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َّهُمُ  وَءَايةَ   ۡلُ ٱل ظۡلمُِونَ  لنَّهَارَ ٱنسَۡلخَُ مِنۡهُ  لََّّ مۡسُ ٱوَ  ٣٧فإَذَِا هُم مُّ َّهَاۚ  لشَّ ّٖ ل تََۡرِي لمُِسۡتَقَر 

َٰلكَِ تَقۡدِيرُ  عَزيِزِ ٱذَ
َٰ عََدَ كَ  لۡقَمَرَ ٱوَ  ٣٨ لۡعَليِمِ ٱ لۡ رۡنََٰهُ مَنَازلَِ حَتََّّ  لۡقَدِيمِ ٱ لۡعُرجُۡونِ ٱقدََّ

مۡسُ ٱ لَ  ٣٩ ن تدُۡركَِ  لشَّ
َ
ٓ أ ۡلُ ٱوَلَ  لۡقَمَرَ ٱينَۢبَغِِ لهََا وَكُ   فِِ فلَكَّٖ  لنَّهَارِ  ٱسَابقُِ  لََّّ

  ٤٠يسَۡبَحُونَ 

 ٤٠-٣٧,سورة يس
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Abstract 

Triangulation in survey is the process of determining the control points by 

measuring angles and distances. The adjustment process of triangulating a 

network can be carried out by many methods, one of these methods is 

variation of coordinates using distance, angle and azimuth observation 

equation. The objective of this study was to use the variation of coordinates 

method by distance observation equation only. The network has been adjusted 

was a part of an old triangulation in Sudan, three techniques of adjustment 

were implemented, the first technique is using plane distance without weights, 

and in the second one is using weights on plane distance and in the last 

technique some of the distances were too long. Therefore, the curvature 

correction was added to the distance and a new adjustment was performed. 

The results emphasized that the technique of adding curvature gives better 

adjusted values. Nonetheless, the three techniques gave more or less same 

values, but the difference from the original coordinates were tremendously 

large. This shows that the new technique is likely to approximate the true 

value of the coordinates.  
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 المستخلص

 

شبكة المثلثات تستخدم لتحديد نقاط الضبط بقياس الزوايا و المسافات بين النقطة المعلومة و النقطة التي 

باستخدام  فرق الإحداثياتة المثلثات بعدد من الطرق منها طريقة يراد تحديدها. تتم عملية ضبط شبك

. الهدف من هذه الدراسة هو عملية ضبط  لجزء من لزوايا و الانحرافاتمعادلات الرصد للمسافات و ا

معادلة , و باستخدام فرق الاحداثياتشبكة المثلثات القديمة الموجدة في السودان, باستخدام طريقة 

, في المرة الاولى تكون معادلة التثليث بدون وزن و المسافات محسوبة على فقط الرصد للمسافات

واخيرا وجد ان المسافات بين بعض سطح مستوي, ثم يتم ادخال الوزن للمعادلة وحساب الاحداثيات, 

ومنهم يتم حساب الضبط ادخال مسافات تاخذ في الاعتبار انحناء الارض, النقاط طويلة جدا لذلك تم

تم ادخال انحناء الارض في المسافت . النتائج تظهر ان الافضل هي الطريقة الاخيرة التي للاحداثيات

. و لكن حقيقة الطرق الثلاثة معظمها متساوية في القيم , لكن الفرق بين القيم المضبوطة و بين النقاط

 دقيقةيم كبيرا, و هذا يظهر ان التقنيات الحديثة هي المفضلة لتعطي قالبيانات المرصودة نجدة 

 للاحداثيات.
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Chapter One 

Introduction 
 

1.1 Forward: 
Since the 1960s, spatial geodetic methods have allowed orientation of the 

classical networks with respect to the global geocentric reference system, 

and control of scale and systematic distortions. To describe the design of 

these networks, the measurement and computation techniques applied, the 

accuracy achieved, and the orientation with respect to the Earth’s body 

(geodetic datum). Having served (and serving) as a basis for many 

applications in surveying and mapping, they are still of relevance and now 

in a state of transition to the global 3D reference frame. Horizontal control 

networks have been realized by trigonometric (triangulation) points, which 

in principle should be distributed evenly over the country. One distinguishes 

between different orders of trigonometric points, from first-order or primary 

(station separation 30 to 60 km) to second-order (about 10 km) to fourth- or 

even fifth-order (down to 1 to 2 km) stations, where the state of the 

networks’ coverage strongly depends on the development of the respective 

region or country. The maximum distance between first-order points was 

determined by terrestrial measurement methods, which required 

indivisibility between the network stations. Consequently, first- and partly 

also second order stations were established on the top of hills and 

mountains; observation towers (wooden or steel constructions with heights 

of 30 m and more) were erected especially in at areas. The stations have 

been permanently marked by underground and surface monuments (stone 

plates, stone or concrete pillars, bolts in hard bedrock). Eccentric marks 

have been set up in order to aid in the recovery and verification of the center 

mark [11]. 

 

1.2 Statement of the Problem: 
All measurements contain errors and with global positioning systems, total 

station instruments, digital metric cameras and satellite imaging systems 



2 
 

now generating vast quantities" of data, adjustment for errors is crucial to 

accurate interpretation. Adjustment computations provides a complete. Up 

to date treatment of every aspect of least squares adjustment. The most 

rigorous procedure available for computing adjustments to measured data. 

Prior to the development of electronic distance measuring equipment and 

the global positioning system, triangulation was the preferred method for 

extending horizontal control over long distances. The positions of widely 

spaced stations were computed from measured angles and a minimal 

number of measured distances called baselines [1, 12]. 
 

1.3 Research Objectives: 

The main objective of this study is adjustment and detecting the error in the 

triangulation network using statistical methods, to adjust distance and 

coordinates for the station.  

 

1.4 Methodology:  

The methodology will be used in this study consisting of three phases. In 

phase one chose the data from the old triangulation network in Sudan from 

“General Authority for Sudanese Survey”. In phase two processing to 

adjustment the distance and coordinate using adjustment by distance 

observation equation. Phase Three is compare between different techniques 

into the Trilateration. 

 

1.5 Expected Output: 

Based on data collection and the process in them, that be able to extract the 

high resolution of triangulation network. This certainly will be helpful to 

make the high resolution for Triangulation Geodetic Network.  
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1.6 Layout: 

The research will be document in six Chapters; Chapter One will introduce 

the research problem and the objectives. Chapter Two will discuss the 

concept of triangulation Network, design and classification. Chapter Three 

will reflect the adjustment for triangulation network. The research 

methodology will be discussed in Chapter Four. Chapter five will list and 

analysis the output results of the research work. Conclusions and 

recommendations, will be summarized in Chapter six. 
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Chapter two 

The Concept of Horizontal Network  
 

2.1 Introduction: 

Triangulation is the surveying technique in which unknown distances 

between stations may be determined by trigonometric applications of a 

triangle or triangles. In triangulation, one side called the baseline and at least 

two interior angles of the triangle must be measured. When all three interior 

angles are measured, accuracy of the calculated distances is increased and a 

check provided against any measurement error. 

The most basic use of triangulation can be found in surveys of the public 

domain. Although the use of electronic measuring instruments has 

eliminated most requirements for this type of triangulation, the 1973 Manual 

of Surveying Instructions made the following statement: 

Triangulation may be used in measuring distances across water or over 

precipitous slopes. The measured base should be laid out so as to adopt the 

best possible geometric proportions of the sides and angles of the triangle. 

If it is necessary to determine the value of an angle with a precision of less 

than the least reading of the Vernier, the method of repetition should be 

employed. 

A complete record of the measurement of the base, the determination of the 

angles, the location and direction of the sides, and other essential details is 

entered in the field tables, together with a small diagram to represent the 

triangulation. In the longer and more important triangulations, all of the 

stations should be occupied, if possible, and the angles should be repeated 

and checked to a satisfactory closure; the latter may be kept within 0'20" by 

careful use of the one-minute transit. 

In line practice the chainmen are frequently sent through for taped 

measurement over extremely difficult terrain, but with the length of the 

interval verified by triangulation. This is done to ensure the most exact 

determination of the length of the line while also noting the intervening 

topographic data [11]. 
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2.2 Horizontal Geodetic Network:  

Horizontal control networks have been realized by trigonometric 

(triangulation) points, which in principle should be distributed evenly over 

the country. One distinguishes between different orders of trigonometric 

points, from first-order or primary (station separation 30 to 60 km) to 

second-order (about 10 km) to fourth- or even fifth-order (down to 1 to 2 

km) stations, where the state of the networks coverage strongly depends on 

the development of the respective region or country. The maximum distance 

between first-order points was determined by terrestrial measurement 

methods, which required inter visibility between the network stations. 

Consequently, first- and partly also second order stations were established 

on the top of hills and mountains; observation towers (wooden or steel 

constructions with heights of 30 m and more) were erected especially in flat 

areas. The stations have been permanently marked by underground and 

surface monuments (stone plates, stone or concrete pillars, bolts in hard 

bedrock). Eccentric marks have been set up in order to aid in the recovery 

and verify cation of the center mark [12]. 

 

2.2.1 The Horizontal Datum: 

The horizontal datum provides the basis for establishing the national 

geodetic coordinate system and for calculating the geodetic coordinates of 

each point in the national horizontal control network. It includes a set of 

initial data, i.e., the geodetic longitude and latitude of the initial point and 

the geodetic azimuth from the initial point to its adjacent point in the 

national geodetic control network. (The initial point is the geodetic origin in 

classical geodetic survey.) The extension of the horizontal datum is realized 

by the horizontal control network formed by a series of control points. 

Coordinates of the control points are computed from the geodetic origin and 

obtained by classical geodetic methods such as traversing, triangulation, and 

so on. In modern geodetic survey, the horizontal datum is usually realized 

by 3-D datum obtained from the GPS method [3,12]. 
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2.3 Geodetic Triangulation: 

To measure terrain, surface features, position coordinates, heights, and 

gravity values at points on the Earth’s surface, there need to be 

corresponding reference points or surfaces. Namely geodetic datums, to 

which surveying and mapping results are referred. Geodetic datums consist 

chiefly of coordinate datums (including classical horizontal datums and 

three-dimensional coordinate datums), vertical datums, sounding datums, as 

well as gravity datums. Geodetic datums provide initial data for all kinds of 

surveying and mapping work and serve as the foundation for determining 

the geometric shape and spatial–temporal distribution of geospatial 

information. Classical horizontal and vertical datums are realized by 

classical geodetic methods. Due to their limited controlling area, these two 

datums can only be used as regional datums and are usually applicable 

countrywide. The three-dimensional coordinate datums and gravity datums 

can be used as both global and regional datums. The datums are represented 

by the position coordinates, heights, and gravity values at a series of control 

points. [1]. The Geodetic networks consist of monument control points that 

provide the reference frames for positioning and gravity-field determination 

[12]. Many type of figures used in triangulation and strength factors as 

explanation below: 

(A) Simple quadrilateral The simple quadrilateral is the best figure, and it 

should be employed wherever possible. It combines maximum strength and 

progress with a minimum of essential geometrical conditions when 

approximately equilateral or square and therefore the square quadrilateral is 

the perfect figure.  

 (B) Four sided central point figure with one diagonal. When one diagonal 

of the quadrilateral is obstructed, a central point, which is visible from the 

four comers can be inserted. This figure requires the solution of two side 

equations and five angle equations, and hence adds to the labor of adjusting. 

(C) Four sided central point figure without diagonal. At times, neither 

diagonal can be made visible and the figure becomes a simple four sided 
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central point quadrilateral with a strength factor of 0.64. The central point 

in this case should be carefully located to maintain the strength of the RJ 

chain of triangles. An excellent location is near one side line and about 

midway along it. If too near the side line, however, refraction errors may be 

almost the same for the closely adjacent lines, and furthermore, the R2 value 

will be so large as to be of little value as a check on lengths computed 

through the RJ triangles. 

(D) sided central point figure. This is a simple and usually very strong 

figure. It is often used to compensate for a great variation in length of the 

side lines of adjacent quadrilaterals, and to quickly change the direction of 

the scheme. 

(E) Five sided figure with four diagonals. This figure may be considered as 

a four sided central point figure with one diagonal, in which the central point 

falls outside the figure. It is used to afford a check when either a diagonal 

or a side line is obstructed.  

This figure can often be used by the observing party when a side line of a 

quadrilateral is found to be obstructed. 

 (F) Five sided figure with three diagonals. This figure is similar to the four-

sided central-point figure, (C), except that the central point falls outside the 

figure.  

(G) Five sided central-point figure with two diagonals. This figure is an 

overlap of a central-point quadrilateral and a simple quadrilateral, and is the 

most complicated figure employed. It has been used to carry the scheme 

over difficult or convex areas. This figure can generally be made very 

strong.  

(H) Five and six sided central point figures without diagonals. Any polygon 

with a central point, having separate chains of triangles on either side of the 

central point, will give a double determination of length, since it is 

permissible to carry the two lengths through the same triangle provided 

different combinations of distance angles are employed [3]. 
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Figure (2.1): type of figures used in triangulation and strength factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.2): Chain of quadrilaterals 
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2.4 Classification: 

In the design stage of a geodetic network one has to decide on its 

configuration, that is the point location and the types of observations, and 

on the distribution of observational work respectively the precision of the 

measurements. In the adjustment stage one has to decide on an optimal 

datum, using all available information of a relative and an absolute nature. 

This is valid, not only for new planned networks, but also when existing 

networks are extended. The different optimization problems are usually 

classified into different orders, a classification which has provided useful in 

the last years in despite of some weaknesses. 

The datum problem is a search for an optimal datum or coordinate system 

and is called the zero-order design problem. The first order design problem 

is to be understood as the configuration problem, where the positions of the 

points and the observation plan have to be optimized, provided that the 

precision of the observations is known a priori. The weight problem, which 

is the optimal distribution of observational work in a fixed configuration, is 

called the second-order design problem. A further class is the third-order 

design problem, which is defined as the optimal improvement of an existing 

network or an existing design by insertion of additional [1]. 

Points and/or additional observations. There are proposals to introduce a 

further class of design, in which for deformation networks the optimal time 

difference between the observation epochs has to be found. 

But this proposal does not fit the hitherto existing classification which is 

obvious if one regards the free elements in the formula of a least-squares 

adjustment by variation of coordinates. 

 

2.4.1 Zero Order Design: 
Many problems in physical science involve the estimation of a number of 

unknown parameters which bear a linear (or linearized) relationship to a set 

of experimental data. The data may be contaminated by (systematic or 

random) errors, insufficient to determine the unknowns, redundant, or all of 

the above and consequently, questions as existence, uniqueness, stability, 
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approximation and the physical description of the set of solutions are all of 

interest. 

In econometrics, for instance, the problem of insufficient data is discussed 

under the heading of "multi collinearity" and the consequent lack of 

determinability of the parameters from the observations, is known there as 

the "identification problem". In geophysics, where the physical 

interpretation of an anomalous gravitational field involves deduction of the 

mass distribution which produces the anomalous field, there is a 

fundamental non uniqueness in potential field inversion, such that, for 

instance, even complete, perfect data on the earth's surface cannot 

distinguish between two buried spherical density anomalies having the same 

anomalous mass but different radii. Also in geodesy one is confronted with 

similar problems. In physical geodesy, for instance, the fact that the data are 

generally measured only at discrete points, leaves one with the problem of 

determining a continuous unknown function from a finite set of data. And 

in geometric geodesy the non-uniqueness in coordinate system definitions, 

plays a fundamental role when identifying, interpreting, qualifying and 

comparing results from geodetic network adjustments. All the above 

mentioned problems are very similar and even formally equivalent if they 

are described in terms of a linear model E{y} A x, with rank mx1 mxn nx1 

A < n. And these problems of solving systems of linear equations with 

arbitrary size and degeneracy are readily handled via the concept of a 

generalized inverse [3,4]. 
 

2.4.2 First Order Design: 
The first-order triangulation chain is a national primary network, used to 

build a precise framework of a unified coordinate system throughout the 

country to control the establishment of the second- and lower-order 

triangulation networks and provide data for studying the size and shape of 

the Earth and geodynamics. Mapping control is not the direct objective—

accuracy has more importance in this case. 

The first-order triangulation chain runs along the meridian and the parallel 

as shown in Fig.2.3. The triangulation chain between the intersections is 
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called the chain section; the circle formed by the east–west and north–south 

chain sections is called the chain loop; many chain loops form the chain 

system. The chain section is approximately 200 km long and is usually 

formed by single triangles and may also include some geodetic 

quadrilaterals or mid-point polygons. The average side length of triangles 

in the chain ranges from 20 to 25 km, any arbitrary angle of triangles is not 

less than 40°, and the distance angles of the geodetic quadrilaterals or mid-

point polygons should be greater than 30°. Computed by the triangle 

closure, the mean square error of angle observation should not be greater 

than +̅ 0. 7”. 

The initial side length at the crossing of the chain sections should be 

determined with a relative accuracy of no less than 1/350,000. The 

astronomical longitude, latitude, and azimuth are measured at the two 

endpoints of the initial side and the former two are also measured at a point 

in the center of the chain. The determined mean square error of the 

astronomical longitude, latitude, and azimuth should be less than +̅0.3’’, 

+̅0.3”, and +̅0.5”, respectively. All points with measured astronomical 

longitude and latitude will provide data for computation of the deflection 

of vertical. As astronomical surveying is involved in the plans for network 

establishment the national horizontal control network is also called the 

astrogeodetic network [1,3].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.3): First-order triangulation chain with astronomical points 
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2.4.3 Second Order Design: 
Set within the area circled by the first-order triangulation chain loop, the 

second order network is the overall basis for densification of the third- and 

fourth-order networks, as shown in Fig. 2.4. The average side length of the 

second-order network is 13 km and the density of such a network basically 

satisfies the needs of the 1:50,000 scale mapping. The second-order 

network, together with the first-order chain, belongs to the national high-

order network. Hence, accuracy should be the primary concern whereas 

density is secondary. The mean square error of angle observation computed 

through the triangle closure should be less than 100. An initial side and 

azimuth are to be determined at the center of the network. For larger chain 

loops, the initial azimuth should be measured as well. Angles of triangles in 

the network should be no less than 30. The second-order network on either 

side of the first-order triangulation chain should be connected with the first-

order chain to form a continuous triangulation network.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure (2.4): Second-order continuous network 
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2.4.4 Third Order Design: 
National third- and fourth-order triangulation networks (points) can be 

further densified on the basis of the second-order network, as illustrated in 

Figs. 2.5 and 2.6. They are foundational to the mapping control survey and 

their density should accord with the mapping scale. The average side length 

of the third-order triangulation network is 8 km and the controlling area of 

each point is roughly 50 km2, which can basically meet the needs of 

1:25,000 scale mapping. The average side length of the fourth-order 

network is 4 km and the controlling area of each point is around 20 km2, 

which can meet the needs of 1: 10,000 and 1: 50,000 scale mapping. At each 

point of the third- and fourth-order networks there will be stations set for 

observation. The mean square error of angle observation computed through 

triangle closure should be less than  +̅1.8” and  +̅2.5” for the third- and 

fourth-order networks, respectively[4]. 

Note: The Sudan triangulation network is constraining of first, second and 

third order only. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure (2.5): Network densifying through point inserting 
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Figure (2.6): Network densifying through sub-network inserting 

 

2.5 Numerical Methods in Network Design 
Although the history of computer aided optimization of geodetic networks 

is rather short. probably less than twenty years. a vast number of different 

design strategies have been devised. All the practically useful methods share 

the disadvantage of needing to use expensive (in terms of computer storage 

and number of computer operations) numerical techniques in order to obtain 

the desired solution. Clearly the economy (if not the effectiveness) of any 

design procedure is largely dependent upon the numerical methods 

employed. 

 

2.5.1 Optimal Design Problems: 
In most of the network design problems discussed in this paper it is assumed 

that the network quality requirements are known. i.e. the quality of the final 

product has been decided upon. The design procedure then involves solving 

for the optimum network. In other words, finding a set of observations that 

will satisfy these requirements with the minimum cost. Note that there are 

two other classes of optimal design problem that will not be addressed here 

in the same detail: given a specified cost find the network that will have the 

highest quality and given a maximum cost find the network that best 

approximates a specified quality. It is usual to consider the quality of a 

network under three headings: 

(i) precision.   (ii) reliability and (iii) accuracy. 
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which are measures of the sizes of random, gross and systematic errors that 

may be expected (with specified probabilities) in the final network. The 

author is not aware of any work that has been carried out in the third 

category. Most attention is paid to the first of these because the greatest 

success has been in designing networks to meet specified precision criteria. 

The reader should not deduce from this that precision is any more or less 

important than accuracy or reliability [12,3]. 
 

 

2.5.2 Network Design Strategies: 
Virtually all of the design strategies developed to date can be considered as 

belonging to one of two categories: computer simulation or analytical 

design. In computer simulation a solution to the design problem is 

postulated and the design and cost criteria computed. Should either of these 

criteria not be fulfilled a new solution is postulated (usually by slightly 

altering the original postulate) and the criteria recomputed. The procedure 

is repeated until a satisfactory (unlikely to be the optimum) network is 

found. Decisions on which networks to postulate are usually made manually 

by a skilled geodesist and are based on his past experience of the quality and 

cost of particular network configurations. Most practical computer aided 

design of geodetic networks is carried out in this way. 

In contrast the so-called "analytical" methods offer specific algorithms for 

the solution of particular design problems. Once set in motion such an 

algorithm will automatically produce a network that will satisfy the user 

quality requirements and that will, in some mathematical sense, be 

optimum. So far almost all of the advances in analytical methods have been 

in finding solutions of the second order design problem is defined in 

Grafarend (1974) to be the determination of the observation weights given 

the required precision and proposed network configuration. The results can 

often be used to aid the solution of the first and third order problems 

(determination of network configuration and additional observations) by 

deciding not to make observations which are required with extremely low 

precision (on the grounds that they hardly contribute to the network 

precision) but care must be taken to maintain reliability [3,12]. 
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Chapter Three 

Adjustment for Triangulation network 
 

3.1 Introduction: 

Horizontal surveys, those are covering a large area, must compute the 

symmetric effect for the Earth curvature. One way this can be accomplished 

is to do the computations using coordinates from a mathematically rigorous 

map projection system such as the plane coordinate system (SPCS), 

universal transverse Mercator (UTM) system, or a local plane coordinate 

system that accounts rigorously for Earth curvature [4]. 

Three-dimensional geodetic network adjustment is developed for traditional 

surveying observations, including differential leveling, slant distances, and 

vertical angles. 

It should be noted that if plane coordinates are used, the numbers are usually 

rather large. Consequently, when they are used in mathematical 

computations, errors due to rounding and truncation can occur. This can be 

prevented by translating the origin of the coordinates prior to adjustment, a 

process that involves simply subtracting a constant value from all 

coordinates. Then after the adjustment is finished, the true origin is restored 

by adding the constants to the adjusted values. 

Horizontal surveys are performed for the purpose of determining precise 

relative horizontal positions of points. They have traditionally been 

accomplished by trilateration, triangulation, and traverse. These traditional 

types of surveys involve making distance, direction, and angle observations. 

As with all types of surveys, errors will occur in making these observations, 

and thus they must be analyzed and, if acceptable, adjusted [4,5,12].  

 

3.2 Distance Observation Equation: 

In adjusting trilateration surveys using the parametric least squares method, 

observation equations are written that relate the observed quantities and 

their inherent random errors to the most probable values for the x and y 
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coordinates (the parameters) of the stations involved. the following distance 

equation can be written for any observation 𝑙𝑖𝑗: 

                           𝑙𝑖𝑗 + 𝑣𝑖 = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)

2                            (3.1) 

In Equation (3.1), 𝑙𝑖𝑗 is the observed distance of a line between stations 𝐼 

and 𝐽, 𝑣𝑖 the residual in the observation 𝑙𝑖𝑗 , 𝑥𝑖 and 𝑦𝑖  the most probable 

coordinate values for station 𝐼, and 𝑥𝑗 and 𝑦𝑗 the most probable coordinate 

values for station 𝐽.Equation (3.1) is a nonlinear function involving the 

unknown parameters 𝑥𝑖, 𝑦𝑖  , 𝑥𝑗 , and 𝑦𝑗 , which can be rewritten as: 

𝑓(𝑥𝑖  , 𝑦𝑖  , 𝑥𝑗  , 𝑦𝑗) = 𝑙𝑖𝑗 + 𝑣𝑖                                     (3.2) 

Where 

𝑓(𝑥𝑖  , 𝑦𝑖  , 𝑥𝑗  , 𝑦𝑗) = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)

2 

 

 

 

 

 

 

Figure (3.1): Observation of a distance 

Equation (3.2) can be linearized and solved using a first-order Taylor series 

approximation. The linearized form of Equation (3.2) is: 

𝐹(𝑥𝑖  , 𝑦𝑖  , 𝑥𝑗  , 𝑦𝑗) = 𝐹(𝑥𝑖0 , 𝑦𝑖0 , 𝑥𝑗0 , 𝑦𝑗0) + (
𝜕𝐹

𝜕𝑥𝑖
)𝑑𝑥𝑖 + (

𝜕𝐹

𝜕𝑦𝑖
) 𝑑𝑦𝑖 + (

𝜕𝐹

𝜕𝑥𝑗
)𝑑𝑥𝑗 + (

𝜕𝐹

𝜕𝑦𝑗
)𝑑𝑦𝑗 = 𝑙𝑖𝑗 + 𝑣𝑖            (3.3) 

where (𝜕𝐹/𝜕𝑥𝑖)0 , (𝜕𝐹/𝜕𝑦𝑖)0 , (𝜕𝐹/𝜕𝑥𝑗)0 , and (𝜕𝐹/𝜕𝑦𝑗)0 are the partial 

derivatives of F with respect to 𝑥𝑖, 𝑦𝑖  , 𝑥𝑗 , and 𝑦𝑗  , respectively, evaluated 

with the approximate coordinate values 𝑥𝑖0, 𝑦𝑖0 , 𝑥𝑗0 , and 𝑦𝑗0; 𝑥𝑖, 𝑦𝑖  , 𝑥𝑗 , 

and 𝑦𝑗  the unknown parameters; and 𝑑𝑥𝑖 , 𝑑𝑦𝑖 , 𝑑𝑥𝑗 , and 𝑑𝑦𝑗 the corrections 

to the approximate coordinate values such that 
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                                        𝑥𝑖 = 𝑥𝑖0 + 𝑑𝑥𝑖       𝑦𝑖 = 𝑦𝑗0 + 𝑑𝑦𝑖                                 (3.4)                                                                                                    

𝑥𝑗 = 𝑥𝑗0 + 𝑑𝑥𝑗         𝑦𝑗 = 𝑥𝑗0 + 𝑑𝑦𝑗 

The evaluation of partial derivatives is straightforward and will be 

illustrated with ∂F/∂xi. Equation (3.2) can be rewritten as 

                                                                                                                        (3.5)                                                                                                   

Taking the derivative of Equation (3.5) with respect to 𝑥𝑖  yields:  

                                                                                                                                                                       

(3.6) 

 

Simplifying Equation (3.6) yields 

𝜕𝐹

𝜕𝑥𝑖
=

−(𝑥𝑗−𝑥𝑖)

√(𝑥𝑗−𝑥𝑖)
2+(𝑦𝑗−𝑦𝑖)

2
=

𝑥𝑗−𝑥𝑖

𝐷𝑖𝑗
                                 (3.7) 

 

Employing the same procedure, the remaining partial derivatives are 

𝜕𝐹

𝜕𝑦𝑖
=

𝑦𝑗−𝑦𝑖

𝐷𝑖𝑗
      

𝜕𝐹

𝜕𝑥𝑗
=

𝑥𝑗−𝑥𝑖

𝐷𝑖𝑗
       

𝜕𝐹

𝜕𝑥𝑗
=

𝑦𝑗−𝑦𝑖

𝐷𝑖𝑗
                      (3.8) 

If Equations (3.7) and (3.8) are substituted into Equation (3.3) and the 

results substituted into Equation (3.2), the following prototype linearized 

distance observation equation obtained is [5,6] 
 

(
𝑦𝑖−𝑦𝑗

𝐷𝑖𝑗
) 0𝑑𝑥𝑖 + (

𝑥𝑖−𝑥𝑗

𝐷𝑖𝑗
) 0𝑑𝑦𝑖 + (

𝑥𝑗−𝑥𝑖

𝐷𝑖𝑗
) 0𝑑𝑥𝑗 + (

𝑦𝑗−𝑦𝑖

𝐷𝑖𝑗
) 0𝑑𝑦𝑗 = 𝑘𝑖 + 𝑣𝑖    (3.9) 

where (·)0 is evaluated at the approximate parameter values, 𝑘𝑙 = 𝑙𝑖𝑗 - 𝐷𝑖𝑗, 

and 

𝐷𝑖𝑗 = 𝑓(𝑥𝑖  , 𝑦𝑖  , 𝑥𝑗  , 𝑦𝑗) = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)

2                                                                                                                                         

3.2.1 Trilateration: 

Even though the geometric figures used in trilateration are many and varied, 

they are equally adaptable to the observation equation method in a 

parametric adjustment. The distance from three station with known 
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coordinate for points (A, B, C) to the unknown point (Z), since the unknown 

point has two unknown coordinate and there are three observations, this 

yields one redundant observation that is, the coordinates of station (Z) could 

be determined using any two of the three observations. But all three 

observations can be used simultaneously and adjusted by the method of least 

squares to determine the most probable value for the coordinates of the 

station [5,6].  

The observation equations are developed by substituting into prototype 

equation (3.9). For example, the equation for distance AZ is formed by 

interchanging subscript I with A and subscript J with Z in Equation (3.9). In 

a similar fashion, an equation can be created for each observed distance 

using the following subscript substitutions: 

 

I J 

A Z 

B Z 

C Z 

 

When one end of the observed line is a control station, its coordinates are 

fixed, and thus those terms can be dropped in prototype equation (3.9). This 

can be thought of as setting the 𝑑𝑥 and 𝑑𝑦 corrections for the control station 

equal to zero. In this example, station Z always takes the position of J in the 

prototype equation, and thus only the coefficients corresponding to 𝑑𝑥𝑗 and 

𝑑𝑦𝑗 are used. Using the appropriate substitutions, the following three 

linearized observation equations result: 
 

𝑥𝑧0 − 𝑥𝐴

𝐷𝐴𝑍
𝑑𝑥𝑧 +

𝑦𝑧0 − 𝑦𝐴

𝐷𝐴𝑍
𝑑𝑦𝑧 = (𝑙𝐴𝑍 − 𝐷𝐴𝑍) + 𝑣𝐴𝑍 

 

                            
𝑥𝑧0−𝑥𝐵

𝐷𝐵𝑍
𝑑𝑥𝑧 +

𝑦𝑧0−𝑦𝐵

𝐷𝐵𝑍
𝑑𝑦𝑧 = (𝑙𝐵𝑍 − 𝐷𝐵𝑍) + 𝑣𝐵𝑍                     (3.10) 

𝑥𝑧0 − 𝑥𝐶

𝐷𝐶𝑍
𝑑𝑥𝑧 +

𝑦𝑧0 − 𝑦𝐶

𝐷𝐶𝑍
𝑑𝑦𝑧 = (𝑙𝐶𝑍 − 𝐷𝐶𝑍) + 𝑣𝐶𝑍 
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In Equation (3.10) 

 

𝐷𝐴𝑍 = √(𝑥𝑧0 − 𝑥𝐴)
2 + (𝑦

𝑧0
− 𝑦

𝐴
)2 

 

𝐷𝐵𝑍 = √(𝑥𝑧0 − 𝑥𝐵)
2 + (𝑦

𝑧0
− 𝑦

𝐵
)2 

 

𝐷𝐶𝑍 = √(𝑥𝑧0 − 𝑥𝐶)
2 + (𝑦

𝑧0
− 𝑦

𝐶
)2 

 

𝑙𝐴𝑍 , 𝑙𝐵𝑍 , and 𝑙𝐶𝑍 are the observed distances; the ν’s are residuals; 𝑥𝑧0 and 

𝑦𝑧0 and are initial coordinate values for station Z . Equations (3.10) can be 

expressed in matrix form as: 
 

                                               𝑱𝑿 =  𝑲 +  𝑽                                         (3.11) 
 

where J is the Jacobian matrix of partial derivatives, X the matrix of 

unknown corrections 𝑑𝑥𝑧 and 𝑑𝑦𝑧, K the matrix of constants (i.e., the 

observed lengths, minus their corresponding lengths computed from the 

initial approximate coordinates), and V the residual matrix. Equation (3.11) 

in expanded form is: 

 

            

[
 
 
 
 
𝑥𝑧0−𝑥𝐴

𝐷𝐴𝑍

𝑦𝑧0−𝑦𝐴

𝐷𝐴𝑍

𝑥𝑧0−𝑥𝐵

𝐷𝐵𝑍

𝑥𝑧0−𝑥𝐶

𝐷𝐶𝑍

𝑦𝑧0−𝑦𝐵

𝐷𝐵𝑍

𝑦𝑧0−𝑦𝐶

𝐷𝐶𝑍 ]
 
 
 
 

[
𝑑𝑥𝑧

𝑑𝑦𝑧
] = [

𝑙𝐴𝑍 − 𝐷𝐴𝑍

𝑙𝐵𝑍 − 𝐷𝐵𝑍

𝑙𝐶𝑍 − 𝐷𝐶𝑍

] + [
𝑣𝐴𝑍
𝑣𝐵𝑍

𝑣𝐶𝑍

]            (3.12) 

 

The Jacobian matrix can systematically be formed using the following steps: 

Step 1: Head each column with an unknown value. 

Step 2: Create a row for every observation.  

Step 3: Substitute in the appropriate coefficient corresponding to the column 

into each row. 

Once Equation (3.12) is created, the corrections of 𝑑𝑥𝑧 and 𝑑𝑦𝑧, and thus the 

most probable coordinate values, 𝑥𝑧 and 𝑦𝑧 can be computed using Equation 
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observation equation of course, to obtain the final adjusted values, the 

solution must be iterated [8,9]. 

Finally, to find the correction x, y coordinate can use the least square matrix 

to find the adjusted coordinate as equation: 

                              𝑥 = (𝐽𝑇𝐽)−1𝐽𝑇𝐾                                       (3.13) 

3.3 Triangulation: 

Prior to the development of electronic distance measuring equipment and 

the global navigation satellite systems, triangulation was the preferred 

method for extending horizontal control over long distances. The positions 

of widely spaced stations were computed from observed angles and a 

minimal number of observed distances called baselines. This method was 

used extensively by the National Geodetic Survey in extending much of the 

national network. Triangulation is still used by many surveyors in 

establishing horizontal control, although surveys that combine trilateration 

(distance observations) with triangulation (angle observations) are more 

common. In this chapter, methods are described for adjusting triangulation 

networks using the least squares method. A least squares triangulation 

adjustment can use condition equations or observation equations written in 

terms of either azimuths or angles. In this chapter the observation equation 

method is presented. The procedure involves a parametric adjustment where 

the parameters are coordinates in a plane rectangular system such as state 

plane coordinates. In the examples, specific types of triangulations known 

as intersections, resections, and quadrilaterals are adjusted [8,9]. 
 

3.3.1 Azimuth Observation Equation: 

The azimuth equation in parametric form is 
 

                                                   azimuth = α + C                                  (3.14) 

 

 

 

 

 

 

Figure (3.2): Relationship between the azimuth and the computed angle, α. 
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where α = tan−1 [
𝑥𝑗−𝑥𝑖

𝑦𝑗−𝑦𝑖
], xi and 𝑦𝑖 are the coordinates of the occupied 

station I, 𝑥𝑗 and 𝑦𝑗 are the coordinates of the sighted station 𝐽, and 𝐶 is a 

constant that depends on the quadrant in which point 𝐽 lies as shown in 

Figure (3.2). 
 

3.3.2 Linearization of the Azimuth Observation Equation: 

Referring to Equation (3.14), the observation equation for an observed 

azimuth of line IJ is: 

𝐷𝐴𝑍 + 𝑣𝐴𝑍                   (3.15) 

 

where 𝐷𝐴𝑍 is the observed azimuth from station I to station J, ν𝐴𝑧 the 

residual in the observed azimuth, 𝑥𝑖 and 𝑦𝑖  the most probable values for the 

coordinates of station I, 𝑥𝑗 and 𝑦𝑗 the most probable values for the 

coordinates of station 𝐽, and 𝐶. Equation (3.15) is a nonlinear function 

involving variables 𝑥𝑖, 𝑦𝑖  , 𝑥𝑗 , and 𝑦𝑗 that can be rewritten as: 

 

                          𝐹(𝑥𝑖  , 𝑦𝑖  , 𝑥𝑗  , 𝑦𝑗) = 𝐷𝐴𝑍 + 𝑣𝐴𝑧                                    (3.16) 

 

Where 

𝐹(𝑥𝑖  , 𝑦𝑖  , 𝑥𝑗  , 𝑦𝑗) = tan−1 [
𝑥𝑗 − 𝑥𝑖

𝑦
𝑗
− 𝑦

𝑖

] + 𝐶 

 

nonlinear equations such as (3.16) can be linearized and solved using a first-

order Taylor series approximation. The linearized form of Equation (3.16) 

is: 

 

𝐹(𝑥𝑖  , 𝑦𝑖 , 𝑥𝑗  , 𝑦𝑗) = 𝐹(𝑥𝑖  , 𝑦𝑖 , 𝑥𝑗  , 𝑦𝑗)0
+ (

𝜕𝐹

𝜕𝑥𝑖

) 𝑑𝑥𝑖 + (
𝜕𝐹

𝜕𝑦𝑖

) 𝑑𝑦
𝑖
+ (

𝜕𝐹

𝜕𝑥𝑗

) 𝑑𝑥𝑗 + (
𝜕𝐹

𝜕𝑦𝑗

) 𝑑𝑦
𝑗
 (3.17) 

 

where (𝜕𝐹/𝜕𝑥𝑖)0 , (𝜕𝐹/𝜕𝑦𝑖)0 , (𝜕𝐹/𝜕𝑥𝑗)0 , and (𝜕𝐹/𝜕𝑦𝑗)0 are the partial 

derivatives of F with respect to 𝑥𝑖, 𝑦𝑖  , 𝑥𝑗 , and 𝑦𝑗  that are evaluated at the 

initial approximations, and 𝑑𝑥𝑖 , 𝑑𝑦𝑖  , 𝑑𝑥𝑗 , and 𝑑𝑦𝑗are the corrections 

applied to the initial approximations after each iteration such that: 
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(3.18) 

 

 
 

To determine the partial derivatives of Equation (3.17) requires the 

prototype equation for the derivative of 𝑡𝑎𝑛−1u with respect to x, which is 

 

(3.19) 
 

 

Using Equation (3.19), the procedure for determining the ∂F/∂xi is 

demonstrated as follows: 

 

 
 

(3.20) 

 

By employing the same procedure, the remaining partial derivatives are: 

 

 
𝜕𝐹

𝜕𝑦𝑖
=

𝑦𝑗−𝑦𝑖

𝐷𝑖𝑗
      

𝜕𝐹

𝜕𝑥𝑗
=

𝑥𝑗−𝑥𝑖

𝐷𝑖𝑗
       

𝜕𝐹

𝜕𝑥𝑗
=

𝑦𝑗−𝑦𝑖

𝐷𝑖𝑗
                 (3.21) 

Where 

𝐷𝑖𝑗
2 = (𝑥𝑗 − 𝑥𝑖)

2 + (𝑦𝑗 − 𝑦𝑖)
2 

 

If Equations (3.19) and (3.20) are substituted into Equation (3.17) and the 

results then substituted into Equation (3.16), the following prototype 

azimuth equation is obtained: 

(
𝑦𝑖−𝑦𝑗

𝐷𝑖𝑗
2 ) 0𝑑𝑥𝑖 + (

𝑥𝑖−𝑥𝑗

𝐷𝑖𝑗
2 ) 0𝑑𝑦𝑖 + (

𝑥𝑗−𝑥𝑖

𝐷𝑖𝑗
2 ) 0𝑑𝑥𝑗 + (

𝑦𝑗−𝑦𝑖

𝐷𝑖𝑗
2 ) 0𝑑𝑦𝑗 = 𝑘𝐴𝑍 + 𝑣𝐴𝑧      (3.22) 

Both: 

𝑘𝐴𝑍 = 𝐷𝐴𝑍 − [𝑡𝑎𝑛−1 (
𝑥𝑗 − 𝑥𝑖

𝑦𝑗 − 𝑦𝑖
) + 𝐶]     𝑎𝑛𝑑        𝐷𝑖𝑗

2 = (𝑥𝑗 − 𝑥𝑖)
2
+ (𝑦𝑗 − 𝑦𝑖)

2
 

 

are evaluated using the approximate coordinate values of the unknown 

parameters. 
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3.3.3 Angle Observation Equation: 

Figure 3.3 illustrates the geometry for an angle observation. In the figure, 

B is the back sight station, F is the foresight station, and I is the instrument 

station. As shown in the figure, an angle observation equation can be 

written as the difference between two azimuth observations, and thus for 

clockwise angles: 

 

(3.23) 

 

 

 

 

 

 
 

 

 
 

Figure (3.3): Relationship between an angle and two azimuths. 
 

where 𝜃bif is the observed clockwise angle, 𝜈θ the residual in the observed 

angle, 𝑥𝑏 and 𝑦𝑏  the most probable values for the coordinates of the back 

sight station B, 𝑥𝑖and 𝑦𝑖  the most probable values for the coordinates of 

the instrument station I, 𝑥𝑓 and 𝑦𝑓 the most probable values for the 

coordinates of the foresight station F, and D a constant that depends on 

the quadrants in which the back sight and foresight occur [6,9]. This term 

can be computed as the difference between the C terms from Equation 

(3.13) as applied to the back sight and foresight azimuths; that is, 

   

 

Equation (3.23) is a nonlinear function of 𝑥𝑏, 𝑦𝑏, 𝑥𝑖 , 𝑦𝑖  , 𝑥𝑓 , and 𝑦𝑓 that 

can be rewritten as: 

 

(3.24) 

Where: 
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Equation (3.24) expressed as a linearized, first-order Taylor series 

expansion is 

 

 

 
 

(3.25) 

 

where ∂F/∂𝑥𝑏, ∂F/∂𝑦𝑏, ∂F/∂𝑥𝑖, ∂F/∂𝑦𝑖 , ∂F/∂𝑥𝑓 , and ∂F/∂𝑥𝑓 are the partial 

derivatives of F with respect to 𝑥𝑏, 𝑦𝑏, 𝑥𝑖 , 𝑦𝑖  , 𝑥𝑓 , and 𝑥𝑓 , respectively. 

Evaluating partial derivatives of the function 𝐹 and substituting into 

Equation (3.25), then substituting into Equation (3.24), results in the 

following equation: 

 

 
 

(3.26) 

 

Where: 

 

 

 

are evaluated at the approximate values for the unknowns. Formulating 

the linearized angle observation equation can be thought of as the 

difference in two linearized azimuth equations. Using Equation (3.20) as a 

guide, the difference between the foresight and back sight azimuth is: 

 

 

 

In formulating the angle observation equation, remember that (I) is always 

assigned to the instrument station, B the back sight, and F the foresight 

station. 
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Chapter Four 

Methodology 
 

4.1 Introduction: 
As mention before in chapter one the objective of this study to adjust the 

Triangulation network by three techniques and compare between these, 

many steps were followed which are summarized in four main steps as 

shown in the chart below (Figure 4.1). Step one is the data collection where 

the data has been acquired from the old triangulation network in Sudan. Step 

two is the transformation of the data from geodetic coordinates to projected 

coordinates. Step three is adjusting this triangulation using distance 

observation equation by three techniques and then in last step a comparison 

was made between these results and also a comparison is made with the 

original coordinates. 

 

 

 

 

 

 

 

Figure (4.1) Main Steps for research 

4.1.1 Data collection: 

In 1952 the project was finished in Sudan and finally a triangulation network 

was built by “General Authority for Sudanese Survey” to cover all the Sudan 

by triangulating a network. This triangulation data was recorded so as to 

make an ideal reference for any further projects. This reference included 

many volumes, the first volume covers the field records and important 

reports besides detailed information about the history of the Thirties 

Data collection

Adjustment Without 
weight and curvature

Adjustment With 
weight

Adjustment With 
weight and Curvature

Data transformation

Comparison   
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meridian triangulation. Volume two included the first and second order of 

triangulation for specific parts in Sudan. The data used in this research is 

from volume two and precisely in the first order triangulation. The Sabaloka 

base line was chosen beside the points around this base, the total number of 

points used is eleven points (G212, G213, G214, G215, G216, G217, G218, 

G219, G220, G221, G222), the Coordinates of these points are illustrated in 

table (4.1) [7]. 
 

Table (4.1): Study points’ coordinates. 

     

 

 

 

 

 

 

4.1.2 Data transformation: 
The original data from the old triangulation network in Sudan is in projected 

coordinates system and to adjust this triangulation; a transformation must 

be followed to get the results in geodetic coordinates system. For the 

Transverse Mercator projection, the spheroid using in this study is Clarke 

1880s, Adindan (Sudan) is the datum using in this study and zone 36 in 

north, the ellipsoidal points φ , λ  have been mapped into E, N points 

through by the following series expansions [4,5]: 
 

 

 

(4.1) 

 

 

 

 

(4.2) 

 

 

Name φ 𝝀 

G212 15°58'40.150" 32°14'49.944" 
G213 15°42'58.189" 32°24'48.930" 
G214 16°10'30.625" 32°35'55.768" 
G215 15°54'9.846" 32°41'36.253" 
G216 16°14'52.314" 32°40'38.867" 
G217 16°14'31.862" 32°40'51.838" 
G218 16°9'49.097 32°45'20.063" 
G219 16°18'44.205" 32°49'7.664" 
G220 16°06'15.071" 32°52'55.940" 
G221 16°5'33.434" 33°2'19.769" 
G222 16°20'25.432" 33°10'57.319" 
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4.1.3 Adjustment by distance observation equation: 
As mentioned in chapter three, in geometry, distance observation 

equation is the process of determining absolute or relative locations of 

points by measuring distances, using the geometry  

of circles, spheres or triangles. 

In this research the distance observation equation has been used to adjust 

the triangulation network which contains eleven points as mentioned above, 

the adjustment was made for each point from the observed point to a specific 

point, for example the distances between the point G212 and the points 

(G213, G214, G215) were observed, and these distances were used to adjust 

the point G212. 

The approximate coordinates for each points they use the coordinates from 

the triangulation network original data, and use this coordinates to compute 

the plan distance by equation (4.2), and the observed distance, it given from 

the triangulation data. 

 

𝐿𝐴𝑍 = √(𝑥𝐴 − 𝑥𝑍)2 + (𝑦𝐴 − 𝑦𝑍)2                                       (4.2) 

 

Hence, the coordinates and the distance were used in equation (4.3) to 

compute the Jacobian matrix (4.4), after that, the observed distance was used 

to compute the distance and to find the (𝐾) in equation (3.9). 

𝑥𝑧−𝑥𝐴

𝐷𝐴𝑍

                                                     (4.3) 

 

𝐽= 

[
 
 
 
 
𝑥𝑧0−𝑥𝐴

𝐷𝐴𝑍

𝑦𝑧0−𝑦𝐴

𝐷𝐴𝑍
𝑥𝑧0−𝑥𝐵

𝐷𝐵𝑍
𝑥𝑧0−𝑥𝐶

𝐷𝐶𝑍

𝑦𝑧0−𝑦𝐵

𝐷𝐵𝑍
𝑦𝑧0−𝑦𝐶

𝐷𝐶𝑍 ]
 
 
 
 

                                             (4.4) 

 

Finally, by using Jacobian matrix and (K) the residual was found and used 

to get the coordinates using the least square in distance observation equation 

as shown in equation (4.5) 

 

𝑥 = (𝐽𝑇𝐽)−1𝐽𝑇𝐾                                      (4.5) 

https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Circle
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Triangle
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To process all these points in distance observation equation it was ideal to 

use the MATLAB software, it makes three codes for the distance 

observation equation; one without a weight and curvature, distance 

observation equation with weight and also a distance observation 

equation with weight and curvature. 

 

4.1.4 Adjustment by distance observation equation with the 

weight: 
The first process used the least square of distance observation equation 

without a weight (4.5), the next process will insert the weight matrix to the 

equation as illustrated in equation (4.6): 

 

𝑥 = (𝐽𝑇𝑊𝐽)−1𝐽𝑇𝑊𝐾                                      (4.6) 

 

The weight matrix is variance covariance matrix where the diagonal is the 

variance and the covariance represent another element on the matrix, this 

covariance is zero because there is no relation between a distance and 

another, and the variance would be the inverse of length between the two 

points as described in equation (4.7): 

𝜎2 =
1

𝐷𝐴𝑍

                                             (4.7)  

The length (𝐼𝐽) used in this equation is the observed distance. 

 

4.1.5 Adjustment by distance observation equation with weight 

and curvature: 
Surveyors usually measure distances along a sloping path between two 

ground stations, then they correct these observed distances to one with the 

same curvature as the ellipsoid at the mean sea level (Geoid). Correction for 

refraction, curvature, slope, and height above the mean sea level are usually 

applied. 

The distance between points in the triangulation was more than three 

kilometers, and verily for such long distance an equation of the curvature 

(4.8) must be used to correct the earth curve. 
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𝑆 = 𝑠′ − 
𝑁𝑆′

𝑅
                                                            (4.8)  

 

Where R is the average radius of curvature along the line, using the earth 

radius for Adindan (Sudan) is 6378249.145m, N is the separation between 

the ellipsoid and the Geoid, it is supposed (1) in all points, (S) is the ellipsoid 

distance and the (S’) is the geodetic distance, the geodetic distance is 

supposing as the observed distance.   

Then the curvature distance has been used instead of the observed distance 

in the least square on the distance observation equation. 
 

4.1 Comparison: 
Ultimately, the comparison between the three techniques was made and 

origin data of the distance observation equation to find which on is more 

accurate. The results chapter will discuss the comparison between these 

techniques. 
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Chapter Five 

Computation and Results 
 

5.1 Data collection:  

As mentioned in chapter four the data was collected from the “Sudan 

surveying department” for first order triangulation, the data contain the 

distance from each observed points, table (5.1) illustrative those 

observations and the computed distance from the equation (4.3). 
 

Table (5.1): observation and computed data. 
 

From To 
Distance (Meters) 

From log 

Computed 

distance 

G 212 

G 213 33997.901 33986.452 

G 214 43500.084 43484.802 

G 215 48490.627 48473.264 

G 213 

G 212 33997.901 33997.538 

G 214 54523.798 54503.886 

G 215 36398.702 36385.197 

G 214 

G 212 43500.084 43499.539 

G 213 54523.798 54518.301 

G 215 31799.193 31787.052 

G 216 11636.005 11631.573 

G 217 11502.525 11498.153 

G 218 16812.179 16805.700 

G 219 27985.231 27974.403 

G 220 31312.230 31300.039 

G 215 

G 212 48490.627 48491.438 

G 213 36398.702 36401.632 

G 214 31799.193 31795.745 

G 216 38226.919 38212.169 

G 220 30087.327 30075.513 

G 216 

G 214 11636.005 11634.638 

G 215 38226.919 38221.571 

G 218 12514.670 12509.790 

G 219 16703.578 16697.051 

G 220 27058.754 27048.120 

G 217 

G 214 11502.525 11501.904 

G 218 11790.222 11785.626 

G 219 16639.865 16633.356 

 

 

G 218 

G 214 16812.179 16815.961 

G 216 12514.670 12516.999 

G 217 

G219 

 

 

 

 

11790.222 

17782.135 
 

 

 

 

11790.772 

17775.149 
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G212 

G213 

G215 

G220 G221 

G222 
G219 

G216 

G217 

 

 

Figuer (5.1) illustrates the shape of the triangulation and points’ 

distribution with the observed lines between those points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.1): The shape of triangulations with observation. 

 

 

 

 

 

From To 
Distance (Meters) 

From log 

Computed 

distance 

G 219 

G 214 27985.231 27979.495 

G 216 16703.578 16694.290 

G 217 16639.865 16636.215 

G 218 17782.135 17780.913 

G 220 24003.369 23993.843 

G 221 33827.523 33814.015 

G 222 38999.694 38984.156 

G 220 

G 214 31312.230 31311.038 

G 215 30087.327 30084.343 

G 216 27058.754 27054.106 

G 219 24003.369 24004.367 

G 221 16804.589 16797.859 

G 222 41407.842 41391.324 

G 221 

G 219 33827.523 33823.617 

G 220 16804.589 16801.158 

G 222 31432.050 31419.536 

G 222 

G 219 38999.694 38986.904 

G 220 41407.842 41396.133 

G 221 31432.050 31429.109 
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5.2 Data transformation: 

The original data was in geographical coordinates and it had to be 

transformed into projected coordinates (UTM) by the equations (4.1) and 

(4.2), table (5.2) represents the result of the transformation. 

 

Table (5.2): The transformation of coordinate from geographic to projected coordinate 
 

Name 𝒍𝒂𝒕(𝝋) 𝑳𝒐𝒏(𝝀) 𝑬 𝑵 

G212 15°58'40.150" 32°14'49.944" 419444.850 1766471.926 
G213 15°42'58.189" 32°24'48.930" 437169.147 1737473.163 
G214 16°10'30.625" 32°35'55.768" 457113.959 1788196.709 
G215 15°54'9.846" 32°41'36.253" 467180.103 1758045.599 
G216 16°14'52.314" 32°40'38.867" 465533.222 1796222.263 
G217 16°14'31.862" 32°40'51.838" 465917.274 1795593.275 
G218 16°9'49.097 32°45'20.063" 473869.131 1786894.483 
G219 16°18'44.205" 32°49'7.664" 480642.600 1803328.474 
G220 16°06'15.071" 32°52'55.940" 487403.257 1780306.788 
G221 16°5'33.434" 33°2'19.769" 504152.090 1779024.329 
G222 16°20'25.432" 33°10'57.319" 519502.480 1806438.792 

 

5.3 Adjustment by distance observation equation: 

The adjustment was made by using distance observation equation, in first 

technique. The results displayed in the table (5.3) with the origin coordinates 

and the residual between the adjusted coordinates and the origin 

coordinates. 
 

Table (5.3): The adjustment coordinates by distance observation equation. 
 

Point ID 𝑬 𝑵 Adjusted 𝑬  Adjusted 𝑵  Residual 𝑬 Residual 𝑵 

G212 419444.850 1766471.926 419426.793 1766473.751 18.057 -1.826 

G213 437169.147 1737473.163 437156.225 1737461.721 12.922 11.442 

G214 457113.959 1788196.709 457103.968 1788204.003 9.991 -7.294 

G215 467180.103 1758045.599 467177.301 1758036.265 2.801 9.334 

G216 465533.222 1796222.263 465530.549 1796229.128 2.673 -6.865 

G217 465917.274 1795593.275 465912.396 1795596.044 4.878 -2.769 

G218 473869.131 1786894.483 473863.468 1786890.319 5.663 4.164 

G219 480642.600 1803328.474 480637.106 1803339.044 5.494 -10.570 

G220 487403.257 1780306.788 487399.449 1780302.984 3.808 3.804 

G221 504152.090 1779024.329 504150.371 1779014.263 1.718 10.066 

G222 519502.480 1806438.792 519514.701 1806437.314 -12.220 1.478 
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5.4 Adjustment by distance observation equation with weight: 

The second technique of adjustment, using distance observation equation 

with adding the weight in the equation and the result for this process it will 

shown in table (5.4) with the residual between this adjustment coordinate 

and the origin coordinate. 
 

Table (5.4): the adjustment coordinate by distance observation equation with weight. 
 

Point ID 𝑬 𝑵 Adjusted 𝑬  Adjusted 𝑵 Residual 𝑬 Residual 𝑵 

G212 419444.850 1766471.926 419426.733 1766473.841 18.117 -1.916 

G213 437169.147 1737473.163 437156.403 1737462.685 12.744 10.478 

G214 457113.959 1788196.709 457104.125 1788202.590 9.834 -5.881 

G215 467180.103 1758045.599 467177.456 1758036.074 2.647 9.525 

G216 465533.222 1796222.263 465532.171 1796230.991 1.051 -8.728 

G217 465917.274 1795593.275 465912.618 1795595.991 4.656 -2.716 

G218 473869.131 1786894.483 473863.531 1786890.557 5.599 3.926 

G219 480642.600 1803328.474 480639.049 1803338.399 3.550 -9.925 

G220 487403.257 1780306.788 487399.700 1780303.541 3.557 3.247 

G221 504152.090 1779024.329 504152.404 1779013.182 -0.314 11.146 

G222 519502.480 1806438.792 519516.647 1806435.789 -14.167 3.003 
 

 

5.5 Adjustment by distance observation equation with weight and 

Curvature: 

The last technique of adjustment by distance observation equation. Bending 

will be compute the curvature in the computed distance, then the computed 

distance will be replaced by the curvature distance in each point, the table 

(5.6) show the new adjusted coordinates for the points. And table (5.5) 

illustrates the curvature distance. 
 

Table (5.6): the adjustment coordinate by distance observation equation with weight and curvature 
 

Point ID 𝑬 𝑵 Adjusted 𝑬  Adjusted 𝑵  Residual 𝑬 Residual N 

G212 419444.850 1766471.926 419426.725 1766473.842 18.125 -1.917 

G213 437169.147 1737473.163 437156.398 1737462.681 12.749 10.482 

G214 457113.959 1788196.709 457104.121 1788202.593 9.837 -5.883 

G215 467180.103 1758045.599 467177.454 1758036.070 2.648 9.529 

G216 465533.222 1796222.263 465532.168 1796230.993 1.053 -8.730 

G217 465917.274 1795593.275 465912.616 1795595.992 4.657 -2.717 

G218 473869.131 1786894.483 473863.529 1786890.555 5.602 3.928 

G219 480642.600 1803328.474 480639.047 1803338.403 3.552 -9.929 

G220 487403.257 1780306.788 487399.699 1780303.540 3.559 3.248 

G221 504152.090 1779024.329 504152.404 1779013.178 -0.314 11.150 

G222 519502.480 1806438.792 519516.654 1806435.787 -14.174 3.005 
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Table (5.5) the curvature distance points 
 

From To Computed distance Computed distance with curvature 

G 212 G 213 33986.452 33986.446 

G 212 G 214 43484.802 43484.795 

G 212 G 215 48473.264 48473.256 

G 213 G 212 33997.538 33997.532 

G 213 G 214 54503.886 54503.877 

G 213 G 215 36385.197 36385.191 

G 214 G 212 43499.539 43499.533 

G 214 G 213 54518.301 54518.293 

G 214 G 215 31787.052 31787.047 

G 214 G 216 11631.573 11631.571 

G 214 G 217 11498.153 11498.151 

G 214 G 218 16805.700 16805.698 

G 214 G 219 27974.403 27974.399 

G 214 G 220 31300.039 31300.034 

G 215 G 212 48491.438 48491.430 

G 215 G 213 36401.632 36401.627 

G 215 G 214 31795.745 31795.740 

G 215 G 216 38212.169 38212.163 

G 215 G 220 30075.513 30075.508 

G 216 G 214 11634.638 11634.637 

G 216 G 215 38221.571 38221.565 

G 216 G 218 12509.790 12509.788 

G 216 G 219 16697.0518 16697.049 

G 216 G 220 27048.120 27048.116 

G 217 G 214 11501.904 11501.902 

G 217 G 218 11785.626 11785.624 

G 217 G 219 16633.356 16633.353 

G 218 G 214 16815.961 16815.958 

G 218 G 216 12516.999 12516.997 

G 218 G 217 11790.772 11790.770 

G 218 G 219 17775.149 17775.146 

G 219 G 214 27979.495 27979.490 

G 219 G 216 16694.290 16694.287 

G 219 G 217 16636.215 16636.212 

G 219 G 218 17780.913 17780.910 

G 219 G 220 23993.843 23993.840 

G 219 G 221 33814.015 33814.009 

G 219 G 222 38984.156 38984.149 

G 220 G 214 31311.038 31311.033 

G 220 G 215 30084.343 30084.339 

G 220 G 216 27054.106 27054.102 

G 220 G 219 24004.367 24004.363 

G 220 G 221 16797.859 16797.856 

G 220 G 222 41391.324 41391.318 

G 221 G 219 33823.617 33823.612 
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From To Computed distance Computed distance with curvature 

G 221 G 220 16801.158 16801.156 

G 221 G 222 31419.536 31419.532 

G 222 G 219 38986.904 38986.898 

G 222 G 220 41396.133 41396.126 

G 222 G 221 31429.109 31429.104 
 

 

 

 

5.6 Comparison between the three types: 

The comparison between the distance observation equation adjustment 

techniques by according of origin coordinates data. Using the residual to 

comparison in each points between the three techniques, the table (5.6) 

shows the residual of coordinates for techniques in X Axis, and table (5.7) 

displays the residual of coordinates for techniques in Y Axis. The table (5.8) 

shows the variation between residuals in the three techniques in X axis and 

Y axis, the figure (5.2) and (5.3) illustrate the chart for differences in 

residual in the three techniques for points in X and Y axis respectively. 
 

 

Table (5.6): residual in three techniques in East Axis 

Pint ID 
Residual in equation with No weight 

& Curvature (E axis) 

Residual in equation with 

weight (E axis) 

Residual in equation with 

weight & Curvature (E axis) 

G212 18.057 18.117 18.125 

G213 12.922 12.744 12.749 

G214 9.991 9.834 9.837 

G215 2.801 2.647 2.648 

G216 2.673 1.051 1.053 

G217 4.878 4.656 4.657 

G218 5.663 5.599 5.602 

G219 5.494 3.550 3.552 

G220 3.808 3.557 3.559 

G221 1.718 -0.314 -0.314 

G222 -12.220 -14.167 -14.174 
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Table (5.6): residual in three techniques in North Axis 
 

Pint ID 
Residual in equation with No weight 

& Curvature (N axis) 

Residual in equation 

with weight (N axis) 

Residual in equation with 

weight & Curvature (N axis) 

G212 -1.826 -1.916 -1.917 

G213 11.442 10.478 10.482 

G214 -7.294 -5.881 -5.883 

G215 9.334 9.525 9.529 

G216 -6.865 -8.728 -8.730 

G217 -2.769 -2.716 -2.717 

G218 4.164 3.926 3.928 

G219 -10.570 -9.925 -9.929 

G220 3.804 3.247 3.248 

G221 10.066 11.146 11.150 

G222 1.478 3.003 3.005 

 

 

Table (5.7): the variation between the residual in the three techniques. 

Name 
 

Variation between third 
and first techniques 

Variation between third and second 
techniques 

𝐸 𝑁 𝐸 𝑁 

G212 0.068 -0.091 0.008 -0.001 
G213 -0.173 -0.960 0.005 0.005 
G214 -0.153 1.411 0.004 -0.002 
G215 -0.153 0.195 0.001 0.004 
G216 -1.620 -1.866 0.002 -0.002 
G217 -0.221 0.052 0.002 -0.001 
G218 -0.061 -0.236 0.002 0.002 
G219 -1.942 0.641 0.002 -0.004 
G220 -0.249 -0.556 0.002 0.001 
G221 -2.033 1.085 0.000 0.004 
G222 -1.953       1.527       0.007 0.001 
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Figure (5.2): the different between residuals of coordinates in three techniques in East axis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.3): the different between residuals of coordinates in three techniques in North axis 
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5.7 Results and Discussions:  

From Tables (5.6) and (5.7) it was found that variations in the East 

coordinates are large and that due to fact the network is expended to East 

more than to North and the curvature is smaller. 

The difference between the first and second techniques is small, and given 

at maximum 2 meters, compared between second and third techniques is 

given at maximum 0.008 meters in the E and N axis, and can be ignored, 

and that be clear in the table (5.8). 

But the variation between the origin coordinate and adjustment coordinates 

is large in almost of points, given at maximum 18 meters, and that mean the 

original coordinate for the old triangulation network in Sudan is weak and 

must be adjusted. That display in figures (5.2) and (5.3). 

The adjustment is preformed using MATLAB software, when the old 

adjustment network used the logarithm tables, there for we can conclude 

that the old network must be re adjustment using modern techniques of 

adjustment. 
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Chapter six 

Conclusion and Recommendation 
 

6.1 Conclusion: 

According to test carried out in this study it could be concluded that:    

 In this study we carried out three techniques of adjustment. 

 It was found these techniques give equal value in most of points, 

exactly in the second and third techniques. 

 The variations between the three techniques are small and can be 

ignored when computing the adjustment of triangulation networks.  

 The variations between the origin coordinates and the adjustment 

coordinate is large and may even reach 18 meters in some points. 

 It was found that variations in the north direction is larger than east 

direction. 

 Geoid ellipsoid separation consider ignore throughout the adjustment 

to network.  

 

6.2 Recommendations: 

The Following recommendation can help researchers in the future:    

 The old triangulation networks should be adjusted or re adjusted, that 

is very clear from the result obtained. 

 The variation of coordinates can extend to include the azimuth and 

triangulation methods. 

 The comparison can use the Azimuth, angle and the distance 

observation equation to get the better result. 

 The separation between the Geoid and the ellipsoid should be 

computed for each point in the network to get better result.  
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