Dedication

To the candle that is burring for me, my dear parent

To my extraordinary supporter, my friend Abdurrahman

Mohammad Nor

To all my reader

Acknowledgements

I am extremely grateful to many people who have supported me during this research

Firstly, I would like to thank my supervisor autaz Hussein Ahemad Hassan, for continuous guidance, assistance, endless advice during and through out this research.

I would also like to thank all of technologist with whom I work in the two centers and helping, diagnosing the CT images.

Abstract

The objectives of this study is to evaluate the accuracy of computerized tomography urography (CTU) in diagnoses the underlying pathology of hydronephrosis, minimize the radiation dose, examination cost, and time to reach the final diagnoses.

The study performed in two hospitals: AL Ribat University Hospital and Khartoum scan centre -Bahri, during the period from March to August 2009. Siemens somatom sensation 16 slice helical CT scan apparatus was used. Abd Routine protocol was performed with or without administration of Amanopaque as contrast media.

A total of 63 patients with hydronephrosis CTU detected the underlying pathology of hydronephrosis in59 out of 63(93.7%), and failed in 4 cases to detect it, although CTU detect the presence of hydronephrosis in these cases. These cases include, one case of lower ureteric ligation during surgical operation, one case of urinary tract neoplasm ,and two cases of chronic inflammatory of urinary tract.

CT has become promising modality for diagnosing the underlying pathology of hydronephrosis, and concluded to that CTU is good protocol for demonstration the underlying pathology of hydronephrosis than IVU and U/S.

The study provided assorts of recommendations in how to select the imaging modalities and imaging step of patients that high suggested hydronephrosis, and revealed the problems that need more research and studies.

ملخص الدراسه

هدفت هذه الدراسه الى تقييم فحص الاشعه المقطيه الملون للجهاز البولى فى تشخيص الامراض

المسببه للتموه الكلوى,وذلك لتقليل تعرض المرضى للاشعه المؤنيه وتقليل .تكلفة الفحوصات والزمن المطلوب للوصول للتشخيص النهائي

صممت هذه الدراسه بمستشفى الرباط الجامعى ومركز السودان للتشخيص بحرى فى الفتره من مارس الى اغسطس لعام 2009

استخدم فى هذه الدراسه جهاز اشعه مقطعيه حلزونى ذو 16 مقطع فى كل تعرض لشركة سيمنس باستخدام فحص البطن العادى مع او بدون مادة الامينوبيق كماده ملونه

فى 63 مريض بالتموه الكلوى نجح الفحص فى تشخيص الامراض المسببه له فى 59 مريض بالتموه (93.7) وفشل فى تحديد الامراض المسببه للتموه الكلوى فى اربعة حالات,مع انه اشار بوضوح لوجود التموه الكلوى. وتشمل هذه الحالات ,حاله واحده ربط اسفل الحالب اثناء عمليه جراحيه,حاله واحدة وجود خلايا سرطانيه بالجهاز البولى,وحالتين التهاب مزمن بالجهاز البولى

وقد اقترحت الدراسه ان الاشعه المقطيه هى افضل الخيارات لتصوير الامراض المسببه للتموه الكلوى,كما ان الدراسه خلصت الى ان فحص الاعه المقطعيه الملون افضل فى تشخيض هذا المرض من الاشعه الملونه والموجات الصوتيه

قدمت الدراسه عدة توصيات في كيفية اختيار طريقة التصوير وخطواته للمرضى الذين يعانون من التموه الكلوي

Contents

N0	Title	Page
1	Dedication	6
2	Acknowledgements	6
3	ABSTRACT	6
4	ABSTRACT(Arabic)	6
5	Contents	6
6	Contents of figures	VI
7	Abbreviation	VII
3	Introduction	1
4	The objectives	8
5	Literature review	9
6	Anatomy of the Kidneys and Urinary System	9
7	Physiology of UT	12
8	Hydronephrosis	12
9	CT urography	20
10	previous studies	23

11	Method and materials	25
12	Materials	25
13	The methodology	27
14	The technique used in this study	28
15	Results	30
16	The data presentation	32
17	Discussion	47
18	Conclusions	50
19	Recommendations	51
20	References	52

Contents of figures

N0	Title	Page
1	Fig2: 1 Parts of urinary tract	11
2	Fig2:2 Parts of kidney	11
3	Fig2:3 Hydronephrosis Kidney	14
4	Fig2: 4 IVUand CT shows obstructive kidney by stone	16
5	Fig2:5 CT image shows hydronephrosis and hydroureter	17
6	Fig2:6 CT image shows soft tissue density caused hydronephrosis	17
7	Fig2:7 CT increased sot tissue density caused hydronephrosis	18
8	Fig2:8IVUandCT images shows Retrocaval ureter caused hydronephrosis	19
9	Fig 4;1 gender of patients	36
10	Fig 4:2 percentage of underlying pathology of hydronephrosis in 63patient by the three modalities	37
11	Fig 4:3 the percentage of urinary tract stones in41 patients by ct	38
13	Fig 4:4 the percentage of urinary tract stones in 41 patients by u/s	39
12	Fig 4:5 percentage of urinary tract stones in 33 patients by IVU	40
14	Fig 4:6 the percentage of masse in 7patient by ct	41
15	Fig4:7 the percentage of masses in 7 patient by u/s	42
16	Fig 4:8 percentage of masses in5 patient by IVU	43

17	Fig 4:9 UB CA percentage by IVU	44
18	Fig 4:10 U/S Percentage of UB CA in 4 patients	45
19	Fig :4-11 the percentage of UB CA in4 patient by ct	46
20	Fig 4:12 the percentage of urinary tract tumor in five patients by CT	47
21	Fig 4:13 the percentage of urinary tract tumor in 5 patients by U/S	48
22	Fig 4:14 the percentage of tumor in five patients by IVU	49

Abbreviation

CT:-computerized tomography

CTU;-computerized tomography urography

CTKUB: computerized tomography, Kidneys, Ureters.

Bladder

U/S;-ultra sound

IVU;-intra venous urography

UB:-urinary bladder

IV:-intra venous

IRCS: intra renal collecting system

mSv: millisever eg:-example

3D:three dimension UT:-urinary tract

BUN: blood urea nitrogen

MPR:- multi planner reconstruction MIP:-maximum intensity projection

Abd:-abdomen mGy:-milligray KV: kilo voltage

MAS: milliampare second

Sec: second