ℳ, 

even though most of those points will not be in the set of common zeros of ℳ.[51]. 
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Chapter 3 

Similarity and Reducing Manifolds with Nearly Invariant Subspace 

   We show a new approach and extended a theorem of  𝐷0 Hitt describing certain subspaces 

of 𝐻2 that miss by one dimension being invariant under the backward shift operator.  

Section(3.1):  Unitary Equivalence of Volterra Operators 

    We are concerned with Volterra operators 𝑇𝐹  where 𝑇𝐹𝑓(𝑥) = ∫ 𝐹(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦
1

𝑥
 

mapping 𝐿𝑝[0,1] into itself (1 < 𝑝 < ∞) and study their similarity, reducing  manifolds (i.e., 

subspaces 𝑆 ⊂ 𝐿𝑝[0,1] such that 𝑇𝐹𝑆 ⊂ 𝑆), and in the case 𝑝 =  2 their unitary equivalence. 

These operators are continuous analogs of nilpotent 𝑛 by 𝑛 triangular matrices 𝑀 = (𝑚𝑖𝑗) 

where 𝑚𝑖𝑗 = 0 for 𝑖 ≧ 𝑗. The starting point of this investigation is provided by the following 

two simple theorems about matrices M of maximal index of nilpotency: (i) the complete set 

of reducing manifolds of M  consists of the subspaces spanned by 𝑒1 ,… , 𝑒𝑖 , (1 ≤ 𝑖 ≤ 𝑛) 
where the 𝑒𝑖  are a basis relative to which 𝑀 is triangular; (ii) every such matrix 𝑀 is unitarily 

equivalent to a triangular matrix where 𝑚𝑖,𝑖+1 > 0  and two such matrices are unitarily 

equivalent if and only if they are equal. Their similarity invariants are well known: any two 
such matrices are similar. The continuous analog of "maximal index of nilpotency" turns out 

to be the following type of condition: 𝐹(𝑥, 𝑦)  = (𝑦 −  𝑥)𝑚 − 𝐺(𝑥, 𝑦) where 𝐺(𝑥, 𝑥)  ≠  0. 

We deals with similarity properties of our operators and establishes what amounts to 
"canonical forms under similarity" of the functions 𝐹. We lean on results by Volterra and 

Volterra and Peres [54,55]. It should be noted that the result of Lemma (3.1.4) was improved 
somewhat by Lilsis[56]; this improvement would correspondingly improve slightly several 

of the results based on that Lemma. For the functions 𝐹  considered the only reducing 

manifolds of 𝑇𝐹  are the spaces 𝐿𝑝[0,𝑎] for all 𝑎 ∈ [0,1]. We close that with two examples.  

We are dealing with functions of the two variables  𝑥 and 𝑦 defined on the triangle 0 ≦
𝑥 ≦ 𝑦 ≦ 1. Such functions will be denoted by capital letters thus: 𝐹(𝑥, 𝑦). Unless a statement 

is made to the contrary, these functions will always be of the form 𝐹(𝑥, 𝑦)  =
 (𝑦 −  𝑥)𝑚−1𝐺(𝑥, 𝑦) where the complex valued function 𝐺  is continuously differentiable; 
𝐺(𝑥, 𝑥) is real valued and different from 0. The positive integer 𝑚 is called the order of 𝐹  

[55]. If 𝐹 depends only on 𝑦 − 𝑥  we generally use lower case letters: 𝐹(𝑥, 𝑦)  =  𝐹(𝑦 −
𝑥)  =  𝑓(𝑦 −  𝑥). We write 

𝑇𝐹𝑔(𝑥) = ∫𝐹(𝑥, 𝑦)𝑔(𝑥)𝑑𝑦

1

𝑥

. 

To the product 𝑇𝐹1𝑇𝐹2  of two transformations corresponds a third function 𝐹3  such that 

𝑇𝐹1𝑇𝐹2 = 𝑇𝐹3  where 𝐹3 is given by 

𝐹3(𝑥,𝑦) = ∫𝐹1(𝑥, 𝑧)𝐹2(𝑧,𝑦)𝑑𝑧

𝑦

𝑥

; 
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we use the notation 𝐹1
∗𝐹2 for 𝐹3 and 𝐹∗,𝑚  for 𝐹∗…∗𝐹 (𝑚 factors). If 𝑝(𝑧) = ∑ 𝑎𝑖𝑧

𝑖𝑁
0 , we write 

𝑝∗(𝐹) = ∑ 𝑎𝑖𝐹
∗,𝑖+1𝑁

0 . Note that if 𝐹𝑖(𝑥,𝑦) = 𝑓𝑖(𝑦 −  𝑥)(𝑖 =  1, 2),𝑓1
∗𝑓2  is again a function 

of 𝑦 −  𝑥 and  

𝑓1
∗𝑓2(𝑦 − 𝑥) = ∫ 𝑓1 (𝑦− 𝑥 − 𝑢)𝑓2(𝑢)𝑑𝑢

𝑦−𝑥

0

= 𝑓2
∗𝑓1(𝑦 − 𝑥). 

Lemma(3.1.1):[53]     Let 𝐹(𝑥,𝑦) be measurable and bounded such that |𝐹(𝑥, 𝑦)| ≦  𝐾 for 

all 𝑥  and 𝑦 such that 0 ≦ 𝑥 ≦ 𝑦 ≦ 1. Let 1 ≦ 𝑝 < ∞ . Then 𝑇𝐹  is a bounded, generalized 

nilpotent linear transformation mapping  𝐿𝑝[0,1] into itself and ‖𝑇𝐹‖ ≤ 𝐾. 

Proof:    Except for generalized nilpotency, the assertions of this Lemma follow from the 
inequalities 

|𝑇𝐹𝑓(𝑥)| ≦ ∫|𝐹(𝑥, 𝑦)𝑓(𝑦)|𝑑𝑦

1

𝑥

≦ 𝐾∫|𝑓(𝑦)|𝑑𝑦

1

𝑥

≦ 𝐾‖𝑓‖1 ≦ 𝐾‖𝑓‖𝑝 

(the last inequality results from the fact that the basic interval of integration has measure 1). 
Generalized nilpotency follows from the inequality 

|𝐹∗,𝑖(𝑥, 𝑦)| ≤
𝐾𝑖(𝑦− 𝑥)𝑖−1

(𝑖 − 1)!
. 

Lemma(3.1.2):[53]    Let 1 ≦ 𝑝 < ∞. Let 𝑘 ∈ 𝐿1[0,1],𝑓 ∈ 𝐿𝑝[0,1]. Then 𝑇𝑘 is a bounded 

linear transformation mapping 𝐿𝑝[0,1] into itself such that  ‖𝑘∗𝑓‖𝑝 = ‖𝑇𝑘𝑓‖𝑝 ≦ ‖𝑘‖1‖𝑓‖𝑝  

whence ‖𝑇𝑘‖ ≦ ‖𝑘‖1. Hence 𝑘∗,𝑖 ∈ 𝐿1[0,1] for all positive integral 𝑖 and 𝑘𝑖 → 𝑘 in 𝐿1[0,1] 
implies that 𝑇𝑘𝑖  → 𝑇𝑘  uniformly. 

Proof:      The assertions of the lemma are implied by the well-known inequality  ‖𝑘∗𝑓‖𝑝 ≦
‖𝑘‖1‖𝑓‖𝑝. Thus 𝑇𝑘𝑓 ∈ 𝐿𝑝[0,1]  for 𝑓 ∈ 𝐿𝑝[0,1]  and 

‖𝑇𝑘𝑓‖𝑝 = ‖𝑘
∗𝑓‖𝑝 ≦ ‖𝑘‖1‖𝑓‖𝑝 

Two continuous linear transformations 𝑇1  and 𝑇2  mapping 𝐿𝑝[0,1] into itself are called 

similar if there exists a continuous linear transformation 𝑃 mapping 𝐿𝑝[0,1] onto itself with 

the continuous linear inverse 𝑃−1  such that 𝑇1 =  𝑃𝑇2𝑃
−1 . Two continuous linear 

transformations mapping 𝐿2[0,1] into itself are called unitarily equivalent if there exists a 

unitary linear transformation U such that  𝑇1 = 𝑈𝑇2𝑈
∗ = 𝑈𝑇2𝑈

−1. We will in most instances 
be able to restrict the linear transformations P and U implementing similarity and unitary 
equivalence to products of linear transformations of the following three kinds: (1) 

multiplication by a measurable function ℎ(𝑥):𝑀ℎ𝑓(𝑥)  =  ℎ(𝑥)𝑓(𝑥) ; (2) substitution 

(change of measure of [0,1]) using a monotone function 𝑟(𝑡) mapping [0,1] onto itself such 

that 𝑟(𝑂)  =  0  and 𝑟(1) =  1: 𝑆𝑟𝑓(𝑥)  =  𝑓(𝑟(𝑥)); (3) linear transformations of the type 

𝐼 + 𝑇𝑀  where 𝐼 is the identity transformation and 𝑇𝑀  is generalized nilpotent. 
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If 𝐹(𝑥, 𝑦)  =  (𝑦 −  𝑥)𝑚−1𝐺(𝑥, 𝑦)  is of order 𝑚  and 𝐺 ∈  𝐶1  we say that 𝐹  is canonical 

with constant 𝑐 if 

𝐺(𝑥, 𝑥) = 𝑐,   𝐺𝑥(𝑥, 𝑥) = 𝐺𝑦(𝑥, 𝑥) = 0 

We use the standard notations 𝐿𝑝 and 𝐿𝑞 where 1/𝑝 +  1/𝑞 =  1; if  𝑓 ∈  𝐿𝑝[0,1] and 𝑔 ∈

 𝐿𝑞[0,1] and 𝑝 ≠ 2, we write (𝑓, 𝑔)  =  ∫ 𝑓(𝑥)𝑔(𝑥) 𝑑𝑥
1

0
; if 𝑓  and 𝑔 are in 𝐿2[0,1], we 

write (𝑓, 𝑔)  =   ∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅  𝑑𝑥
1

0
. The set of all functions 𝑓 ∈  𝐿𝑝[0,1] such that 𝑓(𝑥)  =  0 

a.e. for all 𝑥 ≥  𝑎 is called 𝐿𝑝[0,1]. The subset of  𝐿𝑝[0,𝑎] consisting of all functions which 

are in no 𝐿𝑝[0,𝑎
′]  for  0 ≤ 𝑎′ < 𝑎 will be called 𝐿𝑝

𝑑[0,𝑎]. The function identically equal to 

1 will be denoted by 𝐸 or simply by 1. 

Lemma(3.1.3):[53]    If 𝐹(𝑥, 𝑦)  =  (𝑦 −  𝑥)𝑚−1𝐺(𝑥, 𝑦) is of order 𝑚 then there exists a 

function 𝐻(𝑥, 𝑦) of order 𝑚 which is canonical with constant 

𝑐 = 𝑠𝑖𝑔𝑛 𝐺(𝑥,𝑥)(∫|𝐺(𝑢, 𝑢)|
1
𝑚𝑑𝑢

1

0

)

𝑚

 

such that 𝑇𝐹   is similar to 𝑇𝐻 = 𝑃
−1𝑇𝐹𝑃 . This is achieved by setting 𝑃 = 𝑆𝑟𝑀ℎ  where  

 𝑟(𝑡) = ∫ (
𝐺(𝑢 ,𝑢)

𝑐
)

1

𝑚
𝑑𝑢

1

0
  and where the function ℎ  is determined as follows: define 

 𝐹1(𝑥, 𝑦) = (𝑦− 𝑥)
𝑚−1𝐺1(𝑦,𝑥) by 𝑇𝐹1 = 𝑆𝑟

−1𝑇𝐹𝑆𝑟 . Then 

ℎ(𝑡) = exp((
1

𝑐
)∫𝐺1𝑥(𝑢, 𝑢)𝑑𝑢

𝑡

0

). 

Lemma(3.1.4):[53]     If 𝐹 is analytic in 𝑥 and 𝑦 in a suitable region and if it is of order 𝑚 

then there exists (exactly one) function 𝐺(𝑥, 𝑦) of order 1 and real for 𝑦 = 𝑥 analytic in the 

same region such that 𝑇𝐺
𝑚 = 𝑇𝐹 . The same conclusion holds if   𝐹(𝑥,𝑦) = 𝑓(𝑦 − 𝑥) =

(𝑦 − 𝑥)𝑚−1𝑓1(𝑦 − 𝑥)  is of order 𝑚 and 𝑓1 ∈ 𝐶
2. The 𝑚𝑡ℎ  root 𝐺(𝑥, 𝑦) of 𝑓(𝑦− 𝑥) is in 𝐶2  

and is of the form 𝐺(𝑦 −  𝑥).[54]. 

Theorem (3.1.5):[53]     Let 𝐹 ∈ 𝐶2  be of order 1. Then 𝑇𝐹  is similar to 𝑐𝑇𝐸  where 𝑐 is 

defined on Lemma (3.1.3) (with 𝑚 = 1). More precisely, 𝑐𝑇𝐸 = 𝑃𝑃1
−1𝑇𝐹𝑃1𝑃

−1  where 𝑝11 is 

as in Lemma (3.1.3)  so that 𝑃1
−1𝑇𝐹𝑃1 = 𝑇𝐾  where 𝐾 is canonical with constant 𝑐 (and of 

order 1) and 𝑃 = 𝐼 + 𝑇𝑀  and 𝑀 is determined by the integral equation 

𝐾 +𝑀∗𝐾 = 𝑐(1 + 1∗𝑀)                                                    (1) 

In fact if the continuous function  𝑀(0,𝑦) is prescribed, there exists a continuous solution of 

(1) which is unique and for which (
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
)𝑀(𝑥, 𝑦) exists.  
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Proof:      Note first of all that for the function 𝑀 which we are going to find, 𝑃−1 will exist 

since 𝑇𝑀  is generalized nilpotent by Lemma(3.1.1). Dividing (1) by 𝑐 and setting 𝐾/𝑐 =  𝐿, 

we are led to consider 

  𝐿(𝑥, 𝑦) +∫𝑀(𝑥,𝜔)𝐿(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

= 1 +∫𝑀(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

                                            (2) 

This equation is equivalent to the following equation where   𝑟 = (𝑦 − 𝑥)/2, 𝑠 = (𝑦+
 𝑥)/2: 

𝑀(𝑥, 𝑦) = ∫ ∫ 𝑀(𝑣 − 𝑟,𝜔)𝐿𝑦𝑦(𝜔,𝑣 + 𝑟)𝑑𝜔𝑑𝑣

𝑣+𝑟

𝑣−𝑟

𝑠

𝑟

         

  −∫𝑀(𝑥,𝜔)𝐿𝑦(𝜔,𝑦)𝑑𝜔

𝑦

𝑥

+∫ 𝑀(0,𝜔)𝐿𝑦(𝜔, 2𝑟)𝑑𝜔

2𝑟

0

                          (3) 

−∫𝐿𝑥𝑦(𝑣 − 𝑟, 𝑣 + 𝑟)𝑑𝑣

𝑠

𝑟

+ ℎ(2𝑟)       

where ℎ(𝑡) is arbitrary. 

   Equation (3) can be derived from (2) under the assumption that 𝑀 ∈ 𝐶1. After showing 

this, we show that (2) and (3) are equivalent if we merely assume that  (
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
)𝑀(𝑥, 𝑦) 

exists. On differentiating (2) with respect to 𝑥 and 𝑦  we obtain  

𝜕

𝜕𝑠
𝑀(𝑥, 𝑦) = 𝑀𝑥(𝑥, 𝑦)+ 𝑀𝑦(𝑥, 𝑦)

= −∫𝑀𝑥(𝑥, 𝜔)𝐿𝑦(𝜔,𝑦)𝑑𝜔

𝑦

𝑥

+𝑀(𝑥, 𝑥)𝐿𝑦(𝑥,𝑦) − 𝐿𝑥𝑦(𝑥, 𝑦) 

whence  

𝑀(𝑥, 𝑦) = −∫ ∫ 𝑀𝑥(𝑣 − 𝑟,𝜔)𝐿𝑦(𝜔, 𝑣 + 𝑟)𝑑𝜔𝑑𝑣

𝑣+𝑟

𝑣−𝑟

𝑠

𝑟

     

               +∫𝑀(𝑣 − 𝑟, 𝑣 − 𝑟)𝐿𝑦(𝑣 − 𝑟, 𝑣 + 𝑟)𝑑𝑣

𝑠

𝑟

−∫𝐿𝑥𝑦(𝑣 − 𝑟, 𝑣 + 𝑟)𝑑𝑣

𝑠

𝑟

+ ℎ(2𝑟) 

If we now interchange the order of integration in the double integral, then integrate by parts 
in order to eliminate 𝑀𝑥, and then once more interchange the order of integration  in the 

double integral, we obtain (3).  
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   We shall obtain below the unique solution of (3) (with prescribed  𝑀(0,𝑦)) which has the 

property that  
𝜕

𝜕𝑠
𝑀(𝑥, 𝑦) exists. To establish the equivalence of (2) and (3) using only the 

assumption that  
𝜕

𝜕𝑠
𝑀(𝑥, 𝑦)exists, we proceed as follows. On differentiation of (3) with 

respect to s we obtain  

𝜕

𝜕𝑠
(𝑀(𝑥, 𝑦) +∫𝑀(𝑥,𝜔)𝐿𝑦(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

)= ∫𝑀(𝑥,𝜔)𝐿𝑦𝑦(𝜔,𝑦)𝑑𝜔

𝑦

𝑥

− 𝐿𝑥𝑦(𝑥,𝑦)        (4) 

Or 𝐴(𝑥, 𝑦) = 𝐵(𝑥, 𝑦).We now from  

       ∫∫𝐴(𝜉, 𝜂)𝑑𝜂𝑑𝜉

𝑦

𝜉

𝑦

𝑥

= ∫∫𝐵(𝜉, 𝜂)𝑑𝜂𝑑𝜉

𝑦

𝜉

𝑦

𝑥

                                               (5) 

On the left we make the following change of variables:  𝜉 = 𝜎 − 𝜌 and 𝜂 = 𝜎 + 𝜌 and 
obtain after one integration  

2∫(𝑀(𝑦 − 2𝜌,𝑦)+ ∫ 𝑀(𝑦 − 2𝜌,𝜔)𝐿𝑦(𝜔,𝑦)𝑑𝜔

𝑦

𝑦−2𝜌

)𝑑𝜌

𝑟

0

   

                                        −2∫(𝑀(𝑥, 2𝜌+ 𝑥)+ ∫ 𝑀(𝑥,𝜔)𝐿𝑦(𝜔,2𝜌+ 𝑥)𝑑𝜔

2𝜌+𝑥

𝑥

)𝑑𝜌

𝑟

0

 

or by appropriate changes of variables  

∫𝑀(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

+∫∫𝑀(𝑣,𝜔)𝐿𝑦(𝜔,𝑦)𝑑𝜔

𝑦

𝑣

𝑑𝑣

𝑦

𝑥

 

                                                 −∫𝑀(𝑥,𝜔)𝑑𝜔

𝑦

𝑥

−∫∫𝑀(𝑥,𝜔)𝐿𝑦(𝜔,𝑣)𝑑𝜔

𝑣

𝑥

𝑑𝑣

𝑦

𝑥

 

Finally, after integrating the last integral by parts, we obtain for the left hand side of (5)  

∫𝑀(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

+∫∫𝑀(𝑣,𝜔)𝐿𝑦(𝜔,𝑦)𝑑𝜔

𝑦

𝑣

𝑑𝑣

𝑦

𝑥

 

                                             −∫𝑀(𝑥,𝜔)𝑑𝜔

𝑦

𝑥

−∫𝑀(𝑥,𝜔)𝐿(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

+ ∫𝑀(𝑥,𝜔)𝑑𝜔

𝑦

𝑥
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The right hand side of (5) becomes after an integration by parts of its first integral  

∫ ∫ 𝑀(𝑥,𝜔)𝐿𝑦(𝜔,𝑦)𝑑𝜔
𝑦

𝑣
𝑑𝑣

𝑦

𝑥
− 1 + 𝐿(𝑥, 𝑦). On equating these two expressions, we obtain 

(2). In order to obtain (3) from (2) we note first that we can reverse the steps leading from (3) 
to (2) until we get (4). To go from (4) to (3) we observe that in (3), 𝑀(0,𝑦)  =  ℎ(𝑦). We 

now see that on integrating (4) with respect to 𝑠 from 𝑟 to 𝑠, we obtain (3).  

   We now proceed to solve (3), where we replace 𝑀(0,𝜔) by ℎ(𝜔), i.e., we actually solve 

the following equation:  

𝑀(𝑥, 𝑦) = ∫ ∫ 𝑀(𝑣 − 𝑟,𝜔)𝐿𝑦𝑦(𝜔,𝑣 + 𝑟)𝑑𝜔

𝑣+𝑟

𝑣−𝑟

𝑑𝑣

𝑠

𝑟

 

            −∫𝑀(𝑥,𝜔)𝐿𝑦(𝜔,𝑦)𝑑𝜔

𝑦

𝑥

+∫ ℎ(𝜔)𝐿𝑦(𝜔, 2𝑟)𝑑𝜔

2𝑟

0

                                  (6) 

       −∫𝐿𝑥𝑦(𝑣 − 𝑟, 𝑣 + 𝑟)𝑑𝑣

𝑠

𝑟

+ ℎ(2𝑟)          

Any solution of (6) provides one of (3), since if 𝑀(𝑥, 𝑦) satisfies (6), we see that  

𝑀(0,𝑦) = −∫ 𝑀(0,𝑦)𝐿𝑦(𝜔,𝑦)𝑑𝜔
𝑦

0
+ ∫ ℎ(𝜔)𝐿𝑦(𝜔, 𝑦)𝑑𝜔

𝑦

0
+ ℎ(𝑦) so that for 𝑀, 

𝑀(0,𝑦) = ℎ(𝑦). We  now rewrite (6) thus:  

(𝐼 − 𝑇)𝑀(𝑥, 𝑦) = ∫ ℎ(𝜔)𝐿𝑦(𝜔, 2𝑟)𝑑𝜔

2𝑟

0

   − ∫𝐿𝑥𝑦(𝑣 − 𝑟, 𝑣 + 𝑟)𝑑𝑣

𝑠

𝑟

+ ℎ(2𝑟) 

= 𝑅(𝑥, 𝑦)                                                                                      (7) 

where the linear transformation 𝑇 is defined by  

𝑇𝐺(𝑥, 𝑦) = ∫ ∫ 𝐺(𝑣− 𝑟,𝜔)𝐿𝑦𝑦(𝜔, 𝑣 + 𝑟)𝑑𝜔

𝑣+𝑟

𝑣−𝑟

𝑑𝑣

𝑠

𝑟

−∫𝐺(𝑥,𝜔)𝐿𝑦(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

    

If  
𝜕

𝜕𝑠
𝐺(𝑥, 𝑦) exists, 

𝜕

𝜕𝑠
𝑇𝑛𝐺(𝑥, 𝑦) also exists for all positive integral 𝑛 . Our hypotheses 

regarding 𝑀(0,𝑦)  =  ℎ(𝑦)  and 𝐿(𝑥, 𝑦)  imply the existence of a  positive constant 𝐶 

independent of 𝑥 and 𝑦 such Max(|𝑅(𝑥,𝑦)|, |𝐿𝑦(𝑥,𝑦)|, |𝐿𝑥𝑦(𝑥, 𝑦)|, |𝐿𝑦𝑦(𝑥, 𝑦)|, |ℎ(𝑥)|,1) ≦

𝐶 .Then |𝑇𝑛𝑅(𝑥, 𝑦)| ≦
𝐶(2𝐶(𝑦−𝑥)𝑛)

𝑛!
  and |

𝜕

𝜕𝑠
𝑇𝑛𝑅(𝑥, 𝑦)| ≦

𝐶(4𝐶(𝑦−𝑥)𝑛)

𝑛!
 These inequalit ies 

imply that (7) has the solution ∑ 𝑇𝑛𝑅(𝑥, 𝑦)∞
0  and that  

𝜕

𝜕𝑠
𝑀(𝑥, 𝑦)  exists and equals 

∑
𝜕

𝜕𝑠
𝑇𝑛𝑅(𝑥, 𝑦)∞

0  since our hypotheses imply that 
𝜕

𝜕𝑠
𝑅(𝑥, 𝑦) exists.  
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   The uniqueness of the solution 𝑀(𝑥, 𝑦) of (2) or (3) is established as follows: Suppose the 

two solutions 𝑀1 and 𝑀2 have 𝑀0 as their difference and that 𝑀1(0,𝑦)  =  𝑀2(0,𝑦) so that 

𝑀0(0,𝑦)  =  0. Then 𝑀0 satisfies  

  ∫𝑀0(𝑥,𝜔)𝐿(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

= ∫𝑀0(𝜔, 𝑦)𝑑𝜔

𝑦

𝑥

                                                   (8) 

By making computations similar to those which relate (2) and (3), we see that 𝑀0 must satisfy 

      (𝐼 − 𝑇)𝑀0(𝑥,𝑦) = ℎ0(2𝑟)                                                                        (9) 

The requirement that  𝑀0(0,𝑦)  =  0   implies that ℎ0(𝑦) = 0  so that (9) implies that 

𝑀0(𝑥,𝑦)  =  0.  

Corollary(3.1.6):[53]    If 𝐹 is analytic in 𝑥 and 𝑦 in a suitable region and if it is of order 𝑚 

then 𝑇𝐹  is similar to 𝑐 𝑇𝐸
𝑚  where c is the constant of Lemma(3.1.3). The same conclusion 

holds if  𝐹(𝑥, 𝑦)  =  𝑓(𝑦 −  𝑥)  = (𝑦 −  𝑥)𝑚−1𝑓1(𝑦 −  𝑥)  is of order 𝑚 and 𝑓 ∈ 𝐶2 . 

Lemma(3.1.7):[53]        If 𝑇1  and 𝑇2  are continuous linear transformations mapping 𝐿𝑝 into 

itself which are not nilpotent, then similarity of 𝑇1  and 𝑇2  implies that 

lim
𝑛
(
‖𝑇1

𝑛‖
1
𝑛

‖𝑇2
𝑛‖
1
𝑛

) = 1 

 Proof:    This is implied by the inequalit ies(‖𝑃‖‖𝑃−1‖)−1‖𝑇2
𝑛‖ ≤ ‖𝑇1

𝑛‖ ≦ ‖𝑃‖‖𝑃−1‖‖𝑇2
𝑛‖ 

if we write 𝑇2 = 𝑝𝑇1𝑝
−1 . If 𝑟 ≥ 1 is a real number, let us define 𝑇𝐸

𝑟 as 𝑇𝐹  with 𝐹(𝑥, 𝑦) =
(𝑦 − 𝑥)𝑟−1/Γ(𝑟) . 

Theorem(3.1.8):[53]     If 𝑐1 and 𝑐2 are real numbers and 𝑟1  and 𝑟2  are real numbers such that 

𝑟𝑖 ≥ 1, then 𝑐1𝑇𝐸
𝑟1 is similar to  𝑐2𝑇𝐸

𝑟2 if and only if 𝑐1 =  𝑐2 and 𝑟1 =  𝑟2 .   

Proof:      Suppose that  𝑟1 >  𝑟2 . Then 

Lim
𝑛
(
‖(𝑐1𝑇𝐸

𝑟1)
𝑛
‖
1
𝑛

‖(𝑐2𝑇𝐸
𝑟2)

𝑛
‖
1
𝑛

)= (
|𝑐1|

|𝑐2|
) lim

𝑛
(
‖(𝑇𝐸

𝑟1)
𝑛
‖
1
𝑛

‖(𝑇𝐸
𝑟2)

𝑛
‖
1
𝑛

)≦ (
|𝑐1|

|𝑐2|
) lim

𝑛
‖(𝑇𝐸

𝑟1−𝑟2)
𝑛
‖
1
𝑛 = 0 

since 𝑇𝐸
𝑟  is generalized nilpotent for 𝑟 >  1  (see Lemma(3.1.1)). Lemma(3.1.7) implies, 

therefore, that 𝑟1 =  𝑟2 . Let us assume next that 𝑟1 =  𝑟2  =  𝑟 . The equation 

Lim
𝑛
(
‖(𝑐1𝑇𝐸

𝑟)𝑛‖
1
𝑛

‖(𝑐2𝑟)
𝑛‖
1
𝑛

) = (
|𝑐1|

|𝑐2|
) implies by Lemma(3.1.7)  that we must have |𝑐1| = |𝑐2|. Suppose 

finally that 𝑇𝐸
𝑟  is similar to −𝑇𝐸

𝑟 = 𝑝𝑇𝐸
𝑟𝑝−1 . Then 𝑃 commutes with 𝑇𝐸

𝑟. We now proceed to 

show that 𝑇𝐸
𝑟 = lim

jpj
(𝑇𝐸
2𝑟 )uniformly for polynomials 𝑝𝑗 which implies that 𝑃 commutes also 

with 𝑇𝐸
𝑟 contradicting 𝑃𝑇𝐸

𝑟𝑃−1 = −𝑇𝐸
𝑟. In view of Lemma (3.1.2) it suffices to show that 
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𝑡𝑟−1/Γ(𝑟) is the 𝐿1-limit of polynomials of the form ∑ 𝑎𝑗𝑡
2𝑟𝑗−1/Γ(2𝑟𝑗) 𝑁

1 where we have 

written 𝑡 for 𝑦 − 𝑥. Let {𝑒𝑖 } be a sequence of positive real numbers converging to 0. Let 

𝑓𝑖(𝑡) = {
𝑏𝑖 𝑡  for 0 ≦ 𝑡 ≦ 𝑒𝑖
𝑡−𝑟 for 𝑒𝑖 ≦ 𝑡 ≦ 1

 

be continuous functions (i.e., 𝑏𝑖𝑒𝑟
𝑟+1 = 1). The Stone-Weierstrass theorem implies the 

existence of polynomials  𝑝𝑖(𝑡
2𝑟) = ∑ 𝑎𝑖𝑗𝑡

2𝑟𝑗𝑁𝑖
𝑗=0  such that |𝑝𝑖(𝑡

2𝑟 )–𝑓𝑖(𝑡)| ≦ 𝑒𝑖 . 

For 0 ≦ 𝑡 ≦ 1. It is now an easy matter to verify that  𝑡2𝑟−1𝑝𝑖(𝑡
2𝑟) → 𝑡𝑟−1  in  𝐿1 or that 

∑ 𝑎𝑖,𝑘−1(Γ(2𝑟𝑘)  ⁄ Γ(𝑟))𝑡
2𝑟𝑘−1 Γ(2𝑟𝑘)⁄ → 𝑡𝑟−1/ Γ(𝑟)

𝑁𝑖+1
𝑘=1   in 𝐿1 .  

Corollary(3.1.9):[53]     If  𝐹 is as described in Lemma (3.1.4) or Theorem (3.1.5), then 𝑇𝐹  

is similar to a unique operator 𝑐𝑇𝐸
𝑚  where 𝑐 is as in Lemma (3.1.3) and 𝑚 is the order of 𝐹.  

Lemma(3.1.10):[53]    𝑇𝐷 𝑎,ℎ is the uniform limit of polynomials in 𝑇𝐸
𝑚  without constant term 

for all 𝑚 ≧ 1.  

Proof:     If 𝑎 > 0, 𝑡1−𝑚𝐷𝑎,ℎ(𝑡) is the 𝐿1 limit of polynomials of the form  

∑𝑎𝑖𝑡
𝑚𝑖/Γ(𝑚), 

hence 𝐷𝑎,ℎ(𝑡) is the 𝐿1 limit of polynomials of the form ∑𝑎𝑖𝑡
𝑚(𝑖+1)−1/Γ(𝑚). Lemma (3.1.2) 

then implies the truth of  the present lemma in the case considered. If 𝑎 = 0, observe that 

𝐷0,ℎ(𝑡) is the 𝐿1 limit of the functions 𝐷𝑒,ℎ(𝑡) as 𝑒 → 0 and the same conclusion holds. 

 Lemma(3.1.11):[53]    If  𝑓 ∈ 𝐿𝑝
𝑑 [0,𝑐] then the functions 𝑇𝐸

𝑚𝑓, 𝑇𝐸
2𝑚𝑓,… and their linear 

combinations are dense in 𝐿𝑝[0,𝑐] for all 𝑐 ∈ [0,1].  

Proof:    Let 𝑔 ∈ 𝐿𝑞[0,𝑐] and consider (𝑇𝐸
𝑚𝑖𝑓, 𝑔) for = 1,… . By Lemma(3.1.10), 𝑇𝐷𝑎 ,ℎ  is a 

uniform limit of polynomials in 𝑇𝐸
𝑚  without constant term. Thus if we assume that 

(𝑇𝐸
𝑚𝑖𝑓, 𝑔) = 0 for all 𝑖 > 0, we have  

𝐼𝑎,ℎ = (𝑇𝐷𝑎,ℎ𝑓,𝑔) = 0                                                                          (10) 

for all 𝑎 and ℎ  such that 0 ≦ 𝑎 < 𝑐, 0 < ℎ ≦ 𝑐 − 𝑎. We now apply  Fubini's theorem to  

𝐼𝑎,ℎ = ∫ ∫ 𝐷𝑎,ℎ(𝑦 − 𝑥)𝑓(𝑦)𝑔(𝑥)𝑑𝑦𝑑𝑥
𝑐

𝑥

𝑐

0
 and obtain  

𝐼𝑎,ℎ = ∫ ∫ 𝑓(𝑦)𝑔(𝑥)𝑑𝑦𝑑𝑥
𝑦−𝑎

𝑦−𝑎−ℎ

𝑐

𝑎

 

where we put 𝑔 = 0 outside [0,𝑐]. Let  

𝑐𝑎,ℎ =
𝐼𝑎,ℎ
ℎ
−∫𝑓(𝑦)𝑔(𝑦− 𝑎)𝑑𝑦

𝑐

𝑎

= ∫((
1

ℎ
) ∫ 𝑔(𝑥)𝑑𝑥

𝑦−𝑎

𝑦−𝑎−ℎ

−𝑔(𝑦 − 𝑎))𝑓(𝑦)𝑑𝑦

𝑐

𝑎
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 Then lim
ℎ=0
𝑐𝑎,ℎ = 0 [57]. Since by (10) 𝐼𝑎,ℎ = 0, we conclude that ∫ 𝑓(𝑦)𝑔(𝑦− 𝑎)𝑑𝑦

𝑐

𝑎
= 0 

for all 𝑎 ∈ [0,𝑐]. A theorem of Titchmarsh's [58] implies that then 𝑔 = 0 a.e.  

Lemma(3.1.12):[53]       Let 𝑛(𝑥, 𝑦) = −𝑛(𝑦 –  𝑥) ∈ 𝐿1[0,1] and 𝑛 = 0 in the interval 

[0,
1

𝑘
]  for some positive integer 𝑘. Let 𝑚 be a positive integer. Then the only reducing 

manifolds  of 𝑇𝐸
𝑚 +𝑇𝑛 , are the subspaces 𝐿𝑝[0,𝑐] of 𝐿𝑝[0,1] for all 𝑐 ∈ [0,1]. 

Proof:    We show first that 𝑇𝐸
𝑚  is a uniform limit of polynomials in 𝑇𝐸

𝑚 +𝑇𝑛 . without 

constant term; note that Lemma (3.1.2) implies that such polynomials are indeed continuous 

operators mapping 𝐿𝑝[0,1]  into itself. It is sufficient by Lemma (3.1.2)  to construct 

polynomials in the functions corresponding to 𝑇𝐸
𝑚  + 𝑇𝑛  which converge in 𝐿1  to (𝑦 −

𝑥)𝑚−1  /Γ(𝑚) . Let 𝑝(𝑧) = ∑ 𝑎𝑖𝑧
∗,𝑖+1  𝑁

0 ,    𝑝∗(𝑓) = ∑ 𝑎𝑖𝑓
∗,𝑖+1𝑁

0  for 𝑓(𝑡) = 1∗,𝑚 + 𝑛(𝑡) =
𝑡𝑚−1

Γ(𝑚)
+ 𝑛(𝑡) where we write 𝑡 instead of 𝑦 −  𝑥. Since our hypotheses concerning 𝑛 imply 

that  𝑛∗,𝑘 = 0, we have the following formulas:  

𝑝∗(𝑓) = 𝜋(𝑡)+∑𝑎𝑖𝑛
∗,𝑖+1

𝑘−2

𝑖=0

+∑𝑑𝑖(𝑡)
∗𝑛∗,𝑖

𝑘−1

𝑖=1

 

 where  𝜋(𝑡) = ∑ 𝑎𝑖1
∗,𝑚(𝑖+1)𝑁

𝑖=0  or  

  𝜋(𝑡) =∑𝑎𝑖𝑡
𝑚(𝑖+1)−1/(𝑚(𝑖 + 1)− 1)!

𝑁

𝑖=0

                                       (11) 

 

 and  

  𝑑𝑖(𝑡) =∑𝑎𝑟 (
𝑟 + 1
𝑖
)𝑡𝑚(𝑟−𝑖+1)−1/(𝑚(𝑟− 𝑖 + 1)− 1)!

𝑁

𝑟=𝑖

                     (12) 

 if 𝑝 has a subscript s, we write correspondingly 𝜋𝑠  and 𝑑𝑠𝑖  .  

We shall find it necessary in what follows to have expressions for the polynomials  𝑑𝑖(𝑡) 
which show explicitly their dependence on the polynomial 𝜋(𝑡) and its derivatives. This is 

done by the following formula 

     𝑑𝑖(𝑡) =∑𝑞𝑟𝑖(𝑡)𝜋
(𝑚𝑖+1)(𝑡)

𝑖

𝑟=0

                                                              (13) 

where the polynomials 𝑞𝑟𝑖(𝑡) are independent of 𝜋 and where superscripts in parentheses 

indicate differentiation. Express the binomial coefficient in (12) as (
𝑟 + 1
𝑖
) = ∑ 𝑐𝑖𝑠𝑟

𝑠𝑖
𝑠=0 ;  

(12) becomes  
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𝑑𝑖(𝑡) =∑
𝑎𝑟 ∑ 𝑐𝑖𝑠𝑟

𝑠𝑡𝑚(𝑟−𝑖+1)−1𝑖
𝑠=0

(𝑚(𝑟 − 𝑖 + 1)− 1)!

𝑁

𝑟=𝑖

=∑𝑐𝑖𝑠𝑔𝑖𝑠(𝑡)

𝑖

𝑠=0

 

where 𝑔𝑖𝑠(𝑡) = ∑
𝑎𝑟𝑟

𝑠𝑡𝑚(𝑟−𝑖+1)−1

(𝑚(𝑟−𝑖+1)−1)!

𝑁
𝑟=𝑖 .  Note that  𝑔𝑖0(𝑡) = ∑

𝑎𝑟𝑡
𝑚(𝑟−𝑖+1)−1

(𝑚(𝑟−𝑖+1)−1)!

𝑁
𝑟=𝑖 = 𝜋(𝑚𝑖) (𝑡)  and 

𝑔𝑖𝑠(𝑡) = (
1

𝑚𝑡𝑚(𝑖−1)
)(𝑡𝑚(𝑖−1)+1𝑔𝑖,𝑠−1(𝑡))

′

 so that there exist polynomials 𝑔𝑖𝑠𝑢(𝑡) 

independent of 𝜋 such that 𝑔𝑖𝑠(𝑡) = ∑ 𝑔𝑖𝑠𝑢(𝑡)𝜋
(𝑚𝑖+𝑢)(𝑡)𝑠

𝑢=0   and 

𝑑𝑖(𝑡) =∑𝑐𝑖𝑠∑𝑔𝑖𝑠𝑢(𝑡)𝜋
(𝑚𝑖+𝑢) (𝑡)

𝑠

𝑢=0

𝑖

𝑠=𝑢

=∑ 𝑞𝑢𝑖(𝑡)𝜋
(𝑚𝑖+𝑢) (𝑡)

𝑖

𝑢=0

 

where  𝑞𝑢𝑖(𝑡) = ∑ 𝑐𝑖𝑠𝑔𝑖𝑠𝑢(𝑡)
𝑖
𝑠=𝑢  is independent of 𝜋 and (13) is established.  

Proposition(3.1.13):[53]     Given a positive real number 𝜀, a positive integer 𝑘1𝑚 − 1 = 𝑀, 

a polynomial  𝜋0(𝑡) of form (11) considered in the interval [0,𝑏] where 0 < 𝑏 ≦ 1, and a 

function 𝑛 ∈ 𝐿1[𝑂, 𝑏] such that 𝑛 = 0 in the interval [0,𝑎]  for some a such that 0 <  𝑎 <

 𝑏. Then there exists a polynomial 𝜋1(𝑡) of form (11) such that |𝜋1
(𝑣)(𝑡) − 𝜋0

(𝑣)
| ≦ 𝜀 for all 

𝑡 ∈  [0,𝑎] and for 𝑣 = 0,… ,𝑀   and such that ‖𝜋 − 𝑛‖1 ≦ 𝜀  where ‖…‖1  relates to the 

interval [𝑎,𝑏].  

 Proof:  Instead of approximating 𝜋0  and 𝑛 as described above, we approximate 0  and 𝑛 −

𝜋0 = 𝑛1 by a polynomial 𝜋 of form (11) such that |𝜋(𝑣) (𝑡)| ≦ 𝜀 for all 𝑡 ∈  [0,𝑎] and 𝑣 =
0, . . , 𝑀  and ‖𝜋− 𝑛‖1 ≦ 𝜀   in 𝐿1[𝑎, 𝑏]. The polynomial 𝜋1 = 𝜋+ 𝜋0   will then have the 

desired properties. We show first that we can approximate 𝑛1 in 𝐿1[𝑎, 𝑏] by a polynomial 

𝑝(𝑡) = (𝑡 − 𝑎)𝑀+1𝑝1(𝑡) so that 𝑝(𝑣)(𝑎) = 0   for 𝑣 =  0,… ,𝑀. This can be done since the 

polynomials of the form 𝑞((𝑡 − 𝑎)𝑀+1) are uniformly dense in all (complex valued) 
continuous functions on [𝑎,𝑏] by the Stone-Weierstrass theorem (by approximating the real 

and imaginary parts separately) and hence the polynomials 𝑞0((𝑡 − 𝑎)
𝑀+1) without constant 

term are uniformly dense in all continuous functions on [𝑎, 𝑏] vanishing at 𝑎 . We now  

approximate 𝑛1 in 𝐿1[𝑎,𝑏] by a function 𝑓 continuous on [𝑎,𝑏]. This function 𝑓 is 𝐿1 limit 

of polynomials 𝑞0((𝑡 − 𝑎)
𝑀+1) without constant term: If 

𝑓𝑒(𝑡) = (
𝑓(𝑎 + 𝑒)

𝑒
)(𝑡 − 𝑎) 

on [𝑎, 𝑎 +  𝑒] and 𝑓𝑒 (𝑡) =  𝑓(𝑡) on [𝑎 +  𝑒, 𝑏] then 𝑓(𝑡) is 𝐿1 limit of 𝑓𝑒(𝑡) as 𝑒 → 0. But 
the continuous function 𝑓𝑒(𝑡) vanishes at 𝑎 and hence can be approximated uniformly by 

polynomials 𝑞0((𝑡 − 𝑎)
𝑀+1) without constant term so that 𝑓(𝑡) and hence 𝑛1 is 𝐿1 limit of 

such polynomials. Given 𝜀 , it is therefore possible to find a polynomial 𝑝(𝑡) such that 

𝑝(𝑣)(𝑎) =  0 for 𝑣 = 0,… ,𝑀 and such that 

‖𝑝 − 𝑛1‖1 ≤ 𝜀/2 

on 𝐿1[𝑎, 𝑏]. Consider now the function 𝑔(𝑡)  =  0  on [0,𝑎] and 𝑝(𝑡)  on [𝑎,𝑏] . Clearly 

‖𝑔 − 𝑛‖1 ≦ 𝜀/2 on 𝐿1[𝑎,𝑏] and 𝑔 ∈ 𝐶𝑀  on [0,𝑏]. We now approximate (𝑔,𝑔′ ,… , 𝑔(𝑀)) on 
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[0,𝑏] uniformly by a polynomial of form (11) and its derivatives: The Stone-Weierstrass 

Theorem implies the existence of a polynomial 𝜋2(𝑡) = ∑ 𝑎𝑖𝑡
𝑚𝑖𝑁′

𝑖=0  such that |𝜋2(𝑡)−

𝑔(𝑀) (𝑡)| ≤ 𝜀/2  for all 𝑡 ∈  [0,𝑏]. We now integrate 𝜋2  and 𝑔(𝑀)  𝑀 times from 0 to 𝑡  and 

obtain 𝜋(𝑡) = ∑ 𝑏𝑖 𝑡
𝑚𝑖+𝑀𝑁′

𝑖=0  and 𝑔(𝑡) respectively (observe that 𝑔(𝑣) = 0 for all 𝑣). Since 𝑡 
lies in [0,1] we get 

|𝜋(𝑣)(𝑡)− 𝑔(𝑀) (𝑡)| ≤ 𝜀/2 

for all 𝑡 ∈ [0,𝑏] and 𝑣 = 0,… ,𝑀.  

    We shall show that given a positive real number 𝜀 there exists a polynomial 𝜋(𝑡) of form 

(10) such that for the corresponding polynomial 𝑝∗(𝑓) 

 ‖𝑝∗(𝑓)−
𝑡𝑚−1

(𝑚 − 1)!
‖
1

≤ 𝜀                                                                 (14) 

on 𝐿1[0,1]. The polynomial 𝜋(𝑡) is obtained as the last of a sequence of 𝑘 polynomials of 

form (11)  (𝜋1(𝑡),… , 𝜋𝑘(𝑡) = 𝜋(𝑡)) whose construction is described below. Subdivide the 

interval [0,1]as follows: 𝐼𝑗 = [
𝑗−1

𝑘
,
𝑗

𝑘
] , 𝐽𝑗 = ⋃ 𝐼𝑠𝑠≦𝑗  (𝑗 = 1,… , 𝑘). Let the positive integer 𝑘1 

be chosen so that  𝑀 = 𝑘1𝑚−1 ≧ (𝑘 − 1)(𝑚+ 1) . We shall replace the inequality 
‖𝑓 − 𝑔‖1 ≦ 𝜂  in 𝐿1  of the interval 𝐼  by 𝑓 =  𝑔  in 𝐼 ; 𝜂  is a positive real number to be 
determined later. 

𝜋1(𝑡) = 𝑡
𝑚−1/(𝑚− 1)! 

𝜋𝑗(𝑡) =

{
  
 

  
 𝜋𝑗−1(𝑡)     𝑖𝑛  𝐽𝑗−1    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡     |𝜋𝑗

(𝑣) (𝑡)− 𝜋𝑗−1
(𝑣) (𝑡)| ≤ 𝜁 

   for 𝑡 ∈ 𝐽𝑗−1𝑎𝑛𝑑 𝑣 = 0,… ,𝑀

𝑡𝑚−1

(𝑚 − 1)!
− 𝑛 −∑𝑑𝑗−1,𝑖(𝑡)

∗𝑛∗,𝑖    

𝑗−1

𝑖=1

      𝑖𝑛 𝐼𝑗                   

for  𝑗 = 2,… , 𝑘  

 

In order to verify (14) we examine  𝑝𝑘
∗ (𝑓)−

𝑡𝑚−1

(𝑚−1)!
  in the various intervals 𝐼𝑗 : observe that 

since 𝑛 = 0 in 𝐼1, 𝑝𝑘
∗ (𝑓)= 𝜋𝑘(𝑡)+ ∑ 𝑎𝑗𝑛

∗,𝑖+1𝑗−2
𝑖=0 +∑ 𝑑𝑘𝑖(𝑡)

∗,𝑖𝑗−1
𝑖=1   in 𝐼𝑗 . Thus we obtain 

𝑝𝑘
∗ (𝑓)−

𝑡𝑚−1

(𝑚 − 1)!
= 𝜋𝑘(𝑡) − 𝜋𝑗(𝑡)+ 𝜋𝑗(𝑡)  +∑𝑎𝑖𝑛

∗,𝑖+1

𝑗−2

𝑖=0

+∑𝑑𝑘𝑖(𝑡)
∗𝑛∗,𝑖

𝑗−1

𝑖=1

−
𝑡𝑚−1

(𝑚 − 1)!
 

= 𝜋𝑘(𝑡)− 𝜋𝑗(𝑡)+
𝑡𝑚−1

(𝑚− 1)!
+ (𝑎0 − 1)𝑛+∑(𝑑𝑘𝑖(𝑡) − 𝑑𝑗−1,𝑖(𝑡))

∗

𝑛∗,𝑖

𝑗−2

𝑖=1

− 𝑡𝑚−1/(𝑚− 1)! 

 in 𝐼𝑗  where, for 𝑗 = 1, the term (𝑎0 − 1)𝑛  and the two sums are absent, and when 𝑗 = 2, the 

first sum is absent; 𝑗 ranges from 1 to 𝑘. We now make the following three estimates:  (i) Our 
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construction implies that for all 𝑡 ∈ 𝐼𝑗 , |𝜋𝑘(𝑡) − 𝜋𝑗(𝑡)| ≦ 𝑘𝜂. (ii) Since if we write 𝜋𝑘(𝑡) =

∑
𝑎𝑖𝑡

𝑚(𝑖+1)−1

(𝑚(𝑖+1)−1)!

𝑁
𝑖=0 , 𝑎𝑖 = 𝜋𝑘

(𝑚(𝑖+1)−1)(0)  our construction implies that |𝑎𝑖 −𝜋𝑘
(𝑚(𝑖+1)−1)(0)| ≤

𝑘𝜂, |𝑎0 − 1| ≤ 𝑘𝜂, |𝑎𝑖| ≤ 𝑘𝜁     𝑓𝑜𝑟 𝑖 = 2,… ,𝑘   (since by our choice of 𝑀 , 𝑘 − 2 ≦ 𝑀 .  

Hence if C is a constant such that ‖𝑛∗,𝑖‖
1
≤ 𝐶    𝑓𝑜𝑟  𝑖 = 1,… , 𝑘 − 1,‖(𝑎0 − 1)𝑛 +

∑ 𝑎𝑖𝑛
∗,𝑖+1𝑗−2

𝑖=1 ‖ ≤ 𝑘2𝐶𝜂. (iii) Before making an estimate of the sums involving terms of the 

type 𝑑𝑖(𝑡)
∗𝑛∗,𝑖 in 𝐼𝑗 , note that since 𝑛 = 0 in 𝐼1, this function uses only those values  of 𝑑𝑖(𝑡) 

which correspond to 𝑡 ∈ 𝐽𝑗−𝑖 . Thus in order to estimate the contribution of ∑ (𝑑𝑘𝑖(𝑡)−
𝑗−1
𝑖=1

𝑑𝑗−1,𝑖(𝑡))
∗

𝑛∗,𝑖  we proceed as follows: By (13) 

𝑑𝑘𝑖(𝑡) − 𝑑𝑗−1,𝑖(𝑡) =∑𝑞𝑟𝑖(𝑡)(𝜋𝑘
(𝑚𝑖+𝑟)(𝑡)− 𝜋𝑗−1

(𝑚𝑖 +𝑟)(𝑡))

𝑖

𝑟=0

 

for 𝑡 ∈ 𝐽𝑗−𝑖 where the polynomials 𝑞𝑟𝑖(𝑡) are independent of the polynomials 𝜋𝑘 and 𝜋𝑗−1 . 

Again referring to our construction, we see that |𝜋𝑘
(𝑟) (𝑡)− 𝜋𝑗−1

(𝑣) (𝑡)| ≤ 𝑘𝜂 for 𝑡 ∈ 𝐽𝑗−𝑖  (hence 

for 𝑡 ∈ 𝐽𝑗−𝑖since 𝑖 ≧ 1) and for 𝑣 = 𝑚,… , (𝑚 + 1)(𝑘− 1) ≦ 𝑀 by our choice of 𝑀. Hence, 

if  max
𝑟,𝑖,𝑡
|𝑞𝑟𝑖(𝑡)| = 𝑄,   ‖∑ (𝑑𝑘𝑖(𝑡) − 𝑑𝑗−1,𝑖(𝑡))

∗

𝑛∗,𝑖
𝑗−1
𝑖=1 ‖

1
≦ 𝑘3𝐶𝑄𝜂  in 𝐼𝑗  so that finally 

‖𝑝∗(𝑓)−
𝑡𝑚−1

(𝑚−1)!
‖
1
≤ (𝑘 + 𝑘2 + ℎ3𝐶+ 𝑘4𝐶𝑄)𝜂 ,in 𝐿1[0,1]  which after choosing 𝜂  

properly implies (14).  

Lemma(3.1.14):[53]   If 𝑁(𝑥, 𝑦) be defined for 0 ≦ 𝑥 ≤ 𝑦 ≦ 1 such that 𝑇𝑁  is a bounded 

linear transformation mapping 𝐿𝑝[0,𝑐] into itself and such that 𝑇𝑁  commutes with 𝑇𝐸
𝑚  for 

some positive integral 𝑚 then 𝑁(𝑥, 𝑦) = 𝑁(𝑦 −  𝑥).            

Proof:    Our hypotheses imply that 𝑇𝑁𝑇𝐸
𝑚𝑖 = 𝑇𝐸

𝑚𝑖𝑇𝑁  for all positive integral 𝑖 ; 

Lemma(3.1.10) therefore implies that 𝑇𝑁𝑇𝐷𝑎,ℎ = 𝑇𝐷𝑎,ℎ𝑇𝑁  for all relevant 𝑎  and ℎ ; we 

therefore have (
1

ℎ
)∫ 𝑁(𝑥, 𝑧)𝑑𝑧

𝑦−𝑎

𝑦−𝑎−ℎ
= (1/ℎ)∫ 𝑁(𝑧, 𝑦)𝑑𝑧

𝑦+𝑎+ℎ

𝑥+𝑎
. If we now restrict 

ourselves to the appropriate set of measure 2  in the triangle 0 ≦ 𝑥 ≤ 𝑦 ≦ 1 , both sides 

converge to 𝑁(𝑥, 𝑦 −  𝑎) and 𝑁(𝑥 +  𝑎,𝑦) respectively which proves the assertion of the 

lemma. 

Theorem(3.1.15):[53]   The following operators 𝑇𝐹  have the property that their only reducing 

manifolds are the subspaces 𝐿𝑝[0,𝑐] of 𝐿𝑝[0,1] for all 𝑐 ∈ [0,1]: 

(i) 𝐹(𝑥, 𝑦)  ∈  𝐶2   and 𝐹 is of order 1; 

(ii)  𝐹(𝑥, 𝑦) analytic in 𝑥  and 𝑦 in a suitable region and 𝐹 is of order 𝑚 where 𝑚 is a 

positive integer; 

(iii) 𝐹(𝑥, 𝑦) = 𝐹(𝑦 − 𝑥) = (𝑦− 𝑥)𝑚−1𝑘(𝑦 − 𝑥)+ 𝑛(𝑦− 𝑥) where 𝐹 is of order 𝑚, 𝑘 ∈
𝐶2 , 𝑛 ∈ 𝐿1[0,1] and 𝑛 = 0 in a neighborhood of 𝑥 = 𝑦. 

 Proof:     (i) and (ii): Theorem (3.1.5) and  Corollary(3.1.6)  imply that 𝑇𝐹  is similar to 𝑐𝑇𝐸
𝑚  

which, by Lemma(3.1.12), has as its only reducing manifolds the spaces 𝐿𝑝[0,𝑐], 𝑐 ∈  [0,1]. 
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The similarity of 𝑇𝐹  and 𝑐𝑇𝐸
𝑚  is implemented by a product of linear operators of the form 𝑆𝑟, 

𝑀ℎ  , and 𝐼 + 𝑇𝑀  (see Theorem(3.1.5)  and  Corollary(3.1.6)) which map the reducing 

subspaces of 𝑇𝐹  and 𝑐𝑇𝐸
𝑚  onto each other in a 1− 1  order preserving manner. (iii): The 

Corollary(3.1.6) implies that  𝑇𝐹 = 𝑇(𝑦−𝑥)𝑚−1𝑘 +𝑇𝑛   is similar to 𝑐𝑇𝐸
𝑚 +𝑇𝑛1 . Since 𝑇𝑛  

commutes with 𝑇(𝑦−𝑥)𝑚−1𝑘,𝑇𝑛1   commutes with 𝑐𝑇𝐸
𝑚. A simple computation which relates 𝑛 

and 𝑛1  shows that the hypotheses concerning 𝑛 imply that 𝑇𝑛1  satisfies the hypotheses of  

Lemma(3.1.14). We can therefore conclude that 𝑛1(𝑥,𝑦) =  𝑛1(𝑦 −  𝑥). The computation 

relating 𝑛 and 𝑛1  also shows that the remaining hypothesis of part (iii) of the theorem is 

satisfied: 𝑛1 = 0 in a neighborhood of 𝑦 = 𝑥. We now apply Lemma(3.1.12) and conclude 

as in the end of the proof of (i) and (ii) that the only reducing manifolds of 𝑇𝐹  are indeed the 

spaces  𝐿𝑝[0,𝑐], 𝑐 ∈  [0,1]. 

Theorem(3.1.16):[53]      Let 𝑇𝐹1  and 𝑇𝐹2  be two continuous linear operators of 𝐿2[0,1] into 

itself whose only reducing manifolds are the spaces 𝐿2[0,𝑐] , 𝑐 ∈ [0,1]  (e.g., like the 

operators described in Theorem(3.1.13)). Then if 𝑇𝐹1 , is unitarily equivalent to 𝑇𝐹2 = 𝑈𝑇𝐹1𝑈
∗, 

there exists (i) a measurable function ℎ(𝑥) defined on the interval [0,1] such that |ℎ(𝑥) | ≡

1, (ii) a function𝑟(𝑡); such that 𝑈 = 𝑀ℎ𝑈𝑟
∗ and 𝐹2(𝑥,𝑦) = ℎ(𝑥)(ℎ(𝑦))

−1
(𝑠′(𝑥)𝑠′(𝑦))

1

2 

𝐹1(𝑠(𝑥),𝑠(𝑦))  Suppose that conversely this equation is satisfied for some functions ℎ and 

𝑟 satisfying (i) and (ii), then if we set 𝑈 = 𝑀ℎ𝑈𝑟
∗, 𝑇𝐹2 = 𝑈𝑇𝐹1𝑈

∗, i.e., 𝑇𝐹1  and 𝑇𝐹2  are unitarily 

equivalent. 

Proof:    Suppose that 𝑇𝐹2 = 𝑈𝑇𝐹1𝑈
∗; since the operators 𝑇𝐹𝑖  are supposed to have the same 

reducing manifolds, there exists a monotone increasing function 𝑟 such that 𝑟(0) = 0 and 

𝑟(1) = 1 and such that 𝐸𝑟(𝑡) = 𝑈𝐸𝑡𝑈
∗  where 𝐸𝑡 is the projection on 𝐿2[0, 𝑡]. We now show 

that 𝑟 is univalent and absolutely continuous: Let us consider (𝐸𝑟(𝑡)𝑓, 𝑔) = (𝑈𝐸𝑡𝑈
∗𝑓, 𝑔) =

(𝐸𝑡𝑓1 , 𝑔1) or   

∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥

𝑟(𝑡)

0

= ∫𝑓1(𝑥)𝑔1(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥

𝑡

0

 

 If we set 𝑓 = 𝑔 = 𝐼 we see that (𝑡) = ∫ 𝑓1(𝑥)𝑔1(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥
𝑡

0
 : 𝑟 is absolutely continuous, and if 

we set 𝑓1 = 𝑔1 = 1 we see that 𝑡 = ∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥
𝑟(𝑡)

0
: 𝑟 is univalent. A simple calculation 

shows that 𝑈𝑟
∗𝐸𝑡𝑈𝑟 = 𝐸𝑟(𝑡) ; but  𝐸𝑟(𝑡) = 𝑈𝐸𝑡𝑈

∗  so that 𝑈𝑟𝑈  commutes with all 𝐸𝑡  . A 

standard theorem of spectral theory  [59] shows that 𝑈𝑟𝑈 = 𝑀𝑘  for a measurable function 

𝑘(𝑥) which, since 𝑈𝑟𝑈 is unitary, has the property that |𝑘(𝑥)| ≡ 1. Thus 𝑈 = 𝑈𝑟
∗𝑀𝑘 and if 

we set ℎ(𝑥) = 𝑘(𝑠(𝑥)) a simple calculation shows that then 𝑈 = 𝑀ℎ𝑈𝑟
∗  as desired. The 

equation relating 𝐹1(𝑥,𝑦) and 𝐹2(𝑥, 𝑦) follows. 

Theorem(3.1.17):[53]    Let 𝑇𝐹  be a bounded linear operator mapping 𝐿2[0,1] into itself such 

that 𝐹(𝑥, 𝑦) = (𝑦− 𝑥)𝑚−1𝐺(𝑥,𝑦) where 𝐺 ∈ 𝐶1  in a neighborhood of 𝑦 = 𝑥, 𝐺(𝑥, 𝑥) is real 

and different from 0 and further such that the only reducing manifolds of 𝑇𝐹  are the spaces 
𝐿2[0,𝑐], 𝑐 ∈ [0,1] (e.g., like the operators described in Theorem(3.1.15)). Then 𝑇𝐹  is 

unitarily equivalent to a unique operator  𝑇𝐹1 = 𝑈𝑇𝐹𝑈
∗ where 
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𝐹1(𝑥, 𝑦) = (𝑦− 𝑥)
𝑚−1𝐺1(𝑥, 𝑦) 

  𝐺1(𝑥,𝑥) = 𝑐     (𝑐 real and different from 0)                                     (15) 

𝐼𝑚(𝐺1𝑥(𝑥,𝑥)) = 𝐼𝑚 (𝐺1𝑦(𝑥, 𝑥)) = 0   

The constant 𝑐 in (15) is the same as in Lemma(3.1.3):𝑐 = 𝑠𝑖𝑔𝑛 𝐺(𝑥, 𝑥)(∫ |𝐺(𝑢, 𝑢)|
1

𝑚𝑑𝑢
1

0
)
𝑚

 

This is achieved by setting 𝑈 = 𝑀ℎ𝑈𝑟
∗ where  𝑟(𝑡) = ∫ (

𝐺(𝑢 ,𝑢)

𝑐
)
1/𝑚𝑡

0
 and where the function  

ℎ is determined as follows: 𝐹0(𝑥,𝑦) = (𝑦 − 𝑥)
𝑚−1𝐺0(𝑥, 𝑦)  by  𝑇𝐹0 = 𝑈𝑟

∗𝑇𝐹𝑈
∗  and we write 

𝐺0(𝑥, 𝑦) = 𝐻0(𝑥, 𝑦) + 𝑖𝐾0(𝑥,𝑦)  for real 𝐻0and 𝐾0. Then   

ℎ(𝑥) = exp((−𝑖/𝑐)∫𝐾0𝑥(𝑢, 𝑢)𝑑𝑢

𝑥

0

). 

Section (3.2):   Invariant Subspace of the Backward Shift    

     Let 𝑆 denote the unilateral shift operator on the Hardy space 𝐻2 of the unit disk, 𝐷𝑜 A 

subspace 𝑀 of 𝐻2 will be called nearly invariant under 𝑆∗ if it is 𝑆∗-invariant modulo the 
one-dimensional subspace of constant functions, that is, if 𝑆∗ℎ is in 𝑀 whenever ℎ is and 

ℎ(0) = 0. These subspaces arose in the work and were characterized by 𝐷. Hitt [61] (who 

called them weakly invariant rather than nearly invariant). 

To describe Hitt's result we note that, if the subspace 𝑀 is nearly 𝑆∗-invariant and nontrivial, 

then 𝑀 cannot be contained in 𝐻0
2, so that 𝑀∩𝐻0

2 has unit codimension in 𝑀. There exists 

therefore a unique function 𝑔 in 𝑀 that is orthogonal to 𝑀 ∩𝐻0
2 , has unit norm, and is 

positive at the origin. Hitt's theorem then states that if ℎ is any function in 𝑀, the quotient 

ℎ/𝑔 is in 𝐻2 and has the same norm as does ℎ; moreover, the subspace 𝑀′ consisting of all 

such quotients is 𝑆∗ -invariant. Thus, the Toeplitz operator 𝑇𝑔  , the operator on 𝐻2  of 

multiplication by 𝑔, maps the 𝑆∗-invariant subspace 𝑀′ isometrically onto the given nearly 

𝑆∗-invariant subspace 𝑀. From the famous theorem of 𝐴. Beurling and subsequent work of 
many others, one has a good picture of the structure of the 𝑆∗-invariant subspaces. Hitt's 

theorem thus refocuses that picture so as to provide a picture of the nearly 𝑆∗-invariant 

subspaces.  Given a function 𝑔 of unit norm in 𝐻2, what are the 𝑆∗-invariant subspaces 𝑀′ 
that can arise along with 𝑔 in Hitt's theorem? [62,63,64]. 

   Nearly 𝑆∗-invariant subspaces arise, in particular, as the kernels of Toeplitz operators, and 
this special case of Hitt's theorem was independently discovered, and established through 

different methods, by E. Hayashi [65].  

    We shall have to deal below with certain unbounded Toeplitz operators. If 𝑥 is any function 

in 𝐿2  of the unit circle, then by 𝑇𝑥  we shall understand the operator on 𝐻2  that sends the 

function ℎ to the function 
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(𝑇𝑥ℎ)(𝑧) =
1

2𝜋
∫
𝑥(𝑒𝑖𝜃)ℎ(𝑒𝑖𝜃)

1 − 𝑧𝑒−𝑖𝜃
𝑑𝜃

𝜋

−𝜋

         (|𝑧| < 1); 

in other words, 𝑇𝑥ℎ is the standard Fourier projection of the 𝐿1 function 𝑥ℎ. The preceding 

definition clearly reduces to the usual one when 𝑥 is bounded. The range of 𝑇𝑥  is just a certain 

space of holomorphic functions in 𝐷; it is contained in 𝐻𝑃 for 𝑝 < 1. To follow 𝑇𝑥  by an 
analytic Toeplitz operator, with a bounded symbol, say. Such products will arise below, and 

the ones of interest turn out to be bounded operators on 𝐻2. 

   If 𝐵 is a bounded operator acting in 𝐻2 then, following 𝐿. de Branges, we define ℳ(𝐵) to 

be the space 𝐵𝐻2 with the Hilbert space structure that makes 𝐵 into a coisometry of 𝐻2 onto 

ℳ(𝐵). Thus, for example, if the function ℎ in 𝐻2 is orthogonal to ker𝐵, then the norm of 

𝐵ℎ in ℳ(𝐵) equals ‖ℎ‖2 the norm of ℎ in 𝐻2. The space ℳ(𝐵) does not determine 𝐵, but 
a simple argument shows that two such spaces, say ℳ(𝐵) and ℳ(𝐵1) are identical as Hilbert 

spaces if and only if 𝐵𝐵∗ = 𝐵1𝐵1
∗ . If 𝐵 is a contraction operator then ℋ(𝐵), the so-called 

complementary space of ℳ(𝐵), is defined to be ℳ((1− 𝐵𝐵∗)
1

2). 

Here is the case 𝐵 = 𝑇𝑏,  where 𝑏 is a function in the unit ball of 𝐻∞. The corresponding 

spaces ℳ(𝑇𝑏) and ℋ(𝑇𝑏) will be denoted by ℳ(𝑏) and ℋ(𝑏). The norm in ℋ(𝑏)  will be 

denoted by ‖ ‖𝑏. 

   The kernel function in 𝐻2  for the point 𝑤  of 𝐷  will be denoted by 𝑘𝑤  (𝑘𝑤(𝑧) =
(1− �̅�𝑧)−1). A simple argument [62,63] shows that the kernel function in ℋ(𝑏) for the point 

𝑤 is the  function 𝑘𝑤
𝑏 = (1− 𝑏(𝑤)̅̅ ̅̅ ̅̅̅𝑏)𝑘𝑤. 

   The space ℋ(𝑏) is invariant under 𝑆∗  and 𝑆∗  acts as a contraction in it [62,63]. The 

restriction operator 𝑆∗|ℋ(𝑏) will be denoted by 𝑥𝑏 . 

   Two special cases. The first is where 𝑏 is an inner function. Then ℳ(𝑏) is just the S-

invariant subspace 𝐻2   , and ℋ(𝑏) is its ordinary orthogonal complement, an 𝑆∗-invariant 
subspace. The other is where 𝑏 is not an extreme point of the unit ball of 𝐻∞. In that case, as 

was proved in [63], the kernel functions 𝑘𝑤  belong to ℋ(𝑏) and, as was proved in [64], 

actually span ℋ(𝑏). 

   Let g be a function of unit norm in 𝐻2, and let 𝑓 be the outer factor of 𝑔, normalized (for 

definiteness) by the condition 𝑓(0) > 0. Let 𝐹 be the Herglotz integral of |𝑓|2: 

𝐹(𝑧) =
1

2𝜋
∫
𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
|𝑓(𝑒𝑖𝜃)|

2
𝑑𝜃

𝜋

−𝜋

                (|𝑧| < 1). 

We note that  𝐹(0) = 1  and define the functions 𝑏 and 𝑎 by 

𝑏 =
𝐹 − 1

𝐹 + 1
,       𝑎 =

2𝑓

𝐹 + 1
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Then 𝑏(0) = 0 and, as the function 𝐹 has a positive real part, the function 𝑏 is in the unit ball 

of 𝐻∞. The function 𝑎 is an outer function, being the quotient of two outer functions, and 

almost everywhere on 𝜕𝐷 we have 

|𝑎|2 + |𝑏|2 =
4|𝑓|2 + |𝐹 − 1|2

|𝐹 + 1|2
=
4 𝑅𝑒 𝐹 + |𝐹 − 1|2

|𝐹 + 1|2
= 1 

Thus 𝑎  is also in the unit ball of  𝐻∞, and because 1 − |𝑏|2 = |𝑎|2   on 𝜕𝐷,we see that 

log(1− |𝑏|2) is integrable, so that 𝑏 is  not an extreme point of the unite ball of 𝐻∞. 

Lemma(3.2.1):[60]      For 𝑧 and 𝑤 in 𝐷, 

〈𝑓𝑘𝑤 , 𝑓𝑘𝑧 〉 = (1− 𝑏(𝑧))
−1
(1− 𝑏(𝑤)̅̅ ̅̅ ̅̅̅ )

−1
𝑘𝑤
𝑏 (𝑧) 

Proof:   The inner product on the left side equals 

1

2𝜋
∫

|𝑓(𝑒𝑖𝜃)|
2

(1− �̅�𝑒𝑖𝜃  )(1− 𝑧𝑒−𝑖𝜃)
𝑑𝜃

𝜋

−𝜋

 

which can be rewritten as 

 
1

2𝜋(1− �̅�𝑧)
∫
1

2
[
𝑒−𝑖𝜃 + �̅�

𝑒−𝑖𝜃 − �̅�
+
𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
]

𝜋

−𝜋

|𝑓(𝑒𝑖𝜃)|
2
𝑑𝜃 

in other words, as 

𝐹(𝑧) + 𝐹(𝑤)̅̅ ̅̅ ̅̅ ̅

2(1− �̅�𝑧)
 

an expression that is easily reduced to the right side. 

Lemma(3.2.2):[60]      The operator 𝑇1−𝑏𝑇𝑓̅ is bounded and is in fact an isometry of 𝐻2 onto 

ℋ(𝑏). Hence, the operator 𝑇1−𝑏𝑇𝑔  is a coisometry of 𝐻2 onto ℋ(𝑏); its null space equals 

ℋ(𝑣), where 𝑣 is the inner factor of 𝑔. 

Corollary(3.2.3):[60]   (𝑇1−𝑏𝑇𝑔)(𝑇1−𝑏𝑇𝑔)
∗
= 1− 𝑇𝑏𝑇�̅� . 

Proof:  The adjoint referred to here is the adjoint of  𝑇1−𝑏𝑇𝑔 as an operator of 𝐻2 into itself. 

The equality follows from the identity of the two spaces ℳ(𝑇1−𝑏𝑇𝑔) and ℳ((1− 𝑇𝑏𝑇�̅�)
1

2), 

as explained. We note here the equality  (1− 𝑇𝑏𝑇�̅�)
∗ = 𝑇𝑔𝑇1−�̅�,  which is valid even when 

𝑔 is unbounded, as a simple argument shows. 

Lemma(3.2.4):[60]      𝑇1−𝑏𝑇𝑔𝑆
∗𝑔 = 𝑆∗𝑏 
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Proof:  In fact, we have seen in the proof of Lemma(3.2.2) that 𝑇1−𝑏𝑇𝑓̅ maps 𝑓 to the constant 

function 1 (i.e., the function (1− 𝑏(0)̅̅ ̅̅ ̅̅  )
−1
𝑘0
𝑏); hence also 𝑇1−𝑏𝑇𝑔𝑔 = 1. Thus, because 𝑇𝑔 

and 𝑆∗ commute, 

𝑇1−𝑏𝑇𝑔𝑆
∗𝑔 = 𝑇1−𝑏𝑆

∗𝑇𝑔𝑔 = 𝑆
∗𝑇1−𝑏𝑇𝑔𝑔 + (𝑆

∗𝑇𝑏−1 −𝑇𝑏−1𝑆
∗)𝑇𝑔𝑔 

                        = (𝑆∗𝑇𝑏−1 −𝑇𝑏−1𝑆
∗)𝑇𝑔𝑔 

As  𝑆∗𝑇𝑏−1 −𝑇𝑏−1𝑆
∗    equals the rank-one operator 𝑆∗𝑏⨂1 , one easily verifies that 

(𝑆∗𝑇𝑏−1 −𝑇𝑏−1𝑆
∗)𝑇𝑔  is the bounded operator 𝑆∗𝑏⨂𝑔, and the desired equality follows. 

Lemma(3.2.5):[60]    The operator 𝑇1−𝑏𝑇𝑔  intertwines the operator 𝑅𝑔  with the operator  

𝑋𝑏: 𝑇1−𝑏𝑇𝑔𝑅𝑔 = 𝑋𝑏𝑇1−𝑏𝑇𝑔. 

Proof:     Letting  𝑣, as before, denote the inner factor of 𝑔, we note that 𝑇𝑔  annihilates the 

subspace ℋ(𝑣). So does 𝑔⨂𝑔 so that 𝑅𝑔  coincides with 𝑆∗ in ℋ(𝑣), implying that ℋ(𝑣) is 

𝑅𝑔-invariant. The desired equality thus holds in ℋ(𝑣), and it only remains to show that it 

holds in ℳ(𝑣). For that it will suffice to show that it holds for the functions 𝑣𝑘𝑤  with 𝑤 in 

𝐷. We have 

𝑅𝑔𝑣𝑘𝑤 = 𝑆
∗𝑣𝑘𝑤 − 〈𝑣𝑘𝑤 , 𝑔〉𝑆

∗𝑔 = �̅�𝑣𝑘𝑤 + 𝑆
∗𝑣 − 𝑓(𝑤)̅̅ ̅̅ ̅̅ ̅𝑆∗𝑔. 

As 𝑇𝑔 annihilates 𝑆∗𝑣 we obtain, using Lemma(3.2.4),  

𝑇1−𝑏𝑇𝑔𝑅𝑔𝑣𝑘𝑤 = �̅�𝑇1−𝑏𝑇𝑔𝑣𝑘𝑤 − 𝑓(𝑤)̅̅ ̅̅ ̅̅ ̅𝑇1−𝑏𝑇𝑔𝑆
∗𝑔 = �̅�𝑇1−𝑏𝑇𝑓̅𝑘𝑤 − 𝑓(𝑤)̅̅ ̅̅ ̅̅ ̅𝑆∗𝑔 

                = �̅�𝑓(𝑤)̅̅ ̅̅ ̅̅ ̅(1 − 𝑏)𝑘𝑤 − 𝑓(𝑤)̅̅ ̅̅ ̅̅ ̅𝑆∗𝑔 = 𝑓(𝑤)̅̅ ̅̅ ̅̅ ̅𝑆∗((1− 𝑏)𝑘𝑤) 

 = 𝑆∗𝑇1−𝑏𝑇𝑓̅𝑘𝑤 = 𝑋𝑏𝑇1−𝑏𝑇𝑔𝑣𝑘𝑤;                            

as desired. 

Lemma(3.2.6):[60]        𝑅𝑔
𝑛 → 0  strongly as 𝑛 →∞.  

 Proof:   We note first that 𝑋𝑔
𝑛 → 0  strongly as 𝑛 → ∞. In fact, for 𝑤 in 𝐷 we have 𝑋𝑏𝑘𝑤 =

�̅�𝑘𝑤 , implying that 𝑋𝑏
𝑛𝑘𝑤 → 0  as 𝑛 → ∞. Because, as was mentioned, the functions 𝑘𝑤 

span ℋ(𝑏), the desired conclusion follows. 

    We continue to let 𝑣 denote the inner factor of 𝑔. Let ℎ be any function in 𝐻2, and fix a 

positive number 𝜖. There is a positive integer 𝑚 such that ‖𝑋𝑏
𝑚𝑇1−𝑏𝑇𝑔ℎ‖𝑏

< 𝜖. Let ℎ0 and 

ℎ1 be the components of 𝑅𝑔
𝑚ℎ  inℋ(𝑣) and ℳ(𝑣) , respectively. By Lemmas (3.2.1) and 

(3.2.5), ‖ℎ1‖2 = ‖𝑋𝑏
𝑚𝑇1−𝑏𝑇𝑔ℎ‖𝑏

< 𝜖. Since 𝑅𝑔  coincides with 𝑆∗  in ℋ(𝑣) we obtain, for 

any positive integer 𝑛, 

‖𝑅𝑔
𝑚+𝑛ℎ‖

2
≦ ‖𝑅𝑔

𝑛ℎ0‖2
+ ‖𝑅𝑔

𝑛ℎ1‖2
≦ ‖𝑆∗𝑛ℎ0‖2+ ‖𝑅𝑔

𝑛‖‖ℎ1‖2 < ‖𝑆
∗𝑛ℎ0‖2+ 𝜖 

As 𝑆∗𝑛 → 0 strongly we conclude that lim
 
max
 
‖𝑅𝑔

𝑛ℎ‖
2
< 𝜖, and as 𝜖 is arbitrary. 
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Theorem(3.2.7):(Hitt’s theorem)[60]   Let 𝑀 be a nontrivial nearly invariant subspace of 

𝑆∗, and let 𝑔 be the function of unit norm in 𝑀 that is orthogonal to 𝐻 ∩𝐻0
2 and positive at 

the origin. Then 𝑀 = 𝑇𝑔𝑀
′  , where 𝑀′  is an 𝑆∗  -invariant subspace on. which 𝑇𝑔  acts 

isometrically. 

Proof:. Let ℎ be any function in 𝑀, and let 𝑐0 = 〈ℎ,𝑔〉. Then 𝑅𝑔ℎ = 𝑆
∗(ℎ− 𝑐0𝑔), which 

implies that 

ℎ = 𝑐0𝑔+ 𝑆𝑅𝑔ℎ, 

because ℎ − 𝑐0𝑔  vanishes at the origin. The function 𝑆𝑅𝑔ℎ is thus in 𝑀, and as it is also in 

𝐻0
2 it is orthogonal to 𝑔, implying that  

‖ℎ‖2
2 = |𝑐0|

2‖𝑔‖2
2 + ‖𝑆𝑅𝑔ℎ‖2

2
= |𝑐0|

2+ ‖𝑅𝑔ℎ‖2
2
 

Similarly, for any positive integer 𝑛, 

𝑅𝑔
𝑛ℎ = 𝑐𝑛𝑔+ 𝑆𝑅𝑔

𝑛+1ℎ 

where 𝑐𝑛 = 〈𝑅𝑔
𝑛ℎ, 𝑔〉 , and 

‖𝑅𝑔
𝑛ℎ‖

2

2
= |𝑐𝑛|

2 + ‖𝑅𝑔
𝑛+1ℎ‖

2

2
 

 

We can thus iterate to obtain 

ℎ = (𝑐0 + 𝑐1𝑆 +⋯+ 𝑐𝑛𝑆
𝑛)𝑔 + 𝑆𝑛+1𝑅𝑔

𝑛+1ℎ 

for any positive integer 𝑛, with 

‖ℎ‖2
2 = |𝑐0|

2 + |𝑐1|
2 +⋯+ |𝑐𝑛|

2 + ‖𝑅𝑔
𝑛+1ℎ‖

2

2
  

Departing now from Hitt's line of reasoning, we let 𝑛 → ∞  and use Lemma(3.2.6); our 

conclusion is that ℎ has the factorization 𝑔𝑞 where the 𝐻2 function   𝑞(𝑧) = ∑ 𝑐𝑛𝑧
𝑛∞

0    has 

the same norm as does ℎ. We have thus shown that  𝑀′ = {
ℎ

𝑔
: ℎ ∈ 𝑀} is a subspace of 𝐻2 

and that 𝑇𝑔   maps 𝑀′ isometrically onto 𝑀. Moreover, with ℎ, 𝑐0 and 𝑞 as above, we have 

𝑐0 = 𝑞(0), and accordingly, 

𝑅𝑔ℎ = 𝑆
∗(𝑔𝑞)− 𝑞(0)𝑆∗𝑔 = 𝑔𝑆∗𝑞 + 𝑞(0)𝑆∗𝑔− 𝑞(0)𝑆∗𝑔 = 𝑔𝑆∗𝑞 

showing that 𝑀′ is 𝑆∗-invariant. 

Theorem(3.2.8):[60]      Let 𝑔 be a function of unit norm in 𝐻2 and let 𝑏 be as defined. Let 

𝑢 be an inner function with 𝑢(0) = 0. The following conditions are equivalent: 

(i)  𝑇𝑔  acts isometrically on ℋ(𝑢) 

(ii)   𝑢 divides 𝑏 
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(iii) ℋ(𝑢) is contained isometrically in ℋ(𝑏). 

Proof:    (ii) → (i). Assume 𝑢 divides 𝑏, and let ℎ be any function in ℋ(𝑢). Then 𝑇�̅�ℎ = 0, 

so, by the Corollary (3.2.3) 

‖𝑇𝑔ℎ‖2
2
= ‖𝑇𝑔𝑇1−�̅�ℎ‖2

2
= 〈(𝑇1−𝑏𝑇�̅�)(𝑇1−𝑏𝑇�̅�)

∗ℎ, ℎ〉 

   = 〈(1− 𝑇𝑏𝑇�̅�)ℎ,ℎ〉 = 〈ℎ,ℎ〉 = ‖ℎ‖2
2 

as desired. 

(i)→(ii). Assume 𝑇𝑔  acts isometrically on ℋ(𝑢), and let ℎ be any function in ℋ(𝑢). Because 

ℋ(𝑢) is invariant under 𝑇�̅� we obtain, using Lemma(3.2.2) and its corollary(3.2.3), 

‖𝑇1−�̅�ℎ‖2 = ‖𝑇𝑔𝑇1−�̅�ℎ‖2
= ‖𝑇1−𝑏𝑇𝑔𝑇𝑔𝑇1−�̅�ℎ‖𝑏

 

                              = ‖(1− 𝑇𝑏𝑇�̅�)ℎ‖𝑏 = ‖(1− 𝑇𝑏𝑇�̅�)
(1/2) ℎ‖

2
 

in other words, 

〈𝑇1−𝑏𝑇1−�̅�ℎ, ℎ〉 = 〈(1− 𝑇𝑏𝑇�̅�)ℎ,ℎ〉 

which can be rewritten 

2‖𝑇�̅�ℎ‖2
2 = 〈ℎ,𝑇�̅�ℎ〉+ 〈𝑇�̅�ℎ, ℎ〉 

Since 𝑢(0) = 0 the space ℋ(𝑢) contains the constant functions, and since 𝑏(0) = 0   the 
operator 𝑇�̅� annihilates the constant functions. We can therefore replace ℎ in the last equality 

by ℎ + 𝑐, where 𝑐 is any constant, obtaining 

2‖𝑇�̅�ℎ‖2
2 = 2𝑅𝑒𝑐̅(𝑇�̅�ℎ)(0)+ 〈ℎ,𝑇�̅�ℎ〉+ 〈𝑇�̅�ℎ, ℎ〉 

This cannot possibly be true for all constants 𝑐 unless (𝑇�̅�ℎ)(0) = 0. But the last equality for 

all ℎ  in ℋ(𝑢)  implies 𝑇�̅�ℎ = 0  for all ℎ  in ℋ(𝑢) (since ℋ(𝑢)  is 𝑆∗ -invariant). Thus 𝑇�̅� 

annihilates ℋ(𝑢), which implies that 𝑢 divides 𝑏. 

(ii) →  (iii). If 𝑢  divides 𝑏  and ℎ  is in ℋ(𝑢) , then 𝑇�̅�ℎ = 0 , which implies that (1 −
𝑇𝑏𝑇�̅�)

(1/2) ℎ = ℎ and hence that ℎ is in ℋ(𝑏) with 

‖ℎ‖𝑏 = ‖(1− 𝑇𝑏𝑇�̅�)
(
1
2
)
 ℎ‖

𝑏
= ‖ℎ‖2  

(iii) →  (ii)  If  ℋ(𝑢)  is contained isometrically in ℋ(𝑏)  and ℎ  is in ℋ(𝑢) , then ℎ =

(1− 𝑇𝑏𝑇�̅�)
(1/2)  ℎ1 for some ℎ1 in 𝐻2, and 

‖ℎ1‖2 = ‖ℎ‖𝑏 = ‖ℎ‖2 = ‖(1− 𝑇𝑏𝑇�̅�)
(
1
2
)
 ℎ1‖

2
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The last equality implies  (1 − 𝑇𝑏𝑇�̅�)
(
1

2
)
 ℎ1 = ℎ1  (since (1− 𝑇𝑏𝑇�̅�)

(
1

2
)
  is a positive 

contraction), which means that ℎ1 = ℎ and so (1− 𝑇𝑏𝑇�̅�)ℎ = ℎ, in other words, 𝑇�̅�ℎ = 0. 

That means 𝑇�̅� annihilates .ℋ(𝑢) , so that 𝑢 divides 𝑏. 

   The hypothesis 𝑢(0) = 0 in Theorem(3.2.8) was used only for the implication (i) →(ii), and 

that implication can fail in its absence. For example, suppose 𝑢 is the Blaschke factor (𝑧 −
𝑤)/(1− �̅�𝑧), where 𝑤 is in 𝐷 and 𝑤 ≠ 0. Then ℋ(𝑢) is spanned by the kernel function 𝑘𝑤. 
One easily checks that ‖𝑔𝑘𝑤‖2 = ‖𝑘𝑤‖2  if and only if 𝑅𝑒 𝐹(𝑤) = 1  (where 𝐹  is as 

defined), but that 𝑢 divides 𝑏 if and only if  𝐹(𝑤)  =  1. 

   In [64] it is shown that, for 𝑏 as in Theorem(3.2.8), the proper invariant subspaces of the 

operator 𝑋𝑏 are the subspaces ℋ(𝑢)⋂ℋ(𝑏). with u an inner function. As the operator 𝑇1−𝑏𝑇𝑓̅ 

(where 𝑓 is the outer factor of 𝑔) implements a unitary equivalence between the operators 𝑅𝑓 

and 𝑋𝑏 , the proper invariant subspaces of 𝑅𝑓  are the inverse images under 𝑇1−𝑏𝑇𝑓̅  of the 

subspaces ℋ(𝑢)⋂ℋ(𝑏) .  In case 𝑢  divides 𝑏 , Theorem(3.2.8) says that ℋ(𝑢)  sits 
isometrically in ℋ(𝑏) and so is by itself an invariant subspace of 𝑋𝑏 . Then, as one would 

expect, the inverse image of ℋ(𝑢)  under 𝑇1−𝑏𝑇𝑓̅ is just the nearly 𝑆∗-invariant subspace 

𝑇𝑓ℋ(𝑢)  of Hitt. In fact, denoting 𝑇𝑓ℋ(𝑢)  by 𝑀  and using the corollary(3.2.3) to 

Lemma(3.3.2) plus the inclusion .  ℋ(𝑢) ⊂ ker𝑇�̅� ) ,we obtain 𝑇1−𝑏𝑇𝑓̅𝑀 =

𝑇1−𝑏𝑇𝑓̅𝑇𝑓𝑇1−�̅�ℋ(𝑢) = (1− 𝑇𝑏𝑇�̅�)ℋ(𝑢) = ℋ(𝑢).We see from this that 𝑇1−𝑏𝑇𝑓̅ agrees on 

𝑀 with 𝑇1/𝑓 . 

   Suppose 𝑋  is a function in 𝐿∞  , not identically zero, such that the operator 𝑇𝑋  has a 

nontrivial kernel. Then ker 𝑇𝑋  is a nontrivial nearly 𝑆∗-invariant subspace so, according to 

Theorem(3.2.7), it equals 𝑇𝑔𝑀
′ , where 𝑔  has unit norm in 𝐻2  and 𝑀′  is an 𝑆∗ -invariant 

subspace, containing the constant functions, on which 𝑇𝑔  acts isometrically. Since ker 𝑇𝑋   

clearly contains the outer factor of each of its members, the function 𝑔 must be an outer 

function. The case 𝑀′ = 𝐻2 is thus excluded by the assumption that 𝑋 is not identically 0, 
implying that 𝑀′ =ℋ(𝑢) for an inner function 𝑢 that vanishes at the origin; thus ker 𝑇𝑋 =
𝑇𝑔ℋ(𝑢). As noted, the preceding description of the kernel of a Toeplitz operator is due to E. 

Hayashi [65], who used different methods (deriving from prediction theory). Hayashi in fact 

proved more, namely, he showed that 𝑔2 is an exposed point of the unit ball of 𝐻1 [66]. His 
argument could be incorporated without alterations into the present treatment of his result.  

   Because the function 𝑋  multiplies a nonzero function in 𝐻2  into �̅�0
2  it must be log-

integrable, so it can be written as �̅�1𝑦, where 𝑦 is unimodular and 𝑋1 is the outer function 

with modulus |𝑋|. Then 𝑇𝑋 = 𝑇�̅�1𝑇𝑦 and as 𝑇𝑋  has a trivial kernel, the kernel of 𝑇𝑦  coincides 

with that of 𝑇𝑋 . In fact, 𝑦 = 𝑢𝑔̅̅̅̅ /𝑔. This equality from [65,66] can be established as follows.  

Because the function 𝑔 is in ker 𝑇𝑦 ,  the product 𝑦𝑔 is in �̅�0
2 so (since 𝑔 is outer) it can be 

written as �̅�1�̅� where 𝑢1 is an inner function that vanishes at the origin. Thus 𝑦 = �̅�1�̅�/𝑔. 

Suppose ℎ is any  function in ℋ(𝑢). Then 𝑔ℎ is in ker 𝑇𝑦  implying that �̅�1�̅�ℎ is in �̅�0
2. Since 

𝑔 is outer it follows that �̅�1ℎ  is in �̅�0
2 which shows that 𝑇𝑢1 annihilates ℋ(𝑢) and hence that 

𝑢  divides 𝑢1 . Suppose, on the other hand, that ℎ is a bounded function in ℋ(𝑢1). Then 

𝑦𝑔ℎ = 𝑔𝑢1̅̅ ̅̅ ̅ℎ, a function in �̅�0
2 implying that 𝑔ℎ is in ker 𝑇𝑦 , that is, in 𝑇𝑔ℋ(𝑢), and hence ℎ 

is in ℋ(𝑢). As ℋ(𝑢1) is spanned by its bounded functions (for example, by its kernel 
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functions), we can conclude that ℋ(𝑢1) ⊂ ℋ(𝑢),  so that 𝑢1 divides 𝑢. Therefore 𝑢1 is a 

constant multiple of 𝑢, the desired conclusion. 

   From the results of Hayashi and those one sees that the Toeplitz operator with unimodular 

symbol 𝑦 has a nontrivial kernel if and only if 𝑦 has the form 𝑢𝑔̅̅̅̅ /𝑔, where 𝑔2 is an exposed 

point of the unit ball of 𝐻1, and 𝑢 is an inner function that vanishes at the origin and divides 

the function 𝑏 associated with 𝑔 in the way specified.  
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Chapter 4 

Analytic Continuability and Complemented  Invariant Subspaces with Linear Graph 
Transformations 

    We show that the invariant subspace of the Bergman space 𝐴𝑝 of the unit disk, generated 
by either an 𝐴𝑝-interpolating sequence or a singular inner function with a single point mass 

on the unit circle, is complemented in 𝐴𝑝. We investigate the existence of non-trivial common 

invariant subspaces of operator algebras of the type  𝒜ℳ = {𝐴 ∈ ℬ(ℋ):𝐴𝒟 ⊆ 𝒟:𝐴𝑇𝑖𝑓 =
𝑇𝑖𝐴𝑓  ∀𝑓 ∈ 𝒟}. For the Bergman space 𝐿𝑎

2  we exhibit examples of invariant graph subspaces 
of fiber dimension 2 such that 𝒜ℳ  does not have any nontrivial invariant subspaces that are 

defined by linear relations of the graph transformations for ℳ. 

Section (4.1):    Bergman Inner Functions 

    For 0 < 𝑝 < ∞, the Bergman space 𝐿𝑎
𝑝

  consists of those function 𝑓 analytic in the unit 

disk 𝔻 = {𝑧 ∈ ℂ: |𝑧| < 1} for which 

‖𝑓‖
𝐿𝑎
𝑝
𝑝
= ∬|𝑓(𝑧)|𝑝

𝑑𝐴(𝑧)

𝜋

 

𝔻

< ∞. 

If  𝑝 ≥ 1 then ‖. ‖𝐿𝑎
𝑝  is a norm making 𝐿𝑎

𝑝
 a Banach space, and if 0 < 𝑝 < 1 then 𝑑(𝑓, 𝑔) =

‖𝑓 − 𝑔‖
𝐿𝑎
𝑝
𝑝
  is a metric making 𝐿𝑎

𝑝
 a nonlocally convex complete metric topological vector 

space. 

    Let {𝛼1 , 𝛼2 ,… } be an 𝐿𝑎
𝑝

 zero sequence that is, the sequence of zeros, repeated according 

to multiplicity, of some nonidentically vanishing 𝐿𝑎
𝑝

 function and let 𝑀 be the set of 𝐿𝑎
𝑝

 
functions that vanish on the sequence {𝛼𝑛} to at least the prescribed multiplicity. We let 𝑁 

denote the number of times that 0 appears in the sequence  {𝛼𝑛} and consider the following 

extremal problem: 

sup{𝑅𝑒 𝑓(𝑁)(0):𝑓 ∈ 𝑀, ‖𝑓‖𝐿𝑎
𝑝 ≤ 1}                                                           (1) 

It is shown in [68;69] that there  is a unique extremal function 𝜑 for this problem, and that 

𝜑 satisfies the following properties: 

∬|𝜑(𝑧)|𝑝𝑢(𝑧)
𝑑𝐴(𝑧)

𝜋

 

𝔻

= 𝑢(0)                                                                      (2) 

if 𝑢 is a bounded harmonic function in 𝔻 

if 𝑓 ∈ 𝑀 then 
𝑓

𝜑
∈ 𝐿𝑎

𝑝
and ‖

𝑓

𝜑
‖
𝐿𝑎
𝑝
≤ ‖𝑓‖𝐿𝑎

𝑝                                                       (3) 

in particular (3) says that function 𝜑 vanishes at each point of the sequence to the sequence 
to exactly the prescribed multiplicity; that is, it has no “extra zeros”. 
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   We take (2) to be the defining property of 𝐿𝑎
𝑝

 inner function.  . There has been much interest 
in these function in recent years, starting with [7] in which he estalished, among other facts, 

that(3) holds in the case 𝑝 = 2 see [68,69,70]. 

   If 𝑝 = 2  and the zero sequence {𝛼𝑛}  is finite, then an easy argument shows that the 
extremal function 𝜑 is rational function with poles at the points 1/�̅�𝑛, and hence it continues 

analytically across 𝜕𝔻. Suppose 𝐼 ⊂ 𝜕𝔻 is an open arc that dose not meet clos {𝛼𝑛}. Then it 

is a consequence of theorem of  [71,72] that the associated extremal function  𝜑 extends 

analytically across 𝐼. 

   In [68,69] it is shown that, for general 𝑝,the extremal function associated to a finite zero 

sequence extends analytically across 𝜕𝔻. One asked whether it were also true for general 𝑝 

that the extremal function associated to a zero  sequence extends analytically across any 𝐼 ⊂
𝜕𝔻 not meeting the closure of the sequence [73,74]. 

    Let {𝛼1 , … , 𝛼𝑛} be finite sequence of points in 𝔻 and denote by 𝜑 its associated 𝐿𝑎
𝑝

 inner 
function. 

    Let 𝑔 denote the Cauchy transform of |𝜑|𝑝𝒳𝔻; that  is, 

𝑔(𝑧) = ∬
|𝜑(𝜔)|𝑝

𝜔 − 𝑧

 

𝜔∈𝔻

𝑑𝐴(𝜔)

𝜋
                                                              (4) 

We will use the following facts about 𝑔: 

�̅�𝑔 = −|𝜑|𝑝𝒳𝔻    in the sense of distributions                                 (5) 

𝑔 is continuous in all of ℂ                                                             (6) 

𝑔(𝑧) = −
1

𝑧
     for    |𝑧| ≥ 1                                                            (7) 

(Here �̅� =
1

2
(
𝜕

𝜕𝑥
−
1

𝑖

𝜕

𝜕𝑦
 ) is the standard Cauchy-Riemann partial operator). (5) is standard 

[76]; (6) follows from the boundedness of 𝜑, which in turn is a consequence of the analytic 

continuability of 𝜑   across 𝜕𝔻 [68, 69]; and (7) follows for |𝑧| > 1 from (2) and for |𝑧| = 1 

from continuity. 

   We next cut out of 𝔻 a set of nonintersecting curves 𝛾1 , … , 𝛾𝑛 , each 𝛾𝑗  conecting 𝛼𝑗  to a 

point  𝛽𝑗 ∈ 𝜕𝔻 (if 𝛼𝑗 = 𝛼𝑘  we assume that 𝛾𝑗 = 𝛾𝑘). We denote by Ω the resulting simply 

connected region. Because, as mentioned previously,𝜑 has no “extra zeros”, 𝜑 dose not 

vanish in Ω and we can define 𝜑
𝑝

2  in Ω. For definiteness choosing it so that  𝜑
𝑝

2 (0) > 0. We 
can then define its integral  

Φ(𝑧) = ∫𝜑
𝑝
2 (𝜔)𝑑𝜔

 

𝜎𝑧

       for  𝑧 ∈ Ω                                                 (8) 

Where 𝜎𝑧 is some rectifiable path connecting 0 to  𝑧 in Ω. 
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We use all the functions just constructed to define  

ℎ(𝑧) = 𝑔(𝑧) +Φ(𝑧)̅̅ ̅̅ ̅̅̅ 𝜑
𝑝

2 (𝑧)                                                                    (9)  

The following properties of ℎ are important for us: 

ℎ   is analytic in Ω                                                                           (10) 

ℎ  is continuous in Ω⋃(∂𝔻\{𝛽1 ,… , 𝛽𝑛})                                  (11) 

ℎ(𝑧) = −
1

𝑧
+Φ(𝑧)̅̅ ̅̅ ̅̅̅ 𝜑

𝑝
2 (𝑧)     for 𝑧 ∈ ∂𝔻\{𝛽1,… , 𝛽𝑛}                     (12) 

the first of these properties is a consequence of Weyl’s lemma [76],(5), and the definition of  

Φ, which implies that  �̅�  (Φ̅ 𝜑
𝑝

2) = Φ′̅̅ ̅ 𝜑
𝑝

2 = |𝜑|𝑝. The second property is consequence of 

(6) and the analytic continuability of 𝜑 across 𝜕𝔻. Finally, (12) follows from (7) and the 

continuity of 𝜑
𝑝

2  and Φ up to 𝜕𝔻. 

   We can now state a formula giving an expression for the analytic continuation of 𝜑. Let 

Ω∗ = {
1

𝑧̅
: 𝑧 ∈ Ω} and define  

Φ(𝑧) =
𝑧 + ℎ(

1
�̅�
)

̅̅ ̅̅ ̅̅

𝜑
𝑝
2 (
1
�̅�
)

̅̅ ̅̅ ̅̅ ̅̅ ̅ ,     𝑧 ∈ Ω
∗                                                           (13) 

The continuity of ℎ and 𝜑 up to 𝜕𝔻\{𝛽1,… , 𝛽𝑛}, together  with the fact that |𝜑(𝑧)| ≥ 1 for 

𝑧 ∈ 𝜕𝔻 [69;70], shows that we can extend (13) continuously to 𝑧 ∈ 𝜕𝔻\{𝛽1 ,… , 𝛽𝑛}. By (12) 

this extension agrees with the original definition of Φ there, and so by (10) we see that (13) 

gives an analytic continuation of Φ to Ω̃ = Ω⋃Ω∗⋃(𝜕𝔻\{𝛽1 ,… , 𝛽𝑛}). The nonvanishing of 

𝜑 near 𝜕𝔻 now shows that the formula 𝜑 = (𝜑′)
2

𝑝 yields an analytic continuation of 𝜑 across 

each arc of 𝜕𝔻\{𝛽1,… , 𝛽𝑛}. 

   The estimate  

|𝑓(𝑧)| ≤
1

(1−|𝑧|)
2
𝑝

‖𝑓‖𝐿𝑎
𝑝 ,     𝑓 ∈ 𝐿𝑎

𝑝
                                                   (14)  

is will know and elementary; it follows from the sub harmonicity of |𝑓|𝑝 after integration 

over {𝜔: |𝜔 − 𝑧| < 1− |𝑧|}. Suppose now that the curves 𝛾𝑗  have been chosen such that, for 

any 𝑧 ∈ Ω, a rectifiable path 𝜎𝑧  from 0 to 𝑧 within Ω can be chosen along which |𝑑𝜔| ≤
2𝑑|𝜔|. Then, by (14), 

Φ(𝑧) = |∫𝜑
𝑝
2 (𝜔)𝑑𝜔

 

𝜎𝑧

| ≤ ∫
|𝑑𝜔|

1 − |𝜔|

 

𝜎𝑧

≤ 2∫
𝑑𝑟

1− 𝑟

|𝑧|

0

 

yielding  
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|Φ(𝑧)| ≤ 2 log
1

1− |𝑧|
,   𝑧 ∈ Ω                                                  (15) 

The estimate  

|𝑔(𝑧)| ≤
6

1− |𝑧|
,      𝑧 ∈ Ω                                                        (16) 

Follows from (14) and simple estimates on the defining integral (4) of 𝑔 obtained by dividing 

this integral into the integral over |𝜔 − 𝑧| <
1

2
(1− |𝑧|) and that over |𝜔 − 𝑧| >

1

2
(1− |𝑧|). 

Finally, we combine (14),(15), and (16) to obtain  

|ℎ(𝑧)| ≤
8

(1− |𝑧|)2
,      𝑧 ∈ Ω                                                           (17) 

Lemma(4.1.1):[67]    Let 𝑈 ⊂ ℂ be open and let ℱ be a family of functions analytic in 𝑈. 

suppose there exists a 𝜌 ∈ 𝐿𝑙𝑜𝑐
1 (𝑈) such that log+|𝑓(𝑧)| ≤ 𝜌(𝑧) for any 𝑓 ∈ ℱ  and 𝑧 ∈ 𝑈. 

Then ℱ is a normal family. 

Proof:    Let 𝐾 ⊂ 𝑈 be compact, and pick a 𝛿 > 0 such that  𝐾𝛿 = {𝑧 ∈ ℂ: dist(𝑧, 𝐾) ≤ 𝛿} ⊂
𝑈. Then  if 𝑓 ∈ ℱ and 𝑧 ∈ 𝐾, the subharmonicity of  log+|𝑓| implies that 

log+|𝑓(𝑧)| ≤
1

𝜋𝛿2
∬ log+|𝑓(𝜔)| 𝑑𝐴(𝜔)

 

|𝜔−𝑧|≤𝛿

≤
1

𝜋𝛿2
∬𝜌(𝜔)𝑑𝐴(𝜔)

 

𝐾𝛿

 

Thus  

|𝑓(𝑧)| ≤ exp [
1

𝜋𝛿2
∬𝜌(𝜔)𝑑𝐴(𝜔)

 

𝐾𝛿

]   for any 𝑓 ∈ ℱ, 𝑧 ∈ 𝐾 

so an application of Montel’s theorem [78,79]  proves the lemma. 

Theorem(4.1.2):[67]      Suppose {𝛼𝑛}𝑛=1
∞  is an 𝐿𝑎

𝑝
 zero sequence and that 𝐼 ⊂ 𝜕𝔻 is an arc 

not meeting clos {𝛼𝑛}. Then the associated 𝐿𝑎
𝑝

 inner function 𝜑 has an analytic continuation 

across 𝐼. 

Proof:     If 𝑧0 ∈ 𝜕𝔻 is not a limit point of {𝛼𝑛} then 𝜑 has an analytic continuation to a 

neighborhood of 𝑧0. Given such a 𝑧0,we construct nonintersecting curves 𝛾𝑛  in 𝔻, each 𝛾𝑛  

connecting 𝛼𝑛  to point 𝛽𝑛 ∈ 𝜕𝔻 (again, if 𝛼𝑗 = 𝛼𝑘  we set 𝛾𝑗 = 𝛾𝑘) in such a way that if Ω𝑛 

is the simply connected open set 𝔻\{𝛾1 , … , 𝛾𝑛}, then the following properties hold: 

the closure of ⋃𝛾𝑛 dose not contian 𝑧0                                               (18) 

Ω = ⋂𝛺𝑛    is open                                                                                  (19) 

each 𝑧 ∈ 𝛺𝑛 can  be conncted to 0 by a rectifiable path 𝜎𝑧in 𝛺𝑛 along which  

|𝑑𝜔|  ≤ 2𝑑|𝜔|                                                                                          (20) 
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we now let 𝜑𝑛  denote the 𝐿𝑎
𝑝

 extremal function corresponding to the finite set {𝛼1 , … , 𝛼𝑛}, 
and use 𝜑𝑛  as define functions 𝑔𝑛 in ℂ and functions Φ𝑛, ℎ𝑛 in Ω𝑛. The formula  

Φ𝑛(𝑧) =
𝑧 + ℎ𝑛(1/�̅�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜑𝑛

𝑝
2 (1/�̅�)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ,    𝑧 ∈ Ω𝑛

∗                                                                (21) 

gives  an analytic continuation of Φ𝑛 to Ω̃𝑛 = Ω𝑛⋃Ωn
∗⋃( 𝜕𝔻\{𝛽1,… , 𝛽𝑛}). Since 𝜑𝑛(𝑧) →

𝜑(𝑧) for every 𝑧 ∈ 𝔻  [69;70], our theorem will be proved if we can show that the functions 

{Φ𝑛} from a normal family of functions analytic in   Ω̃ = Ω⋃Ω∗⋃( 𝜕𝔻\clos{𝛽𝑛}).[71,72,77]. 

   We will now show that the family {𝜑𝑛} satisfies the hypothesis of Lemma (4.1.1) in the 

open set Ω̃. Write (21) in the form  

Φ𝑛(𝑧) = [𝑧 + ℎ𝑛 (
1

�̅�
)

̅̅ ̅̅ ̅̅ ̅̅ ̅
]
𝜑
𝑝
2 (
1
�̅�
)

̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜑𝑛

𝑝
2 (
1
�̅�
)

̅̅ ̅̅ ̅̅ ̅̅ ̅
1

𝜑
𝑝
2 (1/�̅�)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ,    𝑧 ∈ Ω

∗                                   (22) 

By (3) and (14), |𝜑
𝑝

2 (
1

𝑧̅
)/𝜑𝑛

𝑝

2 (
1

𝑧̅
)| ≤ |𝑧|/(|𝑧| − 1). We combine this estimate with (17) and 

use (22) and a little manipulation to derive the estimate  

|𝜑𝑛(𝑧)| ≤
8|𝑧|2

(|𝑧| − 1)2
 

1

|𝜑 (
1
�̅�
)|

𝑝
2

,      𝑧 ∈ Ω∗                                  (23) 

This estimate, together with (15), shows that the function  

𝜌(𝑧) =

{
 
 

 
 log+ (2 log

1

1 − |𝑧|
),                        |𝑧| < 1

log
8|𝑧|2

(|𝑧| − 1)2
+
𝑝

2
log+

1

|𝜑(1/�̅�)|
, |𝑧| > 1

                          (24) 

dominates log+|𝜑𝑛(𝑧)| for all 𝑛. It remains only to show that 𝜌 ∈ 𝐿𝑙𝑜𝑐
1 (ℂ), and this is trivial 

except for the term log+(1/|𝜑𝑛(1/�̅�)|. To handle this we write 

∬ log+
1

|𝜑 (
1
�̅�
)|
𝑑𝐴(𝑧)

 

1<|𝑧|<𝑅

= ∬
1

|𝜔|4
log+

1

|𝜑(𝜔)|
𝑑𝐴(𝜔)

 

1
𝑅
<|𝜔|<1

 

≤ 𝑅4 ∬ log+
1

|𝜑(𝜔)|
𝑑𝐴(𝜔)

 

|𝜔|<1

 

                                     = 𝑅4∬log+|𝜑(𝜔)|𝑑𝐴(𝜔)

 

𝔻

−𝑅4∬log|𝜑(𝜔)| 𝑑𝐴(𝜔)

 

𝔻
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≤ 𝑅4
3𝜋

2𝑝
− 𝑅4𝜋log|𝜑(0)|,     

where the first term comes from (14) and an integration; the second term comes from the 

inequality log|𝜑(0)| ≤ ∬ log|𝜑(𝜔)|𝑑𝐴(𝜔)/𝜋
 

𝔻
, which follows from the sub harmonicity of  

log|𝜑|. 

Corollary(4.1.3):[67]    Suppose {𝛼𝑛}  and {𝛽𝑛}  are two 𝐿𝑎
𝑝

 zero sequences such that 

𝑐𝑙𝑜𝑠{𝛼𝑛} ∩ 𝑐𝑙𝑜𝑠{𝛽𝑛} ∩𝜕𝔻 = 𝜙. Then {𝛼𝑛} ∪ {𝛽𝑛} is an 𝐿𝑎
𝑝

 zero sequence. 

Proof:     Let 𝜑1  and 𝜑2  be the 𝐿𝑎
𝑝

 inner functions associated with {𝛼𝑛}  and {𝛽𝑛} , 

respectively. Then, by theorem (4.1.1) and an easy compactness argument, 𝜑1𝜑2 ∈ 𝐿𝑎
𝑝

. 

In [74], give the following formula for the 𝐿𝑎
𝑝

 inner function 𝜑 associated with a finite zero 

sequence {𝛼1 ,… , 𝛼𝑛}: 

𝜑(𝑧) = 𝐵(𝑧)[𝑏 −∑
𝑎𝑘

1 − �̅�𝑗𝑘𝑧

 

𝑘

]

2
𝑝

                                                       (25) 

Here  

𝐵(𝑧) =∏
|𝛼𝑗 |

𝛼𝑗

𝛼𝑗 − 𝑧

1 − �̅�𝑗𝑧

𝑛

𝑗=1

 

is the Blaschke product associated with {𝛼𝑗} (where we adopt the convention 
|0|

0
= −1), and 

{𝛼𝑗1 ,… , 𝛼𝑗𝑠  } is a listing of the distinct nonzero elements of {𝛼1 ,… , 𝛼𝑛}. We here give an 

alternate proof of this formula based on the ideas.  It is easy to see from (9) and (8) that  

ℎ(𝑧) = ℎ𝑗(𝑧) +Φ(𝛼𝑗)
̅̅ ̅̅ ̅̅ ̅̅ 𝜑

𝑝
2 (𝑧)                                                                (26) 

where ℎ𝑗 is analytic in a neighborhood of 𝛼𝑗 . It follows from (26) and (13) that, if 𝛼𝑗 ≠ 0’ 

Φ(𝑧) = Φ(𝛼𝑗) +
𝑧 + ℎ𝑗(1/�̅�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜑
𝑝
2 (1/�̅�)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (1− �̅�𝑗𝑧)
                                                   (27) 

and hence   

𝜑
𝑝
2 (𝑧) = 𝜑′(𝑧) =

𝐻𝑗(𝑧)

𝜑
𝑝
2 (
1
�̅�
)

̅̅ ̅̅ ̅̅ ̅̅ ̅
(1− �̅�𝑗𝑧)

                                                     (28) 

Where 𝐻𝑗 is analytic in a neighborhood of 1/�̅�𝑗 . Thus (
𝜑

𝐵
)
𝑝/2

 is meromorphic near 1/�̅�𝑗  with 

at worst a simple pole there. Similar reasoning shows that 
𝜑

𝐵
 is analytic and nonvanishing in 
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a neighborhood of ∞. Since 
𝜑

𝐵
 dose not vanish in clos𝔻, we can finally conclude that (

𝜑

𝐵
)
𝑝/2

 

is rational with simple poles or removable singularities at those 𝛼𝑗  that  are nonzero (in fact, 

it is not difficult to show it must have poles at these point). The formula (25) follows. 

   It should be mentioned that the method dose proved a little more information than that of 

MacGregor and Stessin, namely that 𝜑𝑝/2  possesses a primitive in Ω. This is of course 
equivalent to the statement that  

∫𝜑
𝑝
2 (𝑧)𝑑𝑧

 

Γ𝑗

= 0 

If  Γ𝑗  is any rectifiable simple closed curve enclosing 𝛼𝑗  and  1/�̅�𝑗 ,and not enclosing 𝛼𝑘 or 

1/�̅�𝑘. In fact, it can be shown that this condition, together with ‖𝜑‖𝐿𝑎
𝑝 = 1, determines the 

coefficients 𝑏 and 𝑎𝑘. 

   Suppose {𝛼𝑛} is an 𝐿𝑎
2  zero sequence of distinct points in 𝔻 and that {𝜔𝑛} is a sequence of 

points in ℂ such that there exists an 𝑓 ∈ 𝐿𝑎
2  such that 𝑓(𝛼𝑛) = 𝜔𝑛  for all 𝑛. Let 𝜓 be the 𝐿𝑎

2  
function of minimal norm accomplishing this interpolation. Then [71] that 𝜓  continues 

analytically across any boundary arc not meeting clos{𝛼𝑛}. It is natural to ask if this result 

holds in 𝐿𝑎
𝑝

 for 𝑝 ≠ 2. The following example shows that it dose not, even in the case of two 

interpolation points. 

         Let 0 < 𝑟 < 1 and set  

𝜓(𝑧) = 1−
(1− 𝑟)2

(1 − 𝑟𝑧)2
 

Since 1 and 1/(1− 𝑟𝑧)2 are the reproducing kernels for the points 0 and 𝑟, we see that 𝜓 is 

the minimal 𝐿𝑎
2  interpolating function taking 0 to 1− (1 − 𝑟)2 and 𝑟 to 1− 1/(1+ 𝑟)2 . The 

function 𝜓 has a simple zero at 𝑧 = 1  and no other zeros in clos{𝔻}. Let 𝐵(𝑧) = 𝑧[(𝑟 −
𝑧)/(1− 𝑟𝑧)]. By minimality, 

𝑑

𝑑𝑡
|
𝑡=0

‖𝜓+ 𝑡𝐹𝜓𝐵‖𝐿𝑎2 = 0                ∀𝐹 ∈ 𝐿𝑎
2 , 

which leads to  

∬|𝜓|2𝐵𝐹
𝑑𝐴

𝜋

 

𝐷

= 0              ∀𝐹 ∈ 𝐿𝑎
2                                                         (29) 

For 𝑝 > 1 we now argue as in the proof of Theorem (4.2.1) of [80]: if 𝐹 is a polynomial, then 

‖𝜓
2
𝑝‖
𝐿𝑎
𝑝

𝑝

= ‖𝜓‖𝐿𝑎2
2   =∬(𝜓

2
𝑝 +𝜓

2
𝑝𝐹𝐵)

 

𝔻

|𝜓|2

𝜓
2
𝑝

𝑑𝐴

𝜋
                                            (𝑏𝑦 29) 
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≤ [∬|𝜓
2
𝑝 +𝜓

2
𝑝𝐹𝐵|

𝑝𝑑𝐴

𝜋

 

𝔻

]

1
𝑝

  × [∬|𝜓|
(2−

2
𝑝
)(
𝑝
𝑝−1

) 𝑑𝐴

𝜋

 

𝔻

]

𝑝−1
𝑝

   

= ‖𝜓
2
𝑝 +𝜓

2
𝑝𝐹𝐵‖

𝐿𝑎
𝑝
‖𝜓

2
𝑝‖
𝐿𝑎
𝑝

𝑝−1

                                                   

Dividing by ‖𝜓
2

𝑝‖
𝐿𝑎
𝑝

𝑝−1

, we see that 

‖𝜓
2
𝑝‖
𝐿𝑎
𝑝
≤ ‖𝜓

2
𝑝 +𝜓

2
𝑝𝐹𝐵‖

𝐿𝑎
𝑝
 

For any polynomial 𝐹. Since the functions of the form 𝜓
2

𝑝𝐹 (𝐹 a polynomial) are clearly 

dense in 𝐿𝑎
𝑝

, this shows that 𝜓
2

𝑝  is the 𝐿𝑎
𝑝

 minimal interpolating function taking 0  to 

[1 − (1− 𝑟)2]2/𝑝 and 𝑟 to [1 − 1/(1+ 𝑟)2]2/𝑝 . Of course, 𝜓
2

𝑝 has a zero of order 2/𝑝 at 1 

and hence does not extend analytically around 1 if 𝑝 > 1 and 𝑝 ≠ 2. 

Section(4.2): Complemented  Invariant Subspaces in Bergman Spaces 

   A closed subspace 𝐼 of 𝐴𝑝 is said to be invariant if ℎ𝑓 ∈ 𝐼 for all 𝑓 ∈ 𝐼, where ℎ(𝑧) = 𝑧 is 

the identity function on 𝔻. It is easy to show that a closed subspaces 𝐼 of 𝐴𝑝 is invariant if 

and only if ℎ𝑓 ∈ 𝐼 for all 𝑓 ∈ 𝐼 and all polynomials ℎ if and only if ℎ𝑓 ∈ 𝐼 for all 𝑓 ∈ 𝐼 and 

all ℎ ∈ 𝐻∞. 

   For any 𝑓 ∈ 𝐴𝑝, the 𝐴𝑝-closure of the set of all polynomial multiples of 𝑓 is clearly an 
invariant subspace of 𝐴𝑝 , it is called the invariant subspace generated by 𝑓  and will be 

denoted by 𝐼𝑓
𝑝
. In particular, if 𝜑 ∈ 𝐻∞, then 𝐼𝜑

𝑝
 is well-defined for all 0 < 𝑝 < ∞ and is the 

𝐴𝑝-closure of  𝜑𝐴𝑝. 

   A sequence 𝑍 = {𝑎𝑛} of points in 𝔻 is called an 𝐴𝑝zero set if  there exists a non-zero  
function 𝑓 ∈ 𝐴𝑝 such that 𝑓 vanishes on 𝑍, counting multiplicity. Every 𝐴𝑝 zero set 𝑍 gives 

rise to an invariant subspace 𝐼𝑍
𝑝
 consisting of all functions in 𝐴𝑝 that vanish on 𝑍, counting 

multiplicities again. It is known that 𝐼𝑍
𝑝
= 𝐼𝐺

𝑝
, where 𝐺 is the extremal  function of  𝐼𝑍

𝑝
; [82] 

for example. 

   We will consider a class of special 𝐴𝑝  zero sets, namely,  𝐴𝑝  interpolating sequences. 
Recall that a sequence 𝑍 = {𝑎𝑛} of distinct points in 𝔻 is called 𝐴𝑝 interpolating  of  if for 

every sequence {𝜔𝑛} of complex numbers satisfying 

∑|𝜔𝑛|
𝑝(1− |𝑎𝑛|

2)2 < ∞ 

There exists a function 𝑓 ∈ 𝐴𝑝  such that 𝑓(𝑎𝑛) = 𝜔𝑛  for all 𝑛. Such sequence have been 
geometrically characterized in [10]. 
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    Recall that 𝐼 is complemented in 𝐴𝑝 if there exists another closed subspace 𝑋 of 𝐴𝑝 such 

that 𝐴𝑝 = 𝐼⨁𝑋. It is easy to see that  a closed subspace 𝐼 of 𝐴𝑝 is complemented if and only 

if there exists a bounded linear operator𝑄 from 𝐴𝑝on to 𝐼 such that 𝑄2 = 𝑄. Such an operator 
𝑄  is naturally called a projection of 𝐴𝑝  onto 𝐼 . Note that the projection 𝑄 , and so the 

complemental  subspace 𝑋, is highly non-unique. When 𝑝 = 2, every closed subspace  𝐼 of 

𝐴𝑝 is complemented; and  among  all the projections of 𝐴2  onto 𝐼 ,there exists a unique 

orthogonal projection. 

   In the case  of Hardy spaces, which we denote by 𝐻𝑝, of the unit disk, every invariant 

subspace is complemented, at least when 1 < 𝑝 < ∞. In fact, if 𝐼 is an invariant subspace of 

𝐻𝑝, then there exists an inner function 𝜑 such that 𝐼 = 𝜑𝐻𝑝.It follows from the 𝑀. Riesz 

theorem [83] that the operator 𝑄 defined by  

𝑄𝑓(𝑧) =
𝜑(𝑧)

2𝜋𝑖
∫
�̅�(𝜁)𝑓(𝜁)

𝜁 − 𝑧
𝑑𝜁

 

|𝜁|=1

 

is bounded projection from 𝐻𝑝 onto 𝐼, proved that  1 < 𝑝 < ∞. Note that the operator 𝑄 is 

simply the orthogonal projection from 𝐻2 onto 𝜑𝐻2. 

Theorem(4.2.1):[81]     Suppose that 0 < 𝑝 < ∞  and 𝑍  is an 𝐴𝑝  interpolating sequence. 

Then the invariant subspace 𝐼𝑍
𝑝
 is complemented in 𝐴𝑝. 

Theorem(4.2.2):[81]     Suppose that 1 < 𝑝 < ∞  and 0 < 𝜎 < ∞ . Then the invariant 

subspace 𝐼𝑎
𝑝
 generated by the singular inner function 

𝑆𝜎(𝑧) = exp (−𝜎
1 + 𝑧

1 − 𝑧
) 

is complemented in 𝐴𝑝. 

   To illustrate the notion of a complemented invariant subspace here, consider the case where 

the zero set 𝑍 has only one simple zero at 𝑎 ∈ 𝔻. It is obvious that the decomposition 

𝑓 = (𝑓− 𝑓(𝑎)) + 𝑓(𝑎) 

induces a direct sum decomposition of 𝐴𝑝, namely,  

𝐴𝑝 = 𝐼𝑍
𝑝
⊕ℂ. 

Slightly more general is the case when 𝑍 consists of a single zero at 𝑎 ∈ 𝔻 of multiplicity 𝑛. 

Then the decomposition 

𝑓 = (𝑓 − 𝑓𝑛) + 𝑓𝑛 , 

where 𝑓𝑛  is the Taylor polynomial of   𝑓 at 𝑎 of order 𝑛 − 1, gives rise to the splitting 

𝐴𝑝 = 𝐼𝑍
𝑝
⊕𝑃𝑛  

where 𝑃𝑛  is the space of all  polynomial of order 𝑛 or less. This clearly works for all 𝑛 and all 

𝑝 ∈ (0,∞). 
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If 𝑍 is a finite sequence with possible multiplicities, the space 𝐼𝑍
𝑝
 has finite codimension in 

𝐴𝑝, and it follows from general functional analysis that 𝐼𝑍
𝑝
 is complemented in 𝐴𝑝. 

Lemma(4.2.3):[81]   Suppose that 𝑍 consists of distinct points 𝑎1,… , 𝑎𝑛 . Then for any 𝑎 ∈
𝔻 the reproducing kernel 𝐼𝑍

2 at 𝑎 is of the form 

𝐾𝑍(𝑧, 𝑎) =
1

(1− 𝑧�̅�)2
−∑

𝐴𝑘
(1− 𝑧�̅�𝑘)

2

𝑛

𝑘=1

, 

where  𝐴1 ,… , 𝐴𝑛 are constants chosen so that  

∑
𝐴𝑘

(1− 𝑎𝑚�̅�𝑘)
2

𝑛

𝑘=1

=
1

(1 − 𝑎𝑚�̅�)
2
 

for 𝑚 = 1,… , 𝑛. 

Proof:      The existence of constants 𝐴1 ,… , 𝐴𝑛 follows from the well-known fact that the 
matrix 

(
1

(1− 𝑎𝑚�̅�𝑘)
2
)
𝑛×𝑛

 

is non-singular.  

The function ℎ(𝑧) = 𝐾𝑧(𝑧, 𝑎) defined above is clearly in 𝐴2 and vanishes at 𝑎1 ,… , 𝑎𝑛, and 

so belongs to 𝐼𝑍
2. For any 𝑓 ∈ 𝐼𝑍

2, the reproducing property of the Bergman  kernel gives 

〈𝑓, ℎ〉 = 𝑓(𝑎)−∑𝐴𝑘𝑓(𝑎𝑘)

𝑛

𝑘=1

= 𝑓(𝑎) 

By uniqueness, the function 𝐾𝑍(𝑧, 𝑎) defined above is indeed the reproducing kernel of 𝐼𝑍
2 at 

𝑎. 

Lemma(4.2.4):[81]      Suppose that 𝑍  consists of distinct points 𝑎1,… , 𝑎𝑛 . Then  the 

reproducing kernel of 𝐼𝑍
2 is of the form 

𝐾𝑍(𝑧,𝜔) =
1

(1 − 𝑧�̅�)2
−∑

𝜑𝑘(𝜔)̅̅ ̅̅̅ ̅̅ ̅

(1 − 𝑧�̅�𝑘)
2

𝑛

𝑘=1

 

where  

𝜑𝑘(𝑧) =
𝐾𝑍𝑘(𝑧, 𝑎𝑘)

𝐾𝑍𝑘(𝑎𝑘,𝑎𝑘)
,   1 ≤ 𝑘 ≤ 𝑛 

and 𝑍𝑘 = 𝑍− {𝑎𝑘} for 1 ≤ 𝑘 ≤ 𝑛. 
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Theorem(4.2.5):[81]   Suppose that 0 < 𝑝 < ∞ . If 𝑍  is either finite (with possible 

multiplicities) or 𝐴𝑝 interpolating, then the space 𝐼𝑍
𝑝
 is complemented in 𝐴𝑝. 

Proof:      First assume that 𝑍 consists of a finite number of distinct points, 𝑎1,… , 𝑎𝑛 . Let 

𝑄𝑍: 𝐴
2 → 𝐼𝑍

2  be the orthogonal projection. Then by Lemma(4.2.4) and the reproducing 
property of the Bergman kernel, we have 

𝑄𝑍𝑓(𝑧) = 𝑓(𝑧) −∑𝑓(𝑎𝑘)𝜑𝑘(𝑧)

𝑛

𝑘=1

 

Since 𝜑𝑘 belongs to 𝐴𝑝 for 1 ≤ 𝑘 ≤ 𝑛 and 0 < 𝑝 < ∞ (by Lemma(4.2.3)), and since each 

point-evaluation in 𝔻 is a bounded linear functional on 𝐴𝑝, this formula clearly defines a 

bounded  linear operator 𝑄𝑍on 𝐴𝑝. The functions 𝜑𝑘 satisfy 𝜑𝑘(𝑎𝑘) = 1 and 𝜑𝑘(𝑎𝑚) = 0 

for all 𝑘 and  𝑚 with 𝑘 ≠ 𝑚. It follows that 𝑄𝑍𝑓 ∈ 𝐼𝑍
𝑝
 for all 𝑓 ∈ 𝐴𝑝 and 𝑄𝑍𝑓 = 𝑓 for all 𝑓 ∈

𝐼𝑍
𝑝
, so 𝑄𝑍 is a projection from 𝐴𝑝 onto 𝐼𝑍

𝑝
. 

If 𝑍  is finite but has zeros of higher multiplicity, then the formula for 𝐾𝑍(𝑧, 𝜔) not only 

involves the Bergman kernels at the points of 𝑍 but also their derivatives. For example, if 𝑎𝑘 

appears 𝑁 times in 𝑍, where 𝑁 > 1, then the functions 

1

(1− 𝑧�̅�𝑘)
2
,

𝑧

(1 − 𝑧�̅�𝑘)
3
, … ,

𝑧𝑁−1

(1− 𝑧�̅�𝑘)
𝑁+1

 

will show up in the formula for 𝐾𝑍(𝑧, 𝜔), and accordingly, the values  

𝑓(𝑎𝑘),𝑓
′(𝑎𝑘),… , 𝑓

(𝑁−1)(𝑎𝑘) 

will show up in the formula for 𝑄𝑍𝑓 , but it is clear that the resulting operator 𝑄𝑍  is still 

bounded on all 𝐴𝑝. 

When 𝑍 = {𝑎𝑛}   is 𝐴𝑝  interpolating, all the zeros are simple. Moreover, there exists a 

sequence {𝜑𝑛} of functions in 𝐴𝑝 satisfying the following conditions. 

(i) φ𝑛(𝑎𝑛) = 1 for all 𝑛. 

(ii) 𝜑𝑛(𝑎𝑘) = 0 for all 𝑛 and 𝑘 with 𝑛 ≠ 𝑘. 

(iii) There exists a positive constant 𝑀 such that whenever {𝜔𝑛} is a sequence of complex 

numbers satisfying 

∑|𝜔𝑛|
𝑝(1− |𝑎𝑛|

2)2 < ∞ 

then the series 

𝑓(𝑧) =∑𝜔𝑛𝜑𝑛(𝑧) 

converges  in 𝐴𝑝 and  

‖𝑓‖𝑝
𝑝
≤ 𝑀∑|𝜔𝑛|

𝑝(1− |𝑎𝑛|
2)2 
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[85] for the existence of such a sequence {𝜑𝑛}. 

Now  define an operator 𝑄𝑍 on 𝐴𝑝 as follows: 

𝑄𝑍𝑓(𝑧) = 𝑓(𝑧) −∑𝑓(𝑎𝑛)𝜑𝑛(𝑧) ,   𝑓 ∈ 𝐴
𝑝 

Since an 𝐴𝑝  interpolating sequence is separated in the hyperbolic metric, there existes a 

constant 𝑀1 > 0 such that 

∑|𝑓(𝑎𝑛)|
𝑝(1− |𝑎𝑛|

2)2 ≤ 𝑀1∫|𝑓(𝑧)|
𝑝𝑑𝐴(𝑧)

 

𝔻

 

For all 𝑓 ∈ 𝐴𝑝 . This along with property (iii) above shows that 𝑄𝑍  is a bounded linear 

operator on 𝐴𝑝. Also, it is clear from properties (i) and (ii) that 𝑄𝑍 maps 𝐴𝑝 into 𝐼𝑍
𝑝
, and 𝑄𝑍 

leaves all functions in 𝐼𝑍
𝑝 

 fixed. In other words, 𝑄𝑍maps 𝐴𝑝 onto 𝐼𝑍
𝑝
 and acts as the identety 

opesorator on 𝐼𝑍
𝑝
, 𝑄𝑍 is abounded projection from 𝐴𝑝 onto 𝐼𝑍

𝑝
. 

    For  any 𝑟 ∈ (0,∞) the equation  

1 − |𝑧|2

|1 − 𝑧|2
= 𝑟 

defines a circle 𝐶𝑟  internally tangent to the unit circle at the point 1. In fact, the above 

equation can easily be transformed to the standard from of a circle, 

|𝑧 −
𝑟

1+ 𝑟
|
2

=
1

(1+ 𝑟)2
. 

Such circles are called orocycles, [89]. 

     As 𝑟 runs from 0 to ∞, the orocycles 𝐶𝑟 non-overlappingly fill up the whole disk 𝔻. Since 

the orocycle 𝐶𝑟 has Euclidean center at 
𝑟

1+𝑟
 and Euclidean radius 

1

1+𝑟
, we can parameterize 

the unit disk as follows, 

𝑧 = 𝑧(𝑟, 𝜃) =
𝑟

1+ 𝑟
+

1

1+ 𝑟
𝑒𝑖𝜃,     0 ≤ 𝑟 < ∞, 0 ≤ 𝜃 ≤ 2𝜋 

This parameterization will be called the oro-coordinates of 𝔻. 

Lemma(4.2.6):[81]    Suppose that 𝑔 is Lebesgue measurable on 𝔻. If 𝑔 is non-negative or 

belongs to 𝐿1(𝔻,𝑑𝐴), then  

∫𝑔(𝑧)𝑑𝐴(𝑧)

 

𝔻

=
1

𝜋
∫ ∫ 𝑔(𝑟, 𝜃)

1− cos 𝜃

(1 + 𝑟)3
𝑑𝑟𝑑𝜃

2𝜋

0

∞

0

 

Where 𝑔(𝑟, 𝜃) = 𝑔(𝑧(𝑟, 𝜃)) is the function 𝑔 in oro-coordinates. 

Oro-coordinates are especially suitable for studying the singular inner functions 
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𝑆𝜎(𝑧) = exp (−𝜎
1+ 𝑧

1− 𝑧
), 

Where 𝜎  is any positive constant (called the mass of  𝑆𝜎). By definition, the orocycles 𝐶𝑟 are 

the level curves of  𝑆𝜎 . More specifically, we have  

|𝑆𝜎(𝑧)| = 𝑒
−𝜎𝑟 ,      𝑧 = 𝑧(𝑟, 𝜃) 

The function 1− 𝑧 also plays a special role in oro-coordinates, namely, 

|1 − 𝑧| =
|1 − 𝑒𝑖𝜃|

1 + 𝑟
,    𝑧 = 𝑧(𝑟, 𝜃), 

and  

|1 − 𝑧|2 =
2(1− cos 𝜃)

(1+ 𝑟)2
,    𝑧 = 𝑧(𝑟, 𝜃). 

Lemma(4.2.7):[81]       Suppose that 𝑔 is Lebesgue integrable on 𝔻. If 𝑔 is non-negative or 

belongs 𝐿1(𝔻,𝑑𝐴), then  

∫𝑔(𝑧)𝑑𝐴(𝑧)

 

𝔻

=
1

2𝜋
∫ 𝑑𝑟

∞

0

∫𝑔(𝜁)|1− 𝜁|2|𝑑𝜁|

 

𝐶𝑟

. 

Lemma(4.2.8):[81]     Let 𝑓 be analytic on the closed unit disk �̅� except at 𝑧 = 1. Suppose 

that |𝑓(𝑧)| ≤ 𝑀 for all |𝑧| = 1 with 𝑧 ≠ 1, 

lim sup
𝑧→1

|1 − 𝑧|2 log|𝑓(𝑧)| ≤ 0 

and   

lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ 0 

Then |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝔻. 

Proof:    The fractional liner transformation  

𝜔 =
1 + 𝑧

1 − 𝑧
 

maps  the unit disk to the right half-plane and the unit circle to the imaginary axis. It also 

transforms the function 𝑓 to function 𝑔 on the right half-plane. 

The  assumptions on 𝑓 translate into the following assumptions on 𝑔: |𝑔(𝜔)| ≤ 𝑀 for all 𝜔 

on the imaginary axis, 

lim
𝜔→∞

sup
log|𝑔(𝜔)|

|𝜔|2
≤ 0 
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where 𝑅𝑒 𝜔 > 0, and  

lim
𝑥→+∞

sup
log|𝑔(𝑥)|

|𝑥|2
≤ 0 

Fix any small 𝜖 > 0 and consider the function  

𝑔𝜖(𝜔) = 𝑔(𝜔)𝑒
−𝜖𝜔  

on  the first quadrant Ω of the 𝜔-plane, which is between two straight lines making an angle 

of 𝜋/2 at the origin. 

It is easy to see that the assumptions on 𝑔 imply that |𝑔𝜖(𝜔)| ≤ 𝑀 for all 𝜔 on the imaginary 
axis, 

𝑔𝜖(𝜔) = 𝑂(exp(𝛿|𝜔|
2)),    𝜔 ∈ Ω 

where 𝛿 is any positive number, and 

lim
𝑥→+∞

𝑔𝜖(𝑥) = 0 

In particular, the function 𝑔𝜖  is also bounded on the positive real axis. Now using the 

Phrame’n-Lindelof theorem quoted before this lemma (with 𝛼 = 2) and mimicking  the proof 

in [86,87], we obtain |𝑔𝜖(𝜔)| ≤ 𝑀 for all 𝜔 ∈ Ω.letting 𝜖 → 0, we conclude that  |𝑔(𝜔)| ≤
𝑀 for all 𝜔 ∈ Ω.  

Exactly  the same argument shows that |𝑔(𝜔)| ≤ 𝑀 for all 𝜔 in the fourth quadrant of the 𝜔-
plane. 

Proposition(4.2.9):[81]    Suppose that 0 < 𝑝 < ∞  and 0 < 𝜎 < ∞. A function 𝑓 ∈ 𝐻𝑝 
belongs to 𝑆𝜎𝐻

𝑝 if and only if  

lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ −2𝜎 

Proof:    It is easy to see that 

lim
𝑥→1−

(1− 𝑥)log|𝑆𝜎| = −2𝜎 

If 𝑔 is an arbitrary function in 𝐻𝑝, then  [83]  

|𝑔(𝑧)| ≤
𝑀

(1− |𝑧|2)
1
𝑝

 

for all 𝑧 ∈ 𝔻, where 𝑀 is a positive constant, and so 

lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ 0 

This shows that if 𝑓 = 𝑆𝜎𝑔, where 𝑔 ∈ 𝐻𝑝, then 
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lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| = lim sup
𝑥→1−

(1 − 𝑥) [log|𝑆𝜎(𝑥)|+ log|𝑔|] ≤ −2𝜎 

To prove the other direction, we assume that 𝑓 belong to 𝐻𝑝 and satisfies the condition  

lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ −2𝜎 

Then for each 𝑛 ≥ 1 the function 

𝑔𝑛(𝑧) =
𝑓(𝑧)

𝑆𝜎(𝑧)
 [
𝑛(1− 𝑧)

𝑛(1 − 𝑧) + 1
]

2
𝑝

 

satisfies  

lim sup
𝑥→1−

(1− 𝑥)log|𝑔𝑛(𝑥)| ≤ 0 

since |𝑓(𝑧)|(1− |𝑧|2)
1

𝑝  is bounded in 𝔻  and the functions 1− |𝑧|2  and |1 − 𝑧|2  are 

comparable on any orocycle, we see that each function 𝑔𝑛 is bounded on 𝐶𝑟 (recall that 𝑆𝜎  

has constant modulus on 𝐶𝑟). Inside 𝐶𝑟, we have  

|1 − 𝑧|2 log |
1

𝑆𝜎(𝑧)
| = 𝜎(1− |𝑧|2) 

and  

|1 − 𝑧|2 log|𝑓(𝑧)| ≤
1 − |𝑧|2

𝑟
log|𝑓(𝑧)| ; 

which clearly implies that  

lim
𝑧→1
 sup|1 − 𝑧|2 log|𝑔𝑛(𝑧)| ≤ 0 

By Lemma(4.2.8) and the remark following it, each function 𝑔𝑛 is bounded inside 𝐶𝑟. Since 

|𝑔𝑛| is dominated by |𝑓| outside 𝐶𝑟, we can find a positive constant 𝑀𝑛 such that  

|𝑔𝑛(𝑧)| ≤ 𝑀𝑛(1 + |𝑓(𝑧)|) 

for all 𝑧 ∈ 𝔻. In particular, each 𝑔𝑛 belongs to 𝐻𝑝. 

Let 𝑓𝑛 = 𝑆𝜎𝑔𝑛 . Then |𝑓𝑛(𝑧)| ≤ |𝑓(𝑧)|  and 𝑓𝑛(𝑧) → 𝑓(𝑧)  for all 𝑧 ∈ 𝔻 . This shows that 
‖𝑓𝑛 − 𝑓‖𝐻𝑝 → 0  as 𝑛 → ∞. Since each 𝑓𝑛 is in 𝑆𝜎𝐻

𝑝 and 𝑆𝜎𝐻
𝑝 is closed in 𝐻𝑝, we conclude 

that 𝑓 ∈ 𝑆𝜎𝐻
𝑝. 

   A consequence of the above result is that an inner function 𝜑 is divisible by 𝑆𝜎  if and only 

if  

lim sup
𝑥→1−

(1− 𝑥)log|𝜑(𝑥)| ≤ −2𝜎 

In particular, if 𝐵 is Blaschke product, then 
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lim sup
𝑥→1−

(1− 𝑥) log|𝐵(𝑥)| = 0 

Now consider the mapping  

𝑧 =
𝑟

1+ 𝑟
+

1

1+ 𝑟
𝜔 

which maps the unit circle |𝜔| = 1 to the orocycle 𝐶𝑟, and the unit disk |𝜔| < 1 onto the 

interior of 𝐶𝑟. The invers of the above mapping is given by 

𝜔 = (1 + 𝑟) (𝑧 −
𝑟

1+ 𝑟
) 

Using these conformal mappings, and using the well-known theory of Hardy spaces of the 
unit disk 𝔻, we easily realize 𝐻𝑝(𝐶𝑟) as a closed subspace of 𝐿𝑝(𝐶𝑟, 𝑑𝑚𝑟), where 𝑑𝑚𝑟 is the 

normalized arc-length measure on 𝐶𝑟 . In particuler, the following norm estimate for the 

Cauchy transform is a consequence of the above change of variables and the classical 𝑀. 

Riesz theorem  [83]  for the unit circle. 

Lemma(4.2.10):[81]     For each 1 < 𝑝 < ∞ the Cauchy transform 

𝑄𝑓(𝑧) =
1

2𝜋𝑖
∫
𝑓(𝜁)𝑑𝜁

𝜁 − 𝑧

 

𝐶𝑟

 

is a projection from 𝐿𝑝(𝐶𝑟 ,𝑑𝑚𝑟) onto 𝐻𝑝(𝐶𝑟). Morever, there exists a positive constant 𝑀𝑝, 

independent of  𝑟, such that 

∫|𝑄𝑓(𝑧)|𝑝|𝑑𝑧|

 

𝐶𝑟

≤ 𝑀𝑝 ∫|𝑓(𝑧)|
𝑝|𝑑𝑧|

 

𝐶𝑟

 

for all 𝑓 ∈ 𝐿𝑝(𝐶𝑟, 𝑑𝑚𝑟). 

Lemma(4.2.11):[81]    If 𝑓 ∈ 𝐴𝑝, then the function (1− 𝑧)
2

𝑝𝑓(𝑧) belongs to 𝐻𝑝(𝐶𝑟). 

 Proof:    Since |1 − 𝑧|2  is comparable to 1− |𝑧|2  on 𝐶𝑟, it is easy to see that the measure 

|1 − 𝑧|2𝑑𝑚𝑟(𝑧) is Carleson-type measure for 𝐴𝑝; [88]. 

This shows that the function 

𝑔(𝑧) = (1− 𝑧)
2
𝑝𝑓(𝑧) 

is in 𝐿𝑝(𝐶𝑟, 𝑑𝑚𝑟) . Inside 𝐶𝑟, |1 − 𝑧|
2  is dominated by 1 − |𝑧|2  and 𝑓(𝑧)  grows at a 

maximum rate of (1− |𝑧|2)
−
2

𝑝  [85], so the function (1− 𝑧)𝑁𝑓(𝑧) is bounded in 𝐶𝑟 when 
𝑁 > 4/𝑝. It follows that 𝑔 can be represented as a bounded analytic function in 𝐶𝑟 divided 

by a certain power of 1 − 𝑧. In particular, 𝑔 is in 𝐻𝑞(𝐶𝑟) when 𝑞 is small enough. By [89] 

and the conclusion of the previous paragraph, 𝑔 belongs to Hardy space 𝐻𝑝(𝐶𝑟). 
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Lemma(4.2.12):[81]     Every function 𝑓 ∈ 𝐻𝑝(𝐶𝑟) satisfies  

 

limsup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ 0 

Moreover, a function 𝑓 ∈ 𝐻𝑝(𝐶𝑟) belongs to the closed subspace 𝑆𝜎𝐻
𝑝(𝐶𝑟) if and only if  

lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ −2𝜎 

Proof:   This follows from proposition(4.2.9) via the conformal mapping 

      

𝑧 =
𝑟

1+ 𝑟
+

1

1+ 𝑟
𝜔 

from the unit disk to the interior of 𝐶𝑟. Note that the point mass 𝜎 at 𝑧 = 1 on 𝐶𝑟 transforms 
to the point mass 𝜎(1+ 𝑟) at 𝑧 = 1 on the unit circle. More specifically, if 𝑧 and 𝜔 are 

related as above, then 

𝑆𝜎(1+𝑟)(𝜔) = 𝑐𝑆𝜎(𝑧) 

where 𝑐 = 𝑒𝜎𝑟  is a constant. 

Proposition(4.2.13):[81]       Suppose that  0 < 𝑝 < ∞ and 𝑓 ∈ 𝐴𝑝. Then 𝑓 ∈ 𝐼𝜎
𝑝
 if and only 

if  

lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ −2𝜎 

Proof:    It is well  known  [90,85] that the extremal problem  

sup{𝑅𝑒 𝑓(0):𝑓 ∈ 𝐼𝜎
𝑝
, ‖𝑓‖𝑝 ≤ 1} 

has a unique solution which is given by the formula 

𝐺(𝑧) = (1+ 𝑝𝜎)
−
1
𝑝 (1+

𝑝𝜎

1 − 𝑧
)

2
𝑝
𝑆𝜎(𝑧) 

This is called the extremal function of 𝐼𝜎
𝑝
. Furthermore, if 𝑓 ∈ 𝐼𝜎

𝑝
, then  ‖

𝑓

𝐺
‖
𝑝
≤ ‖𝑓‖𝑝. 

Now if a function 𝑓 ∈ 𝐴𝑝  belongs to 𝐼𝜎
𝑝

, then 𝑓 = 𝐺𝑔, where 𝐺  is the extremal function 

mentioned in the previous paragraph and 𝑔 ∈ 𝐴𝑝. It is well known  [85]  that every function 

𝑔 in 𝐴𝑝 satisfies 

|𝑔(𝑧)|𝑝 ≤
𝑀

(1− |𝑧|2)2
,    𝑧 ∈ 𝔻, 

where 𝑀 is a positive constant, so  
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lim sup
𝑥→1−

(1− 𝑥) log|𝑔(𝑥)| ≤ 0 

Since  

lim sup
𝑥→1−

(1− 𝑥) log|𝐺(𝑥)| = −2𝜎 

we conclude that 

lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ −2𝜎 

The proof of the other direction is similar to the corresponding part in Proposition (4.2.9), 
except here we use the functions 

𝑔𝑛(𝑧) =
𝑓(𝑧)

𝑆𝜎  (𝑧)
[
𝑛(1− 𝑧)

𝑛(1− 𝑧) + 1
]

4
𝑝

. 

Corollary(4.2.14):[81]    Suppose that 0 < 𝑝 < ∞  and 𝑓 ∈ 𝐴𝑝 . Then the following 
conditions are equivalent. 

(i) 𝑓 belongs to 𝐼𝜎
𝑝
. 

(ii) The function (1− 𝑧)
2

𝑝𝑓(𝑧) belongs to 𝑆𝜎𝐻
𝑝(𝐶𝑟) for every 𝑟 > 0. 

(iii) The function (1− 𝑧)
2

𝑝𝑓(𝑧) belongs to 𝑆𝜎𝐻
𝑝(𝐶𝑟) for some  𝑟 > 0. 

Lemma(4.2.15):[81]   For 1 ≤ 𝑝 < ∞ we define an operator 𝑄𝑝 acting on 𝐴𝑝 as follows. 

𝑄𝑝𝑓(𝑧) = (1− 𝑧)
−
2
𝑝𝑆𝜎(𝑧) ∫

𝑓(𝜁)(1− 𝜁)
2
𝑝

𝑆𝜎(𝜁)(𝜁 − 𝑧)
 
𝑑𝜁

2𝜋𝑖

 

𝐶𝑟

, 

where 𝑟  is any positive number such that 𝑧 lies inside 𝐶𝑟 . Then the integra above is 

independent of 𝑟 so long as 𝑧 lies inside 𝐶𝑟. 

Theorem(4.2.16):[81]       For any 1 < 𝑝 < ∞ the operator 𝑄𝑝 above is a bounded porjection 

from 𝐴𝑝 onto 𝐼𝜎
𝑝
. Furthermor, 𝑄2  is the orthogonal projection from 𝐴2 onto 𝐼𝜎

𝑝
. 

Proof:     We first prove that 𝑄𝑝 is bounded on 𝐴𝑝. To this end, fix 𝑓 ∈ 𝐴𝑝 and let  

𝑓(𝑧) = ∫
𝑓(𝜁)(1− 𝜁)

2
𝑝

𝑆𝜎(𝜁)(𝜁 − 𝑧)
 
𝑑𝜁

2𝜋𝑖

 

𝐶𝑟

,        𝑧 ∈ 𝔻, 

where 𝐶𝑟 is any orocycle such that 𝑧 is inside it. By Lemma(4.2.7), we have  

∫|𝑄𝑝𝑓(𝑧)|
𝑝
𝑑𝐴(𝑧)

 

𝔻

=
1

2𝜋
∫ 𝑒−𝑝𝜎𝑟𝑑𝑟

∞

0

∫|𝑓(𝜁)|
𝑝
|𝑑𝜁|

 

𝐶𝑟

. 
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For any fixed 𝑟 > 0, the values of 𝑓 in the disk enclosed by 𝐶𝑟 can be computed using the 
same circle 𝐶𝑟 and the resulting function is simply the cauchy transform of the following 

function in 𝐿𝑝(𝐶𝑟, |𝑑𝑧|). 

𝑓(𝜁)(1− 𝜁)
2
𝑝

𝑆𝜎(𝜁)
,        𝜁 ∈ 𝐶𝑟 . 

By Lemma(4.2.1), there exists a constant 𝑀𝑝, independent of 𝑟 and 𝑓, such that  

∫|𝑓(𝜁)|
𝑝
|𝑑𝜁|

 

𝐶𝑟

≤ 𝑀𝑝 ∫|
𝑓(𝜁)(1− 𝜁)

2
𝑝

𝑆𝜎(𝜁)
|

𝑝

|𝑑𝜁|

 

𝐶𝑟

 

It follows that  

∫|𝑄𝑝𝑓(𝑧)|
𝑝
𝑑𝐴(𝑧)

 

𝔻

≤
𝑀𝑝
2𝜋
∫ 𝑒−𝑝𝜎𝑟𝑑𝑟

∞

0

∫𝑒𝑝𝜎𝑟 |𝑓(𝜁)|𝑝|1− 𝜁|2|𝑑𝜁|

 

𝐶𝑟

= 𝑀𝑝 ∫|𝑓(𝑧)|
𝑝𝑑𝐴(𝑧)

 

𝔻

, 

where Lemma(4.2.7) was used again (for the last equality above). This shows that 𝑄𝑝  is 

bounded operator on 𝐴𝑝. 

Next we show that 𝑄𝑝 maps 𝐴𝑝 into 𝐼𝜎
𝑝
. Fix any 𝑟 > 0 and consider the function 𝑄𝑝𝑓 in the 

orocycle 𝐶𝑟. Thus for 𝑧 inside 𝐶𝑟 we have  

𝑄𝑝𝑓(𝑧) = (1− 𝑧)
−
2
𝑝𝑆𝜎(𝑧)𝑓(𝑧), 

where  

𝑓(𝑧) = ∫
𝑓(𝜁)(1− 𝜁)

2
𝑝

𝑆𝜎(𝜁)(𝜁 − 𝑧)
 
𝑑𝜁

2𝜋𝑖

 

𝐶𝑟

. 

Since 𝑓 belongs to 𝐻𝑝(𝐶𝑟), Lemma (4.2.12) gives us  

lim sup
𝑥→1−

(1− 𝑥) log|𝑓(𝑥)| ≤ 0 

This then implies that  

lim sup
𝑥→1−

(1− 𝑥) log|𝑄𝑝𝑓(𝑥)| ≤ −2𝜎 

By Proposition (4.2.13), we have 𝑄𝑝𝑓 ∈ 𝐼𝜎
𝑝
. 

That 𝑄𝑝 acts as the identity operator on 𝐼𝜎
𝑝
 is a consequence of Corollary (4.2.14) and the 

reproducing property of the Cauchy transform on 𝐻𝑝(𝐶𝑟). 
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Finally, observe that Cauchy transform is orthogonal projection from 𝐿2(𝐶𝑟, 𝑑𝑚𝑟) onto 

𝐻2(𝐶𝑟). Examining the arguments in the first paragraph of this proof, we realize that the 

projection 𝑄2  has norm 1 on 𝐴2, which forces 𝑄2to be an orthogonal projection. 

   If 𝑄 is any projection on a Hilbert space 𝐻, then it is an orthogonal projection if and only if 
‖𝑄‖ = 1 . It is of coures well known that every orthogonal has norm 1. When 𝑄, whose 

associated  direct sum decomposition is qiven by  

𝐻 = ran(𝑄)+ ker(𝑄); 

is not orthogonal, there must exist unit vectors 𝑓 ∈ ran(𝑄)  and 𝑔 ∈ ker(𝑄)  such that 
〈𝑓,𝑔〉 > 0. For any positive 𝜖 the vector ℎ = 𝑓 − 𝜖𝑔 satisfies ‖𝑄ℎ‖ = ‖𝑓‖ and  

‖𝑓‖2 − ‖ℎ‖2 = 𝜖(2〈𝑓, 𝑔〉− 𝜖). 

If we choose 𝜖  such that 0 < 𝜖 < 2〈𝑓,𝑔〉, then ‖𝑄ℎ‖ > ‖ℎ‖, so the norm of 𝑄 is qreater than 

1. 

from 𝐴2  onto 𝐼𝜎
𝑝

 can be used to calculate the extremal function 𝐺  of  𝐼𝜎
𝑝

. In fact, it is 
elementary to see that  

𝐺(𝑧) =
𝑄2(1)(𝑧)

√𝑄2(1)(0)
,       𝑧 ∈ 𝔻. 

When calculating 𝑄1(1)(𝑧) we may let 𝑟 → 0+ and obtain  

𝑄2(1)(𝑧) =
𝑆𝜎(𝑧)

2𝜋𝑖(1− 𝑧)
∫
�̅�𝜎(𝜁)(1− 𝜁)

𝜁 − 𝑧
𝑑𝜁

 

|𝜁|=1

=
𝑆𝜎(𝑧)

1 − 𝑧
[𝑆𝜎(0)− 𝑆𝜎(0)𝑧 − �́�𝜎(0)]

= 𝑒−𝜎𝑆𝜎(𝑧) (1 +
2𝜎

1− 𝑧
). 

It follows that  

𝐺(𝑧) =
1

√1+ 2𝜎
(1 +

2𝜎

1− 𝑧
)𝑆𝜎(𝑧). 

In general, if 𝐾𝜎(𝑧, 𝜔) is the reproducing kernel of 𝐼𝜎
𝑝
, then  

𝐾𝜎(𝑧, 𝜔) = 𝑄2(𝐾𝜔)(𝑧),   𝐾𝜔(𝑧) = (1− 𝑧�̅�)
−2   

An explicit formula for 𝐾𝜎(𝑧, 𝜔) is bounded in [91] by a different method. 

Section(4.3): Spaces of Analytic Functions 

     Let 𝑑 ≥ 1, 𝛺 ⊆ ℂ𝑑 be an open, connected, and nonempty set, and let ℋ ⊆ 𝐻𝑜𝑙(𝛺) be a 
reproducing kernel Hilbert space. If 𝜑 ∈ Hol(𝛺) such that 𝜑𝑓 ∈ ℋ for all 𝑓 ∈ ℋ, then 𝜑 is 

called a multiplier and 𝑀𝜑𝑓 = 𝜑𝑓 defines a bounded linear operator on  ℋ. We use ℳ(ℋ) 

to denote the multiplier algebra of ℋ,ℳ(ℋ) = {𝑀𝜑 ∈ ℬ(ℋ) ∶ 𝜑 is a multiplier}. 
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   A sub algebra  𝒜 ⊆ ℬ(ℋ) is called a transitive algebra if it contains the identity operator 

and if it has no nontrivial common invariant subspaces. It is a longstanding open question 
(due to Kadison), called the transitive algebra problem, to decide whether every transitive 

algebra is dense in ℬ(ℋ) in the strong operator topology. If that were the case, then, as is 
well-known, it would easily follow that every 𝑇 ∈ ℬ(ℋ) which is not a scalar multiple of the 

identity has a nontrivial hyper invariant subspace [93]. Recall that a subspace ℳ is called 

hyperinvariant for an operator 𝐴, if it is invariant for every bounded operator that commutes 

with 𝐴. 

   Arveson was the first to systematically study the transitive algebra problem. We say that an 
operator 𝐴 (respectively an algebra 𝒜) has the transitive algebra property, if every transitive 

algebra that contains 𝐴(respectively 𝒜) is strongly dense in ℬ(ℋ). Arveson showed that any 

maximal abelian self-adjoint subalgebra and the unilateral shift have the transitive algebra 

property. [93]. 

   Arveson’s approach requires a detailed knowledge of the invariant subspace structure of the 
operator or the algebra that is to be shown to have the transitive algebra property. Thus based 
on information about the invariant subspaces of the Dirichlet space Richter was able to use 

Arveson’s approach to establish that the Dirichlet shift has the transitive algebra property, 
[94]. Then more generally Chong, Guo and Wang, [97], followed a similar strategy to show 

among other things that ℳ(ℋ) has the transitive algebra property, whenever ℋ  has a 
complete Nevanlinna–Pick kernel, i.e. if the reproducing kernel 𝑘𝜆 (𝑧) for ℋis of the form 

𝑘𝜆(𝑧) =
𝑓(𝜆)̅̅ ̅̅ ̅̅𝑓(𝑧)

1−𝑢𝜆(𝑧)
, where 𝑓  is an analytic function and 𝑢𝜆(𝑧)  is positive definite and 

sesquianalytic.  

   We was motivated by the desire to decide which other multiplier algebras have the transitive 
algebra property. Although we did not obtain any specific answers, the investigations lead us 

to consider some interesting questions related to the invariant subspace structure of ℳ(ℋ) 
see [95]. 

For its statement we need to define invariant graph subspaces. If 𝑁 > 1  then 

ℋ (𝑁)denotes the direct sum of 𝑁 copies of ℋ, and for an operator 𝐴 ∈ ℬ(ℋ)𝐴(𝑁) is the 𝑁-

fold ampliation of 𝐴, 𝐴(𝑁) :ℋ (𝑁) → ℋ (𝑁), 𝐴(𝑁) (𝑥1, . . . , 𝑥𝑁)  = (𝐴𝑥1, . . . , 𝐴𝑥𝑁). 

   If 𝒜 ⊆ ℬ(ℋ) is an algebra of bounded operators on ℋ, then a closed subspace ℳ⊆ℋ (𝑁)  
is called an invariant graph subspace for 𝒜 if there is a linear manifold 𝒟 ⊆ ℋ and linear 

transformations 𝑇1 , . . . , 𝑇𝑁−1:𝒟 → ℋsuch that  

ℳ = {(𝑥, 𝑇1𝑥, . . . , 𝑇𝑁−1𝑥): 𝑥 ∈ 𝒟}                                                               (30)  

and such that 𝐴(𝑁)ℳ⊆ℳ for every 𝐴 ∈ 𝒜. The transformations 𝑇1 , . . . , 𝑇𝑁−1  are called 
linear graph transformations for 𝒜 . Note that if a linear manifold 𝒟  and linear 

transformations 𝑇1 , . . . , 𝑇𝑁−1:𝒟 → ℋare given, then (30) defines an invariant graph subspace 

for 𝒜, if and only if ℳ is closed, 𝐴𝒟 ⊆ 𝒟 for every 𝐴 ∈𝒜, and 𝐴𝑇𝑖 = 𝑇𝑖𝐴 on 𝒟 for each 

𝑖 = 1, . . . , 𝑁 − 1. Thus the graph transformations for 𝑁 = 2 correspond to the closed linear 

transformations that commute with 𝒜. Arveson’s Lemma states that a transitive algebra 𝒜 

is strongly dense in ℬ(ℋ) if and only if the only linear graph transformations for 𝒜 are 

multiples of the identity operator, [96].  
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Theorem(4.3.1):[92]    Let ℋ ⊆ Hol(𝛺) be a reproducing kernel Hilbert space. ℳ(ℋ) has 

the transitive algebra property if and only if the following condition is satisfied: 

Whenever 𝑁 > 1 and  

ℳ= {(𝑓, 𝑇1𝑓, . . . , 𝑇𝑁−1𝑓):𝑓 ∈ 𝒟} ⊆ ℋ
(𝑁)  

is an invariant graph subspace of ℳ(ℋ) such that for each  𝛼 = (𝛼0 , . . . , 𝛼𝑁−1) ∈ ℂ
𝑁, 𝛼 ≠

(0, . . . , 0) the linear transformation  

𝐿𝛼 ∶ 𝒟 →ℋ, 𝐿𝛼 = �̅�0𝐼 +∑�̅�𝑖𝑇𝑖

𝑁−𝑖

𝑖=1

  

is 1–1 and has dense range, then  

𝒜ℳ = {𝐴 ∈ ℬ(ℋ) ∶ 𝐴𝒟 ⊆  𝒟: 𝐴𝑇𝑖𝑓 = 𝑇𝑖𝐴𝑓   ∀𝑓 ∈ 𝒟} 

has nontrivial invariant subspaces. 

It is easy to see that for any invariant graph subspace ℳ the collection 𝒜ℳ  is a strongly 

closed algebra, contains ℳ(ℋ), and that ℳ is an invariant graph subspace for 𝒜ℳ . 𝒜ℳ  is 
the largest algebra that has ℳ as an invariant graph subspace.  It is clear that for any 𝛼 ∈ ℂ𝑛  

the closures of ker𝐿𝛼 and ran 𝐿𝛼 are invariant subspaces for 𝒜ℳ . We will say that 𝒜ℳ  does 

not have any nontrivial invariant subspaces that are determined by linear relations of the graph 

transformations, if for each 𝛼 ∈ ℂ𝑛  we have ker𝐿𝛼̅̅ ̅̅ ̅̅ ̅̅ , ran𝐿𝛼̅̅ ̅̅ ̅̅ ̅̅ ∈ {(0),ℋ} . With this 

terminology one easily checks that the condition in Theorem (4.3.1)is equivalent to the two 
conditions: 

(i) the set {𝐼, 𝑇1 , . . . , 𝑇𝑁−1} is linearly independent, and 
(ii) 𝒜ℳ  does not have any nontrivial invariant subspaces that are determined by linear 

relations of the graph transformations. 

We note that 𝒟 = ran𝐿𝛼 for 𝛼 = (1,0, . . . , 0). Thus condition (ii) implies that 𝒟 is 

dense in ℋ. 

   A useful invariant in the study of invariant subspaces ℳ⊆ℋ𝑁 is the fiber dimension of 

ℳ. It is defined as follows. If 𝜆 ∈ 𝛺, if 𝑁 ≥ 1, and if ℳ⊆ℋ (𝑁)  is a subspace, then the fiber 

of ℳ at 𝜆 is  

ℳ𝜆 = {(𝑓1(𝜆), . . . , 𝑓𝑁 (𝜆)): (𝑓1 , . . . , 𝑓𝑁) ∈ ℳ}⊆ ℂ
𝑁 . 

The fiber dimension of ℳ is  

fdℳ = sup
𝜆∈𝛺

dimℳ𝜆  .  

     A simple argument using determinants shows that fdℳ = dimℳ𝜆  for all  𝜆 ∈ 𝛺\𝐸 , 

where 𝐸 is the zero set of some nontrivial analytic function on 𝛺, [17]. 

    If ℳ⊆ℋ𝑁 is an invariant graph subspace, then it is easy to see that  



 
93 

ℳ𝜆
⊥ = {𝛼 ∈ ℂ𝑁 : 𝑘𝜆 ⊥  ran 𝐿𝛼}, 

see Lemma (4.3.10). Thus, the condition that ran𝐿𝛼 is dense implies that ℳ has full fiber 

dimension at each point, i.e.ℳ𝜆 = ℂ
𝑁  for all 𝜆 ∈ 𝛺 such that 𝑘𝜆 ≠ 0 . It follows that the 

invariant graph subspaces ℳ considered in Theorem (4.3.1) all have fiber dimension 𝑁 > 1. 

   We will see that whenever fdℳ> 1 , then 𝒜ℳ ≠ ℬ(ℋ) , see Proposition (4.3.8). In 

particular, we note that any 𝒜ℳ  as above that is transitive would be a counterexample to the 

transitive algebra problem. 

If ℋ has a complete Nevanlinna–Pick kernel then every nonzero invariant graph subspace of 

ℳ(ℋ) has fiber dimension one. Thus the condition of the theorem is trivially satisfied, 

because there is no invariant graph subspace of ℳ(ℋ) that satisfies the hypothesis of the 

condition  [97]. 

    This means that it becomes a question of interest to decide for which spaces ℋ one can 
construct examples of invariant graph subspaces which satisfy the condition of Theorem 

(4.3.1). We will outline a strategy for constructing such invariant graph subspaces (in the case 
𝑁 = 2), and we will discuss what other nontrivial invariant subspaces the algebra 𝒜ℳ  may 

have. We will show that this can be carried out for the Bergman space 𝐿𝑎
2 . 

Example(4.3.2):[92]     Let  ℋ ⊆ Hol(𝛺) be a reproducing kernel Hilbert space, let 𝜑,𝜓 be 

multipliers such that 
1

𝜑−𝜓
 is a multiplier, and let ℒ,𝒩 ⊆ ℋ  be closed nonzero invariant 

subspaces of  ℳ(ℋ) such that 𝒩∩ ℒ = (0).Then with 𝒟 =𝒩 +ℒ and 𝑇(𝑓 + 𝑔) = 𝜑𝑓 +
𝜓𝑔  the space ℳ = {(ℎ,𝑇ℎ) ∶ ℎ ∈ 𝒟} is an invariant graph subspace of ℳ(ℋ)  of fiber 

dimension 2. 

     Examples of invariant subspaces with 𝒩∩ ℒ = (0) can be based on zero sets. Recall that 

a set 𝐸 ⊆ 𝛺 is called a zero set for ℋ if 𝐼(𝐸) = {𝑓 ∈ ℋ:𝑓(𝜆) = 0 ∀𝜆 ∈ 𝐸} ≠ (0). Then if 

𝐴, 𝐵 ⊆ 𝛺 are zero sets for ℋ such that 𝐴 ∪ 𝐵 is not a zero set for ℋ, one checks that 𝐼(𝐴) 
and 𝐼(𝐵) are invariant subspaces with 𝐼(𝐴) ∩ 𝐼(𝐵)  = (0). [9], for a concrete example of this. 
For 𝑆 ⊆ ℋ let 𝑍(𝑆) = {𝜆 ∈ 𝔻 ∶ 𝑓(𝜆)  = 0 ∀𝑓 ∈ 𝑆}. It turns out that if in Example(4.3.2) 𝜆 ∈
𝑍(𝒩) ∪ 𝑍(ℒ), then dimℳ𝜆 < 2.  

Theorem(4.3.3):[92]   Let ℋ ⊆ Hol(𝔻)  be such that ℳ(ℋ) = {𝑀𝑢: 𝑢 ∈ 𝐻
∞}  with 

equivalence of norms, ran(𝑀𝑧− 𝜆)  is closed for all |𝜆|  < 1 , and dimℋ/𝑧ℋ = 1 . Let 

𝜑,𝜓 ∈ 𝐻∞  such that 1/(𝜑−𝜓) ∈ 𝐻∞  and let 𝒩,ℒ ⊆ ℋ  be ℳ(ℋ)-invariant subspaces 

such that 

(i) 𝒩∩ ℒ = (0), 
(ii) 𝒩+ℒ is dense in ℋ, 

(iii) 𝑍(𝒩) = 𝑍(ℒ)  = ∅, 

(iv) the inner–outer factorizations of 𝜑 − 𝜆  and 𝜓 − 𝜆  have no singular inner factor                 

for any 𝜆 ∈ ℂ,  

(v) neither 𝜑 nor 𝜓 is a constant function, 

then ℳ as in Example(4.3.2) satisfies the hypothesis of Theorem(4.3.1). 
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Theorem(4.3.4):[92]   There are two closed subspaces 𝒩,ℒ ⊆ 𝐿𝑎
2  which are invariant for 

ℳ(𝐿𝑎
2 ) and such that 

(i) 𝒩∩ ℒ = (0), 
(ii) 𝒩+ℒ is dense in 𝐿𝑎

2 , and 

(iii) 𝑍(𝒩) = 𝑍(ℒ)  = ∅, 

The Bergman shift has a complicated invariant subspace structure. Thus the above result may 
not come as a surprise. For these perceived complications is the existence of invariant 

subspaces 𝒩 ⊆ 𝐿𝑎
2  of high index, i.e. with dim𝒩⊝𝑧𝒩 > 1, [8,4,22]. The construction is 

independent of the high index phenomenon. We will exhibit a space ℋ ⊆Hol(𝔻) with no 

invariant subspaces of high index, but still admitting the above type of example 
Theorem(4.3.5). 

   For the Bergman space it is a result of Horowitz that there are zero sets whose union is not 
a zero set, [9]. We start with Horowitz’s example and apply a result of Korenblum, which 

shows how to “push” zeros to the boundary 𝜕𝔻, [99]. Then we show that if this is done often 

enough one can end up with the required example. 

   In the constructed examples the algebras 𝒜ℳ  have no nontrivial invariant subspaces that 
are defined by linear relations of the graph transformations. Can one show that they have 

others? We will see that for many choices of 𝜑 and 𝜓 one or both of the subspaces 𝒩 and ℒ 

that were used in the construction of the example turn out to be invariant for 𝒜ℳ . 

Theorem(4.3.5):[93]   Let ℋ ⊆ Hol(𝛺)  be such that ℳ(ℋ) = {𝑀𝑢 : 𝑢 ∈ 𝐻
∞}  with 

equivalence of norms, let 𝜑,𝜓 ∈ 𝐻∞  such that 
1

𝜑−𝜓
∈ 𝐻∞ , and let 𝒩,ℒ ⊆ 𝐻  be closed 

nonzero invariant subspaces of ℳ(ℋ) such that 𝒩∩ ℒ = (0).  Let ℳ  be the invariant 

graph subspace as in Example(4.3.2). 

If  

𝜑(𝔻)\𝜓(𝔻)̅̅ ̅̅ ̅̅ ̅ ≠ ∅, 

then 𝒩 is an invariant subspace for 𝒜ℳ . 

In particular, 𝒜ℳ  has a non-trivial invariant subspace. 

Similarly, if  𝜓(𝔻)\𝜑(𝔻)̅̅ ̅̅ ̅̅ ̅ ≠ ∅,  then ℒ is invariant for 𝒜ℳ . 

   This will be Theorem(4.3.18). It raises the question whether the distinguished subspaces 𝒩 

and ℒ  of Example1(4.3.2) are always invariant for 𝒜ℳ , but we will give an example of 
carefully chosen zero-based invariant subspaces of the Bergman space and 𝐻∞-functions 𝜑 

and 𝜓 that satisfy the hypothesis of  Example(4.3.1), but such that neither 𝒩  nor ℒ  are 

invariant for 𝒜ℳ  (see Example(4.3.24)). 

   A simple way to construct functions 𝜑 and 𝜓 that satisfy the hypothesis of Example(4.3.2) 

and Theorem(4.3.3), but do not satisfy the hypothesis of Theorem(4.3.5) is to let 𝜑 be an 

analytic function that takes the unit disc onto an annulus centered at 0 and to take 𝜓 = 𝑒2𝜋𝑖𝑡𝜑 
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for some 𝑡 ∈ (0,1). In the case that 𝑡 is rational the following theorem implies that 𝒜ℳ  has 

nontrivial invariant subspaces. 

Theorem(4.3.6):[92]    Let ℋ ⊆ Hol(𝛺)  be such that ℳ(ℋ) = {𝑀𝑢: 𝑢 ∈ 𝐻
∞}  with 

equivalence of norms, let 𝜑, 𝜓 ∈ 𝐻∞  such that 
1

𝜑−𝜓
∈ 𝐻∞ , and let 𝒩 , ℒ ⊆ ℋ be closed 

nonzero invariant subspaces of ℳ(ℋ)) such that 𝒩∩ℒ = (0). Let ℳ  be the invariant 

graph subspace as in Example(4.3.2). 

If there is a 𝑢 ∈ Hol(𝜑(𝔻)∪ 𝜓(𝔻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) such that 𝑢 ∘ 𝜑 = 𝑢 ∘ 𝜓, then 𝒜ℳ  has a non-trivial 

invariant subspace. 

Lemma(4.3.7):[92]     ℳ(ℋ) has the transitive algebra property, if and only if the following 

condition holds: 

Whenever ℳ = {(𝑥, 𝑇1𝑥, . . . , 𝑇𝑁−1𝑥) ∶ 𝑥 ∈ 𝒟}  is an invariant graph subspace for ℳ(ℋ) 
such that 𝒟 is dense in ℋ and at least one of the 𝑇𝑖 ’𝑠 is not a multiple of the identity, then 

𝒜ℳ  has nontrivial invariant subspaces. 

Proof:    We start by showing that the condition is sufficient for the transitive algebra property 
of ℳ(ℋ). Let 𝒜 be a transitive algebra that contains ℳ(ℋ). We need to show that 𝒜 is 

strongly dense in ℬ(ℋ). By Arveson’s Lemma it suffices to prove that the only linear graph 
transformations for 𝒜  are multiples of the identity operator, [93]. Thus let ℳ=
{(𝑥, 𝑇1𝑥, . . . , 𝑇𝑁−1𝑥) ∶ 𝑥 ∈ 𝒟}  be an invariant graph subspace of 𝒜 and suppose that there is 

an 𝑖, 1 ≤ 𝑖 ≤ 𝑁 − 1such that 𝑇𝑖  is not a multiple of the identity. Then clearly 𝐷 ≠ (0) and 

since 𝒜 is transitive we must have that 𝒟 is dense in ℋ. Note that we have ℳ(ℋ) ⊆ 𝒜 ⊆
𝒜ℳ . Thus ℳ is an invariant graph subspace for ℳ(ℋ) and hence the hypothesis implies 

that 𝒜ℳ  is not transitive. But since 𝒜 ⊆ 𝒜ℳ  this would imply that 𝒜 is not transitive, a 

contradiction. Hence all 𝑇𝑖  have to be multiples of the identity, and hence 𝒜 is strongly dense 

in ℬ(ℋ). 

   For the converse we suppose that the condition is not satisfied and we will show that ℳ(ℋ) 
then does not have the transitive algebra property. Thus our hypothesis now says that there is 

an invariant graph subspace ℳ of ℳ(ℋ) such that 𝒟 is dense in ℋ, such that one of the 

graph transformations is not a multiple of the identity, and such that 𝒜ℳ  is transitive. Since 

𝒜ℳ  contains ℳ(ℋ) it will be the required example, if we show that 𝒜ℳ is not strongly 

dense in ℬ(ℋ). But all the 𝑇𝑖 ’𝑠 are linear graph transformations for 𝒜ℳ , so the result follows 
from the easy direction of Arveson’s Lemma.  

   The most obvious linear graph transformations are multiplications by meromorphic 
functions. For 𝑓 ∈ ℋ we let [𝑓] be the smallest ℳ(ℋ) invariant subspace containing 𝑓. Let 

𝑓, 𝑔 ∈ℋ, 𝑔 ≠ 0 and  

𝒟 = {ℎ ∈ [𝑔]:
𝑓ℎ

𝑔
∈ [𝑓]}, 

then one easily checks that 𝑇 = 𝑀𝑓

𝑔

 is a closed linear transformation that commutes with 𝑀𝜑 

for all 𝜑 ∈ ℳ(ℋ). Note that 𝒟 contains {𝜑𝑔:∈ ℳ(ℋ)}, thus 𝑇  will be densely defined 

whenever 𝑔 is cyclic in ℋ, i.e. whenever [𝑔] = ℋ.[93,94,96,97]. 
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Proposition(4.3.8):[92]    Let 𝑁 ≥ 2 and ℳ= {(𝑓, 𝑇1𝑓, . . . , 𝑇𝑁−1𝑓) ∶ 𝑓 ∈ 𝒟} ⊆ ℋ
(𝑁)  be an 

invariant graph subspace for ℳ(ℋ) such that 𝒟 ≠ (0). 

(i) Then ℳ has fiber dimension one, if and only if every  𝑇𝑖  is a multiplication. 
(ii) If the fiber dimension of ℳ is one, then either every 𝑇𝑖   is a multiple of the identity 

and 𝒜ℳ = ℬ(ℋ) or 𝒜ℳ  has a nontrivial invariant subspace which is defined by a linear  

relation of the graph transformations. 

(iii) If the fiber dimension of  𝑀 is > 1, then 𝒜ℳ ≠ ℬ(ℋ). 
Proof:    (i)   Suppose for each 𝑖 we have 𝑇𝑖 = 𝑀𝜑𝑖  for some meromorphic function 𝜑𝑖 . Let 

𝑓0 ∈ 𝒟 with 𝑓0 ≠ 0. For 𝜆 ∈ 𝛺 such that 𝑓0(𝜆) ≠ 0 and 𝜆 being not a pole of any of the 𝜑𝑖  
set 

𝑢𝜆 = (𝑓0(𝜆), 𝜑1(𝜆)𝑓0(𝜆), . . . , 𝜑𝑁−1(𝜆)𝑓0(𝜆)) ∈ ℂ
𝑁 . 

Then one easily checks that for any 𝑓 ∈ 𝒟 we have  

(𝑓(𝜆),(𝑇1𝑓)(𝜆), . . . , (𝑇𝑁−1𝑓)(𝜆)) = 𝑓(𝜆)/𝑓0 (𝜆)𝑢𝜆  

Hence  ℳ𝜆 = ℂ𝑢𝜆  and dimℳ𝜆 = 1. This is true for all 𝜆 in an open subset of 𝛺, hence the 

fiber dimension of ℳ must be one. 

Conversely, suppose that ℳ has fiber dimension one, and let 𝑓0 ∈ 𝒟 with 𝑓0 ≠ 0. For 𝑖 =
1, . . . , 𝑁 − 1  set 𝜑𝑖 = 𝑇𝑖𝑓0/𝑓0 . Then 𝜑𝑖  ismeromorphic. 

   Let 𝑆0  be the set of zeros of 𝑓0  and let 𝜆 ∈ 𝔻 \𝑆0. Set  

𝑢𝜆 = (𝑓0(𝜆), (𝑇1𝑓0)(𝜆), . . . , (𝑇𝑁−1𝑓0)(𝜆)). 

Then 0 ≠ 𝑢𝜆 ∈ℳ𝜆 . Thus the hypothesis implies that dimℳ𝜆 = 1, and for each 𝑓 ∈ 𝒟 there 

is 𝑐𝜆 ∈ ℂ such that  

(𝑓(𝜆), (𝑇1𝑓)(𝜆), . . . , (𝑇𝑁−1𝑓)(𝜆)) = 𝑐𝜆𝑢𝜆. 

Hence 𝑐𝜆 = 𝑓(𝜆)/𝑓0(𝜆) and for 𝑖 = 1, . . . , 𝑁 − 1 we have  

(𝑇𝑖𝑓)(𝜆) =  𝑐𝜆(𝑇𝑖𝑓0)(𝜆) = 𝜑𝑖(𝜆)𝑓(𝜆). 

Since 𝑇𝑖𝑓 ∈ ℋ for each 𝑖 we conclude that for every 𝑓 ∈ 𝒟 the function 𝜑𝑖𝑓 extends to be 

analytic in 𝛺 and that 𝑇𝑖  is multiplication by 𝜑𝑖 . 

(ii)  It follows from (i) that each 𝑇𝑖  is a multiplication. Let  𝐸 = {𝜆 ∈ 𝛺: 𝑘𝜆 = 0}, where 𝑘𝜆  is 
the reproducing kernel for ℋ. Since  ℳ ≠ (0) it is clear that 𝛺\𝐸 is a nonempty open set. If 

one of the 𝑇𝑖  is not a multiple of the identity, then 𝑇𝑖 = 𝑀𝜑 where 𝜑 is not constant on 𝛺\𝐸. 

Let 𝜆0 ∈ 𝛺\𝐸, then 𝑇𝑖 −𝜑(𝜆0) is not identically equal to 0 and 𝑘𝜆0 ⊥ ran𝑇𝑖 −𝜑(𝜆0). Thus 

the closure of ran𝑇𝑖 −𝜑(𝜆0) is a nontrivial invariant subspace of 𝒜ℳ . We would say that 

𝒜ℳ  has a nontrivial invariant subspace that is defined by a linear relation of the graph 

transformations.  
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(iii)  If 𝒜ℳ = ℬ(ℋ), then ℳ is an invariant graph subspace of ℬ(ℋ). It follows that each 

linear transformation 𝑇𝑖  is a multiple of the identity, and this implies that the fiber dimension 

of ℳ is one.  

Corollary(4.3.9):[92]    ℳ(ℋ) has the transitive algebra property if and only if the following 
condition holds: 

Whenever ℳ is an invariant graph subspace for ℳ(ℋ) of fiber dimension > 1, then 𝒜ℳ  

has nontrivial invariant subspaces. 

   We will now restrict the class of the invariant graph subspaces that need to be checked by 

excluding the ones where 𝒜ℳ  has nontrivial invariant subspaces defined by linear relations 
of the graph transformations. 

Lemma(4.3.10):[92]   Let ℳ = {(𝑓,𝑇1𝑓, . . . , 𝑇𝑁−1𝑓) ∶ 𝑓 ∈ 𝒟}  ⊆ ℋ
(𝑁)  be an invariant 

graph subspace for ℳ(ℋ), and let 𝜆 ∈ 𝛺, then  

ℳ𝜆
⊥  = {𝛼 ∈ ℂ𝑁 ∶  𝑘𝜆 ⊥  ran 𝐿𝛼  }. 

Here as before for 𝛼 ∈ 𝐶𝑁 we defined  𝐿𝛼 = 𝛼0̅̅ ̅𝐼 + ∑ 𝛼�̅�𝑇𝑖
𝑁−1
𝑖=1 . 

In particular it follows that if ran𝐿𝛼 is dense in ℋ for all non zero 𝛼 ∈ ℂ𝑁, then ℳ𝜆 = ℂ
𝑁  

for all 𝜆 ∈ 𝛺, 𝑘𝜆 ≠ 0.  

Lemma(4.3.11):[92]     Let ℳ ⊆ℋ (𝑁) be an invariant graph subspace for ℳ(ℋ). If 𝒜ℳ  
has no nontrivial invariant subspaces defined by linear relations of the graph transformations, 

then there is a subspace 𝒦 ⊆ ℂ𝑁  such that ℳ𝜆 = 𝒦 for all  𝜆 ∈ 𝛺 with  𝑘𝜆 ≠ 0. 

Proof:     Suppose that all invariant subspaces of 𝒜ℳ  that are defined by linear relations of 

the graph transformations are either (0) or ℋ, and let 𝜆1, 𝜆2 ∈ 𝛺 such that 𝑘𝜆1 ,𝑘𝜆2 ≠ 0. The 

lemma will follow, if we show that ℳ𝜆1
=ℳ𝜆2

. 

   Let 𝛼 = (𝛼0 ,𝛼1 , . . . , 𝛼𝑁−1)  ∈ ℳ𝜆1
⊥  then by the previous lemma 𝑘𝜆1is orthogonal to ran𝐿𝛼. 

The closure of ran𝐿𝛼 is an invariant subspace of 𝒜ℳ  that is defined by a linear relation of 

the graph transformations, and it does not equal ℋ since 𝑘𝜆1 ≠ 0 . Hence the hypothesis 

implies ran𝐿𝛼 = (0). This implies that 𝐿𝛼 = 0 whenever 𝛼 ∈ ℳ𝜆1
⊥ . This means 𝛼 ∈ ℳ𝜆

⊥ 

and hence ℳ𝜆 ⊆ℳ𝜆1
 for all 𝜆 ∈ 𝛺. In particular then ℳ𝜆2

⊆ℳ𝜆1
, and in fact by symmetry 

we conclude ℳ𝜆1
=ℳ𝜆2

.  

Lemma(4.3.12):[92]   Let ℳ = {(𝑓,𝑇1𝑓, . . . , 𝑇𝑁−1𝑓) ∶ 𝑓 ∈ 𝒟}  ⊆ ℋ
(𝑁)  be an invariant 

graph subspace for ℳ(ℋ) such that all invariant subspaces of 𝒜ℳ  that are defined by linear 

relations of the graph transformations are either (0) or ℋ. 

If ℳ  has fiber dimension 1 ≤ 𝑘 ≤ 𝑁 , then there are linear graph transformations 
𝑆1 , . . . , 𝑆𝑘−1: 𝒟 → ℋ such that each 𝑆𝑖  is a linear combination of 𝐼 and 𝑇1 , . . . , 𝑇𝑁−1  and such 

that  

𝒩 = {(𝑓, 𝑆1𝑓, . . . , 𝑆𝑘−1𝑓) ∶  𝑓 ∈  𝒟} ⊆ ℋ
(𝑘) 
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is an invariant graph subspace for ℳ(ℋ) with 𝒜𝒩 = 𝒜ℳ , and  𝐿𝛼
𝒩 = 𝛼0̅̅ ̅𝐼 + ∑ 𝛼�̅�𝑆𝑖

𝑘−1
𝑖=1  is 

1-1 and has dense range for all nonzero 𝛼 ∈ ℂ𝑘 . 

Proof:     The hypothesis and Lemma (4.3.11) imply that there is a 𝑘-dimensional subspace 

ℒ ⊆ ℂ𝑁 such that ℳ𝜆 = ℒ for all 𝜆 ∈ 𝛺 with 𝑘𝜆 ≠ 0. Write 𝑇0 = 𝐼, then as in the proof of 

Lemma (4.3.11) we have  ∑ 𝛼�̅�𝑇𝑖
𝑁−1
𝑖=1 = 0 for all  𝛼 = (𝛼0 , . . . , 𝛼𝑁−1)  ∈ ℒ

⊥. This implies that 
{𝐼, 𝑇1 , . . . , 𝑇𝑁−1}spans a 𝑘-dimensional subspace of the linear transformations  𝒟 → ℋ. Let 

{𝑆0 , . . . , 𝑆𝑘−1}be a basis for this space. Since the space contains 𝐼 we may assume that 𝑆0 = 𝐼. 
It is now easy to check that  

𝒩 = {(𝑓, 𝑆1𝑓, . . . , 𝑆𝑘−1𝑓) ∶  𝑓 ∈  𝒟} ⊆ ℋ
(𝑘) 

satisfies the conclusion of the lemma. Indeed, it is immediate that 𝒩 is a closed invariant 

graph subspace of ℳ(ℋ) and that 𝒜ℳ = 𝒜𝒩. 

Note that 𝒜𝒩  satisfies that all invariant subspaces of 𝒜ℳ  that are defined by linear relations 
of the graph transformations are either (0) or ℋ, since any linear combination of  𝐼  and 

𝑆1 , . . . , 𝑆𝑘−1  is a linear combination of 𝐼  and 𝑇1 , . . . ,𝑇𝑁−1 . Since 𝐼, 𝑆1 , . . . , 𝑆𝑘−1  are linearly 

independent we conclude that for each non zero 𝛼 ∈ ℂ𝑘 , 𝐿𝛼
𝒩 ≠ 0. Thus ker𝐿𝛼

𝒩 = (0) and 

ran𝐿𝛼
𝒩 is dense. 

Theorem(4.3.13):[92]  Let ℳ be an invariant graph subspace for ℳ(ℋ), and suppose that 
there is a non-constant meromorphic function 𝑢 on 𝛺 and a non-zero linear subspace 𝒟1 such 

that multiplication by 𝑢,𝑀𝑢: 𝒟1 →ℋ  commutes with every 𝐴 ∈ 𝒜ℳ , i.e. whenever 𝐴 ∈
𝒜ℳ , then 𝐴𝒟1 ⊆ 𝒟1 and  𝐴𝑀𝑢 = 𝑀𝑢𝐴 on 𝒟1.Then 𝒜ℳ  has non-trivial invariant subspaces. 

Proof:    Let 𝜆 ∈ 𝛺 such that 𝜆 is not a pole of 𝑢 and 𝑘𝜆 ≠ 0. Then 𝑘𝜆 ⊥ (𝑀𝑢 − 𝑢(𝜆)𝐼)𝑓 for 

every 𝑓 ∈ 𝒟1, and hence the closure of (𝑀𝑢 − 𝑢(𝜆)𝐼)𝒟1 is a non-trivial invariant subspace 

for 𝒜ℳ . Another way to look at the previous theorem is to note that if ℳ1 is the closure of 

{(𝑓, 𝑢𝑓) ∶ 𝑓 ∈ 𝒟1}, then ℳ1 is an invariant graph subspace of ℳ(ℋ) with fiber dimension 

1  and 𝒜ℳ ⊆ 𝒜ℳ1
. Thus the existence of non-trivial invariant subspaces follows from 

Proposition (2.3.8). 

Example (4.3.14):[92]     [98]. A densely defined closed linear transformation 𝑇 that is not a 
multiplication, but commutes with ℳ(ℋ). Thus by Proposition (4.3.8) the invariant graph 

subspace ℳ = {(𝑓, 𝑇𝑓) ∶ 𝑓 ∈ 𝒟} has fiber dimension 2. 

This can be modified to apply to more general situations where one has index 2 invariant 

subspaces. 

    Let ℒ,𝒩 be index 1 invariant subspaces of the Bergman space 𝐿𝑎
2  such that they are at a 

positive angle, assume that 𝒩 is a zero set based invariant subspace. As was observed by 

Hedenmalm [4] the existence of such subspaces follows from [2]. 

Then  ℒ⋁𝒩 = ℒ +𝒩. Let 𝑓 ∈ ℒ, 𝑓 ≠ 0 and let  

𝒟 = {ℎ + 𝑔:ℎ ∈ 𝐿𝑎
2 ,ℎ𝑓 ∈ ℒ, 𝑔 ∈ 𝒩}, 
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then 𝒟 contains the polynomials and hence is dense in 𝐿𝑎
2 . Note that if ℎ + 𝑔 = 0 with ℎ ∈

𝐿𝑎
2 , ℎ𝑓 ∈ ℒ, 𝑔 ∈ 𝒩 , then ℎ𝑓 = −𝑓𝑔 ∈ ℒ ⊆ 𝐿𝑎

2 . Thus 𝑓𝑔 ∈ 𝒩 , because it has the correct 
zeros. This implies ℎ𝑓, 𝑓𝑔 ∈ ℒ ∩𝒩, hence ℎ𝑓 = 𝑓𝑔 = 0, i.e. ℎ = 𝑔 = 0. This implies that 

𝑇:𝒟 → 𝐿𝑎
2 , 𝑇(ℎ + 𝑔)  = ℎ𝑓+ 𝑔  is well-defined. 

It is closed also: Indeed, if ℎ𝑛 +𝑔𝑛 ∈ 𝒟  such that ℎ𝑛 +𝑔𝑛 → 𝑢  and ℎ𝑛𝑓 + 𝑔𝑛 → 𝑣 , then 

because of the positive angle condition we have 𝑔𝑛 → 𝑣1 ∈ 𝒩 and hence ℎ𝑛 → 𝑢 –𝑣1  and 

ℎ𝑛𝑓 → 𝑣 − 𝑣1. This implies that   (𝑢 –𝑣1)𝑓 = 𝑣 − 𝑣1 ∈ ℒ, and hence 𝑢 = (𝑢 – 𝑣1) + 𝑣1 ∈
𝒟 and  𝑇𝑢 = (𝑢 − 𝑣1)𝑓 + 𝑣1 = 𝑣. Thus we have the invariant graph subspace  

ℳ= {(ℎ + 𝑔, ℎ𝑓+ 𝑔): ℎ ∈ 𝐿𝑎
2 , ℎ𝑓 ∈ ℒ, 𝑔 ∈ 𝒩} 

We already observed that 𝑇 is densely defined, but the range of Twill not be dense since 

𝑇𝒟 ⊆ ℒ+𝒩 which has index 2. Furthermore, for all points λ in the common zero set of 

𝒩the space ℳ𝜆  is only one-dimensional. 

Example(4.3.15):[92]     Let 𝐻 ⊆ Hol(𝛺) be a reproducing kernel Hilbert space, let 𝜑,𝜓 be 

multipliers such that 
1

𝜑−𝜓
 is a multiplier, and let 𝒩,ℒ ⊆ ℋ  be closed nonzero invariant 

subspaces of  ℳ(ℋ) such that 𝒩∩ ℒ = (0). 

Then with 𝒟 =𝒩 +ℒ and 𝑇(𝑓+ 𝑔)  = 𝜑𝑓 +𝜓𝑔 the space  ℳ= {(ℎ,𝑇ℎ) ∶ ℎ ∈ 𝒟} is an 

invariant graph subspace of ℳ(ℋ) of fiber dimension 2. 

Clearly T is well-defined, and 𝑀𝑢𝒟 ⊆ 𝒟 and 𝑀𝑢𝑇 = 𝑇𝑀𝑢 for every multiplier 𝑢. If 𝑓𝑛 ∈ ℒ, 
𝑔𝑛 ∈𝒩 such that 𝑓𝑛 +𝑔𝑛 → 𝑢 and 𝜑𝑓𝑛 +𝜓𝑔𝑛 → 𝑣, then (𝜑 −𝜓)𝑔𝑛 → 𝜑𝑢 − 𝑣. Hence by 

the hypothesis on 𝜑–𝜓 we have  𝑔𝑛 → 𝑢1 =
𝜑𝑢−𝑣

𝜑−𝜓
∈ 𝒩.Then 𝑓𝑛 → 𝑢2 = 𝑢 –

𝜑𝑢−𝑣

𝜑−𝜓
∈ ℒ, and  

𝑣 = 𝜑𝑢1 +𝜓𝑢2 = 𝑇(𝑢1+ 𝑢2). Thus, 𝑇 is closed and hence we obtain the invariant s graph 
subspace  

ℳ= {(𝑓 +  𝑔, 𝜑𝑓 +  𝜓𝑔) ∶  𝑓 ∈  ℒ, 𝑔 ∈  𝒩}  

We have ℳ𝜆 = ℂ
2 whenever 𝜆 ∈ 𝔻 \(𝑍(ℒ) ∪𝑍(𝒩)). In this case we have  (1,𝜑(𝜆)) ∈ ℳ𝜆  

and  (1,𝜓(𝜆)) ∈ ℳ𝜆. These vectors are linearly independent since the hypothesis implies that 

𝜑(𝜆) ≠ 𝜓(𝜆) for all 𝜆 ∈ 𝔻. However, it is clear that the dimension of  ℳ𝜆 < 2 at every 𝜆 ∈
𝑍(ℒ) ∪ 𝑍(𝒩). Thus, in order to have an example satisfying the condition of Theorem (4.3.1) 

we will at least need that 𝑍(ℒ) = 𝑍(𝒩) = ∅. If neither 𝜑 nor 𝜓 is a constant function, then 
ker(𝑇 − 𝜆) = (0)  for all  𝜆 ∈ ℂ . Suppose 𝑓 ∈ ℒ, 𝑔 ∈ 𝒩  such that (𝑇 − 𝜆)(𝑓 + 𝑔) = 0 . 

Then  (𝜑 − 𝜆)𝑓 = −(𝜓− 𝜆)𝑔 ∈ ℒ ∩𝒩 . Thus (𝜑 − 𝜆)𝑓 = −(𝜓− 𝜆)𝑔 = 0 , hence 𝑓 =
𝑔 = 0. For 𝛼 = (𝛼0 , 𝛼1) we have 𝐿𝛼 = 𝛼0𝐼 + 𝛼1𝑇, this 𝐿𝛼 has dense range for all non zero 

𝛼 ∈ ℂ2 , if and only if ℒ +𝒩 and (𝜑 − 𝜆)ℒ + (𝜓− 𝜆)𝒩are dense in ℋ for every 𝜆 ∈ ℂ. 

Lemma (4.3.16):[92]   Let ℋ ⊆ Hol(𝔻)  be such that ℳ(ℋ) = {𝑀𝑢 : 𝑢 ∈ 𝐻
∞}  with 

equivalence of norms, and ran(𝑀𝑧 − 𝜆) is closed for all |𝜆| < 1, and  dim𝐻/𝑧𝐻 = 1.  

Let 𝒦 ⊆ℋ be an ℳ(ℋ)-invariant subspace with  𝑍(𝒦) = ∅. If there is a Blaschke product 

𝐵 such that 𝐵ℋ ⊆ 𝒦, then 𝒦 =ℋ. 

Proof:   Let  𝜆 ∈ 𝔻 and let 𝑓 ∈ 𝒦 with 𝑓(𝜆) = 0. We claim that 𝑓/(𝑧 − 𝜆) ∈ 𝒦.[3] 
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First suppose that 𝐵(𝜆) ≠ 0. As in [3] it follows from the hypothesis on ℋ that 
𝑓

𝑧−𝜆
∈ ℋ. 

Hence by hypothesis 
𝐵𝑓

𝑧−𝜆
∈ 𝒦. Note that 

𝐵−𝐵(𝜆)

𝑧−𝜆
∈ 𝐻∞, thus  

𝐵−𝐵(𝜆)

𝑧−𝜆
𝑓 ∈ 𝒦 and this implies 

𝐵(𝜆)𝑓/(𝑧 − 𝜆)  ∈ 𝒦. Since 𝐵(𝜆) ≠ 0 we conclude that  
𝑓

𝑧−𝜆
∈ 𝒦. 

If 𝐵(𝜆) = 0, then let 𝜆𝑛 ∈ 𝔻 with 𝐵(𝜆𝑛) ≠ 0 and 𝜆𝑛 → 𝜆. By hypothesis there is a 𝑔 ∈ 𝒦 

with  𝑔(𝜆) ≠ 0. Then for each 𝑛 we have ℎ𝑛 = 𝑓𝑛 −
𝑓

𝑔
(𝜆𝑛)𝑔 ∈ 𝒦 and ℎ𝑛(𝜆𝑛) = 0. By what 

we have already shown, it follows that 
ℎ𝑛

𝑧−𝜆𝑛
∈ 𝒦 for each 𝑛. The hypothesis on ℋ implies 

that 𝑀𝑧 − 𝜆𝐼  is bounded below, then 𝑀𝑧 − 𝜆𝑛𝐼  will be bounded below with a similar 

constant for large 𝑛. That can be used to show that ℎ𝑛/(𝑧 − 𝜆𝑛) → 𝑓/(𝑧 − 𝜆). Thus 
𝑓

𝑧−𝜆
∈

𝒦. 

In particular, if 𝑓 ∈ ℋ, then since 𝐵𝑓 ∈ 𝒦 we conclude that 
𝐵𝑓

𝑧−𝜆
∈ 𝒦 for every 𝜆 ∈ 𝔻 with 

𝐵(𝜆) = 0 . This easily implies that 
𝐵𝑓

𝐵𝑛
∈ 𝒦 , where 𝐵𝑛  is the finite Blaschke product 

determined by the first 𝑛 simple factors of 𝐵. As 𝑛 → ∞ the hypothesis implies that  
𝐵𝑓

𝐵𝑛
→ 𝑓 

weakly, hence 𝑓 ∈ 𝒦. Thus 𝒦 =ℋ.  

Proposition (4.3.17):[92]    Let ℋ ⊆ Hol(𝔻) be such that  ℳ(ℋ) = {𝑀𝑢 : 𝑢 ∈ 𝐻
∞} with 

equivalence of norms, and ran(𝑀𝑧 − 𝜆) is closed for all |𝜆| < 1, and dimℋ/𝑧ℋ = 1. Let 

𝜑,𝜓 ∈ 𝐻∞  such that 1/(𝜑−𝜓) ∈ 𝐻∞  and let 𝒩,ℒ ⊆ ℋ  be ℳ(ℋ)-invariant subspaces 

such that 

(i) 𝒩∩ ℒ = (0), 
(ii) 𝒩+ℒ is dense in ℋ, 

(iii) 𝑍(𝒩) = 𝑍(ℒ) = ∅, and 

(iv) the inner–outer factorizations of 𝜑–𝜆 and 𝜓 − 𝜆 have no singular inner factor for any 

𝜆 ∈ ℂ, then (𝜑 − 𝜆)ℒ + (𝜓− 𝜆)𝒩 is dense in ℋ for every 𝜆 ∈ ℂ. 

Proof:     Let 𝜆 ∈ ℂ and write  

𝒦 = (𝜙 − 𝜆)ℒ + (𝜓 −  𝜆)𝒩̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

We must show that 𝒦 = ℋ. 

Note that if 𝑧0 ∈ 𝔻, then either 𝜑(𝑧0)≠ 𝜆 or  𝜓(𝑧0) ≠ 𝜆. In either case the hypothesis (iii) 

implies that there is a function 𝑓 ∈ 𝒦 such that 𝑓(𝑧0) ≠ 0, i.e. 𝑍(𝒦) = ∅. 

It follows from the hypothesis (iv) that there exist Blaschke products 𝐵1, 𝐵2  and bounded 

outer functions 𝑓1 , 𝑓2  such that 𝜑 − 𝜆 = 𝐵1𝑓1  and 𝜓 − 𝜆 = 𝐵2𝑓2 . Then  

𝒦 ⊇ (𝜑−  λ)ℒ + (ψ −  λ)𝒩 ⊇ B1f1B2f2(ℒ +𝒩) =  Bf(ℒ +𝒩)  

for some Blaschke product 𝐵  and some bounded outer function 𝑓 . Since 𝑓  is outer, there 

exists a sequence of polynomials 𝑝𝑛 such that 𝑝𝑛𝑓 → 1in the weak∗-topology of  𝐻∞, hence 

𝑀𝑝𝑛𝑓 → 𝐼 in the weak operator topology. Thus combining this observation with hypothesis 

(ii) we obtain 𝒦 ⊇ 𝐵ℋ̅̅ ̅̅ ̅. Hence 𝒦 =ℋ follows from Lemma (4.3.17). 
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Now let ℋ,ℒ,𝒩,𝜑, 𝜓 be as in Proposition (4.3.16), set 𝒟 = ℒ +𝒩, and let ‖𝑓 + 𝑔‖𝒟 be the 

graph norm on 𝒟,  

‖𝑓+ 𝑔‖𝒟
2 = ‖𝑓 + 𝑔‖2 + ‖𝜑𝑓 +𝜓𝑔‖2 . 

Then one easily checks that ℒ and 𝒩 are closed subspaces of 𝒟 which satisfy  ℒ ∩𝒩 = 0 
and ℒ+𝒩 = 𝒟. Thus there is a projection 𝑃 ∈ ℬ(𝒟) with ran𝑃 = ℒ and ker 𝑃 = 𝒩. Let 

𝑄 = 𝐼 − 𝑃. 

Theorem (4.3.18):[92]     Let ℋ ⊆ Hol(𝛺) be such that  ℳ(ℋ) = {𝑀𝑢 : 𝑢 ∈ 𝐻
∞} with 

equivalence of norms, let 𝜑,𝜓 ∈ 𝐻∞  such that 
1

𝜑−𝜓
∈ 𝐻∞, and let 𝒩,ℒ ⊆ ℋ be closed 

nonzero invariant subspaces of ℳ(ℋ) such that 𝒩∩ ℒ = (0). Let ℳ be the invariant graph 

subspace as in Example (4.3.2). 

 If  

𝜑(𝔻)\𝜓(𝔻)̅̅ ̅̅ ̅̅ ̅ ≠ ∅, 

then 𝒩 is an invariant subspace for 𝒜ℳ . 

      In  particular, 𝒜ℳ  has a non-trivial invariant subspace. 

      Similarly, if 𝜓(𝔻)\𝜑(𝔻)̅̅ ̅̅ ̅̅ ̅ ≠ ∅, then ℒ is invariant for 𝒜ℳ . 

Proof:        Let 𝐴 ∈ 𝒜ℳ . We will show that 𝐴 ∈ ℬ(𝒟) and 𝑃𝐴𝑄 = 0. 

     From the definition of 𝒜ℳ  we have 𝐴𝒟 ⊆ 𝒟 and  

‖𝐴ℎ‖𝒟
2 = ‖𝐴ℎ‖2 + ‖𝑇𝐴ℎ‖2 = ‖𝐴ℎ‖2 + ‖𝐴𝑇ℎ‖2 

≤ ‖𝐴‖2(‖ℎ‖2 + ‖𝑇ℎ‖2) = ‖𝐴‖2‖ℎ‖𝒟
2  

Thus 𝐴, 𝑃𝐴𝑄,𝑀𝜑 , 𝑀𝜓 ∈ 𝔹(𝒟). For 𝑓 ∈ ℒ and 𝑔 ∈𝒩  we have  

𝑃𝐴𝑄𝑀𝜓(𝑓 + 𝑔) = 𝑃𝐴𝑄(𝜓𝑓 +𝜓𝑔) = 𝑃𝐴𝜓𝑔 = 𝑃𝐴𝑇𝑔 = 𝑃𝑇𝐴𝑔                           

= 𝑃𝑇(𝑃 + 𝑄)𝐴𝑄(𝑓+ 𝑔) = 𝑃𝑀𝜑𝑃𝐴𝑄(𝑓+ 𝑔)+ 𝑃𝑀𝜓𝑄𝐴𝑄(𝑓+ 𝑔)  

= 𝑀𝜑𝑃𝐴𝑄(𝑓+ 𝑔).                                                  

     Thus 𝑃𝐴𝑄𝑀𝜓 = 𝑀𝜑𝑃𝐴𝑄  and hence  (𝑃𝐴𝑄)∗𝑀𝜑
∗ = 𝑀𝜓

∗ (𝑃𝐴𝑄)∗. 

     The hypothesis implies that there is a 𝜆0 ∈ 𝔻 such that  

dist(𝜑(𝜆0),𝜓(𝔻)) > 0. 

Then by continuity there is an open neighborhood 𝒰 of 𝜆0in 𝒟 and a 𝛿 > 0 such that for all 

𝜆 ∈ 𝒰  and all 𝑧 ∈ 𝔻 we have |𝜓(𝑧)  − 𝜑(𝜆)| ≥ 𝛿 , hence 𝑀𝜓 −𝜑(𝜆)𝐼  is invertible. This 

implies ker(𝑀𝜓
∗ − 𝜑(𝜆)̅̅ ̅̅ ̅̅ ) = (0) for all 𝜆 ∈ 𝒰. 
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Let 𝜆 ∈ 𝒰 and let 𝑘𝜆  be the reproducing kernel for 𝒟. We have  

(𝑀𝜓
∗ − 𝜑(𝜆)̅̅ ̅̅ ̅̅ )(𝑃𝐴𝑄)∗𝑘𝜆 = (𝑃𝐴𝑄)

∗(𝑀𝜑
∗ −𝜑(𝜆)̅̅ ̅̅ ̅̅ )𝑘𝜆 = 0  

This implies that (𝑃𝐴𝑄)∗𝑘𝜆 = 0 for all 𝜆 ∈ 𝒰. Since finite linear combinations of 𝑘𝜆 , 𝜆 ∈ 𝒰 

are dense in 𝒟 we obtain 𝑃𝐴𝑄 = 0. 

Thus if 𝑓 ∈ 𝒩 ⊆ 𝒟 , then 𝑓 = 𝑄𝑓  and  𝐴𝑓 = (𝑃 +𝑄)𝐴𝑓 = 𝑃𝐴𝑄𝑓+𝑄𝐴𝑓 = 𝑄𝐴𝑓 ∈
𝒩, i.e. 𝐴𝒩 ⊆ 𝒩. 

Theorem (4.3.19):[92]   Let ℋ ⊆ Hol(𝛺)  be such that  ℳ(ℋ) = {𝑀𝑢: 𝑢 ∈ 𝐻
∞}  with 

equivalence of norms, let 𝜑,𝜓 ∈ 𝐻∞  such that 
1

𝜑−𝜓
∈ 𝐻∞ , and let 𝒩,ℒ ⊆ ℋ  be closed 

nonzero invariant subspaces of ℳ(ℋ) such that 𝒩∩ ℒ = (0). Let ℳ be the invariant graph 

subspace as in Example (4.3.2).  

If there is a 𝑢 ∈ Hol(𝜑(𝔻)∪ 𝜓(𝔻))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  such that 𝑢 ∘ 𝜑 = 𝑢 ∘ 𝜓 , then 𝒜ℳ  has a non-trivial 

invariant subspace. 

Proof:     Let 𝑣 = 𝑢 ∘ 𝜑 = 𝑢 ∘ 𝜓 , then 𝑣 ∈ 𝐻∞(𝔻) . We will show that 𝑀𝑣: 𝒟 → ℋ 
commutes with 𝒜ℳ . Then the result will follow from Theorem (4.3.13)  We will use a special 

property of our example, namely that 𝑇𝒟 ⊆ 𝒟. 

If 𝜆 ∈ ℂ, 𝜆 ∉ 𝜑(𝔻)∪ 𝜓(𝔻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then  
1

𝜑−𝜆
𝑓 ∈ 𝒩  and 

1

𝜓−𝜆
𝑔 ∈ ℒ for all 𝑓 ∈ 𝒩 and 𝑔 ∈ ℒ. Thus 

one easily checks that (𝑇 − 𝜆)−1(𝑓 + 𝑔)  =
1

𝜑−𝜆
𝑓 +

1

𝜓−𝜆
𝑔 and for every 𝐴 ∈ 𝒜ℳ we have 

𝐴(𝑇− 𝜆)−1 = (𝑇− 𝜆)−1𝐴. It follows that  𝑟(𝑇)𝐴 = 𝐴𝑟(𝑇) for every rational function 𝑟 
with poles outside of 𝜑(𝔻)∪ 𝜓(𝔻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The hypothesis on 𝑢 implies that there is a sequence of 

rational functions 𝑟𝑛 such that 𝑟𝑛 → 𝑢 uniformly in a neighborhood of 𝜑(𝔻)∪ 𝜓(𝔻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Then 
𝑟𝑛 ∘ 𝜑 and 𝑟𝑛 ∘ 𝜓 are bounded sequences in 𝐻∞ that converge pointwise to 𝑣. Thus for every 

𝑓 ∈ 𝒩 and 𝑔 ∈ ℒ we have  𝑟𝑛(𝑇)(𝑓+ 𝑔)  = 𝑟𝑛 ∘ 𝜑𝑓 + 𝑟𝑛 ∘ 𝜓𝑔 → 𝑣(𝑓 + 𝑔) weakly. Hence  

𝐴𝑟𝑛(𝑇)(𝑓 + 𝑔)  → 𝐴𝑀𝑣(𝑓 + 𝑔)and  𝑟𝑛(𝑇)𝐴(𝑓+ 𝑔)  → 𝑀𝑣𝐴(𝑓+ 𝑔)  weakly for each 𝑓 ∈
𝒩 and 𝑔 ∈ ℒ. Thus 𝑀𝑣𝐴 = 𝐴𝑀𝑣.  

A simple way to satisfy the hypothesis that 1/(𝜑−𝜓) is a multiplier is if  𝜑 = 𝜓 + 𝑐 for 

some constant 𝑐 ≠ 0. Then for appropriate ℋ it is easy to see that the hypotheses of both of 

the previous theorems are satisfied, thus 𝒜ℳ  has non-trivial invariant subspaces. For the 𝑢 

in the previous theorem we can take  𝑢(𝑧)  = 𝑒
2𝜋𝑖

𝑐
𝑧
. Thus 𝒜ℳ  commutes with 𝑀𝑣, where 

𝑣(𝑧)  = 𝑒
(
2𝜋𝑖

𝑐
)𝜑(𝑧)

. Actually in this case one can verify directly that 𝒜ℳ  commutes with 𝑀𝜑.  

 𝐴𝑀𝜑(𝑓 +  𝑔) =  𝐴𝑀𝜑𝑓 +  𝐴𝑀𝜓𝑔 +  𝑐𝐴𝑔 =  𝐴𝑇(𝑓 +  𝑔)+  𝑐𝐴𝑔  

=  𝑇𝐴𝑓 +  𝑇𝐴𝑔 +  𝑐𝐴𝑔 =  𝑀𝜑𝐴𝑓 +𝑀𝜓𝐴𝑔 +  𝑐𝐴𝑔 =  𝑀𝜑𝐴(𝑓 +  𝑔). 

This implies that 𝐴𝑀𝜑 = 𝑀𝜑𝐴  on ℋ. 
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If 𝜑(𝑧) = 𝑧, then under the hypothesis of Theorem (4.3.18) the relation 𝐴𝑀𝑧 = 𝑀𝑧𝐴 implies 

𝐴 ∈ ℳ(ℋ), hence 𝒜ℳ =ℳ(ℋ). Thus it seems worthwhile to point out that it can happen 

that 𝒜ℳ ≠ℳ(ℋ). 

Example (4.3.20):[92]      Take ℋ = 𝐿𝑎
2 , 𝜑(𝑧)  = 𝑧2 , 𝜓 = 𝜑+ 𝑐, for 𝑐 ≠ 0, and choose the 

two subspaces ℒ and 𝒩 as above such that they are invariant under (𝑈𝑓)(𝑧) = 𝑓(−𝑧). For 
example, take two zero sets 𝐴 and 𝐵 such that the union is not a zero set and such that they 

both accumulate only on a small arc near1. Then let 𝐴′ = 𝐴 ∪ (−𝐴) and 𝐵′ = 𝐵 ∪ (−𝐵). It 
is well-known that the extremal function for 𝐼(𝐴) has an analytic continuation across any arc 

𝐼 ⊆ 𝜕𝔻 that does not contain any accumulation points of 𝐴 [71]. Thus, if 𝑓1is the extremal 

function for 𝐼(𝐴) and 𝑓2 is the extremal function. for 𝐼(−𝐴), then it follows easily that 𝑓1𝑓2 ∈
𝐼(𝐴′). Hence both 𝐴′and 𝐵′ are zero sets for ℋ and their union is not a zero set. Now set ℒ =
𝐼(𝐴′) and 𝒩 = 𝐼(𝐵′). 

One verifies easily that in this case 𝑈 ∈ 𝒜ℳ , thus 𝒜ℳ ≠ℳ(ℋ). 

Example (4.3.21):[92]    Let 𝜑 ∈ Hol(𝔻), 𝑡 ∈ ℝ\ℤ, 𝛼 = 𝑒2𝜋𝑖𝑡 ≠ 1and such that 𝜑(𝔻) =
{𝑧 ∈ ℂ: 𝑟 < |𝑧| < 𝑅}, and 𝜓 = 𝛼𝜑. For example, 𝜑 could be the composition of aconformal 

map of the disc onto a vertical strip and the exponential function,  

𝜑(𝑧) = exp (𝑖 log
1− 𝑧

1+ 𝑧
). 

Then |𝜑(𝑧) − 𝜓(𝑧)| = |1 − 𝛼||𝜑(𝑧)| > 𝑐. Furthermore, we check that for no 𝜆 ∈ ℂ the 
function 𝜑–𝜆 can have a singular inner factor. Since 𝜑 has an analytic continuation at every 

point except +1 or −1, it is clear that the only possible singular inner factors of 𝜑–𝜆 are 

determined by point masses at 1 or −1. If  𝜑– 𝜆 had a singular inner factor at1, then we would 

have 𝜑(𝑟) − 𝜆 → 0 as 𝑟 → 1−. But 𝜑(𝑟) – 𝜆 does not converge as 𝑟 → 1−. Similarly we see 

that there is no singular inner factor with mass at −1. Thus this provides an example of the 

situation of Theorem (4.3.3), and since 𝜑(𝔻) = 𝜓(𝔻) Theorem (4.3.18) does not apply. 

Theorem (4.3.19) applies only if 𝑡 =
𝑛

𝑚
 is rational, 𝑢(𝑧) = 𝑧𝑚 . Thus if 𝑡  is irrational we 

don’t know of any non-trivial invariant subspaces of 𝒜ℳ . 

Example (4.3.22):[92]    Can one show that 𝒜ℳ  has non-trivial invariant subspaces in the 

previous example if 𝑡 is irrational? 

Example (4.3.23):[92]     Let 𝜑(𝑧) = exp(𝑖 log
1−𝑧2

1+𝑧2
) , 𝜓(𝑧) = 𝛼𝜑(𝑧)  and assume that 

𝑓(𝑧) ∈ 𝒩  if and only if 𝑓(−𝑧) ∈ 𝒩  and 𝑔(𝑧)  ∈ ℒ  if and only if 𝑔(−𝑧)  ∈ ℒ . One can 

achieve this as in Example (4.3.20). By combining the approach of Example (4.3.20) with the 
construction of one can also achieve this with the added property that 𝑍(𝒩) = 𝑍(ℒ) = ∅. As 

in Example (4.3.20) the operator 𝑈𝑓(𝑧) = 𝑓(−𝑧) will be in 𝒜ℳ . Thus, 𝒜ℳ ≠ℳ(ℋ). 

Example (4.3.24):[92]    We will construct zero set based invariant subspaces 𝒩 and ℒ of 𝐿𝑎
2  

with 𝒩∩ ℒ = (0) and a disc automorphism 𝑢 such that 𝐶𝑢𝒩 = ℒ and 𝐶𝑢ℒ = 𝒩 and an 

𝐻∞-function 𝜑 such that 1/𝜑 ∈ 𝐻∞  and 𝐶𝑢𝜑 = −𝜑. Here 𝐶𝑢  is the composition operator 

with symbol  𝑢. 
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Then we set 𝜓 = −𝜑 = 𝐶𝑢𝜑. As above |𝜑 − 𝜓|  = 2|𝜑| is bounded below, thus with 𝒟 =
𝒩 +ℒ this provides an example satisfying the hypothesis of Example (4.3.2). Furthermore, 

one now easily checks that 𝐶𝑢𝒟 ⊆ 𝒟 and  𝑇𝐶𝑢 = 𝐶𝑢𝑇  on 𝒟. Thus  𝐶𝑢 ∈𝒜ℳ  and hence 

𝒩,ℒ ∉ Lat𝒜ℳ . 

To get started we recall the definitions of interpolating and sampling sequences of a space 

ℋof analytic functions on 𝔻. 

For a sequence {𝜆𝑛}of distinct points in 𝔻 we define 𝑇:ℋ → 𝑙∞ by  𝑇𝑓 = {
𝑓(𝜆𝑛)

‖𝑘𝜆𝑛‖
}
𝑛

. Then 

{𝜆𝑛} is called an interpolating sequence for ℋ, if 𝑇is a bounded operator from ℋ into and 

onto 𝑙2, and {𝜆𝑛} is called a sampling sequence for ℋ, if there is a constant 𝑐 > 0 such that 

𝑐‖𝑓‖ ≤ ‖𝑇𝑓‖𝑙2  ≤
1

𝑐
‖𝑓‖ for all  𝑓 ∈ ℋ. 

Lemma(4.3.25):[92]     If 𝛤 ⊆ 𝔻 is a sampling sequence for ℋ, if �̅� = 𝐷+  ∪ 𝐷− , where 𝐷+ 

and 𝐷− are closed semi-discs, then 

𝛤+  =  𝛤 ∩ 𝐷+  

is not a zero-sequence for ℋ. 

Proof:     Suppose that 𝑓 ∈ ℋ is a non-zero function with 𝑓(𝜆) = 0 for all  𝜆 ∈ 𝛤+. Since 𝛤 

is a sampling sequence, there must be a 𝑐 > 0 such that  

 𝑐‖𝑝𝑓‖2 ≤ ∑
|𝑝𝑓(𝜆)|2

‖𝑘𝜆‖
2

 

𝜆∈𝛤∩𝐷−

≤  ‖𝑝‖∞,𝐷−
2  ∑

|𝑓(𝜆)|2

‖𝑘𝜆‖
2

 

𝜆∈𝛤∩𝐷−

≤ (
1

𝑐
) ‖𝑝‖∞,𝐷−

2 ‖𝑓‖2 

for all polynomials 𝑝. Fix 𝜆0 ∈ 𝔻 \𝐷− with 𝑓(𝜆0) ≠ 0. By Runge’s theorem we may choose 

a sequence of polynomials 𝑝𝑛 such that 𝑝𝑛 converges to 0 uniformly on 𝐷− and 𝑝𝑛(𝜆0) → 1. 

Then the inequality above implies that ‖𝑝𝑛𝑓‖→ 0. This contradicts 𝑝𝑛𝑓(𝜆0) → 𝑓(𝜆0) ≠ 0. 

Thus 𝛤+ is not a zero set for ℋ.  

Now let 𝑆 = {𝑧 ∈ ℂ ∶ −1 < Re𝑧 < 1} and let ℍ+  denote the upper half plane of ℂ . The 

function 𝑓(𝑧)  = 𝑖𝑒−
𝑖𝜋𝑧

2  is a conformal map from 𝑆 onto ℍ+ with 𝑓(0)  = 𝑖. We note that 𝑓 

takes {𝑧: 0 < 𝑅𝑒𝑧 < 1} onto the first quadrant and 𝑓−1:ℍ+ → 𝑆 takes rays emanating from 

0 to vertical lines in 𝑆. If we further let 𝑔(𝑧) = 𝑖
1+𝑧

1−𝑧
 be a conformal map of 𝔻 onto ℍ+, then 

ℎ = 𝑓−1 ∘ 𝑔  is a conformal map from 𝔻  onto 𝑆 . The function 𝜑 = 𝑒𝑖ℎ  is bounded and 

bounded below as required for Example (4.3.24). 

For 𝑎 > 1 and 𝑏 > 0 define the lattice  

𝛬(𝑎, 𝑏) = {𝑎𝑚(𝑏𝑛 +  𝑖) ∶  𝑚, 𝑛 ∈ ℤ} 

of points in ℍ+ , and consider the corresponding set 𝛤(𝑎, 𝑏) = 𝑔−1(𝛬(𝑎, 𝑏)) in 𝔻. [100] 

states that 𝛤(𝑎,𝑏) is interpolating for  ℋ = 𝐿𝑎
2  if 

2𝜋

𝑏 log 𝑎
<
1

2
 and 𝛤(𝑎, 𝑏) is sampling for 𝐿𝑎

2  if 
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2𝜋

𝑏 log𝑎
>
1

2
 .  Now set 𝑎 = 𝑒

𝜋2

2  so that 𝑓(𝑧 + 𝑖𝜋) = 𝑎𝑓(𝑧) for all 𝑧 ∈ 𝑆, and choose bsuch that 

2𝜋

𝑏 log𝑎2
<
1

2
<

2𝜋

𝑏 log 𝑎
. Then 𝛤(𝑎2 ,𝑏) is interpolating and 𝛤(𝑎, 𝑏)is sampling for 𝐿𝑎

2 . 

Set 𝛬1 = {𝑎
2𝑚(𝑏𝑛 + 𝑖) ∶ 𝑚, 𝑛 ∈ ℤ, 𝑛 ≥ 0} ,  𝛬2 = {𝑎

2𝑚+1(𝑏𝑛 + 𝑖) ∶ 𝑚, 𝑛 ∈ ℤ, 𝑛 ≥ 0} 
and for 𝑗 = 1, 2 set 𝛤𝑗 = 𝑔

−1(𝛬𝑗). Then 𝛤1 and 𝛤2  are subsets of interpolating sets for 𝐿𝑎
2 , 

hence they both are zero sets for 𝐿𝑎
2 . Furthermore, 𝛤1 ∪ 𝛤2 = 𝑔

−1({𝑎𝑚(𝑏𝑛 + 𝑖) ∶ 𝑚, 𝑛 ∈
ℤ, 𝑛 ≥ 0}) and it follows from the choice of 𝑎 and 𝑏 and Lemma (4.3.25) that 𝛤1 ∪𝛤2 is not 

a zero set for 𝐿𝑎
2 . Thus, 𝒩 = 𝐼(𝛤1) and ℒ = 𝐼(𝛤2) are nontrivial invariant subspaces with 

𝒩∩ ℒ = (0). 

For 𝑧 ∈ 𝔻  set 𝑢(𝑧) = 𝑔−1(𝑎𝑔(𝑧)) , then 𝑢  is a disc automorphism with 𝑢(𝛤1) = 𝛤2  and 

𝑢(𝛤2) = 𝛤1 . This implies that 𝐶𝑢𝒩 = ℒ  and 𝐶𝑢ℒ = 𝒩 . Furthermore one checks that 

ℎ(𝑢(𝑧)) = ℎ(𝑧) + 𝑖𝜋 for all 𝑧 ∈ 𝔻. Thus 𝐶𝑢𝜑 = −𝜑  and this concludes the construction 

for Example (4.3.12). 

Let 𝜇  be a positive discrete measure on the unit circle 𝕋, given by a sequence of points 

{𝜆𝑘}𝑘=1
∞ ⊂ 𝕋 with corresponding masses 0 < 𝜔𝑘 < ∞ such that  

𝜇 =  ∑𝜔𝑘𝛿𝜆𝑘

∞

𝑘=1

  

We shall refer to {𝜆𝑘} as the a-support of  𝜇. 

When  ‖𝜇‖ = ∑ 𝜔𝑘𝑘 < ∞, 𝜇 is associated with the singular inner function  

 𝑆𝜇(𝑧) = exp (
1

2𝜋
∫
𝑒𝑖𝜃  +  𝑧

𝑒𝑖𝜃 −  𝑧 
𝑑𝜇(𝜃)

 

𝕋

)   

and by 𝐼𝜇 = [𝑆𝜇] we denote the invariant subspace of 𝐿𝑎
2 (𝔻) generated by 𝑆𝜇 . For non-finite 

measures 𝜇 we define 𝐼𝜇  instead by  

𝐼𝜇 = ⋂{[𝑆𝜈]: 0 ≤ 𝜈 ≤ 𝜇, ‖𝜈‖ <  ∞ }. 

We say that 𝜇 is admissible when 𝐼𝜇 ≠ {0}. Since singly generated invariant subspaces have 

index1 , it follows from [3] that 𝐼𝜇  has index one whenever 𝜇  is admissible. Thus 𝐼𝜇  is 

generated by its extremal function. We note that a routine argument with contractive zero 

divisors shows that the extremal function for 𝐼𝜇  is nonzero in 𝔻. In conclusion, 𝐼𝜇  is zero free 

whenever 𝜇 is admissible. 

Proposition (4.3.26):[92]   Suppose 𝑓 ∈ 𝐿𝑎
2  is zero free. Then 

(i) lim
𝑟→1
(1 –𝑟2) log

1

|𝑓(𝑟𝜆)|
≥ 0 exists for all 𝜆 ∈ 𝕋. 

(ii) For 𝜆 ∈ 𝕋 and 𝜔 > 0, we have that 𝑓 ∈ 𝐼𝜔𝛿𝜆  if and only if  lim
𝑟→1
(1 –𝑟2) log

1

|𝑓(𝑟𝜆) |
≥

4𝜔. 
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Proof:     Let 𝐷𝜆 ⊂ 𝔻 be the disc of radius ½ that is tangent to 𝕋 at 𝜆 and note that 𝑓|𝐷𝜆  is in 

the Smirnov class 𝑁+ of 𝐷𝜆 . Standard arguments of Nevanlinna theory now give the validity 

of (i). A proof of (ii) appears in [81]. 

Lemma (4.3.27):[92]    Let 𝜇 = ∑ 𝜔𝑘𝛿𝜆𝑘𝑘  be admissible. If 𝜆 ∈ 𝕋\{𝜆𝑘} and 𝜔 > 0, then 

𝐼𝜇 ⊈ 𝐼𝜔𝛿𝜆. 

Proof:    Suppose on the contrary that 𝐼𝜇 ⊂ 𝐼𝜔𝛿𝜆. Let 𝜙𝜇  and 𝜙𝜔𝛿𝜆 be the respective extremal 

functions for 𝐼𝜇  and 𝐼𝜔𝛿𝜆 , so that 𝜙𝜇 ∈ [𝜙𝜔𝛿𝜆]. Then  𝜙𝜇/𝜙𝜔𝛿𝜆 ∈ 𝐿𝑎
2 , ‖

𝜙𝜇

𝜙𝜔𝛿𝜆

‖
𝐿𝑎
2

≤ 1, and 

𝜙𝜇

𝜙𝜔𝛿𝜆

(0) > 𝜙𝜇(0). 

We are now going to demonstrate that 
𝜙𝜇

𝜙𝜔𝛿𝜆

∈ 𝐼𝜇 , contradicting the extremality of 𝜙𝜇 . 

To this end we first note that we may write down 𝜙𝜔𝛿1  explicitly using the method for 

proving Formula (15) in [69],  

𝜙𝜔𝛿1 (𝑧) =
 1 + 

2𝑤
1 − 𝑧

 (1 + 2𝑤)
1
2

 𝑆𝜔𝛿1  (𝑧) 

from which we deduce that for all 𝑘, 

 lim
𝑟→1
(1− 𝑟2) log|𝜙𝜔𝛿𝜆(𝑟𝜆𝑘)| = 0. 

Hence, by Proposition (4.3.26),  

lim
𝑟→1
(1− 𝑟2) log |

𝜙𝜔𝛿𝜆(𝑟𝜆𝑘)

𝜙𝜇(𝑟𝜆𝑘)
| = lim

𝑟→1
(1 − 𝑟2) log |

1

𝜙𝜇(𝑟𝜆𝑘)
| ≥ 4 ∑ 𝜔ℓ

𝜆ℓ=𝜆𝑘

 

Applying Proposition (4.3.26) once more we obtain  
𝜙𝜇

𝜙𝜔𝛿𝜆

∈ 𝐼𝜇 .  

Theorem (4.3.28):[92]    There exist two positive discrete admissible measures 𝜇 and 𝜈 such 
that 

(i) 𝐼𝜇 ∩ 𝐼𝜈 = {0}, and  

(ii) 𝐼𝜇 + 𝐼𝜈  is dense in 𝐿𝑎
2 . 

Proof:     The non-admissibility of  𝜇 + 𝜈 is equivalent to the fact that  𝐼𝜇 ∩ 𝐼𝜈 = {0}. It 

remains to prove that 𝐼𝜇 + 𝐼𝜈  is dense in 𝐿𝑎
2 . 

From the existence of a non-zero 𝑓 ∈ 𝐼𝜇  extending analytically across a subarc of 𝕋 it follows 

that clos(𝐼𝜇 + 𝐼𝜈) is an index-one invariant subspace of 𝐿𝑎
2 ,  [21]. Hence clos(𝐼𝜇 + 𝐼𝜈) is 

generated by its extremal function 𝜙, which clearly has no zeros in 𝔻. Denote by 𝜙𝜇  and 𝜙𝜈  
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the respective extremal functions for 𝐼𝜇  and 𝐼𝜈 , and let 𝑓 = 𝜙𝜇/𝜙 and 𝑔 = 𝜙𝜈/𝜙, recalling 

that  𝑓, 𝑔 ∈ 𝐿𝑎
2 [70]. 

We claim that 𝑓 ∈ 𝐼𝜇 . To see this note that  

lim
𝑟→1
(1− 𝑟2) log

1

|𝜙𝑣(𝑟𝜆𝑘)|
= 0, lim

𝑟→1
(1− 𝑟2) log

1

|𝜙(𝑟𝜆𝑘)|
≥ 0,∀𝑘 ≥ 1,  

by Proposition (4.3.26) and Lemma (4.3.27)  So for every 𝑘 ≥ 1 we have  

0 ≤ lim
𝑟→1
(1− 𝑟2) log

1

|𝑔(𝑟𝜆𝑘)|
= − lim

𝑟→1
(1− 𝑟2) log

1

|𝜙(𝑟𝜆𝑘)|
≤ 0, 

whence  

lim
𝑟→1
(1− 𝑟2) log

1

|𝜙(𝑟𝜆𝑘)|
= 0. 

Therefore  

lim
𝑟→1
(1− 𝑟2) log

1

|𝑓(𝑟𝜆𝑘)|
= lim
𝑟→1
(1− 𝑟2) log

1

|𝜙𝜇(𝑟𝜆𝑘)|
≥ 4 ∑ 𝜔ℓ

𝜆ℓ=𝜆𝑘

; 

proving that 𝑓 ∈ 𝐼𝜇 , by Proposition (4.3.26). Similarly one shows that 𝑔 ∈ 𝐼𝑣.  

Now let {𝑝𝑛}𝑛 and {𝑞𝑛}𝑛 be two sequences of polynomials such that  𝑝𝑛𝜙𝜇 + 𝑞𝑛𝜙𝜈 →𝜙 in 

𝐿𝑎
2  as 𝑛 → ∞ . By the contractive divisor property of 𝜙  we obtain that 𝑝𝑛𝑓 + 𝑞𝑛𝑔 =
𝑝𝑛𝜙𝜇+𝑞𝑛𝜙𝜈

𝜙
∈ 𝐼𝜇 + 𝐼𝜈  is a Cauchy sequence, hence 𝑝𝑛𝑓 + 𝑞𝑛𝑔 → 1. That is, 𝐼𝜇 + 𝐼𝜈  is dense 

in  𝐿𝑎
2 .  

Lemma(4.3.29):[92]    𝐼𝜇0  contains a nonzero function that continues analytically across the 

open arc 𝐽 = {𝑧 ∈ ℂ ∶ |𝑧|  = 1and Re 𝑧 < 0} ⊆ 𝕋.[101]. 

Proof:     Since the zero set 𝛬 is contained in {𝑧 ∈ 𝔻:𝑅𝑒𝑧 > 0} it is known that the extremal 
function 𝐺  for the zero-based invariant subspace 𝐼(𝛬)  continues analytically across J, 

[71,101]. For 𝛼 ∈ 𝔻 set 𝑏𝛼(𝑧) =
�̅�

|𝛼|

𝛼−𝑧

1−�̅�𝑧
   and  

𝑆𝛼(𝑧)  =  𝑒

−2
1−|𝛼|

 1+|𝛼|
 

𝛼
|𝛼|
+𝑧

𝛼
|𝛼|
−𝑧

 

In [99] Korenblum shows that if 𝛼 ∈ 𝔻 and if 𝑓 ∈ 𝐿𝑎
2  satisfies 𝑓(𝛼) = 0, then ‖

𝑆𝛼

𝑏𝛼
𝑓‖ ≤

‖𝑓‖. 

An easy calculation shows that if 𝐾 ⊆ ℂ is a compact set such that  𝐾 ∩ [1,∞)  = ∅, then 

there is a 𝑐 > 0 such that 
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|1 −

𝑟 − 𝑧
1− 𝑟𝑧

𝑒−2
1−𝑟
1+𝑟

 
1+𝑧
1−𝑧

| ≤ 𝑐(1− 𝑟)2 

for all 𝑧 ∈ 𝐾 and all 0 ≤ 𝑟 < 1. 

 Since 𝛬 is an 𝐿𝑎
2 -zero set we have ∑ (1 − |𝛼|)2𝛼∈𝛬 < ∞  [9]. Thus the above estimate shows 

that the product 

𝑃(𝑧) =∏
𝑏𝛼
𝑆𝛼

𝛼∈𝛬

 

converges uniformly on each compact subset of 𝔻∪ {𝑅𝑒𝑧 < 0} with 𝑃(𝑧) ≠ 0 for all 𝑧 with 

𝑅𝑒 𝑧 < 0. Thus the function 𝑓 = 𝐺/𝑃 has an analytic continuation across 𝐽. Let {𝑃𝑚} be the 

sequence of partial products of 𝑃 , then by iterating Korenblum’s inequality we have 

‖𝐺/𝑃𝑚‖ ≤ ‖𝐺‖, so 𝐺/𝑃𝑚 → 𝑓 weakly 𝐿𝑎
2  and it follows that 𝑓 ∈ 𝐼𝜇0 . 

For a fixed 𝐽 ≥ 1, pick angles 𝜃1 , . . . , 𝜃𝐽 such that 
𝜃1

2𝜋
, . . . ,

𝜃𝐽

2𝜋
 are linearly independent over the 

rational numbers. Then the a-supports of 𝜇1 , . . . , 𝜇𝐽  are pairwise disjoint, where 𝜇𝑗  is the 

rotation of 𝜇0 by the angle 𝜃𝑗 , 1 ≤ 𝑗 ≤ 𝐽. We also introduce some further notation;  

𝜇𝑁,𝑗 = ∑ 𝜔𝑛𝛿
𝑒
𝑖(
2𝜋𝑘
3𝑛

+𝜃𝑗)

3≤𝑛≤𝑁 

|𝑘|<
3𝑛

4
 

 ,       𝜇𝑁 =∑𝜇𝑁,𝑗

𝐽

𝑗=1

 

letting 𝐹𝑁 denote the a-support of 𝜇𝑁. For later reference we note that ‖𝜇𝑁‖ ∼ 𝐽𝑁. 

Lemma (4.3.30):[92]    Let ℎ(𝑧) = 𝑃[𝛿1](𝑧) =
1−|𝑧|2

|1−𝑧|2
 and define for integers 𝐾 ≥ 27  

𝐻𝐾(𝑧) = ∑ ℎ(𝑒
𝑖2𝜋𝑘
𝐾 𝑧)

𝐾−1

𝑘=0

, 𝑧 ∈ 𝔻 

Then 𝐻𝐾(𝑧) = 𝐾ℎ(𝑧
𝐾) and there exists a constant 𝐶 > 0 , independent of 𝐾 , such that 

𝐻𝐾(𝑟𝑒
𝑖𝜃)  < 𝐶 whenever 1 − 𝑟 < 𝜃2 and |𝜃|  ≤ 𝜋/𝐾.[103,104]. 

Let ℎ ∶ [0,1] → ℝ be defined by ℎ(𝑡) =
1

2𝜋2
𝑡2(1 – 𝑡)2 . For 𝜀 ∈ (0,2𝜋] and 𝑡 ∈ [0,𝜀] set 

𝑟𝜀(𝑡)  = 1 –𝜀
2ℎ(

𝑡

𝜀
). Then 0 < 𝑟𝜀(𝑡) ≤ 1 and |𝑟𝜀

′(𝑡)|and |𝑟𝜀
′′(𝑡)| are bounded uniformly for 

all 𝜀 ∈ (0,2𝜋] and 𝑡 ∈ [0,𝜀]. Note also that 𝑟𝜀
′(0) = 𝑟𝜀

′(𝜀)  = 0 and 𝑟𝜀
′′(0) = 𝑟𝜀

′′(𝜀)  =
1

𝜋2
. 

Now let ∅ ≠ 𝐹 ⊆ 𝑇 be finite and define the closed path 𝛾𝐹 : [0,2𝜋]  → �̅� as follows: If 𝑡 ∈
[0,2𝜋] is such that 𝑒𝑖𝑡 ∈ 𝐹 , then set 𝛾𝐹 (𝑡)  = 𝑒

𝑖𝑡 . Otherwise 𝑒𝑖𝑡 ∈ 𝐼 , where 𝐼  is some 

complementary arc of  𝐹 with endpoints 𝑒𝑖𝑡0and 𝑒𝑖𝑡1 . Then we set 𝛾𝐹(𝑡) = 𝑟|𝐼|(𝑡 − 𝑡0)𝑒
𝑖𝑡, 

where |𝐼| is the length of 𝐼. The curve 𝛤𝐹 is defined as the range of 𝛾𝐹 . It is clear that 𝛤𝐹 ⊆ �̅� 

is a Jordan curve such that 𝛤𝐹 ∩ 𝑇 = 𝐹. The properties of the functions 𝑟𝜀  imply that each 𝛤𝐹 
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is 𝐶2-smooth and there is a 𝐶 > 0 such that ‖𝛾𝐹
′′‖∞ ≤ 𝐶 for all finite nonempty sets 𝐹 ⊆ 𝑇. 

Furthermore one checks that the Jordan region bounded by 𝛤1is contained in the Jordan region 

bounded by 𝛤2whenever 𝐹1 ⊆ 𝐹2, and that we have the estimate  

                
1

8𝜋2
dist (

𝑧

|𝑧|
, 𝐹)

2

≤ 1 − |𝑧| ≤
1

2𝜋2
dist (

𝑧

|𝑧|
, 𝐹)

2

, 𝑧 ∈ 𝛤𝐹         (31) 

where dist refers to the geodesic distance along 𝕋. 

Lemma (4.3.31):[92]    There are constants 𝑐, 𝐶 > 0 such that for all finite nonempty sets 

𝐹 ⊆ 𝑇 we have 𝑐 < |𝜑′𝐹(𝑧)| < 𝐶 for all 𝑧 ∈ 𝛤𝐹 . Furthermore, if 𝜔𝐹  denotes harmonic 

measure at 0 on 𝛤𝐹, then 𝑑𝜔𝐹 = |𝜑′𝐹|  
|𝑑𝑧|

2𝜋
 and hence  

𝑐

2𝜋
∫ℎ(𝑧)|𝑑𝑧|

 

𝛤𝐹

≤ ∫ℎ(𝑧)𝑑𝜔𝐹(𝑧)

 

𝛤𝐹

≤
𝐶

2𝜋
∫ℎ(𝑧)|𝑑𝑧|

 

𝛤𝐹

 

for all nonnegative Borel measurable functions ℎ  on 𝛤𝐹 . Here |𝑑𝑧 |denotes arc length 
measure.[105]. 

Lemma (4.3.32):[92]    There exists a constant 𝐷 > 0, independent of 𝐽 such that for every 

𝑁 ≥ 3 we have 𝑙𝑜𝑔|𝑆𝜇𝑁(𝑧)|  ≥ −𝐷𝐽for 𝑧 ∈ 𝛤𝑁 ∩𝔻. 

Proof:     For this proof we introduce the set �̃�𝑁  ⊃ 𝐹𝑁,  

�̃�𝑁 = {𝑒
𝑖(
2𝜋𝑘
3𝑛

+𝜃𝑗): 3 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝐽,0 ≤ 𝑘 ≤ 3𝑛 − 1}, 

and let �̃�𝑁 = 𝛤�̃�𝑁be the curve defined by use of the complementary arcs of �̃�𝑁. 

 Fix for the moment 𝑛 and 𝑗. For a point 𝑧 = 𝑟𝑒𝑖𝜃 ∈ �̃�𝑁 ∩𝔻, let 𝑘0  be a minimizer of  

min
0≤𝑘≤3𝑛−1

dist (𝑒𝑖𝜃, 𝑒𝑖
(
2𝜋𝑘
3𝑛

+𝜃𝑗)), 

and let 𝑧0 = 𝑧𝑒
−𝑖(

2𝜋𝑘0

3𝑛
+𝜃𝑗) = 𝑟𝑒𝑖𝜃0 . Note that |𝜃0|  ≤ 𝜋/3

𝑛 and 1 − 𝑟 ≤ 𝜃0
2 by (31). Hence, 

by Lemma (4.3.30)  

∑ 𝑃 [𝛿
𝑒
𝑖(
2𝜋𝑘
3𝑛

+𝜃𝑗)
](𝑧)

|𝑘|<
3𝑛

4

< 𝐻3𝑛(𝑧0) < 𝐶                                           (32) 

Since the domain enclosed by �̃�𝑁  contains the domain enclosed by 𝛤𝑁 , it follows by the 
maximum principle for harmonic functions that (32) holds also for 𝑧 ∈ 𝛤𝑁 ∩𝔻. Noting now 

that  

log
1

|𝑆𝜇𝑁(𝑧) |
= ∑ 𝜔𝑛𝑃 [𝛿

𝑒
𝑖(
2𝜋𝑘
3𝑛

+𝜃𝑗)
] (𝑧)

3≤𝑛≤𝑁,|𝑘|<
3𝑛

4
1≤𝑗≤𝐽

; 
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with 𝜔𝑛 ∼ 1/3𝑛.  

Example(4.2.33):[92]   Proof that   ∑ 𝜇𝑗𝐽
𝑗=1  is not admissible for sufficiently large J. 

 Suppose that  ∑ 𝜇𝑗
𝐽
𝑗=1  is admissible. We will now argue that 𝐽 has to be smaller than a certain 

universal constant. Fix 𝑁 ≥ 3 and note first that the admissibility of  ∑ 𝜇𝑗
𝐽
𝑗=1 implies that 

there exists an 𝜂 > 0, independent of 𝑁, such that there exists a polynomial 𝑝 such that 𝑓 =
𝑝𝑆𝜇𝑁  satisfies ‖𝑓‖𝐿𝑎2 ≤ 1  and |𝑓(0)|  ≥ 𝜂. In what follows there will be several implied 

constants that are all independent of both 𝑁 and 𝐽. 

With 𝑓 = 𝑝𝑆𝜇𝑁  as above and 𝜔𝑁  denoting harmonic measure on 𝛤𝑁 with pole at 0 we write  

∫log|𝑓(𝑧)|𝑑𝜔𝑁(𝑧)

 

𝛤𝑁

= ∫log|𝑝(𝑧)|𝑑𝜔𝑁(𝑧)

 

𝛤𝑁

+ ∫log|𝑆𝜇𝑁 (𝑧)| 𝑑𝜔𝑁(𝑧)

 

𝛤𝑁

                (33) 

Since ‖𝑓‖𝐿𝑎2 ≤ 1we find by (31) and the estimate |𝑓(𝑧)|  ≤ (1 − |𝑧|2)−1that  

|𝑓(𝑧)| ≤
8𝜋2

dist (
𝑧
|𝑧|
, 𝐹𝑁)

2 

Letting {𝐼ℎ}be the collection of complementary arcs on 𝕋 to 𝐹𝑁, we obtain  

∫log|𝑓(𝑧)|𝑑𝜔𝑁(𝑧)

 

𝛤𝑁

≾ ∫log
2𝜋

dist (
𝑧
|𝑧|
, 𝐹𝑁)

 

𝛤𝑁

|𝑑𝑧| + log2 

 ≾ ∫ log
2𝜋

dist(𝜔, 𝐹𝑁)

 

𝛤𝑁

|𝑑𝜔| + log2 ∼∑|𝐼ℎ|

ℎ

log
2𝜋

|𝐼ℎ|
≾ 1 + log|𝐹𝑁| ≾ 𝑁 + log 𝐽  𝑅   (34) 

 where |𝐼ℎ| denotes the length of 𝐼ℎ and |𝐹𝑁|  ≤ 3
𝑁𝐽 the number of points in 𝐹𝑁. We have 

used the fact that the entropy  ∑ |𝐼ℎ | log
2𝜋

|𝐼ℎ |
 ℎ for a fixed number of intervals is maximized 

when all intervals are of equal size. 

We also note that  

∫log|𝑝(𝑧)|𝑑𝜔𝑁(𝑧)

 

𝛤𝑁

≥ log|𝑝(0)| = log|𝑓(0)|+ log
1

|𝑆𝜇𝑁(0)|
 

= log|𝑓(0)|+ ‖𝜇𝑁‖ ≿ log 𝜂 +𝑁𝐽,                                               (35) 

and by Lemma (4.3.32) that  

 ∫ log|𝑆𝜇𝑁(𝑧)| 𝑑𝜔𝑁(𝑧)

 

𝛤𝑁

≿ −𝐽                                                        (36) 
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Combining (33), (34), (35), and (36), we find  

𝑁 + log 𝐽 ≿ log𝜂 +𝑁𝐽 − 𝐽 

Letting 𝑁 → ∞ we conclude that Jmust be smaller than some universal constant 𝐴, 𝐽 ≤ 𝐴.  

Theorem (4.3.34):[92]    There is a space ℋ ⊆ Hol(𝔻)such that every invariant graph 

subspace ℳ has the property that indℳ = fdℳ, and such that there are index1 invariant 

subspaces ℳ and 𝒩 of (𝑀𝑧,ℋ) such that ℳ∩𝒩 = (0) and ℳ+𝒩 is dense in ℋ. 

Proof:    It follows from the construction in the proof of Theorem (4.3.28) that the measures 
𝜇 and 𝜈 can be chosen in such a way that the union of their a-supports is disjoint from some 

non-empty closed arc 𝐼 ⊆ 𝕋 (just take 𝐼 to be a small arc centered at −1and choose all 𝜃𝑗  to 

be sufficiently small). Let 𝜎 be the measure defined by 𝑑𝜎 = 𝜒𝐼|𝑑𝑧|  + 𝑑𝐴|𝔻  and consider 

the space 𝑃2(𝜎), the closure of the polynomials in 𝐿2(𝜎). Then one verifies that 𝑃2(𝜎)is 

irreducible and clearly every point of 𝔻 defines a bounded point evaluation for 𝑃2(𝜎), i.e. 

𝑃2(𝜎) is an analytic 𝑃2-space in the sense of [23] and [106]. For such spaces it was shown 

that every non-empty 𝑀𝑧 -invariant subspace has index 1  [23], and in fact, Carlsson 

[107]showed that every 𝑀𝑧
(𝑁)

-invariant subspace of 𝑃2(𝜇)(𝑁)satisfies that its index equals its 

fiber dimension. In particular, the index of each invariant graph subspace equals its fiber 
dimension. 
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Chapter 5 

Algebraic Properties and Index of Invariant Subspaces with Fiber Dimension 

       We show that if 𝑆 is a bounded below operator, then  ind 𝑀+ ind 𝑁 ≥ ind(𝑀∩ 𝑁) +
ind(𝑀∨𝑁). If, in addition,  ind 𝑀= ind 𝑁 = 1  and 𝑀∩𝑁 ≠ {0} then ind(𝑀 ∨𝑁) = 1 . 
We show that the natural counterpart to this statement in Hilbert spaces of ℂ𝑛-valued analytic 

functions is false and show a correct generalization of the theorem. We obtain new 

information on the boundary behavior of functions in such spaces, thereby improving the 
result. Other new findings include:  a lattice-additive formula and its applications ; a new 

concept of “absorbance” which describes a rough containment relation for invariant 
subspaces; the existence of a unique, smallest CF subspace containing an arbitrary invariant 

subspace and preserving the fiber dimension. 

Section (5.1):  The Index of Invariant Subspaces of Operators on Banach Spaces 

    If 𝑆 is an operator on a Banach space 𝑋, then a closed subspace 𝑀 of 𝑋 is called invariant 

for 𝑆  if 𝑆𝑀 ⊂ 𝑀 . The collection of invariant subspaces of an operator 𝑆  is denoted by 
Lat(𝑆, 𝑋). It forms a complete lattice with respect to intersections and closed spans. One of 

the important notions in the general theory of operators, such as bounded below operators, is 

the index of an element in Lat(𝑆, 𝑋), which is defined as follows. [109]. 

Definition (5.1.1):[108]  The map 

ind:Lat(𝑆, 𝑋) → {0} ∪ ℕ ∪ {∞} 

is defined as ind𝑀= dim(𝑀/𝑆𝑀) and ind𝑀 = 0 if and only if 𝑀 = {0}. We say that 𝑀 has 

index 𝑛 if ind𝑀= 𝑛. 

   The index function plays an essential role in the study of invariant subspaces of Banach 
space. See[3]. We give various algebraic properties of the index function. Amongst others, 

we show that if 𝑀,𝑁 ∈ 𝐿𝑎𝑡(𝑆, 𝑋), 𝑖𝑛𝑑𝑀 = 𝑖𝑛𝑑𝑁 = 1 and 𝑀∩𝑁 ≠ {0} then 𝑖𝑛𝑑(𝑀 ∨𝑁) =
1, where  𝑀∨𝑁  denotes the closed span of 𝑀 and 𝑁. (Equivalently, 𝑀 ∨𝑁 is the closure of 

𝑀+ 𝑁). [3]. 

Theorem (5.1.2):[108]       Let 𝑅  be a commutative ring with identity and let 𝐴, 𝐴′ ,𝐵′ be 

free unitary 𝑅-modules such that 𝐴′ and 𝐵′ are free submodules of 𝐴. Then  

𝑟𝑎𝑛𝑘(
𝐴

𝐴′
) + 𝑟𝑎𝑛𝑘(

𝐴

𝐵′
) = 𝑟𝑎𝑛𝑘(

𝐴

𝐴′ ∩ 𝐵′
)+ 𝑟𝑎𝑛𝑘(

𝐴

𝐴′ +𝐵′
) 

Proof:     Consider the following sequence  

0 →
𝐴

𝐴′ ∩ 𝐵′
𝑓
→ (𝐴/𝐴′⨁𝐴/𝐵′)

𝑔
→𝐴/(𝐴′ + 𝐵′) → 0 

Where 𝑓([𝑦]) = ([𝑦], [𝑦]), 𝑔([𝑥], [𝑦]) = [𝑥 − 𝑦] and [. ] denotes the equivalence class in 

the appropriate quotient module. We claim that the sequence above is exact. 
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To prove the claim we first show that 𝑓 and 𝑔 are well-defined homomorphism. Letting [𝑦] ∈
𝐴

𝐴′∩𝐵′
 and 𝑥 ∈ 𝐴′ ∩ 𝐵′, we obtain that 𝑓([𝑦+ 𝑥]) = ([𝑦+ 𝑥], [𝑦+ 𝑥]) = ([𝑦], [𝑦]). Hence, 

𝑓 is well defined. Moreover, 𝑓 is homomorphism, since  

𝑓([𝑦] + [𝑧]) = ([𝑦] + [𝑧], [𝑦] + [𝑧]) = ([𝑦], [𝑦])+ ([𝑧], [𝑧]) 

𝑓(𝑟[𝑦]) = (𝑟[𝑦],𝑟[𝑦]) = 𝑟([𝑦], [𝑦]),𝑟 ∈ 𝑅. 

Similarly, if ([𝑥], [𝑦]) ∈ 𝐴/𝐴′⨁𝐴/𝐵, and 𝑥1 ∈ 𝐴
′ ,𝑥2 ∈ 𝐵

′, then 𝑔([𝑥+ 𝑥1], [𝑦+ 𝑦1]) = 

[(𝑥 + 𝑥1)− (𝑦+ 𝑦1)] = [(𝑥 − 𝑦) + (𝑥1 − 𝑦1)] = [𝑥 − 𝑦], Since 𝑥1 − 𝑦1 ∈ 𝐴
′ +𝐵′. Thus, 

𝑔 is well defined.  Moreover, 𝑔 is homomorphism, since  

𝑔(([𝑥],[𝑦])+ ([𝑥′], [𝑦′])) = 𝑔([𝑥] + [𝑥′], [𝑦] + [𝑦′]) = 𝑔([𝑥 + 𝑥′], [𝑦+ 𝑦′])   

= [(𝑥 + 𝑥′)− (𝑦 + 𝑦′)] = [𝑥 − 𝑦 + 𝑥′ − 𝑦′] = [𝑥 − 𝑦] + [𝑥′ − 𝑦′] 

And  

𝑔(𝑟([𝑥], [𝑦])) = 𝑔([𝑟𝑥], [𝑟𝑦]) = [𝑟𝑥 − 𝑟𝑦] = 𝑟[𝑥 − 𝑦],𝑟 ∈ 𝑅 

It remains to show that ker𝑔 = im 𝑓. For this let  ([𝑥], [𝑦]) ∈ 𝐴/𝐴′⨁𝐴/𝐵′ be such that 
𝑔([𝑥], [𝑦]) = 0. Then [𝑥 − 𝑦] = 0, and thus 𝑥 − 𝑦 ∈ 𝐴′+𝐵′. This implies that 𝑥 + 𝐴′ = 𝑦 +

𝐵′, i.e.,[𝑥]𝐴
𝐴′
= [𝑦]𝐴

𝐵′
  wherefore ([𝑥]𝐴

𝐴′
, [𝑦]𝐴

𝐵′
) ∈ im 𝑓, and hence ker 𝑔 ⊂ 𝑖𝑚 𝑓. 

Conversely, if ([𝑥], [𝑦]) ∈ im𝑓 then 𝑥 + 𝐴′ = 𝑦 +𝐵′  and hence  𝑥 + 𝐴′ +𝐵′ = 𝑦 + 𝐴′ +
𝐵′. It follows that 𝑔([𝑥], [𝑦]) = [𝑥 − 𝑦] = 0 so that im𝑓 ⊂ ker𝑔.  

Since 𝐴/(𝐴′ +𝐵′) is a free module, it is in particular projective, and hence the above exact 

sequence splits [110]. Therefore  

𝐴

𝐴′
⨁
𝐴

𝐵′
=

𝐴

𝐴′ ∩𝐵′
⨁ 

𝐴

𝐴′ +𝐵′
 . 

This immediately implies that 

rank (
𝐴

𝐴′
) + rank(

𝐴

𝐵′
) = rank(

𝐴

𝐴′ ∩ 𝐵′
) + rank(

𝐴

𝐴′ +𝐵′
). 

Corollary (5.1.3):[108]     If 𝑋 is a Banach space and 𝑆 an operator on 𝑋, for all 𝑀,𝑁 ∈
Lat(𝑆, 𝑋) 

ind𝑀+ ind𝑁 = ind(𝑀∩ 𝑁) + ind(𝑀+ 𝑁) 

In the case when 𝑆 is a bounded below operator, like the shift operator on Banach spaces of 
analytic functions, the following holds. 

Lemma (5.1.4):[108]     Suppose 𝑀,𝑁 ∈ Lat(𝑆, 𝑋), where 𝑆 is a bounded below operator on 

a Banach space 𝑋. Then  
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ind(𝑀∨𝑁) ≤ ind(𝑀+𝑁) ≤ ind𝑀+ ind𝑁 

Proof:     If either ind𝑀 or ind𝑁 is infinite, then there is nothing to prove. So we may assume 
that ind𝑀< ∞ and ind𝑁 < ∞. Thus there are finite-dimensional subspaces 𝑀1 and 𝑁1 of 𝑀 

and 𝑁 , respectively, such that 𝑀 = 𝑆𝑀+𝑀1 ,𝑁 = 𝑆𝑁 +𝑁1 , where dim𝑀1 = 𝑖𝑛𝑑𝑀  and 

dim𝑁1 = 𝑖𝑛𝑑𝑁. We find that 

𝑀+𝑁 = 𝑆𝑀+𝑀1 + 𝑆𝑁 +𝑁1 = 𝑆(𝑀+ 𝑁) +𝑀1 +𝑁1 

  ⊆ 𝑆(𝑀 ∨𝑁) + (𝑀1 +𝑁1) ⊆ 𝑀 ∨𝑁.         

Since 𝑆 is abounded below operator, its range is closed [111], and hence the second to last 

expression is the sum of a closed and a finite-dimensional subspace, hence it is closed. Since 
𝑀+ 𝑁 is dense in 𝑀∨𝑁 we obtain that the last inclusion in above is actually an equality. 

From this it follows that  

ind(𝑀∨𝑁) ≤ dim(𝑀1+𝑁1) = ind(𝑀+𝑁) ≤ ind𝑀+ ind𝑁. 

Theorem (5.1.5):[108]      If 𝑋 is a Banach space and 𝑆 a bounded below operator on 𝑋 then, 

for all 𝑀,𝑁 ∈ Lat(𝑆, 𝑋), 

ind𝑀+ ind𝑁 ≥ ind(𝑀∩ 𝑁) + ind(𝑀∨𝑁). 

Corollary (5.1.6):[108]     Suppose that 𝑀1 ,𝑀2 ∈ Lat(𝑆, 𝑋) are such that ind𝑀1 = ind𝑀2 =
1, where 𝑆, 𝑋 are as in the previous theorem. If 𝑀1 ∩𝑀2 ≠ {0} then ind(𝑀1 ∨𝑀2) = 1. 

Section (5.2): Hilbert Spaces of Vector-Valued Analytic Functions 

       Let  𝔻  denote the open unit disc in ℂ , let 𝕋  be its boundary and let 𝑚  denote the 

normalized arc-length measure on 𝕋. Moreover let 𝑧 denote the identity function on 𝔻, i.e. 

𝑧(𝜁 )  =  𝜁 for 𝜁 ∈ 𝔻 and let 𝑛 ∈ ℕ be fixed. We will consider Hilbert spaces ℋ of ℂ𝑛 -

valued analytic functions on 𝔻 such that 𝑧𝑓 ∈  ℋ for all 𝑓 ∈  ℋ, and the corresponding 

operator of multiplication by 𝑧 will be denoted 𝑀𝑧 , that is, (𝑀𝑧 𝑓 )(𝜁 ) =  𝜁 𝑓 (𝜁 ). 

We shall always assume that the spaces ℋ satisfy the following conditions 

∀𝜆 ∈ 𝔻 the evaluation map 𝑓 →  𝑓(𝜆) is continuous and surjective from ℋ onto ℂ𝑛 . (1)                                                                                                                                                                       

If 𝑓 ∈  ℋ and 𝑓(𝜆) = 0, then 𝑓 ∈ Ran(𝑀𝑧−  𝜆).                                                        (2) 

By virtue of the Closed Graph Theorem, (1) implies that 𝑀𝑧 is a bounded operator. We shall 

only consider ℋsuch that 

    ‖𝑀𝑧‖ ≤ 1                                                                                          (3) 

and such that there exists a constant 𝑐 > 0 with 

      ‖
𝑧 –  𝜆

1 − �̅� 𝑧
𝑓‖ ≥ 𝑐‖𝑓‖                                                                            (4) 
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for all 𝜆 ∈ 𝔻 and all 𝑓 ∈ ℋ. For examples and an introduction to such spaces [106,107]. We 

concerned with the index of 𝑀𝑧 -invariant subspaces and the boundary behavior of the 

functions in ℋ. 

   Let ℳ be a closed 𝑀𝑧-invariant subspace of ℋ. The index of ℳ, denoted indℳ, is then 
defined as 

indℳ= codimRan(𝑀𝑧|ℳ), 

where  𝑀𝑧|ℳ denotes the restriction of 𝑀𝑧  to ℳ. Note that indℋ = 𝑛 and that 𝑀𝑧  has 

closed range by conditions (1) and (2), so indℳ= −ind(𝑀𝑧|ℳ)  where ind(𝑀𝑧|ℳ) 
denotes the Fredholm index of 𝑀𝑧|ℳ. The origin of [8], from which it follows that if 

       lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ = 0                                                                                  (5) 

for some element 𝑓 ∈ ℋ, 𝑓 ≢ 0, then one can find invariant subspaces ℳ with arbitrary 

index. The standard example of a Hilbert space of ℂ-valued analytic functions with the above 

property is the Bergman space 𝐿𝑎
2  , which is easily verified using the dominated convergence 

theorem.[106]. 

Theorem (5.2.1):[112]        Let ℋ be a Hilbert space of ℂ-valued analytic functions that 
satisfies (3) and (4). Then the following are equivalent: 

(i) indℳ=  1 for all invariant subspaces {0} ≠ℳ ⊂ ℋ. 

(ii) There is a measurable set 𝛴 ⊂ 𝕋 with 𝑚(𝛴) > 0 such that the quotient 𝑓/𝑔  has non-

tangential limits a.e. on 𝛴 for any 𝑓, 𝑔 ∈ 𝐻 with 𝑔 ≢ 0. 

(iii)  ∃ 𝑓 ∈ ℋ such that lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ ≠ 0. 

Note that combined with the theorem of Apostol, Bercovici, Foias¸ and Pearcy this implies 
that, given a Hilbert space ℋ of ℂ-valued analytic functions that satisfies (3) and (4), the 

following dichotomy holds: Either 

   lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ ≠ 0 for all 𝑓 ∈ ℋ, 𝑓 ≢ 0.                                                  (6) 

or  

      lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ = 0 for all 𝑓 ∈ ℋ.                                                        (7) 

We find the appropriate extension of Theorem (5.2.1) to the case when ℋ is a space of ℂ𝑛-

valued analytic functions. For this purpose (i), (ii) and (iii) needs to be modified. The reason 
why (i) needs to be changed is that it is very easy to see that for any 𝑚 ≤ 𝑛 there always 

exists an invariant subspace ℳ⊂ℋ with 𝑖𝑛𝑑ℳ = 𝑚. Therefore the natural counterpart to 

condition (i) is 

(iv) indℳ≤ 𝑛 for all invariant subspaces ℳ ⊂ℋ. 

The problem with (ii) is that 𝑓/𝑔 is not even defined for ℂ𝑛-valued functions. To overcome 
this difficulty we proceed as follows. Fix any element  𝐹 = ( 𝑓1 , . . . ,𝑓𝑛 ) ∈ ℋ

𝑛, where ℋ𝑛 

stands for the direct sum of 𝑛 copies of ℋ. We will think of 𝐹 as a matrix-valued analytic 
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function with columns 𝑓1 , . . . , 𝑓𝑛 . Assume that 𝐹(𝜆) is invertible at some 𝜆 ∈ 𝔻 so that the 

determinant 𝑑𝑒𝑡(𝐹 (·)) becomes a non-zero analytic function, and let 𝑍(𝐹) denote its zero-

set. Instead of the quotient 𝑓/𝑔 in (ii) we will consider the ℂ𝑛-valued meromorphic function  

𝐶( 𝑓 , 𝐹 ,·) defined by 

𝐶( 𝑓 , 𝐹, 𝜆) = (𝐹 (𝜆))
−1
 𝑓 (𝜆)                                                         (8) 

The analogue of condition (ii) is: 

(v) There is a measurable set 𝛴 ⊂ 𝕋with 𝑚(𝛴) > 0 such that for all 𝑓 ∈ ℋ and 𝐹 ∈ ℋ𝑛 

with det(𝐹 (·))  ≢  0,𝐶( 𝑓 , 𝐹 ,·)  has non-tangential limits a.e. on 𝛴. 

It is easy to see that (iii) is not equivalent to neither (iv) nor (v). Just take the Hardy space 𝐻2 
and the Bergman space 𝐿𝑎

2  and identify ℋ = 𝐻2⊕𝐿𝑎
2  with a Hilbert space of ℂ2 -valued 

analytic functions in the natural way. It can be shown that conditions (1) to (4) holds, and it 

is not hard to see that neither (iv) nor (v) holds although clearly (iii) is satisfied by the constant 

function 𝑓(·) = (1,0). However, the example ℋ = 𝐻2⊕ 𝐿𝑎
2  is ruled out if we replace (iii) 

with condition (6), so this would be a natural candidate for (vi). 

This has the following consequence for Hilbert spaces of ℂ-valued analytic functions. Note 

that condition (2) is equivalent to 

codimRan(𝑀𝑧− 𝜆) = 1,∀𝜆 ∈ 𝔻. 

If we instead consider spaces ℋ with codimRan(𝑀𝑧− 𝜆) = 𝑛  for all 𝜆 ∈ 𝔻. and some 𝑛 ∈
ℕ, then the same phenomenon as above occurs, i.e. there may be invariant subspaces with 

index larger than 𝑛, even if lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ ≠ 0 holds for all 𝑓 ∈ ℋ with 𝑓 ≢ 0. That the results 

mentioned above can be applied in this situation is a consequence of the Cowen–Douglas 
model. (See [9] or Theorem 1.1 in [6], where it is shown that the adjoint of each operator in 

the Cowen–Douglas class ℬ𝑛(𝔻) is unitarily equivalent to 𝑀𝑧 on some Hilbert space of ℂ𝑛-
valued analytic functions. 

   To find the proper replacement for (iii) we need to use multiplicity theory for a certain 

unitary operator associated to 𝑀𝑧 see [107]. Set 

ℳ= {𝑓 ∈ ℋ: lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ = 0} 

and let 𝑃 denote the orthogonal projection on ℳ⊥. It turns out that one can define a new norm 

on ℳ⊥ via the formula 

‖𝑓‖∗ = lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ 

and that (ℳ⊥, ‖. ‖∗) is a pre-Hilbert space. Let 𝒦  denote its completion. The continuous 

operator 𝑆 ∶ 𝒦 → 𝒦 defined by 𝑆𝑓 = 𝑃𝑀𝑧 𝑓 for 𝑓 ∈ ℳ⊥ is then easily seen to be isometric, 

and hence it has a minimal unitary extension 𝑉 on some Hilbert space �̃� that include 𝒦 as a 
subspace. 𝑉 then has a multiplicity function 𝑀𝑉  which by  [107] satisfies 𝑀𝑉  ≤ 𝑛. Thus 𝑀𝑉  

can be written as 
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  𝑀𝑉(. ) =∑𝒳𝜎𝑖(. )

𝑛

𝑖=1

                                                                           (9) 

where 𝜎𝑛 ⊂ 𝜎𝑛−1 ⊂· · ·⊂ 𝜎1 ⊂ 𝕋  and 𝒳𝜎𝑖  denotes the characteristic function of 𝜎𝑖 . (If 

lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ = 0 for all 𝑓 ∈ ℋ we set 𝜎𝑖 = ∅ for all 𝑖 ≥ 0). 

Theorem (5.2.2):[112]     Let ℋ be a Hilbert space of ℂ𝑛-valued analytic functions that 
satisfies (3) and (4). Then 𝐶( 𝑓 , 𝐹 ,·) has non-tangential limits a.e. on ∑ℋ for any 𝑓 ∈ ℋ 

and any 𝐹 ∈ ℋ𝑛 with 𝑑𝑒𝑡 𝐹 (·) ≢  0. 

(vi) 𝑚(∑(ℋ)) >  0 

implies (v). It is also shown in [107], that (vi) implies (iv ). We show that the reverse 
implications hold as well, and hence that the behavior of the index of the invariant subspaces 

in ℋ is determined by (vi). We shall also improve Theorem (5.2.2) by showing that ∑(ℋ) is 

optimal. 

Corollary (5.2.3):[112]        Let ℋ be a Hilbert space of ℂ𝑛-valued analytic functions such 

that (3) and (4) hold and 𝑚(𝛴(ℋ))≠ 0. If ℳ1 and ℳ2are two invariant subspaces 

withℳ1 ⊂ℳ2, then  

ind(ℳ1) ≤  ind(ℳ2) 

We now give an example that demonstrates the consequences of Theorem (5.2.4). After 
Apostol, Bercovici, Foias¸ and Pearcy proved that there are subspaces of any given index in 

Hilbert spaces of ℂ-valued analytic functions with 

   lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ = 0                                                                           (10) 

for some 𝑓 ∈ ℋ, 𝑓 ≢ 0, Håkan Hedenmalm was the first to actually construct a “natural” 

invariant subspace of the Bergman space 𝐿𝑎
2  with index 2  [4]. Since then several people have 

constructed various methods to find invariant subspaces with large indices in Hilbert spaces 
of ℂ-valued analytic functions that have the property (10). Recall that by Theorem (5.2.1), 

(10) is also a necessary property for such subspaces to exist. Below we will construct a Hilbert 

space of ℂ2-valued analytic functions such that 

lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ ≠ 0 

 for all 𝑓 ∈ ℋ, 𝑓 ≢ 0, that have invariant subspaces with any given index in  ℕ ∪{∞}. 

We need the “𝑃2(𝜇)-spaces”, where 𝜇 is a finite positive Borel measure on �̅� and 𝑃2(𝜇) is 
defined as the closure of the polynomials in 𝐿2(𝜇). see [23] and [107]. Here we will simply 
state the facts necessary for the example. If 𝑑𝜇 = 𝑑𝐴 + 𝜒𝜎 𝑑𝑚, where 𝐴 denotes area 

measure on𝔻, and 𝜎 is a (measurable) subset of 𝕋, then 

(i) For any 𝑓 ∈ 𝑃2(𝜇), 𝑓 |𝔻 is (a.e. equal to) an analytic function. (When working with 

an element 𝑓 ∈ 𝑃2(𝜇) , we shall sloppily think of 𝑓  as a given representative of the 
equivalence class, and we shall assume that this is chosen such that 𝑓 |𝔻 is analytic.) 
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(ii) The set { 𝑓 |𝔻: 𝑓 ∈  𝑃
2(𝜇)} is a Hilbert space of analytic functions that satisfies 

conditions (1)–(4). We will denote this space by 𝑃2(𝜇) as well. 

(iii) For each 𝑓 ∈ 𝑃2(𝜇) and a.e. 𝜉 ∈ 𝜎 , 𝑓 |𝔻 has the non-tangential limit  

𝑓(𝜉 ) at 𝜉. In fact, 𝛩(𝑃2(𝜇))  =  𝜎. 

Example (5.2.4):[112]        Let 𝜎1 ,𝜎2 be subsets of 𝕋, 𝑑𝜇𝑖 = 𝑑𝐴 + 𝜒𝜎𝑖  𝑑𝑚 for 𝑖 = 1,2  and 

consider the Hilbert space ℋ of ℂ2-valued analytic functions defined in the obvious way as 

ℋ = 𝑃2(𝜇1)⊕ 𝑃
2(𝜇2). It is not hard to prove that  𝛴(𝐻) =  𝜎1 ∩ 𝜎2, in fact, 

𝑀𝑉 =  𝜒𝜎1 + 𝜒𝜎2   

Hence by Theorem (5.2.3) we have that 𝛩(𝐻) = 𝜎1 ∩ 𝜎2, but this can also be verified by 
direct calculations. By Theorem (5.2.4) however, we have that if 𝜎1 ∩ 𝜎2 = ∅, then there are 

subspaces of ℋ with any given index 𝑘 ∈ ℕ ∪ {∞}, although clearly 

lim
𝑘→∞

‖𝑀𝑧
𝑘𝑓‖ ≠ 0 

for all non-zero 𝑓 ∈ ℋ. 

Fix 𝐹 ∈ ℋ𝑛  with 𝑑𝑒𝑡 𝐹 ≢ 0 . Given 𝑓 ∈ ℋ  let 𝑐1( 𝑓 , 𝐹 ,·), . . . , 𝑐𝑛( 𝑓 , 𝐹 ,·)  denote the 

components of the ℂ𝑛-valued function 𝐶( 𝑓 , 𝐹 ,·), i.e. the meromorphic functions such that 

       𝐶(𝑓, 𝐹, . ) =

(

 
 

𝑐1(𝑓, 𝐹, . )
.
.
.

𝑐𝑛(𝑓,𝐹, . ))

 
 
                                                                        (11) 

These functions are called “the canonical coefficients of 𝑓 with respect to  ” and are studied 

in detail in [107]. For 𝑖 ∈  {1, . . . , 𝑛} let 𝛩𝐹
𝑖  be the largest set where all functions in {𝑐𝑖( 𝑓 , 𝐹 ,·

): 𝑓 ∈ ℋ} have non-tangential limits a.e. 

Example (5.2.5):[112]       Consider the same space ℋ as Example (5.2.4) and recall that the 

multiplicity function 𝑀𝑉  is given by 

𝑀𝑉 =  𝜒𝜎1 + 𝜒𝜎2   

Let 𝑓 be an arbitrary element in ℋ and let 𝑓1 , 𝑓2  be its components in 𝑃2(𝜇1) and 𝑃2(𝜇2) 
respectively. With 𝐹 = (𝑒1 , 𝑒2 )  (8), we then get 𝑐𝑖( 𝑓 , 𝐹 ) = 𝑓𝑖  so 

𝛩𝐹
𝑖 =  𝜎𝑖  

for 𝑖 = 1, 2. To see this just apply Theorem (5.2.6) to each 𝑃2(𝜇𝑖) separately. Thus we see 
that 

𝑀𝑉  = 𝜒𝛩𝐹1 +𝜒𝛩𝐹2  

so in this particular case there is a stronger connection between 𝑀𝑉  and the boundary behavior 

of the canonical coefficients. On the other hand, the above conclusion clearly relies on the 
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particular choice of 𝐹 and on the fact that ℋ is a direct sum of two subspaces with simpler 

structure. 

 Thus it is natural to ask whether is some stronger link between the multiplicity function 𝑀𝑉  

and the boundary behavior of the canonical coefficients for certain choices of 𝐹. Theorems 

(5.2.16) and (5.2.17) below show that the situation in Example (5.2.5) is typical, i.e. the 
answer is no in general but yes if the space can be decomposed in a direct sum of cyclic 

subspaces. 

    Given 𝑓 ∈ ℋ  let [ 𝑓 ]  denote the closed linear span of the set {𝑀𝑧
𝑘  𝑓: 𝑘 ≥ 0} . For 

subspaces 𝐴1 , . . . , 𝐴𝑛 ⊂ ℋ we will use the notation 

𝐴1 +· · · + 𝐴𝑛 = ℋ 

to mean that each 𝑓 ∈ ℋ  can be written in a unique way as 𝑓 = ∑𝑓𝑖  with 𝑓𝑖 ∈ 𝐴𝑖  . By 

standard functional analysis there is a constant 𝐶 > 0 such that 

𝐶−1‖𝑓‖ ≤ ∑‖𝑓𝑖‖ ≤ 𝐶‖𝑓‖ 

A Hilbert space of ℂ𝑛-valued analytic functions will be called decomposable if there are 

𝑓1 , . . . , 𝑓𝑛 ∈ℋ such that 

[𝑓1] +⋯+ [𝑓𝑛] = ℋ 

These consist mainly in observing that by the Cowen–Douglas model, Theorems (5.2.6)–
(5.2.17) can be applied in a more general setting. We shall show that Theorems (5.2.6)–
(5.2.17) hold under slightly weaker conditions than (1) and (2). We also obtain a result which, 

in the case 𝑛 = 1, implies that if ℳ⊂ℋ is a nontrivial invariant subspace, then 

𝛩(ℋ) =  𝛩(ℳ). 

Thus in order to find 𝛩(ℋ) it suffices to find the corresponding set for any cyclic invariant 

subspace. 

Theorem (5.2.6):[112]   Let ℋ be a Hilbert space of ℂ𝑛 -valued analytic functions that 

satisfies (3) and (4). Then 

𝛴(ℋ)=  𝛩(ℋ) = 𝛥𝐹(ℋ) 𝑎.𝑒. 

for any 𝐹 ∈ ℋ𝑛 with det(𝐹(·)) ≢ 0. 

The proof is structured as follows. We will show each of the inclusions 

                                         𝛥𝐹(ℋ) ⊃ 𝛩(ℋ) 𝑎. 𝑒. ,                                                 (13) 

                                      𝛩(ℋ)⊃ 𝛴(ℋ)𝑎.𝑒.,                                                       (14) 

                                 𝛴(ℋ) ⊃ 𝛥𝐹 (ℋ)𝑎. 𝑒.                                                          (15) 

Once the appropriate definitions have been made, (13) follows without major modifications 
from the methods developed by Aleman, Richter and Sundberg in [106]. Therefore we will 
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just state the necessary lemmas without proofs. Eq. (14) is simply a restatement of Theorem 
(5.2.2) which was proved in [107], so the only part where essentially new ideas are required 

is (15). ℋ will denote a Hilbert space of ℂ𝑛-valued analytic functions that satisfies (3) and 

(4), 𝑓 will be an arbitrary function in ℋ and 𝐹 ∈ℋ𝑛 be such that 𝑑𝑒𝑡(𝐹)  ≢ 0. 

By a functional of evaluation on ℋ, we mean a functional 𝑒𝜆,𝑎 of the form 

𝑒𝜆,𝑎(𝑓) =∑𝑎𝑖𝑓𝑖(𝜆)

𝑛

𝑖=1

, 

where 𝑎 = (𝑎𝑖) ∈ ℂ
𝑛  and 𝜆 ∈ 𝔻. For a finite or countable sequence 𝛬 we will write 𝜆 ∈  𝛬 

to denote that 𝜆  is an entry in the sequence and moreover we will write (ℎ𝜆)𝜆∈𝛬  for a 

sequences of numbers ℎ𝜆 ∈ 𝐶 indexed by the sequence 𝛬. Let 𝑙𝛬
2 denote the space of such 

sequences that are finite in the norm ‖(ℎ𝜆)‖
2 = ∑ |ℎ𝜆|

2
𝜆∈𝛬 . 

Definition (5.2.7):[112]     A finite or countable sequence 𝛬 = (𝑒𝑖 )𝑖  of functionals of 

evaluation on ℋ is called interpolating for ℋ if the operator 𝑇𝛬 ∶ ℋ → 𝑙𝛬
2 given by 

𝑇𝛬(𝑓) = (
𝑒𝑖 (𝑓)

‖𝑒𝑖‖
)
𝑒𝑖∈𝛬

 

is surjective. 

Note that 𝛬 = (𝑒𝑖)𝑖  is interpolating for ℋ if and only if there exists an  𝑀 > 0 such that 

   𝑀−1‖(𝑏𝑒𝑖)‖𝑙𝛬2
2
≤ ‖∑ 𝑏𝑒𝑖

𝑒𝑖
‖𝑒𝑖‖

 

𝑒𝑖∈𝛬

‖

ℋ

2

≤ 𝑀‖(𝑏𝑒𝑖)‖𝑙𝛬2
2
                      (16) 

for all (𝑏𝑒𝑖) ∈ 𝑙𝛬
2, and that for 𝑛 = 1 this definition coincides with the standard one. Any 𝑀 

such that (16) holds will be called an interpolating constant for 𝛬. For a sequence 𝛬 as above 

we will write 𝛬 for the set of points in 𝔻 corresponding to the functionals of evaluation in the 

obvious way, and we will use the notation  𝑁𝑡𝑙 𝛬 for the set of non-tangential accumulation 

points of 𝛬 , i.e. the set of points  𝜉 ∈ 𝕋 such that there exists a subsequence of 𝛬  that 

converge non-tangentially to 𝜉 . 

   Let 𝐹 ∈ ℋ𝑛 such that 𝑑𝑒𝑡𝐹(·) ≢ 0 be fixed and recall that 𝑍(𝐹) denotes the zero-set of the 

function 𝑑𝑒𝑡𝐹(·), that 𝑘𝜆
𝑖 ∈ℋ denotes the element such that 〈𝑓 , 𝑘𝜆

𝑖 〉 =  𝑐𝑖(𝑓,𝐹, 𝜆) and note 

that 𝑘𝜆
𝑖 , due to (8), is a point evaluation. Finally, given 𝑓1 , . . . , 𝑓𝑘 ∈ 𝐻 we use the notation 

        [𝑓1 , … , 𝑓𝑘 ] = 𝑐𝑙(span{𝑀𝑧
𝑖𝑓𝑗: 𝑖 ≥ 0, 1 ≤ 𝑗 ≤ 𝑘})                     (17) 

where 𝑐𝑙 stands for the closure. 

Definition (5.2.8):[112]   A finite subset 𝐴 ⊂ 𝔻 is called a 𝑉-set if the collection {𝐼𝜆}𝜆∈𝐴 

consists of mutually disjoint intervals. Let 𝐸 ⊂ 𝕋 be closed. If, in addition, {𝐼𝜆}𝜆∈𝐴 covers 𝐸, 

then we say that 𝐴 is a 𝑉-set for 𝐸. 
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 From now on, 𝛬 will always denote a (finite or infinite) sequence of the form (𝑘
𝜆𝑗

𝑖𝑗)
𝑗
 where 

𝜆𝑗 ∈ 𝔻\𝑍(𝐹)  and 1 ≤ 𝑖𝑗 ≤ 𝑛. Set 

𝐿(𝛬) = inf
𝑘
𝜆𝑗

𝑖𝑗
∈𝛬

{√1− |𝜆𝑗 |
2
‖𝑘

𝜆𝑗

𝑖𝑗‖}. 

Lemma (5.2.9):[112]     Let 0 < 𝑟 < 1, 𝐿 > 0 and 𝐸 ⊂ 𝐸𝜎′ be closed. Then there is a finite 

sequence 𝛬 such that 𝐿(𝛬) > 𝐿, 𝛬 is a 𝑉-set for 𝐸 and 𝛬 ∩ 𝑟𝔻 = ∅. 

Lemma (5.2.10):[112]    There is a constant 𝐾 > 0, depending only on 𝜎 , with the property 

that if 𝛬 = (𝑘
𝜆𝑗

𝑖𝑗 ) is a finite sequence such that 𝛬 is a 𝑉-set and 𝜆𝑗1 ≠ 𝜆𝑗2    whenever 𝑗1 ≠ 𝑗2 , 

then 𝛬 is also interpolating for ℋ with interpolating constant 𝐾. 

Lemma (5.2.11):[112]      Let 𝛬 = (𝑘
𝜆𝑗

𝑖𝑗 )  be a finite sequence such that 𝛬 is a 𝑉-set and 𝜆𝑗1 ≠

𝜆𝑗2   whenever 𝑗1 ≠ 𝑗2. Moreover let {𝜁𝜆𝑗} be given numbers in 𝕋. Then there exists an 𝑓 ∈

Span𝛬 such that ‖𝑓‖ ≤ 𝐾√2/𝜎 , |〈𝑓, 𝑘
𝜆𝑗

𝑖𝑗 〉| > 𝐿(𝛬) and
〈𝑓,𝑘

𝜆𝑗

𝑖𝑗 〉

𝜁𝜆𝑗

> 0for all  𝑘
𝜆𝑗

𝑖𝑗 ∈ 𝛬. 

Lemma (5.2.12):[112]    Suppose that [𝑓1 , . . . ,𝑓𝑛 ] = ℋ. Given 𝛿 > 0 and 𝛬1 such that 𝛬1 is 

a 𝑉-set, there exists an 𝐿 > 0 with the property that whenever 𝛬2 is such that 𝛬2 is a 𝑉-set 

and 𝐿(𝛬2) >  𝐿, then |〈𝑢, 𝑣〉| ≤ 𝛿‖𝑢‖‖𝑣‖ for all 𝑢 ∈ 𝑆𝑝𝑎𝑛𝛬1 and 𝑣 ∈ 𝑆𝑝𝑎𝑛𝛬2.[106]. 

Proposition (5.2.13):[112]      Let 𝐹 = (𝑓1 , . . . , 𝑓𝑛) ∈ ℋ
𝑛 be fixed. 

(i) There exists an 𝑓 ∈ 𝐻 such that 

𝑛𝑡 − lim
𝜆→𝜉

sup|𝐶(𝑓, 𝐹, 𝜆)| = ∞ 

for a.e.  𝜉 ∈ 𝕋\𝛥𝐹 (ℋ).           

 

(ii) Assume that 𝐹 is such that 

[𝑓1 , . . . , 𝑓𝑛] = ℋ 

Then there is a sequence 

𝛬 = (𝑘
𝜆𝑗

𝑖𝑗)  

(where 1 ≤ 𝑖𝑗 ≤ 𝑛  and 𝜆𝑗 ∈ 𝔻\𝑍(𝐹 ) ), that is interpolating for ℋ  and satisfies 𝑁𝑡𝑙𝛬 =

𝕋 \𝛥𝐹 (ℋ) 𝑎. 𝑒. 

Proof: (i) First pick a sequence of closed sets 𝐸𝑞 ⊂ 𝐸𝜎′  with ⋃ 𝐸𝑞𝑞≥1 = 𝐸𝜎′  a.e. We will 

inductively choose a sequence of finite sequences 𝛬𝑞 = (𝑘𝜆𝑗
𝑞

𝑖𝑗
𝑞

)
𝑗

 (where 𝑞 ≥ 1, 𝜆𝑗
𝑞
∈ 𝔻 and 
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𝑖𝑗
𝑞
∈ {1, . . . , 𝑛}) and functions  𝑓𝑞 ∈  𝑆𝑝𝑎𝑛𝛬𝑞, such that the properties (i)–(iii) listed below 

hold. To each 𝑞 we associate the numbers 

      𝑟𝑞 =
1+ sup{|𝜆|: 𝜆 ∈ 𝛬𝑞}

2
                                                                 (18)  

 𝑀𝑞 = sup{‖𝑘𝜆
𝑖‖: 𝑘𝜆

𝑖 ∈ 𝛬𝑞 for 𝑝 ≤ 𝑞}                                                  (19) 

  𝑎1 =
1

2
 and  aq = min(2

−𝑞 ,(2𝑞𝐾√
2

𝜎
𝑀𝑞−1)

−1

)   for 𝑔 > 1                 (20) 

We also define functions ℎ𝑞 (for 𝑞 ≥ 1), via ℎ𝑞 = ∑ 𝑎𝑝𝑓𝑝
𝑞
𝑝=1  . The induction process will 

ensure that (for q > 1), the following conditions hold: 

(i)  𝛬𝑞 is a 𝑉-set for 𝐸𝑞, 𝐿(𝛬𝑞) >
𝑞

𝑎 𝑞
 and 𝛬𝑞 ∩ (𝑟𝑞−1𝔻) = ∅, 

(ii) ‖𝑓𝑞‖ ≤  𝐾√
2

𝜎
 , 

(iii) for all 𝑘𝜆
𝑖 ∈ 𝛬𝑞 we have |〈𝑓𝑞 ,𝑘𝜆

𝑖 〉| > 𝐿(𝛬𝑞) and  

〈𝑓𝑞 ,𝑘𝜆
𝑖 〉

〈ℎ𝑞−1 , 𝑘𝜆
𝑖 〉
> 0     (or 〈𝑓𝑞 ,𝑘𝜆

𝑖 〉 > 0 if 〈ℎ𝑞−1 ,𝑘𝜆
𝑖 〉 = 0 ). 

 Indeed, it is clear that at we can use Lemmas (5.2.9) and (5.2.11) to choose 𝛬1 and 𝑓1  such 

that the applicable parts of (i)–(iii) hold. Likewise, at the 𝑞𝑡ℎ step of the induction process, 

the existence of a 𝛬𝑞 satisfying (i) is guaranteed by Lemma (5.2.14) and the existence of an 

𝑓𝑞  satisfying (ii) and (iii) is guaranteed by Lemma (5.2.16). 

    Given 𝛬𝑞 ’𝑠 and 𝑓𝑞 ’𝑠 satisfying (i)–(iii) the desired function 𝑓 is given by 

𝑓 =∑ 𝑎𝑝𝑓𝑝

∞

𝑝=1

 

That the sum converges is guaranteed by (ii) and the fact 𝑎𝑝 ≤ 2
−𝑝 . Given 𝑞 ∈ ℕ and 𝑘𝜆

𝑖 ∈

𝛬𝑞 we get 

|〈∑𝑎𝑝𝑓𝑝

∞

𝑝=1

, 𝑘𝜆
𝑖 〉 | = |〈ℎ𝑔−1 + 𝑎𝑝𝑓𝑝 , 𝑘𝜆

𝑖 〉| ≥ |〈𝑎𝑝𝑓𝑞 ,𝑘𝜆
𝑖 〉| ≥ 𝑎𝑞𝐿(𝛬𝑞) ≥ 𝑞 

by (i) and (iii). Moreover for 𝑝 > 𝑞 we have 

|〈𝑎𝑝𝑓𝑝, 𝑘𝜆
𝑖 〉| ≤ 𝑎𝑝‖𝑓𝑝‖‖𝑘𝜆

𝑖‖ ≤ (2𝑝𝐾√
2

𝜎
𝑀𝑝−1)

−1

‖𝑘𝜆
𝑖‖ ≤ 2−𝑝 
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by (ii) and the definition of 𝑎𝑝 . Combining these two inequalities we easily obtain |〈𝑓,𝑘𝜆
𝑖 〉| ≥

𝑞 − 1 which implies that 

|𝐶(𝑓, 𝐹, 𝜆)| ≥ 𝑞 − 1 

for all 𝜆 ∈ 𝛬𝑞. Finally, by the fact that 𝛬𝑞 is a 𝑉-set for 𝐸𝑞 and that lim
𝑞→∞

𝑟𝑞 =  1 it follows 

that for every 𝜉 ∈ ⋃ 𝐸𝑞𝑞≥1   there is a sequence in ⋃ 𝛬𝑞𝑞≥1  that converges non-tangentially to  

𝜉. 

(ii):     Let 𝐺 = (𝑔𝑖) and 𝐻 = (ℎ𝑖) denote arbitrary elements of ℋ𝑛 and define on (ℋ𝑛) ⊕
(ℋ𝑛) the function  

   𝐼(𝐺, 𝐻) = det(
〈𝑔1 ,ℎ1〉 … 〈𝑔𝑛, ℎ1〉
⋮ ⋱ ⋮

〈𝑔𝑛, ℎ1〉 … 〈𝑔𝑛, ℎ𝑛〉
)                                                      (21) 

𝐼 satisfies 𝐼(𝐺, 𝐺) ≥ 0 and 

|𝐼(𝐺, 𝐻)|2  ≤ 𝐼(𝐺, 𝐺)𝐼(𝐻,𝐻) 

To see this one has to show that 𝐼 extends to a sesquilinear positive form on the wedge product 

⋀ ℋ𝑛1 . The above inequality is then just a special case of the Cauchy–Schwartz inequality. 

    Let 𝐹 = (𝑓1 , . . . , 𝑓𝑛) ∈ ℋ
𝑛 be as usual and set 𝐾𝜆 = (𝑘𝜆

1 , . . . , 𝑘𝜆
𝑛) ∈ ℋ𝑛. Then for all 𝜆 ∈

𝔻 we have 

 1 = (𝐼(𝐹, 𝐾𝜆))
2
= (1− |𝜆|2)2𝑛(𝐼 (

𝐹

1 − �̅�𝑧
, 𝐾𝜆))

2

 

                         ≤ (1− |𝜆|2)𝑛𝐼 (
𝐹

1−𝜆𝑧
,
𝐹

1−𝜆𝑧
) (1− |𝜆|2)𝑛𝐼(𝐾𝜆 ,𝐾𝜆)                        (22) 

where  
𝐹

1−𝜆𝑧
 stands for the element (

𝑓1

1−𝜆𝑧
, … ,

𝑓𝑛

1−𝜆𝑧
). Moreover, 𝐼(𝐾𝜆 ,𝐾𝜆) consists of a sum of 

𝑛! terms, each of the form 

(−1)𝑠𝑔𝑛(𝜎)∏〈𝑘𝜆
𝑖 , 𝑘

𝜆

𝜎(𝑖)〉

𝑛

𝑖=1

 

where 𝜎 is a permutation of {1, . . . , 𝑛} and 𝑠𝑔𝑛(𝜎) denotes the sign of 𝜎 . By the Cauchy–

Schwartz inequality we conclude that 

(1− |𝜆|2)𝑛𝐼(𝐾𝜆 ,𝐾𝜆) ≤ 𝑛!∏(1 − |𝜆|2)‖𝑘𝜆
𝑖 ‖
2

𝑛

𝑖=1

  

Combining this with (23), we see that if we can show that 

   nt − lim
λ→ξ

(1− |𝜆|2)𝑛𝐼 (
𝐹

1− �̅�𝑧
,
𝐹

1− �̅�𝑧
)                                       (23) 
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for a.e. 𝜉 ∈ 𝕋\ 𝛴(ℋ), then it follows that for each such 𝜉 there exist at least one  

𝑖 ∈ {1, . . . , 𝑛} with 

𝑛𝑡 − lim
λ→ξ
sup(1− |𝜆|2)‖𝑘𝜆

𝑖‖
2
= ∞ 

i.e.  𝛥𝐹(ℋ) ⊂ 𝛴(ℋ)  a.e.  as desired. 

 To prove (23) we recall a few facts from [106] and [107]. We first assume that 

lim
k→∞

‖𝑀𝑧
𝑘𝑓‖ ≠ 0 

for some element of ℋ. Recall the space 𝐾 and its associated objects like 𝑉, 𝜎𝑖  etc. that 

were defined, and let 𝐸 denote the spectral measure for 𝑉 . Define the measures 𝑚𝑖  on 𝕋 by 

𝑑𝑚𝑖  =  𝜒𝜎𝑖  𝑑𝑚. 

    By [107], it follows that 𝐸 is absolutely continuous and that we can take 𝐾 = 𝐿2(𝑚1)⊕ ·
 · · ⊕ 𝐿2(𝑚𝑛)  with 𝑉  being the operator of multiplication by the independent variable. 

Moreover, for any 𝑓 ∈ ℋ let (𝑓 𝑖)
𝑖=1

𝑛
 denote the element corresponding to 𝑓 in  𝐿2(𝑚1)⊕· ·

 ·⊕ 𝐿2(𝑚𝑛). If we treat the elements of 𝐿2(𝑚𝑖) as functions on T that are identically 0 in 

 \ 𝜎𝑖  , then we have that 

𝑑〈𝐸(. )𝑓, 𝑔〉

𝑑𝑚
=∑𝑓 𝑖𝑔�̅�

𝑛

𝑖=1

 

where 
𝑑〈𝐸(.)𝑓,𝑔〉

𝑑𝑚
 denotes the Radon–Nikodym derivative of the measure 〈𝐸(. )𝑓, 𝑔〉  with 

respect to 𝑚. If lim
𝑘→∞

‖𝑀𝑧
𝑘  ‖ = 0 for all elements of ℋ, then we simply define 𝑓 𝑖  ≡ 0 on 𝕋 

for all 𝑓 ∈ ℋ and 𝑖 = 1, . . . , 𝑛. By a slight modification of [106]. 

Lemma (5.2.14):[112]    For any 𝑓, 𝑔 ∈ ℋ we have 

nt − lim
λ→ξ

(1− |𝜆|2)〈
𝑓

1 − �̅�𝑧
,
𝑔

1− �̅�𝑧
〉 =∑𝑓 𝑖(ξ)𝑔𝑖(ξ)̅̅ ̅̅ ̅̅ ̅

𝑛

𝑖=1

 

for a.e. ξ ∈ 𝕋. 

 Set  

𝑊𝐹 (ξ) = (
𝑓1
1(ξ) … 𝑓𝑛

1(ξ)
⋮ ⋱ ⋮

𝑓1
𝑛(ξ) … 𝑓𝑛

𝑛(ξ)
) 

where 𝑓𝑗
𝑖 = ( 𝑓𝑗)

𝑖
∈ 𝐿2(𝑚𝑖). By Lemma (5.2.18) the limit in (23) exists for a.e. 𝜉 ∈ 𝕋 and 
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nt − lim
λ→ξ

(1− |𝜆|2)𝑛𝐼 (
𝐹

1− �̅�𝑧
,
𝐹

1− �̅�𝑧
) = det

(

 
 
 
 
∑𝑓1

𝑗(ξ)𝑓1
𝑗(ξ)̅̅ ̅̅ ̅̅ ̅

𝑛

𝑗=1

… ∑𝑓𝑛
𝑗(ξ)𝑓1

𝑗(ξ)̅̅ ̅̅ ̅̅ ̅
𝑛

𝑗=1

⋮ ⋱ ⋮

∑𝑓1
𝑗(ξ)𝑓𝑛

𝑗(ξ)̅̅ ̅̅ ̅̅ ̅
𝑛

𝑗=1

… ∑𝑓𝑛
𝑗(ξ)𝑓𝑛

𝑗(ξ)̅̅ ̅̅ ̅̅ ̅
𝑛

𝑗=1 )

 
 
 
 

 

           = det(𝑊𝐹(ξ)
∗𝑊𝐹(ξ)) = |det𝑊𝐹 (ξ)|

2. 

Recall that 𝛴(ℋ) = 𝜎𝑛  and that the support of 𝑓𝑖
𝑛  is included in 𝜎𝑛 . Therefore if  𝜉 ∈

𝕋 \ 𝛴(ℋ) then the last row of 𝑊𝐹  (𝜉 ) is identically 0 and hence det(𝑊𝐹 (𝜉 )) = 0.  

Theorem (5.2.15):[112]   Let ℋ be a Hilbert space of ℂ𝑛 -valued analytic functions that 
satisfies (3) and (4). 

(i) If 𝑚(𝛴(ℋ)) > 0  then indℳ ≤ 𝑛  for all invariant subspaces ℳ⊂ ℋ . In fact, 

indℳ= sup
𝜆∈𝔻
(dim{ 𝑓 (𝜆): 𝑓 ∈ 𝑀}). 

(ii)  If 𝑚(𝛴(ℋ))= 0 then given any 𝑘 ∈ ℕ∪ {∞} the exists an invariant subspace ℳ ⊂
ℋ with indℳ= 𝑘. 

Proof:     The first part is proved in [107], so we turn immediately to the second part. First, if 
0 ≤ 𝑘 ≤ 𝑛  then the problem is easily solved. For 𝑘 = 0  we simply take ℳ= {0} and 

otherwise we take 𝑓1 , . . . , 𝑓𝑘 ∈ ℋ  such that  𝑓𝑘(0) = 𝑒𝑘  and putℳ = [𝑓1 , . . . , 𝑓𝑘 ] (recall 

(17)). It is then easily verified that 

Ran 𝑀𝑧|ℳ+ Span{𝑓1 , . . . , 𝑓𝑘} = ℳ 

So that ind ℳ = 𝑘 as desired. To see this, let 𝑔 ∈ ℳ be arbitrary and pick polynomials 𝑝𝑗
𝑖  

such that  

𝑔 = lim
𝑗→∞

∑𝑝𝑖
𝑗
𝑓𝑖

𝑘

𝑖=1

 

As point evaluations are continuous we infer that there are numbers 𝑎1, . . . , 𝑎𝑘  such that 

lim
𝑗→∞

𝑝𝑖
𝑗
 (0) = 𝑎𝑖 . Therefore (∑ (𝑝𝑖

𝑗
− 𝑝𝑖

𝑗(0))𝑓𝑖
𝑘
𝑖=1 )

𝑗
 is a Cauchy sequence and as 𝑀𝑧  is 

bounded below we get 

𝑔 −∑𝑎𝑖𝑓𝑖

𝑘

𝑖=1

= lim
𝑗→∞

∑(𝑝𝑖
𝑗
− 𝑝𝑖

𝑗(0))𝑓𝑖

𝑘

𝑖=1

= 𝑀𝑧 (lim
𝑗→∞

∑
𝑝𝑖
𝑗
− 𝑝𝑖

𝑗(0)

𝑧

𝑘

𝑖=1

𝑓𝑖) 

So that 𝑔 − ∑ 𝑎𝑖𝑓𝑖
𝑘
𝑖=1 ∈ 𝑅𝑎𝑛𝑀𝑧|ℳ, as desired. 

 We now assume that 𝑘 >  𝑛 and that 𝑚(𝛴(ℋ))= 0. The following argument has been 

taken from [21]. If ℳ⊂ℋ is an 𝑀𝑧-invariant subspace, then ℳ⊥ is 𝑀𝑧
∗  -invariant. We can 

decompose the operator 𝑀𝑧 with respect to  ℋ =ℳ⊕ℳ⊥ as   
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𝑀𝑧 ≅ (
𝑀𝑧|ℳ 𝑝ℳ𝑀𝑧| ℳ⊥

0 𝑝ℳ𝑀𝑧| ℳ⊥
) 

Put 𝑆 = 𝑀𝑧
∗|ℳ⊥ and observe that 𝑆∗ = 𝑃ℳ⊥(𝑀𝑧

∗ )∗|ℳ⊥  = 𝑃ℳ⊥𝑀𝑧|ℳ⊥ and then that 

𝑀𝑧 ≅ (
𝑀𝑧|ℳ 𝑝ℳ𝑀𝑧|ℳ⊥

0 𝑆∗
) = (

𝐼 0
0 𝑆∗

)(
𝐼 𝑝ℳ𝑀𝑧|ℳ⊥

0 𝐼
)(
𝑀𝑧| ℳ 0
0 0

) 

Thus we get  

−𝑛 = ind 𝑀𝑧 = ind𝑀𝑧| ℳ + 0+ ind 𝑆
∗ = ind 𝑀𝑧| ℳ − ind 𝑆 

If either ind𝑀𝑧|ℳ or ind 𝑆 is finite, and hence 

ind𝑆− 𝑛 = ind𝑀𝑧| ℳ                                                               (24) 

Holds even for ind𝑀𝑧| ℳ = −∞. As 𝑆 = 𝑀𝑧
∗|ℳ⊥ this implies that if we can find a subspace  

ℳ such that 

ind𝑀𝑧
∗|ℳ⊥ = 𝑛 − 𝑘                                                                         (25) 

then we are done. 

We will first prove that such a subspace ℳ can be found under the additional assumption that 

there exist 𝑓1 , . . . , 𝑓𝑛  ∈ ℋ such that 

[𝑓1 , . . . , 𝑓𝑛  ] = ℋ                                                                             (26) 

By Proposition (5.2.13) we then get that there exists a sequence 

𝛬 = (𝑘
𝜆𝑗

𝑖𝑗  ) 

(where 1 ≤ 𝑖𝑗  ≤ 𝑛 and 𝜆𝑗 ∈  𝔻\ 𝑍(𝐹 )), that is interpolating for ℋ and satisfies 𝑁𝑡𝑙 𝛬 = 𝕋 

a.e. Moreover, by the proof it follows that we can assume that  𝜆𝑗1 ≠ 𝜆𝑗2 ≠ 0 whenever 𝑗1 =

𝑗2 . Put 𝒩 = 𝑐𝑙(Span{ 𝑘
𝜆𝑗

𝑖𝑗 }). For any 𝑓 ∈ ℋ we have 

〈𝑀𝑧
∗𝑘
𝜆𝑗

𝑖𝑗 ,𝑓〉 = 〈𝑘
𝜆𝑗

𝑖𝑗 , 𝑀𝑧𝑓〉 = 𝜆�̅� 〈𝑘𝜆𝑗
𝑖𝑗 ,𝑓〉, 

so 𝒩 is an 𝑀𝑧
∗  -invariant subspace of ℋ. We will identify 𝑙𝛬

2 with the standard space 𝑙2(ℕ) 
in the obvious way. As 𝒩 = 𝑅𝑎𝑛 𝑇𝛬

∗ =  (𝐾𝑒𝑟 𝑇𝛬)
⊥  Definition (5.2.11), it is easily verified 

that 𝑇𝛬|𝑁 is a bijection from 𝒩 onto 𝑙2, and the above calculation implies that 

𝑀𝑧
∗| 𝒩  𝑇𝛬

∗ = 𝑇𝛬
∗𝐷 

where  𝐷 denotes the operator on 𝑙2  such that 𝐷(𝑎𝑖)  = (�̅�𝑖𝑎𝑖). Now, it is a known fact that 

there are 𝐷-invariant subspaces ℒ of 𝑙2 such that 

𝑖𝑛𝑑 𝐷|ℒ = 𝑛 − 𝑘                                                                                 (27) 
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(even when 𝑘 = ∞), and hence (25) holds with ℳ = (𝑇𝛬
∗(ℒ))

⊥
 and so by (24) we are done 

(in the case when (26) holds). 

We now outline a proof of how to see that 𝐷  has the desired invariant subspace. The crucial 

fact here is that 𝑁𝑡𝑙 𝛬 = 𝕋 a.e. By  [114] it follows that there exist elements 𝑥, 𝑦 ∈ 𝑙2 such 
that 

〈𝐷𝑖𝑥,𝑦〉 = {
1    if     i = 0
0    if    i > 0

 

Put ℒ =  𝑐𝑙(Span{𝐷𝑖𝑥: 𝑖 ≥  0}). As 𝜆𝑖 ≠  0       ∀𝑖 ∈  ℕ and 𝛬 has no accumulation points in 

𝐷 we see that 𝐷|ℒ is bounded below and as 𝑥 is a cyclic vector we deduce that ind 𝐷|ℒ is 

either 0 or −1. But it cannot be 0 because this would imply that 𝐷|ℒ  is invertible, which 

contradicts the fact that 𝑦 is orthogonal to 𝐷|ℒ but not to ℒ. Thus   ind 𝐷|ℒ = −1 so (27) 

holds for 𝑘 = 𝑛 + 1 . To produce subspaces with ind 𝐷|ℒ  < −1 one splits the set 𝛬 into 
several subsets and then use the above construction on each. The argument goes as follows. 

For each 𝜆 ∈  𝔻 let 𝐼𝜆 ⊂ 𝕋 be the open interval centered at 𝜆/|𝜆| with 𝑚(𝐼𝜆) = 1 − |𝜆|. It 
follows from [115]  that a discrete relatively closed sequence 𝛤 = (𝛾𝑖)𝑖=1

∞  in 𝔻 satisfies 

𝑁𝑡𝑙𝛤 =  𝕋 if and only if 

⋃𝐼𝛾𝑖
𝑖>𝑖0

= 𝕋  a. e. 

for all 𝑖0 ∈  ℕ. By this observation it follows that there are numbers 𝑖1 , 𝑖2 , . .. such that 

𝑚( ⋃ 𝐼𝜆𝑖
𝑖𝑗+1≥𝑖>𝑖𝑗

)≥ 1 − 1/𝑗 

and using these subsets it is easy to find 𝑘 − 𝑛 disjoint subsets 𝛬𝑗 ⊂ 𝛬 with 𝑁𝑡𝑙 𝛬𝑗 = 𝕋 and 

⋃𝛬𝑗

𝑘−𝑛

𝑗=1

= 𝛬. 

Given a sequence 𝛤 = (𝛾𝑖) we let 𝐷𝛤 denote the diagonal operator on 𝑙2 given by 𝐷(𝑎𝑖) =
(𝛾�̅�𝑎𝑖), and we shall think of the sets 𝛬𝑗  and 𝛬 as sequences ordered so that the sub-indices of 

the 𝜆𝑖 ’𝑠 are increasing. It is easily seen that 𝐷 = 𝐷�̃�  is unitarily equivalent to 

𝑘 − 𝑛     

⨁𝐷�̃�𝑗

𝑗 = 1       

. 

Let ℒ𝑗 ⊂ 𝑙
2  be 𝐷�̃�𝑗-invariant subspaces such that 𝑖𝑛𝑑 𝐷�̃�𝑗  |ℒ𝑗 = −1 and note that a short 

argument shows that 



 
128 

ind

(

 
 
 
(

𝑘 − 𝑛     

⨁𝐷�̃�𝑗

𝑗 = 1       

)|
𝑘−𝑛     
⨁ ℒ𝑗
𝑗=1       )

 
 
 
=∑ ind𝐷�̃�𝑗  |ℒ𝑗

𝑘−𝑛

𝑗=1

=∑−1

𝑘−𝑛

𝑗=1

= 𝑛 − 𝑘 

This immediately implies that we can find a subspace ℒ ⊂ 𝑙2 such that (27) holds, as desired. 

It remains to prove that the assumption (26) can be removed. Fix  ( 𝑓1 , . . . ,𝑓𝑛 ) =  𝐹 ∈ ℋ
𝑛 

such that det 𝐹 (0) ≠ 0 . If a subspace 𝑀 with 𝑖𝑛𝑑𝑀 =  𝑘 can be found as a subspace of 

[ 𝑓1 , . . . , 𝑓𝑛], then we are obviously done. The already proved results might however not be 

applicable because the space [ 𝑓1 , . . . ,𝑓𝑛 ] may not satisfy conditions (1) and (2). This problem 

can be overcome as follows. By the argument in the first part of this proof we have that 
𝑖𝑛𝑑 [ 𝑓1 , . . . , 𝑓𝑛]  = 𝑛, which by [116] implies that there exists a Hilbert space of ℂ𝑛-valued 

analytic functions ℋ ′that does satisfy (1) and (2), and a unitary map  𝑈 ∶  [ 𝑓1 , . . . , 𝑓𝑛] → ℋ
′ 

such that 𝑀𝑧𝑈 =  𝑈𝑀𝑧 . If we denote by 𝒦 ′and 𝒦 ′̃ the spaces corresponding to ℋ′as 𝒦 and 

�̃� correspond to ℋ, then it is clear that we may consider 𝒦 ′as a subspace of 𝒦 which implies 

that 𝒦 ′̃can be taken as a subspace of �̃�. Thus 

Σ(ℋ′) = {𝜉 ∈ 𝕋:𝑀𝑉|𝐾′
(𝜉) ≥ 𝑛}

𝑎.𝑒.
⊂ {𝜉 ∈ 𝕋:𝑀𝑉(𝜉) ≥ 𝑛} = Σ(ℋ) 

We conclude that 

𝑚(Σ(ℋ′)) = 0 

and hence it follows from what we have already proven that there are 𝑀𝑧-invariant subspaces 

of ℋ ′ with index 𝑘. As 𝑈 is unitary and 𝑀𝑧𝑈 =  𝑈𝑀𝑧 . 

 Let ℋ be a Hilbert space of ℂ𝑛-valued analytic functions. Given 𝐹 ∈ ℋ𝑛 with det(𝐹(·)) ≢
0, we set 

𝛩𝐹
𝑖 =  𝛩({𝑐𝑖(𝑓, 𝐹,·): 𝑓 ∈ ℋ}) 

i.e. 𝛩𝐹
𝑖  is the “largest” subset of 𝕋 where the 𝑖𝑡ℎ canonical coefficient has non-tangential 

limits a.e. for all 𝑓 ∈ℋ. Recall that a Hilbert space of ℂ𝑛-valued analytic functions is called 

decomposable if there are 𝑓1 , . . . , 𝑓𝑛 ∈ℋ such that 

[ 𝑓1] +· · · +[ 𝑓𝑛] = ℋ                                                           (28) 

Theorem (5.2.16):[112]     Let ℋ be a Hilbert space of ℂ𝑛-valued analytic functions that 
satisfies (3) and (4) and assume that ℋ is decomposable, i.e. there are 𝑓1 , . . . , 𝑓𝑛  such that (28) 

holds. Put 𝐹 = (𝑓1 , . . . , 𝑓𝑛). Then 

𝑀𝑉 =∑𝜒𝛩𝐹𝑖

𝑛

𝑖=1

    𝑎. 𝑒 
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Proof:     Fix 𝑖 ∈ {1, . . . ,𝑛} . Note that any 𝑓 ∈ [ 𝑓𝑖  ] is of the form 𝜙𝑓𝑖  where 𝜙  is a 

holomorphic function in 𝔻. Moreover it is easy to see that  𝜙 = 𝑐𝑖(𝑓, 𝐹,·) and that given 𝑔 =
𝑔1 +· · · + 𝑔𝑛 ∈ ℋ with 𝑔𝑖 ∈ [𝑓𝑖  ] we have  𝑐𝑖(𝑔, 𝐹,·) = 𝑐𝑖(𝑔𝑖 ,𝐹, . ). Let 𝒞𝑖  denote the set of 

functions 

{𝑐𝑖(𝑓, 𝐹, . ):𝑓 ∈ [𝑓𝑖]} 

with the norm ‖𝑐𝑖(𝑓, 𝐹,·)‖ = ‖𝑓‖. It is easy to check that 𝒞𝑖  becomes a Hilbert space of ℂ-

valued analytic functions that satisfies (3) and (4). In particular, by Theorem (5.2.19) we 
have that 

𝛩𝐹
𝑖 = Σ(𝒞𝑖)       a. e. 

so in order to prove theorem (5.2.20) we have to show that 

𝑀𝑉 =∑𝜒Σ(𝒞𝑖)

𝑛

𝑖=1

   𝑎. 𝑒. 

Recall the definition of ℳ,𝒦,𝑆, �̃� and 𝑉 associated to ℋ, as defined in the introduction. 

Analogously, for each 𝑖 ∈ {1, . . . , 𝑛} let ℳ𝑖 ⊂ 𝒞𝑖  denote the subspace 

ℳ𝑖 = {𝑓 ∈ 𝒞𝑖: lim
k→∞

‖𝑀𝑧
𝑘𝑓‖ = 0} 

and let 𝑃ℳ𝑖
⊥denote the orthogonal projection onto ℳ𝑖

⊥ . Note that ℳ= ∑ ℳ𝑖
𝑛
𝑖=1  and that 

due to the dichotomy mentioned after Theorem (5.2.1) we either have  ℳ𝑖 = {0} or ℳ𝑖 = 𝒞𝑖 . 

When ℳ𝑖
⊥ = 𝒞𝑖 we define a new norm on 𝒞𝑖  via the formula 

‖𝑓‖∗ = lim
k→∞

‖𝑀𝑧
𝑘𝑓‖ 

and denote by 𝒦𝑖 the completion of the pre-Hilbert space (𝒞𝑖 , ‖. ‖∗). Let   𝑆𝑖:𝒦𝑖 → 𝑘𝑖  denote 

the isometric operator such that 𝑆𝑖𝑓 = 𝑀𝑧𝑓 for all 𝑓 ∈ 𝒞𝑖, and let 𝑉𝑖  be its minimal unitary 

extension on the Hilbert space �̃�𝑖 When ℳ𝑖
⊥ = {0} we define �̃�𝑖 = {0} and let both 𝑉𝑖  and 

𝑆𝑖  to be equal to the operator that maps 0 to 0. 

 By [108] it follows that 𝑀𝑉𝑖 ≤ 1  a.e. and thus by the definition of 𝛴(𝒞𝑖) we get 𝑀𝑉𝑖 =

 𝜒𝛴(𝒞𝑖) a.e. Hence (29) can be reformulated as 

𝑀𝑉 =∑𝑀𝑉𝑖

𝑛

𝑖=1

           𝑎. 𝑒.                                                            (30) 

Let ℒ𝑖  be the closure of 𝑃ℳ⊥[ 𝑓𝑖  ] in 𝒦. As 𝑀𝑧(ℳ) ⊂ℳ it easily follows that 𝑆(ℒ𝑖) ⊂ ℒ𝑖 . 

Let 𝑆|ℒ𝑖  denote the operator 𝑆 restricted to ℒ𝑖 . Moreover let  ℒ�̃� ⊂ �̃� denote the closure of the 

linear span of the sets 𝑉−𝑘  ℒ𝑖  , 𝑘 =  0,1, . . . , ∞. By standard results about unitary extensions 

it follows that 𝑉 |ℒ�̃�    iis a minimal unitary extension of |ℒ𝑖 . 



 
130 

We shall now define a natural unitary map 𝑅𝑖: 𝒦𝑖  → ℒ𝑖 . First, if  ℳ𝑖
⊥ =  {0}, then [𝑓𝑖] ⊂ ℳ 

and thus ℒ𝑖 = 𝒦𝑖 = {0}. In this case we define 𝑅𝑖(0) = 0. Otherwise, i.e. when ℳ𝑖
⊥ = 𝒞𝑖 , 

we set 

𝑅𝑖(𝑐𝑖(𝑓, 𝐹, . )) = 𝑃ℳ⊥𝑓 

for all 𝑓 ∈ [𝑓𝑖]. Clearly 𝑅𝑖 maps 𝒞𝑖  onto a dense subset of 𝑃ℳ⊥[𝑓𝑖]. Moreover, the calculation 

‖𝑐𝑖(𝑓, 𝐹, . )‖∗ = lim
k→∞

‖𝑀𝑧
𝑘𝑓‖ = lim

k→∞
‖𝑀𝑧

𝑘𝑃ℳ⊥𝑓‖ = ‖𝑃ℳ⊥𝑓‖∗ 

shows that it is isometric. Thus 𝑅𝑖 extends by continuity to a unitary operator from 𝒦𝑖 to ℒ𝑖 , 
as desired. 

Under this map the operators 𝑆𝑖  and 𝑆|ℒ𝑖  are unitarily equivalent. If  ℳ𝑖
⊥ = {0} then the 

statement is trivial, so we assume that ℳ𝑖
⊥ = 𝒞𝑖. For  𝑓 ∈ [𝑓𝑖] we then get 

𝑅𝑖(𝑠𝑖𝑐𝑖(𝑓, 𝐹, . )) = 𝑅𝑖(𝑀𝑧𝑐𝑖(𝑓, 𝐹, . )) = 𝑅𝑖(𝑐𝑖(𝑀𝑧𝑓, 𝐹, . )) 

                                              = 𝑃ℳ⊥𝑀𝑧𝑓 = 𝑃ℳ⊥𝑀𝑧𝑃ℳ⊥𝑓 = 𝑆𝑅𝑖(𝑐𝑖(𝑓, 𝐹, . )) 

which easily implies that 𝑅𝑖  𝑆𝑖 = 𝑆|ℒ𝑖  𝑅𝑖  .  

Now, minimal unitary extensions are unique up to unitary equivalence and thus we have 

shown that 𝑀𝑉𝑖 = 𝑀𝑉|ℒ̃𝑖
a.e. In order to prove (30), it is thus sufficient to show that 

𝑀𝑉 =∑𝑀𝑉|ℒ𝑖

𝑛

𝑖=1

     𝑎.𝑒.                                                                     (31) 

But (31) does hold if we can show that ℒ̃1 +⋯+ ℒ̃𝑛 = �̃�, because due to a theorem by 

Putnam [116], similar normal operators are automatically unitarily equivalent. 

 It thus remains to prove that ℒ̃1 +⋯+ ℒ̃𝑛 = �̃�. By standard results about minimal unitary 

extensions, the sets  𝑉−𝑘  𝒦, 𝑘 ∈ ℕ, are dense in �̃�. It follows that ℒ̃1 +⋯+ ℒ̃𝑛  is dense in 
˜K, so we only have to show that for any two subsets  𝐼1 , 𝐼2 ⊂ {1, . . . , 𝑛} with 𝐼1 ∩ 𝐼2 = ∅ the 

two planes ∑ ℒ̃𝑖𝑖∈𝐼1
 and ∑ 𝐼2𝑖∈𝐼2

 have a positive angle, i.e. that 

sup{
〈𝑥, 𝑦〉

‖𝑥‖‖𝑦‖
: 𝑥 ∈∑ℒ̃𝑖

𝑖∈𝐼1

, 𝑦 ∈∑ℒ̃𝑖
𝑖∈𝐼2

} < 1 

By the fact that 𝑉 is unitary, the definition of ℒ̃𝑖  and that 𝑃ℳ⊥[𝑓𝑖] is dense in ℒ𝑖  we get 

sup{
〈𝑥, 𝑦〉

‖𝑥‖‖𝑦‖
: 𝑥 ∈∑ℒ̃𝑖

𝑖∈𝐼1

, 𝑦 ∈∑ℒ̃𝑖
𝑖∈𝐼2

}     = sup{
〈𝑥, 𝑦〉

‖𝑥‖‖𝑦‖
: 𝑥 ∈∑ℒ𝑖

𝑖∈𝐼1

, 𝑦 ∈∑ℒ𝑖
𝑖∈𝐼2

}         
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                                                         = sup{
|〈𝑓, 𝑔〉∗|

‖𝑓‖∗‖𝑔‖∗
: 𝑓 ∈∑𝑃ℳ⊥[𝑓𝑖]

𝑖∈𝐼1

, 𝑔 ∈∑𝑃ℳ⊥[𝑓𝑖]

𝑖∈𝐼2

} 

                                                        ≤ sup{lim
k→∞

|〈𝑀𝑧
𝑘𝑓′ ,𝑀𝑧

𝑘𝑔′〉 |

‖𝑀𝑧
𝑘𝑓 ′‖ ‖𝑀𝑧

𝑘𝑔′‖ 
: 𝑓 ′ ∈∑[𝑓𝑖]

𝑖∈𝐼1

, 𝑔′ ∈∑[𝑓𝑖]

𝑖∈𝐼2

} 

                                  ≤ sup{
|〈𝑓 ′,𝑔′〉|

‖𝑓 ′‖‖𝑔′‖
: 𝑓 ′ ∈∑[𝑓𝑖]

𝑖∈𝐼1

, 𝑔′ ∈∑[𝑓𝑖]

𝑖∈𝐼2

}. 

But the last supremum is indeed less than 1 by the assumption that  [𝑓1] +· · · + [𝑓𝑛] = ℋ.  

Theorem (5.2.17):[112]     There is a Hilbert space ℋ of ℂ2-valued analytic functions that 

satisfies (3) and (4) such that 

𝜒𝛩𝐹1 + 𝜒𝛩𝐹2 < 𝑀𝑉  𝑎. 𝑒. 

for all choices of 𝐹 ∈ ℋ2 with det(𝐹(. )) ≢ 0. 

Proof:     Let 𝜏𝑖 denote subset of 𝕋 which lies in the 𝑖-th quadrant of the plane, 𝑖 = 1, . . . ,4. 

We define the measures 𝜇, 𝜈 and 𝜔 by 

𝑑𝜇 = 𝑑𝐴 + 𝜒𝜏1∪𝜏2 𝑑𝑚, 

𝑑𝜈 = 𝑑𝐴 + 𝜒𝜏1∪𝜏3  𝑑𝑚, 

𝑑𝜔 = 𝑑𝐴 + 𝜒𝜏4  𝑑𝑚. 

let ℋ be the set 

{(𝑓1,𝑓2):𝑓1 ∈ 𝑃2(𝜇),𝑓2 ∈ 𝑃2(𝑣),𝑓1+ 𝑓2 ∈ 𝑃2(𝜔)} 

endowed with the norm 

‖(𝑓1,𝑓2)‖2 = ‖𝑓1‖𝑃2(𝜇)
2 + ‖𝑓2‖𝑃2(𝑣)

2 + ‖𝑓1 + 𝑓2‖𝑃2(𝜔)
2  

Using (i) and (ii) one easily sees that ℋ can be identified with a Hilbert space of ℂ2-valued 

analytic functions. We keep the notation from the introduction of the corresponding objects 

like ℳ,𝑆,𝒦, 𝑉 𝑒𝑡𝑐. Clearly ℳ⊥ =  ℋ and by the dominated convergence theorem it follows 
that 

‖(𝑓1 ,𝑓2)‖∗
2 = ∫ |𝑓1|2𝑑𝑚

 

𝜏1∪𝜏2

+ ∫ |𝑓2|2𝑑𝑚

 

𝜏1∪𝜏3

+ ∫|𝑓1 + 𝑓2|2𝑑𝑚

 

𝜏4

 

Let 𝑚1 denote the measure given by 𝑑𝑚1 =  𝜒𝜏1 𝑑𝑚 and let  𝐽:ℋ → 𝐿2(𝑚)⊕ 𝐿2(𝑚1) be 

given by 
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𝐽((𝑓1,𝑓2)) = (𝑓1𝜒𝜏1∪𝜏2 + 𝑓
2𝜒𝜏3 + (𝑓

1+ 𝑓2)𝜒𝜏4 ,𝑓
2𝜒𝜏3) 

Clearly, 𝐽 is isometric with respect to the ∗-norm on ℋ . Let 𝑁  denote the operator on 

𝐿2(𝑚)⊕ 𝐿2(𝑚1) of multiplication by the independent variable, i.e. the operator such that for 

a.e. 𝜉 ∈ 𝕋 we have 𝑁(𝑓1,𝑓2)(𝜉) = (𝜉𝑓1(𝜉), 𝜉𝑓2(𝜉)), and let 𝒦 ′ denote the closure of 𝐽(ℋ) 
in 𝐿2(𝑚)⊕ 𝐿2(𝑚1). Obviously 𝐽𝑀𝑧 =  𝑁𝐽, and this implies that S is unitarily equivalent 

with 𝑁|𝒦 ′ . Using the Stone–Weierstrass theorem, it is not hard to see that⋃ 𝑁−𝑘𝒦 ′
𝑘>0 is 

dense in 𝐿2(𝑚)⊕ 𝐿2(𝑚1). It follows that 𝑁  is a minimal unitary extension of 𝑁|𝒦 ′. 

Summing up we have proved that 

𝑀𝑣 = 𝑀𝑁 = 𝜒𝕋 + 𝜒𝜏1          𝑎. 𝑒. 

To conclude the theorem, we will show that for any choice of 𝐹 ∈ ℋ2 we have 

𝜒𝛩𝐹1
(𝜉)+ 𝜒𝛩𝐹2

(𝜉) = 0 

for a.e. 𝜉 in some non-trivial subset of 𝕋.  

Let 𝐹 = (𝑓1,𝑓2)  where 𝑓1 = (𝑓1
1  ,𝑓1

2  )  and 𝑓2 = (𝑓2
1 ,𝑓2

2) . Note that for any 𝑔 =
(𝑔1 ,𝑔2) ∈ ℋ and 𝜆/∈ 𝑍(𝐹), we have that 

𝑐1(𝑔,𝐹, 𝜆) =
𝑓2
2(𝜆)

det𝐹(𝜆)
𝑔1(𝜆)−

𝑓2
1(𝜆)

det𝐹(𝜆)
𝑔2(𝜆) 

and a similar equation holds for 𝑐2. First assume that at least 3 of the functions 𝑓𝑖
𝑗
 are non-

vanishing, say 𝑓2
1 ≢ 0 and𝑓2

2 ≢ 0. By choosing 𝑔2 ≡ 0 and  𝑔1 ∈ 𝑃2(𝜇 + 𝜔) such that 𝜏3 ∩

𝛩(𝑔1) = 𝜏3  \ 𝛩(
𝑓2
2

det𝐹
 ) a.e., we deduce that 

𝑚(𝛩𝐹
1(ℋ)∩ 𝜏3 = 0 

In a similar way we deduce that 

𝑚(𝛩𝐹
1(ℋ)∩ 𝜏2 = 0 

and that 

𝑚(𝛩𝐹
2(ℋ) ∩ 𝜏𝑘) =  0                                                                 (32) 

for at least one value of 𝑘 ∈ {2, 3}, which implies that 

𝜒𝛩𝐹1 (𝜉 ) + 𝜒𝛩𝐹2 (𝜉 )  = 0 

for a.e. 𝜉 ∈ 𝜏𝑘, where k is such that (32) holds. Thus 𝜒𝛩𝐹1 + 𝜒𝛩𝐹2 < 𝑀𝑉 a.e. as desired. 

Now assume that two of the 𝑓𝑗
𝑖 ’𝑠  are identically zero, say, 𝑓1

2 ≡  0 and 𝑓2
1 ≡  0. Then 

𝑐1(𝑔, 𝐹, 𝜆) =
𝑔1(𝜆)

𝑓1
1(𝜆)

,   𝑐2(𝑔,𝐹, 𝜆) =
𝑔2(𝜆)

𝑓1
1(𝜆)

. 
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By choosing 𝑔1 = −𝑔2 ∈ 𝑃2(𝜇 + 𝜈) such that 𝜏4 ∩ 𝛩(𝑔
1) = 𝜏4\ 𝛩 (

1

𝑓1
1), we deduce that 

𝑚(𝛩𝐹
1(ℋ) ∩ 𝜏4) = 0 

Similarly we see that also 

𝑚(𝛩𝐹
2(ℋ) ∩ 𝜏4) = 0 

and thus we get that 

𝜒𝛩𝐹1 (𝜉 ) + 𝜒𝛩𝐹2 (𝜉 )  = 0 

for a.e. 𝜉 ∈ 𝜏4.  

Let 𝑇 be a contraction on some Hilbert space 𝒳 such that 𝑇 − 𝜆 is bounded below for each 

𝜆 ∈ 𝔻,⋂ 𝑇𝑖𝜒∞
𝑖=1 = {0} and ind 𝑇 = −𝑛 for some 𝑛 ∈ ℕ. It can be shown that the above 

conditions are equivalent to demanding that 𝑇∗ is a contraction which lies in the Cowen–

Douglas class 𝐵𝑛(𝔻). By [117], it then follows that there exists a Hilbert space ℋ of ℂ𝑛-

valued analytic functions that satisfies (1) and (2) and a unitary map 𝑈:𝒳 → ℋ such that 

𝑈𝑇 = 𝑀𝑧𝑈. [115]  Throughout, ℋ and 𝒳 will be related in this way. Analogously with the 

definition of 𝛴(ℋ) we may define 𝛴(𝒳, 𝑇) and obviously we then get 

𝛴(ℋ) = 𝛴(𝒳, 𝑇 ) 

Moreover, for any 𝑥 ∈ 𝒳 and (𝑥1, . . . , 𝑥𝑛) = 𝑋 ∈ 𝒳
𝑛 such that 

Span{𝑥1 , . . . , 𝑥𝑛} +  Ran(𝑇− 𝜆0) = 𝒳                                            (33) 

for some 𝜆0 ∈ 𝔻, we may define meromorphic functions 

𝑐1(𝑥,𝑋,𝒳, 𝑇,·), . . . , 𝑐𝑛(𝑥, 𝑋,𝒳, 𝑇,·), 

by the equation 

∑𝑐𝑖(𝑥,𝑋,𝒳, 𝑇 ,·)𝑥𝑖

𝑛

𝑖=1

∈ Ran(𝑇− 𝜆)                                                        (34) 

That this equation defines unique meromorphic functions follows from the following simple 
observations. 

(i)  The condition (33) is equivalent to 

det((𝑈𝑥1)(𝜆0), . . . , (𝑈𝑥𝑛)(𝜆0)) ≢  0. 

(ii) The 𝑐𝑖’𝑠 are invariant under unitary transformations, i.e. 

𝑐𝑖(𝑥, 𝑋,𝒳, 𝑇,·) = 𝑐𝑖(𝑈𝑥,𝑈𝑋,ℋ,𝑀𝑧,·), 

where  𝑈𝑋 = (𝑈𝑥1, . . . , 𝑈𝑥𝑛) ∈ ℋ
𝑛. 
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(iii)  In ℋ, the “new” 𝑐𝑖 ’𝑠 defined via (33) coincide with the “old” 𝑐𝑖 ’𝑠 that were defined 

via (8) and (11), i.e. 

𝑐𝑖(𝑈𝑥, 𝑈𝑋,ℋ,𝑀𝑧,·) = 𝑐𝑖(𝑈𝑥,𝑈𝑋,·), 

and the “old” 𝑐𝑖 ’𝑠 are clearly meromorphic. 

Corollary (5.2.18):[112]     Let 𝑇 be a contraction on some Hilbert space 𝒳 such that 𝑇∗ ∈
𝐵𝑛(𝔻). Assume that there exists a 𝑐 > 0 such that 

‖(𝑇− λ)(1− λ̅𝑇)
−1
𝑥‖≥ 𝑐‖𝑥‖ 

for all 𝜆 ∈ 𝔻 and all 𝑥 ∈ 𝒳. Then 

𝛩(𝒳,𝑇 ) = 𝛴(𝒳, 𝑇 ) 

and moreover 

(i)  if 𝑚(𝛴(𝒳, 𝑇 )) = 0 then given any 𝑘 ∈ ℕ ∪ {∞} the exists a 𝑇 -invariant subspace 

ℳ ⊂𝒳 with 𝑖𝑛𝑑 𝑇|ℳ = −𝑘; 

(ii) if 𝑚(𝛴(𝒳, 𝑇 )) >  0 then 𝑖𝑛𝑑 𝑇|ℳ ≥ −𝑛 for all 𝑇-invarian subspaces ℳ ⊂𝒳. 

The evaluation map 𝑓 → 𝑓(𝜆) from ℋ onto ℂ𝑛  is continuous for all 𝜆 ∈ 𝔻 and it is 

surjective for some 𝜆0 ∈ 𝔻.                                                                                         (35) 

ind(𝑀𝑧− 𝜆) = −𝑛 for all 𝜆 ∈ 𝔻                                           (36) 

Corollary (5.2.19):[112]     Let 𝒳 and 𝑇 be such that Corollary (5.2.22) applies assume that 

ℳ is a 𝑇-invariant subspace, then 

𝛴(ℳ,𝑇|ℳ) ⊃𝑎.𝑒. 𝛴(𝒳, 𝑇). 

Proof:      By [115] we may assume that 𝒳 is a Hilbert space of ℂ𝑛-valued analytic functions 

and that 𝑇 = 𝑀𝑧 . We may also assume that 𝑚(𝛴(𝒳,𝑀𝑧)) > 0, because otherwise there is 

nothing to prove. Set 𝑘 = indℳ. By Theorem (5.2.20) we get that 𝑘 ≤ 𝑛 and that we may 

take   𝐹 = (𝑓1 , . . . , 𝑓𝑛 ) ∈ 𝒳
𝑛 such that det𝐹(. ) ≢ 0 and 𝑓1 , . . . , 𝑓𝑘 ∈ ℳ. It is not hard to see 

that 

𝑐𝑖(𝑓, (𝑓1 , . . . ,𝑓𝑘),ℳ,𝑀𝑧|ℳ ,·) = 𝑐𝑖(𝑓, 𝐹,ℋ,𝑀𝑧,·) 

for 1 ≤ 𝑖 ≤ 𝑘 and 𝑓 ∈ ℳ. Thus 

𝛩(ℳ,𝑀𝑧|ℳ) ⊃𝑎.𝑒. 𝛩(𝒳,𝑀𝑧) 

so the result follows by Corollary (5.2.18).  

Corollary (5.2.20):[112]    Let 𝒳 and 𝑇 be such that Corollary (5.2.22) applies assume that 

ℳ is a 𝑇 -invariant subspace such that ind𝑇|ℳ = −𝑛. Then 

𝛩(ℳ,𝑇|ℳ) =  𝛩(𝒳,𝑇 )𝑎.𝑒. 
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Corollary (5.2.25):[112]   Let 𝒳 and 𝑇 be such that Corollary (5.2.22) applies assume that 

m(Σ(𝒳, T)) ≠ 0 

If ℳ1 and ℳ2 are two 𝑇-invariant subspaces with ℳ1 ⊂ℳ2, then 

 ind(𝑇|ℳ1) ≥  ind(𝑇|ℳ2 ). 

Section (5.3):   Invariant Subspaces and Fiber Dimension 

       For a given linear space ℳ consisting of analytic, ℂ𝑁-valued functions (𝑁 ∈ ℕ) over a 

domain 𝛺 ⊆ ℂ, the fiber dimension of ℳ is defined by  

fd(ℳ) = sup
𝜆∈𝛺

dimℳ(𝜆)                                                             (37) 

 where the fiber space ℳ(𝜆) at 𝜆 is given by  

ℳ(𝜆) = {𝑓(𝜆): 𝑓 ∈ℳ} ⊆ ℂ𝑁  

 A point 𝜆 in 𝛺 is called a maximal point, or an 𝑚-point for short, for ℳ if dimℳ(𝜆) =
fd(ℳ), and is called a degenerate point if dimℳ(𝜆) < fd(𝑀). It is not hard to see that the 

collection of degenerate points forms a discrete subset in 𝛺 whose Lebesgue area measure is 

0. The set of 𝑚-points and degenerate points of ℳ will be denoted by mp(ℳ) and 𝒵𝑑𝑔 (ℳ), 

respectively. The fiber dimension has proved to be a fruitful tool to several problems in 
operator theory. To the notorious transitive algebra problem [119], to the cellular 
indecomposable property [120], to multi-variable Fredholm index [17], to Samuel 

multiplicity [121,122], to general structure of invariant subspaces [123]. 

We fix 𝛺 to be an open, connected, and bounded subset in the complex plane ℂ. Moreover, 
for convenience, we assume 0 ∈ 𝛺 . We also fix 𝑛 , 𝑁 ∈ ℕ . We denote by 𝒜𝑛(𝛺) the 

collection of analytic operators which are defined to be the adjoints of operators in the 

Cowen–Douglas class 𝐵𝑛(𝛺
∗) [124], where  𝛺∗ = {�̅�: 𝑧 ∈ 𝛺}. By well known constructions 

in operator theory [125,126], any 𝑇 ∈ 𝒜𝑛(𝛺)  can be represented as the coordinate 

multiplication operator 𝑀𝑧 on a Hilbert space 𝐻 satisfying the following: 

(i) 𝐻 consists of ℂ𝑁-valued analytic functions over the domain 𝛺; 

(ii) The evaluation functional at 𝜆: 𝑓 ∈ 𝐻 → 𝑓(𝜆) ∈ ℂ𝑁  is a continuous map from 𝐻 to 

ℂ𝑁 for each 𝜆 ∈ 𝛺; 

(iii) If 𝑓 ∈ 𝐻 , then so is 𝑧𝑓 , where 𝑧  is the coordinate function; moreover, the 

multiplication operator 𝑀𝑧 − 𝜆 is bounded below for each 𝜆 ∈ 𝛺; 

(iv) 𝐻 satisfies the condition cod(𝐻) = fd(𝐻),where cod(𝐻) = dim(𝐻⊖ 𝑧𝐻).  

Definition (5.3.1):[118]    Let ℳ be a linear space of ℂ𝑁-valued analytic functions over 𝛺 

invariant under multiplication by 𝑧. We say that ℳ has the division property at 𝜆 ∈ 𝛺, if for 

any 𝑓 ∈ℳ vanishing at 𝜆, there is a 𝑔 ∈ ℳ such that 𝑓 = (𝑧 − 𝜆)𝑔. 
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Definition (5.3.2):[118]      For an analytic operator 𝑇 ∈ 𝐵(𝐾) acting on a Hilbert space 𝐾, 

we say that 𝑈:𝐾 → 𝐻 is a 𝐶𝐹 representation of 𝑇 if 𝑈 is a unitary module map from 𝐾 onto 

a Hilbert space 𝐻 satisfying the above (i)–(iv). Here, by a module map we mean that the 

unitary operator 𝑈 satisfies  𝑈𝑇 = 𝑀𝑧𝑈. 

Definition (5.3.3):[118]      For an invariant subspace ℳ⊆ 𝐾of an analytic operator 𝑇 ∈
𝐵(𝐾), the fiber dimension of ℳ in 𝐾, denoted by fd(ℳ), is defined by  

fd(ℳ) = fd(𝑈(ℳ)) 

for some 𝐶𝐹 representation 𝑈 of 𝑇. 

Lemma (5.3.4):[118]     Let ℳ be an 𝑀𝑧 invariant subspace of a Hilbert space 𝐻 satisfying 
(i)–(iv). The following are equivalent. 

(i) ℳ has the division property at one 𝑚-point. 

(ii) ℳ has the division property at all 𝑚-points. 

(iii) cod(ℳ) = dim(ℳ⊖𝑇ℳ) = fd(𝑀). 

Proof:    For an 𝑚-point 𝜆 ∈ 𝛺, let 𝐸𝜆  be the evaluation functional from 𝐻 to ℂ𝑁 restricted to 
ℳ. By the definition above, ℳ has division property at λ iff ker 𝐸𝜆 = (𝑧 − 𝜆)ℳ. Observe 

that (𝑧 − 𝜆)ℳ ⊆ ker𝐸𝜆 , ker 𝐸𝜆 = (𝑧 − 𝜆)ℳ iff dim(ℳ/ker 𝐸𝜆) = dim(ℳ/(𝑧 − 𝜆)ℳ). 
On the other hand, dim(ℳ/ker 𝐸𝜆) = dimℳ(λ)   while dim(ℳ/(𝑧 − 𝜆)ℳ)  does not 

depend on 𝜆, from which the lemma follows immediately.  

Lemma (5.3.5):[118]     Given two Hilbert spaces 𝐻1 ,𝐻2 of vector-valued analytic functions 

satisfying the above (i)–(iii) and an operator 𝛷:𝐻1→ 𝐻2  satisfying 𝛷𝑀𝑧 = 𝑀𝑧𝛷 , if 

𝐻1satisfies (iv), then for any invariant subspace ℳ⊆ 𝐻1,  

fd(ℳ) ≥ fd(𝛷(ℳ)). 

So if 𝛷 is invertible and 𝐻2 also satisfies (iv), fd(ℳ) = fd(𝛷(ℳ)). 

Proof:          Since degenerate points of a fixed subspace are contained in a subset of zero 
Lebesgue area measure, we can choose a common 𝑚-point 𝜆 for ℳ,𝛷(ℳ) and 𝐻1, and we 

define a map 𝛷(𝜆):ℳ(𝜆)  → (𝛷(ℳ))(𝜆)  by  

𝛷(𝜆)(𝑓(𝜆)) =   (𝛷(𝑓))(𝜆), 

for 𝑓 ∈ ℳ. If we can show that this map is well-defined, then it is automatically linear and 

surjective, hence fd(ℳ) ≥ fd(𝛷(ℳ)) follows immediately. 

In fact, if 𝑓(𝜆) = 𝑔(𝜆) for 𝑓, 𝑔 in 𝐻1, then since 𝐻1satisfies (iv), there exists ℎ ∈ 𝐻1 such 

that 𝑓 − 𝑔 = (𝑧 − 𝜆)ℎ (see Lemma (5.3.4)) hence  

(𝛷(𝑓− 𝑔))(𝜆) = (𝛷((𝑧 − 𝜆)ℎ))(𝜆) = ((𝑧− 𝜆)𝛷(ℎ))(𝜆) = 0 

This verifies that 𝛷(𝜆) is well-defined and we are done.  
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Definition (5.3.6):[118]    Let ℳ be an invariant subspace of an analytic operator 𝑇. ℳ is 

called 𝐶𝐹 if its codimension cod(ℳ) = dim(ℳ⊖𝑇ℳ) is equal to its fiber dimension, i.e., 

cod(ℳ) = fd(ℳ). 

For convenience we say that ℳ = {0} is CF. 

The CF property is clearly a generalization of the codimension-one property which holds for 

an invariant subspace ℳ ⊆ 𝐻2(𝔻) of the Hardy space over the unit disc: cod(ℳ) = 1. The 
first systematic investigation of the codimension-one property is Richter’s thesis [3]. 
Examples of CF subspaces can be found in [112,119,121,17,94]. All invariant subspaces of 

Nevanlinna–Pick spaces [17] are CF. 

Definition (5.3.7):[118]   Let 𝑇 be a Fredholm operator on a Hilbert space 𝐾 and  ℳ⊆ 𝐾 be 

an invariant subspace of 𝑇. We define the fiber dimension of ℳ at the origin by 

fdI(ℳ) = lim
k→∞

dim(𝑃𝑘ℳ)

𝑘
, 

where 𝑃𝑘 is the orthogonal projection from 𝐾 onto 𝐾⊝𝑇𝑘𝐾. 

Lemma (5.3.8):[118]     The above limit exists and is an integer. 

Proof:       For any 𝑘 ≥ 1, let 𝐸𝑘 = 𝑇
𝑘−1𝐾⊖𝑇𝑘𝐾. Then it is sufficient to show that the limit  

lim
k→∞

dim(𝑃𝐸𝑘(ℳ)) 

exists and is an integer. Here 𝑃𝐸𝑘  is the orthogonal projection from 𝐾 onto 𝐸𝑘. 

 We first claim that {dim𝐸𝑘}𝑘 ≥ 1is a decreasing sequence, since the following natural map 

𝑇𝑘 induced by 𝑇  

𝑇𝑘−1𝐾/𝑇𝑘𝐾
  𝑇𝑘   
→  𝑇𝑘𝐾/𝑇𝑘+1𝐾 

is well defined and is surjective. In particular, it follows that lim
𝑘→∞

dim𝐸𝑘 exists and is a finite 

integer. Next we apply the following elementary fact to  𝐸𝑘 = 𝑇
𝑘−1𝐾⊖𝑇𝑘𝐾. 

Fact(5.3.9):[118]    For any (closed, finite dimensional) vector space 𝐸 in a Hilbert space  𝐿, 

and another closed subspace 𝑀 ⊆ 𝐿, we have dim𝐸 = dim(𝑃𝐸(ℳ)) + dim(𝑀
⊥ ∩ 𝐸). 

Now with 𝐸 = 𝐸𝑘 and 𝑀 =ℳ, we have dim𝐸𝑘 = dim(𝑃𝐸𝑘(ℳ)) + dim(ℳ
⊥ ∩ 𝐸𝑘), 

Note that ℳ⊥ ∩ 𝐸𝑘 is just the collection of those vectors in 𝑇𝑘−1𝐾 which are orthogonal to 

both ℳ and 𝑇𝑘𝐾. In terms of quotient, it is naturally isomorphic as vector spaces to  

𝐹𝑘 =
𝑇𝑘−1𝐾+ℳ

𝑇𝑘𝐾+ℳ
.  

Their dimensions form a decreasing sequence because the natural maps 𝑇𝑘
′ induced by 𝑇  
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𝑇𝑘−1𝐾+ℳ

𝑇𝑘𝐾+ℳ
 
  𝑇𝑘
′   
→   

𝑇𝑘𝐾+ℳ

𝑇𝑘+1𝐾 +ℳ
 

are well defined and are surjective. In particular, it follows that lim
𝑘→∞

dim(𝐹𝑘) exists and is a 

finite integer. Now our desired limit follows from  

dim(𝑃𝐸𝑘 (ℳ)) = limk→∞
𝐸𝑘 − lim

k→∞
dim𝐹𝑘 

where both limits on the right side exist.[127,128,129]. 

Definition (5.3.10):[118]      Let 𝑇 be a Fredholm operator on a Hilbert space 𝐾 and  ℳ⊆ 𝐾 

be an invariant subspace of 𝑇. Define  

fdII(ℳ) = 𝜒(ℳ̂0) 

Now we will show that the two definitions fdI(ℳ), fdII(ℳ) agree with the original one via 
CF representation in the case of analytic operators. We shall use Serre’s theorem [130] that 

the Euler characteristic 𝜒(ℳ̂0) is equal to the Samuel multiplicity 𝑒(ℳ̂0) with respect to the 

maximal ideal 𝑚 = 𝑚0 in 𝒪0. 

Theorem (5.2.11):[118]    Let 𝑇 be an analytic operator in 𝐵(𝐾) and ℳ be any invariant 

subspace of 𝑇, then fd(ℳ) = fdI(ℳ) = fdII(ℳ). 

Theorem (5.3.12):[118]   Let 𝑇 be a Fredholm operator in 𝐵(𝐾) and ℳ be any invariant 
subspace, then  

fdII(ℳ)+ 𝑒(ℳ⊥) = 𝑒(𝐾). 

Recall that for any bounded operator 𝐴 ∈ 𝐵(𝐾)  on a Hilbert space 𝐾  such that dim(𝐾/
𝐴𝐾) < ∞, the Samuel multiplicity of 𝐴 is defined to be   

𝑒(𝐴) = lim
k→∞

dim(𝐾/𝐴𝑘𝐾)

𝑘
, 

which always exists and is an integer[131]. In the sequel, we sometimes write 𝑒(𝐾) instead 
of 𝑒(𝐴) when a particular operator acting on 𝐾 is specified. Here we assume that the natural 

operator acting on ℳ⊥ is the compression of 𝑇ontoℳ⊥. 

Proof:    Let 𝑆 = 𝑃ℳ⊥ 𝑇|ℳ⊥ be the compression of 𝑇 onto ℳ⊥. Then we have the Samuel 

multiplicities  

𝑒(ℳ⊥) = lim
k→∞

dim(ℳ⊥/𝑆𝑘ℳ⊥)

𝑘
 

and  

𝑒(𝐾) = lim
k→∞

dim(𝐾/𝑇𝑘𝐾)

𝑘
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We first show that for any Fredholm operator 𝑇 ∈ 𝐵(𝐿) acting on a Hilbert space 𝐿, and for 

any invariant subspace ℳ⊆ 𝐿, we have 

fdI(ℳ)+ 𝑒(ℳ⊥) = 𝑒(𝐿)                                                                    (38) 

This follows by considering several exact sequences. We start by  

0 →ℳ → 𝐿 →ℳ⊥ → 0. 

Let 𝐼 be the maximal ideal of the polynomial ring ℂ[𝑧] at the origin, and regard ℳ,𝐿 and 

ℳ⊥ as Hilbert modules with the natural module action, then  

ℳ

𝐼𝑘ℳ
→
𝐿

𝐼𝑘𝐿
→

ℳ⊥

𝐼𝑘ℳ⊥
→ 0 

is exact. 

Complete it to get  

0 →ℳ +
𝐼𝑘𝐿

𝐼𝑘𝐿
→
𝐿

𝐼𝑘𝐿
→
ℳ⊥

𝐼𝑘ℳ⊥
→ 0 

Now observe that dim (ℳ+
𝐼𝑘𝐿

𝐼𝑘𝐿
) = dim(𝑃𝐿⊖𝐼𝑘𝐿ℳ)  = dim(𝑃𝐿⊖𝑇𝑘𝐿ℳ) (which, divided 

by 𝑘, converges to fdI(ℳ)), combined with the definition of the Samuel multiplicity, we can 
complete the proof of (38). 

Now we show that for any analytic operator 𝑇 ∈ 𝐵(𝐾) and for any invariant subspace ℳ⊆
𝐾, we have  

fd(ℳ) = fdI(ℳ)                                                                                      (39) 

Now we come to the main step in the proof and we show that for any Fredholm operator 𝑇 ∈
𝐵(𝐿) acting on a Hilbert space 𝐿, and for any invariant subspace ℳ⊆ 𝐿, we have  

fdII(ℳ)+ 𝑒(ℳ⊥) = 𝑒(𝐿)                                                                     (40) 

Consider the quotient module 𝑄 corresponding to the submodule ℳ̂0 in �̃�0, that is, 

𝑄 =
�̃�0
ℳ̂0

=
𝒪0(𝐿)

𝒪0(ℳ)
+ (𝑧 − 𝑇)𝒪0(𝐿) 

By the additively of Samuel multiplicity for Noetherian modules over the ring 𝒪0  [132], 
which is a classical result in commutative algebra? 

𝑒(ℳ̂0)+ 𝑒(𝑄) = 𝑒(�̃�0) 

By the identification of the Hilbert polynomials of a Hilbert module and its sheaf model in 

[133], we have 𝑒(�̃�0) = 𝑒(𝐿). So it suffices to show that 𝑒(𝑄) = 𝑒(ℳ⊥). For this we will 

show that there exist natural, surjective module homomorphism’s 𝑖, 𝑗 such that  
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𝐿

𝐼𝑘𝐿
+ℳ

   𝑖     
→  

𝑄

𝑚𝑘𝑄
 
  𝑗  
→ 

ℳ⊥

𝐼𝑘ℳ⊥
  

Then by[133]again, the natural module homomorphism  

𝐿

𝐼𝑘𝐿
→

�̃�0
𝑚𝑘 �̃�0

≅
𝒪0(𝐿)

𝑧𝑘𝒪0(𝐿)
+ (𝑧 − 𝑇)𝒪0(𝐿) 

given by sending ℎ ∈ 𝐻 to the class represented by the constant function 𝑓(𝑧) = ℎ is always 
an isomorphism. So it induces a natural surjective homomorphism  

𝐿

𝐼𝑘𝐿
+ℳ →

𝒪0(𝐿)

𝑧𝑘𝒪0(𝐿)
+ 𝒪0(ℳ)+ (𝑧 − 𝑇)𝒪0(𝐿)                            (41) 

Since  

𝑄

𝑚𝑘𝑄
≅
𝒪0(𝐿)

𝑧𝑘𝒪0(𝐿)
+ 𝒪0(ℳ)+ (𝑧 − 𝑇)𝒪0(𝐿)                                   (42) 

so we obtain the first natural homomorphism 𝑖. 

Next we consider another natural isomorphism established in [133] 

ℳ⊥

𝐼𝑘ℳ⊥
≅

𝒪0(ℳ
⊥)

(𝑧 − 𝑆)𝒪0(ℳ
⊥)
+ 𝑧𝑘𝒪0(ℳ

⊥), 

where 𝑆 = 𝑃ℳ⊥𝑇|ℳ⊥. Since each element 𝑥 = 𝒪0(𝐿) can be uniquely decomposed as 𝑦 + 𝑧 
for 𝑦 ∈ 𝒪0(ℳ) and 𝑧 ∈ 𝒪0(ℳ

⊥), we have 

ℳ⊥

𝐼𝑘ℳ⊥
≅ 𝒪0(ℳ

⊥)+
𝒪0(ℳ)

(𝑧 − 𝑆)𝒪0(ℳ
⊥)
+ 𝑧𝑘𝒪0(ℳ

⊥)+ 𝒪0(ℳ)                        (43) 

By comparing (42) and (43) we conclude that there exists a natural map from 
𝑄

𝑚𝑘𝑄
  to 

ℳ⊥

𝐼𝑘ℳ⊥
  , 

by taking the quotient homomorphism, hence surjective, since 

(𝑧 − 𝑆)𝒪0(ℳ
⊥)+ 𝒪0(ℳ) ⊇ (𝑧 − 𝑇)𝒪0(𝐿). 

 So we have the existence of a natural homomorphism 𝑗 ∘ 𝑖:
𝐿

𝐼𝑘𝐿
+ℳ→

ℳ⊥

𝐼𝑘ℳ⊥
. Because such 

a natural homomorphism must be the identity, we can conclude that 𝑒(𝑄) = 𝑒(ℳ⊥) by the 
definition of e(·). 

Definition (5.3.13):[118]   Let 𝑇 be an analytic operator in 𝐵(𝐾). An isometric module map 

𝑈 from 𝐾 to 𝐻 is called a CF embedding of 𝑇 if 𝐻 is a Hilbert space of vector-valued analytic 
functions satisfying (i)–(iv). 

 Again, by a module map we mean that 𝑈 intertwines 𝑇on 𝐾 and 𝑀𝑧 on 𝐻 by 𝑈𝑇 = 𝑀𝑧𝑈. 

Definition (5.3.14):[118]   For an analytic operator 𝑇 ∈ 𝐵(𝐾), its fiber dimension range 

fr(𝑇) is defined to be the following subset of positive integers  
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fr(𝑇) = {fd(𝑈(𝐾)):𝑈 is a CF embedding of 𝑇}. 

      By [126], we see that cod(𝐾) = dim(𝐾⊖ 𝑇𝐾) ∈ fr(𝑇) . On the other hand, since 

fd(𝑈(𝐾))≤ cod(𝑈(𝐾))= cod(𝐾), we know that fr(𝑇) ⊆ {1, 2, . . . , dim(𝐾⊖ 𝑇𝐾)} . 

Hence a natural question is when a subset of ℕ is the fiber dimension range of an analytic 

operator. 

Conjecture(5.3.15):[118]    There exists an analytic operator 𝑇 ∈ 𝐵(𝐾) such that 1 ≠ fr(𝑇). 

Conjecture(5.3.16):   Let 𝔖 = {𝑇|ℳ : 𝑇 ∈ 𝒜1  and ℳ is invariant for𝑇} and  𝔖′ = {𝑇 ∈
𝒜𝑛  for 𝑛 = 1,2, . . . }, then 𝔖 ≠ 𝔖′. 

Theorem (5.3.17):[118]    For an analytic operator 𝑇 ∈ 𝐵(𝐾), we have 1 ∈ fr(𝑇) if and only 

if there exists a Hilbert space 𝐻 of scalar-valued analytic functions, satisfying (i)–(iv), and an 

invariant subspace ℳ ⊆ 𝐻 such that 𝑇 is unitarily equivalent to 𝑀𝑧|ℳ . 

The collection of analytic operators 𝔖 = {𝑇: 1 ∈ fr(𝑇)}  is unitarily equivalent to the 

collection 𝔖′ = {𝑆|ℳ}, where 𝑆 ∈ 𝐵(𝐻) and 𝑆 ∈𝒜1(𝛺) for some 𝛺 around the origin, and 
ℳ ⊆ 𝐻 is an invariant subspace. We mention that similar result holds analogously when the 

assumption 1 ∈ fr(𝑇) is replaced by 𝑘 ∈ fr(𝑇). 

Proof :   One direction is trivial. For the other direction, we assume 1 ∈ fr(𝑇). That is, 
fd(𝑈(𝐾)) = 1 for some 𝑈:𝐾 → 𝐻1, where 𝐻1 is a Hilbert space of vector-valued analytic 

functions over a domain 𝛺. By Lemma (5.3.33), we can find another CF subspace 𝐻2 ⊆ 𝐻1 
containing 𝑈(𝐾) with dim(𝐻2⊖𝑧𝐻2)  = fd(𝐻2)  = 1. 

It remains to realize 𝐻2 as a Hilbert space 𝐻 of scalar-valued analytic functions. To this end, 

fix a nonzero element ℎ ∈ 𝐻2, then since fd(𝐻2) = 1, an element 𝑔 ∈ 𝐻2  other than  ℎ can 

be written as 𝑔 = 𝑔′ℎ for a scalar-valued analytic function 𝑔′ over any domain 𝛺′ that does 
not meet the zeros of ℎ. Now we can take  𝐻 = {𝑔′: 𝑔 = 𝑔′ℎ ∈ 𝐻2} as a function space over 

𝛺′ equipped with the obvious Hilbert space structure via that on 𝐻2 and let ℳ = {𝑔′: 𝑔 =
𝑔′ℎ ∈ 𝑈(𝐾)}. 

Conjecture(5.3.18):[118]   A subset 𝐴 ⊆ ℕ is equal to the fiber dimension range of an 

analytic operator if and only if 𝐴 is a continuous block. 

Here by a continuous block 𝐴we mean that if 𝑘 < 𝑡, and 𝑘, 𝑡 ∈ 𝐴, then any integer between 

𝑘 and 𝑡 is also in 𝐴. An illustrative example is 𝑇 = 𝑀𝑧|ℳ  for an invariant subspace ℳ ⊆
𝐿𝑎
2 (𝔻) of the Bergman space with codimension three, dim(ℳ⊖ 𝑧ℳ) = 3. Then we clearly 

have 1,3 ∈ fr(𝑇). Conjecture (5.3.18) says that we should have 2 ∈ fr(𝑇) also. 

Lemma (5.3.19):[118]      Let 𝑇 ∈ 𝐵(𝐾) be any bounded operator and let 𝜆 ∈ 𝜌𝐹(𝑇) be any 

point in its Fredholm domain. Then there is a positive number 𝜖 > 0  such that 
dim(𝐾/(𝑇 − 𝜇)𝐾) = 𝑒(𝑇;  𝜆)  for any 0 < |𝜇 − 𝜆| < 𝜖  and where 𝑒(𝑇;  𝜆)  denotes the 

Samuel multiplicity of 𝑇at 𝜆. 

Theorem (5.3.20):[118]     For an invariant subspace ℳ of an analytic operator, the additivity 

formula of Samuel multiplicity holds for ℳ if and only if ℳ is CF. 
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Proof:   By fixing a CF representation, we may regard ℳ as an invariant subspace of 𝑀𝑧 on 

a Hilbert space 𝐻 satisfying (i)–(iv) over a domain  𝛺. 

If ℳ is CF, then ℳ has the division property at any 𝑚-point 𝜆 by Lemma (5.3.4), which 

implies that if (𝑧 − 𝜆)𝑓 ∈ ℳ, then 𝑓 ∈ ℳ. So  ker(𝑆ℳ − 𝜆) = {0} for such a 𝜆. Hence,  

𝜎𝑝(𝑆ℳ) ∩  𝛺 ⊆  𝑍𝑑𝑔(ℳ) 

by the definition of 𝑚-points. Moreover, observe that 𝑍𝑑𝑔 (ℳ) is a discrete subset of  𝛺. It 

follows that  

ker(𝑆ℳ − 𝜆) = {0}                                                                        (44) 

for almost all 𝜆 ∈ 𝛺. 

On the other hand, by the above lemma from [131], for each of  𝑇 = 𝑅ℳ , 𝑆ℳ , and 𝑀𝑧, and 

𝐾 =ℳ,ℳ⊥ and 𝐻, respectively,  

𝑒(𝑇) = dim(𝐾/(𝑇 − 𝜇)𝐾)                                                         (45) 

for almost all 𝜆 ∈ 𝛺 . To see this, we can first conclude, by a direct application of 

Lemma(5.3.19),the claim (45) for almost all 𝜆 in a small neighborhood. Then Lemma(5.3.19) 

also implies that the Samuel multiplicity 𝑒(𝑇; 𝜆)  is locally constant in any connected 
component of the Fredholm domain. Since we assume that 𝛺 is connected, we can show claim 

(45) for almost all 𝜆 in any neighborhood in 𝛺. That is, we have (45) for almost all 𝜆 ∈ 𝛺. 

For almost all 𝜆 ∈ 𝛺, both (44) and (45) hold. In particular, we can find at least one point for 

these two equalities to be true. Let us fix such a 𝜆0 ∈ 𝛺. 

  Next we consider the short exact sequence  

0 →ℳ → 𝐻 →ℳ⊥ → 0 

and the associated exact sequence for any 𝜆 ∈ 𝐶 

 0 → ker(𝑆ℳ −  𝜆) →
ℳ

(𝑅ℳ− 𝜆)ℳ
→

𝐻

(𝑧−𝜆)𝐻
→

ℳ⊥

(𝑆ℳ− 𝜆)ℳ
⊥
 →  0              (46) 

which can be obtained by considering the so-called snake lemma [132]. 

Now choose 𝜆 = 𝜆0 in (46) and count the dimensions of all terms, we obtain the Samuel 
additivity formula. 

If ℳ is not CF, then still by Lemma(5.3.4), it is not divisible at any 𝑚-point 𝜆. So there exists 

a nonzero vector 𝑓 ∈ 𝐻 such that (𝑧 − 𝜆)𝑓 ∈ ℳ but 𝑓 ∉ ℳ, which implies that 𝑃ℳ⊥𝑓 ∈
ker(𝑆ℳ − 𝜆). We conclude that ker(𝑆ℳ − 𝜆) is non-zero almost everywhere. Pick any 𝜆0 ∈
𝛺 such that (1)  ker(𝑆ℳ − 𝜆0) is non-zero, and (38) (45) holds for all 𝑅ℳ , 𝑆ℳ , and 𝑀𝑧. Now 

we count dimensions in (46) again, it follows that 

𝑒(𝑅ℳ)+ 𝑒(𝑆ℳ)−  𝑒(𝑀𝑧) = dimker(𝑆ℳ − 𝜆0) ≥ 1 
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So the Samuel additively formula fails.  

Corollary (5.3.21):[118]    Let ℳ be an invariant subspace of an analytic operator. Then the 

inter-section 𝜎𝑝(𝑆ℳ) ∩ 𝛺 either contains the whole domain 𝛺 or is contained in a discrete 

subset. In the former case, ℳ is not CF; in the latter, ℳ is CF. 

Proof:   By the proof of the above theorem, ker(𝑆ℳ − 𝜆) = 0 if and only if ℳ has division 

property at 𝜆. If ℳ is CF, then ℳ has division property at all 𝜆 except for a discrete subset, 

which implies ker(𝑆ℳ − 𝜆) = 0 for all 𝜆 except for a discrete subset. If ℳ is not CF, then 

ℳ  does not has division property at 𝜆  when 𝜆  is an 𝑚 -point. On the other hand, by 

considering the Fredholm index, 𝑀 does not have division property at any degenerate point, 

so ker(𝑆ℳ − 𝜆) ≠ 0 for every 𝜆. 

We contains three results (Theorem (5.3.23), Theorem (5.3.32) and Theorem (5.3.30)) related 
to the formula [120] 

 fd(ℳ1)+ fd(ℳ2) =  fd(ℳ1 ∨ℳ2) +  fd(ℳ1∩ℳ2).                          (47) 

Lemma (5.3.22):[118]    Let ℳ1 and ℳ2be two linear subspaces in a linear space of vector-
valued analytic functions, then 

fd(ℳ1)+ fd(ℳ2) ≥ fd(ℳ1 ∨ℳ2)+  fd(ℳ1 ∩ℳ2).                          (48) 

Proof:   Let 𝜆 ∈ 𝛺 be a common 𝑚-point of ℳ1 ,ℳ2 ,ℳ1 ∩ℳ2, and ℳ1 ∨ℳ2. Set  

𝐸 =ℳ1(𝜆)∩ℳ2(𝜆),   𝐸
′ = (ℳ1 ∩ℳ2)(𝜆),     𝐸𝑖 =ℳ𝑖(𝜆)⊖ 𝐸,   𝑖 = 1,2. 

Then dimℳ𝑖(𝜆) = dim𝐸𝑖 + dim𝐸 , 𝑖 = 1,2. hence 

fd(ℳ1)+ fd(ℳ2) = dim𝐸1 + dim𝐸2 + 2 dim𝐸 

                                                  ≥ dim𝐸1 + dim𝐸2 + dim𝐸 + dim𝐸
′ 

                                           = fd(ℳ1 ∨ℳ2) + fd(ℳ1∩ℳ2), 

where the inequality follows from the fact that 𝐸′ ⊆ 𝐸 and the last equality follows from  

(ℳ1 ∨ℳ2)(𝜆) = ℳ1(𝜆) ∨ℳ2(𝜆). 

Theorem (5.3.23):[118]      Let 𝐻(𝑘)be a functional Hilbert space over the domain 𝛺, 
determined by a complete Nevanlinna–Pick reproducing kernel 𝑘. Suppose that ℳ1 and ℳ2 

are two invariant subspaces of  𝐻(𝑘)  ⊗ ℂ𝑁 , 𝑁 ∈ ℕ. Then 

fd(ℳ1)+ fd(ℳ2) = fd(ℳ1 ∨ℳ2)+  fd(ℳ1∩ℳ2).                                (49) 

 Now a natural question one may ask is the corresponding problem for codimension. Along 
this direction Chailos [108] proved 

cod(ℳ1)+ cod(ℳ2) ≥ cod(ℳ1 ∨ℳ2)+ cod(ℳ1∩ℳ2).                      (50) 

under quite general conditions. 
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Lemma (5.3.24):[118]   Given a family of linear subspaces {ℳ𝛾}𝛾∈𝛤
 in a linear space of 

vector-valued analytic functions 𝐻 satisfying (i)–(iv), there exists a finite subset 𝑆0of 𝛤 such 

that 

fd(⋁ℳ𝛾

𝛾∈𝑆0

) = fd(⋁ℳ𝛾

𝛾∈𝛤

) 

Proof:  Let ℳ= ⋁ ℳ𝛾𝛾∈𝛤  and let ℒ denote the space of all finite linear combinations of 

functions in ℳ𝛾 , 𝛾 ∈ 𝛤. Then  ℒ̅ = ℳ, and for each 𝜆 ∈ 𝛺, 

ℒ̅(𝜆) = ℒ(𝜆) =ℳ(𝜆)                                                                     (51) 

Assume that fd(ℳ) = 𝑑 and let 𝜆0 be an 𝑚-point of ℳ. Moreover, let 

𝑑′ = supdim(⋁ℳ𝛾

𝛾∈𝑆

)(𝜆0), 

where the supremum is taken over all finite subsets 𝑆 of 𝛤. Note that 𝑑′is always achieved. 

So assume that it is achieved at some finite subset 𝑆 = 𝑆0 of 𝛤. 

If 𝑑′ < 𝑑, then there exists a vector 𝑣 ∈ ℳ(𝜆0), which is not in (⋁ ℳ𝛾𝛾∈𝑆 )(𝜆0). Then by 

(54), 𝑣 ∈ (⋁ ℳ𝛾𝛾∈𝑆 )(𝜆0) for another finite subset  𝑆1 ⊆ 𝛤. In this case, 

dim( ⋁ ℳ𝛾

𝛾∈𝑆0⋁𝑆1

)(𝜆0) > 𝑑
′, 

contradicting the definition of 𝑑′. 

Lemma (5.3.25):[118]    For a family of CF subspaces {ℳ𝛾}𝛾∈𝛤
 of an analytic operator, if 

the span of any finite sub-family is CF, then the span of the whole family  ⋁ ℳ𝛾𝛾∈𝛤  is CF. 

Proof:  Let ℳ= ⋁ ℳ𝛾𝛾∈𝛤 . Now fix a CF representation. By Lemma (5.3.23), we can find a 

finite subset 𝑆0  of 𝛤 such that 

fd(ℳ′) = fd(ℳ),                                                                            (52) 

where ℳ ′ = ⋁ ℳ𝛾𝛾∈𝑆0
. This implies that  

mp(ℳ′) ⊆ mp(ℳ)                                                                            (53) 

Through similar arguments, the inclusion (53) can be strengthened as the following 

Claim(5.3.26):[118]     If 𝒩is a subspace between ℳ ′ and ℳ, then 

mp(ℳ′) ⊆ mp(𝒩) ⊆ mp(ℳ)                                                       (54) 
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 Let ℒ denote the space of all finite linear combinations of functions in ℳ𝛾, 𝛾 ∈ 𝛤. Then ℒ̅ =

ℳ. Let 𝜆 ∈ 𝛺 be an m-point of ℳ′, then 𝜆 is also an 𝑚-point of ℳ by (53). 

Suppose that (𝑧 − 𝜆)ℎ ∈ ℒ for some ℎ, it suffices to show that ℎ ∈ℳ. From the definition 

of ℒ, there exists a finite subset 𝑆1 of 𝛤 such that (𝑧 − 𝜆)ℎ ∈ ℳ′′ = ⋁ ℳ𝛾𝛾∈𝑆1
. Clearly, 

(𝑧 − 𝜆)ℎ ∈ ℳ ′ ∨ℳ ′′ = ⋁ ℳ𝛾

𝛾∈𝑆0∨𝑆1

 

By assumption, we know that ℳ ′ ∨ℳ ′′ is CF. So ℳ ′ ∨ℳ ′′ is divisible at 𝜆 since 𝜆 is also 

an m-point of  ℳ ′ ∨ℳ ′′ by the above claim. This implies that 

ℎ ∈ℳ ′ ∨ℳ ′′ ⊆ ℳ 

as desired. 

 Lemma (5.3.27):[118]   Let ℳ be an invariant subspace of a Hilbert space 𝐻 satisfying (i)–

(iv) and 𝜆 ∈ 𝛺 be any 𝑚-point of ℳ. Then the following are equivalent. 

(i) ℳ is CF. 

(ii) There is an invariant linear manifold ℒ ⊆ℳ with ℒ̅ = ℳ, such that if (𝑧 − 𝜆)ℎ ∈ ℒ 

for some ℎ ∈ 𝐻, then ℎ ∈ ℳ. 

Claim(5.3.28):[118]   There exists a sequence {ℎ𝑛} in ℳ such that (𝑧 − 𝜆)ℎ𝑛 → (𝑧 − 𝜆)ℎ. 

Since ℒ is dense, we take a sequence {𝑓𝑛}in ℒ with 𝑓𝑛 → (𝑧 − 𝜆)ℎ. 

Subclaim(5.3.29):[118]     There exists a sequence {𝑘𝑛} in ℒ such that 𝑘𝑛(𝜆) = 0 and  𝑘𝑛 −
𝑓𝑛 → 0. 

Proof:   Suppose fd(ℳ) (= fd(ℒ))  = 𝑠, we take 𝑔1 , . . . , 𝑔𝑠 in ℒ such that {𝑔1(𝜆), . . . , 𝑔𝑠(𝜆)} 
form a base of ℳ(𝜆) . Then for any fixed 𝑛 , there exists {𝑐𝑛𝑖}𝑖=1

𝑠  such that 𝑓𝑛 (𝜆) =
∑ 𝑐𝑛𝑖𝑔𝑖(𝜆)
𝑠
𝑖=1 . Note that 𝑓𝑛(𝜆) → 0  by the choice of {𝑓𝑛} , we have 𝑐𝑛𝑖 → 0 as 𝑛 → ∞ for 

every 1 ≤ 𝑖 ≤ 𝑠. Finally, set 𝑘𝑛 = 𝑓𝑛 −∑ 𝑐𝑛𝑖𝑔𝑖(𝜆)
𝑠
𝑖=1 , then {𝑘𝑛} satisfies all requirements.  

Theorem (5.3.30):[118]    Let ℳ1 ,ℳ2 be two CF subspaces of an analytic operator. if 

fd(ℳ1)+ fd(ℳ2) = fd(ℳ1 ∨ℳ2)+  fd(ℳ1 ∩ℳ2),                 (55) 

then the span ℳ1 ∨ℳ2 is CF. 

Proof:   Assume fd(ℳ1∩ℳ2) = 𝑛. Let 𝜆 ∈ 𝛺 be a common 𝑚-point of ℳ1 ,ℳ2 ,ℳ1 ∩
ℳ2 ,ℳ1 ∨ℳ2 , and 𝐻 with respect to a fixed CF representation of 𝑇. 

Under our assumption on fiber dimensions, it is easy to see, by checking the proof of Lemma 

(5.3.18), that ℳ1(𝜆) ∩ℳ2(𝜆)  = (ℳ1∩ℳ2)(𝜆), which enables us to choose 𝑓1 , . . . , 𝑓𝑛 ∈
ℳ1 ∩ℳ2, such that  

𝐸′ = span{𝑓1(𝜆),… , 𝑓𝑛(𝜆)}. 

For further discussion, we take {𝑓1
𝑖 ,… , 𝑓𝑛𝑖−𝑛

𝑖 ∈ ℳ𝑖 , 𝑖 = 1,2}, such that 
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𝐸𝑖 = span{𝑓1
𝑖(𝜆),… , 𝑓𝑛𝑖−𝑛

𝑖 (𝜆)}. 

Then  

ℳ𝑖(𝜆) = span{𝑓1
𝑖(𝜆),… , 𝑓𝑛𝑖−𝑛

𝑖 (𝜆),𝑓1 (𝜆),… , 𝑓𝑛 (𝜆)} 

when  𝑛𝑖 = fd(ℳ𝑖) and 𝑓1
𝑖 ,… ,𝑓𝑛𝑖−𝑛

𝑖 , 𝑓1 , … , 𝑓𝑛  are linearly independent in ℳ𝑖 , 

𝑖 = 1,2. Let  

𝑘1
𝑖 = 𝑃𝜆

𝑖(𝑓1
𝑖),… , 𝑘𝑛𝑖−𝑛

𝑖 = 𝑃𝜆
𝑖(𝑓𝑛𝑖−𝑛

𝑖 ), 𝑙1
𝑖 = 𝑃𝜆

𝑖(𝑓1),… , 𝑙𝑛
𝑖 = 𝑃𝜆

𝑖(𝑓𝑛), 

where 𝑃𝜆
𝑖  is the projection from ℳ𝑖  onto ((𝑧 − 𝜆)ℳ𝑖)

⊥
. Then 

𝑘1
𝑖 (𝜆) = 𝑓1

𝑖(𝜆),… , 𝑘𝑛𝑖−𝑛
𝑖 (𝜆) = 𝑓𝑛𝑖−𝑛

𝑖 (𝜆), 𝑙1
𝑖 (𝜆) = 𝑓1(𝜆), … , 𝑙𝑛

𝑖 (𝜆) = 𝑓𝑛(𝜆) 

Hence  

𝑘1
𝑖 (𝜆),… , 𝑘𝑛𝑖−𝑛

𝑖 (𝜆), 𝑙1
𝑖 (𝜆),… , 𝑙𝑛

𝑖 (𝜆) 

are linearly independent, and so are 

𝑘1
𝑖 , … , 𝑘𝑛𝑖−𝑛

𝑖 , 𝑙1
𝑖 ,… , 𝑙𝑛

𝑖  

Moreover, they form the base for ℳ𝑖⊝ (𝑧− 𝜆)ℳ𝑖 since ℳ𝑖  is CF. 

Claim(5.3.31):[118]      ℳ1 +ℳ2 has the division property at 𝜆. 

Indeed, if (𝑧 − 𝜆)ℎ ∈ ℳ1 +ℳ2, then we write  

(𝑧 − 𝜆)ℎ = 𝑔1 + 𝑔2 ,𝑔𝑖 ∈ℳ𝑖 , 𝑖 = 1,2. 

Then there exist constants 𝑐1
𝑖 , . . . , 𝑐𝑛𝑖−𝑛

𝑖 , 𝑑1
𝑖 , . . . , 𝑑𝑛

𝑖  and ℎ𝑖 ∈ ℳ𝑖  such that 

𝑔𝑖 = 𝑐1
𝑖𝑘1
𝑖 +⋯+ 𝑐𝑛𝑖−𝑛

𝑖 𝑘𝑛𝑖−𝑛
𝑖 + 𝑑1

𝑖 𝑙1
𝑖 +⋯+𝑑𝑛

𝑖 𝑙𝑛
𝑖 + (𝑧 − 𝜆)ℎ𝑖, 𝑖 = 1,2. 

Obviously, 𝑔1(𝜆) + 𝑔2(𝜆) = 0. Meanwhile, 

𝑘1
𝑖 (𝜆),… , 𝑘𝑛𝑖−𝑛

𝑖 (𝜆),    𝑖 = 1,2,    𝑙1
1(𝜆) = 𝑙1

2(𝜆),… , 𝑙𝑛
1(𝜆) = 𝑙𝑛

2(𝜆) 

are linearly independent, so 

𝑐1
𝑖 = 0,… .𝑐𝑛𝑖−𝑛

𝑖 = 0,𝑑1
1+ 𝑑1

2 = 0,… , 𝑑𝑛
1 + 𝑑𝑛

2 = 0 

By the construction of 𝑙1
𝑖 , 𝑙2

𝑖 ,… , 𝑙𝑛
𝑖 , 𝑖 = 1,2, there exist functions 𝑣1

𝑖 ,𝑣2
𝑖 ,… , 𝑣𝑛

𝑖 ∈ ℳ𝑖  such that 

𝑙𝑗
1 + (𝑧 − 𝜆)𝑣𝑗

1 = 𝑓𝑗 = 𝑙𝑗
2 + (𝑧 − 𝜆)𝑣𝑗

2 , 𝑗 = 1,2,… , 𝑛 

Therefore, 
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𝑙𝑗
𝑖 = 𝑓𝑗 − (𝑧 − 𝜆)𝑣𝑗

𝑖 ,    𝑖 = 1,2;   𝑗 = 1,2,… , 𝑛. 

Hence 

(𝑧 − 𝜆)ℎ = 𝑔1 + 𝑔2                                                                    

    = 𝑑1
1(𝑙1

1− 𝑙1
2)+⋯+ 𝑑𝑛

1(𝑙𝑛
1 − 𝑙𝑛

2) + (𝑧 − 𝜆)(ℎ1+ ℎ2)                                 

= 𝑑1
1(𝑧 − 𝜆)(𝑣1

2− 𝑣1
1)+⋯+ 𝑑𝑛

1(𝑧 − 𝜆)(𝑣𝑛
2 − 𝑣𝑛

1)+ (𝑧 − 𝜆)(ℎ1 + ℎ2) 

which implies that ℎ = 𝑑1
1(𝑣1

2 − 𝑣1
1)+⋯+ 𝑑𝑛

1(𝑣𝑛
2− 𝑣𝑛

1)+ ℎ1+ ℎ2 ∈ℳ1 +ℳ2 , as 
desired. 

Theorem (5.3.32):[118]  For a given analytic operator, if any two of its invariant subspaces 

ℳ1, ℳ2 satisfy 

fd(ℳ1)+ fd(ℳ2) = fd(ℳ1 ∨ℳ2)+  fd(ℳ1 ∩ℳ2).                        (56) 

then any two of its invariant subspaces 𝒩1, 𝒩2  also satisfy 

cod(𝒩1)+ cod(𝒩2) ≥ cod(𝒩1 ∨𝒩2) + cod(𝒩1 ∩𝒩2).                    (57) 

Proof:  We will indeed prove that every invariant subspace is CF. We first observe that it is 

not hard to show that every invariant subspace generated by one element is CF and we leave 

out the proof here. Then, equipped with Theorem (5.3.30) whose proof is given a little later, 
we can use an easy induction argument to show that any finitely generated subspace is CF. 

Again, the details are skipped. Next, Lemma (5.3.25) means that every invariant subspace is 

CF, hence (56) implies (57). 

Definition (5.3.33):[118]    Let ℳ1 ,ℳ2 be two invariant subspaces of an analytic operator. 

We say that ℳ2 is absorbed by ℳ1, denoted by ℳ2 ≺ℳ1, if 

cod(ℳ1 ∨ℳ2) = fd(ℳ1).                                                                     (58) 

Note that in case ℳ2 ≺ℳ1 ,ℳ1 ∨ℳ2  is necessarily CF since 

fd(ℳ1) = cod(ℳ1 ∨ℳ2) ≥ fd(ℳ1 ∨ℳ2) ≥ fd(ℳ1). 

So  

cod(ℳ1 ∨ℳ2) = fd(ℳ1 ∨ℳ2) = fd(ℳ1).                                        (59) 

Lemma (5.3.34):[118]   Let ℳ2 ,ℳ1 be two CF subspaces of an analytic operator and 𝜆 ∈ 𝛺 
be a common 𝑚-point of ℳ2 ≺ℳ1 and ℳ1 ∨ℳ2 with respect to a fixed CF representation. 

The following are equivalent. 

(i) ℳ2 ≺ℳ1. 

(ii) ℳ2(𝜆) ⊆ℳ1(𝜆), and for any 𝑣 ∈ ℳ2, there are sequences {𝑔𝑛
𝑖 }
𝑛=1

∞
 in ℳ𝑖  such that 

𝑔𝑛
𝑖 (𝜆) = 𝑣, 𝑖 = 1,2, and ‖𝑔𝑛

1 −𝑔𝑛
2‖ → 0 as 𝑛 → ∞. 
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Proof:  (i) ⇒(ii). If ℳ2 ≺ℳ1, then fd(ℳ1 ∨ℳ2) = fd(ℳ1) hence ℳ2(𝜆) ⊆ ℳ1(𝜆). Now 

for any 𝑣 ∈ ℳ2(𝜆), we can find   𝑓𝑖 ∈ ℳ𝑖 , 𝑖 = 1,2, such that 𝑓𝑖(𝜆) = 𝑣. Since ℳ1 ∨ℳ2 is 

CF, 𝑓1 − 𝑓2 = (𝑧 − 𝜆)ℎ  for some ℎ ∈ ℳ1 ∨ℳ2  by the division property. Now take ℎ𝑛
𝑖 ∈

ℳ𝑖 , 𝑖 = 1,2, such that ℎ𝑛
1 − ℎ𝑛

2 → ℎ. Then it is easy to check that 𝑔𝑛
𝑖 = 𝑓𝑖 − (𝑧 − 𝜆)ℎ𝑛

𝑖 , 𝑖 =
1,2, satisfy the requirement of (ii). 

 (ii) ⇒(i). Since ℳ2(𝜆) ⊆ℳ1(𝜆), one has fd(ℳ1 ∨ℳ2) = fd(ℳ1). So it remains to show 

that ℳ1 ∨ℳ2 is CF. 

Suppose that  

(𝑧 − 𝜆)ℎ = 𝑓1 − 𝑓2 ∈ ℳ1 +ℳ2 

for some ℎ ∈ 𝐻  and 𝑓𝑖 ∈ ℳ𝑖 , 𝑖 = 1,2 . We need only to show that ℎ ∈ ℳ1 ∨ℳ2 . Now 

𝑓1(𝜆) = 𝑓2(𝜆) = 𝑣 ∈ ℳ2(𝜆), choose 𝑔𝑛
𝑖  as in condition (ii) with 𝑔𝑛

𝑖 (𝜆) = 𝑣, then  

(𝑧 − 𝜆)ℎ = (𝑓1 −𝑔𝑛
1) − (𝑓2 −𝑔𝑛

2)+ (𝑔𝑛
1 − 𝑔𝑛

2). 

By the CF property of ℳ1 and ℳ2 we have 

𝑓𝑖 −𝑔𝑛
𝑖 = (𝑧 − 𝜆)ℎ𝑛

𝑖     for some  ℎ𝑛
𝑖 ∈ ℳ𝑖 , 𝑖 = 1,2. 

Hence  

(𝑧 − 𝜆)ℎ = (𝑧 − 𝜆)ℎ𝑛
1 − (𝑧 − 𝜆)ℎ𝑛

2 + (𝑔𝑛
1 −𝑔𝑛

2).                                     (60) 

Note that 𝑀𝑧 − 𝜆 is bounded below and 𝑔𝑛
1 −𝑔𝑛

2 → 0, as 𝑛 →∞. Multiplying 
1

𝑧−𝜆
 to both 

sides of Eq.(60), one has that ℎ𝑛
1 − ℎ𝑛

2 → ℎ so ℎ ∈ℳ1 ∨ℳ2.  

Lemma (5.3.35):[118]   Let ℳ,𝒩,ℒ  be CF subspaces of an analytic operator such that 

fd(ℳ) = fd(𝒩) and ℳ⊆𝒩. If ℳ≺ ℒ, then 𝒩 ≺ ℒ. 

Theorem (5.3.36):[118]    Given a family of CF invariant subspaces {ℳ𝛾}𝛾∈𝛤
 and another 

CF sub-space 𝒩 of an analytic operator, if each ℳ𝛾 is absorbed by 𝒩, then so is the span  

⋁ ℳ𝛾𝛾∈𝛤 . 

In particular, if in a family of CF subspaces {ℳ𝛾}𝛾∈𝛤
, there exists ℳ𝛾0

 such that every ℳ𝛾 

other than ℳ𝛾0
 is absorbed by ℳ𝛾0

, then  ⋁ ℳ𝛾𝛾∈𝛤  is also CF. 

Proof:   We first treat the case that 𝛤is finite, then the general case. 

STEP I: 𝛤 is a finite set. Without loss of generality, assume that 𝛤 = {1, 2,… , 𝑛}(𝑛 ∈ ℕ). We 
shall show by induction that ℳ1 ∨···∨ℳ𝑖 ≺ 𝒩,  𝑖 = 1, . . . , 𝑛. Note that the case 𝑖 = 1 is 

trivial. 

 Now assume that ℳ1 ∨···∨ℳ𝑖−1 is absorbed by 𝒩, which implies that  

𝒩𝑖−1 =𝒩 ∨ℳ1 ∨···∨ℳ𝑖−1  

is CF with  
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cod(𝒩𝑖−1) = fd(𝒩𝑖−1) = fd(𝒩) 

By the definition of absorbance, it is easy to check that 𝒩 ≺𝒩𝑖−1 . Then by (59) we have 

fd(𝒩∨ℳ𝑖) = fd(𝒩) 

since ℳ𝑖 ≺ 𝒩,𝑖 = 1,… , 𝑛. Next by lemma (5.3.35), if 𝒩 is absorbed by 𝒩𝑖−1 , then so is 

𝒩 ∨ℳ𝑖 . That is, 𝒩 ∨ℳ𝑖 ≺ 𝒩𝑖−1 , which implies that  

cod(𝒩 ∨ℳ1 ∨···∨ℳ𝑖) = fd(𝒩𝑖−1) = fd(𝒩). 

Hence  ℳ1 ∨···∨ℳ𝑖 ≺ 𝒩 by definition. 

STEP II: 𝛤 is a general index set. Let 

𝒩𝛾 =ℳ𝛾 ∨𝒩,    𝛾 ∈ 𝛤 

Then each 𝒩𝛾 is CF since ℳ𝛾 ≺𝑁. The conclusion of STEP I implies that the span of any 

finite sub-family {𝒩𝛾}𝛾∈𝛤
 is CF. So the whole span  ⋁ 𝒩𝛾𝛾∈𝛤  is also CF by Lemma (5.3.27). 

 By lemma (5.3.25), we can take a finite subset 𝑆0  of 𝛤 such that 

fd(⋁ 𝒩𝛾
𝛾∈𝑆0

) = fd(⋁𝒩𝛾
𝛾∈𝛤

)                                                          (61) 

By STEP I, we can check that 

⋁𝒩𝛾
𝛾∈𝑆0

≺𝒩. 

By the above (61) and Lemma (5.3.35), we can extend the absorbance from 𝑆0  to 𝛤,  

⋁𝒩𝛾
𝛾∈𝛤

≺ 𝒩, 

which, by the definition of absorbance, implies that 

⋁ℳ𝛾

𝛾∈𝑆0

≺ 𝒩. 

as desired.[3]. 

Theorem (5.3.37):[118]   Let ℳ be an invariant subspace of an analytic operator on a Hilbert 

space 𝐻, then: 

(i) There exists a unique, smallest invariant CF subspace 𝐸(ℳ) containing ℳ; 
(ii) 𝐸(ℳ) preserves the fiber dimension of ℳ, 

fd(E(ℳ)) = fd(ℳ); 
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(iii) The interior approximate spectrum is preserved in the following sense: 

𝜎𝑎𝑝(𝑆ℳ
∗ ) ∩ 𝛺∗  = 𝜎𝑎𝑝(𝑆𝐸(ℳ)

∗ ) ∩ 𝛺∗, 

where 𝑆ℳ  is the compression of 𝑇 to ℳ⊥ and 𝛺∗ is the conjugate set for 𝛺. Here 𝛺 is the 
underlying domain for the analytic operator. 

Corollary (5.3.38):[118]  For any analytic operator 𝑇 , the collection of CF invariant 

subspaces for 𝑇 forms a complete lattice with respect to intersection and enveloping. 

Claim (5.3.39):[118]    The intersection of any family of CF invariant subspaces is still CF. 

Lemma (5.3.40):[118]     For any family of CF subspaces 𝐼𝑖 , 𝑖 ∈ ℱ, let 𝐼 =  ⋂ 𝐼𝑖𝑖∈ℱ . If there 

exists one common 𝑚-point for 𝐼 and all 𝐼𝑖 , then 𝐼 is CF. 

Lemma (5.3.41):[118]    For any family of CF subspaces {𝐼𝑖}𝑖∈ℱ, let 𝐼 =  ⋂ 𝐼𝑖𝑖∈ℱ . If fd(𝐼𝑖) =
fd(𝐼) for any 𝑖 ∈ ℱ, then 𝐼 is CF. 

Lemma (5.3.42):[118]     For any invariant subspace ℳ of an analytic operator there is an 

invariant CF subspace ℳ′ containing ℳ with fd(ℳ′) = fd(ℳ). 

Proof:   We will use an iteration algorithm to construct the CF subspace ℳ ′ with desired 

properties. To this end, it suffices, without loss of generality, to regard ℳ as an invariant 

subspace of a Hilbert space 𝐻 satisfying (i)–(iv) via a fixed CF representation. 

Take an arbitrary 𝑚-point 𝜆0 ∈ 𝛺 of ℳ. Let 

ℳ1 = {𝑓 ∈ 𝐻: (𝑧 − 𝜆0)𝑓 ∈ ℳ} 

Then it is easy to check that ℳ1 is closed, hence is an invariant subspace containing ℳ. Note 
that if ℳ is CF, then ℳ1 =ℳ by Lemma (5.3.4), and we can stop our algorithm. Moreover, 

it is easy to check, by definition of ℳ1, that for any point 𝜆 other than 𝜆0, 

ℳ(𝜆) =ℳ1(𝜆). 

Therefore fd(ℳ1) = fd(ℳ), and by basic properties of fiber dimension that 𝜆0 is actually a 

common 𝑚-point for ℳ and ℳ1 (hence ℳ(𝜆0) =ℳ1(𝜆0). as well). 

Inductively, we can construct an increasing sequence of invariant subspaces by letting 

ℳ𝑛 = {𝑓 ∈ 𝐻: (𝑧 − 𝜆0)𝑓 ∈ ℳ𝑛−1} 

then we clearly have 

ℳ⊆ℳ1 ⊆ℳ2 ⊆ ⋯ ⊆ℳn…. 

Each ℳ𝑛 is a closed invariant subspace, with two further properties 

(i) fd(ℳ𝑛) = fd(ℳ). 
(ii) 𝜆0 is an 𝑚-point for ℳ𝑛. 

If ℳ𝑛 is CF for some 𝑛, we set ℳ′ =ℳ and stop the algorithm. Otherwise, we set 



 
151 

ℳ′ =⋁{ℳ𝑛}

∞

𝑛=1

 

Here ⋁  denotes the closed span. In the latter case, a moment thought shows that fd(ℳ′) =
fd(ℳ) and since ℳ ⊂ℳ ′, 𝜆0 is a common 𝑚-point of ℳ and ℳ ′. 

Next we show that ℳ ′ is CF in order to finish the proof of Lemma (5.3.42). Observe that ℳ ′ 

admits a dense linear manifold ℒ consisting of finite linear combinations of functions in ℳ𝑛. 

By Lemma (5.3.27), it suffices to show that whenever (𝑧 − 𝜆0)ℎ ∈ ℒ, ℎ ∈ ℳ
′ . In fact, 

suppose that (𝑧 − 𝜆0)ℎ ∈ ℒ for some  ℎ ∈ 𝐻, then there exists an 𝑛0 such that (𝑧 − 𝜆0)ℎ ∈
ℳ𝑛0

, hence  ℎ ∈ ℳ𝑛0+1
⊆ℳ ′ by the construction of ℳ𝑛0+1

, so ℳ ′ is CF. 

Claim (5.3.43):[118]    For any invariant subspace 𝒩, 

𝜎𝑎𝑝(𝑆𝒩
∗ )⋂Ω∗ = {𝜆 ∈ Ω:dim𝒩(𝜆) < fd(𝐻)}∗. 

Given Claim (5.3.43), we distinguish two cases. If fd(ℳ) = fd(𝐸(ℳ)) < fd(𝐻), it follows 

by Claim (5.3.43) that 𝜎𝑎𝑝(𝑆ℳ
∗ ) ∩ 𝛺∗ = 𝜎𝑎𝑝(𝑆𝐸(ℳ)

∗ ) ∩ 𝛺∗ = 𝛺∗. If  fd(ℳ) = fd(𝐸(ℳ)) =

fd(𝐻) , then by Claim (5.3.43), 𝜎𝑎𝑝(𝑆ℳ
∗ ) ∩ 𝛺∗ = 𝑍𝑑𝑔 (ℳ)

∗  and 𝜎𝑎𝑝(𝑆𝐸(ℳ)
∗ ) ∩ 𝛺∗  =

𝑍𝑑𝑔(𝐸(ℳ))
∗
. So it suffices to show that  𝑍𝑑𝑔 (ℳ) = 𝑍𝑑𝑔 (𝐸(ℳ))  and this reduces to 

𝑍𝑑𝑔 (ℳ) ⊆ 𝑍𝑑𝑔 (𝐸(ℳ)) since the other direction is trivial. However, we have shown in the 

proof of Lemma (5.3.41) that for any 𝜆 in 𝛺, ℳ ′(𝜆) =ℳ(𝜆), where ℳ ′ is a CF subspace 

containing ℳ  hence 𝑍𝑑𝑔(ℳ) = 𝑍𝑑𝑔(ℳ
′) . But ℳ ′ ⊇ 𝐸(ℳ)  hence 𝑍𝑑𝑔 (ℳ

′) ⊆

𝑍𝑑𝑔 (𝐸(ℳ)). 

For the other direction, one considers the natural short exact sequence of Hilbert modules 

0 → 𝒩 → 𝐻 → 𝒩⊥ → 0. 

Let 𝐼𝜆  be the maximal ideal of the polynomial ring 𝐴 = ℂ[𝑧] at 𝜆. Applying the tensor product 

factor· ⊗𝐴 𝐴/𝐼𝜆, which is right half-exact, one has the following exact sequence 

𝒩

𝐼𝜆𝒩
 
𝑖𝜆
→ 

𝐻

𝐼𝜆𝐻
  →

𝒩⊥

𝐼𝜆𝒩
⊥
 →  0.                                                                       (62) 

Now the assumption that dim𝒩(𝜆) = fd(𝐻) forces 𝑖𝜆  to be surjective, hence 
𝒩⊥

𝐼𝜆𝒩
⊥
= {0}. 

Therefore, 𝑆𝒩 − 𝜆 is surjective, which implies that �̅� ∉ 𝜎𝑎𝑝(𝑆𝒩
∗ ). 

Definition (5.3.44):[118]   Suppose that {ℳ𝑖}𝑖∈𝐼  is a family of invariant subspaces of an 

analytic operator, then the subspace  

𝐸({ℳ𝑖}𝑖∈𝐼) =⋂ℳγ

γ 

, 

where the intersection is taken over all CF subspaces ℳ𝛾 such that ⋁ ℳ𝑖𝑖∈𝐼 ⊆ℳ𝛾, is called 

the CF-envelope of {ℳ𝑖}𝑖∈𝐼 . 
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That 𝐸({ℳ𝑖}𝑖∈𝐼)  is always CF follows from Claim (5.3.39) in the proof of Theorem 

(5.3.37).[12]. 

Corollary (5.3.45):[118]    Under the hypothesis of Theorem (5.3.37), 

(i)  If ℳ is CF, then 𝜎𝑎𝑝(𝑆𝑀
∗ ) ∩ 𝛺∗ = 𝜎(𝑆𝑀

∗ ) ∩ 𝛺∗; 

(ii) If ℳ is not CF, then  (�̅�)∗ ⊆ 𝜎(𝑆ℳ
∗ ). 

Proof :    (i) We have to show the inclusion 𝜎(𝑆ℳ
∗ ) ∩ 𝛺∗ ⊆ 𝜎𝑎𝑝(𝑆ℳ

∗ )∩ 𝛺∗ . The case 

fd(ℳ) < fd(𝐻) follows directly from Claim (5.3.43). For the case fd(ℳ) = fd(𝐻), assume 

that 𝜆 ∈ 𝛺∗\𝜎𝑎𝑝(𝑆ℳ
∗ ), then inclusion amounts to that ran(𝑆ℳ

∗ − 𝜆) is dense in ℳ⊥ as can be 

easily seen. While the density of ran(𝑆ℳ
∗ − 𝜆) in ℳ⊥ reduces to that ℳ has the division 

property at �̅�, which is also a consequence of Claim (5.3.43) in the proof of Theorem(5.3.37). 
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Chapter 6 

Volterra Invariant Subspaces 

        We show that the result can be applied to derive complete characterizations of such 
subspaces in a large class of Banach spaces of analytic functions in the unit disc containing 

the usual Bergman and Dirichlet spaces. Each invariant subspace of parabolic non-
automorphism composition operator always consists of the closed span of a set of eigen 

functions. As a consequence, such composition operators have no non-trivial reducing 
subspaces. We also include a characterization of the closed ideals of the Banach algebra 

𝑊1,2[0,∞) . Although such a characterization is known, the proof we provide here is 
somehow different. Inspired by Sarason’s results, we find the lattice of closed invariant 
subspaces of the shift plus complex Volterra operator acting on the Hardy space. 

Section (6.1):   Volterra Invariant Subspaces of 𝐻𝑝 

       The Volterra integral operator 

𝑉𝑎 𝑓(𝑧) = ∫𝑓(𝑡)

𝑧

𝑎

𝑑𝑡 

is well-defined for functions 𝑓 in the Hardy space 𝐻1 and for all |𝑎| ≤ 1. It maps 𝐻1 into the 
disc algebra and its spectrum on every Hardy space 𝐻𝑝(𝑝 ≥ 1) consists of a single point 𝜆 =
0.The resolvent of 𝑉𝑎 can be expressed as 

(𝜆 − 𝑉𝑎)
−1 =∑𝜆−𝑛−1𝑉𝑎

𝑛

∞

𝑛=0

,         𝜆 ≠ 0, 

where the series converges in the operator norm. A closed subspace ℳ of 𝐻𝑝 is 𝑉𝑎 -invariant 

if 𝑉𝑎ℳ⊂ℳ. The lattice of all 𝑉𝑎-invariant subspaces of 𝐻𝑝 was described by [135] in the 

case when 𝑝 = 2  and 𝑎 = 0 . Donoghue’s method is pure operator theory, and hardly 

adaptable to other values of 𝑝 and especially if |𝑎| = 1.  

Theorem (6.1.1):[134]     (i) A proper subspace ℳ of 𝐻𝑝 (𝑝 > 1) is 𝑉𝑎-invariant, where 

|𝑎| < 1 if and only if there exists a positive integer 𝑁 such that 

ℳ= 𝑏𝑎
𝑁𝐻𝑝 

Where 𝑏𝑎(𝑧) =
𝑧−𝑎

1−�̅�𝑧
; 

(ii) A proper subspace ℳof 𝐻𝑝(𝑝 > 1) is 𝑉𝑎-invariant, where |𝑎| = 1 if and only if there 

exists a 𝑡 > 0 such that 

ℳ= 𝑆𝑎
𝑡𝐻𝑝 

where 𝑆𝑎(𝑧) = exp
𝑧+𝑎

𝑧−𝑎
.  
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Corollary (6.1.2):[134]   The lattice of 𝑉𝑎 -invariant subspaces of 𝐻𝑝(𝑝 > 1)is linearly 

ordered by inclusion. 

The description of the invariant subspaces for the operator 𝑉: 𝐿2(0,1) → 𝐿2(0,1),  

𝑉𝑓(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡

𝑥

0

, 

is essentially the problem posed by  [136] and first solved by [137] who showed that all 𝑉-

invariant subspaces of 𝐿2(0,1) have the form 

ℳ𝑡 = 𝜒(𝑡,1)𝐿
2(0,1),                    0 < 𝑡 < 1, 

and thus form a linearly ordered lattice. The result has been extended to a larger class of 

integral operators by [53], [138] found a different approach to the problem by identifying a 
resolvent of the Volterra operator with the restriction of the backward shift to one of its 

invariant subspaces. 

   The method we use for proving Theorem (6.1.1) bears strong resemblance to the classical 
methods going back to Wiener, Carleman, et al. in the study of invariant subspaces and also 

to Sarason’s ideas mentioned above, even if in the case considered here, we encounter a 
different situation.To be more specific, our approach is based on a combination of duality 

between 𝐻𝑝 and 𝐻𝑞 ,   
1

𝑝
+
1

𝑞
= 1, and some harmonic analysis based on Borel transforms of 

complex conjugates of 𝐻𝑝-functions on the unit circle 𝕋 = 𝜕𝔻, where 𝔻 denotes the unit 

disc. Given ℎ ∈ 𝐻𝑝̅̅ ̅̅  its Borel transform is the entire function defined by 

ℎ̃(𝜆) = ∫ 𝑒𝜆  ℎ 𝑑𝑚

 

𝕋

, 

where 𝑒𝜆 (𝑧) = 𝑒
𝜆𝑧and 𝑑𝑚 =

|𝑑𝑧|

2𝜋
is the normalized Lebesgue measure on 𝕋. The space of 

entire functions which are Borel transforms of elements of 𝐻𝑝̅̅ ̅̅   is denoted by 𝒱𝑝. Now if we 

start with 𝑉𝑎-invariant subspace ℳ⊂ 𝐻𝑝then it is not hard to verify that the Borel transforms 

of the complex conjugates of the functions in ℳ⊥ ⊂ 𝐻𝑞 ,
1

𝑝
+
1

𝑞
= 1 form a closed subspace 

of 𝒱𝑞that is invariant under a rank-one perturbation of a backward shift depending on the 

point 𝑎 ∈ �̅�. Both objects involved here, the space 𝒱𝑞and the rank-one perturbations of the 

backward shift acting on it are not well understood. However, all invariant subspaces of these 
rank-one perturbations of backward shifts share a slightly more general property called nearly 

invariance. A closed subspace 𝒩of 𝒱𝑞 is called nearly invariant if for every 𝑓 ∈ 𝒩 and every 

𝜆 ∈ ℂ which is a zero of 𝑓 , but not a common zero of 𝒩 , we have  
𝑓

(𝜁−𝜆)
∈ 𝒩 . Nearly 

invariance plays a crucial role in a number of important problems related to invariant 
subspaces for various operators, like for example, the shift on the Hardy space over a multiply 

connected domain  [62,61], or the differentiation operator on 𝐶∞ [139]. The main result about 

nearly invariant subspaces of 𝒱𝑞  is proved and essentially asserts that a nearly invariant 

subspace where multiplication by the independent variable is densely defined must be 
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invariant for differentiation on 𝒱𝑞 and thus it is the Borel transform of the complex conjugate 

of a space of the form (𝜃𝐻𝑝)⊥, where 𝜃 is an inner function. 

   We apply this result in order to show a similar structure theorem for 𝑉𝑎-invariant subspaces 

in every Banach space 𝑋 which consists of analytic functions in 𝔻 and has the following 

natural properties 

(i) Point evaluations are continuous functionals on 𝑋, 
(ii) Multiplication by the independent variable is bounded from above and below on 𝑋, 
(iii) 𝑋 is invariant for composition with analytic selfmaps 𝜑:𝔻 → 𝔻of the form 𝜑(𝑧) =
𝑐𝑧 + 𝑑, 𝑐, 𝑑 ∈ ℂ, and the norm of such a composition operator is dominated by a negative 

power of 1− |𝜑(0)|,  
(iv) There exists a nonnegative integer 𝑚  such that the Banach algebra of analytic 

functions in 𝔻 whose 𝑚th derivative belongs to the disc algebra (with the usual 𝐶𝑚(�̅�)-
norm) is continuously contained and dense in 𝑋. 

   When applied to concrete cases, this result yields an extension of Theorem (6.1.1) to 𝐻1. 
The first part of this result holds true in all spaces 𝐻𝑝,0 < 𝑝 < ∞ and is proved with a similar 

method. We obtain a complete characterization of all 𝑉𝑎-invariant subspaces in the standard 

weighted Bergman spaces as well as in most standard weighted Dirichlet spaces . 

   We shall focus on Borel transforms of complex conjugates of 𝐻𝑝-functions on the unit 

circle. Given ℎ ∈ 𝐻𝑝̅̅ ̅̅  with 𝑝 > 1, its Borel transform ℎ̃ is the entire function given by 

ℎ̃(𝜆) = ∫ 𝑒𝜆  ℎ 𝑑𝑚

 

𝕋

. 

We shall denote by 𝒱𝑝 the space of entire functions obtained this way endowed with the 

induced norm 

‖ℎ̃̅‖
𝑉𝑝
= ‖ℎ‖𝑝,                   ℎ ∈ 𝐻

𝑝. 

Clearly, 𝒱2 is a Hilbert space and if  𝑓 ∈ 𝒱2 with  𝑓(𝑧) = ∑ 𝑓𝑛𝑧
𝑛

𝑛≥0  then 

‖𝑓‖2 =∑|𝑓𝑛|
2(𝑛!)2

∞

𝑛=0

< ∞. 

This space of functions has been considered by [140] in connection with infinite differential 

equations. In [140] it is observed that the norm in 𝒱2 actually is a weighted 𝐿2-normand this 

is due to the fact that (𝑛!)2  are the moments of a measure on [0,∞). There is a lot of 

information available about sequences of the form ((𝑛!)𝑐), [141].  

Proposition (6.1.3) :[134]   If 𝑓 ∈ 𝒱2 then 

‖𝑓‖𝑉2
2 = 𝜋−2∫∫|𝑓(𝑧𝑤)|2𝑒−|𝑧|

2−|𝑤|2  𝑑𝐴(𝑧) 𝑑𝐴(𝑤)

 

ℂ

 

ℂ

= ∫|𝑓(𝑢)|2𝑣(𝑢) 𝑑𝐴(𝑢)

 

ℂ

, 
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Where 

𝑣(𝑢) =
1

𝜋
∫ 𝑒

−
|𝑢|2

𝑡2
−𝑡2 𝑑𝑡

𝑡

∞

0

. 

Proof:   The first equality follows by a direct calculation with Parseval’s formula. To see the 

second, note that for 𝑤 ≠ 0 

∫|𝑓(𝑧𝑤)|2𝑒−|𝑧|
2
 𝑑𝐴(𝑧)

 

ℂ

=
1

|𝑤|2
∫|𝑓(𝑢)|2𝑒−|𝑢|

2/|𝑤|2  𝑑𝐴(𝑢)

 

ℂ

 

and integrate this identity on ℂ against the measure 𝑒−|𝑤|
2
𝑑𝐴(𝑤). Then the result follows by 

Fubini’s theorem. 

We shall denote throughout by 𝜁 the identity function on ℂ, that is, 𝜁(𝑧) = 𝑧. 

Proposition (6.1.4): [134]    (i) The spaces 𝒱𝑝, 𝑝 > 1 consist of functions of exponential type 

at most one. Moreover, if  𝑓 ∈ 𝒱𝑝 then 

|𝑓(𝜆)| = 𝑜(𝑒|𝜆|) 

when |𝜆| → ∞. 

(ii) If 𝑓 ∈ 𝒱𝑝  with 𝑓 = ℎ̃̅,ℎ ∈ 𝐻𝑝  then 𝑓 ′ ∈ 𝒱𝑝  and 𝑓 ′ = 𝐵ℎ̅̅ ̅̃̅  where𝐵denotes the backward 

shift on 𝐻𝑝. Consequently, the differentiation operator  𝐷𝑓 = 𝑓 is a bounded linear operator 

on 𝒱𝑝. 

(iii) For 𝑎 ∈ �̅� and 𝜆 ∈ ℂ denote by 𝑅𝑎,𝜆  the integral operator defined on 𝐻𝑞 ,
1

𝑝
+
1

𝑞
= 1 by 

𝑅𝑎,𝜆𝑔(𝑧) = ∫𝑒
𝜆(𝑧−𝑡)𝑔(𝑡)𝑑𝑡

𝑧

𝑎

. 

If 𝑓 ∈ 𝒱𝑝 with 𝑓 = ℎ̃̅, ℎ ∈ 𝐻𝑝 and 𝑓(𝜆) = 0 for some  𝜆 ∈ ℂ then  
𝑓

(𝜁−𝜆)
∈ 𝒱𝑝 with 

𝑓

𝜁 − 𝜆
= 𝑅𝑎,𝜆

∗ ℎ̅̅ ̅̅ ̅̅ ̅̃.  

(iv) An entire function 𝑓 satisfies 𝜁𝑓 ∈ 𝒱𝑝if and only if  𝑓 = ℎ̃̅ with ℎ′ ∈ 𝐻𝑝. 

Proof:   (i). By Hölder’s inequality we have for  
1

𝑝
+
1

𝑞
= 1 

|ℎ̃̅(𝜆)| = |∫𝑒𝜆  ℎ 𝑑𝑚

 

𝕋

| ≤ ‖ℎ‖𝑝‖𝑒𝜆‖𝑞 ≤ 𝑒
|𝜆| ‖ℎ̃̅‖

𝑉𝑝
. 
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To see the second part, note that the estimate is obvious when 𝑓 = ℎ̃̅ where ℎ is a polynomial. 

Then if 𝑓 = ℎ̃̅ ∈ 𝒱𝑝  is arbitrary we can apply the first estimate to 𝑓 − �̅̃� , where 𝑔  is a 

polynomial to obtain 

lim sup
|𝜆|→∞

𝑒−|𝜆||𝑓(𝜆)| ≤ ‖ℎ− 𝑔̅̅ ̅̅ ̅̅ ̅̃‖
𝑉𝑝
, 

and the result follows from the fact that polynomials are dense in 𝐻𝑝. 

(ii) is immediate since 

𝑓 ′(𝜆) = ∫ 𝑧 𝑒𝜆 (𝑧)ℎ(𝑧)̅̅ ̅̅ ̅̅ 𝑑𝑚(𝑧)

 

𝕋

= ∫ 𝑒𝜆 (𝑧)𝐵ℎ(𝑧)̅̅ ̅̅ ̅̅ ̅̅  𝑑𝑚(𝑧)

 

𝕋

. 

(iii). Note that 

𝑅𝑎,𝜆𝑒𝛼 =
𝑒𝛼 − 𝑒

(𝛼−𝜆)𝑎𝑒𝜆
𝛼 − 𝜆

. 

Since ℎ annihilates 𝑒𝜆  we obtain that 

𝑅𝑎,𝜆
∗ ℎ̅̅ ̅̅ ̅̅ ̅̃(𝛼) = ∫𝑅𝑎,𝜆𝑒𝛼(𝑧)ℎ(𝑧)̅̅ ̅̅ ̅̅  𝑑𝑚(𝑧)

 

𝕋

=
1

𝛼 − 𝜆
∫𝑒𝛼 (𝑧)ℎ(𝑧)̅̅ ̅̅ ̅̅  𝑑𝑚(𝑧)

 

𝕋

=
𝑓(𝛼)

𝛼− 𝜆
. 

(iv). If 𝜁𝑓 ∈ 𝒱𝑝 we have by (iii)  that  𝑓 =
𝜁𝑓

𝜁
∈ 𝒱𝑝 and if  𝜁𝑓 = �̅̃� then for any 𝑎 ∈ �̅� we have 

𝑓 = 𝑅𝑎,0
∗ 𝑔̅̅ ̅̅ ̅̅ ̅̃ 

We shall show that (𝑅𝑎,0
∗ 𝑔)

′
∈ 𝐻𝑝 whenever 𝑎 ∈ 𝔻 and 𝑔 ∈ 𝐻𝑝. Since 

(𝑅𝑎,0
∗ 𝑔)

′
(𝜆) = ∫𝑔 𝑅𝑎,0

𝜁

(1− �̅�𝜁)
2

̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅
𝑑𝑚

 

𝕋

 

and 

𝑅𝑎,0
𝜁

(1− �̅�𝜁)
2 (𝑧) = ∫

𝑡𝑑𝑡

(1− �̅�𝑡)
2

𝑧

𝑎

=
1

�̅�2
log
1 − �̅�𝑧

1 − �̅�𝑎
+
1

�̅�2
(

1

1 − �̅�𝑧
−

1

1 − �̅�𝑎
) 

we obtain 

(𝑅𝑎,0
∗ 𝑔)

′
(𝜆) =

1

𝜆2
∫𝑔 log

1− 𝜆�̅�

1 − 𝜆𝜁̅
𝑑𝑚

 

𝕋

+
𝑔(𝜆)

𝜆2
−

𝑔(0)

𝜆2(1− 𝜆�̅�)
, 

i.e (𝑅𝑎,0
∗ 𝑔)

′
∈ 𝐻𝑝    whenever 𝑎 ∈ 𝔻 and 𝑔 ∈ 𝐻𝑝. The converse follows directly from the 

equality 
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ℎ′̃̅ = 𝜁 ℎ̃̅. 

The exponential type in Proposition (5.1.4) (i) cannot be improved since all of these spaces 

contain the exponential functions 𝑒𝛼 , |𝛼| < 1, as the simple identity below shows 

𝑒𝛼𝜆 = ∫𝑒𝛼 (𝑧)
1

1− 𝜆�̅�
𝑑𝑚(𝑧).

 

𝕋

 

The main objects under investigation are the nearly invariant subspaces of  𝒱𝑝, 𝑝 > 1. Recall 

that, by definition, a closed subspace 𝒩 of  𝒱𝑝 is nearly invariant if whenever 𝑓 ∈ 𝒩 and  

𝜆 ∈ ℂ  is a zero of 𝑓, but not a common zero of 𝒩, we have  
𝑓

(𝜁−𝜆)
∈ 𝒩.  

Lemma (6.1.5):[134]  For every 𝑝 > 1  and 0 < 𝜖 <
1

2𝑝
 there exists a positive constant 

𝐶𝑝,𝜖 > 0 such that whenever 𝑓 ∈ 𝒱𝑝  and 𝜆 ∈ ℂwith 𝑓(𝜆) = 0 

‖
𝑓

𝜁 − 𝜆
‖
𝑉𝑝

≤ 𝐶𝑝,𝜖
‖𝑓‖𝑉𝑝

1 + |𝜆|
1
2𝑝
−𝜖
.                                                                  (1) 

Proof:  Assume that 𝜆 ≠ 0 and let 𝑧𝜆 =
𝜆

|𝜆|
. By Proposition (6.1.4) (iii) we have that if 𝑓 = ℎ̃̅ 

with ℎ ∈ 𝐻𝑝 and 𝜆 ∈ ℂ with 𝑓(𝜆) = 0 then 

𝑓

𝜁 − 𝜆
= 𝑅𝑧𝜆 ,𝜆

∗ ℎ̅̅ ̅̅ ̅̅ ̅̃̅ , 

so that, the result will follow once we prove the appropriate estimate for the operator norms 

‖𝑅𝑧𝜆 ,𝜆‖. To this end, we integrate along the line segment from 𝑧 to  𝑧𝜆  to obtain for every 

𝑔 ∈ 𝐻𝑞, where  𝑞 =
𝑝

𝑝−1
 

𝑅𝑧𝜆 ,𝜆𝑔(𝑧) = (𝑧𝜆 − 𝑧)∫𝑒
−𝑡(|𝜆|−𝜆𝑧)𝑔(𝑧+ 𝑡(𝑧𝜆 − 𝑧))𝑑𝑡

1

0

. 

Note also that 𝑅𝑧𝜆 ,𝜆𝑔 belongs to the disc algebra, hence, it will suffice to work with the 

boundary values of these functions. It is useful to recall that if |𝑧| = 1 then 

|𝑧 − 𝑧𝜆|
2 = 2𝑅𝑒(1− 𝑧�̅�𝑧) 

which implies that 

1 − |𝑧 + 𝑡(𝑧𝜆 − 𝑧)|
2 = 𝑡(1− 𝑡)|𝑧 − 𝑧𝜆|

2 . 

Now use the standard estimate 

|𝑔(𝑧 + 𝑡(𝑧𝜆 − 𝑧))| ≤ 2
2
𝑞(1− |𝑧 + 𝑡(𝑧𝜆 − 𝑧)|

2)
−
1
𝑞‖𝑔‖𝑞   
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                           = 2
2
𝑞𝑡
−
1
𝑞(1− 𝑡)

−
1
𝑞 |𝑧 − 𝑧𝜆|

−
2
𝑞‖𝑔‖𝑞 

in order to obtain for |𝑧| = 1 

|𝑅𝑧𝜆 ,𝜆𝑔(𝑧)| ≤ ‖𝑔‖𝑞2
2
𝑞 |𝑧− 𝑧𝜆|

1−
2
𝑞∫𝑡

−
1
𝑞(1− 𝑡)

−
1
𝑞 exp[−𝑡|𝜆|𝑅𝑒(1 − 𝑧�̅�𝑧)]𝑑𝑡

1

0

. 

For 1 < 𝑟 < 𝑞,𝑟′ =
𝑟

𝑟−1
 we apply Hölder’s inequality to the above integral 

∫ 𝑡
−
1
𝑞(1− 𝑡)

−
1
𝑞 exp[−𝑡|𝜆|𝑅𝑒(1− 𝑧�̅�𝑧)]𝑑𝑡

1

0

                                       

   ≤ (∫(𝑡(1− 𝑡))
−
𝑟
𝑞𝑑𝑡

1

0

)

1
𝑟

(∫exp[−𝑟′𝑡|𝜆|𝑅𝑒(1− 𝑧�̅�𝑧)] 𝑑𝑡

1

0

)

1
𝑟′

≤ 𝐶𝑞,𝑟|𝑧 − 𝑧𝜆|
−
2
𝑟′ |𝜆|

−
1
𝑟′ , 

where the constant 𝐶𝑞,𝑟 > 0 depends only on 𝑞 and 𝑟. This leads to the estimate 

|𝑅𝑧𝜆 ,𝜆𝑔(𝑧)| ≤ 2
2
𝑞𝐶𝑞,𝑟|𝜆|

−
1
𝑟′ |𝑧 − 𝑧𝜆|

1−
2
𝑞
−
2
𝑟′‖𝑔‖𝑞 . 

For 𝑟′ > 2𝑝, i.e. when 1 < 𝑟 <
2𝑞

𝑞+1
 we have 

𝑞 (1 −
2

𝑞
−
2

𝑟′
) > 𝑞− 2 −

𝑞

𝑝
= −1 

which shows that (𝜁 − 𝑧𝜆)
1−
2

𝑞
−
2

𝑟′ ∈ 𝐻𝑞. Moreover, we have 𝑟′ → 2𝑝 when 𝑟 →
2𝑞

𝑞+1
 and the 

result follows. 

Theorem (6.1.6):[134]    Let 𝒩 be a nearly invariant subspace of 𝒱𝑝, 𝑝 > 1 without common 

zeros. 

(i) If 𝑓 ∈ 𝒩  and 𝜁𝑓 ∈ 𝒱𝑝 then 𝑓 ′ ∈ 𝒩. 

(ii) If the set of functions 𝑓 ∈ 𝒩  with 𝜁𝑓 ∈ 𝒱𝑝 is dense in 𝒩  then 𝒩  is invariant for the 

differentiation operator on 𝒱𝑝 and there exists an inner function 𝜃 such that 𝒩 is the Borel 

transform of (𝜃 𝐻𝑞)⊥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, where 𝑞 =
𝑝

𝑝−1
. 

Proof:  (i) We start with the following identity which is valid for all functions of finite 
exponential type, and actually is a reformulation of Hadamard’s factorization theorem. If 𝑓 

is a nonzero entire function of exponential type then 
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𝑓 ′(𝑧) = 𝑓(𝑧)

(

 𝑎 +
𝑚

𝑧
+ ∑

𝑧

𝜆(𝑧 − 𝜆)
𝑓(𝜆)=0
𝜆≠0 )

 ,                                               (2) 

where 𝑎 ∈ ℂ,𝑚 ∈ ℕ ∪ {0}. Moreover, the series 

∑
𝑧

𝜆(𝑧 − 𝜆)
𝑓(𝜆)=0
𝜆≠0

𝑓(𝑧)                                                                                    (3) 

converges uniformly on compact subsets of ℂ. Consider a function 𝑓 ∈ 𝒩 such that 𝜁𝑓 ∈ 𝒱𝑝. 

Then by Lemma (6.1.5) we have that 

‖
𝜁𝑓

(𝜆(𝜁 − 𝜆))
‖ = 𝑂(|𝜆|

−1−
1
2𝑝
+𝜖
) 

when |𝜖| → ∞ and 𝑓(𝜆) = 0, hence, by standard results about functions of exponential type, 

we can conclude that the series in (3) converges in 𝒱𝑝and the result follows. Under the 

assumption in (ii), 𝒩  is differentiation-invariant and by Proposition (6.1.4) (ii) 𝒩  is the 

Borel transform of a backward shift invariant subspace. Then by Beurling’s theorem, 𝒩 has 

the form in the statement.[142]. 

Proposition (6.1.7):[134]  (i) For 𝜆 ∈ ℂ\{0} the resolvent operator  (𝜆− 𝑉𝑎)
−1:𝐻𝑝 → 𝐻𝑝 

satisfies for every 𝑏 ∈ 𝔻 

(𝜆− 𝑉𝑎)
−1𝑓(𝑧) = [(𝜆 − 𝑉𝑎)

−1𝑓](𝑏)𝑒(𝑧−𝑏)/𝜆 +
1

𝜆
𝑒
𝑧
𝜆∫𝑒−

𝑡
𝜆𝑓 ′(𝑡) 𝑑𝑡

𝑧

𝑏

= [(𝜆− 𝑉𝑎)
−1](𝑏)𝑒(𝑧−𝑏)/𝜆 +

𝑓(𝑧)

𝜆
−
𝑓(𝑏)

𝜆
𝑒
(𝑧−𝑏)

𝜆 +
1

𝜆2
𝑒
𝑧
𝜆∫𝑒−

𝑡
𝜆  𝑓(𝑡)𝑑𝑡

𝑧

𝑏

. 

(ii) If ℳ  is a closed subspace of 𝐻𝑃  which is invariant for 𝑉𝑎  then ℳ  is invariant for 

(𝜆 − 𝑉𝑎)
−1  for all 𝜆 ∈ ℂ\{0}. 

(iii) Every exponential function 𝑒𝛼  is a cyclic vector for 𝑉𝑎  .  

Proof:  (i) is a direct computation and will be omitted. To see (ii) note that since 𝑉𝑎  is 

quasinilpotent we have that ‖𝑉𝑎
𝑛‖

1

𝑛 → 0 when 𝑛 → ∞ which implies that for 𝜆 ∈ ℂ\{0}  

(𝜆 − 𝑉𝑎)
−1 =∑𝜆−𝑛−1𝑉𝑎

𝑛

∞

𝑛=0

, 

where the series converges in the operator norm. Since ℳ is invariant for 𝑉𝑎
𝑛  the result 

follows. 

(iii). From (i) we see that for 𝜆 ∈ ℂ\{0}  with 𝜆𝛼 ≠ 1 and all 𝑏 ∈ 𝔻 we have 
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(𝜆 − 𝑉𝑎)
−1𝑒𝛼 −

𝛼𝑒𝛼
𝜆𝛼− 1

= 𝑒1
𝜆
𝑒−
𝑏
𝜆 [[(𝜆− 𝑉𝑎)

−1𝑒𝛼 ](𝑏)−
𝛼𝑒𝛼(𝑏)

𝜆𝛼 − 1
] 

By (ii) the left hand side belongs to the 𝑉𝑎-invariant subspace generated by 𝑒𝛼and cannot 
vanish identically because 𝑉𝑎 has no eigen values. Then the 𝑉𝑎-invariant subspace generated 

by 𝑒𝛼  contains  𝑒1/𝜆 for all  𝜆 ∈ ℂ\{0}  with  𝜆𝛼 ≠ 1 and the result follows. 

Lemma (6.1.8):[ 134]       A nonzero function 𝑓 ∈ 𝐻𝑝  belongs to 𝑆𝑎
𝑡𝐻𝑝  if and only if 

lim sup
𝑟→1−

(1− 𝑟) log|𝑓(𝑟𝑎)| ≤ −2𝑡. 

Proof:  We recall first a well-known fact about Poisson integrals of finite measures on the 

unit circle. If 𝑢 is a harmonic function in 𝔻 of the form 

𝑢(𝑧) = ∫𝑃𝑧 𝑑𝜇

 

𝕋

,                  𝑧 ∈ 𝔻, 

where 𝑃𝑧(𝑒
𝑖𝑡) =

1−|𝑧|2

|𝑒𝑖𝑡−𝑧|
2 is the Poisson kernel and 𝜇 is a finite measure on 𝕋 then  [143] for 

every 𝑎 ∈ 𝕋 we have 

lim
𝑟→1−

(1− 𝑟)𝑢(𝑟𝑎) = 2𝜇({𝑎}).                                                               (4)  

Our second observation is that if 𝐵 is a Blaschke product then 

limsup
𝑟→1−

(1− 𝑟) log|𝐵(𝑟𝑎)| = 0 

for all 𝑎 ∈ 𝕋. This is a direct consequence of the Phragmen–Lindelof principle. Indeed, if we 
assume the contrary, 

lim sup
𝑟→1−

(1− 𝑟) log|𝐵(𝑟𝑎)| = −2𝜏 < 0 

then the Phragmen–Lindelöf principle immediately implies that  𝐵𝑆𝑎
−𝜏  is bounded on 𝔻, 

which gives a contradiction. 

Now if 𝑓 ∈ 𝐻𝑝 is not identically zero, we use the canonical factorizations of such functions 

to write 

log|𝑓| = log|𝐵| + 𝑢, 

where 𝐵 is a Blaschke product and 𝑢 is the Poisson integral of a finite measure on the unit 
circle and the result follows by the above considerations. 

Proposition (6.1.9):[ 134]    (i) If  𝑎 ∈ 𝔻 and 𝑏𝑎(𝑧) =
𝑧−𝑎

1−�̅�𝑧
 denotes the Blaschke factor with 

a zero at a then for every positive integer 𝑁the subspace 𝑏𝑎
𝑁𝐻𝑝 is invariant for 𝑉𝑎  .  
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(ii) If |𝑎| = 1 and 𝑆𝑎(𝑧) = exp
𝑧+𝑎

𝑧−𝑎
  is the atomic singular inner function with singularity at 

𝑎, then for every 𝑡 > 0 the subspace  𝑆𝑎
𝑡𝐻𝑝  is invariant for 𝑉𝑎  .  

Proof: Part (i) is obvious, while (ii) follows by Lemma (6.1.8). Indeed, according to this 
result we only need to show that 

lim sup
𝑟→1−

(1− 𝑟) log|𝑉𝑎𝑓(𝑟𝑎)| ≤ −2𝑡 

whenever 𝑓 ∈ 𝐻𝑝 is not identically zero and 

lim sup
𝑟→1−

(1− 𝑟) log|𝑓(𝑟𝑎)| ≤ −2𝑡, 

and this is immediate.[135].  

Theorem (6.1.10):[ 134]        Let ℳ be a nontrivial invariant subspace of 𝑉𝑎on  𝐻𝑝,𝑝 > 1. 

(i) If 𝑎 ∈ 𝔻 then there exists a positive integer 𝑁 such that  ℳ= 𝑏𝑎
𝑁𝐻𝑝. 

(ii) If |𝑎| = 1 then there exists 𝑡 > 0 such that ℳ = 𝑆𝑎
𝑡𝐻𝑝. 

Proof:  Note first that for every  𝑉𝑎-invariant subspace ℳ, the Borel transform 𝒩 of ℳ⊥̅̅ ̅̅ ̅  is 

a closed subspace of  𝒱𝑞 ,   
1

𝑝
+
1

𝑞
= 1 which is nearly invariant and has no common zeros in 

ℂ. Indeed, by Proposition(6.1.7) (ii), ℳ is invariant for (
1

𝛼
−𝑉𝑎)

−1

, 𝛼 ≠ 0,  hence, ℳ⊥ is 

invariant for the adjoints of these operators. Then if 𝑓 ∈ 𝒩 with 𝑓 = ℎ̃̅, ℎ ∈ℳ⊥, and for 

every  𝛼 ∈ ℂ\{0}  with 𝑓(𝛼) = 0  we can apply Proposition (6.1.4) (iii) to conclude that 
𝑓

𝜁−𝛼
∈ 𝒩. By continuity we see that this property holds for 𝛼 = 0 as well, and the claim 

follows. 

   Given a subspace ℳ as in the statement, let ℳ1be the 𝑉𝑎-invariant subspace defined by 

ℳ1 = (𝑉𝑎
∗ℳ⊥)⊥. 

Clearly, ℳ1 is 𝑉𝑎-invariant and if 𝑔 ∈ ℳ1  then 𝑉𝑎 𝑔 ∈ ℳ. Moreover, ℳ1
⊥ is the closure of 

𝑉𝑎
∗𝑀⊥  in 𝐻𝑞 . The Borel transform 𝒩1of the complex conjugate space ℳ1

⊥̅̅ ̅̅ ̅  is a nearly 

invariant subspace of 𝒱𝑝 without common zeros in ℂ and, in addition, since 𝑉𝑎
∗ℳ⊥  is dense 

in ℳ1
⊥ we can apply Proposition(6.1.4) (iii) and (iv) to conclude that the set of functions 𝑓 ∈

𝒩1 with 𝜁𝑓 ∈ 𝒱𝑝  is dense in 𝒩1. Thus by Theorem (6.1.6) (ii) we have that ℳ1 = 𝜃𝐻
𝑝  for 

some inner function  𝜃 ∈ 𝐻∞. Let Λ𝜃 be the union of the zero set of  𝜃 and the support of the 

singular measure corresponding to its singular inner factor. For every  𝑔 ∈ℳ1  and every 

integer 𝑛 ≥ 1 the function 𝑉𝑎
𝑛𝑔  belongs to the disc algebra and hence, its extension to �̅� 

must vanish at all points of the set Λ𝜃. Since 

𝑉𝑎
𝑛 𝑔(𝑧) =

1

(𝑛 − 1)!
∫(𝑧 −𝑤)𝑛−1  𝑔(𝑤)𝑑𝑤,

𝑧

𝑎
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we conclude that for every 𝑏 ∈ Λ𝜃, every 𝑓 ∈ ℳand every integer 𝑛 ≥ 1 we have 

0 = ∫(𝑏 −𝑤)𝑛−1  𝑔(𝑤)𝑑𝑤

𝑏

𝑎

= (𝑏 − 𝑎)𝑛∫ 𝑡𝑛−1  𝑔(𝑏 + 𝑡(𝑎 − 𝑏))𝑑𝑡

1

0

. 

Clearly, if 𝑎 ≠ 𝑏  this implies that 𝑔 = 0  by the Weierstrass approximation theorem and 

hence, ℳ= {0}. Consequently, we have 𝑏 = 𝑎 and if 𝑎 ∈ 𝔻 then 𝜃 ∈ 𝑏𝑎
𝑁  for some positive 

integer 𝑁, while if 𝑎 ∈ 𝕋, 𝜃 = 𝑆𝑎
𝑡  for some 𝑡 > 0. 

   If 𝑎 ∈ 𝔻 consider the set of analytic functions 𝑔 in 𝔻 with a zero of order 𝑁+ 1 at 𝑎 and 
with𝑔′ ∈ 𝐻𝑝.Since𝑔 = 𝑉𝑎𝑔

′ and  𝑔′ ∈ 𝜃𝐻𝑝 =ℳ1 , we obtain that 𝑔 ∈ ℳ, i.e. ℳ contains 

all functions 𝑔 from above. Consequentl, 

𝑏𝑎
𝑁+1𝐻𝑝 ⊆ℳ ⊆ 𝑏𝑎

𝑁𝐻𝑝 

and at least one of these inclusions must hold with equality. Similarly, if 𝑎 ∈ 𝕋 we can 

consider the set of analytic functions of the form  ℎ = 𝑆𝑎
𝑡(1− 𝜁)2𝑔 where 𝑔′ ∈ 𝐻𝑝. Each 

such function ℎ  satisfies ℎ = 𝑉𝑎ℎ
′ and  ℎ′ ∈ 𝑆𝑎

𝑡𝐻𝑝 =ℳ1   which implies that ℎ ∈ ℳ. We 

conclude that ℳ= 𝑆𝑎
𝑡𝐻𝑝 . 

   We are going to show that our main result actually implies a similar structure theorem for 

𝑉𝑎-invariant subspaces in a large class of Banach spaces of analytic functions in the unit disc. 
To be more precise, let us consider Banach spaces (𝑋, ‖⋅‖)  which consist of analytic  

functions in 𝔻 such that: 

(i)  For each 𝜆 ∈ 𝔻 the point evaluation 

𝑓 → 𝑓(𝜆),                 𝑓 ∈ 𝑋 

           is continuous on 𝑋. 

(ii)  The operator ℳ𝜁 defined by  ℳ𝜁𝑓 = 𝜁𝑓   is bounded on 𝑋 and  ℳ𝜁 − 𝜆𝐼 is bounded 

below      on 𝑋 for all  𝜆 ∈ 𝔻,  where 𝐼 denotes the identity operator on 𝑋. 

(iii)  For every analytic function 𝜑:𝔻 → 𝔻  of the form  𝜑(𝑧) = 𝑐𝑧 + 𝑑, the composition 

operator 𝐶𝜑 defined on  𝑋 by 

𝐶𝜑 𝑓 = 𝑓 ∘ 𝜑 

    is bounded on 𝑋 and there exist positive constants 𝐾, 𝛾 such that 

‖𝐶𝜑‖ ≤ 𝐾(1− |𝜑(0)|)
−𝛾                                                              (5) 

   for all such maps 𝜑. 

(iv)  If  𝐴0 denotes the disc algebra and 𝐴𝑚 is the Banach algebra of analytic functions in  

𝐶𝑚(�̅�) which are analytic on 𝐷, then there exists a nonnegative integer 𝑚 such that 𝐴𝑚 is 

continuously contained and dense in 𝑋. 
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   The Banach algebras 𝐴𝑚, 𝑚 ≥ 0, the Hardy spaces 𝐻𝑝,1 ≤ 𝑝 < ∞, all standard weighted 

Bergman and Dirichlet spaces, the little Bloch space, the analytic VMO and the Besov spaces 
satisfy these assumptions. 

It follows easily that for every 𝜆 ∈ 𝔻 the backward shift 𝐿𝜆  𝑓 =
𝑓−𝑓(𝜆)

𝜁−𝜆
 is a bounded linear 

operator on 𝑋. Indeed, by (iv) this operator is densely defined on 𝐴𝑚, and by (i) and (ii) it 

satisfies an inequality of the form 

‖𝐿𝜆  𝑓‖ ≤ 𝐶𝜆‖𝑓‖,         𝑓 ∈ 𝐴𝑚 , 

with respect to the norm in 𝑋. Then 𝐿𝜆 has a bounded extension to 𝑋 and the claim follows 

by another application of (i). 

For every 𝜆 ∈ 𝔻  and every positive integer 𝑁, the subspace 𝑋𝜆,𝑁of all functions in 𝑋 with a 

zero of order 𝑁 at  𝜆 can be written in the form 

𝑋𝜆,𝑁 = (𝜁 − 𝜆)
𝑁𝑋 = (𝑀𝜁 − 𝜆)

𝑁
𝑋 = (𝑀𝜁 − 𝜆)𝐴𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                             (6)  

whenever (iv) holds for the nonnegative integer 𝑚. 

Proposition (6.1.11):[ 134]    Suppose that the space 𝑋 satisfies (i)–(iv). Then: 

(i) If 𝛾 > 𝛾(𝑋) there exists 𝐾 > 0 such that for each  𝜆 ∈ 𝔻 
|𝑓(𝜆)| ≤ 𝐾(1− |𝜆|)−𝛾‖𝑓‖,       𝑓 ∈ 𝑋. 

(ii) If  𝛾(𝑋) < 1, the Volterra operators 𝑉𝑎, |𝑎| ≤ 1, are well-defined and bounded on 𝑋. 

Moreover, 𝑉𝑎𝑋 ⊂ 𝐴0 ∩ 𝑋. 

Proof:  (i) If  𝜑𝑡,𝜆(𝑧) = 𝑡𝜆+ (1 − 𝑡)𝑧,𝑡 ∈ (0,1),𝜆 ∈ 𝔻, then by (i) and (iii) we have for all 

𝑓 ∈ 𝑋, 𝜆 ∈ 𝔻 and  𝑡 ∈ (0,1) 

|𝑓(𝑡𝜆)| = |𝐶𝜑𝑡,𝜆𝑓(0)| ≤ 𝐾0‖𝐶𝜑𝑡,𝜆‖‖𝑓‖ ≤ 𝐾0𝐾𝛾(1− 𝑡|𝜆|)
−𝛾‖𝑓‖, 

where the constants 𝐾0 ,𝐾𝛾 > 0 are independent of 𝜆 and 𝑓. To see (ii) write 

𝑉𝑎 𝑓(𝑧) = ∫𝑓(𝑎+ 𝑡(𝑧 − 𝑎))(𝑧 − 𝑎)𝑑𝑡

1

0

= (𝑀𝜁 − 𝑎)∫𝐶𝛹𝑡,𝑎  𝑓(𝑧)𝑑𝑡

1

0

, 

where 𝛹𝑡 ,𝑎(𝑧) = 𝑎 + 𝑡(𝑧 − 𝑎). SinceΨ𝑡,𝑎(0) = (1 − 𝑡)𝑎 for 𝑎 ≠ 0  and 𝛾(𝑋) < 𝛾 < 1 , we 

have by (iii) 

∫‖𝐶𝛹𝑡,𝑎‖𝑑𝑡

1

0

≤ 𝐾∫𝑡−𝛾  𝑑𝑡

1

0

< ∞.                                                      (7)  

Moreover, if 𝑓 ∈ 𝐴𝑚 then 𝑉𝑎𝑓 ∈ 𝐴𝑚  and if we choose 𝑚 such that (iv) holds, then by the 

above estimates we obtain the following inequality which involves the norm on 𝑋 

‖𝑉𝑎𝑓‖ ≤ 𝐾‖𝑓‖,            𝑓 ∈ 𝐴𝑚, 



 
165 

where 𝐾 is independent of 𝑓. This implies the first part of the assertion. The second part is 

also a direct consequence of the estimate (7). 

Theorem (6.1.12):[134]    Let 𝑋 be a Banach space of analytic functions which satisfies (i)–

(iv) and assume that the operators 𝑉𝑎, |𝑎| ≤ 1 are well-defined and bounded on 𝑋 with 𝑉𝑎𝑋 ⊂
𝐴0 ∩ 𝑋. 

(i) A proper subspace ℳ of 𝑋 is 𝑉𝑎-invariant, where |𝑎| < 1 if and only if there exists a 

positive integer 𝑁 such that 

ℳ= (𝜁 − 𝑎)𝑁𝑋. 
(ii)  If the proper subspace ℳ of 𝑋 is 𝑉𝑎 -invariant, where |𝑎| = 1, and 𝑚 is any non 

negative integer such that (iv) holds, then one and only one of the following alternatives must 

occur. Either there exists 𝑡 > 0 such that for every 0 < 𝑟 <
1

2
 

𝑆𝑎
𝑡𝐻∞ ∩ 𝐴𝑚 ⊂ ℳ ⊂ 𝑆𝑎

𝑡𝐻𝑟 ∩ 𝑋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

where  𝑆𝑎(𝑧) = exp
𝑧+𝑎

𝑧−𝑎
, or there exists 1 ≤ 𝑘 ≤ 𝑚 + 1 such that 

ℳ∩𝐴𝑚 = 𝐴𝑚
𝑘 (𝑎). 

Proof:  Consider first the space  𝑉𝑎ℳ⊂ 𝐴0 ∩ 𝑋, let 𝑝 > 1  be fixed but arbitrary, and apply 

Theorem (6.1.10) to conclude that the closure of  𝑉𝑎ℳ in 𝐻𝑝 equals 𝑏𝑎
𝑁𝐻𝑝 for some 𝑁 ≥ 0, 

if |𝑎| < 1, and 𝑆𝑎
𝑡𝐻𝑝 for some 𝑡 ≥ 0, if  |𝑎| = 1. Let 𝑚 be a nonnegative integer such that 

(iv) holds. If  (𝑓𝑛) is a sequence in ℳ such that (𝑉𝑎𝑓𝑛) converges to 𝑔 ∈ 𝐻𝑝 then (𝑉𝑎
𝑚+2𝑓𝑛)  

converges to 𝑉𝑎
𝑚+1𝑔  in 𝐴𝑚 , hence by (iv), it converges also in 𝑋 . Thus ℳ  contains 

𝑉𝑎
𝑚+1ℳ𝑝,  where ℳ𝑝 is the closure of  𝑉𝑎ℳ  in 𝐻𝑝. This gives 

𝑏𝑎
𝑁+𝑚+1𝐴𝑚 ⊂ℳ 

If  |𝑎| < 1,  

𝑆𝑎
𝑡𝐻∞ ∩ 𝐴𝑚 ⊂ℳ 

If  |𝑎| = 1,𝑡 > 0 and  

𝑉𝑎
𝑚+1𝐻𝑝 ⊂ℳ 

if |𝑎| = 1 and 𝑡 = 0. If  |𝑎| < 1 we know that the functions in ℳ  have a common zero of 

order 𝑁 at 𝑎. From the equality above and (6) we have (𝜁 − 𝑎)𝑁+𝑚𝑋 ⊂ℳ. If  𝑓0 ∈ ℳ is 

such that 𝑓0
(𝑁+1)(𝑎) ≠ 0 then every function  𝑓 ∈ (𝜁 − 𝑎)𝑁𝑋 can be written in the form 

𝑓 = ∑ 𝑐𝑛𝑉𝑎
𝑛𝑓0

𝑚+1

𝑛=0

+𝑔 

with scalars 𝑐𝑛 and  𝑔 ∈ (𝜁 − 𝑎)𝑁+𝑚+1  which proves (i). 

A similar argument shows that if  |𝑎| = 1 and  𝑡 = 0  then the second alternative in (ii) 

occurs. Indeed, it is easy to verify that the closure of  𝑉𝑎
𝑚+1𝐻𝑝 in 𝐴𝑚equals  𝐴𝑚

𝑚+1(𝑎). If  𝑘 ≤
𝑚+ 1 is the order of the common zero of the functions in ℳ∩𝐴𝑚 at a then by (iv) 𝑘 must 
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be positive. If 𝑘 = 𝑚+ 1 the statement follows from above. If  𝑘 < 𝑚+ 1 we choose again 

𝑓0 ∈ ℳ∩ 𝐴𝑚with𝑓0
(𝑘+1)(𝑎) ≠ 0 and write an arbitrary function in 𝐴𝑚

𝑘 (𝑎) in the form 

𝑓 = ∑ 𝑐𝑛𝑉𝑎
𝑛𝑓0

𝑚−𝑘

𝑛=0

+𝑔 

with scalars 𝑐𝑛 and  𝑔 ∈ 𝐴𝑚
𝑚+1(𝑎) ∈ ℳ and the result follows. 

It remains to prove that if  |𝑎| = 1  and 𝑡 > 0 then 

ℳ ⊂ 𝑆𝑎
𝑡𝐻𝑟 ∩ 𝑋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Recall from the beginning of the proof that for every 𝑝 > 1, the closure of  𝑉𝑎ℳ in 𝐻𝑝 equals 
𝑆𝑎
𝑡𝐻𝑝 . Thus it suffices to prove that any function 𝑓 ∈ 𝑋  with 𝑉𝑎𝑓 ∈ 𝑆𝑎

𝑡𝐻𝑝  can be 

approximated in 𝑋 by functions in 𝑆𝑎
𝑡𝐻𝑟 ∩ 𝑋  for every 𝑟 <

𝑝

2+2𝑝
. 

To this end, we consider for 0 < 𝜖 < 1 the functions  𝜑𝜖:𝔻 →𝔻  with 

𝜑𝜖(𝑧) = 𝜖𝑎+ (1− 𝜖)𝑧. 

A simple computation yields for |𝑧| = 1 

1− |𝜑𝜖(𝑧)|
2 = 𝜖(1− 𝜖)|𝑧 − 𝑎|2 .                                                            (8) 

Composition with 𝜑𝜖 has the following properties. 

(i)  If  ℎ  is analytic in 𝔻 and satisfies for some 𝛼 > 0 the growth restriction 

|ℎ(𝑧)| = 𝑂((1− |𝑧|)−𝛼),     |𝑧| → 1−  

then by (8) we have that  (𝜁 − 𝑎)2𝛼ℎ ∘ 𝜑𝜖 ∈ 𝐻
∞. Consequently, ℎ ∘ 𝜑𝜖 ∈ 𝐻

𝑠  for all 𝜁 <
1

2𝛼
 

. 

(ii)  The composition operators 𝐶𝜑𝜖  on 𝑋 satisfy  ‖𝐶𝜑𝜖‖ ≤ 𝐾𝛾(1− 𝜖)
−𝛾  for every 𝛾 >

𝛾(𝑋) and also, if  𝑓 ∈ 𝐴𝑚 then 

lim
𝜖→0
𝐶𝜑𝜖 f = 𝑓, 

in 𝐴𝑚. Then by (iv) we have that 𝐶𝜑𝜖 converges strongly to the identity on  𝑋. 

Now if  𝑓 ∈ 𝑋 with  𝑉𝑎𝑓 ∈ 𝑆𝑎
𝑡𝐻𝑝  write  𝑉𝑎𝑓 = 𝑆𝑎

𝑡𝐹  with 𝐹 ∈ 𝐻𝑝. Then 

𝑓 = 𝑆𝑎
𝑡 (𝐹′ −

2𝑡

(𝜁 − 𝑎)
𝐹) 

hence, for 0 < 𝜖 < 1 

𝑓 ∘ 𝜑𝜖 = 𝑒
−
𝑡𝜖
1−𝜖𝑆𝑎

𝑡
1−𝜖 (𝐹′ ∘ 𝜑𝜖 −

2𝑡

(1− 𝜖)2(𝜁 − 𝑎)2
𝐹 ∘ 𝜑𝜖). 
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Since 𝐹 ∈ 𝐻𝑝 we have 𝐹 ∘ 𝜑𝜖(𝜁 − 𝑎)
−2 ∈ 𝐻𝑠 for all 𝑠 <

𝑝

2𝑝+1
. Moreover,  

|𝐹′(𝑧)| = 𝑂((1− |𝑧|−1)
−1− 

1
𝑝),    |𝑧| → 1−, 

hence, by property (i) we obtain 𝐹′ ∘ 𝜑𝜖 ∈ 𝐻
𝑠 for all 𝑠 <

𝑝

2𝑝+2
. Then 𝑓 ∘ 𝜑𝜖 ∈ 𝐻

𝑠 for all 𝑠 <
𝑝

2𝑝+2
, the claim follows by property (ii). 

Corollary (6.1.13):[134]  The proper 𝑉𝑎-invariant subspaces of 𝐻1 are precisely those of the 

form 𝑏𝑎
𝑁𝐻1,𝑁 ∈ ℕ,  if |𝑎| < 1, and  𝑆𝑎

𝑡𝐻1 , 𝑡 > 0,  if |𝑎| = 1. 

   For 0 < 𝑝 < 1 the operator 𝑉𝑎 is bounded on 𝐻𝑝 if and only if |𝑎| < 1. The invariant sub 

spaces of these operators can be determined with the same methods . 

Corollary (6.1.14):[134]  For |𝑎| < 1and 0 < 𝑝 < 1the proper 𝑉𝑎-invariant subspaces of 

𝐻𝑝are preciselythose of the form 𝑏𝑎
𝑁𝐻𝑝,𝑁 ∈ ℕ. 

Proof:   If |𝑎| < 1and ℳis a proper 𝑉𝑎 -invariant subspace of 𝐻𝑝,0 < 𝑝 < 1, then there 

existsa positive integer 𝑘 such that  𝑉𝑎
𝑘ℳ⊂ 𝐻1. By Corollary (6.1.13) the closure of 𝑉𝑎

𝑘ℳ 

in 𝐻1 has the form 𝑏𝑎
𝑚𝐻1 which implies that ℳcontains 𝑏𝑎

𝑚𝐻𝑝 . The rest of the proof is 
identical to the argument used in the proof of  Theorem (6.1.12). 

Corollary (6.1.15):[134]  The proper 𝑉𝑎-invariant subspaces of 𝐴𝑚 are precisely those of the 

form 𝑏𝑎
𝑁𝐴𝑚, 𝑁 ∈ ℕ,  if |𝑎| < 1 , and 𝑆𝑎

𝑡𝐻∞ ∩ 𝐴𝑚, 𝑡 > 0,  or  𝐴𝑚
𝑘 (𝑎),1 ≤ 𝑘 ≤ 𝑚+ 1   if  

|𝑎| = 1.[144]. 

Corollary (6.1.16):[134]  Let  𝑝 ≥ 1  and 𝛼 > −1  be such that  
𝛼+2

𝑝
< 1. If |𝑎| < 1  the 

proper 𝑉𝑎-invariant subspaces of 𝐿𝑎
𝑝,𝛼

are precisely those of the form 𝑏𝑎
𝑁𝐿𝑎

𝑝,𝛼
, 𝑁 ∈ ℕ. If |𝑎| =

1 the 𝑉𝑎 -invariant subspaces of  𝐿𝑎
𝑝,𝛼

 coincide with the ℳ𝜁 -invariant subspaces of 𝐿𝑎
𝑝,𝛼

 

generated by 𝑆𝑎
𝑡 for some 𝑡 > 0. 

   We note also that for 
𝛼+2

𝑝
> 1 the operators 𝑉𝑎, |𝑎| = 1 are unbounded on 𝐿𝑎

𝑝,𝛼
. Moreover, 

the ℳ𝜁-invariant subspaces generated by  𝑆𝑎
𝑡 , 𝑡 > 0, are always strictly contained in  𝐿𝑎

𝑝,𝛼
 

[104] . 

We consider the standard weighted Dirichlet spaces 𝐷𝑝,𝛼 , 𝛼 > −1, which consist ofanalytic 

functions in 𝔻whose derivative belongs to 𝐿𝑎
𝑝,𝛼

. The norm on 𝐷𝑝,𝛼is defined by 

‖𝑓‖𝐷𝑝,𝛼
𝑝

= |𝑓(0)|𝑝+ ‖𝑓 ′‖𝑝,𝛼
𝑝
. 

It is well known [104] that 𝐷𝑝,𝛼 = 𝐿𝑎
𝑝,𝛼

  when ever 𝛼 > 𝑝 − 1. Here we shall only consider 

the case when 𝑝 > 1 and 𝛼 > 𝑝 − 1. 

The verification of the assumptions (i), (ii) and (iv) (with 𝑚 = 1  ) for 𝐷𝑝,𝛼  is again 

straightforward. To see (iii) let 𝜑:𝔻 → 𝔻  with 𝜑(𝑧) = 𝑐𝑧 + 𝑑 and write 

‖𝐶𝜑𝑓‖𝐷𝑝,𝛼
𝑝

= |𝑓(𝜑(0))|
𝑝
+ ‖𝑓 ′ ∘ 𝜑𝜑′‖𝑝,𝛼

𝑝
≤ |𝑓(𝜑(0))|

𝑝
+ ‖𝑓 ′ ∘ 𝜑‖𝑝,𝛼

𝑝
, 
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where the last inequality follows from the fact that |𝜑′(𝑧)| = |𝑐| ≤ 1. Clearly, the norm of 

the point evaluation at 𝜑(0) satisfies an estimate of the type required in (iii) and then the 

claim follows from the considerations made for the weighted Bergman spaces 𝐿𝑎
𝑝,𝛼

.  

Proposition (6.1.17):[134]   Let 𝑝 > 1,  let −1 < 𝛼 < 𝑝 − 1  and set  𝛽 = −
𝛼

𝑝−1
. 

(i) Every continuous linear functional 𝑙 on 𝐷𝑝,𝛼 can be represented uniquely in the form 

𝑙(𝑓) = lim
𝑟→1−

∫𝑓(𝑟𝑧)𝑔𝑙(𝑟𝑧)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑚(𝑧)

 

𝕋

, 

where 𝑔𝑙 ∈ 𝐿𝑎
𝑞,𝛽
,
1

𝑝
+
1

𝑞
= 1 . The linear map 𝑙 → 𝑔𝑙  from the dual of  𝐷𝑝,𝛼  into 𝐿𝑎

𝑝,𝛽
 is 

continuous and bijective. Moreover, 𝐷𝑝,𝛼 is reflexive. 

(ii) 𝐷𝑝,𝛼 is continuously contained in 𝐻𝑝. 

(iii) If 𝜃 is an inner function and 𝑓 ∈ 𝐷𝑝,𝛼  satisfies  
𝑓

𝜃
∈ 𝐻𝑝, then 𝑓/𝜃  belongs to 𝐷𝑝,𝛼 and 

there is a constant 𝐾 > 0 independent of 𝑓 such that 

‖
𝑓

𝜃
‖
𝐷𝑝,𝛼

≤ 𝐾‖𝑓‖𝐷𝑝,𝛼 . 

Proof: (i) Using Parseval’s formula we can write for 𝑓, 𝑔 analytic on 𝔻𝑝,𝛼 and 0 < 𝑟 < 1 

∫𝑓(𝑟𝑧)𝑔(𝑟𝑧)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑚(𝑧)

 

𝕋

= ∫(𝜁𝑓)′(𝑟𝑧)𝑔(𝑟𝑧)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝐴(𝑧)

 

𝔻

. 

The linear map 𝑓 → (𝜁𝑓)′ from 𝐷𝑝,𝛼 into 𝐿𝑎
𝑝,𝛼

 is continuous and invertible, so that, all we 

need to show is that the dual of  𝐿𝑎
𝑝,𝛼

 can be identified with  𝐿𝑎
𝑞,𝛽

 via the pairing 

〈ℎ,𝑔〉 = lim
𝑟→1−

∫ℎ(𝑟𝑧)𝑔(𝑟𝑧)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝐴(𝑧)

 

𝔻

. 

To prove reflexivity, we have to show that via the above pairing the dual of 𝐿𝑎
𝑞,𝛽

 is 𝐿𝑎
𝑝,𝛼

. These 
are particular cases of the results obtained in [145]. Part (ii) follows directly from (i) since  

𝐻𝑞 ,
1

𝑝
+
1

𝑞
= 1 is continuously contained in  𝐿𝑎

𝑞,𝛽
. (iii) asserts that  𝐷𝑝,𝛼 has the so-called (𝐹)-

property  [146]. If 𝜃 is inner then the operator 𝑀𝜃 of multiplication by 𝜃 is a bounded linear 

operator on 𝐿𝑎
𝑞,𝛽

. Since 𝐷𝑝,𝛽 is reflexive, its adjoint 𝑀𝜃
∗ is bounded on  𝐷𝑝,𝛼 . If  

𝑓

𝜃
∈ 𝐻𝑝 and 

𝑔 ∈ 𝐻𝑞 then 

lim
𝑟→1−

∫𝑓(𝑟𝑧)𝑀𝜃𝑔(𝑟𝑧)̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑚(𝑧)

 

𝕋

= ∫ (
𝑓

𝜃
)(𝑧)𝑔(𝑧)̅̅ ̅̅ ̅̅ 𝑑𝑚(𝑧)

 

𝕋

. 

From the fact that 𝐻𝑞 is dense in 𝐿𝑎
𝑞,𝛽

 we obtain that  𝑀𝜃
∗𝑓 =

𝑓

𝜃
   and the result follows. 
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    As a direct application of part (ii) we obtain that the Volterra operators 𝑉𝑎, |𝑎| ≤ 1 are 

bounded on 𝐷𝑝,𝛼 and satisfy  𝑉𝑎𝐷
𝑝,𝛼 ⊂ 𝐴0 ∩ 𝐷

𝑝,𝛼. Indeed, by the Fejer–Riesz inequality we 

have that 

|𝑉𝑎𝑓(0)| ≤ 𝐾‖𝑓‖𝐻𝑝 ≤ 𝐾
′‖𝑓‖𝐷𝑝,𝛼 

for some constant 𝐾′ > 0 and all 𝑓 ∈ 𝐷𝑝,𝛼. The inequality 

∫|(𝑉𝑎𝑓)
′(𝑧)|𝑝(1− |𝑧|)𝛼  𝑑𝐴(𝑧)

 

𝔻

= ∫|𝑓(𝑧)|𝑝(1− |𝑧|)𝛼𝑑𝐴(𝑧)

 

𝔻

≤ 𝐾′′‖𝑓‖
𝐷𝑝,𝛼
𝑝

 

follows also by standard estimates [9], but can also be obtained by a direct application of 
Minkowski’s inequality. 

Lemma (6.1.18):[134]  Let 𝑝 > 1 and 𝛼 > −1 such that  
𝛼+1

𝑝
< 1. Then for 𝑡 > 0 and |𝑎| =

1,𝑆𝑎
𝑡𝐻∞ ∩ 𝐴1 is dense in 𝑆𝑎

𝑡𝐻𝑝∩ 𝐷𝑝,𝛼.  

Proof:   Let 𝑓 ∈ 𝑆𝑎
𝑡𝐻𝑝∩ 𝐷𝑝,𝛼. By Proposition(6.1.17) (iii) we can approximate  𝑓𝑆𝑎

−𝑡 ∈ 𝐷𝑝,𝛼 
in  𝐷𝑝,𝛼   by a sequence (𝑓𝑛) of functions in 𝐴1 . Then it is a simple matter to show that  

(𝑎 − 𝜁)2𝑆𝑎
𝑡𝑓𝑛 → (𝑎 − 𝜁)

2𝑓  in 𝐷𝑝,𝛼. Thus (𝑎− 𝜁)2𝑓  belongs to the closure of  𝑆𝑎
𝑡𝐻∞ ∩ 𝐻1 

when ever  𝑓 ∈ 𝑆𝑎
𝑡𝐻𝑝∩ 𝐷𝑝,𝛼 . To finish the proof it suffices to show that for such 𝑓 we have 

lim
𝑟→1−

(𝑎 − 𝜁)2

(𝑎 − 𝑟𝜁)2
𝑓 = 𝑓                                                                       (9) 

in the norm of  𝐷𝑝,𝛼. Since 𝑓𝑆𝑎
−𝑡 ∈ 𝐷𝑝,𝛼 it follows that 

‖𝑓𝑆𝑎
−𝑡‖

𝐷𝑝,𝛼
𝑝

≥ ∫|𝑓 ′(𝑧)+
2𝑡

(𝑧 − 𝑎)2
𝑓(𝑧)|

𝑝

(1− |𝑧|)𝛼  𝑑𝐴(𝑧)

 

𝔻

 

and this implies that 

∫|𝑧 − 𝑎|−2𝑝|𝑓(𝑧)|𝑝(1− |𝑧|)𝛼  𝑑𝐴(𝑧)

 

𝔻

< ∞. 

But from this inequality and the dominated convergence theorem we obtain that 

lim
𝑟→1−

∫|(
(𝑎 − 𝜁)2

(𝑎 − 𝑟𝜁)2
𝑓)

′

(𝑧)|

𝑝

(1− |𝑧|)𝛼  𝑑𝐴(𝑧)

 

𝔻

= ∫|𝑓 ′(𝑧)|𝑝(1− |𝑧|)𝑎

 

𝔻

 𝑑𝐴(𝑧). 

Then (9) follows by a standard argument and the proof is complete. 

Lemma (6.1.19):[134]    For  𝑝 > 1 and  |𝑎| = 1 the closure of 𝐴1
2(𝑎)  in 𝐷𝑝,𝛼 equals  𝐷𝑝,𝛼 

if 
𝛼+2

𝑝
≥ 1 and  𝐷𝑝,𝛼(𝑎)  if   

𝛼+2

𝑝
≥ 1.  

Proof:  Since polynomials are dense in 𝐷𝑝,𝛼  it follows easily that the set of polynomials 

which vanish at a is dense in 𝐷𝑝,𝛼(𝑎). Thus it suffices to show that 1, 𝜁 − 𝑎   belong to the 
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closure of 𝐴1
2(𝑎)  in 𝐷𝑝,𝛼 when  

𝛼+2

𝑝
≥ 1, and that  𝜁 − 𝑎  belongs to the closure of  𝐴1

2(𝑎) in 

𝐷𝑝,𝛼  when  
𝛼+2

𝑝
< 1. For 𝑟 > 1 consider the functions 

𝑓𝑟(𝑧) = (𝑧 − 𝑎)
2(𝑧− 𝑟𝑎)−1 ,      𝑔𝑟(𝑧) = (𝑧 − 𝑎)(𝑧 − 𝑟𝑎)

−1 ,    𝑧 ∈ 𝔻 

Clearly, 𝑓𝑟 ∈ 𝐴1
2(𝑎), 𝑓𝑟(𝑧) → 𝑧 − 𝑎  when  𝑟 → 1+, and |𝑓𝑟

′(𝑧)| ≤ 3  for all 𝑧 ∈ 𝔻. Using the 
dominated convergence theorem it is a standard matter to show that  𝑓𝑟 → 𝜁 − 𝑎 in  𝐷𝑝,𝛼 for 

all 𝑝 ≥ 1 and all  𝛼 > −1. The functions 𝑔𝑟 satisfy  𝑔𝑟 ∈ 𝐴1
2(𝑎),𝑔𝑟(𝑧) → 1 when  𝑟 → 1− 

for all 𝑧 ∈ 𝔻 and 

|𝑔𝑟
′ (𝑧)| =

𝑟 − 1

|𝑧 − 𝑟𝑎|2
+ 2

(𝑟 − 1)2

|𝑧 − 𝑟𝑎|3
,         𝑧 ∈ 𝔻. 

By standard estimates [104] it follows that ‖𝑔𝑟‖𝐷𝑝,𝛼 stay bounded when 𝑟 → 1+. Since 𝐷𝑝,𝛼 

is reflexive, we conclude that  𝑔𝑟 → 1 weakly in 𝐷𝑝,𝛼. 

Corollary (6.1.20):[134]   Let 𝑝 > 1  and  𝛼 > −1 such that  
𝛼+1

𝑝
< 1. If  |𝑎| < 1  the proper 

𝑉𝑎-invariant subspaces of 𝐷𝑝,𝛼 are precisely those of the form 𝑏𝑎
𝑁𝐷𝑝,𝛼 , 𝑁 ∈ ℕ.  If |𝑎| = 1 and 

𝛼+2

𝑝
≥ 1 then every 𝑉𝑎-invariant subspace of 𝐷𝑝,𝛼 has the form 𝑆𝑎

𝑡𝐻𝑝 ∩ 𝐷𝑝,𝛼 for some  𝑡 >

0. If  |𝑎| = 1 and  
𝛼+2

𝑝
  then a 𝑉𝑎-invariant subspace of  𝐷𝑝,𝛼 is either equal to 𝐷𝑝,𝛼(𝑎), or it 

has the form  𝑆𝑎
𝑡𝐻𝑝 ∩ 𝐷𝑝,𝛼 for some 𝑡 > 0. 

Corollary (6.1.21):[168]        If 𝑓𝑗 ∈ 𝒱2  then 

∑‖𝑓𝑗‖𝒱2

2

𝑗

= 𝜋−1∫∫∑|𝑓𝑗(𝑧𝑛𝑧(𝑛+1))|
2

𝑗

𝑒−
(|𝑧𝑛|

2+|𝑧(𝑛+1)|
2
)
 𝑑𝐴(𝑧𝑛) 𝑑𝐴(𝑧(𝑛+1))

 

ℂ

 

ℂ

= ∫∑|𝑓𝑗(𝑧(𝑛+2))|
2

𝑗

𝑣(𝑧(𝑛+2)) 𝑑𝐴(𝑧(𝑛+2))

 

ℂ

, 

Where 

𝑣(𝑧(𝑛+2)) =
1

𝜋
∫ 𝑒

−(
|𝑧𝑛+2|

2+(1−𝜖)4

(1−𝜖)2
)𝑑(1− 𝜖)

1 − 𝜖
 

∞

0

. 

Proof:   The first equality follows by a direct calculation with Parseval’s formula. To see the 

second, note that for 𝑧(𝑛+1) ≠ 0 

∫∑|𝑓𝑗(𝑧𝑛𝑧(𝑛+1))|
2

𝑗

𝑒−|𝑧𝑛|
2
 𝑑𝐴(𝑧𝑛)

 

ℂ

=
1

|𝑧(𝑛+1)|
2∫∑|𝑓𝑗(𝑧(𝑛+2))|

2

𝑗

𝑒
−(
|𝑧(𝑛+2)|

2

|𝑧(𝑛+1)|
2)

 𝑑𝐴(𝑧(𝑛+2))

 

ℂ
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and integrate this identity on ℂ against the measure 𝑒−|𝑧(𝑛+1)|
2

𝑑𝐴(𝑧(𝑛+1)). Then the result 

follows by Fubini’s theorem. 

Corollary (6.1.22):[168]     (i) The spaces 𝒱(1+𝜖) , 𝜖 > 0 consist of functions of exponential 

type at most one. Moreover, if 𝑓𝑗 ∈ 𝒱(1+𝜖)  then 

|𝑓𝑗(𝜆
2 − 1)| = 𝑜(𝑒|𝜆

2−1|) 

when |𝜆2 − 1| →∞. 

(ii) If 𝑓𝑗 ∈ 𝒱(1+𝜖)  with 𝑓𝑗 = ℎ̃̅𝑗, ℎ𝑗 ∈ 𝐻
(1+𝜖)  then 𝑓𝑗

′ ∈ 𝒱(1+𝜖)  and 𝑓𝑗
′ = 𝐵ℎ𝑗̅̅ ̅̅ ̅̃  where 𝐵 

denotes the backward shift on  𝐻(1+𝜖) . Consequently, the differentiation operator 𝐷𝑓𝑗 = 𝑓𝑗
′
 

is a bounded linear operator on  𝒱(1+𝜖) . 

(iii) For (𝑎2 − 1) ∈ �̅�  and (𝜆2 − 1) ∈ ℂ  denote by 𝑅(𝑎2−1,𝜆2−1)  the integral operator 

defined on  𝐻
(
1+𝜖

𝜖
)
, 𝜖 > 0  by 

∑𝑅(𝑎2−1,𝜆2−1)𝑔𝑗(𝑧𝑛)

𝑗

= ∫ ∑𝑒(𝜆
2−1)(𝑧𝑛−(1−𝜖))𝑔𝑗(1− 𝜖)

𝑗

𝑑(1− 𝜖)

𝑧𝑛

𝑎2−1

. 

If  𝑓𝑗 ∈ 𝒱(1+𝜖)  with  𝑓𝑗 = ℎ�̅�
̃ , ℎ𝑗 ∈ 𝐻

(1+𝜖)  and  𝑓𝑗(𝜆
2 − 1) = 0 for some (𝜆2 − 1) ∈ ℂ  then  

𝑓𝑗

(𝜁−𝜆2+1)
∈ 𝒱(1+𝜖)  with 

𝑓𝑗
𝜁 − 𝜆2 + 1

= 𝑅(𝑎2−1,𝜆2−1)
∗ ℎ𝑗̅̅ ̅̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅̅ ̅̅̃ .  

(iv) An entire function 𝑓𝑗  satisfies 𝜁𝑓𝑗 ∈ 𝒱(1+𝜖)   if and only if  𝑓𝑗 = ℎ�̅�
̃   with   ℎ𝑗

′ ∈ 𝐻(1+𝜖). 

Proof:   (i). By Hölder’s inequality we have for  𝜖 > 0 

∑|ℎ�̅�
̃(𝜆2 − 1)|

𝑗

=∑|∫ 𝑒(𝜆2−1) ℎ𝑗  𝑑𝑚

 

𝕋

|

𝑗

≤∑‖ℎ𝑗‖(1+𝜖)
𝑗

‖𝑒(𝜆2−1)‖(1+𝜖
𝜖
)

≤ 𝑒|𝜆
2−1|∑‖ℎ�̅�

̃‖
𝒱(1+𝜖)

𝑗

. 

To see the second part, note that the estimate is obvious when 𝑓𝑗 = ℎ�̅�
̃  where  ℎ𝑗   is a 

polynomial. Then if 𝑓𝑗 = ℎ�̅�
̃ ∈ 𝒱(1+𝜖) is arbitrary we can apply the first estimate to 𝑓𝑗 −𝑔𝑗̅̅ ̅̃, 

where 𝑔𝑗 is a polynomial to obtain 

lim
|𝜆2−1|→∞

∑sup𝑒−|𝜆
2−1||𝑓𝑗(𝜆

2 − 1)|

𝑗

≤∑‖ℎ𝑗 −𝑔𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̃ ‖
𝒱(1+𝜖)

𝑗

, 

and the result follows from the fact that polynomials are dense in 𝐻(1+𝜖) . 



 
172 

(ii) is immediate since 

∑𝑓𝑗
′(𝜆2 − 1)

𝑗

= ∫∑𝑧𝑛 𝑒(𝜆2−1)(𝑧𝑛)ℎ𝑗(𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅

𝑗

𝑑𝑚(𝑧𝑛)

 

𝕋

 

= ∫∑𝑒(𝜆2−1)(𝑧𝑛)𝐵ℎ𝑗(𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗

 𝑑𝑚(𝑧𝑛)

 

𝕋

. 

(iii). Note that for 𝛼 ≠ 𝜆 

𝑅(𝑎2−1,𝜆2−1)𝑒(𝛼2−1) =
𝑒(𝛼2−1) − 𝑒

((𝛼2−𝜆2)(𝑎2−1))𝑒(𝜆2−1)

𝛼2 − 𝜆2
. 

Since ℎ𝑗 annihilates 𝑒(𝜆2−1) we obtain that 

∑𝑅(𝑎2−1,𝜆2−1)
∗ ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̃

𝑗(𝛼
2 − 1)

𝑗

= ∫∑𝑅(𝑎2−1,𝜆2−1)𝑒(𝛼2−1)(𝑧𝑛)ℎ𝑗(𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅

𝑗

 𝑑𝑚(𝑧𝑛)

 

𝕋

=
1

𝛼2 − 𝜆2
∫∑𝑒(𝛼2−1)(𝑧𝑛)ℎ𝑗(𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅

𝑗

 𝑑𝑚(𝑧𝑛)

 

𝕋

=
∑ 𝑓𝑗(𝛼

2 − 1)𝑗

𝛼2 − 𝜆2
. 

(iv). If  𝜁𝑓𝑗 ∈ 𝒱(1+𝜖) we have by (iii) that  𝑓𝑗 = (
𝜁𝑓𝑗

𝜁
) ∈ 𝒱(1+𝜖)  and if 𝜁𝑓𝑗 = 𝑔𝑗̅̅ ̅̃ then for any 

(𝑎2 − 1) ∈ �̅� we have 

𝑓𝑗 = 𝑅(𝑎2−1,0)
∗ 𝑔𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̃  

We shall show that  (𝑅(𝑎2−1,0)
∗ 𝑔𝑗)

′
∈ 𝐻(1+𝜖)  whenever (𝑎2 − 1) ∈ 𝔻  and 𝑔𝑗 ∈ 𝐻

(1+𝜖) . 

Since 

(𝑅(𝑎2−1,0)
∗ 𝑔𝑗)

′
(𝜆2 − 1) = ∫∑𝑔𝑗  𝑅(𝑎2−1,0)

𝜁

(1− (𝜆2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜁)
2

̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗

𝑑𝑚

 

𝕋

 

And 

𝑅(𝑎2−1,0)
𝜁

(1− (𝜆2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜁)
2 (𝑧𝑛) = ∫

(1 − 𝜖)𝑑(1− 𝜖)

(1 − (𝜆2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(1 − 𝜖))
2

𝑧𝑛

𝑎2−1

=
1

(𝜆2 − 1)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ log
1 − (𝜆2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑧𝑛

1 − (𝜆2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑎2 − 1)

+
1

(𝜆2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2 (
1

1− (𝜆2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑧𝑛
−

1

1− (𝜆2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑎2 − 1)
) 

we obtain 
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∑(𝑅(𝑎2−1,0)
∗ 𝑔𝑗)

′
(𝜆2 − 1)

𝑗

=
1

(𝜆2 − 1)2
∫∑𝑔𝑗 log

1− (𝜆2 − 1)(𝑎2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

1 − (𝜆2 − 1)𝜁̅
𝑗

𝑑𝑚

 

𝕋

 

+
∑ 𝑔(𝜆2 − 1)𝑗

(𝜆2 − 1)2
−

∑ 𝑔𝑗(0)𝑗

(𝜆2 − 1)2(1− (𝜆2 − 1)(𝑎2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
, 

i.e (𝑅(𝑎2−1,0)
∗ 𝑔𝑗)

′
∈ 𝐻(1+𝜖)  whenever (𝑎2 − 1) ∈ 𝔻  and 𝑔𝑗 ∈ 𝐻

(1+𝜖) . The converse 

follows directly from the equality 

ℎ𝑗
′̅̅̅̃̅ = 𝜁 ℎ̃̅𝑗. 

The exponential type in Corollary (6.1.22) (i) cannot be improved since all of these spaces 

contain the exponential functions  𝑒(𝛼2−1) ,𝛼 ≤ √2, as the simple identity below shows 

𝑒
((𝛼2−1)(𝜆2−1)) = ∫ 𝑒(𝛼2−1)(𝑧𝑛)

1

1 − (𝜆2 − 1)𝑧𝑛̅̅̅
𝑑𝑚(𝑧𝑛).

 

𝕋

 

The main objects under investigation are the nearly invariant subspaces of 𝒱(1+𝜖) , 𝜖 > 0. 

Recall that, by definition, a closed subspace 𝒩 of  𝒱(1+𝜖)  is nearly invariant if whenever 

𝑓𝑗 ∈ 𝒩 and (𝜆2 − 1) ∈ ℂ is a zero of 𝑓𝑗 , but not a common zero of 𝒩, we have 
𝑓𝑗

(𝜁−𝜆2+1)
∈

𝒩.  

Corollary (6.1.23):[168]     For every 𝜖 > 0 and 0 < 2𝜖(1+ 𝜖) < 1 there exists a positive 

constant 𝐶(1+𝜖,𝜖) > 0 (depending only on (1+ 𝜖) and 𝜖) such that whenever 𝑓𝑗 ∈ 𝒱(1+𝜖)   

and  (𝜆2 − 1) ∈ ℂ  with 𝑓𝑗(𝜆
2 − 1) = 0, 

∑‖
𝑓𝑗

𝜁 − 𝜆2 + 1
‖
𝒱(1+𝜖)𝑗

≤ 𝐶(1+𝜖,𝜖)

∑ ‖𝑓𝑗‖𝒱(1+𝜖)𝑗

1 + |𝜆2 − 1|
(
1−2𝜖(1−𝜖)

2(1+𝜖)
)
.           

Proof:  Assume that 𝜆 ≠ ±1 and let  𝑧𝑛(𝜆
2 − 1) =

(𝜆2−1)̅̅ ̅̅̅ ̅̅ ̅̅ ̅

|𝜆2−1|
. By Corollary (6.1.22) (iii) we 

have that if  𝑓𝑗 = ℎ�̅�
̃  with ℎ𝑗 ∈ 𝐻

(1+𝜖)   and  (𝜆2 − 1) ∈ ℂ  with 𝑓𝑗(𝜆
2 − 1) = 0 then 

∑
𝑓𝑗

𝜁 − 𝜆2 + 1
𝑗

=∑𝑅(𝑧𝑛(𝜆2−1),𝜆2−1)
∗ ℎ𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̃

𝑗

, 

so that, the result will follow once we prove the appropriate estimate for the operator 

norms‖𝑅
((𝑧𝑛)(𝜆2−1),𝜆

2−1)
‖. To this end, we integrate along the line segment from 𝑧𝑛  to 

(𝑧𝑛)(𝜆2−1) to obtain for every 𝑔𝑗 ∈ 𝐻
(
1+𝜖

𝜖
)
, where 𝜖 > 0 

∑𝑅
((𝑧𝑛)(𝜆2−1) ,

(𝜆2−1))
𝑔𝑗(𝑧𝑛)

𝑗
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= ((𝑧𝑛)(𝜆2−1) − 𝑧𝑛)∫𝑒
−(1−𝜖)(|𝜆2−1|−(𝜆2−1)𝑧𝑛)∑𝑔𝑗 ((1 − 𝜖)(𝑧𝑛)(𝜆2−1) + 𝜖𝑧𝑛)

𝑗

𝑑(1

1

0

− 𝜖). 

Then we found that 𝑅
((𝑧𝑛)(𝜆2−1) ,𝜆

2−1)
𝑔𝑗  belongs to the disc algebra, hence, it will suffice to 

work with the boundary values of these functions. It is useful to recall that if  |𝑧𝑛| = 1 then 

|𝑧𝑛 − (𝑧𝑛)(𝜆2−1)|
2
= 2𝑅𝑒(1− (𝑧𝑛)(𝜆2−1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑧𝑛) 

which implies that 

1 − |(1− 𝜖)(𝑧𝑛)(𝜆2−1) + 𝜖𝑧𝑛|
2
= 𝜖(1− 𝜖)|𝑧𝑛 − (𝑧𝑛)(𝜆2−1)|

2
. 

Now use the standard estimate 

∑|𝑔𝑗 ((1− 𝜖)(𝑧𝑛)(𝜆2−1) + 𝜖𝑧𝑛)|

𝑗

≤ 2
(
2𝜖
1+𝜖

)
((1− 𝜖)(𝑧𝑛)(𝜆2−1) + 𝜖𝑧𝑛)

−(
𝜖
1+𝜖

)

∑‖𝑔𝑗‖( 𝜖
1+𝜖

)
𝑗

   

                           = 2
(
2𝜖
1+𝜖

)(𝜖(1− 𝜖))−
(
𝜖
1+𝜖

)
|𝑧𝑛 − (𝑧𝑛)(𝜆2−1)|

−(
2𝜖
1+𝜖

)
∑‖𝑔𝑗‖(1+𝜖

𝜖
)

𝑗

 

in order to obtain for |𝑧𝑛| = 1 

∑|𝑅
((𝑧𝑛)(𝜆2−1),𝜆

2−1)
𝑔𝑗(𝑧𝑛)|

𝑗

≤∑‖𝑔𝑗‖(1+𝜖
𝜖
)

𝑗

2
(
2𝜖
1+𝜖

)
|𝑧𝑛 − (𝑧𝑛)(𝜆2−1)|

(
1−𝜖
1+𝜖

)
 

∫(𝜖(1 − 𝜖))−
(
𝜖
1+𝜖

)
exp[(𝜖 − 1)|𝜆2 − 1|𝑅𝑒(1− (𝑧𝑛)(𝜆2−1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑧𝑛)]𝑑(1− 𝜖)

1

0

. 

For 0 < 𝜖(𝑟 − 1) < 1 we apply Hölder’s inequality to the above integral 

∫(𝜖(1 − 𝜖))−
(
𝜖
1+𝜖

)
exp[(𝜖 − 1)|𝜆2 − 1|𝑅𝑒(1− (𝑧𝑛)(𝜆2−1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑧𝑛)]𝑑(1− 𝜖)

1

0

≤ (∫((1− 𝜖)(𝜖))
−(
𝑟𝜖
1+𝜖

)
𝑑(1− 𝜖)

1

0

)

1
𝑟
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(∫exp [(
𝑟

1− 𝑟
)(1− 𝜖)|𝜆2 − 1|𝑅𝑒(1− (𝑧𝑛)(𝜆2−1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑧𝑛)] 𝑑(1− 𝜖)

1

0

)

(
𝑟−1
𝑟
)

≤ 𝐶
(
1+𝜖
𝜖
,𝑟)
|𝑧𝑛 − (𝑧𝑛)(𝜆2−1)|

(
2(1−𝑟)

𝑟
)
|𝜆2 − 1|

(
1−𝑟
𝑟
)
, 

where the constant 𝐶
(
1+𝜖

𝜖
,𝑟)
> 0 depends only on 

1+𝜖

𝜖
 and 𝑟. This leads to the estimate 

∑|𝑅
((𝑧𝑛)(𝜆2−1) ,

(𝜆2−1))
𝑔𝑗(𝑧𝑛)|

𝑗

 

≤ 2
(
2𝜖
1+𝜖

)
𝐶
(
1+𝜖
𝜖
,𝑟)
|𝜆2 − 1|

(
1−𝑟
𝑟
)
|𝑧𝑛 − (𝑧𝑛)(𝜆2−1)|

(
𝑟(1−𝜖)+2(1+𝜖)(1−𝑟)

𝑟(1+𝜖)
)
∑‖𝑔𝑗‖(1+𝜖

𝜖
)

𝑗

. 

For 1 < 𝑟 <
2(1+𝜖)

1+2𝜖
  we have 

2(1+ 𝜖)− 𝑟(1+ 2𝜖)> 0 

which shows that (𝜁 − (𝑧𝑛)(𝜆2−1))
(
𝑟(1−𝜖)+2(1+𝜖)(1−𝑟)

𝑟(1+𝜖)
)
∈ 𝐻

(
1+𝜖

𝜖
)
. Moreover, we have  𝑟 →

2(1+𝜖)

1+2𝜖
 and the result follows. 

Corollary (6.1.24):[168]     Let 𝒩 be a nearly invariant subspace of  𝒱(1+𝜖) , 𝜖 > 0  without 

common zeros. 

(i) If 𝑓𝑗 ∈ 𝒩 and 𝜁𝑓𝑗 ∈ 𝒱(1+𝜖)  then  𝑓𝑗
′ ∈ 𝒩. 

(ii) If the set of functions 𝑓𝑗 ∈𝒩 with 𝜁𝑓𝑗 ∈ 𝒱(1+𝜖)  is dense in 𝒩 then 𝒩 is invariant for 

the differentiation operator on 𝒱(1+𝜖)  and there exists an inner function 𝜃 such that 

𝒩 is the Borel transform of  (𝜃 𝐻
(
1+𝜖

𝜖
)
)
⊥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
, where 𝜖 > 0. 

Proof:  (i) We start with the following identity which is valid for all functions of finite 

exponential type, and actually is a reformulation of Hadamard’s factorization theorem. If 𝑓𝑗  
is a nonzero entirefunction of exponential type then 

∑𝑓𝑗
′(𝑧𝑛)

𝑗

=∑𝑓𝑗(𝑧𝑛)

(

  
 
(𝑎2 − 1) +

𝑚

𝑧𝑛
+ ∑

𝑧𝑛
(𝜆2 − 1)(𝑧𝑛 − 𝜆

2 + 1)
𝑓𝑗 (𝜆

2−1)=0

𝜆≠±1 )

  
 

𝑗

 

where (𝑎2 − 1) ∈ ℂ,𝑚 ∈ ℕ∪ {0}. Moreover, the series 
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∑
𝑧𝑛

(𝜆2 − 1)(𝑧𝑛 − 𝜆
2 + 1)

𝑓𝑗(𝜆
2−1)=0

𝜆≠±1

∑𝑓𝑗(𝑧𝑛)

𝑗

            

Converges uniformly on compact subsets of ℂ. Consider a function 𝑓𝑗 ∈𝒩 such that 𝜁𝑓𝑗 ∈

𝒱(1+𝜖) . Then by Corollary (6.1.23) we have that 

‖
𝜁𝑓𝑗

((𝜆2 − 1)(𝜁 − 𝜆2 + 1))
‖ = 𝑂(|𝜆2 − 1|

2𝜖2−3
2(1+𝜖)) 

when |𝜖| → ∞  and 𝑓𝑗(𝜆
2 − 1) = 0, hence, by standard results about functions of 

exponential type, we can conclude that the series in (3) converges in 𝒱(1+𝜖)  and the result 

follows. Under the assumption in (ii), 𝒩  is differentiation-invariant and by Corollary 

(6.1.22) (ii) 𝒩  is the Borel transform of a backward shift invariant subspace. Then by 

Beurling’s theorem, 𝒩 has the form in the statement. 

Corollary (6.1.25):[168]     (i) For (𝜆2 − 1) ∈ ℂ\{0} the resolvent operator  

 ((𝜆2 − 1)− 𝑉(𝑎2−1))
−1

: 𝐻(1+𝜖) → 𝐻(1+𝜖)   satisfies for every (𝑎2 − 1+ 𝜖) ∈ 𝔻 

((𝜆2 − 1)− 𝑉(𝑎2−1))
−1

(∑𝑓𝑗(𝑧𝑛)

𝑗

)

= [((𝜆2 − 1)− 𝑉(𝑎2−1))
−1

(∑𝑓𝑗
𝑗

)] (𝑎2 − 1 + 𝜖)𝑒
(
𝑧𝑛−𝑎

2−1+𝜖
𝜆2−1

)
 

+
1

𝜆2 − 1
𝑒
(
𝑧𝑛
𝜆2−1

)
∫ 𝑒

−(
1−𝜖
𝜆2−1

)
∑𝑓𝑗

′(1− 𝜖)

𝑗

 𝑑(1− 𝜖)

𝑧𝑛

𝑎2−1+𝜖

 

= [((𝜆2 − 1)− 𝑉(𝑎2−1))
−1

] (𝑎2 − 1 + 𝜖)𝑒
(
𝑧𝑛−𝑎

2−1+𝜖
𝜆2−1

)
+
(∑ 𝑓𝑗(𝑧𝑛)𝑗 )

𝜆2 − 1
 

−
∑ 𝑓𝑗(𝑎

2 − 1 + 𝜖)𝑗

𝜆2 − 1
𝑒
(
𝑧𝑛−𝑎

2−1+𝜖
𝜆2−1

)
 

+
1

(𝜆2 − 1)2
𝑒
(
𝑧𝑛
𝜆2−1

)
∫ 𝑒

−
(1−𝜖)
𝜆2−1  ∑𝑓𝑗(1− 𝜖)

𝑗

𝑑(1− 𝜖)

𝑧𝑛

2−𝑎2−𝜖

. 

(ii) If  ℳ  is a closed subspace of  𝐻(1+𝜖)  which is invariant for  𝑉(𝑎2−1) then ℳ is invariant 

for ((𝜆2 − 1)− 𝑉𝑎2−1)
−1

 for all (𝜆2 − 1) ∈ ℂ\{0}. 

(iii) Every exponential function 𝑒(𝛼2−1)  is a cyclic vector for 𝑉(𝑎2−1)  .  
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Proof:  (i) is a direct computation and will be omitted. To see (ii) note that since 𝑉(𝑎2−1) is 

quasinilpotent we have that ‖𝑉(𝑎2−1)
(𝑛) ‖

1

𝑛
→ 0   when  𝑛 → ∞  which implies that for 

(𝜆2 − 1) ∈ ℂ\{0}  

((𝜆2 − 1)− 𝑉(𝑎2−1))
−1

=∑(𝜆2 − 1)−(𝑛+1)𝑉(𝑎2−1)
(𝑛)

∞

𝑛=0

, 

where the series converges in the operator norm. Since ℳ is invariant for 𝑉(𝑎2−1)
(𝑛)

 the result 

follows. 

(iii). From (i) we see that for (𝜆2 − 1) ∈ ℂ\{0}  with (𝜆2 − 1)(𝛼2 − 1) ≠ 1 and all 𝑎 ∈ 𝔻 

we have 

((𝜆2 − 1)− 𝑉(𝑎2−1))
−1

𝑒(𝛼2−1) −
(𝛼2 − 1)𝑒(𝛼2−1)

𝜆2(𝛼2 − 1)− 𝛼2

= 𝑒
(
1

𝜆2−1
)
𝑒
−(
𝑎2−1+𝜖
𝜆2−1

)
[[((𝜆2 − 1)− 𝑉(𝑎2−1))

−1

𝑒𝛼2−1] (𝑎
2 − 1+ 𝜖)

−
(𝛼2 − 1)𝑒𝛼2−1(𝑎

2 − 1+ 𝜖)

𝜆2(𝛼2 − 1) − 𝛼2
] 

By (ii) the left hand side belongs to the 𝑉(𝑎2−1)-invariant subspace generated by 𝑒(𝛼2−1) and 

cannot vanish identically because 𝑉(𝑎2−1) has no eigenvalues. Then the 𝑉(𝑎2−1)-invariant 

subspace generated by 𝑒(𝛼2−1)  contains 𝑒
(

1

𝜆2−1
)

 for all  (𝜆2 − 1) ∈ ℂ\{0}  with  (𝜆2 −

1)(𝛼2 − 1) ≠ 1 and the result follows. 

Corollary (6.1.26):[168]    A nonzero function 𝑓𝑗 ∈ 𝐻
(1+𝜖)  belongs to  𝑆(𝑎2−1)

(1−𝜖) 𝐻(1+𝜖)   if 

and only if 

lim
𝑟→1−

∑sup(1− 𝑟)

𝑗

log|𝑓𝑗(𝑟(𝑎
2 − 1))| ≤ −2(1− 𝜖). 

Proof:  We recall first a well-known fact about Poisson integrals of finite measures on the 

unit circle. If 𝑢 is a harmonic function in 𝔻 of the form 

𝑢(𝑧𝑛) = ∫𝑃𝑧𝑛 𝑑𝜇

 

𝕋

,                  𝑧𝑛 ∈ 𝔻, 

Where 𝑃𝑧𝑛(𝑒
𝑖(1−𝜖)) =

1−|𝑧𝑛|
2

|𝑒𝑖(1−𝜖)−𝑧𝑛|
2  is the Poisson kernel and 𝜇 is a finite measure on 𝕋 then 

(see [144]) for every (𝑎2 − 1) ∈ 𝕋 we have 

lim
𝑟→1−

(1− 𝑟)𝑢(𝑟(𝑎2 − 1)) = 2𝜇({𝑎2 − 1}). 
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Our second observation is that if 𝐵 is a Blaschke product then 

lim
𝑟→1−

sup(1− 𝑟) log|𝐵(𝑟(𝑎2 − 1))| = 0 

for all (𝑎2 − 1) ∈ 𝕋. This is a direct consequence of the Phragmen–Lindelöf principle. 

Indeed, if we assume the contrary, 

lim
𝑟→1−

sup(1− 𝑟) log|𝐵(𝑟(𝑎2 − 1))| = −2𝜏 < 0 

then the Phragmen–Lindelöf principle immediately implies that 𝐵𝑆(𝑎2−1)
−𝜏 is bounded on 𝔻, 

which gives a contradiction. 

Now if 𝑓𝑗 ∈ 𝐻
(1+𝜖)  is not identically zero, we use the canonical factorizations of such 

functions to write 

∑log|𝑓𝑗 |

𝑗

= log|𝐵|+ 𝑢, 

where 𝐵 is a Blaschke product and 𝑢 is the Poisson integral of a finite measure on the unit 

circle and the result follows by the above considerations. 

Corollary (6.1.27):[168]    Suppose that the space 𝑋 satisfies (i)–(iv). Then: 

(i) If 𝛾 > 𝛾(𝑋) there exists 𝐾 > 0 such that for each (𝜆2 − 1) ∈ 𝔻 

∑|𝑓𝑗(𝜆
2 − 1)|

𝑗

≤ 𝐾(1− |𝜆2 − 1|)−𝛾∑‖𝑓𝑗‖

𝑗

,       𝑓𝑗 ∈ 𝑋. 

(ii) If 𝛾(𝑋) < 1 , the Volterra operators 𝑉(𝑎2−1), 𝑎 ≤ √2 , are well-defined and 

bounded on 𝑋. Moreover, 𝑉(𝑎2−1)𝑋 ⊂ 𝐴0 ∩ 𝑋. 

Proof:  (i) If 𝜑(1−𝜖,𝜆2−1)(𝑧𝑛) = (1− 𝜖)(𝜆
2 − 1)+ 𝜖𝑧𝑛 , 0 < 𝜖 < 1,(𝜆

2 − 1) ∈ 𝔻, then by 

(i) and (iii) we have for all𝑓𝑗 ∈ 𝑋, ( 𝜆
2 − 1) ∈ 𝔻 and 0 < 𝜖 < 1 

∑|𝑓𝑗((1− 𝜖)(𝜆
2 − 1)|

𝑗

=∑|𝐶𝜑(1−𝜖,𝜆2−1)𝑓𝑗
(0)|

𝑗

≤ 𝐾0‖𝐶𝜑(1−𝜖,𝜆2−1)‖∑‖𝑓𝑗‖

𝑗

≤ 𝐾0𝐾𝛾(1− (1− 𝜖)|𝜆
2 − 1|)−𝛾∑‖𝑓𝑗‖

𝑗

, 

where the constants  𝐾0 ,𝐾𝛾 > 0 are independent of (𝜆2 − 1) and 𝑓𝑗 . To see (ii) write 

𝑉𝑎2−1  (∑𝑓𝑗(𝑧𝑛)

𝑗

)= ∫∑𝑓𝑗 (𝑧𝑛(1− 𝜖) − 𝜖(1− 𝑎
2))

𝑗

(𝑧𝑛 − 𝑎
2 + 1)𝑑(1− 𝜖)

1

0

= (𝑀𝜁 − 𝑎
2 + 1)∫𝐶Ψ(1−𝜖,a2−1) ∑𝑓𝑗(𝑧𝑛)

𝑗

𝑑(1 − 𝜖)

1

0

, 
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where Ψ(1−𝜖,𝑎2−1)(𝑧𝑛) = 𝑧𝑛(1 − 𝜖)− 𝜖(1 − 𝑎
2).  Since Ψ(1−𝜖,𝑎2−1)(0) = 𝜖(𝑎

2 − 1)  for 

𝑎 ≠ ±1 and 𝛾(𝑋) < 𝛾 < 1, we have by (iii) 

∫‖𝐶Ψ(1−𝜖,a2−1)‖𝑑(1− 𝜖)

1

0

≤ 𝐾∫(1− 𝜖)−𝛾  𝑑(1− 𝜖)

1

0

< ∞.        

Moreover, if 𝑓𝑗 ∈ 𝐴𝑚then 𝑉(𝑎2−1)(∑ 𝑓𝑗𝑗 ) ∈ 𝐴𝑚 and if we choose m such that (iv) holds, then 

by the above estimates we obtain the following inequality which involves the norm on 𝑋 

∑‖𝑉(𝑎2−1)𝑓𝑗‖

𝑗

≤ 𝐾∑‖𝑓𝑗‖

𝑗

,            𝑓𝑗 ∈ 𝐴𝑚, 

where 𝐾 is independent of 𝑓𝑗 . This implies the first part of the assertion. The second part is 

also a direct consequence of the estimate (9). 

Corollary (6.1.28):[168]    Let 𝑋 be a Banach space of analytic functions which satisfies 

(i)–(iv) and assume that the operators 𝑉(𝑎2−1), 𝑎 ≤ √2 are well-defined and bounded on 𝑋 

with  𝑉(𝑎2−1)𝑋 ⊂ 𝐴0 ∩ 𝑋. 

(i) A proper subspace ℳ of 𝑋is 𝑉(𝑎2−1)-invariant, where 𝑎 ≤ √2 if and only if there 

exists a positive integer 𝑁 such that 

ℳ = (𝜁 − 𝑎2 + 1)𝑁𝑋. 
(ii)  If the proper subspace ℳ of 𝑋is 𝑉(𝑎2−1)-invariant, where |𝑎2 − 1| = 1, and 𝑚 is 

any non negative integer such that (iv) holds, then one and only one of the 

following alternatives must occur.Either there exists 𝜖 < 1 such that for every 0 <

𝑟 <
1

2
 

𝑆(𝑎2−1)
(1−𝜖) 𝐻∞ ∩ 𝐴𝑚 ⊂ℳ ⊂ 𝑆(𝑎2−1)

(1−𝜖) 𝐻𝑟 ∩ 𝑋
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

, 

                   where  𝑆(𝑎2−1)(𝑧𝑛) = exp (
𝑧𝑛+𝑎

2−1

𝑧𝑛−𝑎
2+1
), or there exists 1 ≤ 𝑘 ≤ 𝑚+ 1 such that 

ℳ∩𝐴𝑚 = 𝐴𝑚
𝑘 (𝑎2 − 1). 

Proof:  Consider first the space 𝑉(𝑎2−1)ℳ⊂ 𝐴0 ∩𝑋, let 𝜖 > 0 be fixed but arbitrary, and 

apply Theorem (6.1.10) to conclude that the closure of 𝑉(𝑎2−1)ℳ  in 𝐻(1+𝜖)  equals 

(𝑎2 − 1 + 𝜖)(𝑎2−1)
𝑁 𝐻(1+𝜖)  for some 𝑁 ≥ 0, if 𝑎 ≤ √2, and 𝑆(𝑎2−1)

(1−𝜖) 𝐻(1−𝜖)  for some 𝜖 < 1, 

if |𝑎2 − 1| = 1. Let 𝑚 be a nonnegative integer such that (iv) holds.If (𝑓𝑗)𝑛
 is a sequence 

in ℳ such that (𝑉(𝑎2−1)(𝑓𝑗)𝑛
) converges to 𝑔𝑗 ∈ 𝐻

(1+𝜖)  then (𝑉(𝑎2−1)
(𝑚+2)(𝑓𝑗)𝑛

) converges to 

𝑉(𝑎2−1)
(𝑚+1)𝑔𝑗 in 𝐴𝑚, hence by (iv), it converges also in 𝑋. Thus ℳ contains  𝑉(𝑎2−1)

(𝑚+1)ℳ(1+𝜖) , 

where ℳ(1+𝜖) is the closure of 𝑉(𝑎2−1)ℳ in 𝐻(1+𝜖) . This gives 

(𝑎2 − 1+ 𝜖)(𝑎2−1)
(𝑁+𝑚+1)𝐴𝑚 ⊂ℳ 



 
180 

If 𝑎 ≤ √2,  

𝑆
𝑎2−1

(1−𝜖)𝐻∞ ∩ 𝐴𝑚 ⊂ℳ 

If |𝑎2 − 1| = 1,𝜖 < 1  and  

𝑉(𝑎2−1)
(𝑚+1)𝐻(1−𝜖) ⊂ℳ 

If |𝑎2 − 1| = 1 and 𝜖 = 1 . If 𝑎 ≤ √2  we know that the functions in ℳ have a common 

zero of order 𝑁 at 𝑎2 − 1. From the equality above and (6) we have(𝜁 − 𝑎2 + 1)𝑁+𝑚𝑋 ⊂

ℳ. If (𝑓𝑗)0
∈ ℳ  is such that (𝑓𝑗)0

(𝑁+1)
(𝑎2 − 1) ≠ 0  then every function 𝑓𝑗 ∈ (𝜁 − 𝑎

2 +

1)𝑁𝑋 can be written in the form 

∑𝑓𝑗
𝑗

= ∑ 𝑐𝑛𝑉(𝑎2−1)
𝑛 (𝑓𝑗)0

+ 𝑔𝑗

𝑚+1

𝑛=0

 

with scalars 𝑐𝑛 and 𝑔𝑗 ∈ (𝜁 − 𝑎
2 + 1)(𝑁+𝑚+1) which proves (i). 

A similar argument shows that if |𝑎2 − 1| = 1 and 𝜖 = 1 then the second alternative in (ii) 

occurs .Indeed, it is easy to verify that the closure of 𝑉(𝑎2−1)
(𝑚+1)𝐻(1+𝜖)  in 𝐴𝑚  equals  

𝐴𝑚
𝑚+1(𝑎2 − 1). If 𝑘 ≤ 𝑚+ 1 is the order of the common zero of the functions in ℳ∩𝐴𝑚  

at a then by (iv) 𝑘 must be positive. If 𝑘 = 𝑚+ 1 the statement follows from above. If 𝑘 <

𝑚+ 1  we choose again (𝑓𝑗)0
∈ ℳ∩ 𝐴𝑚  with (𝑓𝑗)0

(𝑘+1)
(𝑎2 − 1) ≠ 0  and write an 

arbitrary function in 𝐴𝑚
𝑘 (𝑎2 − 1) in the form 

∑𝑓𝑗
𝑗

= ∑ 𝑐𝑛𝑉(𝑎2−1)
𝑛 (𝑓𝑗)0

+𝑔𝑗

𝑚−𝑘

𝑛=0

 

with scalars 𝑐𝑛 and 𝑔𝑗 ∈ 𝐴𝑚
(𝑚+1)(𝑎2 − 1) ∈ ℳ and the result follows. 

It remains to prove that if  |𝑎2 − 1| = 1  and 𝜖 < 1 then 

ℳ⊂ 𝑆(𝑎2−1)
(1−𝜖) 𝐻𝑟 ∩𝑋
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

. 

Recall from the beginning of the proof that for every 𝜖 > 0, the closure of 𝑉(𝑎2−1)ℳ in 

𝐻(1+𝜖)  equals 𝑆(𝑎2−1)
(1−𝜖) 𝐻(1+𝜖) . Thus it suffices to prove that any function 𝑓𝑗 ∈ 𝑋   with 

𝑉(𝑎2−1)(𝑓𝑗) ∈ 𝑆(𝑎2−1)
(1−𝜖) 𝐻(1+𝜖) can be approximated in 𝑋 by functions in 𝑆(𝑎2−1)

(1−𝜖) 𝐻𝑟 ∩ 𝑋 for 

every  𝑟 <
1+𝜖

4+2𝜖
. 

To this end, we consider for  0 < 𝜖 < 1 the functions 𝜑𝜖:𝔻 →𝔻 with 

𝜑𝜖(𝑧𝑛) = 𝜖(𝑎
2 − 1)+ (1− 𝜖)𝑧𝑛. 
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A simple computation yields for |𝑧𝑛| = 1 

1 − |𝜑𝜖(𝑧𝑛)|
2 = 𝜖(1− 𝜖)|𝑧𝑛 − 𝑎

2 + 1|2.                     

Composition with 𝜑𝜖 has the following properties. 

(i)  If ℎ𝑗 is analytic in 𝔻 and satisfies for some 𝛼 < ±1 the growth restriction 

∑|ℎ𝑗(𝑧𝑛)|

𝑗

= 𝑂((1− |𝑧𝑛|)
1−𝛼2),     |𝑧𝑛| → 1

− 

then by  (8) we have that (𝜁 − 𝑎2 + 1)2(𝛼
2−1)ℎ𝑗 ∘ 𝜑𝜖 ∈ 𝐻

∞. Consequently,  ℎ𝑗 ∘ 𝜑𝜖 ∈ 𝐻
𝑠  

for all 𝑠 <
1

2(𝛼2−1)
 .  

(ii)  The composition operators 𝐶𝜑𝜖  on 𝑋  satisfy ‖𝐶𝜑𝜖‖ ≤ 𝐾𝛾(1− 𝜖)
−𝛾  for 

every 𝛾 > 𝛾(𝑋)  and also, if  𝑓𝑗 ∈ 𝐴𝑚 then 

lim
𝜖→0
𝐶𝜑𝜖𝑓𝑗 = 𝑓𝑗 , 

in 𝐴𝑚. Then by (iv) we have that 𝐶𝜑𝜖converges strongly to the identity on 𝑋.Now if 𝑓𝑗 ∈

𝑋with 𝑉(𝑎2−1)(∑ 𝑓𝑗𝑗 ) ∈ 𝑆(𝑎2−1)
(1−𝜖) 𝐻(1+𝜖)   write 𝑉(𝑎2−1)(∑ 𝑓𝑗𝑗 ) = 𝑆(𝑎2−1)

(1−𝜖) (∑ 𝐹𝑗𝑗 )  with  𝐹𝑗 ∈

𝐻1+𝜖. Then 

∑𝑓𝑗
𝑗

= 𝑆(𝑎2−1)
(1−𝜖) ∑(𝐹𝑗

′ −
2(1− 𝜖)

(𝜁 − 𝑎2 + 1)
𝐹𝑗)

𝑗

 

hence, for 0 < 𝜖 < 1 

∑𝑓𝑗 ∘ 𝜑𝜖
𝑗

= 𝑒−𝜖𝑆(𝑎2−1)
1 ∑(𝐹𝑗

′ ∘ 𝜑𝜖 −
2

(1 − 𝜖)(𝜁− 𝑎2 + 1)2
𝐹𝑗 ∘ 𝜑𝜖)

𝑗

. 

Since 𝐹𝑗 ∈ 𝐻
(1+𝜖)  we have 𝐹𝑗 ∘ 𝜑𝜖(𝜁 − 𝑎

2 + 1)−2 ∈ 𝐻𝑠 for all 𝑠 <
1+𝜖

3+2𝜖
. Moreover,  

∑|𝐹𝑗
′(𝑧𝑛)|

𝑗

= 𝑂((1− |𝑧𝑛|
−1)(

2+𝜖
1+𝜖

)
),    |𝑧𝑛| → 1

− , 

hence, by property (i) we obtain 𝐹𝑗
′ ∘ 𝜑𝜖 ∈ 𝐻

𝑠 for all 𝑠 <
1+𝜖

4+2𝜖
. Then 𝑓𝑗 ∘ 𝜑𝜖 ∈ 𝐻

𝑠 for all  

𝑠 <
1+𝜖

4+2𝜖
, the claim follows by property (ii) and the proof is complete. 

Corollary (6.1.29):[168]      Let 𝜖 > 0, let 0 < 𝛼 < √𝜖 + 1  . 

(i) Every continuous linear functional 𝑙 on 𝐷(1+𝜖,𝛼
2−1) can be represented uniquely 

in the form 
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𝑙 (∑𝑓𝑗
𝑗

) = lim
𝑟→1−

∫∑𝑓𝑗 (𝑟𝑧𝑛)(𝑔𝑗)𝑙
(𝑟𝑧𝑛)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗

𝑑𝑚(𝑧𝑛)

 

𝕋

, 

where (𝑔𝑗)𝑙
∈ 𝐿(𝑎2−1)

(1+𝜖,𝛼2−1), 𝜖 > 0. The linear map 𝑙 → (𝑔𝑗)𝑙
 from the dual of 𝐷(1+𝜖,𝛼

2−1) 

into 𝐿(𝑎2−1)
(1+𝜖,

1−𝛼2

𝜖
)

 is continuous and bijective. Moreover, 𝐷(1+𝜖,𝛼
2−1) is reflexive. 

(ii) 𝐷(1+𝜖,𝛼
2−1) is continuously contained in 𝐻(1+𝜖) . 

(iii) If 𝜃  is an inner function and 𝑓𝑗 ∈ 𝐷
(1+𝜖,𝛼2−1)  satisfies 

𝑓𝑗

𝜃
∈ 𝐻(1+𝜖) , then 

𝑓𝑗

𝜃
 

belongs to  𝐷(1+𝜖,𝛼
2−1)  and there is a constant 𝐾 > 0 independent of 𝑓𝑗  such that 

∑‖
𝑓𝑗
𝜃
‖
(𝐷1+𝜖,𝛼

2−1)𝑗

≤ 𝐾∑‖𝑓𝑗‖𝐷(1+𝜖,𝛼2−1)
𝑗

. 

Proof:   (i) Using Parseval’s formula we can write for 𝑓𝑗 , 𝑔𝑗 analytic on 𝐷(1+𝜖,𝛼
2−1) and          

0 < 𝑟 < 1 

∫∑𝑓𝑗(𝑟𝑧𝑛)𝑔𝑗(𝑟𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗

𝑑𝑚(𝑧𝑛)

 

𝕋

= ∫∑(𝜁𝑓𝑗)
′
(𝑟𝑧𝑛)𝑔𝑗(𝑟𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗

𝑑𝐴(𝑧𝑛)

 

𝔻

. 

The linear map 𝑓𝑗 → (𝜁𝑓𝑗)
′
 from 𝐷(1+𝜖,𝛼

2−1) into 𝐿(𝑎2−1)
(1+𝜖,𝛼2−1)

 is continuous and invertible, 

so that, all we need to show is that the dual of 𝐿(𝑎2−1)
(1+𝜖,𝛼2−1)

 can be identified with  𝐿(𝑎2−1)
(
1+𝜖

𝜖
,
1−𝛼2

𝜖
)

 

via the pairing 

∑〈ℎ𝑗, 𝑔𝑗〉

𝑗

= lim
𝑟→1−

∫∑ℎ𝑗(𝑟𝑧𝑛)𝑔𝑗(𝑟𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗

𝑑𝐴(𝑧𝑛)

 

𝔻

. 

To prove reflexivity, we have to show that via the above pairing the dual of 𝐿(𝑎2−1)
(
1+𝜖

𝜖
,
1−𝛼2

𝜖
)

 is 

𝐿(𝑎2−1)
(1+𝜖,𝛼2−1)

[146]. Part (ii) follows directly from (i) since 𝐻
(
1+𝜖

𝜖
)
, 𝜖 > 0  is continuously 

contained in 𝐿(𝑎2−1)
(
1+𝜖

𝜖
,
1−𝛼2

𝜖
)

. (iii) asserts that 𝐷(1+𝜖,𝛼
2−1) has the so-called (𝐹)-property (see 

[147]). The proof follows with the method in [147]. If 𝜃 is inner then the operator 𝑀𝜃 of 

multiplication by 𝜃  is a bounded linear operator on  𝐿(𝑎2−1)
(
1+𝜖

𝜖
,
1−𝛼2

𝜖
)

. Since 𝐷
(1+𝜖,

1−𝛼2

𝜖
)

 is 

reflexive, its adjoint 𝑀𝜃
∗ is bounded on 𝐷(1+𝜖,𝛼

2−1).If  
𝑓𝑗

𝜃
∈ 𝐻(1+𝜖)  and 𝑔𝑗 ∈ 𝐻

(
1+𝜖

𝜖
)
 then 

lim
𝑟→1−

∫∑𝑓𝑗(𝑟𝑧𝑛)𝑀𝜃𝑔𝑗(𝑟𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗

𝑑𝑚(𝑧𝑛)

 

𝕋

= ∫∑(
𝑓𝑗
𝜃
)(𝑧𝑛)𝑔𝑗(𝑧𝑛)̅̅ ̅̅̅ ̅̅ ̅

𝑗

𝑑𝑚(𝑧𝑛)

 

𝕋

. 
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From the fact that 𝐻
(
1+𝜖

𝜖
)
 is dense in 𝐿(𝑎2−1)

(
1+𝜖

𝜖
,
1−𝛼2

𝜖
)

 we obtain that  𝑀𝜃𝑓𝑗
∗ = 𝑓𝑗/𝜃 and the result 

follows. 

As a direct application of part (ii) we obtain that the Volterra operators 𝑉(𝑎2−1) ,𝑎 ≤

√2 are bounded on 𝐷(1+𝜖,𝛼
2−1) and satisfy  𝑉(𝑎2−1)𝐷

(1+𝜖,𝛼2−1) ⊂ 𝐴0 ∩ 𝐷
(1+𝜖,𝛼2−1). Indeed, 

by the Fejer–Riesz inequality we have that 

∑|𝑉𝑎2−1 (𝑓𝑗(0))|

𝑗

≤ 𝐾∑‖𝑓𝑗‖𝐻(1+𝜖)
𝑗

≤ 𝐾′∑‖𝑓𝑗‖𝐷(1+𝜖,𝛼2−1)
𝑗

 

for some constant 𝐾′ > 0 and all 𝑓𝑗 ∈ 𝐷
(1+𝜖,𝛼2−1). The inequality 

∫∑|(𝑉(𝑎2−1)𝑓𝑗)
′
(𝑧𝑛)|

(1+𝜖)

𝑗

(1− |𝑧𝑛|)
(𝛼2−1)  𝑑𝐴(𝑧𝑛)

 

𝔻

= ∫∑|𝑓𝑗(𝑧𝑛)|
(1+𝜖)

(1− |𝑧𝑛|)
(𝛼2−1)

𝑗

𝑑𝐴(𝑧𝑛)

 

𝔻

≤ 𝐾′′∑‖𝑓𝑗‖𝐷(1+𝜖,𝛼2−1)
(1+𝜖)

𝑗

 

follows also by standard estimates (see [105]), but can also be obtained by a direct 
application of Minkowski’s inequality. 

Corollary (6.1.30):[168]    Let 𝜖 > 0 and 𝛼 > 0 such that   𝛼 < √𝜖. Then for 𝜖 < 1 and 

|𝑎2 − 1| = 1, 𝑆(𝑎2−1)
(1−𝜖) 𝐻∞ ∩ 𝐴1 is dense in  𝑆(𝑎2−1)

(1−𝜖) 𝐻(1+𝜖) ∩ 𝐷(1+𝜖,𝛼
2−1).  

Proof:   Let  𝑓𝑗 ∈ 𝑆(𝑎2−1)
(1−𝜖) 𝐻(1+𝜖) ∩ 𝐷(1+𝜖,𝛼

2−1) . By Corollary (6.1.29) (iii) we can 

approximate 𝑓𝑗𝑆(𝑎2−1)
(𝜖−1) ∈ 𝐷(1+𝜖,𝛼

2−1) in 𝐷(1+𝜖,𝛼
2−1) by a sequence ((𝑓𝑗)𝑛

) of functions in 

𝐴1. Then it is a simple matter to show that (𝑎2 − 1 − 𝜁)2𝑆(𝑎2−1)
(1−𝜖) (𝑓𝑗)𝑛

→ (𝑎2 − 1− 𝜁)2𝑓𝑗  

in 𝐷(1+𝜖,𝛼
2−1). Thus (𝑎2 − 1 − 𝜁)2𝑓𝑗  belongs to the closure of 𝑆(𝑎2−1)

(1−𝜖) 𝐻∞ ∩𝐻1 whenever 

𝑓𝑗 ∈ 𝑆(𝑎2−1)
(1−𝜖) 𝐻(1+𝜖) ∩ 𝐷(1+𝜖,𝛼

2−1). To finish the proof it suffices to show that for such 𝑓𝑗  we 

have 

lim
𝑟→1−

∑
(𝑎2 − 1 − 𝜁)2

(𝑎2 − 1− 𝑟𝜁)2
𝑓𝑗

𝑗

=∑𝑓𝑗
𝑗

                  

in the norm of 𝐷(1+𝜖,𝛼
2−1). Since 𝑓𝑗𝑆(𝑎2−1)

(𝜖−1) ∈ 𝐷(1+𝜖,𝛼
2−1) it follows that 

∑‖𝑓𝑗𝑆(𝑎2−1)
(𝜖−1) ‖

𝐷(1+𝜖,𝛼
2−1)

(1+𝜖)

𝑗

≥ ∫∑|𝑓𝑗
′(𝑧𝑛)+

2(1− 𝜖)

(𝑧𝑛 − 𝑎
2 + 1)2

𝑓𝑗(𝑧𝑛)|

(1+𝜖)

𝑗

(1− |𝑧𝑛|)
(𝛼2−1) 𝑑𝐴(𝑧𝑛)

 

𝔻

 

and this implies that 



 
184 

∫∑|𝑧𝑛 − 𝑎
2 + 1|−2(1+𝜖)|𝑓𝑗(𝑧𝑛)|

(1+𝜖)
(1− |𝑧𝑛|)

(𝛼2−1)

𝑗

 𝑑𝐴(𝑧𝑛)

 

𝔻

< ∞. 

But from this inequality and the dominated convergence theorem we obtain that 

lim
𝑟→1−

∫∑|(
(𝑎2 − 1− 𝜁)2

(𝑎2 − 1 − 𝑟𝜁)2
𝑓𝑗)

′

(𝑧𝑛)|

(1+𝜖)

𝑗

(1− |𝑧𝑛|)
(𝛼2−1) 𝑑𝐴(𝑧𝑛)

 

𝔻

= ∫∑|𝑓𝑗
′(𝑧𝑛)|

(1+𝜖)

𝑗

(1 − |𝑧𝑛|)
(𝛼2−1)

 

𝔻

 𝑑𝐴(𝑧𝑛). 

Then (9) follows by a standard argument and the proof is complete. 

Corollary (6.1.31):[168]    For 𝜖 > 0  and |𝑎2 − 1| = 1  the closure of 𝐴1
2(𝑎2 − 1)  in 

𝐷(1+𝜖,𝛼
2−1) equals 𝐷(1+𝜖,𝛼

2−1)  if  𝛼 ≥ √𝜖 and 𝐷(1+𝜖,𝛼
2−1)(𝑎2 − 1)  if   𝛼2 ≥ √𝜖.  

Proof:  Since polynomials are dense in 𝐷(1+𝜖,𝛼
2−1)  it follows easily that the set of 

polynomials which vanish at a is dense in 𝐷(1+𝜖,𝛼
2−1)(𝑎2 − 1). Thus it suffices to show that 

1,𝜁 − 𝑎2 + 1 belong to the closure of 𝐴1
2(𝑎2 − 1) in 𝐷(1+𝜖,𝛼

2−1) when  𝛼2 ≥ √𝜖, and that 

𝜁 − 𝑎2 + 1 belongs to the closure of 𝐴1
2(𝑎2 − 1) in 𝐷(1+𝜖,𝛼

2−1) when 𝛼2 < √𝜖. For 𝑟 > 1 
consider the functions 

(𝑓𝑗)𝑟
(𝑧𝑛) = (𝑧𝑛 − 𝑎

2 + 1)2(𝑧𝑛 − 𝑟(𝑎
2 − 1))

−1
, 

 (𝑔𝑗)𝑟
(𝑧𝑛) = (𝑧𝑛 − 𝑎

2 + 1)(𝑧𝑛 − 𝑟(𝑎
2 − 1))−1 , 𝑧𝑛 ∈ 𝔻 

Clearly, (𝑓𝑗)𝑟
∈ 𝐴1

2(𝑎2 − 1),(𝑓𝑗)𝑟
(𝑧𝑛) → 𝑧𝑛 − 𝑎

2 + 1 when 𝑟 → 1+ , and|(𝑓𝑗)𝑟
′
(𝑧𝑛)| ≤ 3 

for all 𝑧𝑛 ∈ 𝔻. Using the dominated convergence theorem it is a standard matter to show 

that (𝑓𝑗)𝑟
→ 𝜁 − 𝑎2 + 1  in 𝐷(1+𝜖,𝛼

2−1) for all 𝜖 > 0 and all 𝛼 > 0. The functions (𝑔𝑗)𝑟
 

satisfy (𝑔𝑗)𝑟
∈ 𝐴1

2(𝑎2 − 1),(𝑔𝑗)𝑟
(𝑧𝑛) → 1 when 𝑟 → 1− for all 𝑧𝑛 ∈ 𝔻 and 

|(𝑔𝑗)𝑟
′
(𝑧𝑛)| =

𝑟 − 1

|𝑧𝑛 − 𝑟(𝑎
2 − 1)|2

+
2(𝑟 − 1)2

|𝑧𝑛 − 𝑟(𝑎
2 − 1)|3

,         𝑧𝑛 ∈ 𝔻. 

By standard estimates (see [105]) it follows that ‖(𝑔𝑗)𝑟
‖
𝐷(1+𝜖,𝛼

2−1)
 stay bounded when 𝑟 →

1+. Since 𝐷(1+𝜖,𝛼
2−1) is reflexive, we conclude that  (𝑔𝑗)𝑟

→ 1 weakly in 𝐷(1+𝜖,𝛼
2−1)  and 

the proof is complete. 

Section (6.2):  Parabolic Self-maps in the Hardy Space  

     The problem of giving a precise description of the lattice of invariant subspaces of 
abounded linear operator on Hilbert space is one of the most interesting and difficult in  
operator theory. Very few operators admit a useful description of the lattice of invariant  

subspaces. Understanding the lattice of a particular operator can solve the invariant subspace 
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problem. This was done by, [148,149]. They consider the composition operator 𝐶𝜑 acting on 

the Hardy space, where 𝜑 is an automorphism of the disk fixing ±1. They show that if every 

invariant subspace of 𝐶𝜑 of infinite dimension has a non-trivial invariant subspace, then the 

general conjecture is true. 

   Beurling’s Theorem provides a complete description of the invariant subspaces of the shift 

operator acting on ℋ 2  the lattice of the invariant subspace shift operator acting on the 
Bergman space is not completely understood,  [150,70,104]. 

   We will describe the invariant subspaces of the composition operators 𝐶𝜑 acting on the 

Hardy space  ℋ2  where 𝜑  is a parabolic on-automorphism that takes 𝔻 into itself, which 
has the formula 

𝜑𝑎(𝑧) =
(2− 𝑎)𝑧 + 𝑎

−𝑎𝑧 + 2+ 𝑎
,       𝑤ℎ𝑒𝑟𝑒   ℛ𝑎 > 0                                           (10) 

Since 𝜑𝑎(𝔻)  is contained in 𝔻 , Littlewoods Subordination Principle implies, the 

composition operator (𝐶𝜑𝑎𝑓)= 𝑓(𝜑𝑎(𝑧))  acts bounded on  ℋ 2  [144]. 

    If  𝑇  is an operator on Hilbert space ℋ and 𝑥 is a vector in ℋ, then the smallest invariant 
subspace of 𝑇 that contains 𝑥 is the closure of the linear span of the orbit of 𝑥 under  𝑇. If the 

minimal subspace is ℋ, then 𝑥 is called a cyclic vector. We describe all cyclic vector for 𝐶𝜑𝑎 .  

The family of all composition operators induced by parabolic non-automorphism have 
common dynamics, since they have common cyclic vector, Corollary (6.2.2). Each orbit of 

any vector under all composition operators induced by parabolic non-automorphism has a 
common closure. See[144,151]. 

   If  ℛ𝑎 > 0, the spectrum 𝜎(𝐶𝜑𝑎) is the spiral 

𝜎(𝐶𝜑𝑎) = {0}∪ {𝑒
−𝑎𝑡: 𝑡 ∈ [0,∞)}. 

Indeed, 𝐶𝜑𝑎has a well-known family of inner functions as its eigenfunctions,   

𝐶𝜑𝑎𝑒𝑡 = 𝑒
−𝑎𝑡𝑒𝑡 ,   where  𝑒𝑡(𝑧) = exp (𝑡

𝑧 + 1

𝑧 − 1
)for each 𝑡 ≥ 0.              (11) 

All invariant subspaces we consider will be closed. Let Lat 𝑇denote the lattice of invariant 
subspaces of the bounded linear operator 𝑇and let 𝔽[0,∞)denote the set of closed subsets of 
[0,∞). As usual, the closed span of the empty set is the trivial subspace consisting of just the 

zero vector.  

Corollary(6.2.1):[147]   Composition operators induced by parabolic non automorphism that 
take the unit disk into itself have the same lattice of invariant subspaces and the same  cyclic 

vectors. 

Recall that a subspace that is invariant for an operator as well as for its adjoint is called a 
reducing subspace.  
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Theorem(6.2.2):[147]  The map Ψ is an isometric isomorphism from 𝐿2(𝕋) onto 𝑊1,2(ℝ). 

In addition, Ψ(𝑧ℋ2) = 𝑊0
1,2[0,∞)  and  Ψ(�̅�ℋ2̅̅ ̅̅̅) = 𝑊0

1,2(−∞,0].  

Proof:   For each 𝑓 in 𝐿2(𝕋), we have 

(Ψ𝑓)(𝑡) =
1

2𝜋
∫ 𝑓(𝑒𝑖𝜃)exp (𝑡

1 + 𝑒𝑖𝜃

1 − 𝑒𝑖𝜃
)𝑑𝜃

2𝜋

0

,        𝑡 ∈ ℝ. 

The change of variables 𝑥 =
𝑖(1+𝑒𝑖𝜃)

(1−𝑒𝑖𝜃)
 yields 

(Ψ𝑓)(𝑡) =
1

𝜋
∫ 𝑓(

𝑥 − 𝑖

𝑥 + 𝑖
)
𝑒−𝑖𝑡𝑥

1 + 𝑥2
 𝑑𝑥

∞

−∞

,           𝑡 ∈ ℝ.                          (12) 

Therefore, Ψ = ℱ𝑀𝑇, where ℱdenotes the Fourier transform,  

(𝑀𝑔)(𝑦) =
1

√𝜋

𝑔(𝑦)

√1+ 𝑦2
    and    (𝑇𝑓)(𝑥)=

1

√𝜋

1

√1 + 𝑥2
 𝑓 (
𝑥 − 𝑖

𝑥 + 𝑖
). 

The obvious change of variables shows that 𝑇 is an isometric isomorphism from 𝐿2(𝕋) onto 

𝐿2(ℝ). In addition, the properties of the Fourier transform along Plancherel’s Theorem show 

that ℱ𝑀  is an isometric isomorphism from 𝐿2(ℝ) onto 𝑊1,2(ℝ),  which proves the first 
statement of the proposition. 

Now, let 𝑓  be in 𝑧ℋ 2, that is, 𝑓(𝑧) = 𝑧𝑔(𝑧)  with 𝑔 in ℋ2. Using (10), we obtain 

(Ψ𝑓)(𝑡) =
1

𝜋
∫ 𝑔 (

𝑥 − 𝑖

𝑥 + 𝑖
)
𝑒−𝑖𝑡𝑥

(𝑥 + 𝑖)2
 𝑑𝑥

∞

−∞

,      for each 𝑡 ∈ ℝ. 

Since the map 

ℎ →
1

√𝜋(𝑥 + 𝑖)
ℎ(
𝑥 − 𝑖

𝑥 + 𝑖
) 

is an isometric isomorphism from ℋ2 onto ℋ 2(𝛱), [153], and multiplication by  (𝑤 + 𝑖)−1  

is bounded on ℋ 2(𝛱), we find that Ψ𝑓 is the Fourier transform of a function of ℋ2(𝛱). 
Thus, the Paley-Wiener Theorem, [152], shows that Ψ𝑓, which is continuous, must vanish on 

(−∞, 0] and, therefore, Ψ(𝑧ℋ2) ⊂ 𝑊0
1,2[0,∞).  Similarly, Ψ(�̅�ℋ̅ 2) ⊂ 𝑊0

1,2(−∞,0]. The 

fact that Ψ(𝑧ℋ2) = 𝑊0
1,2[0,∞),  and Ψ(�̅�ℋ̅ 2) = 𝑊0

1,2[−∞,0) follows immediately from 

the orthogonal decomposition 𝑊1,2(ℝ) = 𝑊0
1,2(−∞,0]⨁[𝑒−|𝑡|]⨁𝑊0

1,2[0,∞) , which in 

turns follows, being Ψ  an isometric isomorphism, from the orthogonal decomposition 

𝐿2(𝕋) = �̅�ℋ̅2⨁[1]⨁𝑧ℋ2  and the fact that Ψ1 = 𝑒
−|𝑡| , where [𝑓]  denotes the one-

dimensional linear space spanned by the vector 𝑓. 

Corollary(6.2.3):[147]  The operator Φ defines an isomorphism from ℋ 2 onto 𝑊1,2[0,∞). 

Indeed, ‖Φ𝑓‖1,2
2 = ‖𝑓‖ℋ2

2 − |𝑓(0)|2/2.  
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Proof:  Upon applying Theorem (6.2.4), Φ and Ψ coincide on 𝑧ℋ2 and, therefore, Φ defines 

an isometric isomorphism from 𝑧ℋ 2 on to 𝑊0
1,2[0,∞) . Since 𝑒−|𝑡|  is orthogonal to 

𝑊0
1,2[0,∞],  so is 𝑒−𝑡𝜒[0,∞) . Thus   𝑊 

1,2[0,∞) = [𝑒−𝑡𝜒[0,∞)] ⊕𝑊0
1,2[0,∞) = (Φ1)⊕

Φ(𝑧ℋ2) = Φ(ℋ2), which proves that Φ is an isomorphism.The formula for the norm is 
trivial.  

Proposition(6.2.4):[147]    Let 𝜑𝑎, with ℛ𝑎 ≥ 0, be as in (10). Then the adjoint of 𝐶𝜑𝑎  acting 

on ℋ2 is similar under Φ to the multiplication operator  𝑀𝜓, where 𝜓(𝑡) = 𝑒−�̅�𝑡 , acting on 

𝑊1,2[0,∞). 

Proof:   Using the eigenvalues equation (11), for each  𝑓 ∈ℋ2, we have 

(Φ𝐶𝜑𝑎
⋆ 𝑓)(𝑡) = 〈𝐶𝜑𝑎

⋆  𝑓, 𝑒𝑡 〉ℋ2 = 〈𝑓, 𝐶𝜑𝑎𝑒𝑡 〉ℋ2 = 𝑒
−�̅�𝑡〈𝑓, 𝑒𝑡〉ℋ2 = 𝑒

−�̅�𝑡(Φ𝑓)(𝑡), 

for each 𝑡 ≥ 0. Thus 𝑀𝜓 = Φ𝐶𝜑𝑎
⋆ Φ−1. 

Proposition(6.2.5):[147]  The operator 𝑀𝜓 , where 𝜓(𝑡) = 𝑒−�̅�𝑡  and ℛ𝑎 > 0,  acting on 

𝑊1,2[0,∞) is cyclic with cyclic vector 𝜓. 

Proof:    Let  𝑘𝛼(𝑧) = (1− �̅�𝑧)
−1 ,  where  𝛼 =

(𝑎−1)

(𝑎+1)
, be the reproducing kernel at 𝛼 ∈ 𝔻 in 

the Hardy space ℋ 2. Since  Φ𝑘𝛼 = 𝜓, by Proposition (6.2.4), it is enough to show 𝑘𝛼is cyclic 

for 𝐶𝜑𝑎
⋆ . Suppose that 𝑓 in  ℋ2 is orthogonal to the orbit of 𝑘𝛼 under  𝐶𝜑𝑎

⋆ . Then, for each  

𝑛 ≥ 0, we have  

0 = 〈𝐶𝜑𝑎
⋆𝑛𝑘𝛼 , 𝑓〉ℋ2 = 〈𝑘𝛼 , 𝐶𝜑𝑎

𝑛 𝑓〉ℋ2 = 〈𝑘𝛼 , 𝐶𝜑𝑛𝑎
  𝑓〉ℋ2 = 〈𝑘𝛼 , 𝑓 ∘ 𝜑𝑛𝑎〉ℋ2 = 𝑓(𝜑𝑛𝑎(�̅�)). 

Since {𝜑𝑛𝑎(�̅�)} is not a Blaschke sequence, the function 𝑓 and the result follows. 

   An interesting consequence of Corollary(6.2.3) is a summability theorem for the Laguerre 

polynomials. Set 𝑢𝑛(𝑧) = 𝑧
𝑛 . Then  �̃�𝑛(𝑡) = (Φ𝑢𝑛)(𝑡) = 𝐿𝑛

(−1)(2𝑡)𝑒−𝑡𝜒[0,∞),  where 

𝐿𝑛
(−1)(𝑡)  is the Laguerre polynomial of degree 𝑛  and of index−1 . Indeed, since �̃�𝑛 =
〈𝑧𝑛, 𝑒𝑡(𝑧)〉ℋ2   is the 𝑛 -th coefficient of the Taylor series of 𝑒𝑡(𝑧) , by definition of the 
Laguerre polynomials see [155], we have 

𝑒𝑡(𝑧) = 𝑒
−𝑡 exp (−

2𝑡𝑧

1 − 𝑧
) =∑𝑒−𝑡𝐿𝑛

(−1)(2𝑡)𝑧𝑛
∞

𝑛=0

.                                    (13) 

Therefore, the following follows immediately. 

Corollary(6.2.6):[147]  Let {𝑎𝑛}𝑛≥0  be a sequence of complex numbers. Then the series 

𝑓(𝑡) = ∑ 𝑎𝑛𝐿𝑛
(−1)(2𝑡)𝑒−𝑡𝜒[0,∞)

∞
𝑛=0  converges in 𝑊1,2[0,∞)  if and only if {𝑎𝑛}  is in the 

sequence space ℓ2. Indeed, ‖𝑓‖
1,2

2
= −

|𝑎0 |
2

2
+ ‖{𝑎𝑛}𝑛≥1‖2

2. [156]. 

Corollary(6.2.7):[147]  Each 𝑓 in  𝑊1,2[0,∞) satisfies ‖𝑓‖∞ ≤ √2‖𝑓‖1,2  and √2  is the 

best imbedding constant.  
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Proof: By Corollary (6.2.6), we can write 𝑓(𝑡) = ∑ 𝑎𝑛𝐿𝑛
(−1)(2𝑡)𝑒−𝑡∞

𝑛=0 , where {𝑎𝑛}  is in 

ℓ2.The Cauchy-Schwarz inequality and Corollary (6.2.8), for each 𝑡 ≥ 0, yields 

|𝑓(𝑡)| = |∑𝑎𝑛𝐿𝑛
(−1)(2𝑡)𝑒−𝑡

∞

𝑛=0

| ≤ ‖𝑓‖1,2 (2𝑒
−2𝑡 +∑(𝐿𝑛

(−1)(2𝑡))
2

𝑒−2𝑡
∞

𝑛=1

)

1
2

. 

Since ‖𝑒𝑡‖ℋ2 = 1, using (13), one easily checks that the quantity into the brackets above 

equals to 1+ 𝑒−2𝑡 ≤ 2  and, therefore, ‖𝑓‖∞ ≤ √2‖𝑓‖1,2 . The fact that √2  is the best 

imbedding constant is straight forward.  

Proposition (6.2.8):[147] The space 𝑊1,2[0,∞)  with the pointwise multiplication is a 
Banach algebra without identity. 

   An element 𝑎  in a Banach algebra 𝒜  is called cyclic, if it is cyclic for the bounded 

multiplication operator 𝑀𝑎 that assigns to each 𝑏 in 𝒜 the element 𝑎𝑏.  

Proposition (6.2.9):[147]  let 𝒜  be a Banach algebra. Then the invariant subspaces of 

multiplication by a cyclic element are the closed ideal of  𝒜.  

Proof:   First, since 𝒜 has a cyclic element, it is commutative. Let 𝑎 be a cyclic element of 

𝒜 and let  ℒ be an invariant subspace of 𝑀𝑎. Clearly,  

ℳℒ = {𝑏 ∈𝒜: 𝑏𝑥 ∈ ℒ for all 𝑥 ∈ ℒ} 

is a closed subalgebra of 𝒜. Since ℒ is an invariant subspace of 𝑀𝑎, we find that 𝑎 ∈ℳℒ  

and, therefore, ℳℒ  contains the subalgebra generated by 𝑎  and, being ℳℒ  closed and a 

cyclic, it follows that ℳℒ = 𝒜. Hence, ℒ is a left ideal and thus, being 𝒜 commutative, an 

ideal of 𝒜. On the other hand, each ideal of 𝒜 is invariant with respect to 𝑀𝑎.  

Theorem ( 6.2.10):[147]       The closed ideals of  𝑊1,2[0,∞) are  

ℐ𝐹 = {𝑓 ∈ 𝑊
1,2[0,∞): 𝑓 vanishes on 𝐹},where  𝐹 ∈ 𝔽[0,∞). 

Theorem (6.2.11):[147]    Let 𝜑 be a parabolic non-automorphism that takes the unit disk 

into itself. Then 

Lat 𝐶𝜑 = {𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑒𝑡: 𝑡 ∈ 𝐹}: 𝐹 ∈ 𝔽[0,∞)}. 

Proof:   By Proposition (6.2.5), the symbol 𝜓 is a cyclic element of the Banach algebra 

𝑊1,2[0,∞). Thus, from Proposition (6.2.9) and Theorem (6.2.10) it follows that  

Lat 𝑀ψ = {{𝑓 ∈𝑊
1,2[0,∞):𝑓 vanishes on 𝐹}, where  𝐹 ∈ 𝔽[0,∞)}, 

Since  𝑀𝜓 = Φ𝐶𝜑
⋆Φ−1 , we have  

Lat 𝐶𝜓
⋆ = {{𝑓 ∈ ℋ2: 〈𝑓, 𝑒𝑡 〉ℋ2 = 0 for each 𝑡 ∈ 𝐹},where  𝐹 ∈ 𝔽[0,∞)}. 
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Since Lat 𝐶𝜑 consists of the orthogonal complements of Lat𝐶𝜑
⋆ , the statement of Theorem 

(6.2.11) follows immediately.   

Theorem (6.2.12):[147]   Let 𝜑 be a parabolic non-automorphism that takes the unit disk into 

itself. Then 𝐶𝜑 has no non-trivial reducing subspace. 

Proof :      Let 𝐹 be in 𝔽[0,∞)  such that  𝑁𝐹 = span̅̅ ̅̅ ̅̅ {𝑒𝑡: 𝑡 ∈ 𝐹} is non-trivial. We must show 

that its orthogonal complement 𝑁𝐹
⊥ is not invariant under 𝐶𝜑. We need the following formula, 

which is easily checked 

〈𝑒𝑡 , 𝑒𝑠〉 = 𝑒
−|𝑡−𝑠| ,     for each   𝑡, 𝑠 ≥ 0.                                                 (14) 

First assume that 0 is not in 𝐹. Set 𝑡0 = min𝐹. Since  𝑓𝑡0 = 1− 𝑒
−𝑡0𝑒𝑡0 is orthogonal to 𝑒𝑡  

for each 𝑡 ≥ 𝑡0, we find that 𝑡𝑡0 is in 𝑁𝐹
⊥. If  𝑁𝐹

⊥ is invariant under 𝐶𝜑 , then 𝑓𝑡0 −𝐶𝜑𝑓𝑡0 is in 

𝑁𝐹
⊥ . But 𝑓𝑡0 −𝐶𝜑𝑓𝑡0 = 𝑒

𝑡0(1− 𝑒−𝑎𝑡0 ) is also in 𝑁𝐹 , which means that 𝑓𝑡0 − 𝐶𝜑𝑓𝑡0 = 0. 

Hence, 𝑓𝑡0 ≡ 1, a contradiction. 

Assume now that 0 is in 𝐹. Let 𝑀𝜖1denote the multiplication by 𝑒1 . We have 

𝑀𝑒1 (𝑁𝐹) = 𝑒1span̅̅ ̅̅ ̅̅ {𝑒𝑡 ∶ 𝑡 ∈ 𝐹} = span̅̅ ̅̅ ̅̅ {𝑒1+𝑡: 𝑡 ∈ 𝐹} = 𝑁1+𝐹 .              (15) 

Clearly, 𝑀𝑒1is a Hilbert space isometry preserving inner products. Therefore,  

𝑀𝑒1 (𝑁𝐹
⊥) = 𝑀𝑒1 (𝑁𝐹)

⊥                                                               (16) 

Proceeding by contradiction, assume that 𝑁𝐹
⊥ is also invariant under 𝐶𝜑. Then 

𝑀𝑒1 (𝐶𝜑(𝑁𝐹
⊥)) ⊆ 𝑀𝑒1 (𝑁𝐹

⊥). 

Since, for 𝑓 in ℋ 2, we have  𝐶𝜑(𝑀𝑒1𝑓)= 𝐶𝜑(𝑒1𝑓) = 𝑒
−𝑎𝑒1𝐶𝜑𝑓 = 𝑒

−𝑎𝑀𝑒1(𝐶𝜑𝑓), from the 

above display, it follows that 𝐶𝜑 (𝑀𝑒1 (𝑁𝐹
⊥)) is included in 𝑀𝑒1 (𝑁𝐹

⊥). Therefore, from (15) 

and (16), we immediately see that 𝐶𝜑(𝑁1+𝐹
⊥ ) ⊆ 𝑁1+𝐹

⊥ , which is a contradiction because 0 is 

not in 1+ 𝐹. 

 Proposition (6.2.13):[147]       The spectrum of the Banach algebra 𝑊1,2[0,∞) is 

Ω(𝑊1,2[0,∞)) = {𝛿𝑡 : 𝑡 ≥ 0}. 

Furthermore, the mapping that to each 𝑡 assigns 𝛿𝑡 is a homeomorphism from [0,∞) onto 

Ω(𝑊1,2[0,∞)). 

Proof:  Clearly, for each 𝑡 ≥ 0, the functional 𝛿𝑡 is a character on 𝑊1,2[0,∞) that is, 𝛿𝑡is in 

Ω = Ω(𝑊1,2[0,∞)). To prove that each character on 𝑊1,2[0,∞) is one of the 𝛿𝑡’s, we begin 

by considering the Banach algebra 𝒞1[0,1], with point wise multiplication endowed with the 
norm ‖𝑓‖ = max{‖𝑓‖∞, ‖𝑓

′‖∞}.   Consider also its Banach sub algebra 𝒜0 = {𝑓 ∈
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𝒞1[0,1]:𝑓(1) = 0}. Then, it is easy to check that  (𝑇𝑓)(𝑥) = 𝑓 (
𝑥

1+𝑥
)  defines a bounded 

operator from  𝒜0 in to  𝑊1,2[0,∞) which is also an algebra homomorphism. Now, if 𝜘 is a 

character of 𝑊1,2[0,∞),  then it is easy to see that the functional �̅� on 𝒞1[0,1]  defined by 

�̅�(𝑓) = 𝜘(𝑇(𝑓− 𝑓(1))) + 𝑓(1) is also a character. Since the characters of 𝒞1[0,1] are  the 

point evaluations  𝑓 → 𝑓(𝑠), with 0 ≤ 𝑠 ≤ 1, [159], there is 0 ≤ 𝑠 ≤ 1 such that 𝜘(𝑓) =
𝑓(𝑠) for each 𝑓 in 𝒞[0,1]. if 𝑠 = 1, it follows immediately that 𝜘(𝑇𝑓) = 0 for each 𝑓 in 𝒜0. 

Hence 𝜘 vanishes on the range of  𝑇, which is dense because it contains 𝒞𝑐
∞[0,∞),  therefore, 

𝜘 is the zero functional. If 𝑠 ≠ 1, then set 𝑡 =
𝑠

(1−𝑠)
≥ 0 and observe that 𝜘(𝑇𝑓) = (𝑇𝑓)(𝑡) 

for each 𝑓 ∈ 𝒜0. Hence 𝜘 and 𝛿𝑡 coincide on a dense set, which implies that 𝜘 = 𝛿𝑡 . Thus 

we have shown that  Ω = {𝛿𝑡 : 𝑡 ≥ 0}. 

   Next, since each 𝑓 in 𝑊1,2[0,∞)is continuous, so is the mapping 𝑡 → 𝛿𝑡 from [0,∞) onto 

Ω. Since ‖𝛿𝑡‖1,2 ≤ ‖Φ
−1‖‖𝑒𝑡‖ℋ2 = ‖Φ

−1‖, we find that Ω is norm bounded on the dual 

space. Since the weak topology of a separable Hilbert space is metrizable on bounded sets, it 

follows that Ω is metrizable. Thus, to prove that 𝑡 → 𝛿𝑡 is a homeomorphism, it suffices to 

show that 𝑡𝑛 → 𝑡0 whenever 𝛿𝑡𝑛 → 𝛿𝑡0. Suppose that this is not the case, then there is 𝜖 > 0 

such that |𝑡𝑛− 𝑡0| > 𝜖 for each positive integer 𝑛. Consider the 𝑊1,2[0,∞)-function defined 

for 𝑡 ≥ 0 by 

𝑓(𝑡) =  {
𝜖 − |𝑡0 − 𝑠|,     𝑖𝑓   |𝑡0 − 𝑠| ≤ 𝜖;

0,                  otherwise
 

Since 𝛿𝑡𝑛(𝑓) = 0 and 𝛿𝑡0 (𝑓) = 𝜖 , we find that 𝛿𝑡𝑛cannot converge to 𝛿𝑡0 . Therefore, the 

mapping  𝑡 → 𝛿𝑡  is a homeomorphism.  

Lemma (6.2.14):[147]   Let 𝒜 be a semisimple regular commutative Banach algebra. Then 

the closed of 𝒜 are  

ℐ𝐹 = {⋂kerℵ 

ℵ∈𝐹

: 𝐹 is closed in Ω(𝒜)} 

If and only if for each 𝑥 ∈𝒜 there exists a sequence {𝑥𝑛} tending to 𝑥 in 𝒜 and �̂�𝑛 vanishes 

on a neighborhood 𝑈𝑛 of ℎ(𝑥) with compact complement.  

Proposition (6.2.15):[147]   The Banach algebra 𝑊1,2[0,∞)is semisimple and regular and 

the mapping 𝐹 →∩𝑡∈𝐹 ker 𝛿𝑡   is one-to-one from 𝔽[0,∞) onto the set of closed ideals of  

𝑊1,2[0,∞).  

Proof:  Since the characters 𝛿𝑡 ′ s separate points, the Banach algebra 𝑊1,2[0,∞)  is 

semisimple. To prove that 𝑊1,2(∞,0] is also regular, we have to show that for each closed 𝐹 

in Ω and each maximal regular ideal ℳ ∉ 𝐹 there exist 𝑓 in 𝑊1,2[0,∞)such that 𝑓 = 0 on 𝐹 

and 𝑓(ℳ)≠ 0.  By Proposition(6.2.13) 𝐹 ⊆ [0,∞)  and each point 𝑡0 ∈ [0,∞)\𝐹  there 

exists 𝑓 in 𝑊1,2[0,∞) such that 𝑓 vanishes on 𝐹 and 𝑓(𝑡0) ≠ 0, which is obvious.  
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Section (6.3):   Shift Plus Complex Volterra Operator 

     Let 𝔻 be the unit disk of the complex plane and 𝐻(𝔻) be the space of holomorphic 
functions on the unit disk. We say that a holomorphic function 𝑓(𝑧) = ∑ 𝑎𝑛𝑧

𝑛∞
𝑛=0  on the unit 

disk belongs to the Hardy space ℋ2(𝔻), if its sequence of power series coefficients is square-
summable: 

ℋ 2(𝔻) = {𝑓 ∈ 𝐻(𝔻): ∑|𝑎𝑛|
2

∞

𝑛=0

< ∞}. 

We define a norm on ℋ 2(𝔻) by 

‖𝑓‖ℋ2(𝔻)
2 =∑|𝑎𝑛|

2

∞

𝑛=0

.                                                                      (17) 

It is well known that ℋ2(𝔻) is a Hilbert space with the inner product 

〈𝑓, 𝑔〉ℋ2(𝔻) =∑𝑎𝑛𝑏𝑛̅̅ ̅

∞ 

𝑛=0

 

for 𝑓(𝑧) = ∑ 𝑎𝑛𝑧
𝑛∞

𝑛=0 and 𝑔(𝑥) = ∑ 𝑏𝑛𝑧
𝑛∞

𝑛=0 . 

The operator defined on ℋ2(𝔻) 

(𝑀𝑧𝑓)(𝑧) = 𝑧𝑓(𝑧)     for   𝑓 ∈ ℋ
2(𝔻)  𝑎𝑛𝑑  𝑧 ∈ 𝔻 

is called the shift operator. The lattice of the shift operator acting on the Hardy space is 

completely described by Beurling’s Theorem [2], and it is one of the  most celebrated and 

widely used results. Let 𝐿2(0,1) be the space of square integrable functions on (0,1). Sarason 
[138] characterized all closed invariant subspaces of the Volterra operator 

(𝑉𝑓)(𝑥) = ∫𝑓(𝑦)𝑑𝑦

𝑥

0

 for  𝑓 ∈ 𝐿2(0,1) 𝑎𝑛𝑑 0 < 𝑥 ≤ 𝑦 < 1. 

Aleman and Korenblum studied the complex Volterra operator in ℋ 2(𝔻) defined by 

(𝒱𝑓)(𝑧) = ∫ 𝑓(𝑤)𝑑𝑤

𝑧

0

, 

then they characterized the lattice of closed invariant subspaces of 𝒱 in [134]. While doing 

so they used the Beurling’s Theorem. Sarason [163] studied the lattice of closed invariant 

subspaces of multiplication by 𝑥 plus Volterra operator, 𝑀𝑥 +𝑉 acting on 𝐿2(0,1). Montes-
Rodriguez, Ponce-Escudero and Shkarin [147] and Cowen, Gunatillake and Ko [164] used 

the idea of Sarason to study the invariant subspaces of certain classes of composition 
operators on Hardy spaces. 
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   Following Sarason’s work we are interested in characterizing the lattice of closed invariant 
subspaces of the shift plus complex Volterra operator on the Hardy space. Denote by 𝑇 the 

operator 

(𝑇𝑓)(𝑧) = 𝑧𝑓(𝑧) +∫𝑓(𝑤)𝑑𝑤

𝑧

0

,     for  𝑓 ∈ ℋ 2(𝔻) and  𝑧 ∈ 𝔻.                  (18) 

Since the shift operator is an isometry and the complex Volterra operator is a contraction, 𝑇 

is clearly bounded operator on the Hardy space. To show the main result we use the space  

𝒮2(𝔻) defined by 

𝒮2(𝔻) = {𝑓 ∈ 𝐻(𝔻):𝐷𝑓 ∈ ℋ2(𝔻)}, 

where 𝐷 =
𝑑

𝑑𝑧
 is the differential operator. It is clear that if 𝐷𝑓 is in  ℋ 2(𝔻), then 𝑓 belongs 

to ℋ 2(𝔻). The norm of 𝒮2(𝔻) is defined by 

‖𝑓‖𝒮2(𝔻)
2 = ‖𝐷𝑓‖ℋ2(𝔻)

2 + ‖𝑓‖ℋ2(𝔻)
2 .                                              (19) 

Corresponding inner product is given by 

〈𝑓, 𝑔〉𝒮2(𝔻)
 = 〈𝐷𝑓,𝐷𝑔〉ℋ2(𝔻)

 + 〈𝑓, 𝑔〉ℋ2(𝔻)
 . 

We work describe the lattice of closed invariant subspaces of 𝑇acting on ℋ 2(𝔻).[165,166]. 

 Proposition (6.3.1):[162]    The following statements are true: 

(i) 𝒮2(𝔻) ⊂ 𝐻∞. 

(ii) 𝒮2(𝔻)  is Banach algebra. 

(iii) Polynomials are dense in 𝒮2(𝔻).  

Proof:    (i)  Let  𝑓 ∈ 𝒮2(𝔻), then 𝐷𝑓 ∈ ℋ 2(𝔻) and hence 

|𝐷𝑓(𝑧)| ≤
‖𝐷𝑓‖ℋ2(𝔻)

√1 − |𝑧|2
,          for all 𝑧 ∈ 𝔻. 

Now, 

|𝑓(𝑧) − 𝑓(0)| = |∫ 𝑧𝐷𝑓(𝑡𝑧)𝑑𝑡

1

0

| ≤ ∫|𝑧𝐷𝑓(𝑡𝑧)|

1

0

𝑑𝑡 ≤ ‖𝐷𝑓‖ℋ2(𝔻) ∫
|𝑧|

√1− |𝑡𝑧|2
𝑑𝑡

1

0

≤ ‖𝐷𝑓‖ℋ2(𝔻) ∫
|𝑧|

√(1− |𝑡𝑧|)(1+ 𝑡|𝑧|)
𝑑𝑡

1

0

. 

Since 1 + 𝑡|𝑧| ≥ 1, we have 
1

√1+𝑡|𝑧| 
≤ 1.  
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|𝑓(𝑧) − 𝑓(0)| ≤ ‖𝐷𝑓‖ℋ2(𝔻)∫
|𝑧|

√(1− |𝑡𝑧|)
𝑑𝑡

1

0

≤ 2‖𝐷𝑓‖ℋ2(𝔻)                    (20) 

This clearly shows that 𝑓 belongs to 𝐻∞, and hence 𝒮2(𝔻) ⊂ 𝐻∞.  

(ii)  To show 𝒮2(𝔻) is a Banach space under the above norm, suppose {𝑔𝑛}𝑛
∞  is Cauchy in 

𝒮2(𝔻) norm. Then, clearly {𝑔𝑛} and {𝐷𝑔𝑛} are Cauchy on ℋ2(𝔻) norm. Since ℋ2(𝔻)  is a 

Banach space, {𝑔𝑛} converges to a holomorphic function 𝑔 ∈ ℋ2(𝔻) and {𝐷𝑔𝑛} converges 

to the function 𝐷𝑔 ∈ ℋ 2(𝔻). Therefore 𝑔 ∈ 𝒮2(𝔻), and hence 𝒮2(𝔻) is a Banach space 
under the given norm. 

 Pointwise multiplication on 𝒮2(𝔻)  form an algebra. For this, suppose that 𝑓 and 𝑔 are in 

𝒮2(𝔻) . 

‖𝑓𝑔‖𝒮2(𝔻)
2  = ‖𝐷(𝑓𝑔)‖ℋ2(𝔻)

2 + ‖𝑓𝑔‖ℋ2(𝔻)
2    

                               = ‖𝑔𝐷𝑓+ 𝑓𝐷𝑔‖ℋ2(𝔻)
2 + ‖𝑓𝑔‖ℋ2(𝔻)

2   

                                             = ‖𝑔𝐷𝑓‖ℋ2(𝔻)
2 + 2‖𝑔𝐷𝑓‖ℋ2(𝔻)

 ‖𝑓𝐷𝑔‖ℋ2(𝔻)
  

             +‖𝑓𝐷𝑔‖ℋ2(𝔻)
2 + ‖𝑓𝑔‖ℋ2(𝔻)

2 .                                         (21) 

Using (20), we see that for any 𝑓 ∈ 𝒮2(𝔻) 

‖𝑓‖∞ ≤ 2‖𝐷𝑓‖ℋ2(𝔻)
 + |𝑓(0)|   ≤ 2‖𝐷𝑓‖ℋ2(𝔻)

 + 2‖𝑓‖ℋ2(𝔻)
 = 2‖𝑓‖𝒮2(𝔻)

2 . 

Hence using (21) 

‖𝑓𝑔‖𝒮2(𝔻)
2 = ‖𝑔‖∞

2 ‖𝐷𝑔‖ℋ2(𝔻)
2 + 2‖𝑓‖∞ ‖𝑔‖∞‖𝐷𝑓‖ℋ2(𝔻)

 ‖𝐷𝑔‖ℋ2(𝔻)
  

+‖𝑓‖∞
2 ‖𝐷𝑔‖ℋ2(𝔻)

2 + ‖𝑔‖∞
2 ‖𝑓‖∞ 

2  

     ≤ 4‖𝑔‖𝒮2(𝔻)
2 ‖𝑓‖𝒮2(𝔻)

2 + 8‖𝑔‖𝒮2(𝔻)
2 ‖𝑓‖𝒮2(𝔻)

2 + 4‖𝑔‖𝒮2(𝔻)
2 ‖𝑓‖𝒮2(𝔻)

2  

≤ 16‖𝑓‖𝒮2(𝔻)
2 ‖𝑔‖𝒮2(𝔻)

2 . 

(iii) We want to show polynomials are dense in 𝒮2(𝔻). Given  𝑓 ∈ 𝒮2(𝔻), let 𝑓𝑞(𝑧) =

𝑓(𝑞𝑧) be its dilation and  𝐷𝑓𝑞(𝑧) = 𝑞𝐷𝑓(𝑞𝑧) = 𝑞(𝐷𝑓)𝑞(𝑧) be derivative of dilation where 

0 < 𝑞 < 1. Each function 𝑓𝑞  is analytic in a larger disk, so itcan be approximated uniformly 

on 𝐷by a sequence of holomorphic polynomials 𝑃𝑞
𝑛 ,  and hence 𝐷𝑓𝑞 can be approximated 

uniformly on 𝔻 by holomorphic polynomials 𝐷𝑃𝑞
𝑛. So it will be enough to prove that 𝑓 can 

be approximated in 𝒮2(𝔻) by its dilation. That is to say ‖𝑓 − 𝑓𝑔‖𝒮2(𝔻)
 

→ 0 as 𝑞 → 1. This 

means that ‖𝑓 − 𝑓𝑞‖ℋ2(𝔻)
2

+ ‖𝐷𝑓 −𝐷𝑓𝑞‖ℋ2(𝔻)
2

→ 0 as 𝑞 → 1 . So finally it is enough to 

prove that ‖𝑓 − 𝑓𝑞‖ℋ2(𝔻)
2

→ 0 and  ‖𝐷𝑓 −𝐷𝑓𝑞‖ℋ2(𝔻) → 0 as 𝑞 → 1. For this, let us assume 
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𝑓(𝑧) =∑𝑎𝑛𝑧
𝑛

∞

𝑛=0

. 

Since 𝑓 ∈ ℋ2(𝔻), for all 𝜖 > 0, we can choose a natural number 𝑁 large enough such that 

∑ |𝑎𝑛|
2

∞

𝑛=𝑁+1

<
𝜖

2
. 

Now choose 𝑞𝜖 ∈ (0,1) such that 

(1− 𝑞𝜖
𝑁)2∑|𝑎𝑛|

2

𝑁

𝑛=0

<
𝜖

2
. 

Then, since 

‖𝑓 − 𝑓𝑞‖ℋ2(𝔻)
2

= ‖∑𝑎𝑛𝑧
𝑛(1− 𝑞𝑛)

∞

𝑛=0

‖

2

=∑|𝑎𝑛(1− 𝑞
𝑛)|2

∞

𝑛=0

, 

it follows that for all 𝑞 ≥ 𝑞𝜖 

‖𝑓 − 𝑓𝑞‖ℋ2(𝔻)
2

=∑|𝑎𝑛(1− 𝑞
𝑛)|2

𝑁

𝑛=0

+ ∑ |𝑎𝑛(1 − 𝑞
𝑛)|2

∞

𝑛=𝑁+1

 

                                      ≤ (1 − 𝑞𝑁)∑|𝑎𝑛|
2

𝑁

𝑛=0

+ ∑ |𝑎𝑛|
2

∞

𝑛=𝑁+1

≤
𝜖

2
+
𝜖

2
= 𝜖. 

This shows that ‖𝑓 − 𝑓𝑞‖ℋ2(𝔻)
2

→ 0 as 𝑞 → 1. On the other hand, we have  

|𝐷𝑓(𝑧) − 𝐷𝑓𝑞(𝑧)| = |∑𝑛𝑎𝑛𝑧
𝑛−1

∞

𝑛=1

−∑𝑛𝑎𝑛𝑞
𝑛𝑧𝑛−1

∞

𝑛=1

| 

                = |∑𝑛𝑎𝑛(1 − 𝑞
𝑛)𝑧𝑛−1

∞

𝑛=1

|. 

Similarly, we can show that ‖𝐷𝑓−𝐷𝑓𝑞‖ 
2
→ 0 as 𝑞 approaches to 1. 

Definition (6.3.3):[162]  Define 

𝒮0
2(𝔻) = {𝑓 ∈ 𝒮 

2(𝔻):𝑓(0) = 0}. 

Corollary (6.3.4):[162]  𝒮0
2(𝔻) ⊂ 𝒮 

2(𝔻) is a Banach algebra with the norm defined for 

𝒮 
2(𝔻) and 𝒮 

2(𝔻) = [1]⊕ 𝒮0
2(𝔻), and hence 
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𝒮0
2(𝔻)= span̅̅ ̅̅ ̅̅ {𝑧𝑛: 𝑛 ∈ ℕ}. 

Proof:     For any 𝑓 and 𝑔 in 𝒮0
2(𝔻) ⊂ 𝒮 

2(𝔻), we immediately see that 

‖𝑓𝑔‖𝒮 2(𝔻) ≤ ‖𝑓‖𝒮 2(𝔻)‖𝑔‖𝒮 2(𝔻). 

Also, we have 𝑓(0) = 0 and 𝑔(0) = 0 so (𝑓𝑔)(0) = 0 and hence 𝑓𝑔 belongs to 𝒮0
2(𝔻).  

To show 𝒮0
2(𝔻) is a closed subalgebra of 𝒮 

2(𝔻), assume 𝑔𝑛 ∈ 𝒮0
2(𝔻)̅̅ ̅̅ ̅̅ ̅̅ . That means there 

exists a sequence 𝑆𝑛 ∈ 𝒮0
2(𝔻),𝑛 ∈ ℕ  such that 𝑔𝑛  converges to 𝑔 in 𝒮 

2(𝔻)   norm.This 

implies 𝑔𝑛  converges to 𝑔  in ℋ2(𝔻)  norm. Since 𝑔𝑛(0) = 0  for all 𝑛 , it follows that 

𝑔(0) = 0.  

Theorem (6.3.5):[162]  Let 𝒱  be the Volterra operator on ℋ 
2(𝔻). Then the following 

statements are true: 

(i)  Range of  𝒱 = 𝒮0
2(𝔻).  

(ii) 𝒱 is a bounded isomorphism from ℋ 
2(𝔻) onto 𝒮0

2(𝔻), and its inverse is 𝐷. 

(iii)  The operator 𝑇 acting on ℋ 
2(𝔻) is similar under 𝒱 to the multiplication operator 𝑀𝑧 

acting on  𝒮0
2(𝔻).  

Proof:   

(i)  Let 𝑔 be in the range of 𝒱, then there exists 𝑓 ∈ ℋ 
2(𝔻) such that 

𝑔(𝑧) = (𝒱𝑓)(𝑧) = ∫𝑓(𝑤)𝑑𝑤

𝑧

0

 

then 𝐷𝑔 = 𝑓 ∈ ℋ 
2(𝔻)  and 𝑔(0) = 0 . Hence 𝑔 ∈ 𝒮0

2(𝔻) . Conversely, suppose that 𝑔 

belongs to 𝒮 0
2 (𝔻), then 

(𝒱𝐷𝑔)(𝑧) = ∫(𝐷𝑔)(𝑤)

𝑧

0

𝑑𝑤 = 𝑔(𝑧)− 𝑔(0) = 𝑔(𝑧). 

Therefore 𝑔 belongs to the range of 𝒱. 

(ii)   First we want to show 𝒱 is a bounded operator on ℋ 2(𝔻). Let us assume 𝑓 is in the 

Hardy space. 

‖𝒱(𝑓)‖𝒮 2(𝔻) = ‖𝒱(𝑓)‖ℋ 2(𝔻) + ‖𝐷(𝒱(𝑓))‖ℋ 2(𝔻)
≤ ‖𝑓‖ℋ 2(𝔻) + ‖𝑓‖ℋ 2(𝔻) = 2‖𝑓‖ℋ2(𝔻) . 

Hence the map 𝒱 from ℋ2(𝔻) onto 𝒮 0
2 (𝔻) is bounded. Clearly 𝒱 is linear. Now to show 𝒱 

is one-one, assume that 𝑓1  and 𝑓2  belong the Hardy space, and also assume that 

∫𝑓1 (𝑤)𝑑𝑤

𝑧

0

= ∫𝑓2 (𝑤)𝑑𝑤

𝑧

0

,          for all 𝑧 ∈ 𝔻. 
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Differentiating both sides we see that 𝑓1 = 𝑓2and hence 𝒱 is one-one. From part (i) we have 

𝒱𝐷𝑔 = 𝑔 and clearly 𝐷𝒱𝑓 = 𝑓 . This shows that 𝒱  is abounded bijective linear operator 

from ℋ 
2(𝔻) onto 𝒮 0

2 (𝔻) and 𝒱−1 = 𝐷. 

(iii)   Suppose 𝑓  belongs to ℋ2(𝔻) and also suppose 𝒱𝑓 = 𝑔 , for some 𝑔 ∈ 𝒮 0
2 (𝔻). 

Therefore we have  𝑓(𝑧) = (𝒱−1𝑔)(𝑧) = (𝐷𝑔)(𝑧). 

(𝑇𝑓)(𝑧) = 𝑧𝑓(𝑧) + (𝒱𝑓)(𝑧) = 𝑧(𝐷𝑔)(𝑧) + 𝑔(𝑧) = 𝐷(𝑧𝑔(𝑧)). 

Now applying 𝒱 on the both side, we see that 

(𝒱𝑇𝑓)(𝑧) = 𝒱𝐷(𝑧𝑔(𝑧)) = 𝑧𝑔(𝑧) = 𝑧(𝒱𝑓)(𝑧). 

So, 𝒱𝑇 = 𝑀𝑧𝒱 and 𝒱𝑇𝒱−1 = 𝑀𝑧. That is to say 𝒱 transforms the operator 𝑇into the operator 

multiplication by 𝑧 on 𝒮0
2(𝔻). 

We can summarize the theorem by the following commutative diagram 

 

 

 

 

 

 

Definition(6.3.6):[162]    An element 𝑎 in Banach algebra 𝒜 is called cyclic if the subalgebra 

generated by a is dense in 𝒜. 

Proposition(6.3.7):[162]     Let 𝒜 be a Banach algebra. Then the invariant subspaces of 

multiplication by a cyclic element are exactly the closed ideals of 𝒜.[147]. 

Lemma(6.3.8):[162]    𝐽 is a closed ideal of 𝑆0
2(𝔻) if and only if 𝐽 is an ideal of  𝒮2(𝔻) 

contained in 𝒮0
2(𝔻).  

Proof:   Using of Corollary (6.3.4), we see that for any  ℎ ∈ 𝒮2(𝔻) there exists ℎ1 ∈ 𝒮0
2(𝔻) 

such that ℎ = 𝑐 + ℎ1. 

Suppose 𝐽 is a closed ideal of  𝒮0
2(𝔻), then for any ℎ ∈ 𝒮2(𝔻) and 𝑗 ∈ 𝐽, 

ℎ𝑗 = (𝑐 + ℎ1)𝑗 = 𝑐𝑗 + ℎ1𝑗 ∈ 𝐽. 

Since norm on both spaces are the same, 𝐽 is a closed ideal of 𝒮2(𝔻). On the other hand, if 𝐽 
is an ideal of 𝒮2(𝔻) contained in 𝒮0

2(𝔻), then it is clear that 𝐽 is a closed ideal of 𝒮0
2(𝔻).  

Definition(6.3.9):[162]    Let 𝐾  be a closed subset of the unit circle 𝜕𝔻. For and inner 

function𝐺 we say 𝐺 is  associated with 𝐾 if 

𝑇 

ℋ 2(𝔻) 

ℋ 2(𝔻)

ℋ 2(𝔻) 

𝒱𝑇 = 𝑀𝑧𝒱 

𝒱 

𝒱 

𝑆0
2(𝔻) 

𝑀𝑧  

𝑆0
2(𝔻) 
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(i) if 𝑎1 ,𝑎2 ,…,are the zeros of 𝐺(𝑧)in the open disk, then all the limit points of{𝑎𝑘}belong 

to 𝐾,  

(ii) the measure determining the singular part of 𝐺 is supported on 𝐾. 

Theorem (6.3.10):[162]    Suppose 𝐾  is a is closed subset of 𝜕𝔻 and let 𝐺  be an inner 

function associated with 𝐾. Let 𝐼𝒮2(𝔻)(𝐺;𝐾) be the set of all 𝑓 ∈ 𝒮2(𝔻) which are divisible 

by 𝐺 and which vanish on 𝐾. Then 𝐼𝒮2(𝔻)(𝐺;𝐾)is a closed ideal of 𝒮2(𝔻). Moreover, every 

closed ideal of 𝒮2(𝔻). is obtained in this manner.[165]. 

Corollary (6.3.11):[162]   Suppose 𝐾  is a is closed subset of 𝜕𝔻 and let 𝐺  be an inner 

function associated with 𝐾. Let  𝐼𝒮02(𝔻)(𝐺;𝐾) be the set of all 𝑓 ∈ 𝒮0
2(𝔻) which are divisible 

by 𝐺 and which vanish on 𝐾. Then 𝐼𝒮02(𝔻)(𝐺;𝐾) is a closed ideal of 𝒮0
2(𝔻). Moreover, every 

closed ideal of  𝒮0
2(𝔻) is obtained in this manner. 

Theorem (6.3.12):[162]   Let 𝑇 be an operator 

(𝑇𝑓)(𝑧) = 𝑧𝑓(𝑧) +∫𝑓(𝑤)𝑑𝑤

𝑧

0

. 

defined on ℋ 2(𝔻). Then the lattice of closed invariant subspaces is 

Lat𝑇 = {𝑆 ⊂ ℋ2(𝔻):𝑆 = {𝐷𝑓: 𝑓 ∈ 𝐼𝒮02(𝔻)(𝐺;𝐾)}} 

for 𝐺,𝐾defined in Definition (6.3.9). 

Proof:    From Corollary (6.3.4),  

𝒮0
2(𝔻)= span̅̅ ̅̅ ̅̅ {𝑧𝑛: 𝑛 ∈ ℕ}, 

so 𝑧 is a cyclic element of the Banach algebra 𝒮0
2(𝔻). Thus from the Proposition (6.3.7), 

closed invariant subspaces of 𝑀𝑧on 𝒮0
2(𝔻) are exactly the closed ideals of  𝒮0

2(𝔻). Using 

Corollary (6.3.11), the lattice of closed invariant subspace of 𝑀𝑧 acting on 𝒮0
2(𝔻) is given by 

Lat 𝑀𝑧 = {𝐼𝒮02(𝔻)(𝐺;𝐾):𝐺, 𝐾 defined in Definition(6.3.9)}. 

Since 𝒱𝑇𝒱−1 , we see that 𝒱−1 (𝐼𝒮02(𝔻)(𝐺;𝐾)) is a closed invariant subspace of 𝑇 . From 

Theorem (6.3.5), we know that 𝒱−1(𝑓) = 𝐷𝑓. So, 𝑆 = {𝐷𝑓: 𝑓 ∈ 𝐼𝒮02(𝔻)(𝐺,𝐾)} is a closed 

invariant subspace of  𝑇. Hence,  

Lat 𝑀𝑧 = {𝑆 ⊂ ℋ
2(𝔻):𝑆 = {𝐷𝑓: 𝑓 ∈ 𝐼𝒮02(𝔻)(𝐺;𝐾)}} 

for G,K defined in Definition (6.3.9). 

Corollary (6.3.13):[168]     The following statements are true: 

(i)  𝒮2(𝔻) ⊂ 𝐻∞. 

(ii)   𝒮2(𝔻) is Banach algebra. 
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(iii) Polynomials are dense in 𝒮2(𝔻).  

Proof:    

(i) Let  𝑓𝑟 ∈ 𝒮
2(𝔻), then 𝐷𝑓𝑟 ∈ ℋ

2(𝔻) and hence 

∑|𝐷𝑓𝑟(𝑧 − 𝜖)|

𝑟

≤∑
‖𝐷𝑓𝑟‖ℋ2(𝔻)

√1 − |𝑧 − 𝜖|2
𝑟

,          for all (𝑧 − 𝜖) ∈ 𝔻. 

Now, 

∑|𝑓𝑟(𝑧 − 𝜖)− 𝑓𝑟(0)|

𝑟

=∑|∫(𝑧 − 𝜖)𝐷𝑓𝑟(𝑡(𝑧 − 𝜖))𝑑𝑡

1

0

|

𝑟

 

≤∑∫|(𝑧 − 𝜖)𝐷𝑓𝑟(𝑡(𝑧 − 𝜖))|

1

0

𝑑𝑡

𝑟

≤∑‖𝐷𝑓𝑟‖ℋ2(𝔻)∫
|𝑧 − 𝜖|

√1− |𝑡(𝑧 − 𝜖)|2
𝑑𝑡

1

0𝑟

≤∑‖𝐷𝑓𝑟‖ℋ2(𝔻)∫
|𝑧 − 𝜖|

√(1− |𝑡(𝑧 − 𝜖)|)(1+ 𝑡|𝑧 − 𝜖|)
𝑑𝑡

1

0𝑟

. 

Since  1+ 𝑡|𝑧 − 𝜖| ≥ 1, we have  
1

√1+𝑡|𝑧−𝜖| 
≤ 1.  

∑|𝑓𝑟(𝑧 − 𝜖) − 𝑓𝑟(0)|

𝑟

≤∑‖𝐷𝑓𝑟‖ℋ2(𝔻)∫
|𝑧 − 𝜖|

√(1− |𝑡(𝑧 − 𝜖)|)
𝑑𝑡

1

0𝑟

≤ 2∑‖𝐷𝑓𝑟‖ℋ2(𝔻)
𝑟

.     

This clearly shows that 𝑓𝑟  belongs to 𝐻∞, and hence 𝒮2(𝔻) ⊂ 𝐻∞.  

(ii) To show 𝒮2(𝔻) is a Banach space under the above norm, suppose the double 

sequence {(𝑔𝑟)𝑛}0
∞ is Cauchy in 𝒮2(𝔻) norm. Then, clearly {(𝑔𝑟)𝑛} and {𝐷(𝑔𝑟)𝑛} 

are Cauchy on ℋ 2(𝔻) norm. Since ℋ 2(𝔻) is a Banach space, {(𝑔𝑟)𝑛} converges to 

a holomorphic function 𝑔𝑟 ∈ ℋ
2(𝔻)  and {𝐷(𝑔𝑟)𝑛}  converges to the function 

𝐷𝑔𝑟 ∈ ℋ
2(𝔻). Therefore 𝑔𝑟 ∈ 𝒮

2(𝔻), and hence 𝒮2(𝔻) is a Banach space under 

the given norm. Pointwise multiplication on 𝒮2(𝔻)  form an algebra. For this, 

suppose that 𝑓𝑟  and 𝑔𝑟 are in 𝒮2(𝔻) . 

∑‖𝑓𝑟𝑔𝑟‖𝒮2(𝔻)
2

𝑟

 =∑‖𝐷(𝑓𝑟𝑔𝑟)‖ℋ2(𝔻)
2

𝑟

+∑‖𝑓𝑟𝑔𝑟‖ℋ2(𝔻)
2

𝑟

   

=∑‖𝑔𝑟𝐷𝑓𝑟 + 𝑓𝑟𝐷𝑔𝑟‖ℋ2(𝔻)
2

𝑟

+∑‖𝑓𝑟𝑔𝑟‖ℋ2(𝔻)
2

𝑟

 

≤∑‖𝑔𝑟𝐷𝑓𝑟‖ℋ2(𝔻)
2

𝑟

+ 2∑‖𝑔𝑟𝐷𝑓𝑟‖ℋ2(𝔻)
 ‖𝑓𝑟𝐷𝑔𝑟‖ℋ2(𝔻)

 

𝑟

+∑‖𝑓𝑟𝐷𝑔𝑟‖ℋ2(𝔻)
2

𝑟

+∑‖𝑓𝑟𝑔𝑟‖ℋ2(𝔻)
2

𝑟

.  
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Using (i), we see that for any 𝑓𝑟 ∈ 𝒮
2(𝔻) 

∑‖𝑓𝑟‖∞
𝑟

≤ 2∑‖𝐷𝑓𝑟‖ℋ2(𝔻)
 

𝑟

+∑|𝑓𝑟(0)|

𝑟

 ≤ 2∑‖𝐷𝑓𝑟‖ℋ2(𝔻)
 

𝑟

+ 2∑‖𝑓𝑟‖ℋ2(𝔻)
 

𝑟

= 2∑‖𝑓𝑟‖𝒮2(𝔻)
2

𝑟

. 

Hence  

∑‖𝑓𝑟𝑔𝑟‖𝒮2(𝔻)
2

𝑟

≤∑‖𝑔𝑟‖∞
2 ‖𝐷𝑓𝑟‖ℋ2(𝔻)

2

𝑟

+ 2∑‖𝑓𝑟‖∞ ‖𝑔𝑟‖∞‖𝐷𝑓𝑟‖ℋ2(𝔻)
 ‖𝐷𝑔𝑟‖ℋ2(𝔻)

 

𝑟

+∑‖𝑓𝑟‖∞
2 ‖𝐷𝑔𝑟‖ℋ2(𝔻)

2

𝑟

+ 2∑‖𝑔𝑟‖∞
2 ‖𝑓𝑟‖∞ 

2

𝑟

                    

≤ 4∑‖𝑔𝑟‖𝒮2(𝔻)
2 ‖𝑓𝑟‖𝒮2(𝔻)

2

𝑟

+ 8∑‖𝑔𝑟‖𝒮2(𝔻)
2 ‖𝑓𝑟‖𝒮2(𝔻)

2

𝑟

+ 4∑‖𝑔𝑟‖𝒮2(𝔻)
2 ‖𝑓𝑟‖𝒮2(𝔻)

2

𝑟

≤ 16∑‖𝑓𝑟‖𝒮2(𝔻)
2 ‖𝑔𝑟‖𝒮2(𝔻)

2

𝑟

. 

(iii) We want to show polynomials are dense in 𝒮2(𝔻) . Given 𝑓𝑟 ∈ 𝒮
2(𝔻) , let 

𝑓(1−𝜖)(𝑧 − 𝜖) = 𝑓𝑟((1− 𝜖)(𝑧− 𝜖))   be its dilation and  𝐷(𝑓𝑟)(1−𝜖)(𝑧 − 𝜖) =

(1− 𝜖)𝐷𝑓𝑟((1− 𝜖)(𝑧 − 𝜖)) = (1 − 𝜖)(𝐷𝑓𝑟)(1−𝜖)(𝑧 − 𝜖) be derivative of dilation 

where 0 < 𝜖 < 1. Each function (𝑓𝑟)(1−𝜖)  is analytic in a larger disk, so it can be 

approximated uniformly on 𝐷 by a sequence of holomorphic polynomials𝑃(1−𝜖)
𝑛 , and 

hence 𝐷(𝑓𝑟)(1−𝜖) can be approximated uniformly on 𝔻 by holomorphic polynomials 

𝐷𝑃(1−𝜖)
𝑛 . So it will be enough to prove that 𝑓𝑟  can be approximated in 𝒮2(𝔻)  by its 

dilation. That is to say ‖𝑓𝑟 − (𝑓𝑟)(1−𝜖)‖𝒮2(𝔻)
 

→ 0   as 𝜖 → 0 . This means that 

‖𝑓𝑟 − (𝑓𝑟)(1−𝜖)‖ℋ2(𝔻)
2

+ ‖𝐷𝑓𝑟 −𝐷(𝑓𝑟)(1−𝜖)‖ℋ2(𝔻)
2

→ 0  as 𝜖 → 0 . So finally it is 

enough to prove that ‖𝑓𝑟 − (𝑓𝑟)(1−𝜖)‖ℋ2(𝔻)
2

→ 0 and ‖𝐷𝑓𝑟 −𝐷(𝑓𝑟)(1−𝜖)‖ℋ2(𝔻) → 0  

as 𝜖 → 0. For this, let us assume 

𝑓𝑟(𝑧 − 𝜖) =∑ 𝑎𝑛
𝑟(𝑧 − 𝜖)𝑛

∞

𝑛=0

. 

Since 𝑓𝑟 ∈ ℋ
2(𝔻), for all 𝜖 > 0, we can choose a natural number 𝑁 large enough such that 

∑ ∑ |𝑎𝑛
𝑟 |2

∞

𝑛=𝑁+1𝑟

<
𝜖

2
. 

Now choose (1 − 𝜖)𝜖 ∈ (0,1) such that 
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(1− (1− 𝜖)𝜖
𝑁)2∑∑|𝑎𝑛

𝑟 |2
𝑁

𝑛=0𝑟

<
𝜖

2
. 

Then, since 

∑‖𝑓𝑟 − (𝑓𝑟)(1−𝜖)‖ℋ2(𝔻)
2

𝑟

=∑‖∑𝑎𝑛
𝑟(𝑧 − 𝜖)𝑛(1− (1− 𝜖)𝑛)

∞

𝑛=0

‖

2

𝑟

=∑∑|𝑎𝑛
𝑟(1− (1− 𝜖)𝑛)|2

∞

𝑛=0𝑟

, 

it follows that for all (1− 𝜖) ≥ (1− 𝜖)𝜖 

∑‖𝑓𝑟 − (𝑓𝑟)(1−𝜖)‖ℋ2(𝔻)
2

𝑟

=∑∑|𝑎𝑛
𝑟(1 − (1− 𝜖)𝑛)|2

𝑁

𝑛=0𝑟

+∑ ∑ |𝑎𝑛
𝑟(1− (1− 𝜖)𝑛)|2

∞

𝑛=𝑁+1𝑟

≤ (1− (1− 𝜖)𝑁)∑∑|𝑎𝑛
𝑟 |2

𝑁

𝑛=0𝑟

+∑ ∑ |𝑎𝑛
𝑟 |2

∞

𝑛=𝑁+1𝑟

≤
𝜖

2
+
𝜖

2
= 𝜖. 

This shows that ‖𝑓𝑟 − (𝑓𝑟)(1−𝜖)‖ℋ2(𝔻)
2

→ 0 as 𝜖 → 0. On the other hand, we have  

∑|𝐷𝑓𝑟(𝑧 − 𝜖)− 𝐷(𝑓𝑟)(1−𝜖)(𝑧 − 𝜖)|

𝑟

=∑|∑ 𝑛𝑎𝑛
𝑟(𝑧 − 𝜖)𝑛−1

∞

𝑛=1

−∑ 𝑛𝑎𝑛
𝑟(1− 𝜖)𝑛(𝑧 − 𝜖)𝑛−1

∞

𝑛=1

|

𝑟

=∑|∑ 𝑛𝑎𝑛
𝑟(1− (1− 𝜖)𝑛)(𝑧 − 𝜖)𝑛−1

∞

𝑛=1

|

𝑟

. 

Similarly, we can show that ‖𝐷𝑓𝑟 −𝐷(𝑓𝑟)(1−𝜖)‖ 
2
→ 0 as 𝜖 approaches to 0. 

Corollary (6.3.14):[168]       𝒮0
2(𝔻) ⊂ 𝒮 

2(𝔻) is a Banach algebra with the norm defined 

for 𝒮 
2(𝔻) and 𝒮 

2(𝔻) = [1]⊕𝒮0
2(𝔻), and hence 

𝒮0
2(𝔻) = span̅̅ ̅̅ ̅̅ {(𝑧 − 𝜖)𝑛: 𝑛 ∈ ℕ}. 

Proof:     For any 𝑓𝑟  and 𝑔𝑟 in 𝒮0
2(𝔻) ⊂ 𝒮 

2(𝔻), we immediately see that 

∑‖𝑓𝑟𝑔𝑟‖𝒮 2(𝔻)
𝑟

≤∑‖𝑓𝑟‖𝒮 2(𝔻)‖𝑔𝑟‖𝒮 2(𝔻)
𝑟

. 

Also, we have 𝑓𝑟(0) = 0  and 𝑔𝑟(0) = 0  so (𝑓𝑟𝑔𝑟)(0)= 0  and hence 𝑓𝑟𝑔𝑟  belongs to 

𝒮0
2(𝔻). 
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 To show 𝒮0
2(𝔻) is a closed subalgebra of 𝒮 

2(𝔻), assume (𝑔𝑟)𝑛 ∈ 𝒮0
2(𝔻)̅̅ ̅̅ ̅̅ ̅̅ . That means 

there exists a double sequence (𝑔𝑟)𝑛 ∈ 𝒮0
2(𝔻),𝑛 ∈ ℕ such that (𝑔𝑟)𝑛converges to 𝑔𝑟 in 

𝒮 
2(𝔻) norm.This implies (𝑔𝑟)𝑛 converges to 𝑔𝑟 in ℋ 2(𝔻) norm. Since (𝑔𝑟)𝑛(0) = 0 for 

all 𝑛, it follows that 𝑔𝑟(0) = 0. 

Corollary (6.3.15):[168]  Let 𝒱 be the Volterra operator on ℋ 
2(𝔻). Then the following 

statements are true: 

(i)  Range of  𝒱 = 𝒮0
2(𝔻).  

(ii) 𝒱 is a bounded isomorphism from ℋ 
2(𝔻) onto 𝒮0

2(𝔻), and its inverse is 𝐷. 

(iii)  The operator 𝑇 acting on ℋ 
2(𝔻) is similar under 𝑉 to the multiplication operator 

𝑀(𝑧−𝜖) acting on 𝒮0
2(𝔻).  

Proof:   

(i)  Let 𝑔𝑟 be in the range of 𝒱, then there exists 𝑓𝑟 ∈ ℋ 
2(𝔻) such that 

∑𝑔𝑟(𝑧 − 𝜖)

𝑟

=∑(𝒱𝑓𝑟)(𝑧 − 𝜖)

𝑟

= ∫ ∑𝑓𝑟(𝑤)𝑑𝑤

𝑟

𝑧−𝜖

0

 

then 𝐷𝑔𝑟 = 𝑓𝑟 ∈ ℋ 
2(𝔻) and 𝑔𝑟(0) = 0. Hence 𝑔𝑟 ∈ 𝒮0

2(𝔻). Conversely, suppose that 𝑔𝑟 
belongs to  𝒮 0

2 (𝔻), then 

∑(𝒱𝐷𝑔𝑟)(𝑧 − 𝜖)

𝑟

= ∫ ∑(𝐷𝑔𝑟)(𝑤)

𝑟

𝑧−𝜖

0

𝑑𝑤 =∑(𝑔𝑟(𝑧 − 𝜖) − 𝑔𝑟(0))

𝑟

=∑𝑔𝑟(𝑧 − 𝜖)

𝑟

. 

Therefore 𝑔𝑟 belongs to the range of 𝒱. 

(ii)  First we want to show 𝒱 is a bounded operator on ℋ 2(𝔻). Let us assume 𝑓𝑟  is in 

the Hardy space. 

∑‖𝒱(𝑓𝑟)‖𝒮 2(𝔻)
𝑟

=∑‖𝒱(𝑓𝑟)‖ℋ 2(𝔻)
𝑟

+∑‖𝐷(𝒱(𝑓𝑟))‖ℋ 2(𝔻)
𝑟

≤∑‖𝑓𝑟‖ℋ 2(𝔻)
𝑟

+∑‖𝑓𝑟‖ℋ 2(𝔻)
𝑟

= 2∑‖𝑓𝑟‖ℋ 2(𝔻)
𝑟

. 

Hence the map 𝒱 from ℋ2(𝔻) onto 𝒮 0
2 (𝔻) is bounded. Clearly 𝒱 is linear. Now to show 

𝒱 is one-one, assume that (𝑓𝑟)1 and (𝑓𝑟)2  belong to the Hardy space, and also assume that 

∫ ∑(𝑓𝑟)1(𝑤)

𝑟

𝑑𝑤

𝑧−𝜖

0

= ∫ ∑(𝑓𝑟)2(𝑤)

𝑟

𝑑𝑤

𝑧−𝜖

0

,          for all (𝑧 − 𝜖) ∈ 𝔻. 

Differentiating both sides we see that (𝑓𝑟)1 = (𝑓𝑟)2  and hence 𝒱 is one-one. From part (i) 
we have 𝑉𝐷𝑔𝑟 = 𝑔𝑟 and clearly 𝐷𝒱𝑓𝑟 = 𝑓𝑟 . This shows that 𝒱  is abounded bijective linear 

operator from ℋ 
2(𝔻) onto 𝒮 0

2 (𝔻) and  𝒱−1 = 𝐷. 
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(iii)  Suppose 𝑓𝑟  belongs to ℋ 2(𝔻)  and also suppose 𝒱𝑓𝑟 = 𝑔𝑟 , for some 𝑔𝑟 ∈
𝒮 0
2 (𝔻). Therefore we have 

∑𝑓𝑟(𝑧 − 𝜖)

𝑟

=∑(𝒱−1𝑔𝑟)(𝑧 − 𝜖)

𝑟

=∑(𝐷𝑔𝑟)(𝑧 − 𝜖)

𝑟

. 

∑(𝑇𝑓𝑟)(𝑧 − 𝜖)

𝑟

= (𝑧 − 𝜖)∑𝑓𝑟(𝑧 − 𝜖)

𝑟

+∑(𝒱𝑓𝑟)(𝑧 − 𝜖)

𝑟

= (𝑧 − 𝜖)∑(𝐷𝑔𝑟)(𝑧 − 𝜖)

𝑟

+∑𝑔𝑟(𝑧 − 𝜖)

𝑟

= 𝐷((𝑧 − 𝜖)∑𝑔𝑟(𝑧 − 𝜖)

𝑟

). 

Now applying 𝒱 on both sides, we see that 

∑(𝒱𝑇𝑓𝑟)(𝑧 − 𝜖)

𝑟

= 𝒱𝐷((𝑧 − 𝜖)∑𝑔𝑟(𝑧 − 𝜖)

𝑟

)= (𝑧 − 𝜖)∑𝑔𝑟(𝑧 − 𝜖)

𝑟

= (𝑧 − 𝜖)∑(𝒱𝑓𝑟)(𝑧 − 𝜖)

𝑟

. 

So, 𝒱𝑇 = 𝑀(𝑧−𝜖)𝒱 and 𝒱𝑇𝒱−1 = 𝑀(𝑧−𝜖) . That is to say 𝒱 transforms the operator 𝑇 into 

the operator multiplication by (𝑧 − 𝜖) on 𝒮0
2(𝔻). 

Corollary (6.3.16):[168]      Let 𝑇 be an operator 

∑(𝑇𝑓𝑟)(𝑧− 𝜖)

𝑟

= (𝑧 − 𝜖)∑𝑓𝑟(𝑧 − 𝜖)

𝑟

+ ∫ ∑𝑓𝑟(𝑤)𝑑𝑤

𝑟

𝑧−𝜖

0

. 

defined on ℋ 2(𝔻). Then the lattice of closed invariant subspaces is 

Lat 𝑇 = {𝑆 ⊂ ℋ 2(𝔻):𝑆 = {𝐷𝑓𝑟 : 𝑓𝑟 ∈ 𝐼𝒮02(𝔻)(𝐺;𝐾)}} 

for 𝐺,𝐾defined in Definition (6.3.9). 

Proof:    From Corollary (6.3.14),  

𝒮0
2(𝔻) = span̅̅ ̅̅ ̅̅ {(𝑧 − 𝜖)𝑛:𝑛 ∈ ℕ}, 

so (𝑧 − 𝜖) is a cyclic element of the Banach algebra 𝒮0
2(𝔻). Thus from the Proposition 

(6.3.7), closed invariant subspaces of 𝑀(𝑧−𝜖)  on 𝒮0
2(𝔻) are exactly the closed ideals of 

𝒮0
2(𝔻). Using Corollary (6.3.11), the lattice of closed invariant subspace of 𝑀(𝑧−𝜖) acting 

on 𝒮0
2(𝔻) is given by 

Lat 𝑀(𝑧−𝜖) = {𝐼𝒮02(𝔻)(𝐺;𝐾):𝐺, 𝐾 defined in Definition (6.3.9)}. 
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Since 𝒱𝑇𝒱−1 = 𝑀(𝑧−𝜖) , we see that 𝒱−1 (𝐼𝒮02(𝔻)(𝐺;𝐾)) is a closed invariant subspace of 

𝑇. From Corollary (6.3.15), we know that 𝒱−1(𝑓𝑟) = 𝐷𝑓𝑟 . So, 𝑆 = {𝐷𝑓𝑟 : 𝑓𝑟 ∈ 𝐼𝒮02(𝔻)(𝐺, 𝐾)} 

is a closed invariant subspace of 𝑇. Hence,  

Lat 𝑇 = {
𝑆 ⊂ ℋ 2(𝔻):𝑆 = {𝐷𝑓𝑟 : 𝑓𝑟 ∈ 𝐼𝒮02(𝔻)(𝐺;𝐾)}

for 𝐺,𝐾 defined in Definition (6.3.9)
} 
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List of Symbols  

Symbol  Page 

𝐿𝑎
2 : Bergman space 1 

𝐻2: Hardy space 1 

⊝: Direct  orthogonal difference 3 

𝑙𝛼
2 : Hilbert space 3 

ker: kernel 5 

𝐿𝑞 : Dual Lebesgue space 5 

𝐿𝑝 : Lebesgue space 5 

𝑙2: the sequence space of Hilbert 6 

⨁: orthogonal sum 6 

sup: supremum 8 

Re: Real 8 

inf: infimium 10 

Im: Imaginary 11 

dim: Dimension 13 

ind: Index 13 

𝐻∞: Essential Hardy space 29 

clos: closure 31 

det: determinant 31 

⨂: tensor product 33 

𝐿1: Lebesgue space on the real line 64 

𝐴𝑝 : Bergman space 71 

𝐻𝑞: Dual of Hardy space 87 

Hol: Holomorphic 90 

dist: distance 101 

ℓ∞: the essential Hilbert space of sequences   104 

Lat: Lattice 112 

cl: closure 120 

𝑓𝑑: fibre dimension 135 

𝑓𝑟: fibre dimension range 141 

𝐻1: Hardy space 153 

VMO: vanishing mean oscillation 164 

𝐷𝑝,𝛼: Divichlet space 167 

𝐿𝑞,𝛼: Dual of Lorentz space 168 

𝑊1,2 : Sobolev space 186 
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