الاستهلال

قال تعالى:

(يَتَأَيُّهَا ٱلنَّاسُ قَدُ جَآءَ تَكُمُ مَّوْعِظَةٌ مِّن رَّبِكُمْ وَشِفَآءٌ لِمَا فِي الشَّكُ وَشِفَآءٌ لِمَا فِي الصَّدُورِ وَهُدًى وَرَحْمَةٌ لِلمُؤْمِنِينَ اللَّ

الاية: 57 سورة يونس

Dedication

This thesis is dedicated to the **soul** of my beloved **Mother** (May Allah have mercy on her) and to my **Father** (may Allah restores his health). To my **brothers** who have supported me along the way, especially **Abdelrahman**.

Also, it is dedicated to my wife **Shima** who has been a great source of motivation and inspiration.

Finally, this thesis is dedicated to all friends in **batch 14 FMLS –SUST**, who endured this long process with me, always offering support and love and to **all** those who believe in the richness of learning.

Acknowledgement

It's with vast gratitude that I acknowledge the infinite support and help of my supervisors:

Dr. Nazik Elmalaika O.S. Husain

Dr. Abu Elgasim A. Awad Elkareem

Dr. Hind Mohammed Mirghani

Who supplied and guided me with their expertise insights; and they were more than generous with their precious time and countless hours of reflecting, reading, encouraging, and most of all patience throughout the entire process of this research.

Special thanks to the teachers and colleagues at Sudan University of Science and Technology, college of Medical Laboratory Sciences for their excitement and willingness to provide feedback made the completion of this research an enjoyable experience.

Also, I would like to acknowledge Gaafar Ibn-Auf Paediatric Tertiary Hospital; University of Khartoum, Faculty of Medical Laboratory Sciences, for allowing me to conduct my research and for providing any assistance requested.

I hope my sincere gratitude reach to those people who have been more cooperative and allowed me to collect the samples for this research.

Abstract

This was analytical, hospital-based, case-control study, conducted at Gaafar Ibn-Auf Paediatric Tertiary Hospital in Khartoum from June 2015 to June 2017.

The present study aimed to study the association of integrin alpha 2 (*ITGA2*) C807T and L-selectin (*SELL*) P213S Alleles polymorphism with clinical severity of sickle cell disease (SCD) among Sudanese patients.

Venous blood samples were collected from homozygous SCD patients (n=133) and from apparently healthy, age and sex matched, Sudanese individuals (n=112) as controls to compare them with cases. Sociodemographic and clinical data were collected by a questionnaire and from the reporting forms. A modified scoring system was used to assess severity. It includes number of transfusions, hospitalizations and lifetime cumulative incidence of specific complications of SCD as described by the SCD cooperative study group.

Blood was genotyped by polymerase chain reaction-restriction fragment length polymorphism. Complete blood counts were measured by automated hematology analyzer (Sysmex KX 21-N), and retics were counted by the manual method.

Patients' age ranged from 1 year up to 37 with median ages of 7 years, (n=76)57% were females and (n=57)43% were males and came from different areas in Sudan. The genotype and alleles frequencies of *ITGA2* C807T and L-Selectin *SELL* P213S were found to be significantly different between patients and controls (P=0.002 and 0.000, respectively). In *ITGA2* relative risk analysis of alleles, frequency showed that patients with the T allele were 5.4

times more likely to suffer from the hemolytic crisis, vaso-occlusive and ischemic stroke rather than patients with the C allele.

There was a significant association between these gene polymorphisms and high expression of L-selectin by leukocytes, or the development of complications in SCD (P=0.000). Hematologic parameters (Hb, RBCs, WBCs and PCV) were found to be statistically significantly higher in controls than in patients (P=0.000, 0.000, 0.000, 0.045, 0.034, respectively), while retics significantly lower in controls (P=0.034) and also when compared with severity groups for SCD, all of them gave statistically significant results with P=0.000 for each.

These results indicated that the (P213S) polymorphism of *SELL* gene and (C807T) polymorphism of *ITGA*2 are associated with more complications and crisis, with *ITGA*2 T allele that appears to deliberately increase susceptibility to ischemic stroke and vasoocclusive and hemolytic crisis in Sudanese patients with SCD. Hematologic markers and CBC are useful markers for assessment of erythropoietic bone marrow activity in SCD patients with different severities. These alleles can be a target for new therapeutic approaches of SCD.

V

المستخلص

هذه الدراسة التحليلية أُجريت كدراسة حالة وحالة ضابطة للحالات بالمستشفى ومقارنتها بالضوابط، في عيادات أمراض الدم الخارجية والعيادات المحولة بمستشفى جعفر بن عوف المرجعي للأطفال بالخرطوم في الفترة من يونيو 2015 إلى يونيو 2017.

هدفت الدراسة الحالية إلى التعرف على العلاقة بين تعدد أشكال البدائل الجينية للإنتغرين ألفا 2 و السيليكتين – L والشدة السريرية لمرض الأنيميا المنجلية في المرضى السودانيين، بالاضافة لمعرفة المتغيرات الدموية والربط بينها.

جمعت عينات الدم الوريدي من المرضى السودانيين الذين يعانون من مرض الأنيميا المنجلية (عددهم = 112) كعينات من الأفراد السودانيين الأصحاء (عددهم = 112) كعينات ضابطة مع مراعاة مطابقة العمر والجنس للمرضى عند مقارنتهم بالحالات.

تم ترسيم الجينات من خلال جهاز التوليف متعدد البلمرة المتسلسلة ، وتم قياس عد الدم الكامل بواسطة محلل الدم الذاتي (سيسمكس X21-N) كما تم عد الخلايا الشبكية بواسطة الطريقة اليدوية.

المرضى المحولين إلى عيادة أمراض الدم وجد ان أعمارهم تتراوح من سنة حتى 37سنة حيث ان الوسيط للاعمار 7 سنوات من كلا الجنسين (57% اناث عددهم 76 و 43% ذكور عددهم 57 و 43% (75% اناث عددهم 76 و 43% (75% اناث عددهم 76 و 43% (75% اناث عددهم 76 و 43% (75% المرضى والبدائل الوراثية من 75% (75% السودان. كما وجد أن التراكيب والبدائل الوراثية من دات دلالة معنوية تساوي (P=0.002) و (P=0.000) على التوالي. في 75% الظهر تحليل المخاطر النسبية لعدد البدائل الجينية أن المرضى الذين يعانون من البديلة الجينية T كانوا أكثر عرضة بعدد 5.4 مرات لان يصابوا بنوبات التحلل الدموي، انسداد الأوعية الدموية والسكتة الإقفارية بدلا من المرضى الذين لديهم البديلة الجينية . بالإضافة لذلك كان هناك ارتباط كبير بين هذه الأشكال الجينية والظهور العالي من - L سيلكتين على سطح كريات الدم البيضاء ، أو زيادة المضاعفات في الانيميا المنجلية لـ (P0.000) .

كل القيم المقاسة للدم كالهيموغلوبين، عدد كريات الدم الحمراء والبيضاء و حجم الخلايا المضغوطة كلها أعلى بكثير في العينات الضابطة من التي في المرضى وايضا عند مقارنتها بين مجموعات شدة P=0.034 الحالة المرضية P=0.000 الهيموغلوبين، P=0.000 العدد كريات الدم الحمراء ، و P=0.034 الحجم الخلايا المضغوطة) وايضا عندما تم مقارنتها بين المجموعات المختلفة للشدة السريرية للأنيميا المنجلية كلها اعطت نتائج ذات دلالة احصائية بقيمة معنوية وصلت P=0.000.

أشارت هذه النتائج إلى أن تعدد الأشكال (P213S) للجين-L سيلكتين و تعدد أشكال L-الذي يبدو أنه (C807T) يرتبط بمزيد من المضاعفات والنوبات، مع البديل الجيني يبدو أنه يتعمد زيادة قابلية الإصابة بالسكتة الإقفارية والنوبات الوعائية والتحللية في المرضى السودانيين المصابين بالانيميا المنجلية.

كذلك فان الموسمات التحلليلة للدم ذات فائدة للتحقق من فعالية نخاع العظم في انتاج خلايا الدم الحمراء وذلك عند مقارنتها بين الاصحاء والمرضى المصابين بالانيميا المنجلية ولديهم درجات متفاوتة من الشدة السريرية.

List of contents

Content		Page
		No
الاستهلال		I
Dedication		II
Acknowledg	ment	III
Abstract		IV
المستخلص		VI
List of conte	ents	VIII
List of figure	es	XIII
List of tables	S	XIV
Abbreviation	ns	XVI
Title No.		
	Chapter one	
	Introduction	
1.1	Introduction	1
	Chapter two	
	Literature review	
2.1	Sickle cell disease	3
2.1.1	Epidemiology of SCD	4
2.1.2	Pathophysiology of SCD	5
2.1.3	Inheritance of SCD	5
2.1.4	Clinical features of SCD	5
2.1.5	Common complications and crises	5
2.1.5.1	Painful vaso-occlusive crises	6

2.1.5.2	Bacteremia and sepsis	7
2.1.5.3	Acute chest syndrome	7
2.1.5.4	Visceral sequestration crises	8
2.1.5.5	Pulmonary hypertension	9
2.1.5.6	Central nervous system disease	9
2.1.5.7	Priapism	9
2.1.5.8	Renal effects in SCD	10
2.1.5.9	Avascular necrosis	10
2.1.5.10	Aplastic crises	11
2.1.5.11	Haemolytic crises	11
2.1.6	Sickle cell trait	11
2.1.7	Symptoms of SCD	12
2.1.8	Risk factors of SCD	12
2.1.9	Diagnosis of SCD	12
2.1.9.1	Complete blood count values	12
2.1.9.1.1	Factors which affect CBC values	13
2.1.9.1.2	Hemoglobin in SCD	13
2.1.9.1.3	Red blood cells in SCD	13
2.1.9.1.4	Hematocrit in SCD	14
2.1.9.1.5	Indices in SCD	14
2.1.9.1.6	White blood cells in SCD	15
2.1.9.1.7	Platelets in SCD	15
2.1.9.2	Reticulocytes	17
2.1.9.2.1	Reticulocytes count	18

2.1.9.2.2	Reticulocytes count in SCD	19
2.1.9.3	Other laboratory findings in SCD	19
2.1.9.4	DNA diagnosis in SCD	19
2.1.10	Treatment of SCD	20
2.1.11	Nutritional considerations in SCD	21
2.1.12	Study types in genomic research of SCD	22
2.1.12.1	Clinical severity genetic overview	24
2.1.12.1.1	Severity scoring system of SCD	24
2.2	Selectins and integrins	26
2.2.1	Selectins and integrins in SCD	27
2.3	Rationale	29
2.4	Objectives	30
2.4.1	General objective	30
2.4.2	Specific objectives	30
	Chapter three	
	Material and Methods	
3.1	Study design	31
3.2	Study setting and time line	31
3.3	Study population	31
3.3.1	Inclusion criteria	31
3.3.2	Exclusion criteria	31
3.4	Sample size	31
3.5	Data collection and severity scoring	32
3.6	Sample collection and processing	32
3.6.1	Complete blood count (CBC)	33

3.6.1.1	Automated method	33
3.6.1.2	Reagents and materials	34
3.6.1.3	Principle of hematological analyzer	34
3.6.2	Thin blood films and staining technique	35
3.6.3	Reticulocyte count	35
3.6.4	Hemoglobin electrophoresis	38
3.6.5	The PCR requirements and procedure	39
3.6.5.1	Genomic DNA extraction	40
3.6.5.2	Primer design and PCR amplification	40
3.6.5.3	Restriction digestion and DNA genotyping	40
3.6.5.4	Protocols for selectin genotyping	41
3.6.5.5	Protocols for integrin genotyping	42
3.7	Result interpretation	42
3.8	Statistical analysis	42
3.9	Ethical consideration	43
	Chapter four Results	
3.0	Results	44
Chapter five Discussion, Conclusion and Recommendation		
5.1	Discussion	58
5.2	Conclusion	62
5.3	Recommendations	63
References 64		
Appendices		

List of figures

Figure	Figure	Page
No.		No.
	Chapter two	
2.1	Timeline of major scientific achievements	23
	relevant to the study of SCD	23
	Chapter four	
4.1	Frequency distribution of bone marrow	
	erythropoietic activity among Sudanese patients	51
	with SCD	
4.2	Genotyping of the SELL P213S polymorphism	52
	among Sudanese patients with SCD	32
4.3	Genotyping of the ITGA2 C807T polymorphism	55
	among Sudanese patients with SCD	33

List of tables

Table	Table	Page No
No		
	Chapter two	
2.1	Hematological values in sickle cell anaemia	
	patients in vaso-occlusive crisis compared to	16
	steady state normal values	
2.2	Relation between Hct and reticulocyte	16
	maturation time in BM and PBP	10
2.3	SCD Scoring system	25
	Chapter four	
4.1	Demographic data for the study population	45
4.2	Original home frequency distribution for the studied patients	46
4.3	Mean \pm SD of hematological markers among the apparently healthy individuals and patient with SCD	47
4.4	Correlation between laboratory findings and disease severity among Sudanese patients with SCD	48
4.5	Clinical severity of SCD among study population	49
4.6	Correlation between SCD clinical severity and other diseases modifiers among Sudanese patients	50

4.7	Distribution of L-selectin gene genotypes among studied patients and healthy controls	53
4.8	L-selectin gene allele's expression with clinical severity among Sudanese patients with SCD	54
4.9	Frequencies genotype for <i>ITGA2</i> C807T among studied patients and healthy controls	56
4.10	ITGA2 gene allele's expression with clinical severity of SCD among Sudanese patients	57

Abbreviations

Abbreviation	Term
AA	Arachidonic Acid
ACS	Acute Chest Syndrome
ADP	Adenosine Di-Phosphate
ARC	Absolute Reticulocyte Count
AVN	Avascular Necrosis
BM	Bone Marrow
CBC	Complete Blood Count
CD	Cluster of Differentiation
CRC	Corrected Reticulocyte Count
CSSCD	Cooperative Study of Sickle Cell Disease
DNA	Deoxy-Ribonucleic Acid
НА	Hemolytic Anemia
Hb A	Hemoglobin phenotype A
Hb C	Hemoglobin phenotype C
Hb D	Hemoglobin phenotype D
Hb E	Hemoglobin phenotype E
Hb S	Hemoglobin phenotype S
HbF	Fetal hemoglobin
Hct	Hematocrit
HU	Hydroxyurea
ICAM	Intra Cellular Adhesion Molecule
ITGA2	Integrin Alpha 2
KD	Kilo Dalton

MCH	Mean Corpuscular Hemoglobin
MCHC	Mean Corpuscular Hemoglobin Concentration
MCV	Mean Corpuscular Volume
NO	Nitric Oxide
PAGE	Poly acrylamide Gel Electrophoresis
PBP	Peripheral Blood Picture
PCV	Packed Cell Volume
Pt.	Patient
RBCs	Red Blood Cells
RNA	Ribo-Nucleic Acid
RPI	Reticulocyte Production Index
RI	Reticulocyte Index
SCA	Sickle Cell Anemia
SCD	Sickle Cell Disease
SD	Standard Deviation
SNP	Single Nucleotide Polymorphism
SELL	L- selectin
VOC	Vasoocclusive Crisis
VAM	Vascular Adhesion Molecule
WBCs	White Blood Cells