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 الآية
 

الِنِصِبَاحُ فٌِ  ۚ  مَثَلُ نُىرِهِ كَنِصِكَاٍَ فًِهَا مِصِبَاحٌ  ۚ  اللَّهُ نُىرُ السَّنَاوَاتِ وَالِأَرِضِ }

ٌّ ۚ  زُجَاجٍَُ   لَا زَيِتُىنٍَُ مُبَارَكٍَُ شَجَرٍََ مِنِ يُىقَدُ السُّجَاجَُُ كَأَنَّهَا كَىِكَبٌ دُرِّ

 ۚ  نُىرٍۚ  نُىرٌ عَلَِ ۚ   نَارٌ تَنِسَسِهُ لَهِ وَلَىِ يُضٌِءُ زَيِتُهَا يَكَادُ غَرِبًٍَُِّ وَلَا شَرِقًٍَُِّ

ٌِءٍ عَلًِهٌ ۚ  وَيَضِرِبُ اللَّهُ الِأَمِثَالَ لِلنَّاسِ  ۚ  مَنِ يَصَاءُ  لِنُىرِهِ اللَّهُ يَهِدٍِ  {وَاللَّهُ بِكُلِّ شَ

53سورة النور الآية   
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Abstract: 

 In this thesis we calculated the total Tree level two body width of the Higgs as function of its 

mass from           all the way to           . In particular we calculate the Higgs 

decay rates into   and   gauge bosons and  fermions in the Standard Model of Particle Physics.  

We find that in order for the Higgs to decay to any particle in the Standard Model its mass must 

be               . Also we found that, the total Higgs decay rate increase with Higgs mass 

increases. Moreover, We calculated the Higgs decay to gluons up to one-loop level, and found 

that its decay rate significantly large and must be added to the total Higgs decay rate.  
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Chapter I 

(1-1) Introduction 

In this chapter,  we shall discuss and explore the importance of studying the Higgs boson 

decays in the Standard Model.  The Higgs is not just a new particle in the particle physics, but 

really forms one of the foundations of the electroweak sector of the standard model; it is 

responsible of giving masses to both fermions and gauge bosons in a local gauge invariance 

theory. There are several reasons to believe that the standard model is just the low energy limit of 

more fundamental theory. The standard model has been successfully tested to high level of 

accuracy and provides at present our best fundamental understanding phenomenology of particle 

physics 
[1]

. 

 (1-2)The importance of higgs decay rates:  

The decay rate is the way to probe the properties of the higgs. All higgs decay rates are modified 

by electroweak (EW) and Quantum chromodynamics (QCD) corrections. QCD corrections are 

important for higgs decay into    ̅ . The next process is a one-loop process. We could 

naively think that it's decay rate must be very small compared to the tree-level ones, but that is 

not the case. Because top quark mass is heavy, this diagram produces a high enough decay rate 

that necessarily must be taken into account. We shall see at the end of our computation that for a 

massless quark this diagram does not contribute. 

 (1-3)The main objectives of the research: 

The main object ective of this thesis  is to explain what is higgs boson ,and what is standard 

model. It is also show how the higgs field interacts with particels and gives them mass and 

calculate the decay rates of the Higgs in the Standard Model up to one-loop level.  

(1-4)The outline of the research: 

This reserach project is structured as follow: In chapter one we give brief introduction  and  

chapter two introduce the standard model, in chapter three we calculate the Higgs decay rates 

into gluons, we present in chapter four our numerical results, discussion and conclussion our 

results. 
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Chapter II 

 

 (2-1)The Standard Model  

The Standard Model (SM) of particle physics is a theoretical framework that describes 

fundamental particles and their interactions. The SM is currently accepted theory and its 

prediction has been confirmed experimentally. A single Lagrangian equation is the common 

representation of the Standard Model. The fundamental particles are divided according to their 

spin into fermions (spin
 

 
), the matter forming particles that have half integer spin, and bosons 

(spin 1), the force mediators that have integer spins. Fermions are further divided into quarks, 

which experience the strong force, and leptons that do not. Both quarks and leptons come with 

three generations. The family of quarks consists of the up (u), down (d), charm (c), strange (s), 

top (t) and bottom (b). The properties of these six quarks are summarized in Table 2.1. The 

family of leptons consists of the electron (e), muon (µ), tau (τ ) and a corresponding neutrino (ν ) 

for each. The properties of these six leptons are summarized in Table 2.2. Each of the fermions 

has an anti-particle partner with the same properties apart from having equal and opposite charge 

and internal quantum numbers. The first generation of quarks and leptons are the matter that 

makes up the majority of our universe [1,2]. 

 

 

Table 2.1: Properties of the six quarks in the Standard Model. Charge is expressed as a fraction 

of the electron charge e. 
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Table 2.2: Properties of the six leptons in the Standard Model. Charge is expressed as a fraction 

of the electron charge e. 

 

The bosons act as mediators for the fundamental forces of nature, allowing the interactions 

between quarks, leptons and other bosons to occur. The photon carries the electromagnetic force, 

the 8-fold family of gluons carries the strong force and the W
±
 and Z carry the weak force. All 

charged particles can experience electromagnetic interactions, fermions experience the weak 

force and particles carrying color charge (quarks and gluons) experience the strong force. The 

properties of the bosons are summarized in Table 2.3. 

 

 

Table 2.3: Properties of the Bosons in the Standard Model. Charge is expressed as 

a fraction of the electron charge e. 
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(2-2) Standard Model described by a Lagrangian 

The Standard Model is described by a Lagrangian that is the sum of the gauge, matter, Higgs, 

and Yukawa interactions: 

   ( )  ( )                                                                                                                       (   ) 

This Lagrangian is not written initially in terms of the (very) low energy degrees of freedom we 

observe in our ground state, but in terms of  

 massless states 

 fundamental symmetries  

LGauge =
 

   
     [    

  ]   
 

   
     [    

  ]   
 

  ́ 
     [    

  ]              (2-2) 

  (2-3) 

Γu , Γd , Γe are 3 × 3 complex matrices 

     (2-4) 

      (2-5) 

   (2-6) 

(2-3)The Higgs Boson 

On the 4th of July 2012, the two LHC experiments ATLAS  and CMS reported the 

discovery of a new particle in searches for the SM Higgs boson. Until now the measurements of 

its couplings and its properties have strengthened the assumption that the observed particle with 

a mass around 125 GeV is indeed the SM Higgs boson. However, in order to verify the SM 

hypothesis, all possible production and decay rates need to be measured and compared to the SM 

prediction [3] 

 (2-3-1) The Higgs mechanism  

We  can  now  consider  the  spontaneous  symmetry  breaking  of  a  “local  gauge  

symmetry”. The simplest case is the U(1) gauge symmetry  

  (x) →  e 
iα(x)

   (x)   with   = 
 

√ 
 ( 1 ± i 2)      (2-7) 

We introduce in the lagrangian 
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  (   )
 
 (    )–       (   )        (2-8) 

the covariant derivative 

            –                  (2-9) 

with the gauge field Aµ transforming according to  

          
 

 
      ( )          (2-10) 

The Lagrangian takes then the form  

   (           ) 
  (           )   –       –   (   )   

 

 
     

   (2-12) 

If µ
2
 > 0, then this is just the QED Lagrangian for a charged scalar particle of mass  

m, with the addition of a    self-interaction term. 

But we take µ
2 

< 0, since we want to generate mass terms through the spontaneous  

symmetry breaking mechanism. In this case we have to translate the field   (x) to  

the ground state. With the same substitution as before 

  ( )    
 

√ 
 ,    ( )       ( )-      (2-13) 

the Lagrangian becomes  

mass term        mass term        strange off-diagonal term  

 

   
 

 
[    ]

 
   

 

 
,   -          

 

 
       

        
   –

 

 
     

                   

            (2-14) 

The particle spectrum in     contains  

 a massless Goldstone boson   (x)      = 0   

 a massive scalar field η(x)       √        √     

 a massive vector field Aµ   mA= ev       

Let us consider the following simple Lagrangian describing the self interaction of a  scalar 

particle associated to the field   (x)  

L =T – V           (2-15) 

The Higgs potential is given by 

 ( )    
 

 
         

 

 
 (   )          (2-16) 
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Which involve two new real parameters µ and λ we demand λ   for potential to be bounded; 

otherwise the potential is unbounded from below and there will be no stable vacuum state. 

µ is takes the following two value: 

- µ
2
    then the vacuum corresponding to    , the potential has a minimum at the 

origin (see figure 2.2). 

- µ
2   

then the potential develops a non-zero vacuum expectation value and the minimum 

is along a circle of radius 
 

√ 
  

   

√ 
 (see figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.1): the Higgs potential V( ) with the case µ
2   ; as a function of      √      

 

 

 

 

 

 

 

 

 

 

Figure (2.1): the Higgs potential V( ) with the case µ
2   ; as a function of      √     
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(2-4) The problem of standard model:  

Despite the success of standard model. Below we list some of unsolved problem in standard 

model. 

1. Cosmologic consideration: the observed matter density of galaxies falls short of the 

measured matter as measured by the rotation curves. It is theorized that the baryon matter 

density is ~ 4% . the rest of the universe is made up  ~24% dark matter and ~ 72% dark 

energy. In the last decade , the direct observation of gravitational lensing and 

observations in galactic collision event have provided hard evidence for the existence of 

Dark Matter . the WMAP probe has measured the dark matter density to be between 

(0.087      0.138) at 3σ range . SM neither provides any explanation for dark 

energy nor dose it have a suitable dark matter condition. 

2. Gauge Hierarchy problem:  the Gauge Hierarchy problem is the question of why there is 

such a huge difference between the electroweak scale MEW = O(100)GeV and plank scale 

MPL = O(10
18

) GeV. This is also known as the naturalness problem. 

3. Gravity is not included: Gravity is not put on the same footing as other interaction in the 

SM. 

4. Fermion mass: in particle physics one of the major issues is to explain the fermion mass 

hierarchy and their mixings. The practical feature of fermion mass spectrum gives us  
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Chapter III 

 

This section is devoted to the main calculation of our result. We are now in position to calculate 

the rates of some simple decay processes. The decay width, Z, is a measure of the probability of 

a specific decay process under some given set of initial and final conditions, such as momenta 

and spin polarization. The calculation involves the following steps: 

 

3-1-1 Calculation of the amplitude   

Firstly, We calculate the so called the matrix element, and denoted by    , to indicate that in a 

matrix representation of the transformation process, with the initial and final states as bases, this 

is the element that connects a particular final state f to a given initial state i. A process can be a 

combination of sub processes, in which case, the total amplitude is the sum of the sub process 

amplitudes. Each simple (sub) process is represented by a unique Feynman diagram. Its 

amplitude is a point function in the phase space of all the particles involved, including any 

intermediate propagator, and depends on the nature of the coupling at each vertex (of the 

diagram). For a given diagram, the amplitude can be obtained by using the Feynman rules for 

combining the elements a factor for each external line (representing a free particle in the initial or 

final state), one for each internal line (representing a virtual propagator particle), 

and one for each vertex point where the lines do meet (A.D.Martin, 1984). 

3-1-2 Integrating the amplitude 

Secondly, we should integrate the amplitude over the allowed phase space to get   . The integral 

can be constructed, easily in principle, by utilizing Fermis golden rule. This section will describe 

the above rules and use them to calculate the decay rates (L.F.Li, 1991). 

 

3-1-3 Physical meaning of decay width 

One of the most important characteristics of a particle is the lifetime. It depends, of course, on 

the available decay modes or channels, which are subject to conservation laws for appropriate 
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quantum numbers, coupling strength of the decay process, and kinematic constraints. The decay 

rate is the probability per unit time that a given particle will decay. The probability that a single 

unstable entity will cease to exist as such after an interval is proportional to that interval. 

The time after which the ensemble is expected to reduce to 
 

 
, of its original size is called the 

lifetime: 

 

   
 

  
, 

 

If multiple decay modes are available, as is often the case, then one can associate a decay rate for 

each mode, and the total rate, will be the sum of the rates of the individual modes (Weinberg, 

1996).  

 

       ∑   
 
   , 

 

The particles lifetime is given by 

   
 

      
, 

 

In such cases, we are often interested in the branching fractions, i.e. the probabilities of the decay 

by individual modes. The branching fraction of mode   is: 

 

    
  

      
, 

 

Since the dimension of  is the inverse of time, in our system of natural units, it has the same 

dimension as mass (or energy). When the mass of an elementary particle is measured, the total 

rate shows up as the irreducible width of the shape of the distribution. Hence the name decay 

width 
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3-2 Calculation of decay widths 

 

The matrix element between the initial state    and the final state     is called 

the   matrix: 

 

    (  )   (     )                                                                                                                

where   is the total initial momentum,   the total final momentum, and  

the 4-dimensional function expresses the conservation of 4-momentum(   ⃗). 

The quantity    , called the (reduced) matrix element or amplitude of the 

process, contains the non-trivial physics of the problem, including spins and 

couplings. It is usually calculated by perturbative approximation (L.F.Li, 1991). 

 

3-3 Feynman rules for calculating the amplitude 

In the previous sections, the formula for decay rates and scattering cross sections 

are given in terms of the amplitude    . Here we give the recipe to calculate     for a given 

Feynman diagram for tree-level processes: 

3-1-4 External lines 

(a) For an incoming fermion, anti-fermion, or gauge boson, associate a factor    ̅      , 

respectively.  

(b) For an outgoing fermion, anti-fermion, or gauge boson, associate a factor  ̅        
   

respectively. 

3-1-5 Vertices 

For each vertex, include a factor of     for an fermion or     or a anti-fermion. 

3.4 Internal lines 

(a) For an gauge boson connecting two vertices, include a term 

 

            
 

     
                                                                                                                                                                                                                                                              

 

(b) Integrate over all undetermined internal momenta. 
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In this chapter we shall calculate the Higgs decay rates to Fermions and Bosons in the Standard 

Model of particle physics as well as the branching ratio of the Higgs decay in the SM. 

First the Higgs decay into two gauge bosons 

(3-5) Higgs decay to gauge boson 

          

The decay rate is given by the following equation 

   
 

   
∫(  )   (      )

   

(  )   
    

(  )      
∑               (3-1-1) 

Where   is the matrix element and in this case is equal to 

M =          

∑     

    

     
 (    )

  

We shall consider two cases for      

Firstly longitudinal polarization case: 

  ( )  (
   

  
     

 

  
) 

  ( )  (
  

  
   

  

  
  ) 

Therefore 

   
 ( )  

 ( )́  .
   ́

  
 / 

In the center of mass frame, we have  

 

  
  (

    

  
 )                

          
 +   ́ 

 .  ́   
 ⁄ (  

     
 ) 
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 ⁄  (  
     

 )

  
 

 

Thus  

    ∑              
 (

 
 ⁄  (  

     
 )

  
 )

 

 

 
  

   
 
(  

     
 )  

 
  

   
 
(  

     
   

     
 ) 

 
  

   
 
  

 (   
  

 

  
   

  
 

  
 ) 

 ∑        
  

√ 
  

 (   
  

 

  
   

  
 

  
 ) 

Now let’s evaluate phase space 𝜌: 

𝜌  ∫(  )   (     ́)
   

(  )   
 

   ́

(  )   ́
 

 
 

(  ) 
∫  (𝜌     ́)   ́    (      ́)    

 
 

(  ) 
∫  (      ́)

   

     ́
 

                         (  )            

Then 

 

𝜌  
 

     
   ∫ (      ́) 

    

    ́
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𝜌  
 

  
  ∫ (   (   ́)

   

  ́
 

 

  
 

 

   
 

  
 

   
 (     

 )
 
  

                               

                               
 

 
  

       
  

So 

  √
 

 
(  

     
 ) 

  
 

 
  (   

  
 

  
 )

 
 

 

Therefore  

𝜌  
 

8 
  (   

  
 

  
 )

 
 

 

Substitute the above equation into the equation of the decay rate we get  

  
 

    
 𝜌∑     

  
 

    

  

8 
(   

  
 

  
 )

 
 

(   
  

 

  
   

  
 

  
 ) 

Secondly Transverse case: 

In this case we have 

   
 

√ 
(       ) 
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√ 
(        ) 

     
 

 
(   )    

Hence 

∑         
 (    )

       
 

8    
 

√ 
 

Therefore the decay rate in this case is  

  
 

    
 ρ∑     

 
 

   
 

  

8 
(   (

  

  
)
 

)

 
 ⁄

(
     

 

√ 
) 

   
 

   
 

  

8 
(   (

  

  
)
 

)

 
 ⁄

(
     

 

√ 
) 

Add the longitudinal and transverse cases to yield  

    (      )         

    (      )  
  

√ 

 

8 
(   (

  

  
)
 

)

 
 ⁄

(   
  

 

  
    

  
 

  
 ) 

2-      

The Higgs decay into two    is half of the Higgs decay into two WW because Z Z are neutral 

and  identical particle cannot be distinguished from each other unlike charged WW gauge boson 

 (    )  
 

 
 (    ) 

 
 

 

  

√ 

  
 

8 
(   (

  

  
)
 

)

 
 

(   (
  

  
)
 

   (
  

  
)
 

) 
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(3-6) Higgs decay to fermion 

Higgs decay to fermions: 

Higgs can decay to fermion and anti-fermion if the it’s mass is greater the mass of the fermion 

 

    ́ 

The mass matrix can be written as 

  
   

 

  

  
 ( ) ( ) 

Therefore the sum over all possible spin is  

∑     
  

 
    

  
 

  
 
   [(    

́ )(    )]
 
 

 
  

 

  
 

  
 
0  . .             

 ́́
/1 

 
  

 

  
 

  
 
[ ( .     

 ́ )]
 
 

    
  

 

  
 
( .     

 ́ )
 
 

Utilizing our trace technology we get 

     ́      
  

  (    )       

  0 .     (   ́ )    
 ́ 1   

[  (    ).   ́    (    )     ( )  
 ] 
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      ́
   
́     

  

  ( .     
 ́ ) 

In the center of mass we have  

  
  (   ́)

 
     ́    .  ́ 

 .   
 

 

́
(  

     
 ) 

Substitute the above equation into the equation of matrix elements 

∑        
  

 

  
 
((

 

 
  

    
 )    

 )

 

 

    
  

 

  
 
((

 

 
  

    
 )    

 )

 

 

   
  

 

  
 
  

 (   
  

 

  
 )(   

  
 

  
 ) 

 
  

  
 
  

   
 (  

   
 

  
 )

 

 

Thus the decay rate can be written as 

  
 

   
𝜌∑   

 

 

 
 

   

  

8 
(  

   
 

  
 )

 
 ⁄

 
8  

√ 
  

   
 (  

   
 

  
 )

 

 

 
 

8 

  

√ 
  

   
 (  

   
 

  
 )

 
 

 

Therefore the Higgs decay rate into two fermions is given by  
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 (    )    

 

8 

  

√ 
  

   
 (  

   
 

  
 )

 
 

 

         {
             
            

 

 

In this section we shall calculate  in details the Higgs decay rate into gauge bosons and fermions 

(    ) and (    ) by using the standard model theory, then we summarized our 

numerical calculations in the table below. 

We use the following equations for our calculations: 

 (    )  
  

   

 √   
.  

   
 

  
 /

 
 
.   

  
 

  
    

  
 

  
 /,          (4-1) 

 (    )  
  

   

  √   
.  

   
 

  
 /

 
 
.   

  
 

  
    

  
 

  
 /                (4-2) 

And  

 (    )  
   

      

 √   
.   

  
 

  
 /

 
 

.                                                 (4-3) 

As can be seen from above equations, in order for the higgs to decay to gauge bosons (W and Z) 

its mass should be bigger or equal twice the mass of these particles at least and for the higgs to 

decay into any fermions its mass should be also bigger or equal twice the mass of top particle.  

We have also computed the Higgs decay into bottom quark       with            and 

we get 

 (    )   .           

This means that the Higgs decay to bb is very small and can be neglected in our calculation only 

top is the dominanet contribution becuase its mass is bigger compare to other quarks and leptons 

. And we have double checked for the Higgs decay to tau lepton and found the decay is also too 

small compare to top quark. 
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All higgs decay rates are modified by electroweak (EW) and Quantum Chromodynamics (QCD) 

corrections. QCD corrections are important for Higgs decay into    ̅ .  

 

(3-7 ) Higgs decay to gluons. 

The next process is a one-loop process. We could naively think that it’s decay rate must be very 

low compared to the tree-level ones, but that is not exactly true. Due to the very heavy top quark 

mass, this diagram generates a high enough decay rate that necessarily must be taken in 

consideration. We shall see at the end of our computation that for a massless quark this diagram 

does not contribute. 

 (  )     (  ) (  )       (3.1) 

first diagram: 

 

Figure 4: Higgs decay to gluons, first diagram. 

The transition amplitude of the first diagram is given by: 

 ( )  (  )  
  

 
      

       
  .

  

 
/
    

 .
  

 
/
  

              

∫
   

(  ) 
 

  * 
 (      )(      )  (   )+

(     ),(    )    -,((    )    )-
      (3.2) 

Here m = mt , the top quark mass. Let’s first analyze the colour trace: 

.
  

 
/
    

 .
  

 
/
  

             
 

 
  *    +   

 

 
      (3.3) 
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The spinor trace is a little more complicated: 

  * 
 (      )(      )  (   )+  

    (  
 
  
               

     
 
     

 
  
     (        )        )         

      (3.4) 

Before we try to perform the integral, we shall use the Feynman parameterization to simplify the 

denominator: 

 

   
  ∫   

 

 
∫   
 

 
∫   
 

 
 (             )

 

,            - 
  (3.5) 

We have, A =      , B=(    )
     and C= (    )

     , so the denominator  

D ≡ Ax + By + Cz 

can be written as it follows (as a first order approximation we shall consider on-shell gluons): 

  (     )  (     
         )  (      

           )       

      (     )(     )   (   )   (   )  

              (   )   (   )     

     (         )
   (    )             (3.6) 

We define             (    )  , therefore, we can write D in the simplified form :   

 (         )
     

In terms of the Feynman parameters, our integral becomes: 

      ∫
   

(  ) 
∫   
 

 
∫   
   

 

     

, (         )    - 
    (3.7) 

Making a variable shift from k to          ,     takes the form: 

      ∫
   

(  ) 
∫   
 

 
∫   
   

 

      

,      - 
       (3.8) 

Where the new numerator is: 
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      (             )
 (             )

    (             )
   

      
 
(   

          )
    

 
   

     
 
  
      (        )        (          )

    

       (3.9) 

Knowing that all terms that are lineal in k
µ
 vanish when integrated (k

µ
 is an odd function) we can 

discard them from N0µν, so what we have left is: 

                      
 
  
 (       )    

 
  
 (            ) 

   
 
   

 (      )    
 
  
 (      )     (                )  (3.10) 

There are a couple terms that are apparently ultraviolet divergent, such as              so we 

need to employ dimensional regularization to perform the four-momentum integral. We will also 

use the same technique to calculate the finite integrals. The scheme used here is the MS, so we 

take the identity matrix trace in D space-time dimensions to be 4 (T r{ID} = 4). Now let us 

define the following integral: 

  (         )   ∫
   

(  ) 
 

(  )
 

(     ) 
       (3.11) 

where D is the number of space-time dimensions. We can easily show that: 

  (         )  
 

(  )  ⁄  (  )  ⁄ (   )    
 (      ⁄ ) (    ⁄ )

 ( ) (  ⁄ )
   (3.12) 

All terms that do not depend on the four momentum k
µ
 in the numerator give rise to finite 

integrals, thus in this case we can directly take D as 4; so   (         )) takes the simple form: 

  (         )   
 

     

 

            (3.13) 

Due to Lorentz symmetry, we find the following property: 

∫
   

(  ) 
 
(  )     

(     ) 
 

   

 
   (           ) 

Using this property we are now able to integrate the terms 4           from      

 (3.14) 
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∫
   

(  ) 
 
            

(     ) 
 (

 

 
  )        (         ) 

  .
 

 
  /      

(  )  ⁄  (  )  ⁄ (   )   
 (    ⁄ ) (    ⁄ )

 ( ) (  ⁄ )
  

  .
 

 
  /      

(  )  ⁄
 (  )  ⁄  

 
 (    ⁄ )     (3.15) 

Taking D = 4 + 2ϵ  with ϵ    1 we find: 

.
 

 
  /

 

 
   

 

 
          (3.16) 

 (    ⁄ )   (  )    
 

 
     (  )      (3.17) 

where    is the Euler-Mascheroni constant. Substituting this result in our integral the pole of the 

Gamma function disappears therefore the ultraviolet divergence disappears. We can now take the 

limit → 0 to obtain: 

∫
   

(  ) 
 
            

(     ) 
  

 

     
     

 

     

  

    
       (3.18) 

We obtain the following expression for     : 

    
   

    ∫  
 

 
∫

    

   *
  
 
   

 (      )    
 
   

 (      )    
 
   

 (     )

   
 
   

 (            )   (                )
+

   

 
 (3.19) 

Now let us remember that we have considered on-shell gluons, therefore we can apply the 

transversality condition to eliminate terms from     , thus keeping in mind that      
   

 
   with 

i=2,3, then the only remaining tensorial structure is the following: 

    
   

    ∫  
 

 
∫

    

   [  
 
   

 (     )      (                )
 

]
   

 
 (3.20) 

Rearranging terms we can write the following: 

    
   

    ∫  
 

 
∫

    

   
[  

 
   

           

 
] (     )

   

 
    (3.21) 

To simplify our notation let us define the following: 
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∫  
 

 
∫     

     

   
   

   

 
         (3.22) 

Now we can write     in a simple compact form: 

    
   

     [  
 
   

           

 
]       (3.23) 

Finally, we write the transition amplitude M(1) : 

 ( )   (  )  
   

  
      

      
     

         (3.24) 

Second diagram: 

 

Figure 4: Higgs decay to gluons, second diagram. 

The transition amplitude of the first diagram is given by: 

 ( )  (  )  
  

  
      

       
    ∫

   

(  ) 
  * 

 (   )  (      )(      )+

(     ),(    )    -,((    )    )-
 (3.25) 

Computing the spinor trace, and D in terms of the Feynman parameters we find: 

  * 
 (   )  (      )(      )+  

    .  
 
  
               

     
 
     

 
  
     (              )/            

        (3.26) 

and also, the following integral: 

      ∫
   

(  ) 
∫   
 

 
∫   
   

 

     

, (         )    - 
      (3.27) 
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Performing the parameter shift k → k −        ,     takes the form: 

      ∫
   

(  ) 
∫   
 

 
∫   
   

 

      

,      - 
       (3.28) 

with the non zero contributing terms of     : 

       
 
  
 (      )    

 
  
 (      )    

 
  
 (     )    

 
  
 (           

 )     (                )` = 
          (3.29)  

So we find that     =    , therefore the amplitude of the second diagram is exactly the same as 

the first one M(1) = M(2) ; the total squared amplitude is then given by: 

       | ( )|
 
          (3.30) 

The sum over spins and gluon colours gives: 

∑            ∑     8   ∑      
       

      
       

 
             

We obtain the simple formula: 

∑|     |
 

     

   
  
8  

  
       

               
   

   (    )
     

8   
 

The squared amplitude than reads: 

∑|     |
 

     

   
  
   (    )

 

     
     

Let’s compute now the integral C explicitly: 

  ∫ ∫       
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  ( )  

 

  
  ( )  

(3.31) 

(3.32) 

(3.33) 
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were we have defined n ≡         ⁄ . Taking the limit           ( ) n we observe that the 

result is zero, 

therefore, if we consider massless quarks as usual, except for the top quark, we only have one 

contribution, as we mentioned at the beginning. Moving on, in the center of mass the four-

momenta are given by: 

  
 
  (    )   

 
  (   ⃗)   

 
  (    ⃗)  

We can easily find that: 

           
 

 
   

             
 

 
   

  

Therefore we can write the squared transition amplitude as: 

∑|     |
 

     

  
   

 

   
 .
  

 
/
 

    ( )   

The phase space integral is easy to compute: 

∫     
 

 
∫

 

(  ) 
 

 √ 
       

 

   
 

Note that we have included the symmetry factor 1/2 in the phase space integral because this time 

we are dealing with identical final state particles. Thus, the decay width of the process is given 

by (n =        
 ⁄ :  

 (     )   
  

 

8     
 .
  

 
/
 

    ( )   
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Chapter V 

Discussion and Conclusion 

Discussion: 

As depicted in figure 4.1 the Higgs decay rate into W gauge boson increase with Higgs mass 

increases. And the decay rate is almost zero with Higgs mass less than twice the mass of W 

gauge boson and the same applies to Higgs decaying into Z boson. We observe similar behavior 

for the Higgs decay to top quark. 

We found numerically that the Higgs decay to tau lepton is 10 smaller than Higgs decaying to 

bottom quark              ; such effect can be safely ignored.  

 

In particle physics and nuclear physics, the branching fraction for decay is the fraction of 

particles which decay by an individual decay mode with respect to the total number of particles 

which decay and can be define as follow: 

  ( )  
 (              )

 (     )
                                                          (4-4) 

The branching ratios of the SM Higgs boson are shown in figure 4.2. The main decay channel by 

far in the Higgs mass range is      with     8   followed by the decay into ZZ and tt 

with        . 

 

The next process is a one-loop process. We could expect that its decay rate must be very small 

compared to the tree-level ones, but that is not the case. Because top quark mass is heavy, this 

diagram produces a high enough decay rate that necessarily must be taken into account as 

highlighted in figure 4.3. 
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Fig.4.1. Higgs Decay rates as function of Higgs mass in the standard model. 
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Fig.4.2. Higgs Branching ratio as function of Higgs mass in the standard model. 
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Fig.4.3. Higgs decay rate to gluons as function of Higgs mass in the standard 

model. 

Conclusion: 

    

In this thesis we calculated the decay rates of the Higgs in the Standard Model of particle 

physics, as well as the branching ratio of the Higgs gauge boson in details at tree level. We find 

that the dominant decay channel is the Higgs decaying into WW gauge boson with     8   

this result hold for           .  

 

The total decays widths of the Higgs bosons and the various branching ratios in the SM are 

discussed. 

 

This work could be extended by including the effects from the loop contribution such as Higgs 

decaying into photons which appear only at loop level.  
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