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ABSTRACT 

 

 

 

Electricity has changed everyone's life since the day it was discovered.  It is produced 

all over the world in power plants that uses different types of energy sources like fossil fuel, 

water falls, nuclear and wind Energy. The amount of electricity produced is the fundamental 

goal for any power plant. Therefor accurate prediction of this amount is very important for 

planning and operation activities of the power plant. This study aims to identify the attributes 

that influence the amount of generated power from a thermal power plant, and to accurately 

predict that amount. Datasets were prepared form real data that had been collected by 

SCADA over two years period, from two different units in a thermal power plant of 190 MW 

capacity. Feature selection was done using wrapper method, and power prediction was done 

using all available attributes, to give a  ranking of the selected attributes, and show the 

influence of each parameter in the amount of generated power. For power prediction, only 

controllable parameters like pressure, temperature and steam flow at turbine inlet were used 

as predictors. Sixteen different algorithms were tested for each dataset, the algorithm that 

showed higher correlation coefficient and minimum error was selected to build the model. 

The predicted amount using data mining was found to be more accurate than manufacturers 

expectations and thermodynamic laws. Models evaluation was done using separate dataset, 

and cross validation in case of small datasets. Moreover comparison between the predicted 

and the actual observed amounts was presented in a graph, to visualize the accuracy of the 

models. 
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 المستخلص

لقد تغير أسلوب حياة الإنسان كثيراً بإكتشاف الطاقة الكهربائية التي أصبحت تستعمل بصورة 

يتم إنتاج الكهرباء في جميع أنحاء العالم في محطات التوليد  .أساسية في كل مجالات الحياة اليومية. 

عن طريق تحويل الطاقة من شكل أولي الى الطاقة الكهربائية. تستخدم محطات التوليد أنواعاً  الكهربائي

 .مختلفةُ من مصادر الطاقة مثل الوقود الأحفوري، وجريان مياه الأنهار, والطاقة النووية وطاقة الرياح

لذلك فإن معرفة  يد, وتعتبر كمية الكهرباء المنتجة من محطات التوليد هي الهدف الأساسي لأي محطة تول

 الكمية المنتجة بدقة مهم جدا للتخطيط الإستراتيجي و لمعرفة كفاءة عملية التوليد. 

تهدف هذه الدراسة إلى التعرف على الصفات التي تؤثر على كمية الطاقة المنتجة من محطات 

ة لإجراء هذا البحث من قراءات تم إعداد البيانات المطلوب .توليد الطاقة الحرارية، والتنبؤ بدقة بهذه الكمية

حقيقية تم جمعها بواسطة نظام التحكم و المراقبة بالمحطة على مدى عامين، من وحدتين مختلفتين من 

وقد تم اختيار  ميغاواط ) محطة الشهيد محمود شريف ببحري(.  190محطة حرارية قدرتها الإنتاجية 

، وتم التنبؤ بكمية Wrapperاستخدام طريقة المجمع المواصفات المؤثرة على إنتاج الطاقة الكهربائية ب

الطاقة ببناء نماذج التنبؤ بطريقتين مختلفتين. الطريقة الأولى باستخدام جميع السمات المتاحة، و من ثم 

أما الطريقة الثانية فإنها   إعطاء ترتيباُ لهذه السمات يحدد مدى أهميتها و أثرها على الكمية المنتجة.

سمات التي يمكن التحكم بها ) وهي الضغط ودرجة الحرارة وسرعة تدفق البخار في مدخل تستخدم فقط ال

تم تجربة سبعة عشر خوارزمية مختلفة لكل مجموعة بيانات، وبعد ذلك تم إختيار  و .التوربينات(

  الخوارزمية التي أظهرت أعلى معامل ارتباط و أقل نسبة خطأ لبناء النموذج النهائي. 

بحث أن الكمية المتوقعة باستخدام تقنيات التنقيب في البيانات تكون أكثر دقة من الطرق لقد أثبت ال

تم إجراء  .التقليدية )معادلات الديناميكا الحرارية و معادلات الكفاءة المعدة بواسطة مصنعي المحطة(

ارنة بين الكميات وعلاوة على ذلك فقد تم إجراء مق  .تقييم النماذج باستخدام مجموعة منفصلة من بيانات

المحسوبة بواسطة معادلات الديناميكا الحرارية, و المحسوبة بواسطة معادلات الكفاءة المعدة بواسطة 

مصنعي المحطة , و الفعلية , و المتوقعة بواسطة النموذج الجديد. كل ذلك في رسم البياني واحد لتسهل 

 عملية المقارنة. 
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CHAPTER ONE 

 

 

 

INTRODUCTION 
 

 

 

1.1 Introduction    
 

 

Electricity generation is the process of generating electric power from primary 

energy sources. The basic principle of electricity generation was discovered by Michael 

Faraday during the early nineteenth century. In this basic method the electricity is 

generated by the movement of a loop of wire, or disc of copper between the poles of a 

magnet,  then the motion between a magnetic field and a conductor creates an electrical 

current. This method is the base of power systems (Zhang, 2010). 

 

 

 The power system which is also known as the grid is divided into three 

components: the generator which produce the power, the transmission system that 

carries the power from the generators to the load centers, and the distribution which 

delivers power to the end users. There are many types of generators (also known as 

power plant) normally these power plants contain one or more generators, which is a 

rotating machine that converts mechanical power into electrical power.  

 

 

Mainly, power is generated by different types of turbine. Turbines are commonly 

driven by wind, water, gas or steam. The turbine then drives an electric generator. The 

different types of basic energy sources which are used to rotate the turbines include: 
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1. Wind: where the wind moves big fans that rotates the turbines.  

2. Water: Energy is captured from the movement of water. From falling water 

(dam), this produces about 16% of the worlds electricity. 

3. Gas: Natural gas is burned in a gas turbine, by Combined cycle which are 

driven by both steam and natural gas. At least 20% of the worlds electricity 

is generated by natural gas. 

4. Steam: In steam turbines, water is boiled by: 

i. Fossil energy source like coal or oil in a thermal power plant, about 40% 

of all electricity is generated this way.  

ii. Nuclear fission used heat created in a nuclear reactor creates steam. Less 

than 15% of electricity is generated this way. 

Renewables energy sources are being used in steam like: Biomass, Solar thermal 

energy , and Geothermal power (Abolhosseini, Heshmati and Altmann, 2014)). 

 

In Sudan Water Energy and Thermal Power Plants (steam) are used. This 

research focuses on thermal power plants that uses oil as energy source, these types of 

power plants use Rankine Cycle to generate electricity. More theoretical investigation 

about Rankine Cycle could be found in (Kapooria et al, 2008).  Rankine Cycle is a closed 

system consists of four main components, that are interconnected together to build one 

system (Learn Engineering, 2013). These components are :  

1.Steam Turbine which uses the superheated steam that is coming from the boiler to 

rotate the turbine blades.  

2.Condenser: uses external cooling water to condense the steam which is exhausted 

from turbine to liquid water.  

3.Feed water Pump: to pump the liquid to a high pressure and bush it again to boiler. 

4.Boiler which is externally heated to boil the water to superheated steam.  

 

Nowadays power plants are commissioned with Supervisory Control And Data 

Acquisition (SCADA) systems, to ease the control and data collection of power plant 

components.  Data is collected instantly by SCADA system via different types of sensors 

that are connected to different locations of power plant to capture hundreds of 
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parameters, each of which is given a unique Tag No or Parameter ID. This huge amount 

of data is recorded in a historical database. Unfortunately, due to disk space limitation, 

always there is a data purging process to delete data older than a specific period, and 

keep the space utilization within acceptable threshold. Of course this reduces the amount 

of data available for analysis.  

 

Power calculations 

Data like pressure, temperature and flow rate, which is collected from different 

locations in the power plant, could be used for different purposes like: monitoring the 

current status of each component, or calculating the expected amount of generated 

power to estimate the efficiency of the power plant. 

 

The availability of this huge amount of real time data encourages the adoption of 

data mining techniques. Data mining is defined as the process of discovering patterns in 

data (Witten and Frank and Hall, 2011). This research is studying the possibility of  

using data mining techniques to solve real problems in power plants.  However, there 

are some obstacles that faces researchers and engineers to benefit from data mining in 

this area. The first one is the interdisciplinary nature of such a research, because it 

requires deep knowledge in both IT and electromechanical engineering, this obstacle is 

handled by intensive review of the literature and many meetings with the domain expert. 

Another obstacle is the lack of standard analysis methods and benchmarks, this leads to 

the  use of different methods and datasets and compare them to come up with the most 

appropriate one. 

 

Kartoum North Power Plant (KNPP) is one of the biggest thermal power plants in 

Sudan. KNPP was commissioned in three main phases. Each phase  is composed of two 

identical units. Phase II, which is composed of Unit 3 and Unit 4, was selected as a case 

study for this research. Steam properties were collected instantly by SCADA system, 

using sensors that are connected at different locations in the power plant. So all required 

data is available at the central database. To distinguish between all these parameters, a 

unique number is assigned for each one. More details about these parameters and dataset 

will be provided in chapter 3 Research Methodology.  
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1.2 Problem Background 
 

 

Data mining could be used to solve many types of problems in power plants, like 

prediction of generated power, prediction of machine failure, diagnosis of machine 

failure and many others. There is no standard technique that could be used for a specific 

problem. In the literature reviewed, a lot of researchers provide many interesting articles. 

Like the researches of wind turbine performance which were conducted under one 

research project in University of Iowa in USA at 2012. The project name is “Data-

Driven Performance Optimization of Wind Farms research”, and leaded by Prof. 

Andrew Kusiak. (Küçüksille, Selbas and Sencan, 2011)  focused on prediction of 

thermodynamics properties, although it is about refrigerants, but it provides a very clear 

road map of using data mining in engineering and thermodynamic problems. 

 

Recently the use of data mining applications in power systems is increasing. 

Many papers were found in the literature, each is focusing on one area of the power 

system. Some are focusing on the Distribution System like (Ramos, 2008) who used 

decision tree to classify the consumers. (Saibal, 2008) used WN (Wavelet Networking) 

which is an extension of perceptron networks for the Classification of transients. 

(Figueiredo, Rodrigues and Gouveia, 2005)   used Decision tree for the Classification 

of Electricity energy consumer. (Dola, 2005) used Decision tree and neural network for 

Faults classification in distribution system. (Mori, 2002) used Regression tree and neural 

network for Load forecasting.  

 

Other researcher focused on the Transmission Line Problems like: (Hagh, 

2007), (Silva, 2006), (Costa, 2006), (Vasilic, 2002) all of them used Neural network to 

study Faults detection, classification and locations in Transmission Lines. (Dash, 2007) 

used Support Vector Machine for the classification and identification of series 

compensated. (Vasilic, 2005) and (Huisheng, 1998) used Fuzzy/ neural network for 

faults classification.  

Some other researchers focused on Power Generation part (power plants) like 

(Kusiak, Zhang and Li, 2011)  who used a multi objective optimization model to 
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optimize wind turbine performance. Others like (Küçüksille, Selbas, and Sencan, 2011)  

who used data mining to predict thermodynamic properties, they used many 

algorithms to predict enthalpy, entropy and specific volume for specific types of 

refrigerants.  

 

Other researchers focused on Work Process Optimization and Performance 

Monitoring, Water and Power Plant Fujairah (FWPP) in the United Arabic Emirates is 

a true success story of data mining usage, where more than 4% of of the total 

consumption have been achieved (Tyagi and Kumar, 2014). Softstat ‘which is statistical 

analysis consultancy group’, showed the superiority of data mining tools to traditional 

approaches like DOE (design of experiments), CFD (computational fluid dynamics). In 

their research they started by feature selection then apply DM algorithms to get better 

performance of Flame temperature. Finally recommendations from the model  was 

deployed. 

 

 Investigating and solving power plant problems by traditional ways is very 

expensive, complicated, and time consuming process. Because of this, data mining is 

recently used to solve many types of problems in different types of power plants, like 

predicting: power plant yield, failure detection and diagnoses, emission of Nitrogen 

oxides, power curves and wind speed, and boilers’ efficiency. To predict these targets 

a lot of attributes could be used, like steam properties (pressure, temperature and flow 

rate) at turbine inlet and outlet, and many others. SCADA systems, which are now a 

days available by almost any power plant, instantly capture and store huge amount of 

data which is stored in historical databases. All these databases are available for data 

mining researches to solve power plant problems.  

 

 Although many problems of power plants were solved by data mining, still a 

lot of researches are needed. Like predicting the efficiency, detecting and diagnosing 

failure, especially in thermal power plants. Chapter two provides more details about 

these problems, data mining techniques, what was solved and what is the gap. 
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1.3 Problem Statement 
 

 

The fundamental tasks of operation engineers in the power plant is to control the 

amount of generated  power, to guarantee the stability of power supply. There are two 

methods to expect the amount of generated power; the first one is by using equations of 

thermodynamic laws. The second by using  the Consumption Graph which is prepared 

by the power plant manufacturers, and gives the amount of generated power in mega 

watts, as a function of steam flow rate at turbine inlet. The problem is that, over time, 

the calculated amount of power using these methods is different from the actual amount. 

So, the problem is stated as two sub-problems: 

 

1. Can we design a feature selection technique, that can determine the best set of 

features that influence the current amount of power generated from a thermal 

power plant.? 

 

2. Can we use only the controllable parameters, to accurately predict the amount 

of generated power from a thermal power plant? 

 

By dividing the problem into above two sub-problems, we could have better 

understanding. The first sub-problem is studying the full feature set, to study all features 

without neglecting any feature, and the second part is focusing only in the controllable 

parameters. 
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1.4 Objectives of Study  
 

 

The goal of this research is to to determine all parameters that influence the 

amount of generated power and to predict accurately the amount of power generated 

from thermal power plant using data mining techniques. To achieve this goal the 

following objectives have been specified: 

1. Design a feature selection technique, that can determine the best set of features 

to predict the amount of generated power from a thermal power plant. 

2. Design a prediction technique that can accurately predict the amount of 

generated power, using only the controllable parameters. 

 

Figure 1.1 shows methodology followed to achieve these goals.  

 

Figure 1.1 Operational Framework 
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1.5 Scope of Study  
 

The previous section has stated the objectives of this study which focuses on 

how to produce a good summary using the proposed technique. The following aspects 

are the scope of research for those objectives. 

1. The study focuses only on feature selection and prediction of amount of power 

generated from thermal power plant, using: first all selected features, then only 

the controllable parameters. 

2. The research uses as a case study, data collected from Khartoum North Power 

Plant, specifically Unit 3 and Unit 4. Five sets of data were used, three for the 

first sub problem and two sets for the second sub problem 

3. The benchmark used to compare results is the actual amount of generated power. 

While model evaluation is done by cross validation for small datasets, and 

separate test sets with bigger sets.  

 

 

1.6 Significance of Study  
 

The study investigates the prediction of generated power amount from thermal 

power plant, and the features influence that amount. The significance of this research is 

to propose methods for power prediction from existing data, using data mining 

techniques. This research identifies the features that affects the amount of generated 

power and how much they influence this amount, by ranking the attribute selection 

results and prediction models that uses these selected features. Using controllable 

parameters, the research provides accurate prediction models through different 

prediction algorithms like Linear Regression, Pace Regression and SMOreg. Algorithms 

gives different results in different datasets. The research reveals the superiority of data 

mining techniques over thermodynamic laws and manufacturers expectations, in 

predicting the amount of generated power. Because it depends on real data, while other 

methods depends on theoretical equations and optimum environment. The performance 

of the proposed methods is evaluated by cross validation and separate test sets, and 

compared with actual readings of generated power. 
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1.7 Expected Contribution 
 

The contributions from this research can be described as follows:  

1. Identification of features that influence amount of generated power in 

thermal power plants. 

2. Better understanding of the effects of selected parameters in thermal 

power plant  using feature selection and prediction algorithms. 

3. More accurate methods to predict the amount of generated power based 

on real data collected from the plant through the use of data mining 

techniques.   

 

1.8 Thesis Organization 
 

 

This thesis is organized in six chapters to cover the objectives of  the study and 

details of methodologies followed to achieve the goals. These eight chapters are 

organized as follows:  

 

Chapter 1, Introduction: by now the reader already covered this chapter, which 

presented a general discussion about this research by giving a brief background about 

the topic. Then the problems was stated, and the research objectives were shown, which 

is followed by scope and significance of the study. Finally the research contribution of 

this thesis is summarized. 

 

Chapter 2, Literature Review: this chapter presents a comprehensive review of  

all areas related to this research. The chapter starts by briefing data mining and data 

mining process (the CRISP-DM mode), then important prediction algorithms are shown. 

After that various applications, techniques and researches of data mining in power 

systems and in power plants are presented. The chapter summarizes the literature in  

simple and clear tables to reveal the variety of researches in this area. 
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Chapter 3, Research Methodology: this chapter describes the methodology used 

and the steps followed to achieve the objectives of this research. The chapter presents 

the data preparation processes, starting from the data collection, until the datasets are 

ready for machine learning tools. The chapter also describes the datasets by showing the 

attributes and number of instances for each dataset.  

 

Chapter 4, Features Selection and Prediction Models using all features: this 

chapter gives the research details by showing the methods followed for feature selection, 

and algorithms used to build the models using the selected set of features. Also the 

chapter presents the initial comparison between algorithms, the details of each 

prediction model. Also it shows the evaluation of each model and a comparison of each 

model result with the actual values using comparison graphs. the chapter also presents 

a detailed discussion and interpretation of  the obtained results.  

 

Chapter 5, Prediction Models using the Controllable Parameters: this chapter 

gives the research details by showing the algorithms used to build the models, the initial 

comparison between algorithms, the details of each prediction model. The chapter 

provides accurate models to predict the power using only the controllable parameters. 

Also it shows the evaluation of each model and a comparison of each model result with 

the actual values using comparison charts. the chapter also presents a detailed discussion 

and interpretation of  the obtained results.  

 

Chapter 6, Conclusion and future work: this chapter presents the research 

conclusion by  highlighting the research contributions and the  findings of its work. The 

chapter also presents suggestions and recommendations for future study.  
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CHAPTER TWO 

 

 

 

LITERATURE REVIEW 
 

 

 

Data mining techniques and their applications have developed rapidly during the 

last two decades.  This chapter provides a review of the application of data mining 

techniques in power systems,  specially in power plants, through a survey of literature 

from 2000 to 2015.  Keyword indices and article abstracts and conclusions were used to 

classify more than ninety articles concerning application of data mining in power plants, 

from many academic journals and research centers.  Because this research is concerned 

with application of data mining in power plants; this review started by providing a brief 

introduction about data mining and power systems to give clear vision about these two 

different disciplines.  This review presents  comprehensive surveys of the collected 

articles and classifies them according to three categories: the used techniques, the 

problem and the application area.   

From this review it is proven that data mining could be used to solve many types 

of problems in power plants, like prediction of generated power, failure prediction, 

failure diagnosis, failure detection and many others.  Also there is no standard technique 

that could be used for a specific problem.  Application of data mining in power plants is 

a rich research area and still needs more researches.   

 

 

2.1. Introduction 

 

 

Most of the electric power systems now a days are equipped with SCADA 

(Supervisory Control And Data Acquisition) systems, that eases the collection of real 
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time data.  This huge amount of data which is collected instantly encourages the 

application of data mining techniques in power systems.  However, this area is new and 

still faces difficulties to benefit from data mining (Morais et al, 2009).   The first 

difficulty is that: mining power systems data is an interdisciplinary task, that requires 

electromechanical engineers and data scientists to work as a team in order to achieve 

their goals.  To handle this difficulty, many meetings and discussions were conducted 

with domain experts.  The Second one is the limitation in data storage capacities, which 

leads to implementation of automatic purging policies, consequently data is always 

available for short periods, less than what is required by a data mining tool.  This was 

handled by collecting sample data every month for the last two years, all these samples 

were combined together to form single dataset for each unit.  A third difficulty is the 

lack of standardized benchmarks, this is very clear from all researches presented here 

after, where researchers are using proprietary datasets, which makes it difficult to 

compare algorithms and reproduce results.    

 

Because it is an interdisciplinary research, this research started by giving an 

introduction about power systems and Rankine cycle for data scientists and computer 

engineers, on the other hand an introduction to data mining and CRISP-DM model is 

provided for electromechanical engineers.  After that, principles of Feature Reduction 

and Selection techniques is provided, followed by a review of its application in power 

systems.  Then prediction methods and famous algorithms are presented, followed by a 

comprehensive review about their application in power systems.  After that a discussion 

is done to lead to research objectives.  Finally, this chapter is concluded with a summary. 

 

 

2.2. Power Systems 

 

A typical power system which is also known as the grid is shown in figure 2.1, 

it is divided into three components: the generator which produce the power, the 

transmission system that carries the power from the generators to the load centers, and 

the distribution which delivers power to the end users. 
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There are many types of generators (also known as power plant) normally these 

power plants contain one or more generators which is a rotating machine that converts 

mechanical power into electrical power.  Then the motion between a magnetic field and 

a conductor creates an electrical current.  Most power plants in the world burn fossil 

fuels such as coal, oil, and natural gas to generate electricity.   Others use nuclear power, 

but there is an increasing use of cleaner renewable sources such as solar, wind, wave 

and hydroelectric (Morais et al, 2009).     

 

 

 

Figure 2.1 Components of power system (Morais et al, 2009).    

 

 

2.2.1  Carnot Cycle, Rankine Cycle and Thermal Power  

Plants 
 

 

The Carnot cycle is a theoretical thermodynamic cycle proposed by Sadi Carnot 

in 1824.  It provides an upper limit on the efficiency that any classical thermodynamic 

engine can achieve during the conversion of heat into work.  Carnot cycle is a theoretical 

construct that cannot be built in practice (Martínez et al, 2016).  The practical 

implementation of Carnot Cycle is Rankine Cycle, which is applied by thermal power 

plants to generate power by converting heat into work.  This research focus on thermal 

power plants that uses oil as energy source.  More theoretical investigation about 

Rankine Cycle could be found in (Kapooria et al, 2008).   Rankine Cycle is a closed 

system consists of four main components, that are interconnected together to build one 

system as shown in figure 2.2.  These components are:  
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1. Steam Turbine which uses the superheated steam that is coming from the 

boiler to rotate the turbine blades.   

2. Condenser: uses external cooling water to condense the steam which is 

exhausted from turbine to liquid water.   

3. Feed water Pump: to pump the liquid to a high pressure and bush it again to 

boiler. 

4. Boiler which is externally heated to boil the water to superheated steam.   

 

 

 
 

Figure 2.2 Thermal Power Plant using Rankine Cycle (Learn Engineering, 2013) 

 

 

2.2.2   Power calculation using thermodynamic laws 

 

 

2.2.2.1    Basic equation of power generation 

 

 

The amount of generated power from a thermal power plant could be calculated 

by applying thermodynamic laws, using steam properties at specific points of power 

plant ( turbine  inlet  turbine outlet ).  All required steam properties at various locations 

in power plant are captured by SCADA.  Simply Equation (2.1) could be used to 

calculate the amount of generated power.   

 

Generated Power in MW =  ṁsX   ( hin  - hout )              (2.1) 

Where: 

ṁ s : is the flow rate of steam at turbine inlet, its value is found in parameter (6) in 

available dataset. 
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hin: is the enthalpy at turbine inlet, which could be calculated by applying parameters 

8,9 (Main steam header pressure, and T/A inlet steam temperature) values in steam 

tables and Mollier diagram or enthalpy calculator.  Both of these parameter are 

controllable. 

hout : enthalpy at turbine inlet, could be calculated using parameters (29,30) using 

steam tables and Mollier diagram or enthalpy calculator.  Parameter 29 is the steam 

pressure at turbine outlet and condenser inlet, while parameter 30 represents the 

temperature of steam at the same point. 

 

In order to be able to control the amount of power generated; we should have full 

control of the three parameters ṁs, hin  and hout .  From the above equation we notice 

that both ṁs and hin are controllable, while hout is not fully controllable.   

 

 

2.2.2.2   Enthalpy Calculation 
 

 

Enthalpy is a measurement of energy in a thermodynamic system.  It includes 

the internal energy, which is the energy required to create a system, and the amount of 

energy required to make room for it by displacing its environment and establishing its 

volume and pressure (Zemansky and Mark,1968).  Enthalpy is defined as a state function 

that depends only on the prevailing equilibrium state identified by the variables internal 

energy, pressure, and volume.  It is an extensive quantity.  The unit of measurement for 

enthalpy in the International System of Units (SI) is the joule, but other historical, 

conventional units are still in use, such as the British thermal unit and the calorie. 

 

The enthalpy is the preferred expression of system energy changes in many 

chemical, biological, and physical measurements at constant pressure, because it 

simplifies the description of energy transfer.  At constant pressure, the enthalpy change 

equals the energy transferred from the environment through heating or work other than 

expansion work.  The total enthalpy, H, of a system cannot be measured directly.  The 

same situation exists in classical mechanics: only a change or difference in energy 

carries physical meaning.  Enthalpy itself is a thermodynamic potential, so in order to 

measure the enthalpy of a system, we must refer to a defined reference point; therefore 
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what we measure is the change in enthalpy, ΔH.  The ΔH is a positive change in 

endothermic reactions, and negative in heat-releasing exothermic processes. 

Enthalpy is the most important factor to calculate the generated power.  Because 

no sensor can read enthalpy directly, its value should be calculated using pressure and 

temperature.  Enthalpy could be calculated applying steam pressure and temperature 

values to steam tables  (Appendix A), also it could be calculated using Mollier chart 

(Appendix B).  Alternatively some applications that could be found in the internet like 

WASP (Water And Steam Properties), could be used to calculate the enthalpy.  Figure 

2.3 shows a snap shot of WASP on which you can enter the temperature and pressure, 

then immediately WASP will give you the steam properties like enthalpy.  After getting 

enthalpy values, the generated power could be calculated easily using equation (2.1). 

 

 

 

 

 

2.2.3  Expected Amount of Generated Power according to 

Manufacturer 

 

Upon power plant installation, manufacturers provide the Steam Consumption 

Graph.  It is a graph that shows how much power will be generated if steam with specific 

properties provided to the turbine.  Figure 2.4 below shows the steam consumption 

Figure 2.3  Water And Steam Properties 
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graph for Khartoum North Thermal Power Plant, for both Unit 3 and Unit 4.  The X-

axis shows the amount of power that will be generated in MW, while the Y-axis shows 

the corresponding steam flow in kg/s, but the steam is supposed to be 510 ̊ C temperature 

and under 87 bar pressure.  From the figure 2.4 Steam Consumption Graph, we can 

simply derived equation (2.2) below. 

 

 

Output AT Terminal [MW] = Live Steam Flow [kg/s] – 2                  (2.2) 

 

 

Figure 2.4 Steam Consumption Graph for KNPP for Unit 3&4 

 

When we apply this simple equation to MainSteamFlow_kg_s we got the 

expected power According to Steam Consumption Graph.  But unfortunately, the power 

plant can never achieve this value, specially when it becomes old.  Efficiency engineers 

stated that, the power plant can not reach the full capacity even after maintenance.  The 

deviation of actual values from the manufacturers’ expectation is due to many reasons 

like degradation of performance of some parts, or any other physical reasons.  Figure 
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2.5 and 2.6 (for Unit 3 and Unit 4 respectively) shows that both calculated amount (using 

thermodynamic laws), and manufacturer’s expected amount (as per Steam Consumption 

Graph) are different from the actual amount of generated power.  This research will 

show the superiority of data mining techniques to: investigate the reasons behind this 

degradation, and to predict the power yield in thermal power plants using instances of 

data collected from two units of a thermal power plant. 

 

 

 

Figure 2.5 Actual power vs Equation and Manufacturer expected values of Unit 3 

 

 

Figure 2.6 Actual power vs Equation and Manufacturer expected values of Unit 4 
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2.3. Data mining & Data mining Processes 

 

 

This section is divided into three parts, the first one gives an introduction of data 

mining, the second is about CRISP-DM which is a complete blueprint for conducting a 

data mining project.  Then data exploration and analysis is presented because it provides 

a clear method of understanding the datasets, as stated by the CRISP-DM model.  Finally 

a review about building prediction models is provided.  The last two parts are illustrated 

according to data map as shown in figure 2.7, which is organized by Prof Sayed Sayed 

(Saed, 2017).   

 

 

2.3.1  Introduction about Data Mining 

 

Data mining is defined as the process of discovering patterns in data.  The 

process must be automatic or semiautomatic.  The patterns discovered must be 

meaningful in that they lead to some advantage.  The data is invariably presented in 

substantial quantities (Witten and Frank and Hall, 2011).  Data Mining is explaining the 

past and predicting the future by means of data analysis.   Data mining is a multi-

disciplinary field which combines statistics, machine learning, artificial intelligence and 

database technology.  Many businesses have stored large amounts of data over years of 

operation, and data mining is able to extract very valuable knowledge from this data.  

The businesses are then able to leverage the extracted knowledge into more clients, more 

sales, and greater profits.  This is also true in the engineering and medical fields (Saed, 

2017).  This part starts by giving brief introduction about datasets and data types.  Then 

data exploration methods are presented, to show the concepts of exploring the past about 

data, as this will assist in predicting the future.  After that a taxonomy of data mining 

modeling is provided.   

 

 

 

 

 

http://www.saedsayad.com/predicting_the_future.htm
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Figure 2.7 Data mining Map (Saed, 2017) 



21 
 

2.3.1.1    Datasets 

 

 

Dataset: Dataset is a collection of data, usually presented in a tabular form.  Each 

column represents a particular variable (also called feature or attribute), and each row 

corresponds to a given member of the data (also called records, objects, cases, instances, 

examples, vectors ).   There are some alternatives for columns, rows and values.  In 

predictive modeling, predictors or attributes are the input variables and target or class 

attribute is the output variable whose value is determined by the values of the predictors 

and function of the predictive model. 

 

 

2.3.1.2 Data Types for Data Mining 

 

 

Features have different types that distinguishes the amount of information they 

encode.  Below is a brief review about these data types starting from the “simplest” 

which carries the least information to those which provide the most information. 

1. Nominal variables: These are simply labels identifying unique entities.  Personal 

names are nominal labels identifying unique individuals.  So too are order numbers, 

serial numbers, tracking code and many other similar labels. 

2. Categorical variables: These are group labels identifying groups of entities that 

shares some characteristics implied by the category.  For example group of human, 

group of palm trees, group of birds, and so on.  Some authors look at Nominal and 

Categorical variables as mutual exclusive, but not ordered.   

3. Ordinal variables: These are categories that can be listed in some order.  Example 

of this is: small, medium, large or hot, warm, cool.  This order is the special about 

this type, because neither nominal nor categorical variables can be ordered; they are 

simple unordered labels. 

4. Interval variables: These are ordinal variables in which it is possible to determine a 

distance between the ordered categories.  Additive distances between equidistant 

points are meaningful, but ratios aren’t.  For example temperature, expressed in 

degrees, it makes sense to talk about the difference between two temperatures, and 

compare that with the difference between another two temperatures.  But we can’t 

say that degree 40 is twice hot than degree 20. 
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5. Ratio variables: these are interval variables in which ratios are valid, and could have 

a true zero point.  An example is the bank account.  The zero point is an empty 

account, and the ratio between 100$ and 200$ is 1 to 2.  Any mathematical operations 

are allowed.  It certainly does make sense to talk about three times the distance and 

even to multiply one distance by another to get an area.  All datasets in this research 

are ratio variable. 

It is important in data mining to understand the nature of your data, because that 

will determine the data mining methods that could be used.  Mainly, data either 

numerical or categorical.  Ratio and Interval variables above are both numerical data.  

While ordinal and nominal are categorical.     

 

2.3.2   The CRISP-DM Reference Model  
 

 

Cross-industry standard process for data mining (CRISP-DM)  is a 

comprehensive process model  and data mining methodology that provides anyone with 

a complete blueprint for conducting a data mining project (Shearer, 2000).  As shown 

in figure 2.8, the CRISP-DM breaks down the life cycle of a data mining project into 

six phases: business  understanding, data understanding, data preparation, modeling, 

evaluation, and deployment.  The arrows in the figure indicate the most important and 

frequent dependencies between the phases, while the outer circle shows the cyclic nature 

and continual improvement of data mining itself , i.e.  lessons learned during the data 

mining process and from the deployed solution can trigger new, business questions.   

 
Figure 2.8 Phases of the CRISP-DM (Shearer, 2000) 
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1.  Business Understanding : This is the most important phase, it is the initial business 

understanding phase which focuses on  understanding the project objectives from a 

business perspective, converting this knowledge into a data mining problem definition, 

and then developing a preliminary plan designed to achieve the objectives.  In order to 

understand which data should later be analyzed, and how.  This phase involves several 

key steps, including determining business objectives, assessing the situation, 

determining the data mining goals, and producing the project plan. 

2.  Data Understanding : This phase starts with an initial data collection, then the 

analyst start to increase familiarity with the data, to identify data quality problems, 

discover initial insights into the data, or to detect interesting subsets to form hypotheses 

about hidden information.  This phase involves four steps, including the collection of 

initial data, the description of data, the exploration of data, and the verification of data 

quality. 

3.   Data Preparation : This phase covers all activities to construct the final data set 

that will be fed into the modeling tool(s) from the initial raw data.  This phase consists 

of five steps : the selection, cleansing, construction, integration, and data formatting. 

4.   Modeling : In this phase, various modeling techniques are selected and applied and 

their parameters are calibrated to optimal values.  Several techniques exist for the same 

data mining problem type.  Some techniques have specific data requirements, therefore, 

stepping back to data preparation phase may be necessary.  Modeling steps include the 

selection of the modeling technique, the generation of test design, the creation of 

models, and the assessment of models. 

5.  Evaluation : In this phase the model is evaluated and its construction is reviewed to 

be certain it properly achieves the business objectives, and consider all important 

business issues.  At the end of this phase, the project leader should decide how to use 

the data mining results.  The key steps here are the evaluation of results, the process 

review, and the determination of next steps. 

6.  Deployment : The knowledge gained must be organized and presented in a way that 

the customer can use it, depending on the requirements, the deployment phase can be as 

simple as generating a report or as complex as implementing a repeatable data mining 

process across the enterprise.  Even though it is often the customer, not the data analyst, 

who carries out the deployment steps, it is important for the customer to understand up 
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front what actions must be taken in order to actually make use of the created models.  

The key steps here are plan deployment, plan monitoring and maintenance, the 

production of the final report, and review of the project. 

 

 

2.3.3  Data Exploration and Analysis 

 

Data Exploration is about exploring the past, it describes the data by means of 

statistical and visualization techniques (Saed, 2017).  Data is explored in order to bring 

important aspects of that data into focus for further analysis.  This exploration if done 

for an individual feature it is called Univariate Analysis, and if done for two features it 

is Bivariate Analysis.  The top part of figure 2.7 provides summary of data exploration 

methods, below are some details about these methods. 

 

2.3.3.1   Univariate Analysis 

 

 

Univariate analysis explores variables one by one.  Variables could be either 

categorical or numerical.  There are different statistical and visualization techniques of 

investigation for each type of variable.  Numerical variables can be transformed into 

categorical counterparts by a process called binning or discretization.  It is also possible 

to transform a categorical variable into its numerical counterpart by a process called 

encoding.  Finally, proper handling of missing values is an important issue in mining 

data. 

 

 

1. Categorical Variables: For categorical variable either nominal and ordinal only 

count function could be used.  A frequency table is a way of counting how often 

each category of the variable in question occurs.  It may be enhanced by adding 

percentages that fall into each category.  Graphs (bar chart and pie charts) is a good 

visualization method that is used to give better understanding of the data. 

2. Numerical Variables: A numerical variable (interval and ratio) is one that may 

take on any value within a finite or infinite interval.  Many statistical functions 

could be used with numerical attributes to give better understanding about the 
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problem.  These functions like: Count, Minimum, Maximum, Mean, Median, 

Mode, Quantile, Range, Variance, Standard Deviation, Coefficient of Deviation, 

Skewness and Kurtosis.  Histogram and Box Plot are good visualization methods 

that could be used with numerical data. 

 

 

2.3.3.2   Bivariate Analysis 

 

Bivariate analysis is a simultaneous analysis of two variables.  It explores the 

relationship between the two variables, it explores whether there is an association 

between them and the strength of this association, or whether there are differences 

between two variables and the significance of these differences.  There are three types 

of bivariate analysis according to data types: 

1. Numerical & Numerical 

2. Categorical & Categorical 

3. Numerical & Categorical 

 

1. Numerical and Numerical: If the two attributes are numerical data exploration could 

be done by: Scatter Plot or Linear Correlation, below are some details about these 

methods. 

i. Scatter Plot : A scatter plot is a graph that represents the relationship between 

two numerical variables and is usually drawn before doing a linear correlation or 

fitting a regression line.  The resulting pattern indicates the relationship between 

the two variables.  Figure 2.9 shows a sample of a Scattered Plot graph. 

 

 

Figure 2.9 Sample of Scattered Plot graph (Saed, 2017) 
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ii. Linear Correlation: Linear correlation quantifies the strength of a linear 

relationship between two numerical variables.  When there is no correlation 

between two variables, there is no tendency for the values of one quantity to 

increase or decrease with the values of the second quantity. 

 

In equation (2.3) above, r  measures the strength of a linear relationship between 

attribute x and y.  Always r between -1 and 1, where -1 means perfect negative 

linear correlation, and +1 means perfect positive linear correlation, and zero 

means no linear correlation. 

 

2. Categorical and Categorical : If the two attributes are categorical, data exploration 

could be done by: Stacked Column Chart Combination Chart, or Chi-square Test, 

below are some details about these methods. 

 

i. Stacked Column Chart: is a useful graph to visualize the relationship between 

two categorical variables.  It compares the percentage that each category from 

one variable contributes to a total across categories of the second variable. Figure 

2.10 shows a sample of Stacked Column Chart. 

 

 

(2.3)   

Figure 2.10 Sample of Stacked Column Chart. (Saed, 2017) 
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ii. Combination Chart: A combination chart uses two or more chart types to 

emphasize that the chart contains different kinds of information.  Like using bar 

chart to show the distribution of one categorical variable and a line chart to show 

the percentage of the selected category from the second categorical variable.  The 

combination chart is used to demonstrate the predictability power of a predictor 

(X-axis) against a target (Y-axis). Figure 2.11 shows a sample of a Combination 

Chart. 

 

iii. Chi-square Test : The chi-square test can be used to determine the association 

between categorical variables.  It is based on the difference between the expected 

frequencies (e) and the observed frequencies (n) in one or more categories in the 

frequency table.  The chi-square distribution returns a probability for the 

computed chi-square and the degree of freedom.  A probability of zero shows a 

complete dependency between two categorical variables and a probability of one 

means that two categorical variables are completely independent.    

 

 

     

 

 

3. Numerical & Categorical: If the one attribute is numerical and the other is 

categorical, data exploration could be done by: Line Chart with Error Bars, 

Combination Chart, Z-test and t-test, or Analysis of Variance (ANOVA), below are 

some details about these methods. 

 

i. Line Chart with Error Bars: this line chart displays information as a series of 

data points connected by straight line segments.  Each data point is average of 

Figure 2.11 Sample of a Combination Chart (Saed, 2017) 
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the numerical data for the corresponding category of the categorical variable 

with error bar showing standard error.  It is a way to summarize how pieces of 

information are related and how they vary depending on one another.  Figure 2.12 

shows a sample of a Line Chart with Error Bars. 

 

 

Figure 2.12 Sample of a Line Chart with Error Bars (Saed, 2017) 

ii. Combination Chart: A combination chart uses two or more chart types to 

emphasize that the chart contains different kinds of information.  Like using bar 

chart to show the distribution of one categorical variable and a line chart to show 

the percentage of the selected category from the second categorical variable.  The 

combination chart is used to demonstrate the predictability power of a predictor 

(X-axis) against a target (Y-axis). 

 

iii. Z-test and t-test: These tests are same, they assess whether the averages of two 

groups are statistically different from each other.  This analysis is appropriate 

for comparing the averages of a numerical variable for two categories of a 

categorical variable.   

 

iv. Analysis of Variance (ANOVA): The ANOVA test assesses whether the 

averages of more than two groups are statistically different from each other.  This 

analysis is appropriate for comparing the averages of a numerical variable for 

more than two categories of a categorical variable. 

 

To have a better understanding of the dataset, it is important to precede the 

creation of data mining model by a data exploration phase.  As seen from this section 

this exploration is statistical analysis, which is done by specific methods according to 
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the data type and the required analysis, whether it is univariate or bivariate analysis.  A 

known problem in practical data mining, is the poor quality of the data.  In real world 

datasets, errors like unreliable, missing and corrupted data are extremely common.  

These errors could be noticed by finding odd values like high standard deviation, or 

observing a point in a graph that is far from the majority of points.  Such errors in data 

will lead to performance degradation, and decrease the accuracy of data mining 

techniques (Witten and Frank and Hall, 2011).  The data exploration will assist to 

painstakingly check the data quality and get rid of these problems. 

 

 

2.3.4   Building Prediction Models 
 

After having basic understanding about the datasets by data exploration and 

analysis phase, and reducing the feature set either by feature extraction or feature 

selection, the dataset will be ready for developing the prediction model to solve a data 

mining problem.  Predictive modeling is the process by which a model is created to 

predict an outcome.  If the outcome is categorical it is called classification and if the 

outcome is numerical it is called regression.   Descriptive modeling or clustering is the 

assignment of observations into clusters so that observations in the same cluster are 

similar.  Finally, association rules can find interesting associations amongst 

observations.  According to the data mining task and the data type of the class, a suitable 

method could be used.  Figure 2.7 depicts the main tasks that could be handled by data 

mining. 

1. Classification: Classification is a data mining task of predicting the value of a 

categorical variable (target or class) by building a model based on one or more 

numerical and/or categorical variables (predictors or attributes).  As shown in figure 

2.7, classification algorithms are grouped into the following four main groups:  

i. Frequency Table: this group contains ZeroR, OneR, Naive Bayesian, and 

Decision Tree algorithms. 

ii. Covariance Matrix: this group contains Linear Discriminant Analysis and 

Logistic Regression algorithms. 

iii. Similarity Functions : this group contains K Nearest Neighbors algorithm. 

iv. Others : this group contains algorithms like Artificial Neural Network and 

Support Vector Machine. 
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2. Regression: is a data mining task of predicting the value of target (numerical 

variable) by building a model based on one or more predictors (numerical and 

categorical variables).  As shown in figure 2.7, regression algorithms are also 

grouped into four main groups, but the algorithms are different: 

i. Frequency Table: this group contains Decision Tree algorithm. 

ii. Covariance Matrix: this group contains Multiple Linear Regression algorithm. 

iii. Similarity Function: this group contains K Nearest Neighbors algorithm. 

iv. Others: this group contains Artificial Neural Network and Support Vector 

Machine algorithms. 

 

 

3. Clustering: A cluster is a subset of data which are similar.  Clustering (also called 

unsupervised learning) is the process of dividing a dataset into groups such that the 

members of each group are as similar (close) as possible to one another, and different 

groups are as dissimilar (far) as possible from one another.  Clustering can uncover 

previously undetected relationships in a dataset.  There are many applications for 

cluster analysis.  For example, in business, cluster analysis can be used to discover 

and characterize customer segments for marketing purposes and in biology, it can 

be used for classification of plants and animals given their features.  Two main 

groups of clustering algorithms as shown in figure 2.7 are: 

i. Hierarchical: this group contains Agglomerative and Divisive algorithms. 

ii. Partitive: this group contains K Means and Self-Organizing Map algorithms. 

 

 

4. Association: Association Rules find all sets of items (itemsets) that have support 

greater than the minimum support and then using the large itemsets to generate the 

desired rules that have confidence greater than the minimum confidence.  The lift of 

a rule is the ratio of the observed support to that expected if X and Y were 

independent.   A typical and widely used example of association rules application is 

market basket analysis.  The main algorithms of association are: AIS, Apriori, 

AprioriTid and AprioriHybrid algorithms.  More details about data mining 

algorithms could be found in (Wu et al., 2008). 
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2.3.5    Some Regression Algorithms 
 

Predictors and classes of all datasets in this research are numerical, so only 

regression could be used to predict the classes.  Below is a brief review about common 

algorithms in regression that were used in similar researches. 

 Linear regression (LR): Linear regression is a well known method of mathematical 

modeling of the relationship between a dependent variable and one or more 

independent variables.  Regression uses existing (or known) values to forecast the 

required parameters.  In the simplest case, regression employs standard statistical 

techniques such as linear regression.  Unfortunately, many real world problems are 

not simply linear projections of previous values.  So, more complex techniques (e.g., 

logistic regression, decision trees or neural networks) may be necessary to forecast 

future values (Zhou, 2003) 

 
    

 Pace regression (PR): Pace regression improves the classical ordinary least squares 

regression by evaluating the effect of each variable and using a clustering analysis 

to improve the statistical basis for estimating their contribution to the overall 

regressions.  Under regularity conditions, pace regression is provably optimal when 

the number of coefficients tends to infinity.  It consists of a group of estimators that 

are either overall optimal or optimal under certain conditions (Witten and Frank and 

Hall, 2011). 

 
 

 Multi layer Regression (MLR): Multiple linear regression (MLR) is a method 

used to model the linear relationship between a dependent variable (target) and one 

or more independent variables (predictors).  Equation (2.4)  

 

 

 
 

Where:   

 The subscript i refers to the ith individual.  X are the variables.  -variables, the 

subscript following i simply denotes which x-variable it is.   

(2.4) 
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 The word "linear" in "multiple linear regression" refers to the fact that the 

model is linear in the parameters, b0,b1,….   

 

MLR is based on ordinary least squares (OLS), the model is fit such that the sum-

of-squares of differences of observed and predicted values is minimized. 

 

 

 

The MLR model is based on several assumptions (e.g., errors are normally 

distributed with zero mean and constant variance).  Provided the assumptions are 

satisfied, the regression estimators are optimal in the sense that they are unbiased, 

efficient, and consistent.  Unbiased means that the expected value of the estimator 

is equal to the true value of the parameter.  Efficient means that the estimator has a 

smaller variance than any other estimator.  Consistent means that the bias and 

variance of the estimator approach zero as the sample size approaches infinity  

(Saed, 2017).   

 

 SMOReg: SMO (Self-Organizing Maps (SMO) algorithm for regression) 

implements a non-linear method for sequential minimal optimization to train a 

support vector regression using polynomial or radial basis function (RBF) kernels.  

Multi-class problems are solved using pair wise classification.  To obtain the proper 

probability estimates, we use the option that fits logistic regression models to the 

outputs of the support vector machine (Chiu, 2008). 

 
 

 SVMReg (Support Vector Machine Regression): The SVR model maps data 

nonlinearly into a higher-dimensional feature space, in which it undertakes linear 

regression.  Rather than obtaining empirical errors, SVR aims to minimize the upper 

limit of the generalization error  (Saed, 2017) 



33 
 

K Star: Is an instance-based classifier that is the class of a test instance is based 

upon the class of those training instances similar to it, as determined by some 

similarity function.  The underlying assumption of instance-based classifiers is such 

as K Star  (Saed, 2017).   

 
 

 M5 Model Tree Algorithm: An algorithm for generating M5 model trees.  M5 

builds a tree to predict numeric values for a given instance.  The algorithm requires 

the output attribute to be numeric while the input attributes can be either discrete or 

continuous.  For a given instance the tree is traversed from top to bottom until a leaf 

node is reached.  At each node in the tree a decision is made to follow a particular 

branch based on a test condition on the attribute associated with that node.  Each 

leaf has a linear regression model associated with it.  As the leaf nodes contain a 

linear regression model to obtain the predicted output, the tree is called a model tree.  

To build a model tree, using the M5 algorithm, we start with a set of training 

instances.  The tree is built using a divide-and-conquer method.  At a node, starting 

with the root node, the instance set that reaches it is either associated with a leaf or 

a test condition is chosen that splits the instances into subsets based on the test 

outcome.  A test is based on an attributes value, which is used to decide which branch 

to follow (Witten, Frank and Hall, 2011). 

 
 

 REP Tree: Quinlan first introduced Reduced Error Pruning (REP) as a method to 

prune decision trees.  REP is a simple pruning method though it is sometimes 

considered to over prune the tree.  A separate pruning dataset is required, which is 

considered a downfall of this method because data is normally scarce.  However, 

REP can be extremely powerful when it is used with either a large number of 

examples or in combination with boosting.  The pruning method that is used is the 

replacement of a subtree by a leaf representing the majority of all examples reaching 

it in the pruning set.  This replacement is done if this modification reduces the error, 

i.e.  if the new tree would give an equal or fewer numbers of misclassifications 

(Witten, Frank and Hall, 2011). 
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 Decision Table (DT): Decision table summarizes the dataset with a ‘decision table’, 

a decision table contains the same number of attributes as the original dataset, and a 

new data item is assigned a category by finding the line in the decision table that 

matches the non-class values of the data item.  This implementation employs the 

wrapper method to find a good subset of attributes for inclusion in the table.  By 

eliminating attributes that contribute little or nothing to a model of the dataset, the 

algorithm reduces the likelihood of over-fitting and creates a smaller, more 

condensed decision table  (Saed, 2017). 

 

2.4. Feature Reduction Techniques 

 

 

The abundance of data in contemporary datasets requires efficient data mining 

models to discover the information.  Because of the negative effect of irrelevant 

attributes, it is common to precede the learning process with an attribute selection phase, 

to select only the relevant attributes.  The best way to select these relevant attributes is 

manually, based on a deep understanding of the learning problem and the attributes 

themselves.  However, automatic methods can also be useful.  Hence, the development 

of these models is preceded by data preparation phase for two reasons: to reduce the 

dataset size, and to adopt the dataset to the best suit selected analysis method (Witten, 

Frank and Hall, 2011). 

 

The size of the datasets is more important, because data keeps growing in term 

of both the number of features and samples.  Dataset size reduction can be performed in 

one of two ways: feature set reduction or sample set reduction (Jović, Brkić and ,2015).  

In this research the focus will be on feature set reduction.  If the number of features is 

higher than the number of samples in a dataset, this will lead to overfitting, which causes 

poor results when validating the datasets.  Moreover building models using high number 

of features is more computationally demanding (Korn, Pagel and Faloutsos, 2001).  The 

feature set reduction is performed through the processes of feature extraction and feature 

selection.  In this review, the focus will be on feature selection. 
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2.4.1   Feature Extraction 
 

Feature extraction creates new features from functions of the original features.  

Feature extraction works by transforming the original features into a new feature set.  

feature extraction starts from an initial set of measured data, and builds the derived 

feature set that is intended to be more informative and non-redundant, to be used in the 

subsequent steps of learning and generalization (Alpaydin, 2010).  The new set is 

constructed from the original one based on their combinations, with the aim of 

discovering more meaningful information in the new set (Tang, Alelyani and Liu, 2014).    

 

 

2.4.2    Feature Selection 
 

Feature selection also known as variable selection and attribute selection, is the 

process of selecting a subset of features from the original set without transformation, 

and validating it according to the analysis goal.  Feature selection techniques are often 

used in domains where there are many features and relatively few samples (Witten, 

Frank and Hall, 2011).  Feature selection techniques are used for the following reasons: 

 Simplify the models to make them interpretable by users, focus on the target concept 

and direct the user’s attention to the most relevant variables.  (Witten, Frank and 

Hall, 2011) , (James et al, 2013). 

 Reduce training time (Witten, Frank and Hall, 2011). 

 Improve generalization by reducing overfitting, which in turn leads to poor results 

on validating datasets (Bermingham et al, 2015), (Jović and Brkić, 2015). 

 Reduce the size of the datasets in order to achieve more efficient analysis (Jović and 

Brkić, 2015).    

 

 

 

2.4.2.1 Relevance and redundancy 

Feature set reduction is based on the terms of feature relevance and redundancy.  

More specifically, a feature is usually categorized as: strongly relevant, weakly relevant, 

irrelevant, and redundant (Yu and Liu, 2004), (S.  Alelyani et al, 2013). 
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 Strongly relevant : is always necessary for an optimal feature subset; if a strongly 

relevant attribute is  removed from the dataset, this will affect the original 

conditional target distribution (Yu and Liu, 2004). 

 Weakly relevant but not redundant: this attribute may not always be necessary for 

an optimal subset, this may depend on certain conditions. 

 Irrelevant : Irrelevant features are not necessary to include in the dataset, and not 

relevant to the model. 

 Redundant: are those that are weakly relevant but can be completely replaced with 

a set of other features such that the target distribution is not disturbed  (L Yu; H.  

Liu, 2004), (Tang, Alelyani and Liu, 2013). 

 

Redundancy is thus considered in multivariate case, whereas relevance is 

established for individual features.  The target of feature selection process is to 

maximize relevance and minimize redundancy.  It usually includes finding a compact 

feature subset consisting of only relevant features.   

 

 

2.4.2.2 Steps to find Sub set 
 

The whole process of finding the feature subset typically consists of four basic 

steps (Liu and Yu, 2005):  

1. Subset generation: a subset is generated according to the state space search strategy.   

2. Subset evaluation: after a strategy selects a candidate subset, it will be evaluated 

using an evaluation criterion to evaluate the performance of the subset.  In order to 

ensure that the optimal feature subset with respect to the goal concept has been 

found, feature selection method should evaluate (2m – 1) subsets, where m is the 

total number of features in the dataset.  This is computationally infeasible specially 

for large m.  Therefore, many heuristic methods have been proposed to find a 

sufficiently good subset. 

3. Stopping criterion: after repeating steps 1 and 2 for a number of times depending on 

the process stopping criterion, the best candidate feature subset is selected.   

4. Result validation: the selected subset is then validated on an independent dataset or 

using domain knowledge, while considering the data mining task.  
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2.4.2.3 Categories of Feature Selection Algorithms 
 

 

A feature selection algorithm is a combination of a search technique that 

proposes the new feature subsets, and an evaluation measure that scores these subsets.  

The simplest algorithm is to test each possible subset of features, to find the one that 

minimizes the error rate.  This is called the exhaustive search, whish requires high 

computation power and big memory for big feature sets.  The selection of evaluation 

metric influences the algorithm.  The feature selection methods are typically presented 

in three classes, based on how they combine the selection algorithm and the model 

building According to evaluation metrics; feature selection algorithms can be 

distinguished into three main categories: wrappers, filters and embedded methods  

(Guyon and  Elisseeff, 2003), (Witten, Frank and Hall, 2011). 

 

(1) Filter Methods 

Filter methods select attributes based on a performance measure regardless of 

the modeling algorithm, they are based only on general features like the correlation with 

the variable class.  Only after selecting the best set of attributes, the modeling algorithm 

can use them.  Filter methods use a proxy measure instead of the error rate to rank a 

feature subset.  Mainly these measures could be classified into : statistical, information, 

distance, consistency and  similarity measures.  Common measures are the mutual 

information (Guyon and  Elisseeff, 2003), the pointwise mutual information, Pearson 

product-moment correlation coefficient, inter/intra class distance or the scores of 

significance tests for each class/feature combinations (Yiming and Jan,  1997) .   

Filters are less computationally intensive than wrappers, the selected  features 

are not tuned to a specific predictive model.  That means a feature set that is selected 

using a filter method, is more general and gives lower prediction performance than the 

set which is selected using  wrapper method.   Additionally Filter methods may select 

redundant attributes, therefore they are used as a pre-process method.  On the other hand 

because feature set has no assumptions about a prediction model, so it is more useful for 

exploring the relationships between the features.  Many filters provide a feature ranking 

rather than an explicit best feature subset, and the cut off point in the ranking is chosen 

via cross-validation.    
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There are many filter methods  described in literature, however not all of them 

could be used for any data mining task.  Therefore, the filter methods could be classified 

according to data mining tasks: classification, regression or clustering.  Some filter 

methods are only applicable for classification tasks, like Information gain (Hoque, 

Bhattacharyya and Kalita, 2014), Gain ratio, Chi-square  (Witten, Frank and Hall, 2011), 

Symmetrical (Yu and Liu,  2004), Inconsistency criterion (Liu and Setiono, 1996), Fast 

correlation-based ,filter (FCBF), and Fisher score (Duda, Hart and Stork, 2012).  While 

others like Correlation Symmetrical are applicable only for regression (Yu and Liu,  

2004).  Some other filters  could be used with both regression and classification like: 

Minimum redundancy maximum relevance (mRmR) (Tang, Alelyani and Liu, 2014).  

Correlation-based feature selection (CFS) (Witten, Frank and Hall, 2011), Relief and 

ReliefF  (Sikonja and Kononenko, 2003), Spectral feature selection (SPEC) and 

Laplacian Score (LS) (Tang, Alelyani and Liu, 2013).  And some others only used for 

clustering, like: Feature selection for sparse clustering (James et al, 2013).  Localized 

Feature Selection Based on Scatter Separability (LFSBSS) (Li, Dong and Hua, 2008), 

Multi-Cluster Feature Selection (MCFS) (S.  Alelyani et al, 2013), Feature weighting 

Kmeans (Modha and Spangler, 2003), and ReliefC (Dash and Ong, 2011). 

 

Univariate feature filters evaluate a single feature, while multivariate filters 

evaluate an entire feature subset.  The feature subset generation depends on the search 

strategy, and there are four usual starting points for subset generation: forward selection, 

backward elimination, bidirectional selection, and heuristic feature subset selection.   

1. Forward selection: starts with an empty feature set, then starts adding one or more 

features to the set.   

2. Backward elimination: starts with the full set, then starts removing one or more 

features from the set.   

3. Bidirectional search: starts from both sides simultaneously considering larger and 

smaller feature subsets.   

4. Heuristic selection: generates a starting subset based on a heuristic (e.g.  a genetic 

algorithm), and then explores it further.   

Common search strategies which are used with multivariate filters can be 

categorized into exponential, sequential and randomized algorithms.   
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1. Exponential algorithms: evaluate a number of subsets that grows exponentially 

with the feature space size.  Sample algorithms of this category are : Exhaustive 

search and Branch-and-bound. 

2. Sequential algorithms: add or remove features sequentially.  Algorithms of  this 

category like: Greedy forward selection or backward elimination, Best-first, Linear 

forward selection, Floating forward or backward selection, and  Race search. 

3. Random algorithms: incorporate randomness into their search procedure.  

Algorithms of  this category like: Random generation, Simulated annealing, 

Evolutionary computation algorithms (e.g.  genetic, ant colony optimization) and 

Scatter search (Liu and Motoda, 1998). 

 

(2) Wrapper methods 

 

Wrapper methods use predictive models to evaluate feature subsets.  The 

evaluation is repeated for each subset using the algorithm that is used to develop the 

predictive model.  Thus, for classification tasks a wrapper methods evaluate subsets 

based on the classifier performance (e.g.  Naïve Bayes or SVM) (Bradley and 

Mangasarian, 1998), (Maldonado, Weber and Famili, 2014).  For regression a wrapper 

will evaluate the subsets based on the performance of a regression algorithm (e.g.  Linear 

regression).  While for clustering, a wrapper will evaluate the subsets based on the 

performance of a clustering algorithm (e.g.  K-means) (Kim, Street and Menczer, 2002).   

Each new subset is used to train del, which is tested on a hold-out set.  The score of the 

subset is given by counting the number of mistakes made on that hold-out set.    

Because wrapper methods train a new model for each subset, they provide best 

performing feature set for that specific model because the subsets are evaluated using a 

real modelling algorithm (Witten, Frank and Hall, 2011).  On the other hand wrappers 

are computationally intensive, they are much slower than filters, because they run a 

modelling algorithm for each subset.  The feature subsets are also biased towards the 

modelling algorithm on which they were evaluated.  Therefore, for a reliable  

generalization error estimate, it is necessary that both an independent validation sample 

and another modelling algorithm are used after the final subset is found.  In this research 

wrapper method is used, because of this there is no separate step for feature selection, 

because it is wrapped with the prediction model in one step. 
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(3) Embedded Methods 

 

Embedded methods perform feature selection as part of the model construction 

process.  First, a filter method is used to reduce the feature space (Das, 2001),  then a 

wrapper is employed to find the best candidate subset.  Therefore, these methods are 

embedded in the algorithm, either as its normal or extended functionality.  Common 

embedded methods include various types of decision tree algorithms: CART, C4.5, 

random forest (Sandri and Zuccolotto, 2006), and other algorithms like: multinomial 

logistic regression and its variants (Cawley, Talbot and Girolami, 2007).  Some 

embedded methods perform feature weighting based on regularization models with 

objective functions that minimize fitting errors and in the mean time force the feature 

coefficients to be small or to be exact zero.  These methods which are based on Lasso 

(Bach and Francis, 2008) or Elastic Net (Zou and Hastie, 2005), usually work with linear 

classifiers (SVM or others) and stimulate penalties upon features that do not contribute 

to the model.   

 

(4) Hybrid Methods 

 

Hybrid methods combines the best characteristics of filters and wrappers.  Hybrid 

methods achieve high accuracy of wrappers and high efficiency of filters.  Any 

combination of filter and wrapper can be considered as hybrid methodology.  Several 

other methodologies were recently proposed, such as: hybrid genetic algorithms (Oh, 

Lee and Moon, 2004), hybrid ant colony optimization (Ali and Shahzad, 2012), fuzzy 

random forest based feature selection (Cadenas, Garrido and Martínez, 2013). 
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2.5. Prediction used for Power Systems and 

power Plants 
 

 

The availability of real time data in the electric power industry encourages the 

adoption of data mining techniques.  Many papers were found in the literature, each is 

focusing on  one area of the power system.  Some are focusing on the Distribution 

System like (Ramos, 2008) who used decision tree to classify the consumers.  (Saibal, 

2008) used WN (Wavelet Networking is an extension of perceptron networks) for the 

Classification of transients.  (Figueiredo, 2005) used Decision tree for the Classification 

Electric energy consumer.  (Dola, 2005) used Decision tree and neural network for 

Faults classification in distribution system.  (Mori, 2002) used Regression tree and 

neural network for Load forecasting.  Other researcher focused on the Transmission 

Line Problems like:  (Hagh, 2007), (Silva, 2006), (Costa, 2006), (Vasilic, 2002) all of 

them used Neural network to study Faults detection, classification and locations in 

Transmission Lines.  Dash, 2007 used Support Vector Machine for the classification 

and identification of series compensated.  (Vasilic, 2005) and (Huisheng, 1998) used 

Fuzzy/ neural network for faults classification.  Some other researchers focused on 

Power Generation part (power plants) like (Kusiak, Zhang and Li, 2011) who used a 

multi objective optimization model to optimize wind turbine performance.  Other 

researchers focused on Work Process Optimization and Performance Monitoring.  

Water and Power Plant Fujairah (FWPP) in the United Arabic Emirates is a true success 

story of data mining usage, where more than 4% of of the total consumption have been 

achieved (Himani Tyagi and Rajat Kumar, 2014).  Tomas Hills showed the superiority 

of data mining tools to  traditional approaches like DOE (design of experiments), CFD 

(computational fluid dynamics).  In his research they started by feature selection then 

apply DM algorithms to get better performance of Flame temperature.  Finally 

recommendations from the model  were  deployed.   

This section first presents some researches about the application of data mining 

methods in power systems as general.  Then the various types of problems in the 

different types of power plants. 
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2.5.1   Applications of data mining methods in the Power 

Systems 

 

Various data mining methods have been used by many researchers for different 

types of problems in power systems like: Energy efficiency, HVAC systems, Energy 

demand modeling, Electricity price forecast, Prediction of properties of refrigerants, 

Cluster of load profiles, Modeling of absorption heat transformer and more.  Table (2.1) 

shows a summary of some researches that used data mining techniques in different 

power systems.  This section gives an overview of some of these researches grouped by 

the categories of data mining tasks. 

 

i. Classification 

Classification is a data mining task of predicting the value of a categorical variable 

(target or class) using one or more numerical and/or categorical variables (predictors or 

attributes).  Classification is intensively used to solve different types of problems in Power 

Systems, like: price forecast, energy demand, consumer characterization, fault diagnoses and 

detection, and many other types of problems.   

(Amooee, M-Bidgoli, and B-Dehnavi, 2011) used many classification 

algorithms to predict the failure of industrial machinery and minimize the consequences 

of such failures.  Among these many algorithms C5.0 is found to achieve the highest 

classification accuracy.  An example of generated prediction rules by C5 model is as 

follows:  

 

1)  Mold temperature =< 325.500 and hardness <= 82 and distance between 

sensitive point and umbilical =< 23.95 then the part is normal.   

2)  Mold temperature > 325.500 and hardness > 82 and distance between sensitive 

point and umbilical =< 23.200 then the part is defective 

 

Because of the complexity of problems in power systems, it is common to build 

a model that is composed of many modules, each of which is using a different data 

mining method.  Like (Figueiredo, Rodrigues and Gouveia, 2005) who combined 

clustering and classification to present an electricity consumer characterization 

framework.  
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DM Task 

Category 
Data mining Method What is Predicted Accuracy Researcher 

Classification 

C 5.0 
Predict the failure of industrial machinery. 92% (G. Amooee, et al, 2011) 

Inference of a rule set to characterize each class, and support 

the the classes obtained by the load profiling module. 
81% (Figueiredo et al, 2005) 

Bayesian Predict the normal price and the price spikes 
Less than 2–5% 

forecast error 
(Lu et al , 2005) 

Decision tree Predict energy demand model using  92% (Yu et al. , 2010) 

Regression 

Decision tree and neural networks  Predict Electricity consumption   (Tso and Yau, 2007) 
LR, PR, sequential minimal 

optimization (SMO), M5  tree, 

M5’Rules and back propagation neural 

network (BPNN)  

Predict Volume values of methanol/LiBr and methanol/LiCl   (A. Şencan, 2007) 

Data mining approach  
Predict Boiler efficiency and analyze relationships between 

parameters of a circulating fluidized-bed boiler.  
  (Kusiak et al, 2005) 

Many data mining algorithms 
Prediction of  thermodynamic properties of alternative 

refrigerants 
  (Küçüksille et al. , 2011) 

Multiple-linear perceptron (MLP)  Minimize the energy of air condition   (Kusiak et al.,2010) 

Clustering   k-means algorithm Creates a set of consumer classes    (Figueiredo et al, 2005) 

Others 
Rough set and an artificial neural 

network  

Detects and diagnose sensor faults based on the past running 

performance data in heating, ventilating and air conditioning 

(HVAC) systems 
  (Hou et al. , 2006) 

 

Table 2.1 Summary of Data Mining used for Power Systems and Engineering 
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This framework consists of two modules: The first one is the load profiling 

module which creates a set of consumer classes using a clustering with k-means 

algorithm to represent the load profiles for each class.  The second is the classification 

module which used the C5.0 algorithm.  This algorithm was selected because it 

creates robust models and does not require long training times to estimate so it 

presents good performances with large data sets.   

(Lu, Dong and Li, 2005) carried out electricity price forecast framework, 

they used Bayesian algorithm to build a classification model to predict the normal price 

and the price spikes.  The model is based on a mining database including market 

clearing price, trading hour, electricity demand, electricity supply and reserve.  The 

model can generate forecasted price spike, level of spike and associated forecast 

confidence level. 

 (Yu et al, 2010) built energy demand model using decision tree.  This model 

applied to Japanese residential buildings for predicting and classifying building 

levels.  The results have demonstrated that the use of decision tree method can classify 

and predict building energy demand levels accurately (93% for training data and 92% 

for test data). 

ii. Regression 

Regression is a data mining task for predicting the value of numerical variable 

(target or class), by building a model based on one or more numerical and/or categorical 

variables (predictors or attributes).  Most of the data (both targets and predictors) generated 

by power systems sensors are numerical.  Because of this regression is intensively used in 

prediction problems in power systems when the target is numeric, like: electricity 

consumption,  volume, pressure, temperature, amount of power, efficiency and many others. 

(Tso and Yau, 2007)  have used regression analysis, decision tree and neural 

networks models to predict electricity consumption.  Model with least squared errors 

were selected.  In an electricity energy consumption study, the decision tree and 

neural network models outperformed the stepwise regression model in understanding 

energy consumption patterns and predicting energy consumption levels.  Using data 

mining approach for predictive modeling, different types of models can be built in a 

unified platform: to assess, select and implement the most appropriate model.  

(Şencan, 2007)  applied DM process to determine specific volume values of 

methanol/LiBr and methanol/LiCl used in absorption heat pump systems.  Six 
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algorithms were used: Linear regression (LR), pace regression (PR), sequential 

minimal optimization (SMO), M5 model tree, M5’Rules and back propagation neural 

network (BPNN).  (Kusiak, Burns and Milster 2005) applied data mining approach to 

analyze relationships between parameters of a circulating fluidized-bed boiler.  The 

model can predict efficiency to the same degree of accuracy with and without the data 

describing the fuel composition or boiler demand levels.  It is proved that data mining 

is applicable to different types of burners and fuel types. 

(Küçüksille, Selbas, and Sencan, 2011) used data mining to predict the 

thermodynamic properties of refrigerants, they followed the CRISP-DM to build their 

models, their results presentation is very clear.  In their research they studied four 

alternative refrigerants R134a, R404a, R407c and R410a.  The results obtained from 

data mining have been compared to actual data from the literature.  In their study they 

showed that, data mining is successfully applied to determine enthalpy, entropy and 

specific volume values of refrigerants when using temperature and pressure as 

predictors.  They used 12 algorithms to predict 3 different targets (enthalpy, entropy 

and volume) .  So the total number of models is ( 4 X 2 X 12 X 3= 288 models).  

Selected algorithms are LR, MLP, PR, SMO, SVM, KStar, AR, RD, M5 model tree, 

RepTree, DT, M5’Rules.  To compare between all these different modeling 

techniques they used three measures: the correlation coefficient (R2-value), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE).  In addition, 

mathematical equations in order to calculate enthalpy, entropy and specific volume 

values of each refrigerant were presented.  The values calculated from obtained 

formulations were found to be good compared to actual values.  The results showed 

that data mining is suitable for predicting thermodynamic properties of refrigerants 

for every temperature and pressure. 

(Kusiak, Li and Tang 2010)  presented data-driven approach to minimize 

the energy of air condition.  Eight algorithms were applied to model the nonlinear 

relationship among controllable parameters  (supply air temperature and supply air 

static pressure), and uncontrollable parameters.  The multiple-linear perceptron 

(MLP) outperforms other models, so it is selected to model a chiller, a pump, a fan, 

and a reheat device.  These four models are integrated into an energy optimization 

model with two decision variables.  The optimization results have demonstrated the 
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total energy consumed by the heating, ventilation, and air-conditioning system is 

reduced by over 7%. 

 

iii. Clustering 

A cluster is a subset of data which are similar.  Clustering (also called unsupervised 

learning) is the process of dividing a dataset into groups such that the members of each group 

are as similar (close) as possible to one another.  Clustering is used to solve special types of  

problems in power systems, like: clustering electricity consumers according to their behavior.   

(Figueiredo, Rodrigues and Gouveia, 2005) presented an electricity consumer 

characterization framework based on a knowledge discovery in databases, supported 

by clustering data mining techniques.  This framework consists of two modules: The 

first one is the load profiling module which creates a set of consumer classes using 

clustering and the representative load profiles for each class.  The second is the 

classification module which uses this knowledge to build a classification model to 

assign different consumers to the existing classes. 

 

iv. Others 

Other researchers used different Statistical or Artificial Intelligence methods to 

solve power systems’ problems, like fault diagnostic or detection.  (Hou et al., 2006) 

combined rough set and an artificial neural network to developed a model that detects and 

diagnose sensor faults based on the past running performance data in heating, ventilating and 

air conditioning (HVAC) systems.  The reduced information is used to develop 

classification rules and train the neural network to infer appropriate parameters.  

Results from a real HVAC system showed that only the temperature and humidity 

measurements can work very well as the to distinguish simultaneous temperature 

sensor faults of the supply chilled water (SCW) and return chilled water (RCW). 

It is very clear from these researches; there are so many types of problems of 

power systems that could be better solved by data mining.  Different prediction 

algorithms could be used, there is no restriction for selecting an algorithm, while it 

gives accurate results.  Some researchers like (Küçüksille, Selbas, and Sencan, 2011) 

used many algorithms then selected the one that showed better results, while others 

selected only one algorithm for their problems like (Hou et al, 2006) who used neural 

network. 
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2.5.2 Data-Driven Performance Optimization of Wind Farms 

 

Wind energy is a green energy source and does not cause pollution, due to 

this fact it received much attention recently.  One of the weakest points in wind 

power generation is the low predictive accuracy of the energy output.  Many research 

in the literature were reviewed, some of them are modeling the performance of 

individual wind turbines, while others  look at their collection (a wind farm).   A 

solution for prediction of wind farm performance should be able to predict the 

amount of energy to be produced on different time scales, e.g., 15 min, 2 hour, a day, 

and so on.  The basic methodology used is this research is data mining, because this 

new industry generates huge amount of data that have not yet been explored.  Table 

2.2 provides a summary of some researches that used data mining techniques to solve 

different problems in wind power plants.  More similar researches could be found in 

the research project final report at (Iowa Energy Center, 2017).  This section gives 

an overview of some of these researches grouped by the categories of data mining 

tasks. 

 

i. Regression 

Regression is properly used for prediction problems in wind power plants.  

(Kusiak, A., Zheng, A.  and Song, H., 2009) developed time series models for 

predicting the power of a wind farm at different time scales, i.e., 10-min and hour-long 

intervals have been developed with data mining algorithms.  Five different data mining 

algorithms have been tested on various wind farm datasets.  Two of the five algorithms 

performed particularly well.  The support vector machine regression algorithm 

provides accurate predictions of wind power and wind speed at 10-min intervals up to 

1 h into the future, while the multilayer perceptron algorithm is accurate in predicting 

power over hour-long intervals up to 4 h ahead.  Wind speed can be predicted fairly 

accurately based on its historical values; however, the power cannot be accurately 

determined given a power curve model and the predicted wind speed.  Test 

computational results of all time series models and data mining algorithms are 

discussed.  The tests were performed on data generated at a wind farm of 100 turbines. 
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Regression is also used for wind power turbine optimization.  In 

optimization problems it is common to divide the work into sub tasks.  (Kusiak, Zhang 

and Li, 2011) developed a regression model to optimize wind turbine performance.  

This is done by  three objectives, maximization of the power produced by a wind 

turbine, and minimization of vibrations of the turbine’s drive train and tower.  Data for 

this research was obtained from a 150 MW wind farm, more than 120 parameters were 

available, however, only parameters related to wind turbine vibrations and their power 

output were selected according to the domain experts advice.  Some of parameter like 

vibrations due to the air passing through the wind turbine were non controllable, while  

Others like vibrations caused by forces originating with the control system that affect 

the torque and the blade pitch angle are controllable.  Because they are regression 

models, evaluation is done using MAE, SD of MAE, MAPE and SD of MAPE.  More 

over a histogram is used to present results, that makes the model evaluation easier and 

meaningful. 

 

Where: 

ŷi  and yi  are the predicted and observed ith instance respectively, and n is the total 

number of instances.  MAE is Mean Absolute Error, SD of MAE: Standard Deviation 

of Mean Absolute Error, MAPE: Mean Absolute Percentage Error, SD of MAPE: 

Standard Deviation of Mean Absolute Percentage Error. 
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DM Task 

Category 
Data mining Method What is Predicted Part Accuracy Researcher 

Regression 

SVM, MLP and 

others 
Wind Speed and Power Prediction Wind farm   

A.  Kusiak, H.-Y.  Zheng, 

and Z.  Song, 2009 

NN 

Optimize performance of wind turbine 

by predicting:   drive train acceleration  

,Tower acceleration, and Generated 

power. 

Tower 

vibration, 

Wind turbine 

Prediction of drive train acceleration  

99% 

Prediction of Tower acceleration 97% 

Prediction of generated power 97% 

Kusiak et al, 2010 

Classification/ 

Regression 

Various data-mining 

algorithms  

Condition Monitoring and Fault 

detection ((1) fault and no-fault 

prediction; (2) fault severity; and (3) 

the specific fault prediction) 

Wind turbine 

subsystems  
  

A.  Kusiak and W.Y.  Li, 

2011 

Other 

Evolutionary strategy 

algorithm, least 

squares method , k-

NN 

Monitoring Power Curves 
Wind 

turbines  
  

A.  Kusiak, H.-Y.  Zheng, 

and Z.  Song, 2009 

Table 2.2 Summary of Data Mining techniques used for Wind Power Plants 
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ii. Classification & Regression 

To achieve research objectives and develop a robust solution, many 

different methods and algorithms may be used together.   (A.  Kusiak and 

W.Y.  Li, 2011) used Classification and Regression to developed a condition 

monitoring solutions to detect and diagnose abnormalities of various wind 

turbine subsystems with the goal of reducing operations and maintenance costs.  

Various data-mining algorithms have been applied to develop models 

predicting possible faults.  This research explores fault data provided by the 

supervisory control and data acquisition system, and offers fault prediction at 

three levels: (1) fault and no-fault prediction; (2) fault category (severity); and 

(3) the specific fault prediction, the first two models are classification, the last 

one I a regression model.  For each level, the emerging faults are predicted 5-

60 min before they occur. 

 

iii. Others 

 

Other Artificial Intelligence algorithms and statistics methods were also 

used in wind turbine power plants to monitoring Power Curves.  (Kusiak, 

Zheng and Song, 2009) used Evolutionary strategy algorithm, least squares 

method and k-NN algorithms to analyze the performance of wind turbines.  

Turbine performance is captured with a power curve.  The power curves are 

constructed using historical wind turbine data.  Three power curve models are 

developed, one by the least squares method and the other by the maximum 

likelihood estimation method.  The models are solved by an evolutionary 

strategy algorithm.  The power curve model constructed by the least squares 

method outperforms the one built by the maximum likelihood approach.  The 

third model is non-parametric and is built with the k-nearest neighbor (k-NN) 

algorithm.  The least squares (parametric) model and the non-parametric model 

are used for on-line monitoring of the power curve and their performance is 

analyzed.   
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2.5.3 Data mining for Power Plants 

 

This section presents the use of data mining to solve many types of problems 

in different types of power plants.  Some researches have used data mining for power 

plant optimization, others used classification to detect and classify failure types, 

some are using regression to predict Nox emission and other targets.   

(Huang, Qi and Liu, 2006) indicated that the efficiency and availability 

depend on reliability and maintainability, to raise efficiency, the equipment of 

thermal power plants is becoming larger and more complex.  However, due to lack 

of manpower and information resources, the diagnosis and repair of failed equipment 

cannot be done immediately.  Identifying the failure types of steam turbines and their 

root causes is time consuming, and requires professional knowledge in materials and 

mechanical engineering.  Actually, thermal power plant engineers can only handle 

routine and direct maintenance tasks.  Complex faults require intervention from 

technical support and equipment manufacturers.  These types of tasks are very 

expensive and require special experiments, which leads to long downtime and causes 

production losses (Yang and Liu, 2004).  The concept of e-maintenance has been 

introduced to mitigate all these problems and easily identify the root cause of 

failures, also it reduces the failures of production systems, eliminate unscheduled 

shutdown maintenances, and improves productivity (Iung and Marquez 2006).  Data 

mining techniques are the core of such intelligent systems and can greatly enhance 

their performance.  Recently, several data mining techniques such as artificial neural 

networks, fuzzy logic systems, genetic algorithms, and rough set theory have all been 

employed to assist the detection and condition monitoring tasks in power plants.   

This section begins by researches that used Regression, then classification, 

a new method of visual data mining which is used by (Fazullula, Praveen and Reddy, 

2014) and (Prasad, Swidenbank, Hogg, 1999) is also presented.  Then some 

researches that combined Inference system and Classification together to solve one 

problem.  Moreover models used Statistical Analysis and clustering methods are 

presented.  Some researchers used one algorithm to solve the problem, while others 

compare the performance of many algorithms then select the one that shows the best 

test results.  Table 2.3 provides a summary of these researches. 
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i. Regression 

Regression is used in thermal power plants to predict different types of 

numeric targets.  (Ilamathi, Selladurai and Balamurugan, 2012) used ANN to build 

a regression model that predicts nitrogen oxides emission from a 210 MW coal fired 

thermal power plant.  The coal combustion parameters (oxygen concentration in flue 

gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet 

temperature and nozzle tilt) were used as inputs and nitrogen oxides as output of the 

model.  Values predicted by ANN model were verified with the actual values.   

ii. Classification 

Classification is used in thermal power plants to predict different types of 

categorical targets, so it is suitable to solve many types of problems like fault detection and 

diagnosis.  (Chen et al, 2011) proposed a SVM based model to predict failures of 

turbines in a thermal power plant.  In order to handle the huge amount of collected 

data, they started by feature selection techniques to eliminate irrelevant and noisy 

data, then they built their model based on the new clean dataset.  To evaluate the 

effectiveness of their model, they used a real-world data from a thermal power 

company.  Their SVM model can successfully detect the types of turbine faults with 

a high degree of accuracy  (greater than 90%).  Their method can assist the power 

plant engineers to find failure types without referring to the manufacturers.   

 

SVM is used by many researcher as it showed higher accuracy in 

classification.  (Mahadevan and Shah, 2009) used one-class SVM for fault detection 

and diagnosis,  the claimed that their approach outperformed principal components 

analysis (PCA) and dynamic principal components analysis (DPCA).  
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DM Task Category Data mining Method What is Predicted Researcher 

Regression ANN Predicts nitrogen oxides emission Ilamathi P, et al, 2012 

Classification 

SVM,BPN, LDA Detects types failures of turbines in a thermal power plant Kai-Ying Chen et al, 2011 

SVM Fault detection and diagnosis 
Mahadevan and Shah, 

2009 

Visual Data Mining 
AUTORULE, a visual analytics software Identify some of the possibilities where Nox could be high. Md Fazullula, et al, 2014 

Histogram based method  Maximize & monitor the performance of thermal power plants. Prasad et al., 1999 

Inference system, Classification Interactive data mining approach , NN Failure inspections Shu, 2007 

Statistical Analysis (PCA) and T2 statistics Inspect different types of faults  Huang et al., 2006 

Statistical, Clustering 

Kernel independent component analysis (KICA, for 

non-Gaussian distribution) and Kernel principal 

component analysis (KPCA, for Gaussian 

distribution)  

Fault detection  Y.  Zhang, 2009 

 Other Partial least squares (PLS), SVM   Increase the performance of on-line fault detection in batch processes Li et al., 2006 

 

 

 

 

 

 

Table 2.3 Summary of Data Mining used for Power Plants 
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iii. Visual Data Mining 

The basic idea of Visual Data Mining is to present the data in a visual format, 

to get better understanding of data, draw conclusions, and directly interact with the 

data.  Visual data mining techniques have proven to be of high value in exploratory 

data analysis, they also have a high potential for exploring large databases.  Moreover 

these techniques provide a much higher degree of confidence in exploration findings.  

(Fazullula, Praveen and Reddy, 2014) applied in their research a visual data mining 

technique with parallel coordinates to a Thermal Power Plant data.  AUTORULE, a 

visual analytics software, was used to process dataset which was collected at different 

loads.  Sixteen predictors were considered for this research (Coal Speed , Coal Flow, 

Primary Air Flow, Secondary Air Temperature, Burner Tilt, Induced Draught, 

Forced Draught, Flue Gas Temperature, Un burnt Oxygen, Sulphur Di Oxide, 

Nitrogen Di Oxide,  Carbon Di Oxide , Date, Time, Total Air Flow, Primary Air 

Temperature) to identify some of the possibilities where Nox could be high.  Any 

record that had a Nox greater than 250 was considered to be as higher class and below 

250 as lower class.  As a result of their research, they found that when the total airflow 

is low, NOX is high.  This was surprising as the NOX production is possible when O2 

and N presence in air is high.  i.e.  when the total airflow is high.  So, these results 

were submitted to domain expert for further investigation to identify the possible 

causes for this phenomenon.   

(Prasad, Swidenbank, Hogg, 1999) proposed a histogram based method to 

monitor and maximize the performance of thermal power plants.  Therefore, building 

an intelligent system for the fault prediction of turbines in thermal power plants.   

 

iv. Inference system, Classification 

 

Inference systems are also used for complicated problems in nuclear power 

plants.  (Shu, 2007) established an interactive data mining approach based inference 

system to solve the basic technical challenge and speed up the discovery of knowledge 

in nuclear power plant.  An artificial neural network method, is evolved by adding a 

detecting and retraining function for handling complicated nuclear power plant 

quake-proof data.  Based on proposed approach, an information inference system has 

been developed.  To demonstrate how the proposed technique can be used as a 
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powerful tool for inferring of structural health status in unclear power plant, 

quakeproof testing data have been applied. 

 

v. Statistical Analysis 

(Huang, Qi and Liu, 2006) used principle component analysis (PCA) and T2 

statistics to inspect different types of faults in a thermal power plant.   

 

vi. Statistical, Clustering 

In the work of (Zhang, 2009), both kernel independent component analysis (KICA, 

for non-Gaussian distribution) and kernel principal component analysis (KPCA, for Gaussian 

distribution) are used for fault detection in, named Tennessee Eastman process, which is a 

complex non-linear process created by Eastman Chemical Company.   

 

vii.  Other 

(Li, Wang and Yuan, 2006) combined another dimension reduction method, 

partial least squares (PLS), with SVM to increase the performance of on-line fault 

detection in batch processes.   

 

 

2.5.4   Boiler Efficiency 

Boiler is the primary source of energy in the power plants.  Therefore, the 

efficiency of combustion is crucial to the performance of boilers; many researchers 

focused in this area.  The intelligent control approaches in combustion can be grouped 

into three categories:  rule-based expert systems, soft computing, (i.e., neural 

networks, fuzzy logic, and evolutionary computation) and the the third one is hybrid 

systems which combines analytical modeling with the soft-computing methods.  The 

intelligent control concept can be extended by incorporating data-mining algorithms.  

Below is summary of some work related to the efficiency of boilers using data mining.  

Table 2.4 shows a summary of reviewed literature related to Boiler Efficiency.  This 

section begins by presenting Regression models, then researches that combined 

Clustering and regression.  Some Association models are then presented, after that 

some models that used Genetic data mining, then Optimization-Based Approach.  
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Finally other researches that used different methods like Genetic wrapper approach, 

Expert system using fuzzy logic and rough set theory are presented. 

 

i. Regression 

 

(Zhou et al., 2012)  Showed a modelling Nox emission from coal fired utility 

boiler is critical to develop  predictive emissions monitoring system (PEMS) and to 

implement combustion optimization software package for low Nox combustion.  Hao 

Zhou presented an efficient NOx emissions model based on support vector Regression 

(SVR), and compares its performance with traditional modelling techniques ,like back 

propagation (BPNN) and generalized regression (GRNN) neural networks.  Hao used 

NOx emissions data from an actual power plant, to train and validate the SVR model.  

Moreover ,an ant colony optimization(ACO)based technique was proposed to select 

the generalization parameter C and Gaussian kernel parameter g.  The focus is on the 

predictive accuracy and time response characteristics of the SVR model. 

 

ii. Clustering / Regression 

(Song and Kusiak, 2007) applied a data-mining approach to develop a model 

for optimizing the efficiency of an electric utility boiler subject to operating 

constraints.  Selection of process variables to optimize combustion efficiency is 

discussed.  The selection of variables of a coal fired boiler, is critical to control of 

combustion efficiency.  Two schemes of generating control settings and updating 

control variables were evaluated.  The first is based on both controllable and non 

controllable variables.  While the second scheme merged response variables in 

clustering process.  The process control scheme based on the response variables 

produces the smallest variance of the target variable due to reduced coupling among 

the process variables.  37 input variables were used out of 76 were selected to build 

the regression model.  In their work they used Clustering to construct clusters of 

parameters.  Decision tree to predict the boiler efficiency.  Neural networks to predict 

the megawatt load and unit heat rate.(Chu et al., 2003) applied a neural network to 

predict the performance index and some non-analytical     constraints, thus speeding 

up the trial-and-error process of finding the optimal operating points, thereby 

optimizing the boiler’s combustion process.
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DM Task Category Data mining Method What is Predicted Researcher 

Regression 
Support vector Regression (SVR),  back propagation 

(BPNN) , generalized regression (GRNN)  
Implement combustion optimization software 

package for low Nox combustion 
Hao Zhou, 2012 

Clustering/ 

Regression 

Clustering to construct clusters of parameters. Decision 

tree to predict the boiler efficiency. Neural networks to 

predict the megawatt load and unit heat rate. 

Boiler efficiency megawatt load, and unit heat rate. 

37 input variables were used.  
Zhe Song and Andrew Kusiak, 

2007 

NN Optimize the boiler’s combustion process J. Z. Chu et al., 2003 

Association 
Expert system using association-rule   Mine relationships among the parameters of a power 

plant. 
Ogilvie et al., 1991 

Genetic data mining 

Evolutionary computation algorithm  Determine the optimal design of the burner reducing 

the emissions of NOx as well as the pressure 

fluctuation of the flame.  

Büche et al, 2002 

NN and evolutionary computation techniques  determine the optimal fuel/air ratio.  Cass et al., 1997 

Optimization-Based 

Approach  

NN Optimize the boiler’s operations and thus reduce the 

emission of NOx and improve the boiler’s 

performance.  

Booth and Roland, 1998 

Others 

NN Identify the dynamic process of the nitrogen oxides 

and carbon monoxide emissions 
Chong et al., 2002 

Genetic wrapper approach Select a subset of parameters for mining boiler data 

to improve combustion efficiency 
Burns et al.,2004 

Expert system using fuzzy logic  Combustion control   Miyayama et al., 1991 

rough set theory Diagnose the faults of boilers Yang and Liu , 2004 

 

Table 2.4 Summary of Data Mining used for Boilers’ Efficiency in Power Plants 
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iii. Association 

(Ogilvie, Swidenbank and Hogg, 1991) applied the association-rule algorithm to 

mine relationships among the parameters of a power plant.  The inducted rules were 

intended for an expert system.   

 

 

iv. Genetic data mining 

(Büche, Stoll, Dornberger and Koumoutsakos, 2002) applied an evolutionary 

computation algorithm to determine the optimal design of the burner reducing the 

emissions of NOx as well as the pressure fluctuation of the flame.  (Cass and Radl, 1997) 

combined the neural network and evolutionary computation techniques to determine the 

optimal fuel/air ratio.   

 

 

v. Optimization-Based Approach  

(Booth and Roland, 1998) developed a neural network model to optimize the 

boiler’s operations and thus reduce the emission of NOx and improve the boiler’s 

performance.   

 

 

vi. Others 

(Chong, Wilcox, and Ward, 2002) applied a neural network model to identify the 

dynamic process of the nitrogen oxides and carbon monoxide emissions.  (Burns, Kusiak 

and Letsche, 2004) used a genetic wrapper approach to select a subset of parameters for 

mining boiler data to improve combustion efficiency.  (Miyayama et al., 1991) developed 

an expert system for combustion control using fuzzy logic and applied it to the coal-fired 

power plant.  (Yang and Liu, 2004) presented a hybrid-intelligence data mining framework 

which involves an attribute reduction technique and rough set theory to diagnose the faults 

of boilers.   
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2.6. Discussion 

  

 This chapter reviewed the literature in the domain of data mining 

techniques which were applied to solve different problems in power plants.  The 

review shows the variety of problems in power plants like: power plant yield, 

failure detection and diagnoses, emission of Nox, power curves and wind speed, 

and boilers’ efficiency.  Even some economical problems related to power plants 

were reviewed like: prediction of power demand, and price forecasting.  Solving 

these problems by traditional ways require expensive, complicated, and long  

investigations.  Therefor, the purpose of using data mining in power plants 

problems, is to provide reliable, accurate and effective solution for these problems 

 

 In the literature many data mining techniques were applied.  However, 

some of them were dominant like Regression and Classification, because they are 

more suitable for power plants’ problems.  Power plants are equipped with huge 

number of sensors that generates thousands of features.  Therefore, building 

prediction models is normally commenced by a feature reduction phase (either 

feature extraction or feature selection).  Feature selection techniques is important 

to get rid of redundant and irrelevant features, which require high computational 

resources, and lead to overfitting.  Many researchers only depend on domain 

expert to select relevant features, although feature selection techniques (Filter, 

Wrapper, Embedded and Hybrid) can provide not only optimum set of features, 

but also indications about the power plant problems.  Using wrapper method in 

feature selection, which wraps the feature selection, and prediction in one phase 

provides better results, because the algorithm used for building the prediction 

mode, is the same that is used to select the features.   

 

 Different regression algorithms are designed to predict the amount of 

generated power in wind power plants, and to optimize performance of boilers in 

thermal power plants.  However,  the amount of power generated by thermal 

power plants, and the efficiency of power plant still need a lot of work, and can 

get a lot of benefits from data mining and prediction techniques. 
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2.7. Summary   

 

 This chapter presented a review of the available literature related to the 

application of data mining techniques to solve power plant problems, specially 

the prediction of amount of generated power.  A high emphasis has been paid to 

the methods used for feature selection, and the accuracy of the applied prediction 

algorithms.  The chapter begins with an overview of thermal power plants, 

followed by data mining taxonomy and application of data mining to solve power 

plant problems.  The review showed the benefits of data mining techniques, 

especially feature selection and regression, in predicting the behavior of power 

plants.  The next chapter presents the research methodology followed to achieve 

the desired goals. 
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CHAPTER THREE 

 

 

 

RESEARCH METHODOLOGY 
 

 

 

 

3.1. Introduction 

 

This chapter presents the methodology followed in this research. It shows the steps 

followed to achieve the research objectives. One of the research objectives is to design a 

feature selection technique, that can determine the best set of features to predict the 

amount of generated power from a thermal power plant. Another objective is to Design a 

regression technique that can accurately predicts the amount of generated power, using 

only the controllable parameters. 

 

CRISP-DM model (Shearer, 2000) is followed in this research. Therefore, this 

chapter is organized in six sections, the first one is this introduction. The second section 

shows the research operational framework. This framework starts with understanding the 

domain, then each one of the two sub problems uses its own datasets, but both of them 

are following identical steps. The third section is about algorithms selection and initial 

comparison. The forth section is about discussion and results evaluation. The fifth section 

is about papers to be submitted and thesis writing. The sixth and last section gives a 

summary about this chapter. 
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3.2. Operational Framework 

 

Operational framework is a structured guide that helps the researcher to achieve the 

research objectives. The framework should be well prepared and organized to describe the 

exact steps that followed, research phases, experiments, and results evaluation methods. 

Figure 3.1 illustrate the operational framework for this research. The operation framework 

is composed of seven phases: 

1. Understanding the Domain 

2. Literature Review 

3. Data Preparation 

4. Feature Reduction & Selection 

5. Prediction Model Development (for the two objectives) 

6. Writing the Thesis. 

Next sections provides more details about each phase. 

 

 

3.2.1   Understanding the Domain 

 

This phase focuses on understanding the theory of power generation, specially 

thermal power plants. This phase is composed of three main parts. The first part is to 

understand the theory of power generation, it started by studying power systems in general, 

then two important topics of thermal power plants were studied:  

1. Carnot Cycle: this cycle is a pure theoretical steam power generation cycle 

(Martínez et al, 2016).   

2. Rankine Cycle: is the application of Carnot cycle, that is implemented by all 

thermal power plants (Kapooria et al, 2008). 

 The second part of this section is more about practice. It is about a real world case study, 

which is KNPP (Khartoum North Thermal Power Plant). This power plant was studied by :  
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Figure 3.1 Operational Framework 

 

 

1. Meeting the domain experts (Power plant operation and efficiency engineers) to 

understand the design of KNPP, and defining the most important factors that 

influence power generation. 

2. Collecting Manufacturers documentation. Many documents are collected like: 

Steam Consumption Graph in figure 2.4, Unit 3 and Unit 4 components diagrams 

(Appendix C, D). 

 

This phase is the base of the research. By understanding the domain, the road map of 

the research becomes very clear. 
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3.2.2    Literature Review 

This Phase presents and summarizes many articles and researches related to 

application of data mining in power plants. The chapter starts by providing an introduction 

about thermal power plants and power generation, then an introduction about data mining 

methods and algorithm by presenting a taxonomy of data mining methods. After that the 

CRISP-DM model is presented in more details. Feature Reduction and Selection 

techniques are then presented, which are followed by developing and evaluating 

Prediction Models. Finally an intensive review about application of data mining 

techniques in power systems, and specially in thermal power plants was shown. The 

literature review is a continuous phase, the research starts with literature review, then 

during all research phases any interesting information that is related to the research is 

summarized and added to the references list. The literature review presents the concepts 

and the related works in the last 15 years. 

 

3.2.3 Data Preparation 

Preparing input for a data mining usually consumes the bulk of the effort invested 

in the entire data mining process. There are some simple practical points to be aware of 

when preparing the data. Best practice shows that real data, like the one that is captured 

instantly by SCADA, is always low in quality, so, to increase this data quality; careful 

checking  - or data cleaning - is needed. Also data needs to be prepared in a relational 

format to be suitable for machine learning tools. So the goal of this phase is to prepare the 

required data in a usable format, that could be loaded directly to data mining tools. This 

part will show how data is collected, and prepared for machine learning tools.  

 

3.2.3.1  Data Collection 

As shown in chapter one, the case study for this research is unit 3 and 4 from 

Khartoum North Power Plant. The data is collected instantly via SCADA system and 

saved in a central database. Figure 3.2 shows an illustrative diagram of KNPP that  
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Figure (3.2) Illustrative diagram of KNPP 
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Table (3.1) All parameters collected from KNPP 

Serial 
Code In 

Diagram 
Circuit Name Tag Number 

Engineer 

Classification 

1 5 T/A Generated power (MW) 24CFA01CE033XQ01:av Target 

2 6 T/A Main steam flow (kg/s) 24LBA10CF903:av Direct 

3 7 Boiler Total steam flow (kg/s) 24LBA10CF902:av Direct 

4 8 Boiler Main steam header pressure (bar) 24LBA10CP003XQ01:av Direct 

5 9 T/A T/A inlet steam temperature (deg C) 24LBA20CT002XQ01:av Direct 

6 10 Boiler Main steam header steam temperature (deg C) 24LBA10CT003XQ01:av Direct 

7 11 Gas Flue gas temperature after RAH (deg C) 24HNA40CT003XQ01:av Irrelevant 

8 12 Gas Flue gas temperature after RAH (deg C) 24HNA40CT004XQ01:av Irrelevant 

9 13 Gas Flue gas O2% at RAH in (%) 24HNA40CQ001XQ01:av Irrelevant 

10 14 Gas Flue gas temperature at economiser inlet (deg C) 24HNA40CT001XQ01:av Irrelevant 

11 15 Gas Flue gas temperature at RAH inlet(deg C) 24HNA40CT002XQ01:av Irrelevant 

12 16 Gas Flue gas pressure at RAH in (mbar) 24HNA40CP001XQ01:av Irrelevant 

13 17 Gas Flue gas pressure at stack in (mbar) 24HNA40CP002XQ01:av Irrelevant 

14 18 Gas Combustion champer pressure 24HLA42CP001XQ01:av Irrelevant 

15 19 Fuel Oil Fuel oil flow (kg/s) 24END40CF901:av Irrelevant 

16 20 Fuel Oil Fuel oil temp. supplied to burners (deg C) 24END40CT001XQ01:av Irrelevant 

17 21 Fuel Oil Fuel oil pressure befor burners 24END40CP005XQ01:av Irrelevant 

18 22 Feedwater HPH5 discharge feedwater flow (kg/s) 24LAB50CF902:av ? 

19 23 Feedwater Feedwater temperature at economiser inlet (deg C) 24LAB50CT001XQ01:av ? 

20 24 Feedwater Feedwater pressure at economiser inlet (bar) 24LAB50CP002XQ01:av ? 

21 25 Coolingwater Condenser right inlet temperarure (deg C) 24PAB31CT001XQ01:av Important 

22 26 Coolingwater Condenser left inlet temperarure (deg C) 24PAB32CT001XQ01:av Important 

23 27 Coolingwater Condenser right outlet temperarure (deg C) 24PAB31CT003XQ01:av Important 

24 28 Coolingwater Condenser left outlet temperarure (deg C) 24PAB32CT003XQ01:av Important 

25 30 Condensate 

Condenser inlet exhaust steam temperature (deg 

C) 24MAG10CT001XQ01:av Target 

26 31 Condensate Condensate water flow (kg/s) 24LCA03CF001XQ01:av ? 

27 32 Condensate Condenser hot well temperature (deg C) a 24MAG10CT003:av ? 

28 33 Condensate Condenser hot well temperature (deg C) b 24MAG10CT004:av ? 

29 34 Aux. steam Auxiliary steam flow (kg/s) 24LBG10CF901:av Important 

30 35 Aux. steam Auxiliary steam pressure (bar) 24LBG10CP002XQ01:av Important 

31 36 Aux. steam Auxiliary steam temperature (deg C) 24LBG10CT001XQ01:av Important 

32 37 Air Combustion air flow (Nm3/s) 24HLA30CF905:av ? 

33 38 Air Air temperature at FDF inlet (deg C) 24HLA10CT001XQ01:av Indirect 

34 39 Air Air temperature at FDF inlet (deg C) 24HLA10CT002XQ01:av Indirect 

35 40 Air Air temperature after RAH (deg C)  (1) 24HLA30CT003XQ01:av ? 

36 41 Air Air temperature after RAH (deg C)  (2) 24HLA30CT004XQ01:av ? 

37 42 Air FDF discharge air pressure (mbar) 24HLA13CP001XQ01:av ? 

38 43 Air FDF A speed (rpm) 24HLB11CS001XQ01:av ? 

39 44 Air FDF B speed (rpm) 24HLB12CS001XQ01:av ? 

40 45 Air Air temperature after SAH (deg C)  (1) 24HLA30CT001XQ01:av ? 

 

 

 

 

 



 

67 
 

 

Table (3.1) All parameters collected from KNPP - Continued 

Serial 
Code In 

Diagram 
Circuit Name Tag Number 

Engineer 

Classification 

41 46 Air Air temperature after SAH (deg C)  (2) 24HLA30CT002XQ01:av ? 

42 47 Feedwater HPH4 inlet feedwater temperature (deg C) 24LAB30CT001XQ01:av ? 

43 48 Feedwater HPH4 outlet feedwater temperature (deg C) 24LAB40CT001XQ01:av ? 

44 49 Feedwater HPH5 outlet feedwater temperature (deg C) 24LAB50CT002XQ01:av ? 

45 50 Feedwater HPH5 inlet feedwater temperature (deg C) 24LAB40CT003XQ01:av ? 

46 51 T/A T/A wheel champer steam pressure (bar) 24MAL05CP001XQ01:av ? 

47 52 T/A T/A bleeder (1) pressure (bar) 24LBQ40CP001XQ01:av ? 

48 53 T/A T/A bleeder (2) pressure (bar) 24LBQ30CP001XQ01:av ? 

49 54 T/A T/A bleeder (3) pressure (bar) 24LBS30CP001XQ01:av ? 

50 55 T/A T/A bleeder (4) pressure (bar) 24LBS20CP001XQ01:av ? 

51 56 T/A T/A bleeder (5) pressure (bar) 24LBS10CP001XQ01:av ? 

52 57 T/A T/A Lub oil pressure (bar) 24MAV30CP001XQ01:av Irrelevant 

53 58 T/A T/A lub oil temperature after strainer (deg C) 24MAV30CT001XQ01:av Irrelevant 

54 59 T/A Control oil pressure (bar) 24MAV23CP001XQ01:av Irrelevant 

55 60 T/A T/A differential expansion (mm) 24MAA10CY041XQ01:av ? 

56 61 T/A T/A axial displacement A (mm) 24MAA10CG001XQ01:av Important 

57 62 T/A T/A axial displacement B (mm) 24MAA10CG002XQ01:av Important 

58 63 T/A T/A axial displacement C (mm) 24MAA10CG003XQ01:av Important 

59 64 T/A T/A bearing 3 vibration (mm/s) 24MKD10CY051XQ01:av ? 

60 65 T/A T/A bearing 4 vibration (mm/s) 24MKD10CY061XQ01:av ? 

61 66 T/A T/A bearing 1 vibration (1) (mic) 24MAD10CY011XQ01:av ? 

62 67 T/A T/A bearing 1 vibration (2) (mic) 24MAD10CY012XQ01:av ? 

63 68 T/A T/A bearing 2 vibration (1) (mic) 24MAD10CY031XQ01:av ? 

64 69 T/A T/A bearing 2 vibration (2) (mic) 24MAD10CY032XQ01:av ? 

65 70 Generator TBN side cold air (deg C) 24MKA10CT001:av ? 

66 71 Generator TBN side warm air (deg C) 24MKA10CT002:av ? 

67 72 Generator Exciter side cold air (deg C) 24MKA10CT003:av ? 

68 73 Generator Exciter side warm air (deg C) 24MKA10CT004:av ? 

69 74 Generator PMG side cold air (deg C) 24MKA10CT005:av ? 

70 75 Generator PMG side warm air (deg C) 24MKA10CT006:av ? 

71 76 Generator Generator winding temperature (deg C) 1 24MKA10CT007:av ? 

72 77 Generator generator winding temperature (deg C) 2 24MKA10CT008:av ? 

73 78 Generator Generator winding temperature (deg C) 3 24MKA10CT009:av ? 

74 79 Generator Generator winding temperature (deg C) 4 24MKA10CT010:av ? 

75 80 Generator Generator winding temperature (deg C) 5 24MKA10CT011:av ? 

76 81 Generator Generator winding temperature (deg C) 6 24MKA10CT012:av ? 

77 82 Boiler Economizer inlet FW pressure (bar) 24LAB50CP002XQ01:av Dublicated 

78 83 Boiler economizer inlet FW temperature (deg C) 24LAB50CT001XQ01:av Dublicated 

79 29 Condensate Condenser inlet exhaust steam pressure (bar a) 24MAG10CP001XQ01:av ? 
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shows location of some sensors in the power plant, the numbers in circles are parameters 

numbers. Table 3.1 shows a list of all parameters collected from KNPP, the table contains 

the following 6 attributes: 

1. Serial: just a serial for the parameters. 

2. Code In Diagram: Each parameter has a unique number, this number is used to 

reference the parameter location in figure 3.1 the illustrative diagram. 

3. Part in Power Plant: This is the part of power plant of this parameter. 

4. Name: the name of the parameter is full name that gives a clear description of the 

parameter. 

5. Tag Number: it is a unique code of the parameter across the whole power plant 

Unit. 

6. Engineer Classification: this is the domain expert comments about the 

parameter. The values in this field are as follows: 

i. Target: This is the amount of generated power which will be used as the 

Target of prediction algorithms. 

ii. Direct: means this parameter has a direct effect in the amount of the 

generated power. 

iii. Irrelevant: means this parameter has no effect in the amount of the 

generated power. 

iv. ?: the domain expert are not sure about the parameter relevancy. 

v. Important: this parameter is important in the amount of the generated 

power 

To study the status of the power plant, and to be able to calculate the generated power, 

we need pressure, temperature and steam flow at turbine inlet and outlet, hoever in this 

research all parameters were studied. We have to measure these three variables at specific 

locations in the power plant like turbine inlet, and turbine outlet. So, the required datasets 

for this research are numeric, specifically pressure, temperature and steam flow captured 

from different locations.  
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i. Existing System in Power Plant 

As mentioned in chapter (1) KNPP was constructed in three phases, each phase 

consists of two identical units. Each phase has a different monitoring and control system. 

Phase 1 uses a manual traditional control system, while phase 2 uses Metso monitoring 

and control system. In this research we focus only on phase 2 which consists of unit 3 and 

4. The existing monitoring and control system for unit 3 and 4 uses advanced sensors to 

automatically collect data that shows the current status of all components of power plant. 

Appendix C and D show a snapshot of the monitoring screens of Metso system. 

 

ii. Sensors 

Many types of sensors are used to collect real time data from the power plant. For 

the purpose of this research we focus on pressure, temperature and mass follow sensors. 

 

Pressure sensors: are used in controlling and monitoring in thousands of applications. A 

pressure sensor measures pressure of gases or liquids. Pressure is an expression of the 

force required to stop a fluid from expanding, and is usually stated in terms of force per 

unit area. A pressure sensor generates a signal as a function of the pressure imposed. 

Pressure sensors can vary in technology, design, performance, application and cost 

(Sensorland, 2017). 

 

Temperature Sensors: One of the most critical factors in power plants is the temperature, 

so accurate thermometers are connected to all parts of Rankine Cycle. According to the 

expected temperature a suitable thermometer is used. These thermometer are connected to 

the required component to instantly measure the temperature and send theses reading to 

the database. Figure 3.3 shows a sample of a thermometer that is used in steam turbine 

and can measure up to 5300 C.( Series 176 - On-Turbine Instability Sensor (OTIS)) 
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Figure 3.3 Series 176 - On-Turbine Instability Sensor  (OTIS) (Flokal, 2017) 

 

Flow meter: Turbine flow meters have  a widespread use for accurate liquid and gas 

measurement applications. The unit consists of a multiple-bladed rotor mounted with a 

pipe, perpendicular to the liquid flow. The rotor spins as the liquid passes through the 

blades. The rotational speed is a direct function of flow rate, finally electrical pulses 

counted and totalized.  To ensure the accuracy of the meter, manufacturer calibrates and 

tests meters before shipping  to customers. Figure 3.4 shows a turbine mass flow meter 

[50]. 

 

 

Figure 3.4  Turbine mass flow meter (Flokal, 2017) 

 

iii. Database 

Real time data that is collected from all sensors in the power plant is sent directly 

to a central database. In KNPP the central database is a single SQL server database, but 

because of huge amount of real time data collected, the system in KNPP is configured with 

auto purge to retain data for two months only. So, at any time two months data is available 

for analysis. From SQL server you can directly export data to any text or spread sheet 

format.    
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3.2.3.2  Data preprocessing 

Real time data as collected from the monitoring and control system can not  directly 

be loaded to the data mining tool. The attributes in the file are represented as rows rather 

than columns, while the columns represents the intervals for each reading. To prepare the 

dataset in a usable format to the machine learning tools, the following steps were done:  

i. Collect the raw data. 

ii. Remove and add some rows and columns from raw excel file. 

iii. Transpose the cells. 

iv. Remove redundant fields. 

v. Create separate file for each unit (Unit 3 and Unit 4) 

vi. Create one file that contains all data. 

Below is some details about what have been done and the final layout for the data set. The 

output from each of the following steps, becomes and input to the next step. 

 

i. Collect the Raw Data 

The input of this step is the central database, and the out put is an excel file that 

contains the raw data as-is from the database. MS excel is used to pull required data from 

the central database. Table 3.2 shows a sample of a raw data as taken from the system. 

First two rows shows the period for data collected in this file is between 2 to 4 PM on the 

1st of May 2014.  

1. The first column is Circuit: contains the component of the power plant, this could 

be one of ten options which are: Air, Aux. steam, Boiler, Cooling water, 

Feedwater, Fuel Oil, Gas, Generator, Generator or T/A (turbine). This is same as 

Circuit in table 3.1. 

2. The second is Description: this contains a description of this parameter, this 

column actually contains the names of attributes of the data set, it is same as Name 

field in table 3.1. 

3. The third is Tag Number: this is a unique identifier for this parameter, it uniquely 

identifies the parameter among all parameters in the power plant. Same field exist 

in table 3.1. 



 

72 
 

4. The rest of columns contain the actual data collected. The headers of these columns 

represents the time. 

 

ii. Remove and add some rows and columns from raw excel file. 

This steps takes as input the raw file (which is  output of the previous step), its output 

is an updated raw file. The first two rows of excel raw data file contains start and end date 

of this data file. These rows where removed and new columns were added to represent 

date (Year, Month and Day). New column is added to represent the Unit, as shown in table 

(3.3). 

 

iii. Transpose the cells. 

The rows in the raw file represents attributes, while columns represents instances. So 

the table was transposed to swap rows and columns. There are more than eighty attributes 

in the data set, all of them shown in table 3.1. The output of this step is a transposed file 

which is ready to be used by the machine learning tool. The new file still contains the 

eighty attributes. 

 

iv. Remove redundant fields. 

The output from the previous step contains redundant attributes like (Flue gas 

temperature after RAH (deg C)). Those attributes were collected using different sensors, 

in most of them the data is almost typical. So the redundant attributes were removed. The 

output of this step is a clean dataset that contains only 63 attributes out of the 83 attributes 

of table 5.1. To refer to each attribute from this step we need a unique identifier, so a new 

serial from 1 to 63 is assigned for each attribute. Table 3.4 shows the final attribute set 

which will be used for feature selection and prediction models. 

 

v. Create separate file for each unit. 

Because each unit in the power plant is an independent unit, separate file is prepared 

for each unit. This is done because we are going to study each unit separately.  
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vi. Create one file that contains all data. 

A combined file that contains both unit 3 and 4 is prepared, to check whether a generic 

model for a thermal power plant could be obtained. 

 

Table  3.2  Structure of Raw data in excel as taken from the Central Database 

Start Date 5/1/2014 14:00       

End Date 5/1/2014 16:00       

Circuit Description Tag Name 14:00:00 14:02:00 

T/A Generated power (MW) 24CFA01CE033XQ01:av 49.973 50.286 

T/A Main steam flow (kg/s) 24LBA10CF903:av 51.354 51.553 

Boiler Total steam flow (kg/s) 24LBA10CF902:av 52.452 52.68 

Boiler Main steam header pressure (bar) 24LBA10CP003XQ01:av 87.223 87.956 

T/A T/A inlet steam temperature (deg C) 24LBA20CT002XQ01:av 516.372 517.59 

Boiler Main steam header steam temperature (deg C) 24LBA10CT003XQ01:av 516.418 515.594 

Gas Flue gas temperature after RAH (deg C) 24HNA40CT003XQ01:av 148.249 148.391 

Gas Flue gas temperature after RAH (deg C) 24HNA40CT004XQ01:av 150.801 150.935 

 

 

Table 3.3  Part of Unit 3 data set 

 

 

 

 

Unit Year Month Day Time 

Generator 

power 

MW 

Main 

Steam 

Flow 

kg/s 

Total 

Steam 

Flow 

kg/ s 

Main 

Steam 

Header 

Pressure 

bar 

T_A Inlet 

Steam 

Temperature 

deg_C 

Main Steam 

Header 

Steam 

Temperature 

deg_C 

3 2012 8 22 10:24:00 40.42 47.971 49.456 88.914 510.847 513.34 

3 
2012 8 22 10:26:00 40.166 48.446 49.944 89.911 503.362 502.873 

3 
2012 8 22 10:28:00 39.717 48.462 49.939 88.421 498.064 500.57 

3 
2012 8 22 10:30:00 39.56 47.768 49.226 86.162 503.087 509.349 

3 
2012 8 22 10:32:00 39.834 47.581 49.071 85.782 511.273 517.941 

3 
2012 8 22 10:34:00 40.166 47.574 49.096 86.669 514.592 519.463 
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3.2.3.3  The Datasets 

Each problem has its own dataset. Below is the description of these datasets: 

 

i. Problem (1) Dataset 

 Three datasets were prepared for this problem (Unit 3, Unit 4, and Unit 3 & 4). All 

these datasets have the same structure, Table (5.4) shows the names of all 63 attributes, 

the last one (attribute No. 63) is the target. Number of instances for each dataset as follows: 

1. Unit 3 dataset: 300 clean instances, the total set size was 1083. 

2. Unit 4 dataset: 720 clean instances, the total set size was 1083.  

3. Unit 3 & 4 dataset: 300+720 =1020 clean instances. 

 

ii. Problem (2) Dataset 

The second problem focuses on controllable parameters, (pressure, temperature 

and steam flow) at turbine inlet. The target field for these datasets is also the amount of 

generated power in mega watts. Tables (5.5) and (5.6) shows samples of unit 3 and unit 4 

datasets respectively.  
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Table 3.4 Attributes of problem (1) dataset 

 

Table 3.5 Sample dataset of Unit 3 

Steam Flow Pressure Temperature Amount of Power in MW 

36.213 85.932 508.91 30.125 

36.277 87.256 504.597 29.89 

36.17 86.822 507.631 30.144 

47.706 86.907 511.416 40.147 

47.971 88.914 510.847 40.42 

 

 

Table 3.6 Sample dataset of Unit 4 

Steam Flow Pressure Temperature Amount of Power in MW 

30.994 87.291 512.103 29.91 

30.701 86.939 509.371 29.988 

30.888 87 508.326 30.066 

44.886 87.496 508.675 45.011 

44.458 86.864 518.263 44.835 
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3.2.4  Feature Reduction and Selection 

As shown in figure Figure 4.1 Operational Framework, after data preparation there 

are two branches, each for one research objective. The first branch to achieve the first 

research objective (To design a feature selection technique, that can determine the best set of 

features to predict the amount of generated power from a thermal power plant) and it is consist 

of two parts: 

 Feature Reduction and Selection:  The goal of this part is to design a feature 

selection technique, that can determine the best set of features to predict the amount 

of generated power from a thermal power plant. Hence, sets will be selected and 

evaluated to select the best set, which will be used to develop the prediction model 

using the selected set of features. 

 Prediction Model Development: The goal of this part is design a prediction 

technique that can accurately predicts the amount of generated power, using the 

selected set of features which were selected in the previous step. Many regression 

algorithms were used to develop the models. The algorithms which will show 

better performance will be selected to build the prediction mode. 

To get better performance wrapper method will be used to achieve this objective.  

Wrapper method uses the same algorithm to select the best set of features, and to 

build the prediction model. Chapter 4 is dedicated for this branch, more details will be 

provided there.  To design a prediction technique that can accurately predicts the amount of 

generated power, using only the controllable parameters. 

 

 

3.2.5  Prediction Model Development 

After data preparation, the second branch is to achieve the second research 

objective (To design a prediction technique that can accurately predicts the amount of 

generated power, using only the controllable parameters). Unlike the first branch, the 

dataset is ready, it consists of three predictors (Steam flow, Steam Pressure, Steam 

Temperature) which were collected from the turbine inlet, and the target (Amount of 

Generated Power). The goal here is to develop a prediction model using only the 
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controllable parameters. Also many regression algorithms were tested, the one that shows 

the minimum errors will be selected to develop the model. Chapter 5 of this thesis is 

dedicated for this branch, more details will be provided there. 

 

3.2.6  Discussion and Results Evaluation: 

 All dataset in this research are numerical, so all models will be regression models.  

According to the dataset size test method will be used. For small datasets Cross validation 

will be used, while Separate test set, ( normally 1/3 of the data set ) will be used with 

bigger datasets. To evaluate each model two methods will be followed: 

(1) The accuracy of prediction model is measured by : 

1. Correlation coefficient,  

2. Mean absolute error,  

3. Root mean squared error,  

4. Relative absolute error,  

5. Root relative squared error 

Equations of these factors are shown in Figure 3.5  (Witten, Frank and Hall, 2011). 

 

Figure 3.5 Equations of the Evaluation methods 
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(2) Graphical comparison between actual vs predicted values for each model will be 

presented, to give visual representation of results. This makes the comparison 

between actual and predicted values much easier. 

 

 Each model has its own target and predictors, therefore, each model is discussed 

separately to interpret the results according to power plant status and thermodynamics 

laws. Model evaluation will be used to select the best performance model, but the model 

will not be accepted unless it matches the thermodynamics laws.  

 

 

3.2.7    Writing the Thesis. 

After building the prediction models and evaluating results as described above, three 

papers were published. The first one is a review paper about the using data mining in 

power plants, the other two papers are research papers, one for each problem. Then this 

thesis was reviewed and submitted.  

 

 

3.3. Summary 

This chapter presents the methodology which is followed by the researcher to achieve 

the research goals. CRISP-DM model was used to prepare the operational framework for 

this research, this framework is a comprehensive one that describes clearly each phase.  

Sixteen algorithms will be used for each dataset, the algorithm that shows the minimum 

errors will be selected to build the prediction model for that dataset. After building models 

testing will be done using cross validation or separate test set.  

The expected outcomes  of this research is a list of parameters that influence power 

prediction, and a prediction model to predict the amount of generated power from a 

thermal power plant using the controllable parameter. 
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CHAPTER FOUR 

 

 

 

Feature Selection and Prediction 

Models using the Full Features 
 

 

 

 

 

4.1.Introduction 

  

 The target of this chapter is “ To design a feature selection technique, that can 

determine the best set of features to predict the amount of generated power from a 

thermal power plant.”  So, the research target could be divided into two parts: the first is 

to filter dataset parameters to select the most influencing parameters, and the second is to 

build a prediction model that uses the selected parameters to predict the amount of 

generated power from a thermal power plant. To achieve these goals, three different 

datasets were used: one for unit 3 , the other for unit 4 and the last one is a combined 

dataset that contains both unit 3 and 4. The reason  behind that is to study each unit 

separately, and to check whether a generic model could be used.  

 This chapter starts by describing the datasets, then basic statistical analysis about 

these datasets is shown. After that an initial comparison between the prediction 

algorithms is done for each dataset, to select the most appropriate algorithm for each 

dataset to build the prediction model. Then for each dataset three main tasks are done: 

the first is the attributes’ selection, the second is the power prediction model using the 

selected features, the third is the model evaluation. After that a summary and discussion 

about feature selection is done. Finally results discussion and models Comparison is done 

to depict the knowledge behind these numbers. The methodology followed to achieve the 

goal is shown in figure (4.1) 
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Figure 4.1 Methodology for Feature Selection and Power Prediction Models (1)  

 

 

4.2.Datasets Description 

 

As described in Chapter 1, Khartoum North Thermal Power Plant KNTPP was 

commissioned in three phases. Each phase is composed of two identical units, each unit is 

a separate power generation unit that follows Rankine Cycle . In this research we are 

focusing on Phase 2 which is composed of Unit 3 and Unit 4. As shown in chapter 3 

Research Methodology (3.2.3 Data Preparation),  after excluding useless and duplicated 

features we have only 63 features to be used for datasets preparation. Table 4.1 shows the 

63 features of the Power Prediction Datasets. A unique identifier (from 1 to 63) has been 

assigned for each one of these 63 features. As per the thermodynamic laws and Rankine 

Cycle (Learn Engineering, 2013); the most important features to calculate the amount of 

generated power from a thermal power plant are: Steam Flow, pressure and temperature 

at turbine inlet, and steam pressure and temperature at turbine outlet. These are features 

number 1,3,4, 61 and 62 respectively in Table 4.1 (Attributes of problem (1) dataset). 

Feature number 63 is the class (Generated_Power_MW ), it is the amount of the generated 

power in Mega Watts. 
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Table (4.1) All Features of Power Prediction Datasets 

 
 

Three datasets were prepared to build the Power Prediction Model, one for each unit 

and the third one is a generic dataset that combines unit 3 and unit 4 data in one set. Below 

is some description about these three datasets: 

1. Unit 3 dataset: The original dataset which was initially prepared is composed of 

1083 instances. After the data quality check, more the 700 instance were found with null 

values in different attributes, this is the first indication that unit 3 has some problem in 

many sensors. So, the final dataset which is used in this model contains only 300 instances. 

All features including the  class are numeric. As shows in Table 4.1 the class is attribute 

number 63 (GeneratedPowerMW). 

 

2. Unit 4 dataset: The original dataset which was initially prepared is composed of 

1083 instances. After the data quality check, the instances with null values in different 

attributes is less than their counterparts in unit 3, so unit 4 dataset is bigger and much better 
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than unit 3 dataset. The final dataset which I used in this model contains 720 instances. 

All features including the class are numeric. As shows in Table 4.1 the class is attribute 

number 63 (Generated Power MW). 

 

3. Unit 3&4 dataset: This dataset is just a new file which combines both unit 3 and 

unit 4 datasets. So, the total number of incenses of this new dataset is 1020. The class is 

also attribute number 63 (Generated Power MW). 

 

 

4.3.Data Exploration and Analysis: 

 

Some statistical analysis is required to get more deep understanding about the 

datasets. Tables (4.2), (4.3) and (4.4) show basic statistics (Minimum, Maximum, Mean, 

and Standard Deviation) for the most five important attributes of Unit 3, Unit 4 and Unit 

3&4  datasets respectively. The attributes as shown in tables are: 

 Steam_Flow_Inlet : Steam flow at turbine inlet 

 Pressure_Inlet: Pressure at turbine Inlet 

 Temperature_Inlet: Temperature at turbine Inlet 

 Temperature_Outlet: Temperature at turbine Outlet 

 Pressure_Outlet: Pressure at turbine Outlet 

 Power_MW: Generated Power in Mega Watts (the class of all these datasets ). 

 

Simple comparison between unit 3 and 4 through these statistics can give some 

indications about the status of the unit itself. The standard deviation of  Pressure_Inlet is 

15.059 in unit 3 compared to 0.909 in unit 4, this is caused by the maximum value of 

pressure at unit 3 which is 116.963 bar. This will make direct impact about generated 

power values. Because the steam flow is fully controlled through valves, so the difference 

in standard deviation is not important. Regarding Temperature_Outlet, in unit 3 it is very 

high compared to unit 4, the maximum value in unit 3 is 84.893, while its counterpart in 

unit 4 is 66.628. Even the mean value is higher, in unit 3 it is 67.473, while in unit 4 it is 

51.65. There is big difference between minimum values of Temperature_Outlet, it is 47.99 

in unit 3 and 40.434 in unit 4. 
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Table (4.2) Unit 3 Dataset Analysis 

 

Table (4.3) Unit 4 Dataset Analysis 

 

Table (4.4) Unit 3&4 Dataset Analysis 

 

 

4.4.Initial Comparison between Prediction Algorithms 

 

The data types of  all predictors and classes for all datasets used in this research are 

numeric. Therefore, according to data mining map shown in figure 2.7, the prediction 

models should be of regression type. Table 4.5 shows the list of algorithms that will be 

used for feature selection and prediction models for this research.  

 

The purpose of this step is to do an initial comparison between all algorithms shown 

in Table 4.5, to select the best one for each dataset. Because there are three different 

datasets; three experiments were created “one for each dataset”. Each experiment uses 5 

evaluation factors to rank the results:  

 Mean_absolute_error,  

 Root_mean_squared_error,  

 Relative_absolute_error,  

 Root_relative_squared_error  

 Correlation coefficient.   

Equations of these evaluation factors are shown in Figure 3.2. 

Statistic Steam_Flow Pressure_Inlet Temperature_Inlet TemperatureOutlet Pressure_Outlet Power_MW 

Minimum 46.879 34.686 498.064 47.99 0.085 39.482 

Maximum 56.431 116.963 516.95 84.893 0.324 51.048 

Mean 50.992 84.288 508.766 67.473 0.173 43.123 

StdDev 2.429 15.059 2.83 10.715 0.068 3.746 

Statistic Steam_Flow Pressure_Inlet Temperature_Inlet TemperatureOutlet Pressure_Outlet Power_MW 

Minimum 29.981 84.769 485.746 40.434 0.059 28.073 

Maximum 60.601 95.13 524.338 66.628 0.225 57.358 

Mean 46.06 87.866 508.304 51.65 0.113 43.498 

StdDev 8.185 0.909 4.758 5.797 0.036 7.676 

Statistic Steam_Flow Pressure_Inlet Temperature_Inlet TemperatureOutlet Pressure_Outlet Power_MW 

Minimum 29.981 34.686 485.746 40.434 0.059 28.073 

Maximum 60.601 116.963 524.338 84.893 0.324 57.358 

Mean 47.51 86.814 508.44 56.304 0.131 43.388 

StdDev 7.353 8.354 4.286 10.461 0.055 6.762 
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Table (4.5) List of Prediction Algorithm Used in Research 

Serial Algorithm Name Algorithm Name in Weka 

1 Gaussian Processes for regression Gaussian Processes 

2 Isotonic Regression Isotonic Regression 

3 Least median squared linear regression  LeastMedSq 

4 LinearRegression Linear Regression 

5 Neural Network Multilayer Perceptron 

6 Pace Regression linear models PaceRegression 

7 Partial Least Square Regression PLSClassifier 

8 Support Vector Machine for regression SMOreg 

9 K-nearest neighbors IBk 

10 Instance-based learner KStar 

11 Decision Table Decision Table 

12 M5Rules M5Rules 

13 M5 Model Tree M5P 

14 Decision tree learner C4.5 REPTree 

 

Tables 4.6, 4.7, 4.8 shows the results of the initial comparison between the 14 

algorithms for the three datasets respectively. Correlation coefficient is used to order the 

results of these algorithms in descending order, so the highest row in each table is the best 

performance algorithm, and the lowest is the worst one. 

 

 

Tables 4.6, The Initial comparison between algorithms’ accuracy for Unit 3 Dataset 

Key Algorithm 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

Correlation 

coefficient. 

4 LinearRegression 0.083879885 0.1115372 2.608101934 3.071199418 0.999534882 

6 Pace Regression linear models 0.07947486 0.11195299 2.469352962 3.07517815 0.999514781 

8 
Support Vector Machine for 

regression 0.082229219 0.117748562 2.557921126 3.240612468 0.999469539 

5 Neural Network 0.115456088 0.148388137 3.594696577 4.089735028 0.999381067 

7 Partial Least Square Regression 0.110332296 0.157711502 3.431032399 4.346813619 0.999052812 

9 K-nearest neighbors 0.153646078 0.224506865 4.778769266 6.162721846 0.997895543 

10 Instance-based learner 0.160303297 0.24983911 4.98988145 6.866841346 0.997449099 

12 M5Rules 0.22995974 0.343635614 7.150378626 9.431496547 0.995492844 

1 

Gaussian Processes for 

regression 0.364022514 0.56187269 11.32518817 15.4619605 0.992079159 

13 M5 Model Tree 0.299358474 0.463936948 9.314740302 12.76900029 0.991104012 

11 Decision Table 0.224577407 0.458042229 6.947455703 12.51621632 0.988891025 

2 Isotonic Regression 0.7055718 1.217407346 21.99535882 33.60839564 0.941871625 

3 

Least median squared linear 

Reg.  0.655188556 1.28448858 20.46661714 35.50088054 0.941009965 

14 Decision tree learner C4.5 0.456793077 1.242572655 14.23723128 34.21835838 0.933242152 
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Tables 4.7, The Initial comparison between algorithms’ accuracy for Unit 4 Dataset 

Key Algorithm 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root 

relative 

squared 

error 

Correlation 

coefficient. 

4 LinearRegression 0.090778698 0.132007423 1.462268216 1.716466237 0.999853405 

6 Pace Regression linear models 0.09201714 0.133458434 1.482270317 1.735237895 0.999850051 

8 Support Vector Machine for regression 0.109740875 0.153986194 1.767739042 2.002920995 0.999801781 

5 Neural Network 0.16954587 0.214277192 2.736522943 2.789813196 0.999741401 

7 Partial Least Square Regression 0.175533164 0.227428035 2.831145006 2.959030114 0.999565556 

12 M5Rules 0.20758291 0.346568306 3.344873725 4.49947247 0.998899321 

9 K-nearest neighbors 0.307747787 0.537363476 4.958080767 6.986130814 0.99743058 

10 Instance-based learner 0.268448633 0.535891649 4.326801241 6.972246538 0.997424571 

13 M5 Model Tree 0.288593321 0.521511918 4.653159421 6.768346851 0.997380193 

1 Gaussian Processes for regression 0.551194325 0.828172041 8.882973574 10.76715419 0.995845461 

2 Isotonic Regression 0.611010897 0.870444088 9.853861729 11.32469533 0.993554497 

14 Decision tree learner C4.5 0.425977315 0.841559224 6.876083802 10.9490532 0.993466611 

11 Decision Table 0.465122902 1.221040352 7.507875771 15.88393138 0.986015947 

3 Least median squared linear Reg.   1.382632446 4.290088127 22.51536699 56.21080405 0.8411064 

 

 

 

Tables 4.8 The Initial comparison between algorithms’ accuracy for Unit 3&4 dataset 

Key Algorithm 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root 

relative 

squared 

error 

Correlation 

coefficient. 

5 Neural Network 0.144291284 0.185629655 2.693371778 2.760036801 0.999713518 

8 Support Vector Machine for regression 0.111605955 0.156056349 2.093530156 2.32791079 0.999708854 

7 Partial Least Square Regression 0.256861072 0.342506278 4.818978739 5.107127214 0.998699469 

9 K-nearest neighbours 0.252548263 0.453208317 4.746676916 6.784910832 0.997617218 

15 M5Rules 0.244290404 0.451813449 4.597509927 6.767018336 0.997560331 

16 M5 Model Tree 0.290096951 0.465959689 5.440535171 6.944972992 0.997520199 

10 Instance-based learner 0.239184945 0.518880069 4.495455016 7.770865527 0.996817978 

1 Gaussian Processes for regression 0.419571978 0.665304233 7.865066144 9.925619092 0.996303161 

17 decision tree learner C4.5 0.372258075 0.730301402 6.982127768 10.88784093 0.993862586 

14 DecisionTable 0.331897638 0.819727419 6.243007879 12.26145415 0.991850713 

4 LinearRegression 0.42810000 1.30670000 0.07910800 0.19312000 0.98120000 

6 pace regression linear models 0.44550000 1.31940000 0.08232000 0.19500200 0.98080000 

3 Least median sqaured linear Reg.   0.543380789 1.739444185 10.03955402 25.82074251 0.939725333 

2 Isotonic Regression 1.775236126 2.483967574 33.33455079 37.08256944 0.928511606 
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4.5. Feature Selection and Prediction Models for All datasets  

Referring to chapter one (1.4 Objectives of Study), the first objective is: to design a 

feature selection technique, that can determine the best set of features to predict the amount 

of generated power from a thermal power plant.”  This objective could be divided into two 

parts:  

1. Select the best set of parameters that influence the amount of the generated power 

from the power plant.  

2. Build a prediction model to predict the amount of generated power using the selected 

parameters. 

To achieve these goals, three complete datasets were used: unit 3, unit 4 and unit 3&4. 

These complete datasets contains all attributes shown in table (4.1). Normally, such goals 

are implemented in simple sequence: first step is to use Feature Selection method (Filter, 

Wrapper, Hybrid or Embedded) to select the best set of features, using the generated power 

as the class. Then the second step is to use only the selected features as predictors to build 

the prediction model. However, According to the used Feature Selection method, this 

sequence and algorithms change, For example:  

 Filter methods: select attributes based on a performance measure regardless of the 

modeling algorithm, they are based only on general features like the correlation with 

the variable class. Only after selecting the best set of attributes, the modeling 

algorithm can use them. 

 Wrapper methods: use predictive models to evaluate feature subsets. The 

evaluation is repeated for each subset using the algorithm that is used to develop the 

predictive model. Therefore, in wrapper the feature selection and prediction model 

development are wrapped together in one step, so, one algorithm will be used for 

feature selection and prediction model. More details about feature selection methods 

and algorithms is presented in chapter two (Literature Review).  

In this research Wrapper Method will be used, so the feature selection and prediction 

model will be wrapped together in one step. As shown in figure 4.1, after selecting the best 

algorithm, the following will be done for each dataset: 

i. Feature Selection to Select the Best Set of Features 

ii. Design the Prediction Model to predict the Amount of Generated Power. 

iii. Model Evaluation. 
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4.5.1  Feature Selection and Prediction Models for Unit 3 

Dataset  

According to the results of the initial comparison between models evaluation in 

table 4.6; the algorithm that shows the highest correlation co-efficient, and minimum 

errors in Unit 3 dataset is Paces Regression, while Decision tree C4.5 algorithm achieves 

the worst results. Using Unit 3 dataset, two models were designed; Pace Regression, and 

Decision Tree C4.5 models. Subsequent parts provide the design, evaluation, and 

discussion about these models.  

 

4.5.1.1 Pace Regression Model 

Wrapper Feature Selection method is used with Pace Regression to Select and 

evaluate the best set of features. Also Pace regression is used to create the prediction 

model, because in wrapper method the same algorithm which is used to evaluate the sub 

sets should be used to develop the prediction mode. Below is the details of Feature 

Selection, Prediction Model Design and the Model Evaluation.  

i. Feature Selection : Table 4.9 shows the list of features which were selected and 

evaluated using Pace Regression algorithm for Unit 3. The table shows the unique 

feature number, and the feature name. As stated by the domain expert and according 

to thermodynamic laws, the most important features which are used to calculate the 

amount of the generated power, are five features (1: Main steam flow (kg/s), 3: Main 

steam header pressure, 4: T/A inlet steam temperature, 61: Condenser inlet exhaust 

steam pressure, 62: Condenser inlet exhaust steam temp) which are show in bold italic 

font in table 4.1. The model succeeded to select four of them, but feature 3 (Main steam 

header pressure) is missed. The total number of selected features are 28 (out of 62), 

this number is good compared to Linear Regression model which selected 47 features, 

this high number of features will lead to overfitting.  

 

ii. Power Prediction Model: Figure 4.2 (a) shows the Pace Regression model for Unit 3 

dataset. Features are the variables of the regression equation, the factor of each variable 

in the equation gives indication about the importance and relevancy of this variable to 

the class (Amount of Generated Power in MW). For example the factor of 

CondenserInletExhaustSteamPressure_bar is very high (9.3745), that means the pressure of 
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steam at condenser inlet (turbine outlet) has very big effect in determining the amount 

of the generated power, and this is absolutely true according to thermodynamic laws.  

 

Table 4.9 List of Selected Features by Pace Regression Model for Unit 3 

Feature No. Feature Name   

1 Main steam flow (kg/s)   

2 Total steam flow (kg/s)   

4 T/A inlet steam temperature    

5 Main steam header steam temperature    

7 Feedwater temperature at economiser   

13 Condensate water flow (kg/s)   

14 Condenser hot well temperature  a   

16 Auxiliary steam flow (kg/s)   

18 Auxiliary steam temperature    

19 Combustion air flow (Nm3/s)   

20 Air temperature at FDF inlet    

21 Air temperature at FDF inlet    

22 Air temperature after RAH   (1)   

33 T/A wheel champer steam pressure    

36 T/A bleeder (3) pressure    

37 T/A bleeder (4) pressure    

40 T/A axial displacement A (mm)   

41 T/A axial displacement B (mm)   

46 T/A bearing 1 vibration (2) (mic)   

47 T/A bearing 2 vibration (1) (mic)   

48 T/A bearing 2 vibration (2) (mic)   

49 TBN side cold air    

51 Exciter side cold air    

52 Exciter side warm air    

57 Generator winding temperature  3   

59 Generator winding temperature  5   

61 Condenser inlet exhaust steam pressure    

62 Condenser inlet exhaust steam temp   

Total Number of Selected Features 28 

 

Some features which were not been considered as important ones, appear in the 

regression equation with high factor like T_AaxialdisplacementA_mm, this high factor 

draw the attention of the domain expert, who took this as important input to be 

considered as a starting point for their investigation about the power plant problems.  

 

       

Figure 4.2 (b) gives some basic information about the model and the used dataset. 

The  model used 198 instances for training, while 102 different instances were used as 

a separate test set. The algorithm which is used to build the model is the 
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PaceRegression, of course it is the same one which was used to evaluate features’ sub 

sets. The time required to build the model is 5.89 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Pace Regression Model for Unit 

(a) Pace Regression Model fro Unit 3 

 

 

 

 

 

 

Figure 4.2 Pace Regression Model for Unit 3 

 

GeneratedPower_MW = 
    -35      + 
      1.2611 * MainSteamFlow_kg_s + 
     -0.2399 * TotalSteamFlow_kg_s + 
      0.0748 * T_A_InletSteamTemperature_deg_C + 
     -0.0021 * MainSteamHeaderSteamTemperature_deg_C + 
      0.1272 * FeedwaterTemperatureAtEconomiserInlet_deg_ C + 
     -0.0026 * CondensateWaterFlow_kg_s + 
     -0.0375 * CondenserHotWellTemperature_deg_C_a + 
      0.0188 * CombustionAirFlow_Nm3_s + 
     -0.0706 * AirTemperatureAtFDFinlet_deg_C_1 + 
      0.0943 * AirTemperatureAtFDFinlet_deg_C_2 + 
      0.0103 * AirTemperatureAfterRAH_deg_C_1 + 
     -0.4966 * T_AwheelChamperSteamPressure_bar + 
      1.6736 * T_Ableeder_3_pressure_bar + 
      1.9366 * T_Ableeder_4_pressure_bar + 
     -1.0237 * T_AaxialdisplacementA_mm + 
     -0.0083 * T_Abearing1vibration_2_mic + 
     -0.0404 * T_Abearing2vibration_1_mic + 
      0.0178 * T_Abearing2vibration_2_mic + 
     -0.0003 * TBNsideColdAir_deg_C + 
     -0.03   * ExciterSideColdAir_deg_C + 
     -0.0897 * ExciterSideWarmAir_deg_C + 
     -0.0562 * GeneratorWindingTemperature_deg_C_3 + 
      0.0936 * GeneratorWindingTemperature_deg_C_5 + 
     -9.3745 * CondenserInletExhaustSteamPressure_bar_a + 
     -0.1648 * CondenserInletExhaustSteamTemperature_deg_C 

Data set : Unit3 
Algorithm : PaceRegression 

Total Number of instances: 300 
Training set: 198 

Test set : 102 
Time (s) : 5.89 

(b) General Information about Model 
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Correlation coefficient 0.9997 

Mean absolute error 0.0711 

Root mean squared error 0.0949 

Relative absolute error 2.23% 

Root relative squared error 2.62% 

Total Number of Instances 102 

inst No     actual  predicted  error

1 42.178 42.287 0.109

2 40.361 40.202 -0.159

3 45.245 45.212 -0.033

4 49.778 49.859 0.081

5 49.172 49.237 0.065

6 44.757 44.867 0.110

7 39.717 39.794 0.077

8 40.166 40.419 0.253

9 50.501 50.501 0.000

10 40.166 40.118 -0.048

11 45.109 45.148 0.039

12 39.619 39.731 0.112

13 40.186 40.194 0.008

14 39.893 39.722 -0.171

15 40.010 39.999 -0.011

16 40.029 40.023 -0.006

17 39.912 39.810 -0.102

18 49.074 49.052 -0.022

19 42.198 42.110 -0.088

20 45.148 45.057 -0.091

21 45.070 45.008 -0.062

22 40.166 40.109 -0.057

23 39.697 39.830 0.133

24 42.803 42.984 0.181

25 41.885 41.890 0.005

26 42.471 42.551 0.080

27 49.035 49.003 -0.032

28 50.071 50.013 -0.058

29 44.777 44.797 0.020

30 40.381 40.353 -0.028

Table 4.10 Sample of comparison between Actual and 

Predicted values Of the Generated Power, using Pace 

Regression,  for Test Dataset of Unit 3 

 

Table 4.11 Pace Regression Model 

Accuracy for Unit 3 Data set 
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Figure 4.3 Graph for comparison between Actual and Predicted values Of the Generated Power,using Pace Regression,  for Test Dataset of Unit 3 
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iii. Model Evaluation: Model testing is done by a separate test set, where 66.0% of the 

dataset is used for training, and the remainder for testing. The model evaluation is 

done using the equations in Figure 3.2 (Equations of the Evaluation methods). The 

model is considered to be more accurate if the Correlation coefficient is high (near to 

one), and the errors are low. Table 4.11 give the details about the model accuracy, as 

shown in the table, the correlation coefficient is high (0.9997) , and error factors are 

low (Mean absolute error is 0.0711, Root mean squared error is 0.0949, Relative 

absolute error is 2.23%, and the Root relative squared error is 2.62% ). So, the 

the model accuracy is very high.   

            

Table 4.10 shows a sample of a comparison between the Actual and Predicted 

values of the Generated Power, using Pace Regression,  for 30 instances of the Test 

Dataset of Unit 3, the difference column shows how much the predicted values are 

very near to the actual ones. Figure 4.2 gives more clear vision about the model 

accuracy, the graph is comparing between the actual and predicted values of the 

amount of the generated power, for the test dataset.    

 

4.5.1.2  Decision tree learner C4.5 Model 

Another model was built using Decision tree learner C4.5 algorithm, 

which showed very poor accuracy, this model was built only to compare its results 

with the first one which is very accurate.  

i. Feature Selection : Table 4.12 shows the list of features which were selected and 

evaluated using Decision tree learner C4.5 algorithm for Unit 3. The table shows the 

unique feature number, and the feature name. The total number of selected features 

are 10 (out of 62). It is clear that this model failed to select the most five important 

features, it can select only one of them which is feature number 4 (T/A inlet steam 

temperature).  

 

ii. Power Prediction Model: Figure 4.4 (a) shows the Decision tree learner C4.5 model 

for Unit 3 dataset. The figure shows the tree structure with the branching condition. 

The ten selected features are the tree nodes. 
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Table 4.12 List of Selected Features by Decision tree learner C4.5 Model for Unit 3 

iii. Feature 

No. Feature Name   

2 Total steam flow (kg/s)   

4 T/A inlet steam temperature    

8 Feedwater pressure at economiser inlet    

9 Condenser right inlet temperarure    

29 HPH4 inlet feedwater temperature    

35 T/A bleeder (2) pressure    

38 T/A bleeder (5) pressure    

39 T/A differential expansion (mm)   

43 T/A bearing 3 vibration (mm/s)   

60 Generator winding temperature  6   
Total Number of Selected Features 10 

 

 

 

Figure 4.4 (b) gives some basic information about the model and the used dataset. 

The  model used 198 instances for training, while 102 different instances were used 

as a separate test set. The algorithm which is used to build the model is the Decision 

tree learner C4.5, of course it is the same one which was used to evaluate features’ 

sub sets. The time required to build the model is 5.89 seconds. 

 

iv. Model Evaluation: The model evaluation is done using the equations in Figure 3.2 

(Equations of the Evaluation methods). Table 4.14 gives the details about the model 

accuracy, as shown in the table, the correlation coefficient is high (0.9984), compared 

to (0.9997) for Pace Regression model. Error factors are higher than errors in Pace 

Regression model:  

 Mean absolute error is 1.1606 compared to 0.0711 in Pace Regression,  

 Root mean squared error is 0.2062 compared to 0.0949 in Pace Regression,  

 Relative absolute error is 5.03 % compared to 2.23% in Pace Regression,  

 Root relative squared error is 5.70% compared to 2.62% in Pace Regression. 

So, it is clear that the model accuracy is lower than Pace Regression model.  Table 

4.13 shows a sample of a comparison between the Actual and Predicted values of the 

Generated Power, using Decision tree learner C4.5,  for 30 instances of the Test 

Dataset of Unit 3. The Error column shows how much the predicted values are very 

near to the actual ones. Figure 4.5 gives more clear vision about the model accuracy, 

the graph compares between the actual and predicted values of the amount of the 

generated power, for the test dataset. The difference between the actual and predicted 

values is clear from the graph. 
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(a) Decision tree learner C4.5 Model for Unit 3 

 

 

 

 

GeneratedPower_MW = 

============ 

T_AdifferentialExpansion_mm < -0.27 

|   TotalSteamFlow_kg_s < 55.88 

|   |   T_AdifferentialExpansion_mm < -0.81 

|   |   |   T_A_InletSteamTemperature_deg_C < 508.19 

|   |   |   |   T_Abearing3vibration_mm_s < 5.85 

|   |   |   |   |   HPH4inletFeedwaterTemperature_deg_C < 142.25 : 39.93 (4/0) [2/0] 
|   |   |   |   |   HPH4inletFeedwaterTemperature_deg_C >= 142.25 : 39.75 (11/0.02) [3/0.01] 
|   |   |   |   T_Abearing3vibration_mm_s >= 5.85 : 39.99 (6/0.01) [6/0.02] 
|   |   |   T_A_InletSteamTemperature_deg_C >= 508.19 

|   |   |   |   CondenserRightInletTemperarure_deg_C < 29.32 

|   |   |   |   |   TotalSteamFlow_kg_s < 48.95 : 39.89 (6/0) [1/0.08] 
|   |   |   |   |   TotalSteamFlow_kg_s >= 48.95 

|   |   |   |   |   |   GeneratorWindingTemperature_deg_C_6 < 112.75 : 39.76 (4/0.03) [3/0.03] 
|   |   |   |   |   |   GeneratorWindingTemperature_deg_C_6 >= 112.75 : 40.03 (18/0) [2/0.01] 
|   |   |   |   CondenserRightInletTemperarure_deg_C >= 29.32 

|   |   |   |   |   FeedwaterPressureAtEconomiserInlet_bar < 95.01 : 40.04 (7/0.01) [7/0.06] 
|   |   |   |   |   FeedwaterPressureAtEconomiserInlet_bar >= 95.01 : 40.3 (6/0.01) [4/0.01] 
|   |   T_AdifferentialExpansion_mm >= -0.81 

|   |   |   T_AdifferentialExpansion_mm < -0.74 

|   |   |   |   T_Ableeder_2_pressure_bar < 9.54 

|   |   |   |   |   T_A_InletSteamTemperature_deg_C < 509.94 : 44.81 (9/0.01) [3/0.01] 
|   |   |   |   |   T_A_InletSteamTemperature_deg_C >= 509.94 : 44.99 (4/0) [3/0.01] 
|   |   |   |   T_Ableeder_2_pressure_bar >= 9.54 : 45.18 (8/0) [3/0.01] 
|   |   |   T_AdifferentialExpansion_mm >= -0.74 

|   |   |   |   CondenserRightInletTemperarure_deg_C < 29.75 : 40 (37/0.03) [25/0.03] 
|   |   |   |   CondenserRightInletTemperarure_deg_C >= 29.75 

|   |   |   |   |   TotalSteamFlow_kg_s < 51.38 : 42.14 (7/0.02) [1/0.02] 
|   |   |   |   |   TotalSteamFlow_kg_s >= 51.38 

|   |   |   |   |   |   T_Ableeder_2_pressure_bar < 9.4 : 42.46 (8/0) [3/0.01] 
|   |   |   |   |   |   T_Ableeder_2_pressure_bar >= 9.4 : 42.77 (6/0.02) [3/0.07] 
|   TotalSteamFlow_kg_s >= 55.88 : 45.01 (22/0.01) [8/0.02] 
T_AdifferentialExpansion_mm >= -0.27 
|   CondenserRightInletTemperarure_deg_C < 26.74 

|   |   T_Ableeder_5_pressure_bar < 0.05 : 49.8 (12/0.01) [9/0] 
|   |   T_Ableeder_5_pressure_bar >= 0.05 : 50.5 (6/0.11) [3/0.05] 
|   CondenserRightInletTemperarure_deg_C >= 26.74 : 49.01 (19/0.01) [11/0.02] 

Data set : Unit 3 

Total Number of instances: 300 

Training set: 198 

Test set : 102 

Algorithm : Decision tree learner C4.5 

Time (s) : 5.22 

 

(b) General Information about Model 

Figure 4.4 Decision tree learner C4.5 Model for Unit 3 
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Figure 4.5 Graph for comparison between Actual and Predicted values of the Generated Power, using Decision tree learner C4.5,  for Test Dataset of Unit 3 
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4.5.2  Feature Selection and Prediction Models for Unit 4 Dataset  

According to results of the initial comparison between models evaluation in table 

4.7; the algorithm that shows the highest correlation co-efficient, and minimum errors in 

Unit 4 dataset is Linear Regression, while Decision Table algorithm achieves the worst 

results. Using Unit 4 dataset, two models were designed; Linear Regression, and 

Decision Table models. Subsequent parts will provide the design, evaluation, and 

discussion about these models.  

Correlation coefficient 0.9984 

Mean absolute error 0.1606 

Root mean squared error 0.2063 

Relative absolute error 5.03% 

Root relative squared error 5.70% 

Total Number of Instances 102 

Table 4.14 Decision tree learner C4.5 Model 

Accuracy for Unit 3 Data set 

inst No     actual  predicted  error

1 42.178 42.580 0.402

2 40.361 39.993 -0.368

3 45.245 45.103 -0.142

4 49.778 49.786 0.008

5 49.172 48.989 -0.183

6 44.757 45.103 0.346

7 39.717 39.985 0.268

8 40.166 39.866 -0.300

9 50.501 50.559 0.058

10 40.166 39.866 -0.300

11 45.109 44.964 -0.145

12 39.619 39.866 0.247

13 40.186 39.985 -0.201

14 39.893 39.993 0.100

15 40.010 39.984 -0.026

16 40.029 39.984 -0.045

17 39.912 39.993 0.081

18 49.074 48.989 -0.085

19 42.198 42.580 0.382

20 45.148 45.103 -0.045

21 45.070 44.796 -0.274

22 40.166 40.076 -0.090

23 39.697 39.993 0.296

24 42.803 42.580 -0.223

25 41.885 42.580 0.695

26 42.471 42.580 0.109

27 49.035 48.989 -0.046

28 50.071 49.786 -0.285

29 44.777 44.964 0.187

30 40.381 40.076 -0.305

Table 4.13 Sample of comparison between Actual and 

Predicted values Of the Generated Power, using 

Decision tree learner C4.5,  for Test Dataset of Unit 3 
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4.5.2.1  Linear Regression Model 

Wrapper Feature Selection method is used with Linear Regression to Select and 

evaluate the best set of features. Also Linear regression is used to create the prediction 

model, because in wrapper method the same algorithm which is used to evaluate the sub 

sets should be used to develop the prediction mode. Below is the details of Feature 

Selection, Prediction Model Design and the Model Evaluation.  

i. Feature Selection : Table 4.15 shows the list of features which were selected and 

evaluated using Linear Regression algorithm for Unit 4. The model succeeded to 

select the five features which are used by thermodynamic laws to calculate the 

amount of the generated power (1: Main steam flow (kg/s), 3: Main steam header 

pressure, 4: T/A inlet steam temperature, 61: Condenser inlet exhaust steam pressure, 

62: Condenser inlet exhaust steam temp). The total number of selected features are 

52 (out of 62), this number is high compared to Pace Regression model in Unit 3 

which selected 28 features. This high number of features may lead to overfitting, but 

actually most of these attributes are uncontrollable, therefore, the benefit of this 

model is to study the hidden features which had not been considered before by the 

domain expert. Also this list of features can assist the efficiency engineers of the 

power plant to dig deep in the power plant problems and to study the effect of each 

feature. 

       

ii. Power Prediction Model:  the Linear Regression algorithm is represented as linear 

equation (Kenny and Keeping, 1962) as shown in equation 4.1. 

      x w0 w1a1 w2a2 wkak                        (4.1) 
 

where x is the class; a1, …, ak are the attribute values; and w0, w1, …, wk are weights. 

 

Figure 4.6 (a) shows the Linear Regression model for Unit 4 dataset. The selected 

features are the variables of the regression equation, the factor of each variable in the 

equation gives indication about the importance and relevancy of this variable to the 

class (Amount of Generated Power in MW). For example the factor of 

CondenserInletExhaustSteamPressure_bar is very high (14.1767), that means the 

pressure of steam at condenser inlet (turbine outlet) has very big effect in determining 

the amount of the generated power, and this is absolutely true according to 
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Table 4.15 List of Selected Features by Linear Regression Model for Unit 4 

 

Feature No. Feature Name

1 Main steam flow (kg/s)

2 Total steam flow (kg/s)

3 Main steam header pressure 

4 T/A inlet steam temperature 

5 Main steam header steam temperature 

7 Feedwater temperature at economiser

8 Feedwater pressure at economiser inlet 

9 Condenser right inlet temperarure 

11 Condenser right outlet temperarure 

12 Condenser left outlet temperarure 

13 Condensate water flow (kg/s)

14 Condenser hot well temperature  a

15 Condenser hot well temperature  b

16 Auxiliary steam flow (kg/s)

17 Auxiliary steam pressure 

18 Auxiliary steam temperature 

22 Air temperature after RAH   (1)

23 Air temperature after RAH   (2)

25 FDF A speed (rpm)

26 FDF B speed (rpm)

28 Air temperature after SAH   (2)

30 HPH4 outlet feedwater temperature 

31 HPH5 outlet feedwater temperature 

32 HPH5 inlet feedwater temperature 

33 T/A wheel champer steam pressure 

34 T/A bleeder (1) pressure 

35 T/A bleeder (2) pressure 

36 T/A bleeder (3) pressure 

37 T/A bleeder (4) pressure 

38 T/A bleeder (5) pressure 

39 T/A differential expansion (mm)

40 T/A axial displacement A (mm)

41 T/A axial displacement B (mm)

42 T/A axial displacement C (mm)

45 T/A bearing 1 vibration (1) (mic)

46 T/A bearing 1 vibration (2) (mic)

47 T/A bearing 2 vibration (1) (mic)

48 T/A bearing 2 vibration (2) (mic)

49 TBN side cold air 

50 TBN side warm air 

51 Exciter side cold air 

52 Exciter side warm air 

53 PMG side cold air 

54 PMG side warm air 

55 Generator winding temperature  1

56 generator winding temperature  2

57 Generator winding temperature  3

58 Generator winding temperature  4

59 Generator winding temperature  5

60 Generator winding temperature  6

61 Condenser inlet exhaust steam pressure 

62 Condenser inlet exhaust steam temp

52Total Number of Selected Features
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thermodynamic laws. Also the pressure at turbine bleeders 1,2,3,4 and 5 have high 

factors, this is because these points are part of turbine outlet. Some features which 

were not been considered as important ones, appear in the regression equation with 

high factor like T_Aaxial displacement A, B and C (- 6.1079 * 

T_AaxialdisplacementA_mm +  9.2302 * T_AaxialdisplacementB_mm  -   5.0426 * 

T_AaxialdisplacementC_mm), these high factor draw the attention of the domain expert 

because it appears also in Pace Regression model with Unit 3. The efficiency 

engineers took this as important input to be considered, and to be a starting point for 

their investigation about the power plant problems.  

 

Figure 4.b (b) gives some basic information about the model and the used dataset. 

The  model used 475 instances for training, while 254 different instances were used 

as a separate test set. The algorithm which is used to build the model is the Linear 

Regression, of course it is the same one which was used to evaluate features’ sub sets. 

The time required to build the model is 73.67 seconds. 

 

iii. Model Evaluation: Model testing is done by a separate test set, where 66.0% of the 

dataset is used for training, and the remainder for testing. The model evaluation is 

done using the equations in Figure 3.2 (Equations of the Evaluation methods). The 

model is considered to be more accurate if the Correlation coefficient is high (near to 

one), and the errors are low. Table 4.17 give the details about the model accuracy, as 

shown in the table, the correlation coefficient is high (0.9998) , and error factors are 

low (Mean absolute error is 0.0928, Root mean squared error is 0.137, Relative 

absolute error is 1.51%, and the Root relative squared error is 1.81% ). So, the 

the model accuracy is very high.   
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(a)   Linear Regression Model Equation for Unit 4 

Figure 4.6  Pace Regression Model for Unit 4

Data set : Unit 4 

Total Number of 

instances: 720 

Training set: 475 

Test set : 245 

Algorithm : Linear 

Regression 

Time (s) : 73.67 

 
(b) General Information 

about the Model 

GeneratedPower_MW = 
      0.8915 * MainSteamFlow_kg_s + 
     -0.9942 * TotalSteamFlow_kg_s + 

      0.0832 * MainSteamHeaderPressure_bar + 
      0.0117 * T_A_InletSteamTemperature_deg_C + 

      0.0045 * 

MainSteamHeaderSteamTemperature_deg_C + 
     -0.0316 * 

FeedwaterTemperatureAtEconomiserInlet_deg_ C + 
     -0.0172 * FeedwaterPressureAtEconomiserInlet_bar + 
     -0.3315 * CondenserRightInletTemperarure_deg_C + 

      0.0912 * CondenserRightOutletTemperarure_deg_C + 
      0.0974 * CondenserLeftOutletTemperarure_deg_C + 

     -0.0091 * CondensateWaterFlow_kg_s + 
     -0.0275 * CondenserHotWellTemperature_deg_C_a + 
     -0.0253 * CondenserHotWellTemperature_deg_C_b + 

      0.8423 * AuxiliarySteamFlow_kg_s + 
      0.2227 * AuxiliarySteamPressure_bar + 

     -0.1098 * AuxiliarySteamTemperature_deg_C + 
     -0.0329 * AirTemperatureAfterRAH_deg_C_1 + 
      0.0309 * AirTemperatureAfterRAH_deg_C_2 + 

      0.0052 * FDF_A_speed_rpm + 
     -0.0051 * FDF_B_speed_rpm + 

      0.0094 * AirTemperatureAfterSAH_deg_C_2 + 
      0.1397 * HPH4outletFeedwaterTemperature_deg_C + 
      0.0085 * HPH5outletFeedwaterTemperature_deg_C + 
     -0.0004 * HPH5inletFeedwaterTemperature_deg_C + 

      0.9519 * T_AwheelChamperSteamPressure_bar + 
     -1.7743 * T_Ableeder_1_pressure_bar + 
      3.2632 * T_Ableeder_2_pressure_bar + 
      0.1442 * T_Ableeder_3_pressure_bar + 
      3.4064 * T_Ableeder_4_pressure_bar + 
     -2.5871 * T_Ableeder_5_pressure_bar + 

      0.4359 * T_AdifferentialExpansion_mm + 
     -6.1079 * T_AaxialdisplacementA_mm + 
      9.2302 * T_AaxialdisplacementB_mm + 
     -5.0426 * T_AaxialdisplacementC_mm + 
     -0.0117 * T_Abearing1vibration_1_mic + 
      0.0084 * T_Abearing1vibration_2_mic + 
     -0.0067 * T_Abearing2vibration_1_mic + 
      0.0039 * T_Abearing2vibration_2_mic + 

     -0.0189 * TBNsideColdAir_deg_C + 
      0.0801 * TBNsideWarmAir_deg_C + 

      0.0892 * ExciterSideColdAir_deg_C + 
     -0.0444 * ExciterSideWarmAir_deg_C + 

      0.0001 * PMGsideColdAir_deg_C + 
      0.0102 * PMGsideWarmAir_deg_C + 

     -0.0047 * GeneratorWindingTemperature_deg_C_1 + 
     -0.0088 * generatorWindingTemperature_deg_C_2 + 
     -0.0103 * GeneratorWindingTemperature_deg_C_3 + 
     -0.0306 * GeneratorWindingTemperature_deg_C_4 + 
     -0.0415 * GeneratorWindingTemperature_deg_C_5 + 
      0.0549 * GeneratorWindingTemperature_deg_C_6 + 

    -14.1767 * 

CondenserInletExhaustSteamPressure_bar_a + 
     -0.1083 * 

CondenserInletExhaustSteamTemperature_deg_C + 
      1.2281 
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Figure 4.7 Graph for comparison between Actual and Predicted values Of the Generated Power, using Linear Regression,  for Test Dataset of Unit 4 
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Table 4.16 shows a sample of a comparison between the Actual and Predicted 

values of the Generated Power, using Linear Regression,  for 30 instances of the Test 

Dataset of Unit 4, the Error column shows how much the predicted values are very 

near to the actual ones. Figure 4.7 gives more clear vision about the model accuracy, 

the graph is comparing between the actual and predicted values of the amount of the 

generated power, for the test dataset.    

 

 

Correlation coefficient 0.9998 

Mean absolute error 0.0928 

Root mean squared error 0.137 

Relative absolute error 1.51% 

Root relative squared error 1.81% 

Total Number of Instances 245 

Table 4.16 Sample of comparison between Actual and 

Predicted values Of the Generated Power, using Linear 

Regression,  for Test Dataset of Unit 4 

 

Inst No.     Actual  Predicted  Error

1 42.139 42.084 -0.055

2 46.906 46.963 0.057

3 39.463 39.531 0.068

4 45.304 45.354 0.050

5 29.832 29.850 0.018

6 49.465 49.526 0.061

7 50.051 50.029 -0.022

8 49.602 49.843 0.241

9 43.858 43.840 -0.018

10 47.473 47.556 0.083

11 44.347 44.371 0.024

12 39.756 39.916 0.160

13 50.188 50.170 -0.018

14 50.227 50.149 -0.078

15 49.016 49.032 0.016

16 44.093 44.251 0.158

17 30.027 29.978 -0.049

18 50.149 50.183 0.034

19 55.424 55.451 0.027

20 50.071 49.856 -0.215

21 40.381 40.306 -0.075

22 49.055 49.040 -0.015

23 49.719 49.931 0.212

24 45.089 45.012 -0.077

25 38.349 38.249 -0.100

26 46.769 46.815 0.046

27 38.838 38.970 0.132

28 43.741 43.862 0.121

29 49.973 49.946 -0.027

30 44.620 44.702 0.082

Table 4.17 Linear Regression Model 
Accuracy for Unit 4 Data set 
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4.5.2.2  Decision Table Model 

Another model was built using Decision Table algorithm (Kohavi, 1995), 

which showed very poor accuracy with Unit 4 dataset, as shown in table 4.7 which 

shows the initial comparison between algorithms’ accuracy for Unit 4 Dataset. 

This model was built only to compare its results with the Linear Regression model 

which achieved very high accuracy.  

i. Feature Selection : Table 4.18 shows the list of features which were selected and 

evaluated using Decision Table algorithm for Unit 4. The total number of the 

selected features are 4 (out of 62). It is clear that this model failed to select the most 

five important features. 

 

ii. Power Prediction Model: Figure 4.8 (a) shows the Decision table model for Unit 4 

dataset. The figure shows the number of the generated rules, but the model can not 

assist in explaining the behavior of the power plant. Figure 4.8 (b) gives some basic 

information about the model and the used dataset. The  model used 475 instances 

for training, while 245 different instances were used as a separate test set. The 

algorithm which is used to build the model is the Decision Table, it is the same one 

which was used to evaluate features’ sub sets. The time required to build the model 

is 121.72 seconds. 

 

iii. Model Evaluation: The model evaluation is done using the equations in Figure 3.2 

(Equations of the Evaluation methods). Table 4.20 gives the details about the model 

accuracy, as shown in the table, the correlation coefficient is high (0.9917), 

compared to (0.9998) for Linear Regression model. Error factors are higher than 

errors in Linear Regression model:  

 

 Mean absolute error is 0.3645 compared to 0.0928 in Linear Regression,  

 Root mean squared error is 0.9718 compared to 0.137 in Linear Regression,  

 Relative absolute error is 5.94 % compared to 1.51% in Linear Regression,  

 Root relative squared error is 12.85% compared to 1.81% in Linear Regression. 

 

So, it is clear that the model accuracy is lower than Linear Regression model.   
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Table 4.19 shows a sample of a comparison between the Actual and Predicted 

values of the Generated Power, using Decision Table,  for 30 instances of the Test 

Dataset of Unit 4. The Error column shows how much the predicted values are very 

far from the actual ones. Figure 4.9 gives more clear vision about the model 

accuracy, the graph compares between the actual and predicted values of the amount 

of the generated power, for the test dataset. The difference between the actual and 

predicted values is clear from the graph. 

 

 

Table 4.18 List of Selected Features by Decision Table Model for Unit 4 

Feature No. Feature Name   

32 HPH5 inlet feedwater temperature    

34 T/A bleeder (1) pressure    

55 Generator winding temperature  1   

59 Generator winding temperature  5   

Total Number of Selected Features 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) General Information 

about the Model 

GeneratedPower_MW = 
Classifier Model 
Decision Table: 

Number of training instances: 720 
Number of Rules : 54 

Non matches covered by Majority class. 
 Best first. 
 Start set: no attributes 
 Search direction: forward 
 Stale search after 5 node expansions 
 Total number of subsets evaluated: 11 
 Merit of best subset found:    0.884 

Evaluation (for feature selection): CV (leave 

one out)  
Feature set: 1,2,3,4,5 

Data set : Unit4 

Total Number of 

instances: 720 

Training set: 475 

Test set : 245 

Algorithm : 

DecisionTable 

Time (s) : 121.72 

(1) Decision Table Model for Unit 4 

Figure 4.8  Decision Table Model for Unit 4 
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Figure 4.9 Graph for comparison between Actual and Predicted values Of the Generated Power,  

using Decision Table,  for Test Dataset of Unit 4 
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4.5.3   Feature Selection and Prediction Models for Unit 3&4 

dataset   

Unit 3&4 dataset is a new dataset that combines Unit 3 and Unit 4 datasets, the 

purpose of this model is to check whether there is a generic prediction model regardless 

the unit, and to check if there is a similarity in selected sets of features. According to 

results of the initial comparison between models evaluation in table 4.8; the algorithm 

that shows the highest correlation co-efficient, and minimum errors in Unit 3&4 dataset 

is Neural Network (Multilayer Perceptron), while Isotonic Regression algorithm 

achieves the worst results. Using Unit 3&4 dataset, two models were designed; Neural 

Network, and Isotonic Regression models. Subsequent parts provide the design, 

evaluation, and discussion about these models.  

Correlation coefficient 0.9917 

Mean absolute error 0.3645 

Root mean squared error 0.9718 

Relative absolute error 5.94% 

Root relative squared error 12.85% 

Total Number of Instances 245 

Table 4.20 Decision Table Model 

Accuracy for Unit 4 Data set 

Table 4.19 Sample of comparison between Actual 
and Predicted values Of the Generated Power, 
using Decision Table,  for Test Dataset of Unit 4 

 
Instance No Aactual  Predicted  Error

1 42.139 42.196 0.057

2 46.906 47.043 0.137

3 39.463 39.752 0.289

4 45.304 44.714 -0.590

5 29.832 30.027 0.195

6 49.465 49.995 0.530

7 50.051 50.085 0.034

8 49.602 50.085 0.483

9 43.858 43.936 0.078

10 47.473 43.438 -4.035

11 44.347 43.712 -0.635

12 39.756 39.752 -0.004

13 50.188 49.995 -0.193

14 50.227 50.085 -0.142

15 49.016 49.270 0.254

16 44.093 43.712 -0.381

17 30.027 30.026 -0.001

18 50.149 50.085 -0.064

19 55.424 55.314 -0.110

20 50.071 49.995 -0.076

21 40.381 40.400 0.019

22 49.055 49.177 0.122

23 49.719 50.085 0.366

24 45.089 44.856 -0.233

25 38.349 38.691 0.342

26 46.769 47.043 0.274

27 38.838 38.691 -0.147

28 43.741 43.610 -0.131

29 49.973 50.085 0.112

30 44.620 44.714 0.094
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4.5.3.1 Neural Network Model 

 

Wrapper Feature Selection method is used with Neural Network to Select and 

evaluate the best set of features. Also Neural Network (Multi Layer Perceptron) is used 

to create the prediction model (Hastie, Tibshirani and Friedman, 2009). Below is the 

details of Feature Selection, Prediction Model Design and the Model Evaluation.  

 

i. Feature Selection : Table 4.21 shows the list of features which were selected and 

evaluated using Neural Network for Unit 3&4 dataset. . The total number of the 

selected features are 18 (out of 62). The model can select only three (1: Main steam 

flow (kg/s), 4: T/A inlet steam temperature, 62: Condenser inlet exhaust steam temp) 

of  the five features which are used by thermodynamic laws to calculate the amount 

of the generated power. Therefore, the model failed to select the required features.  

 

ii. Power Prediction Model: For power prediction model, three Neural Network 

models were created. The first used 1 hidden layer with 9 neurons, the second used 

3 hidden layers with (9,18,9) neurons, and the third used 3 hidden layers with 

(9,18,36) neurons. Figure 4.10 shows the design of the first Neural Network, in witch 

the 18 selected features forms the input layer, and the class (Generated_Power_MW) 

is the output layer. Weights are learned from the training set. Iteratively minimizing 

the error using steepest decent. The gradient is determined using the back-

propagation algorithm. The change in weight is computed by multiplying the 

gradient by the learning rate (0.3) and adding the previous change in weight 

multiplied by the momentum (0.2), equation 4.2 below shows how the weight is 

calculated: 

 

                     (4.2) 

 

 

Where : Wnext is the new weight , W is the weight,      W is the change in weight.  

Although the models shows high accuracy, but it is difficult for the Neural 

Network model to assist in explaining the behavior of the power plant. Also the 

model can select only three of the features used to calculate the power, for these two 

reasons the model is not accepted. The  model used 1020 instances for training. The 

time required to build the model is longer than other methods.  
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Table 4.21 List of Selected Features by Neural Network (MLP) Model for Unit 3&4 Dataset 

Feature No. Feature Name   

1 Main steam flow (kg/s)   

4 T/A inlet steam temperature    

6 HPH5 discharge feedwater flow    

9 Condenser right inlet temperarure    

14 Condenser hot well temperature  a   

16 Auxiliary steam flow (kg/s)   

23 Air temperature after RAH   (2)   

29 HPH4 inlet feedwater temperature    

30 HPH4 outlet feedwater temperature    

35 T/A bleeder (2) pressure    

36 T/A bleeder (3) pressure    

40 T/A axial displacement A (mm)   

42 T/A axial displacement C (mm)   

45 T/A bearing 1 vibration (1) (mic)   

51 Exciter side cold air    

57 Generator winding temperature  3   

60 Generator winding temperature  6   

62 Condenser inlet exhaust steam temp   

Total Number of selected Features 18 
 

 

i. Model Evaluation: Model testing is done using 10 fold cross validation. The 

model evaluation is done using the equations in Figure 3.2 (Equations of the 

Evaluation methods). Table 4.23 compares between the accuracy of three Neural 

Network models. The first model which used only one hidden layer achieved 

higher performance, as shown in the table, the correlation coefficient is high 

(0.9995) , and error factors are low (Mean absolute error is 0.1689, Root 

mean squared error is 0.2244, Relative absolute error is 3.13%, and the Root 

relative squared error is 3.32% ). So, the model accuracy is higher than it’s 

counterparts. Table 4.22 shows a sample of a comparison between the Actual and 

Predicted values of the Generated Power, using Neural Network with 1 hidden 

layer,  for 30 instances of the Test Dataset of Unit 3&4, the Error column shows 

how much the predicted values are very near to the actual ones. Figure 4.11 gives 

more clear vision about the model accuracy, the graph is comparing between the 

actual and predicted values of the amount of the generated power, for the test 

dataset.    
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instance No     Actual  Predicted  Error

1 45.070 45.043 -0.027

2 48.801 48.865 0.064

3 29.968 29.835 -0.133

4 50.833 50.434 -0.399

5 44.190 44.265 0.075

6 50.012 50.054 0.042

7 44.249 44.384 0.135

8 47.238 46.938 -0.300

9 39.775 39.856 0.081

10 39.502 39.600 0.098

11 38.857 39.033 0.176

12 50.012 49.840 -0.172

13 40.010 40.023 0.013

14 56.928 56.716 -0.212

15 46.750 46.916 0.166

16 48.938 48.874 -0.064

17 49.700 49.658 -0.042

18 30.144 30.018 -0.126

19 49.153 49.179 0.026

20 46.808 46.685 -0.123

21 49.993 50.332 0.339

22 50.012 49.811 -0.201

23 39.990 39.951 -0.039

24 39.756 39.821 0.065

25 28.777 28.690 -0.087

26 39.775 40.185 0.410

27 49.758 49.713 -0.045

28 44.093 44.207 0.114

29 39.853 39.665 -0.188

30 39.893 40.027 0.134

Table 4.22 Sample of comparison between Actual and Predicted values Of the Generated 

Power, using Neural Network (1 Hidden Layer),  for Test Dataset of Unit 3&4 Dataset 

 

Table 4.23  Comparison between Neural Network Models’ Accuracy for Unit 3&4 Dataset 

 
Number of Hidden Layers 1 3 3 

Number of Neurons 9 9, 18, 9 9, 18, 36 
Correlation coefficient      0.9995 0.9992 0.9994 

Mean absolute error          0.1689 0.2047 0.1742 

Root mean squared error      0.2244 0.2707 0.2311 

Relative absolute error      3.13% 3.80% 3.23% 

Root relative squared error  3.32% 4.00% 3.42% 

Total Number of Instances    1020 1020 1020 
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Generated Power in 

MW 

Figure 4.10 Neural Network Model for Unit 4 Data set 
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Figure 4.11 Graph for comparison between Actual and Predicted values Of the Generated Power, using Neural Network (1 Hidden Layer),  for Test Dataset of Unit 3&4 Dataset 
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4.5.3.2  Isotonic Regression Model 

 

Following the same practice, another model was built using Isotonic Regression  

(Jan, Kurt and Patrick, 2009), which is selected from the bottom of the performance 

comparison table for Unit 3&4 dataset in table 4.8. 

 

i. Feature Selection : When wrapper method is applied for Unit 3&4 dataset using 

Isotonic Regression algorithm, only feature number 30 was selected (HPH4 outlet 

feedwater temperature). So, so the model failed in feature selection. 

 

ii. Power Prediction Model: The model selected used one feature (HPH4 outlet 

feedwater temperature), non of the most important features were selected and used 

for prediction, so regardless of the model accuracy, the model is also not accepted. 

 

iii. Model Evaluation: Table 4.25 gives the details about the model accuracy, as shown 

in the table, the correlation coefficient is high (0.9232), compared to (0.9997) for 

Neural Network model. Error factors are higher than errors in Neural Network 

model:  

 

 Mean absolute error is 1.774 compared to 0.1294 in Linear Regression,  

 Root mean squared error is 2.6102 compared to 0.1694 in Linear Regression, 

 Relative absolute error is 32.84 % compared to 2.39% in Linear Regression,  

 Root relative squared error is 38.58% compared to 2.50% in Linear Regression. 
 

 

So, it is clear that the model accuracy is lower than Neural Network 

model. Table 4.24 shows a sample of a comparison between the Actual and 

Predicted values of the Generated Power, using Isotonic Regression,  for 30 

instances of the Test Dataset of Unit 3&4. The Error column shows how much 

the predicted values are very far from the actual ones. Figure 4.12 gives more 

clear vision about the model accuracy, the graph compares between the actual 

and predicted values of the amount of the generated power, for the test dataset. 

The difference between the actual and predicted values is clear from the graph. 
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Figure 4.12 Graph for comparison between Actual and Predicted values Of the Generated Power,  using Isotonic Regression  

or Test Dataset of Unit 3&4 Dataset 
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inst#     actual  predicted  error 

1 45.070 45.770 0.700 

2 48.801 48.731 -0.070 

3 29.968 30.016 0.048 

4 50.833 48.731 -2.102 

5 44.190 43.889 -0.301 

6 50.012 48.619 -1.393 

7 44.249 43.889 -0.360 

8 47.238 43.889 -3.349 

9 39.775 42.039 2.264 

10 39.502 39.876 0.374 

11 38.857 39.876 1.019 

12 50.012 48.619 -1.393 

13 40.010 42.039 2.029 

14 56.928 56.980 0.052 

15 46.750 43.889 -2.861 

16 48.938 48.619 -0.319 

17 49.700 48.731 -0.969 

18 30.144 30.044 -0.100 

19 49.153 48.619 -0.534 

20 46.808 43.889 -2.919 

21 49.993 48.619 -1.374 

22 50.012 48.355 -1.657 

23 39.990 43.889 3.899 

24 39.756 43.889 4.133 

25 28.777 29.646 0.868 

26 39.775 48.619 8.844 

27 49.758 48.619 -1.139 

28 44.093 42.039 -2.054 

29 39.853 42.039 2.186 

Correlation coefficient 0.9232 

Mean absolute error 1.7774 

Root mean squared error 2.6102 

Relative absolute error 32.84% 

Root relative squared error 38.58% 

Total Number of Instances 347 

Table 4.25 Istonic Regression 

Accuracy for Unit 3&4 Dataset 

Table 4.24 Sample of comparison between Actual and 

Predicted values Of the Generated Power, using Istonic 

Regression,  for Test Dataset of Unit 3&4 Dataset 
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4.6    Discussion about Features’ Selection Results 

 

All results of attribute selection models are collected in table 4.26, the table is 

ordered by the last column (Rank). The first column in the table is the attribute ID, the 

second is the feature name. The rest of the columns are organized in three groups, one for 

each dataset. If the attribute is selected by an algorithm, the number  “1” will be written at 

the corresponding cell; else the cell will be null. The last column of the table (Rank) is the 

summation of ones, that represents the number of algorithms that had selected this feature, 

this will give an indication about the influence of this feature in determining the amount 

of generated power, if the number is high that means this attribute has been selected by 

many algorithms, and that means this attribute has a high effect in determining the amount 

of the generated power. That is absolutely true with the Main steam flow (kg/s), and T/A 

inlet steam temperature  which are belong to the top 5 features list (features that are used 

to calculate the amount of power), this could be an evidence to the correctness of the 

feature selection results. Table 4.26 gave impressive results to domain expert, who spent 

a lot of time discussing these results. One of these findings is about feature number 41 

(T/A axial displacement B (mm)) which had never been taken in consideration by the 

efficiency engineers. So table 4.27 and 4.28 are very important analysis reports that give 

the Power Plant Efficiency engineers indication about the status of the power plant. 

 

Unit 4 results is also provided in a table 4.27 separately, to give more clear vision 

about this unit. That is because Unit 4 dataset was is the most accurate data, and the Linear 

Regression model when used with this dataset succeeded in selecting the top 5 features 

(features that are used to calculate the power).  
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Table 4.26 Attribute selection summary of all units 
  Unit 3 Uni 4 Unit 3&4 
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1 Main steam flow (kg/s) 1 1 1 1   1 1 1     1 1 1 1   11 

4 T/A inlet steam temperature  1 1 1 1 1 1 1 1   1 1 1       11 

37 T/A bleeder (4) pressure  1 1 1 1   1 1     1 1         9 

2 Total steam flow (kg/s) 1 1 1 1 1 1 1       1         8 

30 HPH4 outlet feedwater temperature  1         1 1 1   1 1 1   1 1 8 

36 T/A bleeder (3) pressure  1 1 1     1 1 1   1 1 1       8 

59 Generator winding temperature  5 1 1 1     1 1   1 1 1         8 

62 Condenser inlet exhaust steam temp 1 1 1     1   1   1 1 1   1   8 

13 Condensate water flow (kg/s) 1 1 1     1 1       1     1   7 

14 Condenser hot well temperature  a 1 1       1 1 1 1   1 1       7 

16 Auxiliary steam flow (kg/s)   1 1     1 1 1     1 1       7 

33 T/A wheel champer steam pressure  1 1 1 1   1 1       1         7 

34 T/A bleeder (1) pressure  1         1 1   1 1 1     1   7 

41 T/A axial displacement B (mm)   1 1 1   1 1     1 1         7 

46 T/A bearing 1 vibration (2) (mic) 1 1 1 1   1         1     1   7 

48 T/A bearing 2 vibration (2) (mic) 1 1 1 1   1 1       1         7 

61 Condenser inlet exhaust steam press 1 1 1     1 1     1 1         7 

18 Auxiliary steam temperature    1 1 1   1 1       1         6 

22 Air temperature after RAH   (1) 1 1 1     1 1       1         6 

29 HPH4 inlet feedwater temperature        1 1   1 1   1 1 1       6 

32 HPH5 inlet feedwater temperature  1         1 1   1 1 1         6 

38 T/A bleeder (5) pressure  1       1 1 1       1         6 

47 T/A bearing 2 vibration (1) (mic) 1 1 1     1 1       1         6 

50 TBN side warm air            1 1     1 1     1   6 

51 Exciter side cold air    1 1     1   1     1 1       6 

52 Exciter side warm air  1 1 1 1   1         1         6 

57 Generator winding temperature  3 1 1       1   1     1 1   1   6 

5 Main steam header steam temperature  1 1       1       1 1         5 

9 Condenser right inlet temperarure 1       1 1   1     1 1       5 

11 Condenser right outlet temperarure     1     1 1       1         5 

12 Condenser left outlet temperarure 1         1 1       1         5 

15 Condenser hot well temperature  b 1   1     1 1       1         5 

23 Air temperature after RAH   (2)           1 1 1     1 1 1     5 

28 Air temperature after SAH   (2) 1   1     1 1                 5 

31 HPH5 outlet feedwater temperature  1   1     1       1 1         5 

35 T/A bleeder (2) pressure          1 1 1 1     1 1       5 

42 T/A axial displacement C (mm) 1         1 1 1     1 1       5 

49 TBN side cold air  1 1   1   1         1         5 

54 PMG side warm air  1         1         1     1   5 

55 Generator winding temperature  1 1         1     1   1     1   5 

56 generator winding temperature  2 1         1 1       1         5 

58 Generator winding temperature  4 1         1 1       1         5 

7 Feedwater temperature at economiser 1 1       1         1         4 

8 Feedwater pressure at economiser inlet        1 1 1         1         4 

17 Auxiliary steam pressure      1     1 1       1         4 

19 Combustion air flow (Nm3/s) 1 1         1     1           4 

21 Air temperature at FDF inlet  1 1 1       1                 4 

25 FDF A speed (rpm) 1         1 1       1         4 

26 FDF B speed (rpm) 1         1 1       1         4 

40 T/A axial displacement A (mm) 1 1       1   1       1       4 

43 T/A bearing 3 vibration (mm/s)         1   1       1         4 

3 Main steam header pressure            1 1     1           3 

10 Condenser left inlet temperarure 1   1               1         3 

27 Air temperature after SAH   (1) 1                   1         3 

39 T/A differential expansion (mm) 1       1 1                   3 

45 T/A bearing 1 vibration (1) (mic)           1   1     1 1       3 

60 Generator winding temperature  6         1 1   1       1       3 

6 HPH5 discharge feedwater flow  1             1       1       2 

20 Air temperature at FDF inlet  1 1                           2 

24 FDF discharge air pressure (mbar) 1                   1         2 

53 PMG side cold air  1         1                   2 

44 T/A bearing 4 vibration (mm/s) 1                             1 

Sum   47 28 26 13 10 52 38 18 4 16 51 18 2 10 1   
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F Table (4.27) Attribute selection summary of Unit 4  
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30 HPH4 outlet feedwater temperature  1 1 1 1 4 

14 Condenser hot well temperature  a 1 1 1   3 

1 Main steam flow (kg/s) 1 1 1   3 

4 T/A inlet steam temperature  1 1 1   3 

16 Auxiliary steam flow (kg/s) 1 1 1   3 

23 Air temperature after RAH   (2) 1 1 1   3 

35 T/A bleeder (2) pressure  1 1 1   3 

36 T/A bleeder (3) pressure  1 1 1   3 

42 T/A axial displacement C (mm) 1 1 1   3 

32 HPH5 inlet feedwater temperature  1 1     2 

34 T/A bleeder (1) pressure  1 1     2 

59 Generator winding temperature  5 1 1     2 

2 Total steam flow (kg/s) 1 1     2 

3 Main steam header pressure  1 1     2 

9 Condenser right inlet temperarure 1   1   2 

11 Condenser right outlet temperarure 1 1     2 

12 Condenser left outlet temperarure 1 1     2 

13 Condensate water flow (kg/s) 1 1     2 

15 Condenser hot well temperature  b 1 1     2 

17 Auxiliary steam pressure  1 1     2 

18 Auxiliary steam temperature  1 1     2 

22 Air temperature after RAH   (1) 1 1     2 

25 FDF A speed (rpm) 1 1     2 

26 FDF B speed (rpm) 1 1     2 

28 Air temperature after SAH   (2) 1 1     2 

29 HPH4 inlet feedwater temperature    1 1   2 

33 T/A wheel champer steam pressure  1 1     2 

37 T/A bleeder (4) pressure  1 1     2 

38 T/A bleeder (5) pressure  1 1     2 

40 T/A axial displacement A (mm) 1   1   2 

41 T/A axial displacement B (mm) 1 1     2 

45 T/A bearing 1 vibration (1) (mic) 1   1   2 

47 T/A bearing 2 vibration (1) (mic) 1 1     2 

48 T/A bearing 2 vibration (2) (mic) 1 1     2 

50 TBN side warm air  1 1     2 

51 Exciter side cold air  1   1   2 

56 generator winding temperature  2 1 1     2 

57 Generator winding temperature  3 1   1   2 

58 Generator winding temperature  4 1 1     2 

60 Generator winding temperature  6 1   1   2 

61 Condenser inlet exhaust steam pressure  1 1     2 

62 Condenser inlet exhaust steam temp 1   1   2 

55 Generator winding temperature  1 1       1 

5 Main steam header steam temperature  1       1 

6 HPH5 discharge feedwater flow      1   1 

7 Feedwater temperature at economiser 1       1 

8 Feedwater pressure at economiser inlet  1       1 

19 Combustion air flow (Nm3/s)   1     1 

21 Air temperature at FDF inlet    1     1 

31 HPH5 outlet feedwater temperature  1       1 

39 T/A differential expansion (mm) 1       1 

43 T/A bearing 3 vibration (mm/s)   1     1 

46 T/A bearing 1 vibration (2) (mic) 1       1 

49 TBN side cold air  1       1 

52 Exciter side warm air  1       1 

53 PMG side cold air  1       1 

54 PMG side warm air  1       1 

10 Condenser left inlet temperarure         0 

20 Air temperature at FDF inlet          0 

24 FDF discharge air pressure (mbar)         0 

27 Air temperature after SAH   (1)         0 

44 T/A bearing 4 vibration (mm/s)         0 

Sum   52 38 18 1   
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4.7    Discussion about the Power Prediction Models 

 

According to thermodynamic laws, and as stated by the domain experts, there are five 

features used to calculate the amount of generated power, whether you are using 

manufacturer consumption graph, or power equation.  This top 5 list contains : 1. Main steam 

flow, 3. Pressure at Turbine Inlet, 4. Temperature at Turbine Inlet, 61. Pressure at Turbine 

Outlet, 62. Temperature at Turbine Outlet. So, any prediction model that is not using these 

features will not be acceptable. As seen from table 4.30, the models that match this constraint 

is Linear Regression for Unit 4. Also this model attained the highest correlation coefficient 

(0.9998) and lowest MAE (0.0928) in unit 4, so Linear Regression model for unit 4 is the 

most acceptable model. 

From table 4.29 we can observe that feature 3 (Main steam header pressure) is not 

selected by any of the algorithms in unit 3 dataset, this observation is directly related to the 

high Standard Deviation (15.059) which was observed for the same feature, see Table 4.2 

Unit 3 Dataset Analysis. From this observation we can highlight that there is an issue in the 

amount of pressure at turbine inlet of unit 3, which is the reason behind the noisy data of 

Unit 3. 
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1 Main steam flow (kg/s) 1 1 1 1   1 1 1     1 1 1 1   11 

4 T/A inlet steam temperature  1 1 1 1 1 1 1 1   1 1 1       11 

62 Condenser inlet exhaust steam temp 1 1 1     1   1   1 1 1   1   8 

61 
Condenser inlet exhaust steam 

pressure  
1 1 1     1 1     1 1         7 

3 Main steam header pressure            1 1     1           3 

Sum   4 4 4 2 1 5 4 3 0 4 4 3 1 2 0   

Table 4.28 Attribute selection summary of for the Top 5 features in Unit 3 and 4  

As shown in table 4.28 , no algorithm in Unit 3&4 dataset succeeded to select the 

Top 5 features. Because this dataset is composed of both unit 3 and unit 4 dataset, it will 

inherit all problems observed in unit 3. Hence, non of prediction models of Unit 3&4 dataset 

are not using the top 5 features. So, we can conclude that, Unit 3&4 dataset could not be used 

as generic dataset, and any unit should be studied separately to predict the generated power. 
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4.8    Summary 

 

The calculation of the amount of generated power from a thermal power plant is 

done using only five features which are (1. Main steam flow, 3. Pressure at Turbine Inlet, 

4. Temperature at Turbine Inlet, 61. Pressure at Turbine Outlet, 62. Temperature at 

Turbine Outlet). The objective of this chapter is  “To design a feature selection technique, 

that can determine the best set of features to predict the amount of generated power from 

a thermal power plant”. To achieve this objective, 3 datasets were used with 14 prediction 

algorithms and Wrapper method of feature selection. The models that showed higher 

correlation coefficient and minimum errors were selected to design the prediction models. 

Results from all these experiments were discussed with the domain expert, who 

highlighted many interesting findings to be as starting point for further investigation about 

the power plant status.  

Linear Regression which was used with Unit 4 dataset attained the highest 

Correlation Coefficient (0.9998) and lowest MAE (0.0928) , so Linear Regression model 

with unit 4 is the most acceptable model. The model used 52 attribute to predict the power, 

although this number is relatively high, but the model gave accurate prediction and 

succeeded in  determining the other features with their influence (weight) to the amount 

of generated power. 
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CHAPTER FIVE 

 

 

 

POWER PREDICTION MODELS USING 

CONTROLLABLE PARAMETERS 
 

 

 

5.1 Introduction 

  

 The target of this chapter is “To design a prediction technique that can accurately 

predicts the amount of the generated power from a thermal power plant, using only the 

controllable parameters”. In the previous chapter, Feature Selection techniques were used to 

select a set of features, then the selected set was used to predict the amount of the generated 

power. However, most of these selected features are non controllable parameter. The controllable 

parameters are (1. Main steam flow, 3. Pressure at Turbine Inlet, 4. Temperature at Turbine Inlet 

) , the efficiency engineers can control the amount of these parameters by adding more energy to 

the boiler and controlling the steam valves at turbine inlet. But, the other two parameters which 

are needed to calculate the amount of power (61. Pressure at Turbine Outlet, 62. Temperature at 

Turbine Outlet) are non controllable. The problem is that; the actual amount of the generated 

power is always different from the expected and calculated values, using either the Steam 

Consumption Graph or  the thermodynamic laws. This chapter presents a solution for this problem 

by designing a prediction model that uses only the controllable parameters. This model could be 

used as a tool to accurately control the amount of power generated from a thermal power plant. 

 

 To achieve this goal, two datasets were used: one for unit 3, the other for unit 4. This 

chapter starts by describing the datasets, then basic statistical analysis about these datasets is 

shown. After that an initial comparison between the prediction algorithms is done for each 

dataset, to select the most appropriate algorithm for each dataset to build the prediction model. 

Then for each dataset two main tasks were done: the development of the power prediction model 

and the  model evaluation. After that a discussion about models, then a summary is provided. The 

methodology followed to achieve the goal is shown in figure 5.1. 
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Figure 5.1 Methodology for Problem (2) 

 

5.2 Datasets description 

Two datasets were prepared to build Power Prediction Models using controllable 

parameters, one for each unit. Steam properties at turbine inlet could be controlled by the 

amount of heat submitted to the boiler. Hence, steam flow, pressure and temperature are 

the controllable parameters. Only these three controllable parameters were selected to 

prepare the datasets for this model. Each dataset is prepared by selecting three or more 

different instances (readings) from each month in the original dataset. To compare the 

actual amount of the generated power for this selected datasets versus the calculated 

values, the amount of the generated power is calculated manually using the two methods; 

the thermodynamic laws and the Steam Consumption Graph. Below is some description 

about these datasets: 

 

1. Controllable parameters dataset for Unit 3: As shown in Table 5.1 this dataset is 

composed of three predictors (Steam Flow, Pressure and Temperature) and one 

class (Power). This dataset is composed of 87 instances. 
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2. Controllable parameters dataset for Unit 4 : As shows in Table 5.2 this dataset is 

also composed of three predictors (Steam Flow, Pressure and Temperature)and 

one class (Power). This dataset is composed of 83 instances. 

 

 

 

Steam Flow 

at Turbine 

Inlet 

Pressure 

at Turbine 

Inlet 

Temperature 

at Turbine 

Inlet 

Generated 

Power in 

MW 

36.213 85.932 508.91 30.125 

36.277 87.256 504.597 29.89 

36.17 86.822 507.631 30.144 

47.706 86.907 511.416 40.147 

47.971 88.914 510.847 40.42 

 

 

 

5.3  Data Exploration and Analysis for Datasets 

 

Some statistical analysis is required to get more deep understanding about the 

datasets  (Saed, 2017) . Tables 5.3 and 5.4 show basic statistics about attributes of Unit 3 

and Unit 4  datasets respectively. The class of these datasets is the generated power in 

MW. Simple comparison between unit 3 and 4 through these statistics can give some 

indications about the status of the unit itself. The same observation regarding StdDev of 

Unit 3 pressure appeared here. The standard deviation of Pressure in unit 3 dataset is 

28.875 compared to 1.198 in unit 4, this is caused by the maximum value of pressure at 

unit 3 which is 128.782 bar. This will make direct impact on amount of the generated 

power value. The mean value of pressure in unit 3 is 75.291 bar, while the optimum value 

for pressure (as specified by fabricants) should be 87 bar. Unit 4 statistics is normal and 

very near to proposed values by fabricants. 

 

 

 

 

 

 

 

 

 

Statistic  Steam Flow Pressure Temperature Power 
Minimum 24.569 0.4 498.064 19.849 
Maximum 59.373 128.782 530.501 50.637 

Mean 45.402 75.291 508.93 38.409 
StdDev 8.153 28.875 4.203 7.553 

Table 5.1 Controllable parameters dataset 

for Unit 3  

Table 5.3 Unit 3 Dataset Analysis   

Table 5.2 Controllable parameters dataset 

for Unit 4 

Steam Flow  
at Turbine 

Inlet 

Pressure  
at Turbine 

Inlet 

Temperature  
at Turbine 

Inlet 
Power 
in MW 

30.994 87.291 512.103 29.91 
30.701 86.939 509.371 29.988 
30.888 87 508.326 30.066 
44.886 87.496 508.675 45.011 
44.458 86.864 518.263 44.835 
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5.4 Initial Comparison Between Algorithms 

 

The data types of  all predictors and classes for all datasets used in this research are 

numeric. Therefore, according to data mining map shown in figure 2.7, the prediction 

models should be of regression type. Table 5.5 shows the list of algorithms that will be 

used for power prediction models in this chapter. 

 

 

 

Serial Algorithm Name Algorithm Name in Weka 

1 Gaussian Processes for regression GaussianProcesses 

2 Isotonic Regression IsotonicRegression 

3 Least median squared linear regression  LeastMedSq 

4 LinearRegression LinearRegression 

5 Neural Network MultilayerPerceptron 

6 Pace Regression linear models PaceRegression 

7 Simple Linear Regression SimpleLinearRegression 

8 Support Vector Machine for regression SMOreg 

9 K-nearest neighbors IBk 

10 Instance-based learner KStar 

11 Locally weighted learning LWL 

12 Conjunctive Rule ConjunctiveRule 

13 Decision Table DecisionTable 

14 M5Rules M5Rules 

15 One-level decision tree DecisionStump 

16 M5 Model Tree M5P 

17 Decision tree learner C4.5 REPTree 

 

The purpose of this step is to do an initial comparison between all algorithms shown 

in Table 5.5, to select the best one for each dataset. Because there are two different 

datasets; two experiments were created “one for each dataset”. Each experiment uses 5 

evaluation factors to rank the results:  

 Mean_absolute_error,  

 Root_mean_squared_error,  

 Relative_absolute_error,  

Statistic  Steam Flow Pressure Temperature Power 
Minimum 27.266 84.804 493.465 26.022 
Maximum 60.021 91.042 524.338 56.928 

Mean 45.064 87.675 509.902 42.767 
StdDev 9.322 1.198 4.8 8.668 

Table 5.5 List of Algorithms Used for Power Prediction Models   

 
Table 5.4 Unit 4 Dataset Analysis   
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 Root_relative_squared_error  

 Correlation coefficient.   

Equations of these evaluation factors are shown in Figure 3.2.  Tables 5.6,5.7 

shows the results of the initial comparison between the 17 algorithms for the three datasets 

respectively. Correlation coefficient is used to order the results of these algorithms in 

descending order, so the highest row in each table is the best performance algorithm, and 

the lowest is the worst one. 

 

 

5.5  Prediction Models to Predict the Power Using 

Controllable Parameters  
 

Referring to chapter one (1.4 Objectives of Study), the second objective is: to design 

a prediction technique that can accurately predicts the amount of generated power, using 

only the controllable parameters. This objective could be achieved by building a 

prediction model to predict the amount of generated power using the controllable  

parameters. To achieve this goal, two datasets were used: unit 3, unit 4. Each of these 

datasets compose of three predictors (1. Main steam flow, 3. Pressure at Turbine Inlet, 4. 

Temperature at Turbine Inlet ), as shown in tables 5.1 and 5.2. 

As shown in figure 5.1, after the initial comparison between algorithms, the 

following will be done for each dataset: 

i. Design the Prediction Model to predict the Amount of Generated Power: The model 

will be designed using the algorithm that showed the highest Correlation Coefficient 

in the initial comparison. Another model will be designed using the algorithm that 

showed the worst Correlation Coefficient, just to compare its results with the best 

algorithm. 

ii. Model Evaluation: the created models will be evaluated using the same factors used in 

comparing the algorithms (Mean_absolute_error, Root_mean_squared_ error, 

Relative_absolute_error, Root_relative_squared_error and correlation coefficient). 

Because the dataset is small, evaluation is done using 10-fold cross validation. Also 

the predicted results will be compared with the actual values, and the comparison 

results will be presented as a table and as a graph to give better vision about the models’ 

accuracy. 
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Tables 5.6 The Initial comparison between algorithms’ accuracy for Unit 3 Dataset 

No. 

Algorithm Name 
Correlation 
coefficient      

Mean 

absolute 
error          

Root mean 

squared 
error      

Relative 

absolute 
error      

Root 

relative 

squared 
error  

6 Pace Regression linear models 0.9383 2.1045 2.598 32.5636 34.2217 

1 Gaussian Processes for regression 0.9381 2.2890 2.8501 35.4179 37.5422 

16 M5 Model Tree 0.9379 2.0848 2.6059 32.2593 34.3258 

14 M5 Rules 0.9378 2.0973 2.6106 32.4528 34.3874 

4 LinearRegression 0.9375 2.1031 2.6128 32.5425 34.4169 

8 Support Vector Machine for regression 0.9374 2.1269 2.6592 32.9098 35.0282 

2 Isotonic Regression 0.9371 1.9029 2.6219 29.4443 34.5362 

7 Simple Linear Regression 0.9241 2.3287 2.8694 36.0325 37.7969 

13 Decision Table 0.9216 2.2394 2.9157 34.6513 38.4061 

9 K-nearest neighbors 0.9189 1.6682 2.9801 25.8128 39.2545 

17 Decision tree learner C4.5 0.9164 2.1505 3.0152 33.2754 39.7166 

3 Least median squared linear regression  0.9015 2.6101 3.3594 40.3865 44.2514 

5 Neural Network 0.8998 2.6154 3.3355 40.4688 43.9355 

10 Instance-based learner 0.8856 2.4211 3.7060 37.4625 48.8163 

11 Locally weighted learning 0.8652 3.0524 3.7723 47.2315 49.6903 

12 Conjunctive Rule 0.8636 3.0787 3.7870 47.6377 49.8832 

15 One-level decision tree 0.8558 3.1496 3.8868 48.7345 51.1977 
 

 

 

Tables 5.7 The Initial comparison between algorithms’ accuracy for Unit 4 Dataset 

No. 
Algorithm Name Correlation 

coefficient      

Mean 

absolute 

error          

Root mean 

squared 

error      

Relative 

absolute 

error      

Root relative 

squared error  

2 Isotonic Regression 0.9943 0.6440 0.9224 8.5690 10.6071 

8 Support Vector Machine for regression 0.9915 0.8501 1.1267 11.3126 12.9567 

3 Least median squared linear regression  0.991 0.9107 1.1893 12.1188 13.6770 

4 LinearRegression 0.991 0.9157 1.1534 12.1845 13.2638 

6 Pace Regression linear models 0.991 0.9073 1.1562 12.0728 13.2964 

7 Simple Linear Regression 0.9896 1.0013 1.2377 13.3236 14.2333 

14 M5 Rules 0.9894 0.9533 1.2522 12.6861 14.4000 

16 M5 Model Tree 0.9893 0.9648 1.2571 12.8379 14.4567 

17 Decision tree learner C4.5 0.9893 0.8271 1.2592 11.0057 14.4813 

13 Decision Table 0.9881 0.9644 1.3264 12.8326 15.2538 

10 Instance-based learner 0.9864 0.9616 1.4347 12.7954 16.4986 

5 Neural Network 0.9857 1.1365 1.4871 15.1233 17.1016 

1 Gaussian Processes for regression 0.9854 1.4071 1.6934 18.7246 19.4742 

9 K-nearest neighbors 0.981 1.0184 1.6711 13.5519 19.2180 

11 Locally weighted learning 0.921 2.5788 3.3608 34.3166 38.6498 

15 One-level decision tree 0.9006 3.0655 3.7443 40.7924 43.0597 

12 Conjunctive Rule 0.8902 3.1135 3.9343 41.4317 45.2443 
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5.5.1 Power Prediction Models Using Controllable Parameters 

for Unit 3  

 

According to the results of the initial comparison between algorithms in table 5.6; 

the algorithm that shows the highest correlation co-efficient, and minimum errors in Unit 

3 dataset is Paces Regression, while One-level decision tree algorithm achieves the worst 

results. Using Unit 3 dataset, two models were designed; Pace Regression, and One-level 

decision tree. Subsequent parts provide the design, evaluation, and discussion about these 

models.  

 

5.5.1.1 Pace Regression Model 

Pace regression improves the classical ordinary least squares regression by 

evaluating the effect of each variable and using a clustering analysis to improve the 

statistical basis for estimating their contribution to the overall regressions (Wang, 2000). 

Pace regression is selected to develop the prediction model for Unit 3 because it showed 

the highest correlation coefficient, and minimum errors. Below is the details about the 

model and its evaluation. 

 

i. Power Prediction Model: Figure 5.2 (a) shows the Pace Regression model for Unit 3 

dataset. As seen from the figure the features are the variables of the linear equation. 

Figure 5.2 (b) gives some basic information about the model and the used dataset. The  

model used 10-fold cross validation for evaluation, because the number is only 87 

which is relatively low. The algorithm which is used to build the model is the Pace. 

The time required to build the model is less than a second. 

 

 

 

 

 

 

 

Pace Regression Model 

GeneratedPower_MW = 
   -111.0877 + 

      0.8909 * MainSteamFlow + 

      0.0294 * PressureInlet + 

      0.2099 * TemperatureInlet 

Data set : Unit3 

Total Number of instances: 87 

Training set: 87 

Evaluation : 10-fold Cross-validation 

Algorithm : Pace Regression  

Time (s) : 0 

Figure 5.2 Pace Regression Model for Unit 3 

 

(a)  Pace Regression Model for Unit 3 

 

(b) General Information about the model 
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i. Model Evaluation: Model evaluation is done using 10-fold cross validation. Each 

fold is done using the equations in Figure 3.2 (Equations of the Evaluation 

methods). The model is considered to be more accurate if the Correlation 

coefficient is high (near to one), and the errors are low. Table 5.8 give the details 

about the model accuracy, as shown in the table, the correlation coefficient is high 

(0.9383) , and error factors are low (Mean absolute error is 2.1045, Root mean 

squared error is 2.598, Relative absolute error is 32.56%, and the Root 

relative squared error is 34.22% ). The model accuracy is low, this is due to the 

Correlation coefficient 0.9383 

Mean absolute error 2.1045 

Root mean squared error 2.598 

Relative absolute error 32.56% 

Root relative squared error 34.22% 

Instance 

No.
    Actual  Predicted  Error

1 41.885 39.928 -1.957

2 40.127 40.306 0.179

3 49.172 45.25 -3.922

4 39.912 43.453 3.541

5 32.625 34.189 1.564

6 42.081 42.939 0.858

7 34.09 33.719 -0.371

8 39.736 44.393 4.657

9 36.005 36.58 0.575

10 42.12 43.947 1.827

11 47.902 43.865 -4.037

12 48.938 44.309 -4.629

13 30.066 26.192 -3.874

14 31.785 33.635 1.85

15 48.098 43.969 -4.129

16 44.757 44.757 0

17 44.991 48.379 3.388

18 29.949 25.798 -4.151

19 40.127 39.571 -0.556

20 40.303 43.369 3.066

21 40.029 45.151 5.122

22 34.95 34.913 -0.037

23 40.166 40.511 0.345

24 40.147 41.502 1.355

25 30.144 29.538 -0.606

26 42.295 40.917 -1.378

27 39.658 41.908 2.25

28 40.42 41.368 0.948

29 35.126 35.121 -0.005

30 45.773 46.464 0.691

Table 5.9  Sample of comparison 
between Actual and Predicted values Of 

the Generated Power, using Pace 
Regression,  for Test Dataset of Unit 3 

 

Table 5.8 Pace Regression Model 

Accuracy for Unit 3 Data set 
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Figure 5.3 Graph for comparison between Actual and Predicted values Of the Generated Power, using Pace Regression,  for Test Dataset of Unit 3 
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instability of sensors’ readings of unit 3 which was observed in chapter 4. Table 5.9 

shows a sample of a comparison between the Actual and Predicted values of the 

Generated Power, using Pace Regression,  for 30 instances of Unit 3, the Error column 

shows how much the predicted values are far from from the actual ones. Figure 4.3 gives 

more clear vision about the model accuracy, the graph compares between the actual and 

predicted values of the amount of the generated power. 

 

5.5.1.2 One-level Decision Tree  Model 

Another model was built using One-level Decision Tree algorithm, which is a 

decision tree with one internal node (the root) which is immediately connected to the 

terminal nodes (its leaves) (Iba et al, 1992).  The model showed very poor accuracy, this 

model was built only to compare its results with the first one which is the most accurate 

model in Unit 3. Below is the details about the One-level Decision Tree model and it 

evaluation. 

i. Power Prediction Model: Figure 5.4 (a) shows the One-level Decision Tree model 

for Unit 3 dataset. As seen from the figure, the One-level Decision Tree algorithm 

selected only the Main Steam Flow as its root node. The model calculates the power 

as an if-then-else statement: 

If the (MainSteamFlow <= 44.4925) Then Generated Power = 30.47; 

Elsif (MainSteamFlow > 44.4925) Then Generated Power =: 43.75; 

Elsif  (MainSteamFlow is missing)  Then Generated Power =38.40; 

The model doesn’t assist in depicting the behavior of the power plant, and can not 

give a reliable prediction method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)  One-level Decision Tree  Model for Unit 3 

 

Decision Stump Model 
Classifications 

MainSteamFlow <= 44.4925 : 30.470600000000008 

MainSteamFlow > 44.4925 : 43.751346153846164 

MainSteamFlow is missing : 38.40851724137932 

Data set : Unit3 

Total Number of instances: 87 

Training set: 87 

Evaluation : 10-fold Cross-validation 

Algorithm : DecisionStump 

Time (s) : 0 

(b) General Information about the model 

Figure 5.4 One-level Decision Tree  Model for Unit 3 
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ii. Model Evaluation: The model evaluation is done using the equations in Figure 3.2 

(Equations of the Evaluation methods). Table 5.10 gives the details about the model 

accuracy, as shown in the table, the correlation coefficient is low (0.8558), compared 

to (0.9383) for Pace Regression model for this dataset. Error factors are higher than 

errors in Pace Regression model:  

 

 Mean absolute error is 3.1496 compared to 2.1045 in Pace Regression,  

 Root mean squared error is 3.8868 compared to 2.598 in Pace Regression,  

 Relative absolute error is 48.73 % compared to 32.56% in Pace Regression,  

 Root relative squared error is 51.20% compared to 34.22% in Pace Regression. 

 

So, it is clear that the model accuracy is very low.  Table 5.11 shows a sample of 

a comparison between the Actual and Predicted values of the Generated Power, using 

One-level Decision Tree,  for 30 instances of the Dataset of Unit 3. The Error column 

shows how much the predicted values are very far from the actual ones. Also the 

graph at Figure 5.5 gives more clear vision about the model accuracy, the graph 

compares between the actual and predicted values of the amount of the generated 

power. The big difference between the actual and predicted values is very clear from 

the graph. 

 

5.5.2 Power Prediction Models Using Controllable 

Parameters for Unit 4  

 

According to the results of the initial comparison between algorithms in table 5.7; 

the algorithm that shows the highest correlation co-efficient, and minimum errors in Unit 

4 dataset is Isotonic Regression, while Conjunctive Rule  algorithm achieves the worst 

results. Using Unit 4 dataset, two models were designed; Isotonic Regression, and 

Conjunctive Rule. Subsequent parts provide the design, evaluation, and discussion about 

these models.  
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Correlation coefficient 0.8558 

Mean absolute error 3.1496 

Root mean squared error 3.8868 

Relative absolute error 48.73% 

Root relative squared error 51.20% 

inst#     actual  predicted  error

1 41.885 43.96 2.075

2 40.127 43.96 3.833

3 49.172 43.96 -5.212

4 39.912 43.96 4.048

5 32.625 30.117 -2.508

6 42.081 43.96 1.879

7 34.09 30.117 -3.973

8 39.736 43.96 4.224

9 36.005 30.117 -5.888

10 42.12 43.441 1.321

11 47.902 43.441 -4.461

12 48.938 43.441 -5.497

13 30.066 30.458 0.392

14 31.785 30.458 -1.327

15 48.098 43.441 -4.657

16 44.757 43.441 -1.316

17 44.991 43.441 -1.55

18 29.949 30.458 0.509

19 40.127 44.274 4.147

20 40.303 44.274 3.971

21 40.029 44.274 4.245

22 34.95 30.345 -4.605

23 40.166 44.274 4.108

24 40.147 44.274 4.127

25 30.144 30.345 0.201

26 42.295 44.274 1.979

27 39.658 44.274 4.616

28 40.42 43.663 3.243

29 35.126 30.952 -4.174

30 45.773 43.663 -2.11

Table 5.11  Sample of comparison between Actual 

and Predicted values Of the Generated Power, 

using One-level Decision Tree ,  for Test Dataset 

of Unit 3 

 

Table 5.10 One-level Decision Tree  Model 

Accuracy for Unit 3 Data set 
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Figure 5.5 Graph for comparison between Actual and Predicted values Of the Generated Power, using One-level Decision Tree  ,  for Test Dataset of Unit 3 
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5.5.2.1 Isotonic Regression Model 

Isotonic regression is the technique of fitting a free-form line to a sequence of 

observations under the following constraints: the fitted free-form line has to be non-

decreasing everywhere, and it has to lie as close to the observations as possible. Isotonic 

regression model picks the attribute that results in the lowest squared error (Jan, Kurt and 

Patrick, 2009). Isotonic regression is selected to develop the prediction model for Unit 4 

because it showed the highest correlation coefficient, and minimum errors. Below is the 

details about the model and its evaluation. 

 

i. Power Prediction Model: Isotonic Regression implements the method for learning 

an isotonic regression function based on the pair-adjacent violators approach. 

PLSClassifier learns a partial least squares regression model. It uses the PLSFilter 

to transform the training data into partial least-squares space and then learns a linear 

regression from the transformed data (Witten et al, 2011). Figure 5.6 (a) shows the 

Isotonic Regression model for Unit 4 dataset. As seen from the figure the model 

depends only on the steam flow to predict the amount of the generated power. Figure 

5.6 (b) gives some basic information about the model and the used dataset. The  

model used 10-fold cross validation for evaluation, because the number is only 87 

which is relatively low. The time required to build the model is less than one second. 

The efficiency engineers, beside the accurate prediction they need to know the 

behavior of all the three predictors, and how they influence the amount of the 

generated power. Although Isotonic Regression achieved high accuracy (correlation 

coefficient = 0.9943 ), but it can’t show the influence of the other parameters, this 

because it depends only on Steam Flow. However, the correlation coefficient of the 

Support Vector Machine algorithm is also high (0.9915), and it provide the required 

understanding about the behavior of the other features. Figure 5.7 shows the Support 

Vector Machine for Regression model. 
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Isotonic regression Model 
Based on attribute: SteamFlow 

prediction:      26.02  cut point:      28.36 
prediction:      28.07  cut point:      29.63 
prediction:      28.4   cut point:      30.46 

prediction:      29.85  cut point:      31.08 
prediction:      29.88  cut point:      31.21 
prediction:      30.09  cut point:      31.3  
prediction:      30.14  cut point:      31.82 
prediction:      30.83  cut point:      32.53 
prediction:      31.2   cut point:      32.81 

prediction:      31.22  cut point:      33.1  
prediction:      33.74  cut point:      33.57 
prediction:      33.8   cut point:      37.68 

prediction:      39.28  cut point:      43.99 
prediction:      43.45  cut point:      45.84 
prediction:      43.6   cut point:      46.78 

prediction:      44.12  cut point:      47.99 
prediction:      45     cut point:      48.71 

prediction:      45.46  cut point:      48.81 
prediction:      45.91  cut point:      50.03 
prediction:      46.51  cut point:      50.76 
prediction:      49.72  cut point:      51.24 
prediction:      49.84  cut point:      51.68 
prediction:      49.87  cut point:      54.51 
prediction:      50.43  cut point:      56.13 
prediction:      55.23  cut point:      57.82 
prediction:      55.48  cut point:      58.87 
prediction:      55.85  cut point:      59.92 
prediction:      56.93 

Data set : Unit 4 
Total Number of instances: 

83 
Training set: 87 

Evaluation : 10-fold Cross-

validation 
Algorithm : Isotonic 

Regression 
Time (s) : 0.01 

Figure 5.6 Isotonic Regression Model for Unit 4 

 

(b) General Information about the model 

(a) Isotonic Regression Model for Unit 4 

SMOreg 

weights (not support vectors): 

 +       0.9648 * (normalized) SteamFlow 

 +       0.0375 * (normalized) Pressure 

 +       0.0825 * (normalized) Temperature 

 -       0.0409 

Figure 5.7 Support Vector Machine for Regression Model for Unit 4 
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ii. Model Evaluation: Model evaluation is done using 10-fold cross validation. Each 

fold is done using the equations in Figure 3.2 (Equations of the Evaluation methods). 

Table 5.12 give the details about the model accuracy, as shown in the table, the 

correlation coefficient is high (0.9943) , and error factors are low (Mean absolute 

error is 0.644, Root mean squared error is 0.9224, Relative absolute error is 

8.57%, and the Root relative squared error is 10.61% ). The model accuracy is high. 

Table 5.13 shows a sample of a comparison between the Actual and Predicted values 

of the Generated Power, using Isotonic Regression,  for 30 instances of Unit 4, the 

Error column shows how much the predicted values are near to the actual ones. The 

graph in figure 5.8 gives more clear vision about the model accuracy, the graph 

compares between the actual and predicted values of the amount of the generated 

power. 

Correlation coefficient 0.9943 

Mean absolute error 0.644 

Root mean squared error 0.9224 

Relative absolute error 8.57% 

Root relative squared error 10.61% 

Table 5.12 Isotonic Regression 

Accuracy for Unit 4 Data set 

Table 5.13  Sample of comparison between Actual and 

Predicted values Of the Generated Power, using Isotonic 

Regression,  for Test Dataset of Unit 4 
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 Figure 5.8 Graph for comparison between Actual and Predicted values Of the Generated Power, using Isotonic Regression,  for Test Dataset of Unit 4 
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5.6.2.2 Conjunctive Rule Model 

Another model was built using Conjunctive Rule algorithm. This 

algorithm implements a single conjunctive rule learner that can predict for 

numeric and nominal class labels. A rule consists of antecedents "AND"ed 

together and the consequent (class value) for the classification/regression.  In this 

case, the consequent is the mean for a numeric value in the dataset. This learner 

selects an antecedent by computing the Information Gain of each antecedent and 

prunes the generated rule using Reduced Error Pruning (Witten, Frank and Hall, 

2011). The model showed very poor accuracy, this model was built only to 

compare its results with the first one which is the most accurate model in Unit 4. 

Below is the details about the Conjunctive Rule model and it evaluation. 

i. Power Prediction Model: Figure 5.9 (a) shows the Conjunctive Rule model for Unit 

4 dataset. As seen from the figure, like Isotonic Regression model, the Conjunctive 

Rule algorithm used only the Steam Flow as a predictor. Because the model depends 

on a single feature, it can’t assist the efficiency engineers to understand the behavior 

of other features, and how they influence the amount of the generated power. The 

model predicts the power by a very primitive equation which is shown in figure 5.9(a). 

 

ii. Model Evaluation: The model evaluation is done using the equations in Figure 3.2 

(Equations of the Evaluation methods). Table 5.14 gives the details about the model 

accuracy, as shown in the table, the correlation coefficient is low (0.8902), compared 

to (0.9943) for Isotonic Regression model for this dataset. Error factors are higher 

than errors in Isotonic Regression model:  

 Mean absolute error is 3.1135 compared to 0.644 in Isotonic Regression,  

 Root mean squared error is 3.9343 compared to 0.9224 in Isotonic Regression,  

 Relative absolute error is 41.43 % compared to 8.57% in Isotonic Regression,  

 Root relative squared error is 45.24% compared to 10.61% in Isotonic 

Regression. 

So, it is clear that the model accuracy is very low.  Table 5.15 shows a sample of 

a comparison between the Actual and Predicted values of the Generated Power, using 

Conjunctive Rule,  for 30 instances of the Dataset of Unit 4. The Error column shows 

how much the predicted values are very far from the actual ones. Also the graph at 

Figure 5.10 gives more clear vision about the model accuracy, the graph compares 



 

138 
 

between the actual and predicted values of the amount of the generated power. The 

big difference between the actual and predicted values is very clear from the graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlation coefficient 0.8902 

Mean absolute error 3.1135 

Root mean squared error 3.9343 

Relative absolute error 41.43% 

Root relative squared error 45.24% 

ConjunctiveRule Model 
Single conjunctive rule learner: 

-------------------------------- 

(SteamFlow > 43.9885) => 

Power = 48.327471 

Data set : Unit4 

Total Number of instances: 83 

Training set: 87 

Evaluation : 10-fold Cross-validation 

Algorithm: ConjunctiveRule 

Time (s) : 0  

Figure 5.9 Conjunctive Rule  Model for Unit 4 

 

(a)  Conjunctive Rule  Model for Unit 4 

 

(b) General Information about the model 

Table 5.15  Sample of comparison between Actual 

and Predicted values Of the Generated Power, 

using Conjunctive Rule  ,  for Test Dataset of Unit 

4 
 

Table 5.14 Conjunctive Rule  

Accuracy for Unit 4 Data set 

Instance 

No.
    Actual  Predicted  Error

1 30.828 32.112 1.284

2 49.758 48.441 -1.317

3 55.424 48.441 -6.983

4 28.073 32.112 4.039

5 50.286 48.441 -1.845

6 51.399 48.441 -2.958

7 28.464 32.112 3.648

8 49.719 48.441 -1.278

9 29.538 32.112 2.574

10 49.895 48.736 -1.159

11 49.973 48.736 -1.237

12 49.719 48.736 -0.983

13 42.237 48.736 6.499

14 50.188 48.736 -1.452

15 29.968 32.425 2.457

16 40.088 32.425 -7.663

17 30.066 32.425 2.359

18 45.753 48.736 2.983

19 55.482 48.884 -6.598

20 39.951 30.758 -9.193

21 49.973 48.884 -1.089

22 49.328 48.884 -0.444

23 44.933 48.884 3.951

24 30.027 30.758 0.731

25 44.835 48.884 4.049

26 46.886 48.884 1.998

27 50.227 48.884 -1.343

28 46.027 48.39 2.363

29 49.426 48.39 -1.036

30 29.675 32.468 2.793
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Figure 5.10 Graph for comparison between Actual and Predicted values Of the Generated Power, using Conjunctive Rule  ,  for Test Dataset of Unit 4 
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5.7 Results Discussion and Models Comparison 

 

In unit 3, a big difference in standard deviation of the Steam Pressure at Turbine 

Inlet is observed (28.875), this is due to the high difference between the observed values 

of the Steam Pressure (128 and 0.4 bar). If these values are correct, they will cause 

damage in tubes and power plant components. Because of this it is very clear that Unit 3 

data is noisy, and we can not depend on it to get accurate prediction. That is very clear 

from the results obtained from Unit 3. The Pressure at Turbine Inlet is one of the most 

important features in calculating the amount of power, consequently, the correlation 

coefficient of all prediction models in Unit 3 becomes very low, and the Mean Absolute 

Error is high. After initial comparison between seventeen algorithms the Pace Regression 

was selected to build the prediction models for Unit 3.  The value of the generated power 

which is predicted by Pace Regression model, is much accurate than those which are 

calculated using either the thermodynamic laws, or the Steam Consumption Graph. Table 

5.16 shows a sample of the four value of the amount of the generated power from Unit 

3: Actual generated power, Calculated power using Steam Consumption graph, the 

calculated power using Thermodynamic Laws, and the Predicted power. It is very clear 

from the graph of figure 5.11 that the Predicted Amount using the Pace Regression is 

much accurate than those calculated using the thermodynamic laws, or the Steam 

Consumption Graph. 

 

Unit 4 dataset is much better than unit 3, that is obvious from the table 5.4 which 

shows basic statistical analysis about unit 4 dataset. The mean values of pressure and 

temperature are very near to the optimum values assigned by the power plant’s 

manufacturer. So, the amount of the actual generated power is very near to the amount 

which is calculated by the Steam Consumption Graph. Table 5.17 shows a sample of the 

four value of the amount of the generated power from Unit 4: the Actual generated power, 

the Calculated power using Steam Consumption graph, the calculated power using 

Thermodynamic Laws, and the Predicted power. It is very clear from the graph of figure 

5.11 that the Predicted Amount using the Isotonic Regression is much accurate than those 

calculated using the thermodynamic laws, or the Steam Consumption Graph. 
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From the above discussion of model evaluation results, it is clear that the values 

predicted by the new prediction models (Pace Regression for Unit 3, and Isotonic 

Regression in Unit 4) are more accurate than those calculated by Thermodynamic Laws, 

or Steam Consumption Graph. Moreover, the new prediction models depends only on 

the controllable parameters. Hence, they could be used as efficient tool to predict the 

amount of the generated power from a thermal power plant accurately. An additional 

contribution of this research is that: by data exploration and analysis and prediction 

models; we are able to highlight some of Unit 3 problems, like sensors, problem of Steam 

Pressure at Turbine Inlet. By all these the developed prediction models succeeded to 

answer all the research questions. 

 

5.8 Summary 

The calculation of the amount of the generated power from a thermal power plant 

is done using five features which are (1. Main steam flow, 3. Pressure at Turbine Inlet, 

4. Temperature at Turbine Inlet, 61. Pressure at Turbine Outlet, 62. Temperature at 

Turbine Outlet), only the first three features are controllable. Any prediction model to be 

effective and usable, it should depend only on these three features. Hence, the  objective 

of this chapter is  “To design a prediction technique that can accurately predicts the 

amount of the generated power from a thermal power plant, using only the controllable 

parameters”. To achieve this objective, 2 datasets were used with 17 prediction 

algorithms. The models that showed higher correlation coefficient and minimum errors 

were selected to design the prediction models. The predicted values were compared with 

the actual amount of the generated power, and the calculated power (using both 

Thermodynamic Laws, and Steam Consumption Graph). The predicted values are more 

accurate than the values calculated using the traditional methods. 

 

Pace Regression attained the highest Correlation Coefficient (0.9383) and lowest 

MAE (2.1045) with Unit 3 dataset, and Isotonic Regression model  attained the highest 

Correlation Coefficient (0.9943) and lowest MAE (0.644) with unit 4. Although  Isotonic 

Regression attained the highest results, but it depends only on one feature. Hence, 

Support Vector Machine model was also developed because it achieved high correlation 

coefficient (0.9915), and provided the required explanation about the behavior of the 

other features.  
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Table 5.16 Sample of Comparison between Actual, Predicted, and Calculated (Using Steam 

Consumption graph and Thermodynamic Laws) in Unit 3 

Actual 

Calculated by 

Manufacturer 

Graph 

Calculated by 

Thermodynamic 

Laws 

Predicted 

19.849 22.569 19.306 19.163 

21.021 24.092 21.299 21.754 

21.099 24.142 21.384 23.051 

27.604 31.223 26.741 24.612 

28.327 32.522 26.503 29.759 

29.773 32.102 29.137 33.435 

29.812 36.761 30.307 31.819 

29.851 33.332 27.997 29.546 

29.890 34.277 28.213 29.819 

29.929 31.919 31.063 30.768 

29.929 32.697 26.227 27.500 

29.949 32.029 30.585 25.798 

30.027 33.022 26.715 29.814 

30.046 31.870 28.332 30.989 

30.066 31.991 30.857 26.192 

30.085 32.068 28.031 30.178 

30.105 32.435 27.517 28.267 

 

 

 

Table 5.17 Sample of Comparison between Actual, Predicted, and Calculated (Using Steam 

Consumption graph and Thermodynamic Laws) in Unit 4 

Actual 

Calculated by 

Manufacturer 

Graph 

Calculated by 

Thermodynamic 

Laws 

Predicted 

26.022 25.266 22.473 28.073 

28.073 27.456 24.322 28.327 

28.327 28.215 25.018 28.464 

28.464 27.794 24.520 28.327 

29.538 29.009 25.682 29.892 

29.597 29.055 25.642 29.883 

29.675 28.940 25.513 29.857 

29.734 29.171 25.713 30.027 

29.910 28.994 25.722 29.883 

29.968 28.791 25.563 29.796 

29.988 28.701 25.381 29.857 

30.027 29.101 25.406 29.838 

30.066 28.888 25.446 29.796 

30.066 28.997 25.709 29.820 

30.085 29.249 25.627 30.085 

30.085 29.270 25.641 30.085 

30.144 29.336 25.761 30.085 



 

143 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

25

35

45

55

65

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87

G
en

er
at

ed
 P

o
w

er
 in

 M
W

Instances

Actual Generated power vs Equation and  Manufacturer in Unit 3

Actual Calculated by Manufacturer Graph Calculated by Thermodynamic Laws Predicted

Figure 5.11 Comparison between Actual, Predicted, and Calculated (Using Steam Consumption graph and Thermodynamic Laws) in Unit 3 

 



 

144 
 

 

 

 

 

 

15.000

25.000

35.000

45.000

55.000

65.000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83

G
en

er
at

ed
 P

o
w

er
 in

 M
W

Instances

Actual Generated power vs Equation and Manufacturer in Unit 4

Actual Calculated by Manufacturer Graph Calculated by Thermodynamic Laws Predicted

Figure 5.12 Comparison between Actual, Predicted, and Calculated (Using Steam Consumption graph and Thermodynamic Laws) in Unit 4 

 



 

145 
 

 

 

 

CHAPTER SIX 

 

 

 

CONCLUSION AND FUTURE WORK 
 

 

 

6.1 Introduction  
 

 

The aim of this chapter is to summarize the research objectives and techniques that 

have been carried out in this thesis. The research concerns the development of techniques 

that can accurately predict the Amount of the Generated Power from a Thermal Power 

Plant. CRISP-DM model (Shearer, 2000) is used to is organize the work into six phases, 

namely: Business Understanding; at this phase the concepts of power generation is 

reviewed and the research objectives are clearly defined. Then Data Preparation Data 

Understanding and; where data is prepared to the machine learning tools, and basic 

statistical analysis was done to give better understanding about the datasets. The forth 

phase is the modeling; which is composed of two main parts; Feature Selection and 

Prediction Model development. After that comes the Evaluation phase, where each model 

is evaluated using the correlation coefficient and the error rates to reflect the model 

accuracy.  

This chapter is organized  as follows: Section 7.2 summarizes the proposed methods 

presented in this research. Section 7.3 presents the research contributions in three main 

points. The future work are discussed in Section 7.4. Finally the whole chapter is 

concluded with a summary in Section 7.5. 
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6.2 The Proposed Method  
 

 

This research has two main objectives, to achieve these objectives, data mining 

techniques were used. The first one is “to design a feature selection technique, that can 

determine the best set of features to predict the amount of the generated power from a 

thermal power plant”. The second is “to design a prediction technique that can accurately 

predicts the amount of generated power, using only the controllable parameters”. To 

achieve these objectives datasets were collected from two identical Units (Unit 3 and 4 ) 

in Khartoum North Power Plant. Then 17 algorithms were applied for these datasets, the 

ones that attained the highest correlation coefficient and minimum errors were selected to 

build the suitable models for each  objective. 

 

For the first objective, the Wrapper method of feature selection was used to select 

the best set of features, that can accurately predict the amount of the generated power. 

Linear Regression model attained the highest Correlation Coefficient (0.9998) in Unit 4, 

52 attribute were selected by the model to predict the power, and the model succeeded in  

determining the other features with their influence (weight) to the amount of the generated 

power. In Unit 3 Pace Regression also achieved high Correlation Coefficient (0.9997) 

using only 28 features, but the Main steam header pressure, which is one of the features 

needed to calculate the power, was not selected. Some features like T/A axial 

displacement, which was selected by the two models, draw the attention of the domain 

experts because they appeared with high factors.  

 

For the second objective, Pace Regression attained the highest Correlation 

Coefficient (0.9383) with Unit 3 dataset, and Isotonic Regression model  achieved  

(0.9943) with unit 4. Because  Isotonic Regression depends only on one feature, Support 

Vector Machine model was also developed to provided the required explanation about the 

behavior of the other features. Beside the correlation coefficient and the error rates, graphs 

were used to compare the predicted vs the actual values, to give better vision about 

models’ accuracy. Graphs were also used to compare the predicted power vs the actual 

and calculated values (using thermodynamic laws, and manufacturers’ guides). These 

comparisons shows the superiority of data mining techniques to the thermodynamic laws, 

and manufacturers’ guides. 
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6.3 Contribution of the Study 
 

 

As mentioned earlier in the previous section. The main goal of this thesis is to 

use data mining to identify the parameters that influence the amount of generated power 

and to accurately predict this amount. The contribution of this thesis is to highlight the 

superiority of data mining to traditional methods in calculating the amount of generated 

power from a thermal power plant. This contribution could be summarized as follows:  

 

i. Identification of important features that influence the amount of generated power 

in a thermal power plant. 

 

The starting point is to eliminate the unimportant attributes in the dataset, to get 

better results of prediction. This is done in  two steps: the first one is an expert guide to 

exclude attributes that are not related to the problem, this step reduced the dataset from 

83 to 62 attributes. Then wrapper method was applied as a feature selection techniques 

to this new dataset which is composed of 62 attributes. The result of this step differ from 

dataset to another, 28 out of 61 attributes were selected for unit 3, 52 for unit 4, and 18 

for unit 3&4 dataset. Moreover all attribute selection results were collected and 

summarized in one sheet, the attributes that were  selected by many algorithms are given 

higher ranks, which gives an indication about the relevancy of this attribute to class. The 

result of this part is the attribute selection result summary sheet which had been 

submitted to the domain expert, who found some useful observations. For example  (3. 

Main steam header pressure) which is one of the top five features had never been 

selected by Unit 3 dataset, and (41. T/A axial displacement B (mm)) which hade never 

been considered as an important factor was selected by 7 models. So, this summary 

sheet could be used as a basic analysis tool to the power plant status. 
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ii. Better understanding of the effects of selected parameters in thermal power plant  

using feature selection and prediction algorithms. 

 

This point is directly related to the first one because to exclude the unimportant 

parameters, we used feature selection. Then the selected set of parameters were used to 

predict the amount of the generated power. Although this is not a practical way to predict 

the power because of two reasons; the first is that the models use both controllable and 

non-controllable parameters as predictors, the second reason is the high number of 

features, which will lead to overfitting. However the factor related to each predictor in 

the prediction model (like the factors of regression equation) gives indication of the 

parameter’s effect in assigning the amount of the predicted power. This is very clear 

from the Linear Regression model, which achieved the highest accuracy in Unit 4 

(0.9998). Also the results of this part had been submitted to the domain expert, they also 

get some observations like those related to the T/A axial displacement B (mm). 

 

 

iii. Develop an accurate method to predict the amount of the generated power based 

on real data collected from the power plant, by using data mining techniques.   

 

The goal of this part is to use only the set of controllable parameters to predict 

the amount of generated power. All units showed different results for different 

algorithms, so the conclusion is that; according to the current situation of each unit in 

the power plant, the prediction results may differ. The predicted values were compared 

with the actual amount of the generated power, and the calculated power (using both 

Thermodynamic Laws, and Steam Consumption Graph). The predicted values are more 

accurate than the calculated values. This accuracy proves the contribution of this 

research. For unit 4 Isotonic Regression was used, which attained high (0.9943) 

correlation coefficient. While in unit 3 Pace Regression was  used, which also attained 

high (0.9383) correlation coefficient.  

 

 

 

 



 

149 
 

6.4 Future Work 
 

 

This research achieved all the objectives of the study, the current work has focused only on the 

amount of the generated power from a thermal power plant. However, a number of research 

opportunities still exist and further researches can be conducted in the area of thermal power 

plants. Specifically, further studies can be conducted in the following areas: 

 

 Identify the parameters that influence the steam pressure at turbine outlet, because 

this is the main non controllable factor that affects the amount of the generated 

power. 

 Prediction of power plant component failure, this task needs more collaboration 

from power plant engineers to identify the problems and failure types of these 

components.  

 Build a data warehouse for power plant data, to increase the analysis efficiency, by 

designing the data warehouse and adding more space to database servers. 

 Use Big Data technology and Hadoop to gain more efficient analysis capabilities, 

and leverage the replication techniques of Hadoop. 

 Investigate the use of real time data mining, to get instant results and direction  in 

addition to the analyzing the historical data.  

 Investigate new data mining algorithm like deep learning to be used in power plant 

efficiency prediction, and failure detection.  

 Develop a complete application that could be integrated with existing databases 

and the proposed data warehouse. The target of the new application is to ease data 

management and prediction of power plant efficiency and failure of main 

components.  
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The main components of all thermal power plants are identical. Hence, the model 

which is designed in this research could be generalized and implemented as is, at any 

thermal power plant for the same objectives (to determine the features that influence the 

amount of power, and to predict the power using only the controllable parameters). This 

could be done by the following steps:  

 

 Data collection and preparation for the 63 features. 

 Run Wrapper feature Selection method using Linear Regression, to select the best 

set of features and build prediction models using the selected set of features.  

 Use Isotonic Regression with the controllable parameters to accurately predict the 

amount of the generated power. 

 

Although all  thermal power plants follow Rankine Cycle (Learn Engineering, 2013), 

but there are a lot of differences between them, which may lead to differences in 

instances and features of the datasets. These differences like: the size, status, 

manufacturers, fuel type, and even the location and weather conditions. Because of this it 

is better to precede the second step by an initial comparison between algorithms’ 

performance for each datasets, to use the most suitable algorithm for that dataset, rather 

than depending on fixed algorithms. 

 

The preferred way to do this is by developing a flexible software package that can 

take as in put the features, and generate all prediction reports and comparison graphs as 

its output. 
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6.5 Summary 
 

The goal of this research is to use data mining techniques to solve two problems: the 

first one is to identify the parameters that influence the amount of generated power from 

a thermal power plant. The second is to predict the amount of generated power 

accurately, using the existing data of the controllable parameters.   

 

This chapter presents the summaries of the techniques used in this research to 

achieve these goals. This chapter proves that depending on thermodynamic laws or 

manufacturers expectations will not give accurate results for the amount of generated 

power. Moreover each unit shows different results for different algorithms, so according 

to the situation of the power plant and specifically for each unit the prediction results 

may differ. The proposed solution is composed of two parts: the first one identifies the 

parameters that influence the amount of generated power using Wrapper Feature 

Selection method, to select the best set of features, and predict the power using this 

selected set of features. The selected algorithms are Paces Regression for unit 3, Linear 

Regression for unit 4, and Neural Network for unit 3&4 datasets. The second part is the 

power prediction using controllable parameters, the selected algorithms for this part are 

are Paces Regression for Unit 3, Isotonic Regression for Unit 4.  

 

The results achieved by power prediction models of this research outperform the 

traditional approaches of power calculation. This confirms the effectiveness of the 

proposed methods. Furthermore, this research discusses the plan for future work to 

improve the current work and how it will be applied for all thermal power plants. 
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Appendix A : Steam tables 

 

 

Example of Saturated Steam Table (TLV Global, 2017). 

 

A saturated steam table is an indispensable tool for any engineer working with 

steam. It's typically used to determine saturated steam temperature from steam pressure, 

or the opposite: pressure from saturated steam temperature. In addition to pressure and 

temperature, these tables usually include other related values such as specific enthalpy (h) 

and specific volume (v). 

The data found in a saturated steam table always refers to steam at a particular 

saturation point, also known as the boiling point. This is the point where water (liquid) 

and steam (gas) can coexist at the same temperature and pressure. Because H2O can be 

either liquid or gas at its saturation point, two sets of data are required: data for saturated 

water (liquid), which is typically marked with an "f" in subscript, and data for saturated 

steam (gas), which is typically marked using a "g" in subscript (TLV Global, 2017). 
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Legend: 

 P = Pressure of the steam/water 

 T = Saturation point of steam/water (boiling point) 

 vf = Specific volume of saturated water (liquid). 

 vg = Specific volume of saturated steam (gas). 

 hf = Specific enthalpy of saturated water (energy required to heat water from 0°C 

(32°F) to the boiling point) 

 hfg = Latent heat of evaporation (energy required to transform saturated water 

into dry saturated steam) 

 hg = Specific enthalpy of saturated steam (total energy required to generate steam 

from water at 0°C (32°F)). 
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Appendix B:   Mollier chart 

 

Moiller Chart    (Refrigeration basics, 2017). 
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Energy 

Energy is the capacity of a system to do work where "system" refers to any physical 

system, not just a refrigeration system. 

 

Enthalpy 

Enthalpy is the total amount of heat in one Lb. of a substance. It's units are therefore 

BTU/Lb. The metric counter part is kJ/kg. (kilo joules/kilogram) 

 

Entropy 

Entropy measures the energy dispersion in a system divided by temperature. This ratio 

represents the tendency of energy to spread out, to diffuse, to become less concentrated in one 

physical location or one energetic state. That spreading out is often done by molecules because 

molecules above absolute zero always have energy inside of them. That's why they are 

incessantly speeding through space and hitting each other and rotating and vibrating in a gas or 

liquid. Entropy is measured in BTU per lb. per °F. 

 

Mollier Charts 

A Mollier diagram is a graphic representation of the relationship between air temperature, 

moisture content and enthalpy - and is a basic design tool for building engineers and designers. 

Mollier charts are used in designing and analyzing performance of vapour compression 

refrigeration systems. Each refrigerant has it's own chart which is a graph of the Enthalpy of a 

refrigerant during various pressures and physical states. Mollier charts are also called Pressure-

Enthalpy diagrams. Pressure is shown on the verticle axis, enthalpy is on the horizontal axis. You 

can compare Imperial versus SI Unit Mollier Charts by clicking on the buttons below the chart.  

(Refrigeration basics, 2017). 
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Appendix C:  Components Diagram of Unit 3
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Appendix D:  Components Diagram of Unit 4 

 


