الآية

بسم الله الرحمن الرحيم

قال تعالى : ﴿إِنَّ اللَّهَ عِندَهُ عِلْمُ السَّاعَةِ وَيُنَزِّلُ الْغَيْثَ وَيَعْلَمُ مَا فِي الْأَرْحَامِ وَمَا تَدْرِي نَفْسٌ مَّاذَا تَكْسِبُ غَدًا حَوَمَا تَدْرِي نَفْسٌ بِأَيِّ أَرْضٍ تَمُوتُ إِنَّ اللَّهَ عَلِيمٌ خَبِيرٌ ﴾(34)

صدق الله العظيم

سورة لقمان الاية (34)

Dedication

Dedicate this work: To the soul of my father To the soul of my wife To my mother To my children To all my family ... And my special ...

Acknowledgement

All my pleasure to those whom support and encouraged me throughout my graduate studies. My parents specially my mother, my brothers, my sisters and my friends.

All my pleasure to my supervisor associate professor Rawia abdelgani, Dr. Ali Suleiman, UZ: Ammar Adam and UZ: Mogahid Mohammed for their great support that they offered wich made the completion of this study possible.

All thanks to brothers engineers in the Ministry of Mining and Criminal Evidence Police for their continued support.

Abstract

Silicon dioxide nanoparticles, also known as silica nanoparticles or Nano-silica, are the basis for many a lot of biomedical research due to their stability, low cost and ability to be functionalized with a range of molecules and polymers.

Silicon Oxide Nanoparticles Applications:

Paint, plastic, rubber color and magnetic materials, in addition Nanosilica can be widely used in ceramics (sugar) porcelain, gypsum, batteries, adhesives, cosmetics, glass, steel, fiber glass, and many other fields of environmental protection products upgrading.

In this study, a different sample of silicon was selected to investigate the transmission of radiation by an ultraviolet spectrometer. Three samples of silicon dioxide were prepared. At different periods of curushing optical properties were studied, including the attenuation coefficient, absorption and transmission.

المستخلص

الجسيمات النانوية لثاني أكسيد السيليكون، والمعروفة أيضا باسم الجسيمات النانوية للسيليكا أو نانوسيليكا، هي الأساس لكثير من البحوث الطبية الحيوية نظر الاستقرار ها، وانخفاض ثمنها والقدرة على التفاعل مع مجموعة من الجزيئات والبوليمرات. تطبيقات الجسيمات النانوية اكسيد السيليكون: الطلاء والبلاستيك ولون المطاط والمواد المغناطيسية ، بالإضافة إلى ذلك، النانو السيليكا يمكن أن تستخدم على نطاق واسع في السير اميك والخزف والجبص والبطاريات والمواد اللاصقة ومستحضر ات التجميل والزجاج والصلب والألياف والزجاج، والعديد من المجالات الأخرى في ترقية منتجات حماية البيئة.

مطياف الأشعة فوق البنفسجة. تم تحضير ثلاث عينات من ثاني أكسيد السيليكون التي تم طحنها في فترات طحن مختلفة تم دراسة الخصائص البصرية لها، بما في ذلك معامل التو هين والامتصاص والانتقال.

Index		
الأيه		Ι
Dedicatio	on	II
Acknowl	edgement	III
Abstract		IV
المستخلص		V
Index		VI
	Chapter One	
	Introduction	
1.1	Introduction	1
1.2	The problem	3
1.3	The Aim	3
1.4	Methodology	3
1.5	Thesis layout	3
1.6	literature review	4
	Chapter Two	
	Silicon dioxide	
2.1	Introduction	7
2.2	The structure of the Silicon Dioxide	7
2.3	The properties of the Silicon Dioxide	8
2.4	The Oxidation of silicon	9
2.5	The Consumption of the silicon substrate	9
2.6	Steps at the surfaces and interfaces	10
2.7	The Properties	11
2.7.1	Optical performance	11
2.7.2	Electronic properties	18
2.8	Applications	20
2.8.1	Light-emitting applications	20
2.8.2	Applications in the energy and electronic fields	21
2.8.3	Photo catalysts	25
2.9	Summary and prospects	27
Chapter Three		
Nanoparticle		
3.1	Introduction	29
3.2	Nanoparticle structure	29
3.3	The surface	32
3.4	The shell	33

3.5	The core	34
3.6	Surface energy and colloid stabilization	36
3.7	Optical properties of nanoparticles	38
3.8	Preparation of nanoparticles	40
3.9	Metal oxides	41
3.10	Polymers	42
3.11	Other particles	42
3.12	Nanowires and nanotubes	43
3.13	Behavior of nanoparticles in the aquatic environment	44
3.14	Interaction with pollutants	44
3.15	Surface coating by NOM	47
3.16	Aggregation of nanoparticles: effect of HA and cations	48
3.17	Variation in aggregates structure in function of HA	51
	concentration: fractal dimension	
3.18	Disaggregation of NPs by HA molecules	52
3.19	Environmental significance	54
3.20	Behavior in porous media General mechanism	56
3.21	Filtration models for NPs/porous media collision	58
	Chapter Four	
4.1	Introduction	59
4.2	Instruments	59
13	The Material	50
4.5	The Method	59
4.5	The Result	61
4.5	The Discussion	70
4.0		70
4.7	Conclusion	70
4.8	Recommendation	71
4.9	References	72

List of Table

2.1	QYs of Si NPs conjugated with different functional	16
	groups.	
3.1	Categorization of environmental colloids according to	32
	origin and composition	
4.1	the relation between Absorption and attenuation	61
	coefficient for sample one (crushed for one minute)	
4.2	the relation between Absorption and attenuation	64
	coefficient for sample two (crushed for two minute)	
4.3	the relation between Absorption and attenuation	67
	coefficient for sample three (crushed for three minute)	

List of Figure

2.1	Structure of SiO ₂	8
2.2	Original silicon surface	10
2.3	Grow an oxide layer.	10
2.4	Grow a second oxide layer.	11
2.5	(a) Correlation between average diameter and PL peak	13
	energy.	
	(b) Correlation between the geometrical standard	
	deviation o the ensemble PL spectral	
2.6	(a) Photograph (under UV light) of H–Si QDs (left, red	16
	emission) and seven water soluble Si QDs (yielding	
	seven distinct emission colors)	
	(b) PL spectra of H–Si QDs (curve 1) and Si QDs of	
	0.5, 1.5, 3.5, 6, 9, 14, and 24 h oxidization (curves 2–	
	8), respectively (excitation wavelength: 360 nm).	
	(c) Plot of the oxidation time versus Si core size.	
2.7	(a) and (b) Schemes of forward and backward	17
	measurements.	
	(c) magnified dark-field microscope image of	
	nanoparticle	
	(d) Left axes show forward (green) and backward	
•	(blue) scattering intensities,	22
2.8	(color online) Cycling performances at current rates of	22
2.0	1/4 C and $1/2$ C	22
2.9	(color online) TEM images of Si QDs in an SiO ₂	23
	matrix, (a) low-magnification image an (b) high-	
	resolution image. (c) One-sun illuminated I–V curves	
	of four different (n-type) Si QD/ (p-type) c-Sisolar cells	
2.10	measured at 298 K	25
2.10	(a) Schematic plot of FET device. The channel	25
	dimensions are 200 _m_2000 _m and the source is	
	grounded during (b) A /-init-unick Si NC initi on an	
	(Vg) for two different 10, 20 nm as deposited Si NC	
	EETs (d) Drain current (Id) drain voltage (Vd)	
	characteristics for two different 10, 20 nm as deposited	
	Si NC FETs	
2.11	(color online) (a) TEM image of Si NCs produced by	26

	HEMB for 3-h illumination. (b) UV–visible spectra of	
	the reaction solution (after 2-h illumination) treated	
	with Nash reagent for the determination of	
	formaldehyde. As the arrow indicates, from the top to	
	bottom, the line represents obtained UV-visible data in	
	the presence of unmodified Si NCs with illumination,	
	in the absence of illumination and in the absence of	
	unmodified Si NCs, respectively. Inset: the	
	concentration of formaldehyde as a function of reaction	
	time	
2.12	(color online) Schemetics for Si QDs of different	27
	diameters from different reactions.	
3.1	Size domains and typical representatives of natural	31
	colloids and nanoparticles. Operationally defined cut-	
	off is given for filtration at 0.45 lm	
3.2	A diagrammatic representation of (a) a charged	38
	stabilized	
	nanoparticle and (b) a sterically stabilized nanoparticle	
3.3	A diagram showing a simplified summary of	41
	nanoparticle particle formation	
3.4	Schematic representation of the interaction of	46
	engineered NPs with natural water components.	
3.5	Variation in the structure of iron-oxide nanoparticles	53
	due to the interaction with SRHA molecules at pH 6 as	
	observed by transmission electron microscope (a) FeO	
	(100 mg l-1 Fe) and (b) FeO (100 mg l-1 Fe) + HA (5	
	mg l-1), scale bar = 100 n	
3.6	Schematic plot of pathways and important	55
	transformation reactions in the aquatic environment.	
3.7	Particle filtration by (a) diffusion, (b) interception and	57
	(c)	
	sedimentation (modified after Yao (1968))	
3.8	Correlation between filtration factor and travel distance	58
	for agiven deposition rate	
4.1	Ultraviolet–visible spectroscopy-Different material	59
4.2	the relation between intensity and attenuation	62
	coefficient for sample one (crushed for one minute)	
4.3	the relation between Absorption and attenuation	63
	coefficient for sample one (crushed for one minute)	

4.4	the relation between intensity and wave length for	63
	sample one (crushed for one minute)	
4.5	the relation between Wave length and Absorption for	64
	sample one (crushed for one minute)	
4.6	t he relation between intensity and attenuation	65
	coefficient for sample two (crushed for two minute)	
4.7	the relation between Absorption and attenuation	66
	coefficient for sample two (crushed for two minute)	
4.8	the relation between Absorption and attenuation	66
	coefficient for sample two (crushed for two minute)	
4.9	the relation between Wave length and Absorption for	67
	sample two (crushed for two minute)	
4.10	the relation between intensity and attenuation	68
	coefficient for sample three (crushed for three minute)	
4.11	the relation between Absorption and attenuation	69
	coefficient for sample three (crushed for three minute)	
4.12	the relation between intensity and wave length for	69
	sample three (crushed for three minute)	
4.13	the relation between Wave length and Absorption for	70
	sample two (crushed for two minute).	