

Sudan University of Science and Technology

College of Post Graduate Studies

A Thesis Submitted in Partial Fulfillment of the Requirements of M.Sc. in

Computer Science

Evaluating the Quality of Integrated

Software Systems Based on Service-Oriented

Architecture

لي تقويم جودة أنظمة البرمجيات المتكاملة المعتمدة ع
ميةمعمارية البنيه الخد

Prepared By

Ayman Amin Ali Amin

The Supervision

Dr. Nisreen Beshir Osman

April 2018

i

 يةالآ

تلفاً ألوانهُا ومن الجبالِ ﴿ ألم ترََ أنَّ الله أنزلَ من السَّماء ماءً فأخرجنا به ثمراتٍ مُخ

ِ والأنعامِ وحمرٌ مختلفٌ ألوانهُا وغرابيبُ سُودٌ ومن النَّاسِ والدَّ جُددٌَ بيضٌ واب

 عزيزٌ غفور﴾مُختلفٌ ألوانهُُ كذلك إنَّما يخَشى الله من عبادهِ العلماءُ إنَّ الله

 .(28ـ27فاطر آية 35)

ii

Dedication

I dedicate this thesis to my parents, Amin Ali Amin and Omaima Abdalhay

who supported me to continue my educational process, to my colleagues and finally

to my teacher Ashwaq who gave me advices that helped me in my thesis.

iii

Abstract

Most current systems operate independently of each other. When the

organization needs a comprehensive system, it dispenses the existing systems to

build a new one. Such strategy wastes resources and time. The integration of

existing systems saves time, resources and it prevents risks in the new system.

Moreover, using the quality model ensures that the system after integration is

working correctly. The main objective of this research is to propose a model that

could be used to evaluate the quality of integrated systems. The proposed model

specifies the attributes that determine the quality of integrated systems. In order to

measure these attributes a set of metrics were identified such as Existence of meta-

information, Mean Time to Repair, and Mean Time between Failures. In order to

validate the model two systems were selected and integrated using SOA technology.

The results of the evaluation process showed high rate for the reusability,

correctness, and reliability, normal rate for the usability, performance and

modifiability.

iv

 المستخلص

امل، إلى نظام ش المؤسسةوعندما تحتاج ،تعمل معظم النظم الحالية بشكل مستقل عن بعضها البعض

تي تعمل بشكل الالنظم ،كما يمكن ربطستراتيجية تهدر الموارد والوقت،وهذه الإ نظام جديد ببناءفإنها تقوم

 ذلك ضافة الي، وبالإ النظام الجديد الناتجه في عملية بناءيوفر الوقت والموارد ويمنع المخاطر وذلك منفصل

لهدف ا ، يعمل بشكل صحيح الناتج من عملية الربطضمن أن النظام يمكن إستخدام نموذج قياس للجودة لن

يحدد ر ذلك ، في إطاكاملةالمتالنظم جودة ستخدامه لتقييم الرئيسي من هذا البحث هو إقتراح نموذج يمكن إ

د مجموعة أجل قياس هذه السمات تم تحدي من .المربوطةالأنظمة جودة تقيسالنموذج المقترح السمات التي

وغيرها لوقت بين الفشل اصلاح، ومتوسط لإلالوقت الوصفية، ومتوسط من المقاييس مثل وجود المعلومات

ة البنية تقنيستخدام ومن ثم ربطهما بإختيار نظامين ج تم إنموذمن أجل التحقق من صحة ال من المقاييس ،

 والموثوقية، ستخدام، والصحة،إعادة الا وأظهرت نتائج عملية التقييم معدل عالي في كل من (SOAالخدمية)ٍ

 .التعديلقابلية ستخدام والأداء والطبيعي)المتوسط(لسهولة الإمعدل و

v

Table of contents

 i ... الآية

Dedication .. ii

Abstract ... iii

 iv .. المستخلص

Table of figure ... ix

Table of tables .. x

Table of terms ... xi

Chapter One

1.1 Introduction .. 1

1.2 Problem statement .. 1

1.3 Research significance .. 1

1.4 Research objective ... 2

1.5 Research scope ... 2

1.6 Research organization .. 2

Chapter Two

2.1 Introduction .. 4

2.2 Literature Review .. 4

2.2.1 Integration ... 4

2.2.1.1 Definition ... 4

2.2.1.2 Objectives for Systems Integration Methodology 4

2.2.1.3 Integration challenge ... 5

2.2.1.4 Typical Systems Integration Life-cycle Phases 5

2.2.1.5 Existing Approaches to Software Integration 5

2.2.2 Service Oriented Architecture (SOA) ... 6

2.2.2.1 Definition: .. 6

2.2.2.2 Web Services ... 6

2.2.3 Software Quality Models .. 7

2.2.3.1 What is the quality? ... 7

2.2.3.2 Definition of Quality Model .. 7

vi

2.2.3.3 Software Quality Assurance – Defined Below 8

2.2.4 Quality Factor ... 8

2.2.4.1 Quality Sub-factor ... 8

2.2.5 Quality Metrics ... 9

2.2.5.1 Definition ... 9

2.2.5.2 Main objectives of software quality metrics.. 9

2.3 Related Work ... 10

2.3.1 A Quality Model for Evaluating Reusability of Services in SOA 10

2.3.2 A Quality Model for Evaluating Software-as-a-Service in Cloud

Computing .. 11

2.3.3 A Software Quality Model for SOA ... 12

2.3.4 Quality Assurance and Integration Testing Aspects in Web Based

Applications .. 13

2.3.5 A survey on Software as a service (SaaS) Using Quality Model in Cloud

Computing .. 14

2.3.6 A New Software Quality Model for Evaluating COTS Components ... 15

2.3.7 Integration architecture: Comparing web APIs with service-oriented

architecture and enterprise application integration ... 16

Chapter Three

3.1 Introduction .. 17

3.2 Methodology .. 17

3.2.1 Select Quality Factor ... 19

3.2.2 Identify Metrics for Each Factor .. 19

3.2.2.1 Usability and Reusability .. 19

1. Usability ... 20

2. Reusability .. 20

3.2.2.2 Reliability .. 21

3.2.2.3 Performance .. 22

3.2.2.4 Maintainability .. 23

1. Modifiability ... 23

1.1 Extensibility .. 23

vii

2. Testability ... 23

3.2.2.5 Correctness .. 24

3.2.3 Select Target Systems .. 26

3.2.4 Build Web Service (Integration) .. 26

3.2.5 Apply the Model on Systems ... 27

Chapter Four

4.1 Introduction .. 28

4.2 Apply the Model on System .. 28

4.2.1 Reusability & Usability ... 28

4.2.1.1 Existence of meta-information (EMI) ... 28

4.2.1.2 Self-Completeness of Service’s Return Value (SCSr) 28

4.2.1.3 Self-Completeness of Service’s Parameter (SCSp) 29

4.2.1.4 Result ... 29

4.2.2 Reliability .. 29

4.2.2.1 Mean Time to Repair (MTTR) .. 29

4.2.2.2 Mean Time Between Failures (MTBF) ... 29

4.2.2.3 Result ... 30

4.2.3 Performance .. 30

4.2.3.1 Service Response Time (SRT) .. 30

4.2.3.2 Throughput of Service (TPSRV) ... 30

4.2.3.3 Timeliness .. 31

4.2.3.4 Result ... 31

4.2.4 Modifiability ... 31

4.2.4.1 Extensibility ... 31

4.2.4.2 Testability .. 31

4.2.4.3 Result ... 32

4.2.5 Correctness .. 32

4.2.5.4 Result ... 32

4.2.6 Results Summary .. 33

Chapter Five

viii

5.1 Conclusions .. 34

5.2 Recommendation ... 34

6. Reference ... 35

ix

Table of figure

FIGURE (2.1) RELATIONSHIP AMONG QUALITY MODEL ELEMENTS [10]. 10

FIGURE (2.2) THE RELATION BETWEEN FEATURE AND QUALITY ATTRIBUTES [14]. 11

FIGURE (2.3) MAPPING FROM FEATURE TO QUALITY ATTRIBUTES [15]. 12

FIGURE (2.4) THE KEY FEATURE OF SAAS [18]. .. 15

FIGURE (3.1) THE RESEARCH METHODOLOGY. ... 18

FIGURE (3.2) QUALITY MODEL OF INTEGRATION SYSTEMS 25

FIGURE (4.1) INFORMATION ABOUT WEB SERVICES. .. 28

FIGURE (4.2) GENERATED TEST METHODS. ... 32

file:///C:/Users/profissional/Desktop/All-research.docx%23_Toc496613614
file:///C:/Users/profissional/Desktop/All-research.docx%23_Toc496613615

x

Table of tables

 Table (4.1) illustrates the experiments result ……………………………...…… 31

Table (4.2) Show the results of implementation………………………………… 33

xi

Table of terms

Abbreviation Terms
SOA Services oriented architecture

IEEE Institute of Electrical and Electronics Engineers

IDLs Interface Definition Languages

EAI Enterprise Application Integration

HTTP Hypertext transfer protocol

XML Extensible Markup Language

WSDL Web Services Description Language

SaaS Software as a Service

CC Cloud Computing

COTS Commercial off-the-shelf

APIs Application-programming interfaces

SynCSI Syntactic Completeness of Service Interface

SemCSI Semantic Completeness of Service Interface

EMI Existence of meta-information

SCSr Self-Completeness of Service’s Return Value

SCSp Self-Completeness of Service’s Parameter

MTTR Mean Time To Repair

MTBF Mean Time Between Failures

SRT Service Response Time

TP SRV Throughput of Service

TC per M Number of test case per a method or function

KLOC Thousands of lines of code

https://en.wikipedia.org/wiki/Commercial_off-the-shelf

Chapter One

Introduction

1

1.1 Introduction

The rapid development of science and technology, helped to produce many

systems inside or outside enterprises. However, many of these systems still work

separately from each other.

The service oriented architecture (SOA) is not just a technology of integration,

but it is also an architecture to guide the process of analysis and development life

cycle. SOA is an architecture where different services in different systems are

connected together to build a new system [1]. In reality, there are many software

quality models that used to assess the quality of target system [2] based on specific

attribute. We built model dedicated to evaluate the integration of systems.

1.2 Problem Statement

Recently, there are many ready sub-systems in organizations and market. these

systems may perform just some part of organization’s functions separately. Because

of this separation in performance, there is a tedious manual work to pass the data

from one sub-system as output to another one as input (waste of time and effort).

 There are many models to evaluate the quality systems, but there is no such a

model that is dedicated to evaluate the quality of integrated systems after integration

process.

1.3 Research Significance

Most current systems operate independently of each other. when an organization

needs a comprehensive system it dispenses the existing systems to build a new one.

Such strategy wastes resources and time. Integrating the existing systems saves

time, resources and it prevents new risks in the new system. Moreover, using the

quality model ensures that the system after integration works correctly and the staff

is satisfied.

2

1.4 Research Objective

The main objective of this research is evaluating the integrated systems by

building a quality model for system integration.

In order to build the model, the following sub-objective needs to be achieved:

1. Select the quality attributes that used in evaluation .

2. Identify the metrics of each attribute.

1.5 Research Scope

This is study focus on building a quality model dedicated to evaluate the

integration of sub-systems based on service-oriented architecture (SOA) technique.

Taking into consideration the attributes that related to the concept of SOA and

integration.

1.6 Research Organization

The structure of this research divided into four chapters as shown below:

 Chapter one: Introduction

This chapter describes the whole idea behind the theses. Defines the

problem statement, why it is important, objective and scope research.

 Chapter two: Literature review

Divided into two section. First one takes the major concept about topic

and the second one discusses the previous studies.

 Chapter three: Methodology

This chapter represents the methodology of research. The contents are:

the way of building quality model, extract metrics and integrate the selected sub-

systems.

3

 Chapter four: Results

Contents the results of applying the quality model to the final system.

 Chapter five: Conclusions and Recommendations

 References.

Chapter Two
Literature Review & Related Work

4

2.1 Introduction

This chapter is divided into two sections. The first section gives general

description about integration, quality model and service oriented architecture. The

second section describes the related studies to research project.

2.2 Literature Review

2.2.1 Integration

2.2.1.1 Definition

Melding existing system and new technologies to form capable systems that

intended to take additional tasks, exhibit improved performance and/or enhance

existing systems [3].

The IEEE Standard Glossary of Software Engineering Terminology [5]

defines integration as “the process of combining software components, hardware

components, or both, into an overall system”.

2.2.1.2 Objectives for Systems Integration Methodology

The objectives for a systems integration engineering methodology can be stated

as following [3]:

 To provide a suitable methodology that encompasses the entire integration

program. Starting from requirements, moving to design, construction, test,

and finally to deployment and maintenance.

 Facilitate understanding and communication.

 To enable capture of design and implementation needs early, especially

interface and interactive needs associated with bringing together new and

existing equipment and software.

 To support both top-down and bottom-up design philosophy.

5

 To support full compliance with audit trail needs, system-level quality

assurance, and risk assessment and evaluation.

2.2.1.3 Integration challenge

Challenges for achieving integration mostly have to do with the inherent

difficulties of linking a series of diverse existing systems that may be produced by

multiple different manufacturers. Other integration challenges have to do with the

lack of a coherent or unifying data structure that links all of the different systems,

an unwieldy framework of multiple different applications and support systems and

the sheer age of the different systems and the actual delivery of the information to

key business units that need it. These integration challenges hinder overall process

efficiency because poor data exchange between systems prevents quick

communication among business units.

2.2.1.4 Typical Systems Integration Life-cycle Phases

The most commonly seven-phase life cycle used in SI programs is as

following [3]:

 Requirements definition and specification.

 Feasibility analysis.

 System architecture development.

 Management plan: program and project plan.

 Systems design logical and physical design.

 Implementation: design implementation, system tests, and operational

deployment.

 Evaluation: system review and plan for replacement/retirement.

2.2.1.5 Existing Approaches to Software Integration

1. Standard Interfaces and Open Systems

 The common understanding of an “open” system is that it should e.g. be

portable, scalable, and interoperable through means of standard interface. The

6

importance of standards applies not only to interfaces but also to domain-specific

architectures as well [4].

2. Component-Based Software

 The integration context of component-based software is when there are pre-

existing software components with clearly defined interfaces available for

integration. A component-based approach can be used even with systems that

completely developed in-house [4].

 Interface Definition Languages (IDLs) are central part of component

technology, and integration at the function call level is relatively straightforward [4].

3. Enterprise Application Integration (EAI)

 EAI defined as the process of integrating enterprise systems with existing

applications [6].

2.2.2 Service Oriented Architecture (SOA)

2.2.2.1 Definition:

SOA is a business-centric IT architectural approach that supports integrating

business as linked, repeatable business tasks, or services [7].

With SOA, the business logic is decomposed into well-defined and reusable

services, which will have exposed for everyone to use. Now all the application has

to do is to consume them. As such. Now the application code is reduced greatly.

2.2.2.2 Web Services

 Web service is a realization of SOA and it is the most popular SOA

implementation [7].

Web service terminologies [7]:

 Hypertext transfer protocol [HTTP]

7

HTTP is a widely accepted standard that is implemented in many systems.

By using the HTTPS protocol, web service communication will be secured.

 Extensible Markup Language [XML]

XML chosen, as it’s a platform-independent language that can be understand

by different systems.

 Web Services Description Language [WSDL]

WSDL typically includes where the service is located, the functions/methods

available for invocation, parameters and its data type as well as the format of the

response.

2.2.3 Software Quality Models

2.2.3.1 What is the quality?

Defined from two perspectives first one, conformance to specification:

Quality that defined as a matter of products and services whose measurable

characteristics satisfy a fixed specification – that is, conformance to an in

beforehand defined specification [10]. The second view, meeting customer needs:

Quality that is identified independent of any measurable characteristics. That is,

quality defined as the products or services capability to meet customer expectations

– explicit or not [10].

2.2.3.2 Definition of Quality Model

A quality model is a set of characteristics and sub-characteristics, as

well as the relationships between them that provide the basis for specifying

quality requirements and for evaluating quality of the component or the

system [10].

8

Measurement of quality attributes is concerned with deriving the

numerical values by using the appropriate metrics for that attribute [10].

2.2.3.3 Software Quality Assurance – Defined Below

IEEE [9] defined Software quality assurance as a planned and systematic

pattern of all actions necessary to provide adequate confidence that an item or

product conforms to established technical requirements. A set of activities designed

to evaluate the process by which the products developed or manufactured. Contrast

with quality control. Another general definition suggested for the software

quality assurance [9] as a systematic, planned set of actions necessary to provide

adequate confidence that the software development process or the maintenance

process of a software system product conforms to established functional technical

requirements as well as with the managerial requirements of keeping the schedule

and operating within the budgetary confines [9].

2.2.4 Quality Factor

The typical objective of a quality factor is to characterize an aspect of the

quality of a work product or a process [11].

2.2.4.1 Quality Sub-factor

Some factors cannot refer directly to their criteria; they require an extra

intermediate level to compute. Elements of this intermediate level are sub-factors.

For example, in Boehm's model, maintainability as factor refers to three sub-factors:

Testability, understandability, and modifiability [11].

The typical objectives of a quality sub-factor are to [11]

 Characterize a part of a quality factor.

 Further, characterize an aspect of the quality of a work product or process.

 Help in defining the term “quality” for an endeavor.

9

2.2.5 Quality Metrics

2.2.5.1 Definition

A metric is a quantifiable measurement of software product, process, or

project that directly observed, calculated, or predicted [12].

2.2.5.2 Main objectives of software quality metrics

 To facilitate management control as well as planning and execution of the

appropriate managerial interventions. Achievement of this objective based on

calculation of metrics regarding [11]:

 Deviations of actual functional (quality) performance from planned

performance.

 Deviations of actual timetable and budget performance from planned

performance.

 To identify situations that require or enable development or maintenance process

improvement in the form of preventive or corrective actions introduced

throughout the organization. Achievement of this objective based on

Accumulation of metrics information regarding the performance of teams, units,

etc. [11]

An approach to quality is to decompose quality in Factors, Sub-factors, and

criteria. Evaluation of a program begins with measuring each quality criteria with

numerical value from metrics. Then, each quality sub-factors assessed using their

criteria. Finally, numerical value assigned to quality characteristics from their

quality sub factors [11]. See figure (2.1).

10

Figure (2.1) Relationship among quality model elements [10].

2.3 Related Work

2.3.1 A Quality Model for Evaluating Reusability of Services in SOA

Si Won Choi et al. [14] evaluated the SOA based on reusability, the

“reusability of services is a key criterion for evaluating the quality of services”.

They extracted the key feature of service in SOA (Commonality of Services,

Modularity of Services, well-defined interface, Loosely-Couple Nature,

Heterogeneity, Standardization, Subscription-based Invocation, evolve ability of

Service, Limited Manageability, Partial Matching and Adaptability, Business

Aligned) [14]. They defined the reusability of service as “the degree to which the

service can be used in more than one business process or service application,

without having much overhead to discover, configure, and invoke it”. They derived

quality attributes from the key features of services, as shown in figure (2.2)

The solid arrow indicates Strongly Derives mapping and the dashed arrow

indicates Weakly Derives mapping see Figure (2.2) [14].

11

Figure (2.2) the relation between feature and quality attributes [14].

 They defined metrics for each quality attribute.

2.3.2 A Quality Model for Evaluating Software-as-a-Service in Cloud

Computing

Lee et al. [15] proposed a comprehensive model for evaluating quality of

SaaS. In the first they defined key features of SaaS (Reusability, Data Managed by

Provider, Service Customizability, Availability, Scalability, pay per Use) based on

CC (Cloud Computing). Then, they derived quality attributes from the key features.

Based on ISO/IEC 9126, Efficiency and Reliability extended to cover CC specific

features. Derived from the key features, Reusability, Availability, and Scalability

are newly defined see Figure (2.3) [15].

12

Figure (2.3) Mapping from Feature to Quality Attributes [15].

Finally, defined metrics for this quality’s attributes [15].

2.3.3 A Software Quality Model for SOA

Goeb et al. [16] introduced a unifying notion to model (a meta-model) the

quality of SOA systems. Its leads to a trisection of concepts into goals, facts and

measures: To evaluate the achievement level for defined quality goals, certain

system properties (facts) considered which in turn quantified using measures. They

Introduces quality-related activities used in the model (Understanding,

Consumption, Support, Service Reuse, and Extension) with explain of any one.

They presented some factors that influence quality relevant activities (some of them

not all, Because of the limited space) [16]. Finally, they showed number of measures

in the SOA quality model and each measure identified by a unique ID. For the same

reason they not presented all measures for all factor in the model [16].

13

2.3.4 Quality Assurance and Integration Testing Aspects in Web Based

Applications

Khan et al. [17] wanted to make integration testing for web application and

suggested the following major characteristics of different web applications like [17]:

 Network intensive: Web applications delivered to a diverse community of

users.

 Content: It is heavily content-driven because it has different content textual,

graphic and so on.

 Continuous evolution: These applications updated on the regular interval,

even some applications updated on hourly.

 Short development schedule: These applications have very short time for the

development.

 Security: Because there is different people are use web application. It is

difficult to keep data secure with regular method of security.

 Aesthetic.

Some other characteristics such as distributed, heterogeneity, autonomous,

dynamic, hypermedia, and multiplatform support, ubiquitous are very important to

understand [17]. They said the quality is satisfaction of customer base on According

to IEEE. “Customer Satisfaction = Compliant Product + Good Quality +

Delivery within Schedule and Budget” [17]. They used integration testing because

it is sure that modules and their interfaces in an application interact with each other

in a correct and secure way [17]. Integration testing covers following types of

concerning areas during integrating different modules [17]:

 Calls of different software components, while interacting to each other.

 Data and information sharing between the modules in proper manners.

 Compatibility, which ensures one module that does not effect on the

performance and functionality of the other modules.

14

 Non-functional issues.

The integration testing it became difficult for different reason like (large size,

multilingual components and use of different operating systems). However, the

most important and commonly known challenges during integration testing are [17]:

 Heterogeneous Infrastructure and Environment: The assurance of

compatibility and interoperability between these components is one of major

concern during the testing process.

 Service Oriented Environment: Web services and SOA demand very explicit

inputs and outputs. In this environment many applications send only update

or received messages, there is no guarantee that data came from system A to

system B is accurate.

 Heterogeneous Database.

 Inconsistent Interaction Models: Control protocols are responsible of

defining rules that how integrated components interact to each other. Data

models define the contents and format of communication between them.

 Distributed Nature of Systems: Distributed nature of systems can have great

impact on working of Web-based applications and these issues can solved

during integration testing.

2.3.5 A survey on Software as a service (SaaS) Using Quality Model in

Cloud Computing

Dehmi Kalan et al. [18] tried to build comprehensive quality model for

evaluation SaaS. In first step they extracted key features of SaaS from them

evaluation on current references in cloud computing. See the figure (2.4) [18].

15

Figure (2.4) the key feature of SaaS [18].

The quality model that they proposed consist of three factors, i.e. security,

quality of service and software quality. As SaaS, service involved three roles or

perspective (customer, platform and application developer). Each quality factor

categorized into three parts. They took Security with three roles like (Customer

Security, Application Security and Network Security) [18].

2.3.6 A New Software Quality Model for Evaluating COTS

(Commercial of the Shelf) Components

Rawashdeh et al. [19] studied different type of quality model. Hierarchy

models like (McCall’s, Boehm’s, FURPS, and ISO/IEC 9126) and non-hierarchy

models like (Triangle and Quality Cube). After that, they mixed between them to

build comprehensive model that covering the different perspective for different

stakeholder [19]. For methodology, at first they defined small set of attributes

(Functionality, Reliability, Usability, Efficiency, Maintainability, and

Manageability). Then Distinguish between internal and external metrics. For COTS

components. As next step they Identify Stakeholders (type of users) for each high-

level quality attribute. Lastly, they put the pieces together as new quality model [19].

 The distinction between internal and external metrics led us to realize that

external metrics is more appropriate for COTS components [19].

16

 The base of new model was ISO 9126 because it includes the common software

quality characteristics that supported by the other model [19].

2.3.7 Integration architecture: Comparing web APIs with service-

oriented architecture and enterprise application integration

Clark et al. [20] say the web APIs technique considered to be better than other

two techniques (Application-programming interfaces (APIs), enterprise application

integration), but it is important to recognize that the patterns, techniques, and

concepts developed along the way, such as hub and spoke architecture and SOA,

are still relevant and appropriate in the right circumstances [13]. The SOA is better

than Application programming interfaces (APIs) because it more secure and we will

hide the details of code and procedure from consumer and we just pass parameter

via URL. In addition, the researchers mentioned that the SOA increase business

ownership, decoupling and broadening audience more than other techniques [13].

2.3.8 Discus of Previous Studies

Based on the previous studies and our research on internet, we found there is no

quality model dedicated to evaluate the point of integrated system but there are

many models to evaluate the technique of integration like (SOA). Those models

that are evaluate the techniques not cover all attributes that are related to integration

concept. This is research used the existing attributes in research that is related to the

SOA and expanded by adding new attributes to cover all aspect of integration.

Chapter Three
Methodology

17

3.1 Introduction

At this chapter, we built the Quality Model for integrated Systems by selecting

the quality attributes or sub quality attributes. These attributes are related to

integration and SOA concept. In addition, we extracted the metrics of these

attributes.

3.2 Methodology

There’re no quality models dedicated to the integrated systems, but there’re

some studies talking about some quality attributes related to SOA. and the effect of

the SOA when we use it. Therefore, the research idea concerned about building

quality model to evaluate the integrated systems.

In order to build the model used to evaluate quality of integrated system the

following steps need to be followed see figure (3.1)

18

Select Quality
factor from
literature.

Identify metrics
for each factor.

Select Target
Systems

Build Web
Service

(Integration)

evaluate the
quality of

integrated system.

Result

Figure (3.1) the research methodology.

19

3.2.1 Select Quality Factor

To build a model which contains a number of quality factors that selected from

literature review to suit the systems that will be integrated. The quality factors that

have been selected based on SOA, as well as quality factors that affected by the

integration, which are mentioned below

 Usability Interfaces ware well-built and described [19]. Reusability of

services can be considered as a key criterion for evaluating the quality of services

[15].

 Reliability A system that built using service-oriented architecture and

provides many services will work well even if there’s failure occurs in a specific

service. the rest of services never stop [15].

 Performance Means different things in different contexts [17] Response

time, how long does it take to process a request? Throughput how many requests

overall can be processed per unit of time. Timeliness ability to meet deadlines.

 Maintainability covers two main attributes [19] (Modifiability and

Testability) Extensibility is a special case of Modifiability. Capabilities can be

extended without affecting other parts of the system (services). Testability Testing

is the root of quality. all services can be tested to detect any kind of errors.

 Correctness Means these services or interfaces we built are doing the right

things that we built them to [21].

3.2.2 Identify Metrics for Each Factor

3.2.2.1 Usability and Reusability

In this case, we found out that the usability and reusability are concerned with

information that related with web services that mentioned in WSDL. We consider

that usability includes reusability since that if the web services are usable then they

are already reusable.

20

1. Usability

Is the measure of ease and effectiveness when users use the service or/and

assemble it to their systems [2].

 There are two metrics for the usability. The Syntactic and the Semantic

Completeness of Service Interface. The completeness means how many well

described service operations are there in the service interface [20].

 Syntactic Completeness of Service Interface (SynCSI)

The syntactic elements indicate to the contents of service operations [20].

SynCSI =
Well Described Syntactic Elements

Total Number of Syntactic Elements In WSDL

 Semantic Completeness of Service Interface (SemCSI)

The semantic elements indicate to the contents of semantic information of

service operation. such as pre condition, post condition, constraint and so on. There

is no standard way to describe the semantic of services. It is still in research area

[20].

SynCSI =
Well Described Semantic Elements

Total Number of Semantic Elements In WSDL

2. Reusability

SOA developed with a hope to enhance the reusability of services. Due the

ability to work with independence for specific environment. The selected metrics of

the reusability based on reuse metrics for component. According to the five metrics

that used to measure the component based. Three of them are relevant to web service

[19].

21

These are the selected metrics

 Existence of meta-information (EMI)

This is a specification that describes functions, protocol and interface of service.

Value of metric is zero when there is no specification and one if there is a

specification provided [19].

 Self-Completeness of Service’s Return Value (SCSr)

If a business method has no return value, it will not relate with objects that use

it. Therefore, this method is more independent and has higher portability [19].

𝑆𝐶𝑆𝑟(𝑆) =
∑ 𝑀𝑏𝑟

𝑀𝑏

Where

 Mbr is sum of methods that have not return value.

 Mb is the sum of method in an encapsulated unit.

 Self-Completeness of Service’s Parameter (SCSp)

If a business method has no argument, it will not depend on objects that use it

[19].

𝑆𝐶𝑆𝑝(𝑆) =
∑ 𝑀𝑏𝑝

𝑀𝑏

Where

 Mbp is sum of methods that have not argument.

 Mb is the sum of method in an encapsulated unit.

3.2.2.2 Reliability

To measure the reliability, two attributes are used: recoverability and

availability. They focus on repair the system as soon as possible after failure.

We measured two metrics

22

 Mean Time to Repair (MTTR)

The unit of measurement for this metrics will be seconds, minutes or hours. It is

the time between two failures.

 Mean Time Between Failures (MTBF)

3.2.2.3 Performance

Measuring the performance introduces three characteristic. Response time,

Throughput and Timeliness.

 Service Response Time (SRT)

The metrics of SRT is the time between service request ending and request

response beginning [20].

The equation

 The lower of SRT indicator to higher response time of service.

 Throughput of Service (TP SRV)

Number of requests served at specific period [20].

The equation

 The Higher of (TP SRV) indicator to better performance.

TP (SRV) = Number of Complete Service Requests / Unit of Time.

SRT = Time when Service Consumer finishes sending request to the service

– Time when Service Consumer starts receiving response from the service

The value of MTBF will be always more than zero.

 MTBF = summations of time between failures / total number of failures.

Alternatively, MTBF = (Total up time) / (number of breakdowns).

Mean Time to Repair = (Total down time) / (number of breakdowns).

23

 Unit of Time can be measure by second, minute, hour…

 Timeliness

The measure of this attribute can be Yes or No. if they meet the deadlines of

process (request) or not [20].

3.2.2.4 Maintainability

This is a characteristic for feature revision. We get the benefits of it after finish.

It’s divided into two attributes modifiability and testability.

1. Modifiability

 The modifiability attribute has many sub attributes that can be measured.

However, this model only covers the extensibility as sub attribute because it is the

only attribute that effected by SOA and the concept of integration. There is a need

to extend the services to get more benefits of collaboration of sub system [22].

1.1 Extensibility

 This attribute represents the number of interfaces (services) that can be built

and added to our system [22].

Metrics

2. Testability

The target of this attribute is to test validation of built interface. Also it can be

used to test the future modification. The target of this test to get zero defect [4].

 In case of web service, this attribute tries to check all functions using different

cases of input (date type, wrong value and true value even that may cause

exception). The metrics showed below is going to measure the testability.

Metrics

The real time request <= the deadline time we put

it.

Number of interfaces that we add to our systems to integrate (# interface).

Number of test case per a method or function (TC per M). The

unit of measurement for this metrics will be test case/method.

24

3.2.2.5 Correctness

Correctness can be defined as the degree of which the system (services) performs

the specified function. Alternatively, the degree of system (services) to satisfy the

specifications or user’s mission objectives [21].

Metrics

 Defects per KLOC - most common measure for correctness (Defects per

KLOC).

 Defects ware counted over a specific period (Defects per period).

 Number of non-conformance service / total number of services (percentage

of Non-CS) [21].

25

Q
u

al
it

y
M

o
d

el

Reusability

EMI

SCSr

SCSp

Reliability

MTTR

MTBF

Usability

SemCSI

SynCSI

Performance

Response time SRT

Throughput TP SRV

Timeliness Meet Deadline

Modifiability

Extensibility # interface

Testability # TC per M

Correctness

Defects per KLOC

Defects per period

Percentage of Non-CS

Figure (3.2) Quality Model of integration Systems

26

3.2.3 Select Target Systems

Midlife company is a Medicine Company. They have comprehensive system

used to manage the internal process that occur within the company. They support

many pharmacies by medicine. Those pharmacies either have their own systems or

they want to buy new one. In this context, there will be external process that occur

between midlife and other pharmacies such as exchange information about medicine

(Name, Barcode and so on) or information related to insurance company that stored

in midlife such as percentage of Lowering on medicine, people or for both. Probably

the two sides will be both consumer and provider services.

We selected the midlife’s system as first system. On other side, we selected one

of pharmacy’s systems. We want to integrate these two systems to build one system

that can increase the connectivity between the two sides and get the goals of midlife.

3.2.4 Build Web Service (Integration)

The web service built based on java programing language, the midlife’s system

developed using PHP language and the pharmacy system developed by C# one of

.NET programing language. NetBeans IDE is a tool that we used to build the web

services.

We built web services to integrate the selected system at specific points. We

built four functions one of them especially for medicine to get all information about

medicine from midlife’s database to be unified for all pharmacies, and the other

three functions related to insurance information.

These are the ordered steps to be followed in building the web service:

1- Select the programming language that will be used to build web service.

2- Select the IDE based on language.

3- Understand the two systems and identify the points of integration.

4- Build the web service as server side using soap techniques.

27

5- Use the web service interface that built in two systems to transfer the data.

3.2.5 Apply the Model on Systems

The final version of the system after integration considered as case study to

experiment our quality model. We used the metrics questions or equation to get the

results. Chapter four is going to discuss the result of evaluation in more details.

Chapter Four
Model implementation & Result

28

4.1 Introduction

 At this chapter, we applied the built quality model at the point of integration

of selected systems and got results.

4.2 Apply the Model on System

4.2.1 Reusability & Usability

4.2.1.1 Existence of meta-information (EMI)

The web service supports us by information such as Name, Port, and URL…

automatically without any additional work. In addition, we have WSDL that

contains more information about function and parameter (number, received, return

and Data Type). Figure 4.1 illustrate the result of built web service generated

automatically.

Figure (4.1) information about web services.

 As information mentioned previously, the EMI is one.

4.2.1.2 Self-Completeness of Service’s Return Value (SCSr)

29

𝑺𝑪𝑺𝒓 =
∑ 𝑴𝒃𝒓

∑ 𝑴𝒃
 =

𝟏

𝟒
 = 0.25 = 25%

4.2.1.3 Self-Completeness of Service’s Parameter (SCSp)

𝑺𝑪𝑺𝒓 =
∑ 𝑴𝒃𝒑

∑ 𝑴𝒃
 =

𝟏

𝟒
 = 0.25 = 25%

Note: we use the web service within enterprise. So, we do not focus on unknown

parameter for other people. However, if we need to measure public web service that

is available for all people then it will be inefficient.

4.2.1.4 Result

After measuring the reusability and usability, it came out during the use of

SOA on integration, the reusability was high and the usability was normal.

4.2.2 Reliability

4.2.2.1 Mean Time to Repair (MTTR)

Mean Time to Repair = (Total down time) / (number of breakdowns).

All system failure according to the database the MTTR = 48 h / 2 = 24 h/break.

But if we are not taking the database failure in consideration the MTTR = zero

h/break.

4.2.2.2 Mean Time Between Failures (MTBF)

MTBF = summations of time between failures / total number of failures

All system failure according to the database the MTBF = 33 d / 2 = 16.5

day/failure. But if we are not taking the database failure in consideration the

MTTR = 0 h/break.

30

4.2.2.3 Result

After measuring the Reliability, it came out during the use of SOA on

integration, the Reliability was high, and all problems that were not related to the

integration were eliminated.

4.2.3 Performance

Table 4.1 explain the experiments of measure the time of send the request,

time of receive the response and the different between two time on ten different

experiments.

Table (4.1) illustrates the experiments results

Time Request Time Response Different Between Two Time

1 1119 1587 468

2 3309 3777 468

3 9501 9969 468

4 2670 2826 156

5 9311 9779 468

6 1999 2311 312

7 3957 4425 468

8 2940 3252 312

9 4096 4564 468

10 1949 2417 468

Notes: Time measured by millisecond.

4.2.3.1 Service Response Time (SRT)

STR = (468+468+468+156+468+312+468+312+468+468)/10 = 405.6

milliseconds.

4.2.3.2 Throughput of Service (TPSRV)

From the previous table we can calculate the (TPSRV) = 2 Request/Second.

31

4.2.3.3 Timeliness

The timeliness we accepted is 1 second. According to table (4.1), the

timeliness has been achieved.

4.2.3.4 Result

After measuring the performance, it came out during the use of SOA to

integrate systems; the performance was not effected and still accepted.

4.2.4 Modifiability

4.2.4.1 Extensibility

In case of SOA, the characteristic of extensibility it is not a problem because

of the web service independence, and the number of interfaces that can be added

depends on our capability of equipment such as servers, network and so on.

Interface that can be added = ∞. Based on our capability and needs.

4.2.4.2 Testability

Some test cases are automatically created when we create web services.

32

Figure (4.2) generated test methods.

 #Test case per a method or function (TC per M) = one test case/method.

4.2.4.3 Result

Because of the nature of SOA, there is very high ability to extend function,

equipment and so on. Moreover, it generates test case automatically then there is

high Modifiability.

4.2.5 Correctness

4.2.5.1 Defects per KLOC - most common measure for correctness (Defects

per KLOC)

The measure only applied on integration points (web services).

Defects per KLOC = zero defects.

4.2.5.2 Defects ware counted over a specified period (Defects per period)

Over two weeks there is zero defects causing failure (stopped service),

except network problems. However, there is one function returned exception in one

case.

4.2.5.3 Number of non-conformance service / total number of services

(percentage of Non-CS)

All services are conformance to the specification then the percentage of

Non-CSs are 0%.

4.2.5.4 Result

After measuring the Correctness, it came out during the use of SOA to

integrate systems; the precision of correctness reached its best cases.

33

4.2.6 Results Summary

After applying quality model on integrated system, the results gained from

the measuring process were high rate for the reusability, correctness, reliability

and extensibility. Moreover, normal rate for the testability, usability and

performance. Knowing that the extensibility is high and the testability is normal,

regarding to the fact that both of them are sub-attribute of modifiability, the

worst case will be chosen; which is normal. Table 4.2 show all results.

Table (4.2) Show the results of implementation.

Attributes Metrics Result

Reusability & Usability Existence of meta-information One (Zero or One)

Self-Completeness of Service’s

Return Value

25%

Self-Completeness of Service’s

Parameter

25%

Reliability Mean Time to Repair Zero hour/break.

Mean Time Between Failures Zero day/failure

Performance Service Response Time 405.6 milliseconds.

Throughput of Service 2 Request/Second.

Timeliness 405 milliseconds

(accepted Time is one

second).

Modifiability Extensibility ∞ infinite

Testability One test case/method

Correctness Defects per KLOC zero defects per codes

Defects per period Zero per 2 weeks

percentage of Non-CS 0%

34

Chapter Five
Conclusions and Recommendations

34

5.1 Conclusions

The result of this research is a quality model dedicated to evaluate the

systems after being integrated by the SOA technique. The model includes a set of

quality attributes selected based on the concepts of integration and SOA. The

metrics used to measure these attributes were then determined by applying this

model to the final system by linking two pre-selected systems and integrate them by

building Web service as an implementation for SOA technology.

5.2 Recommendation

As a complement to this Study, there are some recommendations for

researchers in this subject to improve the quality model:

 Add a security attribute to the quality model. Because security is a large

concept and it needs intensive research than the rest of the other attributes

and cannot be taken in short or partial way.

 Extend the metrics that used to measure the attributes of the model.

 Apply the model in different similar cases or systems (using same

techniques) and compare the results.

35

6. Reference

1. Balfagih, Zain, and Mohd Fadzil Hassan. "Quality model for web services

from multi-stakeholders' perspective." Information Management and

Engineering, 2009. ICIME'09. International Conference on. IEEE, 2009.

2. Deissenboeck, Florian, et al. "Software quality models: Purposes, usage

scenarios and requirements." Software Quality, 2009. WOSQ'09. ICSE

Workshop on. IEEE, 2009.

3. Sage, Andrew P., and William B. Rouse, eds. Handbook of systems

engineering and management. John Wiley & Sons, 2009.

4. Land, Rikard, and Ivica Crnkovic. "Existing approaches to software

integration and a challenge for the future." integration 40 (2004): 58-104.

5. IEEE, IEEE Standard Glossary of Software Engineering Terminology, report

IEEE Std 610.12-1990, IEEE, 1990.

6. Losavio, Francisca, Dinarle Ortega, and María Pérez. "Modeling EAI

[Enterprise Application Integration]." Computer Science Society, 2002.

SCCC 2002. Proceedings. 22nd International Conference of the Chilean.

IEEE, 2002.

7. Lin, Goh Chun, et al. "A Fresh Graduate’s Guide to Software Development

Tools and Technologies." National University of Singapore (2011).

8. Munassar, Nabil Mohammed Ali, and A. Govardhan. "A comparison between

five models of software engineering." IJCSI 5 (2010): 95-101.

9. Sommerville Ian Software Engineering 8 Edition Pearson Education 2007

10. Milicic, Drazen. "Software quality models and philosophies." Software

quality attributes and trade-offs (2005): 3-19.

11. Khosravi, Khashayar, and Yann-Gaël Guéhéneuc. "A quality model for

design patterns." University of Montreal, Tech. Rep (2004).

12. Farooq, Sheikh Umar, S. M. K. Quadri, and Nesar Ahmad. "Software

measurements and metrics: Role in effective software testing." International

36

Journal of Engineering Science and Technology (IJEST) 3.1 (2011): 671-

680.

13. Clark, Kim J. "Integration architecture: Comparing web APIs with service-

oriented architecture and enterprise application integration." (2015).

14. Choi, Si Won, and Soo Dong Kim. "A quality model for evaluating

reusability of services in soa." E-Commerce Technology and the Fifth IEEE

Conference on Enterprise Computing, E-Commerce and E-Services, 2008

10th IEEE Conference on. IEEE, 2008.

15. Lee, Jae Yoo, Jung Woo Lee, and Soo Dong Kim. "A quality model for

evaluating software-as-a-service in cloud computing." Software Engineering

Research, Management and Applications, 2009. SERA'09. 7th ACIS

International Conference on. IEEE, 2009.

16. Goeb, Andreas, and Klaus Lochmann. "A software quality model for SOA."

Proceedings of the 8th international workshop on Software quality. ACM,

2011.

17. Khan, Imran Akhtar, and Roopa Singh. "Quality assurance and integration

testing aspects in web based applications." arXiv preprint arXiv:1207.3213

(2012).

18. Dehmi Kalan, Jaipur and Dehmi Kalan, Jaipur “A survey on Software as a

service (SaaS) using quality model in cloud computing" January 2014 Page

No. 3598-3602 (2014).

19. Rawashdeh, Adnan, and Bassem Matalkah. "A new software quality model

for evaluating COTS components." Journal of Computer Science 2.4 (2006):

373-381.

20. Choi, Si Won, Jin Sun Her, and Soo Dong Kim. "Modeling QoS attributes

and metrics for evaluating services in SOA considering consumers'

perspective as the first class requirement." Asia-Pacific Service Computing

Conference, the 2nd IEEE. IEEE, 2007.

37

21. How to calculate Software Quality Attributes, 20-7-2017 12:34 PM,

http//www.qasigma.com/2008/12/how-to-calculate-software-quality-

attributes.html.

22. Ahenkan, Nana. ASSESSING THE IMPORTANCE OF QUALITY

ATTRIBUTES AND METRICS IN MOBILE GEOGRAPHICAL

INFORMATION SYSTEMS (GIS) APPLICATIONS. MS thesis. 2010.

