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 ABSTRACT 

proportional, integral and derivative (PID) controllers have become the most 

popular control strategy in industrial processes due to the versatility and tunning 

capabilities. The incorporation of auto-tunning tools have increased the use of this 

kind of controllers. The PID-controllers are often badly tuned, since it is too time 

consuming to calculate good PID-parameters at the time of deployment.  

This work investigates the applicability of artificial neural networks to control 

systems. The main properties of neural networks are identified as of major interest to 

this field: their ability to implement nonlinear mappings, their massively parallel 

structure and their capacity to adapt. 

This study suggests a certain technique to apply neural networks for the tuning of the 

PID controller‟s gains in a way human tune the gains depending on the 

environmental and systems requirements. Error Back-Propagation (BP) method is 

used as the tuning method for the controller which is also known as BP method and 

this method works on the local minima algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 مستخلص

  الؼوليبد  في شيْػبً   اسزشاريجيخ الزحكنأكثش الزكبهليخ   الزفبضليخ   الزحكن  الزٌبسجيخ  أصجحذ أجِضح        

سزخذام ُزا إّلذ أدٓ دهج أدّاد الزْليف الٔ  صيبدح  هكبًيخ رْليف الوؼبهلاد .إثسجت رؼذد المذساد ّ الصٌبػيخ 

هؼبهلاد الوزحكن الزٌبسجٔ الزكبهلٔ الزفبضلٔ يزن ثصْسح ػبهخ فبى رْليف  ثصْسح الٌْع هي ّحذاد الزحكن

 .ًظشا لأًَ يسزِلك ّلزب طْيلا لحسبة ُزٍ  الوؼبهلاد كبى الزْليف يذّيبسيئخ خبصخ ارا 

سبسيخ فٔ أًظوخ الزحكن . الخبصيخ الأطجيك الشجكبد الؼصجيخ الاصطٌبػيخ فٔ رُزا الؼول يجحث في اهكبًيخ         

ػوليبد غيش خطيخ ّالِيكلخ الوزْاصيخ ػلٔ ًطبق ّاسغ  لذسرِب ػلٔ رٌفيز ُي الاصطٌبػيخالشجكبد الؼصجيخ 

 .ّكزلك لذسرِب ػلٔ الزكيف

رمزشح ُزٍ الذساسخ  رمٌيخ هؼيٌخ لزطجيك الشجكبد الؼصجيخ لضجظ ّرْليف هؼبهلاد   الوزحكن الزٌبسجٔ الزفبضلٔ 

ّرؼول ُزٍ الطشيمخ ػلٔ الإًزشبس الؼكسي طشيمخ خطأ  سزخذامن إرّ ػزوبدا ػلٔ  هزطلجبد  الٌظبمإالزكبهلٔ 

 .خْاسصهيخ الحذ الأدًٔ الوحلي
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  CHAPTER ONE  

INTRODUCTION 

1.1 General Review 

PID controllers are widely used in industrial processes, and can be implemented in 

different ways: as a stand-alone regulator or as a distributed component of a control 

system. Systems with slow dynamics and few performance requirements, as most 

industrial processes, can be easily controlled using a PID strategy. The incorporation 

of microprocessors in control systems has modified the meaning of controller‟s 

operational characteristics as well as its algorithms. This fact has made possible self-

diagnosis and auto tuning. 

PID controllers are often implemented with poor tuning, that deteriorates the system 

performance, in order to let the controlled system work under different conditions [1]. 

As known from the literature, the auto tuning procedure is performed on the demand 

of the user, or colloquially after a „button push‟. Thus, it is not performed 

continuously in the adaptation loop, but rather when the need for tuning or re-tuning 

arises. This technique reiterates the design steps which the control engineer performs 

during the design of the controller. Firstly, a simple experiment is performed which 

determines some characteristics of the process. After that, using the data obtained, the 

controller parameters are calculated, and the designed controller is started. Such a 

feature of modern controllers is particularly useful during commissioning of control 

systems. Besides, auto tuning can also be used for the build-up of the table of 

controller parameters for gain scheduling [2]. 

Several robust and auto tuning techniques have been proposed in order to further 

improve the control and robust performance of the PID controller, recently, PID 

Neural Network (PIDNN) controller is one of the popular methods used for control 

complexes systems. The Ziegler and Nichols [1] methods are the most common PID 

tuning procedures. These methods are very simple and require few information of the 

system. 

1.2 Problem Statement 

PID controller model structure needs to be very precise. But in practical applications, 
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 to different extent, most of the industrial processes exist to be nonlinear, the 

variability of parameters and the uncertainty of model are very high, thus using 

conventional PID control the precise control of the process cannot be achieved. The 

common methods known for tuning require the process model to be of a certain type, 

for example as in the case of a „First order plus dead time‟ model. These methods 

require the process model to be reduced if it‟s too complicated originally. The above 

problems can be well addressed by the application of soft-computing methods for 

tuning of the PID controller. These are especially useful for solving problems of 

computationally complicated and mathematically in traceable. This is due to the 

convenience of combining natural systems with intelligent machines effectively with 

the help of soft-computing methods. Among these entire soft-computing methods 

available neural network, fuzzy logic and genetic algorithm are the most important 

ones. 

By the implementation of the knowledge of Artificial neural network in PID 

controller, the system response of the plant can be improved. The overshoot and the 

rise time of the response can be decreased and the dynamic performance of the 

system can also be improved. 

1.3 Objectives 

The main objective of the research reported in this thesis is to study the effectiveness 

of knowledge based adaptive control with particular emphasis on servo motor control. 

ANN is used for expressing the knowledge base-adaptation in the controller. The 

developed techniques is tested and experimented. These experimental results are 

compared with traditional control techniques, using software and hardware. 

1.4 Methodology 

This research we are proposes a neural network controller design to control a DC 

motor.  

 The training algorithm is used in the ANN is the back-propagation method. 
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 Two feed-forward neural networks are  used, the first neural network is called 

the Model Network; the function of this network will be the same function as 

the DC motor.  

 The second network used is called the PID neural network controller, this 

network has the same function as a PID tuned controller, but the difference is 

that this network capable of updating itself in a manner to improve the 

controller function this is why it is considered to be a smart controller. 

1.5 Research Layout 

 In the following chapter we are going to discuss more about the literature review in 

chapter Two, the methodology in chapter Three, result and analysis of the system in 

chapter Four, and final chapter Five is the conclusion and recommendations.  
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CHAPTER TWO 

THEORETICAL BACKGROUND  

2.1 Introduction 

From the very beginning, it has been realized by systems theorists that most real 

world dynamical systems are nonlinear. However, linearization of such systems 

around the equilibrium states yields linear models, which are mathematically 

obedient. In particular, based on the superposition principle, the output of the system 

can be computed for any arbitrary input, and alternately, in control problems, the 

input, which optimizes the output in some sense, can also be determined with relative 

ease. In most of the adaptive control problems, where the plant parameters are 

assumed to be unknown, the fact that the latter occur linearly makes the estimation 

procedure straightforward. The fact that most nonlinear systems thus far could be 

approximated satisfactorily by linear models in their normal ranges of operation has 

made them attractive in practical contexts as well. It is this combined effect of ease of 

analysis and practical applicability that accounts for the great success of linear 

models and has made them the subject of intensive study for over four decades. In 

recent years, a rapidly advancing technology and a competitive market have required 

systems to operate in many cases in regions in the state space where linear 

approximations are no longer satisfactory. To cope with such nonlinear problems, 

research has been underway on their identification and control using artificial neural 

networks based entirely on measured inputs and outputs. 

From the beginning of systematic automatic controller design there has been the 

problem of finding a proper controller structure and the controller parameters for a 

given process. The main difficulty that comes into sight is the need of the controller 

to be very well tuned for the whole range of its operating points rather than for one 

particular operating point. To overcome these circumstances, adaptive controllers 

were developed in the nineteen forties. Between nineteen sixties and nineteen 

seventies many fundamental areas in control theory were developed which later 

proved to be significant for the design of adaptive control systems, e.g. state space 

and stability theory. 



5 
 

2.2 DC Motor Modeling 

 A common actuator in control systems is the Direct Current (DC) motor. It directly 

provides rotary motion and, coupled with wheels or drums and cables, can provide 

translational motion. The electric equivalent circuit of the armature and the free-body 

diagram of the rotor are shown in the following Figure 2.1 [3]. 

 

Figure 2.1: Structure of DC motor circuit 

For this example, will be assumed that the input of the system is the voltage source 

(V) applied to the motor's armature, while the output is the rotational speed of the 

shaft d(theta)/dt. The rotor and shaft are assumed to be rigid. Will be further assumed 

a viscous friction model, that is, the friction torque is proportional to shaft angular 

velocity.  

The physical parameters for our example are: 

(J)     Moment of inertia of the rotor 0.01kg.m^2 

(b)     Motor viscous friction constant 0.1N.m.s 

(  )   electromotive force constant   0.01V/rad/sec 

(  )    motor torque constant   0.01N.m/Amp 

(R)     Electric resistance    1Ω 

(L)     Electric inductance 0.5H 

In general, the torque generated by a DC motor is proportional to the armature current 

and the strength of the magnetic field. In this example we will assume that the 
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magnetic field is constant and, therefore, that the motor torque is proportional to only 

the armature current i by a constant factor    as shown in the equation below. This is 

referred to as an armature-controlled motor.                                                   

                                                                                                                          (2.1) 

The back emf is proportional to the angular velocity of the shaft by a constant factor 

  . 

     
                                                                                                                    (2.2) 

In SI units, the motor torque and back emf constants are equal, that is, Kt = Ke; 

therefore, we will use K to represent both the motor torque constant and the back emf 

constant[3]. From the Figure 2.1, it can derive the following governing equations 

based on Newton's 2nd law and Kirchhoff's voltage law, we have 

  ̈    ̇                                                                                                               (2.3) 

 
  

  
          ̇                                                                                                (2.4) 

2.2.1. S-domain model 

Applying the Laplace transform, the above modeling equations can be expressed in 

terms of the Laplace variable s, as follows:   

                                                                                                            (2.5) 

                                                                                                             (2.6) 

We arrive at the following open-loop transfer function by eliminating I(s) between 

the two above equations, where the rotational speed is considered the output and the 

armature voltage is considered the input.  

     
 ̇   

    
 

 

               
                                                                                  (2.7) 

2.2.2 State-space model 

In state-space form, the governing equations above can be expressed by choosing the 

rotational speed and electric current as the state variables. Again the armature voltage 

is treated as the input and the rotational speed is chosen as the output.  

  

  
[ ̇
 
]  [

  

 

 

 

  

 

  

 

] [ ̇
 
]  [

 
 

 

]                                                                                  (2.8) 
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  [  ] [ ̇
 
]                                                                                                         (2.9) 

2.3 Proportional Integral Derivative Controllers  

Other than the Artificial Neural Network (ANN) controller two types of conventional 

feedback controllers are used in the present study. One is a Proportional-Integral (PI) 

controller and the other is PID controller. Both these servo controllers are used for 

comparison purposes with the ANN based controller. At implementation the 

controllers were built using a host-target prototyping environment with a compatible 

data acquisition board. In this study a Permanent Magnet (PM) DC motor is adopted 

as the plant. The idealized equation of a proportional-integral (PI) controller is  

      [     
 

  

∫       
 

 

]                                                                                             

in which K is the gain,    is the integral time and e(t) is the feedback error; i.e.,      

e(t) =r(t) – y(t). Where r (t) and y (t) are reference input and the plant output 

respectively The equivalent transfer function in the s-domain is given by 

      [ (  
 

   

)]                                                                                                       

For digital control, Equation (2.11), is transformed into its discrete-time (z-domain) 

equivalent, as given by 

     [  (  
  

     
)]                                                                                              

Or, in velocity form, 

               
    

     
                                                                                  (2.13) 

where 

     
   

   
                                                                                                          (2.14) 

   
   

  
                                                                                                                  (2.15) 

where    is the sampling interval. 

The Proportional, Integral, Derivative controller (or the PID controller) is the most 

popular type of controller used in different engineering applications. The PID 

controller is a form of control loop that has a feedback mechanism. The PID 

controller works by calculating the error signal between an output measured value 
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and a reference value, the controller works to minimize the error signal or the 

difference between the output signal and the reference signal to a minimum value; 

such that the output measured value will be as close as possible to the input 

reference signal [4]. 

The mathematical representation of the PID controller is: 

               ∫          
 

  
    

 

 
                                                      (2.16) 

Where U(t) is the controller output signal, e(t) is the error signal,    is the 

proportional gain,    is the integral gain and    is the derivative gain. 

As shown in Equation (2.16), the PID controller has three parameters, P or 

Proportional term, I or Integral term and D or Derivative term, each one of these 

terms has a gain value related to it, and it makes the controller system to react in a 

different way from the others. The proportional term depends on the present error 

value, the proportional gain have a direct relationship to the controller sensitivity, the 

higher P gain value leads to faster change for the systems‟ output, which makes the 

controller to be more sensitive.[4] 

2.4 Tuning of the PID controller 

An auto-tuner is a device that automatically computes the parameters of a controller. 

The goal is to achieve the best control possible given the tuning objectives. The goal 

is not to replace a human control engineer. The auto-tuner should rather be seen as an 

aid to improvement [5]. Many single-input single-output industrial control loops are 

poorly tuned [6]. Tuning of a PID controller refers to the tuning of its various 

parameters (P, I and D) to achieve an optimized value of the desired response. The 

basic requirements of the output will be the stability, desired rise time, peak time and 

overshoot. Different processes have different requirements of these parameters which 

can be achieved by meaningful tuning of the PID parameters. If the system can be 

taken offline, the tuning method involves analysis of the step input response of the 

system to obtain different PID parameters. But in most of the industrial applications, 

the system must be online and tuning is achieved manually which requires very 

experienced personnel and there is always uncertainty due to human error. Another 
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method of tuning can be Ziegler-Nichols method [4]. While this method is good for 

online calculations, it involves some trial-and-error which is not very desirable. 

 

Figure 2.2: Basic block diagram of a conventional PID controller 

2.4.1 overview of existing methods of PID  

The PID controller, introduced in the last section, is a standard building block form 

industrial automation. The popularity of this regulator comes from its robust 

performance in a wide range of operating conditions, and also from its functional 

simplicity, which makes it suitable for manual tuning. To account for process changes 

and ageing, regular retuning is normally required. Accurate tuning is an operation 

which, to be done properly, takes considerable time. Since large plants can have 

hundreds of PID regulators, methods which automate the tuning of the PID 

compensators are of great practical importance. A large number of methods for PID 

auto-tuning have been proposed. In this section some of them will be described. To 

ease the description these methods will be loosely classified into five classes: 

frequency response based, step response based, on-line parameter estimation based, 

expert and fuzzy systems based, and neural networks based [7]. 

2.4.2 Methods based on expert and fuzzy logic systems 

Expert systems and systems fuzzy logic systems have also been proposed for PID 

auto-tuning. An example of the first class can be found in Anderson et al. Here they 

propose an iterative rule-based method which analyses the response of the 

closed-loop system to a step change in the reference. Based on previous 
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experience and knowledge, a new set of PID values is then chosen. For each set-point 

disturbance, features of the output like overshoot, settling time, rise time, etc. are 

computed and compared with desired values. For each criterion not met, a rule is 

fired. Each rule computes the percentage of the change for each PID parameter, using 

a measure of the degree to which the criterion has not been satisfied, and a weight 

associated with that criterion. These weights, one for each parameter and for each 

criterion, are obtained from an expert‟s experience. 

These percentages of change are accumulated over the criteria not met, to compute 

the total adjustment for each PID parameter. The PID parameters are then modified 

accordingly [7]. Lemke and De-zhao introduced a fuzzy PID supervisor to adjust the 

settings of a PID controller. The error and its derivative, scaled by the value of the 

reference, are the input variables of the fuzzy supervisor. Different fuzzy regions are 

specified, in which the inputs are distinguished. For each fuzzy region, fuzzy rules 

and conditional statements are formulated, according to expert experience. After 

implementation of these rules the resulting fuzzy outputs are transformed into 

deterministic values, using a defuzzification rule. These values are the changes to be 

applied to the PID values. 

2.4.3 Methods based on artificial neural networks 

To the best of our knowledge, apart from our own approach to PID auto-tuning, to be 

introduced in the following section, only two other PID auto-tuning techniques 

involving artificial neural networks have been proposed. The first, in a chronological 

order, was introduced by Swiniarski. In this approach the open loop step response of 

a plant is discredited, its samples being used as inputs to a multilayer perception. The 

role of the neural network is, based on these inputs, to determine the corresponding 

PID parameters. The  Multi-layer perception (MLP) has therefore three outputs, 

corresponding to the three PID parameters. The open loop Ziegler-Nichols tuning rule 

is employed to obtain the PID parameters to be used as targets for training. The 

training set is derived by varying the parameters L, T and    , as shown in Figure. 

2.7, within a specified range around nominal values. These ranges are discredited to 

obtain suitable examples for training. In the example proposed, the nominal values 

were    =1, L=0.2 and T=1, the range of change for the three parameters being. 
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Unfortunately, no results of this technique are presented in the paper. Some 

observations can be made concerning this method of PID auto tuning: 

i)  It is an open loop technique; it cannot be applied in closed loop. 

ii) Because samples of the open loop step response are used as inputs to the MLPs, 

obtaining good results might require a high number of samples. This leads to a large 

number of parameters in the MLP, resulting in large training times. 

iii) This technique is likely to be heavily dependent on the sampling time chosen. 

Specifically, if we consider an example where the sampling time T is used, it is 

questionable whether the MLP will produce the same PID values if sampling times of 

T/2 or 2T are used. 

iv) It is known that, in most cases, the responses obtained with Ziegler-Nichols tuning 

rule are not well damped. It seems sensible to obtain the target PID values using a 

better criterion. 

v) If the Ziegler-Nichols technique is used to derive the target PID values then there 

is no need to consider three outputs for the MLP, since the integral and derivative 

time constants are linearly interdependent. 

The second approach is due to Light body and Irwin [8]. Their example actually 

considered a PD controller, but their technique can be extended to PID regulators. In 

this approach the closed loop step response is discredited, the samples being used as 

inputs to one MLP. They consider a nominal plant, under PD control. The gains of 

the compensator are varied over some acceptable range, and a family of step 

responses obtained. The MLP is then trained to map these responses to the actual PD 

values which originated them.  

2.5 Artificial Neural Networks 

Work on artificial neural networks, commonly referred to as “neural networks “has 

been motivated right from its inception by the recognition that human brain computes 

in an entirely different way from the conventional digital computer. An artificial 

neural network, which is the formal name for the term neural networks used here, is 

one of many attempts to build an intelligent machine or to create artificial 

intelligence. It is based on biological neural networks. The basic idea to model this is 

to make a very simplified model of biological neurons and their synapses [9]. The 
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novelty of ANN theory could undoubtedly be attributed to the experiment performed 

by “McCulloh” and “Pitts” in modeling bio-systems using nets of simple logical 

operations back in 1943. The idea was to find a simple parametric nonlinear model 

for a real neuron. Ever since this innovation, there has been a great interest from 

various researchers and scientists, thus several ANN-based models in different fields 

were discovered. The technology though had lost its momentum in the late 1969 till 

1986 when the back-propagation of error was discovered. To date, ANN-based 

models have been successfully implemented in a number of industries ranging from: 

Aerospace, automotive, defense, electronics, entertainment, financial and so on. 

Artificial neural Networks have been also successfully applied in medical fields [9]. 

ANN is a part and parcel of intelligent based systems, designed distinctively to 

improve the performance of conventional computing techniques. The biggest 

drawback associated with the so called conventional methods is the inability to learn 

and identify patterns in dynamic systems. Thus the need to eliminate this shortcoming 

through learning is proven essential[10]. ANN is an information processing paradigm 

inspired by the way biological nervous systems, such as the brain, process 

information. The human brain has 100 billion biological neurons with about 100 000 

connections per neuron. A simplified biological neuron is illustrated in Figure 2.3 

 

Figure 2.3: A biological neuron 
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Biological neurons receive spikes through synapses located on the dendrites of the 

neuron. When the spikes received are strong enough and exceed a definite threshold, 

the neuron is activated and fires a signal though the axon. This signal travels from the 

body, down the axon, to the next neuron(s). Learning arises by adjusting the 

effectiveness of the input (synapses) so that it influences one neuron on other 

changes. Humans and highly trained animals use the same configuration and 

summing up to extremely complex networks [9]. Similarly, an artificial network is 

made up of simple interconnected processing elements called neurons. The neurons 

are arranged in a layered structure to complete a network competent of executing 

parallel and distributed computations. Architecture of a simple ANN is shown in 

Figure 2.8. The attraction of ANN-based models comes with the network‟s ability to 

learn, recognize data patterns, and adapt to a changing environment like the human 

brain. This adaptive characteristic is often called “the human-like reasoning”. The 

architecture illustrated in Figure 2.8, presents a three layered feed-forward network. 

ANN has a remarkable capability to develop sense from convoluted or imprecise 

data, extract patterns and detect trends that are too complex often only noticeable by 

either humans or other computer techniques. In broad terms, ANN-based models 

offer a variety of benefits namely: adaptive learning, self-organization, real time 

operation, fault tolerance via redundant information coding. Thus neural network 

processes information in the similar way the human brain does. The neurons are 

organized in a way that defines the network structure. The most concerned structure 

is the MLP type, in which the neurons are organized in layers. The neurons in each 

layer may share the same inputs, but are not connected to each other. If the 

architecture is feed-forward, the outputs of one layer are used as the inputs to the 

following layer. The layers between the input neurons and the output layer are called 

the hidden layer [10]. 

2.5.1 Basic architecture of a feed-forward network    

The feed-forward network topology illustrated in Figure 2.4 permits signals to travel 

one way only, from the input through the hidden layer to the output layer. These 

types of networks are somehow straight forward and associate inputs with outputs. 
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They are extensively used in pattern recognition. This kind of organization is also 

referred to as bottom-up or top-down and commonly used in pattern recognition. 

Figure 2.4 also shows the commonest type of artificial neural network which consists 

of two layers. The hidden layer neurons are connected to the output layer neurons. 

The functions of each layer in the network are defined below:  

i)  The input layer neurons represent the pre-processed data fed into the network.   

ii)  The input of each hidden layer neuron is defined by the sum of the input vector set 

and the connection weights between the input layer and hidden layer.   

iii)  The input of the output neuron is determined by the weighted sum of outputs of 

the hidden layer neurons.   

iv)  The output of a neuron is defined by the type of the transfer function used in that 

specific layer. This type of network is attractive because the hidden neurons are free 

to develop their individual representations from the input set. 

 

 

 

 

 

 

 

 

 

Figure 2.4: Architecture structure of a feed forward neural network 

2.5.2 The perceptron – a network for decision making   

The perceptron, a basic neuron, invented by Rosenblatt in 1957 at the Cornell 

Aeronautical Laboratory in an attempt to understand human memory, learning, and 
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cognitive processes prior to his demonstration on the first machine that could "learn" 

to recognize and identify optical patterns in the early 1960. The mathematical model 

of the perceptron or artificial neuron is modeled in the similar manner of the 

biological architectural set-up. Again, the three major components are considered:  

Axons and synapses of the neuron are modeled as inputs and weights respectively.   

The strength of the connection between an input and a neuron is denoted by the value 

of the weight. The mathematical model of this topology is illustrated in Figure 2.5. 

The weighted inputs are added together and passed through a nonlinear activation 

transfer function. Finally, the activation function controls the amplitude of the output 

of the neuron. The suitable scale of output is usually between 0 and 1, or -1 and 1.   

 

Figure 2.5: A perceptron model 

In mathematical terms we may describe a neuron k by writing the following pair of 

equations: 

   ∑                  
 
                                                                                                (2.17) 

and 

                                                                                                              (2.18) 

Where 

           are the input signals. 

              are the synaptic weights of the neuron k. 

   is the linear combiner output due to input signals. 

   is the bias. 
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     is the activation function. 

   is the output signal of the neuron. 

2.5.3 Activation functions  

The activation function acts as a squashing function. In simple terms, the network 

activation rule is denoted as activation function. A number of transfer functions are 

available for selection. These activation functions include (and not limited to): step 

function, logistic function, tangent-hyperbolic function, linear function, cosine 

function and so on. Some of these functions are illustrated in Figure 2.6. 

 

(a) Step function  

 

(b) Function layer 

 

 

 

(c) Sigmoid function with varying slop 

Figure 2.6 

However there is no engineering rule or “rule of thumb” for the selection of transfer 

function thus the choice is frequently performed arbitrarily. In fact, the effect of 

different transfer functions on network performance has not been explicitly reviewed 

in a number of literature papers [11]. 

2.5.4 Soft computing using neural network topologies  

Generally, there are three common types of neural networks: Radial Basis Function 

Network (RBFN), MLP, and Recurrent Neural Networks (RNNs). The distinction in 
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different network topologies can perhaps be attributed to the arrangement of neurons 

and the connection patterns of the layers.  A Multi-Layer Perceptron network is the 

most popular neural network type and the most of the reported neural network in 

STLF. The inner structure of the processing element (neuron) in each network is 

interconnected differently, and the configuration set-up is often referred to as network 

topology. The behavior of the network relies greatly on the network topology [9]. 

2.5.5 Feed forward Network   

In a MLP feed-forward network, connections are unidirectional and no loops are 

introduced in the network, thus each neuron is linked only to neurons in the next 

layer, a feed-forward network is referred to as a directed cyclic graph. This implies no 

backward links either. The importance of loop less networks is that computation can 

proceed uniformly from input neurons to output neurons. And since there are no 

backward links, activation functions from the preceding time step play no role in the 

computation. Figure 2.7 shows a simple multi-layered feed-forward network 

topology. In Figure 2.5, only one output layer neuron is considered and. In some 

approximation problems, the number of output neurons equals to the number of 

outputs. Each layer has a specified number of nodes; the interconnections are only 

between neurons of adjacent layers, and each neuron belonging to a layer is 

connected to all the neurons of adjacent layers. Note that ANN may contain more 

than one hidden layer; the number of neuron in each layer should be carefully 

selected depending on the application requirements. 

2.5.6 Artificial Neural Network Training and Generalization   

There are various processes involved in developing a supervised ANN-based model. 

Amongst others, training process and validation process are some of the vital steps. 

The input-output patterns are repeatedly presented to the network during the training 

process. Through this process, the network learns the subjected environment or 

patterns, and eventually yields the desired output. The desired output is attained as a 

result of adjusting weights of all interconnections between neurons to establish the 

correct set of input-output response. However, during the training process, optimal 

training time is required to avoid overtraining. Overtraining of the network can be 
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prevented by employing complex stopping criterion. Early stopping (the most 

common), regularization, pruning, Information Criterion Pruning (ICP), Cross-

Validation Pruning (CVP) are some of the stopping methods. 

Training the network at infinitum normally results in a reduced error function for a 

given set of inputs. Though, this does not guarantee better accuracy and robustness of 

the network because the error could be extremely big if the network is presented with 

the data it has not seen before. This characteristic is explored during the validation 

process. Moreover, the validation process also improves the network reliability and 

generalization. 

 

Figure 2.7: Feed-forward network with one hidden layer and two output layer. 

2.5.7 Network coupled errors   

Broadly speaking, there exist two types of errors during the training process: training 

error and generalization error. The general error presentation can be seen in Figure 

2.8. At the beginning of the training, the training error is at maximum, and gradually 

decreases as time elapses.  Optimum training time should be within the circled area in 

order to maintain network generalization tendency. In essence, the desired goal 

should not be an error-free output, as the network will tend to memorize the input-

output patterns if trained at infinitum. 
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Figure 2.8: Errors versus. optimal network training time 

2.6 Artificial Neural Network Learning Paradigms   

Like in any other intelligent based systems, a desired output of the network 

does not come by chance. The network rather adapts itself to a stimulus, and 

ultimately yields the desired output. The main difference here perhaps could be 

featured to the type of learning a particular network is subjected to. Broadly speaking, 

there are different learning paradigms that can be used to train neural networks. 

Supervised and unsupervised learning are the most common, with reinforced and 

competitive learning techniques also gaining considerable popularities. The learning 

process is essential to adjust network weights in order to reduce the error. During the 

process of adapting and adjusting the synaptic weights, the network acquires 

knowledge similar to human-like reasoning. However, the learning process requires 

sets of mathematical algorithms describing how synoptic network weights and biases 

are attuned.  

2.6.1 Supervised learning   

This is a type of training approach where the input and the desired output are clearly 

specified. Suppose, the input vector is represented by [            ] and the 

corresponding output vector is denoted by [          ], an optimal rule is to be 

determined such that: 

[          ]   [          ]                                                               (2.19) 

Where ε represents the approximation error. In this example, the error could be a 

vector. 
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The idea is that the network adjusts its weights as an attempt to minimize the 

approximation error preferably to the smallest value possible, and thereafter the 

network returns a trial result. This result is then compared to the desired output. 

Figure 2.9 illustrates a basic network structure for a supervised ANN model. Here the 

error function is feedback into the system as an attempt to find a correct set of input 

vectors. If the desired threshold is not attained, another update of the network weight 

vectors could be initiated. In dynamic systems especially, the need for a network to 

map the nonlinear relationship between inputs and outputs is enormous, thus this 

approach is commonly employed in ANN based models. Some of the key measures to 

evaluate a supervised learning session are: time required per iteration, number of 

iterations per unit pattern, convergence points i.e. local or global minima(s) …etc [9]. 

 

Figure 2.9: Supervised learning paradigm using error correction technique 

2.6.2 Competent learning process for ANN 

In addition to the ANN learning paradigms discussed earlier in this chapter, here 

other main issues compulsory for a successful ANN training are exclusively 

introduced. They are: learning rule, and learning theory. Unlike learning paradigm, 

learning rule classifies how network weights should be adjusted in the learning trials. 

There are four basic types of learning rule: Error-Correlation Learning (ECL), 

Boltzmann Learning (BL), Hibbing Learning (HL) and Competitive Learning (CL) 

[12]. 

Most of the supervised learning algorithms use these learning rules during training.    

Error-correction learning is the method of comparing the network output to the 

desired output value, and using that error to guide the training. In the most guiding 

phases, the error values can be used to directly adjust the tap weights, using an 
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algorithm such as the back-propagation algorithm. Mathematically, the error used by 

this method can be formulated as: 

     ̂                                                                                                               (2.20) 

Where, ε is the error value, L is the target output, and   ̂ denotes the network output.   

At each training iteration, error correction learning algorithms attempt to minimize 

this error function. This method is mostly used in back propagation learning 

algorithms. The originality of the Hebbian learning rule could perhaps be attributed to 

a hypothesis proposed by D. Hebb back in the year 1949. The concept is currently 

adopted as Hebb‟s law, and is one of the key ideas in biological learning. The Hebb‟ 

Law can be presented in the form of two sub-rules: 

1. If two neurons on either side of a connection are activated synchronously, then the 

weight of that connection is increased.  

2. If two neurons on either side of a connection are activated asynchronously, then the 

weight of that connection is decreased. 

In simple terms, the Hebbian learning rule specifies how much the weight between 

two neurons should be increased or decreased in proportion to their activation . 

Suppose    and    are the activations of the neurons i and j, and     is the synoptic 

weight between them, then the basic form of the Hebbian rule can be formulated as: 

                                                                                                                   (2.21) 

Where,      is the change is in the synoptic weight, and η is the learning rate. 

Another powerful learning rule is the delta rule. This rule utilizes the discrepancy 

between the desired and actual output of each output unit to change the weights 

between neurons. Another vital component for competent learning process of neural 

networks is the learning theory. This concept covers issues related to data quality, 

data quantity, and best convergence etc. i.e. training data in general. In most of the 

viewed papers, researchers tend to omit explanations with regards to criterion used 

for selecting certain variables, training samples, data quality etc. It‟s obvious there is 

no general rule in selecting historical data of the phenomena of interest. Thus the 

input variables are purely identified based on judgements and experiences. In most 

cases, variables with strong correlation with the target output(s) are suggested.  The 

selection of training data is extremely crucial as it could improve adaptability, 

reliability, and robustness of an ANN. Training data with an extended phenomena 
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space margin and free from outrange data points are normally preferred. The larger 

training data can increase the accuracy of network generalization but it also increases 

the computation time of the learning process [10]. 

2.7 Error Back Propagation Learning Algorithm 

Error back propagation is a common technique of teaching ANNs how to perform a 

given task. The term back-propagation refers to the manner in which the gradient is 

computed for nonlinear multilayer networks. In simple terms, the gradient is the 

derivatives of the error with respect to the weight (    
  

   
) . This method was first 

described by Paul Werbos in the mid 1970s, and it only gained recognition about 

many years later.  Figure 2.10 shows a simplified supervised ANN training design 

chart using back-propagation method.  

First of all, the input(s) and desired target (s) are presented to the network prior to 

computing the resulting output. The difference between the desired and resulting 

outputs is known as the error. If the error is greater than the acceptable threshold, the 

network will continue to adjust the weights and biases for all neurons using the error.  

Though, this process (adjusting of weights and biases) does not continue at infinitum.    

The network repeats the process until the error reaches an acceptable value (typically 

error ≤ goal), which means that the NN was trained successfully. If a maximum count 

of iterations is reached without attaining the goal, this implies that the NN training 

was not successful [9]. 

 

 

 

 

 

 

Figure 2.10: Chart of a supervised BP training method 
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CHAPTER THREE 

SYSTEM CONTROL DESIGN 

3.1 Introduction 

In the previous chapter, the current control technologies that have been widely used 

for speed control to improve the system performance were reviewed. Then, the 

shortcomings and problems of current control strategies are summarized. These 

problems limit the use of control strategies for speed control systems. In order to 

address these issues, future perspectives and approaches to improve the control 

performance control are discussed and concluded. In this study, neuro controller is 

designed for different purposes .The proposed controller design is mainly based on 

the following considerations: 

New control approaches may merge both the conventional and advanced control 

methods. There is a possible way: a method by which individual merits are combined. 

PID control is usually utilized due to its practicality. But its control performance is 

mainly based on its parameters and improper selection of them will lead to poor 

control performance. Hence intelligent controller is required to regulate the PID 

parameters automatically to ensure the optimized control output. The control process 

that does not require intervention of the users with specific skills or knowledge. 

Closed-loop, real-time and on-line learning ability. The performance evaluation 

system could be included to make a control process have the self-learning and 

modifying ability. 

3.2 Artificial Neural Network-based PID Controller 

As investigation of all types of speed monitoring and control is a complicated matter, 

a neural network PID controller with back-propagation based weight updating 

algorithm is proposed in this study. The performance of the ANN-PID controller is 

tested by computer simulation using MATLAB code as discussed in chapter four.  

3.2.1 Structure of the BPNN-PID controller 

Figure 3.1 presents the structure of the proposed intelligent PID controller based on  
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BPNN learning algorithm. It consists two parts:  a classic PID controller and ANN. 

The PID controller is used to control speed of the DC motor. The control 

performance depends on the setting of PID control parameters   ,    and    which 

can be auto tuned by BPNN. BPNN uses an on-line training algorithm based on a 

gradient descent approach to update network weights and ensures that the designed 

neural network is able to calculate the desired PID parameters. Therefore, in this 

control approach, by combining classic PID control and intelligent BPNN the 

targeted system output can be tracked with a guaranteed stability. 

  

 

 

 

 

 

Figure 3.1: BPNN based PID control scheme 

where u is the output of the PID controller,    is the proportional term,     is  

the integral term,    is the derivative term and    is the system error that can be 

expressed as follows: 

   (k) =  y(k)  - r(k)                                                                                                  (3.2) 

Where y is the system actual output and r is the system targeted output. 

3.2.2 PID control algorithm 

The incremental digital PID control algorithm can be expressed as follows: [11] 

               {                   }           {         

                       }                                                                             (3.1) 
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3.2.3 Back propagation neural network algorithm 

If the neural network has sufficient amount of neurons, it is able to approximate any 

continuous function with only one hidden layer. Therefore, a neural network with 

only one hidden layer is designed. As shown in Figure 3.2, the proposed design has 

four-input-three-output BPNN with three layers: input layer, one single hidden layer 

and output layer. In this section, the forward feed algorithm and the back-propagation 

weights adjustment rule is discussed in detail [12]. 

 

Figure 3.2: BPNN algorithm scheme 

The designed neural network has four inputs as shown in both Figure 3.1 and Figure 

3.2 and they are: 

 

 

               (3.3) 
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Where r, u and ey is defined in equations; and eyc is the changing rate of system error 

ey that can be expressed as follows: 

                                                                                                      (3.4) 

Output of each neuron in the input layer is expressed as: 

  
   

                 {         }              (3.5) 

 

In the designed algorithm, superscript (1) stands for input layer. 

Input of each neuron in the neural network hidden layer can be calculated based on 

the input layer output and is expressed as follows: 

   
       ∑    

   
   
    

          {i=1,2,…….N}                                                         (3.6) 

where superscript (2) stands for hidden layer;     (2) is the weight connecting the 

input layer neurons to the hidden layer neurons and N is the number of neurons in the 

hidden layer. 

Then, output of each neuron in the neural network hidden layer can be expressed as 

follows: 

  
            

                                                                                                    (3.7) 

where f(x) is the activation function in the hidden layer that presents the relation 

between the input and output of each neuron. Symmetrical sigmoid function is used 

as the activation function and can be expressed as follows: 

              
      

      
                                                                                       (3.8) 

Once the output of each neuron in hidden layer is calculated, the input of each neuron 

in the output layer can be given as: 

   
       ∑    

   
  
    

          {=1,2,…….N}                                                          (3.9) 

Where superscript (3) stands output layer;    (3) is the weight connecting the hidden 

layer neurons to the output layer neurons. The number of neurons in output layer is 

three and the outputs of the neurons are the PID parameters. Output of each neuron in 

the output layer is given by: 

  
            

                                              (3.10) 

  
                                                                                                                 (3.11)  

   
                                                                                                                 (3.12) 
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                                                                                                                   (3.13) 

where g(x) is the activation function that presents the relation between the input and 

output of each neuron in the output layer. Outputs of the output layer are the PID 

parameters   ,    and   . Since these values cannot be negative, the non-negative 

Sigmoid function is used as the activation function in output layer and it is given as: 

     
 

 
             

  

      
                                                                        (3.14) 

The proposed neural network can regulate the PID control parameters automatically 

and it can reduce sufficient time cost for engineers in control system design process. 

However, modeling errors often exist in model based process control and 

dramatically increase the difficulty to accurately control the process. Therefore, anon-

line training algorithm is applied to adjust network weights for reducing the system 

error ey in the design of the BPNN controller. 

3.2.4 Weight update 

In this algorithm, the system output error function is defined by the given equation 

[12]. 

     
 

 
(         )

 
 

 

 
                                                                              (3.15) 

The training process of the neural network model must be carried out before it can be 

put into use. This training process is repeated until the mean square error of the 

training data reaches the desired minimum. In the present work, the training processes 

based on back propagation. The basic idea of back propagation is to adjust the neuron 

weights using gradient descent algorithm on the error function in an iteration process. 

Generally, the adjustment of each weight from hidden-layer to output-layer can be 

expressed as follows: 

    
         

     

    
                                                                                                 (3.16) 

However, in order to avoid the „local minima‟ which is the best known problem 

associated with back-propagation algorithm; a momentum term is added to the weight 

change in the proposed algorithm. This means that the weight change this iteration 

depends not just on the current error, but also on previous changes. So the adjustment 

of each weight from hidden-layer to output-layer is modified as follows based on the 

system output error function as shown in Figure 3.3: 
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                                                                     (3.17) 

Where is   learning rate,   is momentum factor. Since: 

      

    
   

   
 

      

     
 

     

     
 

     

   
   

   
 

   
   

   

    
   

   
 

    
   

   

    
   

   
                                        (3.18) 

    
   

   

    
   

   
   

   
                                                                                                     (3.19) 

And the following equations are calculated: 

     

   
   

   
                                                                                              (3.20) 

     

   
   

   
                                                                                                            (3.21) 

 

Figure 3.3: Adjustment of weight from hidden layer to output layer  

     

   
                                                                                       (3.22) 

Then, the learning algorithm of the weight update in output layer can be expressed as 

follows: 

    
             

           
   

                                                                    (3.23) 

    
            

             
   

  
   

                                                         (3.24) 

where   
 is the error function of the network hidden layer that is need for the 

adjustment of weights from input layer to hidden layer as shown in  Figure 3.4. 
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Figure 3.4:  Error function of the network hidden layer 

 

  
 can be expressed as follows: [12] 

  
   

       
     

     
 

     

   
      

       
                                                            (3.25) 

3.3 Summary 

In the control process, the weights in the neural network are trained by the back-

propagation weights adjustment rule in order to obtain the best PID parameters   , 

   and   . For the PID controller. Therefore, an acceptable indoor air quality cans be 

provided by the control of designed system. The algorithm of the BPNN based PID 

can be summarized as follows and its flowchart is presented in Figure 3.4: 

i) Initialize the each weight in the neural network        and       , as well as 

learning rate  and momentum factor while k=1. 

ii) Collect data r(k) and y(k) and calculate the system error    using Equation (3.2). 

iii) Calculate the input and output of each neuron and get the PID parameters    , 

   and   . 

iv) Calculate the output of PID controller using Equation (3.1). 
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v) On-line training. Adjust the weight of each neuron in the neural network with the 

back-propagation learning algorithm in order to realize self-adaptive regulation of the 

PID parameters  ,    and   . 

vi) Set k=k+1 and go back to rule (i). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Flow chart of BPNN-PID control scheme 
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CHAPTER FOUR 

SYSTEM SIMULATION RESULTS AND DISCUSSION 

4.1 Introduction 

The detail designs of the proposed controllers were introduced in chapter three. In 

order to achieve the goal of speed of DC motor to be controlled properly. three 

controllers: neural network based PID controller and back propagation neural 

network based PID controller were proposed in chapter three. In this chapter, the 

performance of the proposed controller is presented. The simulating tests of the 

control processes are based on the mathematical models of the DC motor is discussed 

in chapter three. The simulations have been taken on the platform of MATLAB. The 

controllers‟ performance including overshoot, response speed, adaptability, 

robustness and etc. are discussed. Then it analyzed whether the proposed controllers 

are suitable for their control objects and process. 

4.2 Uncontrolled System Response to Step Input 

Figure 4.1  shows the system response without controller.  

 

Figure 4.1: Simulink model of uncontrolled system 
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Figure 4.2: speed response of uncontrolled system 

4.3 System Response with PID Controller to Step Input 

As mentioned earlier in chapter two, PID controller is a popular conventional 

approach. Figure 4.3 shows the Simulink diagram of the DC motor with PID 

controller. The motor speed in Figure 4.4. 

 

Figure 4.3: Simulink model of DC motor with PID controller 
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Figure 4.4: speed response of the system with PID controller 

4.4 Simulating Tests of BPNN-PID Control 

ANN-PID control was designed to solve the difficulties of speed control and to 

achieve the goal of maintaining good performance. The proposed ANN-PID 

controller combined a typical PID controller and a neural network which the back-

propagation algorithm is applied to. The structure of this design was discussed in 

Chapter three as it has two main parts: a typical conventional PID control for 

controlling the speed and a back-propagation neural network to regulating the 

parameters for the PID controller according to the current conditions. Theoretically 

analysis according to chapter three showed that the proposed ANN-PID speed 

controller has the following potentials: 

PID controller is suitable for various control objects. Neural networks for optimal 

PID parameters tuning to ensure stability, back-propagation algorithm for adjustment 

of weights in neural network to ensure the system quickly response to change. In 

order to discussed and evaluate the proposed design, the simulating tests have been 

done by using the MATLAB code shown in Appendix, Then the simulating results 
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are used to indicate the controller‟s performance based on several indexes: response 

speed, overshoot, time constant, stability and adaptability. 

Then whether the proposed controller can achieve the targeted control requirement is 

discussed based on the controller‟s performance of the listed indexes. Thus 

simulations are used to conduct and results are analyzed to discuss the performance 

including of the proposed control strategy. During the simulating tests, the accurate 

mathematical model of the real control objects that in this case is the speed.  

As usual, the step signal is used to for simulation test. After several tests, set the best 

initial learning rate η=0.28 and momentum factor α=0.04.The weights in the neural 

network are initialized in the range [-0.5, 0.5] randomly. The randomly preset weights 

may cause a little unstable to the control process but the back-propagation algorithm 

is able to quickly response to any uncertain parameters and the weights of neural 

network are updated in relative short time to ensure the targeted output. 

  

Figure 4.5: System output response to step input with Neural Network 

The step signal (r(k)=1) is introduced at time t=0. The simulation result of the 

Proposed control system output is presented in Figure 4.6. As shown in the Figure 

4.6, the system has very fast rising speed as well as very small overshoot. The time 

constant  =0.003s, settling time   = 0.091s and the maximum percent overshoot 5%. 

The uncertainness might be caused by randomly preset weight values of neural 

network have not significant disturbed control process at the beginning of response as 

the curve rising fast. Then it is brought back to the set-point before the overshot is 

           Time (Sec) 
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still very small, 5% in this simulation work and the control process is brought to the 

steady state, the steady error of which is zero as shown in profile. It has to be clear 

that the steady state error is zero because the control object function is calculated 

based on an ideal model of the system and the system error generally exists in real 

control process. 

In Figure 4.7 PID controller output response to the step input signal is presented. It 

can be seen that the controller calculated the output (control command) for the plant 

(command was sent to the equipment and the change the speed). The system output 

results in Figure 4.6 prove that the controller is able to obtain required output to 

ensure good performance on fast and accurate control. 

 

Figure 4.6: PID with neural network control signal  

The auto-tuning process of the PID parameters   ,    and    can be observed in 

Figure 4.8. It shows that   = 0.25,   =0.23 and   =0.05 at the beginning of the 

control process and the PID parameters are tuned by the neural network during the 

controlprocess. The system output results in Figure 4.6 shows good control 

performance. This means that the proper PID parameters can be obtained using online 

training algorithm based neural network control scheme. The value of the PID control 

parameters are kept modifying to optimize the control performance until the system 

enters the steady state. The PID parameters are settled at   = 0.372,    =0.0.462 and 

  =0.162 and kept stable. 
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Figure 4.7: PID parameters auto regulating 

Equation (3.1) presented the input of the neural network in the proposed control 

strategy. In other words, the PID parameters are regulated based on these variables. 

System output error (e), change of system output error (  ), PID controller output 

error (u) and system output (y). It can be seen if only one input is applied to the 

neural network; the incorrect PID parameters may be produced. Therefore, with four 

input variables the design BPNN algorithm can calculate and then provide the 

optimized   ,    and    for the best control performance. 

Table 4.1: Comparison between various parameters for different controllers. 

Type of Control Settling Time 

(second) 

Overshoot 

(%) 

Stability Steady State 

Error 

Uncontrolled 1.65 - stable 0.008 

PID Controller 0.365 0 stable 0 

ANN controller 0.091 5 stable 0 
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Figure 4.8: Relation between PID parameters and system error 

From Table 4.1, it is clear that system without controller is stable without overshoot, 

but with conventionality, it becomes stable but overshoot and settling time is 

relatively high for   = 200,    = 100 and   = 10. With help of multilayer neuro PID 

the system becomes stable and settling time and overshoot becomes too small but rise 

time of the system increases which is a setback but it can be neglected since the basic 

requirement is minimum settling time and less overshoot and this is achieved as it 

becomes 90 milliseconds and 5% respectively. 
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CHAPTER FIVE 

CONLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The current control methods of for speed control systems using PID have been 

reviewed. The drawbacks of current control methods are summarized based on the 

literature review. Then, based on discussion of advantages and disadvantages of 

current control technologies. In this research, ANN based PID controller is developed 

for speed control of DC motor. Principles and detailed designs are introduced in 

chapter three. These controllers are tested by computational simulation. The 

simulation is crried out on the platform of MATLAB. The programming codes have 

been developed to simulate the control strategies and the indoor environment model 

for testing the controllers „performance.  The simulation results show clearly that the 

Neuro PID controller is better compared to conventional PID, although the PID 

controller has less overshoot but from the point view of settling time, the neuro 

controller has a very short settling time compared to PID controller. Having very 

short settling time is an excellent characteristics ant tells that the system will settle to 

the steady state cast within a very short time and the transient can be ignored. 

5.2 Recommendations 

The major work of this research is to discuss the potential of improving performance 

of control system by using ANN-based controllers. The results show that excellent 

control performance has been achieved. But there are futures works need to be carried 

out: 

 The experimental investigation of ANN-PID controllers will be carried out 

since they are only tested by computer simulations in this research. 

 The performance of control system could be significant improved by using the 

proposed controllers based on the results. 

 According to current studies, there are one model used for tuning the PID 

controller, other types also can be used including: fuzzy logic controller and 

radial basic function controller.  
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APPENDIX 

MATLAB CODE 

%PID Control based on BPNN 

clear all; 

close all; 

xite=0.28;  

alfa=0.04; 

IN=4;H=5;Out=3; %NN Structure 

%wi= random [-0.5,0.5]; 

wi=[-0.4394 -0.2696 -0.3756 -0.4023; 

-0.4603 -0.2013 -0.3024 -0.2596; 

-0.4749 0.4543 -0.3820 -0.2437; 

-0.3625 -0.4724 -0.3463 -0.2859; 

0.1425 0.4279 -0.2406 -0.4660]; 

wi_1=wi;wi_2=wi;wi_3=wi; 

wo=[0.3576 0.2616 0.2820 -0.1416 -0.1325; 

-0.1146 0.2949 0.1352 0.2205 0.4508; 

0.3201 0.4566 0.3672 0.4962 0.3632]; 

%wo= ramdom[-0.5,0.5]; 

wo_1=wo;wo_2=wo;wo_3=wo; 

x=[0,0,0]; 

du_1=0; 

u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; 

y_1=0;y_2=0;y_3=0; 

Oh=zeros(H,1); %Output from NN hidden layer 

I=Oh; %Input to NN hidden layer 

error_2=0; 

error_1=0; 

ts=0.001; 

for k=1:1:1000 

time(k)=k*ts; 
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rin(k)=1.0; 

%nonlinear model 

%a(k)=1.4*(1-0.8*exp(-0.1*k)); 

%a(k)=1.4*(1-0.8*exp(-0.1*k)); 

%yout(k)=a(k)*y_1/(1+y_1^2)+u_1; 

yout(k)=1.511*y_1-0.5488*y_2+0.002059*u_1+0.001686*u_2; 

error(k)=rin(k)-yout(k); 

xi=[rin(k),yout(k),error(k),1]; 

x(1)=error(k)-error_1; 

x(2)=error(k); 

x(3)=error(k)-2*error_1+error_2; 

epid=[x(1);x(2);x(3)]; 

I=xi*wi'; 

for j=1:1:H 

Oh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %hidden Layer 

end 

K=wo*Oh; %Output Layer 

for l=1:1:Out 

K(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); %Getting kp,ki,kd 

end 

kp(k)=K(1);ki(k)=K(2);kd(k)=K(3); 

Kpid=[kp(k),ki(k),kd(k)]; 

du(k)=Kpid*epid; 

u(k)=u_1+du(k); 

dyu(k)=sign((yout(k)-y_1)/(du(k)-du_1+0.0001)); 

%Output layer 

for j=1:1:Out 

dK(j)=2/(exp(K(j))+exp(-K(j)))^2; 

end 

for l=1:1:Out 

delta3(l)=error(k)*dyu(k)*epid(l)*dK(l); 

end 
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for l=1:1:Out 

for i=1:1:H 

d_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2); 

end 

end 

wo=wo_1+d_wo+alfa*(wo_1-wo_2); 

%Hidden layer 

for i=1:1:H 

dO(i)=4/(exp(I(i))+exp(-I(i)))^2; 

end 

segma=delta3*wo; 

for i=1:1:H 

delta2(i)=dO(i)*segma(i); 

end 

d_wi=xite*delta2'*xi; 

wi=wi_1+d_wi+alfa*(wi_1-wi_2); 

%Parameters Update 

du_1=du(k); 

u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); 

y_2=y_1;y_1=yout(k); 

wo_3=wo_2; 

wo_2=wo_1; 

wo_1=wo; 

wi_3=wi_2; 

wi_2=wi_1; 

wi_1=wi; 

error_2=error_1; 

error_1=error(k); 

end 

ec = gradient(error); 

figure(1); 

plot(time,rin,'r',time,yout,'b'); 
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xlabel('time(s)');ylabel('speed'); 

figure(2); 

plot(time,error,'r'); 

xlabel('time(s)');ylabel('error'); 

figure(3); 

plot(time,u,'r'); 

xlabel('time(s)');ylabel('PID output'); 

figure(4); 

subplot(311); 

plot(time,kp,'r'); 

xlabel('time(s)');ylabel('kp'); 

subplot(312); 

plot(time,ki,'g'); 

xlabel('time(s)');ylabel('ki'); 

subplot(313); 

plot(time,kd,'b'); 

xlabel('time(s)');ylabel('kd'); 

figure(5); 

subplot(311); 

plot(error,kp,'r'); 

xlabel('error');ylabel('kp'); 

subplot(312); 

plot(error,ki,'g'); 

xlabel('error');ylabel('ki'); 

subplot(313); 

plot(error,kd,'b'); 

xlabel('error');ylabel('kd'); 

figure(6); 

subplot(311); 

plot(ec,kp,'r'); 

xlabel('ec');ylabel('kp'); 

subplot(312); 
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plot(ec,ki,'g'); 

xlabel('ec');ylabel('ki'); 

subplot(313); 

plot(ec,kd,'b'); 

xlabel('ec');ylabel('kd'); 

figure(7); 

subplot(311); 

plot(u,kp,'r'); 

xlabel('u');ylabel('kp'); 

subplot(312); 

plot(u,ki,'g'); 

xlabel('u');ylabel('ki'); 

subplot(313); 

plot(u,kd,'b'); 

xlabel('u');ylabel('kd'); 

figure(8); 

subplot(311); 

plot(yout,kp,'r'); 

xlabel('yout');ylabel('kp'); 

subplot(312); 

plot(yout,ki,'g'); 

xlabel('yout');ylabel('ki'); 

subplot(313); 

plot(yout,kd,'b'); 

xlabel('y');ylabel('kd'); 
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