Dedication

To my family....

Acknowledgement

I would like to express my sincere thanks and deep gratitude to my faithful supervisor: *Prof. Tahir Osman Ali*, for his guidance throughout this thesis.

My thanks are extended to *Mr. Ata Alla Hussein*, *Mr. Abdurrahman M. Nour, Mr. Osama A. Algadir* and all the other members of Ribat University Hospital and Modern Medical Centre radiology departments, who helped me over the period of four years in selecting and documenting all cases of this study.

I would also like to thank the staff of the College of Medical Radiological Sciences (Sudan University of Science and Technology) and my students, who encouraged me to start and complete this thesis. I would like to thank my wife, my sons and daughters and all other family members who were supportive throughout my study period. Thanks to the support of my mother without which I would not have had the wonderful opportunity to return to school.

My prayers for all of them.

(Abstract (English

Over the past decade, faster CT scan, thinner collimation, and the development of multi detector computed tomography (MDCT), coupled with the increasing capability of computers to process large amounts of data in short periods of time, have lead to an expansion in the ability to create diagnostically useful two-dimensional (2D) and three-dimensional (3D) images within the thoracic inlet. Applications within the thorax include, but are not limited to, evaluation of systemic vasculature, and the trachea, and delineation of thoracic inlet disease. Multiplanar (MPR) images increased understanding of thoracic inlet anatomy. Because there are strengths and weaknesses to all the reconstruction algorithms, the utility of any given technique is dependent on the clinical question to be answered. For instance, although maximum intensity projection imaging (MIP) is helpful in the evaluation of blood vessels, it is of little value in the diagnosis of enlarged lymph nodes.

The importance of this study comes from the importance of thoracic inlet because it is a common area to obtain venous access for renal dialysis, or CT guided biopsy and has many structures with variations in appearance which mimic pathological changes. It is important to have a clear understanding of the anatomy of the thoracic inlet structures and their relationship to each others to avoid accidently arterial puncture or nerve damage in CT guided biopsy or misinterpretation of normal structures e.g non opacity blood vessel as enlarged lymph nodes. Computed tomography is an excellent method to delineate the anatomy of thoracic inlet structures. Variations in the anatomy of the thoracic inlet structures and their correlation to the x-ray findings. This study aims to objectively evaluate the variations in the anatomy of thoracic inlet structures, the structures sizes, appearance and their relations to each others. A total of 328 patients were evaluated using MDCT imaging. The measurements and identifications of thoracic inlet structures were done at five levels, 7th cervical vertebra, 1st, 2nd, 3rd, and 4th thoracic vertebra. The average size of main thoracic inlet structures, trachea, esophagus, internal jugular vein IJV, common carotid artery CCA subclavian artery and neural canal was measured. The percentages of identifying small vessels, lymph nodes, thyroid gland, thyroid isthmus, thymus gland, neck muscles, thoracic duct, right lymphatic duct and nerve were recorded and analyzed. The study showed differences in sizes of some of thoracic inlet anatomical structures, between males and females group. In bilateral structures e.g the right internal

jugular vein (RIJV) was more often larger than the left internal jugular vein (IJV). With reference to the common carotid arteries (CCA), 78.5% of the IJV were found in the lateral position, 20.5% anteriorly 1.0 % posteriorly. There were significant differences in appearance of identified structures at different levels. The appearance of lymph nodes, was more in tumor patients (36%) followed infection patients (9%). Thymus remnant was more identified in yang patients, (76.6%) in age group 30to 40 years, (65. 5 %) in age group, 41 to 50 years, and only (10.5 %) in group above 50 years.

ملخص الدراسة

التطور الذي حدث في سرعة المسح بجهـاز الاشـعة المقطعيـة متعـدد الكواشـف , ودقـة حصـر الاشـعاع مقرونـة بزيـادة كفـاءة الحاسـوب ومقـدرته بمعالجة كميات كبيرة من المعلومات في فترة وجيـزة , أدي الـي التمكـن مـن تكوين صورة ثنائية وثلاثية الابعاد ذات فائدة تشخيصية عظمـي لمختلـف أعضـاء جسم الانسان خاصة منطقة مدخل الصدر .

من اهم اهداف هذه الدراسة معرفة الاختلافات التشريحية واحجام بعض الاجزاء التشريحية في مدخل الصدر . كما تهـدف الدراسـة ايضـاَ لمعرفـة نسـبة تمييـز بعض الاجزاء التشريحية الصغيرة الحجم في صورة الاشعة المقطعية .

أستخدام أجهزة الاشعة المقطعية متعـددة الكواشـف مكـن مـن تقييـم الجهـاز الدوري والقصبه الهوائية والمرئ والعضلات مع إظهار التغيرات المريضـيه الـتي قد تحدث في منطقة مدخل الصدر , وذلك بفصل تقنية الصور متعـددة المحـاور والـتي سـهل فهمنـا لتشـريح مـدخل الصـدر, فمـا مكـن المختصـين مـن عمـل القصطرة الوردية , وأخذ العينات من الخلايـا المريـض بمسـاعدة جهـاز الاشـعة المقطعيـة , مـع وجـود عـدة اختلافـات تشـريحية قـد تظهـر مماثلـة لتغيـرات المريضية الان هنالك مميزات خاصة لكل من برمجيات تكوين الصور, اسـتخدام اى من تلك البرمجيات يعتمدعلى التغيرات التى يراد توضحها, مثال ذلك تقنيـة اسقاط وحدة الصورة عالية الكثافة ممتـازة جـدا فـى تقييـم الاوعيـة الدمويـة و ليست ذات جدوى فى تقييم الغدد اللمفاوية.

أهمية هذه الدراسة تنبع من اهمية منطقة مدخل الصدر وذلـك لان مـدخل الصـدر يسـتخدم عـادة كمـدخل وريـدي ولاخـذ العينـات مـن الخلايـا المريضـية بمساعدة صورة الاشعة المقطعية، مـع وجـود عـدة اختلافـات تشـريحية وخلايـا طبيعية تماثل التغيرات المريضية , ذلك لان الاشعة المقطعية تمكن من الرؤيـة والتمييز الجيد للاجزاء التشريحية في منطقة مدخل الصدر والعلاقات بين بعضها البعض مما يمكن من نتفادي ثقب شريان أو قطع عصـب أوالاشـتباه فـي بعـض الاجزاء التشريحية السليمة وتصنيفها خلايا مريضية مثال لذلك وعاء دمـوى غيـر معتم بصبغة التصوير قد يماثل غدة لمفاوية.

شملت هذه الدراسة 328 مريضا ممن ارسلوا لاقسام الاشعة المقطعية لعمل صورة مقطعية لمنطقة الصدر او العنـق حيـث يتـم عـادة تصـوير منطقـة مدخل الصدر مع هذين الفحصين.

مـن الصـور المقطعيـة تـم تحديـد الاختلاف التشـريحية واخـذ القيـاس للاجـزاء التشريحية كما تم ايضاً تحديد نسـبة تمييـز بعـض الاجـزاء التشـريحية الصـغيرة الحجم في صورة الاشعة المقطعية في خمس مستويات هـي مسـتوي الفقـارة العنقية السابعة والفقارات الصدرية الاولى والثانية و الثالثة و الرابعة.

تم قياس متوسط حجم القصبه الهوائية المرئ , والوريد الودجي الداخلى والشريان السباتي العام والشريان تحت الترقوى, كما تـم تحديـد نسـبة تمييـز بعض الاجزاء التشريحية الصـغيرة الحجـم فـي صـورة الاشـعة المقطعيـة, مثـل الغـدد اللفاويـة , الغـدة الدرقيـة , الغـدة الصـنوبرية وعضـلات منطقـة مـدخل الصدروالالياف العصبيه المارة بمدخل الصدر.

أ ظهرت الدراسـة وجـود اختلافـات فـى احجـام بعـض الاجـزاء التشـريحية بيـن مجموعة الرجال و النساء. الاجزاء الزوجية مثل الوري الودجي الداخلى الايمـن اكبر حجما من الوريد الودجي الداخل الايسروذلك الحال مـع الشـريان السـباتى العام الايسر فىالاغلب اكبر حجما من الشريان السباتى الايمنو كما وجد الدراسة ان وضع الوريد الودجي الداخلي بالنسبة للشريان السباتى العام بالنسـبة 78.5 % يوجد فى الجانب و 20.5% فى الامام و 1.0% فقط يوجد خلف السباتى. هنالك نسب مختلفة لروية و تمييز الاجزاء التشريحية في مستوى الفقرات, كما ان هنالك اختلاف فى نسبة وجود الغدد اللمفاوية في صورة الاشـعة المقطعيـة حسب الحالة المرضية حيث تظهر أكثر في مريضى الاورم (36%) ومرضى الالتهابات (9%) . الغده الصنوبرية تختلف نسبة ظهورها بختلاف الفئة العمرية حيث تصل الى (76.6%) في الغده لعمر من 30-40 سنه و(65.5%) في الفئة العمرية من

50-41 سنه و(10.5%) في الفئة العمرية اكثر من 51 سنه و فوق. عند التخطيط للدراسات المستقبلية يجب أن تسطصحب الدراسة نوع هيكل جسم المريض والوزن الاختلاف العرقية .

List of Abbreviations

[
2D	Two Dimensional
3D	Three Dimensional
AP	Anterioposterior
ASDL	Arteria subclavia dextra lusoiria
BW	Beam width
CCA	Common Carotid artery
CT	Computed Tomography.
СТА	Computed Tomography Angiography
D	Number of detectors
D	Rotation of x-ray tube
DICOM	Digital Imaging And Communication in Medicine
FOV	Field of View
FW	Filter Width

GE	General electric
HQ	High quality
HS	High speed
HU	Hounsfield unit
IJV	Internal jugular vein
ITV	Internal thoracic vein
IV	Intravenous
KHU	Kilo heat unit
KV	Kilovoltage
KW	Kilo watt
LITV	Left internal thoracic vein
Μ	The number of simultaneously acquired interweaving helices
M.S	Beam width
mAs	Milliampare /second
MDCT	Multidetector computed tomography
mGy	MiliGray
MHU	Maga heat unit
MIP	Maximum intensity projection
MPR	Multiplanar reconstruction
MSCT	Multislice Computed Tomography
Р	Pitch
PACS	Picture Achieving Communication System
RITV	Right internal thoracic vein
SW	Slice width
VR	Volume rendering
VRT	Volume rendering technique

List of Figures

No	Figures	Page
1	Figure (3.1) Thoracic inlet	31
2	Figure (3.2) Veins of thoracic inlet (front view)	41
	Figure (3.3) Brachiocephalic, intercostals, azygos and internal	10
3	thoracic veins	42
	Figure (3.4) Aortic arch and carotid arteries and vagus nerve	
4	(aptorior view)	46
5	Figure (3.5) Thyroid gland and related blood vessels	55
	Figure (3.6) Location of lymph nodes of the thoracic inlet	55
6	rigure (3.0) Elocation of Tymph hodes of the thoracte inter	59
7	Figure (3.7) Thoracic duct and right lymphatic duct with great vessels	60
	at thoracic inlet	
8	Figure (3.8) Muscles of the neck.	63
9	Figure (3.9) Serratus anterior and trapezius muscles	64
10	Figure (3.10) Deltoid, supraspinatus and pectoralis major muscles.	67
11	Figure (3.11) Trapezus, deltoid, teres minor and major, triceps and	68
11	latissmus muscles.	00
17	Figure (3.12) Subclavius, pectoralis minor, levator scapula, rhomboid	60
12	minor and major muscles	09
13	Figure (3.13) Teres major muscle	72
14	Figure (3.14) Coracobrchialis muscle	73
15	Figure (3.15) Anterior vertebral muscles	75
16	Figure (3.16) Relations of the brachial plexus and subclavian artery	77
17	Figure (3.17) CT image is composed of a matrix of pixels, each	81
	representing a volume tissue (voxel).	
18	Figure (3.18) Effect of different window setting on tissue appearance	83
19	Figure (3.19) Arrangement of computed tomography components	85
20	Figure (3.20) Conventional CT path of rotating x-ray tube, detectors	86
	and direction of patient's movement between data acquision.	00
21	Figure (3.21) Spiral CT, path of rotating x-ay tube, x-ray detector and	07
21	direction of patient's movement during data acquision.	07
22	Figure (5.1) Study group gender distribution	104
23	Figure (5.2): Study group age frequencies (years)	105
24	Figure (5.3) Study group clinical symptoms	106
25	Figure (5.4) Study group x-ray findings versus gender	107
26	Figure (5.5) Anatomical variations of blood vessels in study group.	108
	Figure (5.6) Mean diameters of thoracic inlet anatomical structures in	
27	axial CT images at level of C7 for male, female and the average for	109
	both genders.	
28	Figure. (5.7) Mean diameters of thoracic inlet anatomical structures in	
	axial CT images at level of T1 for male, female and the average for	111
	both genders	
	Figure (5.8) Mean diameters of thoracic inlet anatomical structures in	
29	avial CT images at level of T2 for male formals and the average for	117
	asial C1 illiages at level OI 12 IOI illiale, leiliale allu ule average IOF	112
	Dour genders.	
1	I FIGURE LO GUI MEAN (NAMERES OF INOTACIC INIET ANATOMICAL STRUCTURES IN	1

List of Table

0.	Tables	Page
1	Table (2.1). Number of arteria subclavia dextra lusoiria (ASDL), with number of study cases and method of observation	13
2	Table (4-1). Techniques used in performing CT examination for	101
2	chest and neck	104
	Table (5.2). Study group age frequencies (years)	104
4		105
5	Table (5.3.).Clinical condition of the study group	106
6	Table (5.4). X-ray findings of Study group versus gender	107
7	Table (5.5). Anatomical variations of blood vessels in study group.	108
	Table (5.6.) Mean diameters of thoracic inlet anatomical structures	
8	in axial CT images at level of C7 for male, female and the average	109
	for both gender.	
	Table (5.7). Mean diameters of thoracic inlet anatomical structures	
9	in axial CT images at level of T1 for male, female and the average	1110
	for both gender.	
	Table (5.8). Mean diameters of thoracic inlet anatomical structures	
10	in axial CT images at level of T2 for male, female and the average	112
	for both gender.	
	Table (5.9). Mean diameters of thoracic inlet anatomical structures	
11	in axial CT images at level of T3 for male, female and the average	113
	for both gender	
	Table (5.10). Mean diameters of thoracic inlet anatomical structures	
12	in axial CT images at level of T4 for male, female and the average	114
	for both gender	
	Table (5.11). Percentage of identified muscles of thoracic inlet in	
10	axial CT images for men, women and average percentage for both	115
15	gender	115
	Table (5.12). Percentage of identified small arteries of thoracic inlet	
14	in axial CT images for men, women and average percentage for both	117
	gender.	
	Table (5.13). Percentage of identified small veins of thoracic inlet in	
15	axial CT images for men, women and average percentage for both	119
	gender.	
	Tab le (5.14.a). Percentage of identified lymph nodes and lymph	
16	vessels in axial CT images of thoracic inlet for men, women and	121
	average percentage for both gender.	
1 7	Table (5.14.b). Percentage of identified lymph nodes in axial CT	100
1/	images of thoracic inlet for normal, infection, tumor patients.	122
	Table (5.15). Percentage of identified of thymus remnant , thyroid	
18	isthmus left and right thyroid lobes in axial CT images of thoracic	123
10	inlet for men, wmaen and the average for both genders.	140

Contents	
Dedication	i
Acknowledgement	
Abstract (English)	iii
Abstract (Arabic)	vi
List of abbreviations	ix
List of figures	xi
List of tables	xiv
Contents	xvi
Chapter I	
1.1 Introduction	1
1.2 Objectives	5
Chapter II	
Literatures Review	
2.1 Introduction	6
2.2 Anatomic variation of thoracic inlet vessels	10
2.2.1Aortic arch	10
2.2.2 Superior vena cava	18
2.2.3 Brachiocephalic Veins	22
2.2.4 External Jugular Veins	22
2.2.5 Azygos Vein	23
2.2.6 Hemiazygos Veins	27
2.2.7 Accessory azygos vein	28
2. 2.8 Vertebral veins	28
2. 2.9 Internal thoracic vein	28
2. 2.10 Subclavian vein	29
2.3 Anatomic variation of thoracic inlet structures	29
2.3.1 Lymph nodes	29
2.3.2 Thymus	30

Chapter III	
Structures of thoracic inlet	
3.1 Introduction	31
3.2 Facial layers	32
3.3 Bony margins of thoracic inlet	36
3.4 Vascular Structures	37
3.4.1 The great veins	37
3.41.1 The right brachiocephalic vein	37
3.4.1.2 The Left brachiocephalic vein	38
3.4.1.3 The internal thoracic veins	39
3.4.1.4 The inferior thyroid veins	39
3.4.1.5 Left superior intercostals vein	40
3.4.1.6 Superior vena cava	40
3.4.2 The great arteries	42
3.4.2.1 Barchiocephalic trunk	43
3.4.2.2 Carotid System	44
3.4.2.3 The subclavian system of arteries	45
3.4. 2.3.1 First part of right subclavian artery	45
3.4.2.3.2 First part of left subclavian artery	47
3.4.2.3.3 Second part of subclavian artery (right and left)	48
3.4.2.3.4 Third part of subclavian artery (right and left)	48
3.4.2.3.5 Branches of the subclavian artery	50
3.4.2.3.5.1 Vertebral artery	50
3.4.2.3.5.2 Internal thoracic artery	51
3.4.2.3.5.3 Thyrocervical trunk	52
3.4.2.3.5.4 Costocervical trunk	52
3.4.2.3.5.5 Dorsal scapular artery	52
3.5. Thyroid gland	53
3.6.Trachea	55
3.7 Esophagus	56

3.8 Thymus	
3.9 The thoracic duct	57
3.10. The right lymphatic duct	59
3.11. Lymph nodes	60
3.12. Muscular components	61
3.12.1 Carotid sheath	63
3.12.2 Serratus anterior	64
3.12.3 Pectoralis minor	65
3.12.4 Pectoralis major	65
3.12.5 Subclavis muscle	66
3.12.6 Trapezius muscle	66
3.12.7 Levator scapulae	68
3.12.8 Rhomboids muscles (major and minor)	69
3.12.9 Serratus posterior muscles	70
3.12.10 Splenius	70
3.12.11 Teres minor	70
3.12.12 Teres major	71
3.12.13 Rotator cuff muscles	71
3.12.14 Deltoid	72
3.12.15 Scalenni muscles	73
3.13 Nerves	74
3.13.1 Brachial plexus	74
3.13.2 Vagus nerve	76
3.13.3 Recurrent laryngeal nerve	78
3.13.4 Sympathetic trunks	
79	
3.14 Cross-sectional imaging techniques	80
3.15 Computed tomography (CT)	83
3.15.1 Conventional CT	85
3.15.2. Helical CT	86
3.15.3 Multidetector helical CT	87
3.15.4 Pitch and radiation dose in MDCT	89
3.15.5 CT techniques	93
•	

Chapter IV

Material and Methods	
4.1 Introduction	96
4.2 Patients	96
4.3 Machine used	97
4.3.1 Dual CT Scanner machine GE	97
4.3.1.1 Gantry specifications	97
4.3.1.2 X-ray tube specifications	97
4.3.2 Siemens SOMATOM Sensation 16	98
4.3.2.1 Scanner Gantry	98
4.3.2.2 Couch	99
4.4 CT Protocols	99
4.5. Image Interpretation	100
4.6. Statistical Analysis	102

Chapter V		
Results		
Tables and Figures	104-125	
Chapter VI		
Discussion	126-153	
Chapter VII		
Conclusion and Recommendations	154-158	
Chapter VIII		
References	159-168	
Appendices		
Appendix A	169-171	
Appendix B	172-176	
Appendix C	177-181	
Appendix D	182-194	