الآية

قال تعالى:

﴿أُبَلِّغُكُمْ رِسَالَاتِ رَبِّي وَأَنصَحُ لَكُمْ وَأَعْلَمُ مِنَ اللَّهِ مَا لَا تَعْلَمُونَ (62)

سورة الاعراف

Dedication

,,, To my Father,,,

,,, To my Mother,,,

,,,To my friends

Acknowledgement

All my pleasure to those whom support and encouraged me throughout my graduate studies. My parents, specially my mother, my brothers and my sisters, my friends.

All my pleasure to my supervisor associate professor Rawia abdelgani and Dr. Ali Suleiman and UZ: Ammar Adam and UZ: Mohammed Al-Fadni to how give me all support to complete this study.

All thanks to brothers engineers in the Ministry of Mining and Criminal Evidence Police for their continued support.

Abstract

Silicon dioxide nanoparticles, also known as silica nanoparticles or Nano-silica, are the basis for a great deal of biomedical research due to their stability, low toxicity and ability to be functionalized with a range of molecules and polymers. Silicon Oxide Nanoparticles Applications:

Paint, plastic, color rubber, magnetic materials, in addition, Nano-silica can be widely used in ceramics (sugar) porcelain, gypsum, batteries, paints, adhesives, cosmetics, glass, steel, fiber, glass, and many other fields of environmental protection products the upgrading.

In this research three different samples of silicon dioxide order to investigate the transmission of x-ray .Three samples of silicon dioxide were prepared. The visual properties were studied, including the permeability and absorption coefficient and transmission.

المستخلص

الجسيمات النانوية لثاني أكسيد السيليكون، والمعروفة أيضا باسم الجسيمات النانوية للسيليكا أو نانوسيليكا، هي الأساس لكثير من البحوث الطبية الحيوية نظر الاستقرار ها، وانخفاض ثمنها والقدرة على التفاعل مع مجموعة من الجزيئات والبوليمرات. تطبيقات الجسيمات النانوية لاكسيد السيليكون: الطلاء والبلاستيك وتلوين المطاط والمواد المغناطيسية، بالإضافة إلى ذلك، النانو السيليكا يمكن أن تستخدم على نطاق واسع في السير اميك و الخزف والجبص والبطاريات والدهانات والمواد اللاصقة ومستحضرات التجميل والزجاج والصلب والألياف ، والعديد من المجالات الأخرى من منتجات الارتقاء بحماية البيئة.

تم اختيار عينة مختلفة من ثاني اكسيد السيليكون للتحقق من انتقال الأشعة السينية. تم تحضير ثلاث عينات من ثاني أكسيد السيليكون فى فترات طحن مختلفه لدراسة الخصائص البصرية، بما في ذلك معامل النفاذية والامتصاص والانتقال.

Index		
الأيه		Ι
Dedicatio	Dedication	
Acknow	edgement	III
Abstract	-	IV
المستخلص		V
Index		VI
	Chapter one	
	Introduction	
1.1	Introduction	1
1.2	The problem	3
1.3	The Aim	3
1.4	The problem	3
1.5	Thesis layout	3
1.6	literature review	5
	Chapter two	
Silicon dioxide		
2.1	Introduction	6
2.2	The structure of the Silicon Dioxide	6
2.3	The properties of the Silicon Dioxide	7
2.4	The Oxidation of silicon	8
2.5	The Consumption of the silicon substrate	8
2.6	Steps at the surfaces and interfaces	9
2.7	The Properties	10
2.7.1	Optical performance	10
2.7.2	Electronic properties	18
2.8	Applications	19
2.8.1	Light-emitting applications	19
2.8.2	Applications in the energy and electronic fields	20
2.8.3	Photo catalysts	24
2.9	Summary and prospects	26
Chapter three		

Nanoparticle		
3.1	Introduction	28
3.2	Nanoparticle structure	28
3.3	The surface	30
3.4	The shell	31
3.5	The core	32
3.6	Surface energy and colloid stabilization	34
3.7	Optical properties of nanoparticles	36
3.8	Preparation of nanoparticles	37
3.9	Metal oxides	39
3.10	Polymers	39
3.11	Other particles	40
3.12	Nanowires and nanotubes	40
3.13	Behavior of nanoparticles in the aquatic environment	41
3.14	Interaction with pollutants	42
3.15	Surface coating by NOM	45
3.16	Aggregation of nanoparticles: effect of HA and cations	46
3.17	Variation in aggregates structure in function of HA	48
	concentration: fractal dimension	
3.18	Disaggregation of NPs by HA molecules	49
3.19	Environmental significance	51
3.20	Behavior in porous media General mechanism	53
3.21	Filtration models for NPs/porous media collision	55
	Chapter Four	
	Material and Method	
4.1	Introduction	56
4.2	Instruments	56
4.3	Material	56
4.4	The Method	56
4.5	4.1 Result	57
4.6	Discussion	69
4.7	Conclusion	69
4.8	Recommendation	69
4.9	References	70

List of Table

2.1	QYs of Si NPs conjugated with different functional groups.	16
3.1	Categorization of environmental colloids according to origin and composition	29
4.1	Table (4.1) shows the relation between intensity and angle (2Θ) for sample one (crushed for one minute)	58
4.2	Table (4.2) shows the relation between intensity and angle (2Θ) for sample one (crushed for two minute)	60
4.3	Table (4.3) shows the relation between intensity and angle (2 Θ)and transmission and absorption for sample three (crushed for three minute)	63
4.4	Table (4.4) shows the relation between intensity and angle (2Θ) and transmission and absorption for all sample.	64

List of Figure

2.1	Structure of SiO ₂	7
2.2	Original silicon surface	9
2.3	Grow an oxide layer.	9
2.4	Grow a second oxide layer.	10
2.5	(a) Correlation between average diameter and PL peak	12
	energy.	
	(b) Correlation between the geometrical standard	
	deviation o the ensemble PL spectral	
2.6	(a) Photograph (under UV light) of H–Si QDs (left, red	14
	emission) and seven water soluble Si QDs (yielding	
	seven distinct emission colors)	
	(b) PL spectra of H–Si QDs (curve 1) and Si QDs of	
	0.5, 1.5, 3.5, 6, 9, 14, and 24 h oxidization (curves 2–	
	8), respectively (excitation wavelength: 360 nm).	
	(c) Plot of the oxidation time versus Si core size.	
2.7	(a) and (b) Schemes of forward and backward	16
	measurements.	
	(c) magnified dark-field microscope image of	
	nanoparticle	
	(d) Left axes show forward (green) and backward	
	(blue) scattering intensities,	
2.8	(color online) Cycling performances at current rates of	21
	1/4 C and1/2 C	
2.9	(color online) TEM images of Si QDs in an SiO ₂	22
	matrix, (a) low-magnification image an (b) high-	
	resolution image. (c) One-sun illuminated I–V curves	
	of four different (n-type) Si QD/ (p-type) c-Sisolar cells	
	measured at 298 K	
2.10	(a) Schematic plot of FET device. The channel	24
	dimensions are 200 _m_2000 _m and the source is	
	grounded during (b) A 7-nm-thick Si NC film on an	
	Au-coated Si wafer.(c) Drain current (Id)–gate voltage	
	(Vg) for two different 10–20 nm asdeposited Si NC	
	FETs.(d) Drain current (Id)–drain voltage (Vd)	
	characteristics for two different 10–20 nm as-deposited	
	Si NC FETs	
2.11	(color online) (a) TEM image of Si NCs produced by	25

	HEMB for 3-h illumination. (b) UV-visible spectra of	
	the reaction solution (after 2-h illumination) treated	
	with Nash reagent for the determination of	
	formaldehvde. As the arrow indicates, from the top to	
	bottom, the line represents obtained UV–visible data in	
	the presence of unmodified Si NCs with illumination.	
	in the absence of illumination and in the absence of	
	unmodified Si NCs, respectively. Inset: the	
	concentration of formaldehyde as a function of reaction	
	time	
2.12	(color online) Schematics for Si QDs of different	26
	diameters from different reactions.	
3.1	Size domains and typical representatives of natural	29
	colloids and nanoparticles. Operationally defined cut-	
	off is given for filtration at 0.45 lm	
3.2	A diagrammatic representation of (a) a charged	36
	stabilized	
	nanoparticle and (b) a satirically stabilized nanoparticle	
3.3	A diagram showing a simplified summary of	39
	nanoparticle particle formation	
3.4	Schematic representation of the interaction of	45
	engineered NPs with natural water components.	
3.5	Variation in the structure of iron-oxide nanoparticles	51
	due to the interaction with SRHA molecules at pH 6 as	
	observed by transmission electron microscope (a) FeO	
	(100 mg l-1 Fe) and (b) FeO (100 mg l-1 Fe) + HA (5	
	mg l-1), scale bar = 100 n	
3.6	Schematic plot of pathways and important	53
	transformation reactions in the aquatic environment.	
3.7	Particle filtration by (a) diffusion, (b) interception and	55
	(c)sedimentation (modified after Yao (1968))	
3.8	Correlation between filtration factor and travel distance	56
	for a given deposition rate	
4.1	X-Ray diffraction device(XRD device).	57
4.2	the relation between intensity and diffraction angle	58
	(2Θ) for sample one (crushed for one minute)	
4.3	the relation between intensity Absorption for sample	59
	one (crushed for one minute)	
1		

4.4	the relation between intensity Transmission for sample one (crushed for one minute)	59
4.5	Figure (4.4) shows the relation between Transmission and Absorption for sample one (crushed for one minute)	60
4.6	the relation between intensity and diffraction angle (2Θ) for sample two (crushed for two minute)	61
4.7	the relation between intensity and Absorption for sample two (crushed for two minute)	61
4.8	the relation between intensity and Transmission for sample two (crushed for two minute)	62
4.9	the relation between Transmission and Absorption for sample two (crushed for two minute)	62
4.10	The relation between intensity and diffraction angle (2Θ) for sample three (crushed for three minute)	63
4.11	the relation between intensity and Transmission for sample three (crushed for three minute)	65
4.12	Figure (4.12) shows the relation between Transmission and Absorption for sample three (crushed for three minute).	65
4.13	the relation between intensity and diffraction angle (2Θ) for all samples.	67
4.14	the relation between intensity and Absorption for all samples.	67
4.15	the relation between intensity and Transmission for all samples.	68
4.16	the relation between Transmission and Absorption for all samples.	68